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Abstract: This article is concerned with the class of solutions of gas boundary layer con-

taining uniform, spherical solid particles over the surface of rotating axi-symmetric round-

nosed body. By using the method of transformed coordinates, the boundary-layer equations

for two-phase flow are mapped into a regular and stationary computational domain and then

solved numerically by using implicit finite difference method. In this study, a rotating hemi-

sphere is used as a particular example to elucidate the heat transfer mechanism near the

surfaces of round nosed bodies. We will also investigate whether the presence of dust par-

ticles in carrier fluid disturb the flow characteristics associated with rotating hemisphere or

not. A comprehensive parametric analysis is presented to show the influence of the parti-

cle loading, the buoyancy ratio parameter and the surface of rotating hemisphere on the

numerical findings. In the absence of dust particles, the results are graphically compared

with existing data in the open literature and an excellent agreement has been found. It is

noted that, the concentration of dust particles parameter, Dρ, strongly influence the heat

transport rate near the leading edge.
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1 Introduction

The class of flows along axi-symmetric round nosed bodies has received a notable atten-

tion due to their frequent occurrence in shape and optimization of the flying vehicles. For

instance, the round-nosed shapes can be visualized on subsonic vehicles. All commercial

aircrafts that fly at subsonic speed (i.e. less than the speed of sound) usually have the ideal

shape as rounded (parabolic) nose. The interesting effect of nose blunting has been found

to be a drag reduction, for some levels of rounding radius, compared with the corresponding

sharp nosed body flow. Moreover, rotating spheres and cones are also used as nose cones

in aeroengine and spinning projectile applications. The non-similar boundary layer analy-

sis is accepted to figure out the distribution of skin friction and heat transfer coefficients

along the wall. Rotating round-nosed bodies have been initially exploited by Suwono [1]

to report the effects of buoyancy forces on laminar boundary layer flow. In this paper, the

author presented the theoretical analysis of a steady flow and heat transfer for the case of

rotating hemispheres for Prandtl number (0.72 < Pr < 100) and buoyancy ratio parameter
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(0 ≤ λ < ∞) and concluded that the buoyancy forces are more pronounced for flows engen-

dered by rotating bodies rather than the flows over submerged bodies. Based on the analysis

of [1], the studies of boundary layer flow near rotating axi-symmetric round nosed bodies

were presented by Hossain et al. ([2]-[3]). In these references, the authors presented the nu-

merical solutions by using the Keller-box method as well as local non-similarity method for

the application of rotating hemispheres. Recently, Siddiqa et al. [4] reported the influence

of temperature-dependent density on natural convection flow near rotating axi-symmetric

round-nosed body. In this paper, the authors performed the numerical simulations for the

case of hemisphere which is rotating in an infinite motionless medium and reported that

the transverse curvature of the surface has a significant influence on flow characteristics.

In all above-mentioned studies, attention has been given to viscous fluid, which is free from

all impurities (clear fluid). But, pure fluid is rarely available in many practical situations,

for instance, common fluids like air and water contain impurities like dust particles. There-

fore, the class of fluids having more than one phase has attracted the attention of several

investigators due to their wide range of applications in many technical areas like fluidiza-

tion, flow in rocket tubes, combustion, solid rocket exhaust nozzles, nuclear reactors with

gas-solid feeds, ablation cooling, blast waves moving over the earths surface, conveying of

powdered materials, environmental pollutants, petroleum industry, purification of crude oil,

physiological flows and many other fields (see [5]). In this regard, Farbar and Morley [6]

were the first to analyze the gas-particulate suspension on experimental grounds. After

that, Marble [7] studied the problem of dynamics of a gas containing small solid particles

and developed the equations for gas-particle flow systems. Singleton [8] was the first to

study the boundary layer analysis for dusty fluid and later on several attempts were made

to conclude the physical insight of such two-phase flows (see Ref. [9]-[17]) under different

physical circumstances. Very recently, numerical solutions for the influence of thermal ra-

diation on natural convection flow of dusty fluid past a vertical wavy frustum of a cone

are presented by Siddiqa et al. [18]. In this paper, the authors solved the coupled sys-

tem of equations numerically through implicit finite difference method for two important

particulate suspension, namely, water-metal mixture and air-metal mixture.

