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Abstract 

In biology-oriented synthesis (BIOS), the areas in chemical space represented by bioactive 

natural products (NPs) serve as the starting points for the synthesis of compound collections, 

which can be defined by privileged scaffolds and diverse substitutions. To explore chemical 

space inspired by but beyond NPs, the rapid synthesis of compound collections based on 

privileged scaffolds is crucial. Given the prevalence of stereocenters in NPs, the development 

of corresponding enantioselective methodologies is highly valuable. 

 

Figure 1. Overview of projects described in this thesis. 

To accomplish this goal, Chapter 2 in this thesis demonstrates the development of new chiral 

cyclopentadienyl ligands and catalysts for enantioselective C−H activation to evolve chemistry 

tools for the synthesis of privileged scaffolds enriched in NPs (Fig. 1). Enantioselective 

activation of C‒H bonds is among the most important and efficient transformations in organic 

synthesis, but remains considerably undeveloped due to the inert nature of C−H bonds and the 

lack of efficient catalysis systems. Although metal catalysis facilitated by chiral 

cyclopentadienyl (Cp) ligands has emerged as a highly efficient and attractive approach, the 
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limitations of present Cp ligands on either applicability or structural variability significantly 

hampered their comprehensive application. To exploit such an approach to serve for BIOS, the 

second chapter describes the development of a highly tunable library of chiral cyclopentadienyl 

(Cp) ligands and its Rh(I) complexes as precursors of Rh(III) catalysts. As proofs of concept, 

three different C−H activation transformations have been realized in highly enantioselective 

manner, including one unprecedented transformation affording axially chiral compounds. 

Besides evolving chemistry tools for enantioselective C‒H activation, the other major aspect 

of this thesis depicts the flexible application of current well-established catalysis systems for 

the synthesis of compound collections based on privileged scaffolds enriched in NPs (Fig. 1). 

The catalysis systems involved in this thesis consist of chiral Lewis acids catalysis and Rh(II) 

catalysis, as well as nucleophilic catalysis by using chiral amine and phosphine catalysts. 

Facilitated by chiral Lewis acid catalysis, Chapter 3 describes the synthesis of pyrrolizidines 

in highly enantioselective fashion by using 1,3-dipolar cycloaddition (1,3-DC) of azomethine 

ylides as a key step. In Chapter 4, to establish efficient methods to access seven-membered 

carbocycles (cycloheptanoids) in an enantioselective manner, three catalysis systems are 

exploited involving Rh(II) catalysis, Rh(II)/Lewis aicid catalysis and amine catalysis. In this 

part, either chiral dirhodium(II) catalysts or chiral Lewis acids are employed to steer the 

enantioselective 1,3-DC of highly reactive carbonyl ylides or azomethine ylide generated from 

diazoketones. As alternatives for the synthesis of enantioriched cycloheptanoids, (5+2) 

cycloadditions of pyryliums and a stepwise strategy by using amine catalysis are also depicted. 

Furthermore, Chapter 5 describes the synthesis of highly functionalized pyrroloisoquinolines 

by means of phosphine-catalyzed dearomatizing (3+2) annulations of isoquinolinium 

methylides. Notably, most of the compounds shown in these three chapters were subjected to 

different cell-based assays, among which activities in the low micromolar range were 

discovered such as inhibition of Hedgehog signaling pathway.  
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Zusammenfassung 

In der Biologie-orientierten Synthese (BIOS) wird der durch bioaktive Verbindungen, 

insbesondere Naturstoffe (engl. natural products; NPs), repräsentierte Strukturraum als 

Ausgangspunkt für die Synthese von Substanzbibliotheken genutzt. Die Bibliotheken basieren 

auf vielfältig substituierten privilegierten Gerüsten. Mit dem Ziel den von NPs inspirierten 

chemischen Raum sowohl zu nutzen, als auch zu erweitern, ist die effiziente Synthese von 

Substanzbibliotheken ausgehend von privilegierten Gerüstmolekülen von entscheidender 

Bedeutung. 

 

Abbildung 1. Übersicht der in dieser Arbeit beschriebenen Projekte.  

Um dieses Ziel zu erreichen wurde in Kapitel 2 dieser Arbeit die Entwicklung neuer chiraler 

Cyclopentadienylliganden für die katalytische, enantioselektive C‒H Aktivierung als 

Weiterentwicklung bekannter chemischer Werkzeuge für die Synthese privilegierter 

Grundgerüste, die mit großer Häufigkeit in NPs zu finden sind, demonstriert (Abbildung 1). 

Die enantioselektive Funktionalisierung von C‒H Bindungen ist eine der bedeutendsten und 

effizientesten Transformationen in der organischen Synthese, welche jedoch bedingt durch die 
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inerte Natur von C‒H Bindungen und die bislang noch langsame Entwicklung effizienter 

Katalysesysteme bisher unterentwickelt blieb. Auch wenn sich die Metalkatalyse, vermittelt 

durch chirale Cyclopentadienylliganden (Cp), als hoch effizienter und attraktiven Ansatz 

etabliert hat, sind Cp Liganden in ihrer Variabilität stark limitiert, was eine umfassende 

Anwendbarkeit einschränkt. Zur Etablierung dieses Ansatzes als Grundlage für BIOS 

beschreibt das zweite Kapitel die Entwicklung einer Bibliothek von präzise steuerbaren 

chiralen Cyclopentadienylliganden und deren Rh(I)-Komplexen als Vorläufer für Rh(III)-

Katalysatoren. Als konzeptioneller Beweis wurden drei verschiedene C‒H 

Funktionalisierungen mit hoher Enantioselektivität realisiert, einschließlich einer neuen 

Transformation, welche axial chriale Verbindungen lieferte. 

Neben der Weiterentwicklung chemischer Werkzeuge für die enantioselektive C‒H 

Aktivierung lag das Hauptaugenmerk dieser Arbeit auf der flexiblen Anwendung von 

modernen, bereits etablierten Katalysesystemen zur Darstellung von Substanzbibliotheken 

basierend auf privilegierten Grundgerüsten (Abbildung 1). Die in dieser Arbeit eingesetzten 

Katalysesysteme umfassen sowohl chirale Lewis-Säure- und Rh(II)-Katalysatoren, als auch 

chirale Amin- und Phosphankatalysatoren. Vermittelt durch chirale Lewis-Säure-Katalyse, 

beschreibt Kapitel 3 die Synthese von Pyrrolizidinen durch 1,3-dipolare Cycloaddition (1,3-

DC) mit hoher Enantioselektivität. Kapitel 4 beschreibt die Etablierung einer effizienten 

Methode, welche den Zugang zu siebengliedrigen Carbocyclen (Cycloheptanoide) in 

enantioselektiver Weise eröffnet. Anwendung finden drei Katalysesysteme basierend auf 

Rh(II)-, Rh(II)/Lewis-Säure- und Amin-Katalyse. In diesem Teil wurden entweder chirale 

Dirhodium(II)-Katalysatoren oder chirale Lewis-Säuren, zur Steuerung der enantioselektiven 

1,3-DC von hochreaktiven Carbonylyliden oder Azomethinyliden erzeugt aus Diazoketonen 

eingesetzt. Als Alternative zur Synthese von enantiomerenangereicherten Cycloheptanoiden, 

wurden die (5+2) Cycloaddition von Pyrylium und eine  sequentielle Strategie, durch den 

Einsatz von Amin-Katalysatoren untersucht. Zusätzlich beschreibt Kapitel 5 die Synthese von 

hochfunktionalisierten Pyrroloisochinolinen durch phosphinkatalysierte dearomatisierende 

(3+2) Annulierung von Isochinolinmethyliden. Die Mehrheit der Verbindungen, welche in den 

Kapiteln 3-5 angeführt sind, wurde mit verschiedenen zellbasierten Assays untersucht. 

Biologische Aktivität wurde im niedrigen mikromolekularen Bereich identifiziert, wobei die 

Inhibition des Hedgehog Signalweges beobachtet wurde. 
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 Introduction 

As reliable and rich starting points, bioactive natural products (NPs) have been inspiring drug 

discovery in the history of medicinal chemistry, and also empowering the exploration of 

complex biological networks by using bioactive small molecules in chemical biology 

research.1-3 Through interactions with multiple proteins in both biosynthesis and displaying 

bioactivities, NPs represent diverse areas in chemical space explored and selected in evolution 

by nature.4-7 Due to limited material and time, NPs selected by evolution might only represent 

a fraction of chemical space binding to corresponding proteins, therefore the extension of 

chemical space represented by NPs by organic synthesis is indispensable. However, it is 

estimated that the number of drug-like small molecules exceeds 1060.8 Hence, it is unfeasible 

to explore all these possibilities by organic synthesis. Taken together, it is necessary to develop 

a practical navigation to efficiently identify biologically relevant areas from the nearly infinite 

chemical space defined by small molecules.   

The chemical space of NPs can be defined by conserved NP scaffolds together with diverse 

substituents for complementary differentiation.5 In this regard, the common scaffolds of NPs 

featured with conservatism can be recognized as ‘privileged’, with which NPs exhibit diverse 

bioactivity tuned with the decoration of substituents. Accordingly, the privileged scaffolds of 

NPs in the Dictionary of Natural Product (DNP) were classified hierarchically, resulting in the 

Structural Classification of Natural Products (SCONP) (Fig. 2).5 In analogue to small 

molecules, the binding sites of proteins can be correspondingly characterized by highly 

conserved fold types and variable side chains. In this scenario, Protein Structure Similarity 

Clustering (PSSC) was proposed based on the structural similarity of protein binding sites.5 

The basic reasoning of PSSC relies on the hypothesis that the protein with the conserved 

scaffold or subfold of its binding site should be bound by specific compounds sharing common 

scaffolds. Based on these two complementary approaches, biology-oriented synthesis (BIOS) 

was termed and provides a guideline for the design and synthesis of focused compound 

collections.  

In light of BIOS, two criteria are supposed to be critical for the synthesis of specific compound 

collections, including the rapid access of privileged scaffolds with biological relevance and the 

adequate variability for substitutions. In addition, compared with those compounds obtained 

by combinatorial chemistry based on the major consideration of chemical accessibility, NPs 

distinguish themselves by not only the increased molecular complexity but also the prevalence 
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of stereocenters. Hence, to meet all these requirements, the development of efficient 

methodologies to access complex privileged scaffolds with sufficient substitution patterns, 

especially in an enantioselective manner, would be invaluable and highly desirable. 

 

Figure 2. Graphic representation of the Structural Classification of Natural Product (SCONP). Reprinted from 

ref9, copyright (2005) National Academy of Sciences. 

 Objectives 

Over the last decade, a wide range of privileged scaffolds enriched in NPs has been constructed 

rapidly through C−H activation enabled by cyclopentadienyl (Cp) metal complexes, especially 

by Rh(III) analogues.10-12 Surprisingly, it was not until 2012 that the use of corresponding chiral 

Cp ligands emerged as a general approach to steer such asymmetric transformations.13,14 

However, the present chiral Cp ligands suffer from either limited applicability or constricted 

structural variability.15 To evolve such chemistry tool to serve for BIOS, the discovery of novel 

Cp ligands would be highly valuable and desirable. Inspired by the pioneering work by Dr. 

Marco Potowski, it was envisioned that (6+3) cycloadducts featured with easy accessibility and 
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flexible structural variability could be explored as suitable chiral Cp ligands.16,17 In this regard, 

Chapter 2 in this thesis will depict the endeavor to design and synthesize a new type of chiral 

Cp ligands and Rh(I) complexes, as well as their applications into the construction of versatile 

NPs scaffolds.  

To build N-heterocycles, 1,3-dipolar cycloaddition reactions (1,3-DC) of azomethine ylides are 

among one of the most efficient methods. In continuation to the effort in our lab to construct 

compound libraries by harnessing the power of 1,3-DC, further extension of previously 

established compound libraries based on pyrrolizidines is one of the goals in this thesis.18 This 

work will be presented in chapter 3.  

According to BIOS, the privileged scaffolds in bioactive NPs can be regarded as the starting 

point for the synthesis of compound collections to identify promising hits.5 Owing to the 

continuous interest in Englerin A in our group, the construction of seven-membered 

carbocycles embodied in Englerin A is another target in this thesis.19 Chapter 4 will 

demonstrate versatile approaches in detail to this end. 

As another potential method to build N-heterocycles, the phosphine-catalyzed annulation 

reactions of azomethine ylides and allenes have not been investigated.20,21 Based on this 

consideration, chapter 5 will show the synthesis of nitrogen-contained pyrroloisoquinolines 

through phosphine-catalyzed annulation reactions of isoquinolinium methylides and allenes. 
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2.1 Introduction 

2.1.1 Chiral Cyclopentadienyl Ligands in Asymmetric Catalysis 

Catalytic asymmetric synthesis is one of the most active fields in organic chemistry which 

significantly benefits from the development of novel chiral ligands for metal complex catalysis. 

As common design principles of ‘privileged’ ligands, high chemical robustness, adjustability, 

scaffold rigidity, as well as enriched ligand pool facilitated by ease of synthesis have been 

generally recognized by the chemistry community.22 In spite of numerous chiral ligands 

developed in the past decades, only a few ligands such as bisoxazoline ligands and SALEN 

ligands can be regarded as ‘privileged’, with systematic variation on their scaffolds and a wide 

spectrum of applications in various mechanistically different reactions.22,23 In sharp contrast to 

these privileged ligands, chiral cyclopentadienyl (Cp) ligands with noncoordinating 

substituents were only applied very recently in asymmetric catalysis.24-26 However, the achiral 

Cp ligands, especially its pentamethylcyclopentadienyl analog (Cp*), have emerged as a 

dominant class of anionic ancillary ligands with broad application in versatile transition metals 

catalysis.27 In addition, for some reactions catalyzed by Co(I)28, Rh(I)29, Rh(III)10-12, Ir(III)30, 

and Ru(II)31, chirality can only be induced by Cp ligands since all coordinating sites of such 

metal complexes besides Cp ligands are required during catalytic process, which highlights the 

necessity of development of chiral Cp ligands further.  

Since the discovery of ferrocene in 1951,32 it is rather straightforward that enantioselectivity 

of Cp-metal complexes catalyzed transformations can be introduced by means of chiral 

moieties in Cp ligands. In fact, there was a period when chemists showed strong interest in 

development of such ligands around 1980’s, but only a limited number of chiral Cp derivatives 

were synthesized and rarely applied in asymmetric metal catalysis.24,33 Furthermore, only poor 

enantioselectivity was obtained for most of those few applications based on chiral Cp ligands. 

There are only two reports in which chiral Cp ligands delivered considerable enantiocontrol 

before 2012 (Scheme 1). In 1990, Erker reported successful enantiocontrol of Friedel-Crafts 

hydroxyalkylation of 1-naphthol 1 by using a chiral Cp-Zr complex 3, affording product 4 with 

up to 84% ee.25 In this case, the chiral Cp-Zr complex 3 is supposed to activate ethyl pyruvate 

2 as a Lewis acid to deliver chirality in catalytic process. Later on, the first organometallic 

reaction using chiral Cp-Co complex was described by Gutnov and Heller in 200426 and further 

extended in 201034, providing axially chiral compounds 8 via a [2+2+2] reaction of 1,7-

octadiynes 5 and nitriles 6. This strategy could also be applied to the synthesis of phosphorus-
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bearing axially chiral compounds by using propargylic phosphine oxides and acetylene. 

Although these two early successful reports show great potential for the application of chiral 

Cp ligands in asymmetric catalysis, these ligands are severely limited by the variability of 

ligand scaffolds, which restricts systematic catalyst optimization for broad application in other 

transformation.  

 

Scheme 1. Early examples of enantioselective catalysis based on chiral Cp ligands. 

In the last decade, the rapid development of Cp*Rh(III) catalyzed C−H functionalizations 

evoked the tremendous interest in chiral Cp ligands in the chemistry community.10-12 One of 

those transformations facilitated by Cp*Rh(III) is the synthesis of dihydroisoquinolones from 

hydroxamates and alkenes under mild conditions, discovered by Fagnou35 and Glorius36 in 

2011 (Scheme 2). According to the proposed mechanism, the active catalyst CpRh(III) 12 

coordinates to the substrate 9 by N−H bond insertion. The following C−H bond cleavage step 

gives intermediate 13 through a carboxylate assisted concerted-metalation-deprotonation 

(CMD) process. Afterwards the coordination of alkene to Rh(III) provides intermediate 14, 

which is subjected to a subsequent migratory insertion to yield rhodacycle 15. After reductive 

elimination to generate 16, the desired product 11 is delivered upon protonation process.  
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Scheme 2. Two complementary chiral Cp ligands for enantioselective synthesis of dihydroisoquinolones. 

Using this transformation as a model reaction, two complementary strategies to design chiral 

Cp ligands leading to efficient chirality induction were developed by Ward and Rovis as well 

as Cramer in 2012 (Scheme 2).13,14 The corresponding Rh(I) complexes were synthesized due 

to their air-stability and easy handleability, and could be transformed to reactive Rh(III) 

catalysts under the treatment of an oxidant. In the work by Cramer,13 a series of cyclohexyl-

substituted chiral Cp ligands was designed and synthesized in 5-7 steps, affording the desired 
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dihydroisoquinolones with excellent yield and enantioselectivity. In this catalyst system, 

hydroxamates with different substitutions on diverse positions and specific types of electron-

rich alkenes were well tolerated. According to the hypothesis of back/side wall proposed by 

the authors, the methyl group in catalyst 17 acts as side wall which determines the orientation 

of hydroxamate in intermediate 13. Meanwhile, two phenyl groups far away from the Rh as 

back shields force alkene to approach in opposite direction near Cp moiety. Subsequently, 

larger substitution on alkene, such as the phenyl group in styrene, tends to point away from Cp 

moiety due to unfavorable steric interaction. Such diastereoselective coordination of alkene 

forms intermediate 14. In this scenario, the chirality at metal is already able to define the 

stereochemistry in the final product 11 via a enantiodetermining migratory insertion process. 

Complementary to small molecule Cp ligands aforementioned, Ward and Rovis employed their 

protein-based Cp ligands 18 to induce enantioselectivity to the same transformation by chiral 

environment defined by specific streptavidin.14 Relatively fewer examples were demonstrated 

with 30-95% yield and 12-86% ee. Interestingly, the substrate scope of alkenes in this catalyst 

system is restricted to electron-deficient acrylates, which is complementary to Cramer’s work. 

The authors attributed this behavior to more electron-rich and bulky nature of Cp* implanted 

in protein-based ligands.  

 

Scheme 3. Chiral binaphthyl Cp complexes with Rh(I), Sc(III), Ir(III), and Ru(II). 
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However, the abovementioned two ligands could not be applied in more transformations, 

presumably due to limited generality of these catalyst systems and the multi-step preparation 

of ligands. In 2013, Cramer developed a second generation of Cp ligands 19 based on chiral 

BINOL scaffold (Scheme 3).37 The outcome of excellent enantiocontrol by such ligands was 

rationalized by the authors with the same back/side wall hypothesis. In such scenario, the 

binaphthyl moiety characterizes the back wall in analogy to the bi-phenyl group in 17, while R 

as only variable group in 19 plays the role of side wall as counterpart of methyl group in 17. In 

spite of the relatively lengthier synthesis route (4-14 steps) and only one position for late stage 

modification, this binaphthyl family showed great generality for diverse metals and reactions 

with distinct mechanism, as well as enhanced reactivity and enantioselectivity.15,38 Since the 

discovery of such ligands, not only rhodium(I) complexes but also complexes with 

scandium(III)39, iridium(III)40, and ruthenium(II)41 were successfully synthesized and applied 

in corresponding asymmetric catalyses.  

 

Scheme 4. Application of binaphthyl Cp ligands in rhodium(III) catalyzed enantioselective reaction of 

benzamides.  

The ligand 19 was initially proposed in 2013 by an enantioselective C−H allylations of 

N-methoxybenzamides 26 using Rh(I) complex 20a as catalyst,37 whose non-asymmetric 

version was firstly discovered by Ma42 and Glorius (Scheme 4).43 Notably, catalysts 20 based 
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on binaphthyl resulted in significantly enhanced enantiocontrol compared to catalyst 17 which 

was optimal in the dihydroisoquinolone synthesis. Both steric and electronic variations of 

benzamides 26 as well as versatile allenes 27 were compatible in the reactions, affording the 

desired products 28 with up to 91% yield and 98% ee. Inspired by the pioneering work, 

remarkable progress has been achieved in this field, especially in the discovery of more 

transformations by employing binaphthyl CpRh(I) complexes. In 2014, Cramer et al. extended 

their substrate types to disubstituted alkenes based on similar mechanism.44 An asymmetric 

hydroarylation of tethered olefins on benzamides 29 was demonstrated, providing diverse 

dihydrobenzofurans 30 with up to 90% yield and 92% ee by utilizing 20b as catalyst (Scheme 

4). In this case, one quaternary center can be formed through a 5-exo-trig cyclization process. 

Later on, aldehydes 31 also proved to be suitable for this transformation, producing 

hydroxychromanes 32 in up to 98% yield and up to 85% ee (Scheme 4).45 In addition, in both 

cases the binaphthyl Cp ligands proved again to be superior to cyclohexyl-substituted Cp 

ligands in terms of either reactivity or enantioselectivity. 

 

Scheme 5. Enantioselective synthesis of isoindolones axially chiral biaryl compounds. 

In the last few years, ligand 19 has also proved compatible with a few other transformations 

with different mechanism. In 2014, Cramer reported an enantioselective synthesis of 
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isoindolones 35 via carbene insertion, inspired by the methodology developed by Rovis 

(Scheme 5).46 By enhancing the steric discrimination between R2 and ester group, diazo 

compounds 34 with a bulky 2,4-dimethyl-3-pentyl ester and alkyl groups as R2 were able to 

deliver the final product 35 in up to 94% yield and with up to 93% ee. With regard to the 

substrate scope, high enantioselectivity and acceptable reactivity could be realized with 

hydroxamates 33 with diverse substitutions and bulky diazoesters 34 without α-substitutions. 

In the same year, an interesting approach to access axially chiral biaryl compounds was 

demonstrated by You (Scheme 5).47 Regarding to the design principle, the interconversion of 

biaryl substrates 36 at low temperature can be hampered by alkenylation at ortho-position 

through a rhodium-catalyzed asymmetric dehydrogenative Heck reaction assisted by pyridine 

moiety as a directing group, resulting in stable axially chiral compounds 38. After screening of 

catalysts, 20b was proved to be optimal, delivering up to 86% ee and 96% yield. For the 

substrate scope, although this reaction proceeded well with various alkenes 37, reactivity and 

enantioselectivity were especially sensitive to variation on biaryl substrates 36. Hence, the 

substrate scope of bialy substrates was significantly limited. Impressively, this work also 

demonstrated such axially chiral biaryl compounds such as 38a were capable to be applied as 

ligands for a rhodium(I) catalyzed conjugate addition of phenylboronic acid 40 to 

cyclohexanone 39.  

In 2015, the same group developed an enantioselective intermolecular (3+2) annulation 

reactions of 1-aryl-2-naphthols 42 and disubstituted alkynes 43 by the dearomatization strategy 

(Scheme 6).48 The spirocyclic β-naphthalenones 44 bearing a quaternary chiral center were 

able to be obtained through this reaction with up to 98% yield and up to 94% ee. Independently, 

Lam reported the asymmetric synthesis of spiroindenes 46 based on a similar mechanism 

(Scheme 6).49 The desired products were obtained by the reaction of enols 45 and internal 

alkynes 43 with up to 94% yield and up to 97% ee. Later on, another method to access chiral 

spirocyclic compounds based on sultam 49 was reported by Cramer with the annulation 

reactions of N-sulfonyl ketamines 47 and internal alkynes 43 (Scheme 6).50  
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Scheme 6. Enantioselective synthesis of spirocyclic compounds via intermolecular (3+2) annulation reactions of 

alkynes.  

With regard to other metal complexes, there is only single report to date for scandium(III)39, 

iridium(III)40 and ruthenium(II)41, respectively (Scheme 7). This field remains obviously 

underdeveloped but has shown great potential by these three seminal works. In 2014, Hou 

discovered an enantioselective C−H functionalization of pyridines 50 with alkenes 51 by 

employing scandium(III) complex 21a, giving a variety of 2-alkylated pyridines 52 in up to 

98% yield and 96% ee.39 One year later, Cramer succeeded in the synthesis of reactive 

iridium(III)40 and ruthenium(II)41 complexes (23 and 25) derived from ligand 19 by a two-step 

synthesis, and also their application in intramolecular cycloisomerization of enynes 53 and 

hetero Diels−Alder reaction of yne-enones 55 respectively. In the first case, iridium(III) 

complex 23a was proposed to activate the terminal alkyne moiety, leading to nucleophilic 

addition of electron-rich tethered alkenes. The following 1,2-H shift process and release of Ir 

catalyst ultimately delivered the final cyclopropanes 54. For the latter report, ruthenium(II) 

complex 25a was believed to coordinate to substrate by the interaction with carbonyl, alkene 

and alkyne moiety of 55, initiating subsequent enantiodetermining oxidative cyclization, 

isomerization and final reductive elimination to afford pyranes 56 in excellent yields and 

enantioselectivities. 
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Scheme 7. Examples of enantioselective reactions catalyzed by Sc(III), Ir(III) and Ru(II) complexes.  

Very recently, another type of ligands 57 based on 1,1’-spirobiindane was disclosed by You, 

which could be regarded as an extension on binaphthyl ligand 19 (Scheme 8).51 As a proof of 

concept, the corresponding catalyst 58a was able to deliver up to 96% ee in contrast to previous 

82% ee for the same transformation as shown in Scheme 5. Nevertheless, the generality and 

superiority of such ligands needs to be identified by more applications in the future.  

 

Scheme 8. The features of chiral Cp ligands 57 compared with binaphthyl ligands 19. 
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Based on all the abovementioned reports, an overview on current chiral Cp ligands could be 

summarized as shown in Fig. 3. In general, there are two categories of Cp ligands to date, 

including synthetic organic ligands by Cramer and You respectively, as well as protein-based 

ligands by Ward and Rovis. However, both ligands are significantly limited and actually 

complementary to each other. On one hand, simple synthetic organic ligands are facing 

limitation of possible variations in their chemical structure and tedious preparation (up to 14 

steps), despite their dramatically growing and broad application in asymmetric metal catalysis 

in recent years.15 On the other hand, more complex protein-based ligands can be modified and 

optimized rapidly without limit, but only one successful example has been reported until now 

due to unidentified generality and also tedious preparation.14  

 

Figure 3. Overview of current chiral Cp ligands. 

In conclusion, the development of enantioselective chemistry enabled by chiral Cp ligands is 

still in its early stages, while the pioneering work in the last half decade have already 

demonstrated tremendous potential. The potential lies not only in the discovery of new 

transformations and other metal complexes based on present ligands, but also the design of 

new Cp ligands with expedient synthesis and improved structural adjustability based on 

privileged scaffolds for systematic catalyst optimization.  
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2.1.2 Synthesis of Chiral Cyclopentadiene Derivatives by (6+3) Cycloadditions 

 

Scheme 9. Stereodivergent (6+3) cycloadditions steered by varied ligands. 

Recently, the development of catalytic asymmetric 1,3-dipolar cycloadditions has been 

growing rapidly,52 in which (6+3) cycloaddition reactions of azomethine ylides and 

fulvenes16,17,53 have been disclosed as a highly efficient way to access chiral Cp derivatives 

(Scheme 9). This type of transformations was initially discovered by Hong in 2003, in which 

racemic Cp derivatives with piperidines were obtained upon the treatment of base or/and Lewis 

acid.54 In 2012, Antonchick and Waldmann described the first highly enantioselective (6+3) 

cycloaddition of azomethine ylides 60 and fulvenes 59 catalyzed by complex of Cu(I) and (R)-

Fesulphos ligand 61, affording highly endo-selective chiral cyclopentadiene derivatives in 

excellent enantioselectivities and yields.16 Due to the instability of (6+3) cycloadducts, a 

sequential (4+2) cycloaddition with maleimide was performed to give the products 62. Later 

on in 2013, the highly exo-selective (6+3) cycloadditions can also be realized by using (R)-
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Difluorophos 63 as a ligand by the same group17 and the modified TF-BiphamPhosas ligand 65 

by Wang53, delivering tandem (6+3)/(4+2) products 64 and chiral cyclopentadiene derivatives 

66 in high endo-selectivity, respectively.  

 

Figure 4. The features of ligand-controlled (6+3) cycloadditions. 

There are a couple of prominent features for this transformation as shown in Fig. 4: (i) diverse 

Cp derivatives are able to be obtained rapidly within 2 steps in a highly enantioselective 

manner; (ii) there are three highly tunable positions in the Cp scaffold, originating from 

numerous commercially available aldehydes, ketones and amino acid esters, together with one 

secondary amine with the potential for further modification. (iii) the stereochemistry of such 

Cp compounds could be adjusted in terms of enantioselectivity and diastereoselectivity by 

simple alternation of ligands.  
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2.1.3 Catalytic Enantioselective Synthesis of Axially Chiral Biaryl Compounds  

 

Figure 5. Representative ligands, catalysts, natural products and pharmaceuticals with axially chiral biaryls. 

Axially chiral biaryl compounds have been attracting intensive attention in the chemistry 

community (Fig. 5).55-57 In asymmetric catalysis, these compounds are extensively exploited 

as versatile chiral ligands and catalysts,55,56 especially for BINOL (67) and its derivatives which 

have been recognized as privileged ligands or catalysts coined by Jacobsen.23,50,51 Due to the 

structural rigidity and the accessibility of the chiral pool, the ligands or catalysts based on axial 

chirality have become dominant in a variety of fields in asymmetric catalysis, such as BINOL 

(67), chiral phosphoric acids (68), BINAP (69), and even the aforementioned binaphthyl based 

Cp ligands (19).22 Besides applications in catalysis, axially biaryl moiety are widely present in 

natural products and pharmaceuticals, such as (R)-gossypol (70), (R)-Streptonigrin (71), and 

(R)-Steganone (72).57 Notably, in analogy to center-chiral bioactive compounds, atropisomers 

are also disclosed to have significantly different biological profiles such as (R)-gossypol (70), 

highlighting the demands for developing enantioselective synthesis of optically enriched 

atropisomer for further biological evaluation.  

In spite of the importance for such scaffolds, there are only a few methods available to 

atroposelectively access axially biaryl compounds in a catalytic way, which can be divided into 

five categories. These strategies involve catalytic kinetic/dynamic kinetic resolution of their 

racemic precursors or desymmetrization of prochiral biaryls,58-64 atroposelective construction 
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of another aryl,63,65-67 transition metal catalyzed aryl-aryl cross coupling,68,69 [3,3]-sigmatropic 

rearrangement,70,71 and central-to-axial chirality transfer.72-76 (Scheme 10) 

 

Scheme 10. Current strategies to atroposelective synthesis of axially chiral biaryls in catalysis manner. 

Among them, the first strategy involving kinetic resolution (KR), dynamic kinetic resolution 

(DKR) and desymmetrization is regarded to be the most powerful and straightforward, but the 

corresponding catalytic processes remain surprisingly scarce.58-63 For the strategy of de novo 

construction of aromatic ring, albeit with limited number of successful examples, transition-

metal-catalyzed enantioselective [2+2+2] cycloadditions have been explored as a general 

method to access axially chiral biaryls, involving Ni(I), Rh(I), Ir(I) and Co(I).65 In 2011, 

Tanaka reported a Pd-catalyzed synthesis of enantioenriched 4-aryl-2-quinolinones by 

enantioselective intraomolecular hydroarylation.67 Additionally, the sole example with 

organocatalysis was reported by Sprr in 2014 by using intramolecular Aldol condensation.66 

As another straightforward way, direct aryl-aryl cross couplings indeed provide axially chiral 

biaryls in high enantioselectivity, but specific substitution patterns on coupling partners were 

usually required in such transformations. [3,3]-Sigmatropic rearrangement to realize axial 

chirality has been known for a long time by using chiral auxiliaries. However, catalytic 

enantioselective methodologies were only reported very recently in 2013 by Kürti70 and List77. 

For the last strategy, the concept of central-to-axial chirality transfer was proved by Meyers78 

in 1984, after the initial hypothesis by Berson79 in 1955. Even throughout another 30 years, the 

applications of such concept are still limited, especially for the catalytic version.80  



Chapter 2. Development of Tunable Cyclopentadienyl ligands 
 

20 
 

 

Scheme 11. Enantioselective synthesis of biaryldiols by organocatalysis via 1,4-addition. 

Very recently, enlightened by the strategy of central-to-axial chirality transfer, there are a few 

elegant enantioselective catalytic transformations to access axially chiral biaryls by employing 

organocatalysts.72-76 In 2015, Tan reported an organocatalytic arylation of 2-naphthols 74 and 

quinone derivatives 73 to access axially chiral biaryldiols 76 atroposelectively (Scheme 11).72 

Regarding the reaction process, a 1,4-addition was proposed to generate central-chiral 

intermediate 78 catalyzed by phosphoric acid 75, followed by a process of central-to-axial 

chirality transfer to give the final product 76. Later on in 2016, the same transformation 

catalyzed by quinine 77 was also demonstrated by Salvio and Bella (Scheme 11).75  

In 2016, another application in central-to-axial chirality transfer was shown by Sun, Kürti and 

Xu with phosphoric acid 75 catalyzed reactions of hydroxyarenes 80 and iminoquinones 79 

(Scheme 12).74 The proposed mechanism involved central chirality transfer process from chiral 

aminal 81 to de-aromatized intermediate 82 via [3,3]-sigmatropic rearrangement, and another 

process of central-to-axial chirality transfer from de-aromatized intermediate 82 to final 

product 83. A variety of BINOL derivatives 83 could be obtained in such strategy in high yield 

and enantioselectivity. In the same year, Bressy, Bugaut and Rodriguez76 reported a stepwise 

method involving organocatalyzed Michael addition, Hantzsch-type synthesis and oxidation, 

to access axially chiral 4-arylpyridines 88 inspired by the prior works of Meyers78 and Straub81 
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(Scheme 12). In this case, chiral tertiary amine with thiourea 86 played as an efficient catalyst 

for the enantioselective Michael addition to give chiral Hantzsch-type compound 87, assisted 

by the treatment of NH4OAc. Sequentially, a central-to-axial chirality transfer process enabled 

the formation of axially chiral 4-Arylpyridines 88, in which the utilization of MnO2 as oxidant 

proved to be critical for the efficiency of chirality transfer.  

 

Scheme 12. Other examples of enantioselective synthesis of biaryldiols by organocatalysis. 

In sharp contrast, only two examples have been reported as efficient methods to synthesize 

axially chiral biaryls in the field of asymmetric catalysis harnessed by chiral Cp-metal 

complexes. The earlier example is [2+2+2] cycloadditions catalyzed by chiral Co(I) complexes 

guided by strategy B as shown Scheme 1. A recent example demonstrated in Scheme 5 is 

dehydrogenative Heck coupling of prochiral biaryl precursors by chiral Rh(I) complexes, 

which can be ascribed into dynamic kinetic resolution (DKR) of prochiral precursor in strategy 

A. Therefore, there is no example involving central-to-axial chirality transfer in this field to 



Chapter 2. Development of Tunable Cyclopentadienyl ligands 
 

22 
 

date (Scheme 13). To conclude, even though there have been quite a few successful 

applications of chiral Cp ligands in central chirality as shown in 1.1.1, the realm of axially 

chirality remains fairly unexplored, especially with the strategy central-to-axial chirality 

transfer. 

 

Scheme 13. Current strategies enabled by chiral Cp ligands to access axially chiral biaryls. 

On the other hand, the racemic reactions especially catalyzed by transition metal complexes 

with Cp* usually act as a starting point to discover application of chiral Cp ligands in 

asymmetric catalysis. In the field of biaryls synthesis, Cp*Rh(III) and Cp*Ir(III) have been 

recognized as efficient and attractive catalysts for direct arylation via C−H activation to 

construct versatile aryl-aryl bonds in the last decade.10,11,82 

 

Scheme 14. Current methods to access biaryls by Cp* transition metal complexes. 

In general, there are three different methods to construct biaryls compounds by using 

Cp*Rh(III) and Cp*Ir(III) as catalyst (Scheme 14). As the majority of current methods, aryl-

aryl coupling assisted by directing group has become the most powerful strategy to construct 
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biaryls, but with limited examples to date. Among these examples, dehydrogenative coupling 

(X = H) with two arenes usually requires harsh reaction conditions which is not beneficial for 

the control of enantioselectivity, although it represents the most convenient and atom-efficient 

method in biaryl synthesis.83-90 There are also some examples of oxidative C−H coupling with 

aryl organometallic reagents such as arylboronic acids and arylsilanes (X = SiR3, BR2).
91-93 

Very recently, aryl iodides94 and aryldiazonium salts95 were identified to be suitable partners 

for arylations of arenes and even alkenes with proper directing groups. In these cases, relatively 

milder reaction conditions are required due to the prefunctionalisation of inert C−H bonds. 

However, in most examples, substitutions in ortho position adjacent to aryl-aryl bond are 

usually not tolerated, which are crucial for the stabilization of axial chiral biaryls. Recently, 

two methods (B and C, Scheme 14) were developed by employing 4-hydroxycyclohexa-2,5-

dieneones96 90 and quinone diazides97 93 as arylating reagents, providing an alternative 

strategy to access biaryl compounds in mild conditions. Notably, both cases involve an 

aromatization process, which can be regarded as a mechanistically basis for the aforementioned 

central-to-axial chirality transfer in asymmetric catalysis.  

 

Scheme 15. Two transformations catalyzed by Cp* metal complexes involving aromatization process. 

In 2014, Li reported a C−H arylation reaction through a formal Michael reaction/aromatization 

pathway by employing 4-hydroxycyclohexa-2,5-dieneones 90 as arylating reagents.96 (Scheme 
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15) A large spectrum of arylated phenols and anilines 92 could be obtained in moderate to good 

yield through dehydration of intermediate 91. In 2015, inspired by the previous reports of 

Cp*Rh(III) catalyzed C−H functionalization with diazo partners,98-101 Li and Wang realized a 

milder C−H arylation reaction with quinone diazides 93 catalyzed by Cp*Rh(III) and 

Cp*Ir(III), affording varied arylated phenols 95 (Scheme 15).97 The similar aromatization 

process of intermediate 94 is also involved in the proposed mechanism. Given the interesting 

mechanism and mild reaction conditions, these two transformations provide suitable candidates 

for the application of chiral Cp ligands in the enantioselective synthesis of axially chiral biaryls. 

2.2 Design Principle and Aim of the Project 

 

Figure 6. Overview of the current Cp ligands and the application of chiral (6+3) cycloadducts to be ligands. 

Throughout the history of chiral Cp derivative synthesis for ligand development, the balance 

between convenient accessibility and sufficient structural variability is recognized as a 

long-standing challenge (Fig 6). In the early examples, chiral Cp derivatives derived from the 

chiral pool such as pulegone, camphor and tartrate indeed can be accessed rapidly. However, 

for this very reason they are generally lacking structural variability, which severely constrains 

their potential application as ligands.24 On the other end, the structures of protein-based Cp 
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derivatives can be varied rapidly due to the protein nature, but the access to molecular biology 

techniques is required.14 Between the two extremes, the Cp derivatives developed by Cramer 

can be regarded to a compromise with acceptable structural variability and accessibility, 

leading to considerable progress in this field over the last few years.38,50 However, for a more 

general approach to enantioselective catalysis with chiral Cp ligands, novel ligand types would 

be required which are able to combine the strengths of current approaches. 

In fact, the enantioselective (6+3) cycloadditions mentioned in 1.1.2 provide a possibility to 

solve the long-standing challenge abovementioned by providing an approach for the synthesis 

of chiral Cp derivatives combining the strengths of both accessibility and structural variability. 

In spite of the obvious advantages compared with the current small molecule Cp derivatives, a 

few challenges await to be solved as shown in Fig 6: i) some sensitive functional groups 

embodied in the (6+3) cycloadducts, such as ester, amine, might influence the metal 

complexation or the catalytic process; ii) diastereomers could be generated during the metal 

complexation of the non-C2-symmetric (6+3) cycloadducts due to face-selectivity; iii) 

according to the back/side wall hypothesis proposed by Cramer, no functional group in (6+3) 

cycloadducts can define the back wall, although the side wall can be characterized by the proper 

functional groups R1 and R2.  

In this project, to develop and demonstrate (6+3) cycloadducts as efficient ligands, a library of 

corresponding Rh(I) complexes was planned, considering that chiral Cp-Rh(I) complexes are 

the most robust and widely applied catalysts in diverse enantioselective reactions to date. At 

this stage, the possible issues derived from sensitive groups and the lack of C2-symmetry need 

to be investigated and addressed. Sequentially, the applicability and generality of such chiral 

Rh(I) complexes should be identified first by testing two reported reactions (Scheme 2 and the 

first example in Scheme 4). If these two reported reactions could be steered in an 

enantioselective manner, the subsequent aim of this project would be the discovery of 

unprecedented transformations to demonstrate the flexible applicability of this approach 

further. 
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2.3 Results and Discussions 

2.3.1 Synthesis of Ligands and Corresponding Rh(I) Complexes  

Considering the availability of chiral ligands for (6+3) cycloadditions, two methodologies by 

employing commercially available ligands 61 and 63 were chosen to access endo- and exo-

selective chiral Cp derivatives (Scheme 16). Starting from simple amino acids, aldehydes, 

ketones and cyclopentadiene, these enantioenriched Cp derivatives 66 and 96 can be 

synthesized rapidly with a diverse range of structural variation. As mentioned in 2.1.2, there 

are four highly tunable positions in this Cp scaffold including one secondary amine. For 

modification of the secondary amine, a reductive amination was chosen as a mild and efficient 

way to obtain alkylated Cp derivatives 97 and 98, since these Cp derivatives are not stable in 

transformations with harsher reaction conditions such as alkylation with iodomethane.  

 

Scheme 16.  Rapid synthesis of chiral Cp derivatives via enantioselective (6+3) cycloadditions.  

In addition, to address the possible issue of diastereoselectivity in the metalation process, two 

strategies were envisioned based on the hypothesis that the installation of additional 

substitution on α position of cyclopentadiene moiety might block the metal complexation to 

one face of (6+3) cycloadducts to some extent or completely (Scheme 17). For the first strategy, 

additional R2 substitution can be generated from disubstituted imine 60. However, the 

corresponding disubstituted imines failed to give isolable (6+3) cycloadducts even after 

intensive condition optimization. Gratifyingly, the desired (6+3) cycloadducts from diverse 

disubstituted fulvenes 59 could be accessed smoothly in moderate ee by using commercial 

ligands (R)-Fesulphos through endo-selective (6+3) cycloadditions.  
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Scheme 17. Two strategies to address possible diastereoselectivity of metalation. 

Based on all the aforementioned considerations, two categories of Cp derivatives (66 and 96) 

were prepared by endo- and exo-selective (6+3) cycloadditions under various optimized 

conditions (see 7.2.1). Collectively, 22 Cp derivatives without modification of secondary 

amine were synthesized (Table 1).  

 

Table 1. Synthesis of chiral Cp ligands by asymmetric (6+3) cycloadditons. 
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Ligands Method[a] R1 R2 R3 yield(%) ee(%)[b] 

96a[c] A Me 2-naphthyl Me 73 70 

96b A Et 2-naphthyl Me 57 60 

96c B -(CH2)3- 2-naphthyl Me 89 29 

96d B -(CH2)5- 2-naphthyl Me 90 66 

96e A Me 4-Br-C6H4 Me 83 62 

96f A Me 4-Me-C6H4 Me 77 67 

96g A Me 2-Me-C6H4 Me 78 66 

96h A Me 2-naphthyl Et 83 71 

96i B 2-naphthyl 4-Br-C6H4 Me 57 96 

66a C 4-Br-C6H4 4-Me-C6H4 Et 61 92 

66b C 4-Br-C6H4 4-Br-C6H4 Et 82 96 

66c C 4-Br-C6H4 4-F-C6H4 Et 82 96 

66d C 4-Br-C6H4 2-Me-C6H4 Et 50 72 

66e C 2-naphthyl 4-Br-C6H4 Me 82 96 

66f C 4-Me- C6H4 4-CF3-C6H4 Et 82 97 

66g C 4-Br-C6H4 4-CF3-C6H4 Et 70 96 

66h C 4-Cl-C6H4 4-CF3-C6H4 Et 67 96 

66i C i-Pr 4-CF3-C6H4 Et 31 89 

66j C 2-naphthyl 4-CF3-C6H4 Et 82 98 

66k[d] D 4-Br-C6H4 4-F-C6H4 Me 74 >99 

66l C 4-Br-C6H4 4-F-C6H4 Bn 50 96 

66m C 4-Br-C6H4 4-Me-C6H4 Me 66 95 

[a] Using Method A-D as shown in experimental part. [b] Determined by HPLC analysis. [c] The optical pure 

form of this ligand could be prepared in gram scale by preparative HPLC of its racemate. Conditions: CHIRAPAK 

IC column, iso-propanol / heptane = 15/85, flow rate = 4 mL min-1, t = 6.8 min, 9.8 min. [d] The optical pure form 

of ligand was prepared by the recrystallization of corresponding asymmetric (6+3) cycloadduct with 95% ee.  

Additionally, alkylated Cp derivatives (97 and 98) were also synthesized by reductive 

amination to investigate the possible influence of secondary amine on catalytic process and 

enantioselectivity (Scheme 18). Notably, mixtures of isomers were found for alkylated Cp 

derivatives due to the isomerization of Cp moiety during reductive amination. 
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Scheme 18.  Synthesis of alkylated Cp ligands by reductive amination with aliphatic aldehydes. 

With the enantioriched Cp derivatives in hand, intensive optimization of Rh(I) complexation 

was performed. Four different methods (see 7.2.2) were developed for corresponding Rh(I) 

complexes based on a few considerations. At first, the acidity of proton on Cp moiety 

differentiates dramatically according to substitutions on R1 and R2. Hence, the deprotonation 

process by thallium alkoxides turned out to be quite sensitive to reaction temperature. Another 

consideration is based on the observation of transesterification between sensitive ester group 

of (6+3) cycloadducts and different alkoxides to various degrees. Additionally, Rh(I) 

complexes are rather unstable in the process of purification, especially on silica. The utilization 

of neutral Al2O3 and Ar pressure proved to be beneficial for the reactivity and yield of Rh(I) 

complexes. Notably, a special design of chromatography combining neutral Al2O3 and 

neutralized silica is critical to isolate the individual diastereomer of Rh(I) complexes (see 

7.2.2). After the establishment of robust metalation and purification methods for Cp 

derivatives, a total of 30 chiral Rh(I) complexes were obtained, which can be divided into two 

categories (99 and 100) based on di- or monosubstitution of R1 (Table 2). As expected, most 

catalysts were obtained as mixtures of diastereomers due to the lack of face-selectivity upon 

metalation. The aforementioned strategy to address face-selectivity of metalation of non-C2-

symmetric (6+3) cycloadducts with di-substitution of R1 turned out to be feasible, leading to 

better diastereoselectivity in the formation of Rh(I) complexes upon metalation (99a-h) 

compared with (6+3) cycloadducts with mono-substitution of R1 (100a-n).  
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Table 2. Synthesis of Rh(I) complexes. 

 

catalys

t 

method[a

] 

R1 R2 R3 R4 yield(%) d.r.  ee(%)[b] 

99a E Me 2-naphthyl Me H 71 >95:5 70 

99b E Et 2-naphthyl Me H 71 72:28 60 

99c E -(CH2)3- 2-naphthyl Me H 74 76:24 29 

99d E -(CH2)5- 2-naphthyl Me H 63 90:10 66 

99e E Me 4-Br-C6H4 Me H 54 >95:5 62 

99f E Me 4-Me-C6H4 Me H 62 85:15 67 

99g E Me 2-Me-C6H4 Me H 78 86:14 66 

99h H Me 2-naphthyl Et H 67 84:16 71 

99i E[c] Me 2-naphthyl Me Me 81 >95:5 100 

99j E[c] Me 2-naphthyl Me Et 45 >95:5 100 

99k E[c] Me 2-naphthyl Me i-Bu 82 55:45 100 

100a F 4-Br-C6H4 4-Me-C6H4 Et H 78 60:40 92 

100b F 4-Br-C6H4 4-Br-C6H4 Et H 60 57:43 96 

100c F 4-Br-C6H4 4-F-C6H4 Et H 76 58:42 96 

100d F 4-Br-C6H4 2-Me-C6H4 Et H 66 56:44 72 

100e G 2-naphthyl 4-Br-C6H4 Me H 65 50:50 96 

100f G 2-naphthyl 4-Br-C6H4 Me Me 81 55:45 96 

100g F 4-Me-C6H4 4-CF3-C6H4 Et H 80 62:38 97 

100h F 4-Br-C6H4 4-CF3-C6H4 Et H 79 59:41 96 

100i F 4-Cl-C6H4 4-CF3-C6H4 Et H 59 57:43 96 
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Continuation of Table 2 

100j F i-Pr 4-CF3-C6H4 Et H 65 67:33 89 

100k F 2-naphthyl 4-CF3-C6H4 Et H 83 59:41 98 

100l G[d] 4-Br-C6H4 4-F-C6H4 Me H 79 60:40 >99 

100m G 4-Br-C6H4 4-F-C6H4 Bn H 74 50:50 96 

100n G 4-Br-C6H4 4-Me-C6H4 Me H 82 57:43 95 

100o G 2-naphthyl 4-Br-C6H4 Me H 88 >95:5 96 

[a] Using Method E-H as shown in experimental part. [b] Determined by ee of corresponding ligands through 

HPLC analysis. [c] The optical pure form of ligand was prepared by preparative HPLC on chiral phase. [d] The 

optical pure form of ligand was prepared by recrystallization of corresponding asymmetric (6+3) cycloadduct with 

95% ee.  

Initially, ligands with moderate to excellent enantioselecetivity were synthesized through 

catalytic enantioselective methodologies due to relatively simplified preparation. Since Cp 

ligands are not optically pure, a concept of chirality transfer (CT) was proposed to evaluate the 

efficiency of chirality induction of a specific ligand. Based on its definition, chirality transfer 

(CT) = eeprod/eecat =  eemax. The eemax also represents the ee of product when eecat is 100%.102  

However, chirality transfer (CT) as an indicator to screen catalysts can only be feasible under 

the assumption of linear relationship between ee of catalyst and ee of products for the target 

reaction. Fortunately, this assumption has been substantially proven by the first model reaction 

involving enantioselective synthesis of isoquinolinones (see 7.2.3.1, Fig. S1). 

2.3.2 Enantioselective Synthesis of Isoquinolinones as a Model Reaction 

To explore the potential of obtained Rh(I) complexes, the C‒H functionalization of 

hydroxamates with alkenes catalyzed by Cp*Rh(III) as shown in Scheme 2 was investigated. 

As menthioned above, Ward and Rovis as well as Cramer developed two complementary 

strategies to design and synthesize chiral Cp ligands by using the same transformation in 2012, 

respectively (Scheme 2).13,14 
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Table 3. Catalysts optimization.[a] 

 

Entry cat[c] ee of cat (%) ee of product (%) CT 

(%)[b] 

t (h) yield (%) 

1 100f[d] 96 60 63 1 67 

2 100o[d] 96 21 22 1 81 

3 99a 100 68 68 1 90 

4 99b 60 38 63 1 67 

5 99c 29 18 62 1 90 

6 99d 66 24 36 1 58 

7 99e 62 43 69 1 76 

8 99f 67 41 61 1 72 

9 99g 66 44 67 1 67 

10 99h[c] 71 46 65 1 52 

11 99i 100 83 83 4 90 

12 99j 100 76 76 18 49 

13 99k[c] 100 78 78 18 54 

[a] General procedure: Rh(I) catalyst (5.00 μmol, 0.05 equiv.), (BzO)2 (75 wt%, 5.00 μmol, 0.05 equiv.), 

hydroxamate 9 (0.10 mmol, 2.00 equiv.) were dissolved into 1 mL DCM. After stirring at r.t. for 10 mins, 

corresponding alkenes 10 (0.20 mmol, 2.00 equiv.) was added and the reaction was stirred for specific time. [b] 

Chirality transfer (CT) = eeprod/eecat = eemax, eemax: the ee of product when eecat is 100%. [c] Unless otherwise noted, 

catalyst was used as single isomer or major isomer. [d] Catalyst was used as mixture of two isomers.  

Preliminary study revealed that sensitive groups of Cp ligands had no detrimental influence on 

the catalytic process, and the desired isoquinolinone 11a could be obtained smoothly in high 
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yield (Table 3). The optimization of catalyst was initiated from R1 substituents originating from 

different ketones or aldehydes (Table 3, entries 1-6). The methyl group proved to be optimal 

for disubstituted R1, with which the corresponding Rh(I) complex 99a gave the desired product 

with 68% CT in 90% yield. Other groups on R1 resulted in either lower reactivity or 

enantioselectivity. Then, an intensive screening of R2 was performed (Table 3, entries 7-9). R2 

was identified to be critical for the enantioselectivity and the 2-naphthyl group turned out to be 

optimal. In addition, the possible effect of R3 was also investigated, and bulkier groups than 

methyl such as benzyl led to lower reactivity but with similar enantioselectivity (Table 3, entry 

10). At this stage, the optimal Cp ligand 96a was obtained in optically pure form by separation 

of enantiomers of racemic 96a by preparative HPLC on chiral phase in gram scale. After 

optimization of R1, R2 and R3, the protecting group on secondary amine was identified to be 

crucial for both enantioselectivity and reactivity. Finally, the ligand with methyl as protective 

group on the nitrogen (catalyst 99i) produced the desired product in 90% yield and with 83% 

ee. Larger groups such as ethyl and isopropyl resulted in the decrease of both reactivity and 

enantioselectivity. (Table 3, entries 11-13) The absolute configuration of catalyst 99i was 

determined by X-ray crystallographic analysis (by Dr. Constantin G. Daniliuc). 

With optimal catalyst (99i) in hand, the optimization of reaction conditions was carried out (see 

7.2.3.1, Table S1). Solvents showed obvious effects on reactivity but no influence on 

enantioselectivity. Moreover, reducing the temperature to -10C promoted the ee to 90%. After 

establishing the optimal reaction conditions, the substrate scope was subsequently explored. 

As outlined in Scheme 19, various styrenes even with various hetero aromatic substitutions 

were tolerated in this reaction, affording desired products 11a-11l in excellent 

enantioselectivity and yield. Cyclic alkenes were suitable for this catalysis sysmtem (11m-

11o). Surprisingly, ortho‒substituted styrenes afforded the desired products 11h and 11i, which 

has not been reported for this transformation in chiral or racemic manner.13,14,35,36 For aryl 

hydroxamates, substrates with varied electronic and steric properties of substitutions were 

compatible with this reaction, affording the desired products 11p-11x. Notably, different 

electronic properties of substitutions on meta position resulted in the reversed regioselectivity 

of products.  
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Scheme 19. Substrate scope for the enantioselective synthesis of isoquinolinones. 

Protoberberines are an important class of naturally occuring tetracyclic isoquinoline alkaloids 

with diverse biological activities, such as Bharatamine (101), Xylopinine (102) and Gusanlung 

(103).103,104 Facilitated by the unique catalytic property of catalyst for ortho-substituted 

styrenes, the synthesis of protoberberines analogs 105a-105d was achieved by a cascade 

reaction with a sequence of C‒H functionalization followed by intramolecular SN2 reaction of 

104 in one-pot manner (Scheme 20).  
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Scheme 20. Synthesis of protoberberines analogs in one-pot manner. 

To support the rationale of regioselectivity and enantioselectivity of this transformation, 

preliminary computational studies were performed by Dr. Christian Merten. In theory, there 

are four possible stereoisomers based on two regioisomers with the phenyl group at 3- and 4- 

positions, of which only the S configuration of the 3-substituted regioisomer 11a was found 

experimentally. The excellent regioselectivity can be rationalized by the calculations as all 

pathways to the 4-substituted regioisomers feature transition state barriers which are 

approximately 2 kcal/mol higher than those leading to the 3-substituted regioisomers. Hence, 

from a kinetic perspective, and in agreement with the experimental findings, the pathways 

leading to the 4-substituted regioisomer can be excluded from the analysis. As for the 

enantioselectivity of 3-substituted regioisomers, previous mechanistic considerations 

suggested a preferred structure of the rhodacycle intermediate in which the Boc protective 

group is located on the sterically less hindered side, and styrene approaches the rhodacycle 
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intermediate with phenyl pointing away from Cp ligand to avoid unfavorable steric 

interaction.13 Accordingly, in the present case, Boc would point towards the 2-naphthyl group 

(substituent R2) bearing side of the ligand (intermediate B, Scheme 21). On the other hand, 

styrene should approach in the same way (pathway II, Scheme 21), while the other orientation 

of styrene would be less favorable (pathway I, Scheme 21). For the calculations, it’s also 

considered that the hydroxamate is in its presumably less favored orientation with respect to 

the Boc group pointing towards the methyl groups (substituents R1, intermediate A, Scheme 

21). In addition, two different orientations of the Boc carbonyl group were taken into account, 

so that in total four conformers of the rhodacycle intermediate were investigated. Besides, two 

opposite ways of styrene to approach the rhodacycle intermediate were also taken into 

consideration. Through analyzing the free energy profiles of all pathways, previous 

stereochemical model proposed by Cramer group was strongly supported. 

 

Scheme 21. Computation study on reaction mechanism for the isoquinolinone derivative synthesis. 
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2.3.3 Enantioselective C−H Allylations of Benzamides as a Model Reaction 

In order to further investigate the generality and the flexible applicability of this Cp ligands 

library, asymmetric C‒H allylation of benzamides was investigated as the second model 

reaction, previously reported by Cramer using chiral binaphthyl-substituted Cp ligands37 as 

shown in Scheme 4. In the seminal work, cyclohexyl-substituted chiral Cp ligands successfully 

applied in the asymmetric synthesis of isoquinolinones could not induce high enantioselectivity 

in this transformation. By analogy, only 24% ee could be obtained by using optimal catalyst 

99i in the asymmetric synthesis of isoquinolinones (Table 4, entry 3). Delightfully, screening 

of ligand library revealed that catalyst 100a derived from a chiral Cp ligand equipped with two 

aryl groups in trans manner is efficient for this enantioselective transformation, delivering up 

to 86% CT without diminishing the reactivity (Table 4, entry 6). Systematic optimization of 

substituents R1 and R2 in ligands revealed that for this specific transformation ortho substituted 

aryl or aliphatic groups led to decreased enantioselectivity (Table 4, entries 9 and 15), whereas 

ligands with para- or meta- substituted aryl groups had no significant influence on 

enantioselectivity. Furthermore, R3 had no significant effect on enantioselectivity, but other 

esters bulkier than methyl ester led to decreased reactivity (Table 4, entries 8, 17 and 18). 

Contrary to optimal catalyst 99i in the isoquinolinone synthesis, N-methylation of secondary 

amine resulted in a sluggish reaction and decreased enantioselectivity (Table 4, entry 11). 

Eventually, catalyst 100l turned out to be optimal. The corresponding ligand of catalyst 100l 

can be readily prepared with > 99% ee on gram scale by recrystallization of chiral (6+3) 

cycloadduct. 
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Table 4. Catalysts optimization.[a] 

 
Entry  cat[c] ee of cat (%) ee of product (%) CT (%)[b] yield (%) 

1 99a[d] 100 21 21 76 

2 99d[d] 66 32 48 66 

3 99i[d] 100 24 63 82 

4 99j[d] 100 <5 <5 76 

5 99k 100 13 13 79 

6 100a 92 79 86 78 

7 100b 96 84 88 85 

8 100c 96 84 88 85 

9 100d 72 59 82 85 

10 100e 96 82 85 79 

11 100f 96 80 83 51 

12 100g 97 85 88 85 

13 100h 96 85 88 82 

14 100i 96 85 88 82 

15 100j 89 64 72 50 

16 100k 98 86 88 82 

17 100l 99 87 88 87 

18 100m 96 85 89 67 

19 100n 95 83 87 82 

20 100o 96 0 0 63 

[a] Catalyst (5.00 μmol, 0.05 equiv.), dibenzoylperoxide (75 wt%, 1.62 mg, 5.00 μmol, 0.05 equiv.) and 26a (0.12 

mmol, 1.20 equiv.) were dissolved into 0.5 mL DCM. The mixture was allowed to be stirred at r.t. for 10 mins. 

After cooling to -20°C, corresponding allenes 27a (0.1 mmol, 1.00 equiv.) was added and the reaction was stirred 

for 18 hours. [b] Chirality transfer (CT) = eeprod/eecat  =  eemax, eemax: the ee of product when eecat is 100%. [c] Unless 

otherwise noted, catalyst was used as mixture of two isomers. [d] Catalyst was used as single isomer or major 

isomer.  
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The subsequent optimization of reaction conditions disclosed that the reactivity could be 

influenced dramatically by solvent, but not for enantioselectivity (see 7.2.4.1, Table S2). A 4:1 

combination of dichloromethane (DCM) and trifluoroethanol (TFE) proved to be optimal, 

giving the desired product in 85% yield and with 90% ee within 18 h at -20C. Since Rh(I) 

complex 100 is a mixture of diastereomers (Table 2), investigation of the possible difference 

between two diastereomers of the Rh(I) complex was carried out under optimized reaction 

conditions, revealing that there was no significant difference between two diastereomers of 

optimal catalyst 100l in terms of stereoselectivity (Scheme 22). This observation was 

confirmed by the same experiment on catalyst 100n. Hence, Rh(I) complex 100l was utilized 

as a mixture of two diastereomers in the further transformations.  

 

Scheme 22. Investigation of difference between two diastereomers of Rh(I) complexes 2l and 2n. 

Evaluation of the substrate scope (Scheme 23) showed that different substitution patterns on 

benzamides were suitable, affording products 28a-28h with good to excellent ee and yield. 

Additionally, this transformation was also compatible with various allenes (28i-28k). Methods 

K-M were employed according to specific benzamides and allenes, either to avoid double 
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allylation of bezamides or to enhance reactivity by means of increasing concentration (see 

7.2.3.3). 

 

Scheme 23. Substrate scope for enantioselective C−H allylations of benzamides. 

2.3.4 Application of Newly Developed Cyclopentadienyl Ligands in Enantioselective 

Synthesis of Axially Chiral Biaryls 

Besides the successful applications in reported reactions, an unprecedented asymmetric 

reaction was developed to further demonstrate the flexible applicability of this Cp ligands 

library. As presented in 2.1.3, asymmetric catalysis to access axially chiral biaryls is still 

relatively underdeveloped compared with central chirality in spite of the importance of chiral 

biaryls in NPs, chiral auxiliaries, ligands and catalysts (Fig. 5). To date, there are only a few 

available strategies to construct axially chiral biaryls in catalytic manner (Scheme 10).  Among 

them, central-to-axial chirality transfer represents an elegant strategy involving destruction of 

a stereogenic element and a simultaneous formation of different stereogenic element. Even 

though it has been proposed for more than 60 years, successful catalytic examples by this 

strategy are still scarce. In the last two years, the strategy of central-to-axial chirality transfer 

has shown tremendous potential to be a highly efficient way for synthesizing such valuable 

compounds in the field of organocatalysis (Scheme 11 and 12). However, there is no successful 
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application of this promising strategy in the transformations steered by chiral Cp ligands 

(Scheme 13). 

Recently two independent groups reported alternative synthesis of biaryls catalyzed by Cp* 

transition metal complexes with 4-hydroxycyclohexa-2,5-dieneones and quinone diazides as 

coupling partners (Scheme 15). These two reports provide the mechanistic basis for possible 

application of central-to-axial chirality transfer strategy enabled by chiral Cp ligands. Between 

them, quinone diazides were chosen as substrates for the possible application in asymmetric 

catalysis, since the corresponding reaction is more efficient and milder.  

  

Scheme 24. Preliminary result and future plan for optimization. 

Preliminary study was carried out with benzamide 26a and diazonaphthoquinone 106a as 

standard substrates. The reason for choosing benzamide 26a is the ortho-methyl group can 

inhibit possible bi-arylated product, simplifying the process of purification and analysis.  There 

are two main considerations for employing diazonaphthoquinone 106a. On one hand, 

diazonaphthoquinone 106a is capable of providing two ortho-substitutions adjacent to aryl-

aryl bond, leading to stabilized axial chirality. In addition, diazonaphthoquinone is one of the 

most reactive quinone diazides. After initial reaction conditions optimization, catalyst 100l 

could afford the desired product 107a with up to 55% ee, albeit with poor yield (Scheme 24). 

Screening of solvents, temperature and even catalysts did not improve enantioselectivity (see 

7.2.5.1, Table S3). Based on the preliminary result, three approaches were proposed to solve 



Chapter 2. Development of Tunable Cyclopentadienyl ligands 
 

42 
 

the issues of reactivity and enantioselectivity, including the modification on the diazo part and 

benzamide part, and the optimization of reaction conditions (Scheme 24).  

 

Scheme 25. Investigation on the modification of diazo compounds and benzamides. 

With regard to the modification of diazo compound, easily accessible diazo compound 106b 

with additional ester group was employed in this transformation, surprisingly producing the 

desired product in up to 90% yield within 24 hours (Scheme 25). After obtaining the X-ray 

structure of 107b (by Dr. Constantin G. Daniliuc), the presence of strong H-bonding was found 

between ester group and hydroxyl group. When the diazo compound 106a without ester group 

was employed, the reaction stopped to a certain degree, leading to limited conversion. Taken 

together, the possible reason for enhanced reactivity might lie in the elimination of negative 

influence of hydroxyl group in catalytic cycle by the installation of ester group as H-acceptor. 

However, further experiments are needed for elucidating the proposed mechanism. 

Furthermore, there was no desired product from other diazo compounds except 

diazonaphthoquinone substrates such as 106c-e, which proved the initial consideration 

regarding to reactivity of diazo compound. 

On the other hand, the modification on benzamide part was carried out mainly on the 

installation of another substitution on meta position in the presence of ortho-substitution 

(Scheme 26). Delightfully, meta-substitutions turned out to be beneficial for enantioselectivity 

in spite of leading to acceptably decreased reactivity. Benzamide 26d bearing meta-methyl 

afforded the desired product with up to 89% ee, whereas 26c derived from 3-chloro-2-

naphthoic acid gave 65% ee. Subsequent conditions screening for the reaction involving 
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benzamide 26e disclosed that up to 91% ee was obtained by using 1,4-dioxane as solvent (see 

7.2.5.1, Table S4). 

 

Scheme 26. Investigation on the modification of diazo compounds. 
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Scheme 27. Substrate scope investigation. 

With optimized conditions in hand, substrate scope study was performed. In general, this 

reaction is not compatible with highly electron-deficient benzamides such as 26e and 26f. 

Electron-rich benzamide with ortho-methoxyl (26g) also failed to give the desired product. 

Additionally, benzamide 26h without ortho-substitution gives biarylated compound as major 

product (Scheme 27). In conclusion, to obtain biaryls in high enantioselectivity and 

regioselectivity, benzamides should bear ‘blocking group’ on ortho-position except methoxyl 

and electron-donating ‘ee group’ on meta-position simultaneously. Varied non-C2-symmetrical 

biaryl compounds 107 were achieved in excellent enantioselectivity. Besides X-ray 

crystallographic analysis of 107b (by Dr. Constantin G. Daniliuc), the absolute configuration 

of 107d was also confirmed by vibrational circular dichroism (VCD) spectroscopy (by Dr. 

Christian Merten, see 7.2.6.2). 

 

Scheme 28. Proposed mechanism for the unprecedented reaction. 

According to previous reports,99,105 a plausible mechanism was proposed (Scheme 28). The 

reactive Rh(III) complex 12a generated from Rh(I) complex by treatment with dibenzoyl 

peroxide, and reacts with 26a via N−H insertion followed by sequential concerted-metalation-

deprotonation (CMD) process to give intermediate 108. A subsequent nucleophilic attack by 

diazo compound 106b forms rhodium carbene 110 through intermediate 109 with simultaneous 
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release of nitrogen. Rhodium carbene 110 is subject to a 1,2-migratory insertion to give central 

chiral intermediate 111, followed by protodemetalation to recycle Rh(III) catalyst and generate 

key intermediate 113. The intermediate 113 with central chirality gives final product 107b 

through a central-to-axial chirality transfer process. Another possible pathway is the generation 

of Rh-enolate 112 through isomerization of intermediate 111, followed by a protonation 

process to give the product 107b.  

2.4 Summary and Perspective 

The development of chiral Cp ligands had been hampered for a long period due to their inherent 

difficulties in terms of design and synthesis, in spite of the broad application of Cp* in 

transition metal catalysis in the past. Inspired by the dramatic progress in the realm of 

asymmetric (6+3) cycloadditions catalyzed by Lewis acid, a novel approach to chiral Cp ligand 

discovery had been disclosed as depicted in this chapter. The chiral ligands can readily be 

synthesized on gram scale by either recrystallization of enantioenriched (6+3) cycloadducts or 

preparative HPLC on chiral phase of racemic (6+3) cycloadducts. Besides convenient 

accessibility, more importantly both structure and configuration of such Cp derivatives can 

efficiently be adjusted by means of flexible ligand-controlled enantioselective (6+3) 

cycloaddition reactions.  

The generality and applicability of these chiral Cp ligands was substantially proved by 

successful applications of their corresponding Rh(I) complexes in three different reactions. The 

high enantioselectivity achieved in the first two reported transformations revealed that these 

easily accessed Cp ligands could actually rival previously developed ligands. Furthermore, an 

unprecedented C‒H activation reaction was realized to afford valuable axially chiral biaryl 

compounds with excellent enantioselectivity. Notably, through this reaction was the strategy 

of central-to-axial chirality transfer applied into chiral Cp ligands enabled transformation for 

the first time.  

By integrating the advantages of convenient accessibility, rapid structural variability, as well 

as wide applicability demonstrated by three different reactions, this library of Cp ligands unites 

the strengths of previously developed ligand classes reported by Cramer, Ward and Rovis 

together with You. The findings shown in this chapter suggest that this approach should enable 

the discovery of efficient chiral Cp ligands for further enantioselective transformations. 
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3.1 Introduction 

3.1.1 Pyrrolizidine Moiety in Natural Products and Its Synthesis 

Pyrrolizidine alkaloids (PAs) are a large family of natural products, such as platynecine (114), 

loline (115), 9-angeloylplatynecine (116), and USC1025A (117)106 (Fig. 7). A broad spectrum 

of bioactivity has been identified involving insecticidal, anti-bacterial, anti-viral, anti-tumor, 

anti-diabetic and anti-inflammatory properties, along with diverse toxicity.107-109 For example, 

USC1025A (117) was isolated form the fungus Acremonium sp. KY4917 in 2002, exhibiting 

antimicrobial activity and antiproliferative activity against human tumor cell lines.110  

 

Figure 7. Representative natural products based on pyrrolizidine scaffold. 

Due to their biological importance, these bicyclic ring systems have been receiving 

considerable attention. There had been plenty of methods to construct pyrrolizidine moiety 

efficiently in the last few decades, in which intramolecular cyclization based on flexile 

transformations of secondary amine in substituted pyrrolidine core is one of the most 

straightforward strategies (Scheme 29).106,111 Various transformations were developed to 

access pyrrolizidine scaffold by this strategy, involving SN nucleophilic substitution, reductive 

amination, lactamization, Mitsunobu reaction, hydroamination, aza-Michael reaction, 

vinylation, and so on.111 Besides construction of pyrrolizidine scaffold, another major 

challenge originates from the prevalence of stereocenters in PAs. In general, multistep 

synthesis based on chiral pool is usually required to construct such moiety in enantioselective 

manner.111 In the chiral pool, proline usually serves as the major starting material due to its 

accessibility and presence of multiple functional groups especially secondary amine for further 

transformation. However, catalytic asymmetric preparation of pyrrolizidines for the synthesis 

of compound library remains scarce to date.112 
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Scheme 29. Versatile methods based on intramolecular cyclization of secondary amine in pyrrolidine core. 

Furthermore, due to the lack of robust methodology, there is no chiral PAs-inspired compound 

collection to enable systematic investigation in chemical biology and medicinal chemistry. 

According to BIOS, to define the chemical space based on pyrrolizidine scaffold for potential 

target protein, the development of enantioselective methodology to build a large library of 

pyrrolizidines is highly desirable.  

3.1.2 Catalytic Asymmetric 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides 

The cycloaddition reaction represents one of the most prominent reactions in modern organic 

synthesis owing to its inherent efficiency and atom economy. Especially, 1,3-dipolar 

cycloaddition reaction (1,3-DC) has become one of the most efficient methods to access 

heterocycles, due to its unique feature of one sole step to construct heterocycles with up to four 

stereocenters.52,113-119 Over the last few decades, versatile dipoles have been successfully 

applied into catalytic asymmetric 1,3-DC, including nitrone, azomethine imine, azomethine 

ylide, nitrile oxide, nitrile imine, nitrile ylide, carbonyl ylide, diazo compound, and azide.52 

Among them, the 1,3-DC of azomethine ylide has been intensively explored with a broad range 

of activated dipolarophiles for the synthesis of enantioriched nitrogen-contained 

heterocycles.18,114,118,120  

As the seminal work in this field, Grigg used stoichiometric CoCl2 as Lewis acid together with 

ephedrine derivative as ligand to realize the asymmetric synthesis of pyrrolidine derivatives in 

1991.121 Inspired by this pioneering work, Zhang122 and Jørgensen123 independently reported 

the first catalytic asymmetric 1,3-DC by employing chiral Ag(I) complex and chiral Zn(II) 
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complex as catalyst respectively in 2002. Through extensive investigation over the last decade, 

a great variety of catalytic systems and substrate types had been developed in this field (Scheme 

30).52  

 

Scheme 30. Catalytic enantioselective 1,3-dipolar cycloaddition reaction and its activation modes. 

Regarding to substrate types of dipolarophile, the scope of commonly used α,β-unsaturated 

alkenes with electron-deficient property haven been extended, such as sterically demanding 

and fluorinated alkenes,120 as well as fullerenes124-128 (Scheme 30a). Furthermore, higher order 

1,3-DC were also realized enabled by utilization of specific substrate as dipolarophiles. For 

example, (6+3) cycloadditions were reported by using fulvenes16,17,53 and tropones129,130, and 

the use of stabilized azomethine imines led to realization of (3+3) cycloadditions131. Besides 
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the rapid exploration of dipolarophile, various types of azomethine ylides were also exploited 

to afford versatile functionalized pyrrolizidines, such as cyclic azomethine ylides, Münchnones, 

α-Imino phosphonates and amides, N-(2-pyridylmethyl) imines, α-silylimines, and ylides 

generated by decarboxylation from proline (Scheme 30a).52,120  

With regard to activation modes (Scheme 30b), Lewis acid catalysis has become the most 

efficient way to steer catalytic asymmetric 1,3-DC. Its effectiveness builds on the generation 

of rigid N-metalated azomethine ylides 119 from imines catalyzed by Lewis acid through 

deprotonation, and the origin of enantioselectivity is from chiral ligands coordinating with 

Lewis acid. A variety of catalytic systems has been described in the last decade, consisting of 

varied metals and structurally versatile ligands. Despite the use of Cu and Ag are still the 

mainstream in current literature, Zn, Ni, Ca and Au were also reported to be effective. As the 

origin of enantioselective induction, diverse chiral ligands have been designed and successfully 

applied into substrate-specific reactions. Especially, some of ligands are regarded to be 

‘privileged’22,23 with the feature of delivering excellent enantioselectivity for a wide range of 

substrates, such as Ugi amine derived ferrocenes 118, Fesulphos 61, Segphos 120, and TF-

Biphamphos 121. In addition, the rise and maturity of organocatalysis over the last decade 

provides an alternative approach to the aforementioned metal catalyzed process (Scheme 30c). 

Currently, there are three major activations in organocatalyzed 1,3-DC.52,120 Iminium 

activation (122) is through covalent interaction of chiral amine with α,β-unsaturated aldehyde, 

while thiourea activation (123) usually cooperates with chiral base intramolecularly through 

H-bonding interaction with nitro or other carbonyl group to induce enantioselectivity 

effectively. Chiral Brønsted acid activation (124) can also induce excellent enantioselectivity 

mainly for some specific azomethine ylides derived from 2-aminomalonate. Besides the major 

activation modes mentioned above, chiral N-heterocyclic carbene through azolium 

mechanism132 and chiral guanidine as strong base and H-bonding donor133 also emerged as 

effective approaches to steer 1,3-DC enantioselectively, albeit with scarce examples. In spite 

of the significant limitations compared with effective Lewis acid catalysis, such as the 

relatively narrow substrate scope and the need for high amount of catalyst loading, 

organocatalyzed 1,3-DC still represents one attractive approach due to environmental 

friendliness, easy handling and compatibility with sensitive substrates.  

Considering the power of catalytic enantioselective 1,3-DC to access chiral pyrrolizidine, a few 

methods guided by BIOS have been developed to build compound collections. These 

compound collections provided the basis for further investigation in chemical biology and 
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medicinal chemistry, in which high rates of active hits with various biological activity were 

identified. An early example is the first Lewis acid catalyzed enantioselective synthesis of 3,3’-

pyrrolidinyl spirooxindoles by Waldmann (Scheme 31).134  

 

Scheme 31. Catalytic enantioselective 1,3-dipolar cycloaddition reaction developed in light of BIOS. 

Using Ugi amine derived ferrocene 126 as chiral ligand, varied spirooxindoles 127 could be 

obtained by 1,3-DC of 3-methylene-2-oxindoles 125 and imino esters 60 in up to 98% ee. A 

compound collection with 39 members was subjected to phenotypic screening associated with 

mitotic arrest in BSC-1 cells, inspired by known principle that 3,3’-pyrrolidinyl spirooxindoles 

induce mitotic arrest by interference with p53-MDM2 interaction. Among them, only 

compound 128 with different relative configuration induced significant phenotypic changes. 

Further study in depth revealed that only (−)-128 out of two enantiomers is active and it actually 

interferes microtubule polymerization other than inhibiting p53-MDM2 interaction. In 2013, 

another iridoid-inspired compound collection (130) of 115 compounds was achieved by 1,3-

DC of pyranones 129 through a process of kinetic resolution.135 Several hits were identified to 

be inhibitors in low micromolar range towards Wnt and Hedgehog pathways. In the same year, 

a focused compound collection of 84 tropanes (133) was reported though 1,3-DC of special 
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cyclic imines 131 wih nitroalekenes 132, providing efficient inhibitors for Hedgehog pathway 

in the low mircomolar range.136  

In spite of such efficiency in the synthesis of pyrrolidines, catalytic asymmetric 1,3-DC of 

azomethine ylide is barely applied in constructing pyrrolizidine scaffold (Scheme 32). 

Recently, Reisman described a highly enantioselective synthesis of pyrrolizidine (141) by a 

one-pot tandem reaction involving two folds of 1,3-DC.112 The first step is an enantioselective 

1,3-DC by using an AgOAc/(S)-QUINAP(136) catalytic system. Another subsequent 1,3-DC 

proceeds in a diastereoselective manner with alkene 140 to afford pyrrolizidines 141 with high 

enantioselectivity (up to 96% ee) and yield (up to 92%). Another example is 1,3-DC of 

azomethine ylide 147 generated in situ from proline 144 and isatin 143 through a process of 

condensation followed by decarboxylation.137 The enantioselectivity was induced by the 

interaction between classic 1,3-dicarbonyl moiety (142) and chiral Lewis acid complex 

generated from Salen 145 and Cu(II).   

