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Abstract

We consider the cointegration properties of singular ARMA processes integrated of order one.

Such processes are necessarily cointegrated as opposed to the regular case. We show that in the

left coprime case the cointegrating space only depends upon the autoregressive polynomial at

one.

JEL Classification: C32, C38

Keywords: Cointegration, Singular ARMA Systems

3



1 Introduction

In this paper we analyze the (integration and) cointegration properties of singular AR and ARMA

models. Singular AR and ARMA models, i.e., models with singular error variance, occur in the

dynamic stochastic general equilibrium (DSGE) literature, if the number of shocks is strictly smaller

than the number of observables (see, e.g., Komunjer and Ng, 2011). They also occur in linear

dynamic factor models. In this context the latent variables are typically described as a singular

AR or ARMA models (see, e.g., Forni et al., 2000). Furthermore, in this setting singular ARMA

models may arise as models for the static factors, if the number of the static factors is strictly

larger than the number of dynamic factors. In a stationary setting singular AR models are treated

in Anderson et al. (2012) and the ARMA case is considered in Anderson et al. (2016).

Cointegration properties of singular AR models are analyzed in Barigozzi et al. (2016). Whereas

regular AR systems are always left coprime, this is not true for singular AR systems, see Anderson

et al. (2012), which thus show a similarity to ARMA models. Taking this similarity into account

we are led to considering the cointegration properties of singular ARMA models. We first discuss

that in the singular case cointegration is inevitably present. Then we show that in the left coprime

case the cointegrating space only depends on the autoregressive polynomial at z = 1, as in the

regular case.

The paper is organized as follows: Section 2 introduces the setting and states the underlying

assumption, Section 3 gives the result and Section 4 briefly concludes.

2 Setting and Assumptions

Consider an ARMA system

a(z)yt = b(z)εt, (1)

where

a(z) :=

p∑
j=0

ajz
j , aj ∈ Rn×n, a0 = In,

b(z) :=

q∑
j=0

bjz
j , bj ∈ Rn×q
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with z used as both a complex variable as well as the backward shift operator on the integers Z.

The process {εt} is white noise with Eεtεt = Iq. The system is singular if q < n and regular for

q = n and rk b(z) = q for one z.

Assumption 1 Throughout we assume that:

(i) The determinant of the AR polynomial fulfills

det a(z) 6= 0 for |z| ≤ 1, except for z = 1. (2)

(ii) System (1) fulfills the strict miniphase assumption

rk b(z) = q |z| ≤ 1 (3)

(iii) In addition we assume that the system (1) is integrated of order 1, i.e., the transfer function

k(z) := a−1(z)b(z) (4)

has a pole at z = 1, but the function c(z) = (1 − z)k(z) has all poles outside the closed unit

circle. Thus,

c(z) =
∞∑
j=0

cjz
j (5)

is a convergent power series for |z| ≤ 1.

(iv) The pair (a(z), b(z)) is left coprime, i.e., every common left (polynomial matrix) divisor of

a(z) and b(z) is a unimodular matrix.

With respect to item (iv) of Assumption 1 note that a polynomial matrix u(z) is unimodular if and

only if detu(z) ≡ c 6= 0 and that (a(z), b(z)) is left coprime if and only if rk (a(z), b(z)) = n for all

z ∈ C. For a more detailed discussion see, e.g., Hannan and Deistler (2012).

3 The Cointegration Properties in the Singular Case

Let

k(z) = a−1(z)b(z) (6)

= u(z)Λ(z)v(z)
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denote the Smith-McMillan form (see, e.g., Hannan and Deistler, 2012) of the transfer function

k(z). Here u(z) and v(z) are unimodular n × n respectively q × q matrices and Λ(z) is a unique

n× q diagonal matrix of the form

Λ(z) :=


p1(z)
q1(z) 0

. . .
pq(z)
qq(z)

0 · · · 0

 , (7)

where pi(z), qi(z), for i = 1, . . . , q are relatively prime and monic (i.e., with leading coefficient

equal to one) polynomials, pi(z) divides pi+1(z) for i = 1, . . . , q − 1 and qi+1(z) divides qi(z) for

i = 1, . . . , q− 1. For a given transfer function k(z), the zeros of the polynomials pi(z) are the zeros

of k(z) and the zeros of the polynomials qi(z) are the poles of k(z).

The strict miniphase assumption (3) implies that pi(1) 6= 0 for i = 1, . . . , q and condition (2)

implies that the zeros of qi(z) are either at z = 1 or satisfy |z| > 1. Consequently, there is a c, with

1 ≤ c ≤ q, such that

qi(z) = (1− z)q̄i(z), i = 1, . . . , c (8)

with q̄i(1) 6= 0 for i = 1, . . . , c and qi(1) 6= 0 for i = c+ 1, . . . , q. Accordingly we may write

Λ(z) =



p1(z)
q̄1(z) (1− z)−1 0 · · · 0

0
. . .

. . . 0
. . . pc(z)

q̄c(z) (1− z)−1
...

... pc+1(z)
qc+1(z)

. . .
. . . 0

0 · · · 0
pq(z)
qq(z)

0 · · · · · · · · · · · · 0


, (9)

and

c(z) = u(z)



p1(z)
q̄1(z) 0 · · · 0

0
. . .