However, the interaction of two-phase dusty fluid along an axi-symmetric round-

nosed bodies is not considered so far in the literature. Due to the less emphasis given to blunt

bodies, present study is conducted in which natural convection flow of two-phase dusty fluid

is modeled along an axi-symmetric round-nosed body. The governing boundary equations

are reduced to convenient form by the introduction of primitive variable formulation and

then the resulting system of parabolic partial differential equations are solved numerically

by implicit finite difference method. Numerical results are obtained with a view to disclose

the quantitative response of various flow parameters on the components of carrier phase (or

particle phase) velocity, carrier phase (or particle phase) temperature, wall shear stress and

wall heat transfer rate.

2 Mathematical Formulation

Consider a laminar boundary layer flow of a mixture of solid spherical particles homoge-

neously distributed in a continuous carrier fluid or gas along a rotating round-nosed body

of revolution. The flow is due to the combined forces of thermal buoyancy and the angular

rotation of the axi-symmetric body. Following assumption have been made for the problem
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under consideration:

• The x-coordinate is measured from the stagnation point along the surface, y-coordinate

is taken normal to the surface and z-coordinate is in the direction of the rotation as

depicted in Fig. 1.

• The round nosed body is moving with the constant angular velocity, Ω, and the surface

of the body is kept at uniform temperature, Tw, situated in ambient dusty fluid of

undisturbed temperature, T∞, such that Tw > T∞.

• The dust particles are assumed to have same size and shape and uniformly distributed

in the carrier fluid. Furthermore, the size of the solid particles is large enough to

neglect the Brownian motion.

• The concentration of dust particles is uniform in time and space and ”dilute” in the

sense that the colliding forces between the solid particles are insignificant. Therefore,

the solid spherical particles of equal radii are assumed to be non-interacting in the

analysis.

Based on the above-mentioned assumptions, the governing boundary layer equations for

two-phase dusty viscous incompressible fluid can be written in the underlying form (see

Ref. [1-3, 14]).

For the gas phase:
∂u

∂x
+

∂v

∂y
+

u

r

dr

dx
= 0, (1)

ρ

(
u
∂u

∂x
+ v

∂u

∂y
− w2

r

dr

dx

)
= µ

∂2u

∂y2
+ ρgβ(T − T∞) +

ρp
τm

(up − u) (2)

ρ

(
u
∂w

∂x
+ v

∂w

∂y
+

uw

r

dr

dx

)
= µ

∂2w

∂y2
+

ρp
τm

(wp − w) (3)

ρcp

(
u
∂T

∂x
+ v

∂T

∂y

)
= κ

∂2T

∂y2
+

ρpcs
τT

(Tp − T ) (4)

For the particle phase:
∂up
∂x

+
∂vp
∂y

+
up
r

dr

dx
= 0, (5)

ρp

(
up

∂up
∂x

+ vp
∂up
∂y

−
w2
p

r

dr

dx

)
= − ρp

τm
(up − u) (6)

ρp

(
up

∂wp

∂x
+ vp

∂wp

∂y
+

upwp

r

dr

dx

)
= − ρp

τm
(wp − w) (7)

ρpcp

(
up

∂Tp

∂x
+ vp

∂Tp

∂y

)
= −ρpcs

τT
(Tp − T ) (8)

where T , p, ρ, cp, β, κ and µ are respectively the temperature, pressure, density, specific heat

at constant pressure, volumetric expansion coefficient, thermal conductivity and coefficient

of viscosity of the fluid/carrier phase. g is the x-component of the local gravitational accel-

eration vector in the direction of increasing x. In the analysis, (x, y, z) are the components

of the curvilinear coordinate system, u the component of the velocity in the surface-contour

3



direction, v the velocity component in the normal direction, w the tangential component of

the velocity in rotating z direction. Similarly, (up, vp, wp), Tp, pp, ρp and cs corresponds to

the velocity vector, temperature, pressure, density and specific heat for the particle phase.

In addition, r(x) is the radial distance from axis of symmetry to the axial direction and τm
(τT ) the momentum relaxation time (thermal relaxation time) during which the velocity

(temperature) of the particle phase relative to the fluid is reduced to 1/e times its initial

value. In order to determine the flow fields of the fluid and the dust particles, the boundary

layer equations stated above are to be solved under appropriate boundary conditions. These

are:

u = v = 0, w = rΩ, T = Tw at y = 0

u → 0, w → 0, T → T∞ as y → ∞
(9)

up = vp = 0, wp = rΩ, Tp = Tw at y = 0

up → 0, wp → 0, Tp → T∞ as y → ∞
(10)

The system of conservation equations can be recast into a dimensionless form by using the

appropriate stretched coordinates, a reference length L and a reference velocity U∞ = LΩ.

