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Abstract

A time efficient optimization technique for instance based problems is proposed,
where for each parameter setting the target function has to be evaluated on a
large set of problem instances. Computational time is reduced by beginning with
a performance estimation based on the evaluation of a representative subset of
instances. Subsequently, only promising settings are evaluated on the whole
data set.

As application a comprehensive music onset detection algorithm is intro-
duced where several numerical and categorical algorithm parameters are opti-
mized simultaneously. Here, problem instances are music pieces of a data base.

Sequential model based optimization is an appropriate technique to solve this
optimization problem. The proposed optimization strategy is compared to the
usual model based approach with respect to the goodness measure for tone onset
detection. The performance of the proposed method appears to be competitive
with the usual one while saving more than 84% of instance evaluation time
on average. One other aspect is a comparison of two strategies for handling
categorical parameters in Kriging based optimization.

Keywords:
model based optimization, instance optimization, Kriging, onset detection,
categorical parameters

1. Introduction

Parameter optimization is an important issue for industrial optimizations as
well as for computer based applications. The established industrial optimization
approach is based on a design of experiments where the trials are conducted
according to a pre-defined plan [I]. The so called plan matrix should satisfy
some special statistical criteria (like A- or D-optimality). After evaluation of the
plan a relationship between the target variable and the influencing parameters
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is fitted by a regression model. Usually, a linear model with interactions and
quadratic terms is used for this task. The optimal parameter setting is then
defined as the point with best model prediction value.

Despite the long success history of the optimization approach mentioned
above [2 p. 467] it shows two essential weak points. First, the real experiments
are often time and cost consuming. In some cases the real processes can be
replaced by a sophisticated computer simulation. However, even one run of such
simulation can take several days or months [3]. Hence, it is crucial to avoid trials
in not promising areas and conduct them in the neighborhood of the supposed
optimum instead. Second, the assumptions of the linear model are often violated
so that it does not represent the true complex relationship between the target
and the influencing factors. The sequential Model Based Optimization (MBO)
— also called as efficient global optimization — which gained popularity with the
seminal work of [4] is a modern nonlinear optimization technique.

The main idea of MBO is: After the initial phase — evaluation of some
randomly chosen starting points — new points are proposed and evaluated iter-
atively with respect to a surrogate model fitted to all previous evaluations and
an appropriate infill criterion to decide which point is the most promising. The
most prominent surrogate model and infill criterion are the Kriging model in
combination with the Expected Improvement (EI) criterion [4]. EI looks for
a compromise of surrogate model uncertainty in one point and its estimated
function value compared to the current optimum. We will call this combination
classical MBO which is explained in detail in Section

Nevertheless, also classical MBO has a number of shortcomings. For this
work two of them are especially relevant: limitation to only numerical param-
eters and the absent concept for instance based function evaluations. The first
problem is mainly caused by the standard Kriging model which works only with
numerical parameters.

In this paper we aim to compare two simple approaches for handling categor-
ical parameters, which we call naive Kriging and dummy Kriging, respectively.
By naive Kriging categorical parameters are converted to numerical ones. This
leads to an unnatural order with equal distances between the parameter levels.
The dummy Kriging solution is more intuitive from a statistical point of view.
Here, every categorical parameter is replaced by a set of dummy variables. In
each MBO iteration only one dummy variable can have the value 1 while the
others are set to 0.

Regarding the second MBO shortcoming the definition of an instance based
problem is most important. Such situation occurs in applications where in each
MBO iteration the target function has to be evaluated on a set of problem
instances. The mean performance on this set is mostly considered as the tar-
get function value. However, it is not always advisable to evaluate the target
function on all instances (as their quantity can be very high) and sampling a ran-
dom subset in each iteration will lead to noise in the target function landscape.
Hence, a strategy for a sensible selection of instances is needed.

In [5] we proposed such instance based optimization strategy. The main idea
is that instead of evaluating of all instances, a few instances might already be



sufficient to recognize unpromising parameter settings. Therefore, a subset of
representative instances is chosen which is used in the consecutive stages for
the classification of the proposed parameter settings into “good” and “bad” set-
tings. Only if the probability of beating the current optimum is above a specified
threshold, the setting is classified as “good” and evaluation is continued on all
instances. For an adequate performance prediction, the representative subset
should be as diverse as possible. This can be achieved, e.g., by clustering the
instances with respect to their individual target function performance or other
features. In this paper, we provide a new concept for reducing the represen-
tative subset’s size without loosing its predictive ability. The instance based
optimization is introduced more deeply in Section

Here, the application for comparing classical MBO with the modified in-
stance based MBO is tone Onset Detection (OD). Other applications for in-
stance based optimization are, e.g., speech recognition (training of algorithms
for different voices) or algorithm configuration (see, e.g, [6]). A tone onset is
the time point of the beginning of a musical note. OD in music signals is an
important step for many subsequent applications like music transcription and
rhythm recognition. Several approaches have been proposed, but most of them
can be reduced to the same basic algorithm just differing in the parameter set-
tings [7, 8 [, [I0]. Most of them follow the same scheme: windowing the signal,
calculating an Onset Detection Function (ODF') for each window and localizing
the tone onsets by picking the relevant peaks of the ODF. Many numerical and
categorical parameters are involved in this procedure like the window size, the
window overlap and the applied ODF which have a strong influence on the algo-
rithm performance. However, neither these influences nor the optimal parameter
values are realistically quantified in most related publications (s. Sectionfor
more details). Furthermore, the optimization results are mostly not validated
on an additional test data base which can lead to over-fitting ([8]).