 

Scheme 32. Current examples to access pyrrolizidine by means of 1,3-DC. 
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3.2 Design Principle and Aim of the Project 

Due to the biologically importance of pyrrolizidines, a library of such compounds is highly 

desirable for further biological evaluation. As mentioned in 3.1.1, versatile intramolecular 

cyclization of pyrrolidines with proper substitution has been proven to be an effective approach 

to access pyrrolizidines. Another inspiration is that catalytic asymmetric 1,3-DC is a powerful 

method to access chiral pyrrolidines, as stated in 3.1.2. Hence, a strategy was envisioned to 

combine 1,3-DC and a subsequent intramolecular lactamization for the enantioselective 

synthesis of compound collection based on pyrrolizidine scaffold (Scheme 33). To obtain 

properly substituted pyrrolidines 150, azomethine ylides generated from N-alkylidene glutamic 

acid esters 152 were utilized for 1,3-DC. The resulting functionalized pyrrolidinyl propionic 

acid esters 150 could facilitate a sequential intramolecular lactamization to afford 

pyrrolizidines 149.  

 

Scheme 33. Retrosynthetic proposal for the compound collection.  

In this project, the reactivity of diverse dipolarophiles needs to be investigated for 1,3-DC of 

azomethine ylides generated from N-alkylidene glutamic acid esters. In principle, both tricyclic 

and bicyclic pyrrolizidines could be obtained by employing cyclic dipolarophiles and linear 

dipolarophiles respectively. After identifying the suitable dipolarophile, the realization of 

corresponding enantioselective 1,3-DC would be the next aim by means of intensive screening 

catalysis system including metals, ligands and other proper reaction conditions. Once 

establishing robust methodology, a library of pyrrolizidines, together with pyrrolidines as 

intermediates, would be prepared for the follow-up systematic investigation of biological 

activity.  
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3.3 Result and Discussion  

3.3.1 Pioneering Work to Access Tricyclic Pyrrolizidines Enantioselectively 

Dr. Hiroshi Takayama had developed a highly enantioselective 1,3-DC of maleimides 153 as 

dipolarophiles and azomethine ylides 152 generated from N-alkylidene glutamic acid esters 

(Scheme 34). After obtaining optimized reaction conditions for subsequent intramolecular 

lactaminzation, varied tricyclic pyrrolizidines 155 could be obtained from pyrrolidine 

intermediates 154 in excellent diastereo- and enantioselectivity by using (R)-Fesulphos (61) as 

ligand. Additionally, a 63-member compound collection including pyrrolidine intermediates 

and pyrrolizidines in either racemic and chiral form was obtained and subjected to biological 

evaluation. However, preliminary investigation on cell-based assay found no significant 

bioactivity in both Wnt and Hedgehog pathways signaling.  

 

Scheme 34. The enantioselective synthesis of tricyclic pyrrolizidines. 

3.3.2 Synthesis of Compound Collection Based on Other Dipolarophiles  

Since there was no significant bioactivity found in the compound collection based on 1,3-DC 

of maleimides, intensive screening of other dipolarophiles was conducted in order to expand 

this compound library. Instead of cyclic dipolarophiles, a broad range of linear dipolarophiles 

was screened. Maleates turned out to be suitable for this transformation by using AgOAc as 

catalyst, giving pyrrolidines and subsequent pyrrolizidines in satisfactory yields (Scheme 35). 

With optimized conditions in hands, this robust transformation was subsequently applied in the 

rapid synethsis of 87-member compound collection containing pyrrolidine intermediates and 

corresponding pyrrolizidines in racemic form. With regard to substrate scope, versatile 

substituted aryl and even alkenyl groups as R1, as well as varied R1 such as methyl, allyl and 

benzyl were compatible with 1,3-DC and sequential intramolecular lactamization. When R1 is 

aliphatic group, no desired product was found. The relative configuration of 158 was 

substantially identified by NOE experiment and proved to be identical to racemic 155.  
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Scheme 35. Synthesis of compound collection derived from maleate.  

However, the corresponding asymmetric 1,3-DC of azomethine ylide 152a and methyl maleate 

156a under the previously established conditions failed to afford the desired pyrrolidine 157aa 

in considerable yield (Table 5, entry 1). Further optimization of solvent together with higher 

catalyst loading only gave 26% yield, albeit with excellent diastereo- and enantioselectivity 

(Table 5, entries 2 and 3). Higher temperature resulted in decreased enantioselectivity (Table 

5, entry 4). The possible reason might lie in the relatively low reactivity of maleates compared 

with maleimides.  

Table 5. Optimization of reaction conditions. 

 

Entry solvent base (mol%) Temp (C) yield (%) d.r. ee (%) 

1 DCM 20 r.t 9% n.d n.d 

2 THF 20 r.t 7% n.d n.d 

3* Toluene 20 r.t 16% > 20:1 92% 

4* Toluene 100 40 26% > 20:1 71% 

* 10 mol% catalyst and 12 mol% ligand. 
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3.3.3 Preliminary Biological Study 

Although there was no significant bioactivity for tricyclic pyrrolizidines library described in 

the prior work, the compound library derived from maleates resulted in the discovery of novel 

inhibitors of Hedgehog pathway signaling in mouse embryonic mesoderm fibroblast 

C3H10T1/2 cells. As illustrated in Fig. 8, several inhibitors of the Hedgehog pathway signaling 

were identified with IC50 values <10 µM.  

 

Figure 8. Representative inhibitors of Hedgehog pathway signaling. 

Later on, selected 119 compounds out of 150 compounds were subjected to specific assays 

performed by RIKEN in Japan to evaluate anti-proliferative activities against cancer cell lines, 

bacterium, fungi, and malaria. Delightfully, one third of compounds exhibited anti-malarial 

activities at 100 µM, while no significant activity was observed in other activities (Table 6).  

Table 6. Summary for the number of active compounds in each assay system. 

 

Assessment 

mammalian cancer cells gram+ gram- fungi malaria 

HeLa HL-60 TsFT210 tsNRK S.a. E.c. M.o. C.a. P.f. 

- 105 101 58 107 113 119 118 113 56 

+ 13 6 50 12 6 0 1 5 17 

++ 1 3 9 0 0 0 0 1 8 

+++ 0 9 2 0 0 0 0 0 38 

total 119 119 119 119 119 119 119 119 119 

Notation: 100 µM of compound treatment; -; 0-20% inhibition, +; 20-50% inhibition, ++; 50-80% inhibition, +++; 

> 80% inhibition. The following microorganisms were used as test strains in the assay; Staphylococcus aureus 

(S.a.) 209, Escherichia coli (E.c.) HO141, Candida albicans (C.a.) JCM1542, and Magnaporthe oryzae (M.o.) 

kita-1. 
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Among them, four compounds demonstrated relatively selective and potent activities at IC50 

values of 10 µM or lower (Table 7). Notably, compounds 157bj and 157bh also showed 

activity in Hedgehog pathway signaling as inhibitors. Additionally, both pyrrolizidine 157bi 

and corresponding pyrrolidine 158br were identified to be anti-malarial compounds. Further 

biological evaluation is still in progress.  

Table 7. Summary for the number of active compounds in each assay system.  

Concentration (µM) 1 10 100 
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Notation: -; 0-20% inhibition, +; 20-50% inhibition, ++; 50-80% inhibition, +++; > 80% inhibition 

3.4 Summary and Perspective 

In conclusion, an efficient catalytic approach for the synthesis of a PAs-inspired compound 

collection has been developed by using 1,3-DC of azomethine ylides as the key step. Despite 

the enantioselective 1,3-DC of maleimides proved to be robust and highly efficient by prior 

work, the less reactive maleates as dipolarophile failed to afford enantioriched pyrrolidines in 

considerable yields. Nevertheless, facilitated by the racemic catalytic 1,3-DC of maleates 

catalyzed by AgOAc, a 87-member library of pyrrolizidines and pyrrolidines had been obtained 

efficiently. Together with the prior work by Hiroshi Takayama, 150 compounds had been 

synthesized and subjected to biological evaluation. Although there was no significant 

bioactivity observed in tricyclic pyrrolizidines and their pyrrolidine precursors derived from 
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maleimides, extended compound collection derived from maleates indeed provided hits not 

only in the inhibition of Hedgehog pathway signaling but also with anti-malarial activity. 

Interestingly, some compounds exhibited both aforementioned activities.  

In future, more intensive biological evaluation enabled by this PAs-inspired compound 

collection will be taken into consideration. With regard to 1,3-DC of azomethine ylides in 

chemistry, diverse dipolarophiles and dipoles, as well as catalytic systems have been 

extensively explored in the last decade, leading to the rapid maturation of this field. However, 

the applications of 1,3-DC in cascade reactions and the intramolecular 1,3-DC are still limited. 

Furthermore, more endeavor needs to be devoted to the application of 1,3-DC into chemical 

biology and medicinal chemistry.  
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4.1 Introduction 

4.1.1 Cycloheptanoids in Natural Products and Their Synthesis 

The seven-membered carbocycle moiety as a privileged scaffold, that defines the core of 

cycloheptanoids, is widely present in numerous NPs with a broad range of bioacitivity. Some 

representative examples include Ingenol (159), Phorbol (160), Cartorimine (161), Englerin A 

(162), Alstonisine (163) and other macroline-related oxindole alkaloids with a common tropane 

moiety (164-166), as well as Gardneria alkaloids 167 and 168 (Fig. 9). Two important 

variations of cycloheptanoid NPs are 8-oxabicyclo[3.2.1]octane and 8-azabicyclo[3.2.1]octane 

(tropane) scaffolds, embodied in more than 200 NPs respectively.138 

 

Figure 9. Representative cycloheptanoids in natural products. 

Among them, Englerin A (162) has attracted interest from both biology139-143 and chemistry144-

150 communities recently due to its highly selective activity against renal cancer at nanomolar 

level. Recently, further chemical biological investigation in depth by Waldmann disclosed the 

rapid and selective inhibition of renal cancer cells by Englerin A could be ascribed to the 

activation of calcium-permeable nonselective transient receptor potential canonical (TRPC) 

calcium channels.19 Notably, in contrast to highly potency of 162, its enantiomer ent-162 is 

inactive even at up to micromolar level,142 highlighting the importance of stereochemistry in 

BIOS. Another type of interesting cylcoheptanoid NPs is macroline-related oxindole alkaloids 

(163-166), with the features of both spirocyclic oxindole moiety and tropane scaffold. Despite 
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spirocyclic oxindole alkaloids are usually associated with significant bioactivity,151,152 no 

investigation was reported in detail for oxindole alkaloids 163-166 due to their paucity in nature. 

Interestingly, there are also naturally occurring alkaloids Chitosenine 167 and Voachalotine 

oxindole 168 with similar scaffold to 163-166, but bearing opposite configuration at spirocyclic 

C7 atom. Considerable effort has been devoted to the total synthesis of such spirocyclic 

oxindole alkaloids mainly starting from tryptophan through a mulit-step linear synthesis.153-157  

In spite of the high occurrence in bioactive NPs, synthetic methods for cycloheptanoids are 

much less developed compared with five- and six-membered rings, constraining the rapid 

construction of such compound collection for further investigation in medicinal chemistry and 

chemical biology.158-162 From a synthetic chemistry point of view, the construction of seven-

membered carbocycles is rather challenging due to unfavorable ring-strain and entropic 

reasons. Through the continuous effort in this field, a few strategies have been developed, in 

which cycloaddition represents one of the most efficient strategies compared with stepwise 

cyclization strategy.158  

 

Scheme 36. Cycloadditions to achieve cycloheptanoid. 
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In the cycloaddition strategy, the most straightforward approach is to start from commercially 

available seven-membered carbocycles. One of valuable feedstocks is tropone, which has 

proven to exhibit a wide spectrum of reactivity especially towards high order cycloadditions 

(Scheme 36a). Representative examples comprise (8+3)163-166 and (8+2)167,168 cycloadditions 

involving carbonyl group, as well as (6+4)169-172, (4+2)173,174 and (6+3)129,130,175-177 

cycloadditions without the participation of carbonyl group. Facilitated by the efficiency of this 

strategy and the diverse reactivity of tropone, quite a few elegant synthetic studies towards 

cycloheptanoid NPs have been reported based on the cylcloaddition reactions of 

tropone.170,174,175,178  

In the de novo synthesis of cycloheptanoids, various cycloadditions have also been 

developed.179 Resulting from the dissection principle of odd-numbered ring, the use of 

zwitterionic or diradicaloid intermediates is necessary to access seven-membered 

cycloheptanoids. In theory, there are three pathways involving (6+1), (5+2), (4+3) 

cycloadditions, along with some formal variations involving fragmentation process (Scheme 

36b).179 Among them, (6+1) cycloaddition is the most challenging from a synthetic chemistry 

point of view, and no example has been reported in the last decade.179 In contrary, (5+2)159,160 

and (4+3)161,162 cycloadditions have attracted considerable interest and are broadly applied into 

the synthesis of cycloheptanoids. Belonging to (5+2) cycloadditions, the 1,3-dipolar 

cycloaddition reactions (1,3-DC) of diverse dipoles, such as six-membered cyclic carbonyl 

ylides and azomethine ylides, together with pyryliums, will be discussed in detail in 4.1.2-

4.1.4, with a main focus on their asymmetric version.  

4.1.2 Catalytic Asymmetric 1,3-Dipolar Cycloaddition Reactions of Carbonyl Ylides 

Generated from Diazo Compounds by Rh(II) Catalysis  

Carbonyl ylides are a family of highly instable and reactive 1,3-dipoles, and their 

corresponding 1,3-DC have been broadly applied to synthesize tetrahydrofuran rings and other 

oxygen-contained heterocycles. Due to the high instability, most of carbonyl ylides are usually 

generated in situ as transient species. Conventional methods for the generation of carbonyl 

ylides consist of thermal extrusion of nitrogen from 1,3,4-oxadiazolines (169), thermolysis or 

photolysis of epoxides (170), loss of carbon dioxide from 1,3-dioxolan-4-ones (171), as well 

as transition metal-catalyzed reaction of carbonyl compounds (172) and diazo compounds 

(173).180 Besides, some simple carbonyl ylides are also formed from 1-iodoalkyl trialkyl 
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ethers181,182 (174) 1,3-elimiation of silyl compounds183 (175) or halogenated ether (176) 

(Scheme 37a).181,184,185  

 

Scheme 37. Carbonyl ylide and its application in catalytic enantioselective 1,3-DC. 

However, most of abovementioned methods to generate carbonyl ylides are not suitable for 

asymmetric catalysis due to either the requirement of harsh reaction conditions or the lack of 

versatility of substrate types. In contrast, transition metal-catalyzed reaction of carbonyl 

compounds (172) with diazo compounds (173) has been largely explored in asymmetric 

catalysis, especially with Rh(II) catalysts.180,186-189 The major reason can be attributed to the 
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ease and mildness properties in the generation of carbonyl ylides by such method (Scheme 

37b). This field had grown rapidly to its mature stage over the last two decades, with the 

appreciable contribution from Padwa.180,186-189 Additionally, copper is also used in carbonyl 

ylide generation but with relatively limited application due to its lower efficiency.190  

To date, there are three major methods to induce enantioselectivity in the process of 1,3-DC of 

carbonyl ylides derive from diazo compounds by Rh(II) catalyst (Scheme 37b).52 First, the 

utilization of chiral Rh(II) catalysts is the most straightforward method, but a requisite 

condition is that transition metal with chiral ligand still associates with carbonyl ylide in the 

process of 1,3-DC (intermediate A, Scheme 37b). In the past two decades, various chiral 

dirhodium(II) catalysts had been designed and synthesized to steer the enantioselective 

transformations involving carbonyl ylides (Scheme 37c).191-193 Another complementary 

strategy is to employ chiral Lewis acids in a relay-catalysis manner. Depending on the 

electronic property of substrates, the chiral Lewis acids can activate either dipolarophiles 

(intermediate B) or dipoles (intermediate C) (Scheme 37b).  

As for the enantiocontrol by chiral dirhodium(II) catalysts, Doyle demonstrated such 

asymmetric catalytic transformation involving carbonyl ylide as an unpublished work in 

1997.191 By using Rh2(4S-MEOX)4 (180a) as catalyst, carbonyl ylide generated from aromatic 

aldehyde 183 and diazoacetate 184 reacted with another molecule of 183 to give dioxolane 185 

in rather poor enantioselectivity (Scheme 38b). It should be noted that there is no successful 

example to date that 1,3-DC of linear carbonyl ylide is able to be realized in high 

enantioselectivity by solely using chiral dirhodium(II) catalyst. In the same year, the first 

catalytic 1,3-DC of carbonyl ylides with considerable enantioselectivity was reported by 

Hodgson.194 The substrates 186 was synthesized to enable a cascade reaction involving cyclic 

carbonyl ylide formation and subsequent intramolecular 1,3-DC, affording the chiral 

cycloheptanoids 188. In the following study, intermolecular asymmetric 1,3-DC was also 

developed with cyclic carbonyl ylides (Scheme 38c). As representatively illustrated in Scheme 

38d, various dipolarophiles 190 with different electronic property and even with heteroatom 

were investigated in the reactions of diazo compounds 189 and dipolarophiles 190 catalyzed 

by dirhodium(II) catalysts (Scheme 38a).  
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Scheme 38. Catalytic enantioselective 1,3-DC of carbonyl ylide by chiral dirhodium catalysts. 

Although quite successful by using chiral dirhodium(II) catalysts, the significant limitations on 

substrate types of both dipoles and carbonyl ylides were found due to the high tendency of 

disassociation of chiral Rh(II) from ylide intermediates. Complementarily, Suga developed a 

relay catalysis system combing chiral Lewis acid and achiral dirhodium(II) catalyst (Scheme 

39b). In this strategy, the enatioselectivity of 1,3-DC was introduced by the interaction between 

chiral Lewis acid and dipolarophile after the generation of carbonyl ylide by achiral dirhodium 

catalyst. 



Chapter 4. Enantioselective Synthesis of Cycloheptanoids 
 

66 
 

 

Scheme 39. Catalytic enantioselective 1,3-DC of carbonyl ylide by chiral Lewis acid. 

In their preliminary report, the employment of chiral Yb(III) Lewis acid 192 afforded the 

cycloadduct 198 in moderate enantioselectivity through 1,3-DC between 

benzyloxylacetaldehyde 197 and benzopyrylium 196 derived from diazo compound 195.195 

The successive studies revealed that i-Pr-Pybox 193a/Sc(III) delivered a high 

enantioselectivity for the same 1,3-DC with much broader substrate scope.196,197 Facilitated by 
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the same structurally rigid intermediate 196, pyruvate 200 and traditional 1,3-dicarbonyl 

compound 3-acryloyl-2-oxazolidinone 202 also proved to be suitable for this transformation 

under specific reaction conditions.196 Later on, further investigations focusing on the extension 

of dipolarophile scope for the abovementioned transformations were also conducted by the 

same group.198 In 2013, another type of structurally rigid carbonyl ylide 205 generated from 

diazo 204 was reported, with which a highly enantioselective 1,3-DC was realized by using a 

complexes of Ph2-Pybox 193c with different metals (Scheme 39b).199 Additionally, Suga also 

developed catalytic asymmetric 1,3-DC facilitated by the LUMO activation of carbonyl ylide 

by chiral Lewis acid (Scheme 39c).200,201 The choice of different combination of metal such as 

Ni(II), Ho(III), Tm(III), Eu(III), Gd(III), and ligand (194/193c) is critical for the high 

enantioselectivity of this transformation.  

As described above, most of carbonyl ylides applied in asymmetric catalysis are six-membered 

cyclic species, resulting in the synthesis of enantioenriched 8-oxabicyclo[3.2.1]octanes and 

derivatives. This highly efficient method has been applied successfully into a few total 

synthesis of NPs including Englerin A.180,187,188,202 Recently, instead of traditional diazo-based 

carbene strategy, electrophilic activation of alkyne by transition metals followed by 

nucleophilic attack of carbonyl moiety intramolecularly emerged as a more atom-efficient and 

safe alternative to generated cyclic carbonyl ylides.203-210 To date, transition metals such as 

Cu(II), Ag(I), Pd(I), Pt(II), Au(I), and Rh(II) have been demonstrated as efficient electrophilic 

catalysts. However, the successful applications in cycloaddition in asymmetric form are still 

scare.203  

4.1.3 Catalytic Asymmetric Reactions to Access Tropanes and Cyclic Azomethine Ylides 

Generated from Diazo Compounds by Rh(II) Catalysis 

In spite of the high occurrence of tropane moiety in NPs with diverse bioactivity especially on 

neurological and psychiatric diseases, the development of tropane synthesis in enantioselective 

manner still stays limited.138 To date, the main source of chiral tropanes is from chiral pool, 

such as sugar, amino acids, or other commercially available or synthesized chiral building 

blocks. Besides, prochiral substrates are also able to provide chiral tropanes through one single 

step of transformation, which can be facilitated by traditional chiral auxiliaries, chiral reagent, 

and chiral catalysts. Other strategies are also available but much less developed, such as kinetic 

resolution of racemates of tropanes. As the most efficient and economic strategy, the catalytic 

asymmetric methodologies to access enantioriched tropanes are particularly rare. To date, four 
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strategies with a handful of examples have been depicted in literature, including kinetic 

resolution (KR),211 desymmetrization,212,213 formal (4+3) cycloaddition,214,215 and (3+2) 

cycloaddition of cyclic azomethine ylides136 (Scheme 40). 

 

Scheme 40. Current catalytic enantioselective examples for the synthesis of enantioriched tropanes. 

In the strategy of kinetic resolution, only a few examples by enzyme catalysis138 were reported 

before (3+2) cycloadditions of tropane racemates depicted by Antonchick and Waldmann in 

2016 (Strategy A, Scheme 40).211 The tropanes rac-211 synthesized through (5+2) 

cycloadditions of 3-oxidopyridiniums and alkenes can be resolved by means of asymmetric 

(3+2) cycloadditions of azomethine ylides (60). By using Cu(I) and ligand 212, tropanes (+)-

211 and a hybrid compound collection (213) incorporating both tropane and pyrrolidine 
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fragments were obtained in highly enantioselective manner. With regard to desymmetrization, 

one of representative examples212,213 is a palladium-catalyzed asymmetric allylic alkylation of 

tropinone derivatives 214 by Hou in 2013 (Strategy B, Scheme 40). The use of ligand 216 

proved to be critical for the synthesis of tropane derivatives 217 with moderate to excellent ee. 

In 2007, Davies developed a highly enantioselective formal (4+3) cycloadditions of pyrroles 

219 and vinyldiazoacetate 218 catalyzed by chiral dirhodium catalyst 182h (Strategy C, 

Scheme 40).215 The tropanes 220 were supposed to be generated through a sequential reaction 

of asymmetric cyclopropanation/Cope rearrangement. Notably, the elegant work from 

Antonchick and Waldmann in 2013 demonstrated the asymmetric synthesis of fused tropanes 

133 by (3+2) cycloadditions of cyclic azomethine ylides 131 (Strategy D, Scheme 40).136  

 

Scheme 41. Cyclic azomethine ylides generated by diazo compounds described by Padwa. 

Although Antonchick and Waldmann indeed provided a novel strategy to access tropanes 

enantiomerically, the presence of aromatic functionalities is critical to stabilize the cyclic 

ketoimine 131, therefore only fused tropanes 133 could be obtained. In fact, some aliphatic 

cyclic azomethine ylides such as 222 were already described by Padwa in 1990s by using diazo 

compound with a tethered oxime moiety 221 (Scheme 41). However, this species of 

azomethine ylide intermediates had only been reported in two reports in 1990 and 1994 with 

extremly limited substrate scope, and never applied in enantioselective transformation.216,217 

One of the main reasons can be attributed to the low reactivity of such intermediates. In the 

seminal reports, only highly reactive dipolarophiles such as DMAD under refluxing condition 

is suitable for such transformation. Another reason is the high instability of such intermediates. 
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Padwa also depicted azomthine ylide 225 with higher reactivity and stability could be generated 

from benzo fused diazo compound 224, so that tropane 226 could be achieved in higher yield 

(94%) and milder condition (40°C) compared with the synthesis of tropane 223. In conclusion, 

the methods described by Padwa can provide both aliphatic tropanes and fused counterparts, 

but suffer from limited application due to the low reactivity and the instability properties of 

cyclic azomethine ylide intermediates. Notably, in both case was only E-isomer of oxime able 

to afford the desired tropane product due to its proper direction of nitrogen lone pair for 

azomethine ylide formation.  

4.1.4 Organocatalysis to Access 8-Oxabicyclo[3.2.1]octanes Enantioselectively  

 

Scheme 42. Organocatalysis to access 8-oxabicyclo[3.2.1]octanes. 
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In the last decade, oranocatalysis using small organic molecules as catalysts had thrived to a 

powerful method in organic synthesis. As a general strategy to construct 8-

oxabicyclo[3.2.1]octanes, (5+2) cycloadditions of pyryliums or even pyridiniums has been 

broadly applied in organic synthesis.158-160 Nevertheless, the corresponding catalytic 

asymmetric variant was not reported until 2011 by Jacobson in an intramolecular manner 

(Scheme 42).218 Enabled by dual catalysis integrating amine catalyst 228a and anion-binding 

catalyst 229, the desired product 231 could be obtained in excellent eantioselectivity, albeit 

with rather limited substrate scope. An intermediate 230 was proposed to rationalize the 

outcome of stereochemistry. Later, by employing the same catalysis system, the intermolecular 

version was realized, suffering the same problem of limited substrate cope (Scheme 42).219 In 

contrast to Jacobsen’s work, Vicario demonstrated a highly enantioselective (5+2) 

cycloaddition of aldehydes 236 and benzopyrylium ylides generated from benzopyranones 235 

through enamine activation by secondary amine 237 (Scheme 42).220  

To conclude, similar to the incapability in metal catalysis to access 8-oxabicyclo[3.2.1]octanes 

in catalytic enantioselective manner as described in 4.1.2, although two strategies with regard 

to (5+2) cycloaddition of pyrylium were conceived in organocatalysis, the further application 

and especially the substrate scope of these methods are significantly limited. 

4.2 Design Principle and Aim of the Project 

In light of BIOS, the chemical space defined by NPs not only relies on the privileged scaffolds, 

but also is complementarily characterized with the sufficient substitutions and the stereogenic 

centers. To cover adequate chemical space based on seven-membered carbocycles, the 

exploration of highly enantioselective methodology to build the compound library of 

cycloheptanoids, especially 8-azabicyclo[3.2.1]octane variant (tropane) and 

8-oxabicyclo[3.2.1]octane variant, is highly desirable and valuable. To this end, four different 

approaches have been designed and will be discussed in this chapter. 

For the first approach, the most straightforward way to construct cycloheptanoids is starting 

directly from commercial available seven-membered carbocycles, as discussed in 4.1.1. In this 

regard, tropone was chosen to be the very starting point due to its easy accessibility and 

versatile reactivity. Although a large spectrum of dipoles such as azomethine ylide had been 

tested for reactions of tropone, the reactivity of carbonyl ylide has never been investigated, 

especially in an enantioselective manner. In this thesis, various diazo compounds as precursors 
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of carbonyl ylides will be synthesized to explore the possible reactivity of tropone by using 

chiral dirhodium(II) catalysts. This part of work will be summarized in 4.3.2. 

As for the second approach, 1,3-DC of six-membered cyclic carbonyl ylides with all-carbon 

partners represents one of the most efficient methods to access cyclopentanoid 8-

oxabicyclo[3.2.1]octanes, as shown in 4.1.2. In spite of extensive exploration of this field for 

more than one decade, the catalytic enantioselective 1,3-DC of carbonyl ylides still suffers 

from severe limitation of dipolarophile types (Scheme 38d). On the other hand, as possible 2π-

, 4π-, 6π-, and even three-carbon components in annulation process, versatile reactivity of 

fulvene have been explored for the rapid construction of polycyclic systems.221 In continuation 

of the effort in this thesis on pentafulvene (Chapter 2), the reactivity of pentafulvene towards 

carbonyl ylides will be intensively investigated in an enantioselective manner. This part of 

work will be summarized in 4.3.3. 

The third approach involves 1,3-DC of six-membered cyclic azomethine ylides. In contrast to 

intensive investigation of cyclic carbonyl ylides generated from diazo compounds by Rh(II) 

catalysis, cyclic azomethine ylides generated in the same way were reported only in two 

seminal works by Padwa in 1990s, as described in 4.1.3. The corresponding catalytic 

enantioselective transformation remains unprecedented. Considering their promising 

application in the synthesis of tropanes, it would be highly valuable to perform systematic 

investigation of such azomethine ylide intermediates. To achieve this target, two issues should 

be addressed, including the enhancement of reactivity of such intermediates and the efficiency 

of enantioselectivity induction. To overcome the low reactivity of the aforementioned 

intermediates, it’s assumed that the rational design of diazo precursors is critical. Regarding to 

the enantioselectivity, in analogy to carbonyl ylides, chiral dirhodium catalysts will be tested 

at first. As alternatives, additional asymmetric catalysis systems can also be tested in a relay 

catalysis manner, such as chiral Lewis acid catalysis described in 4.1.2. This part of work will 

be summarized in 4.3.4. 

Inspired by the pioneering works of Jacobsen218 and Chain222, the fourth approach consists of 

two different strategies to build 8-oxabicyclo[3.2.1]octane compound collection, involving 

intermolecular (5+2) cycloaddition of pyrylium salt and stepwise cyclization. This section will 

be summarized in 4.3.5.  
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4.3 Result and Discussion  

4.3.1 Synthesis of a Library of Chiral Dirhodium(II) Catalysts   

 

Figure 10. Library of chiral dirhodium catalysts. 

Except commercially available chiral dirhodium(II) cataylsts (178, 182b, 182c, 182h, 241), 

other types of catalysts were synthesized according to literature (Fig. 10).223 

4.3.2 Investigation on Reactivity of Tropone in 1,3-Dipolar Cycloaddition Reactions of 

Cyclic Carbonyl Ylides 

 

Scheme 43. 1,3-DC of carbonyl moiety of tropone with carbonyl ylide. 
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In collaboration with Dr. Sandip Murarka, the reactivity of tropone with various carbonyl ylides 

was intensively investigated. In literature, the catalytic enantioselective 1,3-DC of carbonyl 

ylides with carbonyl group is rare. Only some specific aldehydes proved to be suitable for such 

transformation as described in three publications191,197,224, and the corresponding ketone is 

unprecedented. Dr. Sandip Murarka discovered that cyclic carbonyl ylides derived from 

diazodiketoesters 243 underwent (3+2) cycloadditions with the  carbonyl group embodied in 

tropone 242, representing the first case involving carbonyl group in ketone (Scheme 43).225 

Under the optimized conditions, catalyst 182b yielded various 5-alkoxylactone derivatives 246 

instead of spirocyclic compound 244 in good to excellent enantioselectivity, with the substrate 

scope from aliphatic to diverse aromatic patterns. Based on the observations, a plausible 

mechanism involving a cascade process was proposed. Spirocyclic compound 244 generated 

from 1,3-DC of carbonyl functionality of tropone is converted into zwitterion 245, which 

sequentially undergoes cyclization and rearrangement to afford the observed product 246.  

Table 8. Screening of reaction conditions for the synthesis of 214a.
[a]

 

 

Entry Temp (C) yield (%) ee (%) 

1 r.t 60 94 

2[b] r.t 92 94 

3 50 50 92 

4[c] r.t. 75 94 

[a] Unless otherwise noted, a flame dried Schlenk tube was charged with catalyst 182b (2.00 μmol, 0.02 equiv.), 

242 (0.10 mmol, 1.00 equiv.) and 0.5 mL C6H5CF3 under the protection of Ar. Then the solution of diazo 

compound 247a (0.15 mmol, 1.50 equiv.) in 0.5 mL C6H5CF3 was added slowly into the reaction mixture. [b] The 

solution of diazo compound 247a in 0.5 mL C6H5CF3 was added over 1 hour by syringe pump. [c] 20 mg 4Å MS 

was added.  

Independently, a (6+3) cycloaddition reaction was discovered by using diazoketone 247a under 

the same reaction conditions, to afford corresponding cycloheptaoid 248a in moderate yield 

and with excellent enantioselectivity. After optimization of reaction conditions (Table 8), the 

use of a syringe pump to add diazo compound 247a over 1 hour was found critical for high 

yield of this transformation, which is also a standard procedure to reduce background reaction 
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resulting from ‘free’ carbonyl ylide without Rh. Additionally, lower temperature and the 

addition of molecular sieves had a negative effect on yield but no significant influence on 

enantioselectivity. The absolute configuration of 248a was unambiguously identified by 

vibrational circular dichroism (VCD) spectroscopy (by Dr. Christian Merten, see 7.4.1.2).  

Table 9. Substrate scope of (6+3) cycloaddition reaction. 

 

Entry Product R yield (%) ee (%) 

1 248a C6H5 78 94 

2 248b 4-n-HexC6H4 55 92 

3 248c 4-i-PrC6H4 56 89 

4 248d 4-FC6H4 30 92 

5 248e 4-BrC6H4 66 87 

6 248f 4-MeOC6H4 n.r. n.r. 

Reaction conditions: a flame dried Schlenk tube was charged with catalyst 182b (2.00 μmol, 0.02 equiv.), 242 

(0.10 mmol, 1.00 equiv.) and 0.5 mL CF3C6H5 under the protection of Ar. Then the solution of diazo compound 

248a (0.20 mmol, 2.00 equiv.) in 0.5 mL C6H5CF3 was added added over 1 hour by syringe pump. n.r.: no reaction. 

With the optimized reaction conditions in hand, the substrate scope for diazo compound 247 

was investigated. For diazo compounds 247,226 substitutions with different electronic and steric 

properties were tolerated on para-position of aromatic group to give cycloheptanoids 248a-

248e in moderate to good yield and with excellent enantioselectivity (Table 9). No desired 

product was found when 4-methoxyl substituted diazo compound 248f was employed probably 

due to the possible competition of C−H insertion process which is well known in Rh(II) 

carbenoid chemistry.226 

4.3.3 Investigation on Reactivity of Pentafulvenes in 1,3-Dipolar Cycloaddition 

Reactions of Cyclic Carbonyl Ylides 

Towards 1,3-dipole, pentafulvene has been reported to be suitable in both (6+3) cycloaddition 

and (3+2) cycloaddition.221 By analogy, there will be two possible pathways in 1,3-DC of 

carbonyl ylide and fulvene, affording 5-8 fused cyclooctanoids and 5-7 fused cycloheptanoids 

respectively (Scheme 44). Notably, both 5-8 fused cyclooctanoids185 and 5-7 fused 
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cycloheptanoids158 are common structural units in a variety of polycyclic NPs. In the sole work 

involving five-membered cyclic carbonyl ylide and fulvene, the process of (3+2) cycloaddition 

was exclusively favored with substrate-controlled regioselectivity.227  

 

Scheme 44. Possible pathway for 1,3-DC of pentafulvene with carbonyl ylide. 

In the preliminary study, chiral dirhodium(II) catalysts (Fig. 8) were tested in the model 

reaction (Table 10). By analyzing NMR spectra of separable 249a, (3+2) cycloadducts of 

fulvene 59a and carbonyl ylide derived from 243 were identified with endo-selectivity (see 

7.4.2). As outlined in Table 10, in a typical procedure, various dirhodium(II) catalysts were 

investigated for the model reaction, but almost 1:1 mixture of separable isomers was observed 

and the highest ee was only 60% (entries 1-11, Table 10). Out of two optimal catalysts, Rh2(S-

NTTL)4 (240) was chosen as model catalyst for further optimization. In light of previous 

experience, the use of syringe pump to add diazo compound slowly is usually beneficial for 

enantioselectivity. However, decreased enantioselectivity was found when adding diazo 

compound by syringe pump over 1 hour (entry 12, Table 10). Surprisingly, reverse 

enantioselectivity and limited conversion were observed by decreasing temperature to -20oC 

(entry 13, Table 10). Further screening on solvents also failed to improve the regio- and 

enantioselectivity (entries 14-20, Table 10). No desired product was found when using THF as 

solvent, probably owing to fast decomposition of carbonyl ylides in polar solvent (entry 17, 

Table 10). Additionally, significant decrease on enantioselectivity was observed by employing 

the diazo compound with phenyl substitution, albeit with better regioselectivity. (entry 21, 

Table 10)  
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Table 10. Condition optimization of (3+2) cycloaddition reaction of pentafulvene and carbonyl ylide.[a] 

 

Entry R cat solvent yiel

d 

(%) 

Ratio 

(A:B) 

ee (%) 

A B 

1 Me Rh2(S-PTA)4 182d CF3C6H5 55 43:57 47 9 

2 Me Rh2(S-PTV)4 182e CF3C6H5 72 47:53 53 11 

3 Me Rh2(S-PTIL)4 182g CF3C6H5 77 47:53 29 -5 

4 Me Rh2(S-PTTL)4 182a CF3C6H5 65 54:46 60 11 

5 Me Rh2(S-TCPTTL)4 182b CF3C6H5 72 47:53 36 52 

6 Me Rh2(S-TFPTTL)4 182c CF3C6H5 84 54:46 20 32 

7 Me Rh2(S-PTAD)4 182h CF3C6H5 77 53:47 37 -3 

8 Me Rh2(S-PTPA)4 182f CF3C6H5 81 53:47 45 14 

9 Me Rh2(S-DOSP)4 178 CF3C6H5 84 51:49 47 33 

10 Me Rh2(R-BTPCP)4 241 CF3C6H5 72 40:60 -5 -13 

11 Me Rh2(S-NTTL)4 240 CF3C6H5 75 48:52 57 32 

12[b] Me Rh2(S-NTTL)4 240 CF3C6H5 75 48:52 45 31 

13[c] Me Rh2(S-NTTL)4 240 CF3C6H5 29 50:50 -32 -37 

14 Me Rh2(S-NTTL)4 240 Hexane 65 44:56 15 -8 

15 Me Rh2(S-NTTL)4 240 Toluene 70 52:48 50 17 

16 Me Rh2(S-NTTL)4 240 DCM 53 45:55 3 -14 

17 Me Rh2(S-NTTL)4 240 THF n.r. - - - 

18 Me Rh2(S-NTTL)4 240 FC6H5 72 53:47 53 21 

19 Me Rh2(S-NTTL)4 240 Ethyl acetate 36 33:67 11: -13 

20 Me Rh2(S-NTTL)4 240 CF3C6H5: 

Hexane (1:1) 

50 43:57 49 23 

21 Ph Rh2(S-NTTL)4 240 CF3C6H5 82 15:85 35 23 

[a] Unless otherwise noted, a flame dried Schlenk tube was charged with catalyst Rh(II) catalyst (2.00 μmol, 0.02 

equiv.), 59a (0.10 mmol, 1.00 equiv.) and 0.5 mL solvent under the protection of Ar. Then the solution of diazo 

compound 243 (0.15 mmol, 1.50 equiv.) in 0.5 mL solvent was added slowly into the reaction mixture. [b] The 

solution of diazo compound 243 in 0.5 mL CF3C6H5 was added over 1 hour by syringe pump. [c] The reaction 

was performed under -20oC. 



Chapter 4. Enantioselective Synthesis of Cycloheptanoids 
 

78 
 

To address the issue of regioselectivity, a disubstituted fulvene 59b was employed, inspired by 

the improvement of regioselectivity in the seminal work by using the same fulvene.227 As 

expected, only one regioisomer was found in the model reaction (Table 11). However, the 

enantioselectivity remained moderate after screening of catalysts. Notably, the addition of 4Å 

MS in this case was able to promote conversion and yield. In conclusion, the optimization on 

reaction conditions and modification of substrate all failed to give cycloheptanoid 249 in 

considerable enantioselectivity.  

Table 11. Condition optimization of (3+2) cycloaddition reaction of pentafulvene and carbonyl ylide.[a] 

 

Entries cat yield (%, for major) ratio ee (%) 

1 Rh2(S-PTTL)4 42 >90:10 15 

2 [b] Rh2(S-PTTL)4 70 >90:10 17 

3[b] Rh2(S-TFPTTL)4 75 >90:10 32 

4[b] Rh2(S-DOSP)4 73 >90:10 48 

5[b] Rh2(S-TCPTTL)4 94 >90:10 57 

[a] Unless otherwise noted, a flame dried Schlenk tube was charged with catalyst Rh(II) catalyst (2.00 μmol, 0.02 

equiv.), 59b (0.10 mmol, 1.00 equiv.) and 0.5 mL CF3C6H5 under the protection of Ar. Then the solution of diazo 

compound 209a (0.15 mmol, 1.50 equiv.) in 0.5 mL CF3C6H5 was added slowly into the reaction mixture. [b] 20 

mg 4Å MS was added. 

4.3.4 Enantioselective Synthesis of Tropanes by 1,3-Dipolar Cycloaddition Reactions of 

Cyclic Azomethine Ylides Derived from Diazo Compounds 

Besides the potential application in tropane synthesis by cyclic azomethine ylides generated 

from diazo compound (as stated in 4.2), another inspiration for this project is the common 

structure unit embodied in spirooxindole alkaloids 163-168 (Scheme 45a). Due to the paucity 

in natural sources of NPs 163-168, it would be highly valuable to develop methodology to 

construct such privileged scaffold rapidly for further chemical biology study. To date, a linear 

synthesis from tryptophan in 6 steps is the major method to synthesize such core,153-155,228 as 

well as one sole diastereoselective methodology229 with less than 20% yield. There is no 

catalytic asymmetric reaction to access such structure unit. In retrosynthesis analysis, 1,3-DC 
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of six-membered cyclic azomethine ylide and 3-methylene-2-oxindole could be one feasible 

strategy (Scheme 45a). Hence, as one of the most reactive dipolarophiles, 3-methylene-2-

oxindole with cyano group 251 was chosen as standard dipolarophile. For the precursors of 

corresponding azomethine ylide intermediates, diazoketoesters with a tailed oxime 

functionality 250 and 253 were synthesized according to Padwa’s pioneering work (Scheme 

45b).216,217 However, by using Rh(II) catalyst 240, no desired product was found in both cases.  

 

Scheme 45. Preliminary results of 1,3-DC of 3-methylene-2-oxindole with cyclic azomethine ylide. 

Through rational analysis and design, two different strategies were conceived to address the 

issue of inadequate reactivity (Scheme 46). Starting from intermediates 255 and 256, the 

reactivity of intermediate might be enhanced by the removal of ester group from intermediate 

256, due to the raising HOMO level and reduced steric hindrance. However, the precursor 257 

for intermediate 258 could not be synthesized. On the other hand, intermediate 259 without 

ester group compared with 255 might also possess higher reactivity due to the same reasons. 

Delightfully, the precursor 260 could be synthesized. In its subsequent 1,3-DC with 251, the 

desired product 261 could be isolated in 63% yield in a single diastereomer form, albeit with 

no enantioselectivity by using chiral Rh(II) catalysts. In this reaction, the diazo compound 260 
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can be fully consumed immediately after the addition of chiral Rh(II) catalysts, but the reaction 

needs 4h to reach full conversion. Based on this observation, the failure on enantioinduction 

by chiral Rh(II) catalysts was ascribed to the rapid dissociation of Rh(II) from the azomethine 

ylide 259 before being trapped by dipolarophile 251. 

 

Scheme 46. Rational design of azomethine ylide precusors. 

As discussed in asymmetric catalytic reaction of carbonyl ylides (in 4.1.2), chiral Lewis acid 

catalysis usually was introduced as a complementary strategy to chiral Rh(II) catalysis. By 

analogue, chiral Lewis acid catalysis should also be feasible due to the presence of 1,3-

dicarbonyl moiety embedded in 3-methylene-2-oxindole 251. Inspired by the prior works, 

diverse substrates and chiral Lewis acid complexes were tested (Table 12).230-232  
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Table 12. Condition optimization of 1,3-DC of 3-methylene-2-oxindole with cyclic azomethine ylide.. 

 

Entrie

s 

R cat ligand solvent procedure yield 

(%) 

d.r. ee 

(%) 

1 Boc Mg(NTf2)2 262a DCM A 68 >95:5 66 

2 Boc Mg(ClO4)2 262a DCM A 63 3:1 34 

3 Boc Cu(OTf)2 262a DCM A 34 >95:5 5 

4 Boc CuOTf 262a DCM A 58 >95:5 2 

5 Boc Mg(NTf2)2 262a DCM B 68 >95:5 67 

6 Boc Mg(NTf2)2 262a DCM C 78 >95:5 60 

7 Boc Mg(NTf2)2 262a THF B n.r. - - 

8 Boc Mg(NTf2)2 262a Et2O B 24 >95:5 31 

9 Boc Mg(NTf2)2 262a C6H5CF3 B 44 >95:5 59 

10 Boc Mg(NTf2)2 262a CHCl3 B 49 >95:5 58 

11 Boc Mg(NTf2)2 262b DCM B 53 >95:5 12 

12 Boc Mg(NTf2)2 262c DCM B 53 >95:5 0 

13 Boc Mg(NTf2)2 262d DCM B 58 >95:5 0 

14 Boc Mg(NTf2)2 262e DCM B 53 >95:5 8 

15 Boc Mg(NTf2)2 262f DCM B 28 >95:5 -53 

16 Boc Mg(NTf2)2 262g DCM B 49 >95:5 63 

17 Boc Mg(NTf2)2 262h-j DCM A n.r. - - 

18 Boc Sc(OTf)3 262i DCM A n.r. - - 

19 Boc Yb(OTf)3 262i DCM A n.r. - - 

20 Piv Mg(NTf2)2 262a DCM B n.r. - - 

21 Cbz Mg(NTf2)2 262a DCM B 73 >95:5 33 

22 Ac Mg(NTf2)2 262a DCM B 40 >95:5 40 

Reaction conditions: Procedure A, under the protection of Ar, chiral ligand (0.22 equiv., 0.011 mmol) and 

corresponding Lewis acid (0.2 equiv., 0.01 mmol) in 0.5 mL of solvent were stirred vigorously in a flame dried 

Schlenk tube at room temperature for 30 min. Then the 3-methylene-2-oxindole 251 (1 equiv., 0.05 mmol), 

Rh2(OAc)4 (0.01 equiv., 0.0005 mmol), and 20 mg 4AMS were added for another 15 min stirring. After that, the 

diazo compound 260 (1.1 equiv., 0.05 mmol) in 0.5 mL of DCM was added in dropwise. The reaction was allowed 

to proceed in 4 h; Procedure B, the same with procedure A, except Mg was heated to 150oC under vacuum for 

30 min; Procedure C, the same with procedure A, except Mg was heated to 150oC under vacuum for 30 min, and 

syringe pump was used to add diazo compound in 1 h, followed by further 3 h stirring.  
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As outlined in Table 12, different Lewis acids were tested by using 262a as ligand, and 

Mg(NTf2)2 proved to be the optimal, affording the desired product 261 in 68% yield and 66% 

ee (entries 1-4). However, poor reproduciblity was found due to highly hydroscopic nature of 

Mg(NTf2)2. Intensive optimization on procedure revealed that a constantly reliable result could 

be obtained by heating Mg(NTf2)2 to 150oC for 0.5 hour under high vacuum (entry 5). The 

utilization of syringe pump to add diazo compound 260 over 1 hour led to higher yield but 

reduced ee (entry 6). Subsequent solvent screening disclosed that DCM was optimal (entries 

7-10). Furthermore, no improvement on enantioselectivity was achieved by screening of 

ligands (entries 11-17) and classic combinations of Pybox with either Sc(OTf)3 or Yb(OTf)3 

(entries 18 and 19). Besides the condition optimization, protecting groups were also 

investigated, in which Boc was the optimal (entries 20-24). In conclusion, the reaction 

conditions indicated in entry 5 proved to be the optimal, but only moderate ee (67%) was 

obtained.  
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4.3.5 Enantioselective Synthesis of 8-Oxabicyclo[3.2.1]octanes by Amine Catalysis 

To access 8-oxabicyclo[3.2.1]octane compound collection rapidly, two retrosynthesis 

strategies were conceived based on aminecatalysis (Scheme 47). On one hand, inspired by the 

intramolecular (5+2) cycloaddition by Jacobsen in 2011 (Scheme 42),218 the first strategy 

involves an intermolecular (5+2) cycloaddition of pyrylium generated from protected 

pyranones through group elimination. The other strategy is a stepwise chiral-amine-catalyzed 

Michael reaction followed by reductive radical cyclization mediated by SmI2, inspired by the 

total synthesis of Englerin A by Chain.222  

 

Scheme 47. Two strategies to access 8-oxabicyclo[3.2.1]octanes based on aminecatalysis. 

4.3.5.1 Intermolecular (5+2) Cycloaddition by Amine Catalysis 

Initially, extensive screening of substrate was performed in the intermolecular (5+2) 

cycloaddition of pyrylium derived from Boc protected pyranone 263b, by using amine 228b 

as catalyst and TFA as additive (Scheme 48). In contrast to Jacobsen’s work in which no 

enantioselectivity and low yield were observed by using styrene 10a as dipolarophile (Scheme 

48a),218 it was found that the desired (5+2) cycloadduct could be obtained from styrene 10a in 

24 hours with 70% yield and up to 13% ee for the major diastereomer (Scheme 48b). With this 

starting point, the investigation on protection group of pyranones was conducted (Scheme 48c). 

Compared with Boc protected pyranone 263b, acetyl protected pyranone 263c could afford the 

desired (5+2) cycloadduct in similar yield (60%), decreased d.r. (2:1), and higher ee (27%, 

23%) by prolonging reaction time. The substrate 263a with p-thiomethylbenzoyl gave 

decreased yield (40%) and d.r. (3:2), but with higher ee (21%). Considering the efficiency of 

optimization process, Boc protected pyranone 263b was used as the standard substrate.  
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Scheme 48. Preliminary result of the intermolecular (5+2) cycloaddition. 

After the determination of model reaction, intensive investigations on solvent, acid, catalyst, 

and additive were conducted (Table 13). At first, solvent screening disclosed toluene was 

optimal, while polar solvent such as EtOH, 1,4-dioxane failed to give the desired product 

(entries 1-4). In addition, no product was observed by employing acids except TFA (entries 5-

7). Subsequent extensive screening on catalysts revealed primary amine catalyst without 

hydrogen-bonding donor 228g was optimal, giving 40% ee for the major diastereomer, albeit 

with only 30% yield (entry 13). Screening of 265 as additives indicated that hydrogen-bonding 

doners were beneficial for enantioselectivity, but the highest ee was still limited to 67% (entry 

21).   
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Table 13. Condition optimization of (5+2) cycloaddition reaction of styrene and pyrylium.[a] 

 

Entries solvent acid cat additive yield 

(%) 

t (h) d.r. ee (%) 

major minor 

1 Toluene TFA 228b none 70 24 4:1 13 17 

2 CHCl3 TFA 228b none 50 48 2:1 <5 20 

3 1,4-Dioxane TFA 228b none n.r. - - - - 

4 EtOH TFA 228b none n.r. - - - - 

5 Toluene TsOH 228b none mess - - - - 

6 Toluene AcOH 228b none n.r. - - - - 

7 Toluene BzOH 228b none n.r. - - - - 

8 Toluene TFA 228a none 35 48 4:1 23  <5 

9 Toluene TFA 228c none 55 96 3:2 23  50 

10 Toluene TFA 228d none 45 96 6:5 27  49 

11 Toluene TFA 228e none 25 96 7:1 15 20 

12 Toluene TFA 228f none n.r. - - - - 

13 Toluene TFA 228g none 30 24 4:1 40 <5 

14 Toluene TFA 228h none 60 18 3:1 19  21 

15 Toluene TFA 228i none 30 96 4:1 <5 25 

16 Toluene TFA 228j none 30 96 3:1 <5  13 

17 Toluene TFA 228k none 25 18 12:1 <5  35 

18 Toluene TFA 228g 265a 40 32 4:1 46 30 

19[b] Toluene TFA 228g 265a 45 72 2:1 59 57 

20[b] Toluene TFA 228g 265b 40 96 4:1 53 52 

21[b] Toluene TFA 228g 265c 40 32 5:2 67 40 

22[b] Toluene TFA 228g 265d 35 72 4:1 55  43 

[a] Unless otherwise noted, to the solution of 263b (0.10 mmol, 1.00 equiv.), styrene 10a (0.30 mmol, 3.00 equiv.), 

catalyst 228 (0.02 mmol, 0.20 equiv.), additive 265 (0.02 mmol, 0.20 equiv.) in 1.0 mL solvent was added acid 

(0.04 mmol, 0.40 equiv.) slowly. Then the mixture was allowed to be stirred for specific time at 60oC. [b] Acid 

(0.02 mmol, 0.20 equiv.) was used. 
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4.3.5.2 Stepwise Strategy with Asymmetric Amine-catalyzed Michael Reaction 

The asymmetric amine-catalyzed Michael reaction has been well documented in the last 

decade.233-235 By covalent activation of α,β-unsaturated aldehydes through iminium 

mechanism, enantioselectivity can be induced efficiently. Although various Michael donors 

prove to be suitable, no example involving 3-furone has been reported before proposing this 

project.236,237 By employing cinnamaldehyde 266a as Michael acceptor, the optimization of 

reaction conditions was performed (Table 14). Catalyst 268f could afford the desired product 

efficiently with 86:14 d.r. and up to 97% ee, by using toluene as solvent and OFBA as additive 

(entry 6). Subsequent screening on acid and solvent failed to improve either yield or 

stereoselectivity (entries 7-10). The absolute configuration of 269a was assigned according to 

the known literature.237 
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Table 14. Condition optimization of asymmetric amine-catalyzed Michael reaction.[a] 

 

Entries cat acid solvent t (h) yield 

(%) 

d.r. ee (%)[b] 

Isomer A Isomer B 

1 268a - Toluene 48 trace - - - 

2 268b - Toluene 28 92 40:60 <5 <5 

3 268c - Toluene 40 81 58:42 <5 73 

4 268d - Toluene 96 55 76:24 <5 <5 

5 268e OFBA Toluene 32 89 73:27 96 71 

6 268f OFBA Toluene 48 89 86:14 97 90 

7 268f BA Toluene 72 85 85:15 96 89 

8 268f OFBA CHCl3 96 77 78:22 97 95 

9 268f OFBA THF n.r - - - - 

10 268f OFBA CH3CN n.r - - - - 

[a] Unless otherwise noted, 266a (0.15 mmol, 1.50 equiv.), 3-furone 267 (0.10 mmol, 1.00 equiv.), catalyst 268 

(0.02 mmol, 0.20 equiv.), acid (0.02 mmol, 0.20 equiv.) were added into 1.0 mL solvent. Then the mixture was 

allowed to be stirred for specific time at r.t.. [b] ee was determined by chiral HPLC after 269a was reduced to its 

alcohol by NaBH4 in MeOH. OFBA: 2-fluorobenzoic acid; BA: benzoic acid. 

 

Inspired by the SmI2-mediated cyclization strategy in the total synthesis of Englerin A by 

Chain,222 the Michael adduct 269a was tested in the same conditions (Scheme 49a). 

Delightfully, the desired 8-oxabicyclo[3.2.1]octane 270 was obtained in moderate yield, and 

the relative configuration of additional chiral center in 270 was proposed in analogue to Chain’s 

work.222 Although the robust methodology had been established for the enantioselective 

synthesis of 8-oxabicyclo[3.2.1]octanes, a racemic compound library based on 8-

oxabicyclo[3.2.1]octanes was firstly attained for preliminary biological evaluation.  
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Scheme 49. Compound library towards Englerin A.  

Following the same procedure described in Chain’s paper,222 a library of 28 members was 

synthesized towards Englerin A structure, involving two major categories of compounds as 

demonstrated in Scheme 49. However, no bioactivity was observed for cell-based assays of 

Hedgehog pathway signaling, Wnt pathway signaling and autophagy by COMAS. 
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4.4 Summary and Perspective  

In conclusion, diverse catalysis systems were investigated to access the biologically important 

cycloheptanoids, with a focus on 8-azabicyclo[3.2.1]octanes (tropane) and 

8-oxabicyclo[3.2.1]octanes.  

In 4.3.2, the 1,3-DC of cyclic carbonyl ylides and tropone catalyzed by chiral Rh(II) catalysts 

was intensively investigated to provide efficient methods for the synthesis of enantioriched 

cyclopentanoid. By employing diazodiketoesters, (3+2) cycloaddition reactions of carbonyl 

ylides and carbonyl functionality on ketone was realized for the first time. Besides, through the 

variation of diazo substrate, the chemoselectivity of tropone could be switched to a (6+3) 

cycloaddition process to afford a distinct pattern of bridged cyclopentanoids with high 

molecular complexity and enantioselectivity.  

In 4.3.3, 1,3-DC of pentafulvene was also investigated by employing the same type of cyclic 

carbonyl ylides to access enantioriched 5-7 fused cycloheptanoids. First, the utilization of 

mono-substituted fulvene raised the issue of poor regioselectivity, and no significant 

improvement on regio- and enantioselectivity was achieved by optimization of reaction 

conditions. Subsequently, the employment of di-substituted fulvene indeed led to enhanced 

regioselectivity, but further screening of catalysts still failed to give higher enantioselectivity.  

In 4.4.4, a novel synthesis strategy of enantioriched tropanes was preliminarily investigated by 

a relay catalysis combining Rh(II)-catalyzed azomethine ylides generation and chiral Lewis 

acid catalysis. Although only moderate enantioselectivity had been realized for the standard 

reaction, the unique advantage of flexibly synthesizing varied tropane scaffolds indicates the 

tremendous potential of this methodology. Further optimizations on both catalyst and substrate 

are necessary.  

In 4.4.5, two strategies were designed to synthesize 8-oxabicyclo[3.2.1]octanes. In spite of 

considerable effort, the intermolecular (5+2) cycloaddition of pyrylium and styrene failed to 

give satisfactory stereoselectivity and yield. In addition, during this project, a similar reaction 

by using vinyl ether as dipolarophile was reported by Jacobsen in 2014 (Scheme 42). On the 

other hand, through reliable stepwise strategy, a 28-member compound library inspired by 

Englerin A was synthesized. However, no bioactivity was observed to date. 
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5.1 Introduction 

5.1.1 Pyrroloisoquinolines in Natural Products and Their Synthesis 

Pyrroloisoquinoline moiety occurs in a diverse range of bioactive NPs and synthetic 

pharmaceutical compounds. For example, (+)-crispine A (272) possesses cytotoxic activity 

against SKOV3, KB, and HeLa human cancer cell lines;238 (‒)-Trolline (273) exhibits 

antibacterial activity against respiratory bacteria and antiviral activity against influenza virus 

A and B;239 JNJ-7925476 (274) is a novel triple monoamine uptake inhibitor under 

development by Johnson & Johnson as an antidepressant drug candidate;240 The biological 

study of (‒)-Cryptaustoline (275) is limited except paralytic activity; (+)-Erysotramidine (276) 

is one member of natural erythrina alkaloids, and this family of NPs usually exhibits 

hypotensive, sedative, and anticonvulsive properties (Fig. 10).241  

 

Figure 10. Representative naturally occurring pyrroloisoquinolines. 

Owing to the diverse bioactivity of pyrroloisoquinolines, the development of corresponding 

methodology remains highly desirable.2 Diverse strategies have been developed for the 

synthesis of pyrroloisoquinolines. On one hand, as a reliable approach, varied intramolecular 

cyclization strategies have been broadly applied, such as N-acyliminium mediated 

cyclization,242-244 imide carbonyl activation,245 coupling reactions,246 and so on. Another major 

approach is 1,3-dipolar cycloaddition reactions (1,3-DC) of azomethine ylides due to its 

inherent advantages to access pyrrolidine.247-249  

5.1.2 Phosphine-catalyzed Annulations of Allenes 

Although the use of trivalent phosphines as nucleophilic catalysts can be traced back to the 

1960s, it was not until 1995 that their first application in annulations of allenes was reported 

by Lu (Scheme 50).250 In this work, a novel (3+2) annulation of ethyl 2,3-butadienoate 278 
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with electron-deficient alkenes 277 was demonstrated, affording the cyclopentenes 279 and 

280. The observed regioselectivity was proposed to result from the presence of two reactive 

intermediates 281 and 282, with negative charge on α position and γ position respectively. 

Inspired by this seminal work, considerable interest and effort have been devoted into this field. 

Throughout more than two decades, phosphine-catalyzed annulations of allenes have become 

one of the most efficient synthetic strategies for the synthesis of highly functionalized 

carbocycle or heterocycle motif.20,21 Currently, besides the original (3+2) annulation 

discovered by Lu, (4+2) annulation also emerged as the other major reaction pattern, together 

with some rarely reported patterns such as (8+2), (4+3), (3+3) and (3+2+3).246,247 With regard 

to substrate types, more than eight types of allenes with varied substitutions have been 

explored. The substrate scope of electrophiles has also been largely expanded, such as electron-

deficient alkenes, imines, carbonyl moieties, aziridines, azomethine imines, and so on, 

dramatically increasing the molecular complexity and structural variety of the resulting 

annulation products.  

 

Scheme 50. The first phosphine-catalyzed annulation reaction of allene and diverse reactivity of allenes towards 

azomethine imines. 
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Among diverse electrophiles, the investigation of 1,3-dipoles as electrophiles is still scarce due 

to the complicated reactivity resulting from the nature of 1,3-dipole. To date, only two 

examples involving stabilized azomethine imines were reported in racemic from by Kwon 

(Scheme 50).251,252 In 2011, Kwon reported a phosphine-catalyzed (3+2), (3+3), (4+3) and 

(3+2+3) annulation of different allenes 283 and azomethine imines 284.251 The diverse reaction 

pathways could be influenced by substrate pattern and substitution type on phosphine catalyst. 

Later on, the same group demonstrated (3+2) and (3+4) annulations by the employment of 

another type of azomethine imines 289.252 Similarly, substrate types and phosphine catalysts 

have a critical influence on the ratio of isomers 291 and 292.  

5.2 Design Principle and Aim of the Project 

Although the reactivity of azomethine imines in phosphine-catalyzed annulation of allenes has 

been investigated, azomthine ylides remain surprisingly unexplored. Considering the 

prevalence of isoquinoline moieties in bioactive NPs and synthetic pharmaceutical molecules, 

isoquinolinium methylides, a type of stable azomethine ylides, were chosen as standard 

substrates. The aim of this project is to explore the possible reactivity pathways of 

isoquinolinium methylides in the phosphine-catalyzed annulations of allenes. The subsequent 

aim would be the synthesis of compound library based on isoquinoline motif for further 

chemical biology study. Additionally, the asymmetric version of such transformation was also 

taken into consideration.  

5.3 Result and Discussion  

5.3.1 Racemic Phosphine-catalyzed Annulation Reactions of Isoquinolinium Methylides 

The reaction of isoquinolinium methylide 293a and ethyl 2,3-butadienoate 278a was chosen as 

the model reaction. As summarized in Table 15, without treatment of any phosphine catalyst, 

only 295a was isolated in 51% yield after 6 h as the consequence of background reaction. (entry 

1) The addition of PPh3 as catalyst gave a new product together with trace background product 

295a in 6 h. However, the new product was quite instable, probably due to the presence of 

enamine motif. Hence, a sequential reduction by NaBH4 under acidic condition was performed 

in one pot manner, affording another moderately stable product 294a in 57% yield for two steps 

(entry 2). The structure of 294a was subsequently identified by X-ray crystallography analysis 

(by Dr. Constantin G. Daniliuc). Notably, an unusual alkene translocation occurred after (3+2) 

annulation process, resulting in the more thermally stable product 294a. The following 
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screening of tertiary phosphine catalysts revealed that PBu3 proved to be the optimal catalyst 

giving 75% yield in 10 minutes (Table 1, entry 3).  

Table 15. Screening of reaction conditions.[a] 

 

   Yield[b](%) 

Entry PR3 Time 295a 294a 

1[c] - 6 h 51 0 

2 PPh3 6 h 8 57 

3 PBu3 10 min <5 75 

4 MePPh2 10 min <5 62 

5 Me2PPh 10 min <5 68 

6 PCy3 2 h <5 62 

[a]. Unless otherwise noted, reactions were performed with 293a (0.1 mmol, 1 equiv.), 278a (0.15 mmol, 1.5 

equiv.), PR3 (0.02 mmol, 0.2 equiv.) in CH2Cl2 (1 mL) at room temperature. After reactions completed, NaBH4 

(0.3 mmol, 3 equiv.) and acetic acid (1 mmol, 10 equiv.) were added sequentially at 0 ℃. [b]. Isolated yield after 

column chromatography. [c]. Reaction was performed without phosphine catalyst and sequential reduction in one 

pot. 

With the optimized reaction conditions in hand, the substrate scope of this transformation was 

investigated (Scheme 51). When allenoate 278a was used, isoquinolinium methylide with ethyl 

and benzyl esters were also tolerated well in this reaction, providing the desired products 294b 

and 294c. With respect to variation of R1, substitutions with different electronic properties on 

diverse positions of aromatic ring proved to be suitable, furnishing the products 294d-n in 

satisfactory yield. In addition, without sequential reduction, the relative stable products 294o 

and 294p could be obtained from isoquinolinium methylides with either aromatic or aliphatic 

substitutions on 4-position of isoquinoline.  
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Scheme 51. Substrate scope of (3+2) annulation of isoquinolinium methylides and allenoates. 
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In contrast to allenoate, the reactivity of allenones were less explored in phosphine catalysis. 

Inspired by Loh’s work in 2009,253 α-trimethylsilyl substituted aryl allenones were synthesized 

and subjected to the annulations of isoquinolinium methylides. Delightfully, both aromatic and 

hetero aromatic group on allenones could be well tolerated, providing the desired γ-selective 

cycloadducts 294q-t, in which 294c was isolated as a 78:22 mixture of E/Z isomers. 

Furthermore, the products 294u and 294v were also obtained from isoquinolinium methylides 

with either electron drawing group or electron donating group. Interestingly, there was no 

alkene translocation when allenones were employed as dipoles.  

 

Scheme 52. Proposed mechanism for (3+2) annulations of isoquinolinium methylides and allenes.  

A plausible mechanism was proposed based on prior mechanistic studies of nucleophilic 

phosphine catalysis (Scheme 52). The reactive intermediates 295 and 296 can be generated 

from the nucleophilic addition of phosphine to allenes 278. However, only γ-selective 

intermediates 295 can react with the isoquinolinium methylides 293 to form intermediates 297. 

The following intramolecular conjugate addition of 297 give intermediates 298, followed by 

sequential β-elimination to provide the desired products 294q-v, when R is the aromatic group. 

When R is ethoxy, the more thermally stable products 294a-p are generated due to sequential 

isomerizations after the generation of 299. 

 

Figure 10. Representative compounds for inhibiting hedgehog signaling pathway. 
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This compound collection based on pyrroloisoquinolines was subjected to cell-based assays, 

including hedgehog signaling pathway, Wnt signaling pathway and autophage. Delightfully, 

several pyrroloisoquinoline-inspired compounds inhibited the hedgehog signaling pathway in 

the low micromolar range (Fig. 10).  

5.3.2 Attempts to Asymmtric Phosphine-catalyzed Annulation Reactions of 

Isoquinolinium Methylides  

 

Scheme 53. Chiral catalysts screening for the (3+2) annulations of isoquinolinium methylides and allenes. 
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As shown in Scheme 53, different chiral phosphine catalysts were tested in the (3+2) 

annulations of isoquinolinium methylides with two types of allenes. However, when allenoate 

278a was employed, no eantioselectivity was observed in the treatment of different chiral 

phosphine catalysts (Scheme 53a). In addition, only poor enantioselectivity (up to 37%) was 

achieved by catalyst 300e when allenone 278b was applied (Scheme 53b). To conclude, 

preliminary attempts failed to achieve considerable enantioselectivity for the asymmetric 

reactions of isoquinolinium methylides with allenes.  

5.4 Summary and Perspective  

To conclude, the reactivity of isoquinolinium methylides has been exploited in the annulation 

reactions of allenes enabled by nucleophilic phosphine catalysis. With this methodology, the 

valuable pyrroloisoquinolines can be accessed regio- and diastereoselectively under the 

optimized reaction conditions. However, only poor enantioselectivity was observed in the 

attempts to realize asymmetric version of this transformation, after intensive screening of chiral 

phosphine catalysts. The follow-up biological evaluation of such racemic pyrroloisoquinolines 

revealed several inhibitors in the hedgehog signaling pathway in the low micromolar range. 

For the phosphine-catalyzed annulation reactions of allenes and 1,3-dipoles, only few examples 

were reported, although the reactivity of such transformations had been shown to be 

considerable diverse by Kwon (Scheme 50). In the future, one of the directions in this field 

might be the application of other types of 1,3-dipoles into versatile annulation patterns 

chemoselectively. Additionally, the realization of corresponding transformations in a catalytic 

enantioselective manner would also be highly valuable. 
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In this thesis, to harness and evolve chemistry tools for biology-orientated synthesis (BIOS), 

various catalysis systems were explored to access compound collections inspired by bioactive 

natural products (NPs). On one hand, a novel type of cyclopentadienyl ligands for asymmetric 

C−H activation was developed to provide a more efficient chemistry tool for the exploration 

of chemical space defined by small molecules (Chapter 2). On the other hand, diverse 

compounds collections were synthesized expediently by harnessing the power of known 

catalysis systems (Chapter 3-5). Such known catalysis systems include chiral dirhodium(II) 

catalysis, chiral Lewis acids catalysis, chiral amine catalysis, and nucleophilic phosphine 

catalysis. Remarkably, versatile bioactivities were identified by the follow-up biological 

evaluation of such compound collections in different cell-based assays.  

 

Scheme 54. The synthesis of cyclopentadienyl ligands through (6+3) cycloadditions and their Rh(I) complexes. 

Chapter 2 described the development of chiral Cp ligands for asymmetric C−H activation. As 

proofs of concept, three C−H activation reactions were realized in highly enantioseletive 

manner by using the corresponding Rh(I) complexes as catalysts. As shown in Scheme 54, the 

chiral ligands (66, 96) can readily be synthesized on gram scale by either recrystallization of 

the enantioenriched (6+3) cycloadducts or preparative HPLC on chiral phase of the racemic 

(6+3) cycloadducts. Notably, both structure and configuration of such Cp derivatives can be 



Chapter 6. Summary 

101 
 

efficiently adjusted by means of flexible ligand-controlled enantioselective (6+3) cycloaddition 

reactions. Facilitated by the rapid synthesis of chiral Cp ligands through this highly efficient 

approach, a 30-member library of corresponding Rh(I) complexes (99, 100) was constructed.  

 

Scheme 55. Three reactions as proofs of concept to demonstrate the generality of newly developed Cp ligands. 

The generality and applicability of these chiral Cp ligands was substantially proved by 

successful applications of their corresponding Rh(I) complexes in three asymmetric C‒H 

activation reactions (Scheme 55). First, two transformations including the asymmetric 

synthesis of isoquinolones and the asymmetric C‒H allylation of benzamides were realized in 

highly enantioselective manner, which were previously steered enantioselectively by two types 

of known Cp ligands (Scheme 55a, b). These successful applications indicate the newly 

developed Cp ligands can actually rival the previously developed Cp ligands. Notably, 
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ortho-substituted styrenes also proved to be suitable in the enantioselective synthesis of 

isoquinolones enabled by the newly developed Cp ligands, which had not been reported for 

this transformation in chiral or racemic manner before. Facilitated by the unique catalytic 

property for ortho‒substituted styrenes, the synthesis of protoberberines analogs 105 was 

achieved by a cascade reaction with a sequence of C‒H functionalization followed by 

intramolecular SN2 reaction in one-pot manner (Scheme 55a). Furthermore, an unprecedented 

C‒H activation reaction was realized to afford valuable axially chiral biaryl compounds 107 

with excellent enantioselectivity (Scheme 55c).  

 

Scheme 56. The synthesis of compound collection based on pyrrolizidine by 1,3-dipolar cycloadditions. 

Chapter 3 described an efficient catalytic strategy for the synthesis of pyrrolizidine alkaloids 

(PAs) inspired compound collection by 1,3-dipolar cycloaddition reaction (1,3-DC) of 

azomethine ylides 152 and maleates 156 (Scheme 56a). By the employment of AgOAc as 

catalyst, a 87-member library of pyrrolizidines (158) and pyrrolidines (157) was obtained 

rapidly. Through subsequent biological evaluation, the bioactivities such as inhibition of 

Hedgehog pathway signaling were disclosed (Scheme 56b). 
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Scheme 57. Different strategies to access cycloheptanoids especially in enantioselective manner. 
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Chapter 4 demonstrated four different strategies to access biologically important 

cycloheptanoids, with a focus on 8-azabicyclo[3.2.1]octanes (tropane) and 

8-oxabicyclo[3.2.1]octanes (Scheme 57). As shown in Scheme 57a, the first strategy involves 

the 1,3-DC of tropone 242 and cyclic carbonyl ylides derived from diazodiketones 247 

catalyzed by chiral Rh(II) catalyst 182b (Scheme 57b). The bridged cyclopentanoids 248 with 

high molecular complexity and enantioselectivity were obtained efficiently. The second 

strategy is 1,3-DC of pentafulvenes and the same type of cyclic carbonyl ylides to afford the 

enantioriched 5-7 fused cycloheptanoids (Scheme 57c). The employment of di-substituted 

fulvene such as 59b proved to be critaical for the diastereoselectivity, but the enantioselectivity 

remained moderate (up to 57% ee) even after the intensive optimization of reaction conditions 

and catalysts. As for the third strategy, a novel synthesis approach to access enantioriched 

tropanes was preliminarily investigated by a relay catalysis combing Rh(II) catalysis for 

generation of azomethine ylides and chiral Lewis acid catalysis (Scheme 57d). After intensive 

optimization of substrates, catalysts and reaction conditions, only moderate enantioselectivity 

(up to 67% ee) had been achieved for the standard reaction of 3-methylene-2-oxindole 251 and 

diazo compound 260 by using Mg(NTf2)2 as Lewis acid and 262a as ligand. At last, the fourth 

strategy consists of two approaches to synthesize 8-oxabicyclo[3.2.1]octanes by amine 

catalysis (Scheme 57e, f). Regarding the first approach, the optimization of intermolecular 

(5+2) cycloaddition of styrene 10a and pyrylium salts generated from pyranone 263b failed to 

give the desired cycloheptanoids 264 with satisfactory stereoselectivity (up to 67% ee) and 

yield (Scheme 57e). On the other hand, the second stepwise approach comprises a amine-

catalyzed Michael addition of 3-furones 267 and α,β-unsaturated aldehydes 266, and a 

subsequent reductive radical cyclization mediated by SmI2 (Scheme 57f). A 28-member 

compound library (270) inspired by Englerin A was synthesized. However, no bioactivity was 

found in the subsequent biological evaluation. 

Chapter 5 depicted the synthesis of pyrroloisoquinolines 294 by a phosphine-catalyzed 

annulation reaction of isoquinolinium methylides 293 and allenes 278 (Scheme 58a). Trialkyl 

phosphine PBu3 proved to be the efficient catalyst for this transformation. Interestingly, 

allenoate 278a and allenones 278b-e gave different products due to alkene translocation. 

Unfortunately, only poor enantioselectivity was achieved for this transformation after 

screening of various chiral phosphine catalysts. Nevertheless, the follow-up biological 

evaluation of the racemic pyrroloisoquinolines revealed several inhibitors of the hedgehog 

signaling pathway (Scheme 58b). 
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Scheme 58. The synthesis of compound collection based on pyrroloisoquinoline through phophine catalysis. 
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7.1 General Methods and Materials  

Unless otherwise noted, all commercially available compounds were used as provided without 

further purifications. Solvents for chromatography were technical grade.  

Analytical thin-layer chromatography (TLC) was performed on Merck silica gel aluminium 

plates with F-254 indicator. Compounds were visualized by irradiation with UV light or 

potassium permanganate staining. Column chromatography was performed using silica gel 

Merck 60 (particle size 0.040-0.063 mm) or aluminum oxide (activated, neutral, Brockmann I, 

Sigma-Aldrich).  

1H-NMR and 13C-NMR were recorded on a Bruker DRX400 (400 MHz), Bruker DRX500 (500 

MHz), INOVA500 (500 MHz) and Bruker DRX700 using CD2Cl2, CDCl3, benzene-d6 or 

methanol-d4 as solvent. Data are reported in the following order: chemical shift (δ) values are 

reported in ppm with the solvent resonance as internal standard (CD2Cl2: δ = 5.32 ppm for 1H, 

δ = 54.00 ppm for 13C; CDCl3: δ = 7.26 ppm for 1H, δ = 77.16 ppm for 13C; benzene-d6: δ = 

7.16 ppm for 1H, δ = 128.06 ppm for 13C; methanol-d4: δ = 4.87 ppm for 1H, δ = 49.00 ppm for 

13C); multiplicities are indicated br s (broadened singlet), s (singlet), d (doublet), t (triplet), q 

(quartet), m (multiplet); coupling constants (J) are given in Hertz (Hz).  

High resolution mass spectra were recorded on a LTQ Orbitrap mass spectrometer coupled to 

an Accela HPLC-System (HPLC column: Hypersyl GOLD, 50 mm x 1 mm, particle size 1.9 

μm, ionization method: electron spray ionization). Fourier transform infrared spectroscopy 

(FT-IR) spectra were obtained with a Bruker Tensor 27 spectrometer (ATR, neat) and were 

reported in terms of frequency of absorption (cm-1). Optical rotations were measured in a 

Schmidt + Haensch Polartronic HH8 polarimeter. 

The enantiomeric excesses were determined by HPLC analysis using a chiral stationary phase 

column (CHIRALCEL IC, CHIRALCEL IA; eluent: (CH2Cl2/EtOH = 100/2) / iso-hexane, i-

PrOH / iso-hexane; 4.6 mm x 250 mm, particle size 5 μm). The chiral HPLC methods were 

calibrated with the corresponding racemic mixtures. The ratio of regioisomers and 

diastereomers was determined by 1H-NMR analysis via integration of characteristic signals of 

methyl esters. Chemical yields refer to isolated substances. Yields and enantiomeric excesses, 

diastereoselectivity and regioselectivity are given in the tables.  
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7.2 Experimental Part for Development of Tunable Cyclopentadienyl 

Ligands 

7.2.1 Synthesis of Ligands 96a-96i and 66a-66m 

Method A for Synthesis of Chiral Cp Ligands 96a, 96b, 96e-h:  

(Rp)-2-(tert-Butylthio)-1-(diphenylphosphino)ferrocene (0.02 mmol, 0.05 equiv.) and tetrakis-

(acetonitrile)copper(I) tetrafluoroborate (0.02 mmol, 0.05 equiv.) were dissolved in 

DCM:MeOH (2mL:10uL) and stirred at ambient temperature for 5 min. To the resulting 

solution α-iminoesters (0.40 mmol, 1 equiv.), CsCO3 (0.40 mmol, 1 equiv.) and fulvenes (0.60 

mmol, 1.5 equiv.) were added. The mixture was allowed to be stirred at ambient temperature 

for specific time until full conversion monitored by TLC. The solvent was removed in vacuo 

and column chromatography on silica gel afforded the pure products. 

Method B for Synthesis of Chiral Cp Ligands 96c, 96d, 96i:  

(Rp)-2-(tert-Butylthio)-1-(diphenylphosphino)ferrocene (0.012 mmol, 0.03 equiv.) and 

tetrakis-(acetonitrile)copper(I) tetrafluoroborate (0.012 mmol, 0.03 equiv.) were dissolved in 2 

mL 1,4-dioxane and stirred at ambient temperature for 5 min. To the resulting solution α-

iminoesters (0.40 mmol, 1 equiv), Et3N (0.40 mmol, 1 equiv) and fulvenes (0.60 mmol, 1.5 

equiv.) were added. The mixture was allowed to be stirred at ambient temperature for 1 h. The 

solvent was removed in vacuo and column chromatography on silica gel afforded the pure 

products. 

