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Abstract

In this thesis, the investigation of two different biological systems is described. Both
are studied numerically and analytically.
In the first part, wrinkling of semiflexible polymer networks under shear strain is in-
vestigated. Due to their importantance in many biological systems and their unique
mechanical properties, such networks are relevant in the fields of biology as well as
materials science. Linear elasticity theory was used to analyse fundamental proper-
ties of wrinkling in sheared membranes such as the critical shear angle for the onset
of wrinkling, the wrinkles’ amplitude, and their wavelength. The obtained predictions
were applied to discrete networks and compared to simulation results for such networks.
The aim was to test under which conditions wrinkling in semiflexible polymer networks
is accurately described by linear elasticity theory for thin membranes. Simulations
were performed using networks with either regular or random microstructure that were
generated in two dimensions but could access three-dimensional configurations during
simulations. The comparison of analytical and numerical results showed good agree-
ment regarding the critical shear angle and the wrinkles’ wavelength. This indicates
that these quantities can be used to identify the elastic properties of semiflexible poly-
mer networks in experimental setups. At large strains, nonlinear effects were identified
based on the wrinkles’ amplitude and the networks’ elastic energy. Furthermore, an
analysis of the dominant deformation mode indicated that wrinkling would cause an
immediate transition into a stretching dominated regime.
In the second part, two-dimensional systems of active rodlike particles are studied.
Active systems are a key issue for understanding living matter and also a relevant
topic in nanotechnology. They exhibit a wide variety of collective phenomena that can
be understood as different manifestations of phase separation with an ordered high-
density phase and an unordered low-density phase. The primary aim was to derive an
analytical model capable of predicting the coexisting densities in such phase-separated
systems. The secondary aim was to reproduce rotating structures in simulations that
have been observed mainly in experiments. Numerical results were obtained using
agent-based Brownian dynamics simulations. These would exhibit a variety of collect-
ive phenomena similar to those reported in the literature. Rotating structures were not
observed though. A phase diagram was generated indicating the coexisting densities
in the phase-separated configurations as a function of particle motility. For the analyt-
ical investigation, two different models originally developed for spherical particles were
adapted to the systems at hand. A force equilibrium approach yielded good agreement
with the simulation results at large particle motilities and average densities. This model
could not describe the phase separation at small particle motilities though. In a second
approach, the coexisting densities were derived from the systems’ free energy density.
The two different variants of this model would reproduce one of the densities but not
both of them simultaneously. Therefore, in the form presented here, both approaches
are only partially successful in describing the phase separation.

iii





Zusammenfassung

In dieser Arbeit werden zwei verschiedene biologische Systeme numerisch und analy-
tisch untersucht.
Der erste Teil behandelt Faltenbildung in semiflexiblen Polymernetzwerken aufgrund
von Scherdeformation. Als wesentlicher Bestandteil in vielen biologischen Systemen
und durch ihre einzigartigen mechanischen Eigenschaften sind diese Netzwerke ein in-
teressanter Forschungsgegenstand in der Biologie und den Materialwissenschaften. Mit-
hilfe linearer Elastizitätstheorie wurden grundlegende Eigenschaften der Faltenbildung
in gescherten Membranen analysiert, z.B. der kritische Scherwinkel sowie Amplitude
und Wellenlänge der Falten. Die so erzielten Vorhersagen wurden auf diskrete Netz-
werke übertragen. In Simulationen von Netzwerken mit regelmäßiger und ungeordneter
Mikrostruktur wurde getestet, unter welchen Bedingungen diese sich korrekt durch
lineare Elastizitätstheorie für dünne Membranen beschreiben lassen. Die Netzwerke
wurden in zwei Dimensionen erzeugt, konnten aber während der Simulation dreidimen-
sionale Konfigurationen annehmen. Der Vergleich von analytischen und numerischen
Ergebnissen zeigt, dass diese in Bezug auf kritischen Scherwinkel und Wellenlänge der
Falten gut übereinstimmen. Dies deutet darauf hin, dass beide Größen genutzt wer-
den können um die elastischen Eigenschaften von semiflexiblen Polymernetzwerken in
Experimenten zu bestimmen. Bei großen Verformungen wurden nichtlineare Effekte
anhand der Amplitude der Falten und der elastischen Energie der Netzwerke beobach-
tet. Außerdem wurde festgestellt, dass Faltenbildung einen sofortigen Übergang in ein
streckdominiertes Regime verursacht.
Im zweiten Teil werden zweidimensionale Systeme von aktiven stäbchenförmigen Teil-
chen untersucht. Aktive Systeme spielen eine zentrales Rolle in lebender Materie und
sind außerdem für Nanotechnologien von Interesse. In diesen Systemen kann eine Viel-
zahl kollektiver Phänomene beobachtet werden, die als Phasenseparation in eine ge-
ordnete Phase hoher Dichte und eine ungeordnete Phase niedriger Dichte verstanden
werden können. Vorrangiges Ziel war die Entwicklung eines analytischen Modells, das
diese koexistierenden Dichten korrekt vorhersagt. Ein zweites Ziel war, experimentell
beobachtete rotierende Strukturen in Simulationen zu reproduzieren. Numerische Er-
gebnisse wurden anhand teilchenbasierter Brownsche-Dynamik-Simulationen erzeugt.
Diese zeigten eine Vielzahl kollektiver Phänomene ähnlich den in der Literatur beschrie-
benen, jedoch keine rotierenden Strukturen. Anhand der Ergebnisse wurde ein Pha-
sendiagramm erstellt, das die koexistierenden Dichten in phasenseparierten Systemen
als Funktion der Motilität der Teilchen beschreibt. Für die analytische Untersuchung
wurden zwei Modelle für phasenseparierte Systeme von kugelförmigen Teilchen abge-
wandelt. Der erste Ansatz über ein Kräftegleichgewicht ergab gute Übereinstimmung
mit den Simulationsergebnissen für ausreichend große Motilitäten und mittlere Dich-
ten, lieferte jedoch keine korrekte Beschreibung bei geringen Motilitäten. Im zweiten
Ansatz wurden die koexistierenden Dichten aus der freien Energiedichte des Systems
hergeleitet. Die zwei Varianten dieses Modells konnten eine der beiden Dichten korrekt
wiedergeben, jedoch nicht beide gleichzeitig. Folglich können beide Ansätze in der hier
vorgestellten Form die Phasenseparation nur teilweise beschreiben.
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Chapter 1

Introduction

1.1 Relevance of biological research

In 1818, Mary Shelley’s novel “Frankenstein” was first published – a story about a sci-
entist bringing to life a humanoid creature made from non-living matter. Almost 200
years later, the novel is still present in our cultural memory and has inspired numerous
films and other works of art [1] which is not surprising since the creation of life and
its enhancement have fascinated mankind for centuries. People’s attitude towards the
subject is ambivalent: on the one hand, the nonbiological creation of life is portrayed
as the cause for horror and misery as in “Frankenstein” or as an integral part of a
dystopian society as in Aldous Huxley’s “Brave New World” [2]. On the other hand,
the promise of longevity is seen as a blessing that used to inspire alchemists centuries
ago in their search for an elixir of life [3] and still drives modern research ranging from
the medical challenges of curing diseases to the transhumanist movement aiming to use
technological advancements to not only overcome the aging process but also improve
our intellectual and physical abilities [4].
These recent endeavours require a detailed knowledge of human biology from mac-
roscopic anatomy to the subcellular scale. Our physical abilities such as muscular
strength or endurance are mainly determined by our musculoskeletal system including
bones, muscles, and tendons [5]. Hence, understanding their functionality and inter-
play is key to enhancing physical capacities. On the cellular and subcellular scale,
understanding the biological processes associated with certain diseases or aging could
enable the application of nanotechnology in medicine. In the best-case scenario, this
would ultimately lead to personalised medicine preventing or reversing severe diseases
such as cancer and delaying the aging process [6–8].
The musculoskeletal system and the interior of a single cell are two examples for biolo-
gical systems – systems that are composed of living organisms or parts of them. Their
properties are greatly dependent on their components’ biological functions but not ex-
clusively. Physical laws also apply in these systems, and many aspects of biological
systems can be understood from the physics within them. This approach is the origin
of biophysics – a scientific discipline bridging the gap between biology and physics that
has grown enormously in the 20th century [9]. It can be understood either as “the
field where one extracts interesting physics from biological systems” [9] or as a field of
research applying physical tools and methods to complex biological systems in order to
study them quantitatively and provide a solid theoretical foundation [10, 11]. Examples
for the contribution of physics to studying biological systems include the development
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CHAPTER 1. INTRODUCTION

of experimental methods such as modern optical and electron microscopes, fluorescent
probes enabling visualisation of living cells, and also computational methods such as
molecular dynamics simulations [11].
This thesis falls into the category of biophysics as it investigates biological systems
from a physical point of view. The topics in question are networks of biopolymers
and systems of active rods both of which are relevant for several reasons. Networks
of biopolymers are an integral part of the cytoskeleton of eukaryotic cells and many
other biological systems, so studying these networks provides an opportunity to get
a better understanding of those systems [12]. Additionally, networks of biopolymers
exhibit fundamentally different mechanical properties than synthetic materials [12].
Due to this, they are of great interest in materials science as they could inspire the
creation of novel materials and allow the utilisation of biomimetic materials [13]. The
main reason for studying active rods is the fact that they are a typical representat-
ive of active matter. In biology, active matter is prevalent on all length scales from
the subcellular to the macroscopic scale, so the study of active systems is a promising
approach to understanding living matter in general [14, 15]. Active matter is also a
relevant topic in nanotechnology: the imitation of biological swimmers and engines
could lead to the development of artificial counterparts that are strongly desired for a
variety of tasks on the nanoscale such as transport, organisation processes, and control
of material properties [16, 17]. These applications would entail significant advances in
medicine, materials science, and environmental science [18]. From a purely physical
point of view, active matter is an interesting subject because it is a type of nonequi-
librium system. This field has been subject to an increased interest in the last years
[19]. The unique feature of active matter is that the energy input driving these systems
out of equilibrium occurs at the level of individual particles instead of the macroscopic
level as is the case in other nonequilibrium systems [14]. Also, the direction of motion
in active matter is determined by its components’ orientation and not by an external
field [15].
In order to give an introduction into the studied systems, the following section presents
the fundamentals of cells. The main focuses are the cytoskeleton in which biopolymer
networks are a key element and bacteria as an example of active matter. In Section
1.3, an outline of the thesis is given.

1.2 Cells

Cells are the basic units forming all living organisms as they are the smallest units that
can replicate independently. In order to do so, they duplicate the genetic information
they carry within themselves in the form of DNA. In the process of cell division, a cell
splits itself into two passing on one copy of the DNA to each of the new cells. When
not indicated otherwise, the information presented here on cells, biofilaments, and bac-
teria was taken from the book “Molecular Biology of the Cell” by Bruce Alberts et al.
[20]. Additional information on biofilaments stems from articles by Jülicher et al. [21],
Pollard and Cooper [22], and Wen and Janmey [23]. Information on actin networks
was adapted from articles by Lieleg et al. [24] and Fletcher and Mullins [25].
There are two types of cells – eukaryotic and prokaryotic cells, both of which are

illustrated in Fig. 1.1. Both types contain a large number of components within a fluid
called cytoplasm, and their outer shell is a membrane which separates the cells’ insides
from their environment. It acts as a selective barrier which controls the exchange of

2



1.2. CELLS

Figure 1.1: Left: Sketch of a typical eukaryotic cell showing many of its components
such as the nucleus, cytoplasm, cell membrane, and a number of organelles. Image by
Mediran (own work) (CC BY-SA 3.0), via Wikimedia Commons. Right: Sketch of a
typical prokaryotic bacteria cell. In contrast to the eukaryotic cell, its constituents such
as the chromosome are unorganised within the cytoplasm. Image by Ali Zifan (own
work) (CC BY-SA 4.0).

molecules with the environment and hence allows the cell to take in nutrients and ex-
creting waste products.
The main distinction between the two types is that in eukaryotic cells, the cell compon-
ents are organised in subunits called organelles. One particularly important one is the
nucleus which contains the cell’s chromosomes and therefore genetic information. Some
other organelles are the mitochondria which generate energy in the form of adenosine
triphosphate (ATP) to fuel cell processes, the Golgi apparatus which – among other
tasks – packages proteins before their transport to other destinations within the cell,
and the centrosome which organises the cytoskeleton.
Prokaryotic cells do not contain organelles, so their constituents are unorganised within
the cytoplasm. The genetic information of these cells is stored in a single chromosome.
Two of the three domains of life – bacteria and archaea – are organisms that consist of
single prokaryotic cells. In contrast to this, the third domain – eukaryotes – consists
of organisms that can consist of a single eukaryotic cell but also of a large number of
these.
Next, we will give a brief introduction into the main components of the cytoskeleton,
and rodlike bacteria as these are relevant to this work.

1.2.1 Cytoskeleton

As mentioned before, cells have a membrane separating their insides from the envir-
onment. However, this membrane itself does not account for the cells’ mechanical
properties that are crucial for cellular processes such as deformation, migration, and
division. These properties are mainly determined by the cytoskeleton – a dynamic
network of biopolymers that spans the space between cell nucleus and membrane, see
Fig. 1.2. In addition to the features mentioned above, the cytoskeleton is also re-
sponsible for providing mechanical stability and enabling transport within the cell. It
is composed mainly of three polymers – actin filaments, intermediate filaments, and
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Figure 1.2: Top left: Micrograph of an artery cell with fluorescent labelled nucleus
(blue) and actin filaments (green). The cytoskeleton of which actin is one of the main
components spans the whole cell connecting the nucleus to the cell membrane. Image
by Kevin MacKenzie, University of Aberdeen/ Wellcome Images (CC BY-NC-ND 2.0).
Bottom left: Electron microscopy image of a PC12 cell providing a more detailed
view of a network of actin filaments in the cytoskeleton. Source: National Heart,
Lung, and Blood Institute, National Institutes of Health. Right: Comparison of the
cytoskeleton’s main components microtubules (MT), actin filaments (F-actin), and
intermediate filaments (IFs) to other polymers such as single wall carbon nanotubes
(SWNT), double strand DNA (ds-DNA), and polyethylene (PET). The polymers are
drawn with a contour length of 10µm as black lines demonstrating the effects of their
significantly differing bending rigidities which are also indicated by their persistence
lengths (lp). Reprinted with permission from Ref. [23]. Copyright 2011 Elsevier.
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microtubules. Due to their elongated shape, these are also referred to as biofilaments.
Their bending stiffness is enormous compared to synthetic polymers, see Fig. 1.2. A
polymer’s bending rigidity can be quantified by its persistence length lp – the length
scale on which it is straight, for details see Section 2.1.1. The larger persistence length
of biofilaments leads to greater end-to-end lengths compared to synthetic polymers
with the same contour length. Due to this, biofilaments can form extended networks
already at low volume fractions.
Since experiments on actin filaments and microtubules served as a model for the simu-
lations implemented in this work, these filaments will be introduced here in a bit more
detail.

Actin filaments

Actin is a globular protein that can itself act as a monomer to form actin filaments – also
referred to as microfilaments or F-actin. These filaments consist of two interlaced chains
of actin and have a diameter of 8 nm [23]. Due to the structure of actin, microfilaments
are polar with their two ends having fundamentally different properties. Under usual
physiological conditions, a process called treadmilling occurs during which globular
actin attaches to one end while dissociating from the other one. In eukaryotic cells, a
large number of accessory proteins regulates actin polymerization and the treadmilling
process as well as the formation of actin networks as shown in Fig. 1.2. A variety
of crosslinking proteins such as filamin and myosin II is responsible for forming these.
Actin networks are understood to be the primary component in the cytoskeleton for
determining its mechanical properties. Myosin II belongs to the family of myosin
proteins which contains a large number of proteins acting as molecular motors. These
have the special ability to hydrolyse ATP and transform the released chemical energy
into mechanical energy. Different myosins and their compounds perform different tasks
in the cytoskeleton such as generating forces between actin filaments or moving along
them. The former effect turns the networks into an active material and is crucial
for cell migration, division, and deformation. This mechanism is also responsible for
muscle contraction. The latter effect enables intracellular transport: by attaching to
subcellular organelles or proteins, myosins can transport these along the microfilaments.
The filaments’ polarity determines the myosins’ direction of movement. A similar
mechanism which is in fact more important for intracellular transport is facilitated by
the interplay of microtubules and the motor protein kinesin, see below.

Microtubules

Similarly to F-actin, the subunits forming microtubules are globular proteins: α- and
β-tubulin. Dimers of these two proteins polymerise into protofilaments, and a number
of those – usually 13 – arranged in a tube-like structure with a diameter of 25 nm form
a microtubule. Since they are composed of dimers, microtubules are polar with a plus-
end and a minus-end. They are typically oriented so that the plus-end points towards
the cell’s periphery while the minus-end is attached to a microtubule organizing center
near the cell nucleus. This arrangement enables directed transport over long distances
compared to the transport in actin networks. There are two motor proteins associated
with microtubules: kinesin which moves towards the plus-end, and dynein which moves
towards the minus-end. In combination, these two motor proteins enable bi-directional
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transport between the cell’s inside and its periphery.
With a persistence length of more than 1 mm, microtubules are the stiffest of the
biofilaments in the cytoskeleton. However, its mechanical properties do not seem to
be dominated by them – probably due to their lack of stable crosslinking. Also, mi-
crotubules do not have a stable structure. Instead, they constantly switch between
a growing and a rapidly shrinking state. Due to this dynamic behaviour, they can
only exert small forces on their surroundings and are not able to provide significant
mechanical stability to the cytoskeleton.

Actin networks

Actin networks are the component of the cytoskeleton that mainly provides it with
mechanical stability. At the same time, these networks are crucial for dynamic pro-
cesses such as cell migration and division. Therefore, actin networks need to have
structural integrity which is necessary for mechanical stability while also being able to
restructure and reorganise. This versatility originates from a large number of cross-
linking proteins that are present in the cell and interact with actin filaments. These
are also referred to as actin binding proteins and play a major part in determining the
structure, viscoelastic properties, and dynamic behaviour of F-actin assemblies.
One example for the variety resulting from the interaction of different crosslinking pro-
teins with F-actin is the polymorphism observed in F-actin assemblies. There are two
main types of occurring structures – bundles and networks. In bundles, the filaments
are tightly packed and parallel while in networks, single filaments are crosslinked at
greater angles creating a less dense and more wide-spread structure. Composite struc-
tures of networks and bundles are also possible.
Different actin binding proteins interact with F-actin in a variety of ways creating a
number of different networks. One of the most prominent examples is a protein com-
plex called Arp2/3 complex that creates branched networks in which the filaments are
connected at a fixed angle of 70◦. These networks are dense and can usually be found at
the cell’s leading edge. Other proteins such as filamin, α-actinin, or heavy meromyosin
do not impose a fixed angle and therefore result in a more disordered network structure.
Usually, the concentration of crosslinking proteins also affects the networks’s structure.
At low concentrations, networks are necessarily weakly crosslinked. High concentra-
tions of heavy meromyosin lead to the formation of isotropically crosslinked networks
while high concentrations of filamin or α-actinin yield composite structures or even
networks of actin bundles.

1.2.2 Bacteria

Bacteria are unicellular organisms that belong to the oldest lifeforms on earth. With
a typical size of a few micrometres, they are about one tenth the size of eukaryotic
cells. Other major differences between these two types of cells result from the fact that
bacteria are prokaryotes. As such, they are composed of a cell membrane enclosing
the cytoplasm which contains the cell’s components like proteins and the DNA. Even
though bacteria exhibit subcellular structure and also have a cytoskeleton, their degree
of internal organisation is not as high as in eukaryotic cells.
On the outside, bacteria have a cell wall that is in most cases made of a polymer called
peptidoglycan. This cell wall is essential for protection – a fact that is exploited by the
antibiotic penicillin which inhibits the renewal of the cell wall and thereby causes the
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Figure 1.3: Left: A colourized scanning electron micrograph of E. coli. Courtesy:
National Institute of Allergy and Infectious Diseases. Right: A fluorescence micrograph
of B. subtilis with their membrane false coloured red and their flagella false coloured
green. Reprinted with permission from Ref. [26].

cells to die.
Many bacteria also have the ability to self-propel, e.g., due to flagella. These are semi-
rigid filamentous structures that grow from the bacteria’s surface. They are connected
to a tiny motor within the cell membrane that causes them to rotate and thereby
generate propulsion.
Bacteria can be found in a large variety of shapes such as spheres, rods, and spirals. Two
species that are commonly used in experiments similar to the simulations implemented
for this work are Escherichia coli and Bacillus subtilis, see Fig. 1.3. Both of these
are cylindrically shaped and of similar size. E. coli has a diameter of about 0.5µm
and a length of about 2µm [20] while B. subtilis is a little larger with a diameter of
0.7µm and a length varying from 4 to 7.4µm [27, 28]. They belong to different classes
of bacteria with E. coli being a Gram-negative bacterium while B. subtilis is a Gram-
positive bacterium. The two classes represent different compositions of the bacteria’s
cell wall.
Both bacteria are naturally part of humans’ and other animals’ gut flora and have a
long history as objects of research. E. coli is known to be the most studied bacteria of
all and is still frequently used as a model organism due to a number of advantages such
as its simplicity, wide availability, and short replication time of as low as 20 minutes
under favourable conditions. For example, most of what we know about the replication
of DNA and how information is decoded within it is a direct result of studying E. coli.
B. subtilis is probably the most studied Gram-positive bacterium and known for its
ability to survive in hostile environments by forming resistant endospores – structures
that can be understood as the dormant form of the bacterium.
E. coli and B. subtilis are both capable of self-propulsion due to a number of helical
flagella growing from their surface. Each of these is driven by a motor that can rotate
in both directions – clockwise and counter-clockwise. Simultaneous counter-clockwise
rotation causes the flagella to form a bundle yielding straight propulsion along the
bacterium’s main axis. On the other hand, clockwise rotation of just one flagellum
is sufficient to cause the bacterium to rotate randomly while maintaining its position.
These dynamics are a prime example for run-and-tumble motion, see Section 3.2.2. For
E. coli, the swim speed is known to be about 20µms−1 [29] with the straight ‘runs’
lasting for approximately 1 s while ‘tumbling’ events only take about 0.1 s [30].
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Besides swimming in a fluid, E. coli and B. subtilis can also use their flagella for moving
on surfaces such as agar plates. This kind of movement is called swarming motility.
Even though a number of bacteria are capable of swarming motility, this process is not
as well understood as swimming. For example, B. subtilis is known to secrete a slime
layer on which they can then glide, but this does not seem to be required by E. coli
[31]. Swarming motility is a useful feature for performing two-dimensional experiments
with motile bacteria.

1.3 Outline of this thesis

This thesis presents results from numerical investigations of two different systems that
are modelled after biological systems. Since the problems are not directly related, they
will be discussed separately.
In Chapter 2, the elastic response of semiflexible polymer networks is studied. A
prime example for these are actin networks in the cytoskeleton of eukaryotic cells –
see Section 1.2.1. The main focus lies on wrinkling of planar networks due to in-
plane shear deformation. This effect has been studied numerously in continuous sheet-
like materials but not in materials in which their discrete microstructure is critically
important. Elasticity theory is used to derive predictions for fundamental properties
such as the critical strain for the onset of wrinkling, wrinkle wavelength, and amplitude.
These predictions are tested in numerical simulations. For more details on the focus of
that chapter, see Section 2.1.5.
In Chapter 3, the collective behaviour of active rodlike particles in two dimensions is
investigated. These represent cylindrically shaped bacteria like E. coli or B. subtilis
swarming on a surface – see Section 1.2.2. Active systems like these exhibit a variety
of collective phenomena ranging from static asters over collectively moving clusters
to swirling motion. Many of these phenomena can be classified as phase-separated
configurations with an ordered high-density phase and an unordered low-density phase.
The main focus of this work is the attempt to find an analytical model predicting the
densities in the coexisting phases. For more details, see Section 3.1.6.
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Chapter 2

Sheared semiflexible polymer
networks

2.1 Semiflexible polymer networks

Semiflexible polymers have become a topic of large interest over the last years since
they are essential components of living organisms. Assemblies of semiflexible biopoly-
mers constitute various fundamental structural components in biological systems – one
prominent example being the polymer networks forming the cytoskeleton, see Section
1.2.1. The following section gives a brief introduction into the subject of semiflex-
ible polymer networks following mainly review articles by Picu [13] and Broedersz and
MacKintosh [12]. Subsequently, the focus and outline of this chapter are presented in
Section 2.1.5.

2.1.1 Semiflexible polymers

Polymers are divided into three categories according to their bending rigidity: flexible,
semiflexible, and stiff polymers. The bending rigidity is quantified by their persistence
length lp – the length scale over which they appear straight in the presence of thermal
fluctuations. By comparing lp to the contour length l of a specific polymer, we can
assign it to one of three categories: when lp is small compared to l, the polymer is
called flexible. Polymers with lp ≈ l are referred to as semiflexible, and lp � l defines
stiff polymers.
The fact that lp ≈ l for a semiflexible polymer can be understood as its bending ri-
gidity being large enough to partially compensate for its tendency to crumple in order
to maximise entropy. As a result of this competition, the polymer’s conformation is
essentially straight with small thermal fluctuations.