Obviously, optimization of OD is an instance based problem as each param-
eter setting is rated by its average performance over all music pieces of a data
base. Hence, it seems to be an appropriate application for testing the proposed
instance based approach. In contrast to our previous study in [5], the number
of parameters of the optimized algorithm is enlarged. Among other things, the
extended algorithm also enables online variants of OD. Furthermore, the op-
timization is conducted on a larger data base combining almost all data sets
frequently used in previous studies. The onset detection algorithm, which will
be optimized here, is briefly described in Section

Validation of the considered optimization approaches is conducted in a so-
phisticated manner by repeatedly dividing the data base into training and test
data. Section [f] presents research questions, comparison experiments, validation
scheme and statistical analysis methods. Afterwards, the experimental results
are analyzed in Section[6] Finally, in Section[7]the main findings are summarized
and several ideas for future research are discussed.



2. Classical model based optimization

The aim of model based optimization is the minimization of a time in-
tensive and highly complex target function f : X € R? — R, f(z) = v,
x = (z1,... 7gcd)T. Each function parameter z; is assumed to be a value of a con-
tinuous featureﬂ in a pre-fixed optimization interval [¢;, u;]. The parameter space
is the Cartesian product of the individual intervals: X = [y, u1] X ... X [{q, uq].
A possible parameter setting x; € X is called a point and y; is the target
value in this point. A set of n points is called a design and is denoted with
D = (z1,...,2,)T. Moreover, y = (f(x1),..., f(x,))T is the vector of the
target values on D. Here, we assume only the deterministic target functions. If
optimization of a noisy function is required, the readers are advised to acquaint
themselves with the extensions provided in [I1].

Algorithm [1] provides the scheme of MBO which can be summarized as fol-
lows: In the first step, an initial design with n points is evaluated and a surrogate
model is fitted. The surrogate model is then used for the prediction of a new
design point. As long as the optimization budget is not exhausted, a new point
is chosen in the parameter space based on a so-called infill criterion derived
from the surrogate model. The target function is evaluated in this point. The
surrogate model is then updated on the design extended by the new point. The
updated model is used for the next iteration. The point with the minimal target
function value is taken as the result of the optimization. In what follows, these
steps will be discussed in more detail.

Algorithm 1: Sequential model based optimization.

generate an initial design D C X;
evaluate f on the initial design: y = (f(x1),..., f(z,))7T;
while optimization budget is not exhausted do
fit the surrogate model on D and y;
find * with the best infill criterion value;
evaluate f on x*: y* = f(x*);
update D < (D,z*)T and y + (y,y*)T;
end
return y,,;, = min(y) and the corresponding @, .

© 00 N Ok W N -

2.1. Initial design and optimization budget

The optimization budget should depend on the dimension of the target func-
tion (number of function parameters d) and is a trade-off between a good opti-
mization result and the required computational time effort. The choice of the
initial design should take into account that too small designs are not able to
sufficiently scan the target function which might lead to local convergence. In

IThe treatment of categorical features will be discussed later.



[12] the influence of the initial design size (4d vs. 10d) and the optimization
budget (20d vs. 40d) is studied with respect to the optimization results. The au-
thors recommend small initial designs and larger optimization budgets. Similar
results are also concluded in [I3] and [I4].

Here, Latin Hypercube Sampling (LHS, [I5]) designs are used for the initial-
ization step. LHS designs are very popular in the computational optimization
community due to their properties of uniformly covering the interesting param-
eter space and arbitrary selectable size (in contrast to the classical orthogonal
designs). Because of the complexity of the optimization problem and the cor-
responding high computation time required for function evaluations, the size of
the initial design is set to 5d and the number of sequential steps (iterations) is
set to 20d.

2.2. Surrogate model

A surrogate model is used for proposing a new design point. Theoretically,
an arbitrary regression model can be used as a surrogate model. Very popular
is the Kriging model (as proposed by [16]) which can model high dimensional
multimodal function landscapes in good quality already with few points.

We use the ordinary Kriging modell [12]:

Y(x)=p+ Z(x).

Y (x) is a random variable and the error term Z(x) is a Gaussian process ex-
pressing the uncertainty in Y (x) having the properties:

E(Z(z)) =
K(x fé)ZCov( (x), 2(2)) = o2k(, 2),

where K (x, &) is the so-called covariance kernel, k(x, &) the spatial Correlation
Function (CF), and o2 the process variance [17]. The CF models the structure
in the data points and is, obviously, the most decisive part of Gaussian process
specification ([I8]). For multidimensional data the product correlation rule is

applied:
d
) = [ [ &z, ).
j=1

Many different CFs were proposed in the last decades. See [18] for a detailed
summary. We use the 3/2 - Matérn CF:

ki, 2;) = < fkcé xj') exp <—\/§’|xéj_jﬂ> .

The greater the distance between x; and Z;, the smaller is the value of k;(z;, Z;).
Therefore, the influence of already evaluated points on the prediction of new
points shrinks with increasing distance. The parameter 6; controls the speed
of influence reduction: the greater §;, the greater is the influence region. The



CF parameters (01,...,04)7 as well as the process variance o2 are estimated by

means of the Maximum-Likelihood method. See [12] for a detailed description.
The Kriging mean (model prediction, f(x)p) and the Kriging variance (model
uncertainty, §(x)%) for any new point € X are defined as:

f@)p =E[Y(2)ly],
$(x)p = Var [Y (z)ly].

The index D clarifies the dependency of these two functions on already evaluated
points. The detailed derivation of f(x)p and §(x)% can be found in [12].

2.8. Adapting Kriging for categorical parameters

One of the most important disadvantages of the standard Kriging model is
its limitation to numerical influencing parameters. If there are also categorical
parameters to be optimized, Kriging can be extended in several manners.

A naive variant is to treat categorical parameters as if they were contin-
uous. First, each level is assigned to an integer. The proposed values of the
corresponding continuous parameter in the sequential steps are rounded and
converted back to the nearest categorical level. In this manner, the structure of
the input x is not affected since it is an internal modification. This procedure
has to be treated with care as we artificially define order and intervals between
the levels which actually do not exist.