Method C for Synthesis of Chiral Cp Ligands 66a-66j, 66l, 66m:  

R-(‒)-5,5'-Bis(diphenylphosphino)-2,2,2',2'-tetrafluoro-4-4'-bi-1,3-benzodioxole (0.02 mmol, 

0.05 equiv.) and tetrakis-(acetonitrile)copper(I) tetrafluoroborate (0.02 mmol, 0.05 equiv.) 

were dissolved in 4 mL THF and stirred at -40°C for 5 min. To the resulting solution α-

iminoesters (0.40 mmol, 1 equiv), Et3N (0.40 mmol, 1 equiv) and fulvenes (0.60 mmol, 1.5 

equiv.)  were added and the mixture was allowed to be stirred at -40°C for specific time until 

full conversion monitored by TLC. The reaction was quenched by saturated NH4Cl solution, 

and solvent was removed in vacuo and column chromatography on silica gel afforded the pure 

products. 
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Method D for Synthesis of Chiral Cp Ligands 66k in gram scale:  

R-(‒)-5,5'-Bis(diphenylphosphino)-2,2,2',2'-tetrafluoro-4-4'-bi-1,3-benzodioxole (0.04 mmol, 

0.01 equiv.) and tetrakis-(acetonitrile)copper(I) tetrafluoroborate (0.04 mmol, 0.01 equiv.) 

were dissolved in 6 mL THF and stirred at -40°C for 5 min. To the resulting solution α-

iminoesters (4 mmol, 1 equiv), Et3N (4 mmol, 1 equiv) and fulvenes (6 mmol, 1.5 equiv.)  were 

added and the mixture was allowed to be stirred at -40°C for specific time until full conversion 

monitored by TLC. The reaction was quenched by saturated NH4Cl solution, and solvent was 

removed in vacuo and column chromatography on silica gel affords the pure product 66k with 

95% ee. The optical pure form of ligand was prepared by recrystallization in 

dichloromethane/petroleum ether from mother liquor.  

Methyl (1S,3R,7aS)-4,4-dimethyl-1-(naphthalen-2-yl)-2,3,4,7a-tetrahydro-1H-cyclopenta 

[c]pyridine-3-carboxylate 

96a: Using Method A, 73% yield; The spectral data are identical to those 

reported;16,17,53 70% ee. The optical pure form of this ligand could be 

prepared in gram scale by chiral preparative HPLC of its racemate. 

Conditions for preparative HPLC: CHIRAPAK IC column, iso-propanol / 

heptane = 15/85, flow rate = 4 mL min-1, t = 6.8 min, 9.8 min. Procedure 

for synthesis of racemic 96a:54 To the solution of 6,6-dimethylfulvene (7.2 

mmol, 1.2 equiv), α-iminoesters (6 mmol, 1 equiv) in toluene (20 mL) was added Ag2O (0.6 

mmol, 0.1 equiv) and Et3N (7.2 mmol, 1.2 equiv) at r.t., the solution was allowed to be stirred 

until full conversion monitored by TLC. The solution was filtered through celite, concentrated 

in vacuo and the crude residue was purified by column chromatography to give racemic 96a 

(1.62 g, 81% yield). 

Methyl (1S,3R,7aS)-4,4-diethyl-1-(naphthalen-2-yl)-2,3,4,7a-tetrahydro-1H-cyclopenta 

[c]pyridine-3-carboxylate 

96b: Using Method A, 57% yield; 1H NMR (400 MHz, CD2Cl2): δ 7.94 – 

7.85 (m, 4H), 7.60 (dd, J = 8.5, 1.7 Hz, 1H), 7.54 – 7.46 (m, 2H), 6.56 – 

6.46 (m, 1H), 6.20 (s, 1H), 6.00 (d, J = 5.3 Hz, 1H), 3.73 (s, 3H), 3.59 (s, 

1H), 3.12 (s, 2H), 2.18 – 2.07 (m, 2H), 1.74 – 1.58 (m, 1H), 1.39 – 1.27 (m, 

1H), 1.11 (t, J = 7.4 Hz, 3H), 0.70 ppm (t, J = 7.4 Hz, 3H); 13C NMR (101 

MHz, CD2Cl2): δ 172.61, 153.08, 141.20, 134.07, 133.93, 133.71, 132.89, 
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128.70, 128.46, 128.18, 126.68, 126.41, 126.33, 126.26, 126.06, 65.65, 65.50, 57.24, 52.02, 

46.08, 29.59, 26.54, 9.08, 8.66 ppm; HRMS: calc. for [M+H]+ C24H28NO2: 362.21200, found: 

362.21271; CHIRAPAK IC column, (CH2Cl2/EtOH = 100/2) / iso-hexane = 15/85, flow rate = 

0.5 mL min-1, major enantiomer: tR = 29.7 min; minor enantiomer: tR = 33.8 min, 60% ee. 

Methyl (1'S,3'R,7a'S)-1'-(naphthalen-2-yl)-1',2',3',7a'-tetrahydrospiro[cyclobutane-1,4'-

cyclopenta[c]pyridine]-3'-carboxylate 

96c: Using Method A, 83% yield; 1H NMR (400 MHz, CD2Cl2): δ 7.92 – 

7.85 (m, 4H), 7.56 (dd, 1H), 7.52 – 7.48 (m, 2H), 6.54 – 6.50 (m, 1H), 6.29 

– 6.24 (m, 1H), 6.06 – 6.02 (m, 1H), 3.82 (s, 3H), 3.26 (s, 1H), 3.15 (d, J = 

10.3 Hz, 1H), 3.07 (d, J = 10.3 Hz, 1H), 2.52 – 2.42 (m, 3H), 1.99 – 1.90 

(m, 2H), 1.78 – 1.65 ppm (m, 1H); 13C NMR (101 MHz, CD2Cl2): δ 172.85, 

157.12, 140.98, 134.22, 134.04, 133.68, 133.11, 128.71, 128.46, 128.16, 

126.69, 126.43, 126.23, 126.01, 122.07, 68.62, 66.35, 56.85, 52.40, 45.59, 30.27, 26.61, 15.75 

ppm; HRMS: calc. for [M+H]+ C23H24NO2: 346.18016, found: 346.17989; HPLC conditions: 

CHIRAPAK IC column, iso-propanol / iso-hexane = 15/85, flow rate = 0.5 mL min-1, major 

enantiomer: tR = 29.9 min; minor enantiomer: tR = 43.7 min, 29% ee. 

Methyl (1'S,3'R,7a'S)-1'-(naphthalen-2-yl)-1',2',3',7a'-tetrahydrospiro[cyclohexane-1,4'-

cyclopenta[c]pyridine]-3'-carboxylate 

96d: Using Method A, 90% yield; 1H NMR (400 MHz, CD2Cl2): δ 7.96 – 

7.83 (m, 4H), 7.59 (dd, J = 8.5, 1.7 Hz, 1H), 7.54 – 7.43 (m, 2H), 6.57 – 

6.49 (m, 1H), 6.39 (s, 1H), 6.09 – 6.01 (m, 1H), 3.74 (s, 3H), 3.31 (d, J = 

10.0 Hz, 1H), 3.13 (s, 1H), 2.96 (d, J = 10.0 Hz, 1H), 2.29 – 2.16 (m, 2H), 

2.10 – 2.02 (m, 1H), 1.97 – 1.86 (m, 1H), 1.81 – 1.55 (m, 4H), 1.48 (td, J 

= 13.0, 3.3 Hz, 1H), 1.30 – 1.11 ppm (m, 2H); 13C NMR (101 MHz, 

CD2Cl2): δ 172.17, 154.97, 141.25, 134.50, 134.05, 133.68, 132.93, 128.75, 128.45, 128.17, 

126.70, 126.43, 126.23, 126.16, 126.02, 72.21, 68.39, 56.64, 52.01, 44.22, 33.33, 32.49, 27.57, 

23.20, 23.05 ppm; HRMS: calc. for [M+H]+ C25H28NO2: 374.21146, found: 374.21167; HPLC 

conditions: CHIRAPAK IC column, (CH2Cl2/EtOH = 100/2) / iso-hexane = 15/85, flow rate = 

0.5 mL min-1, major enantiomer: tR = 26.8 min; minor enantiomer: tR = 37.5 min, 66% ee. 

Methyl (1S,3R,7aS)-1-(4-bromophenyl)-4,4-dimethyl-2,3,4,7a-tetrahydro-1H-cyclopenta 

[c]pyridine-3-carboxylate 
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96e: Using Method A, 83% yield; 1H NMR (400 MHz, CDCl3): δ 7.55 – 

7.46 (m, 2H), 7.39 – 7.30 (m, 2H), 6.53 – 6.39 (m, 1H), 6.15 (d, J = 0.6 Hz, 

1H), 5.96 (dt, J = 5.4, 1.3 Hz, 1H), 3.75 (s, 3H), 3.17 (s, 1H), 3.07 (d, J = 

10.4 Hz, 1H), 2.86 (d, J = 10.4 Hz, 1H), 2.13 (br s, 1H ), 1.43 (s, 3H), 1.22 

ppm (s, 3H); 13C NMR (101 MHz, CDCl3): δ 171.76, 157.66, 141.91, 

133.56, 132.87, 131.86, 128.96, 122.42, 121.68, 69.98, 65.48, 56.29, 51.84, 

38.51, 24.36, 24.34 ppm; HRMS: calc. for [M+H]+ C18H21NO2
79Br: 362.07502, found: 

362.07495; calc. for [M+H]+ C18H21NO2
81Br: 364.07297, found: 364.07251; HPLC conditions: 

CHIRAPAK IC column, (CH2Cl2/EtOH = 100/2) / iso-hexane = 10/90, flow rate = 0.5 mL min-

1, major enantiomer: tR = 29.0 min; minor enantiomer: tR = 31.7 min, 62% ee. 

Methyl (1S,3R,7aS)-4,4-dimethyl-1-(4-methylphenyl)-2,3,4,7a-tetrahydro-1H-cyclopenta 

[c]pyridine-3-carboxylate 

96f: Using Method A, 77% yield; 1H NMR (400 MHz, CD2Cl2): δ 7.34 (d, 

J = 7.8 Hz, 2H), 7.21 (d, J = 7.8 Hz, 2H), 6.47 – 6.43 (m, 1H), 6.16 – 6.13 

(m, 1H), 5.98 (dt, J = 5.3, 1.4 Hz, 1H), 3.72 (s, 3H), 3.17 – 3.10 (m, 2H), 

2.84 (d, J = 10.3 Hz, 1H), 2.37 (s, 3H), 2.06 (br s, 1H ), 1.43 (s, 3H), 1.22 

ppm (s, 3H); 13C NMR (101 MHz, CD2Cl2): δ 172.28, 158.71, 140.74, 

138.00, 134.38, 132.84, 129.72, 127.49, 122.38, 70.59, 66.34, 56.93, 51.99, 38.92, 24.58, 

24.56, 21.43 ppm; HRMS: calc. for [M+H]+ C19H24NO2: 298.18016, found: 298.17983; HPLC 

conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 15/85, flow rate = 0.5 mL 

min-1, major enantiomer: tR = 31.0 min; minor enantiomer: tR = 26.5 min, 67% ee. 

Methyl (1S,3R,7aS)-4,4-dimethyl-1-(2-methylphenyl)-2,3,4,7a-tetrahydro-1H-cyclopenta 

[c]pyridine-3-carboxylate 

96g: Using Method A, 78% yield; 1H NMR (400 MHz, CDCl3): δ 7.65 (d, 

J = 7.7 Hz, 1H), 7.35 – 7.23 (m, 1H), 7.25 – 7.13 (m, 2H), 6.50 – 6.43 (m, 

1H), 6.16 (s, 1H), 6.03 – 5.92 (m, 1H), 3.74 (s, 3H), 3.24 (d, J = 10.4 Hz, 

1H), 3.17 (s, 1H), 3.12 (d, J = 10.4 Hz, 1H), 2.26 (s, 3H), 2.03 (br s, 1H ), 

1.44 (s, 3H), 1.23 ppm (s, 3H); 13C NMR (101 MHz, CDCl3): δ 171.88, 

157.80, 140.73, 136.03, 134.04, 132.56, 130.81, 127.53, 126.52, 125.72, 122.13, 69.94, 61.42, 

56.13, 51.76, 38.59, 24.45, 24.36, 19.52 ppm; HRMS: calc. for [M+H]+ C19H24NO2: 

298.18016, found: 298.18012; HPLC conditions: CHIRAPAK IC column, (CH2Cl2/EtOH = 
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100/2) / iso-hexane = 10/90, flow rate = 0.5 mL min-1, major enantiomer: tR = 30.6 min; minor 

enantiomer: tR = 26.5 min, 66% ee. 

Ethyl (1S,3R,7aS)-4,4-dimethyl-1-(naphthalen-2-yl)-2,3,4,7a-tetrahydro-1H-cyclopenta 

[c]pyridine-3-carboxylate 

96h: Using Method A, 83% yield; 1H NMR (400 MHz, CD2Cl2): δ 7.93 (s, 

1H), 7.92 – 7.86 (m, 3H), 7.62 (dd, J = 8.5, 1.8 Hz, 1H), 7.55 – 7.46 (m, 

2H), 6.50 – 6.46 (m, 1H), 6.19 (s, 1H), 6.04 – 5.98 (m, 1H), 4.27 – 4.14 (m, 

2H), 3.28 (d, J = 10.3 Hz, 1H), 3.20 (s, 1H), 3.06 (d, J = 10.3 Hz, 1H), 2.26 

(br s, 1H ), 1.48 (s, 3H), 1.33 – 1.26 ppm (m, 6H); 13C NMR (101 MHz, 

CD2Cl2): δ 171.83, 158.80, 141.24, 134.28, 134.06, 133.71, 132.98, 128.72, 

128.47, 128.17, 126.68, 126.42, 126.26, 126.09, 122.48, 70.58, 66.73, 61.24, 56.93, 39.00, 

24.68, 24.59, 14.73 ppm; HRMS: calc. for [M+H]+ C23H26NO2: 348.19581, found: 348.19565; 

e.e. was determined by Diels‒Alder cycloadduct of chiral cyclopentadiene and N-

methylmaleimide, HPLC conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 

40/60, flow rate = 0.5 mL min-1, major enantiomer: tR = 40.2 min; minor enantiomer: tR = 49.3 

min, 71% ee. 

 

Methyl (1S,3R,4S,7aS)-1-(4-bromophenyl)-4-(naphthalen-2-yl)-2,3,4,7a-tetrahydro-1H-

cyclopenta[c]pyridine-3-carboxylate 

96i: Using Method B, The spectral data are identical to those reported;16 96% ee. 

Mixture of isomers 
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98a: optical pure 96a (1 equiv., 0.2 mmol) was dissolved in 2 mL DCE. To the resulting 

solution MgSO4 (10 equiv., 2 mmol), HCHO solution 35 wt. % in H2O (8 equiv., 1.6 mmol) 

and NaBH(OAc)3 (3 equiv., 0.6 mmol) were added in sequential way and the mixture was 

allowed to be stirred at ambient temperature for specific time until full conversion monitored 

by TLC. Column chromatography on silica gel affords the pure product directly without 

removal of solvent, 89% yield; three inseparable isomers with 57:43 ratio; For mixture, 1H 

NMR (500 MHz, CD2Cl2): δ 8.01 – 7.66 (m, 7.02H), 7.57 – 7.37 (m, 5.26H), 6.47 (d, J = 5.2 

Hz, 1H), 6.39 (d, J = 5.0 Hz, 0.75H), 6.19 (d, J = 4.8 Hz, 1H), 6.09 (s, 0.75H), 5.79 (d, J = 5.1 

Hz, 0.75H), 5.31 (s, 1H), 4.14 (s, 1H), 3.75 (s, 3H), 3.74 (s, 2.26H), 3.32 (d, J = 10.8 Hz, 

0.75H), 3.22 (s, 1H), 2.77 – 2.64 (m, 1.75 H), 2.47 (d, J = 10.8 Hz, 0.75H), 2.25 – 2.13 (m, 

4H), 1.92 (s, 2.26H), 1.44 (s, 2.26H), 1.38 (s, 3H), 1.29 (s, 2.26H), 1.21 ppm (s, 3H); For 

mixture, 13C NMR (126 MHz, CD2Cl2): δ 172.33, 172.24, 157.60, 145.41, 141.71, 141.35, 

137.80, 134.90, 133.85, 133.70, 133.63, 132.96, 132.84, 130.51, 128.85, 128.29, 128.17, 

128.16, 127.72, 126.75, 126.60, 126.50, 126.30, 126.18, 121.22, 80.56, 75.87, 75.31, 70.85, 

51.82, 51.74, 42.08, 41.76, 41.38, 37.99, 36.03, 25.61, 25.42, 25.34, 24.75 ppm; HRMS: calc. 

for [M+H]+ C23H26NO2: 348.19581, found: 348.19578. 

Mixture of isomers 

98b: optical pure 96a (1 equiv., 0.2 mmol) was dissolved in 2 mL DCE. To the resulting 

solution MgSO4 (10 equiv., 2 mmol), acetaldehyde (8 equiv., 1.6 mmol) and NaBH(OAc)3 (3 

equiv., 0.6 mmol) were added in sequential way and the mixture was allowed to be stirred at 

ambient temperature for specific time until full conversion monitored by TLC. Column 

chromatography on silica gel affords the pure product directly without removal of solvent, 86% 

yield; two inseparable isomers with 71:29 ratio; For mixture, 1H NMR (400 MHz, CD2Cl2): δ 

7.95 – 7.75 (m, 5.6H), 7.56 – 7.42 (m, 4.2H), 6.50 – 6.45 (m, 0.40H), 6.41 – 6.37 (m, 1H), 6.21 

– 6.17 (m, 0.40H), 6.07 (s, 1H), 5.82 – 5.75 (m, 1H), 4.74 (s, 0.40H), 3.76 (s, 1.20H), 3.75 (s, 

3H), 3.61 (s, 0.40H), 3.34 – 3.28 (m, 1H), 3.16 (s, 1H), 2.96 (d, 1H), 2.87 – 2.75 (m, 0.80H), 

2.78 – 2.70 (m, 0.40H), 2.66 – 2.58 (m, 2H), 2.27 – 2.16 (m, 0.40H), 1.45 (s, 3H), 1.40 (s, 

1.20H), 1.29 (s, 3H), 1.22 (s, 1.20H), 0.92 (t, J = 7.2 Hz, 1.20H), 0.70 ppm (t, J = 7.1 Hz, 3H); 
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For mixture, 13C NMR (101 MHz, CD2Cl2): δ 172.24, 157.93, 145.23, 142.27, 140.98, 138.42, 

135.09, 134.00, 133.95, 133.76, 133.70, 132.84, 132.80, 130.61, 128.88, 128.82, 128.35, 

128.20, 127.49, 127.26, 126.95, 126.61, 126.49, 126.44, 126.34, 126.16, 120.87, 75.13, 71.15, 

69.65, 64.43, 57.23, 51.75, 51.65, 44.66, 44.47, 42.22, 38.20, 36.26, 25.42, 25.37, 25.27, 24.79, 

7.71, 6.36 ppm; HRMS: calc. for [M+H]+ C24H28NO2: 362.21146, found: 362.21140. 

Mixture of isomers 

98c: optical pure 96a (1 equiv., 0.2 mmol) was dissolved in 2 mL DCE. To the resulting 

solution MgSO4 (10 equiv., 2 mmol), isobutyraldehyde (8 equiv., 1.6 mmol) and NaBH(OAc)3 

(3 equiv., 0.6 mmol) were added in sequential way and the mixture was allowed to be stirred 

at ambient temperature for specific time until full conversion monitored by TLC. Column 

chromatography on silica gel affords the pure product directly without removal of solvent, 56% 

yield; three inseparable isomers with 54:33:13 ratio; the resulting mixture was directly 

subjected to Rhodium complex preparation without resolution of 1H NMR and 13C NMR; 

HRMS: calc. for [M+H]+ C26H32NO2: 390.24276, found: 390.24350. 

Ethyl (1S,3R,4R,7aS)-4-(4-bromophenyl)-1-(4-methylphenyl)-2,3,4,7a-tetrahydro-1H-

cyclopenta[c]pyridine-3-carboxylate 

66a: Using Method C, 61% yield; For major isomer, 1H NMR (400 

MHz, CD2Cl2): δ 7.51 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.4 Hz, 2H), 

7.25 – 7.20 (m, 4H), 6.46 – 6.40 (m, 1H), 6.08 – 6.02 (m, 1H), 5.72 

(s, 1H), 3.97 – 3.86 (m, 3H), 3.53 (d, J = 10.4 Hz, 1H), 3.17 (d, J 

= 10.4 Hz, 1H), 3.12 – 3.04 (m, 1H), 2.38 (s, 3H), 0.96 ppm (t, J = 7.1 Hz, 3H); 13C NMR (101 

MHz, CD2Cl2): δ 172.13, 151.91, 140.21, 138.66, 138.22, 134.39, 133.19, 131.94, 131.36, 

129.79, 127.49, 125.69, 121.22, 67.46, 66.29, 61.37, 59.54, 50.67, 21.44, 14.20 ppm; HRMS: 

calc. for [M+H]+ C24H25NO2
79Br: 438.10632, found: 438.10571; calc. for [M+H]+ 

C18H21NO2
81Br: 440.10427, found: 440.10338; e.e. was determined by Diels‒Alder 

cycloadduct of chiral cyclopentadiene and N-methylmaleimide, HPLC conditions: 
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CHIRAPAK IC column, (CH2Cl2/EtOH = 100/2)/ iso-hexane = 30/70, flow rate = 0.5 mL min-

1, major enantiomer: tR = 47.5 min; minor enantiomer: tR = 55.1 min, 92% ee. 

Ethyl (1S,3R,4R,7aS)-1,4-bis(4-bromophenyl)-2,3,4,7a-tetrahydro-1H-cyclopenta[c] 

pyridine-3-carboxylate 

66b: Using Method C, 82% yield; 1H NMR (400 MHz, CD2Cl2): 

δ 7.55 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 

8.4 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 6.45 (dt, J = 5.4, 1.6 Hz, 

1H), 6.03 (dd, J = 5.4, 1.1 Hz, 1H), 5.72 (s, 1H), 3.96 – 3.86 (m, 

3H), 3.54 (d, J = 10.4 Hz, 1H), 3.18 (d, J = 10.4 Hz, 1H), 3.04 

(dd, J = 10.4, 1.1 Hz, 1H), 0.96 ppm (t, J = 7.1 Hz, 3H); 13C NMR (101 MHz, CD2Cl2): δ 

171.98, 151.61, 142.29, 138.48, 133.91, 133.56, 132.25, 131.96, 131.35, 129.52, 126.00, 

122.05, 121.29, 67.28, 65.90, 61.45, 59.35, 50.48, 14.19 ppm; HRMS: calc. for [M+H]+ 

C23H22NO2
79Br2: 502.00118, found: 502.00072; calc. for [M+H]+ C23H22NO2

79Br81Br: 

503.99913, found: 503.99807; calc. for [M+H]+ C23H22NO2
81Br2: 505.99709, found: 

505.99588; e.e. was determined by Diels‒Alder cycloadduct of chiral cyclopentadiene and N-

methylmaleimide, HPLC conditions: CHIRAPAK IA column, (CH2Cl2/EtOH = 100/2)/ iso-

hexane = 25/75, flow rate = 0.5 mL min-1, major enantiomer: tR = 29.7 min; minor enantiomer: 

tR = 27.5 min, 96% ee. 

Ethyl (1S,3R,4R,7aS)-4-(4-bromophenyl)-1-(4-fluorophenyl)-2,3,4,7a-tetrahydro-1H-

cyclopenta[c]pyridine-3-carboxylate 

66c: Using Method B, 82% yield; 1H NMR (400 MHz, CD2Cl2): 

δ 7.53 – 7.44 (m, 4H), 7.24 – 7.20 (m, 2H), 7.15 – 7.08 (m, 2H), 

6.44 (d, J = 5.2 Hz, 1H), 6.03 (d, J = 4.6 Hz, 1H), 5.72 (s, 1H), 

4.01 – 3.87 (m, 3H), 3.54 (d, J = 10.4 Hz, 1H), 3.20 (d, J = 10.4 

Hz, 1H), 3.06 (d, J = 10.4 Hz, 1H), 1.92 (br s, 1H), 0.96 ppm (t, J 

= 7.1 Hz, 3H); 13C NMR (101 MHz, CD2Cl2): δ 172.05, 162.90 (d, J = 245.1 Hz), 151.73, 

139.15 (d, J = 3.1 Hz), 138.54, 134.05, 133.47, 131.96, 131.36, 129.37 (d, J = 8.1 Hz), 125.92, 

121.28, 115.89 (d, J = 21.4 Hz), 67.35, 65.78, 61.44, 59.54, 50.53, 14.19 ppm; HRMS: calc. 

for [M+H]+ C23H22NO2
79BrF: 442.08125, found: 442.08058; calc. for [M+H]+ 

C23H22NO2
81BrF: 444.07920, found: 444.07826; HPLC conditions: CHIRAPAK IC column, 

iso-propanol / iso-hexane = 5/95, flow rate = 0.5 mL min-1, major enantiomer: tR = 18.7 min; 

minor enantiomer: tR = 15.1 min, 96% ee. 
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Ethyl (1S,3R,4R,7aS)-4-(4-bromophenyl)-1-(2-methylphenyl)-2,3,4,7a-tetrahydro-1H-

cyclopenta[c]pyridine-3-carboxylate 

66d: Using Method B, 50% yield; 1H NMR (400 MHz, CD2Cl2): δ 

7.66 (d, J = 7.6 Hz, 1H), 7.52 (d, J = 8.4 Hz, 2H), 7.34 – 7.28 (m, 

1H), 7.27 – 7.21 (m, 4H), 6.45 (d, J = 5.4 Hz, 1H), 6.08 – 5.98 (m, 

1H), 5.80 – 5.72 (m, 1H), 3.97 – 3.84 (m, 3H), 3.53 (d, J = 10.4 Hz, 

1H), 3.42 (d, J = 10.4 Hz, 1H), 3.22 (d, J = 10.4 Hz, 1H), 2.32 (s, 3H), 1.89 (br s, 1H), 0.96 

ppm (t, J = 7.1 Hz, 3H); 13C NMR (101 MHz, CD2Cl2): δ 172.2, 151.82, 140.91, 138.62, 

136.76, 134.29, 133.34, 131.97, 131.33, 131.21, 128.05, 126.89, 126.12, 125.65, 121.24, 67.33, 

61.82, 61.36, 59.04, 51.07, 19.67, 14.20 ppm; HRMS: calc. for [M+H]+ C24H25NO2
79Br: 

438.10632, found: 438.10549; calc. for [M+H]+ C24H25NO2
81Br: 440.10427, found: 

440.10303; HPLC conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 5/95, flow 

rate = 0.5 mL min-1, major enantiomer: tR = 16.3 min; minor enantiomer: tR = 15.1 min, 72% 

ee. 

  

Methyl (1S,3R,4R,7aS)-1-(4-bromophenyl)-4-(naphthalen-2-yl)-2,3,4,7a-tetrahydro-1H-

cyclopenta[c]pyridine-3-carboxylate 

66e: Using Method C, 82% yield; The spectral data are identical to those reported;17 96% ee. 
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Mixture of isomers 

97: Ligand 66e (1 equiv., 0.2 mmol) was dissolved in 2 mL DCE. To the resulting solution 

MgSO4 (10 equiv., 2 mmol), HCHO solution 35 wt. % in H2O (8 equiv., 1.6 mmol) and 

NaBH(OAc)3 (3 equiv., 0.6 mmol) were added in sequential way and the mixture was allowed 

to be stirred at ambient temperature for specific time until full conversion monitored by TLC. 

Column chromatography on silica gel affords the pure product directly without removal of 

solvent, 41% yield; two inseparable isomers with 78:22 ratio; For mixture, 1H NMR (400 MHz, 

CD2Cl2): δ 7.89 – 7.76 (m, 5.12H), 7.69 – 7.63 (m, 1.28H), 7.56 – 7.43 (m, 5.12H), 7.37 – 7.29 

(m, 2.56H), 7.29 – 7.22 (m, 1.28H), 6.21 – 6.11 (m, 1.28H), 5.94 – 5.90 (m, 0.28H), 5.89 – 

5.84 (m, 1H), 4.44 – 4.33 (m, 1.28H), 4.26 – 4.15 (m, 1.28H), 3.49 – 3.41 (m, 5.12H), 2.79 – 

2.73 (m, 1.28H), 2.16 (s, 3H), 2.15 (s, 0.66H); For mixture, 13C NMR (101 MHz, CD2Cl2): δ 

173.04, 143.09, 141.75, 141.20, 140.94, 139.02, 138.98, 138.91, 137.88, 134.08, 133.33, 

132.63, 132.59, 132.34, 132.18, 132.12, 131.72, 131.23, 130.81, 128.76, 128.70, 128.26, 

128.23, 128.17, 128.16, 127.07, 126.94, 126.70, 126.66, 126.38, 121.77, 121.64, 74.44, 74.20, 

69.62, 68.36, 52.08, 48.30, 47.13, 42.23, 41.13, 41.04 ppm; HRMS: calc. for [M+H]+ 

C27H25NO2
79Br: 474.10632, found: 474.10574; calc. for [M+H]+ C27H25NO2

81Br: 476.10427, 

found: 476.10329; 96% ee. 

Ethyl (1S,3R,4R,7aS)-4-(4-methylphenyl)-1-(4-(trifluoromethyl)phenyl)-2,3,4,7a-

tetrahydro-1H-cyclopenta[c]pyridine-3-carboxylate 

66f: Using Method C, 82% yield; 1H NMR (400 MHz, CD2Cl2): 

δ 7.69 (d, J = 8.2 Hz, 2H), 7.64 (d, J = 8.2 Hz, 2H), 7.25 – 7.13 

(m, 4H), 6.46 (d, J = 5.3 Hz, 1H), 6.02 (d, J = 5.3 Hz, 1H), 5.77 

(s, 1H), 3.99 – 3.82 (m, 3H), 3.56 (d, J = 10.4 Hz, 1H), 3.28 (d, J 

= 10.4 Hz, 1H), 3.07 (dd, J = 10.4 Hz, 1H), 2.36 (s, 3H), 0.94 ppm 

(t, J = 7.1 Hz, 3H); 13C NMR (101 MHz, CD2Cl2): δ 172.24, 152.32, 147.41, 137.35, 135.98, 

133.78, 133.47, 129.53, 129.86 (q, J = 32.3 Hz), 129.36, 128.24, 126.11 (q, J = 3.8 Hz), 125.91, 

124.88 (q, J = 271.7 Hz), 67.67, 66.21, 61.32, 59.34, 50.78, 21.40, 14.16 ppm; HRMS: calc. 

for [M+H]+ C25H25NO2F3: 428.18319, found: 428.18193; e.e. was determined by Diels‒Alder 
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cycloadduct of chiral cyclopentadiene and N-methylmaleimide, HPLC conditions: 

CHIRAPAK IC column, (CH2Cl2/EtOH = 100/2)/ iso-hexane = 30/70, flow rate = 0.5 mL min-

1, major enantiomer: tR = 32.5 min; minor enantiomer: tR = 53.9 min, 97% ee. 

Ethyl (1S,3R,4R,7aS)-4-(4-bromophenyl)-1-(4-(trifluoromethyl)phenyl)-2,3,4,7a-

tetrahydro-1H-cyclopenta[c]pyridine-3-carboxylate 

66g: Using Method C, 70% yield; 1H NMR (400 MHz, CD2Cl2): 

δ 7.69 (d, J = 8.2 Hz, 2H), 7.64 (d, J = 8.2 Hz, 2H), 7.51 (d, J = 

8.4 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 6.46 (dt, J = 5.4, 1.4 Hz, 

1H), 6.03 (dd, J = 5.4, 0.9 Hz, 1H), 5.75 (s, 1H), 4.05 – 3.84 (m, 

3H), 3.57 (d, J = 10.4 Hz, 1H), 3.28 (d, J = 10.4 Hz, 1H), 3.08 

(dd, J = 10.4, 0.9 Hz, 1H), 0.96 ppm (t, J = 7.1 Hz, 3H); 13C NMR (101 MHz, CD2Cl2): δ 

171.94, 151.55, 147.23, 138.43, 133.73, 133.70, 131.99, 131.36, 130.42 (d, J = 32.5 Hz), 

128.23, 126.14 (q, J = 3.8 Hz), 126.08, 124.85 (q, J = 270.6 Hz), 121.33, 67.25, 66.09, 61.50, 

59.28, 50.48, 14.19 ppm; e.e. was determined by Diels‒Alder cycloadduct of chiral 

cyclopentadiene and N-methylmaleimide, HRMS: calc. for [M+H]+ C24H22NO2
79BrF3: 

492.07805, found: 492.07758; calc. for [M+H]+ C24H22NO2
81BrF3: 494.07601, found: 

494.07511; HPLC conditions: CHIRAPAK IA column, (CH2Cl2/EtOH = 100/2)/ iso-hexane = 

25/75, flow rate = 0.5 mL min-1, major enantiomer: tR = 29.7 min; minor enantiomer: tR = 27.5 

min, 96% ee. 

Ethyl (1S,3R,4R,7aS)-4-(4-chlorophenyl)-1-(4-(trifluoromethyl)phenyl)-2,3,4,7a-

tetrahydro-1H-cyclopenta[c]pyridine-3-carboxylate 

66h: Using Method C, 67% yield; 1H NMR (400 MHz, CD2Cl2): 

δ 7.69 (d, J = 8.2 Hz, 2H), 7.64 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 

8.5 Hz, 2H), 7.28 (d, J = 8.5 Hz, 2H), 6.51 – 6.44 (m, 1H), 6.03 

(dd, J = 5.4, 1.0 Hz, 1H), 5.74 (s, 1H), 4.02 – 3.86 (m, 3H), 3.57 

(d, J = 10.4 Hz, 1H), 3.28 (d, J = 10.4 Hz, 1H), 3.08 (dd, J = 

10.4, 1.0 Hz, 1H), 0.96 ppm (t, J = 7.1 Hz, 3H); 13C NMR (101 MHz, CD2Cl2): δ 171.97, 

151.65, 147.22, 137.92, 133.73, 133.69, 133.25, 130.99, 130.42 (q, J = 32.3 Hz), 129.02, 

128.23, 126.14, 126.13 (q, J = 3.8 Hz), 124.85 (q, J = 270.6 Hz), 67.32, 66.10, 61.49, 59.30, 

50.43, 14.19 ppm; HRMS: calc. for [M+H]+ C24H22NO2ClF3: 448.12857, found: 448.12771; 

e.e. was determined by Diels‒Alder cycloadduct of chiral cyclopentadiene and N-

methylmaleimide, HPLC conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 
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20/80, flow rate = 0.5 mL min-1, major enantiomer: tR = 24.0 min; minor enantiomer: tR = 37.5 

min, 96% ee. 

Ethyl (1S,3R,4R,7aS)-4-isopropyl-1-(4-(trifluoromethyl)phenyl)-2,3,4,7a-tetrahydro-1H-

cyclopenta[c]pyridine-3-carboxylate 

66i: Using Method C, 31% yield; Only for (6+3) cycloadduct, 1H 

NMR (400 MHz, CD2Cl2): δ 7.65 (d, J = 8.1 Hz, 2H), 7.55 (d, J = 

8.1 Hz, 2H), 6.54 – 6.50 (m, 1H), 6.30 – 6.26 (m, 1H), 5.97 – 5.92 

(m, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.22 (d, J = 10.4 Hz, 1H), 3.02 (d, 

J = 10.4 Hz, 1H), 2.94 (d, J = 10.4 Hz, 1H), 2.73 (d, J = 10.4 Hz, 1H), 2.22 – 2.10 (m, 1H), 

1.29 (t, J = 7.1 Hz, 2H), 1.16 (d, J = 7.1 Hz, 3H), 1.10 ppm (d, J = 7.1 Hz, 3H); 13C NMR (101 

MHz, CD2Cl2): δ 173.62, 149.93, 133.71, 133.02, 130.22 (q, J = 32.2 Hz), 129.20, 128.15, 

126.05 (q, J = 3.8 Hz), 124.88 (d, J = 271.8 Hz), 124.66, 66.35, 64.91, 61.62, 60.68, 49.74, 

28.66, 19.72, 19.51, 14.45 ppm; e.e. was determined by Diels‒Alder cycloadduct of chiral 

cyclopentadiene and N-methylmaleimide, HPLC conditions: CHIRAPAK IC column, 

(CH2Cl2/EtOH = 100/2)/ iso-hexane = 30/70, flow rate = 0.5 mL min-1, major enantiomer: tR = 

20.1 min; minor enantiomer: tR = 36.6 min, 89% ee. 

Ethyl (1S,3R,4R,7aS)-4-(naphthalen-2-yl)-1-(4-(trifluoromethyl)phenyl)-2,3,4,7a-

tetrahydro-1H-cyclopenta[c]pyridine-3-carboxylate 

66j: Using Method C, 82% yield; 1H NMR (400 MHz, 

CD2Cl2): δ 7.90 – 7.82 (m, 3H), 7.79 (s, 1H), 7.71 (d, J = 8.6 

Hz, 2H), 7.67 (d, J = 8.4 Hz, 2H), 7.53 – 7.46 (m, 3H), 6.47 (dt, 

J = 5.3, 1.6 Hz, 1H), 6.09 – 6.02 (m, 1H), 5.77 (s, 1H), 4.12 (d, 

J = 10.4 Hz, 1H), 3.87 (q, J = 7.1 Hz, 2H), 3.76 (d, J = 10.4 Hz, 1H), 3.36 (d, J = 10.4 Hz, 1H), 

3.14 (dd, J = 10.4, 1.1 Hz, 1H), 2.21 (br s, 1H), 0.81 (t, J = 7.1 Hz, 3H); 13C NMR (101 MHz, 

CD2Cl2): δ 172.18, 152.07, 147.35, 136.86, 134.13, 133.81, 133.56, 133.36, 130.40 (d, J = 32.3 

Hz), 128.30, 128.27, 128.24, 128.15, 127.69, 126.55, 126.29, 126.25, 126.15 (q, J = 3.8 Hz), 

124.85 (q, J = 271.6 Hz), 123.54, 67.36, 66.18, 61.35, 59.40, 51.18, 14.08 ppm; HRMS: calc. 

for [M+H]+ C28H25NO2F3: 464.18319, found: 464.18256; e.e. was determined by Diels‒Alder 

cycloadduct of chiral cyclopentadiene and N-methylmaleimide, HPLC conditions: 

CHIRAPAK IC column, (CH2Cl2/EtOH = 100/2)/ iso-hexane = 30/70, flow rate = 0.5 mL min-

1, major enantiomer: tR = 32.5 min; minor enantiomer: tR = 46.7 min, 98% ee. 
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Methyl (1S,3R,4R,7aS)-4-(4-bromophenyl)-1-(4-fluorophenyl)-2,3,4,7a-tetrahydro-1H-

cyclopenta[c]pyridine-3-carboxylate 

66k: Using Method D, 74% yield, the product with >99% ee was 

obtained from mother liquor through recrystallization of 

cycloadduct with 95% ee in petroleum ether and ethyl acetate; 1H 

NMR (400 MHz, CD2Cl2): δ 7.54 – 7.43 (m, 4H), 7.22 (d, J = 8.4 

Hz, 2H), 7.15 – 7.05 (m, 2H), 6.45 (d, J = 5.4 Hz, 1H), 6.04 (d, J 

= 5.4 Hz, 1H), 5.72 (s, 1H), 3.93 (d, J = 10.4 Hz, 1H), 3.59 (d, J = 10.4 Hz, 1H), 3.49 (s, 3H), 

3.21 (d, J = 10.4 Hz, 1H), 3.07 (d, J = 10.4 Hz, 1H), 2.11 ppm (br s, 1H); 13C NMR (101 MHz, 

CD2Cl2): δ 172.40, 162.90 (d, J = 245.2 Hz), 151.63, 139.11 (d, J = 3.1 Hz), 138.51, 134.05, 

133.48, 132.03, 131.25, 129.36 (d, J = 8.1 Hz), 126.06, 121.33, 115.89 (d, J = 21.4 Hz), 67.24, 

65.79, 59.52, 54.54, 54.27, 54.00, 54.00, 53.73, 53.46, 52.37, 50.20 ppm; HRMS: calc. for 

[M+H]+ C24H22NO2
79BrF: 428.06560, found: 428.06474; calc. for [M+H]+ C22H20NO2

81BrF: 

430.06355, found: 430.06210; HPLC conditions: CHIRAPAK IC column, iso-propanol / iso-

hexane = 5/95, flow rate = 0.5 mL min-1, major enantiomer: tR = 16.2 min; minor enantiomer: 

tR = 14.0 min.  

Benzyl (1S,3R,4R,7aS)-4-(4-bromophenyl)-1-(4-fluorophenyl)-2,3,4,7a-tetrahydro-1H-

cyclopenta[c]pyridine-3-carboxylate 

66l: Using Method C, 50% yield; 1H NMR (400 MHz, CD2Cl2): δ 

7.53 – 7.41 (m, 4H), 7.33 – 7.24 (m, 3H), 7.17 (d, J = 8.4 Hz, 2H), 

7.11 (t, J = 8.7 Hz, 2H), 6.99 – 6.89 (m, 2H), 6.44 (d, J = 5.3 Hz, 

1H), 6.06 – 6.01 (m, 1H), 5.72 (s, 1H), 4.97 (d, J = 12.2 Hz, 1H), 

4.87 (d, J = 12.2 Hz, 1H), 3.90 (d, J = 10.4 Hz, 1H), 3.67 – 3.56 

(m, 1H), 3.27 – 3.16 (m, 1H), 3.07 (d, J = 10.5 Hz, 1H), 2.11 ppm (s, 1H); 13C NMR (101 MHz, 

CD2Cl2): δ 172.13, 162.90 (d, J = 245.1 Hz), 151.58, 139.08 (d, J = 2.9 Hz), 138.33, 135.83, 

134.10, 133.47, 132.11, 131.32, 129.36 (d, J = 8.1 Hz), 128.97, 128.74, 128.62, 126.03, 121.44, 

115.90 (d, J = 21.4 Hz), 67.36, 67.27, 65.70, 59.47, 50.65 ppm; HRMS: calc. for [M+H]+ 

C28H24NO2
79BrF: 504.09690, found: 504.09655; calc. for [M+H]+ C28H24NO2

81BrF: 

506.09485, found: 506.09415; HPLC conditions: CHIRAPAK IC column, iso-propanol / iso-

hexane = 5/95, flow rate = 0.5 mL min-1, major enantiomer: tR = 21.7 min; minor enantiomer: 

tR = 16.9 min, 96% ee. 



Chapter 7. Experimental Part 

121 
 

Methyl (1S,3R,4R,7aS)-4-(4-bromophenyl)-1-(4-methylphenyl)-2,3,4,7a-tetrahydro-1H-

cyclopenta[c]pyridine-3-carboxylate 

66m: Using Method C, 66% yield; 1H NMR (400 MHz, CD2Cl2): 

δ 7.51 (d, J = 8.5 Hz, 2H), 7.36 (d, J = 7.9 Hz, 2H), 7.25 – 7.20 

(m, J = 8.4, 2.4 Hz, 4H), 6.43 (d, J = 5.1 Hz, 1H), 6.04 (d, J = 5.1 

Hz, 1H), 5.71 (s, 1H), 3.91 (d, J = 10.5 Hz, 1H), 3.57 (d, J = 10.5 

Hz, 1H), 3.48 (s, 3H), 3.17 (d, J = 10.5 Hz, 1H), 3.10 (d, J = 10.5 Hz, 1H), 2.38 (s, 3H), 1.98 

ppm (br s, 1H); 13C NMR (101 MHz, CD2Cl2): δ 172.52, 151.80, 140.17, 138.63, 138.25, 

134.40, 133.20, 132.01, 131.25, 129.80, 127.49, 125.85, 121.28, 67.35, 66.30, 59.51, 52.33, 

50.38, 21.44 ppm; HRMS: calc. for [M+H]+ C23H23NO2
79BrF: 424.09067, found: 424.09042; 

calc. for [M+H]+ C23H23NO2
81BrF: 426.08862, found: 426.08805; HPLC conditions: 

CHIRAPAK IA column, iso-propanol / iso-hexane = 5/95, flow rate = 0.5 mL min-1, major 

enantiomer: tR = 22.3 min; minor enantiomer: tR = 25.5 min, 95% ee. 
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7.2.2 Synthesis and Analytic Data of Rh(I) Complexes 99a-k and 100a-o 

Method E for Synthesis of Rh(I) Complexes 99a-99g, 99i-99l:  

Under Ar flow, thallium (I) ethoxide (1.2 equiv., 0.36 mmol, 89.8 mg) was added to 1 mL dry 

methanol in 10 mL Schlenk flask. A white precipitate of thallium (I) methoxide formed 

immediately. After stirring for 5 mins, methanol was decanted and the thallium (I) methoxide 

was washed again with 1 mL dry methanol. Then 4 mL dry and degassed benzene was added. 

Under Ar, to the mixture was added a solution of cyclopetadiene (1 equiv., 0.3 mmol) in 1 mL 

benzene. The mixture was stirred for 1 hour at 80oC with protection from light. After cooling 

down, [Rh(C2H4)2Cl]2 (0.6 equiv., 0.18 mmol, 70 mg) was added. After stirring for another 1 

hour, the reaction mixture was directly subjected to column chromatography on neutral 

aluminum oxide (activated, Brockmann I, Sigma-Aldrich) under Ar using EtOAc/hexane as 

the eluent, affording the desired Rh complexes. 

Method F for Synthesis of Rh(I) Complexes 100a-d, 100g-k: 

Under Ar, to a solution of cyclopetadiene (0.3 mmol) in degassed 4 mL benzene at room 

temperature was added a solution of thallium(I) ethanolate (0.18 mmol) in 1 mL benzene. The 

mixture was stirred for 1 hour at room temperature protected from light. [Rh(C2H4)2Cl]2 (0.6 

equiv., 0.18 mmol, 70 mg) was added.  After stirring for another 1 hour, the reaction mixture 

was directly subjected to column chromatography on neutral aluminum oxide (activated, 

Brockmann I, Sigma-Aldrich) under Ar using EtOAc/hexane as the eluent, affording the 

desired Rh complexes. 

Method G for Synthesis of Rh(I) Complexes 100e, 100f, 100l-2o: 

Under Ar flow, thallium (I) ethoxide (1.2 equiv., 0.36 mmol, 89.8 mg) was added to 1 mL dry 

methanol in 10 mL Schlenk flask. A white precipitate of thallium (I) methoxide formed 

immediately. After stirring for 5 mins, methanol was decanted and the thallium (I) methoxide 

was washed again with 1 mL dry methanol. Then 4 mL dry and degassed benzene was added. 

Under Ar, to the mixture was added a solution of cyclopetadiene (1 equiv., 0.3 mmol) in 1 mL 

benzene. The mixture was stirred for 1 hour at room temperature with protection from light. 

[Rh(C2H4)2Cl]2 (0.6 equiv., 0.18 mmol, 70 mg) was added. After stirring for another 1 hour, 

the reaction mixture was directly subjected to column chromatography on neutral aluminum 

oxide (activated, Brockmann I, Sigma-Aldrich) under Ar using EtOAc/hexane as the eluent, 

affording the desired Rh complexes. 
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Method H for Synthesis of Rh(I) Complexes 99h: 

Under Ar, to a solution of cyclopetadiene (0.3 mmol) in degassed 4 mL benzene at room 

temperature was added a solution of thallium(I) ethanolate (0.18 mmol) in 1 mL benzene. The 

mixture was stirred for 1 hour at 80oC protected from light. [Rh(C2H4)2Cl]2 (0.6 equiv., 0.18 

mmol, 70 mg) was added.  After stirring for another 1 hour, the reaction mixture was directly 

subjected to column chromatography on neutral aluminum oxide (activated, Brockmann I, 

Sigma-Aldrich) under Ar using EtOAc/hexane as the eluent, affording the desired Rh complex. 

For separation of diastereomers of 100l, 100n: 

 

The column was prepared as shown in the left, sea sand, 

neutral Al2O3 as purification zone, sea sand, silica gel as 

separation zone and sea sand were added sequentially. 

Column was neutralized by 1% (v/v) of triethylamine in n-

pentane: ethyl acetate (1:1) for 1 hour. Using Ar as pressure 

source, ethyl acetate was used to wash away extra 

trimethylamine, followed by n-pentane. (be sure there is no 

air in column) A precooling solvent to -40C of n-pentane 

and ethyl acetate was used as eluent. The purification 

process should be always under -40C and argon. Rh(I) 

complexes are stable in solid form.  
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(‒)-Bis(η2-ethylene)[η5-(1R,3R)-3-(methoxycarbonyl)-4,4-dimethyl-1-(naphthalen-2-yl)-

1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

99a: Using Method E, 71% yield; single isomer; 1H NMR (400 

MHz, C6D6): δ 7.67 (s, 1H), 7.65 – 7.55 (m, 3H), 7.49 (dd, J = 8.5, 

1.6 Hz, 1H), 7.31 – 7.22 (m, 2H), 4.69 – 4.66 (m, 1H), 4.66 – 4.63 

(m, 1H), 4.32 – 4.27 (m, 1H), 4.04 (s, 1H), 3.79 (s, 1H), 3.36 (s, 3H), 

2.88 – 2.75 (m, 2H), 2.73 – 2.57 (m, 2H), 1.76 (s, 3H), 1.52 (s, 3H), 

1.49 – 1.38 (m, 2H), 1.14 – 1.02 ppm (m, 2H); 13C NMR (101 MHz, C6D6): δ 171.85, 141.32, 

133.94, 133.81, 128.80, 128.52, 127.93, 127.21, 126.75, 126.31, 126.16, 117.20 (d, JRh-C = 4.2 

Hz), 102.20 (d, JRh-C = 3.5 Hz), 85.61 (d, JRh-C = 4.4 Hz), 84.48 (d, JRh-C = 3.9 Hz), 82.84 (d, 

JRh-C = 3.9 Hz), 66.61, 57.16, 51.13, 40.70 (d, JRh-C = 13.3 Hz), 36.74 (d, JRh-C = 13.3 Hz), 

36.36, 29.96, 26.70 ppm; FT‐IR: 
~ = 3054, 2985, 1731, 1506, 1433, 1360, 1183, 1128 cm-1; 

HRMS: calc. for [M+H]+ C26H31O2NRh: 492.14043, found: 492.14041;  RT

D = -164.4 

(CH2Cl2, c = 1.00). 

(+)-Bis(η2-ethylene)[η5-(1R,3R)-4,4-diethyl-3-(methoxycarbonyl)-1-(naphthalen-2-yl)-

1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

99b: Using Method E, 71% yield; two separable isomers with 72:28 

ratio; For mixture, 1H NMR (700 MHz, C6D6): δ 7.96 (s, 0.4 H), 7.68 

– 7.63 (m, 1.8H), 7.62 – 7.57 (m, 3.4H), 7.52 – 7.48 (m, 1.4H), 7.28 

– 7.22 (m, 2.8H), 5.12 (s, 0.4H), 4.83 (s, 1H), 4.78 – 4.74 (m, 0.4H), 

4.64 (d, J = 2.8 Hz, 0.4H), 4.62 – 4.57 (m, 1H), 4.28 (s, 1.4H), 3.92 

– 3.90 (m,1H), 3.84 (d, J = 4.0 Hz, 1H), 3.58 (s, 0.4H), 3.39 (s, 1.2H), 3.36 (s, 3H), 3.00 (t, J 

= 10.0 Hz, 0.8H), 2.78 (t, J = 10.0 Hz, 2H), 2.68 (t, J = 10.0 Hz, 2H), 2.45 – 2.37 (m, 1H), 2.27 

– 2.19 (m, 1.4H), 2.15 – 2.10 (m, 0.4H), 2.07 (s, 1H), 2.01 – 1.91 (m, 2.4H), 1.76 – 1.69 (m, 

1H), 1.70 – 1.65 (m, 0.4H), 1.57 (t, J = 7.4 Hz, 3H), 1.47 – 1.41 (m, 2H), 1.32 (t, J = 7.4 Hz, 

1.2H), 1.13 – 1.06 (m, 2H), 1.04 – 0.97 (m, 3.4H), 0.92 (t, J = 7.4 Hz, 1.2H), 0.78 – 0.71 

ppm(m, 0.8H); 13C NMR (176 MHz, C6D6): δ 172.52, 172.28, 141.17, 138.32, 133.94, 133.79, 

133.68, 133.30, 128.84, 128.58, 128.41, 128.35, 128.31, 128.12, 128.10, 127.99, 127.36, 

126.77, 126.36, 126.32, 126.18, 126.00, 125.88, 125.31, 113.43 (d, JRh-C = 3.7 Hz), 111.46 (d, 

JRh-C = 4.3 Hz), 106.07 (d, JRh-C = 3.6 Hz), 101.68 (d, JRh-C = 3.3 Hz), 86.03 (d, JRh-C = 3.8 Hz), 

85.67 (d, JRh-C = 4.5 Hz), 85.28 (d, JRh-C = 3.9 Hz), 85.21 (d, JRh-C = 4.3 Hz), 84.40 (d, JRh-C = 

3.7 Hz), 81.69 (d, JRh-C = 4.0 Hz), 63.84, 63.82, 60.07, 59.69, 56.98, 51.20, 51.19, 42.69, 41.94, 
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41.27 (d, JRh-C = 13.4 Hz), 39.62 (d, JRh-C = 13.4 Hz), 39.44 (d, JRh-C = 13.3 Hz), 37.18 (d, JRh-

C = 13.0 Hz), 34.65, 31.70, 30.93, 29.66, 20.56, 14.23, 9.93, 9.55, 9.22, 9.21 ppm; FT‐IR: 
~ = 

3054, 2961, 1731, 1601, 1433, 1359, 1183, 1128, 1032 cm-1; HRMS: calc. for [M+H]+ 

C28H35O2NRh: 520.17173, found: 520.17175;  RT

D = +32.6 (CHCl3, c = 0.19). 

(‒)-Bis(η2-ethylene){η5-(1'R,3'R)-3'-(methoxycarbonyl)-1'-(naphthalen-2-yl)-2',3'-

dihydro-1'H-spiro[cyclobutane-1,4'-cycloocta[c]pyridin]-yl)}rhodium(I) 

99c: Using Method E, 74% yield; two separable isomers with 

76:24 ratio; For major isomer, 1H NMR (400 MHz, C6D6): δ 

7.67 (s, 1H), 7.65 – 7.55 (m, 3H), 7.44 (dd, J = 8.5, 1.7 Hz, 1H), 

7.31 – 7.21 (m, 2H), 4.85 – 4.79 (m, 1H), 4.76 (t, J = 2.7 Hz, 

1H), 4.74 (d, J = 5.2 Hz, 1H), 4.41 – 4.32 (m, 1H), 3.99 (d, J = 

4.1 Hz, 1H), 3.40 (s, 3H), 2.94 – 2.65 (m, 6H), 2.29 – 2.15 (m, 1H), 2.14 – 2.10 (m, 1H), 1.91 

– 1.79 (m, 1H), 1.79 – 1.68 (m, 1H), 1.36 – 1.22 ppm(m, 4H); 13C NMR (101 MHz, C6D6): δ 

172.51, 141.66, 133.93, 133.77, 128.81, 127.08, 126.57, 126.29, 126.14, 115.47, 115.44, 

104.82 (d, JRh-C = 3.4 Hz), 84.84 (d, JRh-C = 4.5 Hz), 84.19 (d, JRh-C = 4.0 Hz), 82.47 (d, JRh-C 

= 4.1 Hz), 64.34, 57.97, 51.47, 42.17, 40.20 (d, JRh-C = 13.8 Hz), 38.75 (d, JRh-C = 13.6 Hz), 

33.24, 29.46, 15.30 ppm; FT‐IR: 
~ = 3054, 2986, 2947, 1734, 1432, 1347, 1196, 1125 cm-1; 

HRMS: calc. for [M+H]+ C27H31O2NRh: 504.14043, found: 504.14044;  RT

D = -33.4 (CH2Cl2, 

c = 0.38). 

(‒)-Bis(η2-ethylene){η5-(1'R,3'R)-3'-(methoxycarbonyl)-1'-(naphthalen-2-yl)-2',3'-

dihydro-1'H-spiro[cyclohexane-1,4'-cycloocta[c]pyridin]-yl)}rhodium(I) 

99d: Using Method E, 63% yield; two separable isomers with 

90:10 ratio; For major isomer, 1H NMR (700 MHz, C6D6): δ 7.66 

(s, 1H), 7.61 – 7.55 (m, 3H), 7.44 (d, J = 8.4 Hz, 1H), 7.27 – 7.22 

(m, 2H), 4.75 (s, 1H), 4.72 – 4.69 (m, 1H), 4.58 (s, 1H), 4.05 (d, 

J = 5.3 Hz, 1H), 3.92 (d, J = 4.3 Hz, 1H), 3.38 (s, 3H), 2.86 (t, J 

= 10.5 Hz, 2H), 2.65 (t, J = 10.5 Hz, 2H), 2.43 – 2.38 (m, 2H), 2.27 (d, J = 13.5 Hz, 1H), 2.05 

(t, J = 4.8 Hz, 1H), 1.89 (td, J = 12.8, 4.4 Hz, 1H), 1.71 – 1.66 (m, 2H), 1.64 – 1.53 (m, 3H), 

1.49 – 1.42 (m, 2H), 1.11 – 1.03 ppm (m, 2H); 13C NMR (176 MHz, C6D6): δ 172.28, 141.38, 

133.93, 133.76, 128.83, 128.34, 127.34, 126.75, 126.33, 126.19, 115.41 (d, JRh-C = 4.3 Hz), 

102.66 (d, JRh-C = 3.3 Hz), 86.50 (d, JRh-C = 3.8 Hz), 85.57 (d, JRh-C = 4.3 Hz), 84.88 (d, JRh-C 
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= 3.7 Hz), 68.17, 57.31, 51.18, 41.13 (d, JRh-C = 13.5 Hz), 39.19, 38.39, 36.18 (d, JRh-C = 13.2 

Hz), 33.13, 26.41, 23.33, 21.86 ppm; FT‐IR: 
~ = 3054, 2987, 2927, 1733, 1506, 1432, 1352, 

1246, 1198, 1165 cm-1; HRMS: calc. for [M+H]+ C29H35O2NRh: 532.17173, found: 532.17175; 

 RT

D = -68.9 (CH2Cl2, c = 0.47). 

(‒)-Bis(η2-ethylene)[η5-(1R,3R)-1-(4-bromophenyl)-3-(methoxycarbonyl)-4,4-dimethyl-

1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

99e: Using Method E, 54% yield; single isomer; 1H NMR (700 MHz, 

C6D6): δ 7.28 – 7.20 (m, 2H), 6.97 – 6.89 (m, 2H), 4.63 (t, J = 2.7 

Hz, 1H), 4.61 – 4.56 (m, 1H), 4.26 – 4.19 (m, 1H), 3.68 (d, J = 4.2 

Hz, 1H), 3.64 (d, J = 2.5 Hz, 1H), 3.34 (s, 3H), 2.73 (t, J = 10.3 Hz, 

2H), 2.57 (t, J = 10.3 Hz, 2H), 1.69 (s, 3H), 1.47 – 1.37 (m, 5H), 1.10 

– 1.00 ppm (m, 2H); 13C NMR (176 MHz, C6D6): δ 171.74, 142.83, 131.93, 130.15, 121.84, 

116.97 (d, JRh-C = 4.2 Hz), 101.62 (d, JRh-C = 3.4 Hz), 85.64 (d, JRh-C = 4.3 Hz), 84.11 (d, JRh-C 

= 3.9 Hz), 82.83 (d, JRh-C = 3.9 Hz), 66.37, 56.21, 51.15, 40.67 (d, JRh-C = 13.6 Hz), 36.69 (d, 

JRh-C = 13.3 Hz), 36.20, 29.89, 26.57 ppm; FT‐IR: 
~ = 3054, 2986, 1734, 1484, 1433, 1195, 

1010 cm-1; HRMS: calc. for [M+H]+ C22H28O2N
79BrRh: 520.03530, found: 520.03534; calc. 

for [M+H]+ C22H28O2N
81BrRh: 522.03325, found: 522.03333;  RT

D = -56.8 (CH2Cl2, c = 0.22). 

(‒)-Bis(η2-ethylene)[η5-(1R,3R)-3-(methoxycarbonyl)-4,4-dimethyl-1-(4-methylphenyl)-

1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

99f: Using Method E, 62% yield; two separable isomers with 85:15 

ratio; For major isomer, 1H NMR (700 MHz, C6D6): δ 7.22 (d, J = 

7.7 Hz, 2H), 6.98 (d, J = 7.7 Hz, 2H), 4.76 (s, 1H), 4.67 (s, 1H), 4.27 

(s, 1H), 3.89 (d, J = 4.5 Hz, 1H), 3.73 (d, J = 3.1 Hz, 1H), 3.34 (s, 

3H), 2.78 (t, J = 10.5 Hz, 2H), 2.61 (t, J = 10.3 Hz, 2H), 2.12 (s, 3H), 

1.72 (s, 3H), 1.46 – 1.41 (m, 5H), 1.08 – 1.02 ppm (m, 2H); 13C NMR (176 MHz, C6D6): δ 

171.48, 140.71, 137.02, 129.14, 128.07, 116.69 (d, JRh-C = 4.2 Hz), 102.18 (d, JRh-C = 3.3 Hz), 

85.08 (d, JRh-C = 4.3 Hz), 84.04 (d, JRh-C = 3.9 Hz), 82.36 (d, JRh-C = 3.9 Hz), 66.21, 56.25, 

50.70, 40.30 (d, JRh-C = 13.6 Hz), 36.17 (d, JRh-C = 13.3 Hz), 35.82, 29.56, 26.26, 20.77 ppm; 

FT‐IR: 
~ = 3053, 2986, 2959, 1735, 1512, 1433, 1360, 1195, 1182, 1019 cm-1; HRMS: calc. 

for [M+H]+ C23H31O2NRh: 456.14043, found: 456.14044;  RT

D = -37.3 (CH2Cl2, c = 0.45). 
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(‒)-Bis(η2-ethylene)[η5-(1R,3R)-3-(methoxycarbonyl)-4,4-dimethyl-1-(2-methylphenyl)-

1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

99g: Using Method E, 78% yield; two separable isomers with 86:14 

ratio; For major isomer, 1H NMR (700 MHz, C6D6): δ 7.08 – 6.94 

(m, 4H), 4.69 (s, 1H), 4.66 (s, 1H), 4.27 (s, 1H), 3.31 (s, 3H), 2.75 

(t, J = 10.4 Hz, 2H), 2.59 (t, J = 10.4 Hz, 2H), 2.27 (s, 3H), 1.68 (s, 

3H), 1.40 (s, 3H), 1.38 – 1.31 (m, 2H), 1.13 – 1.05 ppm (m, 2H); 13C 

NMR (176 MHz, C6D6): δ 13C NMR (176 MHz, C6D6): δ 171.78, 140.80, 134.54, 130.08, 

127.28, 126.53, 117.11, 116.10 (d, JRh-C = 3.4 Hz), 108.72 (d, JRh-C = 3.9 Hz), 85.17 (d, JRh-C = 

4.6 Hz), 83.48 (d, JRh-C = 3.8 Hz), 81.92 (d, JRh-C = 4.0 Hz), 69.75, 56.04, 51.06, 39.01 (d, JRh-

C = 13.5 Hz), 38.66 (d, JRh-C = 13.3 Hz), 35.35, 30.17, 28.31, 19.66 ppm; FT‐IR: 
~ = 3344, 

3055, 2960, 1734, 1433, 1361, 1124, 1018 cm-1; HRMS: calc. for [M+H]+ C23H31O2NRh: 

456.14043, found: 456.14041;  RT

D = -69.0 (CH2Cl2, c = 0.30). 

(+)-Bis(η2-ethylene)[η5-(1R,3R)-3-(ethoxycarbonyl)-4,4-dimethyl-1-(naphthalen-2-yl)-

1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

99h: Using Method H, 67% yield; two inseparable isomers with 

84:16 ratio; For major isomer, 1H NMR (700 MHz, C6D6): δ 7.69 – 

7.64 (m, 1H), 7.62 – 7.58 (m, 3H), 7.50 (d, J = 8.4 Hz, 1H), 7.27 – 

7.24 (m, 2H), 4.68 – 4.67 (m, 1H), 4.66 – 4.65 (m, 1H), 4.30 (s, 1H), 

4.05 (d, J = 4.1 Hz, 1H), 4.03 – 3.94 (m, 2H), 3.81 (d, J = 2.3 Hz, 

1H), 2.81 (t, J = 10.4 Hz, 2H), 2.64 (t, J = 10.4 Hz, 2H), 1.79 (s, 3H), 1.56 (s, 3H), 1.47 – 1.42 

(m, 2H), 1.11 – 1.04 (m, 2H), 0.97 ppm (t, J = 7.0 Hz, 3H); 13C NMR (176 MHz, C6D6): δ 

171.52, 141.34, 133.92, 133.79, 128.79, 128.35, 128.10, 127.21, 126.76, 126.29, 126.15, 

117.26 (d, JRh-C = 4.5 Hz), 102.26 (d, JRh-C = 3.7 Hz), 85.61 (d, JRh-C = 4.7 Hz), 84.49 (d, JRh-C 

= 4.3 Hz), 82.82 (d, JRh-C = 4.3 Hz), 66.51, 60.63, 57.13, 40.70 (d, JRh-C = 14.5 Hz), 36.67 (d, 

JRh-C = 14.1 Hz), 36.37, 30.11, 26.69, 14.34 ppm; FT‐IR: 
~ = 3340, 3054, 2984, 1729, 1433, 

1338, 1184, 1029 cm-1; HRMS: calc. for [M+H]+ C27H33O2NRh: 506.15608, found: 506.15604; 

 RT

D = +87.4 (CH2Cl2, c = 0.50). 

(‒)-Bis(η2-ethylene)[η5-(1R,3R)-3-(methoxycarbonyl)-2,4,4-trimethyl-1-(naphthalen-2-

yl)-1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 
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99i: Using Method E, 81% yield; single isomer; 1H NMR (700 MHz, 

C6D6): δ 7.65 – 7.57 (m, 5H), 7.29 – 7.21 (m, 2H), 4.68 (s, 1H), 4.51 

(s, 1H), 4.20 (s, 1H), 3.78 (s, 1H), 3.61 (s, 1H), 3.39 (s, 3H), 2.85 (t, 

J = 10.5 Hz, 2H), 2.64 (t, J = 10.4 Hz, 2H), 2.25 (s, 3H), 1.81 (s, 3H), 

1.51 (s, 3H), 1.48 – 1.43 (m, 2H), 1.14 – 1.03 ppm (m, 2H); 13C NMR 

(176 MHz, C6D6): δ 171.22, 141.44, 133.86, 133.80, 129.17, 128.35, 128.16, 127.59, 126.63, 

126.34, 126.14, 115.66 (d, JRh-C = 4.3 Hz), 101.53 (d, JRh-C = 3.3 Hz), 85.79 (d, JRh-C = 4.3 Hz), 

85.23 (d, JRh-C = 3.7 Hz), 81.39 (d, JRh-C = 3.9 Hz), 75.25, 66.75, 50.81, 41.56 (d, JRh-C = 13.6 

Hz), 41.08, 36.57 (d, JRh-C = 13.3 Hz), 36.05, 28.72, 28.01 ppm; FT‐IR: 
~ = 3054, 2986, 2850, 

2770, 1744, 1461, 1311, 1193, 1044 cm-1; HRMS: calc. for [M+H]+ C27H33O2NRh: 506.15608, 

found: 506.15582;  RT

D = -184.2 (CH2Cl2, c = 0.50). 

(‒)-Bis(η2-ethylene)[η5-(1R,3R)-2-ethyl-3-(methoxycarbonyl)-4,4-dimethyl-1-

(naphthalen-2-yl)-1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

99j: Using Method E, 45% yield; single isomer; 1H NMR (700 MHz, 

C6D6): δ 7.70 (s, 1H), 7.66 – 7.57 (m, 4H), 7.29 – 7.24 (m, 2H), 4.71 

(t, J = 2.6 Hz, 1H), 4.56 (s, 1H), 4.27 (s, 1H), 4.21 – 4.15 (m, 2H), 

3.39 (s, 3H), 3.06 (dd, J = 15.3, 7.3 Hz, 1H), 2.89 (t, J = 10.5 Hz, 

2H), 2.75 – 2.63 (m, 3H), 1.81 (s, 3H), 1.50 (s, 3H), 1.48 – 1.41 (m, 

2H), 1.13 – 1.06 (m, 2H), 0.92 ppm (t, J = 7.1 Hz, 3H); 13C NMR (176 MHz, C6D6): δ 171.23, 

141.83, 133.89, 133.80, 129.16, 128.35, 127.99, 127.33, 126.77, 126.34, 126.11, 115.50 (d, 

JRh-C = 4.2 Hz), 101.98 (d, JRh-C = 3.2 Hz), 85.73 (d, JRh-C = 4.3 Hz), 85.44 (d, JRh-C = 3.6 Hz), 

81.22 (d, JRh-C = 3.9 Hz), 70.94, 60.31, 50.79, 44.80, 41.38 (d, JRh-C = 13.5 Hz), 36.44 (d, JRh-

C = 13.3 Hz), 36.21, 28.68, 27.64, 7.96 ppm; FT‐IR: 
~ = 3055, 2967, 1743, 1433, 1376, 1135, 

1053 cm-1; HRMS: calc. for [M+H]+ C28H35O2NRh: 520.17173, found: 520.17163;  RT

D = -

83.0 (CH2Cl2, c = 1.00). 

(‒)-Bis(η2-ethylene)[η5-(1R,3R)-2-isobutyl-3-(methoxycarbonyl)-4,4-dimethyl-1-

(naphthalen-2-yl)-1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

99k: Using Method E, 82% yield; two inseparable isomers with 55:45 ratio; For mixture, 1H 

NMR (700 MHz, C6D6): δ 7.68 – 7.65 (m, 1.82H), 7.63 – 7.60 (m, 1.82H), 7.59 – 7.51 (m, 

5.45H), 7.26 – 7.17 (m, 3.64H), 5.23 (s, 1H), 4.76 (s, 0.82H), 4.75 (s, 1H), 4.51 (s, 1H), 4.46 

(s, 0.82H), 4.24 (s, 1H), 4.20 (s, 0.82H), 4.16 (s, 0.82H), 4.02 (s, 0.82H), 3.98 (s, 1H), 3.84 (s, 
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1H), 3.37 (s, 2.45H), 3.32 (s, 3H), 2.96 – 2.84 (m, 3.64H), 2.70 – 

2.64 (m, 3.64H), 2.58 (d, J = 7.1 Hz, 1.82H), 1.92 (s, 3H), 1.72 (s, 

3H), 1.51 (s, 3H), 1.49 (s, 2.45H), 1.48 – 1.39 (m, 6.09H), 1.22 (s, 

3H), 1.17 – 1.07 (m, 3.64H), 0.74 (d, J = 6.6 Hz, 2.45H), 0.58 ppm 

(d, J = 6.6 Hz, 2.45H); 13C NMR (176 MHz, C6D6): δ 171.98, 

170.49, 142.27, 141.11, 135.25, 133.74, 133.69, 133.60, 133.52, 131.86, 128.76, 128.35, 

128.31, 128.23, 128.13, 127.99, 127.61, 127.59, 127.56, 126.34, 126.20, 126.14, 126.05, 

116.24 (d, JRh-C = 4.2 Hz), 115.46 (d, JRh-C = 4.2 Hz), 103.18 (d, JRh-C = 3.4 Hz), 101.44 (d, JRh-

C = 3.4 Hz), 85.81 (d, JRh-C = 4.3 Hz), 85.62 (d, JRh-C = 3.7 Hz), 85.38 (d, JRh-C = 3.7 Hz), 85.22 

(d, JRh-C = 4.4 Hz), 81.51 (d, JRh-C = 3.9 Hz), 81.36 (d, JRh-C = 3.9 Hz), 74.59, 73.66, 65.71, 

65.31, 64.01, 50.72, 50.68, 41.76 (d, JRh-C = 13.0 Hz), 41.69 (d, JRh-C = 13.0 Hz), 36.58 (d, JRh-

C = 13.3 Hz), 36.44 (d, JRh-C = 13.3 Hz), 36.40, 36.08, 29.75, 28.41, 27.82, 27.30, 27.11, 21.61, 

21.35, 21.26, 18.37 ppm; FT‐IR: 
~ = 3054, 2959, 1747, 1727, 1433, 1382, 1269, 1193 cm-1; 

HRMS: calc. for [M+H]+ C30H39O2NRh: 548.20303, found: 548.20270;  RT

D = -96.9 (CH2Cl2, 

c = 2.00). 

(+)-Bis(η2-ethylene)[η5-(1R,3R,4R)-4-(4-bromophenyl)-3-(ethoxycarbonyl)-1-(4-

methylphenyl)-1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

100a: Using Method F, 78% yield; two separable isomers 

with 60:40 ratio; For mixture, 1H NMR (700 MHz, C6D6): δ 

7.74 (d, J = 7.8 Hz, 2H), 7.65 (d, J = 8.1 Hz, 1.33H), 7.42 (d, 

J = 8.1 Hz, 1.33H), 7.23 (d, J = 8.1 Hz, 2H), 7.15 – 7.11 (m, 

3.33H), 6.97 (d, J = 7.8 Hz, 1.33H), 6.79 (d, J = 8.1 Hz, 2H), 

4.96 (s, 0.67H), 4.85 (s, 1H), 4.81 (d, J = 6.7 Hz, 1H), 4.64 (t, J = 2.4 Hz, 1H), 4.58 (t, J = 2.4 

Hz, 0.67H), 4.13 (d, J = 10.4 Hz, 0.67H), 4.07 (dd, J = 10.3, 6.4 Hz, 0.67H), 3.99 (s, 1H), 3.91 

(d, J = 6.7 Hz, 0.67H), 3.77 – 3.66 (m, 4H), 3.60 (dd, J = 10.2, 6.6 Hz, 1H), 3.29 (d, J = 10.3 

Hz, 1H), 2.82 (t, J = 9.7 Hz, 2H), 2.61 – 2.54 (m, 1.33H), 2.54 – 2.47 (m, 2H), 2.47 – 2.41 (m, 

1.33H), 2.27 (t, J = 6.8 Hz, 1H), 2.21 (s, 3H), 2.12 (s, 2H), 2.02 (t, J = 6.7 Hz, 0.67H), 1.37 – 

1.25 (m, 3.33H), 1.18 – 1.11 (m, 2H), 1.04 – 0.97 (m, 1.33H), 0.69 – 0.63 ppm (m, 5H); 13C 

NMR (176 MHz, C6D6) δ 171.49, 171.43, 141.47, 140.41, 139.82, 139.64, 137.60, 137.42, 

132.04, 131.90, 131.25, 131.16, 129.64, 128.98, 128.57, 128.44, 121.14, 110.65 (d, JRh-C = 4.7 

Hz), 109.83 (d, JRh-C = 4.6 Hz), 100.89 (d, JRh-C = 3.3 Hz), 100.09 (d, JRh-C = 3.5 Hz), 86.62 (d, 

JRh-C = 4.0 Hz), 86.57 (d, JRh-C = 4.1 Hz), 86.19 (d, JRh-C = 3.7 Hz), 85.35 (d, JRh-C = 3.7 Hz), 
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85.07 (d, JRh-C = 3.5 Hz), 84.19 (d, JRh-C = 3.6 Hz), 66.10, 63.31, 60.82, 60.66, 59.16, 56.07, 

45.87, 42.12, 41.46 (d, JRh-C = 13.5 Hz), 41.32 (d, JRh-C = 13.6 Hz), 37.56 (d, JRh-C = 12.4 Hz), 

21.27, 21.12, 13.88, 13.83 ppm; FT‐IR: 
~ = 3055, 2987, 2932, 1734, 1486, 1183, 1010 cm-1; 

HRMS: calc. for [M+H]+ C28H29O2N
79BrRh: 596.06660, found: 596.06628; calc. for [M+H]+ 

C28H29O2N
81BrRh: 598.06455, found: 598.06439;  RT

D = +11.2 (CH2Cl2, c = 0.42). 

(+)-Bis(η2-ethylene)[η5-(1R,3R,4R)-1,4-bis(4-bromophenyl)-3-(ethoxycarbonyl)-1,2,3,4-

tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

100b: Using Method F, 60% yield; two separable isomers with 

57:43 ratio; For mixture, 1H NMR (700 MHz, C6D6): δ 7.62 

(d, J = 8.2 Hz, 1.50H), 7.49 (d, J = 8.2 Hz, 2H), 7.44 – 7.40 

(m, 3.50H), 7.23 (d, J = 8.2 Hz, 3.50H), 6.84 (d, J = 8.2 Hz, 

1.50H), 6.76 (d, J = 8.2 Hz, 2H), 4.83 (s, 1H), 4.77 (s, 0.75H), 

4.61 – 4.56 (m, 2H), 4.55 (t, J = 2.6 Hz, 0.75H), 4.08 (d, J = 10.3 Hz, 0.75H), 3.99 (dd, J = 

10.3, 5.8 Hz, 0.75H), 3.77 (s, 1H), 3.75 – 3.66 (m, 4.25H), 3.52 (dd, J = 10.3, 6.0 Hz, 1H), 3.19 

(d, J = 10.3 Hz, 1H), 2.74 (t, J = 9.7 Hz, 2H), 2.57 – 2.51 (m, 1.50H), 2.38 (t, J = 9.5 Hz, 2H), 

2.10 (t, J = 6.4 Hz, 1H), 1.88 (t, J = 6.2 Hz, 0.75H), 1.37 – 1.28 (m, 2H), 1.26 – 1.19 (m, 

1.50H), 1.10 – 1.03 (m, 2H), 1.03 – 0.96 (m, 1.50H), 0.70 – 0.63 ppm (m, 5.25H); 13C NMR 

(176 MHz, C6D6): δ 171.28, 171.25, 142.14, 141.59, 141.22, 139.63, 132.06, 131.99, 131.93, 

131.40, 131.28, 131.11, 130.37, 130.16, 128.41, 122.06, 121.91, 121.38, 121.23, 109.77 (d, 

JRh-C = 4.5 Hz), 109.72 (d, JRh-C = 4.7 Hz), 99.98 (d, JRh-C = 3.3 Hz), 99.91 (d, JRh-C = 3.5 Hz), 

86.91 (d, JRh-C = 4.0 Hz), 86.75 (d, JRh-C = 4.1 Hz), 86.30 (d, JRh-C = 3.7 Hz), 85.15 (d, JRh-C = 

3.5 Hz), 85.08 (d, JRh-C = 3.7 Hz), 83.97 (d, JRh-C = 3.6 Hz), 65.80, 63.08, 60.92, 60.77, 58.69, 

55.68, 45.70, 41.96, 41.57 (d, JRh-C = 13.5 Hz), 41.33 (d, JRh-C = 13.0 Hz), 37.70 (d, JRh-C = 

12.7 Hz), 37.51 (d, JRh-C = 12.7 Hz), 13.86, 13.81 ppm; FT‐IR: 
~ = 3054, 2986, 1730, 1485, 

1184, 1010 cm-1; HRMS: calc. for [M+H]+ C27H29O2N
79Br2Rh: 659.96146, found: 659.96204; 

calc. for [M+H]+ C27H29O2N
79Br81BrRh: 661.95996, found: 661.96014; calc. for [M+H]+ 

C27H29O2N
81Br2Rh: 663.95737, found: 663.95734;  RT

D = +49.8 (CH2Cl2, c = 1.00). 