Since it is very difficult to study biopolymers in vivo, i.e., in their native environment
[25], experiments are usually performed on in vitro systems – these are reconstituted
systems that are artificially generated from the same but fewer components in a well-
controlled environment. In the context of biopolymer networks, this means limiting
the number of crosslinking proteins that interact with the polymers.
Despite the similarity of in vitro systems to in vivo systems, one has to be careful when
applying results from one to the other. The systems may still have very different prop-
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erties, e.g., Gardel et al. measured a mechanical stiffness in their generated networks
that was “significantly weaker” than in the cellular cytoskeleton [32].

2.1.2 Models for semiflexible polymer networks

Since experiments on biopolymer networks are difficult and a comprehensive theory
describing their behaviour in the full range of relevant parameters does not exist yet,
a common approach to these networks are simplified models that can be implemented
in computer simulations or studied analytically. These models can be distinguished by
the networks’ dimensionality, their internal geometry, and the polymers’ mechanical
response. Before discussing the differences between these models, we introduce the
concept of affine and nonaffine deformations which plays a major role in the elasticity
of semiflexible polymer networks.

Affine and nonaffine deformations

inital state affine nonaffine

Figure 2.1: Illustration of affine and nonaffine deformations. A rectangular object with
a substructure represented by geometrical shapes is sheared from its initial state (left).
In case of an affine deformation, strain is universal, so the object’s microstructure is de-
formed according to the macroscopic deformation (centre). For nonaffine deformations,
microscopic and macroscopic deformation are different (right).

The deformation of an object is called affine when the strain within the object is
universal. This automatically implies that the deformation of each microscopic part of
the object is equivalent to its macroscopic deformation. In case of a deformed network,
this means that the strain in each fibre is the same as the externally applied strain.
Deformations for which this is not the case are called nonaffine, see Fig. 2.1 for an
illustration. One of the most basic examples for this is Euler buckling of a straight
elastic rod. When such a rod is under axial compressive stress, it is compressed up to a
certain force threshold. At this threshold, the rod undergoes a buckling instability and
gets bent. Since this deformation is perpendicular to its axis which is also the direction
of the external strain, buckling is a nonaffine deformation.

2D and 3D networks

One major distinction between different models is whether they represent two-dimen-
sional or three-dimensional networks. Since networks in biological systems are usually
three-dimensional, it is obvious that three-dimensional models should be more real-
istic. However, they are also computationally more expensive since a larger number
of fibres is required to achieve the same crosslinking density as in a two-dimensional
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network. For this reason, two-dimensional networks are better studied than their three-
dimensional counterparts. However, it is not entirely clear whether two-dimensional
and three-dimensional networks behave similarly. In particular, it can be argued that
the mechanical response of three-dimensional networks is more likely to be dominated
by nonaffine deformations. Due to this, it still needs to be determined to what extent
the results from two-dimensional models can be applied to realistic three-dimensional
networks.

Thermal and athermal networks

The next distinction one can make is between thermal and athermal networks, i.e.,
whether or not thermal fluctuations are taken into account. These two approaches
differ significantly in the polymers’ response to stretching. In the thermal model, they
are treated as entropic chains. These resist stretching since it decreases their entropy
which is equivalent to an increase in free energy. In the athermal model, the polymers
are modelled as elastic thin rods – see Section 2.2.2. Stretching increases their contour
length, so their response is purely mechanical. In a real semiflexible polymer, the elastic
response is a combination of the two contributions. However, the thermal response can
be estimated to be dominant as long as l3 & 1

4d
2lp with d being the polymer’s diameter

[12]. So, the elastic response only becomes important for very small l.
For thermal networks, the shear modulus G can be derived assuming exclusively affine
deformation. In the affine model, all crosslinks strictly follow the macroscopic shear
strain γ. This implies that only stretching deformations are considered. In the limit of
small γ, the polymers’ entropic force-extension relation is approximately linear which
makes it possible to calculate the occurring stress σ. This ultimately leads to the shear
modulus

G0 = 6ρ
κ2

kBT l3c
, (2.1)

where ρ is the network’s line density, κ is the polymers’ bending modulus, kB is the
Boltzmann constant, T is the temperature, and lc is the mean distance between cross-
links. Since G0 ∝ l−3

c , the network’s crosslinking density has a big impact on its elastic
properties. Considering larger strains, the affine model also predicts a characteristic
shear strain γnl = 1

6
lc
lp

for the onset of nonlinearity in the network due to the nonlinear
force-extension relation of the individual rods at large strains. The differential shear
modulus which is defined as K ′ = dσ

dγ becomes proportional to σ3/2 in this strain regime
while at small strains, K ′ = const.
This transition from K ′ = const. to K ′ ∝ σ3/2 has been confirmed in experiments
with actin networks [33–35], networks of intermediate filaments [36, 37] and even in
synthetic polymer networks [38], see Fig. 2.2 for an illustration.
It should be noted though that the prediction from the affine model requires a purely

entropic response to stretching which is not the case in real polymers. Evidence for this
can be found – for example – in experiments with networks of intermediate filaments
at large stresses [36, 37]. Also, some experiments with actin networks indicate that the
scaling exponent α in K ∝ σα depends on the concentration of crosslinkers [39].
One of the main approximations of the affine model is that the network’s fibers are
only deformed by stretching. Hence, when bending deformations become important,
the affine model breaks down. Since bending of semiflexible polymers is typically much
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Figure 2.2: Experimental results showing nonlinear elasticity in thermal networks. The
differential shear modulus K ′, which is constant at small strains, becomes proportional
to the shear stress σ (σ0 in the left plot) at large strains resulting in K ′ ∝ σ3/2. Left:
experimental data from actin networks with the crosslinker scruin at different actin
concentrations. The dashed line indicates the asymptotic dependence K ′ ∝ σ3/2. The
inset shows data collapse due to rescaling. From Ref. [34]. Reprinted with permission
from AAAS. Right: Similar rescaled data for synthetic polymer networks at different
polymer concentrations c and temperatures. Adapted with permission from Ref. [38].
Copyright 2013 Nature Publishing Group.

easier than stretching, this is a crucial factor for their networks. This aspect is taken
into account by athermal models. These approximate the polymers’ elastic properties
by treating them as thin rods with a purely mechanical response to deformations –
see Section 2.2.2. The most prominent example for such a model is the Mikado model
[40–42]. In the Mikado model, networks are constructed by depositing filaments at
random positions with random orientations in a two-dimensional area. Filaments are
crosslinked where they intersect and these crosslinks are treated as permanent and
freely rotating. Analogously to the thermal model, the affine model can be applied to
athermal networks which yields the affine shear modulus

Gaff =
π

16

µ

lc
, (2.2)

with the filaments’ stretching modulus µ. This shear modulus can be expected to be
valid as long as stretching is the dominant mode of deformation in the networks. In
general, this affine regime is associated with large strains [43], but other factors are
also relevant: large densities and bending rigidities favour affine behaviour [40–42].
Accordingly, the networks’ elasticity tends to be dominated by bending deformations
at small strains, low densities, and low bending rigidities [40–43].
In this nonaffine regime, the shear modulus is predicted to be G ∝ κ. This has

been confirmed using simulations of the Mikado model [40–42, 44], see Fig. 2.3. These
works also find a universal form for the dependence of G on the network density ρ in
the nonaffine regime. This can be expressed as G ∝ (ρ − ρc)α1 with a critical density
ρc. The exponent α1 can be predicted via different approaches [40–42, 45, 46] yielding
similar results that show good agreement with simulation data.
The above results for the affine model in athermal networks assume linear elasticity,
so they are not valid for large deformations that cause nonlinear behaviour such as
strain stiffening and negative normal stress. It is worth pointing out that nonlinear
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Figure 2.3: Rescaled shear modulus G/Gaffine (with Gaffine being the shear modulus in
the affine limit) as a function of bending rigidity in simulations of athermal networks
generated using the Mikado model. The ratio L/λ is proportional to the filaments
bending modulus: L/λ ∝ κ1/3. In the nonaffine regime associated with small bending
rigidities, G ∝ κ in contrast to the affine regime at large bending rigidities where G
does not depend on κ. Reprinted with permission from Ref. [40]. Copyright 2003
American Physical Society.

elasticity even occurs when the individual fibers’ elasticity is strictly linear – which is
counterintuitive. Nonlinear effects are discussed in more detail in Section 2.1.3.

Internal geometry

Depending on how they are constructed, networks can have different microstructure.
It is possible to generate networks from a repeated pattern yielding a perfectly regular
geometry. These kinds of networks have proven very useful for understanding linear
elasticity. However, real polymer networks are not perfectly ordered, so the models
used to study them usually include some kind of randomness. One can distinguish
two approaches to this – lattice-based and off-lattice models. Examples for both kinds
of models are shown in Fig. 2.4. Lattice-based networks are constructed similarly
to the regular networks mentioned before, but randomness is introduced into their
microstructure by randomly displacing the nodes or randomly eliminating individual
fibers. The other option are off-lattice networks which are generated from randomly
placed fibers. One example for this was already mentioned in the previous section: the
Mikado model. Another example would be letting the fibers grow from seeds at random
positions.
The networks’ properties are also influenced by the type of crosslinks that is used. Some
examples would be crosslinks with fixed positions in space, crosslinks that are free to
move but have a fixed position relative to the adjoined fibers, and crosslinks that can
glide along polymers. Also, crosslinks can differ in the way they restrict rotation of the
adjoining fibers relative to each other. Freely rotating crosslinks – or “rotating joints”
– do not impede rotation at all whereas “welded joints” enforce a fixed angle between
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Figure 2.4: Two examples for network geometries used in simulations. Left: a deformed
fiber network generated from a triangular lattice by eliminating individual fibers. Col-
our coding indicates the degree of nonaffinity, and the gray lines indicate the configura-
tion resulting from a perfectly affine deformation. Reprinted with permission from Ref.
[12]. Copyright 2014 American Physical Society. Right: cutout from a sheared fiber
network generated using the Mikado model. Arrows indicate the shearing direction,
and gray lines indicate the affine configuration.

the fibers. It is also be possible to have joints that allow rotation but deviations from
a preferred angle are associated with an energy cost.

2.1.3 Nonlinear behaviour of semiflexible polymer networks

Networks of semiflexible polymers have been reported to have a nonlinear elastic re-
sponse to external stresses or strains. Some of the most common observed effects
are negative normal stress [47, 48] as well as stiffening [32–34, 36, 37, 39, 49–54] and
softening [50, 52, 53, 55] at large strains.

Strain stiffening

Many applications of deformed networks involve large strains which is why the networks’
elastic response to large strains is relevant. One effect that is especially pronounced
in semiflexible polymer networks is strain stiffening [13]. Strain stiffening refers to an
increase of the material’s elastic moduli with increasing strain. This is a nonlinear
effect since the elastic properties of an object are independent of the applied strain in
the limit of linear elasticity.
Strain stiffening has been observed experimentally in actin networks [32–34, 39, 49–54]
and networks of intermediate filaments [36, 37]. For an example plot, see Fig. 2.5.
The universal finding is that networks stiffen at strains above a critical value. How-
ever, the degree of stiffening has been reported to be influenced by a number of factors
such as the crosslinker concentration, filament length, or the type of crosslinker in the
networks. Low crosslinker concentrations can reduce the degree of stiffening or even
lead to softening of the networks [34, 39, 53]. Kasza et al. found that rigid crosslinkers
yield weaker stiffening than flexible crosslinkers [50]. They also reported that networks
of shorter filaments can exhibit softening at medium strains before stiffening at large
strains. Tseng et al. observed that actin networks crosslinked with filamin or α-actinin
exhibit strain stiffening while networks with fascin crosslinkers do not stiffen [53].
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Figure 2.5: Examples for nonlinear behaviour in actin networks. Left: differential shear
modulus K ′ as a function of shear strain γ in actin networks with different densities.
IncreasingK ′ indicates stiffening of the networks, and rapid decrease indicates softening
caused by rupturing. Reprinted with permission from Ref. [39]. Copyright 2007
American Physical Society. Right: shear (circles) and normal stress (triangles) as
a function of shear strain γ in actin networks. Decreasing normal stress indicates
negative normal stress. Reprinted with permission from Ref. [47]. Copyright 2007
Nature Publishing Group.

These findings demonstrate that all network components – filaments as well as cross-
linkers – determine the networks’ elasticity. A comprehensive explanation for strain
stiffening has not been found at this point. Different models have been suggested that
seem to contradict each other: While Gardel et al. conclude from their findings that
the networks’ elasticity is mainly entropic and stiffening is caused by the nonlinear
force-extension behaviour of the individual filaments [33, 34], Kasza et al. find evid-
ence that the networks’ elasticity is dominated by the crosslinkers [50].
Strain stiffening can be observed not only in experimental setups but also in simula-
tions of semiflexible polymer networks in two [43, 46, 56] and three dimensions [57–
59]. These findings are especially interesting because the filaments in the simulated
networks were modelled as linearly elastic at all strains. Due to this, one would not
necessarily expect the networks to exhibit nonlinear elasticity. Since strain stiffening
still occurs, Onck et al. concluded that this nonlinear behaviour is a structural effect
of the networks resulting from the re-orientation of filaments [43]. At small strains,
the networks’ elasticity would be dominated by bending deformations. With increas-
ing strain, filaments would align with the principal stress direction causing stretching
to become the dominant deformation mode. Since stretching of semiflexible polymers
is generally harder than bending, this results in an overall stiffening of the networks.
This explanation was confirmed by Heussinger et al. [46]. An alternative model was
suggested by Storm et al. [60] identifying the nonlinear force-extension relation of in-
dividual filamets as the main cause for strain stiffening. Both models were compared
by van Dillen et al. [61] finding both explanations valid but the re-orientation to be
the dominant mechanism at large strains. Another explanation assigning stiffening to
the crosslinks’ mechanical properties was put forward by Broedersz et al. [62].
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Strain softening and negative normal stress

Semiflexible polymer networks have also been reported to exhibit an opposite effect to
strain stiffening. Networks were found to become easier to deform with increased strain
in experiments [39, 50, 52, 53, 55, 63] as well as in simulations [56, 59]. The softening
mechanism is not understood very well yet. While Tseng et al. reported softening
at low crosslinker concentrations and stiffening at high crosslinker concentrations [53],
Lieleg et al. observed just the opposite behaviour [52]. On the one hand, softening was
observed to preceed stiffening [50] but also to occur at larger strains than stiffening [39,
50, 52]. One example for the latter effect can be seen in Fig. 2.5.
Also, there is still some dispute about the cause for stress softening. The simulations
by Åström et al. suggest that the unbinding of crosslinkers is responsible for softening
[59]. The same is true for the experimental results presented by Lee et al. showing
irreversible strain softening [63]. However, the unbinding of crosslinkers cannot be the
cause for reversible softening as reported in dendritic actin networks by Chaudhuri et
al. [55]. Instead, the authors suggested that buckling of compressed filaments decreas-
ing the networks’ stiffness.

Another example for nonlinear elasticity that can be observed in semiflexible polymer
networks is negative normal stress. When subject to shear, most materials expand along
an axis that is perpendicular to the direction of shear. This phenomenon is known as
positive normal stress [47]. Sheared networks of semiflexible polymers were reported
to exhibit the opposite behaviour. When sheared between two plates networks of such
biofilaments were reported to exert a tensile force on these plates [47, 48], see Fig.
2.5 for an example. This effect was also found in two-dimensonal simulations using
the Mikado model [44, 46, 56]. Negative normal stress is an intrinsically nonlinear
effect that is not to be confused with lateral contraction determined by the material’s
Poisson ratio ν, see Section 2.2.1. It has been explained in a thermal model as the
result of an asymmetric force-extension relation of the individual fibers, i.e., the fact
that compression requires less force than stretching [47]. However, this does not explain
the occurence of negative normal stress in simulations of athermal networks without an
asymmetric force-extension relation. An alternative explanation which is also valid for
these networks attributes the negative normal stress to buckling of compressed filaments
[46, 56]. This model was also found to be in better agreement with experimental results
than the thermal model [48].

2.1.4 Measuring nonaffinity

As outlined in the previous sections, the elastic response of deformed networks often
depends on whether the deformations within the network are affine or nonaffine. For
example, the affine model which only considers stretching deformations yields good
predictions in thermal networks under shear. In athermal networks though, nonaffine
bending deformations are important – see Section 2.1.2. Also, as described in Section
2.1.3, the transition from a bending dominated – or nonaffine – regime to a stretching
dominated – or affine - regime has been linked to the onset of strain stiffening. Moreover,
buckling of compressed filamets which is a nonaffine deformation has been suggested
as a mechanism explaining strain softening and negative normal stress – see Section
2.1.3.
Hence, there is interest in measuring the degree of (non-)affinity in deformed networks,
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and there are several methods for doing this. The most general one was presented by
DiDonna and Lubensky [64]. They defined a correlation function Γ at position vector
r as follows:

Γ(r) = 〈(δu(r)− δu(0))2〉 . (2.3)

Here, δu(r) = u(r) − uaff(r) denotes the difference between the actual displacement
u(r) caused by a deformation and the corresponding affine displacement uaff(r). The
authors showed that many other parameters used for measuring nonaffinity can be
expressed in terms of this correlation function. In some cases, there are good reasons
for using other parameters though, e.g., they may be easier to measure.
One other example for a nonaffinity parameter was introduced by Head et al. [40, 41].
In their simulations of sheared networks, they considered difference vectors between
crosslinks at a distance r and measured the angular change θ(r) for these vectors.
Compared with the angular change expected for an affine deformation θaff(r), this gave
the parameter

〈∆θ2(r)〉 = 〈(θ(r)− θaff(r))2〉 . (2.4)

Using this parameter, the authors found the degree of nonaffinity decreasing with in-
creasing r and a general increase in nonaffinity at low bending stiffness.
Another method of measuring nonaffinity was presented by Onck et al. for simula-
tions of sheared networks [43]. They used a parameter ∆A measuring the the amount
of deviation between a network’s deformation and a purely affine deformation. This
parameter is calculated as an average over the n points of the network:

∆A =
1

n

n∑
k=1

|∆rk −∆ak|
|∆ak|

. (2.5)

Here, ∆rk is the displacement vector of point k due to the shear deformation, and ∆ak
is the displacement of the same point that would occur in a purely affine deformation.
The close relation between ∆A and Γ introduced in Eq. 2.3 is quite obvious from
the equivalence of the numerator in Eq. 2.5 and δu(r). The authors found that a
peak in ∆A marks the the transition from a bending dominated regime to a stretching
dominated one as it coincides with the onset of strain stiffening – see Section 2.1.3.
An entirely different approach for measuring nonaffinity was suggested by Åström et al.
[59]. Instead of deriving the degree of nonaffinity from the actual displacements in the
network, they used the fraction fs of the total elastic energy resulting from stretching.
Lower values of fs indicate an increase in bending deformations and hence nonaffinity.
Since the energy contributions resulting from stretching and bending are not accessible
in experiments, this method is only applicable to simulations.
In conclusion, we see that there is a wide range of different methods available for
measuring nonaffinity. Even though the resulting parameters are very useful, they
should be interpreted cautiously as a high value in the nonaffinity parameter could still
coincide with a mechanical response that is dominated by affine deformations [12].

2.1.5 Focus and outline of this chapter

As outlined in the preceding sections, semiflexible polymer networks in two and three
dimensions have been studied extensively in the last years. Despite this amount of
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Figure 2.6: Examples for wrinkling in sheet-like materials. Left: in a uniaxially
stretched polyethylene sheet, wrinkles form parallel to the stretching direction. Re-
printed with permission from Ref. [65]. Copyright 2002 Nature Publishing Group.
Right: droplets of water cause wrinkling of polystyrene films of different thicknesses.
Numbers in the upper left corners indicate the wrinkles’ length. From Ref. [72]. Re-
printed with permission from AAAS.

experimental, numerical, and analytical work on the subject, one aspect has not gotten
much attention so far: three-dimensional deformations of sheet-like networks. Such de-
formations are a common phenomenon in a wide range of sheet-like materials though.
A prime example for this is wrinkling in response to compressive stresses which has
been reported in a large number of experimental works [65–80]. Wrinkling in deformed
sheet-like materials has also been studied analytically [65–67, 74, 81–85] and in many
cases, the analytical predictions have been confirmed by the aforementioned experi-
ments.
One frequently used material for experiments on wrinkling in sheet-like materials are
polymer films constituted of flexible polymers, e.g., polyethylene, polystyrene, or poly-
imide. Due to their increased bending stiffness, semiflexible polymers are fundamentally
different from flexible polymers, so it would be interesting to study whether semiflex-
ible polymer films are similar to flexible polymer films with regards to wrinkling. It
is fair to assume that a network’s mechanical response can be greatly dependent on
the elastic properties of its components – especially on length scales comparable to the
mesh size.
In this chapter, wrinkling as a result of shearing is studied numerically in two-dimensio-
nal networks of semiflexible polymers. The results were already published in an article
[86]. As the author is not aware of any prior publications regarding wrinkling in sheet-
like materials composed of semiflexible polymers, that article might be the first work
investigating this topic. Here, the material is presented in more detail. Networks are
generated using the Mikado model [40–42] which is an athermal model hence neglect-
ing the polymers’ entropic elasticity but considering bending deformations – an aspect
that is missing in thermal models. This work’s focus is on fundamental properties of
wrinkles such as the onset of wrinkling and wrinkle wavelength and amplitude. The
numerical results are compared to predictions from elasticity theory in order to find out
to what extent wrinkling in semiflexible polymer networks can be described by linear
elasticity theory for thin membranes. Also, the influence of wrinkling on the dominant
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deformation regime is examined.
The outline of this chapter is as follows: In Section 2.2, linear elasticity theory is in-
troduced with a special emphasis on thin membranes and their wrinkling due to shear
deformations. After obtaining predictions for fundamental wrinkle properties, these
are applied to discrete networks. In Section 2.3, the numerical model is presented as
well as the simulation routine and the measurements evaluated during simulation. In
Section 2.4, the numerical results are presented and analysed. Finally, a conclusion of
the chapter and a discussion of the results is given in Section 2.5.

2.2 Elasticity theory

Elasticity theory is a mathematical framework for the elastic deformation of solid bodies
and makes predictions about the strain resulting from applied stresses. An elastic
deformation is characterised by the fact that the deformed body relaxes to its initial
shape when stresses are relieved. When the deformed body can not recover its initial
shape, we call this an inelastic or plastic deformation. In the limit of small strains,
deformations are usually elastic.
Most of the fundamentals of elasticity theory relevant to this work have been presented
in detail in the author’s diploma thesis [87] and will not be repeated here. Instead, a
brief summary of the main aspects is given below. The derivation of the elastic energy
and wrinkling properties of thin elastic membranes presented in Section 2.2.3 was not
part of the diploma thesis and is therefore discussed in more detail. The information
presented here was adapted from the books “Einführung in die Technische Mechanik:
Festigkeitslehre” by Herbert Balke [88] and “Theory of Elasticity” by Lew Landau et
al. [89].

2.2.1 Stress-strain relation and elastic moduli

Elasticity theory is used to calculate the strain that occurs in a solid body that is
subject to external stresses. It is convenient to express these stresses and strains in
three-dimensional tensors σ and ε. In the limit of linear-elastic deformations, the
tensors are linearly related:

εαβ = Y −1 [(1 + ν)σαβ − δαβν Trσ] . (2.6)

The factors Y and ν are material constants called elastic moduli. These moduli determ-
ine the material’s elastic response to various deformations. The Young’s modulus Y is
associated with stretching deformation while the Poisson ratio ν quantifies transverse
deformation. One simple example for transverse deformation is the contraction of a
rubber band due to stretching. A number of other elastic moduli can be defined – two
of which are the shear modulus G and the compression modulus K. All these moduli
are dependent on each other by a number of relations. As a result, any two moduli of
a perfectly isotropic material are sufficient to determine all other moduli.
Stress and strain tensor can also be used to calculate the elastic energy density e of a
deformation:

e =
1

2
σαβεαβ . (2.7)
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2.2.2 Elasticity of thin rods

Since we consider networks of actin filaments in this work, we need to know the elastic
properties of these filaments. Due to their elongated shape, they can be approximated
as thin rods. In the limit of thin rods, radial deformations are neglected which makes
it very easy to calculate the stress-strain relations for the deformation of thin rods. For
example, stretching of a thin rod by a force F x acting along its main axis elongating
it from L to L+ δL can be described by a one-dimensional equation:

Fx = µ
δL

L
, (2.8)

Here, µ = Y A is the rod’s stretching modulus with A being its cross-sectional area.
The resulting stretching energy E(s) can be written as an integral along the rod’s arc
length s:

E(s) =

∫ L

0

µ

2

(
u′(s)

)2
ds , (2.9)

with u′(s) denoting the local strain.
The energy resulting from a bending deformation E(b) can be expressed in a similar
way:

E(b) =

∫ L

0

κ

2

(
φ′(s)

)2
ds , (2.10)

where φ′(s) is the local curvature, and κ is the rod’s bending modulus. Similar to the
stretching modulus, the bending modulus is proportional to Young’s modulus. This is
because bending causes stretching of some parts of the rod and compression of others
and the energy cost of bending results from these deformations. The second factor
determining κ is the rod’s moment of inertia I: κ = Y I. For a cylindrical rod of
diameter d, we have I = π

64d
4.

Comparing the rod’s stretching and bending moduli, we see that µ ∝ d2 while κ ∝ d4

which means that κ decreases more rapidly with decreasing diameter than µ. This
implies that bending of thin rods is much easier than stretching them.