Another possibility is dummy Kriging, where each categorical parameter
with m possible values is expressed by m different parameters (called dummy
variables) which take the value 1 if the corresponding level is taken and 0 other-
wise. These dummy variables are included into the vector of influence variables
x. Hence, the number of parameters in the surrogate model increases leading
to longer run times for model fits.

2.4. Infill criterion

The infill criterion is a rating function which estimates how promising a
target function evaluation at a given point is. Very intuitive criteria relate to
the goodness of model predictions. However, a disadvantage of such a criterion
would be a possible convergence to a local optimum.

Instead, typically the expected improvement criterion, as proposed in [4], is
used as a compromise between exploitation of the surrogate model and explo-
ration of the function landscape. The EI criterion supports global convergence
[19] and becomes the standard criterion in many applications. The EI in a
point x is defined as the expected value of a positive improvement of the target
function in this point:

EI(:L‘) = E[max{(), Ymin — f(m)p}]
= (Woin — f(@)p) @ (ymf("””’> + 8@ ¢ (?JW>> ,



where ¢ and ® are the density and the cumulative distribution function of the
standard normal distribution. ¥, denotes the, so far, minimal value of the
target function. The expected improvement should be maximized leading to the
new design point

x* = argmax El(x).
zeX

2.5. Optimization of infill criterion

In each MBO iteration we would like to choose a new point by maximizing
the infill criterion. To solve the corresponding non-linear optimization problem,
we use the focus search algorithm implemented in the R package mlrMBO [20]
which successively focuses the parameter space on the most promising regions.
The main idea is: Generate a random LHS design of the size Npyints on X
and calculate the corresponding values of the infill criterion. Then, shrink the
parameter space in each dimension to the environment of the best point. Iterate
the shrinking N, q.i; times. As this procedure can lead to a local optimum, focus
search should be replicated several (Nyestarts) times. As our final new point x*
we will take the best point over all iterations and repetitions. We will use the
fOHOWil’lg Settings: Npoints = 10000, Npazit = 5 and Nyestarts = 3

3. Model based optimization of instance based problems

In many applications the target function does not have to be evaluated just
once in a point x; € X, but on a set of k problem instances Z = (Iy,...,Ix).
Let y¥ = f(=x;, I;) define the individual performance measure of the kth in-
stance in the ¢th point. Mostly, the mean response over all instances y; =
1/k Z?:l f (x;,1;) should be optimized. Obviously, one can apply MBO and
calculate the mean response as the target. However, the problem with many in-
stances is the high computational time needed for the evaluation. Therefore, we
are looking for a short cut by excluding unpromising parameter settings with-
out evaluating all instances. For simplification we will call promising settings
“good” and unpromising ones “bad” in the following.

One possible approach is the instance based SMAC method (Sequential
Model-based optimization for general Algorithm Configuration) of [6], where
the initialization step is only based on the evaluation of a few randomly se-
lected instances and newly proposed points are iteratively evaluated on random
instances until there is an indication that the point is worse than the so far
best. However, instead of a randomly chosen subset a systematic selection pro-
cedure seems natural. Therefore, in [5] we proposed a novel method for the
optimization of instance based problems which is summarized in Algorithm
and explained in the following.

The first two steps of Algorithm [2|are the same as in Algorithm [1} an initial
design D is generated and all instances Z are evaluated on all points of D. Now,
our aim is to define a representative subset of instances ZP"¢**! C 7 in order
to pretest the proposed new points on them. Here, we propose to cluster the
k problem instances in Kppetest clusters according to some features. Note, the



Algorithm 2: Model based optimization of instance based problems.

generate an initial design D C X;

evaluate D on all problem instances: y = (i, - .-, n
cluster all instances in Kppetest clusters according to their features;
choose class representatives randomly for the pretest set ZPmt¢st C T;

ﬁt Mp’retest: Y~ f(:E’Ilpy-etest) + . + f(li, I]fT'etest);

pretest

apply forward variable selection for My, ¢tcs regarding the R(QI 4 measure

)7

S Gtk W N

’

< Kpretest instances so that M. ' has at least

by choosing k,,,.cpese < pretest
R? . = 0.98 (if achievable);

adj
7 while budget is not exceeded do
fit surrogate model My, on D and y;

find «* by infill criterion optimization;

10 evaluate * on k;retest selected instances;
11 predict mean performance: y* = M;T.etest(m*);
12 | calculate 99% confidence interval: [y, Y55
13 if ¥7,, < Ymin then
14 evaluate * on remaining k — k;mest instances:
7 =1k, f@r, 1)
15 update D and y: D < (D, z*)T and y + (y,5*)7;
16 update model M;,Tetest using the new observation;
17 update elements of y corresponding to “bad” points by the
prediction values of M;;retest;
18 else
19 ‘ update D and y: D < (D, z*)T and y + (y, §*);
20 end
21 end

22 return y,,;, = min(y) and corresponding @.;, .

kpretest number should be chosen by the user and is a trade-off between good
representatives (for large kpretest) and computational time in sequential steps.
If instances have a set of special features, they could be used for clustering.
Otherwise, their individual target function performance can be used as feature.
Subsequently, the pretest set could be compounded by randomly chosen repre-
sentatives of each cluster.