(+)-Bis(η2-ethylene)[η5-(1R,3R,4R)-4-(4-bromophenyl)-3-(ethoxycarbonyl)-1-(4-

fluorophenyl)-1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 
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100c: Using Method F, 76% yield; two separable isomers with 

58:42 ratio; For mixture, 1H NMR (700 MHz, C6D6): δ 7.64 (d, 

J = 8.0 Hz, 1.44H), 7.62 – 7.59 (m, 2H), 7.42 (d, J = 8.0 Hz, 

1.44H), 7.24 (d, J = 8.1 Hz, 2H), 6.98 – 6.93 (m, 3.44H), 6.79 

– 6.74 (m, 3.44H), 4.85 (s, 1H), 4.81 (s, 0.72H), 4.65 (d, J = 6.5 

Hz, 1H), 4.61 (s, 1H), 4.56 (s, 0.72H), 4.10 (d, J = 10.3 Hz, 0.72H), 4.01 (dd, J = 10.3, 6.0 Hz, 

0.72H), 3.79 (s, 1H), 3.78 – 3.66 (m, 4.88H), 3.54 (dd, J = 10.3, 6.0 Hz, 1H), 3.21 (d, J = 10.3 

Hz, 1H), 2.76 (t, J = 9.6 Hz, 2H), 2.59 – 2.52 (m, 1.44H), 2.44 – 2.36 (m, 3.44H), 2.13 (t, J = 

6.3 Hz, 1H), 1.91 (t, J = 6.3 Hz, 0.72H), 1.37 – 1.30 (m, 1.44H), 1.28 – 1.21 (m, 2H), 1.12 – 

1.04 (m, 2H), 1.04 – 0.97 (m, 1.44H), 0.70 – 0.62 ppm (m, 5.16H); 13C NMR (176 MHz, C6D6): 

δ 171.31, 171.30, 162.86 (d, J = 245.5 Hz), 162.77 (d, J = 246.0 Hz), 141.26, 139.67, 139.01 

(d, J = 3.1 Hz), 138.49 (d, J = 3.0 Hz), 132.00, 131.92, 131.28, 131.14, 130.23 (d, J = 7.8 Hz), 

130.08 (d, J = 8.0 Hz), 121.37, 121.22, 115.70 (d, J = 21.3 Hz), 115.01 (d, J = 21.2 Hz), 110.34 

(d, JRh-C = 4.5 Hz), 109.80 (d, JRh-C = 4.5 Hz), 100.38 (d, JRh-C = 3.2 Hz), 99.95 (d, JRh-C = 3.5 

Hz), 86.88 (d, JRh-C = 4.0 Hz), 86.70 (d, JRh-C = 4.1 Hz), 86.25 (d, JRh-C = 3.7 Hz), 85.15 (d, JRh-

C = 3.3 Hz), 85.13 (d, JRh-C = 3.5 Hz), 84.02 (d, JRh-C = 3.6 Hz), 65.89, 63.18, 60.90, 60.75, 

58.62, 55.55, 45.75, 41.99, 41.52 (d, JRh-C = 13.2 Hz), 41.31 (d, JRh-C = 13.4 Hz), 37.67 (d, JRh-

C = 12.5 Hz), 37.40 (d, JRh-C = 13.0 Hz), 13.87, 13.82 ppm; FT‐IR: 
~ = 3318, 3055, 2987, 2926, 

1732, 1603, 1508, 1223, 1185, 1156 cm-1; HRMS: calc. for [M+H]+ C27H29O2N
79BrFRh: 

600.04153, found: 600.04169; calc. for [M+H]+ C27H29O2N
81BrFRh: 602.03948, found: 

602.03967;  RT

D = +60.3 (CH2Cl2, c = 0.35). 

(+)-Bis(η2-ethylene)[η5-(1R,3R,4R)-4-(4-bromophenyl)-3-(ethoxycarbonyl)-1-(2-

methylphenyl)-1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

100d: Using Method F, 66% yield; two inseparable isomers 

with 56:44 ratio; For mixture, 1H NMR (700 MHz, C6D6): δ 

8.45 (d, J = 7.8 Hz, 0.79H), 7.63 (d, J = 7.8 Hz, 2H), 7.41 (d, 

J = 7.8 Hz, 2H), 7.27 (t, J = 7.5 Hz, 1H), 7.24 – 7.20 (m, 

1.58H), 7.16 – 7.14 (m, 1H), 7.08 – 7.00 (m, 3.37H), 7.00 – 

6.96 (m, 1H), 6.78 (d, J = 7.8 Hz, 1.58H), 5.14 (d, J = 7.4 Hz, 0.79H), 4.90 (s, 1H), 4.87 (s, 

0.79H), 4.66 (s, 0.79H), 4.62 (s, 1H), 4.17 – 4.11 (m, 1H), 4.11 – 4.05 (m, 0.79H), 3.81 (s, 

0.79H), 3.78 – 3.62 (m, 6.37H), 3.28 (d, J = 10.3 Hz, 0.79H), 2.85 – 2.74 (m, 1.58H), 2.56 (d, 

J = 9.7 Hz, 2H), 2.50 – 2.38 (m, 3.58H), 2.29 (s, 2.37H), 2.28 (s, 3H), 2.26 (s, 0.79H), 1.94 – 
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1.85 (m, 1H), 1.17 – 1.09 (m, 1.58H), 1.08 – 0.99 (m, 2H), 0.94 – 0.88 (m, 3.58H), 0.68 (t, J = 

7.1 Hz, 2.37H), 0.63 ppm (t, J = 7.1 Hz, 3H); 13C NMR (176 MHz, C6D6): δ 171.53, 171.43, 

141.43, 141.06, 139.58, 135.27, 131.98, 131.93, 131.29, 131.11, 130.01, 128.42, 128.35, 

128.31, 128.12, 127.59, 126.57, 121.36, 121.18, 110.29 (d, JRh-C = 4.7 Hz), 109.95, 100.85, 

100.15 (d, JRh-C = 3.5 Hz), 86.69 (d, JRh-C = 4.0 Hz), 86.56 (d, JRh-C = 3.4 Hz), 86.27 (d, JRh-C 

= 3.7 Hz), 85.27, 84.81 (d, JRh-C = 3.3 Hz), 83.95 (d, JRh-C = 3.7 Hz), 66.39, 63.24, 60.84, 60.65, 

54.92, 45.95, 42.10, 41.68 (d, JRh-C = 13.9 Hz), 41.57 (d, JRh-C = 13.4 Hz), 37.78 (d, JRh-C = 

12.3 Hz), 37.48 (d, JRh-C = 12.7 Hz), 19.39, 13.90, 13.80 ppm; FT‐IR: 
~ = 3055, 2924, 1723, 

1488, 1185, 1010 cm-1; HRMS: calc. for [M+H]+ C28H32O2N
79BrRh: 596.06660, found: 

596.06622; calc. for [M+H]+ C28H32O2N
81BrRh: 598.06455, found: 598.06439;   RT

D = +40.5 

(CH2Cl2, c = 0.20). 

(+)-Bis(η2-ethylene)[η5-(1R,3R,4R)-1-(4-bromophenyl)-3-(ethoxycarbonyl)-4-

(naphthalen-2-yl)-1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

100e: Using Method G, 65% yield; two inseparable isomers 

with 50:50 ratio; For mixture, 1H NMR (700 MHz, C6D6): δ 

8.31 (s, 1H), 8.19 (d, J = 8.3 Hz, 1H), 7.78 (d, J = 8.2 Hz, 2H), 

7.72 – 7.66 (m, 2H), 7.63 – 7.57 (m, 3H), 7.53 (d, J = 8.2 Hz, 

2H), 7.44 (d, J = 8.2 Hz, 2H), 7.33 – 7.21 (m, 7H), 6.89 (d, J 

= 8.1 Hz, 2H), 4.93 (s, 1H), 4.82 (s, 1H), 4.67 (d, J = 6.9 Hz, 1H), 4.62 (t, J = 2.5 Hz, 1H), 4.55 

(t, J = 2.5 Hz, 1H), 4.41 (d, J = 10.3 Hz, 1H), 4.29 – 4.24 (m, 1H), 3.85 – 3.78 (m, 3H), 3.76 

(s, 1H), 3.55 (d, J = 10.3 Hz, 1H), 3.04 (s, 3H), 3.00 (s, 3H), 2.83 – 2.76 (m, 2H), 2.66 – 2.60 

(m, 2H), 2.51 – 2.39 (m, 4H), 2.12 (t, J = 6.7 Hz, 1H), 1.89 (t, J = 6.5 Hz, 1H), 1.47 – 1.41 (m, 

2H), 1.30 – 1.22 (m, 2H), 1.16 – 1.05 ppm (m, 4H); 13C NMR (176 MHz, C6D6): δ 171.97, 

171.91, 142.27, 141.69, 139.49, 138.01, 134.05, 133.94, 133.57, 133.24, 132.06, 131.38, 

130.42, 130.23, 129.19, 128.80, 128.41, 128.35, 128.30, 127.71, 126.93, 126.51, 126.25, 

126.19, 126.07, 122.03, 121.86, 110.32 (d, JRh-C = 4.5 Hz), 109.76 (d, JRh-C = 4.7 Hz), 100.35 

(d, JRh-C = 3.5 Hz), 99.96 (d, JRh-C = 3.3 Hz), 86.92 (d, JRh-C = 4.0 Hz), 86.71 (d, JRh-C = 4.1 

Hz), 86.67 (d, JRh-C = 3.8 Hz), 85.54 (d, JRh-C = 3.5 Hz), 85.05 (d, JRh-C = 3.7 Hz), 84.01 (d, JRh-

C = 3.6 Hz), 65.93, 63.37, 60.07, 58.74, 55.81, 51.39, 51.32, 46.40, 42.62, 41.57 (d, JRh-C = 13.7 

Hz), 41.36 (d, JRh-C = 13.2 Hz), 37.91 (d, JRh-C = 12.2 Hz), 37.53 (d, JRh-C = 12.8 Hz) ppm; FT‐

IR: 
~ = 3053, 2988, 2951, 1736, 1484, 1402, 1198, 1168 cm-1; HRMS: calc. for [M+H]+ 
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C30H30O2N
79BrRh: 618.05095, found: 618.05048; calc. for [M+H]+ C30H30O2N

81BrRh: 

620.04890, found: 620.04865;  RT

D = +59.0 (CH2Cl2, c = 0.21). 

(+)-Bis(η2-ethylene)[η5-(1R,3R,4R)-1-(4-bromophenyl)-3-(ethoxycarbonyl)-2-methyl-4-

(naphthalen-2-yl)-1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

100f: Using Method G, 81% yield; two inseparable isomers 

with 55:45 ratio; For mixture, 1H NMR (700 MHz, C6D6): δ 

8.30 (s, 0.82H), 8.24 (d, J = 8.1 Hz, 0.82H), 7.77 (d, J = 8.3 

Hz, 2H), 7.70 – 7.66 (m, J = 7.1 Hz, 1.82H), 7.63 – 7.50 (m, 

4.64 H), 7.44 (d, J = 8.3 Hz, 1.64H), 7.32 – 7.25 (m, 5.46 H), 

7.25 – 7.20 (m, 1.64H), 7.00 (d, J = 8.2 Hz, 2H), 4.97 (s, 0.82H), 4.74 (d, J = 10.2 Hz, 1H), 

4.69 (s, 1H), 4.61 (t, J = 2.6 Hz, 0.82H), 4.53 (t, J = 2.6 Hz, 1H), 4.02 (d, J = 10.2 Hz, 1H), 

3.92 (s, 0.82H), 3.71 – 3.64 (m, 2.64H), 3.40 (d, J = 10.4 Hz, 0.82H), 3.17 (s, 1H), 2.99 (s, 

2.46H), 2.98 (s, 3H), 2.90 (t, J = 9.6 Hz, 1.64H), 2.68 – 2.60 (m, 2H), 2.54 – 2.47 (m, 2H), 2.41 

(t, J = 9.6 Hz, 1.64H), 2.10 (s, 2.46H), 2.09 (s, 3H), 1.49 – 1.42 (m, 2H), 1.24 – 1.18 (m, 1.64H), 

1.17 – 1.05 ppm (m, 3.64H); 13C NMR (176 MHz, C6D6) δ 171.82, 171.69, 170.03, 142.77, 

142.46, 138.09, 136.88, 134.02, 133.89, 133.71, 133.38, 132.13, 131.34, 131.23, 130.44, 

129.52, 128.86, 128.53, 127.79, 127.64, 126.90, 126.55, 126.33, 126.29, 126.21, 121.82, 

121.68, 110.72 (d, JRh-C = 4.6 Hz), 108.79 (d, JRh-C = 4.5 Hz), 99.94 (d, JRh-C = 3.4 Hz), 98.59 

(d, JRh-C = 3.4 Hz), 87.57 (d, JRh-C = 3.9 Hz), 87.07 (d, JRh-C = 4.1 Hz), 85.62 (d, JRh-C = 3.5 

Hz), 85.47 (d, JRh-C = 3.7 Hz), 84.84 (d, JRh-C = 3.6 Hz), 84.56 (d, JRh-C = 3.5 Hz), 75.05, 72.22, 

67.85, 64.57, 51.21, 51.16, 46.08, 43.62, 42.46 (d, JRh-C = 13.3 Hz), 41.40 (d, JRh-C = 13.0 Hz), 

41.17, 41.06, 37.78 (d, JRh-C = 12.6 Hz), 37.53 (d, JRh-C = 12.9 Hz) ppm; FT‐IR: 
~ = 3053, 

2988, 2951, 1741, 1484, 1402, 1198, 1167 cm-1; HRMS: calc. for C31H32O2N
79BrRh: 

632.06660, found: 632.06702; calc. for [M+H]+ C31H32O2N
81BrRh: 634.06455, found: 

634.06494;  RT

D = +60.0 (CH2Cl2, c = 0.26). 

(+)-Bis(η2-ethylene)[η5-(1R,3R,4R)-3-(ethoxycarbonyl)-4-(4-methylphenyl)-1-(4-

(trifluoromethyl)phenyl)-1,2,3,4-

tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

100g: Using Method F, 80% yield; two inseparable isomers 

with 62:38 ratio; For mixture, 1H NMR (700 MHz, C6D6): δ 

7.82 (d, J = 7.7 Hz, 1.23H), 7.65 (d, J =  8.0 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 11.4 



Chapter 7. Experimental Part 
 

134 
 

Hz, 1.23H), 7.13 (d, J = 7.7 Hz, 1.23H), 7.07 (d, J = 7.7 Hz, 2H), 7.03 (d, J = 7.7 Hz, 1.23H), 

6.96 (d, J = 7.7 Hz, 2H), 5.01 (s, 1H), 4.71 (s, 0.61H), 4.68 (d, J = 6.8 Hz, 1H), 4.61 (t, J = 2.5 

Hz, 1H), 4.57 (t, J = 2.5 Hz, 0.61H), 4.27 – 4.24 (m, 0.61H), 4.20 – 4.16 (m, 0.61H), 3.89 (s, 

0.61H), 3.85 (d, J = 6.9 Hz, 0.61H), 3.80 – 3.75 (m, 2H), 3.75 – 3.70 (m, 1.22H), 3.70 (s, 1H), 

3.35 (d, J = 10.3 Hz, 1H), 2.75 (t, J = 9.8 Hz, 2H), 2.61 (d, J = 9.6 Hz, 1.22H), 2.51 (d, J = 

10.3 Hz, 1.22H), 2.36 (t, J = 9.9 Hz, 2H), 2.17 (d, J = 7.0 Hz, 1.83H), 2.15 (t, J = 6.8 Hz, 1H), 

2.10 (s, 3H), 1.89 (t, J = 6.7 Hz, 0.61H), 1.45 – 1.38 (m, 1.22H), 1.25 – 1.17 (m, 2H), 1.13 – 

1.00 (m, 3.22H), 0.73 – 0.67 ppm (m, 4.83H); 13C NMR (176 MHz, C6D6): δ 171.65, 171.59, 

147.22, 146.79, 139.15, 137.33, 136.93, 136.79, 130.14, 130.10 (q, J = 32.2 Hz), 130.00 (q, J 

= 32.1 Hz), 129.57, 129.29, 128.95, 128.93, 128.91, 128.41, 128.35, 128.31, 128.12, 127.99, 

125.94, 125.81 (q, J = 3.6 Hz), 125.09 (q, J = 3.7 Hz), 124.40, 110.72 (d, JRh-C = 4.5 Hz), 

109.28 (d, JRh-C = 4.7 Hz), 100.86 (d, JRh-C = 3.5 Hz), 99.68 (d, JRh-C = 3.3 Hz), 86.92 (d, JRh-C 

= 4.0 Hz), 86.68 (d, JRh-C = 3.7 Hz), 86.59 (d, JRh-C = 4.1 Hz), 85.38 (d, JRh-C = 3.5 Hz), 84.88 

(d, JRh-C = 3.8 Hz), 83.86 (d, JRh-C = 3.7 Hz), 66.11, 63.39, 60.84, 60.69, 58.86, 56.01, 46.04, 

42.08, 41.61 (d, JRh-C = 13.6 Hz), 41.36 (d, JRh-C = 13.7 Hz), 37.72 (d, JRh-C = 13.4 Hz), 37.29 

(d, JRh-C = 12.9 Hz), 21.19, 21.05, 13.91, 13.85 ppm; FT‐IR: 
~ = 3054, 2987, 1731, 1513, 1322, 

1163, 1121, 1066 cm-1; HRMS: calc. for [M+H]+ C29H32O2NF3Rh: 586.14347, found: 

586.14386;  RT

D = +40.4 (CHCl3, c = 0.48). 

(+)-Bis(η2-ethylene)[η5-(1R,3R,4R)-4-(4-bromophenyl)-3-(ethoxycarbonyl)-1-(4-

(trifluoromethyl)phenyl)-1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

100h: Using Method F, 79% yield; two inseparable isomers 

with 59:41 ratio; For mixture, 1H NMR (700 MHz, C6D6): δ 

7.66 – 7.60 (m, 3.39H), 7.50 (d, J = 8.0 Hz, 12H), 7.43 (d, J 

= 8.0 Hz, 1.39H), 7.32 (d, J = 8.0 Hz, 1.39H), 7.24 (d, J = 8.0 

Hz, 2H), 7.02 (d, J = 8.0 Hz, 1.39H), 6.77 (d, J = 8.0 Hz, 2H), 

4.83 (s, 1H), 4.70 (s, 0.69H), 4.62 (d, J = 6.4 Hz, 1H), 4.60 (t, J = 2.4 Hz, 1H), 4.56 – 4.54 (m, 

0.69H), 4.10 (d, J = 10.3 Hz, 0.69H), 4.00 (dd, J = 10.3, 5.6 Hz, 0.69H), 3.78 – 3.70 (m, 3.39H), 

3.69 (s, 1.69H), 3.52 (dd, J = 10.3, 5.9 Hz, 1H), 3.19 (d, J = 10.3 Hz, 1H), 2.72 (t, J = 9.7 Hz, 

2H), 2.57 – 2.52 (m, J = 1.39H), 2.41 – 2.36 (m, 1.39H), 2.31 (t, J = 9.8 Hz, 2H), 2.13 (t, J = 

6.2 Hz, 1H), 1.91 (t, J = 6.0 Hz, 0.69H), 1.37 – 1.30 (m, 1.39H), 1.23 – 1.16 (m, 2H), 1.09 – 

0.97 (m, 2.39H), 0.70 – 0.64 ppm (m, 5.07H); 13C NMR (176 MHz, C6D6): δ 171.24, 171.22, 

147.01, 146.66, 141.15, 139.56, 131.96, 131.95, 131.31, 131.10, 130.20 (d, J = 32.2 Hz), 
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130.11 (d, J = 32.1 Hz), 128.84, 128.41, 128.35, 128.31, 128.20, 128.12, 128.06, 128.06, 

127.99, 127.92, 125.90, 125.83 (q, J = 3.6 Hz), 125.13 (q, J = 3.6 Hz), 124.36, 121.43, 121.29, 

109.78 (d, JRh-C = 4.5 Hz), 109.28 (d, JRh-C = 4.6 Hz), 99.94 (d, JRh-C = 3.5 Hz), 99.60 (d, JRh-C 

= 3.2 Hz), 87.09 (d, JRh-C = 4.0 Hz), 86.85 (d, JRh-C = 4.0 Hz), 86.41 (d, JRh-C = 3.7 Hz), 85.23 

(d, JRh-C = 3.5 Hz), 84.98 (d, JRh-C = 3.7 Hz), 83.91 (d, JRh-C = 3.6 Hz), 65.64, 62.99, 60.98, 

60.84, 58.81, 55.87, 45.65, 41.94, 41.68 (d, JRh-C = 13.2 Hz), 41.36 (d, JRh-C = 12.9 Hz), 37.78 

(d, JRh-C = 12.8 Hz), 37.40 (d, JRh-C = 12.7 Hz), 13.86, 13.81 ppm; FT‐IR: 
~ = 3056, 2988, 

1731, 1487, 1322, 1162, 1121, 1065 cm-1; HRMS: calc. for [M+H]+ C28H29O2N
79BrF3Rh: 

650.03833, found: 650.03931;  RT

D = +29.9 (CH2Cl2, c = 0.78). 

(+)-Bis(η2-ethylene)[η5-(1R,3R,4R)-4-(4-chlorophenyl)-3-(ethoxycarbonyl)-1-(4-

(trifluoromethyl)phenyl)-1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

100i: Using Method F, 59% yield; two inseparable isomers 

with 57:43 ratio; For mixture, 1H NMR (700 MHz, C6D6): δ 

7.68 (d, J = 8.1 Hz, 1.51H), 7.64 (d, J = 7.9 Hz, 2H), 7.50 (d, 

J = 7.9 Hz, 2H), 7.32 (d, J = 7.9 Hz, 1.51H), 7.27 (d, J = 8.1 

Hz, 1.51H), 7.09 (d, J = 8.1 Hz, 2H), 7.03 (d, J = 7.9 Hz, 

1.51H), 6.83 (d, J = 8.1 Hz, 2H), 4.85 (s, 1H), 4.71 (s, 0.75H), 4.63 (d, J = 6.5 Hz, 1H), 4.60 

(s, 1H), 4.55 (s, 0.75H), 4.12 (d, J = 10.3 Hz, 0.75H), 4.01 (dd, J = 10.4, 5.7 Hz, 0.75H), 3.78 

– 3.71 (m, 3.51H), 3.70 (s, 1.75H), 3.53 (dd, J = 10.3, 5.9 Hz, 1H), 3.21 (d, J = 10.3 Hz, 1H), 

2.72 (t, J = 9.7 Hz, 2H), 2.59 – 2.51 (m, 1.51H), 2.40 (d, J = 9.7 Hz, 1.51H), 2.31 (t, J = 9.8 

Hz, 2H), 2.14 (t, J = 6.2 Hz, 1H), 1.91 (t, J = 6.1 Hz, 0.75H), 1.38 – 1.31 (m, 1.51H), 1.25 – 

1.15 (m, 2H), 1.08 – 0.99 (m, 2H), 0.95 – 0.87 (m, 1.51H), 0.70 – 0.63 ppm (m, 5.25H); 13C 

NMR (176 MHz, C6D6): δ 171.26, 171.23, 147.01, 146.67, 140.66, 139.07, 133.31, 133.18, 

131.61, 130.75, 130.20 (d, J = 32.2 Hz), 130.11 (q, J = 32.1 Hz), 128.99, 128.91, 128.84, 

128.41, 128.35, 128.34, 128.31, 128.12, 127.99, 125.90, 125.86, 125.83 (q, J = 3.6 Hz), 125.80, 

125.68, 125.13 (q, JRh-C = 3.6 Hz), 124.36, 109.89 (d, JRh-C = 4.5 Hz), 109.29 (d, JRh-C = 4.6 

Hz), 100.03 (d, JRh-C = 3.5 Hz), 99.63 (d, JRh-C = 3.2 Hz), 87.09 (d, JRh-C = 4.0 Hz), 86.84 (d, 

JRh-C = 4.0 Hz), 86.41 (d, JRh-C = 3.7 Hz), 85.23 (d, JRh-C = 3.5 Hz), 84.98 (d, JRh-C = 3.7 Hz), 

83.91 (d, JRh-C = 3.6 Hz), 65.71, 63.05, 60.98, 60.83, 58.82, 55.88, 45.59, 41.86, 41.68 (d, JRh-

C = 12.8 Hz), 41.36 (d, JRh-C = 12.8 Hz), 37.75 (d, JRh-C = 12.5 Hz), 37.40 (d, JRh-C = 13.1 Hz), 

14.39, 13.87, 13.81 ppm; FT‐IR: 
~ = 3059, 2988, 1732, 1491, 1322, 1162, 1122, 1065 cm-1; 
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HRMS: calc. for [M+H]+ C28H29O2NClF3Rh: 606.08885, found: 606.08893;  RT

D = +51.4 

(Toluene, c = 0.29). 

(+)-Bis(η2-ethylene)[η5-(1R,3R,4R)-3-(ethoxycarbonyl)-4-isopropyl-1-(4-

(trifluoromethyl)phenyl)-1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

100j: Using Method F, 65% yield; two inseparable isomers with 

67:33 ratio; For mixture, 1H NMR (700 MHz, C6D6) δ 7.50 (d, J 

= 8.0 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 7.9 Hz, 1H), 

6.90 (d, J = 7.9 Hz, 1H), 5.29 (s, 1H), 4.73 (s, 1H), 4.70 (s, 0.5H), 

4.57 (s, 0.5H), 4.40 (d, J = 8.7 Hz, 1H), 4.37 (s, 0.5H), 4.00 – 

3.94 (m, 3H), 3.69 (t, J = 9.1 Hz, 0.5H), 3.64 (s, 1H), 3.59 (d, J = 8.5 Hz, 0.5H), 3.51 (t, J = 

9.2 Hz, 1H), 3.20 (d, J = 10.0 Hz, 0.5H), 2.78 (t, J = 10.0 Hz, 2H), 2.70 – 2.57 (m, 2H), 2.37 

(d, J = 9.7 Hz, 1H), 2.32 (t, J = 10.0 Hz, 2H), 2.12 – 2.04 (m, 1.5H), 1.92 – 1.84 (m, 1H), 1.55 

(t, J = 8.3 Hz, 0.5H), 1.46 (d, J = 7.0 Hz, 1.5H), 1.39 – 1.26 (m, 2.5H), 1.26 – 1.17 (m, 2H), 

1.11 – 1.02 (m, 3H), 0.97 – 0.92 (m, 4.5H), 0.89 (d, J = 7.0 Hz, 3H), 0.86 ppm (d, J = 7.0 Hz, 

3H); 13C NMR (176 MHz, C6D6): δ 173.05, 172.99, 146.67, 146.10, 129.99 (q, J = 32.2 Hz), 

129.85 (q, J = 32.1 Hz), 128.87, 128.68, 128.41, 128.35, 128.31, 128.12, 127.99, 125.91, 

125.73 (q, J = 3.7 Hz), 124.99 (q, J = 3.7 Hz), 124.37, 111.06 (d, JRh-C = 4.5 Hz), 106.55 (d, 

JRh-C = 4.2 Hz), 100.33 (d, JRh-C = 3.5 Hz), 99.40 (d, JRh-C = 3.6 Hz), 86.09 (d, JRh-C = 4.1 Hz), 

85.82 (d, JRh-C = 4.2 Hz), 85.70 (d, JRh-C = 3.5 Hz), 85.02 (d, JRh-C = 3.9 Hz), 84.69 (d, JRh-C = 

3.9 Hz), 84.44 (d, JRh-C = 3.8 Hz), 61.11, 60.97, 60.55, 59.95, 57.85, 56.14, 43.76, 41.11 (d, 

JRh-C = 13.5 Hz), 40.75 (d, JRh-C = 13.7 Hz), 39.00, 37.50 (d, JRh-C = 13.0 Hz), 37.30 (d, JRh-C = 

13.1 Hz), 31.36, 31.31, 21.30, 19.90, 18.56, 18.49, 14.07, 14.03 ppm; FT‐IR: 
~ = 3057, 2961, 

1734, 1322, 1132, 1122, 1065 cm-1; HRMS: calc. for [M+H]+ C25H32O2NF3Rh: 538.14347, 

found: 538.14319;  RT

D = +32.9 (CH2Cl2, c = 0.14). 

(+)-Bis(η2-ethylene)[η5-(1R,3R,4R)-3-(ethoxycarbonyl)-4-(naphthalen-2-yl)-1-(4-

(trifluoromethyl)phenyl)-1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

100k: Using Method  F, 83% yield; two inseparable isomers 

with 59:41 ratio; For mixture, 1H NMR (700 MHz, C6D6): δ 

8.27 (s, 0.69H), 8.23 (d, J = 8.4 Hz, 0.69H), 7.79 (t, J = 7.7 

Hz, 1.69H), 7.71 (d, J = 7.9 Hz, 0.69H), 7.70 – 7.66 (m, 3H), 

7.64 – 7.58 (m, 3H), 7.52 (d, J = 8.0 Hz, 2H), 7.36 – 7.22 



Chapter 7. Experimental Part 

137 
 

(m, 5.45H), 7.08 (d, J = 7.9 Hz, 1.38H), 4.94 (s, 1H), 4.76 (s, 0.69H), 4.73 (d, J = 6.8 Hz, 1H), 

4.62 (t, J = 2.6 Hz, 1H), 4.56 (t, J = 2.5 Hz, 0.69H), 4.42 (d, J = 10.3 Hz, 0.69H), 4.28 (dd, J = 

10.3, 6.0 Hz, 0.69H), 3.87 (d, J = 6.7 Hz, 0.69H), 3.83 (dd, J = 10.3, 6.3 Hz, 1H), 3.77 (s, 

0.69H), 3.74 (s, 1H), 3.73 – 3.60 (m, 3.38H), 3.55 (d, J = 10.3 Hz, 1H), 2.79 (t, J = 9.8 Hz, 

2H), 2.69 – 2.61 (m, J = 9.3 Hz, 1.38H), 2.49 – 2.43 (m, 1.38H), 2.40 (t, J = 9.9 Hz, 2H), 2.23 

(t, J = 6.6 Hz, 1H), 1.99 (t, J = 6.4 Hz, 0.69H), 1.49 – 1.41 (m, 1.38H), 1.27 – 1.19 (m, 2H), 

1.16 – 1.11 (m, 1.38H), 1.11 – 1.04 (m, 2H), 0.57 (t, J = 7.1 Hz, 3H), 0.50 ppm (t, J = 7.1 Hz, 

2.07H); 13C NMR (176 MHz, C6D6): δ 171.65, 171.56, 147.19, 146.77, 139.47, 137.98, 134.00, 

133.90, 133.56, 133.22, 130.15 (q, J = 32.2 Hz), 130.04 (q, J = 32.1 Hz), 129.33, 128.95, 

128.91, 128.77, 128.56, 128.41, 128.35, 128.31, 128.30, 128.12, , 127.99, 127.62, 126.93, 

126.55, 126.28, 126.21, 126.08, 125.94, 125.84 (q, J = 3.6 Hz), 125.72, 125.13 (q, J = 3.6 Hz), 

124.40, 110.39 (d, JRh-C = 4.4 Hz), 109.36 (d, JRh-C = 4.6 Hz), 100.48 (d, JRh-C = 3.5 Hz), 99.66 

(d, JRh-C = 3.2 Hz), 87.08 (d, JRh-C = 4.0 Hz), 86.79 (d, JRh-C = 2.9 Hz), 85.57 (d, JRh-C = 3.4 

Hz), 84.99 (d, JRh-C = 3.7 Hz), 83.96 (d, JRh-C = 3.6 Hz), 65.78, 63.27, 60.86, 60.69, 58.85, 

55.97, 46.62, 42.77, 41.67 (d, JRh-C = 13.4 Hz), 41.41 (d, JRh-C = 13.4 Hz), 37.96 (d, JRh-C = 

12.2 Hz), 37.40 (d, JRh-C = 12.9 Hz), 13.81, 13.71 ppm; FT‐IR: 
~ = 3319, 3057, 2990, 1733, 

1324, 1164, 1121, 1067 cm-1; HRMS: calc. for [M+H]+ C32H32O2NF3Rh: 622.14347, found: 

622.14410;  RT

D = +77.7 (CH2Cl2, c = 0.60). 

(+)-Bis(η2-ethylene)[η5-(1R,3R,4R)-4-(4-bromophenyl)-3-(methoxycarbonyl)-1-(4-

fluorophenyl)-1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

100l: Using Method G, 79% yield; two separable isomers with 

60:40 ratio; HRMS: calc. for [M+H]+ C26H27O2N
79BrFRh: 

586.02588, found: 586.02582; calc. for [M+H]+ 

C26H27O2N
81BrFRh: 588.02383, found: 588.02374;  RT

D = 

+65.8 (CH2Cl2, c = 0.26). 

(+)-Bis(η2-ethylene)[η5-(1R,3R,4R)-4-(4-bromophenyl)-3-(methoxycarbonyl)-1-(4-

fluorophenyl)-1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

100l-major: Major isomer, 1H NMR (700 MHz, C6D6): δ 7.60 (dd, J = 8.1, 5.7 Hz, 2H), 7.23 

(d, J = 8.1 Hz, 2H), 6.95 (t, J = 8.1 Hz, 2H), 6.75 (d, J = 8.1 Hz, 2H), 4.84 (s, 1H), 4.61 (d, J = 
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10.3 Hz, 2H), 3.79 (s, 1H), 3.52 (d, J = 10.3 Hz, 1H), 3.20 

(d, J = 10.3 Hz, 1H), 3.08 (s, 3H), 2.75 (t, J = 9.7 Hz, 2H), 

2.40 (t, J = 9.8 Hz, 2H), 2.06 (s, 1H), 1.28 – 1.19 (m, 2H), 

1.12 – 1.02 ppm (m, 2H); 13C NMR (176 MHz, C6D6): δ 

171.61, 162.87 (d, J = 245.6 Hz), 141.18, 138.47 (d, J = 

3.0 Hz), 131.98, 131.05, 130.23 (d, J = 7.8 Hz), 121.30, 115.01 (d, J = 21.2 Hz), 110.31 (d, 

JRh-C = 4.5 Hz), 99.83 (d, JRh-C = 3.5 Hz), 86.89 (d, JRh-C = 4.0 Hz), 86.24 (d, JRh-C = 3.7 Hz), 

84.01 (d, JRh-C = 3.7 Hz), 65.91, 58.63, 51.43, 41.84, 41.53 (d, JRh-C = 13.2 Hz), 37.41 (d, JRh-

C = 13.0 Hz) ppm; FT‐IR: 
~ = 3053, 2988, 2951, 1739, 1507, 1485, 1434, 1198, 1168 cm-1; 

 RT

D = +84.1 (CH2Cl2, c = 0.22). 

(‒)-Bis(η2-ethylene)[η5-(1R,3R,4R)-4-(4-bromophenyl)-3-(methoxycarbonyl)-1-(4-

fluorophenyl)-1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

100l-minor: Minor isomer, 1H NMR (700 MHz, C6D6): δ 

7.62 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 6.96 (dd, 

J = 7.5, 5.9 Hz, 2H), 6.78 – 6.71 (m, 2H), 4.80 (s, 1H), 

4.54 (s, 1H), 4.11 (d, J = 10.3 Hz, 1H), 4.00 (dd, J = 10.3, 

5.8 Hz, 1H), 3.75 (d, J = 6.6 Hz, 1H), 3.68 (s, 1H), 3.07 (s, 

3H), 2.60 – 2.49 (m, 2H), 2.45 – 2.32 (m, 2H), 1.83 (t, J = 6.1 Hz, 1H), 1.36 – 1.28 (m, 2H), 

1.04 – 0.96 ppm (m, 2H); 13C NMR (176 MHz, C6D6) δ 171.59, 162.78 (d, J = 246.0 Hz), 

139.58, 138.96 (d, J = 3.1 Hz), 131.86, 131.38, 130.07 (d, J = 8.0 Hz), 121.46, 115.69 (d, J = 

21.3 Hz), 109.69 (d, JRh-C = 4.5 Hz), 100.31 (d, JRh-C = 3.2 Hz), 86.71 (d, JRh-C = 4.1 Hz), 85.20 

(d, JRh-C = 3.5 Hz), 85.09 (d, JRh-C = 3.7 Hz), 63.17, 55.59, 51.39, 45.50, 41.30 (d, JRh-C = 13.2 

Hz), 37.70 (d, JRh-C = 12.8 Hz) ppm; FT‐IR: 
~ = 3319, 3054, 2987, 1731, 1604, 1509, 1486, 

1435, 1229, 1177 cm-1;  RT

D = -30.5 (CH2Cl2, c = 0.22). 

(+)-Bis(η2-ethylene)[η5-(1R,3R,4R)-3-((benzyloxy)carbonyl)-4-(4-bromophenyl)-1-(4-

fluorophenyl)-1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

100m: Using Method G, 74% yield; two separable isomers 

with 50:50 ratio; For mixture, 1H NMR (700 MHz, C6D6): δ 

7.59 (dd, J = 8.0, 5.7 Hz, 2H), 7.54 (d, J = 8.0 Hz, 2H), 7.35 

(d, J = 8.0 Hz, 2H), 7.16 (t, J = 4.0 Hz, 1H), 7.12 – 7.00 (m, 

7H), 6.95 (dd, J = 15.6, 7.2 Hz, 4H), 6.81 (d, J = 7.4 Hz, 2H), 



Chapter 7. Experimental Part 

139 
 

6.80 – 6.73 (m, 4H), 6.66 (d, J = 8.1 Hz, 2H), 4.87 – 4.82 (m, 2H), 4.82 (s, 1H), 4.80 (s, 1H), 

4.73 (d, J = 7.1 Hz, 1H), 4.71 (d, J = 7.0 Hz, 1H), 4.61 (d, J = 6.7 Hz, 1H), 4.59 (s, 1H), 4.55 

(s, 1H), 4.08 (d, J = 10.4 Hz, 1H), 4.03 (dd, J = 10.4, 5.9 Hz, 1H), 3.78 (s, 1H), 3.73 (d, J = 6.7 

Hz, 1H), 3.65 (s, 1H), 3.55 (dd, J = 10.4, 6.2 Hz, 1H), 3.16 (d, J = 10.4 Hz, 1H), 2.75 (t, J = 

9.6 Hz, 2H), 2.58 – 2.47 (m, 2H), 2.42 – 2.31 (m, 4H), 2.14 – 2.06 (m, 1H), 1.91 (t, J = 6.2 Hz, 

1H), 1.34 – 1.28 (m, 2H), 1.26 – 1.21 (m, 2H), 1.10 – 1.04 (m, 2H), 1.01 – 0.95 ppm (m, 2H); 

13C NMR (176 MHz, C6D6): δ 171.41, 171.36, 162.85 (d, J = 245.5 Hz), 162.77 (d, J = 246.0 

Hz), 140.93, 139.50, 138.95 (d, J = 3.1 Hz), 138.44 (d, J = 3.0 Hz), 135.65, 132.00, 131.95, 

131.39, 131.00, 130.19 (d, J = 7.8 Hz), 130.05 (d, J = 8.0 Hz), 128.68, 128.66, 128.59, 128.56, 

128.55, 128.45, 128.43, 121.44, 121.22, 115.70 (d, J = 21.3 Hz), 115.01 (d, J = 21.2 Hz), 

110.20 (d, JRh-C = 4.5 Hz), 109.77 (d, JRh-C = 4.5 Hz), 100.31 (d, JRh-C = 3.1 Hz),  99.85 (d, JRh-

C = 3.5 Hz), 86.87 (d, JRh-C = 4.0 Hz), 86.71 (d, JRh-C = 4.0 Hz), 86.20 (d, JRh-C = 3.7 Hz), 85.11, 

84.04 (d, JRh-C = 3.6 Hz), 66.81, 66.73, 65.86, 63.15, 58.49, 55.46, 45.84, 42.26, 41.52 (d, JRh-

C = 13.3 Hz), 41.34 (d, JRh-C = 13.2 Hz), 37.65 (d, JRh-C = 12.5 Hz), 37.39 (d, JRh-C = 12.8 Hz) 

ppm; FT‐IR: 
~ = 3321, 3051, 2989, 1734, 1603, 1508, 1223, 1156 cm-1; HRMS: calc. for 

[M+H]+ C32H31O2N
79BrFRh: 662.05718, found: 662.05713; calc. for [M+H]+ 

C32H31O2N
81BrFRh: 664.05513, found: 664.05505;  RT

D = +63.8 (CH2Cl2, c = 0.21). 

(+)-Bis(η2-ethylene)[η5-(1R,3R,4R)-4-(4-bromophenyl)-3-(methoxycarbonyl)-1-(4-

methylphenyl)-1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

100n: Using Method G, 82% yield; two separable isomers 

with 57:43 ratio; HRMS: calc. for [M+H]+ 

C27H30O2N
79BrRh: 582.05095, found: 582.05115; calc. for 

[M+H]+ C27H30O2N
81BrRh: 584.04890, found: 584.04889; 

 RT

D = +31.6 (CH2Cl2, c = 0.23). 

(+)-Bis(η2-ethylene)[η5-(1R,3R,4R)-4-(4-bromophenyl)-3-(methoxycarbonyl)-1-(4-

methylphenyl)-1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

100n-major: Major isomer, 1H NMR (700 MHz, C6D6): 

δ 7.73 (d, J = 7.5 Hz, 2H), 7.23 (d, J = 7.9 Hz, 2H), 7.14 

(d, J = 7.5 Hz, 2H), 6.77 (d, J = 7.9 Hz, 2H), 4.84 (s, 

1H), 4.78 (d, J = 6.7 Hz, 1H), 4.63 (s, 1H), 3.98 (s, 1H), 

3.58 (dd, J = 10.2, 6.5 Hz, 1H), 3.28 (d, J = 10.3 Hz, 



Chapter 7. Experimental Part 
 

140 
 

1H), 3.08 (s, 3H), 2.81 (t, J = 9.5 Hz, 2H), 2.49 (t, J = 9.6 Hz, 2H), 2.24 – 2.18 (m, 4H), 1.34 

– 1.27 (m, 2H), 1.18 – 1.12 ppm (m, 2H); 13C NMR (176 MHz, C6D6): δ 171.80, 141.39, 

139.61, 137.45, 131.96, 131.07, 128.97, 128.56, 121.22, 110.62 (d, JRh-C = 4.6 Hz), 99.97 (d, 

JRh-C = 3.5 Hz), 86.63 (d, JRh-C = 4.1 Hz), 86.19 (d, JRh-C = 3.8 Hz), 84.17 (d, JRh-C = 3.7 Hz), 

66.11, 59.18, 51.39, 41.97, 41.47 (d, JRh-C = 13.1 Hz), 37.56 (d, JRh-C = 13.0 Hz), 21.26 ppm; 

FT‐IR: 
~ = 3051, 2989, 1738, 1513, 1403, 1185, 1105 cm-1;  RT

D = +143.1 (CH2Cl2, c = 0.16). 

(‒)-Bis(η2-ethylene)[η5-(1R,3R,4R)-4-(4-bromophenyl)-3-(methoxycarbonyl)-1-(4-

methylphenyl)-1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

100n-minor: Minor isomer, 1H NMR (700 MHz, C6D6): 

δ 7.64 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 8.1 Hz, 2H), 7.16 

– 7.15 (m, 2H), 6.97 (d, J = 7.7 Hz, 2H), 4.96 (s, 1H), 

4.57 (s, 1H), 4.14 (d, J = 10.4 Hz, 1H), 4.07 (dd, J = 10.3, 

6.3 Hz, 1H), 3.90 (d, J = 6.7 Hz, 1H), 3.70 (s, 1H), 3.07 

(s, 3H), 2.61 – 2.54 (m, 2H), 2.44 (t, J = 9.5 Hz, 2H), 2.12 (s, 3H), 1.96 (t, J = 6.5 Hz, 1H), 

1.39 – 1.27 (m, 2H), 1.05 – 0.98 ppm (m, 2H); 13C NMR (176 MHz, C6D6): δ 171.72, 140.36, 

139.74, 137.64, 131.90, 131.35, 129.64, 128.43, 121.38, 109.74 (d, JRh-C = 4.6 Hz), 100.83 (d, 

JRh-C = 3.3 Hz), 86.59 (d, JRh-C = 4.1 Hz), 85.32 (d, JRh-C = 3.7 Hz), 85.12 (d, JRh-C = 3.6 Hz), 

63.31, 56.13, 51.34, 45.62, 41.31 (d, JRh-C = 13.1 Hz), 37.61 (d, JRh-C = 12.7 Hz), 21.12 ppm; 

FT-IR: 
~ = 3319, 3054, 2987, 1733, 1485, 1433, 1199, 1172 cm-1;  RT

D = -18.0 (CH2Cl2, c = 

0.15). 

(+)-Bis(η2-ethylene)[η5-(1S,3S,4R)-1-(4-bromophenyl)-3-(methoxycarbonyl)-4-

(naphthalen-2-yl)-1,2,3,4-tetrahydrocyclopenta[c]pyridinyl]rhodium(I) 

100o: Using Method G, 88% yield; One single isomer; 1H 

NMR (400 MHz, C6D6): δ 7.86 (s, 1H), 7.73 – 7.68 (m, 1H), 

7.65 (d, J = 7.4 Hz, 1H), 7.63 – 7.56 (m, 2H), 7.36 – 7.29 (m, 

2H), 7.29 – 7.20 (m, 2H), 7.15 – 7.12 (m, 2H), 4.88 – 4.79 (m, 

1H), 4.73 (d, J = 3.3 Hz, 1H), 4.43 (d, J = 1.4 Hz, 1H), 4.39 – 

4.28 (m, 2H), 4.21 (s, 1H), 3.14 (s, 3H), 2.82 – 2.63 (m, 4H), 2.27 (s, 1H), 1.51 – 1.35 ppm (m, 

4H); 13C NMR (101 MHz, C6D6): δ 171.15, 142.79, 139.46, 133.76, 133.28, 132.13, 129.90, 

128.58, 128.17, 128.14, 127.95, 126.24, 126.01, 121.95, 106.71 (d, JRh-C = 3.4 Hz), 106.37 (d, 

JRh-C = 3.7 Hz), 85.61 (d, JRh-C = 4.0 Hz), 85.44 (d, JRh-C = 4.5 Hz), 83.75 (d, JRh-C = 4.0 Hz), 
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61.77, 58.05, 51.25, 43.39, 41.44 (d, JRh-C = 13.5 Hz) ppm; FT-IR: 
~ = 3332, 3053, 2951, 1736, 

1484, 1433, 1199, 1182 cm-1; HRMS: calc. for [M+H]+ C30H30O2N
79BrRh: 618.05095, found: 

618.05210; calc. for [M+H]+ C27H30O2N
81BrRh: 620.04890, found: 620.05016;  RT

D = +13.0 

(CH2Cl2, c = 0.50). 

7.2.3 Experiment Details and Analytic Data for Asymmetric Synthesis of Isoquinolones  

7.2.3.1 Reaction Conditions Optimization with Catalyst 99i 

Table S1. Reaction Conditions Optimization with Catalyst 99i. 

 

Entry concentration 

(M) 

temperature t (h) solvent yield(%) ee(%) 

1 0.1 r.t. 4 DCM 90 82 

2 1 r.t. 1 DCM 90 83 

3 1 -10°C 12 DCM 93 90 

4 1 -10°C 24 CHCl3 72 89 

5 1 -10°C 24 DCE 72 90 

6 1 -10°C 24 EtOH 85 87 

7 1 -10°C 24 CH3CN 22 84 

8 1 -10°C 24 Tol 58 87 

9 1 -10°C 24 THF 76 88 

10 1 -10°C 24 Acetone 67 87 

11 1 -10°C 24 Et2O 76 88 

General procedure: optical pure catalyst 99i (2.53 mg, 5.00 μmol, 0.05 equiv.), DBPO (75 wt%, 1.62 mg, 5.00 

μmol, 0.05 equiv.), hydroxamate 9a (0.10 mmol, 2.00 equiv.) were dissolved into 100 μL or 1 mL solvent. After 

stirring at r.t. for 10 mins and/or sequentially cooling to -10°C, corresponding alkenes 10a (0.20 mmol, 2.00 

equiv.) was added and the reaction was stirred for specific time.  
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7.2.3.2 Investigation of Linear Relationship 

Figure S1. Investigation of linear relationship between ee of catalyst and ee of products. 

 

 

Different ee of catalysts were prepared by mixing two enantiomers of catalyst in certain ratio. 

The result reveals its linear relationship, which means chirality transfer (CT) we proposed 

could be regarded to be equal to ee of product when catalyst is optical pure. 

General procedure: catalyst 99i with different ee (2.53 mg, 5.00 μmol, 0.05 equiv.), DBPO 

(75 wt%, 1.62 mg, 5.00 μmol, 0.05 equiv.), hydroxamates 9a (0.10 mmol, 2.00 equiv.) were 

dissolved into 100 μL DCM. After stirring at r.t. for 10 mins and sequentially cooling to -10°C, 

corresponding alkenes 10a (0.20 mmol, 2.00 equiv.) was added and the reaction was stirred for 

12 hours. 
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7.2.3.3 General Methods and Analytic Data for Synthesis of 11a-11x and 100a-d 

Method I for 11a-11x: 

Without protective precaution from air and moisture, catalyst 99i (2.53 mg, 5.00 μmol, 0.05 

equiv.), dibenzoylperoxide (75 wt%, 1.62 mg, 5.00 μmol, 0.05 equiv.), hydroxamates 9 (0.10 

mmol, 1 equiv.) were dissolved into100 μL DCM. The mixture was allowed to be stirred at r.t. 

for 10 mins. After cooling to -10°C, corresponding alkene 10 (0.20 mmol, 2.00 equiv.) was 

added and the reaction was stirred for 12-48 hours. The resulting mixture was purified on a 

silica gel to afford desired product 11a-11n, 11p-11x. For 11o, 1 mL DCM was used as solvent. 

Method J for 105a-105d: 

Procedure for C‒H activation reactions step is the same with method I. After completion of C‒

H activation reactions, 2 mL THF was added and the mixture was allowed to cool to 0°C, then 

t-BuOK (2 equiv., 0.20 mmol) was added. The resulting mixture was purified on a silica gel to 

afford desired product 105a-1005d after 10 min stirring.  

(S)-3-phenyl-3,4-dihydroisoquinolin-1(2H)-one 

11a: Using Method I, 93% yield; 1H NMR (400 MHz, CDCl3): δ 8.12 (dd, 

J = 7.5, 1.5 Hz, 1H), 7.46 (td, J = 7.5, 1.5 Hz, 1H), 7.42 – 7.32 (m, 6H), 

7.18 (d, J = 7.5 Hz, 1H), 6.06 (s, 1H), 4.86 (ddd, J = 10.9, 4.8, 1.1 Hz, 1H), 

3.21 (dd, J = 15.7, 10.9 Hz, 1H), 3.12 ppm (dd, J = 15.6, 4.8 Hz, 1H); 13C 

NMR (101 MHz, CDCl3): δ 166.47, 141.03, 137.71, 132.70, 129.16, 128.57, 128.40, 128.22, 

127.47, 127.45, 126.56, 56.34, 37.59 ppm; FT‐IR: 
~ = 3204, 3065, 2924, 1652, 1461, 1318 

cm-1; HRMS: calc. for [M+H]+ C15H14NO: 224.10699, found: 224.10738;  RT

D = -159.4 

(CH2Cl2, c = 1.00); HPLC conditions: CHIRAPAK IC column, (CH2Cl2/EtOH = 100/2) / iso-

hexane = 50/50, flow rate = 0.5 mL min-1, major enantiomer: tR = 50.9 min; minor enantiomer: 

tR = 46.5 min, 90% ee. 

(S)-3-(4-methylphenyl)-3,4-dihydroisoquinolin-1(2H)-one 

11b: Using Method I, 89% yield; 1H NMR (400 MHz, CDCl3): δ 8.12 

(dd, J = 7.5, 1.5 Hz, 1H), 7.46 (td, J = 7.5, 1.5 Hz, 1H), 7.37 (t, J = 7.5 

Hz, 1H), 7.32 – 7.24 (m, 2H), 7.22 – 7.15 (m, 3H), 6.09 (s, 1H), 4.82 

(dd, J = 11.1, 4.6 Hz, 1H), 3.24 – 3.04 (m, 2H), 2.36 ppm (s, 3H); 13C 



Chapter 7. Experimental Part 
 

144 
 

NMR (101 MHz, CDCl3): δ 166.49, 138.35, 138.07, 137.82, 132.61, 129.78, 128.47, 128.19, 

127.45, 127.38, 126.46, 56.05, 37.65, 21.24 ppm; FT‐IR: 
~ = 3194, 3077, 2919, 1653, 1460, 

1386, 1319 cm-1; HRMS: calc. for [M+H]+ C16H16NO: 238.12264, found: 238.12298;  RT

D = -

133.0 (CH2Cl2, c = 1.00); HPLC conditions: CHIRAPAK IC column, (CH2Cl2/EtOH = 100/2) 

/ iso-hexane = 50/50, flow rate = 0.5 mL min-1, major enantiomer: tR = 50.3 min; minor 

enantiomer: tR = 43.4 min, 90% ee. 

(S)-3-(4-(tert-butyl)phenyl)-3,4-dihydroisoquinolin-1(2H)-one 

11c: Using Method I, 86% yield; 1H NMR (400 MHz, CDCl3): δ 8.12 

(dd, J = 7.5, 1.4 Hz, 1H), 7.47 (td, J = 7.5, 1.4 Hz, 1H), 7.43 – 7.35 

(m, 3H), 7.35 – 7.31 (m, 2H), 7.19 (d, J = 7.5 Hz, 1H), 6.10 (s, 1H), 

4.84 (dd, J = 11.4, 4.5 Hz, 1H), 3.21 (dd, J = 15.7, 11.4 Hz, 1H), 3.10 

(dd, J = 15.7, 4.5 Hz, 1H), 1.33 ppm (s, 9H); 13C NMR (101 MHz, CDCl3): δ 166.52, 151.68, 

137.91, 137.79, 132.69, 128.35, 128.22, 127.48, 127.41, 126.28, 126.07, 56.04, 37.56, 34.76, 

31.44 ppm; FT‐IR: 
~ = 3189, 3061, 2960, 1657, 1461, 1387, 1318 cm-1; HRMS: calc. for 

[M+H]+ C19H22NO: 280.16959, found: 280.16990;  RT

D = -103.9 (CH2Cl2, c = 1.00); HPLC 

conditions: CHIRAPAK IC column, (CH2Cl2/EtOH = 100/2) / iso-hexane = 50/50, flow rate = 

0.5 mL min-1, major enantiomer: tR = 37.4 min; minor enantiomer: tR = 33.6 min, 91% ee. 

(S)-3-(4-methoxyphenyl)-3,4-dihydroisoquinolin-1(2H)-one 

11d: Using Method I, 83% yield; 1H NMR (400 MHz, CDCl3): δ 8.11 

(d, J = 7.4 Hz, 1H), 7.49 – 7.43 (m, 1H), 7.37 (t, J = 7.6 Hz, 1H), 7.34 

– 7.28 (m, 2H), 7.18 (d, J = 7.4 Hz, 1H), 6.94 – 6.87 (m, 2H), 6.02 (s, 

1H), 4.80 (dd, J = 11.2, 4.5 Hz, 1H), 3.81 (s, 3H), 3.19 (dd, J = 15.7, 

11.2 Hz, 1H), 3.07 ppm (dd, J = 15.7, 4.5 Hz, 1H); 13C NMR (101 MHz, CDCl3): δ 166.42, 

159.75, 137.86, 133.07, 132.60, 128.50, 128.19, 127.78, 127.45, 127.38, 114.47, 55.78, 55.47, 

37.70 ppm; FT‐IR: 
~ = 3187, 3064, 1659, 1510, 1383, 1247 cm-1; HRMS: calc. for [M+H]+ 

C16H16NO2: 254.11756, found: 254.11823;  RT

D = -115.5 (CH2Cl2, c = 1.00); HPLC 

conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 30/70, flow rate = 0.5 mL 

min-1, major enantiomer: tR = 47.6 min; minor enantiomer: tR = 53.8 min, 90% ee. 

(S)-3-(4-fluorophenyl)-3,4-dihydroisoquinolin-1(2H)-one 
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11e: Using Method I, 87% yield; 1H NMR (400 MHz, CDCl3): δ 8.11 

(dd, J = 7.5, 1.5 Hz, 1H), 7.46 (td, J = 7.5, 1.5 Hz, 1H), 7.41 – 7.33 (m, 

3H), 7.18 (d, J = 7.5 Hz, 1H), 7.11 – 7.03 (m, 2H), 6.14 (s, 1H), 4.85 

(dd, J = 10.0, 5.5 Hz, 1H), 3.22 – 3.03 ppm (m,2H); 13C NMR (101 

MHz, CDCl3): δ 166.40, 162.70 (d, J = 247.3 Hz), 137.45, 136.89 (d, J = 3.2 Hz), 132.74, 

128.37, 128.33, 128.25, 127.85 (d, J = 76.5 Hz), 127.52, 116.05 (d, J = 21.6 Hz), 55.64, 37.62 

ppm; FT‐IR: 
~ = 3194, 3066, 1652, 1602, 1508, 1387, 1223 cm-1; HRMS: calc. for [M+H]+ 

C15H13NOF: 242.09757, found: 242.09803;  RT

D = -130.5 (CH2Cl2, c = 1.00); HPLC 

conditions: CHIRAPAK IC column, (CH2Cl2/EtOH = 100/2) / iso-hexane = 50/50, flow rate = 

0.5 mL min-1, major enantiomer: tR = 54.6 min; minor enantiomer: tR = 61.6 min, 90% ee. 

(S)-3-(3-methylphenyl)-3,4-dihydroisoquinolin-1(2H)-one 

11f: Using Method I, 72% yield; 1H NMR (400 MHz, CDCl3): δ 8.13 

(dd, J = 7.7, 1.1 Hz, 1H), 7.47 (td, J = 7.5, 1.5 Hz, 1H), 7.38 (t, J = 7.5 

Hz, 1H), 7.31 – 7.25 (m, 1H), 7.24 – 7.13 (m, 4H), 5.99 (s, 1H), 4.82 (dd, 

J = 11.4, 4.5 Hz, 1H), 3.20 (dd, J = 15.6, 11.4 Hz, 1H), 3.10 (dd, J = 15.6, 

4.5 Hz, 1H), 2.37 ppm (s, 3H); 13C NMR (101 MHz, CDCl3): δ 166.42, 141.03, 138.95, 137.82, 

132.64, 129.30, 129.05, 128.48, 128.22, 127.44, 127.42, 127.25, 123.60, 56.36, 37.69, 21.58 

ppm; FT‐IR: 
~ = 3204, 3068, 1660, 1600, 1463, 1384, 1326, 1155 cm-1; HRMS: calc. for 

[M+H]+ C16H16NO: 238.12264, found: 238.12304;  RT

D = -127.6 (CH2Cl2, c = 1.00); HPLC 

conditions: CHIRAPAK IC column, (CH2Cl2/EtOH = 100/2) / iso-hexane = 50/50, flow rate = 

0.5 mL min-1, major enantiomer: tR = 52.2 min; minor enantiomer: tR = 43.2 min, 87% ee. 

(S)-3-(3-chlorophenyl)-3,4-dihydroisoquinolin-1(2H)-one 

11g: Using Method I, 78% yield; 1H NMR (400 MHz, CDCl3): δ 8.12 

(d, J = 7.5 Hz, 1H), 7.47 (td, J = 7.5, 1.4 Hz, 1H), 7.42 – 7.35 (m, 2H), 

7.34 – 7.26 (m, 3H), 7.18 (d, J = 7.5 Hz, 1H), 6.05 (s, 1H), 4.88 – 4.81 

(m, 1H), 3.23 – 3.12 ppm (m, 2H); 13C NMR (101 MHz, CDCl3): δ 

166.35, 143.15, 137.22, 135.08, 132.85, 130.49, 128.77, 128.30, 127.62, 127.54, 127.50, 

126.88, 124.69, 55.83, 37.42 ppm; FT‐IR: 
~ = 3185, 3059, 1657, 1602, 1463, 1385, 1322 cm-

1; HRMS: calc. for [M+H]+ C15H13NOCl: 258.06802, found: 258.06850;  RT

D = -102.7 

(CH2Cl2, c = 1.00); HPLC conditions: CHIRAPAK IC column, (CH2Cl2/EtOH = 100/2) / iso-
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hexane = 50/50, flow rate = 0.5 mL min-1, major enantiomer: tR = 70.5 min; minor enantiomer: 

tR = 57.8 min, 87% ee. 

(S)-3-(2-methylphenyl)-3,4-dihydroisoquinolin-1(2H)-one 

11h: Using Method I, 67% yield; 1H NMR (400 MHz, CDCl3): δ 8.14 (dd, 

J = 7.5, 1.3 Hz, 1H), 7.52 – 7.45 (m, 2H), 7.40 (t, J = 7.5 Hz, 1H), 7.28 – 

7.18 (m, 4H), 5.95 (s, 1H), 5.14 (dd, J = 11.3, 4.6 Hz, 1H), 3.17 (dd, J = 

15.5, 11.3 Hz, 1H), 3.08 (dd, J = 15.5, 4.6 Hz, 1H), 2.39 ppm (s, 3H); 13C 

NMR (101 MHz, CDCl3): δ 166.71, 138.90, 137.85, 135.12, 132.70, 131.10, 128.44, 128.27, 

128.23, 127.49, 127.02, 125.81, 119.03, 52.40, 36.21, 19.28 ppm; FT‐IR: 
~ = 3195, 3064, 

2919, 1661, 1603, 1461, 1383, 1334, 1154 cm-1; HRMS: calc. for [M+H]+ C16H16NO: 

238.12264, found: 128.12318;  RT

D = -149.0 (CH2Cl2, c = 1.00); HPLC conditions: 

CHIRAPAK IC column, iso-propanol / iso-hexane = 15/85, flow rate = 0.5 mL min-1, major 

enantiomer: tR = 46.6 min; minor enantiomer: tR = 56.4 min, 92% ee. 

(S)-3-(2-chlorophenyl)-3,4-dihydroisoquinolin-1(2H)-one 

11i: Using Method I, 47% yield; 1H NMR (400 MHz, CDCl3): δ 8.14 (dd, 

J = 7.4, 1.2 Hz, 1H), 7.51 – 7.43 (m, 2H), 7.43 – 7.36 (m, 2H), 7.29 – 7.23 

(m, 2H), 7.18 (d, J = 7.4 Hz, 1H), 6.05 (s, 1H), 5.36 (ddd, J = 9.1, 5.1, 2.0 

Hz, 1H), 3.35 (dd, J = 15.7, 5.1 Hz, 1H), 3.13 ppm (dd, J = 15.7, 9.1 Hz, 

1H); 13C NMR (101 MHz, CDCl3): δ 166.59, 138.45, 137.12, 132.83, 132.66, 130.18, 129.41, 

128.34, 128.21, 127.71, 127.64, 127.53, 127.40, 52.28, 34.96 ppm; FT‐IR: 
~ = 3191, 3079, 

2925, 1666, 1604, 1465, 1391, 1337, 1039 cm-1; HRMS: calc. for [M+H]+ C15H13NOCl: 

258.06802, found: 258.06855;  RT

D = -123.0 (CH2Cl2, c = 0.50); HPLC conditions: 

CHIRAPAK IC column, (CH2Cl2/EtOH = 100/2) / iso-hexane = 50/50, flow rate = 0.5 mL min-

1, major enantiomer: tR = 46.9 min; minor enantiomer: tR = 43.3 min, 81% ee. 

(S)-3-(naphthalen-2-yl)-3,4-dihydroisoquinolin-1(2H)-one 

11j: Using Method I, 84% yield; 1H NMR (400 MHz, CDCl3): δ 8.15 (d, J = 7.7 Hz, 1H), 7.90 

– 7.79 (m, 4H), 7.54 – 7.43 (m, 4H), 7.38 (t, J = 7.5 Hz, 1H), 7.19 (d, J = 7.7 Hz, 1H), 6.33 (s, 

1H), 5.02 (dd, J = 10.6, 4.9 Hz, 1H), 3.29 (dd, J = 15.7, 10.6 Hz, 1H), 3.20 ppm (dd, J = 15.7, 

4.9 Hz, 1H); 13C NMR (101 MHz, CDCl3): δ 166.51, 138.37, 137.60, 133.40, 133.29, 132.68, 

129.06, 128.47, 128.22, 128.06, 127.85, 127.48, 127.44, 126.70, 126.49, 125.57, 124.18, 56.30, 
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37.43 ppm; FT‐IR: 
~ = 3195, 3064, 2919, 1661, 1603, 1461, 1383, 

1334, 1154 cm-1; HRMS: calc. for [M+H]+ C19H16NO: 274.12264, 

found: 274.12327;  RT

D = -101.7 (CH2Cl2, c = 1.00); HPLC 

conditions: CHIRAPAK IC column, (CH2Cl2/EtOH = 100/2) / iso-hexane = 50/50, flow rate = 

0.5 mL min-1, major enantiomer: tR = 75.6 min; minor enantiomer: tR = 57.6 min, 90% ee. 

(S)-3-(benzofuran-2-yl)-3,4-dihydroisoquinolin-1(2H)-one 

11k: Using Method I, 57% yield; 1H NMR (400 MHz, CDCl3): δ 8.11 

(dd, J = 7.7, 1.0 Hz, 1H), 7.51 – 7.41 (m, 3H), 7.37 (t, J = 7.7 Hz, 1H), 

7.30 – 7.17 (m, 3H), 6.62 – 6.59 (m, 1H), 6.54 (s, 1H), 5.06 (td, J = 6.4, 

1.7 Hz, 1H), 3.44 ppm (d, J = 6.4 Hz, 2H); 13C NMR (101 MHz, 

CDCl3): δ 165.92, 156.24, 155.02, 136.78, 132.89, 128.31, 128.18, 127.96, 127.76, 127.60, 

124.66, 123.18, 121.27, 111.34, 103.80, 49.73, 32.96 ppm; FT‐IR: 
~ = 3191, 3085, 2922, 1672, 

1603, 1454, 1387, 1251, 1171 cm-1; HRMS: calc. for [M+H]+ C17H14NO2: 264.10191, found: 

264.10195;  RT

D = -6.4 (CH2Cl2, c = 0.50); HPLC conditions: CHIRAPAK IC column, 

(CH2Cl2/EtOH = 100/2) / iso-hexane = 70/30, flow rate = 0.5 mL min-1, major enantiomer: tR 

= 39.4 min; minor enantiomer: tR = 27.9 min, 86% ee. 

(S)-3-(benzo[b]thiophen-2-yl)-3,4-dihydroisoquinolin-1(2H)-one 

11l: Using Method I, 50% yield; 1H NMR (400 MHz, CDCl3): δ 8.12 

(dd, J = 7.5, 1.0 Hz, 1H), 7.80 – 7.75 (m, 1H), 7.72 – 7.68 (m, 1H), 7.48 

(td, J = 7.5, 1.5 Hz, 1H), 7.42 – 7.29 (m, 3H), 7.27 – 7.24 (m, 1H), 7.22 

(d, J = 7.5 Hz, 1H), 6.52 (s, 1H), 5.25 – 5.16 (m, 1H), 3.44 – 3.27 ppm 

(m, 2H); 13C NMR (101 MHz, CDCl3): δ 165.93, 144.98, 139.39, 139.26, 137.00, 132.91, 

128.32, 128.24, 127.73, 127.66, 124.84, 124.76, 123.79, 122.60, 122.01, 52.21, 37.10 ppm; 

FT‐IR: 
~ = 3247, 1658, 1636, 1462, 1434, 1381, 1311, 1154 cm-1; HRMS: calc. for [M+H]+ 

C17H14NOS: 280.07906, found: 280.07957;  RT

D = -14.3 (CH2Cl2, c = 1.00); HPLC conditions: 

CHIRAPAK IC column, (CH2Cl2/EtOH = 100/2) / iso-hexane = 70/30, flow rate = 0.5 mL min-

1, major enantiomer: tR = 38.1 min; minor enantiomer: tR = 28.4 min, 85% ee. 

(3aR,9bR)-1,2,3,3a,4,9b-hexahydro-5H-cyclopenta[c]isoquinolin-5-one 
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11m: Using Method I, 69% yield; 1H NMR (400 MHz, CDCl3): δ 8.09 (dd, J = 

7.5, 1.3 Hz, 1H), 7.45 (td, J = 7.5, 1.3 Hz, 1H), 7.33 (td, J = 7.5, 1.3 Hz, 1H), 

7.23 – 7.19 (m, 1H), 5.95 (s, 1H), 4.19 (td, J = 5.4, 1.3 Hz, 1H), 3.11 (td, J = 

9.1, 5.4 Hz, 1H), 2.23 – 1.98 (m, 2H), 1.99 – 1.88 (m, 1H), 1.87 – 1.69 ppm (m, 

3H); 13C NMR (101 MHz, CDCl3): δ 165.52, 141.74, 132.45, 128.32, 127.63, 127.02, 126.57, 

56.16, 43.20, 34.58, 33.58, 23.15 ppm; FT‐IR: 
~ = 3184, 2955, 1659, 1603, 1460, 1402, 1329 

cm-1; HRMS: calc. for [M+H]+ C12H14NO: 188.10669, found: 188.10731;  RT

D = -62.7 

(CH2Cl2, c = 1.00); HPLC conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 

15/85, flow rate = 0.5 mL min-1, major enantiomer: tR = 49.0 min; minor enantiomer: tR = 75.2 

min, 88% ee. 

(4aR,10bR)-1,4a,5,10b-tetrahydrophenanthridin-6(2H)-one 

11n: Using Method I, 80% yield; 1H NMR (400 MHz, CDCl3): δ 8.12 – 8.02 

(m, 1H), 7.53 – 7.44 (m, 1H), 7.35 (td, J = 7.5, 1.1 Hz, 1H), 7.27 – 7.20 (m, 

1H), 6.03 (dt, J = 9.8, 3.7 Hz, 1H), 5.93 (s, 1H), 5.84 – 5.73 (m, 1H), 4.27 (t, J 

= 4.4 Hz, 1H), 2.94 (dt, J = 12.2, 3.8 Hz, 1H), 2.26 – 2.13 (m, 2H), 2.09 – 1.90 

(m, 1H), 1.79 – 1.62 ppm (m, 1H); 13C NMR (101 MHz, CDCl3): δ 165.07, 142.90, 132.65, 

132.50, 128.17, 127.66, 127.35, 127.24, 124.54, 48.13, 37.98, 25.33, 25.17 ppm; FT‐IR: 
~ = 

3177, 3026, 2917, 1661, 1602, 1466, 1401, 1293, 1168 cm-1; HRMS: calc. for [M+H]+ 

C13H14NO: 200.10699, found: 200.10794;  RT

D = -53.2 (CH2Cl2, c = 1.00); HPLC conditions: 

CHIRAPAK IC column, (CH2Cl2/EtOH = 100/2) / iso-hexane = 70/30, flow rate = 0.5 mL min-

1, major enantiomer: tR = 39.9 min; minor enantiomer: tR = 45.8 min, 84% ee. 

(3aR,9bR)-1,3a,4,9b-tetrahydrofuro[2,3-c]isoquinolin-5(2H)-one 

11o: Using Method I, 85% yield; 1H NMR (400 MHz, CDCl3): δ 8.16 (d, J = 

7.4 Hz, 1H), 7.58 (td, J = 7.4, 1.5 Hz, 1H), 7.53 – 7.45 (m, 2H), 6.62 (s, 1H), 

4.84 (d, J = 4.6 Hz, 1H), 4.36 (d, J = 4.6 Hz, 1H), 4.13 – 3.96 (m, 2H), 2.50 – 

2.38 (m, 1H), 2.22 – 2.12 ppm (m, 1H); 13C NMR (101 MHz, CDCl3): δ 164.67, 

135.50, 132.90, 129.51, 129.14, 128.20, 127.34, 75.33, 66.73, 54.46, 35.17 ppm; FT‐IR: 
~ = 

3194, 3073, 2925, 1657, 1638, 1412, 1334, 1038 cm-1; HRMS: calc. for [M+H]+ C11H12NO2: 

190.08626, found: 190.08693;  RT

D = +9.6 (CH2Cl2, c = 1.00); HPLC conditions: CHIRAPAK 

IC column, iso-propanol / iso-hexane = 30/70, flow rate = 0.5 mL min-1, major enantiomer: tR 

= 41.5 min; minor enantiomer: tR = 82.0 min, 91% ee. 
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(S)-6-methyl-3-phenyl-3,4-dihydroisoquinolin-1(2H)-one 

11p: Using Method I, 84% yield; 1H NMR (400 MHz, CDCl3): δ 8.00 (d, 

J = 7.9 Hz, 1H), 7.41 – 7.31 (m, 6H), 7.18 (d, J = 7.9 Hz, 1H), 6.99 (s, 

1H), 6.07 (s, 1H), 4.84 (dd, J = 10.8, 4.9 Hz, 1H), 3.16 (dd, J = 15.7, 10.8 

Hz, 1H), 3.08 (dd, J = 15.7, 4.9 Hz, 1H), 2.38 ppm (s, 3H); 13C NMR 

(101 MHz, CDCl3): 166.69, 143.38, 141.14, 137.69, 129.13, 128.50, 128.27, 128.09, 126.54, 

125.70, 56.38, 37.56, 21.75 ppm; FT‐IR: 
~ = 3182, 3067, 2920, 1655, 1610, 1454, 1382, 1332, 

1309 cm-1; HRMS: calc. for [M+H]+ C16H16NO: 238.12264, found: 238.12305;  RT

D = -117.8 

(CH2Cl2, c = 1.00); HPLC conditions: CHIRAPAK IC column, (CH2Cl2/EtOH = 100/2) / iso-

hexane = 50/50, flow rate = 0.5 mL min-1, major enantiomer: tR = 58.8 min; minor enantiomer: 

tR = 54.0 min, 92% ee. 

(S)-6-methoxy-3-phenyl-3,4-dihydroisoquinolin-1(2H)-one 

11q: Using Method I, 72% yield; 1H NMR (400 MHz, CDCl3): δ 8.07 

(d, J = 8.6 Hz, 1H), 7.42 – 7.30 (m, 5H), 6.88 (dd, J = 8.6, 2.5 Hz, 

1H), 6.66 (d, J = 2.5 Hz, 1H), 5.93 (s, 1H), 4.84 (dd, J = 10.9, 4.8 Hz, 

1H), 3.84 (s, 3H), 3.17 (dd, J = 15.6, 10.9 Hz, 1H), 3.08 ppm (dd, J = 

15.6, 4.8 Hz, 1H); 13C NMR (101 MHz, CDCl3): δ 166.50, 163.09, 141.16, 139.85, 130.38, 

129.13, 128.51, 126.55, 121.23, 112.81, 112.61, 56.35, 55.56, 37.92 ppm; FT‐IR: 
~ = 3175, 

3063, 2925, 1650, 1600, 1454, 1384, 1320, 1253, 1085, 1025 cm-1; HRMS: calc. for [M+H]+ 

C16H16NO2: 254.11756, found: 254.11800;  RT

D = -108.4 (CH2Cl2, c = 1.00); HPLC 

conditions: CHIRAPAK IC column, (CH2Cl2/EtOH = 100/2) / iso-hexane = 70/30, flow rate = 

0.5 mL min-1, major enantiomer: tR = 38.9 min; minor enantiomer: tR = 37.2 min, 91% ee. 

(S)-6-chloro-3-phenyl-3,4-dihydroisoquinolin-1(2H)-one 

11r: Using Method I, 93% yield; 1H NMR (400 MHz, CDCl3): δ 8.05 

(d, J = 8.3 Hz, 1H), 7.42 – 7.31 (m, 6H), 7.18 (d, J = 1.1 Hz, 1H), 6.16 

(s, 1H), 4.85 (dd, J = 10.4, 5.1 Hz, 1H), 3.18 (dd, J = 15.8, 10.4 Hz, 

1H), 3.11 ppm (dd, J = 15.8, 5.1 Hz, 1H); 13C NMR (101 MHz, CDCl3): 

δ  165.61, 140.57, 139.34, 138.80, 129.83, 129.23, 128.70, 127.83, 127.55, 126.90, 126.50, 

56.10, 37.27 ppm; FT‐IR: 
~ = 3204, 3080, 1652, 1594, 1459, 1422, 1334, 1294 cm-1; HRMS: 

calc. for [M+H]+ C15H13NOCl: 258.06802, found: 258.06842;  RT

D = -116.4 (CH2Cl2, c = 
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1.00); HPLC conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 15/85, flow rate 

= 0.5 mL min-1, major enantiomer: tR = 36.8 min; minor enantiomer: tR = 38.8 min, 93% ee. 

(S)-6-fluoro-3-phenyl-3,4-dihydroisoquinolin-1(2H)-one 

11s: Using Method I, 87% yield; 1H NMR (400 MHz, CDCl3): δ 8.13 

(dd, J = 8.6, 5.8 Hz, 1H), 7.46 – 7.29 (m, 5H), 7.05 (td, J = 8.7, 2.5 Hz, 

1H), 6.88 (dd, J = 8.7, 2.5 Hz, 1H), 6.08 (s, 1H), 4.86 (dd, J = 10.7, 4.9 

Hz, 1H), 3.20 (dd, J = 15.9, 10.7 Hz, 1H), 3.12 ppm (dd, J = 15.9, 4.9 

Hz, 1H); 13C NMR (101 MHz, CDCl3): δ 165.61, 165.37 (d, J = 253.6 Hz), 140.66, 140.54 (d, 

J = 9.0 Hz), 131.06 (d, J = 9.6 Hz), 129.23, 128.70, 126.52, 124.79 (d, J = 2.8 Hz), 114.72 (d, 

J = 21.8 Hz), 114.36 (d, J = 22.1 Hz), 56.19, 37.57 ppm; FT‐IR: 
~ = 3210, 3067, 1651, 1605, 

1490, 1455, 1380, 1309, 1248 cm-1; HRMS: calc. for [M+H]+ C15H13NOF: 242.09757, found: 

242.09797;  RT

D = -130.8 (CH2Cl2, c = 1.00); HPLC conditions: CHIRAPAK IC column, 

(CH2Cl2/EtOH = 100/2) / iso-hexane = 50/50, flow rate = 0.5 mL min-1, major enantiomer: tR 

= 44.8 min; minor enantiomer: tR = 42.8 min, 87% ee. 