2.2.3 Thin membranes

For continuous isotropic materials like elastic membranes, we can calculate the response
to shear strains analytically. Here, we focus on thin membranes in particular as the
networks we study are composed of thin rods. An elastic membrane is considered to
be thin if its thickness t is very small compared to its other dimensions. In this case,
compressive and stretching stresses perpendicular to the surface can be neglected and
the membrane can be treated as quasi two-dimensional. The elastic properties of such
a material are characterised by the 2D Young’s modulus Y2, the compression modulus
K, the shear modulus G, and the Poisson ratio ν. These are connected via the following
relations:

G =
Y2

2(1 + ν)
, K =

Y2

2(1− ν)
. (2.11)
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Bending of a membrane perpendicular to its surface is characterised by a bending
modulus

B =
Y2t

2

12(1− ν2)
. (2.12)

We now consider an in-plane deformation of a two-dimensional membrane in the
xy-plane. Assuming a strain tensor

ε2D =

[
ε11 ε12

ε12 ε22

]
, (2.13)

we can derive the associated stress tensor using Hooke’s Law:

σ2D =

[
Y2

1−ν2 (ε11 + νε22) 2Gε12

2Gε12
Y2

1−ν2 (ε22 + νε11)

]
. (2.14)

With the two tensors, we can calculate the elastic energy density:

e2D =
Y2

2(1− ν2)

(
ε211 + ε222

)
+

Y2ν

1− ν2
ε11ε22 + 2Gε212

=
1

2
G (ε11 − ε22)2 +

1

2
K (ε11 + ε22)2 + 2Gε212 .

(2.15)

An out-of-plane displacement field z(x, y) will give additional contributions to the
elastic energy density due to the occurring bending energy and additional stretching
strains within the membrane. When the displacements are small, we can use a Monge
parameterisation of the displacement field and approximate the membrane’s second
fundamental form as

καβ ≈ ∂α∂βz +O(z2) , (2.16)

with ∂α denoting the partial derivative with respect to spatial coordinate α. With this,
the bending energy density associated with bending can be written as

eB =
1

2
B
(
κ2

11 + κ2
22 + 2νκ11κ22 + 2(1− ν)κ2

12

)
. (2.17)

Out-of-plane deformation does not only introduce a bending energy but also causes
stretching within the membrane. Taking into account the additional stretching strains
yields a stretching tensor

εm =

[
ε11 + 1

2 (∂xz)
2 ε12 + ∂xz∂yz

ε12 + ∂xz∂yz ε22 + 1
2 (∂yz)

2

]
. (2.18)

This modified stretching tensor has to be used when calculating the elastic energy em
associated with deformations within the membrane. The total energy density is then

e = em + eB . (2.19)

To find the equilibrium configuration, we have to find the configuration of lowest total
elastic energy. This configuration is characterised by vanishing of the in-plane forces
as well as vanishing of the forces perpendicular to the plane. This force equilibrium is
expressed by the following equations:∑

α

∂ασαβ = 0 , B
∑
αβ

∂2
α∂

2
βz =

∑
αβ

σαβκαβ . (2.20)

Solving these equations for given stresses and boundary conditions yields the according
equilibrium out-of-plane displacement field z and in-plane deformations defined by εm.
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Figure 2.7: Example
of a wrinkling pattern
in a sheared mem-
brane according to
Eq. (2.25) with Lx =
Ly and λ = 1

2
Lx√

2
.

Shearing of thin membranes

We now consider a pure shear deformation along the x-axis of a two-dimensional mem-
brane in the xy-plane. Its lengths in x- and y-direction are Lx and Ly respectively.
According to the equations derived above, a shear angle γ yields the strain tensor

ε2D =

[
0 γ/2
γ/2 0

]
, (2.21)

and the stress tensor

σ2D =

[
0 Gγ
Gγ 0

]
. (2.22)

In a coordinate system rotated by π/4, these tensors become diagonal:

ε ′2D =

[
γ/2 0
0 −γ/2

]
, σ ′2D =

[
Gγ 0
0 −Gγ

]
. (2.23)

We see that pure shear in the initial coordinate system is equivalent to pure stretching
in x ′-direction and pure compression in y ′-direction in the rotated coordinate system.
As mentioned in Section 2.1.5, wrinkles tend to form perpendicular to compressive
stresses. Hence, we can conclude that in a sheared membrane, wrinkles will form at an
angle of π/4 to the x-axis in the initial coordinate system.
The calculation of the elastic energy density in case of in-plane deformation is straight-
forward and yields

esh,2D =
1

2
Gγ2 . (2.24)

Next, we also want to consider out-of-plane deformation. When we want to find the
membrane’s equilibrium configuration under shear, we could solve the force equilibrium
equations given above. However, we can also make an ansatz for the resulting displace-
ment field and then minimise the total elastic energy. The orientation of wrinkles
derived above in combination with the boundary conditions z(y = 0) = z(y = Ly) = 0
motivate the following ansatz:

z(x, y) = A sin

(
π
y

Ly

)
sin

(√
2π
y − x
λ

)
, (2.25)
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with λ being the wrinkles’ wavelength and A their amplitude. An example of this
wrinkling pattern is plotted in Fig. 2.7.

Critical shear angle

We now want to derive the smallest shear angle that is sufficient to induce wrinkling
in a sheared membrane – the critical shear angle γc. At the onset of wrinkling, the
amplitude A can be expected to be small, so we will neglect all terms of higher order
than O(A2) in the following calculation. According to Eq. (2.15), we can write the
in-plane elastic energy density as

em =
1

2
G
(
ε ′m,11 − ε ′m,22

)2
+

1

2
K
(
ε ′m,11 + ε ′m,22

)2
+ 2G ε ′m,12

2
. (2.26)

with the strain tensor

ε ′m =

[
1
2γ + 1

2(∂x ′z)
2 ∂x ′z ∂y ′z

∂x ′z ∂y ′z −1
2γ + 1

2(∂y ′z)
2

]
, (2.27)

in a coordinate system rotated by π/4. In order to proceed, we can calculate the
derivatives of z and average the resulting terms over the membrane’s surface area
which yields the following expressions:

〈(∂x ′z)2〉 =
A2π2

8L2
y

, 〈(∂y ′z)2〉 =
A2π2

8L2
y

+
A2π2

λ2
, 〈(∂x ′z)(∂y ′z)〉 =

A2π2

8L2
y

. (2.28)

This allows us to derive the spatial average of the in-plane elastic energy density:

〈em〉 =
1

2
Gγ2 − 1

2
Gγ

A2π2

λ2
+O(A4) . (2.29)

Analogously, we can calculate the spatial average of the bending energy density:

〈eB〉 = 2BA2π4

(
1

16L4
y

+
1

L2
yλ

2
+

1

λ4

)
. (2.30)

Wrinkling will occur when total energy density e = em + eB is lower than the elastic
energy density esh,2D resulting from exclusively in-plane deformation. Using the spatial
averages in the wrinkled configuration yields the inequality

esh,2D > 〈em〉+ 〈eB〉 (2.31)

0 > −1

2
Gγ

π2

λ2
+ 2Bπ4

(
1

16L4
y

+
1

L2
yλ

2
+

1

λ4

)
. (2.32)

From this, we get the critical shear angle γc(λ) at which a wrinkling pattern with
wavelength λ is energetically favourable over a planar configuration:

γc(λ) = 4π2B

G

(
λ2

16L4
y

+
1

L2
y

+
1

λ2

)
. (2.33)

Minimising the term in brackets leads to the conclusion that a wavelength λc = 2Ly
yields the smallest possible value for γc.
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Figure 2.8: Amplitude as a
function of shear angle near
γc. The dependence A2 ∝
(γ− γc) resembles a supercrit-
ical pitchfork bifurcation and
can be utilised to extrapolate
the critical shear angle in sim-
ulations, see Section 2.3.7 for
details.

Taking a second look at the energy density difference ∆e between wrinkled and planar
configuration, we see that it can be written as

∆e = esh,2D − 〈em〉+ 〈eB〉
= α1(γ − γc)A2 − α2A

4 ,
(2.34)

where α1 and α2 are positive coefficients. Maximising ∆e with respect to A yields

A2 ∝ (γ − γc) , (2.35)

which allows us to identify the onset of wrinkling as a supercritical pitchfork bifurcation,
see Fig. 2.8 for an illustration.

Wavelength and amplitude for large shear angles

For shear angles γ � γc, we can find expressions for the wrinkle wavelength λ and
amplitude A as functions of γ.

First, we will derive the amplitude as a function of λ and γ starting from the as-
sumption that a wrinkled membrane can only support small compressive stress σ ′22

perpendicular to the wrinkles [85]. Setting σ ′22 ≈ 0 allows us to approximate the in-
plane strains and the stretching stress parallel to the wrinkles from the following two
relations we get by applying Hooke’s Law:

σ ′22 =
Y2

1− ν2
(ε ′11 + νε ′22) ≈ 0 ⇒ ε ′22 = −νε ′11 , (2.36)

ε ′11 =
1

Y2
(σ ′11 − νσ ′22) ≈ 1

Y2
σ ′11 . (2.37)

Since we consider large shear angles γ � A2

L2
y
, we can neglect the term (∂x ′z)

2 in the
strain parallel to the wrinkles:

ε ′11 =
1

2
γ +

1

2
(∂x ′z)

2 =
1

2
γ +O

(
A2

L2
y

)
≈ 1

2
γ . (2.38)

Analogously, we can assume that the stress parallel to the wrinkles is unaffected by
wrinkling:

σ ′11 ≈ Y2
γ

2
. (2.39)
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Since the approximation σ ′22 ≈ 0 is best in the membrane’s centre in y-direction, we
now consider the case y = Ly/2. We have the strain perpendicular to the wrinkles

ε ′22 = −1

2
γ +

1

2
(∂y ′z)

2 . (2.40)

Averaging this over the distance corresponding to one wavelength in x-direction yields

〈ε ′22〉 = −1

2
γ +

A2π2

λ2
. (2.41)

Combining this with ε ′11, we get an expression for the amplitude as a function of the
shear angle and wavelength:

−1

2
γ +

A2π2

λ2
= −ν 1

2
γ (2.42)

A =
1√
2π

(γ(1− ν))1/2 λ . (2.43)

To derive the wavelength, we consider the force equilibrium given in Eq. (2.20):

B
[
∂4
x ′z + ∂4

y ′z + ∂2
x ′∂

2
y ′z
]

= σ ′11∂
2
x ′z + σ ′22∂

2
y ′z + σ ′12∂x ′∂y ′z . (2.44)

On the left-hand side of the equation, we can neglect the first and third term since

∂4
x ′z ∝ L−4

y , ∂4
y ′z ∝ λ−4 , ∂2

x ′∂
2
y ′z ∝ L−2

y λ−2 , (2.45)

and λ� Ly. On the right-hand side, we use σ ′22 ≈ 0 as explained above. Also, σ ′12 = 0
in the chosen coordinate system. This leaves us with

B∂4
y ′z ≈ σ ′11∂

2
x ′z . (2.46)

Caclulating the derivatives and evaluating the equation at a wrinkle maximum z = A
yields

BA

(
2π

λ

)4

≈ Y2
γ

2
A
π2

2L2
y

(2.47)

λ4 ≈ 64π2L2
y

B

Y2γ
, (2.48)

Therefore, the wrinkles’ wavelength λ at large shear angles can be written as

λ =

(
64π2L2

y

B

Y2γ

)1/4

, (2.49)

or – using Y2 = 2(1 + ν)G – as

λ =

(
32π2L2

y

1 + ν

B

Gγ

)1/4

. (2.50)
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Elastic energy at large shear angles

With the strains at large shear angles derived above

ε ′11 ≈
1

2
γ , 〈ε ′22〉 = −1

2
γ +

A2π2

λ2
, (2.51)

we can calculate the in-plane elastic energy density

〈em〉 =
1

2

(
ε ′11σ

′
11γ

2 + ε ′22σ
′
2

)
. (2.52)

With the strains

σ ′11 ≈ Y2
γ

2
, σ ′2 ≈ 0 , (2.53)

this yields

〈em〉 ≈
1

2
Y2γ

2 . (2.54)

The bending contribution eB to the total elastic energy density e = em + eB can be
neglected since it is of order O(γ3/2), so em is the dominant term in e. In Eq. (2.24),
we have

esh,2D =
1

2
Gγ2 (2.55)

for the elastic energy density of a sheared membrane with only in-plane deformation.
Hence, we can write the ratio of the two energy densities as

e

esh,2D
≈ Y

4G
=

1 + ν

2
. (2.56)

The ratio of the corresponding total energies equals the ratio of energy densities

E3D

E2D
=

e

esh,2D
, (2.57)

with E3D the total elastic energy for three-dimensional deformation and E2D for two-
dimensional deformation. Therefore, this energy ratio should equal the above value at
large shear angles in membranes that follow linear elasticity theory.

2.2.4 Application to networks

We now want to apply the above results from continuum elasticity theory for elastic
membranes to discrete networks consisting of thin elastic rods. On length scales at
which the networks’ microscopic structure can be ignored, we can treat discrete net-
works as effectively homogeneous membranes. The most important aspect for this is
finding the networks’ elastic moduli. With these, the predictions for critical shear angle,
wrinkle wavelength and wrinkle amplitude can be applied to networks without further
modifications.
In this work, we consider networks with a regular triangular geometry and disordered
networks – also referred to as random networks. Details on these types of networks are
given in Section 2.3.4.
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The networks’ elastic moduli can be calculated explicitly assuming affine deformation.
For triangular networks, this is done by considering the effect of an applied force to the
individual unit cells. This approach is outlined in Ref. [90] and yields

GM =

√
3

4

µ

lMc
,

KM = 2GM ,

Y M
2 =

8

3
GM ,

νM =
1

3
.

(2.58)

Here, µ is the rods’ stretching modulus and lMc is the networks’ lattice constant. The
bending modulus BM can be calculated as

BM = 3GMκ

µ
, (2.59)

with κ being the rods’ bending modulus.
Since random networks do not consist of uniform unit cells, we have to use a different

approach for deriving their elastic moduli. One possible approach assuming purely
affine deformation and utilising the fact that we have a large number of filaments N
has been described by Head et al. [40, 41]. Since the rods’ orientations ϕ are chosen
randomly, we can assume a uniform distribution function p(ϕ) = (2π)−1 for orientation
angles when N is large. In this case, we can calculate the average energy per rod
resulting from an applied strain by averaging over all possible orientation angles ϕ.
As an example, we will outline the derivation of the shear modulus Gr here. The
network is defined by the total number of rods N , their length L, their stretching
modulus µ and bending modulus κ, and the average distance between rod intersections
lc. The rods’ effective length is L′ = L−2lc since free ends can relax freely and therefore
do not give an energy contribution – see also Section 2.3.4.
A shear strain γ in x-direction will result in an average energy per rod

Erod(γ) =
1

2π

∫ 2π

0

µ

2
γ2 sin2(ϕ) cos2(ϕ)(L− 2lc) dϕ =

µ

16
(L− 2lc)γ

2 , (2.60)

from which the total energy is obtained by multiplying N :

Etot =
µ

16
γ2N(L− 2lc) . (2.61)

Since we will characterise random networks by their crosslinking density

η =
L′

lc
, (2.62)

we want to express the total energy as a function of η. A geometrical analysis yields
the following relation between η and N :

2NL2

πAtot
= η − 1 . (2.63)

Here, Atot is the network’s surface area. We can now eliminate N from the the total
energy. We also divide by Atot to get the total energy density

etot =
µπ

32L
γ2

(
η +

2

η
− 3

)
(2.64)
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Comparison with Eq. (2.24) gives us the shear modulus

Gr =
µπ

16L

(
η +

2

η
− 3

)
. (2.65)

Similar calculations for the remaining elastic moduli lead to the following results:

Y r
2 =

8

3
Gr , Kr = 2Gr , νr =

1

3
, Br = 3Grκ

µ
. (2.66)

We now have the elastic moduli for discrete networks which enables us to treat them as
effectively homogeneous membranes and apply the predictions for critical shear angle,
wrinkle wavelength and wrinkle amplitude derived for elastic membranes. With the
relation of the networks’ bending modulus B and their shear modulus G, we can express
the critical shear angle as a function of the rods’ elastic moduli µ and κ:

γc =
12π2

L2
y

κ

µ

(
L2
x

32L2
y

+ 1 +
2L2

y

L2
x

)
. (2.67)

We see that γc does not depend on the absolute values of µ and κ but only on their
ratio. The same is true for the wavelength:

λ =

(
72π2L2

y

κ

µγ

)1/4

. (2.68)

The equivalent for the ratio of µ and κ in elastic membranes is the ratio of bending
and shear modulus:

κ

µ
≡ B

3G
=

t2

18(1− ν)
. (2.69)

Hence, the square root of κ/µ in a network is similar to the thickness in an elastic
membrane and can therefore be interpreted as the network’s thickness.
Since the relation of the B and G is equivalent in random and regular networks, the
above expressions are valid for both network geometries.

Periodic boundary conditions

In our simulations, we enforced periodic boundary conditions in x-direction – see Sec-
tion 2.3.1. This can be expressed as z(0, y) = z(Lx, y) with Lx being the networks’
length in x-direction. This periodicity only allows discrete wavelengths

λn =
1

n

Lx√
2
, n = 1, 2, . . . , (2.70)

which is why the wrinkles’ wavelength cannot be predicted by the expression we derived
for elastic membranes. Instead, wrinkles will have the wavelength λn that minimises
the elastic energy. For a given shear angle γ, we can expect a wavelength close to the
value λ(γ) predicted by Eq. (2.49) though. Still, the discretisation of wavelengths has
to be taken into consideration when calculating γc and A.

For elastic membranes, we found that a wavelength λc = 2Ly yields the smallest pos-
sible value for γc. Since periodic boundary conditions only allow discrete wavelengths
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Figure 2.9: Illustration for determining the smallest possible value for γc. The plot
represents γc as a function of the wavelength λ according to Eq. (2.33). This function
has a minimum at λc = 2Ly. However, periodic boundary conditions only allow discrete
wavelengths λn. For Lx = Ly, the three largest wavelengths are marked in the plot
showing that γc(λ1) is the smallest shear angle for which wrinkling can occur.

λn, they may cause the onset of wrinkling to occur at a different wavelength than λc
and therefore at a different critical shear angle than the minimal γc.
The largest discrete wavelength is λ1 = Lx/

√
2 which is smaller than λc as long as

Lx <
√

8Ly. In our simulations, we used Lx = Ly, so we can only find wrinkling
patterns with wavelengths smaller than λc. From Eq. (2.33), we can conclude that
γc increases with decreasing λ < λc. Hence, the onset of wrinkling will occur at the
largest possible wavelength λ1 as this yields the smallest critical shear angle. For an
illustration, see Fig. 2.9. Entering λ1 into Eq. (2.33), we get

γc =
4π2

L2
y

B

G

(
L2
x

32L2
y

+ 1 +
2L2

y

L2
x

)
Lx=Ly

=
291π2

8L2
y

κ

µ
. (2.71)

For the wrinkles’ amplitude in a sheared elastic membrane at large shear angles, we
derived the expression in Eq. (2.43). In networks, we have ν = 1/3 which yields for
the amplitude

A =
1√
3π
γ1/2λ . (2.72)

Since we treated γ and λ as constants during derivation, this result is still valid with
periodic boundary conditions. However, if λ was a continuous function of γ as expressed
in Eq. (2.49), we could replace λ and write A as a function of the shear angle alone.
Due to the discretisation of wavelengths, this is not possible for periodic boundary
conditions.

2.3 Modelling of the sheared networks

This section presents the implementation of actin networks and how their shearing is
simulated.
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2.3.1 Environment

We are studying intrinsic properties of the networks, so we simulate them without any
surrounding medium or other external components. We use a rectangular simulation
cell in the xy-plane with side length Lx in x-direction and Ly in y-direction. The
boundaries in y-direction are fixed, i.e., rods intersecting with these boundaries are
crosslinked to them analogously to crosslinking between rods – see Section 2.3.3. In
x-direction periodic boundary conditions are implemented.

2.3.2 Rods

Semiflexible polymers are approximated as straight rods of length L. Their elastic
properties are determined by a stretching modulus µ and a bending modulus κ accord-
ing to linear elasticity theory of thin cylindrical rods. As outlined in Section 2.2.2,
these quantities can be derived from the rods’ geometrical properties – such as its
cross-sectional area – and material constants like its Young’s modulus. The elastic
energy necessary to cause stretching and bending of a thin rod is determined by µ and
κ respectively.
It is useful to define a length scale

lb =

√
κ

µ
, (2.73)

quantifying the rod’s resistance to bending compared to stretching. In networks com-
posed of thin rods that are subject to shear stress, the ratio of µ and κ determines the
critical shear angle for wrinkling as well as the wrinkles’ wavelength – see Section 2.2.4.
Also, we see that lb can be interpreted as the thickness of the simulated networks. This
is not surprising as calculating lb for thin cylindrical rods yields the proportionality
lb ∝ r with the rods’ radius r.
Of course, we must look at lb in relation to other length scales in the system, so we will
usually use the ratio lb/L as a measurement and refer to it as the rods’ bending rigidity.

2.3.3 Crosslinks

All intersections of rods are identified as crosslinks. During simulation, these are treated
as permanent, i.e., their position relative to the attached rods is fixed. The crosslinks
allow free rotation of the attached rods though which is a common property of many
actin binding proteins, e.g., α-actinin has been reported to allow actin filaments cross-
linked by it to rotate easily [91].
Equivalent crosslinks are used where rods intersect with the simulation cell’s boundar-
ies in y-direction. The important difference to usual crosslinks is that crosslinks with
the boundary are fixed at their position during simulation. This prevents the simulated
networks from relaxing to their initial state after deformation.
As mentioned before, the crosslinks’ relative positions are fixed. Their positions in
three-dimensional space are not though. In fact, these positions are the networks’ de-
grees of freedom during simulation. However, the networks have additional degrees
of freedom since we allow bending of individual segments. This is implemented by
enabling displacements of the segments’ midpoints during simulation. This approach
neglects all but the first bending mode; however, this one is expected to be dominant
in the absence of thermal fluctuations [40, 41].
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Figure 2.10: Illustration of the two types of networks studied in this chapter. Left:
a triangular network with a lattice constant lMc = Lx/20 and hence ηM = 20. Right:
a random network with a density η = 32 which is equivalent to an average distance
between neighbouring crosslinks lc = L/34.

2.3.4 Generation of networks

The networks are generated by placing a predetermined number of rods in the simula-
tion cell and then crosslinking them to each other according to the description given
in the above subsection. The network’s spatial extent is determined by the cell’s side
lengths Lx and Ly. Since the individual rods’ elasticity is purely elastic, this constitutes
an athermal model, see Section 2.1.2.
By altering the deposition routine, different types of networks can be generated.

i. A triangular geometry can be accomplished by placing filaments with fixed ori-
entations equidistantly in the cell. We call these networks triangular networks or
regular networks.

ii. Adding rods at random positions with random orientations results in a dis-
ordered network geometry. This procedure is known as the Mikado model [40–42].
Throughout this chapter, these networks will be referred to as random networks.

Examples for both types are shown in Fig. 2.10. There are a few important differences
between these as will be pointed out in the following paragraphs.

Triangular networks consist of rods that extend the whole simulation cell. This
ensures a uniform network geometry. The rods’ orientation angles with respect to the
x-axis can be one of three values: ϕ ∈

[
0; π3 ; 2π

3

]
. By placing the rods equidistantly in

the cell with these orientations, we end up with a network that is composed of equilat-
eral triangles with an edge length lMc . This length is the network’s lattice constant and
is specified before starting the generation routine. In combination with the simulation
cell’s size, it determines the network’s density ηM = Lx/l

M
c .

Since three rods intersect in each cross-link, the coordination number of triangular net-
work is 6.
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Random networks are generated using filaments of a fixed length L. Analogously
to regular networks, the average distance between neighbouring crosslinks lc can be
used to classify these networks. We use the average number of crosslinks per rod η as
the dimensionless network density and as a control parameter when generating random
networks. Rods are added into the cell until η reaches a specified value. Then, dangling
ends of the rods – segments that are only connected to one crosslink – are removed as
they would be able to relax freely during simulation and hence not contribute to the
elastic energy. Since each rod will have two dengling ends, and their average length
will be equal to lc, the rods’ average length after removal is L′ = L− 2lc. This is taken
into account by calculating the density as

η =
L′

lc
. (2.74)

Based on experimental data [92], we can estimate a typical range for the network dens-
ity η ∈ [5, 100].
In random networks, the coordination number is usually 4 since cross-links only occur
between pairs of rods. Some crosslinks will have fewer neighbouring points though as
they are located at the end of one or two rods.

Network configuration

After a network is generated, its configuration is defined by the positions of crosslinks
and midpoints in three-dimensional space. In order to calculate the elastic energy in a
deformed network, we need more information though. The details on how this energy
is calculated are described in Section 2.3.7. For the stretching energy, we need to know
which points are connected by a segment and how long this segment was when the
network was generated. Hence, we have each point store the information which points
it is connected to and additionally have each midpoint store the initial length of the
segment it is located on. To calculate the bending energy, triples of points on the same
rod have to be known, so we have the points also store the information which other
points they form such a triple with.