A linear pretest model Mpretest is fitted on D with the mean performance
over all instances as the target and the individual performance of the pretest
instances as influencing factors (line 5):

kpretest

k
kY f (@i, 1) = Bo+ B+ f(a, TP ) bt B - (@, I e
j=1

In this manner we aim to build a model for predicting the overall performance



of a new parameter setting by observing just the individual performance of the
selected instances. In our previous experiments in [B] we found that My erest
has mostly very high values of the adjusted coefficient of determination measure
(Ridj), even if the number of influencing factors is reduced. Hence, a variable
selection step seems to be meaningful in order to further reduce the subset size
(line 6). Here, forward variable selection regarding the Ridj measure is newly
proposed. Stopping criterion is achieving of R? . = 0.98. Through this step the

adj
pretest* It dej = 0.98 is not

number of pretest instances can be reduced to k
. instances is denoted with

/

. ’

achievable, k,,, .ot = Kpretest- The model on k..
’

M.

retest*
pIn the following repeated steps (lines 7-21), the surrogate model is fitted on
D and y (line 8) and the new parameter setting «* is proposed by optimizing
the infill criterion (line 9). Then, the proposed point is first evaluated on the
k;retest instances (line 10) and classified as “good” or “bad”. This can be done
in different ways. We base our decision on prediction intervals: for the point

x* we calculate the prediction y* and the 99% prediction intervaﬂ Ui V)

based on Mz/mtest (lines 11 - 12). If the lower limit of the prediction interval
is smaller than the so far reached performance minimum, x* is classified as a
“good” point, otherwise as “bad”.

The “good” points are evaluated on the remaining k — k;wetest problem in-
stances (line 14), D and y are updated (line 15), and the pretest model is newly
estimated in order to include the new information of the additional observation
(line 16). If a “bad” point is found, §* is estimated only by ¢* and given back
to the MBO loop (line 19). It is important to notice that these estimations
are updated after each new update of the pretest model (line 16). Obviously,
the proposed approach leads to saving of function evaluations compared to the
classical MBO. On the other hand, the ability to find an optimal solution could
be affected thereby.

4. Application problem: onset detection

The aim of onset detection (OD) is to recognize the time points of the
beginnings of new musical tones. Figure [I] shows the amplitude of the same
tone sequence played by piano (left plot) and flute (right plot), respectively. The
onset times are marked by vertical lines. This figure illustrates that depending
on the music instrument different signal features might to be sensible for OD
task. At first, the classical OD algorithm is briefly introduced. Next, the
goodness measures of OD and the data sets used for optimization are discussed.
Finally, some details regarding the application of the proposed MBO to OD are
provided.

2In [5] we compared 99% and 95% prediction intervals. The 95% prediction interval led
to more as “bad” classified points. As better results were achieved with the 99% prediction
interval, we propose to use this interval here.
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Figure 1: Amplitude of the same tone sequence played by piano (left) and flute (right). The
vertical lines mark the true tone onset times.

4.1. Onset detection algorithm

The classical onset detection approach is presented in Figure [2] (see, e.g.,
[7, 21} [10L [5]). In each step, many algorithm parameters are defined which have
to be optimized in the experimental part of this work. The considered ranges
for the parameter values are discussed at the end of this section.

. . 1. Windowing and 7. Onset e Estimated
t [e]
Qiui'; L@[L optional STFT Localization gnssehtlzlr:?t —> Onset Time
9 (N, h, window.fun) (I_O, r_O, min.dist) ( . ) Points
sm.odf T T
X_stft[n,y]
2. Optional :
Spectral Filtering 5. Smoothing sm.odf (S(ST;rerjg\?l?J:g
(spec.filt) (a) YI YT, r ‘I") ’
X_filtn,v] odf
3. Optional XMogln,v] 4. Compute Onset
Logarithmization : Detection Function
(spec.log, 1) (ODF)

Figure 2: Eight steps of the classical onset detection approach. Each step has a several
parameters to optimize which are given in parantheses.

There are two kinds of onset detection: online and offline. For online OD —in
contrast to offline OD — no future signal information is allowed for distinguishing
between ‘onset’ and ‘no onset’ in a current signal frame. We assume a digital
audio signal sampled with a rate of F; = 44.1 kHz. This signal is split in the first
step into [ (overlapping) windows (or frames) of length N samples. If required

10



by the used OD feature, a Short-Time Fourier Transformation (STFT, [22]) is
applied in each signal frame:

N
1 )
Kol = = 3 aiglh - (0= 1) + Kl (kye 2715/, M)
k=1

where x4, is the music signal and X4 [n, p1] is the Fourier coefficient (a complex
number) of the uth frequency bin in nth frame, n = 1,...,l. The hop size
parameter h determines the distance in samples between the windows. wy()
is the window function (parameter window.fun for optimization) which is used
to weight the signal amplitude in the frames. See [23] for an overview of such
functions.

In the second step, the output of the STFT can be optionally modified.
According to [21] we apply spectral filtering and logarithmize the spectral mag-
nitudes. Hence, pre-processing is used only for spectral based OD featured.
For spectral filtering (parameter spec.filt) a filter bank is applied to the spec-
tral magnitudes (absolute values of the Fourier coefficients) which bounds the
frequency bins according to the semitones of the western music scale:

N/2
X[, v]| = D [ Xsupuln, pl| - Flus, v (2)

j=1

Spectral filtering reduces the number of frequency bins for the subsequent fea-
ture calculation.

Furthermore, the (optionally filtered) spectral coefficients can be logarith-
mized (parameter spec.log in step 3):

X1, ]| = logo (€l Xuun . ] + 1) )

where £ is a compression parameter.

The computation of an onset detection function in a window of the pre-
processed signal is often called reduction (step 4), since after this step not the
signal is analyzed anymore but only the ODF values. Many ODF's are based
on the comparison of neighboring windows. An increase of an ODF generally
indicates a tone onset, a decrease a tone offset. However, also offset information
can improve onset detection (see [24]). The algorithm parameter od.fun has 18
levels corresponding to 18 ODF's considered here. These ODF’s are based on the
following signal features, some of them use tone offset information: zero-crossing
rate, absolute maximum [25], amplitude energy, weighted spectral energy [26],
spectral centroid [27], spectral spread [27], spectral skewness [27], spectral flux
[7, 8], spectral Euclidean distance [28], phase deviation [29] [8] and complex
domain [8]. For example, one of the most popular OD features — spectral flux —
is defined as follows:

N/2
Spec. Fluz(n) =Y H(|X[n,v]| - |X[n — 1,v]]), (4)

j=1

11



where H(z) = (x + |z|)/2 is a filter which sets the decrease of the spectral
magnitude in a frequency bin to zero.