(S)-6-nitro-3-phenyl-3,4-dihydroisoquinolin-1(2H)-one 

11t: Using Method I, 82% yield; 1H NMR (400 MHz, CDCl3): δ
 8.30 

(d, J = 8.5 Hz, 1H), 8.25 – 8.19 (m, 1H), 8.07 (d, J = 1.9 Hz, 1H), 7.47 

– 7.34 (m, 5H), 6.23 (s, 1H), 4.92 (t, J = 7.7 Hz, 1H), 3.30 ppm (d, J = 

7.7 Hz, 2H); 13C NMR (101 MHz, CDCl3): δ 164.23, 150.27, 139.98, 

139.18, 133.71, 129.75, 129.40, 129.00, 126.47, 122.71, 122.45, 55.94, 37.31 ppm; FT‐IR: 
~

= 3198, 3062, 1668, 1616, 1520, 1457, 1393, 1346, 1159 cm-1; HRMS: calc. for [M+H]+ 

C15H13N2O3: 269.09207, found: 269.09237;  RT

D = -99.5 (CH2Cl2, c = 1.00); HPLC 

conditions: CHIRAPAK IA column, (CH2Cl2/EtOH = 100/2) / iso-hexane = 50/50, flow rate = 

0.5 mL min-1, major enantiomer: tR = 34.0 min; minor enantiomer: tR = 39.8 min, 87% ee. 

(S)-7-methyl-3-phenyl-3,4-dihydroisoquinolin-1(2H)-one (major),  

(S)-5-methyl-3-phenyl-3,4-dihydroisoquinolin-1(2H)-one (minor). 
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11u: Using Method I, 82% yield; two 

inseparable isomers with r.r. = 67:33, 

determined by NMR; For major product, 1H 

NMR (400 MHz, CDCl3): δ 7.94 (s, 1H), 7.49 

– 7.27 (m, 6H), 7.06 (t, J = 9.4 Hz, 1H), 6.01 (s, 1H), 4.83 (dd, J = 10.8, 5.0 Hz, 1H), 3.19 – 

3.07 (m, 1H), 2.39 ppm (s, 3H); 13C NMR (101 MHz, CDCl3): δ 166.70, 141.16, 137.23, 

134.72, 133.47, 129.14, 128.57, 128.52, 128.13, 127.39, 126.56, 56.47, 37.25, 21.20 ppm; FT‐

IR: 
~ = 3193, 3059, 2917, 1657, 1613, 1494, 1409, 1333, 1314, 1144 cm-1; HRMS: calc. for 

[M+H]+ C16H16NO: 238.12264,  found: 238.12315;  RT

D = -132.4 (CH2Cl2, c = 1.00); HPLC 

conditions: CHIRAPAK IC column, (CH2Cl2/EtOH = 100/2) / iso-hexane = 50/50, flow rate = 

0.5 mL min-1, for major regioisomer: major enantiomer: tR = 54.9 min; minor enantiomer: tR = 

52.5 min; For minor regioisomer: major enantiomer: tR = 61.7 min; minor enantiomer: tR = 

58.6 min, 85% ee for major isomer, 82% ee for minor isomer. 

(S)-6,7-dimethoxy-3-phenyl-3,4-dihydroisoquinolin-1(2H)-one (major),  

(S)-5,6-dimethoxy-3-phenyl-3,4-dihydroisoquinolin-1(2H)-one (minor). 

11v: Using Method I, 42% yield; two 

separable isomers with r.r. = 91:9, 

determined by NMR; For major product, 1H 

NMR (400 MHz, CDCl3): δ 7.62 (s, 1H), 

7.42 – 7.33 (m, 5H), 6.63 (s, 1H), 6.09 (s, 

1H), 4.85 (dd, J = 10.4, 5.0 Hz, 1H), 3.94 (s, 3H), 3.91 (s, 3H), 3.13 (d, J = 10.4 Hz, 1H), 3.08 

(d, J = 5.0 Hz, 1H); 13C NMR (101 MHz, CDCl3): δ 166.72, 152.82, 148.41, 141.08, 131.56, 

129.15, 128.54, 126.55, 120.64, 110.33, 109.79, 56.61, 56.30, 56.22, 37.17 ppm; FT‐IR: 
~ = 

3203, 2939, 1655, 1601, 1510, 1454, 1373, 1332, 1261, 1217, 1070 cm-1; HRMS: calc. for 

[M+H]+ C17H18NO3: 284.12812, found: 284.12850;  RT

D = -6.4 (CH2Cl2, c = 1.00); HPLC 

conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 30/70, flow rate = 0.5 mL 

min-1, major enantiomer: tR = 69.4 min; minor enantiomer: tR = 85.7 min, 85% ee for major 

isomer. 

(S)-7-bromo-3-phenyl-3,4-dihydroisoquinolin-1(2H)-one (minor), 

(S)-5-bromo-3-phenyl-3,4-dihydroisoquinolin-1(2H)-one (major). 
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11w: Using Method I, 93% yield; two 

separable isomers with r.r. = 16:84, 

determined by NMR; For major product, 1H 

NMR (400 MHz, CDCl3): δ 8.12 (dd, J = 7.7, 

1.2 Hz, 1H), 7.72 (dd, J = 8.0, 1.2 Hz, 1H), 

7.47 – 7.32 (m, 5H), 7.30 – 7.21 (m, 1H), 6.05 (s, 1H), 4.85 (dd, J = 11.5, 4.5 Hz, 1H), 3.42 

(dd, J = 16.3, 4.5 Hz, 1H), 3.12 ppm (dd, J = 16.3, 11.5 Hz, 1H); 13C NMR (101 MHz, CDCl3): 

δ 165.50, 140.64, 137.45, 136.58, 130.45, 129.30, 128.82, 128.54, 127.64, 126.64, 123.18, 

55.65, 37.42 ppm; FT‐IR: 
~ = 3180, 3068, 1667, 1592, 1560, 1452, 1386, 1314, 1105 cm-1; 

HRMS: calcd. for [M+H]+ C15H33
79BrNO: 302.01750, found: 302.01807; calcd. for [M+H]+ 

C15H13
81BrNO: 304.01546, found: 304.01591;  RT

D = -93.8 (CH2Cl2, c = 1.00); HPLC 

conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 10/90, flow rate = 0.5 mL 

min-1, major enantiomer: tR = 54.5 min; minor enantiomer: tR = 56.7 min, 83% ee for major 

isomer. 

(S)-7-fluoro-3-phenyl-3,4-dihydroisoquinolin-1(2H)-one (minor), 

(S)-5-fluoro-3-phenyl-3,4-dihydroisoquinolin-1(2H)-one (major). 

11x: Using Method I, 87% yield; two separable 

isomers with r.r. = 9:91, determined by NMR; 

For major product, 1H NMR (400 MHz, 

CDCl3): δ 7.94 (d, J = 7.7 Hz, 1H), 7.46 – 7.28 

(m, 6H), 7.25 – 7.13 (m, 2 6261H), 6.07 (s, 1H), 

4.85 (dd, J = 11.3, 4.5 Hz, 1H), 3.34 (dd, J = 16.2, 4.5 Hz, 1H), 3.04 ppm (dd, J = 16.2, 11.3 

Hz, 1H); 13C NMR (101 MHz, CDCl3): δ 165.61, 165.37 (d, J = 253.6 Hz), 140.64, 130.36, 

129.27, 128.78, 128.27 (d, J = 7.9 Hz), 126.56, 124.76 (d, J = 18.2 Hz), 123.92 (d, J = 3.3 Hz), 

119.38 (d, J = 21.7 Hz), 55.85, 30.02 ppm; FT‐IR: 
~ = 3196, 3070, 1655, 1615, 1579, 1469, 

1380, 1321, 1239, 1062 cm-1; HRMS: calc. for [M+H]+ C15H13NOF: 242.09757, found: 

242.09815;  RT

D = -139.8 (CH2Cl2, c = 1.00); HPLC conditions: CHIRAPAK IC column, 

(CH2Cl2/EtOH = 100/2) / iso-hexane = 50/50, flow rate = 0.5 mL min-1, major enantiomer: tR 

= 35.5 min; minor enantiomer: tR = 33.9 min, 90% ee for major isomer. 

(S)-5,6,13,13a-tetrahydro-8H-isoquinolino[3,2-a]isoquinolin-8-one 
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105a: Using Method J, 76% yield; 1H NMR (400 MHz, CDCl3): δ 8.15 (dd, J = 7.5, 1.5 Hz, 

1H), 7.47 (td, J = 7.5, 1.5 Hz, 1H), 7.39 (t, J = 7.5 Hz, 1H), 7.30 – 7.20 (m, 5H), 5.03 – 4.90 

(m, 2H), 3.26 (dd, J = 15.7, 3.7 Hz, 1H), 3.08 – 2.96 (m, 3H), 2.93 – 2.82 ppm (m, 1H); 13C 

NMR (101 MHz, CDCl3): δ 164.70, 137.47, 136.08, 135.22, 131.93, 

129.21, 129.13, 128.72, 127.46, 127.01, 126.99, 126.87, 126.08, 55.35, 

38.83, 38.02, 29.87 ppm; FT‐IR: 
~ = 2933, 2886, 1637, 1600, 1579, 1463, 

1402, 1363, 1287, 1149 cm-1; HRMS: calc. for [M+H]+ C17H16NO: 

250.12264, found: 250.12292;  RT

D = -440.4 (CH2Cl2, c = 2.00); HPLC conditions: 

CHIRAPAK IC column, (CH2Cl2/EtOH = 100/2) / iso-hexane = 50/50, flow rate = 0.5 mL min-

1, major enantiomer: tR = 32.6 min; minor enantiomer: tR = 31.6 min, 97% ee. 

(S)-5,6,13,13a-tetrahydro-8H-[1,3]dioxolo[4,5-g]isoquinolino[3,2-a]isoquinolin-8-one 

105b: Using Method J, 55% yield; 1H NMR (400 MHz, CDCl3): δ 8.13 

(dd, J = 7.5, 1.3 Hz, 1H), 7.46 (td, J = 7.5, 1.5 Hz, 1H), 7.38 (t, J = 7.5 

Hz, 1H), 7.27 – 7.21 (m, 1H), 6.71 (s, 1H), 6.67 (s, 1H), 5.96 (s, 2H), 

4.97 – 4.90 (m, 1H), 4.83 (dd, J = 13.3, 3.6 Hz, 1H), 3.18 (dd, J = 15.7, 

3.6 Hz, 1H), 3.02 – 2.86 (m, 3H), 2.81 – 2.68 ppm (m, 1H); 13C NMR 

(101 MHz, CDCl3): δ 164.68, 146.89, 146.71, 137.37, 131.96, 129.19, 129.00, 128.73, 128.69, 

127.49, 127.02, 108.82, 106.02, 101.25, 55.44, 38.93, 38.27, 29.83 ppm; FT‐IR: 
~ = 2889, 

2865, 1633, 1602, 1577, 1484, 1461, 1413. 1238, 1028 cm-1; HRMS: calc. for [M+H]+ 

C18H16NO3: 294.11247, found: 294.11306;  RT

D = -200.2 (CH2Cl2, c = 1.00); HPLC 

conditions: CHIRAPAK IC column, (CH2Cl2/EtOH = 100/2) / iso-hexane = 50/50, flow rate = 

0.5 mL min-1, major enantiomer: tR = 47.6 min; minor enantiomer: tR = 41.0 min, 97% ee. 

(S)-2,3-dimethoxy-5,6,13,13a-tetrahydro-8H-isoquinolino[3,2-a]isoquinolin-8-one 

105c: Using Method J, 71% yield; 1H NMR (400 MHz, CDCl3): δ 8.14 

(dd, J = 7.7, 1.4 Hz, 1H), 7.46 (td, J = 7.4, 1.4 Hz, 1H), 7.38 (t, J = 7.4 

Hz, 1H), 7.29 – 7.22 (m, 1H), 6.72 (s, 1H), 6.69 (s, 1H), 5.03 – 4.95 (m, 

1H), 4.86 (dd, J = 13.4, 3.7 Hz, 1H), 3.91 (s, 3H), 3.89 (s, 3H), 3.21 (dd, 

J = 15.7, 3.6 Hz, 1H), 3.02 – 2.90 (m, 3H), 2.81 – 2.72 ppm (m, 1H); 13C 

NMR (101 MHz, CDCl3): δ 164.75, 148.20, 148.15, 137.42, 131.91, 129.24, 128.73, 127.80, 

127.47, 127.46, 126.97, 111.66, 109.06, 56.33, 56.09, 55.14, 38.88, 38.27, 29.36 ppm; FT‐IR: 

~ = 2927, 2858, 1644, 1602, 1580, 1516, 1460, 1399, 1285, 1202, 1112, 1022 cm-1; HRMS: 
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calc. for [M+H]+ C19H20NO3: 310.14377, found: 310.14441;  RT

D = -353.6 (CH2Cl2, c = 1.00); 

HPLC conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 40/60, flow rate = 0.5 

mL min-1, major enantiomer: tR = 34.6 min; minor enantiomer: tR = 30.5 min, 95% ee. 

(S)-2,3,10,11-tetramethoxy-5,6,13,13a-tetrahydro-8H-isoquinolino[3,2-a]isoquinolin-8-

one (major),  

(S)-2,3,11,12-tetramethoxy-5,6,13,13a-tetrahydro-8H-isoquinolino[3,2-a]isoquinolin-8-

one (minor). 

105d: Using Method J, 46% yield in one 

pot; two inseparable isomers with r.r. = 

88:12, determined by NMR; Major 

product, 1H NMR (400 MHz, CDCl3): δ 

7.65 (s, 1H), 6.72 (s, 1H), 6.71 (s, 1H), 

6.69 (s, 1H), 4.98 (dd, J = 8.0, 2.6 Hz, 

1H), 4.84 (dd, J = 13.7, 3.9 Hz, 1H), 3.95 (s, 3H), 3.94 (s, 3H), 3.91 (s, 3H), 3.90 (s, 3H), 3.14 

(dd, J = 15.6, 3.9 Hz, 1H), 2.97 – 2.90 (m, 3H), 2.81 – 2.73 (m, 1H); 13C NMR (101 MHz, 

CDCl3): δ 164.87, 152.09, 148.42, 148.18, 148.14, 131.12, 127.95, 127.55, 121.86, 111.67, 

110.96, 109.36, 109.01, 56.31, 56.22, 56.10, 55.45, 38.88, 37.86, 29.43 ppm; FT‐IR: 
~ = 2932, 

2837, 1644, 1602, 1514, 1455, 1429, 1256, 1221, 1098 cm-1; HRMS: calc. for [M+H]+ 

C21H24NO5: 370.16490, found: 370.16608;  RT

D = -191.4 (CH2Cl2, c = 0.50); HPLC 

conditions: CHIRAPAK IC column, (CH2Cl2/EtOH = 100/2) / iso-hexane = 70/30, flow rate = 

0.5 mL min-1, major enantiomer: tR = 30.2 min; minor enantiomer: tR = 41.9 min, 91% ee. 
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7.2.4 Experiment Details and Analytic Data for Asymmetric C‒H Allylations of 

Benzamides 

7.2.4.1 Reaction Conditions Optimization with Catalyst 100l 

Table S2. Reaction Conditions Optimization with Catalyst 100l. 

 

Entry solvent temperature(
o
C) t(h

) 

yield(%) ee(%) 

1 0.5 mL DCM -20 18  79 87 

2 0.1 mL DCM -20 18  82 88 

3 0.1 mL DCM -40 18  28 87 

4 0.1 mL MeOH -20 18  44 90 

5 0.1 mL Tol -20 18  19 85 

6 0.1 mL MeOH -20 36  79 90 

7 0.1 mL MeOH -10 18  60 90 

8 0.1 mL EtOH -20 18 79 91 

9 0.1 mL iPrOH -20 18  66 90 

10 0.48 mL DCM/0.02 mL EtOH -20 18  82 87 

11 0.4 mL DCM/0.1 mL EtOH -20 18 63 89 

12 0.25 mL DCM/0.25 mL EtOH -20 18 65 91 

13 0.48 mL DCM/0.02 mL TFE -20 18 85 89 

14 0.48 mL DCM/0.02 mL HFIP -20 18 85 87 

15 0.2 mL TFE -20 18 63 88 

16 0.45 mL DCM/0.05 mL TFE -20 18 57 89 

17 0.4 mL DCM/0.1 mL TFE -20 18 85 90 

18 0.35 DCM/0.15 mL TFE -20 18 63 89 

19 0.3 mL DCM/0.2 mL TFE -20 18 72 89 

20 0.48 mL DCM/0.02 mL EtOH -20 18 82 87 

General method: Catalyst 100l (5.00 μmol, 0.05 equiv.), dibenzoylperoxide (75 wt%, 5.00 μmol, 0.05 equiv.) 

and 26a (0.12 mmol, 1.20 equiv.) were dissolved into solvent. The mixture was allowed to be stirred at r.t. for 10 

mins. After cooling to certain temperature, corresponding allene 27a (0.1 mmol, 1.00 equiv.) was added. 
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7.2.4.2 General Methods and Analytic Data for Synthesis of 28a-28k 

Method K for Synthesis of Compounds 28a-28d, 28i, 28j: 

Without protective precaution from air and moisture, catalyst 100l (2.93 mg, 5.00 μmol, 0.05 

equiv.), dibenzoylperoxide (75 wt%, 1.62 mg, 5.00 μmol, 0.05 equiv.) and 26 (0.12 mmol, 1.20 

equiv.) were dissolved into 0.4 mL DCM: 0.1 mL TFE. The mixture was allowed to be stirred 

at r.t. for 10 mins. After cooling to -20°C, corresponding allenes 27 (0.1 mmol, 1.00 equiv.) 

was added and the reaction was stirred for 18 hours. The resulting mixture was subjected on a 

silica gel to afford desired products. 

Method L for Synthesis of Compounds 28e-28h: 

Without protective precaution from air and moisture, catalyst 100l (2.93 mg, 5.00 μmol, 0.05 

equiv.), dibenzoylperoxide (75 wt%, 1.62 mg, 5.00 μmol, 0.05 equiv.) and 26 (0.10 mmol, 1.00 

equiv.) were dissolved into 0.4 mL DCM: 0.1 mL TFE. The mixture was allowed to be stirred 

at r.t. for 10 mins. After cooling to -20°C, corresponding allene 27 (0.12 mmol, 1.20 equiv.) 

was added and the reaction was stirred for 18 hours. The resulting mixture was subjected on a 

silica gel to afford desired product 28e-28h. 

Method M for Synthesis of Compounds 28k: 

Without protective precaution from air and moisture, catalyst 100l (2.93 mg, 5.00 μmol, 0.05 

equiv.), dibenzoylperoxide (75 wt%, 1.62 mg, 5.00 μmol, 0.05 equiv.) and 7 (0.12 mmol, 1.20 

equiv.) were dissolved into 0.08 mL DCM: 0.02 mL TFE. The mixture was allowed to be 

stirred at r.t. for 10 mins. After cooling to -20°C, corresponding allene (0.10 mmol, 1.00 equiv.) 

was added and the reaction was stirred for 18 hours. The resulting mixture was subjected on a 

silica gel to afford desired product 28k. 

(R)-2-(1-cyclohexylidene-4-methoxybutan-2-yl)-N-methoxybenzamide 

28a: Using method K, 85% yield; 1H NMR (400 MHz, CDCl3): δ 9.64 (br 

s, 1H), 7.46 – 7.36 (m, 2H), 7.30 (d, J = 7.5 Hz, 1H), 7.21 (td, J = 7.5, 1.1 

Hz, 1H), 5.15 (d, J = 9.3 Hz, 1H), 4.22 – 4.05 (m, 1H), 3.89 (s, 3H), 3.38 – 

3.30 (m, 1H), 3.27 (s, 3H), 3.26 – 3.19 (m, 1H), 2.28 – 1.85 (m, 6H), 1.59 

– 1.40 ppm (m, 6H); 13C NMR (101 MHz, CDCl3): δ 167.83, 142.68, 140.77, 133.29, 130.80, 

128.89, 127.31, 126.18, 125.20, 70.42, 64.45, 58.27, 37.30, 36.72, 35.68, 29.30, 28.66, 27.85, 

26.87 ppm; FT‐IR: 
~ = 3191, 2925, 2852, 1653, 1599, 1445, 1387, 1303, 1114, 1033  cm-1; 
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HRMS: calc. for [M+H]+ C19H28O3N: 318.20637, found: 318.20670;  RT

D = +10.6 (CH2Cl2, c 

= 1.00); HPLC conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 15/85, flow 

rate = 0.5 mL min-1, major enantiomer: tR = 43.1 min; minor enantiomer: tR = 40.0 min, 90% 

ee. 

(R)-2-(1-cyclohexylidene-4-methoxybutan-2-yl)-N-methoxy-4-(trifluoromethyl) 

benzamide 

28b: Using method K, 91% yield; 1H NMR (400 MHz, CDCl3): δ 9.85 

(br s, 1H), 7.59 – 7.52 (m, 2H), 7.51 – 7.45 (m, 1H), 5.12 (d, J = 9.2 

Hz, 1H), 4.20 (dd, J = 15.7, 9.2 Hz, 1H), 3.91 (s, 3H), 3.38 (dt, J = 

10.1, 5.1 Hz, 1H), 3.28 (s, 3H), 3.20 (td, J = 9.5, 4.2 Hz, 1H), 2.23 – 

2.17  (m, 1H), 2.14 – 1.96 (m, 4H), 1.96 – 1.85 (m, 1H), 1.50 – 1.46 ppm (m, J = 6.0 Hz, 6H); 

13C NMR (101 MHz, CDCl3): δ 166.57, 143.71, 141.93, 136.70, 132.75 (q, J = 32.1 Hz), 

129.71, 124.28 (q, J = 3.4 Hz), 124.21, 123.88 (q, J = 272.6 Hz), 123.09 (q, J = 3.4 Hz), 70.15, 

64.55, 58.28, 37.25, 36.60, 35.81, 29.37, 28.62, 27.82, 26.79 ppm; FT‐IR: 
~ = 3189, 2928, 

1657, 1447, 1328, 1167, 1122, 1077 cm-1; HRMS: calc. for [M+H]+ C20H27O3NF3: 386.19375, 

found: 386.19481;  RT

D = +5.8 (CH2Cl2, c = 2.00); HPLC conditions: CHIRAPAK IC column, 

iso-propanol / iso-hexane = 15/85, flow rate = 0.5 mL min-1, major enantiomer: tR = 11.4 min; 

minor enantiomer: tR = 12.3 min, 91% ee. 

(R)-4-bromo-2-(1-cyclohexylidene-4-methoxybutan-2-yl)-N-methoxybenzamide 

28c: Using method K, 78% yield; 1H NMR (400 MHz, CDCl3): δ 9.81 

(br s, 1H), 7.41 (d, J = 1.4 Hz, 1H), 7.38 – 7.29 (m, 2H), 5.09 (d, J = 9.2 

Hz, 1H), 4.24 – 4.05 (m, 1H), 3.88 (s, 3H), 3.43 – 3.32 (m, 1H), 3.28 (s, 

3H), 3.27 – 3.19 (m, 1H), 2.27 – 2.14 (m, 1H), 2.11 – 1.94 (m, 4H), 1.93 

– 1.79 (m, 1H), 1.62 – 1.37 ppm (m, J = 20.6 Hz, 6H); 13C NMR (101 MHz, CDCl3): δ 166.78, 

144.96, 141.64, 132.21, 130.73, 130.51, 129.50, 125.28, 124.40, 70.20, 64.46, 58.31, 37.25, 

36.61, 35.66, 29.35, 28.62, 27.82, 26.81 ppm; FT‐IR: 
~ = 3185, 2925, 2852, 1653, 1584, 1391, 

1115, 1034 cm-1; HRMS: calcd. for [M+H]+ C19H27O3N
79Br: 396.11688, found: 396.11713; 

calcd. for [M+H]+ C19H27O3N
81Br: 398.11484, found: 398.11499;  RT

D = -50.8 (CH2Cl2, c = 

2.00); HPLC conditions: CHIRAPAK IA column, iso-propanol / iso-hexane = 10/90, flow rate 

= 0.5 mL min-1, major enantiomer: tR = 29.0 min; minor enantiomer: tR = 18.1 min, 91% ee. 
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(R)-2-(1-cyclohexylidene-4-methoxybutan-2-yl)-N,4-dimethoxybenzamide 

28d: Using method K, 86% yield; 1H NMR (400 MHz, CDCl3): δ 7.41 

(d, J = 8.5 Hz, 1H), 6.79 (d, J = 2.5 Hz, 1H), 6.73 (dd, J = 8.5, 2.5 Hz, 

1H), 5.12 (d, J = 9.3 Hz, 1H), 4.25 – 4.13 (m, 1H), 3.87 (s, 3H), 3.80 

(s, 3H), 3.38 – 3.30 (m, 1H), 3.28 (s, 3H), 3.27 – 3.20 (m, 1H), 2.28 – 

1.82 (m, 6H), 1.58 – 1.36 ppm (m, 6H); 13C NMR (101 MHz, CDCl3): δ 167.62, 161.44, 145.02, 

140.90, 130.73, 125.86, 125.11, 113.11, 111.18, 70.42, 64.37, 58.31, 55.38, 37.26, 36.77, 

35.56, 29.32, 28.65, 27.83, 26.85 ppm; FT‐IR: 
~ = 3190, 2925, 2851, 1651, 1601, 1570, 1446, 

1237, 1103, 1027 cm-1; HRMS: calc. for [M+H]+ C20H30O4N: 348.21693, found: 348.21759; 

 RT

D = -26.9 (CH2Cl2, c = 1.00); HPLC conditions: CHIRAPAK IC column, iso-propanol / iso-

hexane = 30/70, flow rate = 0.5 mL min-1, major enantiomer: tR = 26.5 min; minor enantiomer: 

tR = 24.0 min, 91% ee. 

(R)-2-(1-cyclohexylidene-4-methoxybutan-2-yl)-N-methoxy-5-methylbenzamide (major), 

(R)-2-(1-cyclohexylidene-4-methoxybutan-2-yl)-N-methoxy-3-methylbenzamide (minor). 

28e: Using method L, 81% yield; r.r. = 88:12; 

1H NMR (400 MHz, CDCl3): δ 9.70 (br s, 1H), 

7.27 – 7.23 (m, 1H), 7.23 – 7.16 (m, 2H), 5.12 

(d, J = 9.3 Hz, 1H), 4.18 – 4.02 (m, 1H), 3.89 

(s, 3H), 3.33 (dt, J = 10.2, 5.3 Hz, 1H), 3.28 

(s, 3H), 3.26 – 3.19 (m, 1H), 2.31 (s, 3H), 2.24 – 1.82 (m, 6H), 1.56 – 1.37 ppm (m, 6H); 13C 

NMR (101 MHz, CDCl3): δ 167.91, 140.44, 139.42, 135.86, 133.13, 131.69, 129.34, 127.18, 

125.45, 70.42, 64.42, 58.25, 37.29, 36.64, 35.26, 29.28, 28.65, 27.85, 26.88, 20.91  ppm; FT‐

IR: 
~ = 3200, 2925, 2852, 1652, 1446, 1114, 1038 cm-1; HRMS: calc. for [M+H]+ C20H30O3N: 

332.22202, found: 332.22293;  RT

D = +6.3 (CH2Cl2, c = 2.00); HPLC conditions: CHIRAPAK 

IC column, iso-propanol / iso-hexane = 15/85, flow rate = 0.5 mL min-1, major enantiomer: tR 

= 39.7 min; minor enantiomer: tR = 34.5 min, 87% ee for major isomer. 

(R)-2-(1-cyclohexylidene-4-methoxybutan-2-yl)-N-methoxy-5-(trifluoromethyl) 

benzamide 
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28f: Using method L, 67% yield; 1H NMR (400 MHz, CDCl3): δ 9.93 

(br s, 1H), 7.71 (s, 1H), 7.63 (dd, J = 8.3, 1.7 Hz, 1H), 7.42 (d, J = 8.3 

Hz, 1H), 5.11 (d, J = 9.2 Hz, 1H), 4.27 – 4.14 (m, 1H), 3.90 (s, 3H), 

3.42 – 3.32 (m, 1H), 3.27 (s, 3H), 3.20 (td, J = 9.6, 4.5 Hz, 1H), 2.25 – 

1.85 (m, 6H), 1.56 – 1.40 ppm (m, 6H); 13C NMR (101 MHz, CDCl3): δ 166.35, 146.81, 141.93, 

133.89, 128.64 (q, J = 33.0 Hz),  128.07, 127.35 (q, J = 3.4 Hz), 126.21 (q, J = 3.4 Hz), 124.16, 

123.85 (q, J = 272.0 Hz), 70.15, 64.49, 58.29, 37.27, 36.57, 35.84, 29.34, 28.59, 27.79, 26.77 

ppm; FT‐IR: 
~ = 3183, 2928, 2853, 1654, 1447, 1336, 1271, 1120 cm-1; HRMS: calc. for 

[M+H]+ C20H27O3NF3: 386.19375, found: 386.19501;  RT

D = +10.9 (CH2Cl2, c = 2.00); HPLC 

conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 10/90, flow rate = 0.5 mL 

min-1, major enantiomer: tR = 16.9 min; minor enantiomer: tR = 15.7 min, 88% ee. 

(R)-2-(1-cyclohexylidene-4-methoxybutan-2-yl)-N-methoxy-6-methylbenzamide 

28g: Using method L, 91% yield; 1H NMR (400 MHz, CDCl3): δ 9.22 (br 

s, 1H), 7.29 – 7.22 (m, 1H), 7.11 (d, J = 7.7 Hz, 1H), 7.03 (d, J = 7.7 Hz, 

1H), 5.13 (d, J = 9.6 Hz, 1H), 3.91 (s, 3H), 3.88 – 3.79 (m, 1H), 3.40 – 3.16 

(m, 5H), 2.35 (s, 3H), 2.28 – 2.18 (m, 1H), 2.16 – 1.82 (m, 5H), 1.63 – 1.37 

ppm (m, 6H); 13C NMR (101 MHz, CDCl3): δ 168.18, 142.26, 140.36, 136.33, 133.41, 129.89, 

127.93, 125.12, 124.18, 70.39, 64.33, 58.12, 37.39, 36.78, 36.54, 29.16, 28.66, 27.90, 26.91, 

19.47 ppm; FT‐IR: 
~ = 3174, 2927, 2850, 1642, 1594, 1497, 1463, 1150, 1032 cm-1; HRMS: 

calc. for [M+H]+ C20H30O3N: 332.22202, found: 332.22253;  RT

D = +2.6 (CH2Cl2, c = 2.00); 

HPLC conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 15/85, flow rate = 0.5 

mL min-1, major enantiomer: tR = 30.2 min; minor enantiomer: tR = 25.5 min, 88% ee. 

(R)-2-chloro-6-(1-cyclohexylidene-4-methoxybutan-2-yl)-N-methoxybenzamide 

28h: Using method L, 71% yield; 1H NMR (400 MHz, CDCl3): δ 9.04 (br 

s, 1H), 7.34 – 7.27 (m, 1H), 7.24 – 7.19 (m, 2H), 5.10 (d, J = 9.4 Hz, 1H), 

3.93 (s, 3H), 3.89 – 3.78 (m, 1H), 3.39 – 3.26 (m, 2H), 3.25 (s, 3H), 2.29 – 

2.17 (m, 1H), 2.15 – 1.97 (m, 3H), 1.95 – 1.82 (m, 2H), 1.59 – 1.39 ppm 

(m, 6H); 13C NMR (101 MHz, CDCl3): δ 165.10, 145.56, 141.39, 132.62, 132.16, 131.03, 

127.23, 125.50, 124.09, 70.35, 64.46, 58.22, 37.41, 37.00, 36.92, 29.21, 28.67, 27.84, 26.86 

ppm; FT‐IR: 
~ = 3176, 2928, 2850, 1649, 1501, 1438, 1116 cm-1; HRMS: calc. for [M+H]+ 

C19H27O3NCl: 352.16740, found: 352.16818;  RT

D = +12.2 (CH2Cl2, c = 2.00); HPLC 
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conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 15/85, flow rate = 0.5 mL 

min-1, major enantiomer: tR = 44.4 min; minor enantiomer: tR = 35.7 min, 82% ee.  

(R)-2-(1-cyclohexylidene-4-hydroxybutan-2-yl)-N-methoxybenzamide 

28i: Using method K, 86% yield; 1H NMR (400 MHz, CDCl3): δ 7.46 – 

7.39 (m, 1H), 7.38 – 7.29 (m, 2H), 7.19 (t, J = 7.5 Hz, 1H), 5.24 (d, J = 

9.4 Hz, 1H), 4.27 – 4.18 (m, 1H), 3.89 (s, 3H), 3.52 (dt, J = 11.5, 4.1 Hz, 

1H), 3.24 (td, J = 11.5, 2.9 Hz, 1H), 2.25– 2.20 (m, 1H), 2.12 – 1.86 (m, 

4H), 1.89 – 1.74 (m, 1H), 1.61 – 1.33 ppm (m, 6H); 13C NMR (101 MHz, CDCl3): δ 168.46, 

144.36, 140.32, 132.51, 131.35, 128.23, 127.61, 126.00, 125.59, 64.62, 59.86, 41.06, 37.28, 

35.12, 29.34, 28.63, 27.93, 26.87 ppm; FT‐IR: 
~ = 3154, 2927, 2851, 1639, 1531, 1440, 1315, 

1038 cm-1; HRMS: calc. for [M+H]+ C18H26O3N: 304.19072, found: 304.19122;  RT

D = +33.2 

(CH2Cl2, c = 2.00); HPLC conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 

15/85, flow rate = 0.5 mL min-1, major enantiomer: tR = 61.6 min; minor enantiomer: tR = 57.7 

min, 94% ee. 

(R)-2-(1-hydroxy-5-methylhex-4-en-3-yl)-N-methoxybenzamide 

28j: Using method K, 62% yield; 1H NMR (400 MHz, CDCl3): δ 8.96 (br s, 

1H), 7.47 – 7.41 (m, 1H), 7.37 – 7.31 (m, 2H), 7.24 – 7.18 (m, 1H), 5.31 (d, 

J = 9.3 Hz, 1H), 4.23 – 4.11 (m, 1H), 3.55 (dt, J = 11.4, 4.0 Hz, 1H), 3.27 (t, 

J = 9.8 Hz, 1H), 2.51 (br s, 1H), 1.98 (ddd, J = 14.8, 9.8, 4.4 Hz, 1H), 1.87 – 

1.76 (m, 1H), 1.65 (s, 3H), 1.63 ppm (s, 3H); 13C NMR (101 MHz, CDCl3): δ 168.51, 144.17, 

132.59, 132.34, 131.42, 128.84, 128.28, 127.63, 126.09, 64.75, 59.88, 40.84, 36.18, 25.95, 

18.29ppm; FT‐IR: 
~ = 3153, 2962, 2925, 2853, 1639, 1540, 1439, 1319, 1034 cm-1; HRMS: 

calc. for [M+H]+ C15H22O3N: 264.15942, found: 264.15942;  RT

D = +9.6 (CH2Cl2, c = 1.00); 

HPLC conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 30/70, flow rate = 0.5 

mL min-1, major enantiomer: tR = 19.3 min; minor enantiomer: tR = 18.2 min, 94% ee. 

(S)-N-methoxy-2-(3-methyl-1-phenylbut-2-en-1-yl)benzamide 

28k: Using method M, 78% yield; 1H NMR (400 MHz, CDCl3): δ 8.10 (br s, 

1H), 7.43 – 7.35 (m, 1H), 7.32 (t, J = 7.2 Hz, 2H), 7.28 – 7.20 (m, 2H), 7.20 

– 7.11 (m, 3H), 5.60 – 5.52 (m, 1H), 5.47 (d, J = 9.3 Hz, 1H), 3.72 (s, 3H), 

1.79 (s, 3H), 1.72 ppm (s, 3H); 13C NMR (101 MHz, CDCl3): δ 168.11, 
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144.94, 144.11, 134.13, 132.95, 130.90, 129.39, 128.51, 128.43, 127.79, 126.91, 126.22, 

126.19, 64.60, 45.47, 26.00, 18.40 ppm; FT‐ IR: 
~ = 3179, 2930, 1645, 1492, 1441, 1303, 

1033 cm-1; HRMS: calc. for [M+H]+ C19H22O2N: 296.16451, found: 296.16501;  RT

D = -18.0 

(CH2Cl2, c = 2.00); HPLC conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 

15/85, flow rate = 0.5 mL min-1, major enantiomer: tR = 26.1 min; minor enantiomer: tR = 20.3 

min, 79% ee. 
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7.2.5 Experiment Details and Analytic Data for Asymmetric Synthesis of Axially Chiral 

Biaryl Compounds 

7.2.5.1 Optimization of Reaction Conditions 

Table S3. Optimization of Reaction of of Diazonaphthoquinone 106a and Benzamide 26b.  

 

Entr

y 

Solvent CA

T 

Additives Temp T (h) Yield 

(%) 

ee 

(%) 1 0.5 mL MeOH 100l - r.t. 4 h 29 29 

2 0.5 mL DCM 100l - r.t. 4 h 49 27 

3 0.5 mL CH3CN 100l - r.t. 4 h <10 30 

4 0.5 mL THF 100l - r.t. 4 h 33 55 

5 0.5 mL Dioxane 100l - r.t. 4 h 15 43 

6 0.5 mL Tol 100l - r.t. 4 h <10 48 

7 0.5 mL Acetone 100l - r.t. 4 h 26 40 

8 0.5 mL TFE 100l - r.t. 4 h 59 20 

9 0.4 mL THF/0.1 mL TFE 100l - r.t. 4 h 39 42 

10 0.4 mL THF                     100l 0.05 mmol 

PivOH 

r.t. 4 h 36 53 

11 0.5 mL THF 99i  r.t. 4 h 37 14 

12 0.5 mL THF 100l  0oC 24 h 46 55 

General procedure: without protective precaution from air and moisture, catalyst (5.00 μmol, 0.05 equiv.), 

dibenzoylperoxide (75 wt%, 1.62 mg, 5.00 μmol, 0.05 equiv.), diazoquinone 106a (0.12 mmol, 1.20 equiv.) and 

26b (0.10 mmol, 1.00 equiv.) were dissolved into solvent. The mixture was allowed to be stirred at r.t. for 18 

hours. The resulting mixture was directly subjected on a silica gel to afford desired product 107a.  
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Table S4. Optimization of Reaction of Diazonaphthoquinone 106b and Benzamide 26b  

 

Entry concentration temperature t (h) solvent yield(%) ee(%) 

1 0.5 M r.t. 24 THF 53 89 

2 0.2 M 50°C 24 THF 63 89 

3 0.5 M r.t. 24 Dioxane 74 91 

4 0.5 M r.t. 24 MeOH 26 82 

5 0.5 M r.t. 24 TFE 37 75 

6 0.5 M r.t. 24 DCM 47 84 

7 0.5 M r.t. 24 CH3CN 26 73 

8 0.5 M r.t. 24 CF3C6H5 52 85 

General procedure: without protective precaution from air and moisture, catalyst 100l (2.93 mg, 5.00 μmol, 0.05 

equiv.), dibenzoylperoxide (75 wt%, 1.62 mg, 5.00 μmol, 0.05 equiv.), diazoquinone 106b (0.12 mmol, 1.20 

equiv.) and 26b (0.10 mmol, 1.00 equiv.) were dissolved into solvent. The resulting mixture was directly subjected 

on a silica gel to afford desired product 107e. 

7.2.5.2 General Methods and Analytic Data for the Synthesis of Diazonaphthoquinones 

106a-j and Axially Chiral Biaryl Compounds 107a-q 

Method N for Synthesis of Diazonaphthoquinones 106a, 106b, 106f-j: 

Diazonaphthoquinones were prepared according to the reported procedure. To a solution of 2-

chloro-1,3-dimethylimidazolinium chloride (228 mg, 1.35 mmol) in MeCN (2 mL), NaN3 (99.4 

mg, 1.5 mmol), and 15-crown-5 ether (0.06 mL, 0.3 mmol) was added at -20°C, and the mixture 

was stirred for 30 min. Specific substituted 2-naphthol (0.90 mmol, 1.00 equiv.) and Et3N (0.25 

mL, 1.8 mmol, 2.00 equiv.) in THF (4 mL) was added to the mixture, which was stirred for 2 

h. The reaction was quenched with H2O, and organic materials were extracted three times with 

CH2Cl2. The combined extracts were washed with H2O and brine, and then, dried over anhyd 

Na2SO4. The solvent was removed in vacuo to afford crude compounds. The crude materials 
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were purified by flash column chromatography to give diazonaphthoquinone 106a, 106b, 106f-

j. 

Method O for Synthesis of Diazonaphthoquinones 106c-e: 

Diazonaphthoquinones were prepared according to the reported procedure. To a stirred solution 

of aminophenols (10.0 mmol, 1.0 equiv) in EtOH (60 mL) was slowly added HCl (8.4 mL, 12 

N, 100 mmol, 10.0 equiv) at 0 ºC. This mixture was stirred at 0 ºC for 10 min, then an ice-cold 

solution of NaNO2 (2.07 g, 30 mmol, 3.0 equiv) in H2O (4 mL) was added dropwise over 10 

min. The resulting mixture was stirred for another 2 h at 0 ºC, then diluted with cold CH2Cl2 

(200 mL) followed by addition 30 g of ice. The mixture was stirred vigorously while a cold 

solution of K2CO3 (9.2 g, 67 mmol, 6.7 equiv) in H2O (10 mL) was added. The organic layers 

were then separated, and the aqueous layer was extracted with CH2Cl2 (100 mL). The combined 

organic layer was washed with brine (100 mL), and dried over Na2SO4. Evaporation in vacuo 

resulted in a black solid. This solid was kept anhydrous at -25ºC and used without further 

purification. 

Benzamides 26 were synthesized by Dr. Rajesh Gontla 

 

1-Diazonaphthalen-2(1H)-one 

106a: Using Method N, 81% yield; 1H NMR (500 MHz, CD2Cl2): δ = 7.66 (d, 

J = 9.8 Hz, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.56 – 7.49 (m, 1H), 7.33 – 7.25 (m, 

J = 11.0, 8.4, 4.5 Hz, 2H), 6.60 ppm (d, J = 9.8 Hz, 1H); 13C NMR (101 MHz, 

CD2Cl2): δ = 180.35, 140.69, 130.49, 130.24, 127.87, 126.29, 126.17, 125.13, 120.36 ppm; 

HRMS: calc. for [M+H]+ C10H7ON2: 171.05529, found: 171.05510. 

Methyl 4-diazo-3-oxo-3,4-dihydronaphthalene-2-carboxylate 

106b: Using Method N, 72% yield; 1H NMR (500 MHz, CD2Cl2): δ 8.34 

(s, 1H), 7.75 – 7.68 (m, 1H), 7.66 – 7.56 (m, 1H), 7.35 – 7.26 (m, 2H), 

3.88 ppm (s, 3H); 13C NMR (126 MHz, CD2Cl2): δ 175.94, 165.59, 145.41, 

132.37, 132.23, 129.87, 126.80, 125.48, 124.37, 120.05, 52.76 ppm; FT‐IR: 
~ =  2098, 1693, 

1606, 1208, 792 cm-1; HRMS: calc. for [M+H]+ C12H9O3N2: 229.06077, found: 229.06072. 
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Methyl 6-diazo-5-oxocyclohexa-1,3-diene-1-carboxylate 

106c: Using Method O, 71% yield; 1H NMR (500 MHz, CD2Cl2): δ = 7.31 

(dd, J = 9.4, 7.0 Hz, 1H), 7.03 (dd, J = 7.0, 0.7 Hz, 1H), 6.81 (dd, J = 9.4, 0.7 

Hz, 1H), 3.92 ppm (s, 3H); 13C NMR (126 MHz, CD2Cl2): δ = 178.41, 163.74, 

136.61, 129.72, 126.07, 120.04, 53.47  ppm; HRMS: calc. for [M+H]+ C8H7O3N2: 179.04512, 

found: 179.04500. 

6-Diazo-5-methylcyclohexa-2,4-dien-1-one 

106d: Using Method O, 61% yield; 1H NMR (400 MHz, CD2Cl2): δ = 7.27 – 

7.18 (m, 1H), 6.51 (dd, J = 9.3, 0.7 Hz, 1H), 6.25 – 6.15 (m, 1H), 2.33 ppm (s, 

3H); 13C NMR (101 MHz, CD2Cl2): δ = 176.49, 138.25, 134.88, 119.88, 116.47, 

18.61 ppm; HRMS: calc. for [M+H]+ C7H7ON2: 135.05529, found: 135.05501. 

2-Diazo-[1,1'-biphenyl]-3(2H)-one 

106e: Using Method O, 76% yield; 1H NMR (400 MHz, CD2Cl2): δ = 7.56 (dd, 

J = 8.0, 1.5 Hz, 2H), 7.54 – 7.40 (m, 4H), 6.79 (d, J = 9.2 Hz, 1H), 6.57 ppm (d, 

J = 7.0 Hz, 1H); 13C NMR (101 MHz, CD2Cl2): δ = 173.46, 138.18, 137.14, 

135.97, 129.53, 129.35, 127.92, 119.12, 116.96, 97.08 ppm; HRMS: calc. for [M+H]+ 

C12H9ON2: 197.07094, found: 197.07093. 

Benzyl 4-diazo-3-oxo-3,4-dihydronaphthalene-2-carboxylate 

106f: Using Method N, 51% yield; 1H NMR (400 MHz, CD2Cl2): δ 8.36 

(s, 1H), 7.70 (d, J = 7.7 Hz, 1H), 7.65 – 7.58 (m, 1H), 7.49 (d, J = 7.2 Hz, 

2H), 7.43 – 7.37 (m, 2H), 7.38 – 7.27 (m, 3H), 5.35 ppm (s, 2H); 13C NMR 

(101 MHz, CD2Cl2): δ 175.94, 164.92, 145.45, 136.64, 132.41, 132.26, 129.93, 129.10, 128.73, 

128.68, 126.78, 125.48, 124.36, 120.08, 67.43 ppm; FT‐IR: 
~ =  2124, 1724, 1604, 1201, 1138, 

1071, 746 cm-1; HRMS: calc. for [M+H]+ C18H12O3N2: 305.09207, found: 305.09204. 

tert-butyl 4-diazo-3-oxo-3,4-dihydronaphthalene-2-carboxylate 

106g: Using Method N, 59% yield; 1H NMR (400 MHz, CD2Cl2): δ 8.19 

(s, 1H), 7.69 (d, J = 8.2 Hz, 1H), 7.63 – 7.56 (m, 1H), 7.35 – 7.26 (m, 

2H), 1.58 ppm (s, 9H); 13C NMR (101 MHz, CD2Cl2): δ 176.12, 164.21, 

143.79, 131.92, 129.52, 128.76, 125.40, 124.59, 120.09, 82.37, 28.49 ppm; FT‐IR: 
~ = 2086, 
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1716, 1613, 1368, 1144, 744 cm-1; HRMS: calc. for [M+H]+ C15H15O3N2: 271.10772, found: 

271.10794. 

3-Benzoyl-1-diazonaphthalen-2(1H)-one 

106h: Using Method N, 53% yield; 1H NMR (400 MHz, CD2Cl2) δ: 7.91 (s, 

1H), 7.86 (d, J = 7.4 Hz, 2H), 7.70 (d, J = 7.8 Hz, 1H), 7.66 – 7.58 (m, 2H), 

7.51 – 7.45 (m, 2H), 7.41 – 7.30 ppm (m, 2H); 13C NMR (101 MHz, 

CD2Cl2): δ 194.56, 177.47, 141.87, 137.72, 135.91, 133.89, 131.83, 131.71, 130.02, 129.10, 

128.95, 125.56, 124.94, 120.27 ppm; FT‐IR: 
~ = 2088, 1655, 1609, 1214, 732 cm-1; HRMS: 

calc. for [M+H]+ C17H11O2N2: 275.08150, found: 275.08154. 

Methyl 7-bromo-4-diazo-3-oxo-3,4-dihydronaphthalene-2-carboxylate 

106i: Using Method N, 70% yield; 1H NMR (400 MHz, CD2Cl2): δ 

8.24 (s, 1H), 7.85 (d, J = 2.0 Hz, 1H), 7.71 (dd, J = 8.5, 2.0 Hz, 1H), 

7.21 (d, J = 8.5 Hz, 1H), 3.89 ppm (s, 3H); 13C NMR (101 MHz, 

CD2Cl2) δ 175.38, 165.25, 143.74, 135.03, 134.27, 128.59, 128.06, 125.77, 121.58, 118.35, 

52.92 ppm; FT‐IR: 
~ = 2085, 1691, 1611, 1548, 1244, 793 cm-1; HRMS: calc. for [M+H]+ 

C12H8O3N2
79Br: 306.97128, found: 306.97155; calc. for [M+H]+ C12H8O3N2

81Br: 308.96923, 

found: 308.96935. 

Methyl 4-diazo-7-methoxy-3-oxo-3,4-dihydronaphthalene-2-carboxylate 

106j: Using Method N, 76% yield; 1H NMR (400 MHz, CD2Cl2): δ 

8.29 (s, 1H), 7.27 – 7.21 (m, 2H), 7.21 – 7.15 (m, 1H), 3.89 (s, 3H), 

3.86 ppm (s, 3H); 13C NMR (101 MHz, CD2Cl2): δ 175.95, 165.69, 

157.77, 144.76, 127.02, 125.44, 122.45, 121.50, 114.12, 56.18, 52.78 ppm; FT‐IR: 
~ = 1719, 

1599, 1648, 1372, 1253, 1144, 844 cm-1; HRMS: calc. for [M+H]+ C13H11O4N2: 259.07133, 

found: 259.07134. 
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Method P: 

Without protective precaution from air and moisture, catalyst 100l (2.93 mg, 5.00 μmol, 0.05 

equiv.), dibenzoylperoxide (75 wt%, 1.62 mg, 5.00 μmol, 0.05 equiv.), diazoquinones 106 

(0.12 mmol, 1.20 equiv.) and 26 (0.10 mmol, 1.00 equiv.) were dissolved into 0.5 mL THF. 

The mixture was allowed to be stirred at r.t. for 18 hours. The resulting mixture was directly 

subjected on a silica gel to afford desired product 107a-107c. 

Method Q: 

Without protective precaution from air and moisture, catalyst 100l (2.93 mg, 5.00 μmol, 0.05 

equiv.), dibenzoylperoxide (75 wt%, 1.62 mg, 5.00 μmol, 0.05 equiv.), diazoquinones 106 

(0.12 mmol, 1.20 equiv.) and 26 (0.10 mmol, 1.00 equiv.) were dissolved into 0.2 mL dioxane. 

The mixture was allowed to be stirred at r.t. for 18 hours. The resulting mixture was directly 

subjected on a silica gel to afford desired product 107d-q. 

 

(R)-2-(2-hydroxynaphthalen-1-yl)-N-methoxy-6-methylbenzamide 

107a: According to Method P, 33% yield; 1H NMR (600 MHz, 

methanol-d4): δ 7.77 – 7.69 (m, 2H), 7.46 – 7.40 (m, 1H), 7.33 – 7.28 (m, 

1H), 7.26 – 7.17 (m, 2H), 7.18 – 7.11 (m, 2H), 7.07 (d, J = 7.5 Hz, 1H), 

2.98 (s, 3H), 2.40 ppm (s, 3H); 13C NMR (600 MHz, methanol-d4): δ 

168.36, 153.02, 137.02, 136.80, 136.00, 135.73, 130.86, 130.53, 130.44, 130.20, 129.78, 

128.65, 127.24, 126.19, 123.91, 120.88, 118.80, 63.53, 19.27 ppm; HRMS: calc. for [M+H]+ 

C19H18O3N: 308.12812, found: 308.12816. 

Methyl (R)-3-hydroxy-4-(2-(methoxycarbamoyl)-3-methylphenyl)-2-naphthoate 

107b: According to Method P, 90% yield; 1H NMR (500 MHz, CD2Cl2): 

δ 11.03 (s, 1H), 8.81 (s, 1H), 8.63 (s, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.51 

– 7.42 (m, 2H), 7.42 – 7.34 (m, 2H), 7.19 (d, J = 8.5 Hz, 1H), 7.06 (d, J 

= 7.5 Hz, 1H), 4.05 (s, 3H), 3.19 (s, 3H), 2.45 ppm (s, 3H); 13C NMR 

(126 MHz, CD2Cl2): δ 171.14, 166.47, 152.83, 137.62, 137.38, 135.36, 133.91, 133.41, 130.46, 

130.28, 130.18, 129.97, 128.86, 127.45, 125.41, 124.90, 122.18, 114.07, 63.88, 53.45, 19.45 

ppm; FT-IR: 
~ = 3148, 2935, 1667, 1505, 1436, 1317, 1217, 1154, 1034 cm-1; HRMS: calc. 

for [M+H]+ C21H20O5N: 366.13360, found: 366.13437;  RT

D = +8.9 (CH2Cl2, c = 1.00); HPLC 
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conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 40/60, flow rate = 0.5 mL 

min-1, major enantiomer: tR = 26.9 min; minor enantiomer: tR = 31.8 min; 51% ee. 

Methyl (R)-3'-chloro-2-hydroxy-2'-(methoxycarbamoyl)-[1,1'-binaphthalene]-3-

carboxylate 

107c: According to Method P, 78% yield; 1H NMR (500 MHz, CD2Cl2): 

δ 10.94 (s, 1H), 8.71 (s, 1H), 8.66 (s, 1H), 8.00 (s, 1H), 7.89 – 7.85 (m, 

1H), 7.83 (d, J = 8.3 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 7.36 – 7.27 (m, 

2H), 7.23 (t, J = 7.6 Hz, 1H), 7.05 (d, J = 8.5 Hz, 1H), 6.94 – 6.81 (m, 

1H), 3.99 (s, 3H), 3.19 ppm (s, 3H); 13C NMR (126 MHz, CD2Cl2): δ 

171.07, 163.71, 153.72, 137.59, 134.89, 134.43, 134.41, 132.72, 131.38, 130.68, 130.23, 

129.16, 128.92, 128.74, 128.10, 127.84, 127.57, 126.59, 125.22, 118.20, 114.32, 64.10, 53.57  

ppm; FT‐IR: 
~ = 3674, 3335, 2987, 2901, 1683, 1665, 1446, 1434, 1340, 1296, 1232, 1066 

cm-1; HRMS: calc. for [M+H]+ C24H19O5NCl: 436.09463, found: 436.09447;  RT

D = +6.9 

(CH2Cl2, c = 1.00); HPLC conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 

40/60, flow rate = 0.5 mL min-1, major enantiomer: tR = 45.5 min; minor enantiomer: tR = 37.2 

min; 65% ee. 

Methyl (R)-3-hydroxy-4-(2-(methoxycarbamoyl)-3,6-dimethylphenyl)-2-naphthoate 

107d: According to Method Q, 74% yield; 1H NMR (400 MHz, CD2Cl2): 

δ 10.95 (s, 1H), 8.63 (s, 1H), 8.60 (s, 1H), 7.89 (d, J = 8.1 Hz, 1H), 7.49 

– 7.43 (m, 1H), 7.42 – 7.36 (m, 1H), 7.36 – 7.31 (m, 1H), 7.27 (d, J = 7.8 

Hz, 1H), 7.13 – 7.09 (m, 1H), 4.06 (s, 3H), 3.14 (s, 3H), 2.38 (s, 3H), 

1.84 ppm (s, 3H); 13C NMR (101 MHz, CD2Cl2) δ 171.22, 166.83, 152.87, 137.23, 135.80, 

135.34, 134.43, 133.46, 133.03, 131.67, 130.55, 130.44, 130.19, 127.70, 125.01, 124.95, 

121.08, 114.32, 63.86, 53.46, 19.54, 19.10 ppm; FT-IR: 
~ = 3197, 2954, 1675, 1626, 1504, 

1435, 1314, 1270, 1218, 1054 cm-1; HRMS: calc. for [M+H]+ C22H22O5N: 380.14925, found: 

380.14981;  RT

D = -29.4 (CH2Cl2, c = 1.00); HPLC conditions: CHIRAPAK IC column, iso-

propanol / iso-hexane = 40/60, flow rate = 0.5 mL min-1, major enantiomer: tR = 21.8 min; 

minor enantiomer: tR = 29.1 min; 91% ee. 

Methyl (R)-4-(3-bromo-2-(methoxycarbamoyl)-6-methylphenyl)-3-hydroxy-2-

naphthoate 
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107e: According to Method Q, 56% yield; 1H NMR (700 MHz, CD2Cl2) 

δ 10.96 (s, 1H), 8.64 (s, 1H), 8.59 (s, 1H), 7.90 (d, J = 8.2 Hz, 1H), 7.62 

(d, J = 8.3 Hz, 1H), 7.51 – 7.46 (m, 1H), 7.43 – 7.38 (m, 1H), 7.33 (d, J 

= 8.3 Hz, 1H), 7.13 (d, J = 8.5 Hz, 1H), 4.05 (s, 3H), 3.21 (s, 3H), 1.86 

ppm (s, 3H); 13C NMR (176 MHz, CD2Cl2) δ 171.11, 164.62, 152.99, 

138.49, 136.82, 136.67, 135.73, 133.97, 133.16, 132.88, 130.67, 130.28, 127.60, 125.13, 

124.69, 119.80, 118.36, 114.31, 63.97, 53.50, 19.56  ppm; FT-IR: 
~ = 3315, 3159, 1687, 1664, 

1436, 1332, 1229, 1078, 1048 cm-1; HRMS: calc. for [M+H]+ C21H19O5N
79Br: 444.04411, 

found: 444.04398; calc. for [M+H]+ C21H19O5N
81Br: 446.04207, found: 446.04184;  RT

D = 

+9.6 (CH2Cl2, c = 1.00); HPLC conditions: CHIRAPAK IC column, iso-propanol / iso-hexane 

= 40/60, flow rate = 0.5 mL min-1, major enantiomer: tR = 33.3 min; minor enantiomer: tR = 

42.6 min; 86% ee. 

Methyl (R)-4-(3-iodo-2-(methoxycarbamoyl)-6-methylphenyl)-3-hydroxy-2-naphthoate 

107f: According to Method Q, 67% yield; 1H NMR (500 MHz, CD2Cl2): 

δ 10.98 (s, 1H), 8.69 – 8.57 (m, 2H), 7.90 (d, J = 8.1 Hz, 1H), 7.87 (d, J 

= 8.1 Hz, 1H), 7.52 – 7.45 (m, 1H), 7.44 – 7.36 (m, 1H), 7.18 (d, J = 8.1 

Hz, 1H), 7.12 (d, J = 8.4 Hz, 1H), 4.05 (s, 3H), 3.22 (s, 3H), 1.85 ppm 

(s, 3H); 13C NMR (126 MHz, CD2Cl2): δ 171.08, 166.17, 152.87, 140.48, 

139.38, 139.24, 136.73, 135.25, 133.91, 133.29, 130.63, 130.24, 127.53, 125.09, 124.65, 

120.02, 114.22, 91.05, 63.90, 53.49, 19.57 ppm; FT-IR: 
~ = 3673, 3315, 2987, 1686, 1664, 

1435, 1405, 1309, 1276, 1077  cm-1; HRMS: calc. for [M+H]+ C21H19O5NI: 492.03024, found: 

492.02970;  RT

D = +4.7 (CH2Cl2, c = 2.00); HPLC conditions: CHIRAPAK IC column, iso-

propanol / iso-hexane = 40/60, flow rate = 0.5 mL min-1, major enantiomer: tR = 33.6 min; 

minor enantiomer: tR = 47.8 min; 90% ee. 

Methyl (S)-4-(3-bromo-6-methoxy-2-(methoxycarbamoyl)phenyl)-3-hydroxy-2-

naphthoate 

107g: According to Method Q, 87% yield; 1H NMR (500 MHz, CD2Cl2): 

δ 11.00 (s, 1H), 8.72 (s, 1H), 8.63 (s, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.69 

(d, J = 8.9 Hz, 1H), 7.51 – 7.45 (m, 1H), 7.42 – 7.35 (m, 1H), 7.20 (d, J 

= 8.5 Hz, 1H), 7.03 (d, J = 8.9 Hz, 1H), 4.04 (s, 3H), 3.64 (s, 3H), 3.23 

ppm (s, 3H); 13C NMR (126 MHz, CD2Cl2): δ 171.09, 164.03, 157.50, 
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153.30, 137.67, 137.29, 134.11, 133.88, 130.36, 130.13, 127.40, 124.97, 124.89, 117.21, 

114.30, 114.21, 111.52, 63.97, 56.64, 53.46 ppm; FT-IR: 
~ = 3674, 2255, 2987, 1683, 1501, 

1434, 1341, 1312, 1211, 1069, 1038 cm-1; HRMS: calc. for [M+H]+ C21H19O6N
79Br: 

460.03903, found: 460.03877; calc. for [M+H]+ C21H19O6N
81Br: 462.03698, found: 

462.03667;  RT

D = -11.7 (CH2Cl2, c = 2.00); HPLC conditions: CHIRAPAK IC column, iso-

propanol / iso-hexane = 40/60, flow rate = 0.5 mL min-1, major enantiomer: tR = 75.2 min; 

minor enantiomer: tR = 51.6 min; 89% ee. 

Methyl (S)-4-(3-iodo-6-methoxy-2-(methoxycarbamoyl)phenyl)-3-hydroxy-2-naphthoate 

107h: According to Method Q, 93% yield; 1H NMR (500 MHz, 

CD2Cl2): δ 11.00 (s, 1H), 8.72 (s, 1H), 8.62 (s, 1H), 7.93 (d, J = 8.8 Hz, 

1H), 7.88 (d, J = 8.2 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H), 7.39 (t, J = 7.5 

Hz, 1H), 7.19 (d, J = 8.2 Hz, 1H), 6.90 (d, J = 8.8 Hz, 1H), 4.04 (s, 3H), 

3.63 (s, 3H), 3.25 ppm (s, 3H); 13C NMR (126 MHz, CD2Cl2): δ 171.09, 

165.62, 158.35, 153.23, 141.48, 140.64, 137.27, 133.85, 130.35, 130.11, 127.40, 124.96, 

124.90, 124.67, 117.49, 114.71, 114.19, 82.97, 63.94, 56.56, 53.46 ppm; FT-IR: 
~ = 3673, 

3151, 2987, 1668, 1436, 1314, 1213, 1072, 1026 cm-1; HRMS: calc. for [M+H]+ C21H19O6NI: 

508.02516, found: 508.02459;  RT

D = -12.8 (CH2Cl2, c = 2.00); HPLC conditions: 

CHIRAPAK IC column, (CH2Cl2/EtOH = 100/2) / iso-hexane = 60/40, flow rate = 0.5 mL min-

1, major enantiomer: tR = 25.9 min; minor enantiomer: tR = 14.6 min; 89% ee. 

Methyl (S)-4-(3-bromo-5,6-dimethoxy-2-(methoxycarbamoyl)phenyl)-3-hydroxy-2-

naphthoate 

107i: According to Method Q, 84% yield; 1H NMR (500 MHz, CD2Cl2): 

δ 11.01 (s, 1H), 8.64 (s, 1H), 8.60 (s, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.54 

– 7.45 (m, J = 7.5 Hz, 1H), 7.44 – 7.36 (m, J = 7.5 Hz, 1H), 7.29 (s, 1H), 

7.23 (d, J = 8.5 Hz, 1H), 4.05 (s, 3H), 3.94 (s, 3H), 3.49 (s, 3H), 3.19 

ppm (s, 3H); 13C NMR (126 MHz, CD2Cl2): δ 171.10, 163.95, 155.09, 

153.24, 147.28, 137.30, 133.94, 130.39, 130.17, 130.12, 129.42, 127.40, 125.02, 117.36, 

117.24, 115.75, 114.14, 63.88, 60.97, 56.70, 53.47 ppm; FT-IR: 
~ = 3673, 3236, 2987, 2901, 

1672, 1433, 1317, 1287, 1010, 1073, 1029 cm-1; HRMS: calc. for [M+H]+ C22H21O7N
79Br: 

490.04959, found: 490.04917; calc. for [M+H]+ C22H21O7N
81Br: 492.04754, found: 

492.04710;  RT

D = +4.3 (CH2Cl2, c = 2.00); HPLC conditions: CHIRAPAK IC column, 
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(CH2Cl2/EtOH = 100/2) / iso-hexane = 60/40, flow rate = 1.0 mL min-1, major enantiomer: tR 

= 13.3 min; minor enantiomer: tR = 7.9 min; 90% ee. 

Methyl (S)-4-(6-bromo-5-(methoxycarbamoyl)benzo[d][1,3]dioxol-4-yl)-3-hydroxy-2-

naphthoate 

107j: According to Method Q, 89% yield; 1H NMR (400 MHz, CD2Cl2): 

δ 11.08 (s, 1H), 8.65 (s, 2H), 7.92 – 7.86 (m, 1H), 7.59 – 7.49 (m, 1H), 

7.44 – 7.39 (m, 1H), 7.36 (d, J = 8.5 Hz, 1H), 7.21 – 7.14 (m, 1H), 5.99 

– 5.96 (m, 1H), 5.95 (dd, J = 1.1, 0.7 Hz, 1H), 4.05 (s, 3H), 3.27 ppm (s, 

3H); 13C NMR (101 MHz, CD2Cl2): δ 171.01, 164.00, 153.78, 149.87, 146.69, 136.88, 134.57, 

130.79, 130.33, 127.51, 125.24, 124.80, 116.96, 114.70, 114.33, 113.32, 113.01, 103.17, 64.01, 

53.46 ppm; FT-IR: 
~ = 3166, 2923, 1676, 1447, 1312, 1228, 1089 cm-1; HRMS: calc. for 

[M+H]+ C21H17O7N
79Br: 474.01829, found: 474.01795; calc. for [M+H]+ C21H17O7N

81Br: 

476.01624, found: 476.01577;  RT

D = +7.0 (CH2Cl2, c = 1.00); HPLC conditions: CHIRAPAK 

IA column, (CH2Cl2/EtOH = 100/2) / iso-hexane = 50/50, flow rate = 0.5 mL min-1, major 

enantiomer: tR = 15.9 min; minor enantiomer: tR = 12.0 min; 79% ee.  

Methyl (R)-2-hydroxy-3'-iodo-2'-(methoxycarbamoyl)-5',6',7',8'-tetrahydro-[1,1'-

binaphthalene]-3-carboxylate 

107k: According to Method Q, 69% yield; 1H NMR (700 MHz, 

CD2Cl2): δ 10.87 (s, 1H), 8.54 (s, 1H), 8.46 (s, 1H), 7.80 (d, J = 8.2 Hz, 

1H), 7.65 (s, 1H), 7.41 – 7.37 (m, 1H), 7.33 – 7.28 (m, 1H), 7.05 (d, J = 

8.5 Hz, 1H), 3.97 (s, 3H), 3.12 (s, 3H), 2.79 – 2.73 (m, 2H), 2.14 – 2.07 

(m, 1H), 1.90 – 1.82 (m, 1H), 1.67 – 1.59 (m, 2H), 1.56 – 1.48 ppm (m, 2H); 13C NMR (176 

MHz, CD2Cl2): δ 171.14, 166.31, 152.80, 142.31, 140.17, 137.99, 137.79, 136.85, 135.05, 

133.78, 130.62, 130.23, 127.61, 125.09, 124.72, 120.07, 114.28, 90.63, 63.89, 53.49, 30.12, 

27.09, 23.22, 22.85 ppm; FT-IR: 
~ = 3673, 3181, 2987, 2920, 1681, 1655, 1505, 1433, 1319, 

1209, 1055 cm-1; HRMS: calc. for [M+H]+ C24H23O5NI: 532.06154, found: 532.06106;  RT

D

= -10.4 (CH2Cl2, c = 0.50); HPLC conditions: CHIRAPAK IC column, (CH2Cl2/EtOH = 100/2) 

/ iso-hexane = 60/40, flow rate = 0.5 mL min-1, major enantiomer: tR = 25.1 min; minor 

enantiomer: tR = 13.8 min. 

Methyl (S)-4-(6-acetoxy-3-iodo-2-(methoxycarbamoyl)phenyl)-3-hydroxy-2-naphthoate 
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107l: According to Method Q, 37% yield; 1H NMR (500 MHz, CD2Cl2): 

δ 11.03 (s, 1H), 8.70 (s, 1H), 8.64 (s, 1H), 8.00 (d, J = 8.6 Hz, 1H), 7.88 

(d, J = 8.2 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H), 7.19 

(d, J = 8.2 Hz, 1H), 7.11 (d, J = 8.6 Hz, 1H), 4.05 (s, 3H), 3.26 (s, 3H), 

1.66 ppm (s, 3H); 13C NMR (126 MHz, CD2Cl2): δ 170.99, 168.73, 

165.11, 153.37, 150.19, 142.31, 140.57, 136.84, 134.47, 130.52, 130.08, 129.00, 127.33, 

126.63, 125.16, 125.02, 116.02, 114.04, 90.84, 64.03, 53.54, 20.61 ppm; FT-IR: 
~ = 3670, 

3195, 2987, 1765, 1676, 1435, 1314, 1187, 1072 cm-1; HRMS: calc. for [M+H]+ C22H19O7NI: 

536.02007, found: 536.01955;  RT

D = +8.2 (CH2Cl2, c = 1.00); HPLC conditions: CHIRAPAK 

IC column, (CH2Cl2/EtOH = 100/2) / iso-hexane = 60/40, flow rate = 0.5 mL min-1, major 

enantiomer: tR = 20.7 min; minor enantiomer: tR = 12.9 min; 87% ee.  

Benzyl (S)-3-hydroxy-4-(3-iodo-6-methoxy-2-(methoxycarbamoyl)phenyl)-2-naphthoate 

107m: According to Method Q, 81% yield; 1H NMR (500 MHz, 

CD2Cl2): δ 10.99 (s, 1H), 8.69 (s, 1H), 8.66 (s, 1H), 7.93 (d, J = 8.8 Hz, 

1H), 7.87 (d, J = 8.2 Hz, 1H), 7.56 – 7.50 (m, 2H), 7.50 – 7.34 (m, 5H), 

7.19 (d, J = 8.5 Hz, 1H), 6.91 (d, J = 8.8 Hz, 1H), 5.51 (d, J = 12.2 Hz, 

1H), 5.46 (d, J = 12.2 Hz, 1H), 3.63 (s, 3H), 3.23 (s, 3H); 13C NMR (126 MHz, CD2Cl2): δ 

170.51, 165.60, 158.36, 153.33, 141.49, 140.66, 137.35, 135.64, 133.91, 130.42, 130.12, 

129.26, 129.23, 129.00, 127.40, 125.00, 124.91, 124.67, 117.56, 114.72, 114.18, 82.98, 68.31, 

63.94, 56.57 ppm; FT-IR: 
~ = 3674, 3324, 2987, 1697, 1661, 1435, 1411, 1305, 1280, 1208, 

1066, 1029 cm-1; HRMS: calc. for [M+H]+ C27H23O6NI: 584.05646, found: 584.05606;  RT

D

= -7.5 (CH2Cl2, c = 2.00); HPLC conditions: CHIRAPAK IC column, iso-propanol / iso-hexane 

= 40/60, flow rate = 0.5 mL min-1, major enantiomer: tR = 69.9 min; minor enantiomer: tR = 

49.8 min; 90% ee. 

tert-Butyl (S)-3-hydroxy-4-(3-iodo-6-methoxy-2-(methoxycarbamoyl)phenyl)-2-

naphthoate 

107n: According to Method Q, 91% yield; 1H NMR (500 MHz, CD2Cl2): 

δ 11.34 (s, 1H), 8.72 (s, 1H), 8.54 (s, 1H), 7.93 (d, J = 8.8 Hz, 1H), 7.88 

(d, J = 8.2 Hz, 1H), 7.47 – 7.42 (m, 1H), 7.40 – 7.34 (m, 1H), 7.16 (d, J 

= 8.4 Hz, 1H), 6.90 (d, J = 8.8 Hz, 1H), 3.64 (s, 3H), 3.23 (s, 3H), 1.69 

ppm (s, 9H); 13C NMR (126 MHz, CD2Cl2): δ 170.34, 165.65, 158.39, 
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153.67, 141.55, 140.60, 137.05, 133.81, 130.09, 130.00, 127.32, 124.86, 124.82, 117.27, 

115.63, 114.69, 84.75, 83.03, 63.86, 56.59, 28.47 ppm; FT-IR: 
~ = 3674, 2975, 1668, 1505, 

1456, 1434, 1331, 1282, 1242, 1148 cm-1; HRMS: calc. for [M+H]+ C24H25O6NI: 550.07211, 

found: 550.07167;  RT

D = +5.8 (CH2Cl2, c = 2.00); HPLC conditions: CHIRAPAK IC column, 

iso-propanol / iso-hexane = 40/60, flow rate = 0.5 mL min-1, major enantiomer: tR = 46.1 min; 

minor enantiomer: tR = 28.4 min; 84% ee. 

(S)-2-(3-Benzoyl-2-hydroxynaphthalen-1-yl)-6-iodo-N,3-dimethoxybenzamide 

107o: According to Method Q, 72% yield; 1H NMR (500 MHz, CD2Cl2): 

δ 11.74 (s, 1H), 8.77 (s, 1H), 8.32 (s, 1H), 7.95 (d, J = 8.8 Hz, 1H), 7.85 

– 7.77 (m, 3H), 7.74 – 7.68 (m, 1H), 7.64 – 7.56 (m, 2H), 7.55 – 7.47 (m, 

1H), 7.43 – 7.36 (m, 1H), 7.21 (d, J = 8.5 Hz, 1H), 6.93 (d, J = 8.8 Hz, 

1H), 3.67 (s, 3H), 3.30 ppm (s, 3H); 13C NMR (126 MHz, CD2Cl2): δ 

202.62, 165.70, 158.39, 154.29, 141.56, 140.72, 138.35, 138.11, 137.39, 133.15, 131.03, 

130.50, 130.16, 129.13, 127.12, 125.12, 124.94, 124.60, 120.78, 118.19, 114.76, 83.04, 63.96, 

56.62, ppm; FT-IR: 
~ = 3670, 2987, 2901, 1683, 1628, 1504, 1456, 1339, 1281, 1099 cm-1; 

HRMS: calc. for [M+H]+ C26H21O5NI: 554.04589, found: 554.04542;  RT

D = +2.7 (CH2Cl2, c 

= 1.00); HPLC conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 40/60, flow 

rate = 0.5 mL min-1, major enantiomer: tR = 88.5 min; minor enantiomer: tR = 69.9 min; 86% 

ee. 

Methyl (S)-7-bromo-3-hydroxy-4-(3-iodo-6-methoxy-2-(methoxycarbamoyl)phenyl)-2-

naphthoate 

107p: According to Method Q, 72% yield; 1H NMR (500 MHz, 

DMSO-d6): δ 11.06 (s, 1H), 10.45 (s, 1H), 8.61 (s, 1H), 8.35 – 8.25 

(m, 1H), 7.92 (d, J = 8.8 Hz, 1H), 7.54 (dd, J = 8.8, 1.2 Hz, 1H), 7.06 

(d, J = 8.8 Hz, 2H), 4.00 (s, 3H), 3.60 (s, 3H), 2.95 ppm (s, 3H); 13C 

NMR (126 MHz, DMSO): δ 169.90, 163.79, 157.89, 141.92, 139.95, 

135.21, 132.37, 132.03, 131.32, 127.82, 127.66, 124.20, 118.05, 117.17, 115.35, 114.92, 83.72, 

62.36, 56.39, 53.64 ppm; FT-IR: 
~ = 3674, 3370, 2987, 1688, 1458, 1337, 1282, 1190, 1066, 

1034 cm-1; HRMS: calc. for [M+H]+ C21H18O6N
79BrI: 585.93567, found: 585.93542; calc. for 

[M+H]+ C21H18O6N
81BrI: 587.93362, found: 587.93333;  RT

D = +3.9 (CH2Cl2, c = 2.00); 
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HPLC conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 60/40, flow rate = 0.5 

mL min-1, major enantiomer: tR = 42.0 min; minor enantiomer: tR = 32.6 min; 87% ee. 

Methyl (S)-3-hydroxy-4-(3-iodo-6-methoxy-2-(methoxycarbamoyl)phenyl)-7-methoxy-2-

naphthoate 

107q: According to Method Q, 93% yield; 1H NMR (500 MHz, 

CD2Cl2): δ 10.84 (s, 1H), 8.76 (s, 1H), 8.49 (s, 1H), 7.92 (d, J = 8.8 

Hz, 1H), 7.18 – 7.13 (m, 2H), 7.10 (d, J = 9.1 Hz, 1H), 6.89 (d, J = 

8.8 Hz, 1H), 4.03 (s, 3H), 3.89 (s, 3H), 3.64 (s, 3H), 3.26 ppm (s, 

3H); 13C NMR (126 MHz, CD2Cl2): δ 171.15, 165.66, 158.32, 157.04, 151.76, 141.46, 140.62, 

132.85, 131.99, 128.36, 126.45, 124.77, 123.50, 117.75, 114.69, 114.39, 107.30, 82.97, 63.94, 

56.57, 55.88, 53.40 ppm; FT-IR: 
~ = 3674, 3271, 2988, 1670, 1438, 1389, 1341, 1222, 1073 

cm-1; HRMS: calc. for [M+H]+ C22H21O7NI: 538.03572, found: 538.03524;  RT

D = -28.3 

(CH2Cl2, c = 2.00); HPLC conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 

75/25, flow rate = 0.5 mL min-1, major enantiomer: tR = 48.8 min; minor enantiomer: tR = 31.9 

min; 87% ee. 

 

7.2.6 X-Ray Crystallographic Data and VCD Spectra Data. 

7.2.6.1 X-Ray Crystallographic Data of 99i, 105b and 107b (by C.-G.D) 

X-Ray diffraction: For compound 105b data sets were collected with a Bruker APEX II Kappa 

CCD diffractometer. For compound 99i, 107b were collected with a D8 Venture Dual Source 

100 CMOS diffractometer. Programs used: data collection: APEX2 V2014.5-0 (Bruker AXS 

Inc., 2014); cell refinement: SAINT V8.34A (Bruker AXS Inc., 2013); data reduction: SAINT 

V8.34A (Bruker AXS Inc., 2013); absorption correction, SADABS V2014/2 (Bruker AXS 

Inc., 2014); structure solution SHELXT-2014 (Sheldrick, 2014); structure refinement 

SHELXL-2014 (Sheldrick, 2014) and graphics, XP (Bruker AXS Inc., 2014). R-values are 

given for observed reflections, and wR2 values are given for all reflections.  

Exceptions and special features: For compound 99i two disordered over two positions ethene 

groups were found in the asymmetrical unit. Several restraints (SADI, SAME, ISOR and 

SIMU) were used in order to improve refinement stability of the compound. 
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X-ray crystal structure analysis of 99i (CDCC 1450765): A yellow needle-like specimen of 

C27H32NO2Rh, approximate dimensions 0.059 mm x 0.097 mm x 0.253 mm, was used for the 

X-ray crystallographic analysis. The X-ray intensity data were measured. The total exposure 

time was 4.11 hours. The frames were integrated with the Bruker SAINT software package 

using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded 

a total of 17185 reflections to a maximum θ angle of 27.10° (0.78 Å resolution), of which 5380 

were independent (average redundancy 3.194, completeness = 99.9%, Rint = 4.39%, Rsig = 

4.59%) and 4875 (90.61%) were greater than 2σ(F2). The final cell constants of a = 8.8642(3) 

Å, b = 12.6939(5) Å, c = 10.9689(5) Å, β = 98.9220(10)°, volume = 1219.30(8) Å3, are based 

upon the refinement of the XYZ-centroids of 9677 reflections above 20 σ(I) with 4.942° < 2θ 

< 54.96°. Data were corrected for absorption effects using the multi-scan method (SADABS). 