2.3.5 Simulation

Simulations are performed in iterations each of which consists of the same three steps.
First, the shear angle γ is increased by an increment δγ. The second step is only
executed if we are running the simulation in three dimensions. In this case, we perturb
the network in z-direction in order to enable deformation in three dimensions. In the
final step, a conjugate gradient method is used to minimise the elastic energy and
thereby find the ideal network configuration.
The incremental increasing of the shear deformation is achieved by displacing each point
i in the network in x-direction – including points on the boundaries in y-direction. The
latter will be fixed at their their new positions during the minimisation routine though.
The displacements δxi are calculated as

δxi = yi · δγ , (2.75)

with yi being a point’s y-coordinate. To be more precise, we would have to use the
tangent of δγ, but for small shear increments, the above approximation is valid. These
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displacements result in an affine deformation of the network, i.e., the deformation in
each microscopic region is equal to the global deformation. We use this approach be-
cause we can expect the ideal configuration to be near the affinely deformed one, so
we save simulation time by starting from there. A different approach would be to just
move the boundaries to a new position and use that configuration as a starting point
for the minimisation.
Perturbation is necessary for enabling three-dimensional configurations because - as
pointed out in Section 2.3.7 – the gradient calculation does not give us forces perpen-
dicular to the initial plane as long as all z-components are 0. The great advantage of
this is that networks the are generated and deformed in the xy-plane will remain in the
plane. Due to this, we can easily perform simulations in two dimensions. However, if
we want to extend the simulation to the third dimension, we have to compensate for
this by manually perturbing the network in z-direction.
We use two different methods of perturbation – random and predictive perturbation.
For random perturbation, we define a maximum displacement δzmax and each point
in the network – except for those on the boundaries – is displaced in z-direction by
a value δzi that is generated by a random number generator. The δzi are uniformly
drawn from the interval [−δzmax; δzmax]. Each point is displaced several times until the
total elastic energy has increased by a predefined amount relative to the total elastic
energy before perturbation. For the results presented here, this value was in the range
between 1% and 10%.
Predictive perturbation is used when trying to find the wrinkling threshold. From con-
tinuum elasticity theory, we know the wrinkling pattern zCET(x, y) that we can expect
to find at the onset of wrinkling – see Eq. (2.25). Instead of applying random displace-
ments to the points in the network, we set zi = αpredzCET(xi, yi). As a result, we get
the displacements we would expect at the onset of wrinkling according to continuum
elasticity theory. The factor αpred < 1 ensures that we only impose the general form of
the resulting configuration but not its amplitude. Also, if the shear angle is still below
the wrinkling threshold, the network will return to a plane configuration during the
minimisation routine. We can assume that the simulation time required for this will
be shorter when perturbations are small.
The last simulation step is finding the configuration of lowest elastic energy with a
minimisation routine. We use a conjugate gradient method based on the algorithm
described in [93] to vary the points’ coordinates – effectively letting the network relax
into its new equilibrium configuration.

2.3.6 Dimensionless parameters

Simulations were performed using dimensionless parameters. As calibrating values, we
used the following relations:

50µm ≡ 1 , 1 nN ≡ 1 . (2.76)

A typical length for actin filaments in vitro is 20µm [94, 95] which is equivalent to
L = 0.4 in dimensionless units. The Young’s modulus of single actin filaments has been
measured in the range 1.3 − 2.9 Nm−2 [95–97], so we assume Y = 2 · 109 Nm−2 here.
With a diameter of d = 8 nm [23], we can calculate the filaments’ stretching modulus
µ = 100 nN which is equivalent to µ = 100 in dimensionless units. The bending modulus
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can be calculated analogously which yields κ = 4 · 10−25 Nm2. In dimensionless units
this corresponds to κ = 1.6 · 10−7. In combination with the stretching modulus, this
gives us lb = 4 · 10−5 and lb/L = 10−4.

2.3.7 Measurements

Elastic energy

In Section 2.2.2, the calculation of the the elastic energy contributions was introduced
in a continuous model. The stretching energy contribution E(s) and the bending energy
contribution E(b) for a filament of length l are

E(s) =

∫ l

0

µ

2

(
u′(s)

)2
ds , (2.77)

E(b) =

∫ l

0

κ

2

(
φ′(s)

)2
ds , (2.78)

where u′(s) is the local strain and φ′(s) is the local curvature along the contour length
s.
As outlined in Section 2.3.4, a network’s configuration in our simulations is defined by
a set of position vectors representing the crosslinks between rods and midpoints of the
individual segments as well as the connections between these points and the segments’
initial lengths. This is a discrete model, so we have to adjust the calculation of the
elastic energy contributions accordingly.
For deriving the stretching energy contribution E

(s)
ij , we consider a segment between

two points i and j that is stretched or compressed from an initial length l(0)
ij to a length

lij . Assuming small deformations and a uniform local strain, we get

E
(s)
ij =

µ

2

(lij − l(0)
ij )2

l
(0)
ij

. (2.79)

For the bending energy contribution E(b)
ijk, we have to look at triples of neighbouring

points i, j, and k along the same rod. The two segments connecting these points form
an angle ϕijk, and if this angle is small, the square of the curvature of the part of the
rod between the points i and k can be approximated as(

φ′
)2 ≈ 2(1− cosϕijk)

(lij + ljk)2
. (2.80)

Consequently, the bending energy associated with the triple {i, j, k} is

E
(b)
ijk = κ

(1− cosϕijk)

lij + ljk
. (2.81)

Since we consider freely rotating crosslinks, varying the angles between crosslinked rods
does not give a bending energy contribution.
The network’s total stretching energy E(s)

tot is calculated by summing over the stretching
energy contributions of all segments, and the bending energy E(b)

tot is the sum of the
bending energy contributions of all triples of neighbouring points. The total elastic
energy is then

Etot = E
(s)
tot + E

(b)
tot . (2.82)
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Forces

For the conjugate gradient method used to find a network’s ideal configuration given
a specific deformation, we have to calculate the forces acting on each point within the
network. These forces can be derived directly from the energy contributions presented
in the previous section. Details on this can be found in the author’s diploma thesis
[87]. Here, we just restate the results of this calculation.
Stretching deformation of a segment between two points i and j exerts a force F (s)

i,ij

onto point i. With the position vectors ri and rj , this force is

F
(s)
i,ij = −µ

lij − l(0)
ij

l
(0)
ij

lij
lij

. (2.83)

Here, lij = ri− rj is a vector connecting i and j. As in the previous section, lij = |lij |
is the segment’s length and l(0)

ij its initial length.
For the force on a point i resulting from bending, the calculation is different depending
on whether i is the midpoint of a triple jik or an endpoint of a triple ijk.
From the bending energy contribution, we derive the following force acting on an end-
point:

F
(b)
i,ijk = κ

[
1− cosϕijk
(lij + ljk)2

− 1

lij + ljk

(
cosϕijk
lij

+
1

ljk

)]
lij
lij

. (2.84)

For a midpoint, we get

F
(b)
i,jik =κ

1− cosϕijk
(lij + lik)2

(
lij
lij

+
lik
lik

)
− κ 1

lij + lik

[
cosϕijk

(
lij
l2ij

+
lik
l2ik

)
+
lij + lik
lijlik

]
.

(2.85)

We get the total force F i acting on a point i by adding up all the forces resulting from
stretching and bending of its adjoining segments.
From the above calculations, we can see that F i is proportional to a linear combination
of the vectors connecting i to its neighbouring points. Here we see why perturbations are
required when performing three-dimensional simulations. Consider a planar network
in the xy-plane that is deformed in the same plane. All points in the network will have
a z-coordinate 0, so the resulting forces can never have a non-zero z-component, and
the network will remain planar.

Wavelength

From elasticity theory, we know the wrinkling pattern of a sheared thin membrane:

zCET(x, y) = A sin

(
π
y

Ly

)
sin

(√
2π
y − x
λ

)
, (2.86)

compare Eq. (2.25). The zeros of zCET(x, y) form parallel lines in the xy-plane at an
angle of π/4 to the x-axis. The distance between these lines is λ/2. We can utilise this
fact to determine the wavelength of a wrinkled network.
First, we find all segments that intersect with the xy-plane and calculate the intersection
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points. Next, we use least-square fits to interpolate the points. Finally, we identify the
average distance between the resulting lines and multiply it by 2 to get the wrinkles’
wavelength λ.
This method can not only be used to determine λ but also to help identify wrinkling
patterns. If the intersection points exhibit a disordered distribution instead of forming
a pattern of parallel lines, the configuration is not wrinkled.

Amplitude

For measuring the amplitude of a wrinkled network, we also make use of the wrink-
ling pattern zCET(x, y) expected in elasticity theory for a sheared elastic membrane.
Integrating z2

CET(x, y) over the membrane’s surface area LxLy yields∫ Lx

0

∫ Ly

0
A2 sin2

(
π
y

Ly

)
sin2

(√
2π
y − x
λ

)
dx dy = A2LxLy

4
. (2.87)

We can calculate an analogous quantity for networks by summing the squares of the
z-components zi of all points in the network. With the total number of points N , each
point gets weighted with the factor LxLy/N :

LxLy
N

N∑
i=1

z2
i . (2.88)

Now, we assume that the two expressions are equal for a wrinkled network and a
wrinkled membrane when λ and A are equal. Solving for A, we get a formula for the
amplitude of the wrinkling pattern in a sheared network:

A =

√√√√ 4

N

N∑
i=1

z2
i . (2.89)

Critical shear angle

When measuring a network’s critical shear angle γc, we increase γ in discrete increments
δγ, apply predictive perturbation, and then let the minimisation routine find the equi-
librium configuration. Predictive perturbation was already described in Section 2.3.5.
From elasticity theory, we expect the wavelength λ1 = Lx/

√
2 – see Section 2.2.4 –

and a wrinkling pattern zCET(x, y) according to Eq. (2.25) at the onset of wrinkling.
Hence, we perturb the network accordingly to minimise computation time.
The most basic method of determining γc is identifying the smallest value γ as γc for
which the equilibrium configuration is wrinkled. However, since we have discrete in-
crements δγ, the resulting error will be approximately δγ.
A more precise method can be derived from the form of the wrinkle amplitude near γc.
When deriving the critical shear angle γc for wrinkling in elastic membranes, we found

A2 ∝ (γ − γc) , (2.90)

see Section 2.2.3. We can utilise this expression to determine γc in regular networks by
extrapolating A2 as a function of γ. The zero of this extrapolation gives us γc. With
this method, we do not limit γc to values dictated by the incremental increase of γ due
to the simulation routine.
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Nonaffinity

In Section 2.1.4, several methods for measuring nonaffinity were introduced. One of
these was the calculation of a parameter ∆A measuring the the amount of deviation
between a network’s deformation and a purely affine deformation [43]. Since wrinkling
causes out-of-plane deformations which are necessarily non-affine, it is unclear if such
a parameter yields useful information in wrinkled networks. Instead, we choose an
energy approach similar to the one suggested by Åström et al. [59]. We use the ratio
E

(b)
tot/E

(s)
tot of the total bending and stretching energy contributions E(b)

tot and E(s)
tot as an

indicator for nonaffinity. As explained in Section 2.3.7, we are able to measure these
contributions separately.
In control simulations of random networks in two dimensions, we found that the ratio
E

(b)
tot/E

(s)
tot has a maximum that coincides with a maximum in ∆A. Since such a max-

imum in ∆A was found to indicate the transition from a bending dominated regime
to a stretching dominated one in sheared networks [43], we can use the energy ratio
for identifying this transition. The major advantage of the ratio of the energy con-
tributions is that its definition does not automatically entail peaking at the onset of
wrinkling which could distort our measurements.

2.4 Results for sheared networks

The following section presents the results from simulations of regular and random
networks under shear. The results are evaluated and discussed with regard to the
linear elasticity theory introduced in Sections 2.2.3 and 2.2.4. As mentioned in Section
2.1.5, most of this material was already published in an article [86].
Unless otherwise specified, simulations were performed with simulation cells of size
Lx = Ly = 1.5L.

2.4.1 Wrinkle formation

As predicted by elasticity theory for thin membranes, we find that sheared networks
exhibit a buckling instability. Shear angles γ larger than a critical value γc result in
wrinkled configurations. An example is shown in Fig. 2.11. Wrinkles form at an angle
of π/4 to the shearing direction which is the x-axis. The occurring wrinkling patterns
are in most cases in good agreement with the displacement field

zCET(x, y) = A sin

(
π
y

Ly

)
sin

(√
2π
y − x
λ

)
, (2.91)

expected from continuum elasticity theory, compare Eq. (2.25). Here, zCET(x, y)
denotes the displacement perpendicular to the xy-plane of a network point with co-
ordinates (x, y). Only discrete values

λn =
1

n

Lx√
2
, n = 1, 2, . . . , (2.92)

are allowed for the wavelength due to periodic boundary conditions, see Section 2.2.4.
The above points are true for both regular and random networks. However, the dis-
ordered nature of random networks can make it difficult to identify wrinkling patterns
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Figure 2.11: Example snapshots of a wrinkled random network at shear angles γ = 0.06
(bottom) and γ = 0.12 (top). The network has the spatial dimensions Lx and Ly, a
density η = 54, and a bending rigidity lb/L = 2.5 · 10−3. Wrinkles of wavelength λ
form at an angle of π/4 to the shearing direction, which is parallel to the x-axis. The
wrinkling pattern closely resembles the prediction from elasticity theory illustrated in
Fig. 2.7. Colour coding indicates the dimensionless out-of-plane displacement z/λ
demonstrating that the wrinkles’ amplitude increases with the shear angle. Reprinted
from [86].

at low densities η . 30. In this range of η, random networks tend to have regions of
low local density in which the wrinkling pattern is not well defined due to the lack
of network points. Therefore, we limit our simulations to densities η > 30 in random
networks.

Critical shear angle

For the critical shear angle γc, we expect

γc =
291π2

8L2
y

κ

µ
=

291π2

8L2
y

l2b , (2.93)

as derived in Section 2.2.4 for networks with Lx = Ly. In order to test this, we
performed simulations according to the protocol presented in Section 2.3.7 – using
predictive perturbations with the wrinkling pattern we expect at the onset of wrinkling.
We used regular networks with densities ηM = {20, 30, 50} and random networks with
η = 47. For the bending rigidity, we used values in the range lb/Lx ∈ [1.18 · 10−4, 1.18 ·
10−2] in regular networks and lb/Lx ∈ [5.27 · 10−4, 5.27 · 10−3] in random networks.
We deviate from the definition lb/L for the bending rigidity introduced in Section
2.3.2 here because we want to compare random and regular networks. However, L is
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Figure 2.12: Double logarithmic plot of the critical shear angle γc as a function of
bending rigidity. Simulation data of regular and random networks (squares) and cor-
responding least square fits γc ∝ lαb (dashed lines) are compared to the prediction from
linear elasticity theory (solid black line) as given in Eq. (2.93). The simulation results
yield exponents α that are close to the predicted value.

not properly defined in regular networks since the rods extend the whole simulation
cell, so we replace L with Lx. For random networks, we simulated 10 different network
realisations for each bending rigidity to average out effects that may result from specific
configurations.
For identifying γc, two different methods were used. In regular networks with large
enough bending rigidities, we find a proportionality

A2 ∝ (γ − γc) , (2.94)

allowing us to extrapolate A2 to 0 as explained in Section 2.3.7. This proportionality
does not remain valid when bending rigidities become too small, so we only consider val-
ues lb/Lx for the evaluation that are large enough to allow the described extrapolation.
In networks with ηM = 20, the smallest bending rigidity considered is lb/Lx = 5.27·10−4,
for ηM = 35, it is lb/Lx = 7.45 · 10−4, and for ηM = 50, it is lb/Lx = 1.18 · 10−3.
In random networks, we do not find a similar proportionality. Instead, the amplitude
jumps from 0 to a finite value. Therefore, we have to fall back on the less precise
method of identifying the smallest shear angle yielding a wrinkled configuration during
simulation as γc.

The results for γc are plotted in Fig. 2.12 with the predicted result from Eq. (2.93)
for comparison. For regular networks, we find good agreement with the prediction.
Fitting the simulation results with a function

γc ∝ lαb , (2.95)

we find

α(ηM = 20) = 1.95± 0.02 , (2.96)
α(ηM = 35) = 1.93± 0.02 , (2.97)
α(ηM = 50) = 1.97± 0.03 . (2.98)

These exponents are close to the predicted value αLET = 2 – compare Eq.(2.71).
For random networks with η = 47, a similar fit of the average γc yields an exponent
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α = 1.90 ± 0.07 which is a bit lower than in regular networks but still close to the
predicted value.
We can conclude that wrinkling is a universal feature of sheared semiflexible polymer
networks because the critical shear angle in random and regular networks is well pre-
dicted by continuum elasticity theory. This is true for all evaluated bending rigidities.
Varying the density in regular networks does not appear to have a significant effect.
Since the critical shear angles are small, shear-induced wrinkling is a phenomenon that
is relevant in all applications in which such networks are subject to shear stresses.
It should be noted that we cannot be certain if these findings are valid in realistic
actin networks though. First of all, we only simulated random networks of one specific
density. More importantly, the evaluated bending rigidities in random networks are
larger than the estimate we gave for realistic F-actin in Section 2.3.6. Even though the
simulation data does not indicate this, it is possible that networks deviate from linear
elasticity theory when the bending rigidity becomes too small.

Hysteresis effects

When applying random perturbations instead of predictive perturbations to the sheared
networks in our simulations, larger shear angles are required to induce wrinkling. In
some cases, the difference between the two values is as large as two orders of magnitude.
A direct comparison of the total elastic energies Ewr in wrinkled networks and Epl in
planar networks at shear angles γ > γc reveals that the wrinkled configurations are
energetically favourable. From this, we can draw two conclusions. First, it validates
the application of predictive perturbations in order to find the critical shear angle.
Secondly, it suggests that the planar and the wrinkled configuration are two minima
in a high-dimensional energy landscape that are separated by an energy barrier. The
latter point is supported by the observation that increasing the amplitude of random
perturbations decreases the shear angle necessary to induce wrinkling. Larger perturb-
ations correspond to a larger elastic energy in the network which would make it easier
for the system to cross the energy barrier.
Another finding that advocates the existence of such an energy barrier can be made

when reversing the simulations. Instead of starting from a planar network and in-
creasing γ until we get a wrinkled configuration, we can start with a sheared network
that is already wrinkled and let it relax by setting δγ < 0. Doing this, we find that
the networks remain wrinkled at shear angles below γc even though the planar state
is energetically favourable over the wrinkled state as a comparison of Ewr and Epl
shows. This effect in combination with the delayed wrinkling during simulations with
increasing γ can be understood as a kind of hysteresis. An energy barrier between the
planar and the wrinkled configuration would explain this behaviour. An example plot
of illustrating the hysteresis by comparing Ewr and Epl in a specific network can be
found in Fig. 2.13.

Energy reduction

In the previous section, we introduced the total elastic energies Ewr and Epl in the
wrinkled and planar configuration of a network. For shear angles below γc, we have
Ewr > Epl while for γ > γc, the wrinkled configuration becomes energetically favour-
able. In order to measure the energy reduction due to wrinkling as a function of γ, we

40



2.4. RESULTS FOR SHEARED NETWORKS

Figure 2.13: Ratio of the total elastic energies Ewr in wrinkled networks and Epl in
planar networks as a function of the shear angle γ in random networks with η = 47
and lb/L = 2.50 · 10−3. Error bars indicate standard deviations due to averaging over
10 network realisations. The fact that networks remain in a planar configuration even
though the wrinkled state is energetically favourable suggest the existence of metastable
configurations. More evidence for this is found in networks that are preconditioned with
the wrinkled configuration found in a regular network (here at γ = 0.02) This lowers
the elastic energy that is even further demonstrating that the wrinkled state found in
standard simulations is not the equilibrium configuration.

performed simulations of random networks – once allowing three-dimensional config-
urations and once enforcing two-dimensional configurations by omitting perturbation
as described in Section 2.3.5. Random perturbations were used for three-dimensional
simulations. We simulated networks with densities η = {32, 39, 47, 54} and a bending
rigidity lb/L = 2.50 · 10−3. For each density, 10 network realisations were simulated.
The obtained results were confirmed in sample checks for regular networks in analogous
simulations.
The resulting ratios Ewr/Epl as a function of γ are plotted in Fig. 2.14. We find

that wrinkling reduces the networks’ total elastic energy up to 20% at shear angles just
above the onset of wrinkling. The energy difference is larger in networks with larger
density. The energy difference can be explained as a result of the different mechanisms
by which the networks avoid compressive stress in two and three dimensions. For small
bending rigidities lb/L� 1 as we have in our simulations, a rod that is contracted due
to compressive stress can bend in order to reduce its elastic energy. In two-dimensional
simulations, only in-plane bending is allowed which limits the length scale of bending
to the length of individual segments which is in the range of lc – the average distance
between neighbouring crosslinks. In three-dimensional simulations, out-of-plane dis-
placements are allowed which result in wrinkling. The length scale of bending in this
case is the wrinkles’ wavelength which is in the order of the system size. Hence, bend-
ing in wrinkled networks occurs on larger length scales than in planar networks which
means that the rods’ curvature due to bending is smaller in wrinkled networks than in
planar networks. Since a rod’s bending energy is inversely proportional to the square of
the curvature, less bending energy is required in wrinkled networks to avoid stretching
energy resulting from compressive stress.
At larger shear angles, the ratio Ewr/Epl seems to approach 1 with increasing γ. This
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Figure 2.14: Ratio of total elastic energies Ewr/Epl as a function of γ in wrinkled and
planar networks with η = {32, 39, 47, 54} and lb/L = 2.50 · 10−3. Error bars indicate
standard deviations due to averaging over 10 network realisations. Wrinkling yields
an energy reduction of up to 20% near the onset of wrinkling, and this energy gain
increases with density. At large shear angles, the energy ratio approaches 1 which
indicates nonlinear elasticity.

is an example of non-linear elasticity in semiflexible polymer networks. In a thin mem-
brane following linear elasticity theory, the ratio would approach

lim
γ→∞

Ewr

Epl
≈ 1 + ν

2
. (2.99)

For a derivation, see Section 2.2.3. A possible explanation for the different behaviour
of networks is strain stiffening as described in Section 2.1.3. This effect occurs at large
shear angles and leads to an effective increase in the shear modulus G. Strain stiffening
has been explained to result from the networks’ transition from a bending dominated
regime to a stretching dominated one. We find that wrinkling induces this transition
in our networks, see Section 2.4.3. As explained above, the energy difference in planar
and wrinkled networks results from their different bending energies. Therefore, as
stretching becomes increasingly dominant, the bending energies become less relevant,
and the networks’ total elastic energies approach each other.
Despite this deviation, the energy reduction is still relevant since the networks’ elastic
properties are derived from their elastic energy as a function of the applied stresses.
Therefore, constraining networks to in-plane deformations in simulations will modify
the elastic properties and may yield results that differ from real sheet-like materials
that can deform in three dimensions.

Metastability in random networks

The hysteresis effects described in Section 2.4.1 suggest that sheared networks can have
metastable configurations besides their equilibrium configuration. Additional evidence
for this can be found in random networks simulated with random perturbations.
The wrinkling patterns occurring in these simulations are not always in good agree-
ment with the wrinkling pattern zCET(x, y) expected from continuum elasticity theory
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as given in Eq. (2.25). When this is the case, we find that we can significantly lower
the elastic energy by a method we call ’preconditioning’. For this, we take a regular
network with the same density, elastic properties, and shear deformation as the random
network in question and transfer the regular network’s equilibrium configuration to the
random network before running the minimisation routine. In a sense, this can be un-
derstood as a special case of predictive perturbation where we use a regular network’s
wrinkling pattern as the perturbation pattern. Even when the shear angle is further
increased, the preconditioned network remains at a lower elastic energy compared to
the network that is perturbed randomly. Since the configuration in the latter is still
stable, this indicates the existence of several local minima in the energy landscape cor-
responding to different metastable configurations. Even though these configurations
may only differ slightly, a transition from one to the other appears to be difficult for
the network – possibly again due to an energy barrier.
There is a second important conclusion we can draw from the simulations of pre-
conditioned networks. Since preconditioning always lowers the elastic energy, we can
conclude that the equilibrium configuration in sheared networks is the same for reg-
ular and random networks. This is noteworthy because it means that the networks’
microstructure does not influence the resulting wrinkling patterns.

2.4.2 Wrinkle properties

Wavelength

In Section 2.2.4, we used linear elasticity theory to derive the wavelength λ in sheared
networks at large shear angles γ. According to Eq. (2.68), we have λ as a function of
γ:

λ(γ) =

(
72π2L2

y

κ

µγ

)1/4

. (2.100)

As pointed out though, this expression cannot remain valid in systems with periodic
boundary conditions as λ is restricted to discrete values

λn =
1

n

Lx√
2
, n = 1, 2, . . . . (2.101)

Instead of a decreasing continuously with γ, the wrinkles’ wavelength will be the value
λn that minimises the network’s elastic energy for a given shear angle. If the network’s
deformation is correctly described by linear elasticity theory, we can expect λn to be
close to the predicted continuous value λ(γ).
This kind of agreement can be observed in simulations of regular networks with random
perturbations. For the simulations, densities in the range ηM ∈ [20, 50] and bending
rigidities lb/Lx ∈ [3.33 ·10−4, 1.67 ·10−3] were used. Within the limits of discretisation,
λ follows the prediction from Eq. (2.100). This indicates that regular networks are well
described by continuum elasticity theory.
For random networks, this is not the case as they occasionally exhibit wrinkling patterns
z(x, y) deviating from the expected pattern according to continuum elasticity theory
zCET(x, y), see Eq. (2.25). However, as pointed out in Section 2.4.1, we find that the
occurring wrinkling patterns do not actually represent the energetically ideal config-
urations. Preconditioning the random networks with the wrinkling patterns found in

43



CHAPTER 2. SHEARED SEMIFLEXIBLE POLYMER NETWORKS

comparable regular networks would yield an energetically more favourable configura-
tion. Since this configuration is in agreement with elasticity theory within the limits
of discretisation, we can conclude that the same is true for random networks.
The above findings imply that the networks’ microstructure does not affect the validity
of elasticity theory regarding wrinkling wavelength. This is useful for measuring elastic
properties of sheet-like materials in experimental setups. According to Eq. (2.49),
measuring the wavelength in such a material yields the ratio of bending to Young’s
modulus B/Y2. A similar method has been used in experiments with polystyrene films
for measuring their elasticity [72]. In case of networks, measuring λ would yield the
ratio of the constituting rods’ bending and stretching modulus κ/µ according to Eq.
(2.100).