The aim of the normalization (step 5) is to transform the odf feature vector
into a standardized form for the subsequent thresholding. At first, exponential
smoothing with parameter o can be applied, where for & = 1 the time series
stays unchanged and for o = 0 all values of a feature are equal:

sm.odf | = odf |,

_ (5)

sm.odf,, = a-odf, + (1 —a) - sm.odf ,,_.
Moreover, for offline OD the normalization of sm.odf is meaningful utilizing
e.g., the maximum of the odf feature vector.

Since not every local maximum of an ODF represents an onset, the threshold
function aims at the distinction between relevant and non-relevant peaks (step
6). A fixed value for the threshold is unfavorable since the method could then
not react to dynamic changes of the signal. Instead, moving threshold functions
are widespread [10]:

Tn =6+ X-mov.fun(|sm.odf ,_;_|,...,|sm.odf .. |),

where the parameter mov.fun (moving function) is either the ‘median’, ‘mean’
or ‘p-quantile’. I and rp are the numbers of windows to the left and to the
right, respectively, of the nth window.

In the following step the tone onsets are localized in the windows where
sm.odf values exceed the threshold and are a local maximum of a certain window
sequence (step 7). Following [21I] we also use a third condition: A minimum
distance min.dist (in number of windows) between the actual window and the
window of the previous tone onset iprey.onset Should be exceeded. To summarize:

1, if sm.odf,, > T, and
0. — sm.odf ,, = max(sm.odf,,_;_,...,sm.odf , .
" n> Nprev.onset + mmdzst,

) and

0, otherwise.

O = (O4,...,0))7 is the tone onset vector and o and 7o are additional param-
eters, namely the number of windows to the left or right of the actual window,
respectively, which define the region for local maxima. The left limits of signal
frames with O,, = 1 are taken as the time points of the tone onsets.

In [21], it is proposed to report the onsets one window later as actually
detected. The authors argue that some features can increase earlier than a
human listener would firstly recognize and note a tone onset. For the window
length used in [21I] this would correspond to a fix time shift of 10 ms. In our
work we will consider the parameter onset.shift for optimization (step 8).

In contrast to the most papers on the topic, we do not fix window length
N and hop size h a priori but optimize them. This means, that parameter
settings corresponding to the number of windows (like 1) could stand for very

12



different time periods depending on N and h. Therefore, all such parameters
are re-defined according to the desired time length, N and h. Hence, we will
not consider the parameters rr, Ir, ro, lo, and min.dist, but the times t(rr),
t(lr), t(ro), t(lo), and t(min.dist).

In what follows, the regions of interests for all parameter are defined. We
will consider N = 512,1024,2048 and 4096 samples as frame length (powers of
2 are chosen in order to apply the fast Fourier transform ). The hop size h
lies between N/10 and N. The following window functions are considered for
window.fun: ‘Uniform’, ‘Hamming’, ‘Blackmann’ and ‘Gauss’ (with standard
deviation o = 0.4). Parameters spec.filt and spec.log have two settings ‘yes’
and ‘no’. Furthermore, ¢ € [0.01,20] and the smoothing parameter « varies in
[0,1]. Regarding the thresholding, we optimize § € [0,10] and A € [1.1,2.6] for
mov.fun = ‘median’ or ‘mean’ and fix A to 1 while optimizing p € [0.8,0.98] for
mov.fun = ‘p-quantile’. The shifting parameter onset.shift lies in [—0.01,0.02]
s. Negative values are allowed as it can not be excluded that some features
report tone onsets with a certain time delay. For online applications, ¢(ro) and
t(rr) are set to 0 s. In the offline case and universally for ¢(lp) and #(Ir) these
intervals are set to [0, 0.5] s. The region of interest for the parameter ¢(min.dist)
is [0,0.05] s.

To summarize, there are two application problems to optimize: online and
offline OD. Offline OD has a set of 17 parameters while for online OD two
parameters are fixed to 0 (i.e., 15 parameters remain for the optimization). In
both cases four parameters are categorical and the remaining are numerical.

4.2. Goodness measures for onset detection

In the most onset detection related publications the goodness of onset de-
tection is measured by the F-measure (e.g., see [§]):

e 2. TP
"~ 2.TP+FP+FN’

where TP, FP, and FN stand for the number of true positive cases, false positive
cases, and false negative cases, respectively, and F' = 1 represents an optimal
detection. A found tone onset is correctly identified if it is inside a tolerance
interval around the true onset. We use here £25 ms as the tolerance [2I] while
+50 ms setting is also frequently applied in the literature 7] [§].

Note that the true negative cases are not taken into account in the calculation
of the F-measure. Another disadvantage is that the distance between true
and estimated onsets is only taken into account via the tolerance region. An
alternative evaluation measure is therefore the mean (relative) deviation of the
estimated onset times from the true ones. This will be called D-measure in
what follows. We will optimize the F-measure and use the D-measure only as
an additional evaluation feature, e.g., for the clustering in Section

Fel0,1],

4.8. Music data base

The greatest challenge with respect to the creation of a music data base is the
necessity of information about the onset times. There are at least two ways to
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generate audio data with the corresponding onset times. In the literature, music
pieces are manually annotated most of the time, leading to only small numbers
of annotated pieces and possible annotation errors. The second possibility is the
use of the MIDI format, offering the advantage to have many such music pieces
at one’s disposal. There are different programs available which can generate
audio recordings in the so-called wave format from MIDI files using instrument
specific signal models. Naturally, a music piece generated synthetically in this
way will normally not realistically mimic real music recordings.