Therefore, introducing the following scaling and dimensionless numbers:

x̄ =
x

L
, ȳ =

Re1/2y

L
, (ū, ūp) =

(u, up)

U∞
, (v̄, v̄p) =

Re1/2

U∞
(v, vp), (w̄, w̄p) =

(w,wp)

U∞

g = gxK(x̄), r̄ =
r

L
, (θ, θp) =

(T, Tp)− T∞
Tw − T∞

, Re =
U∞L

ν
, Gr =

gxβ(Tw − T∞)L3

ν2
,

τT =
3γτmPr

2
, λ =

Gr

Re2
, Pr =

ν

α
, Dρ =

ρp
ρ
, γ =

cs
cp
, αd =

L

U∞τm
(11)

into the Eqs. (1)-(10), the normalized continuity, momentum and temperature equations

will be transformed in underlying form.

For gas phase:
∂ū

∂x̄
+

∂v̄

∂ȳ
+

ū

r̄

dr̄

dx̄
= 0, (12)(

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
− w̄2

r̄

dr̄

dx̄

)
=

∂2ū

∂ȳ2
+ λK(x̄)θ +Dραd(ūp − ū) (13)(

ū
∂w̄

∂x̄
+ v̄

∂w̄

∂ȳ
+

ūw̄

r̄

dr̄

dx̄

)
=

∂2w̄

∂ȳ2
+Dραd(w̄p − w̄) (14)(

ū
∂θ

∂x̄
+ v̄

∂θ

∂ȳ

)
=

1

Pr

(
∂2θ

∂ȳ2
+

2

3
Dραd(θp − θ)

)
(15)

For particle phase:
∂ūp
∂x̄

+
∂v̄p
∂ȳ

+
ūp
r̄

dr̄

dx̄
= 0, (16)(

ūp
∂ūp
∂x̄

+ v̄p
∂ūp
∂ȳ

−
w̄2
p

r̄

dr̄

dx̄

)
= −αd(ūp − ū) (17)

(
ūp

∂w̄p

∂x̄
+ v̄p

∂w̄p

∂ȳ
+

ūpw̄p

r̄

dr̄

dx̄

)
= −αd(w̄p − w̄) (18)
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(
ūp

∂θp
∂x̄

+ v̄p
∂θp
∂ȳ

)
= − 2

3γPr
αd(θp − θ) (19)

In the above system, λ, Gr, Pr are respectively the buoyancy parameter, Grashof number

and Prandtl number. The gravitational acceleration for the round nosed geometry is de-

fined as g = gxK(x̄), where K(x̄) is non-dimensional function of x̄. The carrier phase and

particle phase are interacted through the specific heat ratio parameter, γ, mass concentra-

tion parameter, Dρ, and dust parameter, αd. The detailed description of these interactions

parameter is given in Refs. [5] and [14].

The boundary conditions for the gas phase:

ū = v̄ = 0, w̄ = r̄, θ = 1 at ȳ = 0,

ū → 0, w̄ → 0, θ → 0 as ȳ → ∞,
(20)

For the particle phase:

ūp = v̄p = 0, w̄p = r̄, θp = 1 at ȳ = 0,

ūp → 0, w̄p → 0, θp → 0 as ȳ → ∞,
(21)

The above dimensionless system of equations is further transformed into another coordinate

system by means of some continuous transformations as defined below:

(ū, ūp) = r̄(U,Up), (w̄, w̄p) = r̄(W,Wp), (v̄, v̄p) = r̄2 (2X)−1/2 (V, Vp)

θ (x̄, ȳ) = Θ (X,Y ) , X =

∫ x̄

0
[r̄(x̄)]3dx̄, Y = r̄2 (2X)−1/2 ȳ

(22)

The system of Eqs.(12)-(21) becomes as follows:

2P (x̄)U + 2X
∂U

∂X
+ (2P (x̄)− 1)Y

∂U

∂Y
+

∂V

∂Y
= 0 (23)