The ratio of minimum to maximum apparent transmission was 0.910. The calculated minimum 

and maximum transmission coefficients (based on crystal size) are 0.8380 and 0.9590. The 

structure was solved and refined using the Bruker SHELXTL Software Package, using the 

space group P21, with Z = 2 for the formula unit, C27H32NO2Rh. The final anisotropic full-

matrix least-squares refinement on F2 with 321 variables converged at R1 = 2.84%, for the 

observed data and wR2 = 5.29% for all data. The goodness-of-fit was 1.084. The largest peak 

in the final difference electron density synthesis was 0.378 e-/Å3 and the largest hole was -

0.577 e-/Å3 with an RMS deviation of 0.072 e-/Å3. On the basis of the final model, the 

calculated density was 1.377 g/cm3 and F(000), 524 e-. 

X-ray crystal structure analysis of 105b (CDCC 1450766): A colorless prism-like specimen 

of C18H15NO3, approximate dimensions 0.171 mm x 0.226 mm x 0.299 mm, was used for the 

X-ray crystallographic analysis. The X-ray intensity data were measured. A total of 815 frames 

were collected. The total exposure time was 14.29 hours. The frames were integrated with the 

Bruker SAINT software package using a wide-frame algorithm. The integration of the data 

using an orthorhombic unit cell yielded a total of 6857 reflections to a maximum θ angle of 

68.03° (0.83 Å resolution), of which 2339 were independent (average redundancy 2.932, 

completeness = 96.5%, Rint = 2.47%, Rsig = 2.49%) and 2279 (97.43%) were greater than 

2σ(F2). The final cell constants of a = 7.30910(10) Å, b = 9.2636(2) Å, c = 19.9469(4) Å, 

volume = 1350.58(4) Å3, are based upon the refinement of the XYZ-centroids of 5456 

reflections above 20 σ(I) with 8.866° < 2θ < 136.0°. Data were corrected for absorption effects 

using the multi-scan method (SADABS). The ratio of minimum to maximum apparent 

transmission was 0.900. The calculated minimum and maximum transmission coefficients 
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(based on crystal size) are 0.7950 and 0.8750. The structure was solved and refined using the 

Bruker SHELXTL Software Package, using the space group P212121, with Z = 4 for the formula 

unit, C18H15NO3. The final anisotropic full-matrix least-squares refinement on F2 with 199 

variables converged at R1 = 2.66%, for the observed data and wR2 = 6.69% for all data. The 

goodness-of-fit was 1.081. The largest peak in the final difference electron density synthesis 

was 0.128 e-/Å3 and the largest hole was -0.185 e-/Å3 with an RMS deviation of 0.041 e-/Å3. 

On the basis of the final model, the calculated density was 1.442 g/cm3 and F(000), 616 e-. 

X-ray crystal structure analysis of 107b: A colorless prism-like specimen of C21H19NO5, 

approximate dimensions 0.156 mm x 0.338 mm x 0.378 mm, was used for the X-ray 

crystallographic analysis. The X-ray intensity data were measured. A total of 2367 frames were 

collected. The total exposure time was 19.18 hours. The frames were integrated with the Bruker 

SAINT software package using a wide-frame algorithm. The integration of the data using a 

monoclinic unit cell yielded a total of 36215 reflections to a maximum θ angle of 68.44° (0.83 

Å resolution), of which 6754 were independent (average redundancy 5.362, completeness = 

99.5%, Rint = 3.27%, Rsig = 2.29%) and 6592 (97.60%) were greater than 2σ(F2). The final cell 

constants of a = 11.3781(3) Å, b = 7.7075(2) Å, c = 21.5908(6) Å, β = 102.5900(10)°, volume 

= 1847.91(9) Å3, are based upon the refinement of the XYZ-centroids of 9843 reflections above 

20 σ(I) with 7.961° < 2θ < 136.8°. Data were corrected for absorption effects using the multi-

scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.899. 

The calculated minimum and maximum transmission coefficients (based on crystal size) are 

0.7580 and 0.8880. The final anisotropic full-matrix least-squares refinement on F2 with 509 

variables converged at R1 = 2.90%, for the observed data and wR2 = 7.48% for all data. The 

goodness-of-fit was 1.058. The largest peak in the final difference electron density synthesis 

was 0.134 e-/Å3 and the largest hole was -0.224 e-/Å3 with an RMS deviation of 0.042 e-/Å3. 

On the basis of the final model, the calculated density was 1.313 g/cm3 and F(000), 768 e-. 
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Crystal structure of compound 99i. (CDCC 1450765) 

 

 (Thermals ellipsoids are shown with 50% probability.) 

 

Crystal structure of compound 105b. (CDCC 1450766) 

 

 

(Thermals ellipsoids are shown with 50% probability.)  
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Crystal structure of compound 107b.  

 

 

(Thermals ellipsoids are shown with 50% probability.)  

7.2.6.2 VCD Spectra Data of 11m, 107b (by C.M.) 

Determination absolute configuration of 11m: Experimental IR and VCD spectra were 

obtained for a 0.27 M solution of 11m in CDCl3 (50 mg/ml) at 100 µm path length. The spectra 

were recorded on a Bruker Vertex 70v equipped with a PMA 50 module for VCD 

measurements accumulating 26000 scans for the VCD spectrum. The baseline was corrected 

by subtraction of the solvent spectrum.  

In order to analyse experimental IR and VCD spectra, theoretical spectra were simulated for 

11m in both a cis and a trans form. In contrast to the calculations of the reactions pathways, 

the vibrational spectra calculations were performed at the B3LYP/6-311+G(2d,p) level of 

theory using Gaussian 09 Rev. D.01. Solvent effects were accounted for by applying a 

polarizable continuum model (IEFPCM). Brief conformational analysis yielded one conformer 

for the trans and two for the cis isomer, with one of the cis-conformations being significantly 

more favoured (∆EZPC=2.1 kcal/mol).  
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(R,R)-cis isomer 

 

(S,R)-trans isomer 

For these two major isomers, IR and VCD spectra were calculated for each isomer. In order to 

account for line broadening, a Lorentzian band shape of 8 cm-1 half-width at half-height was 

assigned to the calculated dipole and rotational strengths. For a better visual comparison of the 

spectra, the calculated frequencies were scaled by a factor of 0.98.  

 

Numbers indicate band assignments; T and C mark diastereomer-specific VCD bands. 

Figure S2. Comparison of experimental IR and VCD spectra of 11m with calculated spectra of the possible cis- 

and trans-isomer. 
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In Fig. S1, the experimental and theoretical spectra are compared. As the band assignments 

indicate, visual comparison does not allow any unambiguous differentiation between the 

diastereomers from the IR spectra. In the VCD spectra, both stereoisomers feature quite some 

similarities as well. However, there are also differences in the predicted spectra which can be 

used to distinguish the isomers. They are marked with T (from trans) and C (for cis). From 

these diastereomer-specific bands, 11m can clearly be assigned an (R,R)-cis configuration. 

 

Determination absolute configuration of 107d: 

 

Lowest energy conformer 

 

 

Second-lowest conformer  

(∆G298K=0.7 kcal/mol) 

 

The IR and VCD spectra of 107d were measured for a 0.18 M (70mg/ml) solution in 

chloroform-d1. Calculations were carried out as mentioned above for the (aR)-configured 

stereoisomer. The two lowest energy conformations of 107d are shown above and the 

corresponding experimental and theoretical spectra are presented in Fig.S3. The absolute 

configuration of the reaction product is therefore confirmed to be (aR). 
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Figure S3. Comparison of the experimental IR and VCD spectra of 107d (0.18 M, 100 µm, CDCl3) with the 

calculated spectra of the (aR)-stereoisomer. Numbers indicate band assignments. 

 

7.3 Experimental Part for Enantioselective Synthesis of Pyrrolizidines 

7.3.1 Experimental Detail and Analytic Data for Synthesis of Pyrrolidines 157aa-bm  

General Method: To CH2Cl2 (1 mL) were sequentially added imine (0.30 mmol, 1.50 equiv.), 

maleate (0.20 mmol, 1.00 equiv.), AgOAc (0.02 mmol, 10 mmol%) and Et3N (0.20 mmol, 1.00 

equiv.). The mixture was stirred for 24 h. The crude mixture was directly purified by silica gel 

flash without removal of solvent to give desired product. 

Rel-(2S,3R,4S,5R)-trimethyl 5-(4-fluorophenyl)-2-(3-methoxy-3-oxopropyl)pyrrolidine-

2,3,4-tricarboxylate 
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157aa: 89% yield; 1H NMR (400 MHz, CDCl3): δ = 7.31 – 7.17 (m, 

2H), 6.94 (t, J = 8.7 Hz, 2H), 4.41 (d, J = 6.2 Hz, 1H), 3.72 (s, 3H), 

3.67 (s, 3H), 3.38 (t, J = 6.7 Hz, 1H), 3.26 (d, J = 7.0 Hz, 1H), 3.24 

(s, 3H), 2.59 – 2.46 (m, 1H), 2.43 – 2.32 (m, 1H), 2.21 (ddd, J = 

15.6, 9.9, 5.4 Hz, 1H), 2.06 ppm (ddd, J = 13.5, 10.0, 5.3 Hz, 1H); 13C NMR (126 MHz, CDCl3) 

δ = 173.66, 173.09, 171.08, 170.95, 163.36, 161.40, 133.17, 128.66, 128.60, 115.49, 115.32, 

71.70, 63.40, 57.38, 53.04, 52.92, 52.30, 51.82, 51.51, 35.35, 30.07 ppm; HRMS: calc. for 

[M+H]+ C20H25FNO8: 426.15587, found 426.15552. 

Rel-(2S,3R,4S,5R)-trimethyl 2-(3-methoxy-3-oxopropyl)-5-phenylpyrrolidine-2,3,4-

tricarboxylate 

157ab: 75% yield; 1H NMR (400 MHz, CDCl3): δ = 7.17 (d, J = 8.1 

Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H), 4.43 (d, J = 6.0 Hz, 1H), 3.76 (s, 3H), 

3.72 (s, 3H), 3.62 (s, 3H), 3.39 (t, J = 6.5 Hz, 1H), 3.31 – 3.29 (m, 4H), 

2.65 – 2.54 (m, 1H), 2.49 – 2.38 (m, 1H), 2.29 (s, 3H), 2.27 –  2.22 (m, 

1H), 2.16 – 2.05 ppm (m, 1H); HRMS: calc. for [M+H]+ C20H26NO8: 408.16529, found 

408.16479. 

Rel-(2S,3R,4S,5R)-trimethyl 2-(3-methoxy-3-oxopropyl)-5-(p-tolyl)pyrrolidine-2,3,4-

tricarboxylate 

157ac: 47% yield; 1H NMR (400 MHz, CDCl3): δ = 7.17 (d, J = 8.1 

Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H), 4.43 (d, J = 6.0 Hz, 1H), 3.76 (s, 

3H), 3.72 (s, 3H), 3.62 (s, 3H), 3.39 (t, J = 6.5 Hz, 1H), 3.31-3.29 (m, 

4H), 2.65 – 2.54 (m, 1H), 2.49 – 2.38 (m, 1H), 2.29 (s, 3H), 2.24 (dd, 

J = 15.8, 5.3 Hz, 1H), 2.16 – 2.05 ppm (m, 1H); HRMS: calc. for [M+H]+ C21H28NO8: 

422.18094, found 422.18020. 

Rel-(2S,3R,4S,5R)-trimethyl 5-(4-bromophenyl)-2-(3-methoxy-3-oxopropyl)pyrrolidine-

2,3,4-tricarboxylate 

157ad: 85% yield; 1H NMR (400 MHz, CDCl3): δ = 7.42 (d, J = 

8.4 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 4.42 (s, 1H), 3.75 (s, 3H), 

3.71 (s, 3H), 3.62 (s, 3H), 3.57 – 3.56 (m, 1H), 3.43 (t, J = 6.6 Hz, 

1H), 3.32 – 3.30 (d, J = 6.2 Hz, 4H), 2.65 – 2.50 (m, 1H), 2.42 (dd, 

J = 7.4, 5.9 Hz, 1H), 2.31 – 2.18 (m, 1H), 2.11 ppm (dd, J = 11.5, 3.6 Hz, 1H); 13C NMR (101 
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MHz, CDCl3) δ = 173.63, 173.02, 170.99, 170.86, 136.48, 131.57, 128.57, 121.75, 71.59, 

63.36, 57.48, 52.92, 52.79, 52.31, 51.82, 51.56, 35.38, 30.06 ppm; HRMS: calc. for [M+H]+ 

C20H25O8N
79Br: 486.07581, found 486.07506; calc. for [M+H]+ C20H25O8N

81Br: 488.07376, 

found 488.07268. 

Rel-(2S,3R,4S,5R)-trimethyl 2-(3-methoxy-3-oxopropyl)-5-(4-(trifluoromethyl)phenyl) 

pyrrolidine-2,3,4-tricarboxylate 

157ae: 89% yield; 1H NMR (400 MHz, CDCl3): δ = 7.56 (d, J = 

8.2 Hz, 2H), 7.45 (d, J = 8.2 Hz, 2H), 4.52 (d, J = 6.1 Hz, 1H), 3.76 

(s, 3H), 3.71 (s, 3H), 3.70 – 3.64 (m, 1H), 3.63 (s, 3H), 3.50 (t, J = 

6.6 Hz, 1H), 3.34 (d, J = 7.0 Hz, 1H), 3.27 (s, 3H), 2.62 – 2.50 (m, 

1H), 2.49 – 2.36 (m, 1H), 2.34 – 2.19 (m, 1H), 2.17 – 2.04 ppm (m, 1H). 

Rel-(2S,3R,4S,5R)-trimethyl 2-(3-methoxy-3-oxopropyl)-5-(4-

methoxyphenyl)pyrrolidine-2,3,4-tricarboxylate 

157af: 82% yield; 1H NMR (400 MHz, CDCl3) δ = 7.22 (d, J = 

8.7 Hz, 2H), 6.83 (d, J = 8.7 Hz, 2H), 4.43 (d, J = 6.2 Hz, 1H), 

3.77 (s, 6H), 3.72 (s, 3H), 3.68 (dd, J = 12.2, 7.5 Hz, 1H), 3.63 (s, 

3H), 3.39 (t, J = 6.6 Hz, 1H), 3.32 – 3.28 (m, 4H), 2.65 – 2.54 (m, 

1H), 2.48 – 2.36 (m, 1H), 2.31 – 2.21 (m, 1H), 2.16 – 2.05 ppm (m, 1H).  

Rel-(2S,3R,4S,5R)-trimethyl 5-(4-(allyloxy)phenyl)-2-(3-methoxy-3-

oxopropyl)pyrrolidine-2,3,4-tricarboxylate 

157ag: 61% yield; 1H NMR (400 MHz, CDCl3): δ = 7.22 (d, J = 

8.7 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 6.15 – 5.93 (m, 1H), 5.38 

(dd, J = 17.3, 1.5 Hz, 1H), 5.26 (dd, J = 10.5, 1.3 Hz, 1H), 4.54 – 

4.46 (m, 2H), 4.43 (d, J = 6.2 Hz, 1H), 3.77 (s, 3H), 3.72 (s, 3H), 

3.68 (dd, J = 12.3, 7.5 Hz, 1H), 3.63 (s, 3H), 3.39 (t, J = 6.6 Hz, 1H), 3.31 – 3.29 (m, 4H), 2.59 

(ddd, J = 15.5, 10.0, 5.2 Hz, 1H), 2.43 (ddd, J = 13.4, 10.0, 5.3 Hz, 1H), 2.26 (ddd, J = 15.7, 

10.2, 5.3 Hz, 1H), 2.11 ppm (ddd, J = 13.4, 10.2, 5.2 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 

= 173.72, 173.28, 171.34, 171.06, 158.19, 133.22, 129.39, 127.99, 117.83, 114.66, 71.52, 

68.83, 63.62, 57.32, 53.09, 52.88, 52.27, 51.82, 51.49, 35.51, 30.07 ppm; ESI-HRMS: calcd. 

for C21H27NO9+H: 464.19151, found 464.19143. 
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Rel-(2S,3R,4S,5R)-trimethyl 2-(3-methoxy-3-oxopropyl)-5-(4-nitrophenyl)pyrrolidine-

2,3,4-tricarboxylate 

157ah: 41% yield; 1H NMR (400 MHz, CDCl3): δ = 8.18 (d, J = 

8.8 Hz, 2H), 7.53 (d, J = 8.6 Hz, 2H), 4.57 (s, 1H), 3.77 (s, 3H), 

3.73 (s, 3H), 3.69 – 3.66 (m, 1H), 3.64 (s, 3H), 3.55 (t, J = 6.7 Hz, 

1H), 3.37 (d, J = 7.1 Hz, 1H), 3.31 (s, 3H), 2.63 – 2.52 (m, 1H), 

2.46 (ddd, J = 14.6, 8.7, 4.1 Hz, 2H), 2.33 – 2.21 (m, 1H), 2.13 ppm (ddd, J = 13.6, 9.6, 5.5 

Hz, 1H). 

Rel-(2S,3R,4S,5R)-trimethyl 5-(furan-2-yl)-2-(3-methoxy-3-oxopropyl)pyrrolidine-2,3,4-

tricarboxylate 

157ai: 76% yield; 1H NMR (400 MHz, CDCl3): δ = 7.32 (dd, J = 1.7, 

0.7 Hz, 1H), 6.29 (dd, J = 3.2, 1.8 Hz, 1H), 6.27 (d, J = 3.3 Hz, 1H), 

4.46 (d, J = 6.1 Hz, 1H), 3.75 (s, 3H), 3.71 (s, 3H), 3.67 – 3.60 (m, 4H), 

3.47 (s, 3H), 3.36 (t, J = 6.5 Hz, 1H), 3.24 (d, J = 6.8 Hz, 1H), 2.64 – 

2.50 (m, 1H), 2.41 (ddd, J = 13.4, 10.1, 5.4 Hz, 1H), 2.23 (ddd, J = 15.8, 10.2, 5.4 Hz, 1H), 

2.05 ppm (ddd, J = 13.4, 10.2, 5.2 Hz, 1H); 13C NMR (101 MHz, CDCl3): δ = 173.63, 172.95, 

171.19, 170.63, 150.86, 142.19, 110.51, 107.35, 71.12, 58.25, 56.99, 52.91, 52.27, 51.80, 

51.57, 35.57, 29.99 ppm. 

Rel-(2S,3R,4S,5R)-trimethyl 2-(3-methoxy-3-oxopropyl)-5-(thiophen-3-yl)pyrrolidine-

2,3,4-tricarboxylate 

157aj: 75% yield; 1H NMR (400 MHz, CDCl3): δ = 7.22 – 7.18 (m, 

1H), 7.16 (d, J = 2.6 Hz, 1H), 6.96 (dd, J = 5.0, 1.2 Hz, 1H), 4.46 (d, J 

= 6.0 Hz, 1H), 3.70 (s, 3H), 3.67 (s, 3H), 3.58 (s, 3H), 3.53-3.48 (m, 

1H), 3.35 (t, J = 6.5 Hz, 1H), 3.31 (s, 3H), 3.23 (d, J = 6.9 Hz, 1H), 2.60 

– 2.48 (m, 1H), 2.36 (ddd, J = 13.4, 9.9, 5.4 Hz, 1H), 2.20 (ddd, J = 15.7, 10.1, 5.4 Hz, 1H), 

2.04 ppm (ddd, J = 13.4, 10.2, 5.2 Hz, 1H). 

Rel-(2S,3R,4S,5R)-trimethyl 2-(3-methoxy-3-oxopropyl)-5-

(naphthalen-2-yl)pyrrolidine-2,3,4-tricarboxylate 

157ak: 83% yield; 1H NMR (400 MHz, CDCl3): δ = 7.85 – 7.76 (m, 

4H), 7.50 – 7.38 (m, 3H), 4.63 (d, J = 5.9 Hz, 1H), 3.80 (s, 3H), 3.74 
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(s, 3H), 3.72 – 3.67 (m, 1H), 3.64 (s, 3H), 3.56 – 3.51 (m, 1H), 3.38 (d, J = 6.9 Hz, 1H), 3.21 

(s, 3H), 2.66 (ddd, J = 15.4, 9.9, 5.2 Hz, 1H), 2.50 (ddd, J = 13.4, 9.9, 5.3 Hz, 1H), 2.36 – 2.27 

(m, 1H), 2.22 – 2.13 ppm (m, 1H). 

Rel-(2S,3R,4S,5R)-3,4-diallyl 2-methyl 2-(3-methoxy-3-oxopropyl)-5-phenylpyrrolidine-

2,3,4-tricarboxylate 

157al: 71% yield; 1H NMR (500 MHz, CDCl3): δ = 7.29 – 7.12 (m, 

5H), 5.87 (dq, J = 10.6, 5.9 Hz, 1H), 5.37 (dq, J = 10.7, 5.8 Hz, 1H), 

5.27 (d, J = 17.2 Hz, 1H), 5.18 (d, J = 10.4 Hz, 1H), 4.96 – 4.85 (m, 

2H), 4.54 (d, J = 5.8 Hz, 2H), 4.44 (d, J = 6.0 Hz, 1H), 4.13 (dd, J = 

13.0, 5.4 Hz, 1H), 4.06 – 3.96 (m, 1H), 3.69 (s, 3H), 3.64 – 3.59 (m, 1H), 3.56 (s, 3H), 3.44 (t, 

J = 6.7 Hz, 1H), 3.29 (d, J = 7.1 Hz, 1H), 2.53 (ddd, J = 15.4, 9.6, 5.4 Hz, 1H), 2.43 – 2.30 (m, 

1H), 2.22 (ddd, J = 15.7, 9.8, 5.5 Hz, 1H), 2.14 – 2.01 ppm (m, 1H). 

Rel-(2S,3R,4S,5R)-3,4-diallyl 2-methyl 2-(3-methoxy-3-oxopropyl)-5-(o-tolyl)pyrrolidine-

2,3,4-tricarboxylate 

157am: 80% yield; 1H NMR (500 MHz, CDCl3): δ = 7.42 – 7.31 (m, 

1H), 7.20 – 7.03 (m, 3H), 5.93 (ddt, J = 16.4, 10.5, 5.9 Hz, 1H), 5.44 – 

5.29 (m, 2H), 5.24 (dd, J = 10.4, 1.2 Hz, 1H), 4.98 – 4.87 (m, 2H), 4.70 

(d, J = 6.4 Hz, 1H), 4.66 – 4.53 (m, 2H), 4.19 – 4.05 (m, 1H), 3.99 – 

3.90 (m, 1H), 3.78 (s, 3H), 3.75 – 3.65 (m, 1H), 3.62 (s, 3H), 3.56 (t, J = 6.9 Hz, 1H), 3.38 (d, 

J = 7.2 Hz, 1H), 2.63 – 2.53 (m, 1H), 2.46 (ddd, J = 13.6, 9.7, 5.5 Hz, 1H), 2.33 (s, 3H), 2.32 

– 2.26 (m, 1H), 2.16 ppm (ddd, J = 13.6, 9.9, 5.4 Hz, 1H). 

Rel-(2S,3R,4S,5R)-3,4-diallyl 2-methyl 2-(3-methoxy-3-oxopropyl)-5-(m-

tolyl)pyrrolidine-2,3,4-tricarboxylate 

157an: 65% yield; 1H NMR (500 MHz, CDCl3): δ = 7.18 (t, J = 7.9 Hz, 

1H), 7.11 (d, J = 6.1 Hz, 2H), 7.05 (d, J = 7.4 Hz, 1H), 5.93 (ddd, J = 

16.4, 10.6, 5.7 Hz, 1H), 5.45 (ddd, J = 16.6, 8.3, 5.3 Hz, 1H), 5.34 (dd, 

J = 17.2, 1.3 Hz, 1H), 5.25 (dd, J = 10.4, 1.0 Hz, 1H), 5.04 – 4.94 (m, 

2H), 4.65 – 4.57 (m, 2H), 4.47 – 4.45 (m, 1H), 4.21 (dd, J = 13.0, 6.1 Hz, 1H), 4.13 (dd, J = 

13.0, 5.8 Hz, 1H), 3.76 (s, 3H), 3.71 – 3.67  (m, 1H), 3.64 (s, 3H), 3.35 (d, J = 7.1 Hz, 1H), 

2.61 (ddd, J = 15.5, 9.7, 5.4 Hz, 1H), 2.44 (ddd, J = 13.9, 9.7, 5.6 Hz, 1H), 2.31 (s, 3H), 2.30 

– 2.24 (m, 1H), 2.14 ppm (ddd, J = 13.9, 9.9, 5.4 Hz, 1H). 
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Rel-(2S,3R,4S,5R)-3,4-diallyl 2-methyl 2-(3-methoxy-3-oxopropyl)-5-(p-tolyl)pyrrolidine-

2,3,4-tricarboxylate 

157ao: 84% yield; 1H NMR (500 MHz, CDCl3): δ = 7.19 (d, J = 8.1 

Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H), 5.93 (ddt, J = 22.5, 10.5, 5.9 Hz, 

1H), 5.46 (ddt, J = 16.5, 10.6, 6.0 Hz, 1H), 5.34 (dd, J = 17.2, 1.4 

Hz, 1H), 5.30 – 5.19 (m, 1H), 5.05 – 4.92 (m, 2H), 4.61 (dd, J = 5.8, 

1.0 Hz, 2H), 4.47 (d, J = 6.2 Hz, 1H), 4.21 (dd, J = 13.0, 6.1 Hz, 1H), 4.11 (dd, J = 13.0, 5.9 

Hz, 1H), 3.75 (s, 3H), 3.63 (s, 4H), 3.47 (t, J = 6.7 Hz, 1H), 3.34 (d, J = 7.1 Hz, 1H), 2.60 (ddd, 

J = 15.5, 9.7, 5.4 Hz, 1H), 2.43 (ddd, J = 13.7, 9.7, 5.6 Hz, 1H), 2.30 (s, 3H), 2.26 (dd, J = 

10.1, 5.7 Hz, 1H), 2.13 ppm (ddd, J = 13.7, 9.9, 5.5 Hz, 1H). 

Rel-(2S,3R,4S,5R)-3,4-diallyl 2-methyl 5-(2-fluorophenyl)-2-(3-methoxy-3-

oxopropyl)pyrrolidine-2,3,4-tricarboxylate 

157ap: 78% yield; 1H NMR (400 MHz, CDCl3): δ = 7.41 (t, J = 7.2 Hz, 

1H), 7.34 – 7.20 (m, 1H), 7.11 (dd, J = 11.0, 4.1 Hz, 1H), 7.02 (dd, J = 

14.1, 4.6 Hz, 1H), 5.93 (ddt, J = 16.3, 10.5, 5.8 Hz, 1H), 5.53 – 5.39 

(m, 1H), 5.34 (dd, J = 17.2, 1.4 Hz, 1H), 5.25 (dd, J = 10.4, 1.2 Hz, 1H), 

5.01 (d, J = 0.8 Hz, 1H), 4.99 – 4.93 (m, 1H), 4.74 – 4.72 (s, 1H), 4.67 – 4.54 (m, 2H), 4.18 

(dd, J = 13.0, 6.1 Hz, 1H), 4.10 (dd, J = 13.0, 5.8 Hz, 1H), 3.79 – 3.77 (s, 3H), 3.70 – 3.54 (m, 

4H), 3.41 (d, J = 7.2 Hz, 1H), 2.60 (ddd, J = 15.2, 9.7, 5.2 Hz, 1H), 2.52 – 2.39 (m, 1H), 2.30 

(ddd, J = 15.3, 9.9, 5.1 Hz, 1H), 2.16 ppm (ddd, J = 13.5, 10.0, 5.2 Hz, 1H). 

Rel-(2S,3R,4S,5R)-3,4-diallyl 2-methyl 5-(3-fluorophenyl)-2-(3-methoxy-3-

oxopropyl)pyrrolidine-2,3,4-tricarboxylate 

157aq: 89% yield; 1H NMR (400 MHz, CDCl3): δ = 7.29 – 7.15 (m, 

1H), 7.06 (d, J = 7.8 Hz, 1H), 7.01 (d, J = 10.0 Hz, 1H), 6.88 (td, J = 

8.3, 2.1 Hz, 1H), 5.87 (ddt, J = 16.3, 10.5, 5.9 Hz, 1H), 5.43 (ddt, J = 

16.7, 10.8, 6.0 Hz, 1H), 5.29 (dd, J = 17.2, 1.4 Hz, 1H), 5.20 (dd, J = 

10.4, 1.1 Hz, 1H), 4.98 (d, J = 1.3 Hz, 1H), 4.95 (dd, J = 9.2, 1.2 Hz, 1H), 4.55 (dd, J = 5.8, 

0.9 Hz, 2H), 4.43 (d, J = 4.0 Hz, 1H), 4.17 (dd, J = 12.9, 6.1 Hz, 1H), 4.10 (dd, J = 12.9, 6.0 

Hz, 1H), 3.70 (s, 3H), 3.64 – 3.49 (m, 4H), 3.46 (t, J = 6.7 Hz, 1H), 3.30 (d, J = 7.1 Hz, 1H), 

2.60 – 2.44 (m, 1H), 2.45 – 2.31 (m, 1H), 2.27 – 2.14 (m, 1H), 2.07 (ddd, J = 13.6, 9.7, 5.5 Hz, 

1H). 13C NMR (101 MHz, CDCl3): δ = 173.65, 172.85, 170.08, 169.98, 164.01, 161.56, 140.06, 
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139.99, 131.92, 131.67, 130.03, 129.95, 122.59, 122.56, 118.77, 118.53, 114.81, 114.60, 

114.29, 114.06, 77.48, 77.16, 76.84, 71.60, 66.07, 65.39, 63.40, 57.72, 53.06, 52.82, 51.80, 

35.26, 30.08. 

Rel-(2S,3R,4S,5R)-3,4-diallyl 2-methyl 5-(4-fluorophenyl)-2-(3-methoxy-3-

oxopropyl)pyrrolidine-2,3,4-tricarboxylate 

157ar: 84% yield; 1H NMR (400 MHz, CDCl3): δ = 7.30 (dd, J = 

8.5, 5.3 Hz, 2H), 6.97 (t, J = 8.7 Hz, 2H), 5.92 (ddt, J = 16.3, 10.4, 

5.9 Hz, 1H), 5.46 (ddt, J = 16.6, 10.5, 6.0 Hz, 1H), 5.33 (dd, J = 

17.2, 1.4 Hz, 1H), 5.24 (dd, J = 10.4, 1.2 Hz, 1H), 5.07 – 4.93 (m, 

2H), 4.60 (dd, J = 4.7, 1.2 Hz, 2H), 4.48 (d, J = 6.1 Hz, 1H), 4.25 – 4.15 (m, 1H), 4.14 – 4.03 

(m, 1H), 3.74 (s, 3H), 3.62 (s, 3H), 3.56 – 3.54 (m, 1H), 3.49 (t, J = 6.9 Hz, 1H), 3.34 (d, J = 

7.2 Hz, 1H), 2.62 – 2.50 (m, 1H), 2.41 (ddd, J = 13.5, 9.5, 5.5 Hz, 1H), 2.30 – 2.20 (m, 1H), 

2.11 ppm (ddd, J = 13.5, 9.7, 5.5 Hz, 1H); 13C NMR (101 MHz, CDCl3): δ = 173.69, 173.03, 

170.21, 170.20, 163.60, 161.15, 133.19, 133.16, 131.97, 131.71, 128.80, 128.72, 118.80, 

118.51, 115.46, 115.24, 71.70, 66.10, 65.39, 63.34, 57.49, 53.26, 52.85, 51.84, 35.14, 30.05 

ppm; HRMS: calc. for [M+H]+ C24H29FNO8: 478.18717, found 478.18727. 

Rel-(2S,3R,4S,5R)-3,4-diallyl 2-methyl 5-(4-bromophenyl)-2-(3-methoxy-3-

oxopropyl)pyrrolidine-2,3,4-tricarboxylate 

157as: 88% yield; 1H NMR (400 MHz, CDCl3): δ = 7.40 (d, J = 

8.5 Hz, 2H), 7.20 (d, J = 8.4 Hz, 2H), 5.91 (ddt, J = 16.3, 10.5, 5.9 

Hz, 1H), 5.45 (ddt, J = 16.6, 10.5, 6.1 Hz, 1H), 5.33 (dd, J = 17.2, 

1.4 Hz, 1H), 5.24 (dd, J = 10.4, 1.1 Hz, 1H), 5.09 – 4.93 (m, 2H), 

4.59 (d, J = 5.9 Hz, 2H), 4.45 (d, J = 5.9 Hz, 1H), 4.20 (dd, J = 12.9, 6.1 Hz, 1H), 4.13 (dd, J 

= 12.9, 6.0 Hz, 1H), 3.73 (s, 3H), 3.61 (s, 3H), 3.57 – 3.55 (m, 1H), 3.49 (t, J = 6.8 Hz, 1H), 

3.34 (d, J = 7.2 Hz, 1H), 2.62 – 2.48 (m, 1H), 2.46 – 2.35 (m, 1H), 2.34 – 2.18 (m, 1H), 2.11 

ppm (ddd, J = 13.6, 9.6, 5.5 Hz, 1H); 13C NMR (101 MHz, CDCl3): δ = 173.61, 172.90, 170.05, 

170.02, 136.47, 131.90, 131.61, 131.51, 128.73, 121.71, 118.76, 118.58, 71.64, 66.05, 65.38, 

63.32, 57.55, 53.06, 52.81, 51.79, 35.11, 30.03 ppm. 

Rel-(2S,3R,4S,5R)-3,4-diallyl 2-methyl 2-(3-methoxy-3-oxopropyl)-5-(4-

(trifluoromethyl)phenyl)pyrrolidine-2,3,4-tricarboxylate 
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157at: 83% yield; 1H NMR (500 MHz, CDCl3): δ = 7.55 (d, J = 8.3 

Hz, 2H), 7.46 (d, J = 8.2 Hz, 2H), 5.92 (ddt, J = 16.4, 10.6, 5.9 Hz, 

1H), 5.39 (ddd, J = 17.1, 8.3, 3.8 Hz, 1H), 5.36 – 5.29 (m, 1H), 

5.24 (dd, J = 10.4, 1.0 Hz, 1H), 5.01 – 4.87 (m, 2H), 4.60 (d, J = 

5.9 Hz, 2H), 4.56 (d, J = 5.4 Hz, 1H), 4.14 (qd, J = 12.9, 6.1 Hz, 2H), 3.75 (s, 3H), 3.67 – 3.65 

(m, 1H), 3.61 (d, J = 14.3 Hz, 3H), 3.55 (t, J = 6.8 Hz, 1H), 3.38 (d, J = 7.2 Hz, 1H), 2.62 – 

2.50 (m, 1H), 2.49 – 2.34 (m, 1H), 2.33 – 2.22 (m, 1H), 2.14 ppm (ddd, J = 13.8, 9.4, 5.7 Hz, 

1H). 

Rel-(2S,3R,4S,5R)-3,4-diallyl 2-methyl 2-(3-methoxy-3-oxopropyl)-5-(4-

methoxyphenyl)pyrrolidine-2,3,4-tricarboxylate 

157au: 61% yield; 1H NMR (400 MHz, CDCl3): δ = 7.23 (d, J = 

8.7 Hz, 2H), 6.81 (d, J = 8.7 Hz, 2H), 5.93 (ddt, J = 16.3, 10.5, 

5.9 Hz, 1H), 5.47 (ddt, J = 16.7, 10.7, 6.0 Hz, 1H), 5.33 (dd, J = 

17.2, 1.4 Hz, 1H), 5.24 (dd, J = 10.4, 1.2 Hz, 1H), 4.99 (ddd, J = 

11.7, 6.5, 1.2 Hz, 2H), 4.60 (d, J = 5.8 Hz, 2H), 4.47 (d, J = 6.5 Hz, 1H), 4.22 (dd, J = 13.0, 

6.1 Hz, 1H), 4.14 – 3.99 (m, 1H), 3.76 (s, 3H), 3.74 (s, 3H), 3.62 (s, 3H), 3.45 (t, J = 6.8 Hz, 

1H), 3.33 (d, J = 7.1 Hz, 1H), 2.66 – 2.51 (m, 1H), 2.42 (ddd, J = 13.5, 9.7, 5.4 Hz, 1H), 2.26 

(ddd, J = 15.6, 9.9, 5.4 Hz, 1H), 2.19 – 2.03 ppm (m, 1H). 

Rel-(2S,3R,4S,5R)-3,4-diallyl 2-methyl 5-(4-(allyloxy)phenyl)-2-(3-methoxy-3-

oxopropyl)pyrrolidine-2,3,4-tricarboxylate 

157av: 82% yield; 1H NMR (400 MHz, CDCl3): δ = 7.22 – 7.13 

(m, 2H), 6.78 (d, J = 8.7 Hz, 2H), 6.03 – 5.92 (m, 1H), 5.92 – 5.81 

(m, 1H), 5.42 (ddt, J = 16.7, 10.7, 6.0 Hz, 1H), 5.30 (td, J = 17.1, 

1.5 Hz, 2H), 5.20 (ddd, J = 10.2, 7.3, 1.3 Hz, 2H), 5.01 – 4.87 (m, 

2H), 4.55 (d, J = 5.8 Hz, 2H), 4.44 (dd, J = 3.9, 1.3 Hz, 2H), 4.41 (d, J = 6.4 Hz, 1H), 4.17 (dd, 

J = 13.0, 6.1 Hz, 1H), 4.05 (dd, J = 13.0, 5.8 Hz, 1H), 3.69 (s, 3H), 3.66 – 3.59 (m, 1H), 3.57 

(s, 3H), 3.40 (t, J = 6.8 Hz, 1H), 3.28 (d, J = 7.1 Hz, 1H), 2.65 – 2.45 (m, 1H), 2.45 – 2.29 (m, 

1H), 2.21 (ddd, J = 15.6, 9.9, 5.4 Hz, 1H), 2.13 – 1.95 ppm (m, 1H); HRMS: calc. for [M+H]+ 

C27H34NO9: 516.22281, found 516.22322. 

Rel-(2S,3R,4S,5R)-3,4-diallyl 2-methyl 5-(4-(benzyloxy)phenyl)-2-(3-methoxy-3-

oxopropyl)pyrrolidine-2,3,4-tricarboxylate 
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157aw: 71% yield; 1H NMR (400 MHz, CDCl3): δ = 7.41 – 7.13 

(m, 8H), 6.84 (d, J = 8.7 Hz, 2H), 5.94 – 5.80 (m, 1H), 5.40 (ddd, 

J = 16.9, 8.9, 5.6 Hz, 1H), 5.28 (dd, J = 17.2, 1.4 Hz, 1H), 5.19 

(dd, J = 10.4, 1.1 Hz, 1H), 5.01 – 4.86 (m, 4H), 4.55 (d, J = 5.8 

Hz, 2H), 4.41 (d, J = 6.3 Hz, 1H), 4.16 (dd, J = 13.0, 6.1 Hz, 1H), 4.03 (dd, J = 13.0, 5.9 Hz, 

1H), 3.69 (s, 3H), 3.57 (s, 3H), 3.51 – 3.49 (m, 1H), 3.40 (t, J = 6.8 Hz, 1H), 3.27 (d, J = 7.1 

Hz, 1H), 2.62 – 2.45 (m, 1H), 2.45 – 2.26 (m, 1H), 2.21 (ddd, J = 15.6, 9.9, 5.4 Hz, 1H), 2.06 

ppm (ddd, J = 13.5, 9.9, 5.3 Hz, 1H). 

Rel-(2S,3R,4S,5R)-3,4-diallyl 2-methyl 5-(4-(dimethylamino)phenyl)-2-(3-methoxy-3-

oxopropyl)pyrrolidine-2,3,4-tricarboxylate 

157ax: 43% yield; 1H NMR (500 MHz, CDCl3): δ = 7.17 (d, J = 

8.6 Hz, 2H), 6.65 (d, J = 8.6 Hz, 2H), 5.99 – 5.89 (m, 1H), 5.55 – 

5.43 (m, 1H), 5.34 (d, J = 17.2 Hz, 1H), 5.24 (d, J = 10.4 Hz, 1H), 

4.99 (dd, J = 9.9, 6.4 Hz, 2H), 4.62 (d, J = 5.8 Hz, 2H), 4.43 (d, J 

= 6.2 Hz, 1H), 4.24 (ddd, J = 13.0, 6.1, 0.9 Hz, 1H), 4.14 (ddd, J = 13.1, 5.8, 1.0 Hz, 1H), 3.75 

(s, 3H), 3.64 (s, 3H), 3.61 – 3.46 (m, 1H), 3.43 (t, J = 6.8 Hz, 1H), 3.32 (d, J = 7.1 Hz, 1H), 

2.90 (s, 6H), 2.62 – 2.57 (m, 1 H), 2.44 – 2.39 (m, 1H), 2.30 – 2.24 (m, 1H), 2.16 – 2.12 ppm 

(m, 1H). 

Rel-(2S,3R,4S,5R)-3,4-diallyl 2-methyl 5-(3,4-dimethoxyphenyl)-2-(3-methoxy-3-

oxopropyl)pyrrolidine-2,3,4-tricarboxylate 

157ay: 44% yield; 1H NMR (400 MHz, CDCl3): δ = 6.92 – 6.83 

(m, 2H), 6.77 (d, J = 8.9 Hz, 1H), 5.99 – 5.84 (m, 1H), 5.53 – 5.39 

(m, 1H), 5.39 – 5.19 (m, 2H), 5.06 – 4.93 (m, 2H), 4.60 (d, J = 5.9 

Hz, 2H), 4.46 (d, J = 6.5 Hz, 1H), 4.22 (dd, J = 13.0, 6.0 Hz, 1H), 

4.16 – 4.04 (m, 1H), 3.83 (d, J = 2.8 Hz, 6H), 3.73 (s, 3H), 3.62 (s, 3H), 3.55 – 3.50  (m, 1H), 

3.50 (t, J = 7.0 Hz, 1H), 3.32 (d, J = 7.3 Hz, 1H), 2.67 – 2.50 (m, 1H), 2.39 (ddd, J = 13.4, 9.5, 

5.5 Hz, 1H), 2.34 – 2.17 (m, 1H), 2.11 ppm (ddd, J = 13.4, 9.8, 5.4 Hz, 1H). 

Rel-(2S,3R,4S,5R)-3,4-diallyl 2-methyl 5-(furan-2-yl)-2-(3-methoxy-3-

oxopropyl)pyrrolidine-2,3,4-tricarboxylate 
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157az: 79% yield; 1H NMR (500 MHz, CDCl3): δ = 7.37 – 7.27 (m, 

1H), 6.35 – 6.21 (m, 2H), 5.92 (ddt, J = 16.3, 10.5, 5.9 Hz, 1H), 5.67 

(ddt, J = 16.4, 10.4, 6.0 Hz, 1H), 5.37 – 5.29 (m, 1H), 5.23 (dd, J = 

10.4, 1.2 Hz, 1H), 5.18 – 5.06 (m, 2H), 4.59 (ddd, J = 5.6, 2.8, 1.3 Hz, 

2H), 4.49 (d, J = 6.3 Hz, 1H), 4.42 – 4.34 (m, 1H), 4.31 (ddt, J = 13.1, 5.9, 1.2 Hz, 1H), 3.73 

(s, 3H), 3.68 – 3.56 (m, 4H), 3.44 (t, J = 6.7 Hz, 1H), 3.27 (d, J = 7.0 Hz, 1H), 2.64 – 2.48 (m, 

1H), 2.39 (ddd, J = 13.6, 9.7, 5.6 Hz, 1H), 2.24 (ddd, J = 15.8, 9.9, 5.6 Hz, 1H), 2.07 ppm (ddd, 

J = 13.7, 9.9, 5.4 Hz, 1H); 13C NMR (126 MHz, CDCl3): δ = 173.59, 172.78, 170.20, 169.78, 

151.06, 142.03, 132.06, 118.65, 118.36, 110.49, 107.44, 71.29, 66.02, 65.57, 58.28, 57.15, 

52.75, 51.98, 51.73, 35.32, 29.98 ppm. 

Rel-(2S,3R,4S,5R)-3,4-diallyl 2-methyl 2-(3-methoxy-3-oxopropyl)-5-(naphthalen-2-

yl)pyrrolidine-2,3,4-tricarboxylate 

157ba: 86% yield; 1H NMR (500 MHz, CDCl3): δ = 7.83 – 7.72 (m, 

4H), 7.51 – 7.35 (m, 3H), 5.95 (ddt, J = 22.4, 10.5, 5.9 Hz, 1H), 5.30 

(dddd, J = 23.9, 19.7, 15.9, 7.5 Hz, 3H), 4.79 (ddd, J = 13.8, 11.5, 

1.3 Hz, 2H), 4.75 – 4.52 (m, 3H), 4.19 – 4.07 (m, 1H), 4.06 – 3.95 

(m, 1H), 3.94 – 3.81 (m, 1H), 3.78 (s, 3H), 3.64 (s, 3H), 3.61 (t, J = 6.7 Hz, 1H), 3.42 (d, J = 

7.1 Hz, 1H), 2.65 (ddd, J = 15.4, 9.6, 5.5 Hz, 1H), 2.49 (ddd, J = 13.7, 9.6, 5.5 Hz, 1H), 2.39 – 

2.27 (m, 1H), 2.25 – 2.07 ppm (m, 1H). 

Rel-(2S,3R,4S,5R)-3,4-dibenzyl 2-methyl 2-(3-methoxy-3-oxopropyl)-5-

phenylpyrrolidine-2,3,4-tricarboxylate 

157bb: 83% yield; 1H NMR (500 MHz, CDCl3): δ = 7.37 – 7.07 (m, 

14H), 6.85 – 6.77 (m, 2H), 5.06 (s, 2H), 4.61 (d, J = 12.2 Hz, 1H), 4.45 

(d, J = 12.1 Hz, 2H), 3.75 – 3.61 (m, 1H), 3.56 (s, 3H), 3.55 (s, 3H), 

3.47 (t, J = 6.7 Hz, 1H), 3.32 (d, J = 7.1 Hz, 1H), 2.57 – 2.45 (m, 1H), 

2.43 – 2.30 (m, 1H), 2.27 – 2.14 (m, 1H), 2.12 – 2.00 ppm (m, 1H). 

Rel-(2S,3R,4S,5R)-3,4-dibenzyl 2-methyl 2-(3-methoxy-3-oxopropyl)-5-(o-

tolyl)pyrrolidine-2,3,4-tricarboxylate 



Chapter 7. Experimental Part 

191 
 

157bc: 72% yield; 1H NMR (400 MHz, CDCl3): δ = 7.39 – 7.18 (m, 6H), 

7.18 – 6.95 (m, 6H), 6.75 (dd, J = 7.4, 1.8 Hz, 2H), 5.04 (t, J = 6.6 Hz, 

2H), 4.63 (d, J = 5.9 Hz, 1H), 4.53 (d, J = 12.1 Hz, 1H), 4.30 (d, J = 12.1 

Hz, 1H), 3.70 – 3.62 (m, 1H), 3.59 (s, 3H), 3.53 (s, 3H), 3.50 (d, J = 6.8 

Hz, 1H), 3.34 (d, J = 7.1 Hz, 1H), 2.60 – 2.45 (m, 1H), 2.44 – 2.35 (m, 1H), 2.26 – 2.16 (m, 

4H), 2.09 ppm (ddd, J = 13.5, 9.7, 5.1 Hz, 1H). 

Rel-(2S,3R,4S,5R)-3,4-dibenzyl 2-methyl 2-(3-methoxy-3-oxopropyl)-5-(m-

tolyl)pyrrolidine-2,3,4-tricarboxylate 

157bd: 70% yield; 1H NMR (400 MHz, CDCl3) δ 7.35 – 7.10 (m, 8H), 

7.10 – 6.93 (m, 4H), 6.79 (dd, J = 7.5, 1.7 Hz, 2H), 5.05 (d, J = 1.3 Hz, 

2H), 4.59 (d, J = 12.2 Hz, 1H), 4.48 (d, J = 12.2 Hz, 1H), 4.39 (s, 1H), 

3.64 – 3.62  (m, 1H), 3.55 (s, 3H), 3.54 (s, 3H), 3.45 (t, J = 6.6 Hz, 1H), 

3.30 (d, J = 7.1 Hz, 1H), 2.57 – 2.45 (m, 1H), 2.45 – 2.29 (m, 1H), 2.28 – 2.10 (m, 4H), 2.10 – 

2.01 ppm (m, 1H). 

Rel-(2S,3R,4S,5R)-3,4-dibenzyl 2-methyl 5-(2-fluorophenyl)-2-(3-methoxy-3-

oxopropyl)pyrrolidine-2,3,4-tricarboxylate 

157be: 82% yield; 1H NMR (500 MHz, CDCl3): δ 7.46 – 7.30 (m, 6H), 

7.32 – 7.18 (m, 4H), 7.09 (t, J = 7.6 Hz, 1H), 7.01 – 6.93 (m, 3H), 5.13 

(s, 2H), 4.75 (d, J = 3.9 Hz, 1H), 4.69 (d, J = 12.2 Hz, 1H), 4.57 (d, J = 

12.2 Hz, 1H), 3.80 (d, J = 6.7 Hz, 1H), 3.72 – 3.66 (m, 4H), 3.65 (s, 

3H), 3.46 (d, J = 7.2 Hz, 1H), 2.61 (ddd, J = 15.3, 9.5, 5.4 Hz, 1H), 2.54 – 2.44 (m, 1H), 2.32 

(ddd, J = 15.5, 9.7, 5.4 Hz, 1H), 2.18 ppm (ddd, J = 13.9, 9.8, 5.4 Hz, 1H). 

Rel-(2S,3R,4S,5R)-3,4-dibenzyl 2-methyl 5-(3-fluorophenyl)-2-(3-methoxy-3-

oxopropyl)pyrrolidine-2,3,4-tricarboxylate 

157bf: 85% yield; 1H NMR (400 MHz, CDCl3): δ 7.35 – 7.14 (m, 8H), 

7.12 (dd, J = 8.0, 6.0 Hz, 1H), 7.00 (dd, J = 15.0, 8.9 Hz, 2H), 6.85 (ddd, 

J = 10.3, 7.5, 1.8 Hz, 3H), 5.05 (s, 2H), 4.63 (d, J = 12.1 Hz, 1H), 4.53 

(d, J = 12.1 Hz, 1H), 4.40 (d, J = 4.9 Hz, 1H), 3.68 – 3.51 (m, 7H), 3.48 

(t, J = 6.7 Hz, 1H), 3.31 (d, J = 7.1 Hz, 1H), 2.55 – 2.42 (m, 1H), 2.42 – 2.27 (m, 1H), 2.27 – 

2.12 (m, 1H), 2.12 – 2.00 ppm (m, 1H); HRMS: calc. for [M+H]+ C32H33FNO8: 578.21847, 

found 578.21735. 
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Rel-(2S,3R,4S,5R)-3,4-dibenzyl 2-methyl 5-(4-fluorophenyl)-2-(3-methoxy-3-

oxopropyl)pyrrolidine-2,3,4-tricarboxylate 

157bg: 87% yield; 1H NMR (400 MHz, CDCl3): δ 7.36 – 7.09 (m, 

10H), 6.92 – 6.78 (m, 4H), 5.05 (d, J = 12.8 Hz, 2H), 4.63 (d, J = 

12.1 Hz, 1H), 4.54 (d, J = 12.1 Hz, 1H), 4.42 (d, J = 5.9 Hz, 1H), 

3.56 (s, 3H), 3.56 (s, 3H), 3.47 (t, J = 6.9 Hz, 1H), 3.31 (d, J = 7.2 

Hz, 1H), 2.58 – 2.43 (m, 1H), 2.43 – 2.27 (m, 1H), 2.27 – 2.14 (m, 1H), 2.14 – 1.96 ppm (m, 

1H); 13C NMR (126 MHz, CDCl3): δ = 173.62, 172.94, 170.37, 170.27, 163.35, 161.39, 135.58, 

135.30, 133.06, 128.80, 128.74, 128.71, 128.59, 128.51, 128.43, 128.26, 115.47, 115.30, 71.82, 

67.33, 66.52, 63.39, 57.62, 53.25, 52.73, 51.81, 35.10, 30.08 ppm; HRMS: calc. for [M+H]+ 

C32H33FNO8: 578.21847, found 578.21911. 

Rel-(2S,3R,4S,5R)-3,4-dibenzyl 2-methyl 5-(4-(allyloxy)phenyl)-2-(3-methoxy-3-

oxopropyl)pyrrolidine-2,3,4-tricarboxylate 

157bh: 65% yield; 1H NMR (500 MHz, CDCl3): δ 7.44 – 7.21 

(m, 10H), 6.98 – 6.91 (m, 2H), 6.83 (d, J = 8.7 Hz, 2H), 6.07 

(ddd, J = 11.8, 10.5, 5.2 Hz, 1H), 5.43 (dd, J = 17.3, 1.5 Hz, 1H), 

5.35 – 5.26 (m, 1H), 5.16 (s, 2H), 4.73 (d, J = 12.2 Hz, 1H), 4.61 

(d, J = 12.2 Hz, 1H), 4.55 – 4.44 (m, 3H), 3.66 (s, 3H), 3.65 (s, 3H), 3.53 (t, J = 6.8 Hz, 1H), 

3.40 (d, J = 7.1 Hz, 1H), 2.65 – 2.55 (m, 1H), 2.51 – 2.38 (m, 1H), 2.36 – 2.23 (m, 1H), 2.21 – 

2.12 ppm (m, 1H); 13C NMR (126 MHz, CDCl3): δ 173.67, 173.11, 170.63, 170.35, 158.31, 

135.67, 135.46, 133.34, 129.42, 128.71, 128.68, 128.49, 128.44, 128.35, 128.20, 128.11, 

117.81, 114.72, 71.72, 68.87, 67.25, 66.44, 63.67, 57.53, 53.38, 52.67, 51.78, 35.25, 30.09 

ppm; HRMS: calc. for [M+H]+ C35H38NO9: 616.25411, found 616.25515. 

Rel-(2S,3R,4S,5R)-3,4-dibenzyl 2-methyl 5-(4-(benzyloxy)phenyl)-2-(3-methoxy-3-

oxopropyl)pyrrolidine-2,3,4-tricarboxylate 

157bi: 68% yield; 1H NMR (400 MHz, CDCl3): δ 7.39 – 7.02 (m, 

16H), 6.90 – 6.74 (m, 4H), 5.06 (s, 2H), 4.94 (s, 2H), 4.62 (d, J = 

12.2 Hz, 1H), 4.49 (d, J = 12.2 Hz, 1H), 4.42 – 4.38 (m, 1H), 3.55 

(s, 3H), 3.55 (s, 3H), 3.43 (t, J = 6.8 Hz, 1H), 3.29 (d, J = 7.1 Hz, 

1H), 2.59 – 2.43 (m, 1H), 2.43 – 2.28 (m, 1H), 2.19 (ddd, J = 15.5, 9.7, 5.5 Hz, 1H), 2.04 ppm 
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(ddd, J = 26.5, 15.9, 11.1 Hz, 1H); HRMS: calc. for [M+H]+ C39H40NO9: 666.26976, found 

666.26928. 

Rel-(2S,3R,4S,5R)-3,4-dibenzyl 2-methyl 5-(4-(dimethylamino)phenyl)-2-(3-methoxy-3-

oxopropyl)pyrrolidine-2,3,4-tricarboxylate 

157bj: 42% yield; 1H NMR (400 MHz, CDCl3): δ 7.40 – 7.05 (m, 

11H), 6.83 (dd, J = 7.5, 1.7 Hz, 2H), 6.55 (d, J = 8.8 Hz, 2H), 5.19 

– 5.01 (m, 2H), 4.62 (d, J = 12.2 Hz, 1H), 4.54 (d, J = 12.2 Hz, 1H), 

4.37 (s, 1H), 3.63 – 3.44 (m, 7H), 3.45 – 3.35 (m, 1H), 3.29 (t, J = 

5.7 Hz, 1H), 2.85 (s, 6H), 2.63 – 2.44 (m, 1H), 2.44 – 2.27 (m, 1H), 2.20 (ddd, J = 15.6, 9.8, 

5.5 Hz, 1H), 2.14 – 1.95 ppm (m, 1H); HRMS: calc. for [M+H]+ C34H39N2O8: 603.27009, found 

603.26802. 

Rel-(2S,3R,4S,5R)-3,4-dibenzyl 2-methyl 5-(3,4-dimethoxyphenyl)-2-(3-methoxy-3-

oxopropyl)pyrrolidine-2,3,4-tricarboxylate 

157bk: 53% yield; 1H NMR (500 MHz, CDCl3): δ = 7.41 – 7.22 

(m, 11H), 7.22 – 7.06 (m, 7H), 6.89 – 6.73 (m, 8H), 6.66 (d, J = 

8.9 Hz, 2H), 5.14 – 4.98 (m, 4H), 4.63 (d, J = 12.2 Hz, 2H), 4.54 

(d, J = 12.2 Hz, 2H), 4.41 (d, J = 6.7 Hz, 2H), 3.78 (s, 6H), 3.70 

(s, 6H), 3.56 (d, J = 1.5 Hz, 12H), 3.50 (t, J = 7.0 Hz, 3H), 3.31 (d, J = 7.3 Hz, 2H), 2.62 – 2.42 

(m, 2H), 2.34 (ddd, J = 13.7, 9.4, 5.7 Hz, 2H), 2.28 – 2.14 (m, 2H), 2.13 – 1.96 ppm (m, 2H). 

(2S,3R,4S,5R)-3,4-dibenzyl 2-methyl 2-(3-methoxy-3-oxopropyl)-5-(thiophen-3-

yl)pyrrolidine-2,3,4-tricarboxylate 

157bl: 82% yield; 1H NMR (400 MHz, CDCl3): δ 7.35 – 7.09 (m, 10H), 

6.94 (dd, J = 5.6, 3.4 Hz, 3H), 5.06 (s, 2H), 4.70 (d, J = 12.1 Hz, 1H), 

4.54 (d, J = 12.1 Hz, 1H), 4.47 (d, J = 5.8 Hz, 1H), 3.56 (d, J = 7.1 Hz, 

3H), 3.54 (s, 3H), 3.43 (t, J = 6.8 Hz, 1H), 3.28 (d, J = 7.1 Hz, 1H), 2.56 

– 2.43 (m, 1H), 2.42 – 2.26 (m, 1H), 2.26 – 2.11 (m, 1H), 2.11 – 1.98 ppm (m, 1H). 

Rel-(2S,3R,4S,5S)-3,4-dibenzyl 2-methyl 2-(3-methoxy-3-oxopropyl)-5-((E)-4-

methoxystyryl)pyrrolidine-2,3,4-tricarboxylate 
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157bm: 53% yield; 1H NMR (400 MHz, CDCl3): δ 7.42 – 7.22 

(m, 5H), 7.22 – 7.09 (m, 5H), 7.04 (d, J = 8.7 Hz, 2H), 6.72 (d, J 

= 8.7 Hz, 2H), 6.39 (d, J = 15.7 Hz, 1H), 5.89 (dd, J = 15.7, 8.3 

Hz, 1H), 5.04 (q, J = 12.2 Hz, 2H), 4.90 (q, J = 12.1 Hz, 2H), 3.96 

(t, J = 7.8 Hz, 1H), 3.76 – 3.62 (m, 4H), 3.56 (s, 3H), 3.51 (s, 3H), 3.41 (t, J = 7.3 Hz, 1H), 

3.20 (d, J = 7.4 Hz, 1H), 2.51 – 2.36 (m, 1H), 2.30 – 2.03 (m, 2H), 2.03 – 1.90 ppm (m, 1H). 

 

7.3.2 Experimental Detail and Analytic Data for Synthesis of Pyrrolizidines 158aa-bv 

General Method: The specific pyrrolidine was disovled into 5 mL solvent of toluene/AcOH 

(4:1). The mixture was allowed to be stirred under reflux until full conversion indicated by 

TLC.  

Rel-(1S,2S,3R,7aS)-trimethyl 3-(4-fluorophenyl)-5-oxohexahydro-1H-pyrrolizine-1,2,7a-

tricarboxylate 

158aa: 88% yield; 1H NMR (400 MHz, CDCl3): δ 7.33 (dd, J = 8.5, 5.4 Hz, 

2H), 6.97 (t, J = 8.7 Hz, 2H), 5.20 (d, J = 8.0 Hz, 1H), 3.84 (s, 3H), 3.83 – 

3.79 (m, 1H), 3.77 (s, 3H), 3.22 (d, J = 6.9 Hz, 1H), 3.18 (s, 3H), 3.02 (d, J 

= 3.0 Hz, 1H), 2.66 – 2.56 (m, 1H), 2.54 – 2.40 ppm (m, 2H); 13C NMR (101 

MHz, CDCl3): δ 176.84, 171.91, 170.38, 168.24, 163.51, 161.07, 131.84, 

131.81, 128.34, 128.26, 115.19, 114.98, 74.19, 60.09, 55.70, 53.21, 53.03, 52.51, 51.63, 36.23, 

34.04 ppm; HRMS: calc. for [M+H]+ C19H21FNO7: 394.12966, found 394.12872. 

Rel-(1R,2S,3R,7aS)-trimethyl 5-oxo-3-phenylhexahydro-1H-pyrrolizine-1,2,7a-

tricarboxylate 

158ab: 80% yield; 1H NMR (400 MHz, CDCl3): δ 7.33 – 7.09 (m, 5H), 5.18 

(d, J = 8.0 Hz, 1H), 3.76 (dd, J = 20.8, 10.9 Hz, 7H), 3.17 (d, J = 6.9 Hz, 

1H), 3.07 (s, 3H), 3.06 – 2.89 (m, 1H), 2.55 (dd, J = 12.1, 8.7 Hz, 1H), 2.45 

ppm (dt, J = 7.8, 6.4 Hz, 2H); 13C NMR (101 MHz, CDCl3): δ 176.86, 

171.97, 170.42, 168.34, 135.98, 128.14, 127.66, 126.46, 74.25, 60.72, 55.67, 53.24, 52.98, 

52.48, 51.52, 36.33, 34.10 ppm; HRMS: calc. for [M+H]+ C19H22NO7: 376.13908, found 

376.13900. 
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Rel-(1S,2S,3R,7aS)-trimethyl 5-oxo-3-(o-tolyl)hexahydro-1H-pyrrolizine-1,2,7a-

tricarboxylate 

158ac: 94% yield; 1H NMR (400 MHz, CDCl3): δ 7.64 – 7.56 (m, 1H), 7.21 

– 6.98 (m, 3H), 5.29 (d, J = 7.8 Hz, 1H), 4.04 – 3.89 (m, 1H), 3.86 (s, 3H), 

3.78 (s, 3H), 3.25 (d, J = 6.8 Hz, 1H), 3.08 (s, 3H), 3.05 (dd, J = 9.0, 3.0 Hz, 

1H), 2.62 (dd, J = 12.2, 8.7 Hz, 1H), 2.56 – 2.41 (m, 2H), 2.33 ppm (s, 3H). 

Rel-(1S,2S,3R,7aS)-trimethyl 5-oxo-3-(m-tolyl)hexahydro-1H-pyrrolizine-1,2,7a-

tricarboxylate 

158ad: 80% yield; 1H NMR (400 MHz, CDCl3): δ 7.16 (dd, J = 16.0, 9.0 

Hz, 3H), 7.01 (d, J = 6.5 Hz, 1H), 5.21 (d, J = 8.0 Hz, 1H), 3.85 (s, 3H), 

3.82 (d, J = 7.9 Hz, 1H), 3.78 (s, 3H), 3.21 (d, J = 6.9 Hz, 1H), 3.15 (s, 3H), 

3.04 (dt, J = 18.7, 11.7 Hz, 1H), 2.61 (dd, J = 12.1, 8.7 Hz, 1H), 2.51 (dt, J 

= 8.0, 6.3 Hz, 2H), 2.31 ppm (s, 3H). 

Rel-(1S,2S,3R,7aS)-trimethyl 5-oxo-3-(p-tolyl)hexahydro-1H-pyrrolizine-1,2,7a-

tricarboxylate 

158ae: 95% yield; 1H NMR (500 MHz, CDCl3): δ 7.15 (d, J = 8.0 Hz, 2H), 

7.02 (d, J = 8.1 Hz, 2H), 5.14 (d, J = 8.0 Hz, 1H), 3.77 (s, 3H), 3.77 – 3.72 

(m, 1H), 3.71 (s, 3H), 3.15 (d, J = 6.9 Hz, 1H), 3.10 (s, 3H), 3.00 – 2.87 (m, 

1H), 2.53 (dd, J = 12.1, 8.8 Hz, 1H), 2.43 (dt, J = 7.9, 6.4 Hz, 2H), 2.21 ppm 

(s, 3H). 

Rel-(1R,2S,3R,7aS)-trimethyl 3-(2-fluorophenyl)-5-oxohexahydro-1H-pyrrolizine-1,2,7a-

tricarboxylate 

158af: 82% yield; 1H NMR (400 MHz, CDCl3): δ 7.67 – 7.53 (m, 1H), 7.23 

(td, J = 7.4, 1.6 Hz, 1H), 7.11 (dd, J = 10.9, 4.1 Hz, 1H), 6.99 (dd, J = 14.0, 

4.6 Hz, 1H), 5.42 (d, J = 7.8 Hz, 1H), 4.05 – 3.93 (m, 1H), 3.86 (s, 3H), 

3.80 (s, 3H), 3.28 (d, J = 6.9 Hz, 1H), 3.18 (s, 3H), 3.06 (dd, J = 8.3, 3.1 

Hz, 1H), 2.64 (dd, J = 12.1, 8.6 Hz, 1H), 2.58 – 2.41 ppm (m, 2H); 13C NMR (101 MHz, 

CDCl3): δ 176.74, 171.92, 170.58, 168.23, 160.97, 158.53, 129.51, 129.43, 128.67, 128.63, 

124.22, 124.18, 123.58, 123.45, 114.66, 114.45, 73.98, 55.76, 55.72, 55.43, 52.99, 52.47, 

51.95, 51.62, 36.29, 34.10 ppm. 
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Rel-(1S,2S,3R,7aS)-trimethyl 3-(3-fluorophenyl)-5-oxohexahydro-1H-pyrrolizine-1,2,7a-

tricarboxylate 

158ag: 83% yield; 1H NMR (400 MHz, CDCl3): δ 7.35 – 7.20 (m, 3H), 7.20 

– 7.07 (m, 4H), 7.01 – 6.81 (m, 2H), 5.23 (d, J = 8.1 Hz, 2H), 3.94 – 3.82 

(m, 8H), 3.79 (s, 6H), 3.25 (d, J = 7.0 Hz, 2H), 3.21 (s, 6H), 3.04 (ddd, J = 

16.1, 11.8, 8.3 Hz, 2H), 2.63 (dd, J = 12.3, 8.8 Hz, 2H), 2.59 – 2.41 ppm 

(m, 4H). 13C NMR (101 MHz, CDCl3): δ 176.83, 171.81, 170.21, 168.17, 

163.88, 161.44, 138.90, 138.83, 129.69, 129.60, 122.19, 122.16, 114.70, 114.48, 113.97, 

113.74, 74.14, 60.08, 60.06, 55.68, 53.01, 52.98, 52.49, 51.61, 36.14, 33.95 ppm. 

Rel-(1S,2S,3R,7aS)-trimethyl 3-(4-bromophenyl)-5-oxohexahydro-1H-pyrrolizine-1,2,7a-

tricarboxylate 

158ah: 87% yield; 1H NMR (400 MHz, CDCl3): δ 7.35 (d, J = 8.5 Hz, 4H), 

7.25 – 7.09 (m, 5H), 5.11 (d, J = 8.1 Hz, 2H), 3.79 – 3.74 (m, 8H), 3.71 (s, 

6H), 3.17 (d, J = 7.0 Hz, 2H), 3.14 (s, 6H), 2.96 (dt, J = 18.8, 11.6 Hz, 2H), 

2.54 (dd, J = 12.1, 8.7 Hz, 2H), 2.44 ppm (dt, J = 7.9, 6.5 Hz, 4H); 13C NMR 

(101 MHz, CDCl3): δ 176.80, 171.84, 170.32, 168.17, 135.24, 131.28, 

128.31, 121.67, 74.14, 60.08, 55.67, 53.03, 52.95, 52.51, 51.68, 36.13, 33.98 ppm. 

Rel-(1S,2S,3R,7aS)-trimethyl 5-oxo-3-(4-(trifluoromethyl)phenyl)hexahydro-1H-

pyrrolizine-1,2,7a-tricarboxylate 

158ai: 87% yield; 1H NMR (400 MHz, CDCl3): δ 7.55 (d, J = 8.3 Hz, 2H), 

7.48 (d, J = 8.2 Hz, 2H), 5.26 (d, J = 8.1 Hz, 1H), 3.91 – 3.85 (m, 1H), 3.83 

(s, 3H), 3.77 (s, 3H), 3.26 (d, J = 7.0 Hz, 1H), 3.14 (s, 3H), 3.10 – 2.94 (m, 

1H), 2.61 (dd, J = 12.3, 8.8 Hz, 1H), 2.51 ppm (qd, J = 8.8, 3.0 Hz, 2H). 13C 

NMR (101 MHz, CDCl3): δ 176.84, 171.77, 170.23, 168.09, 140.35, 129.99, 

129.67, 126.97, 125.50, 125.15, 125.11, 125.07, 122.80, 74.14, 60.15, 55.68, 53.05, 52.98, 

52.52, 51.60, 36.10, 33.92 ppm. 

Rel-(1S,2S,3R,7aS)-trimethyl 3-(4-methoxyphenyl)-5-oxohexahydro-1H-pyrrolizine-

1,2,7a-tricarboxylate 
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158aj: 90% yield; 1H NMR (400 MHz, CDCl3): δ 7.34 – 7.18 (m, 2H), 6.81 

(d, J = 8.8 Hz, 2H), 5.19 (d, J = 8.0 Hz, 1H), 3.84 (s, 3H), 3.82 – 3.78 (m, 

1H), 3.77 (s, 3H), 3.75 (s, 3H), 3.21 (d, J = 6.9 Hz, 1H), 3.18 (s, 3H), 3.02 

(dt, J = 18.5, 11.7 Hz, 1H), 2.59 (dd, J = 12.2, 8.7 Hz, 1H), 2.49 ppm (dt, J 

= 8.2, 6.3 Hz, 2H). 

Rel-(1S,2S,3R,7aS)-trimethyl 3-(4-(allyloxy)phenyl)-5-oxohexahydro-1H-pyrrolizine-

1,2,7a-tricarboxylate 

158ak: 94% yield; 1H NMR (400 MHz, CDCl3): δ 7.19 (d, J = 9.7 Hz, 5H), 

6.77 (d, J = 8.8 Hz, 4H), 6.02 – 5.88 (m, 2H), 5.31 (dd, J = 17.3, 1.5 Hz, 

2H), 5.24 – 5.08 (m, 4H), 4.47 – 4.38 (m, 4H), 3.78 (s, 6H), 3.73 (d, J = 7.8 

Hz, 2H), 3.71 (s, 6H), 3.15 (d, J = 6.9 Hz, 2H), 3.11 (s, 6H), 3.04 – 2.89 (m, 

2H), 2.53 (dd, J = 12.1, 8.7 Hz, 2H), 2.43 ppm (dt, J = 7.8, 6.5 Hz, 4H); 13C 

NMR (101 MHz, CDCl3): δ 176.80, 172.01, 170.52, 168.37, 158.03, 133.36, 

128.17, 127.64, 117.70, 114.41, 74.21, 68.82, 60.29, 55.60, 53.28, 52.97, 52.46, 51.59, 36.29, 

34.12 ppm; HRMS: calc. for [M+H]+ C22H26NO8: 432.16529, found 432.16540. 

Rel-(1S,2S,3R,7aS)-trimethyl 3-(4-(benzyloxy)phenyl)-5-oxohexahydro-1H-pyrrolizine-

1,2,7a-tricarboxylate 

158al: 88% yield; 1H NMR (500 MHz, CDCl3): δ = 7.42 – 7.09 (m, 7H), 

6.82 (d, J = 8.6 Hz, 2H), 5.12 (d, J = 8.0 Hz, 1H), 4.96 (s, 2H), 3.77 (s, 3H), 

3.72 (d, J = 7.3 Hz, 1H), 3.71 (s, 3H), 3.13 (d, J = 6.9 Hz, 1H), 3.09 (s, 3H), 

2.95 (dt, J = 18.2, 11.1 Hz, 1H), 2.58 – 2.49 (m, 1H), 2.47 – 2.36 (m, 2H). 

13C NMR (126 MHz, CDCl3): δ = 176.79, 171.99, 170.49, 168.35, 158.25, 

137.15, 128.63, 128.35, 127.99, 127.71, 127.54, 114.63, 74.24, 70.02, 60.35, 55.66, 53.33, 

52.95, 52.44, 51.57, 36.31, 34.11. 

Rel-(1S,2S,3R,7aS)-trimethyl 3-(4-nitrophenyl)-5-oxohexahydro-1H-

pyrrolizine-1,2,7a-tricarboxylate 

158am: 64% yield; 1H NMR (500 MHz, CDCl3): δ 8.16 (d, J = 8.7 Hz, 2H), 

7.55 (d, J = 8.6 Hz, 2H), 5.28 (d, J = 8.2 Hz, 1H), 3.98 – 3.85 (m, 1H), 3.84 

(s, 3H), 3.79 (s, 3H), 3.28 (d, J = 7.0 Hz, 1H), 3.20 (s, 3H), 3.12 – 2.95 (m, 

1H), 2.63 (dd, J = 12.3, 8.9 Hz, 1H), 2.54 ppm (qd, J = 9.0, 2.7 Hz, 2H). 
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Rel-(1S,2S,3R,7aS)-trimethyl 3-(3,4-dimethoxyphenyl)-5-oxohexahydro-1H-pyrrolizine-

1,2,7a-tricarboxylate 

158an: 73% yield; 1H NMR (400 MHz, CDCl3): δ 7.03 – 6.88 (m, 2H), 6.79 

(d, J = 8.3 Hz, 1H), 5.19 (d, J = 8.0 Hz, 1H), 3.87 (s, 3H), 3.84 (s, 3H), 3.83 

(s, 3H), 3.82 – 3.79 (m, 1H), 3.78 (s, 3H), 3.21 (d, J = 7.9 Hz, 4H), 3.09 – 

2.85 (m, 1H), 2.58 (s, 1H), 2.54 – 2.35 ppm (m, 2H). 

Rel-(1S,2S,3R,7aS)-trimethyl 3-(furan-2-yl)-5-oxohexahydro-1H-pyrrolizine-1,2,7a-

tricarboxylate 

158ao: 82% yield; 1H NMR (500 MHz, CDCl3): δ = 7.29 (s, 1H), 6.37 (d, J 

= 3.2 Hz, 1H), 6.32 – 6.24 (m, 1H), 5.24 (d, J = 8.2 Hz, 1H), 3.85 (t, J = 7.7 

Hz, 1H), 3.82 (s, 3H), 3.77 (s, 3H), 3.41 (s, 3H), 3.17 (d, J = 7.2 Hz, 1H), 

2.96 (dd, J = 8.8, 3.7 Hz, 1H), 2.57 (dd, J = 12.0, 9.0 Hz, 1H), 2.52 – 2.39 

(m, 2H). 

Rel-(1S,2S,3R,7aS)-trimethyl 5-oxo-3-(thiophen-3-yl)hexahydro-1H-pyrrolizine-1,2,7a-

tricarboxylate 

158ap: 82% yield; 1H NMR (500 MHz, CDCl3): δ 7.28 (dd, J = 1.9, 0.9 Hz, 

1H), 7.19 (dd, J = 4.9, 3.1 Hz, 1H), 6.98 (d, J = 5.0 Hz, 1H), 5.26 (d, J = 8.1 

Hz, 1H), 3.82 (s, 3H), 3.81 – 3.77 (m, 1H), 3.77 (s, 3H), 3.24 (s, 3H), 3.19 

(d, J = 7.0 Hz, 1H), 3.04 – 2.92 (m, 1H), 2.58 (dd, J = 12.2, 8.8 Hz, 1H), 

2.53 – 2.42 ppm (m, 2H). 

Rel-(1S,2S,3R,7aS)-trimethyl 3-(naphthalen-2-yl)-5-oxohexahydro-1H-pyrrolizine-

1,2,7a-tricarboxylate 

158aq: 86% yield; 1H NMR (400 MHz, CDCl3): δ 7.86 (s, 1H), 7.81 (dd, J 

= 6.2, 3.0 Hz, 1H), 7.77 (dd, J = 8.8, 3.9 Hz, 2H), 7.47 – 7.36 (m, 3H), 5.41 

(d, J = 8.1 Hz, 1H), 3.94 (dd, J = 7.9, 7.2 Hz, 1H), 3.88 (s, 3H), 3.78 (s, 3H), 

3.27 (d, J = 7.0 Hz, 1H), 3.17 – 3.04 (m, 1H), 3.02 (s, 3H), 2.64 (dd, J = 

12.2, 8.8 Hz, 1H), 2.59 – 2.47 ppm (m, 2H). 

Rel-(1R,2S,3R,7aS)-1,2-diallyl 7a-methyl 5-oxo-3-phenylhexahydro-1H-pyrrolizine-

1,2,7a-tricarboxylate 
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158ar: 93% yield; 1H NMR (400 MHz, CDCl3): δ 7.30 (d, J = 7.4 Hz, 2H), 

7.27 – 7.10 (m, 3H), 5.87 (ddd, J = 11.4, 10.5, 5.3 Hz, 1H), 5.37 – 5.23 (m, 

2H), 5.20 (dd, J = 7.6, 4.2 Hz, 2H), 5.02 – 4.89 (m, 2H), 4.62 (qd, J = 13.2, 

5.8 Hz, 2H), 4.06 (dd, J = 12.9, 6.2 Hz, 1H), 3.82 (ddd, J = 14.9, 12.7, 6.9 

Hz, 2H), 3.77 (s, 3H), 3.21 (d, J = 6.9 Hz, 1H), 3.05 – 2.90 (m, 1H), 2.63 – 

2.50 (m, 1H), 2.50 – 2.38 ppm (m, 2H); 13C NMR (101 MHz, CDCl3): δ 176.77, 171.86, 169.65, 

167.43, 135.96, 131.85, 131.70, 128.16, 127.63, 126.62, 118.66, 118.47, 74.24, 66.10, 65.54, 

60.76, 55.77, 53.22, 52.85, 36.32, 34.06 ppm. 

Rel-(1R,2S,3R,7aS)-1,2-diallyl 7a-methyl 5-oxo-3-(o-tolyl)hexahydro-1H-pyrrolizine-

1,2,7a-tricarboxylate 

158as: 83% yield; 1H NMR (500 MHz, CDCl3): δ 7.62 (d, J = 7.4 Hz, 1H), 

7.12 (dt, J = 16.4, 7.3 Hz, 2H), 7.03 (d, J = 7.4 Hz, 1H), 6.00 – 5.86 (m, 

1H), 5.39 – 5.21 (m, 4H), 5.04 – 4.93 (m, 2H), 4.67 (ddd, J = 30.0, 13.2, 

5.8 Hz, 2H), 4.05 (dd, J = 12.9, 6.3 Hz, 1H), 3.93 (t, J = 7.3 Hz, 1H), 3.88 

– 3.78 (m, 4H), 3.28 (d, J = 6.8 Hz, 1H), 3.13 – 2.96 (m, 1H), 2.66 – 2.57 

(m, 1H), 2.56 – 2.44 (m, 2H), 2.32 ppm (s, 3H). 