The aim of the composition of the data base for our optimization is to
cover as many music aspects as possible, e.g., way of generation (annotated
real music, synthesized MIDI), type of instrument, degree of polyphony, tempo,
music genre, and music style. However, it is not meaningful to combine the
labeled (real) music pieces with recordings generated from MIDI format as they
differ in the onset annotation principle. While for manually annotated pieces
the definition of the perceptual tone onset can be applied (i.e., time point where
a human listener can firstly recognize a tone onset, [§]), for MIDI pieces the
definition of the physical onset is more appropriate (i.e., time point of the first
amplitude rise of the new tone, [8]). Hence, we expect that due to delayed
annotation in the first case the optimal parameter set can differ from the second
case. For this reason, we consider two data bases which will be referred to as
WAV and MIDI data sets.

The WAV data base consists of three frequently used manually annotated
data sets: data base introduced in [7] with 23 pieces, in [9] with 92 recordings
and in [21I] with 206 music pieces. Altogether it consists of 2750 tone onsets.
Many music instruments (like wind or string) and music styles (like European
or oriental) are represented in this data set. According to [2I], we aggregated
true onset times reported within 30 ms to only one tone onset.

The MIDI data base includes the German folk song data base proposed in
[28] with 24 music pieces, the MIDI data collection introduced in [5] with 200
pieces and the music epoch data base mentioned in [14] with 22 recordings.
Furthermore, 20 pieces were additionally generated for this work. The most
MIDI files were converted to wave files using the MIDI to WAV Converteﬂ
while also the RealConverter proposed in [25] was used. There are overall 63 067
tone onsets in the MIDI data base.

4.4. Onset detection as instance based problem

Although the necessity of parameter optimization arises in nearly all studies
on onset detection, they usually just examine a subset of all possible parame-
ters, while other parameters are set to some fixed empirical values, which were
determined in preview studies or are frequently used in the OD community.
Merely a few numerical parameters are then optimized via grid search or some
generic algorithms. This procedure could lead to a local optimum. We aim,

Shttp://www.maniactools.com/soft/midi_converter/index.shtmll
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in contrast, to optimize all parameters simultaneously in order to enable lobal
optimization.

The goal of OD optimization is to find the optimal values of the algorithm
parameters mentioned in Section (input @) with respect to the mean F-value
(output y). The parameter space X of the offline onset detection problem is the
Cartesian product of the regions of interest of d = 17 parameters introduced
above (in the online case: d = 15). For each problem instance (music piece)
the target function f: X C R% x Nd2 — [0, 1] is defined as the F-value of the
associated OD algorithm (characterized by a point © € X) for this instance,
where d1 ans d2 are the numbers of the numerical and the categorical param-
eters, respectively. The levels of the categorical parameters are coded with
integer numbers (e.g., levels of the parameter window.fun are coded as follows:
0 = ‘Uniform’, 1 = ‘Hamming’, 2 = ‘Blackmann’ and 3 = ‘Gauss’).

For the classical MBO approach the OD performance in x is the averaged
F-value over the considered data base of k music pieces Z = (I1,...,I): f(x) =
1/k 2?21 f(x,I;). As the F-value has to be maximized, we will minimize the
negated F-value.

With respect to Algorithm [2] more details have to by clarified regarding the
OD application. The same surrogate model and infill criterion as mentioned in
Section [2] for the classical MBO are used. Although an instance based prob-
lem is given, the target variable is defined as the mean performance over all
instances (real performance values for “good” points and estimated values for
“bad” points), so that the usual Kriging model and expected improvement cri-
terion can be applied. Categorical parameters are transformed into numeric or
dummy variables according to the applied approach (naive or dummy Kriging).

In line 3 all instances should be clustered in kpresest clusters. In [B] we used
only the individual F-values of instances in the initial design as classification
features. Here, we extend this step by considering also the individual D-values
(see Section . Instances in the same cluster should have similar responses
(F- and D-values) for most parameter configurations. In this way we strive
to reach the greatest diversity of the music pieces in this pretest subset. The
k-means algorithm [30] is used as the clustering approach in line 3.

The size of the pretest subset (kpretest) is set to 5% of the training data
volume. This corresponds to 10 pieces for the WAV data set and 8 pieces for
the MIDI data set (as in the training phase only 2/3 of the whole data set is
used, s. Section .

5. Research questions and experimental design

The following main research questions will be studied in this work which
can be divided in two classes: optimization questions (OQ) and application
questions (AQ):

e OQ1: Which surrogate model results in better optimization performance:
naive or dummy Kriging? (Section [2.3)
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e OQ2: Does the proposed MBO for instance based problems achieve the
same values of the target function as the classical MBO, despite the fewer
number of function evaluations? (Sections |2 and

e AQ1: Is there a difference in performance between online and offline OD?

(Section

e AQ2: Is there a difference in performance between WAV and MIDI data?

(Section

This results in 2 = 16 ‘optimization strategy - application problem‘ combi-
nations. In order to show the efficiency of MBO, a random search with the same
number of function evaluations (generated via an LHS design) is also conducted
for online onset detection. Furthermore, a simple reference strategy for the pro-
posed MBO is also implemented: after the evaluation of the sequential design
the optimization in sequential steps is done merely on the k,pctest Tandomly
chosen instances.

A very important aspect when comparing many optimization strategies is
dealing with over-fitting to the training data. In order to avoid a very good
fit on the training data and a much worse performance on new test data, it
is essential to use the resampling technique [3I]. The most simple resampling
technique is the holdout approach where a part of the data (usually 2/3) is used
for training and the remaining part for testing. Very popular is the k-fold-cross-
validation procedure: Split the data in & disjunct blocks of equal size, conduct
the optimization procedure on the training data of k — 1 blocks and validate
the best found parameter setting on the remaining block (test data). In this
manner, k goodness values (i.e., for each test part) are produced which either can
be analyzed as a vector or averaged to only one measure. In the former case two
competitive approaches can be compared according to the distribution of the
goodness values. As remarked in [32], the k goodness values are not independent
through the block structure of the cross-validation. However, independence is
assumed in almost all statistical test.