Amplitude

We measured the wrinkles’ amplitude A in regular networks with densities in the range
ηM ∈ [20, 50] and bending rigidities lb/Lx ∈ [3.33 · 10−4, 1.67 · 10−3]. To enable out-of-
plane deformations, random perturbations were applied.
As outlined in Section 2.2.4, the wrinkles’ amplitude in a network at large shear angles
should follow

A =
1√
3π
γ1/2λ , (2.102)

according to linear elasticity theory, compare Eq. (2.72).
In our simulations, we find a similar dependence – see Fig. 2.15. Up to a maximum
shear angle γmax, the wrinkles’ amplitude is slightly larger than the predicted value but
still proportional to γ1/2. The cause of the larger amplitudes is not entirely clear – they
could result from nonlinear effects, be caused by boundary effects that are relevant due
to the small system size, or simply be attributed to the approximations made when
deriving the prediction for A such as the vanishing compressive stress – see Section
2.2.3.
Assuming the amplitude follows a linear function

A/λ =
1√
2π

(γ(1− ν))1/2 (2.103)

according to Eq. (2.43), we can fit the simulation data treating the Poisson ratio ν
as a fit parameter. Doing this, we get the best agreement for ν = −0.127. However,
there is no obvious reason why networks should deviate from linear elasticity theory in
this aspect. This is especially true since negative Poisson ratios are extremely rare in
natural materials [98].
For γ > γmax, the amplitude decreases with increasing shear angles and therefore exhib-
its a behaviour that completely contradicts linear elasticity theory. Hence, γmax gives
us an estimate for the shear angles up to which we can neglect the microstructure in
regular networks and treat them as continuous materials approximately following lin-
ear elasticity theory. A similar amplitude-strain dependence was observed in stretched
polyethylene sheets [76] and simulations of stretched hyperelastic sheets [75]. A possible
explanation for this effect was given by Healey et al. [99] identifying a “geometrically
nonlinear coupling between the large in-plane strain and out-of-plane deflection” [76]
as the cause.
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Figure 2.15: Rescaled amplitude Ã/λ as a function of the rescaled shear angle γ̃ in
regular networks with ηM ∈ [20, 50] and lb/Lx ∈ [3.33 · 10−4, 1.67 · 10−3]. Up to a
maximum shear angle, the amplitude approximately follows the prediction from linear
elasticity theory (black line) as given in Eq. 2.102. Beyond the maximum shear angle,
the amplitude decreases with increasing γ which is evidence for nonlinear elasticity.

Evaluating our simulation results, we find an empirical relation

γmax ∝
(
lb
lMc

)2
√
Ly
λ

=: ζ . (2.104)

Rescaling shear angles according to γ̃ = γζ−1 and amplitudes according to Ã = Aζ−1/2

results in data collapse onto a master curve for the rescaled amplitude Ã as a function of
the rescaled shear angle γ̃ as shown in Fig. 2.15. In rescaled units, we find a numerical
value of γ̃1/2

max ≈ 5.9 for the maximum shear angle1.
Entering γmax ∝ ζ into the expression we have for the wrinkles’ wavelength and solving
for λ, we get

λ(γmax) ∝ L3/7
y lMc

4/7
. (2.105)

Since λ decreases with increased shear angle, this gives us the minimum wavelength up
to which linear elasticity theory describes the wrinkles’ amplitude. Since this minimum
wavelength only depends on the networks’ lattice constant lMc and not on the elastic
properties, the break-down of linear elasticity theory suggests that the networks’ mi-
crostructure becomes relevant at shear angles γ > γmax.

In similar simulations with random networks, the resulting wrinkling patterns exhibit
amplitudes that are not in agreement with Eq. (2.102) – not even at small shear angles
as was the case for regular networks. We might assume that the wrinkling patterns
deviating from linear elasticity theory in random networks are the cause for this effect.
However, preconditioning does not improve the agreement between simulations and
prediction either. Instead, we notice that the wrinkles’ amplitude in preconditioned

1Due to a more accurate evaluation of the simulation data, the value given here is slightly larger
than in the previous publication [86]

45



CHAPTER 2. SHEARED SEMIFLEXIBLE POLYMER NETWORKS

Figure 2.16: Rescaled amplitude Ã/λ as a function of the rescaled shear angle γ̃ in
random networks with η = 39 and lb/L = 2.5 · 10−3. The networks were precondi-
tioned at different shear angles γ0 indicated by different colours; dashed lines indicate
reverse simulations. The amplitudes in these networks do not agree with the prediction
from linear elasticity theory (black line) as given in Eq. 2.102. Instead, the wrinkles’
amplitude appears to be dependent on γ0 which indicates the existence of multiple
metastable configurations

networks is highly dependent on the initial state at which the preconditioning was
performed, see Fig. 2.16 for an illustration. The networks corresponding to the plotted
data were all preconditioned with a wrinkling pattern of the same wavelength – only
at different shear angles γ0. This indicates that several metastable configurations with
different amplitudes at the same wavelength exist in random networks. Recalling the
evidence for the existence of multiple metastable configurations in Section 2.4.1, this
explanation seems plausible.

2.4.3 Deformation mode

We simulated the same random networks once allowing out-of-plane deformation and
once restricting them to two dimensions in order to identify the influence of wrinkling
on the dominant mode of deformation. As outlined in Section 2.1.3, networks can
either be bending dominated or stretching dominated, and a transition between the
two regimes is associated with the onset of nonlinear behaviour such as strain stiffen-
ing. As described in Section 2.3.7, we use the ratio of bending and stretching energy
contributions E(b)

tot/E
(s)
tot in the networks to identify the dominant deformation mode.

We used networks with densities η = {32, 39, 47, 54} bending rigidities lb/L = {5.27 ·
10−4, 1.67 · 10−3}. Out-of-plane deformations were enabled using random perturba-
tions.
We find that wrinkled networks enter the stretching dominated regime at smaller strains
than their two-dimensional counterparts. This is illustrated in Fig. 2.17. In fact, re-
verse simulations suggest that wrinkled networks are always stretching dominated. As
explained in Section 2.4.1, reverse simulations start from a sheared network that is
already wrinkled and incrementally reduce γ. During this procedure, networks remain
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Figure 2.17: Ratio of bending and stretching energy contributions E(b)
tot/E

(s)
tot in random

networks with η = 39 and lb/L = 7.91 · 10−4 for different simulation modes. Error bars
indicate standard deviations due to averaging over 10 network realisations.Negative
slope indicates that the network is stretching dominated which occurs at smaller shear
angles in three-dimensional simulations due to wrinkling. Reverse simulations show
that wrinkled networks are always stretching dominated.

wrinkled even for γ < γc. The negative slope of E(b)
tot/E

(s)
tot in the entire range of sim-

ulated shear angles indicates that wrinkled networks are always stretching dominated,
see Fig. 2.17 for an example.
We can conclude that wrinkling significantly influences a network’s mode of deform-
ation. Not only does it induce the transition to the stretching dominated regime at
lower shear angles compared to networks that are restricted to two dimensions, but our
results also indicate that wrinkled networks are always stretching dominated.

2.5 Conclusion and discussion

This chapter presented the author’s work on the elastic response of semiflexible poly-
mer networks with the main focus of wrinkling due to shear strain. In Section 2.2.3,
elasticity theory was used to describe wrinkling in sheared membranes. Assuming linear
elasticity, it was possible to derive predictions for the critical shear angle γc at which
membranes start wrinkling, the wrinkles’ wavelength and amplitude at large strains,
and the membranes’ elastic energy at large strains. These expressions were applied to
networks of thin elastic rods in Section 2.2.4 yielding the following predictions: the
critical shear angle is proportional to the square of the bending rigidity parameter lb:
γc ∝ l2b . For the wrinkles’ wavelength λ, the theory predicts λ ∝ l

1/2
b γ−1/2 with the

shear angle γ. The wrinkles’ amplitude is a function of λ and γ: A ∝ γ1/2λ.
The above predictions were tested using numerical simulations as described in Sec-
tion 2.3. Implementing a two-dimensional athermal model, semiflexible polymers were
modelled as thin elastic rods. Intersections of these were identified as permanent, and
freely rotating crosslinks and the segments’ midpoints were treated as additional de-
grees of freedom to enable bending deformations. Different generation routines were
used to generate two types of network geometries: regular triangular networks and ran-
dom networks. During simulation, three-dimensional configurations were enabled by
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positional perturbations of the crosslinks and midpoints. Simulations were performed
at various network densities in the typical range of densities found in actin networks.
The individual rods’ bending rigidity was also varied ranging from values comparable
to actin filaments to larger values which would be expected in bundled networks.
In Section 2.4, the simulation results were presented and compared to the theoretical
predictions. Sheared networks exhibited a wrinkling instability at a critical shear angle
γc. Greater shear angles would result in the formation of wrinkles at an angle of π/4
to the shearing direction. Both aspects are in agreement with elasticity theory for thin
membranes. Wrinkled networks had a significantly lower elastic energy than networks
that remained planar. We found that the amount of energy reduction could be as large
as 20% depending on the networks’ density. The energy reduction would be maximal
for shear angles slightly larger than γc and decrease at large shear angles. The energy
reduction is relevant since a material’s elastic moduli can be expressed as derivatives of
its elastic energy, so wrinkling should have a significant effect on the networks’ elastic
properties.
For the critical shear angle, the simulations yielded a dependence on the rods’ bend-
ing rigidity γc ∝ lαb with α = 1.90 ± 0.07 for the studied random networks and
α ∈ [1.93 ± 0.02, 1.97 ± 0.03] for the studied regular networks. These values are close
to the predicted value αLET = 2. Since the prediction was derived from a theory for
thin membranes with a linear elastic response, this indicates that the networks’ elastic
response can be described by this theory at small strains. In particular, this means
that their discrete microstructure and nonlinear elastic effects can be neglected.
Another point in which theory and simulation results are in agreement is the wrinkles’
wavelength λ. Within the limits of discretisation outlined in Section 2.2.4, λ follows
the prediction. However, there are multiple aspects in which the simulation results are
not in agreement with the theory.
For the wrinkles’ amplitude A, the simulation results deviated from the theoretical
predictions qualitatively or quantitatively depending on a number of factors. In reg-
ular networks at small strains, the measured amplitudes agreed qualitatively with the
theory but were slightly larger. Above a maximum strain, A started decreasing with
increasing strain in contrast to the steady increase predicted by the theory. Since a
similar behaviour has been reported in stretched sheet-like materials in experiments [76]
and simulations [75], this phenomenon cannot be attributed to the networks’ discrete
microstructure. Instead, it is more likely that this is a nonlinear effect. In networks
with a random microstructure, A did not even agree qualitatively with the theoretical
predictions. For specific values γ and λ, the networks exhibited different wrinkle amp-
litudes depending on their initial state.
Another example for the breakdown of linear elasticity theory is the networks’ elastic
energy at large shear angles. According to the theory, the ratio of the total elastic
energies in wrinkled and planar networks should approach a constant value with in-
creasing γ. In the simulations, the energies appeared to become equal at large shear
angles instead. The most likely explanation for this is strain stiffening – a nonlinear
effect that causes the networks to become increasingly resistant to deformation with
increasing strain, see Section 2.1.3.
Since the critical shear angle γc and the wrinkles’ wavelength λ exhibited better agree-
ment with the theoretical predictions, we concluded that these are more suitable
for measuring the elastic properties of semiflexible polymer networks in experimental
setups. In experiments with other sheet-like materials, a similar approach for determ-
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ining the material’s elasticity by measuring λ has been applied successfully [72].
Another aspect that is of interest with regard to nonlinear elasticity is the dominant
mode of deformation in networks. As described in Section 2.1.3, nonlinear effects such
as strain stiffening are associated with a transition from a bending dominated regime at
small strains to a stretching dominated regime at large strains. This was explained as a
structural effect of the networks rather than resulting from their components’ elasticity
[43, 46, 61]. In the simulations presented here, a separate analysis of the bending and
stretching energy contributions indicated that wrinkling causes an immediate trans-
ition into the stretching dominated regime, see Section 2.4.3. This is also a structural
effect and independent of the network components’ properties.
Finally, the simulation results indicated the existence of metastable configurations in
random networks but not in regular networks. Near γc, we found that the networks
could remain in a planar configuration even though wrinkling was energetically favour-
able and vice versa. Also, measurements of the amplitude in preconditioned random
networks indicated the existence of multiple metastable configurations with the same
wavelength but different amplitudes. In combination with the observations regarding
the wrinkles’ amplitude, this leads to the conclusion that the networks’ microstructure
can have an influence on their elastic properties.
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Chapter 3

Collective behaviour of active rods

3.1 Fundamentals of active matter

In physics, the term ‘active matter’ refers to materials or systems consisting of in-
dividual units that are able to turn available energy into propulsion [14–16, 18, 19].
Systems like this can be found in a large variety of realisations and on a wide range of
length scales. In nature, the active units are usually alive – forming macroscopic active
systems such as flocks of insects, fish, birds, sheep [102–105], or microscopic ones like
swarms of bacteria, cell layers, and the cytoskeleton [14, 15, 18, 27, 105–107]. Two ex-
amples for active matter at different length-scales are shown in Fig. 3.1. The variety of
different manifestations of active matter is one reason why this is an interesting subject
of research within biological physics – understanding active matter in general should
help to understand biological systems [15]. Another reason is that active matter is rel-
evant for a number of problems in nanotechnology such as transport and organisation
of nanoscale components [16]. Artificial swimmers and engines on the same length scale
are required for those tasks, and a promising approach to designing these is imitating
their biological counterparts [16, 17]. Finally, active matter is also interesting as an
example for nonequilibrium systems which have been of growing interest in the field of
statistical physics recently [19].
Active materials can also be man-made and consist of non-living components, e.g., col-
loidal particles on a vibrating plate [108–114], nanoscale artificial swimmers in a fluid
[115–123], or motility assays of biofilaments [124–129]. Another class of active systems
are agent-based simulations of pointlike and spherical [116, 120, 121, 124, 130–139] or
rodlike particles [106, 110, 125, 126, 140–150].
Even though the above systems are fundamentally different on their components’ level,
they exhibit a wide range of uniform phenomena that can be observed regardless of
these differences. Many of the observed effects include some kind of orientational order
ranging from the formation of static structures such as asters [133, 140, 142, 146, 151]
and vortices [140, 151] to collective movement of many particles in bands [125–127,
131–133, 152], lanes [133, 141, 143, 147, 148], clusters [28, 106, 108, 125, 127, 130, 132,
133, 138, 141–144, 147–150], and even circular structures [108–110, 124–126, 137, 153–
155]. Another class of effects includes different types of density inhomogeneities such
as giant number fluctuations [28, 108, 111, 116, 134, 141, 156] and phase separation
[112, 114, 116, 121, 122, 133–136, 138, 147, 148, 157–160]. Of course, these categories
are not necessarily exclusive.
The following section will introduce some fundamentals that are required for studying
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Figure 3.1: Two examples for naturally occurring active matter systems. Left: a school
of striped eel catfish, photo by Sylke Rohrlach (CC BY-SA 2.0) [100], right: swarming
in a colony of P. mirabilis bacteria, adapted from Ref. [101]. Despite the size difference,
both systems exhibit similar collective behaviour in that their constituents align and
form dense aggregates.

active matter in general and rodlike particles – which are the main focus of this work
– in particular. The section will be concluded by a description of the focus and outline
of this chapter in Section 3.1.6.

3.1.1 Rodlike particles

Many biological systems can be classified as active matter – materials in which free
energy is consumed and converted into movement. One common property of biological
active matter systems is that they consist of elongated particles [161]. The bacteria
introduced in Section 1.2.2 were selected because they are candidates for constituting
active systems and are examples of rodlike particles since their shape is approximately
cylindrical. To account for their differing measurements, we introduce here a parameter
that specifies the particles’ geometry. This parameter is the aspect ratio a which is
defined as the ratio of the particle’s length L and its diameter d:

a =
L

d
. (3.1)

The larger the aspect ratio the longer a particle is compared to its width. With the
values given in Section 1.2.2, we can calculate the aspect ratios of the introduced bac-
teria. E. coli has an aspect ratio of about 4 while for B. subtilis, a ≈ 6− 11.

In order to constitute an active material, the particles have to be motile. The bac-
teria E. coli and B. subtilis are capable of self-propulsion due to their flagella. For
this work, quasi-two-dimensional systems are especially relevant. These can be imple-
mented using the aforementioned bacteria by confining them in a thin film of liquid
[143, 162] or studying them on a two-dimensional surface [28, 106]. Another com-
mon experimental setup are motility assays of biofilaments [124–129]. Details on these
experimental realisations can be found in Section 3.2.3.
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Figure 3.2: The dimension-
less Lennard-Jones potential
ṼLJ(r̃) = 4

[
r̃−12 − r̃−6

]
with

r̃ = rσ−1 being the dimen-
sionless distance. The poten-
tial has its zero at r̃ = 1
and a minimum value −1 at
r̃ = 21/6. This corresponds
to a minimum value of −ε at
r = 21/6σ in the nonscaled po-
tential VLJ(r) described in the
text.

3.1.2 Van-der-Waals interaction

In biological systems, many interesting properties arise from the interplay between a
large number of individual particles such as proteins, biofilaments, cells and bacteria.
To understand this interplay, it is necessary to know the underlying interactions. Since
the particles usually do not carry a charge, electrostatic interactions do not occur, and
the van-der-Waals interaction is the dominant one. This section gives a brief summary
of this type of interaction. Unless indicated otherwise, the information presented here
was taken from the books “Festkörperphysik” by Rudolf Gross and Achim Marx [163]
and “Festkörperphysik” by Siegfried Hunklinger [164].
In soft matter systems, the constituents are typically macromolecules or even bigger
molecular compounds ranging from proteins over biofilaments to cells and bacteria.
These objects are solid, so they cannot penetrate each other. The underlying cause
for this is the Pauli exclusion principle which implies an energy cost for overlapping
electron orbitals of two objects. This can be well approximated by a repulsive potential
proportional to r−12 with r being the distance between the objects.
Besides this repulsive interaction, there is also an attractive interaction present in the
form of van-der-Waals forces. Compared to other types of binding mechanisms in solid
matter like ionic bonds or covalent bonds, the van-der-Waals interaction is weak on the
level of single atoms or molecules with a typical bond energy of 0.1 eV per atom. On
a macroscopic level, it can be very effective though as one can see from geckos’ feet
which are probably the most prominent example for the utilisation of van-der-Waals
forces in nature [165].
The van-der-Waals force is generated by induced electric dipoles due to fluctuating
charge distributions in the involved atoms. The resulting attraction can be described
via a potential that is proportional to r−6. Combining this with the repulsion caused
by the Pauli exclusion principle gives the Lennard-Jones potential

VLJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]
. (3.2)

This is an empiric potential describing the interaction between neutrally charged atoms
or molecules. The Lennard-Jones potential includes two parameters: ε defining the
depth of the potential and thereby its strength and σ providing the length scale. An
example plot of the potential is shown in Fig. 3.2.
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3.1.3 Classical density functional theory

A recurring theme in biological systems are fluids that are inhomogeneous due to a
variety of reasons, e.g., confinement, interfaces, crystallisation, or phase separation –
which is the main focus of this chapter. A powerful tool for studying the thermodynamic
properties of these fluids is classical density functional theory [166, 167]. This method
makes use of the fact that the equilibrium density distribution ρ0(r) is uniquely defined
as the one that minimises the system’s free energy. The following introduction is
adapted from Robert Evans’ original article in which classical density functional theory
was first introduced [168].
The idea of classical density functional theory is to find equations describing statistical
mechanics in terms of functionals. Consider a grand canonical ensemble with the
Hamiltonian

H = H0 + V = H0 +
N∑
i=1

Vext(ri) , (3.3)

where N is the total number of particles, H0 is the part of the Hamiltonian including
kinetic energy and interparticle interactions, and Vext(ri) is an external potential with
ri denoting the position of particle i. We define the equilibrium probability density f0

as

f0 = Z−1
g exp (−β(H − µN)) , (3.4)

with the chemical potential µ and the grand canonical partition function

Zg = Tr [exp (−β(H − µN))] . (3.5)

In accordance with the grand canonical potential J0, we can define the functional

J [f ] = Tr
[
f(H − µN + β−1 ln f)

]
. (3.6)

We see that J [f = f0] = J0, and it can be proven that for f 6= f0, J [f ] > J0. Due to
the specific form of H, we can write J [f ] as a functional of the particle density ρ(r):

J [ρ] =

∫
d3r ρ(r)Vext(ri) + F [ρ]− µ

∫
d3r ρ(r) . (3.7)

This equation can alternatively be derived by expressing J as a functional of the local
chemical potential ψ(r) = µ − Vext(r) and then making the transition to ρ(r) as the
local variable by using a Legendre transformation [169].
The functional

F [ρ] = Tr f0(H0 + β−1 ln f0) (3.8)

can be identified as the intrinsic Helmholtz free energy. The fact that F is independent
of Vext and can therefore be studied independently will prove useful later.
Just as J [f ] is minimal for the equilibrium probability density f0, it can be proven that
J [ρ] is minimal for the equilibrium density ρ0(r). This can be expressed as a functional
derivative:

δJ [ρ]

δρ(r)

∣∣∣∣
ρ0

= 0 . (3.9)
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From this, we derive the expression

δF [ρ]

δρ(r)

∣∣∣∣
ρ0

+ Vext(r)− µ = 0 , (3.10)

which is the key equation for classical density functional theory. In principle, this
equation enables us to calculate the equilibrium density ρ0(r) for any given external
potential with the great advantage that F is independent of Vext. In practice, this is
rather difficult though since F [ρ] is usually not known precisely for a system of many
interacting particles. For an ideal gas, it is known exactly [169]:

Fid[ρ] = kBT

∫
d3r ρ(r)

[
ln
(
ρ(r)Λ3

)
− 1
]
, (3.11)

where Λ is the thermal de Broglie wavelength. In other systems, F [ρ] has to be ap-
proximated in order to calculate the equilibrium density.

3.1.4 Nematic ordering of elongated particles

Systems of anisotropic particles can exhibit a number of phases that are neither li-
quid nor crystalline but share some properties of those phases. More specifically, these
phases have orientational order – which is typical for crystals – and either no positional
order – which is typical for liquids – or only partial positional order. For this reason,
these phases are called liquid crystal phases, and materials in these phases are referred
to as liquid crystals.
The most common phase in liquid crystals is the nematic phase in which the particles
are aligned along a common axis without pointing in the same direction. If their dir-
ections were also aligned, this would be called polar ordering. Another liquid crystal
phase is the smectic phase that is characterised by orientational order in combination
with positional order in one direction. An illustration of these phases as well as the
liquid – or isotropic – phase can be found in Fig. 3.3.
Following mainly the book “Introduction to the Theory of Soft Matter” by Jonathan
V. Selinger [170], the following section gives a brief introduction into nematic ordering,
how to quantify it, and how to calculate the isotropic-nematic phase transition. The
summary of the Onsager theory for the isotropic-nematic phase transition also utilises
material from the book “Basic concepts for Simple and Complex Liquids” by Jean-Louis
Barrat and Jean-Pierre Hansen [169] and a review article by Vroege and Lekkerkerker
[171].

Nematic order parameter in three dimensions

In order to quantify the degree of nematic ordering, we need an order parameter meas-
uring how well the particles’ orientations are aligned. For polar order, it is easy to find
an orientational order parameter as we only need to average over all orientations in the
systems. Denoting the orientation vectors of the particles as ui, the polarisation vector
is given as

P = 〈ui〉 . (3.12)
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Figure 3.3: Two-dimensional illustration of different phases in a system of polar rodlike
particles (arrows indicate orientation). Left: isotropic; top centre: nematic; top right:
polar; bottom centre: smectic A; bottom right: smectic C

The degree of polar order is simply the absolute value of P , and the direction of P
indicates the axis of polar ordering. This parameter cannot be used to measure nematic
order though since in that case, the ui are aligned along a common axis but not along
a common direction, so the average over all orientations would vanish. It turns out
that the tensor

Qαβ =

〈
3

2
ui,αui,β −

1

2
δαβ

〉
(3.13)

is suitable for quantifying nematic order. The letters α, β indicate components in
three-dimensional space. The tensor is symmetric and traceless and constructed so
that Qαβ = 0 in an isotropic system and for perfect nematic ordering along one of
the system’s coordinate axes, the corresponding diagonal element is 1. A scalar order
parameter can be derived from the eigenvalues Q which are S, −S/2, and −S/2. We
can define S as the scalar order parameter quantifying the degree of nematic ordering
equivalent to |P | for polar order. Typically, S is between 0 and 1 with S = 0 indicating
a completely isotropic phase and S = 1 indicating perfect nematic ordering. The
eigenvector associated with S is the director n – a unit vector indicating the orientation
axis of the particles.