Rel-(1R,2S,3R,7aS)-1,2-diallyl 7a-methyl 5-oxo-3-(m-tolyl)hexahydro-1H-pyrrolizine-

1,2,7a-tricarboxylate 

158at: 94% yield; 1H NMR (400 MHz, CDCl3): δ 7.23 – 7.07 (m, 3H), 7.01 

(d, J = 6.6 Hz, 1H), 5.95 (ddd, J = 16.3, 11.0, 5.8 Hz, 1H), 5.43 – 5.17 (m, 

5H), 5.02 (dd, J = 13.6, 2.1 Hz, 1H), 4.71 (dd, J = 13.2, 5.9 Hz, 1H), 4.65 

(dd, J = 13.2, 5.7 Hz, 1H), 4.11 (dd, J = 12.9, 6.2 Hz, 1H), 3.94 (dd, J = 

12.9, 5.9 Hz, 1H), 3.88 – 3.77 (m, 4H), 3.25 (d, J = 6.9 Hz, 1H), 3.13 – 2.94 

(m, 1H), 2.61 (dd, J = 19.5, 11.5 Hz, 1H), 2.57 – 2.43 (m, 2H), 2.30 ppm (s, 3H). 

Rel-(1R,2S,3R,7aS)-1,2-diallyl 7a-methyl 5-oxo-3-(p-tolyl)hexahydro-1H-pyrrolizine-

1,2,7a-tricarboxylate 

158au: 91% yield; 1H NMR (500 MHz, CDCl3): δ 7.18 (dd, J = 12.0, 4.3 

Hz, 2H), 7.01 (d, J = 8.1 Hz, 2H), 5.87 (ddt, J = 16.9, 11.4, 5.8 Hz, 1H), 

5.38 – 5.22 (m, 2H), 5.17 (dd, J = 19.6, 9.2 Hz, 2H), 4.99 – 4.88 (m, 2H), 

4.60 (qd, J = 13.2, 5.8 Hz, 2H), 4.06 (dd, J = 12.9, 6.2 Hz, 1H), 3.87 (dd, 

J = 12.9, 5.9 Hz, 1H), 3.79 – 3.71 (m, 4H), 3.18 (d, J = 6.8 Hz, 1H), 3.01 
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– 2.88 (m, 1H), 2.48 (dddd, J = 22.5, 19.7, 13.3, 9.0 Hz, 3H), 2.21 ppm (s, 3H); 13C NMR (126 

MHz, CDCl3): δ 176.70, 171.88, 169.72, 167.45, 137.18, 132.98, 131.93, 131.87, 128.85, 

126.53, 118.62, 118.28, 74.26, 66.07, 65.51, 60.68, 55.82, 53.26, 52.79, 36.34, 34.08, 21.16 

ppm. 

Rel-(1R,2S,3R,7aS)-1,2-diallyl 7a-methyl 3-(2-fluorophenyl)-5-oxohexahydro-1H-

pyrrolizine-1,2,7a-tricarboxylate 

158av: 88% yield; 1H NMR (500 MHz, CDCl3): δ 7.60 (dd, J = 7.6, 7.0 Hz, 

1H), 7.19 (dt, J = 7.4, 3.8 Hz, 1H), 7.09 (t, J = 7.6 Hz, 1H), 6.97 – 6.84 (m, 

1H), 5.92 (tdd, J = 11.5, 8.2, 3.2 Hz, 1H), 5.44 – 5.29 (m, 3H), 5.28 – 5.19 

(m, 1H), 5.08 – 4.95 (m, 2H), 4.66 (qd, J = 13.2, 5.8 Hz, 2H), 4.12 (dd, J = 

13.0, 6.1 Hz, 1H), 3.95 (ddd, J = 18.9, 14.5, 6.6 Hz, 2H), 3.81 (d, J = 0.6 

Hz, 3H), 3.29 (d, J = 6.8 Hz, 1H), 3.10 – 2.92 (m, 1H), 2.68 – 2.57 (m, 1H), 2.59 – 2.43 ppm 

(m, 2H). 

Rel-(1R,2S,3R,7aS)-1,2-diallyl 7a-methyl 3-(3-fluorophenyl)-5-oxohexahydro-1H-

pyrrolizine-1,2,7a-tricarboxylate 

158aw: 84% yield; 1H NMR (500 MHz, CDCl3): δ 7.24 – 7.12 (m, 1H), 

7.12 – 6.97 (m, 2H), 6.83 (dd, J = 13.2, 4.9 Hz, 1H), 5.87 (ddt, J = 16.4, 

10.7, 5.8 Hz, 1H), 5.48 – 5.31 (m, 1H), 5.31 – 5.22 (m, 1H), 5.21 – 5.10 (m, 

2H), 5.04 – 4.88 (m, 2H), 4.71 – 4.48 (m, 2H), 4.09 (ddd, J = 12.9, 6.2, 1.1 

Hz, 1H), 3.93 (ddd, J = 12.9, 6.1, 1.1 Hz, 1H), 3.83 – 3.70 (m, 4H), 3.20 (d, 

J = 6.9 Hz, 1H), 3.03 – 2.87 (m, 1H), 2.54 (dd, J = 17.6, 9.6 Hz, 1H), 2.45 ppm (ddd, J = 19.6, 

13.5, 6.6 Hz, 2H). 

Rel-(1R,2S,3R,7aS)-1,2-diallyl 7a-methyl 3-(4-fluorophenyl)-5-oxohexahydro-1H-

pyrrolizine-1,2,7a-tricarboxylate 

158ax: 83% yield; 1H NMR (500 MHz, CDCl3): δ 7.34 (dd, J = 8.5, 5.4 

Hz, 2H), 6.96 (t, J = 8.7 Hz, 2H), 5.93 (ddt, J = 16.5, 10.7, 5.8 Hz, 1H), 

5.41 (ddt, J = 18.0, 10.1, 6.1 Hz, 1H), 5.34 (dd, J = 17.2, 1.1 Hz, 1H), 5.25 

(dd, J = 10.4, 0.8 Hz, 1H), 5.21 (d, J = 8.1 Hz, 1H), 5.05 (d, J = 0.8 Hz, 

1H), 5.04 – 4.99 (m, 1H), 4.66 (qd, J = 13.2, 5.8 Hz, 2H), 4.14 (dd, J = 12.9, 6.1 Hz, 1H), 3.96 

(dd, J = 12.9, 6.0 Hz, 1H), 3.83 (d, J = 7.3 Hz, 1H), 3.81 (s, 3H), 3.26 (d, J = 6.9 Hz, 1H), 3.08 

– 2.95 (m, 1H), 2.64 – 2.56 (m, 1H), 2.56 – 2.43 ppm (m, 2H); 13C NMR (126 MHz, CDCl3): 
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δ 176.78, 171.83, 169.60, 167.32, 163.40, 161.44, 131.88, 131.85, 131.58, 128.55, 128.49, 

118.77, 118.72, 115.19, 115.02, 74.24, 66.19, 65.67, 60.23, 55.93, 53.28, 52.90, 36.29, 34.02 

ppm; HRMS: calc. for [M+H]+ C23H25FNO7: 446.16096, found 446.16119. 

Rel-(2S,3R,7aS)-1,2-diallyl 7a-methyl 3-(4-bromophenyl)-5-oxohexahydro-1H-

pyrrolizine-1,2,7a-tricarboxylate 

158ay: 92% yield; 1H NMR (400 MHz, CDCl3): δ 7.34 (d, J = 8.5 Hz, 2H), 

7.27 – 7.14 (m, 2H), 5.99 – 5.75 (m, 1H), 5.41 – 5.24 (m, 2H), 5.20 (dd, J 

= 10.4, 1.2 Hz, 1H), 5.12 (d, J = 8.0 Hz, 1H), 5.06 – 4.92 (m, 2H), 4.70 – 

4.51 (m, 2H), 4.09 (ddd, J = 11.7, 4.2, 1.1 Hz, 1H), 4.01 – 3.89 (m, 1H), 

3.84 – 3.70 (m, 4H), 3.22 (d, J = 6.9 Hz, 1H), 3.02 – 2.83 (m, 1H), 2.64 – 

2.49 (m, 1H), 2.49 – 2.33 ppm (m, 2H). 

Rel-(1R,2S,3R,7aS)-1,2-diallyl 7a-methyl 5-oxo-3-(4-(trifluoromethyl)phenyl)hexahydro-

1H-pyrrolizine-1,2,7a-tricarboxylate 

158az: 91% yield; 1H NMR (500 MHz, CDCl3): δ 7.52 (dd, J = 19.1, 8.3 

Hz, 4H), 5.99 – 5.86 (m, 1H), 5.39 – 5.21 (m, 4H), 4.97 (dd, J = 14.4, 5.4 

Hz, 2H), 4.66 (qd, J = 13.2, 5.8 Hz, 2H), 4.09 (dd, J = 12.8, 6.2 Hz, 1H), 

3.98 (dd, J = 12.8, 6.2 Hz, 1H), 3.91 – 3.83 (m, 1H), 3.81 (s, 3H), 3.29 (d, 

J = 6.9 Hz, 1H), 3.09 – 2.95 (m, 1H), 2.67 – 2.43 ppm (m, 3H); 13C NMR 

(126 MHz, CDCl3): δ = 176.79, 171.70, 169.42, 167.19, 140.35, 131.78, 131.23, 130.30, 

130.04, 129.78, 129.53, 127.43, 127.22, 125.27, 125.22, 125.19, 125.16, 125.13, 123.10, 

118.89, 118.77, 74.18, 66.19, 65.74, 60.30, 55.88, 53.04, 52.88, 36.17, 33.90 ppm. 

Rel-(1R,2S,3R,7aS)-1,2-diallyl 7a-methyl 3-(4-methoxyphenyl)-5-

oxohexahydro-1H-pyrrolizine-1,2,7a-tricarboxylate 

158ba: 82% yield; 1H NMR (500 MHz, CDCl3): δ 7.21 (dd, J = 10.3, 4.6 

Hz, 2H), 6.75 (d, J = 8.6 Hz, 2H), 5.87 (dq, J = 11.2, 5.8 Hz, 1H), 5.42 – 

5.31 (m, 1H), 5.28 (dd, J = 17.2, 0.8 Hz, 1H), 5.19 (d, J = 10.6 Hz, 1H), 

5.13 (d, J = 8.0 Hz, 1H), 5.02 – 4.92 (m, 2H), 4.60 (qd, J = 13.2, 5.8 Hz, 2H), 4.08 (dd, J = 

12.7, 6.1 Hz, 1H), 3.89 (dd, J = 12.9, 5.8 Hz, 1H), 3.76 – 3.73 (m, 4H), 3.69 (s, 3H), 3.17 (d, J 

= 6.8 Hz, 1H), 3.06 – 2.89 (m, 1H), 2.59 – 2.37 ppm (m, 3H). 
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Rel-(1R,2S,3R,7aS)-1,2-diallyl 7a-methyl 3-(4-(allyloxy)phenyl)-5-oxohexahydro-1H-

pyrrolizine-1,2,7a-tricarboxylate 

158bb: 69% yield; 1H NMR (300 MHz, CDCl3): δ = 7.26 (d, J = 8.6 Hz, 

2H), 6.81 (d, J = 8.6 Hz, 2H), 6.08 – 5.80 (m, 2H), 5.48 – 5.11 (m, 6H), 

5.11 – 4.92 (m, 2H), 4.78 – 4.52 (m, 2H), 4.47 (d, J = 5.2 Hz, 2H), 4.13 

(dd, J = 12.9, 6.2 Hz, 1H), 3.93 (dd, J = 12.9, 5.9 Hz, 1H), 3.84 – 3.52 (m, 

4H), 3.23 (d, J = 6.8 Hz, 1H), 3.12 – 2.86 (m, 1H), 2.68 – 2.24 ppm (m, 

3H); 13C NMR (101 MHz, CDCl3): δ 176.75, 171.93, 169.77, 167.47, 

158.15, 133.40, 131.88, 131.80, 128.16, 127.82, 118.70, 118.49, 117.69, 114.47, 74.24, 68.86, 

66.12, 65.58, 60.38, 55.78, 53.33, 52.87, 36.33, 34.12 ppm; HRMS: calc. for [M+H]+ 

C26H30NO8: 484.19659, found 484.19709. 

Rel-(1R,2S,3R,7aS)-1,2-diallyl 7a-methyl 3-(4-(benzyloxy)phenyl)-5-oxohexahydro-1H-

pyrrolizine-1,2,7a-tricarboxylate 

158bc: 86% yield; 1H NMR (300 MHz, CDCl3): δ 7.42 – 7.10 (m, 7H), 6.82 

(d, J = 8.6 Hz, 2H), 5.86 (ddd, J = 16.4, 10.9, 5.5 Hz, 1H), 5.46 – 5.06 (m, 

4H), 4.95 (t, J = 8.1 Hz, 4H), 4.73 – 4.41 (m, 2H), 4.07 (dd, J = 12.9, 6.2 

Hz, 1H), 3.86 (dd, J = 12.9, 5.9 Hz, 1H), 3.79 – 3.70 (m, 4H), 3.17 (d, J = 

6.8 Hz, 1H), 3.10 – 2.80 (m, 1H), 2.64 – 2.24 ppm (m, 3H). 

Rel-(1R,2S,3R,7aS)-1,2-diallyl 7a-methyl 3-(4-nitrophenyl)-5-oxohexahydro-1H-

pyrrolizine-1,2,7a-tricarboxylate 

158bd: 27% yield; 1H NMR (400 MHz, CDCl3): δ = 8.15 (d, J = 8.9 Hz, 

2H), 7.57 (d, J = 8.6 Hz, 2H), 5.94 (ddt, J = 16.3, 10.5, 5.9 Hz, 1H), 5.47 – 

5.21 (m, 4H), 5.04 (dd, J = 13.1, 5.7 Hz, 2H), 4.68 (qd, J = 13.2, 5.9 Hz, 

2H), 4.15 (dd, J = 12.8, 6.1 Hz, 1H), 3.96 (ddd, J = 15.1, 10.4, 6.7 Hz, 2H), 

3.83 (s, 3H), 3.31 (d, J = 6.9 Hz, 1H), 3.16 – 2.95 (m, 1H), 2.65 (t, J = 10.6 

Hz, 1H), 2.56 ppm (dt, J = 15.8, 8.9 Hz, 2H); 13C NMR (126 MHz, CDCl3): δ 176.83, 171.64, 

169.34, 167.05, 147.64, 143.81, 131.80, 131.23, 127.93, 123.51, 119.19, 118.99, 74.20, 66.38, 

65.91, 60.17, 56.15, 53.05, 52.99, 36.16, 33.85 ppm. 

Rel-(1R,2S,3R,7aS)-1,2-diallyl 7a-methyl 3-(4-(methylamino)phenyl)-5-oxohexahydro-

1H-pyrrolizine-1,2,7a-tricarboxylate 



Chapter 7. Experimental Part 

203 
 

158be: 27% yield; 1H NMR (300 MHz, CDCl3): δ = 7.17 (d, J = 8.4 Hz, 

2H), 6.52 (d, J = 8.5 Hz, 2H), 6.02 – 5.86 (m, 1H), 5.53 – 5.14 (m, 4H), 

5.13 – 4.96 (m, 2H), 4.66 (dd, J = 14.5, 7.2 Hz, 2H), 4.17 (dd, J = 12.8, 

6.2 Hz, 1H), 3.98 (dd, J = 12.8, 5.8 Hz, 1H), 3.89 – 3.70 (m, 4H), 3.22 (d, 

J = 6.8 Hz, 1H), 3.07 – 2.95 (m, 1H), 2.78 (s, 2H), 2.77 – 2.28 ppm (m, 

3H). 

Rel-(1R,2S,3R,7aS)-1,2-diallyl 7a-methyl 3-(3,4-dimethoxyphenyl)-5-oxohexahydro-1H-

pyrrolizine-1,2,7a-tricarboxylate 

158bf: 75% yield; 1H NMR (300 MHz, CDCl3): δ = 6.94 (d, J = 6.9 Hz, 

2H), 6.78 (d, J = 8.6 Hz, 1H), 5.92 (dd, J = 11.1, 5.8 Hz, 1H), 5.30 (ddd, J 

= 26.5, 15.2, 7.8 Hz, 4H), 5.03 (d, J = 11.8 Hz, 2H), 4.67 (t, J = 6.1 Hz, 2H), 

4.16 (dd, J = 12.8, 6.0 Hz, 1H), 3.97 (dd, J = 12.9, 6.0 Hz, 1H), 3.85 (s, 3H), 

3.83 (s, 3H), 3.82 (s, 3H), 3.80 – 3.78 (m, 1H), 3.24 (d, J = 6.8 Hz, 1H), 

3.17 – 2.92 (m, 1H), 2.70 – 2.36 ppm (m, 3H). 

Rel-(1R,2S,3R,7aS)-1,2-diallyl 7a-methyl 3-(furan-2-yl)-5-oxohexahydro-1H-pyrrolizine-

1,2,7a-tricarboxylate 

158bg: 86% yield; 1H NMR (500 MHz, CDCl3): δ = 7.21 (s, 1H), 6.33 (d, 

J = 3.2 Hz, 1H), 6.21 (dd, J = 3.2, 1.8 Hz, 1H), 5.87 (ddd, J = 22.9, 11.0, 

5.8 Hz, 1H), 5.59 (ddt, J = 16.6, 10.5, 6.0 Hz, 1H), 5.27 (dd, J = 17.2, 1.3 

Hz, 1H), 5.22 – 5.16 (m, 2H), 5.16 – 5.03 (m, 2H), 4.60 (qd, J = 13.2, 5.8 

Hz, 2H), 4.27 (dd, J = 13.0, 6.1 Hz, 1H), 4.15 (dd, J = 13.0, 6.0 Hz, 1H), 

3.82 (t, J = 7.7 Hz, 1H), 3.73 (s, 3H), 3.16 (d, J = 7.2 Hz, 1H), 2.98 – 2.82 (m, 1H), 2.57 – 2.36 

ppm (m, 3H); 13C NMR (126 MHz, CDCl3): δ 176.02, 171.63, 169.50, 167.16, 149.76, 141.93, 

131.87, 131.85, 118.68, 118.57, 110.75, 108.48, 73.84, 66.13, 65.86, 55.70, 54.79, 52.84, 

51.76, 35.54, 33.77 ppm. 

Rel-(1R,2S,3R,7aS)-1,2-diallyl 7a-methyl 3-(naphthalen-2-yl)-5-oxohexahydro-1H-

pyrrolizine-1,2,7a-tricarboxylate 
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158bh: 74% yield; 1H NMR (500 MHz, CDCl3): δ 7.86 (s, 1H), 7.82 – 7.68 

(m, 3H), 7.52 – 7.35 (m, 3H), 5.95 (ddt, J = 16.6, 10.9, 5.8 Hz, 1H), 5.42 

(d, J = 8.1 Hz, 1H), 5.35 (dd, J = 17.2, 1.0 Hz, 1H), 5.26 (dd, J = 10.4, 0.8 

Hz, 1H), 5.18 – 5.02 (m, 1H), 4.78 (dd, J = 17.2, 1.0 Hz, 1H), 4.73 – 4.56 

(m, 3H), 4.04 – 3.90 (m, 2H), 3.86 (s, 3H), 3.76 (dd, J = 12.8, 6.2 Hz, 1H), 

3.30 (d, J = 6.9 Hz, 1H), 3.16 – 2.99 (m, 1H), 2.71 – 2.60 (m, 1H), 2.59 – 

2.50 ppm (m, 2H). 

Rel-(1R,2S,3S,7aS)-1,2-diallyl 7a-methyl 3-((E)-4-nitrostyryl)-5-oxohexahydro-1H-

pyrrolizine-1,2,7a-tricarboxylate 

158bi: 15% yield; 1H NMR (400 MHz, CDCl3): δ 8.15 (d, J = 8.8 Hz, 2H), 

7.47 (d, J = 8.8 Hz, 2H), 6.82 (d, J = 16.0 Hz, 1H), 6.29 (dd, J = 15.9, 6.6 

Hz, 1H), 5.94 (ddd, J = 16.4, 11.1, 5.2 Hz, 1H), 5.77 – 5.65 (m, 1H), 5.36 

(dd, J = 17.2, 1.4 Hz, 1H), 5.28 (dd, J = 10.4, 1.2 Hz, 1H), 5.17 (dd, J = 

17.2, 1.4 Hz, 1H), 5.05 (d, J = 10.3 Hz, 1H), 4.85 (t, J = 7.5 Hz, 1H), 4.68 

(t, J = 6.1 Hz, 2H), 4.48 (dd, J = 9.7, 6.1 Hz, 2H), 3.83 (d, J = 4.4 Hz, 3H), 

3.76 (t, J = 7.9 Hz, 1H), 3.20 (d, J = 7.5 Hz, 1H), 2.97 – 2.86 (m, 1H), 2.74 – 2.44 ppm (m, 

3H). 

Rel-(1R,2S,3S,7aS)-1,2-diallyl 7a-methyl 3-((E)-4-methoxystyryl)-5-oxohexahydro-1H-

pyrrolizine-1,2,7a-tricarboxylate 

158bj: 86% yield; 1H NMR (400 MHz, CDCl3): δ = 7.27 – 7.16 (m, 2H), 

6.74 (d, J = 8.7 Hz, 2H), 6.59 (d, J = 15.9 Hz, 1H), 5.97 – 5.80 (m, 2H), 

5.66 (ddd, J = 17.1, 6.0, 4.3 Hz, 1H), 5.28 (dd, J = 17.2, 1.4 Hz, 1H), 5.19 

(dd, J = 10.4, 1.2 Hz, 1H), 5.10 (dd, J = 17.2, 1.4 Hz, 1H), 4.98 (dd, J = 

10.3, 1.1 Hz, 1H), 4.72 (t, J = 7.7 Hz, 1H), 4.69 – 4.53 (m, 2H), 4.42 (dd, J 

= 7.5, 6.3 Hz, 2H), 3.76 (s, 3H), 3.72 (s, 3H), 3.64 (t, J = 7.9 Hz, 1H), 3.08 

(d, J = 7.5 Hz, 1H), 2.84 (dd, J = 8.7, 4.0 Hz, 1H), 2.50 (dd, J = 12.1, 8.8 Hz, 1H), 2.52 – 2.41 

ppm (m, 2H);  13C NMR (101 MHz, CDCl3): δ 175.94, 171.98, 169.85, 167.62, 159.42, 133.26, 

131.91, 129.15, 128.11, 121.63, 119.01, 118.73, 113.81, 74.22, 66.17, 65.85, 58.38, 55.61, 

55.35, 52.93, 52.04, 35.21, 33.83 ppm. 

Rel-(1R,2S,3R,7aS)-1,2-dibenzyl 7a-methyl 5-oxo-3-phenylhexahydro-1H-pyrrolizine-

1,2,7a-tricarboxylate 
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158bk: 81% yield; 1H NMR (300 MHz, CDCl3): δ = 7.48 – 7.17 (m, 10H), 

7.14 (d, J = 9.4 Hz, 3H), 6.86 (dd, J = 6.2, 2.7 Hz, 2H), 5.24 – 5.01 (m, 3H), 

4.55 (d, J = 12.1 Hz, 1H), 4.21 (d, J = 12.1 Hz, 1H), 3.78 (t, J = 7.4 Hz, 1H), 

3.64 (s, 3H), 3.14 (d, J = 6.8 Hz, 1H), 2.94 (dd, J = 11.7, 6.6 Hz, 1H), 2.61 – 

2.22 ppm (m, 3H). 

Rel-(1R,2S,3R,7aS)-1,2-dibenzyl 7a-methyl 5-oxo-3-(o-tolyl)hexahydro-1H-pyrrolizine-

1,2,7a-tricarboxylate 

158bl: 90% yield; 1H NMR (500 MHz, CDCl3): δ 7.60 (d, J = 7.6 Hz, 1H), 

7.33 – 7.23 (m, 5H), 7.21 – 7.14 (m, 3H), 7.10 (t, J = 7.5 Hz, 1H), 7.04 (dd, 

J = 10.5, 4.1 Hz, 1H), 6.92 (d, J = 7.4 Hz, 1H), 6.86 (dd, J = 6.4, 2.9 Hz, 

2H), 5.22 (d, J = 7.8 Hz, 1H), 5.17 (d, J = 12.2 Hz, 1H), 5.10 (d, J = 12.2 

Hz, 1H), 4.51 (d, J = 12.1 Hz, 1H), 4.18 (d, J = 12.1 Hz, 1H), 3.93 – 3.85 

(m, 1H), 3.66 (s, 3H), 3.22 (d, J = 6.8 Hz, 1H), 3.05 – 2.88 (m, 1H), 2.53 (t, J = 10.7 Hz, 1H), 

2.41 (dt, J = 14.2, 10.2 Hz, 2H), 2.19 ppm (s, 3H); 13C NMR (126 MHz, CDCl3): δ 176.54, 

171.90, 169.70, 167.59, 135.52, 135.17, 134.39, 134.10, 130.13, 128.71, 128.61, 128.55, 

128.53, 128.36, 128.16, 127.80, 127.17, 126.22, 74.19, 67.43, 66.73, 59.21, 55.88, 52.74, 

51.40, 36.59, 34.19, 19.40 ppm. 

Rel-(1R,2S,3R,7aS)-1,2-dibenzyl 7a-methyl 5-oxo-3-(m-tolyl)hexahydro-1H-pyrrolizine-

1,2,7a-tricarboxylate 

158bm: 85% yield; 1H NMR (300 MHz, CDCl3): δ 7.30 (s, 5H), 7.23 – 6.97 

(m, 6H), 6.95 (d, J = 7.1 Hz, 1H), 6.91 – 6.72 (m, 2H), 5.26 – 5.00 (m, 3H), 

4.55 (d, J = 12.1 Hz, 1H), 4.28 (d, J = 12.1 Hz, 1H), 3.78 (t, J = 7.4 Hz, 1H), 

3.67 (s, 3H), 3.17 (d, J = 6.8 Hz, 1H), 2.96 (dd, J = 12.0, 6.2 Hz, 1H), 2.61 – 

2.22 (m, 3H), 2.20 ppm (s, 3H). 

Rel-(1R,2S,3R,7aS)-1,2-dibenzyl 7a-methyl 3-(2-fluorophenyl)-5-oxohexahydro-1H-

pyrrolizine-1,2,7a-tricarboxylate 

158bn: 87% yield; 1H NMR (300 MHz, CDCl3): δ = 7.56 (t, J = 7.2 Hz, 

1H), 7.29 (s, 5H), 7.22 – 7.14 (m, 3H), 7.03 (ddd, J = 23.2, 14.6, 4.5 Hz, 

4H), 6.83 – 6.68 (m, 1H), 5.34 (d, J = 7.8 Hz, 1H), 5.12 (q, J = 12.2 Hz, 

2H), 4.58 (d, J = 12.3 Hz, 1H), 4.29 (d, J = 12.3 Hz, 1H), 3.95 (t, J = 
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7.2 Hz, 1H), 3.66 (s, 3H), 3.23 (d, J = 6.8 Hz, 1H), 3.04 – 2.81 (m, 1H), 2.64 – 2.26 ppm (m, 

3H). 

Rel-(1R,2S,3R,7aS)-1,2-dibenzyl 7a-methyl 3-(3-fluorophenyl)-5-oxohexahydro-1H-

pyrrolizine-1,2,7a-tricarboxylate 

158bo: 90% yield; 1H NMR (300 MHz, CDCl3): δ 7.30 (s, 5H), 7.24 – 7.15 

(m, 3H), 7.14 – 6.99 (m, 3H), 6.97 – 6.87 (m, 2H), 6.81 (t, J = 8.3 Hz, 1H), 

5.25 – 5.00 (m, 3H), 4.59 (d, J = 12.1 Hz, 1H), 4.34 (d, J = 12.1 Hz, 1H), 

3.81 (t, J = 7.5 Hz, 1H), 3.67 (s, 3H), 3.15 (d, J = 6.9 Hz, 1H), 3.03 – 2.79 

(m, 1H), 2.61 – 2.22 ppm (m, 3H). 

Rel-(1R,2S,3R,7aS)-1,2-dibenzyl 7a-methyl 3-(4-fluorophenyl)-5-oxohexahydro-1H-

pyrrolizine-1,2,7a-tricarboxylate 

158bp: 91% yield; 1H NMR (400 MHz, CDCl3): δ = 7.44 – 7.13 (m, 11H), 

6.95 – 6.74 (m, 4H), 5.26 – 5.08 (m, 4H), 4.58 (d, J = 12.1 Hz, 1H), 4.41 (d, 

J = 12.1 Hz, 1H), 3.85 – 3.75 (m, 1H), 3.67 (s, 3H), 3.20 (d, J = 6.8 Hz, 1H), 

2.96 (ddd, J = 20.8, 16.4, 8.4 Hz, 1H), 2.59 – 2.33 ppm (m, 3H); 13C NMR 

(101 MHz, CDCl3): δ 176.82, 171.90, 169.90, 167.47, 163.56, 161.11, 

135.38, 134.99, 131.71, 128.75, 128.70, 128.66, 128.63, 128.50, 128.46, 128.42, 128.37, 

115.31, 115.09, 74.27, 67.52, 66.81, 60.19, 55.99, 53.13, 52.90, 36.27, 34.05 ppm; HRMS: 

calc. for [M+H]+ C31H29FNO7: 546.19226, found 546.19312. 

Rel-(1R,2S,3R,7aS)-1,2-dibenzyl 7a-methyl 3-(4-(allyloxy)phenyl)-5-oxohexahydro-1H-

pyrrolizine-1,2,7a-tricarboxylate 

158bq: 86% yield; 1H NMR (300 MHz, CDCl3): δ 7.29 (s, 5H), 7.25 – 7.04 

(m, 6H), 6.90 (d, J = 3.3 Hz, 2H), 6.73 (d, J = 8.6 Hz, 2H), 5.96 (ddd, J = 

15.9, 10.6, 5.4 Hz, 1H), 5.32 (d, J = 17.2 Hz, 1H), 5.14 (ddd, J = 16.3, 11.3, 

8.0 Hz, 4H), 4.59 (d, J = 12.1 Hz, 1H), 4.37 (dd, J = 21.0, 8.7 Hz, 3H), 3.78 

(t, J = 7.4 Hz, 1H), 3.67 (s, 3H), 3.19 (d, J = 6.7 Hz, 1H), 3.11 – 2.83 (m, 

1H), 2.62 – 2.28 ppm (m, 3H); 13C NMR (101 MHz, CDCl3): δ 176.75, 

171.97, 170.08, 167.58, 158.14, 135.43, 135.15, 133.40, 128.69, 128.59, 128.54, 128.36, 

128.20, 128.14, 127.85, 117.72, 114.49, 74.28, 68.78, 67.40, 66.71, 60.42, 55.83, 53.22, 52.80, 

36.28, 34.11 ppm; HRMS: calc. for [M+H]+ C34H34NO8: 584.22789, found 584.22875. 
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Rel-(1R,2S,3R,7aS)-1,2-dibenzyl 7a-methyl 3-(4-(benzyloxy)phenyl)-5-oxohexahydro-1H-

pyrrolizine-1,2,7a-tricarboxylate 

158br: 82% yield; 1H NMR (300 MHz, CDCl3): δ 7.42 – 7.02 (m, 15H), 

6.88 (d, J = 3.4 Hz, 2H), 6.79 (d, J = 8.6 Hz, 2H), 5.26 – 5.01 (m, 3H), 4.92 

(s, 2H), 4.57 (d, J = 12.1 Hz, 1H), 4.31 (d, J = 12.1 Hz, 1H), 3.75 (t, J = 7.4 

Hz, 1H), 3.65 (s, 3H), 3.14 (d, J = 6.8 Hz, 1H), 2.99 – 2.77 (m, 1H), 2.61 – 

2.17 ppm (m, 3H); HRMS: calc. for [M+H]+ C38H36NO8: 634.24354, found 

634.24337. 

Rel-(1R,2S,3R,7aS)-1,2-dibenzyl 7a-methyl 3-(4-(methylamino)phenyl)-5-oxohexahydro-

1H-pyrrolizine-1,2,7a-tricarboxylate 

158bs: 54% yield; 1H NMR (300 MHz, CDCl3): δ 7.41 – 7.14 (m, 10H), 

6.97 (s, 2H), 6.50 (d, J = 8.5 Hz, 2H), 5.35 – 5.07 (m, 3H), 4.66 (d, J = 12.1 

Hz, 1H), 4.44 (d, J = 12.2 Hz, 1H), 3.99 – 3.70 (m, 4H), 3.23 (d, J = 6.8 Hz, 

1H), 2.99 (dd, J = 23.3, 13.4 Hz, 1H), 2.79 (s, 3H), 2.53 ppm (dt, J = 16.2, 

11.8 Hz, 3H). 

Rel-(1R,2S,3R,7aS)-1,2-dibenzyl 7a-methyl 3-(3,4-dimethoxyphenyl)-5-oxohexahydro-

1H-pyrrolizine-1,2,7a-tricarboxylate 

158bt: 76% yield; 1H NMR (300 MHz, CDCl3): δ 7.31 (s, 5H), 7.19 (s, 

3H), 7.00 – 6.77 (m, 4H), 6.68 (d, J = 8.2 Hz, 1H), 5.27 – 5.04 (m, 3H), 

4.58 (d, J = 12.0 Hz, 1H), 4.39 (d, J = 12.1 Hz, 1H), 3.94 – 3.76 (m, 4H), 

3.70 (s, 3H), 3.68 (s, 3H), 3.20 (d, J = 6.8 Hz, 1H), 2.95 (d, J = 15.2 Hz, 

1H), 2.49 ppm (dt, J = 17.6, 11.8 Hz, 3H). 

Rel-(1R,2S,3R,7aS)-1,2-dibenzyl 7a-methyl 5-oxo-3-(thiophen-3-yl)hexahydro-1H-

pyrrolizine-1,2,7a-tricarboxylate 

158bu: 82% yield; 1H NMR (400 MHz, CDCl3): δ 7.43 – 7.24 (m, 9H), 7.18 

(dd, J = 5.0, 3.0 Hz, 1H), 7.07 (dd, J = 6.6, 2.8 Hz, 2H), 7.01 (dd, J = 5.0, 

1.0 Hz, 1H), 5.32 – 5.14 (m, 3H), 4.75 (d, J = 12.1 Hz, 1H), 4.43 (d, J = 12.1 

Hz, 1H), 3.90 – 3.81 (m, 1H), 3.72 (s, 3H), 3.22 (d, J = 6.9 Hz, 1H), 3.08 – 

2.92 (m, 1H), 2.64 – 2.39 ppm (m, 3H); 13C NMR (101 MHz, CDCl3): δ 176.41, 171.92, 170.03, 
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167.46, 137.06, 135.40, 135.14, 128.69, 128.67, 128.59, 128.55, 128.47, 128.29, 126.50, 

125.51, 122.88, 74.11, 67.42, 66.95, 57.06, 55.81, 52.82, 52.65, 35.94, 33.99 ppm. 

Rel-(1R,2S,3S,7aS)-1,2-dibenzyl 7a-methyl 3-((E)-4-methoxystyryl)-5-oxohexahydro-1H-

pyrrolizine-1,2,7a-tricarboxylate 

158bv: 81% yield; 1H NMR (400 MHz, CDCl3): δ 7.38 – 7.24 (m, 5H), 

7.21 – 7.02 (m, 7H), 6.74 (d, J = 8.7 Hz, 2H), 6.58 (d, J = 15.8 Hz, 1H), 

5.88 (dd, J = 15.9, 7.3 Hz, 1H), 5.14 (q, J = 12.2 Hz, 2H), 4.96 (d, J = 12.1 

Hz, 1H), 4.85 (d, J = 12.1 Hz, 1H), 4.71 (t, J = 7.8 Hz, 1H), 3.74 (s, 3H), 

3.72 – 3.61 (m, 4H), 3.09 (d, J = 7.5 Hz, 1H), 2.92 – 2.79 (m, 1H), 2.54 – 

2.15 ppm (m, 3H). 

 

7.3.3 Experimental Detail and Analytic Data for Enantioselective Synthesis of 

Pyrrolizidine 157aa 

 

(2S,3R,4S,5R)-trimethyl 5-(4-fluorophenyl)-2-(3-methoxy-3-oxopropyl)pyrrolidine-2,3,4-

tricarboxylate 

Chiral-157aa: 16% yield; [α]D
20 = +25.5 (c = 1.00 in CH2Cl2); 92% ee, determined by HPLC 

analysis [Daicel CHIRALPAK IA, iso-hexane/(DCM/EtOH = 100/2) = 80/20, 0.5 mL/min, λ 

= 235 nm, t (major) = 37.26 min, t (minor) = 23.49 min]; 1H NMR (400 MHz, CDCl3): δ 7.31 

– 7.17 (m, 2H), 6.94 (t, J = 8.7 Hz, 2H), 4.41 (d, J = 6.2 Hz, 1H), 3.72 (s, 3H), 3.67 (s, 3H), 

3.38 (t, J = 6.7 Hz, 1H), 3.26 (d, J = 7.0 Hz, 1H), 3.24 (s, 3H), 2.59 – 2.46 (m, 1H), 2.43 – 2.32 

(m, 1H), 2.21 (ddd, J = 15.6, 9.9, 5.4 Hz, 1H), 2.06 ppm (ddd, J = 13.5, 10.0, 5.3 Hz, 1H); 13C 

NMR (126 MHz, CDCl3) δ = 173.66, 173.09, 171.08, 170.95, 163.36, 161.40, 133.17, 128.66, 

128.60, 115.49, 115.32, 71.70, 63.40, 57.38, 53.04, 52.92, 52.30, 51.82, 51.51, 35.35, 30.07 

ppm; HRMS: calc. for [M+H]+ C20H25FNO8: 426.15587, found 426.15552. 
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(1S,2S,3R,7aS)-trimethyl 3-(4-fluorophenyl)-5-oxohexahydro-1H-pyrrolizine-1,2,7a-

tricarboxylate 

Chiral-158baa: 82% yield; [α]D
20 = +93.0 (c = 0.50 in CH2Cl2); 94% ee, determined by HPLC 

analysis [Daicel CHIRALPAK IA, iso-hexane/(DCM/EtOH = 100/2) = 70/30, 0.5 mL/min, λ 

= 254 nm, t (major) = 13.21 min, t (minor) = 32.47 min]; 1H NMR (400 MHz, CDCl3): δ = 

7.33 (dd, J = 8.5, 5.4 Hz, 2H), 6.97 (t, J = 8.7 Hz, 2H), 5.20 (d, J = 8.0 Hz, 1H), 3.84 (s, 3H), 

3.83 – 3.79 (m, 1H), 3.77 (s, 3H), 3.22 (d, J = 6.9 Hz, 1H), 3.18 (s, 3H), 3.02 (d, J = 3.0 Hz, 

1H), 2.66 – 2.56 (m, 1H), 2.54 – 2.40 (m, 2H); 13C NMR (101 MHz, CDCl3): δ = 176.84, 

171.91, 170.38, 168.24, 163.51, 161.07, 131.84, 131.81, 128.34, 128.26, 115.19, 114.98, 74.19, 

60.09, 55.70, 53.21, 53.03, 52.51, 51.63, 36.23, 34.04 ppm; HRMS: calc. for [M+H]+ 

C19H21FNO7: 394.12966, found 394.12872. 

 

7.4 Experimental Part for Enantioselective Synthesis of Cycloheptanoids 

7.4.1 Experimental Detail and Analytic Data for (6+3) Cycloadditions of Tropone 

7.4.1.1 General Method and Analytic Data of 248a-e 

General Method: A flame dried Schlenk tube was charged with Rh2(S-TCPTTL)4 (3.94 mg, 

0.002 mmol, 2mol%), tropone 242 (10 μL, 0.1 mmol, 1 equiv) and 0.5 mL of α,α,α-

trifluorotoluene as solvent. Then a solution of the corresponding diazo compound 247 (2.0 

equiv) in 0.5 mL α,α,α-trifluorotoluene was added via syringe pump (1 h) to the reaction 

mixture and was allowed to stir for an additional hour at room temperature. After completion, 

the reaction reaction mixture was directly loaded on the silica gel column and was purified 

using 20-30% ethyl acetate/petroleum ether mixture as an eluent to afford desired compounds 

248. 

(1S,2S,6S,7R)-6-Phenyl-13-oxatricyclo[5.4.1.12,6]trideca-8,10-diene-3,12-dione 
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248a: 78% yield; 1H NMR (400 MHz, CD2Cl2): δ = 7.51 – 7.38 (m, 4H), 7.36 

– 7.27 (m, 1H), 6.34 – 6.15 (m, 2H), 6.02 (dd, J = 11.2, 8.0 Hz, 1H), 5.85 (dd, 

J = 10.6, 9.1 Hz, 1H), 5.04 (d, J = 11.4 Hz, 1H), 4.04 – 3.91 (m, 1H), 3.73 (dd, 

J = 8.1, 3.8 Hz, 1H), 2.60 – 2.47 (m, 3H), 2.32 – 2.23 ppm (m, 1H); 13C NMR 

(101 MHz, CD2Cl2): δ = 205.04, 202.10, 148.85, 128.86, 127.91, 127.59, 

126.99, 124.96, 124.61, 123.39, 81.32, 81.27, 63.08, 53.00, 33.42, 31.56 ppm; FT-IR: ṽ = 2927, 

1720, 1419, 1447, 1279, 1188, 1078 cm-1; HRMS: calcd. for [M+H]+ C18H17O3
+: 281.11777, 

found: 281.11685; [𝛼]𝐷
𝑅𝑇= +31.2 (c = 0.5 in CH2Cl2); HPLC conditions: CHIRALPAK IC 

column, (CH2Cl2/EtOH = 100/2) / iso-hexane = 30/70, flow rate = 0.5 mL min-1, minor 

enantiomer: tR = 27.40 min; major enantiomer: tR = 24.93 min; 94% ee. 

(1S,2S,6S,7R)-6-(4-hexylphenyl)-13-oxatricyclo[5.4.1.12,6]trideca-8,10-diene-3,12-dione 

248b: 55% yield; 1H NMR (600 MHz, CD2Cl2): δ 7.37 – 7.31 (m, 2H), 7.24 

– 7.18 (m, 2H), 6.25 (ddt, J = 11.5, 7.5, 0.7 Hz, 1H), 6.22 – 6.18 (m, 1H), 

6.02 – 5.95 (m, 1H), 5.87 – 5.80 (m, 1H), 5.01 (d, J = 11.5 Hz, 1H), 4.00 – 

3.94 (m, 1H), 3.70 (dd, J = 8.0, 3.8 Hz, 1H), 2.60 (t, J = 7.8 Hz, 2H), 2.56 – 

2.46 (m, 3H), 2.29 – 2.22 (m, 1H), 1.66 – 1.56 (m, 2H), 1.38 – 1.27 (m, 6H), 

0.89 ppm (t, J = 7.0 Hz, 3H); 13C NMR (151 MHz, CD2Cl2): δ 205.49, 202.65, 146.48, 142.91, 

129.18, 128.14, 127.38, 125.32, 125.05, 123.64, 81.72, 81.64, 63.54, 53.46, 36.03, 33.81, 

32.29, 32.04, 31.95, 29.59, 23.19, 14.44 ppm; FT-IR: ṽ = 2926, 2855, 1724, 1681, 1512, 1280, 

1181, 1116, 1058, 986 cm-1; HRMS: calc. for [M+H]+ C24H29O3:365.21112, found: 365.21131; 

 [𝛼]𝐷
𝑅𝑇 = +34.5 (c = 0.6 in CH2Cl2); HPLC conditions: CHIRALPAK IC column, 

(CH2Cl2/EtOH = 100/2) / heptane = 20/80, flow rate = 0.5 mL min-1, major enantiomer: tR = 

35.0 min; minor enantiomer: tR = 46.4 min; 92% ee. 

(1S,2S,6S,7R)-6-(4-Isopropylphenyl)-13-oxatricyclo[5.4.1.12,6]trideca-8,10-diene-3,12- 

dione 

248c: 56% yield; 1H NMR (400 MHz, CD2Cl2): δ = 7.42 – 7.34 (m, 2H), 7.30 

– 7.21 (m, J = 2.0, 1.2 Hz, 2H), 6.33 – 6.15 (m, 2H), 6.05 – 5.96 (m, 1H), 

5.85 (ddd, J = 11.0, 9.1, 0.7 Hz, 1H), 5.02 (d, J = 11.4 Hz, 1H), 4.04 – 3.91 

(m, 1H), 3.71 (dd, J = 8.0, 3.8 Hz, 1H), 2.99 – 2.87 (m, 1H), 2.58 – 2.45 (m, 

3H), 2.32 – 2.23 (m, 1H), 1.27 ppm (d, J = 6.9 Hz, 6H); 13C NMR (101 MHz, 

CD2Cl2): δ = 205.06, 202.24, 148.39, 146.26, 127.77, 127.02, 126.85, 124.96, 124.66, 123.35, 
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81.34, 81.28, 63.15, 53.12, 33.95, 33.44, 31.58, 23.91 ppm; FT-IR: ṽ = 2958, 1721, 1509, 1460, 

1410, 1283, 1188, 1079, 865 cm-1; HRMS: calcd. for [M+H]+ C21H23O3: 323.16472, found: 

323.16421; [𝛼]𝐷
𝑅𝑇= +29.0 (c = 0.5 in CH2Cl2); HPLC conditions: CHIRALPAK IC column, 

(CH2Cl2/EtOH = 100/2) / iso-hexane = 20/80, flow rate = 0.5 mL min-1, minor enantiomer: tR 

= 52.41 min; major enantiomer: tR = 40.93 min; 89% ee. 

(1S,2S,6S,7R)-6-(4-Fluorophenyl)-13-oxatricyclo[5.4.1.12,6]trideca-8,10-diene-3,12-dione 

248d: 30% yield; 1H NMR (400 MHz, CD2Cl2): δ = 7.41 – 7.31 (m, 2H), 7.07 

– 6.97 (m, 2H), 6.23 – 6.08 (m, 2H), 5.89 (dd, J = 11.3, 8.0 Hz, 1H), 5.76 (dd, 

J = 10.5, 8.8 Hz, 1H), 4.93 (d, J = 11.4 Hz, 1H), 3.94 – 3.84 (m, 1H), 3.58 (dd, 

J = 8.0, 3.8 Hz, 1H), 2.51 – 2.36 (m, 3H), 2.21 – 2.11 (m, 1H); 13C NMR (101 

MHz, CD2Cl2): δ = 204.66, 201.90, 162.09 (d, J = 245.60 Hz, 1C), 144.75 (d, 

J = 3.1 Hz, 1C), 128.03, 127.05, 125.37 (d, J = 8.10 Hz, 1C), 125.00, 124.29, 115.56 (d, J = 

21.57 Hz, 1C), 81.25, 81.03, 63.01, 52.99, 33.33, 31.63 ppm; FT-IR: ṽ = 2926, 1720, 1604, 

1509, 1409, 1281, 1222, 1189, 1161, 1080, 865 cm-1; HRMS: calcd. for [M+H]+ C18H16O3F: 

299.10835, found: 299.10747; [𝛼]𝐷
𝑅𝑇 = +15.1 (c = 0.3 in CH2Cl2); HPLC conditions: 

CHIRALPAK IA column, (CH2Cl2/EtOH = 100/2) / iso-hexane = 20/80, flow rate = 0.5 mL 

min-1, minor enantiomer: tR = 47.42 min; major enantiomer: tR = 51.58 min; 92% ee. 

(1S,2S,6S,7R)-6-(4-Bromophenyl)-13-oxatricyclo[5.4.1.12,6]trideca-8,10-diene-3,12- 

dione 

248e: 66% yield; 1H NMR (400 MHz, CD2Cl2): δ = 7.59 – 7.53 (m, 2H), 7.41 

– 7.28 (m, 2H), 6.34 – 6.17 (m, 2H), 5.99 (dd, J = 11.3, 8.0 Hz, 1H), 5.85 (dd, 

J = 10.7, 9.0 Hz, 1H), 5.03 (d, J = 11.4 Hz, 1H), 4.03 – 3.93 (m, 1H), 3.67 (dd, 

J = 7.9, 3.8 Hz, 1H), 2.60 – 2.45 (m, 3H), 2.30 – 2.17 ppm (m, 1H); 13C NMR 

(101 MHz, CD2Cl2): δ = 204.60, 201.73, 147.86, 131.92, 128.16, 127.03, 

125.41, 125.00, 124.21, 121.42, 81.23, 81.02, 62.76, 52.92, 33.30, 31.42 ppm; FT-IR: ṽ = 2928, 

1721, 1486, 1396, 1283, 1187, 1074, 1008 cm-1; HRMS: calcd. for [M+H]+ C18H16O3
79Br: 

359.02828 and C18H16O3
81Br: 361.02828, found: 359.02771 and 361.02561; [𝛼]𝐷

𝑅𝑇= +18.9 (c 

= 0.7 in CH2Cl2); HPLC conditions: CHIRALPAK IC column, (CH2Cl2/EtOH = 100/2) / iso-

hexane = 25/75, flow rate = 0.5 mL min-1, minor enantiomer: tR = 46.09 min; major enantiomer: 

tR = 42.32 min; 87% ee.  
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7.4.1.2 VCD Spectra Data of 248a (by C.M.) 

Determination of absolute configurations of 248a 

 

General approach 

Experimental IR and VCD spectra were obtained for a solution of 248a in CDCl3 (50mg/ml) 

at 100 µm path length. The spectra were recorded on a Bruker Vertex 70v equipped with a 

PMA 50 module for VCD measurements accumulating 26000 scans for the VCD spectrum. 

The baseline was corrected by subtraction of the solvent spectrum.  

In order to analyse experimental IR and VCD spectra, a thorough conformational analysis 

followed by spectra calculations for all conformers is necessary. For both compounds, this 

analysis has been performed manually by systematically generating the input structures, 

followed by an geometry optimization at the B3LYP/6-311+G(2d,p) level of theory using 

Gaussian 09 Rev. D.01. Solvent effects were accounted for by applying a polarizable 

continuum model (IEFPCM).254 Following the geometry optimization, the IR and VCD spectra 

were calculated for each conformer. In order to account for line broadening, a Lorentzian band 

shape of 8 cm-1 half-width at half-height was assigned to the calculated dipole and rotational 

strengths. For a better visual comparison of the spectra, the calculated frequencies were scaled 

by a factor of 0.98. Finally, the energy differences within the set of conformations of each 

compound were computed based on the zero-point corrected electronic (∆E) as well as Gibbs 

free energy (∆G) and used to generate population-weighted IR and VCD spectra. During the 

calculations of VCD spectra, magnetic shielding constants are computed as well. The computed 

values are references against TMS calculated at the same level of theory. 

Absolute configuration of 248a. 

Compound 248a features two sets of stereocenters. First, there are the bridge-atoms of the 

oxobridge which can either be both (R)- or (S)-configured. Furthermore, the orientation of the 

tropone moiety can be either endo or exo with respect to the oxobridge. The scheme above 
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shows the endo- and exo-form of 248a with (S)-configuration at the oxo bridge atoms which 

have been considered for the calculations. 

For both diastereomers of 248a, the conformational analysis is straightforward. The seven-

membered ring is very rigid due to the C=C bonds, and it can only adopt one planar 

conformation. In both isomers, a ring-flip of the ketone-containing six-membered ring is 

possible, i.e. the α-CH2 can point away or towards the oxobridge. Thus, only two conformations 

were found for each exo and endo-248a. The relative energies of the conformers of exo-248a 

are summarized in Table S6 and the respective lowest-energy structures are shown below. 

     

Figure S4. Lowest energy structures of exo-(S,S)-248a (left) and endo-(S,S)-248a (right). 

Table S5. Relative energies the two conformers of exo-(S,S)-248a. 

 # ∆E1 ∆G1 Pop-∆E2 Pop-∆G2 

ex
o
 

c0 0.00 0.00 74.46 65.57 

c1 0.63 0.38 25.54 34.43 

1 in kcal/mol 

2 population based on ∆E or ∆G in % 

a with respect to EZPC=-921.132232hartree and G=-921.17587 hartree 
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The experimental 1H-NMR chemical shifts of the protons at the two chiral centers suggest the 

preference of the exo-form. Both protons can easily be identified in the 1H-NMR spectrum 

based on the coupling pattern, as shown in Figure S4 below. From the calculated chemical 

shifts of the lowest-energy conformers of endo- and exo-248a, which are given in the figure as 

well, it can be seen that only for the exo-form the resonance frequencies are predicted in the 

correct order. 

 

Figure S5. Section of the 1H-NMR spectrum of 248a showing the two chiral protons of the tropone bridge head, 

and the theoretically derived values for endo- and exo-248a. 

Figure S5 shows a comparison of the experimental IR and VCD spectra with those computed 

for exo-(S,S)-248a. Again, good agreement between the calculated and measured IR spectrum 

is found. Only the band at ~1140 cm-1 of the experimental spectrum is missing in the 

simulation. Clear band assignments can be made based on the calculated IR which 

subsequently allows an assignment of experimental VCD bands to the predicted ones. From 

the visual comparison, the (S,S)-configuration of the bridge heads can clearly be established.  
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Figure S6. Comparison of experimental and simulated IR and VCD spectra. Band assignments are indicated by 

thin lines connecting the experimental and simulated band positions. 

 

7.4.2 Experimental Detail and Analytic Data for 1,3-Dipolar Cycloaddition Reactions 

of Cyclic Carbonyl Ylides and of Pentafulvenes (249a-c) 

 

Rel-tert-butyl (3aR,4S,8S,8aR,E)-8-methyl-3-(naphthalen-2-ylmethylene)-5-oxo-

3a,5,6,7,8,8a-hexahydro-4,8-epoxyazulene-4(3H)-carboxylate and Rel- tert-butyl 

(3aR,4R,8R,8aR,E)-8-methyl-1-(naphthalen-2-ylmethylene)-5-oxo-3a,5,6,7,8,8a-

hexahydro-4,8-epoxyazulene-4(1H)-carboxylate 

249a. For isomer A: 1H-NMR (500 MHz, CDCl3): δ = 7.84 – 7.75 (m, 4H), 7.55 – 7.43 (m, 

3H), 6.75 (s, 1H), 6.47 (dd, J = 5.4, 1.9 Hz, 1H), 5.98 (dd, J = 5.4, 2.3 Hz, 1H), 4.20 (d, J = 6.4 
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Hz, 1H), 3.97 – 3.88 (m, 1H), 2.84 (ddd, J = 16.6, 11.7, 8.2 Hz, 1H), 2.65 – 2.56 (m, 1H), 2.33 

– 2.26 (m, 1H), 2.23 – 2.14 (m, 1H), 1.56 (d, J = 4.7 Hz, 9H), 1.22 ppm (s, J = 4.1 Hz, 3H); 

13C-NMR (126 MHz, CDCl3): δ = 202.34, 165.68, 146.93, 140.88, 135.31, 133.72, 133.31, 

132.41, 128.38, 127.99, 127.77, 127.38, 126.66, 126.25, 125.88, 124.89, 90.15, 83.74, 83.08, 

59.14, 50.07, 39.85, 34.01, 28.32, 22.28 ppm; HRMS: calc. for [M+H]+ C27H29O4: 417.20604, 

found: 417.20597. For isomer B: 1H NMR (500 MHz, CDCl3) : δ = 7.85 – 7.70 (m, 4H), 7.52 

– 7.42 (m, 3H), 6.99 (d, J = 5.5 Hz, 1H), 6.41 (s, 1H), 6.13 (d, J = 5.5 Hz, 1H), 3.83 (d, J = 6.5 

Hz, 1H), 3.48 (d, J = 6.5 Hz, 1H), 2.80 – 2.67 (m, 1H), 2.55 (dd, J = 16.4, 6.6 Hz, 1H), 2.33 

(td, J = 12.6, 6.8 Hz, 1H), 2.10 (dd, J = 13.1, 7.9 Hz, 1H), 1.56 (s, 9H), 1.50 ppm (s, 3H); 13C 

NMR (126 MHz, CDCl3): δ = 202.29, 165.72, 146.00, 137.51, 135.37, 134.57, 133.62, 132.41, 

128.15, 127.99, 127.76, 127.09, 126.65, 126.45, 126.01, 124.24, 90.94, 83.77, 83.07, 56.67, 

53.99, 40.49, 33.79, 28.32, 23.41 ppm; HRMS: calc. for [M+H]+ C27H29O4: 417.20604, found: 

417.205967. 

Rel-tert-butyl (3aR,4R,8R,8aR,E)-1-(naphthalen-2-ylmethylene)-5-oxo-8-phenyl-

3a,5,6,7,8,8a-hexahydro-4,8-epoxyazulene-4(1H)-carboxylate 

249b, for the major product: 1H NMR (500 MHz, CDCl3): δ = 7.73 

(d, J = 7.5 Hz, 1H), 7.68 (d, J = 7.5 Hz, 1H), 7.63 (d, J = 8.4 Hz, 1H), 

7.46 – 7.36 (m, 4H), 7.31 (t, J = 7.8 Hz, 2H), 7.24 – 7.17 (m, 2H), 

6.88 (dd, J = 8.5, 1.5 Hz, 1H), 6.73 (dd, J = 5.7, 1.0 Hz, 1H), 6.13 – 

6.07 (m, 1H), 5.55 (s, 1H), 3.96 (d, J = 6.6 Hz, 1H), 3.64 (d, J = 6.6 

Hz, 1H), 2.96 – 2.88 (m, 1H), 2.85 (dd, J = 13.0, 8.0 Hz, 1H), 2.70 (dd, J = 16.0, 6.6 Hz, 1H), 

2.62 – 2.46 (m, 1H), 1.59 ppm (d, J = 3.2 Hz, 9H); 13C NMR (126 MHz, , CDCl3): δ = 201.99, 

165.52, 145.57, 140.26, 135.98, 135.57, 134.76, 133.36, 132.17, 128.01, 127.86, 127.66, 

127.62, 127.58, 126.60, 126.55, 126.18, 126.02, 125.74, 125.65, 90.88, 87.77, 83.11, 57.05, 

55.55, 38.09, 33.64, 28.45, 28.37 ppm; HRMS: calc. for [M+H]+ C32H31O4: 479.22169, found: 

479.22133. 

Rel-tert-butyl (3aR,4R,8R,8aR)-1-cyclohexylidene-8-methyl-5-oxo-3a,5,6,7,8,8a-

hexahydro-4,8-epoxyazulene-4(1H)-carboxylate 

249c, for the major product: 1H NMR (500 MHz, CDCl3): δ = 6.57 (dd, J = 

5.7, 2.0 Hz, 1H), 5.74 (dd, J = 5.7, 2.2 Hz, 1H), 3.73 (d, J = 6.8 Hz, 1H), 

3.44 (d, J = 6.9 Hz, 1H), 2.70 (ddd, J = 16.7, 11.7, 8.2 Hz, 1H), 2.55 – 2.44 

(m, 1H), 2.37 (d, J = 13.0 Hz, 1H), 2.30 – 2.19 (m, 2H), 2.14 (dd, J = 11.9, 
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7.9 Hz, 1H), 2.09 – 1.97 (m, 2H), 1.68 – 1.56 (m, 4H), 1.56 – 1.45 (m, 12H), 1.32 ppm (s, 3H); 

13C NMR (126 MHz, cdcl3) δ 202.81, 165.93, 135.89, 134.83, 134.71, 130.77, 90.59, 84.12, 

82.76, 57.46, 49.60, 39.69, 33.93, 33.31, 31.78, 28.29, 27.98, 27.69, 26.69, 22.58 ppm; HRMS: 

calc. for [M+H]+ C22H31O4: 359.22169, found: 359.22179. 

 

7.4.3 Experimental Detail and Analytic Data for Enantioselective Synthesis of Tropanes 

(261a-c) 

Rel-tert-butyl (1R,5R,6S,7R)-7-cyano-8-methoxy-5-methyl-2,2'-dioxo-8-azaspiro[bicycle 

[3.2.1]octane-6,3'-indoline]-1'-carboxylate 

261a, 1H NMR (500 MHz, CDCl3): δ = 7.85 (d, J = 8.2 Hz, 1H), 7.69 (d, J = 

7.6 Hz, 1H), 7.42 (t, J = 7.9 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 4.20 (s, 1H), 

3.68 (d, J = 1.4 Hz, 1H), 3.65 (s, 3H), 3.22 – 3.12 (m, 1H), 2.49 – 2.37 (m, 

2H), 2.16 – 2.08 (m, 1H), 1.67 (s, 9H), 0.82 ppm (s, 3H); 13C NMR (126 MHz, 

CDCl3) δ 206.72, 173.75, 148.49, 139.23, 130.12, 127.48, 127.04, 124.90, 116.68, 115.09, 

85.74, 70.00, 69.67, 62.44, 59.32, 36.14, 33.22, 29.20, 28.23, 21.35 ppm; HRMS: calc. for 

[M+H]+ C22H26O5N3: 412.18725, found: 412.18755. 

Rel-Benzyl (1R,5R,6S,7R)-7-cyano-8-methoxy-5-methyl-2,2'-dioxo-8-azaspiro[bicycle 

[3.2.1]octane-6,3'-indoline]-1'-carboxylate 

261b, 1H NMR (400 MHz, CDCl3): δ = 7.93 (d, J = 8.2 Hz, 1H), 7.76 – 7.67 

(m, 1H), 7.52 (d, J = 6.8 Hz, 2H), 7.46 – 7.37 (m, 4H), 7.36 – 7.28 (m, 1H), 

5.51 (d, J = 12.2 Hz, 1H), 5.44 (d, J = 12.2 Hz, 1H), 4.20 (s, 1H), 3.64 (s, 3H), 

3.23 – 3.06 (m, 1H), 2.51 – 2.33 (m, 2H), 2.15 – 2.03 (m, 1H), 0.80 ppm (s, 

3H); 13C NMR (101 MHz, CDCl3): δ = 206.51, 173.56, 150.16, 138.77, 134.56, 130.30, 129.01, 

128.96, 128.62, 127.48, 127.06, 125.29, 116.52, 115.30, 69.97, 69.77, 69.46, 62.47, 59.42, 

36.11, 33.16, 29.20, 21.35 ppm; HRMS: calc. for [M+H]+ C25H24O5N3: 446:17105, found: 

446:17079. 

Rel- (1R,5R,6S,7R)-1'-acetyl-8-methoxy-5-methyl-2,2'-dioxo-8-azaspiro[bicycle 

[3.2.1]octane -6,3'-indoline]-7-carbonitrile 
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261c, 1H NMR (400 MHz, CDCl3): δ = 8.27 (d, J = 8.1 Hz, 1H), 7.70 (dd, J = 

7.6, 0.9 Hz, 1H), 7.44 (td, J = 8.1, 1.3 Hz, 1H), 7.34 (td, J = 7.6, 0.9 Hz, 1H), 

4.22 (s, 1H), 3.65 (s, 3H), 3.19 – 3.03 (m, 1H), 2.71 (s, 3H), 2.53 – 2.38 (m, 

2H), 2.08 – 1.97 (m,1H), 0.81 ppm (s, 3H); 13C NMR (101 MHz, CDCl3): δ = 

206.31, 176.13, 170.16, 144.96, 139.64, 130.31, 127.19, 125.67, 116.62, 116.48, 69.97, 69.80, 

62.52, 36.04, 33.11, 29.85, 29.32, 27.00, 21.39 ppm; HRMS: calc. for [M+H]+ C19H20O4N3: 

354.14483, found: 354.14499. 

 

Crystal data and structure refinement for 261a. (by C.-G.D) 

Identification code                                             DAN7627  

Empirical formula                                              C22 H25 N3 O5  

Formula weight                                                  411.45  

Temperature                                                       223(2) K  

Wavelength                                                        0.71073 Å  

Crystal system, space group                               monoclinic,  P21/n  (No. 14) 

Unit cell dimensions                                           a = 10.0396(2) Å  

                                                                            b =  8.5802(2) Å   β = 92.593(1)°  

                                                                            c = 24.6644(6) Å  

Volume                                                               2122.46(8) Å3  
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Z, Calculated density                                          4,   1.288 Mg/m3  

Absorption coefficient                                        0.092 mm-1  

F(000)                                                                 872  

Crystal size                                                         0.24 x 0.22 x 0.20 mm  

Theta range for data collection                           4.32 to 26.37°  

Limiting indices                                                 -12<=h<=12, -9<=k<=10, -30<=l<=30  

Reflections collected / unique                            14660 / 4306 [R(int) = 0.042]  

Completeness to theta = 26.37                           99.0 %  

Absorption correction                                        Semi-empirical from equivalents  

Max. and min. transmission                               0.9818 and 0.9782  

Refinement method                                           Full-matrix least-squares on F2  

Data / restraints / parameters                            4306 / 0 / 276  

Goodness-of-fit on F2                                       1.060  

Final R indices [I>2σ(I)]                                  R1 = 0.0531, wR2 = 0.1169  

R indices (all data)                                            R1 = 0.0688, wR2 = 0.1267  

Largest diff. peak and hole                               0.342 and -0.201 e.Å-3  

 

7.4.4 Experimental Detail and Analytic Data for Synthesis of Oxabicyclo[3.2.1]octanes 

by Aminecatalysis (269a, 270a-o, and 271a-m) 

General method for the synthesis of 270:  

 

Cinnamaldehyde 266 (0.15 mmol, 1.50 equiv.), 3-furone 267 (0.10 mmol, 1.00 equiv.), catalyst 

rac-268f (0.02 mmol, 0.20 equiv.), OFBA (0.02 mmol, 0.20 equiv.) were added into 1.0 mL 

toluene. Then the mixture was allowed to be stirred for specific time under room temperature. 

Direct purification by the silica gel column afforded the Michael adduct 269.  
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A solution of samarium(II) iodide in THF (0.1 M, 4,00 mL, 400 μmol, 4.00 equiv) was added 

dropwise to a solution of the Michael adduct 269 (100 μmol, 1 equiv) and HMPA (321 μL,1.85 

mmol, 18.5 equiv) in deoxygenated THF (5 mL). The resultant deep purple mixture was stirred 

at 23°C for 3 h, then was cooled to 0 °C and quenched by the addition aqueous hydrochloric 

acid solution (1 N, 5 mL). The layers were separated and the aqueous layer was extracted with 

dichloromethane (3 × 5 mL). The combined organic layers were washed with saturated aqueous 

sodium bicarbonate solution (10 mL), dried over anhydrous sodium sulfate, and the dried 

solution was concentrated. Purification of the residue by the silica gel column gave the 270. 

General method for the synthesis of 271: 

 

Cinnamic acid (18.0 mg, 120 μmol, 2.00 equiv), triethylamine (25.0 μL, 180 μmol, 3.00 equiv), 

2,4,6-trichlorobenzoyl chloride (25.0 μL, 155 μmol, 2.58 equiv) and 4-dimethylaminopyridine 

(1.0 mg, 8.2 μmol, 0.14 equiv) were added sequentially to a solution of 8 (16.0 mg, 60.0 μmol, 

1 equiv) in toluene (2 mL). The resultant mixture was stirred at 23 °C for 2 d, then quenched 

with aqueous hydrochloric acid solution (1 N, 5 mL). The organic layer of reaction reaction 

mixture was directly loaded on the silica gel column. 

Rel-(S)-3-((R)-5-isopropyl-2-methyl-3-oxo-2,3-dihydrofuran-2-yl)-3-phenylpropanal 

rac-269a, for major isomer: 1H NMR (400 MHz, CDCl3): δ 9.61 (s, 1H), 7.24 

– 7.13 (m, 5H), 5.08 (s, 3H), 3.77 – 3.66 (m, 1H), 3.12 – 3.05 (m, 1H), 2.64 

– 2.55 (m, 1H), 1.39 (s, 3H), 1.15 (d, J = 7.0 Hz, 3H), 1.12 ppm (d, J = 7.0 

Hz, 3H); 13C NMR (101 MHz, CDCl3): δ = 206.44, 200.77, 197.39, 137.48, 129.66, 128.50, 

127.89, 101.31, 91.19, 44.46, 43.61, 30.58, 20.52, 19.93, 19.88 ppm; HRMS: calc. for [M+H]+ 

C17H21O3: 273.14852, found: 273.14815. 

Rel-(1S,2R,4S,5R)-2-hydroxy-1-isopropyl-5-methyl-4-phenyl-8-oxabicyclo[3.2.1]octan-6-

one 
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270a, for major isomer: 1H NMR (500 MHz, CDCl3): δ = 7.33 – 7.24 (m, 

3H), 7.13 – 7.11 (m, 2H), 4.24 (dd, J = 10.4, 5.8 Hz, 1H), 2.90 (dd, J = 

13.8, 4.8 Hz, 1H), 2.71 (d, J = 18.8 Hz, 1H), 2.45 (d, J = 18.8 Hz, 1H), 

2.30 – 2.18 (m, 1H), 2.17 – 2.04 (m, 1H), 1.92 – 1.77 (m, 1H), 1.15 (d, J 

= 7.1 Hz, 3H), 1.12 (d, J = 6.9 Hz, 3H), 1.04 ppm (s, 3H); 13C NMR (126 MHz, CDCl3): δ = 

215.69, 138.76, 128.50, 128.47, 127.56, 83.61, 82.83, 69.15, 50.22, 40.65, 35.64, 32.86, 18.78, 

17.49, 16.84 ppm; HRMS: calc. for [M+H]+ C17H23O3: 275.16417, found: 275.16428. 

Rel-(1S,2R,4S,5R)-2-hydroxy-1-isopropyl-5-methyl-4-(4-(trifluoromethyl)phenyl)-8-

oxabicyclo[3.2.1]octan-6-one 

270b, for major isomer: 1H NMR (500 MHz, CDCl3): δ = 7.56 (d, J 

= 8.2 Hz, 2H), 7.25 (d, J = 8.1 Hz, 2H), 4.26 (dd, J = 10.5, 5.8 Hz, 

1H), 2.97 (dd, J = 13.8, 4.7 Hz, 1H), 2.73 (d, J = 18.9 Hz, 1H), 2.47 

(d, J = 18.9 Hz, 1H), 2.32 – 2.17 (m, 1H), 2.18 – 2.05 (m, 1H), 1.93 

– 1.75 (m, 1H), 1.15 (d, J = 6.9 Hz, 3H), 1.12 (d, J = 6.9 Hz, 3H), 1.03 ppm (s, 3H); 13C NMR 

(126 MHz, CDCl3): δ = 215.46, 142.64, 129.81, 128.72, 125.29 (q, J = 3.7 Hz), 83.08, 82.87, 

68.74, 49.88, 40.50, 35.30, 32.67, 18.60, 17.32, 16.66 ppm. 

Rel-(1S,2R,4S,5R)-4-(4-bromophenyl)-2-hydroxy-1-isopropyl-5-methyl-8-oxabicyclo 

[3.2.1]octan-6-one 

270c, for major isomer: 1H NMR (500 MHz, CDCl3): δ = 7.43 (d, J 

= 8.4 Hz, 2H), 7.00 (d, J = 8.5 Hz, 2H), 4.23 (dd, J = 10.3, 5.8 Hz, 

1H), 2.87 (dd, J = 13.7, 4.7 Hz, 1H), 2.70 (d, J = 18.8 Hz, 1H), 2.45 

(d, J = 18.8 Hz, 1H), 2.27 – 2.16 (m, 1H), 2.17 – 2.01 (m, 1H), 1.86 

– 1.71 (m, 1H), 1.14 (d, J = 7.1 Hz, 3H), 1.11 (d, J = 6.9 Hz, 3H), 1.02 ppm (s, 3H); 13C NMR 

(126 MHz, CDCl3): δ = 215.67, 137.77, 131.61, 130.17, 121.56, 83.30, 82.93, 68.98, 49.64, 

40.65, 35.54, 32.83, 18.73, 17.48, 16.83 ppm. 

Rel-(1S,2R,4S,5R)-2-hydroxy-1-isopropyl-5-methyl-4-(naphthalen-2-yl)-8-oxabicyclo 

[3.2.1]octan-6-one 

270d, for major isomer: 1H NMR (500 MHz, CDCl3): δ = 7.90 – 7.73 

(m, 3H), 7.60 (s, 1H), 7.52 – 7.41 (m, 2H), 7.25 (d, J = 8.5 Hz, 1H), 

4.29 (dd, J = 10.4, 5.8 Hz, 1H), 3.08 (dd, J = 13.7, 4.7 Hz, 1H), 2.78 

(d, J = 18.7 Hz, 1H), 2.49 (d, J = 18.7 Hz,1H), 2.34 – 2.21 (m, 1H), 
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2.14 (dd, J = 13.8, 6.9 Hz, 1H), 2.03 – 1.88 (m, 1H), 1.17 (d, J = 6.9 Hz, 3H), 1.14 (d, J = 6.9 

Hz, 3H), 1.08 ppm (s, 3H); 13C NMR (126 MHz, CDCl3): δ = 215.76, 136.34, 133.42, 132.92, 

128.03, 128.02, 127.68, 127.42, 126.60, 126.20, 125.97, 83.75, 82.91, 69.18, 50.36, 40.71, 

35.80, 32.90, 18.90, 17.52, 16.87 ppm. 

Rel-(1S,2R,4S,5R)-4-(4-fluorophenyl)-2-hydroxy-1-isopropyl-5-methyl-8-oxabicyclo 

[3.2.1]octan-6-one 

270e, for major isomer: 1H NMR (500 MHz, CDCl3): δ = 7.12 – 7.04 

(m, 2H), 7.02 – 6.92 (m, 2H), 4.22 (dd, J = 10.0, 5.5 Hz, 1H), 2.87 (dd, 

J = 13.8, 4.8 Hz, 1H), 2.68 (d, J = 18.8 Hz, 1H), 2.50 – 2.34 (m, 1H), 

2.25 – 2.14 (m, 1H), 2.13 – 1.98 (m, 1H), 1.85 – 1.70 (m, 1H), 1.12 (d, 

J = 7.1 Hz, 3H), 1.10 (d, J = 6.9 Hz, 3H), 1.00 ppm (s, 3H); 13C NMR (126 MHz, CDCl3): δ = 

215.78, 162.29 (d, J = 245.8 Hz), 134.53, 129.95 (d, J = 8.0 Hz), 115.32 (d, J = 21.2 Hz), 83.48, 

82.88, 69.07, 49.42, 40.67, 35.84, 32.85, 18.73, 17.49, 16.84 ppm. 

Rel-(1S,2R,4S,5R)-4-(3-fluorophenyl)-2-hydroxy-1-isopropyl-5-methyl-8-oxabicyclo 

[3.2.1]octan-6-one 

270f, for major isomer: 1H NMR (500 MHz, CDCl3): δ = 7.28 – 7.23 (m, 1H), 7.00 – 6.94 (m, 

1H), 6.91 (d, J = 7.7 Hz, 1H), 6.88 – 6.81 (m, 1H), 4.23 (dd, J = 10.2, 5.8 Hz, 1H), 2.90 (dd, J 

= 13.8, 4.7 Hz, 1H), 2.71 (d, J = 18.8 Hz, 1H), 2.45 (dd, J = 18.8, 0.7 Hz, 1H), 2.30 – 2.16 (m, 

1H), 2.16 – 2.03 (m, 1H), 1.85 – 1.73 (m, 1H), 1.14 (d, J = 6.9 Hz, 3H), 

1.11 (d, J = 6.9 Hz, 3H), 1.05 ppm  (s, 3H); 13C NMR (126 MHz, 

CDCl3): δ = 215.55, 162.79 (d, J = 245.8 Hz), 141.31 (d, J = 7.0 Hz), 

129.89 (d, J = 8.3 Hz), 124.20 (d, J = 2.8 Hz), 115.50 (d, J = 21.0 Hz), 114.47 (d, J = 21.0 Hz), 

83.34, 82.93, 68.98, 49.92, 49.91, 40.63, 35.63, 32.84, 18.75, 17.47, 16.82 ppm. 

Rel-(1S,2R,4S,5R)-4-(2-fluorophenyl)-2-hydroxy-1-isopropyl-5-methyl-8-oxabicyclo 

[3.2.1]octan-6-one 

270g, for major isomer: 1H NMR (500 MHz, CDCl3): δ = 7.27 – 7.20 (m, 

1H), 7.16 – 7.07 (m, 2H), 7.07 – 6.99 (m, 1H), 4.27 (dd, J = 10.3, 5.9 Hz, 

1H), 3.43 (dd, J = 13.8, 4.8 Hz, 1H), 2.71 (d, J = 18.8 Hz, 1H), 2.45 (d, J 

= 18.8 Hz, 1H), 2.23 – 2.03 (m, 2H), 1.88 – 1.76 (m, 1H), 1.15 (d, J = 7.1 

Hz, 3H), 1.12 (d, J = 6.9 Hz, 3H), 1.09 ppm (s, 3H); 13C NMR (126 MHz, CDCl3): δ = 215.68, 

161.07 (d, J = 241.7 Hz), 128.79 (d, J = 8.6 Hz), 128.56 (d, J = 3.3 Hz), 125.75 (d, J = 14.0 
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Hz), 124.22 (d, J = 3.7 Hz), 115.45 (d, J = 23.5 Hz), 83.67, 82.89, 68.99, 40.62, 34.62, 32.86, 

17.91, 17.87, 17.49, 16.83 ppm. 

Rel-(1S,2R,4S,5R)-2-hydroxy-1-isopropyl-5-methyl-4-(p-tolyl)-8-oxabicyclo[3.2.1]octan-

6-one 

270h, for major isomer: 1H NMR (500 MHz, CDCl3): δ = 7.11 (d, J = 

8.1 Hz, 2H), 7.01 (d, J = 8.1 Hz, 2H), 4.23 (dd, J = 10.2, 5.6 Hz, 1H), 

2.87 (dd, J = 13.8, 4.8 Hz, 1H), 2.76 – 2.64 (m, 1H), 2.44 (d, J = 19.0 

Hz, 1H), 2.33 (s, 3H), 2.27 – 2.16 (m, 1H), 2.16 – 2.04 (m, 1H), 1.92 – 

1.77 (m, J = 13.7, 10.5 Hz, 1H), 1.14 (d, J = 6.9 Hz, 3H), 1.11 (d, J = 6.9 Hz, 3H), 1.03 ppm 

(s, 3H); 13C NMR (126 MHz, CDCl3): δ = 215.80, 137.20, 135.70, 129.14, 128.33, 83.69, 

82.79, 69.15, 49.76, 40.63, 35.63, 32.83, 21.16, 18.76, 17.47, 16.83 ppm. 

Rel-(1S,2R,4S,5R)-2-hydroxy-1-isopropyl-5-methyl-4-(m-tolyl)-8-oxabicyclo[3.2.1]octan-

6-one 

270i, for major isomer: 1H NMR (500 MHz, CDCl3): δ = 7.22 – 7.14 

(m, 1H), 7.08 (d, J = 7.7 Hz, 1H), 6.96 – 6.86 (m, 1H), 4.23 (dd, J = 

10.5, 5.8 Hz, 1H), 2.86 (dd, J = 13.8, 4.8 Hz, 1H), 2.71 (d, J = 18.8 Hz, 

1H), 2.44 (d, J = 18.8 Hz, 1H), 2.38 – 2.28 (m, 2H), 2.27 – 2.15 (m, 

1H), 2.11 (dd, J = 13.9, 7.0 Hz, 1H), 1.90 – 1.77 (m, 1H), 1.14 (d, J = 6.8 Hz, 3H), 1.12 (d, J 

= 6.8 Hz, 3H), 1.04 ppm (s, 3H); 13C NMR (126 MHz, CDCl3): δ = 215.69, 138.71, 137.97, 

129.27, 128.32, 128.30, 125.57, 83.64, 82.80, 69.16, 50.13, 40.63, 35.69, 32.86, 21.61, 18.80, 

17.48, 16.84 ppm. 