In order to achieve the independence mentioned above, we replicate the
holdout approach 30 times and get, hence, for each optimization strategy a
vector of 30 goodness values. In our case, the training data set is used for
finding the optimal parameter set of the online or offline OD algorithm while
this setting is then applied to the test data. The mean F-value over the music
pieces of the test data is then the goodness value of the applied optimization
strategy in the respective holdout-replication. In one replication of the holdout
approach the same initial design is used for all strategies in order to ensure
uniform starting conditions.

As the F-values are not assumed to be normally distributed, the Wilcoxon
signed rank test [33, p. 128 fI.] is considered as a non-parametric alternative to
the t-test. In accordance with [33] (p. 132) the sample size of 30 observations
is sufficient for the desired asymptotic property of the test statistics. Note that
although a multiple testing problem occurs here (as some samples have to be
applied for testing several times) we waive the methods for holding the global
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significance level (like Bonferroni-Holm procedure). Instead, the results of the
statistical tests will not be over-interpreted but used rather in a descriptive way.
The significance level is assumed to be 5%.

The experiments were executed in parallel using the BatchExperiments
R package [34] on the Linux-HPC cluster systenﬁ of TU Dortmund University.
The classical MBO optimization is conducted using a developing version of
mlrMBO R package [20]. The OD algorithm as well as MBO for instance
based problems are implemented in the R programming language [35] and can
be provided on request.

6. Results

Here, we successively answer the research questions mentioned in Section
Figure |3] illustrates the distribution of the validated F-values for the classical
MBO optimization strategy with naive and dummy Kriging as surrogate models.
The left five boxplots correspond to the results on the WAV data bank while
the right five boxplots consider the MIDI data set. The z-axis provides the OD
kind: online or offline. The reference strategy — random search — was applied
just for the online OD detection in order to demonstrate the essential advantage
of model based optimization.

The first optimization question and both application questions can be an-
alyzed descriptively (s. Figure . It seems that there is no big difference in
the optimization performance between the two surrogate models (see the first
optimization question, OQ1). Moreover, naive Kriging shows slightly better
F-values than the statistically more sensible dummy Kriging. The Wilcoxon
signed rank test for the equality of median was applied to four hypotheses (on-
line and offline OD on both data sets) while all tests show p-values noticeably
greater than 0.05. Hence, no significant difference can be stated between the
optimization results of naive and dummy Kriging models.

As a further comparison aspect regarding the surrogate models, we will
consider the optimization time. Table [1| shows the mean time distribution over
the three optimization elements: fitting the surrogate model, EI optimization
and function evaluations (see lines 4, 5 and 6 of Algorithm [1} respectively).
Time analysis was conducted only for the WAV data set and considers only the
sequential steps of MBO (lines 3-8 of Algorithm . As the EI optimization
algorithm (focus search, see Section depends on the number of influencing
parameters which is much higher for the dummy Kriging approach, a relevant
additional time expense can be noticed for dummy Kriging compared to naive
Kriging (3.5 hours more on average for one optimization run). Furthermore,
84.6% of the computational time is needed on average for function evaluations
in the case of online OD while for offline OD this ratio is 71%. This illustrates
that OD is a typical case of time expensive optimization problems.

“http://lidong.itmc.tu-dortmund.de/ldw/index.php?title=System_overviewkoldid=
259,
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Figure 3: Validated results of the classical MBO with naive and dummy Kriging as surrogate
models for online and offline OD application problems. The left five boxplots: results on the
WAV data bank; the right five boxplots: results on the MIDI data bank.

Table 1: Mean time in hours for surrogate model fit, EI optimization and function evaluation
in one MBO run on the WAV data base. Time for function evaluations on initial design is not
considered here. naive: naive Kriging surrogate model, dummy: dummy Kriging.

model fit EI optimization function evaluation
OD kind naive dummy naive dummy naive dummy
online 1.866  3.602 4.348  6.081  34.214 33.274
offline  3.028  5.251  5.922  7.942  21.876 23.580

Results of the statistical tests and the time analysis in Table [I] indicate
that naive Kriging seems to be more beneficial than dummy Kriging because
of its simplicity and efficiency. Therefore, further optimization experiments will
be conducted just with naive Kriging model. However, this finding might not
be generalized to all optimization problems. The good performance of naive
Kriging can probably be explained through the size and type of the used initial
design. For online OD, e.g., the initial design consists of 75 points, so that each
level of the categorical parameter od.fun (with 18 levels) occurs approximately
four times (according to the construction of LHS designs). This seems to be
sufficient for fitting the function landscape appropriately. It would be interesting
for further research to study the behavior of naive and dummy Kriging models
under different circumstances.

Regarding the first application question (AQ1), as expected, offline OD
achieves clearly better F-values than the offline OD while this difference seems
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Figure 4: Validated F-values of the classical and proposed MBO applied to the online and
the offline OD on the WAV and the MIDI data sets. Surrogate model: naive Kriging.

to be more remarkable on the WAV data base. The p-value of the Wilcoxon
signed rank test for online vs. offline OD performance comparison on the WAV
data set (for naive Kriging model) is 1.94 - 107%® and on the MIDI data sets
0.007. The observed difference is also significant and can be explained due to
additional information about the future signal behavior.

Further on, Figure [3|reveals that noticeable better I-values can be observed
on the MIDI data set compared to the WAV data (see application question 2,
AQ2) This difference is highly significant according to the Wilcoxon test both
for online and offline OD (p-values are 1.33-1071° and 9.54-10710, respectively).
A possible explanation could be the artificially regular patterns of tone begin-
nings in the synthetically generated recordings. Such pieces can not reproduce
many musical aspects like development of overtones or legato (smoothly playing
of many tones) so that the time points of tone onsets can be easier identified
compared to real pieces.