Nematic order parameter in two dimensions

In two dimensions, the nematic order parameter can be derived by following the ap-
proach for three dimensions. However, the prefactors in the definition of Q have to be
adjusted yielding

Qαβ = 〈2ui,αui,β − δαβ〉 . (3.14)

This makes sure that Qαβ = 0 in the isotropic phase, and perfect nematic ordering
along the x-axis or y-axis yields Qxx = 1 or Qyy = 1 respectively.
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As mentioned before, we have to calculate the tensor’s eigenvalues in order to get S.
This is pretty straightforward in two dimensions. Introducing the orientation vectors

ûi =

(
cosϕi
sinϕi

)
. (3.15)

With ϕi being the particles’ angles relative to the x-axis, we get

Q =

[〈
2 cos2 ϕi − 1

〉
〈2 cosϕi sinϕi〉

〈2 cosϕi sinϕi〉
〈
2 sin2 ϕi − 1

〉 ] =

[
q1 q2

q2 −q1

]
, (3.16)

where we defined q1 =
〈
2 cos2 ϕi − 1

〉
and q2 = 〈2 cosϕi sinϕi〉. We can identify the

positive eigenvalue of this tensor S =
√
q2

1 + q2
2 as the scalar order parameter. The

associated eigenvector is the director

n =

√
q2

2

2q2
1 + 2q2

2 − 2q1

√
q2

1 + q2
2

(
1

q1−
√
q21+q22
q2

)
. (3.17)

We see that we cannot calculate n like this for q2 = 0 since we would divide by 0.
However, Q would already be diagonal in this case with the eigenvalues q1 and −q1.
Hence, the director would have to be parallel to one of the coordinate axes with the sign
of q1 indicating which one. For positive q1, the greater of the two eigenvalues would be
in the element Qxx, so the director would be parallel to the x-axis. Analogously, the
director would be parallel to the y-axis for q1 < 0.

Isotropic-nematic phase transition

As explained earlier, liquid crystals are materials that can exhibit a variety of different
phases – one of which is the nematic phase. It is obviously interesting to find out un-
der which conditions the nematic phase occurs and what is required to induce a phase
transition either into or out of the nematic phase. With the nematic order parameter
introduced above, we can distinguish between the isotropic phase with S = 0 and the
nematic phase with S > 0. When we want study the transition between these two
phases, there are several approaches to choose from.

A general description of the transition is given by the Landau-de Gennes theory.
This is a macroscopic theory assuming that the system’s free energy density can be
expressed as a power series in the nematic order parameter. It can be used to show
that the transition is of first order.
A different approach can be taken by using a microscopic theory such as the Maier-
Saupe theory. It derives the system’s free energy F by assuming an aligning potential
between interacting particles and using a mean-field approximation. It then determines
the isotropic-nematic transition temperature by minimising F . This theory is useful
when dealing with thermotropic liquid crystals, i.e., systems in which the isotropic-
nematic transition is controlled by temperature. However, the main focus of this work
are lyotropic systems in which the transition is controlled by particle concentration. In
this case, the Onsager theory is more suitable to describe the transition.

The Onsager theory is also a microscopic theory and was first presented by Lars
Onsager in 1949 [172]. It uses a virial expansion of the free energy to study the isotropic-
nematic phase transition. It treats the particles as infinitely thin rods of length L and
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diameter d → 0. The particles interact via a hard-core potential uhc which is infinite
for overlapping particles and 0 otherwise. Due to this potential, only configurations
without particle overlap are permitted. The volume excluded by this effect can be
calculated explicitly. Assuming the particles are spherocylinders, the excluded volume
between two particles is a function of their a relative angle γ. In order to avoid overlap,
the second particle’s centre of mass cannot penetrate a volume

Vexcl = 2L2d| sin γ|+ 2πd2L+
4

3
πd3 (3.18)

around the first one. In the limit of thin rods, the first term is dominant:

lim
d→0

Vexcl = 2L2d| sin γ| . (3.19)

The free energy in a system of particles interacting exclusively via excluded volume
interactions is F = −TSE with the temperature T and the entropy SE . Greater entropy
is favourable as it reduces the free energy. In the system of thin rods considered here,
there are two contributions to the entropy. The first one results from the particles’
rotation and is maximal when they can rotate freely. The second one stems from the
particles’ positions. This contribution increases when Vexcl is reduced as this yields more
positional degrees of freedom. Therefore, the second contribution favours alignment.
The competition between these two contributions is responsible for the existence of the
isotropic and nematic phase.
In the limit of low particle concentration, we can approximate the free energy density
f = F/V – with V the system’s volume – as follows:

βf = ρ
(
ln ρΛ3 − 1

)
+B2(T )ρ2 +O(ρ3) , (3.20)

where β = kBT , ρ is the particle concentration, Λ is the thermal de Broglie wavelength,
and B2(T ) is the second virial coefficient – for a more detailed discussion of the virial
expansion and the derivation of B2, see App. A. In the limit of thin rods, higher virial
coefficients can be neglected.
Since we are dealing with anisotropic particles, we have to consider their orientation in
the calculation. We introduce a normalised orientational distribution function ψ(Ω):∫

dΩψ(Ω) = 1 , (3.21)

with Ω being a spatial angle. The particles’ orientational distribution gives a contribu-
tion for to the free energy density that results from the orientational entropy:

βfor = ρ

∫
dΩψ(Ω) ln(4πψ(Ω)) . (3.22)

Onsager derived this term by treating the system as a mixture of different species of
particles – each associated with a specific orientation Ω. In this description, the above
expression results from the mixing entropy.
The particles’ orientations also have to be considered in the second virial coefficient.
By averaging over the orientations, we arrive at

B2(T ) = − 1

2V

∫
d3r

∫
d3r ′

∫
dΩ

∫
dΩ ′Φ(r, r ′,Ω,Ω ′) , (3.23)
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where Φ is the Mayer function

Φ(r, r ′,Ω,Ω ′) = exp
(
−βuhc(r, r ′,Ω,Ω ′)

)
− 1 . (3.24)

Since we consider a hard-core potential that is either infinite or 0, the Mayer function
is in this case −1 for overlapping particles and 0 otherwise. Using Eq. (3.19), this
allows us to evaluate the volume integrals reducing B2 to

B2 = L2d

∫
dΩ

∫
dΩ ′ ψ(Ω)ψ(Ω ′)| sin γ| , (3.25)

where γ is the angle between Ω and Ω ′.
With the above expressions, the free energy density is now

βf [ψ(Ω)] = ρ
(
ln ρΛ3 − 1

)
+ ρ

∫
ψ(Ω) ln(4πψ(Ω)) dΩ

+ ρ2L2d

∫∫
ψ(Ω)ψ(Ω ′)| sin γ| dΩ dΩ ′ +O(ρ3) .

(3.26)

We see that f is a functional of the orientational distribution function ψ(Ω). In order
to study the system’s phase behaviour, we have to minimise f with respect to ψ(Ω)
for fixed density ρ. At this point, we recognise that this theory can be identified as an
example for classical density functional theory for an inhomogeneous liquid. However,
the inhomogeneity is not in the spatial density distribution ρ(r) as presented in Section
3.1.3. Instead, the particles’ orientations are distributed inhomogeneously.
Onsager’s approach to the minimisation was choosing a trial function

ψ(Ω) =
α cosh(α cosϑ)

4π sinhα
, (3.27)

with the variational parameter α and then minimising f with respect to this parameter.
The particles’ orientation is expressed by the relative angle ϑ in relation to the director
instead of the spatial angle Ω. This is possible since we have rotational symmetry
around the director in a nematic system.
The available results for the phase transition are expressed in terms of the concentration
c = Ld−1φ with φ being the volume fraction occupied by the particles. The free energy
density always has a minimum for αI = 0 which corresponds to the isotropic phase.
A second minimum αN > 0 corresponding to the nematic phase can be found for
c > 4. Since this bifurcation is discontinuous, phase coexistence of the isotropic and
the nematic phase occurs. The concentrations of the coexisting phases are cI = 3.34
and cN = 4.49.

Isotropic-nematic phase transition in 2D

The Onsager theory can also be applied to a two-dimensional system of infinitely thin
rods which was presented by Kayser and Raveché [173]. Using a bifurcation analysis, the
authors found that the transition is continuous in two dimensions instead of first order
as in three dimensions. The transition density can be derived as ρ = 3π

2L2 . However,
the authors pointed out that this result should be viewed as “merely suggestive rather
than conclusive” because of the approximations made. The Onsager theory neglects
terms of higher than second order in the virial expansion which is not justified in two
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dimensions.
In fact, simulations of such infinitely thin hard rods have shown a continuous isotropic-
nematic transition of the Kosterlitz-Thouless type1 at a density ρ = 7

L2 [175].

3.1.5 Brownian Motion

Small particles such as dust particles or pollen have been observed to move in a fluid
medium even though they are unable to propel themselves forward. This so-called
Brownian motion results from interactions with the even smaller molecules within the
medium. These move due to thermal fluctuations and as a result collide with the
particle. Brownian motion can be described as a stochastic process using a macro-
scopic approach – meaning the derived equations are valid only on macroscopic length
scales and time scales. The first option is to derive the macroscopic equation of motion
from the diffusion equation which yields the Smoluchowski equation. The second op-
tion is using the Langevin equation, i.e., the microscopic equation of motion of a single
particle. Following the book “The Theory of Polymer Dynamics” by Masao Doi and
Sam Edwards [176] and a review article by Romanczuk et al. [19], both approaches
will be outlined here.

The Smoluchowski equation can be derived from the thermodynamics of diffusion
processes which we will first carry out in one dimension and then generalise to multiple
degrees of freedom. In one dimension, the particle concentration c(x, t) is a function
of the position x and the time t. In the presence of an external potential U(x), the
particle current j is given by Fick’s law:

j(x, t) = −D ∂c

∂x
+ cv(x) , (3.28)

with the diffusion constant D which is a measure for the speed of diffusion due to
inhomogeneous concentration. In the second term, v denotes the speed resulting from
the force U exerts on a single particle. This force is usually weak, so v can be written
as a linear function of the force:

v(x) = −1

γ

∂U

∂x
. (3.29)

The friction coefficient γ determines a single particle’s speed in response to an external
force. In combination with the continuity equation

∂c

∂t
= − ∂j

∂x
, (3.30)

we get the diffusion equation

∂c

∂t
=

∂

∂x

(
D
∂c

∂x
+

1

γ
c
∂U

∂x

)
. (3.31)

We can now make use of the Einstein relation

D =
kBT

γ
, (3.32)

1The Kosterlitz-Thouless transition is a phase transition in the two-dimensional XY-model which
features a disclination unbinding mechanism [174].
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which follows from the facts that in equilibrium, c is given by the Boltzmann distribu-
tion and the particle current must vanish. It allows us to replace the D in the diffusion
equation which yields

∂c

∂t
=

∂

∂x

1

γ

(
kBT

∂c

∂x
+ c

∂U

∂x

)
. (3.33)

This is the one-dimensional Smoluchowski equation describing the time evolution of
the particle concentration c under the influence of thermal fluctuations and an external
potential.
When dealing with multiple degrees of freedom xα, we have to take into account that
each of them may be associated with a different friction coefficient and diffusion con-
stant. The components of the particles’ velocity can be written as

vα =
∑
β

Γαβ
∂U

∂xβ
, (3.34)

where the matrix Γ contains the friction coefficients. The diffusive contribution to the
particle current contains a similar matrix D and the Einstein relation becomes

Dαβ =
kBT

Γαβ
. (3.35)

Instead of the concentration, we now use the normalised probability distribution func-
tion P ({xα}, t) for which the Smoluchowski equation reads:

∂P

∂t
=
∑
α,β

∂

∂xα
Γαβ

(
kBT

∂P

∂xβ
+ P

∂U

∂xβ

)
. (3.36)

The Smoluchowski equation does not tell us anything about single particles’ traject-
ories. Instead, it gives a deterministic prediction of the particle concentration and
therefore the probability of finding a particle at a position r at time t.

In the second approach, we start from Newton’s equation of motion for a single
particle in a medium. For a spherical particle of mass m at position r which is subject
to an external potential U and a drag force according to Stokes’ law, this is

m
d2r

dt2
= −γsph

dr

dt
−∇U(r) , (3.37)

with γsph being the friction coefficient. Now, we also want to take into account the
interaction between the solvent’s molecules and a particle in solution. We do this by
adding a stochastic random force F th. This gives the Langevin equation

m
d2r

dt2
= −γsph

dr

dt
−∇U(r) + F th , (3.38)

which is named after Paul Langevin who originally suggested this approach [177].
It was shown that F th can be modelled as Gaussian distributed with an average

〈F th〉 = 0 , (3.39)
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and the correlation between two of its components Fth,i and Fth,j at times t and t′

〈Fth,i(t)Fth,j(t′)〉 = 2kBTγsphδijδ(t− t′) . (3.40)

Since F th is a stochastic quantity, the particle it acts on does not follow a deterministic
trajectory. The Langevin equation only allows us to calculate average properties of an
ensemble of different trajectories. One example for such a quantity is the mean squared
displacement 〈r2〉 in the absence of an external potential. We can calculate it by first
taking the scalar product of the Langevin equation with r and rewriting it as

m

2

d2

dt2
r2 +

γsph
2

d

dt
r2 −m

(
dr

dt

)2

= r · F th . (3.41)

Calculating the ensemble average of this equation, we arrive at

m

2

d2

dt2
〈r2〉+

γsph
2

d

dt
〈r2〉 −m〈ṙ2〉 = 0 . (3.42)

The right hand side is 0 because the particle’s position and the random force are
uncorrelated, and the average of F th is zero. Since we assume the molecules in the
medium to be in equilibrium, we can apply the equipartition theorem and rewrite the
third term on the left hand side of the equation:

m〈ṙ2〉 = 3kBT . (3.43)

This turns the above equation into an inhomogeneous differential equation in 〈r2〉:

m
d2

dt2
〈r2〉+ γsph

d

dt
〈r2〉 = 6kBT . (3.44)

Assuming r(t = 0) = 0, this is solved by

〈r2(t)〉 =
6kBT

γsph

[
t+ τ

(
exp

(
− t
τ

)
− 1

)]
(3.45)

with τ = m
γsph

. We see that the particle’s motion is ballistic on small time scales since

〈r2〉 ≈ 3kBT

m
t2 , t� τ , (3.46)

and diffusive on long time scales:

〈r2〉 ≈ 6kBT

γsph
t , t� τ . (3.47)

Here, we can identify the diffusion constant

D =
kBT

γsph
, (3.48)

which is again the Einstein relation, see Eq. (3.32).
In the diffusive regime t � τ , the inertial term can be neglected as it becomes very
small compared to the drag term:∣∣∣∣md2r

dt2

∣∣∣∣� ∣∣∣∣γsphdrdt
∣∣∣∣ , (3.49)
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This is also called the overdamped limit since it is equivalent to γsph being very large.
In this limit, the Langevin equation becomes

γsph
dr

dt
= −∇U(r) + F th(t) . (3.50)

This important special case of particle motion is referred to as Brownian dynamics. It
is valid for bacteria and small micro-swimmers, and can therefore be implemented in
computer simulations when these kinds of particles are studied.
Also, the probability distribution of the trajectories P (r(t)) is the solution of the
Smoluchowski equation which demonstrates the equivalence of both approaches.

Brownian dynamics for active rodlike particles

Above, the Langevin equation for a spherical particle in the limit of Brownian dynamics
has been derived. For a rodlike particle, this equation has to be modified to account
for its anisotropic shape. We will derive the relevant equations here following articles
regarding systems similar to those studied in this work [14, 142, 145–147]. Since the
subject of this chapter are two-dimensional systems, we will restrict the derivation to
two dimensions.
The first thing to consider when deriving the Langevin equation for a rodlike particle
is how to define its configuration. Due to the rod’s anisotropic shape, we need to take
into account its orientation in addition to its position in space. We denote the particle’s
orientation by a unit vector in the x-y-plane

û =

(
cosϕ
sinϕ

)
, (3.51)

with ϕ being the angle between the system’s x-axis and the particle’s main axis. It is
also useful to express its velocity v = ṙ as a sum of two velocities v‖ and v⊥ along and
perpendicular to û respectively:

v = v‖ + v⊥ . (3.52)

The particle’s anisotropy causes it to respond to an external force F dependent on the
direction of this force relative to the particle’s orientation. Instead of one isotropic
friction coefficient as for spherical particles, we need two friction coefficients: γ‖ de-
termines the particle’s response to a force acting along û, and γ⊥ is the equivalent for
perpendicular forces. The relation between F and the particle’s resulting velocity is
then

F = γ‖v‖ + γ⊥v⊥ . (3.53)

The friction coefficients can be calculated as [176]

γ‖ =
2πηL

ln(L/d)
, γ⊥ =

4πηL

ln(L/d)
, (3.54)

with η being the medium’s viscosity, L the rod’s length and d its diameter.
Due to this anisotropy, we also have to introduce two separate stochastic forces parallel
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and perpendicular to the rod which we will denote as ξ‖ and ξ⊥. These are Gaussian
distributed with

〈ξα〉 = 0 , 〈ξα(t)ξβ(t′)〉 = 2kBTγαδαβδ(t− t′) , (3.55)

where α, β = {‖,⊥}. It should be noted that the above form of the noise terms assumes
that the Einstein relation is valid which is not generally the case in active systems, so
treating noise and friction as correlated is an approximation [14].
Next, we also have to take into account rotation. The particle is subject to torques
resulting from the external potential U as well as thermal fluctuations. Since we con-
sider a two-dimensional system, only in-plane rotations are possible which means all
relevant torques can be expressed as vectors parallel to the z-axis. Hence, we will just
write all torques as scalars.
Analogously to the stochastic forces ξ‖ and ξ⊥, we can introduce a stochastic torque
ξrot. This is also Gaussian distributed:

〈ξrot〉 = 0 , 〈ξrot(t)ξrot(t′)〉 = 2kBTγrotδ(t− t′) . (3.56)

Here, γrot is the rotational friction coefficient which determines the particle’s angular
velocity in response to an external torque τ :

ϕ̇ =
1

γrot
τ . (3.57)

For a rodlike particle rotating around an axis perpendicular to its main axis, γrot can
be shown to be approximately [176]

γrot =
πηL3

3 ln(L/d)
. (3.58)

Since we want to consider an active particle, we have to include another force in the
Langevin equation. This is an internal force f0 acting along the particle’s main axis
causing self-propulsion with a velocity v0:

v0 = γ−1
‖ f0 . (3.59)

Considering all of the above, we now have the Langevin equations for the particle’s
angular velocity ϕ̇ and velocity v:

v‖ = γ−1
‖

[
− (∇U(r))‖ + f0 + ξ‖

]
,

v⊥ = γ−1
⊥ [− (∇U(r))⊥ + ξ⊥] ,

ϕ̇ = γ−1
rot [τU + ξrot] .

(3.60)

Here, τU is the torque resulting from the external potential U . The above equations
can be used in agent-based simulations to calculate the particles’ trajectories.

3.1.6 Focus and outline of this chapter

The existence of the common phenomena mentioned in the introduction to this section
gives rise to the question whether it is possible to universally describe some properties
of active matter independently of the microscopic details. This would allow controlling
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the formation of structures in active systems or utilising some of their specific functions.
However, such a theory does not exist at this point in time [17]. As a result, there are
few well-established approaches to describing active matter, and a lot of exploratory
research is being done. In this context, this work studies two aspects regarding self-
propelled rodlike particles: swirling and phase separation with the main focus being
the latter. The two phenomena are studied in Brownian dynamics simulations of self-
propelled rodlike particles in two dimensions as described in Section 3.1.5. One typical
representative of active rodlike particles are swarming cylindrically shaped bacteria like
E. coli or B. subtilis – see Section 1.2.2.
As will be described in more detail in Section 3.2.4, the occurrence of collectively mov-
ing circular patterns has been reported repeatedly in experiments [109, 110, 124–126]
but rarely in simulations. Exceptions to this were simulations of particles that naturally
moved along curved trajectories [124, 126], particles with hydrodynamic interactions
[137, 155], and particles with an explicit aligning interaction [153]. This chapter aims
to find out whether rotating structures can emerge when a simple model of straight-
moving particles with steric interactions is used.
Phase separation has been studied extensively as will be outlined in Section 3.2.5, and
for active spherical particles, a theoretical framework predicting the coexisting densities
has been presented by Cates and Tailleur [178]. They successfully mapped the coarse-
grained dynamics of these systems onto a passive fluid with attractive interactions.
Phase separation also occurs in systems of active rodlike particles in several forms from
the formation of asters [140, 142, 146, 151, 179] to collectively moving clusters [28, 125,
141–143, 147]. These configurations have in common that they consist of an ordered
high-density phase and an unordered low-density phase. To the author’s knowledge, a
theory predicting the coexisting densities in systems of active rodlike particles is nonex-
istent at this point. Hence, this work will try to find an analytical model predicting
the coexisting densities by adapting successful approaches for spherical particles.
The outline of this chapter is as follows: In Section 3.2, a brief overview of some of
the progress made in this field of research is given – focussing mainly on aspects most
relevant to this work. In this context, analytical models describing phase separation
in systems of spherical particles are introduced which will later be applied to systems
of rodlike particles. In Section 3.3, details on the numerical model, the simulation
routine, and the evaluation during simulation are given. Section 3.4 presents the res-
ults obtained from simulations before different approaches for describing the occurring
phase separation analytically are presented in Sections 3.5 and 3.6. Finally, a conclusion
of this chapter is given in Section 3.7 with a special emphasis on a critical discussion
of the derived analytical models.

3.2 Studying active matter

The following section presents some of the results regarding active matter that are most
relevant for this work. It should be noted that this overview is by no means complete
since active matter has become an important subject of research throughout the last
years, and the number of publications regarding this topic is therefore large. From
the many different approaches for studying different systems, only a fraction can be
discussed here.
Experimental, numerical, and analytical approaches are presented for spherical particles
in Section 3.2.2 and for rodlike particles in Section 3.2.3. Next, collective phenomena

65



CHAPTER 3. COLLECTIVE BEHAVIOUR OF ACTIVE RODS

are discussed in Section 3.2.4 with a special emphasis on collective motion and phase
separation.

3.2.1 Parameters

In many active systems, particle dynamics are not exclusively determined by propul-
sion but also influenced by diffusive processes. One parameter indicating which of
these contributions is predominant is the Péclet number Pe. It is defined as the ratio
of the magnitudes of these two mechanisms. Small Péclet numbers are equivalent to
particles moving mainly diffusively whereas high Péclet numbers indicate that the sys-
tem’s dynamics are dominated by propulsion. The Péclet number is generally of the
form [18]

Pe =
v0λ

D
, (3.61)

with v0 being the particles’ propulsion speed, λ a particle’s typical length scale, e.g.,
its radius, and a diffusion constant D. The precise form depends on the system’s prop-
erties such as the relevant length scale and diffusion constant.
Two other quantities that also yields information about the particles’ dynamics - spe-
cifically about the relation of diffusion compared to propulsion – are the persistence
length lp and the rotational relaxation time τrot. The persistence length gives the dis-
tance over which a particle’s orientation becomes uncorrelated and τrot defines the time
scale of this process. Consider an active particle in two dimensions at a time t = 0 with
a unit vector û(0) denoting its initial orientation. Neglecting translational diffusion,
the particle’s dynamics can be described as follows: as time progresses, the particle
is propelled forward along its orientation while rotating diffusively. The correlation
between the orientation at time t with the orientation at t = 0 can be shown to decay
exponentially [176]:

〈û(t) · û(0)〉 = exp

(
− t

τrot

)
. (3.62)

The rotational relaxation time τrot = 1
2Drot

– with the rotational diffusion constant
Drot = kBT γ

−1
rot according to Eq. (3.32) – determines how rapidly the correlation

decays. Hence, it defines the time scale on which the particle’s trajectory can be
assumed to approximately follow the initial orientation û(0). Since the particle moves
with a constant speed v0, we can calculate the distance travelled during a timespan τrot
to get a corresponding length scale. We call this length scale the persistence length

lp = v0τrot . (3.63)

It can be understood as the typical distance a particle travels along a straight trajectory.

3.2.2 Spherical particles

Recalling the aforementioned examples of active matter we can find in nature, we no-
tice that most of them are constituted of anisotropic particles. Some of these - such
as biofilaments, rod-shaped bacteria, or fish – can safely be approximated as elongated
particles while others exhibit even more complex geometries, e.g., cells and birds. As
illustrated in Fig. 3.1 though, these systems often have similar macroscopic properties
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Au

Pt

Figure 3.4: Schematic illustrations of man-made particles
used in experiments of active spherical particles. Top: side
view of a metallic disk with a diameter of a few millimetres
that was used in experiments on a vibrating plate [108].
Since the dark grey ’leg’ on the right is made of rubber
and bigger than the left one, the discs are anisotropic as
indicated by the arrow. This image was recreated from
Ref. [132]. Bottom: top view of micrometre-sized spher-
ical gold particles half covered in platinum. In a hydrogen
peroxide solution, platinum acts as a catalyst generating
propulsion [122, 123]. Similar experiments were performed
with latex particles [115].

and display similar collective behaviour [14]. It is therefore fair to assume that there
may be a few global principles applicable to any system of active particles regardless
of the constituents’ design. Hence, it makes sense to study active matter using basic
systems in which the particles do not exhibit an anisotropic shape. Spherical particles
are convenient for this as they have the advantage of being easy to model. Even though
such systems may be hard to find in nature, valid general principles for active matter
should still apply to them and therefore be possible to identify and analyse.
For simplicity, we will refer to all types of particles with rotational symmetry as spher-
ical particles from now on – including actual spheres in three dimensional setups as
well as disks or other circular shaped objects in two dimensions and point particles in
simulations.