2XU
∂U

∂X
+ (V + (2P (x̄)− 1)Y U)

∂U

∂Y
+ P (x̄)

(
U2 −W 2

)
=

∂2U

∂Y 2
+ λQ (x̄)Θ

+R(x̄)Dραd(Up − U)

(24)

2XU
∂W

∂X
+ (V + (2P (x̄)− 1)Y U)

∂W

∂Y
+ 2P (x̄)UW =

∂2W

∂Y 2
+R(x̄)Dραd(Wp −W ) (25)

2XU
∂Θ

∂X
+ (V + (2P (x̄)− 1)Y U)

∂Θ

∂Y
=

1

Pr

(
∂2Θ

∂Y 2
+

2

3
Dραd(Θp −Θ)

)
(26)

2P (x̄)Up + 2X
∂Up

∂X
+ (2P (x̄)− 1)Y

∂Up

∂Y
+

∂Vp

∂Y
= 0 (27)

2XUp
∂Up

∂X
+ (Vp + (2P (x̄)− 1)Y Up)

∂Up

∂Y
+ P (x̄)

(
U2
p −W 2

p

)
= −R(x̄)αd(Up − U) (28)

2XUp
∂Wp

∂X
+ (Vp + (2P (x̄)− 1)Y Up)

∂Wp

∂Y
+ 2P (x̄)UpWp = −R(x̄)αd(Wp −W ) (29)

2XUp
∂Θp

∂X
+ (Vp + (2P (x̄)− 1)Y Up)

∂Θp

∂Y
= − 2

3γPr
αd(Θp −Θ) (30)
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The transformed boundary conditions are:

U = V = Up = Vp = 0, W = Θ = Wp = Θp = 1, at Y = 0,

U = Up = 0, W = Θ = Wp = Θp = 0, as Y → ∞
(31)

Round nosed bodies are of great interest due to the reason that i) they have been proposed

as necessary for adequate radar installation and ii) to derive optimum shapes mathemat-

ically that have a small blunt region at the tip. For the problem under consideration, we

discuss the application of the results for a rotating hemisphere. The radius of the rotating

hemisphere is assumed to be R, which is oriented parallel with respect to the gravitational

vector g. If we select R as a reference characteristic length, i.e. R = L, then we have the

following dimensionless variables:

r̄(x̄) = K(x̄) = sin(x̄), X = (1/3)
(
cos3 x̄− 3 cos x̄+ 2

)
(32)

Therefore for the case of hemisphere, P (x̄) and Q(x̄) are found to be:

P (x̄) =
2 cos x̄

(
cos3 x̄− 3 cos x̄+ 2

)
3 sin4 x̄

, Q(x̄) =
2
(
cos3 x̄− 3 cos x̄+ 2

)
3 sin4 x̄

(33)

The Local skin friction coefficient and local rate of heat transfer are of prime interest in

many technological and engineering applications. These dimensionless quantities can be

expressed mathematically as:

τx = (2X)−1/2 r̄3
(
∂U

∂Y

)
Y=0

, Q = − (2X)−1/2 r̄2
(
∂Θ

∂Y

)
Y=0

(34)

The detailed numerical solutions for the coupled system of non-linear partial differential

Eqs. (23)-(30) subject to the boundary conditions (31) are obtained through implicit finite

difference method, since the computational grids can be fitted to the body shape in (X,Y )

coordinates. The system of equations is discretized by exploiting the central difference

quotients for diffusion terms and the forward difference for the convection terms. The

computational process is started at X = 0.0 and at every X station, the computations are

iterated until the difference of the results, of two successive iterations become less or equal

to 10−6. In order to get accurate results, we have compared the results at different grid size

in Y direction and reached at the conclusion to chose ∆Y = 0.064. The maximum value

of Y is taken to be 90.0. A detail description of discretization procedure and numerical

scheme is presented in [19].