A more difficult problem is how to compare classical MBO with the pro-
posed time efficient instance based approach (optimization question 2, 0Q2).
The proposed MBO can be seen as an approximation of the classical MBO
which, on the one hand, is probably a bit worse but, on the other hand, much
faster. There are two possible points of view to compare the two strategies. One
possibility is based on the same number of iterations and other one is based on
the same number of instance evaluations. Which approach is better depends
on the run-time costs of the instance evaluations versus the run-time costs of
fitting the Kriging model. Taking the above time analysis into account, the
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more sophisticated comparison seems to be based on the number of instance
evaluations. However, to achieve a better generalization to other optimization
tasks, we will consider both points of views.
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Figure 5: Time (in hours) for function evaluations in sequential steps for the considered
optimization stretgies on the WAV (left) and MIDI (right) data base.

Figure [ illustrates the distribution of the validated F-values for both opti-
mization strategies in case of the same number of iterations (for online and offline
OD on WAV and MIDI data sets). Moreover, a simple time efficient reference
strategy is applied for online OD on the WAV data base: after complete evalua-
tion of the initial design, kpretest music pieces were chosen randomly so that the
optimization in the sequential steps was done just on these instances. As can
be seen, the reference strategy shows the worst results. It can be stated for all
pairwise comparisons that the proposed instance based approach is slightly or
noticeably worse than the classical MBO. The observed difference is significant
only on the MIDI data set with p-values of 0.037 for the online OD and 0.042
for the offline OD.

Figure [5| shows the time efficiency of the proposed variant compared to clas-
sical MBO. Here, the total computational time in hours on the used computer
cluster system for function evaluations in sequential steps is presented over 30
replications of the associated optimization approaches. The mean time saving
amounts approx. 23.5 hours on the WAV data set and approx. 51.3 hours on the
MIDI data set. This corresponds in both cases to the astonishingly high mean
time saving of 84.3%. This saving depends mainly on the number of “good”
points, where the complete data set should be evaluated: the more such points,
the lower is the saving. However, also the size of the pretest subset influences
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Figure 6: F-values of the proposed time efficitent optimization compared to MBO_ cut for the
online and the offline OD on the WAV and the MIDI data bases.

the function evaluation time. To remain, in line 6 of Algorithm [2] we proposed a
strategy for reducing the subset size. As the result for this application, the num-
ber of selected problem instances was reduced from 5% to 3.4% of the training
data set on average.

After we compared both MBO strategies on the same number of MBO iter-
ations (Figure[4), let us now compare them based on the same number of music
piece evaluations. For this reason, the number of instance evaluations made by
an application of the time efficient MBO is divided by the size of the training
data set and rounded up. In this manner, the number of equivalent complete
data set evaluations is calculated. Afterwards, the optimization path of the
associated classical MBO run (in the same validation step and with the same
initial design) is cut to this number of iterations and its best already achieved
F-value is saved. This approach is abbreviated by MBO__cut.

The comparison of the proposed MBO and MBO_cut in Figure [6] shows a
substantial superiority of the proposed approach for both data sets (especially
for offline OD). These superiority is highly significant according to the Wilcoxon
tests. Although the number of music piece evaluations is nearly the same, the
computational time for the instance based optimization might be slightly larger
due to modeling overhead. This overhead can be ignored if the computational
time for instance evaluations is noticeable larger than the M;)Tetest and Mgy,
model fitting time. This is the case for our application, as already illustrated in

Table [
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7. Conclusion

The main idea of the proposed time efficient variant of MBO for instance
based problems is choosing a representative set of problem instances which can
accurately estimate the overall performance. When allowing the same number of
instance evaluations, this approach performs significantly better than classical
MBO - according to the Wilcoxon signed rank test — for online and offline onset
detection. However, this comparison assumes that time for instance evaluations
is the only important one while time for surrogate modeling and infill criterion
optimization can be neglected. Note, under this condition, the time efficient
strategy needs more MBO iterations. For the onset detection application on a
large music data base this assumption is fulfilled.

Nevertheless, we also compare both MBO variants concerning the same num-
ber of iterations to get a more generalized result also for other applications.
Then, classical MBO is slightly better while requiring approximately six times
more computational time for instance evaluations. To conclude, the more in-
stances the instance based problem contains and the more time expansive they
are, the more preferable the proposed MBO approach becomes.

Additionally, since classical MBO with the popular Kriging surrogate model
is limited only to continuous parameters, two extensions for categorical param-
eters are compared: (1) naively handling them as continuous variables and (2)
building dummy variables. No significant difference in the optimization perfor-
mance can be stated between both extensions while the optimization runs with
the naive Kriging model require on average 3.5 hours fewer computational time
than with the dummy Kriging model. However, to get a more general state-
ment also for other applications with categorical parameters, further simulation
studies are important to investigate the naive Kriging performance.

Other interesting results with respect to the optimization problem are, firstly,
the significantly better performance of offline onset detection (due to the using
of the future signal information) compared to the online variant. Secondly,
synthetically generated recordings (MIDI data) show significantly better results
than the real music pieces (WAV data). This might be caused by inevitable
simplifications of the sound properties made by the artificial signal generation.

In future work, we aim, on the one hand, to improve the proposed instance
based MBO since there are many sensible alternatives both for the selection of
the pretest instances and for the choice of the pretest model. For example, also
the application of a classification method to select “good” and “bad” points
might be sensible. On the other hand, other techniques for optimizing applica-
tion problems with categorical parameters should be compared to the proposed
ones. For instance, in [0] a random forest surrogate model and another defini-
tion of model uncertainty are used for handling this problem. But also the usual
covariance kernels can be applied by utilizing an appropriate distance measure
(like the gover metric, [36]). Finally, we are interested to test the time efficient
MBO on further instance based problems.
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