Rel-(1S,2R,4S,5R)-4-(benzo[d][1,3]dioxol-5-yl)-2-hydroxy-1-isopropyl-5-methyl-8-

oxabicyclo[3.2.1]octan-6-one 

270j, for major isomer: 1H NMR (500 MHz, CDCl3): δ = 6.73 (d, J = 

7.9 Hz, 1H), 6.66 – 6.54 (m, 2H), 5.95 (s, 2H), 4.21 (dd, J = 10.0, 5.9 

Hz, 1H), 2.82 (dd, J = 13.8, 4.7 Hz, 1H), 2.68 (d, J = 18.8 Hz, 1H), 

2.43 (d, J = 19.2 Hz, 1H), 2.24 – 2.16 (m, 1H), 2.16 – 2.05 (m, 1H), 

1.82 – 1.68 (m, 1H), 1.13 (d, J = 6.9 Hz, 3H), 1.11 (d, J = 6.9 Hz, 3H), 1.05 ppm (s, 3H); 13C 

NMR (126 MHz, CDCl3): δ = 215.83, 147.67, 146.97, 132.63, 121.93, 108.63, 108.18, 101.14, 

83.65, 82.81, 69.12, 49.86, 40.65, 35.95, 32.83, 18.76, 17.47, 16.83 ppm. 
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Rel-(1S,2R,4S,5R)-2-hydroxy-1-isopropyl-4-(4-methoxyphenyl)-5-methyl-8-oxabicyclo 

[3.2.1]octan-6-one 

270k, for major isomer: 1H NMR (500 MHz, CDCl3): δ = 7.04 (d, 

J = 8.6 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 4.23 (dd, J = 10.5, 5.8 

Hz, 1H), 3.80 (s, 3H), 2.85 (dd, J = 13.8, 4.8 Hz, 1H), 2.69 (d, J = 

18.8 Hz, 1H), 2.44 (d, J = 18.8 Hz, 1H), 2.27 – 2.16 (m, 1H), 2.17 

– 2.02 (m, 1H), 1.86 – 1.72 (m, 1H), 1.14 (d, J = 7.0 Hz, 3H), 1.11 (d, J = 6.9 Hz, 3H), 1.03 

ppm (s, 3H); 13C NMR (126 MHz, CDCl3): δ = 215.88, 159.03, 130.87, 129.44, 113.84, 83.77, 

82.78, 69.20, 55.36, 49.33, 40.67, 35.81, 32.86, 18.76, 17.49, 16.85 ppm. 

Rel-(1S,2R,4S,5R)-4-(furan-2-yl)-2-hydroxy-1-isopropyl-5-methyl-8-oxabicyclo[3.2.1] 

octan-6-one 

270l, for major isomer: 1H NMR (500 MHz, CDCl3): δ = 7.37 – 7.30 (m, 

1H), 6.37 – 6.28 (m, 1H), 6.12 – 6.03 (m, 1H), 4.20 (dd, J = 10.7, 5.9 Hz, 

1H), 3.04 (dd, J = 13.8, 5.0 Hz, 1H), 2.63 (d, J = 18.8 Hz, 1H), 2.40 (d, J 

= 18.8 Hz, 1H), 2.27 (dt, J = 13.6, 5.4 Hz, 1H), 2.09 (dd, J = 13.9, 7.0 

Hz, 1H), 1.75 (td, J = 13.7, 10.8 Hz, 1H), 1.19 (s, 3H), 1.12 (d, J = 7.1 Hz, 3H), 1.10 ppm (d, 

J = 6.9 Hz, 3H); 13C NMR (126 MHz, CDCl3): δ = 214.40, 152.72, 141.75, 110.41, 106.73, 

83.28, 82.80, 68.61, 43.10, 40.23, 33.51, 32.85, 18.67, 17.47, 16.84 ppm. 

Rel-(1S,2R,4S,5R)-2-hydroxy-1-isopropyl-5-methyl-4-(thiophen-3-yl)-8-oxabicyclo[3.2.1] 

octan-6-one 

270m, for major isomer: 1H NMR (500 MHz, CDCl3): δ = 7.27 – 7.24 (m, 

1H), 7.06 – 6.99 (m, 1H), 6.95 – 6.83 (m, 1H), 4.30 – 4.15 (m, 1H), 3.05 

(dd, J = 13.7, 4.8 Hz, 1H), 2.72 – 2.64 (m, 1H), 2.43 (d, J = 18.9 Hz, 1H), 

2.26 (dt, J = 13.6, 5.3 Hz, 1H), 2.15 – 2.05 (m, 1H), 1.74 (td, J = 13.6, 10.6 

Hz, 1H), 1.13 (d, J = 6.9 Hz, 3H), 1.11 (d, J = 6.9 Hz,3H), 1.09 ppm (s, 3H); 13C NMR (126 

MHz, CDCl3): δ = 215.79, 139.59, 127.57, 125.37, 122.23, 83.54, 82.82, 68.97, 45.43, 40.64, 

36.38, 32.86, 18.82, 17.49, 16.84 ppm. 
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Rel-(1S,2R,4R,5R)-2-hydroxy-1-isopropyl-4,5-dimethyl-8-oxabicyclo[3.2.1]octan-6-one 

270n, for major isomer: 1H NMR (500 MHz, CDCl3): δ = 4.07 (dd, J = 10.7, 

5.9 Hz, 1H), 2.46 (d, J = 18.7 Hz, 1H), 2.30 (d, J = 18.7 Hz,1H), 2.09 – 1.93 

(m, 2H), 1.82 – 1.66 (m, 1H), 1.19 (s, 3H), 1.09 – 1.04 (m, 7H), 0.84 ppm (d, J 

= 6.9 Hz, 3H); 13C NMR (126 MHz, CDCl3): δ = 216.30, 84.22, 82.64, 69.05, 

40.33, 37.92, 37.52, 32.88, 17.97, 17.52, 16.91, 15.15 ppm. 

Rel-ethyl (1R,2R,4R,5S)-4-hydroxy-5-isopropyl-1-methyl-7-oxo-8-oxabicyclo[3.2.1] 

octane-2-carboxylate 

270o, for major isomer: 1H NMR (500 MHz, CDCl3): δ = 4.25 – 4.05 (m, 

3H), 2.69 (dd, J = 13.1, 5.2 Hz, 1H), 2.63 (d, J = 18.9 Hz, 1H), 2.36 (dd, J 

= 18.9, 0.8 Hz, 1H), 2.23 – 2.14 (m, 1H), 2.06 (dd, J = 13.9, 6.9 Hz, 1H), 

1.91 – 1.77 (m, 1H), 1.28 (dd, J = 14.0, 6.9 Hz, 6H), 1.09 (d, J = 7.1 Hz, 

3H), 1.07 ppm (d, J = 6.9 Hz, 3H); 13C NMR (126 MHz, CDCl3): δ = 212.92, 170.04, 83.11, 

81.41, 67.93, 61.18, 48.83, 39.74, 32.95, 31.04, 18.73, 17.39, 16.74, 14.23 ppm. 

Rel-(1S,2R,4S,5R)-1-isopropyl-5-methyl-4-phenyl-2-(((E)-styryl)oxy)-8-oxabicyclo[3.2.1] 

octan-6-one 

271a, 1H NMR (500 MHz, CDCl3): δ = 7.70 (d, J = 16.0 Hz, 1H), 

7.58 – 7.50 (m, 2H), 7.48 – 7.37 (m, 3H), 7.33 – 7.23 (m, 3H), 

7.18 – 7.10 (m, 2H), 6.43 (d, J = 16.0 Hz, 1H), 5.48 (dd, J = 10.4, 

6.0 Hz, 1H), 3.01 (dd, J = 13.8, 4.7 Hz, 1H), 2.86 (d, J = 18.7 Hz, 

1H), 2.59 (d, J = 18.7 Hz, 1H), 2.49 (dt, J = 13.5, 5.4 Hz, 1H), 2.07 (dt, J = 13.9, 7.0 Hz, 1H), 

1.90 (td, J = 13.7, 10.6 Hz, 1H), 1.13 – 1.06 ppm (m, 9H); 13C NMR (126 MHz, CDCl3): δ = 

215.14, 165.72, 145.79, 138.39, 134.27, 130.72, 129.09, 128.48, 128.31, 127.63, 117.70, 84.05, 

81.91, 70.43, 49.98, 42.16, 33.63, 32.39, 18.85, 17.59, 16.72 ppm; HRMS: calc. for [M+H]+ 

C19H20O4: 405.20604, found: 405.20583. 

Rel-(1S,2R,4S,5R)-1-isopropyl-5-methyl-2-(((E)-styryl)oxy)-4-(4-(trifluoromethyl) 

phenyl)-8-oxabicyclo[3.2.1]octan-6-one 

271b, 1H NMR (500 MHz, CDCl3): δ = 7.68 (d, J = 16.0 Hz, 

1H), 7.59 – 7.46 (m, 3H), 7.46 – 7.33 (m, 3H), 7.28 – 7.22 

(m, 3H), 6.40 (d, J = 16.0 Hz, 1H), 5.45 (dd, J = 10.3, 5.9 Hz, 
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1H), 3.06 (dd, J = 14.0, 4.7 Hz, 1H), 2.85 (d, J = 18.7 Hz, 1H), 2.59 (d, J = 18.7 Hz, 1H), 2.47 

(dt, J = 13.4, 5.2 Hz, 1H), 2.13 – 2.01 (m, 1H), 1.93 – 1.76 (m, 1H), 1.14 – 0.97 ppm (m, 9H); 

13C NMR (126 MHz, CDCl3): δ = 215.10, 165.63, 146.03, 134.32, 130.82, 129.12, 128.87, 

128.34, 125.47, 118.66, 117.51, 83.78, 82.13, 70.14, 49.80, 42.19, 33.61, 32.03, 18.83, 17.57, 

16.71 ppm. 

Rel-(1S,2R,4S,5R)-4-(4-bromophenyl)-1-isopropyl-5-methyl-2-(((E)-styryl)oxy)-8-

oxabicyclo[3.2.1]octan-6-one 

271c, 1H NMR (500 MHz, CDCl3): δ = 7.68 (d, J = 16.0 Hz, 

1H), 7.53 (dd, J = 6.7, 2.8 Hz, 2H), 7.44 – 7.36 (m, 4H), 7.00 

(d, J = 8.5 Hz, 2H), 6.40 (d, J = 16.0 Hz, 1H), 5.43 (dd, J = 

10.3, 5.8 Hz, 1H), 2.95 (dd, J = 13.9, 4.7 Hz, 1H), 2.82 (d, J = 

18.6 Hz, 1H), 2.57 (d, J = 18.6 Hz, 1H), 2.51 – 2.39 (m, 1H), 2.10 – 1.99 (m, 1H), 1.81 (td, J 

= 13.7, 10.5 Hz, 1H), 1.14 – 1.00 ppm (m, 9H). 

Rel-(1S,2R,4S,5R)-1-isopropyl-5-methyl-4-(naphthalen-2-yl)-2-(((E)-styryl)oxy)-8-

oxabicyclo[3.2.1]octan-6-one 

271d, 1H NMR (500 MHz, CDCl3): δ = 7.83 – 7.78 (m, 2H), 

7.76 (d, J = 8.6 Hz, 1H), 7.69 (d, J = 16.0 Hz, 1H), 7.62 – 

7.58 (m, 1H), 7.57 – 7.50 (m, 2H), 7.49 – 7.42 (m, 2H), 7.42 

– 7.35 (m, 3H), 7.26 – 7.21 (m, 1H), 6.42 (d, J = 16.0 Hz, 

1H), 5.51 (dd, J = 10.2, 5.9 Hz, 1H), 3.17 (dd, J = 13.8, 4.7 Hz, 1H), 2.90 (d, J = 18.6 Hz, 1H), 

2.61 (d, J = 18.7 Hz, 1H), 2.58 – 2.50 (m, 1H), 2.11 – 2.03 (m, J = 14.4, 7.5 Hz, 1H), 2.05 – 

1.95 (m, 1H), 1.13 – 1.04 ppm (m, 9H); 13C NMR (126 MHz, CDCl3): δ = 215.23, 165.75, 

145.85, 135.95, 134.27, 133.41, 132.94, 130.73, 129.09, 128.32, 128.05, 127.67, 127.46, 

126.53, 126.20, 125.98, 117.69, 84.20, 82.01, 70.45, 50.11, 42.23, 33.66, 32.50, 18.97, 17.62, 

16.75 ppm. 

Rel-(1S,2R,4S,5R)-4-(4-fluorophenyl)-1-isopropyl-5-methyl-2-(((E)-styryl)oxy)-8-

oxabicyclo[3.2.1]octan-6-one 

271e, 1H NMR (500 MHz, CDCl3): δ = 7.68 (d, J = 16.0 Hz, 

1H), 7.56 – 7.48 (m, 2H), 7.45 – 7.34 (m, 3H), 7.09 (dd, J = 

8.7, 5.4 Hz, 2H), 7.03 – 6.85 (m, 2H), 6.40 (d, J = 16.0 Hz, 

1H), 5.44 (dd, J = 10.3, 5.9 Hz, 1H), 2.98 (dd, J = 13.9, 4.8 Hz, 
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1H), 2.82 (d, J = 18.7 Hz, 1H), 2.57 (d, J = 18.7 Hz, 1H), 2.46 (dt, J = 13.6, 5.4 Hz, 1H), 2.05 

(dt, J = 13.9, 7.0 Hz, 1H), 1.81 (td, J = 13.7, 10.5 Hz, 1H), 1.16 – 0.96 ppm (m, 9H); 13C NMR 

(126 MHz, CDCl3): δ = 215.26, 165.73, 162.32 (d, J = 245.9 Hz), 145.90, 134.18 (d, J = 3.3 

Hz), 130.76, 129.96 (d, J = 8.0 Hz), 129.10, 128.32, 117.61, 115.35 (d, J = 21.2 Hz), 83.94, 

81.98, 70.33, 49.19, 42.19, 33.61, 32.59, 18.80, 17.58, 16.71ppm. 

Rel-(1S,2R,4S,5R)-4-(3-fluorophenyl)-1-isopropyl-5-methyl-2-(((E)-styryl)oxy)-8-

oxabicyclo[3.2.1]octan-6-one 

271f, 1H NMR (500 MHz, CDCl3): δ = 7.68 (d, J = 16.0 Hz, 

1H), 7.56 – 7.50 (m, 2H), 7.43 – 7.36 (m, 3H), 7.25 – 7.20 (m, 

1H), 6.98 – 6.92 (m, 1H), 6.91 (d, J = 7.8 Hz, 1H), 6.84 (d, J = 

10.1 Hz, 1H), 6.40 (d, J = 16.0 Hz, 1H), 5.44 (dd, J = 10.3, 6.1 

Hz, 1H), 2.99 (dd, J = 13.8, 4.7 Hz, 1H), 2.83 (d, J = 18.7 Hz, 1H), 2.57 (d, J = 18.7 Hz, 1H), 

2.47 (dt, J = 13.5, 5.2 Hz, 1H), 2.08 – 1.98 (m, 1H), 1.82 (td, J = 13.7, 10.6 Hz, 1H), 1.13 – 

1.00 ppm (m, 9H). 

Rel-(1S,2R,4S,5R)-4-(2-fluorophenyl)-1-isopropyl-5-methyl-2-(((E)-styryl)oxy)-8-

oxabicyclo[3.2.1]octan-6-one 

271g, 1H NMR (500 MHz, CDCl3): δ = 7.68 (d, J = 16.0 Hz, 1H), 

7.58 – 7.49 (m, 2H), 7.45 – 7.36 (m, 3H), 7.24 – 7.17 (m, 1H), 

7.15 – 6.96 (m, 3H), 6.40 (d, J = 16.0 Hz, 1H), 5.46 (dd, J = 10.3, 

6.0 Hz, 1H), 3.51 (dd, J = 13.8, 4.7 Hz, 1H), 2.83 (d, J = 18.7 Hz, 

1H), 2.57 (d, J = 18.6 Hz, 1H), 2.42 (dt, J = 13.3, 5.4 Hz, 1H), 2.14 – 1.98 (m, 1H), 1.92 – 1.79 

(m, J = 10.7 Hz, 1H), 1.14 – 1.01 ppm (m, 9H). 

Rel-(1S,2R,4S,5R)-1-isopropyl-5-methyl-2-(((E)-styryl)oxy)-4-(p-tolyl)-8-oxabicyclo 

[3.2.1]octan-6-one 

271h, 1H NMR (500 MHz, CDCl3): δ = 7.67 (d, J = 16.0 Hz, 

1H), 7.57 – 7.49 (m, 2H), 7.45 – 7.30 (m, 3H), 7.09 (d, J = 7.8 

Hz, 2H), 7.00 (d, J = 8.0 Hz, 2H), 6.40 (d, J = 16.0 Hz, 1H), 

5.44 (dd, J = 10.2, 6.0 Hz, 1H), 2.95 (dd, J = 13.8, 4.7 Hz, 1H), 

2.82 (d, J = 18.7 Hz, 1H), 2.56 (d, J = 18.7 Hz, 1H), 2.44 (dt, J = 13.5, 5.4 Hz, 1H), 2.31 (s, 

3H), 2.12 – 1.98 (m, 1H), 1.95 – 1.75 (m, 1H), 1.12 – 0.97 ppm (m, 9H). 
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Rel-(1S,2R,4S,5R)-1-isopropyl-5-methyl-2-(((E)-styryl)oxy)-4-(m-tolyl)-8-oxabicyclo 

[3.2.1]octan-6-one 

271i, 1H NMR (500 MHz, CDCl3): δ = 7.67 (d, J = 16.0 Hz, 

1H), 7.56 – 7.49 (m, 2H), 7.44 – 7.35 (m, 3H), 7.20 – 7.13 (m, 

1H), 7.06 (d, J = 7.3 Hz, 1H), 6.91 (s, 2H), 6.40 (d, J = 16.0 Hz, 

1H), 5.45 (dd, J = 10.3, 5.9 Hz, 1H), 2.95 (dd, J = 13.8, 4.7 Hz, 

1H), 2.83 (d, J = 18.7 Hz, 1H), 2.56 (d, J = 18.7 Hz, 1H), 2.45 (dt, J = 13.5, 5.3 Hz, 1H), 2.33 

(s, 3H), 2.04 (dt, J = 13.9, 7.0 Hz, 1H), 1.87 (td, J = 13.9, 10.6 Hz, 1H), 1.11 – 1.04 ppm (m, 

9H); 13C NMR (126 MHz, CDCl3): δ = 215.13, 165.72, 145.76, 138.34, 137.99, 134.29, 130.71, 

129.23, 129.09, 128.38, 128.33, 128.31, 125.56, 117.74, 110.14, 84.10, 81.88, 70.48, 49.90, 

42.15, 33.64, 32.43, 21.60, 18.88, 17.60, 16.74 ppm.  

Rel-(1S,2R,4S,5R)-4-(furan-2-yl)-1-isopropyl-5-methyl-2-(((E)-styryl)oxy)-8-oxabicyclo 

[3.2.1]octan-6-one 

271j, 1H NMR (500 MHz, CDCl3): δ = 7.68 (d, J = 16.0 Hz, 1H), 

7.57 – 7.50 (m, 2H), 7.43 – 7.37 (m, 3H), 7.33 – 7.29 (m, 1H), 

6.40 (d, J = 16.0 Hz, 1H), 6.29 (dd, J = 3.2, 1.8 Hz, 1H), 6.06 (d, 

J = 3.2 Hz, 1H), 5.40 (dd, J = 10.6, 6.0 Hz, 1H), 3.12 (dd, J = 13.8, 

5.0 Hz, 1H), 2.76 (d, J = 18.7 Hz, 1H), 2.56 – 2.43 (m, 2H), 2.03 (dt, J = 13.9, 7.0 Hz, 1H), 

1.80 (td, J = 13.7, 10.6 Hz, 1H), 1.21 (s, 3H), 1.06 (d, J = 6.9 Hz, 3H), 1.04 ppm (d, J = 6.9 

Hz, 3H); 13C NMR (126 MHz, CDCl3): δ = 213.84, 165.73, 152.25, 145.89, 141.88, 134.26, 

130.76, 129.11, 128.33, 117.64, 110.38, 106.95, 83.69, 81.91, 69.86, 42.89, 41.74, 33.62, 

30.18, 18.74, 17.56, 16.72 ppm. 

Rel-(1S,2R,4S,5R)-1-isopropyl-5-methyl-2-(((E)-styryl)oxy)-4-(thiophen-3-yl)-8-

oxabicyclo[3.2.1]octan-6-one 

271k, 1H NMR (500 MHz, CDCl3): δ = 7.67 (d, J = 16.0 Hz, 1H), 

7.56 – 7.50 (m, 2H), 7.43 – 7.35 (m, 3H), 7.23 (dd, J = 4.9, 3.0 Hz, 

1H), 7.04 (dd, J = 2.7, 1.0 Hz, 1H), 6.88 (dd, J = 5.0, 1.1 Hz, 1H), 

6.40 (d, J = 16.0 Hz, 1H), 5.41 (dd, J = 10.4, 5.9 Hz, 1H), 3.14 

(dd, J = 13.8, 4.8 Hz, 1H), 2.80 (d, J = 18.7 Hz, 1H), 2.56 (d, J = 18.6 Hz, 1H), 2.50 (dt, J = 

13.6, 5.4 Hz, 1H), 2.04 (dt, J = 13.9, 6.9 Hz, 1H), 1.76 (td, J = 13.7, 10.6 Hz, 1H), 1.12 (s, 3H), 

1.07 (d, J = 6.9 Hz, 3H), 1.06 ppm (d, J = 6.9 Hz, 3H); 13C NMR (126 MHz, CDCl3): δ = 
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215.28, 165.71, 145.82, 139.17, 134.26, 130.73, 129.09, 128.31, 127.48, 125.42, 122.34, 

117.66, 83.97, 81.91, 70.23, 45.21, 42.15, 33.62, 33.13, 18.88, 17.58, 16.72 ppm. 

Rel-(1S,2R,4R,5R)-1-isopropyl-4,5-dimethyl-2-(((E)-styryl)oxy)-8-oxabicyclo[3.2.1] 

octan-6-one 

271l, 1H NMR (500 MHz, CDCl3): δ = 7.66 (d, J = 16.0 Hz, 1H), 7.58 

– 7.46 (m, 2H), 7.43 – 7.33 (m, 3H), 6.38 (d, J = 16.0 Hz, 1H), 5.30 

(dd, J = 10.6, 6.0 Hz, 1H), 2.61 (d, J = 18.6 Hz, 1H), 2.44 (d, J = 18.6 

Hz, 1H), 2.27 (dt, J = 13.5, 5.6 Hz, 1H), 2.07 – 1.89 (m, 1H), 1.91 – 

1.78 (m, 1H), 1.25 (s, 3H), 1.12 (td, J = 13.3, 10.8 Hz, 1H), 1.04 (d, J = 6.9 Hz, 3H), 1.01 (d, 

J = 6.9 Hz, 3H), 0.86 ppm (d, J = 6.9 Hz, 3H); 13C NMR (126 MHz, CDCl3): δ = 215.71, 

165.83, 145.62, 134.31, 130.68, 129.08, 128.30, 117.85, 84.67, 81.73, 70.47, 41.88, 37.73, 

33.96, 33.63, 18.04, 17.61, 16.78, 15.02 ppm. 

Rel-ethyl (1R,2R,4R,5S)-5-isopropyl-1-methyl-7-oxo-4-(((E)-styryl)oxy)-8-oxabicyclo 

[3.2.1]octane-2-carboxylate 

271m, 1H NMR (500 MHz, CDCl3): δ = 7.67 (d, J = 16.0 Hz, 1H), 

7.57 – 7.48 (m, 2H), 7.47 – 7.39 (m, 3H), 6.39 (d, J = 16.0 Hz, 

1H), 5.32 (dd, J = 10.8, 6.1 Hz, 1H), 4.27 – 4.01 (m, 2H), 2.82 – 

2.66 (m, 2H), 2.48 (d, J = 18.8 Hz, 1H), 2.41 (dt, J = 13.8, 5.7 Hz, 

1H), 2.06 – 1.95 (m, 1H), 1.88 (td, J = 13.6, 10.9 Hz, 1H), 1.33 (s, 3H), 1.26 (t, J = 7.1 Hz, 

3H), 1.03 (d, J = 7.0 Hz, 3H), 1.01 ppm (d, J = 7.2 Hz, 3H). 

 

7.5 Experimental Part for Synthesis of Pyrroloisoquinolines 

7.5.1 Experimenal Details and Analytic Data for Synthesis of Isoquinolinium 

Methylides 293a-p 

General Method: 

To the mixture of 2-bromomalonate and acetone 30 mL was added isoquinoline. The mixture 

was stirred for 24 h under r.t., and the resulting precipitate was filtered out and recrystalized in 

i-PrOH and ether to give colorless solid. Then the solid was disolved in water and basified with 

KCO3(aq) and extracted with CHCl3. Recrystalization gives yellow needle. 
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2-(Isoquinolin-2-ium-2-yl)-1,3-dimethoxy-1,3-dioxopropan-2-ide 

293a, 65% yield; 1H-NMR (500 MHz, CDCl3): δ = 9.28 (s, 1H), 8.30 (d, 

J = 6.8 Hz, 1H), 8.15 (d, J = 8.3 Hz, 1H), 8.00 – 8.01 (m, J = 4.5 Hz, 

2H), 7.97 (d, J = 6.9 Hz, 1H), 7.83 (ddd, J = 8.1, 5.3, 2.8 Hz, 1H), 3.73 

ppm (s, 6H); 13C-NMR (126 MHz, CDCl3): δ = 153.49, 141.41, 136.37, 135.64, 130.21, 

129.75, 127.74, 126.85, 123.55, 97.35, 54.93, 50.74 ppm; FT-IR: ṽ = 3067, 2948, 1702, 1589, 

1440, 1368, 1075 cm-1; HRMS: calcd. for [M+H]+ C14H14NO4: 260.09173, found: 260.09195. 

1,3-Diethoxy-2-(isoquinolin-2-ium-2-yl)-1,3-dioxopropan-2-ide 

293b, 73% yield; 1H-NMR (500 MHz, CDCl3): δ = 9.28 (s, 1H), 8.31 (d, 

J = 6.9 Hz, 1H), 8.13 (d, J = 8.2 Hz, 1H), 8.00 – 7.88 (m, 2H), 7.94 (d, J 

= 6.9 Hz, 1H), 7.88 – 7.77 (m, 1H), 4.20 (q, J = 7.0 Hz, 4H), 1.29 ppm (t, 

J = 7.0 Hz, 6H); 13C-NMR (126 MHz, CDCl3): δ = 153.26, 141.40, 136.22, 135.46, 130.11, 

129.68, 127.69, 126.81, 123.32, 97.59, 64.64, 59.12, 14.95 ppm; FT-IR: ṽ = 3081, 2976, 1655, 

1605, 1409, 1372, 1330, 1170, 1049 cm-1; HRMS: calcd. for [M+H]+ C16H18NO4: 288.12303, 

found: 288.12299. 

General Method: 

To a solution of the Cu(acac)2 (1 mol %) in 5 mL of CH2Cl2 were added the corresponding 

isoquinolines (1.0 mmol) and iodonium ylides (1.2 mmol). The reaction was stirred at room 

temperature to 40°C. After reaction completion monitored by TLC, the solution was then 

concentrated and purified by chromatography on silica gel to give the corresponding 

isoquinolinium methylides.  

1,3-Bis(benzyloxy)-2-(isoquinolin-2-ium-2-yl)-1,3-dioxopropan-2-ide 

293c, 78% yield; 1H-NMR (500 MHz, CDCl3): δ = 9.33 (s, 1H), 8.37 (d, 

J = 6.8 Hz, 1H), 8.13 (d, J = 8.2 Hz, 1H), 8.03 – 7.99 (m, 2H), 7.96 (d, J 

= 6.9 Hz, 1H), 7.83 (dt, J = 8.2, 4.0 Hz, 1H), 7.44 – 7.36 (m, 4H), 7.33 – 

7.23 (m, 6H), 5.28 ppm (s, 4H); 13C-NMR (126 MHz, CDCl3): δ = 153.38, 141.32, 137.98, 

136.29, 135.57, 130.15, 129.73, 128.41, 127.78, 127.69, 127.41, 126.81, 123.43, 64.97 ppm; 

FT-IR: ṽ = 3031, 2949, 1709, 1575, 1384, 1282, 1052 cm-1; HRMS: calcd. for [M+H]+ 

C26H22NO4: 412.15433, found: 412.15440. 

2-(5-Bromoisoquinolin-2-ium-2-yl)-1,3-dimethoxy-1,3-dioxopropan-2-ide 
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293d, 52% yield; 1H-NMR (400 MHz, CDCl3): δ = 9.68 (s, 1H), 8.42 

(d, J = 6.2 Hz, 1H), 8.06 (d, J = 7.5 Hz, 1H), 7.96 (d, J = 7.6 Hz, 2H), 

7.87 – 7.76 (m, 1H), 3.76 ppm (s, 6H); FT-IR: ṽ = 3023, 2943, 1701, 

1590, 1440, 1377, 1359, 1080 cm-1; HRMS: calcd. for [M+H]+ 

C14H13
79BrNO4: 338.00225, found: 338.00255; calcd. for [M+H]+ C14H13

81BrNO4: 340.00020, 

found: 340.00045; 

2-(7-Bromoisoquinolin-2-ium-2-yl)-1,3-dimethoxy-1,3-dioxopropan-2-ide 

293e, 80% yield; 1H-NMR (500 MHz, CDCl3): δ = 9.23 (s, 1H), 8.47 

– 8.21 (m, 2H), 8.15 – 8.00 (m, 1H), 8.00 – 7.78 (m, 2H), 3.76 ppm 

(s, 6H); FT-IR: ṽ = 3112, 2947, 1701, 1587, 1442, 1374, 1083, 1077 

cm-1; HRMS: calcd. for [M+H]+ C14H13
79BrNO4: 338.00225, found: 338.00268; calcd. for 

[M+H]+ C14H13
81BrNO4: 340.00020, found: 340.00052; 

2-(8-Bromoisoquinolin-2-ium-2-yl)-1,3-dimethoxy-1,3-dioxopropan-2-ide 

293f, 62% yield; 1H-NMR (500 MHz, CDCl3): δ = 9.67 (s, 1H), 8.40 

(d, J = 6.8 Hz, 1H), 8.06 (d, J = 7.5 Hz, 1H), 8.00 – 7.92 (m, 2H), 7.81 

(t, J = 7.9 Hz, 1H), 3.76 ppm (s, 6H); 13C-NMR (126 MHz, CDCl3): δ 

= 165.60, 153.44, 142.27, 137.90, 135.69, 134.21, 127.26, 126.39, 124.30, 123.68, 50.93 ppm; 

FT-IR: ṽ = 3064, 2948, 1626, 1597, 1439, 1337, 1187, 1075 cm-1; HRMS: calcd. for [M+H]+ 

C14H13
79BrNO4: 338.00225, found: 338.00257; calcd. for [M+H]+ C14H13

81BrNO4: 340.00020, 

found: 340.00050; 

2-(7,8-Dichloroisoquinolin-2-ium-2-yl)-1,3-dimethoxy-1,3-dioxopropan-2-ide 

293g, 51% yield; 1H-NMR (500 MHz, CDCl3): δ = 9.70 (s, 1H), 8.43 

(dd, J = 6.8, 1.0 Hz, 1H), 7.98 (d, J = 8.8 Hz, 1H), 7.95 (d, J = 6.8 

Hz, 1H), 7.85 (d, J = 8.8 Hz, 1H), 3.76 ppm (s, 6H); 13C-NMR (126 

MHz, CDCl3): δ = 165.56, 150.42, 142.40, 136.66, 135.75, 135.30, 131.80, 127.04, 126.22, 

123.35, 50.94 ppm; FT-IR: ṽ = 3039, 2944, 1585, 1436, 1337, 1183, 1111, 1054 cm-1; HRMS: 

calcd. for [M+H]+ C14H12Cl2NO4: 328.01379, found: 328.01438. 

1,3-Dimethoxy-2-(6-methoxyisoquinolin-2-ium-2-yl)-1,3-dioxopropan-2-ide 
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293h, 55% yield; 1H-NMR (400 MHz, CDCl3): δ = 9.04 (s, 1H), 

8.16 (d, J = 6.0 Hz, 1H), 8.01 (d, J = 8.7 Hz, 1H), 7.81 (s, 1H), 7.41 

(d, J = 8.7 Hz, 1H), 7.25 – 7.20 (m, 1H), 4.04 (s, 3H), 3.72 ppm (s, 

6H); 13C-NMR (101 MHz, CDCl3): δ = 167.88, 165.48, 152.34, 141.80, 139.40, 131.57, 

123.48, 123.21, 122.09, 104.86, 56.36, 50.68 ppm; FT-IR: ṽ = 2944, 2847, 1588, 1434, 1337, 

1266, 1184, 1091 cm-1; HRMS: calcd. for [M+H]+ C15H16NO5: 290.10230, found: 290.10282. 

1,3-Dimethoxy-2-(7-methoxyisoquinolin-2-ium-2-yl)-1,3-dioxopropan-2-ide 

293i, 58% yield; 1H-NMR (400 MHz, CDCl3): δ = 9.13 (s, 1H), 

8.18 (d, J = 6.8 Hz, 1H), 7.97 – 7.78 (m, 2H), 7.61 (d, J = 9.1 Hz, 

1H), 7.33 (s, 1H), 3.97 (s, 3H), 3.72 ppm (s, 6H); 13C-NMR (126 

MHz, CDCl3): δ = 165.82, 160.56, 151.68, 139.68, 132.28, 129.56, 129.19, 128.27, 123.29, 

106.17, 56.09, 50.72 ppm; FT-IR: ṽ = 3084, 2946, 1705, 1587, 1436, 1375, 1263, 1078 cm-1; 

HRMS: calcd. for [M+H]+ C15H16NO5: 290.10230, found: 290.10236. 

1,3-Dimethoxy-2-(8-methoxyisoquinolin-2-ium-2-yl)-1,3-dioxopropan-2-ide 

293j, 61% yield; 1H-NMR (400 MHz, CDCl3): δ = 9.53 (s, 1H), 8.21 (d, 

J = 6.9 Hz, 1H), 7.90 – 7.85 (m, 2H), 7.50 (d, J = 8.3 Hz, 1H), 7.06 (d, J 

= 8.0 Hz, 1H), 4.05 (s, 3H), 3.72 ppm (s, 6H); 13C-NMR (126 MHz, 

CDCl3): δ = 165.92, 157.75, 150.07, 141.73, 137.38, 137.14, 122.99, 120.39, 118.28, 107.90, 

56.39, 50.64 ppm; FT-IR: ṽ = 3045, 2938, 1596, 1428, 1344, 1213, 1085 cm-1; HRMS: calcd. 

for [M+H]+ C15H16NO5: 290.10230, found: 290.10268. 

1,3-Dimethoxy-2-(6-methylisoquinolin-2-ium-2-yl)-1,3-dioxopropan-2-ide 

293k, 55% yield; 1H-NMR (400 MHz, CDCl3): δ = 9.18 (s, 1H), 

8.23 (d, J = 6.8 Hz, 1H), 8.03 (d, J = 8.1 Hz, 1H), 7.86 (d, J = 6.8 

Hz, 1H), 7.82 – 7.71 (m, 1H), 7.65 (d, J = 8.1 Hz, 1H), 3.73 (s, 6H), 

2.66 ppm (s, 3H); 13C-NMR (101 MHz, CDCl3): δ = 165.96, 153.09, 147.64, 141.46, 136.81, 

132.53, 129.52, 126.12, 125.92, 122.87, 96.87, 50.72, 22.80 ppm; FT-IR: ṽ = 3033, 2943, 1585, 

1334, 1189, 1090 cm-1; HRMS: calcd. for [M+H]+ C15H16NO4: 274.10738, found: 274.10747. 

1,3-Dimethoxy-2-(7-methylisoquinolin-2-ium-2-yl)-1,3-dioxopropan-2-ide 
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293l, 58% yield; 1H-NMR (400 MHz, CDCl3): δ = 9.16 (s, 1H), 8.23 

(d, J = 6.7 Hz, 1H), 7.95 – 7.87 (m, 3H), 7.85 – 7.78 (m, 1H), 3.72 

(s, 6H), 2.61 ppm (s, 3H); 13C-NMR (126 MHz, CDCl3): δ = 165.79, 

152.91, 140.91, 140.67, 138.02, 134.77, 130.08, 128.31, 128.05, 126.56, 123.30, 50.68, 21.90 

ppm; FT-IR: ṽ = 3093, 2948, 1702, 1588, 1438, 1372, 1071 cm-1; HRMS: calcd. for [M+H]+ 

C15H16NO4: 274.10738, found: 274.10748. 

1,3-Dimethoxy-2-(8-methylisoquinolin-2-ium-2-yl)-1,3-dioxopropan-2-ide 

293m, 60% yield; 1H-NMR (400 MHz, CDCl3): δ = 9.41 (s, 1H), 8.29 

(d, J = 6.7 Hz, 1H), 7.95 (d, J = 6.7 Hz, 1H), 7.88 – 7.77 (m, 2H), 7.62 

(d, J = 6.7 Hz, 1H), 3.74 (s, 6H), 2.80 ppm (s, 3H); 13C-NMR (126 MHz, 

CDCl3): δ = 165.71, 151.10, 141.11, 138.33, 137.08, 135.59, 130.88, 127.44, 124.97, 123.97, 

50.73, 18.57 ppm; FT-IR: ṽ = 3042, 2940, 1592, 1432, 1346, 1198, 1091 cm-1; HRMS: calcd. 

for [M+H]+ C15H16NO4: 274.10738, found: 274.10751.  

1,3-Dimethoxy-1,3-dioxo-2-(6-phenylisoquinolin-2-ium-2-yl)propan-2-ide 

293n, 67% yield; 1H-NMR (400 MHz, CDCl3): δ = 9.26 (s, 1H), 8.30 

(s, 1H), 8.25 – 8.13 (m, 2H), 8.13 – 8.03 (m, 1H), 8.03 – 7.94 (m, 1H), 

7.83 – 7.68 (m, 2H), 7.65 – 7.44 (m, 3H), 3.76 ppm (s, 6H); 13C-NMR 

(101 MHz, CDCl3): δ = 165.80, 153.06, 152.00, 141.68, 140.83, 138.61, 130.26, 130.01, 

129.76, 129.56, 127.91, 126.75, 124.16, 123.55, 50.81 ppm; FT-IR: ṽ = 3017, 2952, 1574, 

1439, 1350, 1186, 1080 cm-1; HRMS: calcd. for [M+H]+ C20H18BrNO4: 336.12303, found: 

336.12326. 

1,3-Dimethoxy-1,3-dioxo-2-(4-phenylisoquinolin-2-ium-2-yl)propan-2-ide 

293o, 72% yield; 1H-NMR (400 MHz, CDCl3): δ = 9.27 (s, 1H), 8.33 – 

8.16 (m, 2H), 8.04 (d, 1H), 8.00 – 7.93 (m, 1H), 7.90 – 7.78 (m, 1H), 

7.61 – 7.46 (m, 5H), 3.76 ppm (s, 6H); 13C-NMR (101 MHz, CDCl3): δ 

= 167.87, 165.84, 152.15, 140.40, 137.39, 136.96, 135.64, 134.28, 

133.60, 130.07, 129.59, 129.25, 128.06, 125.51, 50.86 ppm; FT-IR: ṽ = 2945, 1611, 1434, 

1364, 1176, 1074 cm-1; HRMS: calcd. for [M+H]+ C20H18BrNO4: 336.12303, found: 336.12375. 

1,3-Dimethoxy-1,3-dioxo-2-(4-propylisoquinolin-2-ium-2-yl)propan-2-ide 
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293p, 72% yield; 1H-NMR (500 MHz, CDCl3): δ = 9.14 (s, 1H), 8.18 – 

8.10 (m, 3H), 8.06 – 7.96 (m, 1H), 7.87 – 7.76 (m, 1H), 3.73 (s, 6H), 3.06 

(t, J = 7.3 Hz, 2H), 1.87 – 1.71 (m, 3H), 1.07 ppm (t, J = 7.3 Hz, 3H).; 

13C-NMR (126 MHz, CDCl3): δ = 151.84, 140.04, 136.26, 135.97, 135.28, 

130.57, 129.72, 127.88, 123.48, 50.71, 32.06, 23.04, 14.05 ppm; FT-IR: ṽ = 2943, 1707, 1624, 

1434, 1367, 1171, 1072 cm-1; HRMS: calcd. for [M+H]+ C17H20NO4: 302.13868, found: 

302.13920. 

7.5.2 Experimenal Details and Analytic Data for Synthesis of Pyrroloisoquinolines 

294a-v 

General Method: Reactions were performed with 293a (0.1 mmol), 278 (0.15 mmol), PBu3 

(0.02 mmol) in CH2Cl2 (1 mL) at room temperature. After reactions completed, NaBH4 (0.3 

mmol) and acetic acid or trifluoroacetic acid (1 mmol) were added sequentially at 0°C, and the 

reaction mixture was stirred for 10 minutes. Then the reaction mixture was quenched by the 

addition of saturated NaHCO3 and extracted with CH2Cl2 (3×5 ml). The combined organic 

phase was dried over with MgSO4 and solvent was removed under reduced pressure. The crude 

residue was purified by silica gel flash chromatography to give the desired product. 

Dimethyl 2-(2-ethoxy-2-oxoethyl)-5,6-dihydropyrrolo[2,1-a]isoquinoline-3,3(10bH)-

dicarboxylate 

294a: 75% yield; 1H-NMR (500 MHz, CDCl3): δ = 7.19 – 7.07 (m, 4H), 

6.51 (d, J = 1.3 Hz, 1H), 5.17 (s, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.78 (s, 

3H), 3.63 (s, 3H), 3.45 – 3.34 (m, 2H), 3.33 (d, J = 1.3 Hz, 2H), 2.95 – 

2.83 (m, 1H), 2.70 (dd, J = 12.2, 8.0 Hz, 1H), 1.26 ppm (t, J = 7.1 Hz, 3H); 13C-NMR (126 

MHz, CDCl3): δ = 170.57, 169.31, 169.26, 137.08, 134.77, 133.21, 133.05, 129.01, 126.43, 

126.04, 124.39, 81.51, 65.53, 60.94, 52.64, 52.52, 42.47, 33.98, 28.34, 14.32 ppm; FT-IR: ṽ = 

2953, 2841, 1731, 1452, 1235, 1138, 1029 cm-1; HRMS: calcd. for [M+H]+ C20H24NO6: 

374.15981, found: 374.15949.  

Diethyl 2-(2-ethoxy-2-oxoethyl)-5,6-dihydropyrrolo[2,1-a]isoquinoline-3,3(10bH)-

dicarboxylate 

294b: 95% yield; 1H-NMR (500 MHz, CDCl3): δ = 7.20 – 7.07 (m, 4H), 

6.54 (s, 1H), 5.23 (s, 1H), 4.33 – 4.22 (m, 2H), 4.14 (q, J = 7.1 Hz, 2H), 

4.11 – 4.01 (m, 2H), 3.48 (s, 1H), 3.41 – 3.30 (m, 3H), 2.98 – 2.87 (m, 
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1H), 2.83 – 2.71 (m, J = 15.7 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H), 1.06 

ppm (t, J = 7.1 Hz, 3H); 13C-NMR (126 MHz, CDCl3): δ = 170.55, 168.59, 136.40, 134.94, 

133.20, 132.47, 128.70, 126.68, 126.20, 124.40, 81.81, 65.60, 61.90, 60.96, 43.10, 33.99, 

28.54, 14.31, 14.25, 13.79 ppm; FT-IR: ṽ = 2981, 2932, 1728, 1447, 1369, 1225, 1147, 1027 

cm-1; HRMS: calcd. for [M+H]+ C22H28NO6: 402.19111, found: 402.19064. 

Dibenzyl 2-(2-ethoxy-2-oxoethyl)-5,6-dihydropyrrolo[2,1-a]isoquinoline-3,3(10bH)-

dicarboxylate 

294c: 84% yield; 1H-NMR (500 MHz, CDCl3): δ = 7.38 – 7.31 (m, 5H), 

7.31 – 7.24 (m, 3H), 7.20 – 7.13 (m, 2H), 7.14 – 7.06 (m, 4H), 6.56 (d, 

J = 1.4 Hz, 1H), 5.28 – 5.24 (m, 1H), 5.21 (s, 1H), 5.19 (d, J = 12.3 Hz, 

1H), 5.11 (d, J = 12.3 Hz, 1H), 5.03 (d, J = 12.3 Hz, 1H), 4.08 (qd, J = 7.1, 3.5 Hz, 2H), 3.39 

(ddd, J = 8.7, 5.3, 3.5 Hz, 2H), 3.34 (d, J = 8.7 Hz, 2H), 2.89 – 2.76 (m, 1H), 2.65 (dt, J = 16.1, 

4.4 Hz, 1H), 1.22 ppm (t, J = 7.1 Hz, 3H); 13C-NMR (126 MHz, CDCl3): δ = 170.54, 137.17, 

135.49, 135.03, 134.92, 133.01, 132.97, 128.99, 128.66, 128.59, 128.38, 128.34, 128.23, 

128.18, 126.47, 126.03, 124.31, 81.81, 67.47, 67.39, 65.62, 60.88, 42.56, 33.91, 28.44, 14.25 

ppm; FT-IR: ṽ = 2979, 1731, 1454, 1368, 1139, 1026 cm-1; HRMS: calcd. for [M+H]+ 

C32H32NO6: 526.22241, found: 526.22278. 

Dimethyl 7-bromo-2-(2-ethoxy-2-oxoethyl)-5,6-dihydropyrrolo[2,1-a]isoquinoline-

3,3(10bH)-dicarboxylate 

294d: 51% yield; 1H-NMR (500 MHz, CDCl3): δ = 7.41 (d, J = 7.5 Hz, 

1H), 7.11 – 6.99 (m, 2H), 6.47 (d, J = 1.2 Hz, 1H), 5.13 (s, 1H), 4.14 

(q, J = 7.1 Hz, 2H), 3.82 (dd, J = 7.8, 2.3 Hz, 1H), 3.78 (s, 3H), 3.67 (s, 

3H), 3.55 (ddd, J = 12.8, 6.7, 2.8 Hz, 1H), 3.37 – 3.28 (m, 3H), 2.81 (dd, J = 9.9, 6.9 Hz, 1H), 

2.74 (d, J = 3.4 Hz, 1H), 1.25 ppm (t, J = 7.1 Hz, 3H); 13C-NMR (126 MHz, CDCl3): δ = 

170.50, 169.05, 139.35, 134.34, 133.60, 132.87, 130.57, 127.26, 125.69, 123.62, 81.05, 65.64, 

61.02, 52.86, 52.63, 42.21, 33.93, 29.31, 14.33 ppm; FT-IR: ṽ = 2981, 2953, 1731, 1562, 1437, 

1240, 1143, 1030 cm-1; HRMS: calcd. for [M+H]+ C20H23
79BrNO6: 452.07033, found: 

452.06829; calcd. for [M+H]+ C220H23
81BrNO6: 454.06828, found: 454.06794.  

Dimethyl 9-bromo-2-(2-ethoxy-2-oxoethyl)-5,6-dihydropyrrolo[2,1-a]isoquinoline-

3,3(10bH)-dicarboxylate 
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294e: 69% yield; 1H-NMR (500 MHz, CDCl3): δ = 7.28 – 7.24 (m, 

1H), 7.24 – 7.21 (m, 1H), 6.98 (d, J = 8.1 Hz, 1H), 6.46 (d, J = 1.4 Hz, 

1H), 5.13 (s, 1H), 4.15 (q, J = 7.2 Hz, 2H), 3.82 (dd, J = 6.6, 3.0 Hz, 

1H), 3.78 (s, 3H), 3.63 (s, 3H), 3.47 – 3.28 (m, 3H), 2.86 – 2.73 (m, 1H), 2.63 (dt, J = 16.3, 4.3 

Hz, 1H), 1.26 ppm (t, J = 7.2 Hz, 3H); 13C-NMR (126 MHz, CDCl3): δ = 170.44, 169.12, 

139.17, 133.74, 133.60, 132.49, 130.69, 129.51, 127.50, 119.61, 81.37, 65.13, 61.06, 52.77, 

52.65, 42.14, 33.94, 27.69, 14.33 ppm; FT-IR: ṽ = 2986, 1731, 1568, 1234, 1173, 1029 cm-1; 

HRMS: calcd. for [M+H]+ C20H23
79BrNO6: 452.07033, found: 452.06919; calcd. for [M+H]+ 

C220H23
81BrNO6: 454.06828, found: 454.06799. 

Dimethyl 10-bromo-2-(2-ethoxy-2-oxoethyl)-5,6-dihydropyrrolo[2,1-a]isoquinoline-

3,3(10bH)-dicarboxylate 

294f: 62% yield; 1H-NMR (500 MHz, CDCl3): δ = 7.39 (d, J = 7.3 Hz, 

1H), 7.08 – 6.94 (m, 2H), 6.88 (s, 1H), 5.45 (s, 1H), 4.24 – 4.04 (m, 2H), 

3.78 (s, 3H), 3.73 (s, 3H), 3.60 – 3.45 (m, 1H), 3.39 – 3.21 (m, 2H), 3.17 

(ddd, J = 14.7, 11.4, 3.7 Hz, 1H), 2.72 (ddd, J = 16.5, 11.5, 5.4 Hz, 1H), 2.51 (d, J = 16.5 Hz, 

1H), 1.27 ppm (dt, J = 14.3, 7.1 Hz, 3H); 13C-NMR (126 MHz, CDCl3): δ = 170.53, 169.80, 

169.72, 137.82, 134.91, 133.64, 132.29, 131.28, 129.07, 127.67, 122.08, 82.15, 66.65, 60.99, 

52.96, 52.79, 41.67, 33.96, 27.52, 14.33 ppm; FT-IR: ṽ = 2981, 2953, 1731, 1558, 1434, 1226, 

1138, 1027 cm-1; HRMS: calcd. for [M+H]+ C20H23
79BrNO6: 452.07033, found: 452.06934; 

calcd. for [M+H]+ C220H23
81BrNO6: 454.06828, found: 454.06767. 

Dimethyl 9,10-dichloro-2-(2-ethoxy-2-oxoethyl)-5,6-dihydropyrrolo[2,1-a]isoquinoline-

3,3(10bH)-dicarboxylate 

294g: 52% yield; 1H-NMR (500 MHz, CDCl3): δ = 7.27 – 7.24 (m, 

1H), 6.95 (d, J = 8.2 Hz, 1H), 6.79 (d, J = 1.1 Hz, 1H), 5.49 (s, 1H), 

4.16 – 4.09 (m, 2H), 3.78 (s, 3H), 3.73 (s, 3H), 3.56 (ddd, J = 14.2, 5.5, 

2.2 Hz, 1H), 3.34 – 3.24 (m, 2H), 3.21 – 3.12 (m, 1H), 2.70 (ddd, J = 17.0, 11.4, 5.7 Hz, 1H), 

2.53 (d, J = 17.0 Hz, 1H), 1.25 ppm (t, J = 7.1 Hz, 3H); 13C-NMR (126 MHz, CDCl3): δ = 

170.42, 169.62, 169.44, 135.70, 135.64, 132.89, 132.84, 131.05, 130.31, 128.96, 128.12, 81.87, 

65.63, 61.05, 53.02, 52.85, 41.40, 33.95, 27.10, 14.33 ppm; FT-IR: ṽ = 2953, 1731, 1432, 1225, 

1138, 1028 cm-1; HRMS: calcd. for [M+H]+ C20H22Cl2NO6: 442.08187, found: 442.08248. 
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Dimethyl 2-(2-ethoxy-2-oxoethyl)-8-methoxy-5,6-dihydropyrrolo[2,1-a]isoquinoline-

3,3(10bH)-dicarboxylate 

294h: 59% yield; 1H-NMR (500 MHz, CDCl3): δ = 7.01 (d, J = 8.4 

Hz, 1H), 6.72 (dd, J = 8.4, 2.5 Hz, 1H), 6.65 (d, J = 2.5 Hz, 1H), 

6.48 (s, 1H), 5.13 (s, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.78 (s, 3H), 

3.76 (s, 3H), 3.64 (s, 3H), 3.41 – 3.33 (m, 2H), 3.32 (d, J = 1.2 Hz, 2H), 2.94 – 2.79 (m, 1H), 

2.67 (dd, J = 11.9, 4.2 Hz, 1H), 1.25 ppm (t, J = 7.1 Hz, 3H); 13C-NMR (126 MHz, CDCl3): δ 

= 170.58, 169.22, 158.15, 136.09, 133.40, 132.80, 129.42, 125.42, 114.01, 112.04, 81.57, 

65.14, 60.95, 55.39, 52.70, 52.56, 42.47, 33.98, 28.62, 14.33 ppm; FT-IR: ṽ = 2930, 2840, 1761, 

1719, 1609, 1434, 1306, 1018 cm-1; HRMS: calcd. for [M+H]+ C21H26NO7: 404.17038, found: 

404.16921.  

Dimethyl 2-(2-ethoxy-2-oxoethyl)-9-methoxy-5,6-dihydropyrrolo[2,1-a]isoquinoline-

3,3(10bH)-dicarboxylate 

294i: 79% yield; 1H-NMR (500 MHz, CDCl3): δ = 7.01 (d, J = 8.3 

Hz, 1H), 6.70 (dd, J = 8.3, 2.6 Hz, 1H), 6.64 (d, J = 2.6 Hz, 1H), 6.48 

(s, 1H), 5.16 (s, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.85 – 3.74 (m, 6H), 

3.65 (s, 3H), 3.43 (ddd, J = 12.4, 6.2, 3.6 Hz, 1H), 3.38 – 3.27 (m, 3H), 2.86 – 2.73 (m, 1H), 

2.68 – 2.52 (m, 1H), 1.26 ppm (t, J = 7.1 Hz, 3H); 13C-NMR (126 MHz, CDCl3): δ = 170.56, 

169.31, 157.90, 137.91, 133.15, 133.05, 129.96, 126.66, 112.21, 109.96, 81.45, 65.67, 60.95, 

55.43, 52.68, 52.53, 42.54, 33.95, 27.28, 14.31 ppm; FT-IR: ṽ = 3004, 2954, 2928, 1726, 1606, 

1500, 1350, 1064 cm-1; HRMS: calcd. for [M+H]+ C21H26NO7: 404.17038, found: 404.16866.  

Dimethyl 2-(2-ethoxy-2-oxoethyl)-10-methoxy-5,6-dihydropyrrolo[2,1-a]isoquinoline-

3,3(10bH)-dicarboxylate 

294j: 84% yield; 1H-NMR (500 MHz, CDCl3): δ = 7.15 – 7.03 (m, J = 

7.9 Hz, 1H), 6.75 – 6.59 (m, 3H), 5.31 (s, 1H), 4.12 (dd, J = 14.1, 7.0 

Hz, 2H), 3.81 (s, 3H), 3.76 (s, 3H), 3.69 (s, 3H), 3.54 (dd, J = 14.1, 5.7 

Hz, 1H), 3.32 – 3.23 (m, 2H), 3.25 – 3.11 (m, 1H), 2.79 – 2.63 (m, 1H), 2.58 – 2.45 (m, 1H), 

1.25 ppm (t, J = 7.0 Hz, 3H); 13C-NMR (126 MHz, CDCl3): δ = 170.80, 170.04, 156.24, 136.06, 

134.91, 130.95, 126.97, 124.82, 121.88, 107.74, 81.44, 63.48, 60.84, 55.21, 52.77, 52.56, 

41.67, 34.04, 27.32, 14.30 ppm; FT-IR: ṽ = 2953, 2838, 1730, 1581, 1468, 1248, 1088 cm-1; 

HRMS: calcd. for [M+H]+ C21H26NO7: 404.17038, found: 404.16929.  
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Dimethyl 2-(2-ethoxy-2-oxoethyl)-8-methyl-5,6-dihydropyrrolo[2,1-a]isoquinoline-

3,3(10bH)-dicarboxylate 

294k: 67% yield; 1H-NMR (400 MHz, CDCl3): δ = 7.02 – 6.94 (m, 

2H), 6.94 – 6.88 (m, 1H), 6.48 (s, 1H), 5.15 (s, 1H), 4.15 (q, J = 7.1 

Hz, 2H), 3.77 (s, 3H), 3.64 (s, 3H), 3.45 – 3.33 (m, 2H), 3.33 – 3.26 

(m, 2H), 2.89 – 2.77 (m, 1H), 2.64 (dt, J = 16.2, 4.2 Hz, 1H), 2.28 (s, 3H), 1.26 ppm (t, J = 7.1 

Hz, 3H); 13C-NMR (101 MHz, CDCl3): δ = 170.58, 169.26, 135.89, 134.54, 134.06, 133.41, 

132.77, 129.62, 126.81, 124.30, 81.54, 65.40, 60.92, 52.65, 52.51, 42.48, 33.98, 28.21, 21.17, 

14.32 ppm; FT-IR: ṽ = 2981, 2953, 1731, 1550, 1433, 1235, 1140, 1030 cm-1; HRMS: calcd. 

for [M+H]+ C21H26NO6: 388.17546, found: 388.17670.  

Dimethyl 2-(2-ethoxy-2-oxoethyl)-9-methyl-5,6-dihydropyrrolo[2,1-a]isoquinoline-

3,3(10bH)-dicarboxylate 

294l: 72% yield; 1H-NMR (500 MHz, CDCl3): δ = 7.03 – 6.85 (m, 3H), 

6.50 (s, 1H), 5.16 (s, 1H), 4.19 – 4.04 (m, 2H), 3.78 (s, 3H), 3.64 (s, 

3H), 3.46 – 3.38 (m, 1H), 3.36 – 3.23 (m, 3H), 2.83 – 2.79 (m, 1H), 

2.65 – 2.60 (m, 1H), 2.30 (s, 3H), 1.26 ppm (td, J = 7.1, 2.7 Hz, 3H); 13C-NMR (126 MHz, 

CDCl3): δ = 170.48, 169.26, 135.40, 133.24, 132.71, 131.37, 128.83, 127.10, 124.94, 122.02, 

81.37, 65.45, 60.82, 52.55, 52.41, 42.38, 33.84, 27.61, 21.13, 14.19 ppm; FT-IR: ṽ = 2953, 

2918, 1731, 1433, 1217, 1150, 1029 cm-1; HRMS: calcd. for [M+H]+ C21H26NO6: 388.17546, 

found: 388.17688.  

Dimethyl 2-(2-ethoxy-2-oxoethyl)-10-methyl-5,6-dihydropyrrolo[2,1-a]isoquinoline-

3,3(10bH)-dicarboxylate 

294m: 80% yield; 1H-NMR (500 MHz, CDCl3): δ = 7.04 (t, J = 7.4 Hz, 

1H), 6.99 (d, J = 7.4 Hz, 1H), 6.92 (d, J = 7.4 Hz, 1H), 6.50 (s, 1H), 

5.45 (s, 1H), 4.18 – 4.09 (m, 2H), 3.78 (s, 3H), 3.72 (s, 3H), 3.50 (ddd, 

J = 13.6, 5.4, 2.6 Hz, 1H), 3.34 – 3.27 (m, 2H), 3.17 (ddd, J = 13.6, 11.1, 

3.8 Hz, 1H), 2.79 – 2.70 (m, 1H), 2.62 – 2.51 (m, J = 18.3 Hz, 1H), 2.34 (s, 3H), 1.25 ppm (t, 

J = 7.1 Hz, 3H); 13C-NMR (126 MHz, CDCl3): δ = 170.63, 169.76, 135.05, 134.47, 134.23, 

133.35, 132.28, 128.75, 127.53, 126.23, 81.90, 65.36, 60.92, 52.85, 52.68, 41.96, 33.88, 28.18, 

20.17, 14.31 ppm; FT-IR: ṽ = 2980, 2953, 1730, 1433, 1224, 1133, 1031 cm-1; HRMS: calcd. 

for [M+H]+ C21H26NO6: 388.17546, found: 388.17725.  
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Dimethyl 2-(2-ethoxy-2-oxoethyl)-8-phenyl-5,6-dihydropyrrolo[2,1-a]isoquinoline-

3,3(10bH)-dicarboxylate 

294n: 76% yield; 1H-NMR (500 MHz, CDCl3): δ = 7.58 – 7.53 (m, 

2H), 7.45 – 7.37 (m, 3H), 7.37 – 7.29 (m, 2H), 7.19 (d, J = 7.9 Hz, 

1H), 6.54 (d, J = 1.4 Hz, 1H), 5.23 (s, 1H), 4.16 (q, J = 7.1 Hz, 2H), 

3.79 (s, 3H), 3.66 (s, 3H), 3.52 – 3.44 (m, 1H), 3.45 – 3.36 (m, 1H), 3.36 – 3.30 (m, 2H), 2.95 

(ddd, J = 15.9, 9.2, 6.8 Hz, 1H), 2.76 (dt, J = 15.9, 3.9 Hz, 1H), 1.27 ppm (t, J = 7.1 Hz, 3H); 

13C-NMR (126 MHz, CDCl3): δ = 170.58, 169.34, 141.14, 139.45, 136.11, 135.11, 133.19, 

133.06, 128.82, 127.83, 127.24, 127.15, 124.94, 124.90, 81.47, 65.44, 60.98, 52.73, 52.57, 

42.41, 33.97, 28.37, 14.33 ppm; FT-IR: ṽ = 2953, 1731, 1433, 1234, 1148, 1029 cm-1; HRMS: 

calcd. for [M+H]+ C26H28NO6: 450.19111, found: 450.19098.  

Dimethyl 2-(2-ethoxy-2-oxoethyl)-6-phenylpyrrolo[2,1-a]isoquinoline-3,3(10bH)-

dicarboxylate 

294o: 60% yield; 1H-NMR (400 MHz, CDCl3): δ = 7.52 – 7.33 (m, 4H), 

7.32 – 7.27 (m, 1H), 7.20 – 7.04 (m, 4H), 6.81 – 6.73 (m, 2H), 5.58 (s, 

1H), 4.19 (q, J = 7.2 Hz, 2H), 3.79 (s, 3H), 3.73 (s, 3H), 3.47 (s, 2H), 

1.29 ppm (t, J = 7.2 Hz, 3H); 13C-NMR (101 MHz, CDCl3): δ = 170.42, 

168.39, 167.90, 138.83, 133.30, 132.50, 130.72, 129.83, 129.27, 128.63, 128.59, 127.03, 

126.41, 126.38, 123.02, 122.85, 118.08, 80.41, 65.62, 61.16, 53.24, 53.15, 33.66, 14.34 ppm; 

FT-IR: ṽ = 2954, 1732, 1607, 1443, 1244, 1178, 1029 cm-1; HRMS: calcd. for [M+H]+ 

C26H26NO6: 448.17546, found: 448.17365.  

Dimethyl 2-(2-ethoxy-2-oxoethyl)-6-propylpyrrolo[2,1-a]isoquinoline-3,3(10bH)-

dicarboxylate 

294p: 87% yield; 1H-NMR (500 MHz, CDCl3):
 δ = 7.21 – 7.10 (m, 3H), 

7.00 (d, J = 7.4 Hz, 1H), 6.71 (d, J = 0.5 Hz, 1H), 6.40 (s, 1H), 5.45 (s, 

1H), 4.17 (q, J = 7.1 Hz, 2H), 3.82 (s, 3H), 3.60 (s, 3H), 3.44 – 3.34 (m, 

2H), 2.56 (ddd, J = 13.7, 8.2, 5.4 Hz, 1H), 2.26 – 2.18 (m, 1H), 1.67 – 

1.58 (m, 1H), 1.56 – 1.44 (m, 1H), 1.27 (t, J = 7.1 Hz, 3H), 0.96 ppm (t, J = 7.1 Hz, 3H); 13C-

NMR (126 MHz, CDCl3): δ = 170.43, 168.61, 168.20, 133.25, 132.44, 131.08, 130.42, 127.76, 

126.97, 126.00, 122.76, 121.16, 115.22, 80.79, 65.62, 61.08, 53.01, 52.92, 33.70, 32.18, 22.52, 
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14.33, 14.06 ppm; FT-IR: ṽ = 2956, 1735, 1686, 1441, 1244, 1173, 1129, 1031 cm-1; HRMS: 

calcd. for [M+H]+ C23H28NO6: 414.19111, found: 414.19033. 

Diethyl (E or Z)-2-(2-oxo-2-phenylethylidene)-1,5,6,10b-tetrahydropyrrolo[2,1-a] 

isoquinoline-3,3(2H)-dicarboxylate 

294q: 91% yield; 1H-NMR (400 MHz, CDCl3):
 δ = 8.00 – 7.92 (m, 2H), 

7.61 – 7.53 (m, 1H), 7.51 – 7.44 (m, 2H), 7.45 – 7.39 (m, 1H), 7.21 – 

7.10 (m, 4H), 4.39 – 4.22 (m, 4H), 4.19 (dd, J = 9.6, 6.3 Hz, 1H), 3.96 

(ddd, J = 18.2, 6.2, 1.9 Hz, 1H), 3.59 (dd, J = 11.1, 5.9 Hz, 1H), 3.30 – 

3.18 (m, 1H), 2.98 – 2.79 (m, 3H), 1.35 (t, J = 6.1 Hz, 3H), 1.31 ppm (t, J = 6.1 Hz, 3H); 13C-

NMR (101 MHz, CDCl3): δ = 190.56, 168.03, 167.64, 156.95, 138.73, 137.98, 134.29, 132.98, 

128.92, 128.78, 128.40, 126.65, 126.06, 125.55, 120.33, 79.07, 62.28, 61.95, 60.32, 44.54, 

37.80, 30.19, 14.62, 14.25 ppm; FT-IR: ṽ = 2980, 1727, 1671, 1368, 1228, 1040 cm-1; HRMS: 

calcd. for [M+H]+ C26H28NO5: 434.19620, found: 434.19605. 

Diethyl (E or Z)-2-(2-(furan-2-yl)-2-oxoethylidene)-1,5,6,10b-tetrahydropyrrolo[2,1-

a]isoquinoline-3,3(2H)-dicarboxylate 

294r: 83% yield; 1H-NMR (400 MHz, CDCl3):
 δ = 7.64 – 7.54 (m, 

1H), 7.31 – 7.28 (m, 1H), 7.23 – 7.21 (m, 1H), 7.18 – 7.11 (m, 4H), 

6.60 – 6.48 (m, 1H), 4.42 – 4.21 (m, 4H), 4.23 – 4.12 (m, 1H), 4.03 

(ddd, J = 18.5, 6.3, 1.9 Hz, 1H), 3.57 (dd, J = 11.0, 6.3 Hz, 1H), 3.32 

– 3.16 (m, 1H), 2.97 – 2.76 (m, 3H), 1.35 (t, J = 7.1 Hz, 3H), 1.30 ppm (t, J = 7.1 Hz, 3H); 13C-

NMR (101 MHz, CDCl3): δ = 178.52, 167.87, 167.44, 157.59, 154.24, 146.47, 137.97, 134.27, 

128.91, 126.66, 126.09, 125.57, 119.36, 117.26, 112.58, 79.10, 62.28, 61.94, 60.34, 44.53, 

37.89, 30.17, 14.60, 14.23 ppm; FT-IR: ṽ = 2980, 1727, 1667, 1621, 1466, 1232, 1040 cm-1; 

HRMS: calcd. for [M+H]+ C24H26NO6: 424.17546, found: 424.17525. 

Diethyl (E or Z)-2-(2-(3-bromophenyl)-2-oxoethylidene)-1,5,6,10b-tetrahydropyrrolo 

[2,1-a]isoquinoline-3,3(2H)-dicarboxylate 

294s: 83% yield; Ratio of isomer, 78:22; For major product: 1H-

NMR (400 MHz, CDCl3):
 δ = 8.10 – 8.04 (m, 1H), 7.91 – 7.84 (m, 

1H), 7.68 (ddd, J = 8.0, 2.0, 1.0 Hz, 1H), 7.40 – 7.29 (m, 2H), 7.22 

– 7.06 (m, 4H), 4.37 – 4.24 (m, 4H), 4.18 (dd, J = 9.6, 6.3 Hz, 1H), 

3.93 (ddd, J = 18.4, 6.3, 1.8 Hz, 1H), 3.59 (dd, J = 11.1, 6.3 Hz, 1H), 3.30 – 3.15 (m, 1H), 2.96 
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– 2.78 (m, 3H), 1.40 – 1.29 ppm (m, 6H); 13C-NMR (101 MHz, CDCl3): δ = 189.01, 167.91, 

167.49, 158.26, 140.50, 137.87, 135.79, 134.28, 131.44, 130.38, 128.94, 126.89, 126.69, 

126.08, 125.51, 123.12, 119.74, 79.10, 62.37, 62.03, 60.26, 44.51, 37.94, 30.18, 14.63, 14.26 

ppm; FT-IR: ṽ = 2980, 1727, 1673, 1368, 1220, 1038 cm-1; HRMS: calcd. for [M+H]+ 

C26H27
79BrNO5: 512.10671, found: 512.10677; calcd. for [M+H]+ C22H21

81BrNO6: 514.10467, 

found: 514.10462; For minor isomer, 1H-NMR (400 MHz, CDCl3):
 δ = 8.17 – 8.07 (m, 1H), 

7.91 – 7.87 (m, 1H), 7.68 (ddd, J = 8.0, 2.0, 1.0 Hz, 1H), 7.35 (dd, J = 10.4, 5.4 Hz, 1H), 7.20 

– 7.11 (m, 4H), 7.09 – 7.05 (m, 1H), 4.31 – 4.24 (m, 3H), 4.18 – 4.12 (m, 1H), 4.06 (dd, J = 

10.8, 7.1 Hz, 1H), 3.77 (dd, J = 10.8, 7.1 Hz, 1H), 3.33 (dd, J = 15.6, 5.4 Hz, 1H), 3.25 – 3.14 

(m, 1H), 2.91 – 2.72 (m, 3H), 1.27 (t, J = 7.1 Hz, 3H), 1.09 ppm (t, J = 7.1 Hz, 3H). 

Diethyl (E or Z)-2-(2-(naphthalen-1-yl)-2-oxoethylidene)-1,5,6,10b-tetrahydropyrrolo 

[2,1-a]isoquinoline-3,3(2H)-dicarboxylate 

294t: 79% yield; 1H-NMR (400 MHz, CDCl3):
 δ = 8.52 (d, J = 8.2 

Hz, 1H), 7.99 (d, J = 8.2 Hz, 1H), 7.90 (d, J = 8.2 Hz, 1H), 7.84 (d, 

J = 7.2 Hz, 1H), 7.61 – 7.49 (m, 3H), 7.26 – 7.23 (m, 1H), 7.21 – 

7.10 (m, 4.9 Hz, 4H), 4.38 – 4.22 (m, 5H), 4.00 (dd, J = 18.3, 6.2 

Hz, 1H), 3.62 (dd, J = 11.4, 6.2 Hz, 1H), 3.34 – 3.22 (m, 1H), 3.06 – 2.81 (m, 3H), 1.31 ppm 

(q, J = 7.2 Hz, 6H); 13C-NMR (101 MHz, CDCl3): δ = 13C NMR (101 MHz, cdcl3) δ 194.17, 

167.69, 167.39, 137.67, 134.25, 134.10, 132.65, 128.99, 128.70, 128.16, 127.85, 126.87, 

126.66, 126.24, 125.88, 125.64, 124.80, 124.62, 79.13, 62.49, 62.18, 60.58, 44.74, 37.70, 

30.13, 14,68, 14.28 ppm; FT-IR: ṽ = 2978, 2924, 1727, 1673, 1368, 1230, 1039 cm-1; HRMS: 

calcd. for [M+H]+ C30H30NO5: 484.21185, found: 484.21150. 

Dimethyl (E or Z)-9-bromo-2-(2-oxo-2-phenylethylidene)-1,5,6,10b-tetrahydropyrrolo 

[2,1-a]isoquinoline-3,3(2H)-dicarboxylate 

294u: 64% yield; 1H-NMR (400 MHz, CDCl3):
 δ = 7.98 – 7.93 (m, 

2H), 7.60 – 7.54 (m, 1H), 7.50 – 7.46 (m, 2H), 7.40 (dd, J = 3.1, 1.9 

Hz, 1H), 7.29 – 7.25 (m, 2H), 7.01 (d, J = 8.4 Hz, 1H), 4.15 – 4.06 

(m, 1H), 3.92 (ddd, J = 11.7, 8.0, 2.7 Hz, 1H), 3.87 (s, 3H), 3.82 (s, 

3H), 3.54 (dd, J = 10.8, 6.4 Hz, 1H), 3.14 (dd, J = 14.7, 8.0 Hz, 1H), 2.91 – 2.74 ppm (m, 3H); 

13C-NMR (101 MHz, CDCl3): δ = 190.37, 168.45, 167.92, 155.98, 139.88, 138.53, 133.17, 

133.12, 130.59, 129.78, 128.83, 128.52, 128.45, 120.56, 119.65, 78.99, 59.98, 53.43, 52.66, 

44.25, 37.56, 29.61 ppm; FT-IR: ṽ = 2955, 1755, 1728, 1672, 1443, 1220, 1118, 1033 cm-1; 
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HRMS: calcd. for [M+H]+ C24H23
79BrNO5: 484.07541, found: 484.07507; calcd. for [M+H]+ 

C24H23
81BrNO5: 486.07337, found: 486.07296.  

Dimethyl (E or Z)-9-methoxy-2-(2-oxo-2-phenylethylidene)-1,5,6,10b-tetrahydropyrrolo 

[2,1-a]isoquinoline-3,3(2H)-dicarboxylatedimethyl 

294v: 78% yield; 1H-NMR (400 MHz, CDCl3):
 δ = 7.99 – 7.92 (m, 

2H), 7.59 – 7.55 (m, 1H), 7.51 – 7.42 (m, 2H), 7.40 (dd, J = 3.2, 1.9 

Hz, 1H), 7.05 (d, J = 8.4 Hz, 1H), 6.75 (dd, J = 8.4, 2.6 Hz, 1H), 

6.67 (d, J = 2.4 Hz, 1H), 4.14 (dd, J = 9.7, 6.1 Hz, 1H), 3.94 (ddd, 

J = 8.1, 6.1, 3.0 Hz, 1H), 3.87 (s, 3H), 3.81 (s, 3H), 3.79 (s, 3H), 3.53 (dd, J = 10.7, 6.1 Hz, 

1H), 3.22 – 3.11 (m, 1H), 2.94 – 2.82 (m, 2H), 2.81 – 2.74 ppm (m, 1H); 13C-NMR (101 MHz, 

CDCl3): δ = 190.52, 168.64, 168.02, 158.04, 156.57, 138.67, 138.61, 133.06, 129.88, 128.81, 

128.43, 126.16, 120.46, 113.27, 110.21, 79.22, 60.48, 55.55, 53.38, 52.54, 44.69, 37.64, 29.27 

ppm; FT-IR: ṽ = 2953, 1730, 1672, 1614, 1503, 1443, 1226, 1040 cm-1; HRMS: calcd. for 

[M+H]+ C25H26NO6: 436.17546, found: 436.17547.  

7.5.3 X-Ray Crystallographic Data of 294a (by C.-G.D) 

   

Empirical formula                                    C20 H23 N O6  

Formula weight                                        373.39  

Temperature                                             223(2) K  

Wavelength                                              0.71073 Å  

Crystal system, space group                    monoclinic,  P21/c  (No. 14) 

Unit cell dimensions                                a =  8.7052(2) Å  

                                                                 b =  7.8790(2) Å   β  = 93.841(1)°  
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                                                                 c = 27.3581(9) Å  

Volume                                                   1872.23(9) Å3  

Z, Calculated density                              4,  1.325 Mg/m3  

Absorption coefficient                            0.098 mm-1  

F(000)                                                     792  

Crystal size                                             0.30 x 0.15 x 0.03 mm  

Theta range for data collection               4.48 to 26.37°  

Limiting indices                                    -10<=h<=10, -9<=k<=8, -34<=l<=34  

Reflections collected / unique                16357 / 3784 [R(int) = 0.073]  

Completeness to theta = 26.37               98.8 %  

Absorption correction                            Semi-empirical from equivalents  

Max. and min. transmission                   0.9971 and 0.9712  

Refinement method                                 Full-matrix least-squares on F2  

Data / restraints / parameters                   3784 / 0 / 247  

Goodness-of-fit on F2                             1.060  

Final R indices [I>2σ(I)]                        R1 = 0.0643, wR2 = 0.1242  

R indices (all data)                                 R1 = 0.1122, wR2 = 0.1476  

Largest diff. peak and hole                    0.192 and -0.220 e.Å-3  
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Ac Acyl 

aq aqueous 

Ar Aryl 

BA Benzoic acid 

Boc tert-butoxycarbonyl 

Bn Benzyl 

Binol 1,1’-Bi-2-napthol 

BIOS Biology-oriented synthesis 

Bu Butyl 

Box Bisoxazoline 

Bz Benyoate 

(BzO)2 Benzoyl peroxide 

Calcd Calculated 

cat catalyst  

CDCl3 Deuterated chloroform 

CHCl3 Chloroform 

CMD Concerted metalation deprotonation 

CSA Camphor sulphonic acid 

COMAS Compound management and screening center 

Cp Cyclopentadienyl 

Cp* Pentamethylcyclopentadienyl 

DBPO Benzoyl peroxide 

DBU 1,8-Diazabicycloundec-7-ene 

DCM Dichloromethane 

DG Directing group 

DKR Dynamic kinetic resolution 

DMF Dimethyl formamide 

DMSO Dimethyl sulfoxide 
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DNP Dictionary of natural products 

d.r. Diastereomeric ratio 

ee Enantiomeric excess 

EDG Electron donating group  

Equiv. Equivalent 

ESI Electron spray inonisation 

Et2O Diethylether 

Et Ethyl 

Et3N triethylamine 

EWG Electron withdrawing group  

HMBC Heteronuclear multiple bond correlation 

HPLC High performance liquid chromatography 

HOMO Highest occupied molecular orbital 

HRMS High resolution mass spectroscopy 

i-Bu isobutyl 

IC50 Half maximal inhibitory concentration 

i-Pr isopropyl 

J Coupling constant 

KR Kinetic resolution 

L Ligand 

LA Lewis acid 

M Metal 

Me Methyl 

MeCN Acetonitrile 

MeOH Methanol 

MHz Megahertz 

MOM Methoxymethyl 

Ms Mesyl 

NMR Nuclear manetic resonance 

NOE Nucler Overhauser effect 
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NPs Natural producs 

n.r. No reaction 

OFBA 2-fluorobenzoic acid 

PAs Pyrrolizidine alkaloids  

PG Protecting group 

Ph Phenyl 

Piv Pivaloyl  

PSSC Protein Structure Similarity Clustering 

Py Pyridine  

r.t. Room temperature 

SCONP Structural Classification of Natural Products 

SN Nucleophilic substitution 

T Temperature 

TBDPS tert-butyldiphenylsilyl 

TBS tert-butyl dimethylsilyl 

t-Bu tert-butyl 

TFA Trifluoroacetic acid 

THF Tetrahydrofuran 

TIPS Triisopropylsilyl 

TLC Thin Layer Chromatography 

TM Transition meal 

TMS Trimethylsilyl 

Ts Tosyl 

VCD Vibrational circular dichroism 

Xyl Xylene 

1,3-DC 1,3-dipolar cycloaddition reaction 
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