. . . 0
. . . pc(z)

q̄c(z)

...
... pc+1(z)

qc+1(z) (1− z)
. . . 0

0 · · · 0
pq(z)
qq(z) (1− z)

0 · · · · · · · · · · · · 0


v(z) (10)
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Now, consider, a Beveridge-Nelson type decomposition (see, e.g., Beveridge and Nelson, 1981;

Phillips and Solo, 1992)

c(z) = c(1) + (1− z)c∗(z), (11)

with c∗(z) rational with no poles and zeros inside or on the unit circle.

The solution of the ARMA system on N we consider (see, e.g., Bauer and Wagner, 2012) is of the

form

yt = c(1)
t∑

j=1

εj + c∗(z)εt. (12)

Taking the first difference of yt as given in (12) leads to a process yt− yt−1 =
∑∞

j=0 cjεt−j for t ≥ 2

that is stationary. As is immediately clear from (12), the left kernel of c(1), lker c(1), is the space

of cointegrating relationships β, say. Clearly, the cointegrating space has at least dimension n− q.

Thus, in the singular case cointegration is always present. Since pi(1)
q̄i(1) 6= 0 and both u(1) and v(1)

are nonsingular, it is directly seen from (10) that the dimension of lker c(1) is equal to n− c.

Defining

ã(z) =



q̄1(z)(1− z)
. . . 0

q̄c(z)(1− z)
qc+1(z)

. . .

qq(z)

1

0
. . .

1



u−1(z) (13)

and

b̃(z) =


p1(z) 0

. . .

0 pq(z)

0 · · · 0

 v(z) (14)

it holds that k(z) = ã−1(z)b̃(z) and thus (ã(z), b̃(z)) is an ARMA system corresponding to k(z).

As can easily be shown from the properties of the Smith-McMillan form (ã(z), b̃(z)) is left coprime.
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From (13) we see that the left kernel of ã(1) has dimension c, and as every left coprime pair

(a(z), b(z)) corresponding to k(z) is related to (ã(z), b̃(z)) via unimodular left multiplication (com-

pare again Hannan and Deistler, 2012), this is true for all left coprime ARMA systems (a(z), b(z))

such that k(z) = a−1(z)b(z).

Now, from (10) and (13) we see

ã(1)c(1) =



0c×c 0c×(n−c)

qc+1(1) 0

0(n−c)×c
. . .

0 1


ũ−1(1)ũ(1)


p1(1)
q̄1(1)

. . . 0
pc(1)
q̄c(1)

0 · · · 0

 = 0. (15)

Summarizing the discussion we have shown the following:

Theorem 1 For every left coprime pair (a(z), b(z)) fulfilling Assumption 1 such that k(z) =

a−1(z)b(z), the rank of a(1) is equal to the dimension of the cointegrating space for the process

yt, t = 1, 2, . . . given by (12). Moreover, the linearly independent non-zero rows of ã(1) span the

ortho-complement of the cointegrating space.

Remark 1 In the non left coprime case, the dimension of the cointegrating space does not only

depend upon a(1). For a discussion of this issue in the regular ARMA case see also Deistler and

Wagner (2000).

Remark 2 Note that in the singular case, exact cointegration might be present, i.e., there could

exist some (non-zero) vectors β, such that β′yt = 0 for t = 1, 2, . . .. This happens, compare

again (12), if in addition to β′c(1) = 0 (corresponding to cointegration) also β′c∗(z) = 0 holds.

Note first that this cannot happen in the regular case as c∗(z) has by construction no zeros and

poles on the unit circle and is thus almost everywhere nonsingular. This in turn implies that

(rational) elements of the kernel have to be zero almost everywhere. In the singular case, however,

c∗(z) may contain, e.g., zero rows and nevertheless satisfy that its poles and zeros are outside the

closed unit circle.

Remark 3 It is common in the autoregressive cointegration literature to consider the so-called

Granger or Granger-Johansen representation (see, e.g., Johansen, 1995, Theorem 4.2). In this
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representation the matrix c(1) is expressed in terms of the underlying AR or ARMA parameters.

Thus, using standard notation, write −a(1) = αβ′ with α, β ∈ Rn×(n−c) with full column rank and

define α⊥, β⊥ ∈ Rn×c to span the ortho-complements of the column spaces of α and β respectively.

Using this notation we can rewrite (12) as

yt = c(1)
t∑

j=1

εj + c∗(z)εt

= β⊥

(
α′⊥

(
In −

p∑
i=1

ai

)
β⊥

)−1

α′⊥b(1)

t∑
j=1

εj + c∗(z)εt. (16)

The strict miniphase assumption implies that b(1) has full column rank q and left coprimeness

implies that the left kernel of c(1) is given by β. In the regular case, with b(1) a regular n×n matrix,

a similar result – the dependence of the cointegrating spaces on the autoregressive parameters only

– has been shown in Deistler and Wagner (2000) for processes with arbitrary integration orders.

4 Conclusion

We have shown that singular ARMA processes integrated of order one are necessarily cointegrated.

As in the regular case, left coprimeness of the ARMA representation guarantees that the cointe-

grating space only depends upon the autoregressive polynomial at one. Furthermore, we have noted

that in the singular case exact cointegration may occur, i.e, there may be static linear combinations

of the process that are identically zero. Note that our finding implies that in left coprime singular

AR or ARMA representations of integrated processes of order one the number of error correction

terms is unique. This implies that the non-uniqunesss of the number of error correction terms

reported in Barigozzi et al. (2016) must be related to the consideration of non left coprime systems.
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