3 Results and Discussion

Numerical results are presented in terms of skin friction coefficient, local rate of heat trans-

fer, velocity profiles and temperature profiles for the case of a rotating hemisphere. For this,

numerical computations are made for some practical examples, such that, i) metal particles

in gas (Dρ = 102, Pr = 0.7, γ = 0.45) and ii) metal particles in water (Dρ = 10, Pr = 7.0,

γ = 0.1) by taking αd = (1.0, 2.0, 3.0) and λ = (0.0, 0.1, 0.5, 1.0) (for details see [20]). The

numerical values of τx and Q for air-particulate suspension are entered in Table 1 by taking

the value of buoyancy ratio parameter as λ = (0.0, 1.0). As it can be clearly seen from

the numerical values of τx and Q at Y = 0, that both of the physical quantities increase
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by loading the dust particles in pure fluid (i.e, Dρ = 0.0). The rate of heat transfer gets

stronger in the vicinity of the heated hemisphere for Dρ = 100.0. The quantitative data

also show the influence of buoyancy ratio parameter λ on τx and Q. The values of τx and Q

increase in magnitude when λ increases from 0.0 to 1.0, that reveals the fact that the local

skin friction and rate of heat transfer are more pronounced for free convective regime.

Table 1: Numerical values of τx and Q for Dρ = 0.0, 100.0, γ = 0.45, λ = 0.0, 1.0, Pr = 0.7
and αd = 1.0

X
τx Q

λ = 0.0
Dρ = 0.0 Dρ = 100.0 Dρ = 0.0 Dρ = 100.0

0.1 0.05082 0.17881 0.32316 1.96283
0.2 0.10041 0.35652 0.32126 1.95203
0.3 0.14736 0.53126 0.31809 1.93399
0.4 0.19042 0.70146 0.31364 1.90861
0.5 0.22840 0.86546 0.30790 1.87579

λ = 1.0

0.1 0.10749 0.18937 0.48800 2.06113
0.2 0.21376 0.37759 0.48649 2.05096
0.3 0.31719 0.56274 0.48398 2.03399
0.4 0.41642 0.74320 0.48046 2.01012
0.5 0.51018 0.91723 0.47594 1.97924

In order to validate the accuracy of our scheme and numerical computations, com-

parison is also being made with already available data in literature. It is rather important

to mention here that for λ = Rd = Dρ = 0.0, the analysis of Suwono [1] and Hossain et

al. [3] become special cases of the present analysis. In former study, the authors obtained

the numerical solutions of the governing equations with the help of Runge-Kutta-Merson

(RKM) method near the leading edge where axial coordinate is considered small, while in

the later analysis, the authors used Keller box method to obtain solutions over the whole

range of axial coordinate. The present computational results, however, are obtained for

the same range of axial coordinate X, from implicit finite difference method. In-spite of

different formulations and methods as well; the computational results are compared in Fig.

2 by keeping the physical parameters as: λ = 0.1, 0.5, 1.0, Rd = 0.0, Pr = 0.72 and Dρ = 0.0

for the interval [0, π/2]. The comparison shows that the results obtained by implicit finite

difference method are in a good agreement with those obtained by RKM and Keller box

method. Therefore, it can be concluded from Fig. 2 that present numerical scheme give

accurate results.

Graphical presentation of τx and Q is given in Fig. 3 for air and water particle

mixtures. It is worth mentioning that the curves in which air is acting as a carrier fluid

exhibit considerable change due to the presence of metal particles as compared to water

particulate suspension. In Fig. 3(a), it can be seen that both the skin friction and heat

transfer rate increase by increasing the value of mass concentration parameter Dρ. Such

behavior is expected because the carrier fluid gains the kinetic and thermal energy by
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interacting with the dust particles and this leads to an increase of the velocity of carrier

fluid as compared to pure fluid case. Ultimately, the velocity gradient for the carrier fluid

increases at the surface of the rotating hemisphere. Particularly, it can be seen from Fig.

3(b) that the rate of heat transfer drastically increases by increasing the mass concentration

parameter, Dρ, for air particulate suspension. In this case, the dusty air gains some thermal

energy from particles and the temperature of the carrier fluid increases, which ultimately

promotes the rate of heat transfer.

Variation of dust parameter is analyzed in Fig. 4 by setting: αd = 1.0, 2.0, 3.0 for

air particulate suspension. It is interesting to infer from Fig. 4(a), that the value of skin

friction coefficient, τx, increases owing to the increase in dust parameter, αd. The presence

of inert particles is responsible for the enhancement of skin friction at the surface. The rate

of heat transfer remains almost invariant by intensifying the values of αd. It has also been

observed from numerical computations, that the rate of heat transfer remains uniform if

αd ≥ 3.0.