Experimental approaches

As mentioned before, systems of active spherical particles are not common in nature.
Therefore, in order to generate such systems in a lab, particles have to be artificially
provided with a propulsion mechanism. There are several ways of doing this, but
most approaches use on of two methods – applying mechanical forces or preparing the
particles in a way that they react chemically with the environment and thereby gener-
ate forces propelling themselves forward.
An example for mechanical propulsion can be found in vibrated millimetre-sized metal-
lic disks with a built-in polar anisotropy in the form of two ’legs’ of different size and
materials at opposite sides [108], see also Fig. 3.4. The authors confined the particles
to a quasi two-dimensional geometry in which they would move due to the vibration.
The particles’ anisotropic shape would determine their direction of propulsion. Besides
enabling directed motion, vibration would also introduce noise into the system causing
rotational diffusion.
Propulsion due to chemical reactions can be generated by using particles with an an-
isotropic surface. Two examples for this are spherical gold particles half covered with
platinum [122, 123] and latex particles half covered with platinum [115] as shown in
Fig. 3.4. These micrometre-sized particles were placed in a solution containing hydro-
gen peroxide. Since platinum acts as a catalyst favouring the splitting up of hydrogen
peroxide into water and oxygen, this chemical reaction mostly occurs on a particle’s
coated side. The particle is then propelled into a specific direction likely due to dif-
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fusiophoresis, i.e., motion along a gradient of pressures or chemicals [115, 122]. The
same mechanism has been used with hematite cubes embedded in spheres of the poly-
mer TPM [116]. In combination with blue light, hematite acts as a catalyst as well.
The requirement of blue light makes it possible to turn particle propulsion on and off
externally.
A different approach was used in experiments with micrometre-sized spherical SiO2

particles in a near-critical mixture of water and lutidine [120, 121]. One hemisphere of
these particles was coated with graphite. By illuminating the entire sample with a laser
beam tuned to a wavelength absorbed by graphite, the particles’ coated hemispheres
were heated up. As a result, the solvent would locally cross the critical temperature
causing demixing of water and lutidine which would result in a phoretic force propelling
the particles forward.

Numerical and analytical descriptions

There are two related but different models that are widely used in simulations to
describe the dynamics of active particles on small scales such as intracellular particles
or bacteria: run-and-tumble particles (RTPs) and active Brownian particles (ABPs)
[30, 180]. These models can be applied to differently shaped particles, but since they
do not take into account the particles’ geometry, they are most suitable for spherical
ones. Both models describe the particles’ dynamics as a diffusive random walk due
to propulsion with a speed v0 along an orientation axis and orientational relaxation of
said axis. They assume different mechanisms causing the reorientation though. RTPs
undergo so-called ’tumbles’ – reorientation events of short duration compared to the
straight ’runs’ performed in between. The reorientation events randomly occur at a rate
α and the particle’s orientation before and after such an event are entirely uncorrelated.
Consequently, the rotational relaxation time τRTProt – which is per definition the time
after which the particle’s orientational correlation is lost – is given as the inverse of the
tumbling rate:

τRTProt = α−1 . (3.64)

In contrast, ABPs do not reorientate via discrete events but gradually due to rota-
tional diffusion. Hence, their orientational correlation also decays gradually, and the
rotational relaxation time is proportional to the rotational diffusion constant as de-
scribed in Section 3.2.1:

τABProt =
1

2Drot
. (3.65)

The implementation of both models is quite similar with the main difference being the
rotational diffusion. While the trajectories of ABPs can be calculated according to
Brownian dynamics as outlined in Section 3.1.5, orientational relaxation of RTPs is
implemented by deriving a probability for reorientation in a given timespan from their
tumbling rate α [130, 181].
Simulations of spherical particles have been used to study their interactions with walls
and other obstacles [120] as well as their aggregation in clusters or in a single bulk of
high density within a gas-like phase – also referred to as phase separation [116, 121,
134–136]. This behaviour is noteworthy since interactions between the particles were
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in most cases implemented as purely repulsive, so the aggregation does not result from
attractive interactions. Instead, the particles’ motility generates an effective attrac-
tion [135]. Phase separation seems to be independent of the precise form of repulsive
interaction between particles as it occurs when these are implemented as a truncated
Lennard-Jones potential [121, 135, 136], spring-like forces [134], as well as a hard-core
potential [116].

In analytical works regarding active spherical particles, the systems’ dynamics are
often described via the particle density field ρ(r). The time evolution of ρ(r) can
be derived either from the many-body Langevin equations [136] or by coarse-graining
the microscopic equations of motion, i.e., the Langevin equations [134, 158, 178, 182,
183]. The resulting continuum models do not take into account that the systems
they describe consist of individual particles. Still, they were successfully applied to
identify an instability of the isotropic phase in such systems that would result in phase
separation. Different factors have been found to be relevant for this phenomenon. For
example, Bialké et al. found that a minimum particle speed was required for causing an
instability of the isotropic phase [136]. Tailleur and Cates reported another condition
for the particles’ speed: for phase separation to occur in one dimension, the particles’
speed would have to decay rapidly enough with the local density [157]. The authors
also confirmed the validity of this condition in two dimensions [158]. In other works,
a large enough average density has been identified as a cause for the instability of the
isotropic phase resulting in phase separation [134, 178].
Besides identifying different causes for the occurrence of phase separation, continuum
theories have also been used to describe the growth of the bulk domain in these systems
[183] as well as predict densities of the coexisting phases [178, 183]. Analytical results
regarding phase separation will be reviewed in more detail in Section 3.2.5 including a
particle-based model by Redner et al. [135].
In addition to investigating phase separation, continuum models have been used to
study other phenomena occurring in active matter consisting of spherical particles,
e.g., sedimentation under gravity [157, 180–182] and confinement in external potentials
[180, 181].

3.2.3 Rodlike particles

As mentioned before, most naturally occurring systems of active matter are constituted
of elongated particles. It is therefore not surprising that a lot of research regarding
active matter is done on such systems. The great advantages of experiments using
naturally occurring active particles is that these are already available and the results
are immediately relevant to actual systems. The latter point is also true for numerical
and analytical work.

Experimental approaches

Even though active particles of all sizes ranging from micrometres (biofilaments, bac-
teria) to metres (sheep, fish) can be found in nature [14], most experiments focus on
small particles.
On the subcellular scale, biofilaments such as actin filaments or microtubules are fre-
quently used since their dynamics play a crucial role in a variety of cell functions.
However, these particles have no propulsion mechanism themselves, so in experiments,
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Figure 3.5: Sketch of a motility assay setup with actin filaments. The filaments are
propelled forward by myosin motors attached to a glass surface. Image adapted from
Ref. [186] (CC BY-NC 3.0).

motor proteins are used to drive them. In their natural environment, motor proteins
move along the filaments consuming chemical energy in the form of ATP, see Section
1.2.1. This mechanism can be harnessed to propel the filaments: by fixing the motor
proteins to a surface, they become immobile, so they would push the filaments forward
resulting in them gliding over the surface. This class of experiments called motility as-
says was first described by Vale et al. for microtubules and kinesin [184] and by Kron
and Spudich for F-actin and myosin motors [185]. The experimental setup is illustrated
in Fig. 3.5 by the example of an F-actin motility assay. Motility assays of microtubules
[124, 140, 151] and F-actin [125–128] are common examples for experimental active
matter systems.
Another frequently studied type of active matter are bacteria colonies. Bacillus sub-
tilis and Escherichia coli are two examples of bacteria frequently used in experiments
studying active matter. As described in Section 1.2.2, their shape is almost cylindrical
making them good representatives for rodlike active particles and also easy to model
in computer simulations.
Independent from the type of bacteria used, experimental setups are quite similar. Fre-
quently, bacteria are studied in quasi-two-dimensional geometries – either by creating
a stretched droplet of fluid in which the bacteria would swim [162], growing bacteria
colonies on agar substrates [28, 106], confining them in microfluidic chambers which are
not high enough to allow bacteria to swim over each other [143], or by simply limiting
analysis to bacteria moving close to a surface of the chamber containing the solution
[118]. In addition to these examples, bacteria solutions have also been studied in three
dimensions [27, 29, 143]. Since they are inherently able to move, bacteria dynamics
can be studied without providing them with an external propulsion mechanism as is
required for biofilaments in motility assays.
Active systems of rodlike particles have also been studied using experimental setups
with man-made particles. These are mostly analogous to those for spherical particles
described in Section 3.2.2. Systems of elongated particles on a vibrating plate have
been realised using a wide variety of different particles including different types of rice
or metallic pins [109, 112], cylindrical particles composed of nylon and steel with an
anisotropic mass distribution [110], or polymer rods made of a composite of different
plastics [113]. The length of these particles ranged from a few hundred micrometres
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to centimetres. Setups in which chemical reactions were harnessed to propel rodlike
particles have also been used – one recurring example being Au-Pt rods in a solution
containing hydrogen peroxide [117–119]. These rods with a length in the micrometre
range would move along their axis toward their platinum end due to the previously
explained catalytic effect of platinum for the splitting of hydrogen peroxide.

Numerical and analytical descriptions

A variety of different models and algorithms have been used to simulate systems of
active rodlike particles. Even though these various approaches have similarities, they
differ, among other things, in how the particles are modelled, how they interact, and
how they are propelled forward.
As described in Section 3.1.4, the excluded volume interaction between rodlike particles
causes them to align – ultimately leading to nematic order at large densities. One of
the most basic models capturing this intrinsic aligning mechanism are point particles
with an explicit aligning interaction [131, 133]. The particles’ dynamics were implemen-
ted via Brownian dynamics as outlined in Section 3.1.5 with self-propulsion resulting
from a constant force acting on each particle along its orientation. Even though the
particles in this model are points instead of rods, the alignment interaction causes them
to behave very similarly to rodlike particles, e.g., exhibiting collective motion in bands,
lanes, or clusters – see Section 3.2.4.
A more common method of simulating rodlike particles is not implementing expli-
cit aligning interaction. Instead, particles are modelled as rods with a fixed length
and width and steric interactions between them that would indirectly cause align-
ment. Usually, interactions betweeen the rods are calculated by discretising them into
a number of spherical beads. Different methods have been used to implement steric
interactions including contact forces between viscoelastic beads [110, 113], a repulsive
Yukawa potential [141, 143, 146], and a Lennard-Jones potential [142, 147]. In most
works, the particles’ trajectories were calculated according to Brownian dynamics with
self-propulsion resulting from a constant force along the particles’ orientation. One
exception to this has been presented by Kudrolli et al. who used random propulsion
forces instead [110].
In some cases, the systems’ components were modelled in even more detail, e.g., when
simulating motility assays. For example, Kraikivski et al. performed such simulations
not only taking into account the rods’ shape and interactions but also explicitly mod-
elling the motor proteins’ dynamics and interactions with the rods [179]. Another ex-
ample for simulations including the growing and shrinking dynamics of individual rods
and crosslinking processes caused by crosslinking proteins was presented by Nédélec et
al. [140].
All the works mentioned so far involved Brownian dynamics simulations in two spatial
dimensions, but it should be noted that this is not the only conceivable approach to
simulating active rodlike particles. One different method for simulating motility assays
has been been employed by Schaller et al. [125]. They modelled the filaments as ran-
dom walkers on a hexagonal lattice in two spatial dimensions with steric repulsion and
aligning interactions.

The analytical approaches used to investigate systems of active rodlike particles are
very similar to those for spherical particles outlined in Section 3.2.2. Systems are
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mostly studied on a coarse-grained level using the continuous particle density field ρ(r)
instead of dealing with individual particles.
One powerful and widely used method in this regard is dynamical density functional
theory (DDFT) which is an extension of classical density functional theory (cDFT) as
introduced in Section 3.1.3. While cDFT yields equilibrium properties of inhomogen-
eous systems, DDFT describes nonequilibrium dynamics of these systems. Based on
DDFT for spherical particles, Rex et al. derived this method for uniaxial anisotropic
particles [187]. Starting from the Smoluchowski equation, they derived an equation of
motion for density field ρ(r,u, t) which is a function of the position in space r and
the orientation u. Approximating two unknown terms in the resulting equation by
their averages in equilibrium yielded the time evolution of ρ(r,u, t). As stated by the
authors, this approximation has shown to be justified for spherical particles “even for
strong inhomogeneities and strong time dependencies” which is an indication that it
is valid also for anisotropic particles. This method has been applied in several works
studying active systems of rodlike particles in confinement or external fields [146, 187].
Also, it has been generalised even further by Wittkowski and Löwen to describe biaxial
particles as well [188].
A different formalism has been presented by Baskaran and Marchetti who derived
equations for the collective dynamics of self-propelled rods with excluded volume inter-
actions [189, 190]. Starting from the microscopic dynamics described by the Langevin
equations, they derived the according Smoluchowski equation in an effective mean-
field description. Using coarse-graining, they arrived at equations describing the time
evolution of the system’s “slow variables” which are density ρ, polarization vector P ,
and nematic alignment tensor Q. These equations give the system’s dynamics on
macroscopic time and length scales. Alternatively, they can also be derived phenomen-
ologically from symmetry considerations [191, 192]. Baskaran and Marchetti used the
equations to find the system’s steady states – an isotropic state and a nematic liquid
crystal [189]. A stability analysis with regards to fluctuations showed that density fluc-
tuations can lead to propagating waves in the isotropic state and mass inhomogeneities
in the nematic state. The authors also pointed out that a state of global polar order
does not exist despite the polarity of the particles. The reason is that the considered
excluded volume interaction is apolar and can therefore not generate polar order. In
other works, the macroscopic equations were used to predict the formation of polar
clusters [191] or lanes [192].
Of course, the above summary is not conclusive – a large number of other theories for
describing active matter have been presented in the literature. The interested reader
may find further information in recent review articles [14, 19].

3.2.4 Collective dynamics

The following section presents some collective phenomena that frequently occur in act-
ive systems consisting of all kinds of different components and that are relevant to this
work. Collective phenomena include static particle aggregation with and without con-
finement as well as collectively moving structures. These phenomena have in common
that they consist of an unordered low-density phase and a high-density phase that in
most cases exhibits some kind of orientational order. The resulting non-uniform density
distributions can be understood as different realisations of phase separation which is
the main focus of this chapter.
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Figure 3.6: Phase diagram for capturing self-propelled rods in a static chevron-shaped
trap. The phases representing no trapping, partial trapping, and complete trapping
are plotted for two different area fraction covered by the trap φT . The axes indicate
the trap’s opening angle α and the quantity φR that is the ratio of particle density
relative to φT . Up to an opening angle α > 120◦, larger opening angles favour trapping.
Reprinted with permission from Ref. [145]. Copyright 2012 American Physical Society.

The outline of this section is as follows. First, particle aggregation in systems with and
without confinement is discussed in Sections 3.2.4 and 3.2.4. Then, three examples of
collective motion – lanes, clusters, swirls – are presented in Section 3.2.4. Finally, an
introduction to works regarding phase separation in systems of active spherical particles
is given in Section 3.2.5.

Confined geometries

One of the most basic ways of controlling active particles is capturing them in a specific
location. Obviously, this requires an understanding of how they can be manipulated
into aggregating in the desired location. Therefore, there has been some interest in
investigating how obstacles and confinement can be used to achieve accumulation of
active particles.
One example for capturing self-propelled rods in a static chevron-shaped trap has been
reported by Kaiser et al. [145]. In simulations, the authors varied the trap’s opening
angle α and covering area as well as the particle density. Depending on these para-
meters, no trapping, partial trapping, or complete trapping would occur. The authors
found that lower particle densities, larger traps, and larger opening angles would favour
the trapping of particles. However, traps with an opening angle α > 120◦ would not
capture any particles. The resulting phase diagram is shown in Fig. 3.6.
Similar simulations with moving traps display even more complex behaviour in that

the number of captured particles becomes additionally dependent on the traps’ velocity
[193]. These results demonstrate that chevron-shaped edges can very effectively cause
active particles to accumulate. This is especially relevant for self-propelled rods in con-
fined geometries: since the confinement can be understood as a sequence of adjoining
traps, we can expect the rods to accumulate near the edges given the right conditions.
A related analytical study of self-propelled point-like particles in a two-dimensional
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confined geometry has been presented by Fily et al. [194]. The authors considered
non-interacting particles that were subject to rotational diffusion in a convex container.
In containers that were small compared to the particles’ persistence length, they de-
rived an analytical expression for the particle density ρ at the container’s boundary and
found that particles would accumulate in regions of high local curvature. The authors
also transferred their results to polygonal boxes in which the corners’ opening angles
would determine the density. Analogous to curved boundaries where high curvature
would attract particles, corners with small opening angles would attract particles in
polygonal boxes. These results were also confirmed in simulations. The authors’ find-
ings regarding polygonal boxes seem to contradict the results reported by Kaiser et
al. indicating that larger angles should attract more particles. However, there is a
fundamental difference in the two models: in systems with a single trap as considered
by Kaiser et al., particles can avoid the trap which is likely when its opening angle is
small. In a polygonal box as considered by Fily et al., particles avoiding one corner
would run into a different one instead.
Particle accumulation was also observed at straight boundaries. In simulations of self-
propelled rods in a two-dimensional channel, Wensink and Löwen found that particles
would form semicircular hedgehog-like clusters at the channel walls [146]. The authors
were able to correctly predict the formation and growth of these clusters using an ana-
lytical model derived from the Smoluchowski equation. In the context of the previously
described findings, these results indicate that confinement aids the aggregation of act-
ive particles regardless of its exact form. However, the confinement’s geometry still
determines the extent of particle accumulation.

Asters

As described above, immobile clusters have been found to develop in systems of self-
propelled rods in confinement. Walls and edges apparently support the formation
of cluster nuclei. However, simulations and experiments with comparable systems
have demonstrated that immobile clusters can also form without walls or edges aiding
particle accumulation. Numerous publications have reported the formation of immobile
clusters in systems of active spherical particles [116, 121, 133, 135, 136, 159], but we
will mainly focus on rodlike particles here as these are more relevant for this work. The
microscopic details vary among the systems presented here, so it is not easy to identify
general mechanisms that cause particle accumulation.
In experiments using biofilaments and motor protein complexes acting as crosslinkers
between filaments, microtubules were found to form asters under specific experimental
conditions [140, 151]. Surrey et al. reported that for two different motor protein com-
plexes, microtubules organized in asters when the motor concentration was sufficiently
high [151]. In according simulations, the authors confirmed this observation and identi-
fied a second parameter affecting the formation of asters: a larger number of filaments
would be incorporated in asters when motors were travelling a longer distance along
the filaments before detaching. A similar finding has been reported by Kraikivski et al.
[179] who simulated motility assays as described in Section 3.2.3. They found that large
detachment forces for the motors – which imply long-lasting attachment – resulted in
the formation of immobile clusters.
The formation of asters was also observed in very minimalistic simulations of self-

propelled point particles by Farrell et al. [133] – see Fig. 3.7 for a snapshot. In order
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Figure 3.7: Simulation snapshots showing aster formation. Left: static asters in a
simulation of self-propelled point particles with explicit aligning interaction. Arrows
as well as colour-coding indicate the particles’ orientations. Reprinted in part with
permission from Ref. [133]. Copyright 2012 American Physical Society. Right: an
immobile cluster in a simulation of self-propelled rods with repulsive interactions. Red
dots indicate the particles’ front ends. Reprinted with permission from Ref. [142].
Copyright 2010 American Physical Society.

to mimic rodlike particles, the authors implemented an explicit aligning interaction
and a propulsion speed that decays exponentially with local particle density. They did
not consider excluded volume interactions though. Depending on the simulation para-
meters, they found different patterns such as bands, lanes, mobile clusters, and asters.
Asters would form at rapidly decaying speeds and strong thermal fluctuations. Using a
continuum theory derived from the microscopic equations of motion, the authors could
reproduce the formation of asters and other patterns found in simulations.
Asters have also been found in simulations of self-propelled rodlike particles. Yang et
al. simulated rods with a constant propulsion force and purely repulsive interactions
and observed the formation of giant immobile clusters [142] as shown in Fig. 3.7. These
would form at high particle density and low thermal noise. Increased noise was found
to result in the formation of smaller mobile clusters which seems to contradict the
findings by Farrell et al. who reported that strong thermal fluctuations were required
for the formation of asters [133]. The explanation for this could be an aspect that
was addressed by Yang et al. when comparing their results to those of Peruani et al.
[144] and Kraikivski et al. [179]. They concluded that the particles’ aspect ratio and
interactions are crucially important in that “longer rods and shorter-range interaction
[favour] the giant-cluster formation”. Considering this and recalling that Farrell et al.
simulated point particles without excluded volume interactions, it is not surprising that
the particles in the two models would form asters under different conditions. Also, the
authors implemented a model in which the particles’ speed only depended on local
density but not on the particles’ orientation which should significantly affect their col-
lective behaviour.
In a more recent publication, Yang et al. reported another factor that would affect the
formation of asters [153]. Using a continuum model with a density-dependent motility
and an explicit aligning interaction, they found that pattern formation was controlled
by the alignment strength with the formation of asters occurring when alignment was
weak.
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We can conclude that asters form in different active systems, but the constituents’
properties determine the conditions required for aster formation. In motility assays,
the concentration and dynamics of motors was found to be important. In simulations
of self-propelled particles, the particles’ properties such as aspect ratio and interactions
were identified as the main factors controlling the formation of asters. Thermal noise
was also found to be a relevant factor, but its influence seems to be different depending
on the simulated model.

Collective motion

Reported findings of collective motion in active matter range from seemingly simple
structures such as bands or waves [125, 131–133] over collectively moving clusters [28,
108, 125, 130, 132, 133, 141–143, 147] and rotating patterns [108–110, 124–126, 137,
153–155] to complex configurations such as lattices of vortices [124]. Illustrations of
these structures are shown in Fig. 3.8.
In all of the above examples, the orientation of a single particle within a collectively
moving structure varies only slightly compared to other particles in its immediate
surrounding. If this was not the case, the observed structures would disassemble as
the contained particles would move into different directions. It is therefore necessary
that some kind of interaction exists that causes non-aligned particles to align and
stabilises assemblies of aligned particles. This conclusion is confirmed by simulations
using particles with a rotational symmetry such as point-like particles or disks with
steric interactions. Due to their geometry, “these particles cannot interchange angular
momentum and thus lack a mutual alignment mechanism” [135]. This can be easily
understood by considering rotation of particles in regions of high particle density – see
Fig. 3.9 for an illustration. First, we consider two parallel rodlike particles of length
L at a distance x < L/2 that are not allowed to overlap due to steric interactions. If
either of the particles rotates around its centre of mass, it will at some point be hindered
by the other since their distance is smaller than half of their length. As described in
Section 3.1.4, this excluded volume interaction ultimately leads to nematic order in
dense systems of rodlike particles. The above is not true for particles with rotational
symmetry. No matter how small the distance between them is, rotation will not lead to
overlapping. Hence, steric interactions do not result in an indirect aligning interaction
for particles with rotational symmetry.

As a result of this absence of an inherent alignment mechanism, none of the simula-
tions and experiments of spherical particles exhibit collective motion2 [116, 121, 135,
136]. However, when introducing explicit aligning interactions, collective motion can be
observed in simulations of systems with such particles [124, 130–133, 138]. Therefore,
we can conclude that aligning interactions are a necessary requirement for collective
motion.
For rodlike particles, steric interactions are sufficient to yield alignment as is demon-
strated by the nematic ordering of passive thin rods described in Section 3.1.4. It is
therefore not surprising to discover that active rodlike particles exhibit collective mo-
tion without an explicit aligning interaction. Previous works have demonstrated a wide
variety of collectively moving structures such as bands [125], clusters [28, 125, 141–143,

2An exception to this was presented by Weber et al. [132], but the authors modelled particle
collisions explicitly which resulted in an effective alignment interaction.
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Figure 3.8: Examples of different types of collective motion in systems of active rodlike
particles. Top left: lane pattern in a simulation of self-propelled point particles with
explicit aligning interaction. Arrows as well as colour-coding indicate the particles’
orientations. Reprinted in part with permission from Ref. [133]. Copyright 2012
American Physical Society. Top right: Density wave in a motility assay of fluorescently
labelled actin filaments. The scale bar is 50µm, and the red arrow indicates the wave’s
direction of motion. Reprinted with permission from Ref. [125]. Copyright 2010 Nature
Publishing Group. Centre right: Collectively moving clusters of myxobacteria on an
agar substrate. The scale bar is 100µm, and the arrows indicate the clusters’ directions
of motion. Reprinted with permission from Ref. [106]. Copyright 2012 American
Physical Society. Bottom: Lattice of vortices in a motility assay of fluorescently labelled
microtubules. The scale bar is 2 mm. Reprinted with permission from Ref. [124].
Copyright 2012 Nature Publishing Group.
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Figure 3.9: Illustration of steric hindrance occurring during rotation of differently
shaped particles in two dimensions. Left: rodlike particles of length L at a distance
x. The second particle cannot rotate as indicated since it would overlap with the first
one. Right: spherical particles. The particle in the centre can rotate freely without
overlapping with any of the surrounding particles as indicated by the arrows which
denote different orientations.