Contribution of buoyancy parameter λ on τx and Q is shown in Fig. 5. The problem

is termed as i) assisting buoyancy flow for λ > 0, ii) opposing buoyancy flow for λ < 0 and

iii) purely forced convection flow if λ = 0. In the present situation, it is observed that both

physical quantities, namely, friction factor and heat transfer rate get promoted at the surface

of the rotating hemisphere when buoyancy parameter is increased. Therefore, positive value

of λ will assist the flow as expected. As a result, boundary layer becomes thinner and the

skin friction coefficient and the heat transfer coefficient appear more pronounced within the

boundary layer region.

The effect of mass concentration parameter on velocity and temperature profiles for

both phases is illustrated in Fig. 6. For comparison, suspension without particle cloud

(pure air) is also presented. The curve in Fig. 6 shows that, by loading the dust particles

in the air mixture, the velocity and temperature of both phases diminish considerably. For

the non-zero value of Dρ, the velocity and temperature profiles of carrier and dusty phase

decays quickly to asymptotical values and approach to zero in the free stream region. The

presence of dust particles is responsible for this behavior, as they extensively resist the flow

and promote the frictional forces, which results in reduction of velocity and temperature of

the dusty phase. Therefore, Up,Θp,Wp rapidly attain their limiting values as compared to

U,Θ,W .

Representative velocity and temperature profiles for carrier as well as dusty phase

under the effect of parameter λ are displayed in Fig. 7. It can be seen from Fig. 7(a),

that the non-zero values of λ acts like a supportive driving force that accelerates the air

particulate suspension flow and as a result the velocity for both phases U,Up, within the

boundary layer increases significantly. For small values of λ, the flow approaches the forced

convective regime and gradually, as λ increases, the flow becomes fully developed and the

convection mode changes from the forced to the natural convection flow. Furthermore, it

can be seen from Figs. 7(b) and 7(c) the temperature profile, Θ, and velocity component

W profile decreases with an increase in the value of λ. It is therefore concluded that greater

the values of λ more quickly an asymptotic behavior is attained.
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4 Conclusions

The present analysis aims to compute the numerical results of two-phase boundary layer flow

of dusty fluid induced by an axi-symmetric round nosed body. As an example, the solutions

are presented for the case of rotating hemisphere. Coordinate transformations (Primitive

variable formulations) are applied to switch the governing equations of the carrier and

the dispersed phase into another set of equations. Two-point finite difference solutions are

obtained for the semi-infinite domain. Effect of various emerging parameters are explored by

expressing their relevance on skin friction coefficient and the rate of heat transfer. Velocity

and temperature distributions are plotted for carrier as well as particle phase. From this

analysis, it is observed that mass concentration parameter, Dρ, and the buoyancy ratio

parameter, λ, promote the skin friction coefficient as well as the rate of heat transfer,

whereas, the dust parameter, αd, has a pronounced effect in the reduction of skin friction

within the boundary layer region. In addition, the velocity and temperature profiles for

both phases of air quickly attain an asymptotic behavior when Dρ is penetrated into the

mechanism.
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Fig. 2 Comparison of (a) τx and (b) Q without dust particles(Dρ = 0.0)
obtained for λ = 0.1, 0.5, 1.0 and Pr = 0.72.
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Fig. 3 (a) τx and (b) Q for air and water particle flow with Dρ = 100.0(air),
10.0(water); Pr=0.7(air), Pr=7.0(water); γ = 0.45(air), 0.1(water); αd = 1.0 and

λ = 0.1.
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Fig. 4 (a) τx and (b) Q for αd = 1.0, 2.0, 3.0 while Dρ = 100.0, Pr = 0.7, γ = 0.45
and λ = 0.1.
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Fig. 5 (a) τx and (b) Q for λ = 0.0, 0.5, 1.0, 2.0 while Dρ = 100.0, Pr = 0.7, γ = 0.45
and αd = 1.0.
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Fig. 6 (a) Velocity profile U , (b) Temperature profile Θ and (c) Velocity profile
W for Dρ = 0.0, 100.0 while Pr = 0.7, γ = 0.45, αd = 1.0, λ = 0.1 and X = 1.54.
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Fig. 7 (a) Velocity profile U , (b) Temperature profile Θ and (c) Velocity profile
W for λ = 0.0, 1.0 while Pr = 0.7, γ = 0.45, αd = 1.0, Dρ = 100.0 and X = 1.54.
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