147], and lanes [141, 143, 147] to occur in simulated systems of active rodlike particles.
Rotating structures such as vortices or spirals have also been reported – mainly in
experiments [109, 110, 124–126, 154], but in some cases, these were also found in simu-
lations [110, 124, 137, 154, 155]. Some of these structures have not only been observed
but have also been studied in more detail either by exploring the systems’ parameter
space in order to get an idea of its phase diagram or analytically deriving equations
predicting the collective dynamics. Some of the work regarding lanes, clusters, and
rotating patterns is briefly discussed in the following section.

Lanes Lanes can be understood as narrow assemblies of polarly aligned rods moving
along the long axis of the structure – see Fig. 3.8 for an illustration.
In simulations of point particles, single lanes have been observed when the particles
had an explicit aligning interaction [133]. However, most simulations in which the
formation of lanes was observed consisted of rodlike particles that would form multiple
lanes moving parallel to each other in opposite directions [141, 143, 147, 148]. Two
requirements that were identified for the formation of lanes were aspect ratios a & 10
[141, 143] and large particle densities [141, 143, 147]. Also, high particle motilities
were found to facilitate the formation of lanes [147]. In analytical studies of similar
systems, lanes have also been predicted [153, 192]. These predictions deviate from the
simulations in that they only yielded single lanes instead of multiple lanes, but partly,
they identified similar requirements for their formation. Using a continuum model for
a nematic fluid, Putzig et al. found that lanes would occur in a range of densities above
a critical value [192]. Larger motilities were found to increase this range. Yang et al.
studied a different continuum model with a density-dependent motility and an explicit
aligning interaction [153]. They found that lanes would form when the alignment was
strong – an effect that was not reported in simulations.

Clusters Collectively moving clusters are another type of pattern that has been stud-
ied in numerous works. This kind of collective motion has been observed in experiments
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as well as simulations of both spherical particles and rodlike particles.
The occurrence of collective motion in experiments with vibrated disks as reported by
Deseigne et al. [108] is somewhat surprising since the particles do not have an ex-
plicit aligning interaction. However, the authors reported that a fraction of collisions
between particles would actually result in alignment. In simulations replicating this
experimental setup of vibrated disks, moving clusters were found as well [132]. Other
simulations of point particles with an explicit aligning interaction also showed the form-
ation of collectively moving clusters [133]. The authors were also able to reproduce this
effect using a continuum theory derived from the microscopic equations of motion.
As described above, steric interactions of rodlike particles yield alignment, so the oc-
currence of collective motion in these systems is not surprising. Experimental setups
in which collectively moving clusters were observed include motility assays with actin
filaments [125] and colonies of B. subtilis in thin films [28]. In both cases, high densities
were found to be required for cluster formation. In simulations of rodlike particles, a
more complex – and sometimes contradictory – dependence on several parameters was
identified. While the findings of Yang et al. confirmed the experimental results with a
minimum density required for the formation of collectively moving clusters [142], other
works demonstrated that such clusters would occur at low to medium densities, and
large densities would cause the formation of lanes [141, 143, 147] or large immobile
clusters [160]. Another parameter that was found to be important was the particles’
aspect ratio. According to Wensink et al., motile clusters would only occur for aspect
ratios a & 7 [141, 143], but Weitz et al. also observed such clusters at smaller aspect
ratios. Finally, simulations investigating the influence of the particles’ motility repor-
ted that it has a significant effect. According to Yang et al., a minimum motility is
required for the formation of collectively moving clusters [142]. In contrast to this,
Abkenar et al. found that this was not the case for large enough densities [147]. The
main influence of particle motility they reported was that large motilities would lead
to the formation of smaller clusters.
The formation of motile clusters has been explained analytically by local symmetry-
breaking [191, 195]. The particles’ aligning interactions in combination with their
self-propulsion were identified as the causes the symmetry-breaking. However, the ana-
lytical models did not specify the parameter ranges in which this effect would occur.
In conclusion, we have to note that the formation of collectively moving clusters seems
to be very sensitive to several parameters such as particle density, aspect ratio, and
motility. The precise dependence on these parameters is not clear at this point though.

Rotating patterns Vortices and other circular patterns of active particles have
mainly been reported in experiments, but in a few instances, these have also been
observed in simulations.
Experiments with spherical particles have been found to exhibit rotating structures
when an aligning interaction between the particles existed [108, 154]. However, most
examples of rotating structures have been observed in systems of rodlike particles in-
cluding vibrated colloidal particles [109, 110] and motility assays [124–126]. In all cases,
large densities were found to be necessary for the formation of these patterns. Apart
from this, the experiments gave little indication what other factors were relevant for
the formation of circular patterns.
In some cases, rotating structures were observed in simulations of rodlike particles –
including swirls and vortices [110, 124, 137, 155] as well as rotating rings [126]. In some
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works, the particles’ motility was identified as a relevant parameter for the formation of
rotating structures: swirling patterns were only observed for sufficiently large propul-
sion speeds [110, 137]. Other works were only able to reproduce rotating structures
when the individual particles had a tendency to move along curved trajectories [124,
126]. Another important factor pointed out in many publications are the interactions
between particles. For example, Schaller et al. found that rotating structures would
remain stable for longer periods of time due to particle aggregation [126]. Sumino et al.
concluded from their results that nematic ordering was a requirement for the formation
of vortices [124]. Finally, Lushi et al. reported that vortices would only occur in their
simulations when hydrodynamic interactions were considered [155].
Some of these aspects were also confirmed by analytical works. Using a continuum
theory, Yang and Marchetti found that swirling patterns would form as a result of
hydrodynamic interactions [196]. Also, another analytical investigation by Yang et al.
showed that explicit aligning interactions between particles would cause the formation
of rotating patterns when the alignment strength was in a specific range [153].
Even though these findings indicate that a variety of different factors is important for
the formation of rotating structures, we can conclude that the interactions between
the particles are crucially important – be it hydrodynamic interactions or aligning
interactions.

3.2.5 Phase separation in active systems

As mentioned before, collective phenomena from particle aggregation to collectively
moving patterns have in common that they exhibit non-uniform density distributions.
Therefore, they can be understood as different types of phase separation. The previous
sections have listed many examples for active systems in which phase separation was
reported – in experiments as well as in simulations. Due to the complexity of many of
these systems, a theoretical framework for the phase separation often does not exist or
is incomplete. However, some progress has been made recently – mainly for spherical
particles. Since these models will be the starting point for the analytical models de-
rived for rodlike particles later in this chapter, they will be discussed here in more detail.

Particle currents

One approach for calculating the coexisting densities in a phase-separated system con-
sisting of one dense cluster surrounded by a gas phase has been presented by Redner et
al. [135]. They used a particle-based model to derive the density in the gas phase. The
model was derived under the following assumptions: 1. the gas phase is homogeneous
and perfectly isotropic, 2. particles are absorbed by the cluster when they collide with
its surface, 3. this absorption does not affect the particles’ rotational diffusion. The
authors then calculated the rates for absorption and detachment from the cluster. In
a steady state, these have to be equal, so the gas density in this dynamic equilibrium
can be expressed as

ρgas =
πκDrot

dv
. (3.66)

Here, Drot is the rotational diffusion constant, d is the particles’ diameter, and v their
propulsion speed. The fitting parameter κ represents the average number of particles

80



3.2. STUDYING ACTIVE MATTER

simultaneously leaving the cluster during a detachment event. Due to several mechan-
isms, this number can be greater than 1.
The authors used the above expression to derive the fraction of particles in the cluster

Figure 3.10: Fraction of particles in the cluster in phase-separated systems of self-
propelled spherical particles as a function of Péclet number Pe and particle density φ
[135]. The fraction of particles in the dense phase is indicated by colour. The left plot
shows simulation results, and the right plot was generated using the authors’ analytical
model. Reprinted with permission from Ref. [135]. Copyright 2013 American Physical
Society.

and compare this to their simulation results. They found good quantitative agreement
with κ = 4.5 for packing fractions up to 0.7. The corresponding plot is shown in Fig.
3.10.

Density functional theory

A more thorough approach for studying the liquid-gas phase separation in systems of
spherical particles with purely repulsive interactions has been presented by Cates and
Tailleur [178]. As the cause for phase separation, they identified two basic mechan-
isms: first, particles tend to accumulate in regions where they move more slowly, and
secondly, the particles’ speed is dependent on local density and therefore leads to slow-
ing down of particles as a result of local accumulation. Together, these two mechanisms
can create a positive feedback loop enhancing density inhomogeneity. Since both mech-
anisms are related to the particles’ motility, the authors refer to the resulting effect as
motility-induced phase separation.
The presented model maps the coarse-grained dynamics of an active system onto the
equilibrium dynamics of a passive fluid with attractive interactions. The densities of
both coexisting phases are then obtained using classical density functional theory – see
Section 3.1.3. This procedure is outlined in the following section.
As presented in Section 3.2.2, active spherical particles can be described either as run-
and-tumble particles (RTPs) or as active Brownian particles (ABPs). These differ
mainly in how they describe the particles’ orientational relaxation. However, the au-
thors considered time scales larger than the rotational relaxation time τrot at which
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both models become equivalent. The diffusivity D can then be written as

D =
v2τ

d
+Dt , (3.67)

with v being the propulsion speed, d the dimensionality, τ = (α+ (d− 1)Drot)
−1 the

generalised reorientation time. The translational diffusivity Dt can often be neglected
because the active term is dominant.
The authors started their derivation by considering the dynamics of a single particle.
By coarse-graining its microscopic dynamics, they arrived at the time evolution of the
probability density ϕ(r) for finding a single particle at position r:

ϕ̇ = −∇j = −∇ [−D∇ϕ+ V ϕ] . (3.68)

Here, D is the diffusivity as specified before with Dt set to 0, and V = −D∇ ln v(r)
is the drift velocity. Except for this drift velocity, the above description is the same
as for a passive Brownian particle with a position-dependent diffusivity. By rewriting
the drift velocity as a function of an external potential U = kBT ln v(r), the authors
made the transition to effectively treating the active particle as a passive Brownian
particle in an external potential. The particles’ motility enters the description only via
the modified diffusivity and the potential.
Next, the dynamics of many particles were derived from those of a single particle
resulting in the stochastic equation of motion for the coarse-grained particle density
ρ(r):

ρ̇ = −∇J = −∇
[
−D∇ρ+ V ρ+ (2Dρ)1/2ζ

]
, (3.69)

where ζ is a noise-term. However, in many-particle systems, interactions have to be
considered which can be done by introducing a functional dependence of v and τ on
density: v ([ρ], r), τ ([ρ], r). The authors checked if such a many-particle system with
interactions could still be represented by an equilibrium system of passive Brownian
particles. They found that this was the case if the ratio of drift velocity over diffusivity
could be expressed as the derivative of a functional Fex[ρ]:

V ([ρ], r)

D ([ρ], r)
= −β∇δFex

δρ
, (3.70)

or equivalently

kBT ln v ([ρ], r) =
δFex
δρ

. (3.71)

Under this condition, the active system would be equivalent to a fluid of passive
Brownian particles with the free energy functional

F [ρ] = Fex[ρ] + kBT

∫
ρ(ln ρ− 1) d3r . (3.72)

The first term on the right-hand side is called excess free energy. If the particles were
actually passive, this would result from the interaction between particles. In case of
active particles, it results from the density-dependent propulsion speed v ([ρ], r). The
second term is the ideal gas contribution. From the above free energy functional, the
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thermal equilibrium configuration ρ(r) can be calculated which is exactly the idea of
classical density functional theory – see Section 3.1.3. The equilibrium configuration
would then give the coexisting densities in a phase-separated system.
During the above derivation, translational diffusion was neglected by setting Dt = 0.
Taking into account translational diffusion, the authors found that the integrability
condition stated above would only have to be slightly modified to

τv∇v

v2τ + dDt
= ∇δFex

δρ
. (3.73)

Local approximation The above many-particle description was derived without
making any assumptions about how exactly v depends on the density. In this general
case, mapping onto an equilibrium system would be possible if the integrability condi-
tion in Eq. (3.73) was met. Since this is not generally the case, the authors discussed
a special case for which the condition could be shown to be met. They referred to this
special case as the local approximation: the particles’ propulsion speed is assumed to
depend only on local density and not on any gradient terms: v ([ρ], r) → v(ρ). With
this assumption, the excess free energy can be calculated from the integrability condi-
tion. For Dt 6= 0, it is also required that τ and Dt are independent of ρ. In this case,
the free energy functional can be written as

F [ρ] =

∫
f(ρ) d3r , βf(ρ) = ρ(ln ρ− 1) + βfex(ρ) ,

βfex(ρ) =

∫ ρ

0

1

2
ln
(
v2(ρ ′)τ + dDt

)
dρ ′ ,

(3.74)

with the free energy density f(ρ) and the excess free energy density fex(ρ). Given a
specific v(ρ), the free energy functional can be calculated for any density distribution
ρ using the above equation.
To calculate the coexisting densities in a phase-separated systems from the free energy
functional, the authors applied a mean-field theory in which spatial fluctuations were
ignored. They treated the system as consisting of a number of homogeneous domains
with densities ρi and volumes Vi. The system’s free energy Ftot would then be a sum
of the domains’ free energies: Ftot =

∑
i Vif(ρi).

In a homogeneous system with only a single domain of density ρ, the free energy
could be calculated directly from Eq. 3.74. However, in a range where f(ρ) would
be concave, the system would be unstable with regards to phase separation into two
domains of densities ρ1 and ρ2. The coexisting densities ρ1 and ρ2 can be determined
via a common-tangent construction on f(ρ). This automatically yields the density
range [ρ1, ρ2] in which phase coexistence lowers the total free energy compared to a
single phase configuration. This range actually includes densities that are not in the
instability range but for which the phase-separated configuration is still energetically
favourable. For an illustration, see Fig. 3.11.

Application The authors tested the validity of their predictions by comparing them
to a wide range of existing literature presenting numerical results from a number of
different models.
As a first example, they compared their predictions to simulations of RTPs on a two-
dimensional lattice [197]. These simulations qualitatively confirmed the occuring of
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Figure 3.11: Exemplary
plot of the free energy dens-
ity as a function of dens-
ity. The region [ρi,1, ρi,2]
in which the system is un-
stable with regards to phase
separation since f(ρ) is con-
cave is indicated in red.
However, phase separation
lowers the system’s total
free energy in a wider dens-
ity range [ρ1, ρ2] given by
the common-tangent con-
struction on f(ρ).

motility-induced phase separation. However, the authors’ prediction for the coexisting
densities did not agree with simulation data for systems with steric interactions.
When applying the authors’ model to simulated ABPs, it should be noted that these
do not include an explicit dependence of the particles’ speed on density. Instead, these
particles would slow down when colliding with each other due to steric interactions.
This effect results in a particle velocity that linearly decreases with density [134, 135,
183] which is in agreement with theoretical predictions [134, 136, 183, 194]. Again,
the authors found qualitative agreement when considering this dependence, but there
were major deviations between the simulations and their theory. The numerical results
showed a critical Péclet number below which phase separation would not occur [134,
135, 183] while the theory predicted phase separation to be independent of particle
motility.
The authors pointed out that their model was incapable of accounting for various
interactions such as colloidal, orientational, and hydrodynamic interactions which were
commonly present in experiments. Hence, they concluded that further work would be
required to apply the theory to systems in which these effects are important, e.g., for
aspherical particles such as active Brownian rods.
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3.3 Modelling of the active systems

The following section describes how the simulations of active rods were implemented.
The applied models for particles and their environment are presented as well as the
simulation routine and the measurement procedures during simulation.

3.3.1 Environment

The default simulation cell in which the simulations were performed is a rectangular
box of length Lx in x-direction and Ly in y-direction. We use periodic boundary
conditions meaning that whenever a particle would leave the cell, it is put back in at
the opposing side. For certain tasks, we used a tube-like cell with fixed boundaries
at x = 0 and x = Lx and periodic boundary conditions in y-direction. Also, we did
some simulations in cells with fixed boundaries. These were not necessarily rectangular
but could have any polygonal shape. The interaction between fixed boundaries and
particles was assumed to be the same as the the interaction between particles (see
below).
We want the medium in which the particles are moving to emulate water at room
temperate, so we set the temperature to T = 300 K. The medium’s viscosity is set
to η = 10−3 Nsm−2 resembling the viscosity of water ηH2O = 1.002 · 10−3 Nsm−2 at
T = 20◦C [198].

3.3.2 Particles

Geometry

The active particles were modelled as spherocylinders, i.e., cylinders with a semi-sphere
of the same diameter as the cylinder attached to each of their spherical surfaces. Pro-
jecting a spherocylinder into two dimensions gives a rectangle with two semi-circles
attached to opposing edges. We call d the rectangle’s short edge which is also the
semi-circles’ diameter and the total length L – the rectangle’s long edge plus two times
the radius of the semi-circles, see Fig. 3.12. The particles’ aspect ratio was chosen as
a = L

d = 10 with the length L = 1µm in order to represent rod-shaped bacteria like E.
coli and B. subtilis, see Sections 1.2.2 and 3.1.1.
A rod’s configuration is defined by the position b of its centre of mass and its orienta-
tion ϕ – defined as the angle between the rod’s main axis and the system’s x-axis. An
equivalent description of a rod’s orientation is the unit vector

û =

(
cosϕ
sinϕ

)
. (3.75)

Even though the rods’ geometry is symmetrical, their ability to propel themselves
forward along their main axis breaks the symmetry and assigns them polarity.

Interactions

Interactions between particles The simulated particles do not carry a charge, but
as pointed out in Section 3.1.2, uncharged particles still interact with each other via a
potential that can be approximated by the Lennard-Jones potential. For the sake of
computational efficiency, an additional hard-core potential was implemented as well.
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Figure 3.12: Sketch of a two-dimensional spherocylindrical particle with diameter d and
total length L. The particle’s centre of mass is b, and û indicates its orientation and
hence defines the direction of self-propulsion. The angle between û and the system’s
x-axis is ϕ which is an equivalent description of the orientation. Grey circles illustrate
the shish-kebab model used to calculate interactions.

The interaction yields forces and torques when two rods come close to each other. For
calculating these, the rods are split up into spherical segments of diameter d according
to the shish-kebab model [176]. The Lennard-Jones potential between two of these
segments at postitions ri and rj is only dependent on their distance r = |ri − rj |:

VLJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]

(3.76)

As described in Section 3.1.2, the prefactor ε determines the strength of the potential,
and σ is the relevant length scale. In our simulations, this length scale is the particles’
diameter: σ = d. In order to limit the attraction resulting from the potential to a small
contribution, we set ε = 0.0086 eV which is one order of magnitude smaller than the
typical bond energy per atom for a van-der-Waals interaction.
At a distance rmin = d · 2

1
6 , the potential has its minimum VLJ(rmin) = −ε. The limits

of VLJ are

lim
r→0

VLJ =∞ , lim
r→∞

VLJ = 0 . (3.77)

At distances r � d, the potential is dominated by the term proportional to r−6 and
quickly approaches 0. Therefore, we can safely neglect interactions with particles at
great distances without considerably affecting the dynamics. We opt to cut off the
potential at a distance rco = 4rmin where the potential’s absolute value is already
|VLJ(4rmin)| < 5 · 10−4ε. For distances r > rco, we manually set the potential to 0.
At smaller distances, the force a segment at rj exerts on a segment at ri is

F LJ(r) = −∇VLJ(r) =

[
48
ε

r

(
d

r

)12

− 24
ε

r

(
d

r

)6
]
r

r
(3.78)
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with r = ri−rj being the difference vector between the two segments. For calculating
the force fαβ a rod at bβ exerts on a rod at bα, we just sum over all segments:

fαβ =
1

nα

nα∑
i

f i =
1

nαnβ

nα∑
i

nβ∑
j

F LJ(ri − rj) (3.79)

Here, the ri and rj are the positions of the segments belonging to the rods at bα and
bβ respectively and nα and nβ the number of segments for each rod.
The torque ταβ induced by the interaction is calculated by summing the torques mα of
the segments relative to the rod’s centre of mass:

ταβ =

nα∑
i

τα =

nα∑
i

P⊥(ϕα,f i − fαβ)si (3.80)

Here, P⊥(ϕα,f) is the projection of the force f onto an axis perpendicular to the rod’s
orientation ϕα and the si are the distances between the segments’ positions ri and the
rod’s centre of mass bα. The sign of si takes into account on which side of the rod the
segment is located.
Additional to the Lennard-Jones potential, a hard-core potential prevents rods to come
closer to each other than the hard-core distance dhc. We choose this parameter so that
the force resulting from two parallel rods at a distance dhc would cause them to move
apart by a distance 2.5d in the next time-step of the simulation. If the movement of a
rod would cause any part of it to come closer than dhc to another rod, we would stop
it at the point where the distance would be exactly the hard-core distance. Details on
how dhc is calculated can be found in App. B.

Thermal forces Particles do not only interact with each other but also with the
molecules of the surrounding medium. As outlined in Section 3.1.5, these are small
compared to the simulated particles and move on a shorter time scale. Hence, many
collisions occur on the particles’ time scale and their effect can be described as a
statistical quantity. This is done by effectively integrating over all of these collisions
which yields a random force F th. This force is dependent on the medium’s viscosity,
temperature, and the particles’ dimensions. It represents the thermal fluctuations
caused by the medium. The F th are distributed according to a Gaussian distribution
– the exact form of which will be given below. Hydrodynamic interactions were not
considered.

Reversal at cell boundaries We can enable particles to reverse their orientation
when hitting a cell boundary. Since this reversal is equivalent to rotating the particle
by an angle π, we can simply execute this move as a rotation. The reversal mechanism
is triggered when the particle’s front end collides with a boundary, i.e., the distance
between the two becomes smaller than the hard-core distance dhc.
This mechanism imitates a naturally occurring phenomenon: a number of different
types of bacteria have been reported to have the ability to reverse their direction of
motion [199–203]. In particular, B. subtilis has been observed to reverse its orientation
when encountering an obstacle [204].
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Dynamics

The particles’ dynamic behaviour is determined by their propulsion speed and their
friction coefficients. We assume self-propelled particles which push themselves forward
along their main axis with a propulsion speed v0. The friction coefficients influence
the interactions of the particles with the surrounding medium, i.e., rotational and
translational diffusion. They were already introduced in Section 3.1.5.
The rotational friction coefficient γrot is a measure of how a particle in a medium reacts
to an external torque τ . Assuming this torque is perpendicular to the simulation cell,
this can be written as

ϕ̇ =
1

γrot
τ , (3.81)

where τ = |τ |. The rotational friction coefficient can be approximated as

γrot =
πηL3

3 ln(L/d)
(3.82)

with η being the viscosity of the medium, L the rod’s length and d its diameter.
The translational friction coefficients γ‖ and γ⊥ determine the speed v at which a
particle moves when an external force F acts on it. With v‖ and v⊥ being the speed’s
components parallel and perpendicular to the rod’s main axis, the relation between
force, friction coefficients, and speed is as follows:

F = γ‖v‖ + γ⊥v⊥ (3.83)

The translational friction coefficients can be approximated as

γ‖ =
2πηL

ln(L/d)
, γ⊥ =

4πηL

ln(L/d)
. (3.84)

As pointed out in Section 3.2.1, we use the Péclet number Pe to quantify if the particles’
dynamics are dominated by propulsion or by diffusion. We will use the following
definition for the Péclet number from here on:

Pe =
v0L

D‖
=

6v0

DrotL
, (3.85)

where D‖ = kBT γ
−1
‖ and Drot = kBT γ

−1
rot according to Eq. (3.32). The two equivalent

expressions represent a comparison of the particles’ self-propulsion to translational
diffusion parallel to their main axis or to rotational diffusion.

3.3.3 System initialisation

When generating a system, rods are deposited into the simulation cell at random po-
sitions bi with random orientations ϕi. A rod is only deposited when it does not
intersect with any of the rods already in the cell. Otherwise, a new position vector
and orientation are generated. This process is repeated until either a configuration
without intersections is generated or the rod has been attempted to be put into the
cell 106 times. In the latter case, the simulation routine is performed for 102 time-steps
which alters the positions and orientations of the already deposited rods. Afterwards,
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the depositing routine for the next rod starts from the beginning. This procedure is
completed when the desired particle density ρ = N/(LxLy) is reached. Here, N is the
total number of rods. An equivalent parameter in dimensionless units is the reduced
density ρ̃ = ρL2.
When generating a swirling configuration, the above routine is modified: the rods’
orientations are chosen depending on their position in the cell in order to generate a
swirling pattern. This is achieved by calculating the difference vector between a rod’s
position and the centre of the cell and then setting the orientation to be perpendicular
to this vector.

3.3.4 Simulation

Starting from t = 0, the simulation time t is increased incrementally by time-steps
∆t up to the maximum simulation time tmax. At the beginning of each time-step,
translational and angular velocities of the particles are set to 0. Next, forces and
torques on each particle are calculated. There are two contributions to each of these –
one from interaction with other particles and one from thermal forces. The interaction
between particles has already been described above. The contribution from the medium
is a noise term representing thermal interactions as described in Section 3.1.5. In the
same section, we introduced the force’s components ξ‖ and ξ⊥ as Gaussian distributed
with the properties

〈ξα〉 = 0 , 〈ξα(t)ξβ(t′)〉 = 2kBTγαδαβδ(t− t′) , (3.86)

where α, β = {‖,⊥}. For the random torques ξrot, we had

〈ξrot〉 = 0 , 〈ξrot(t)ξrot(t′)〉 = 2kBTγrotδ(t− t′) . (3.87)

However, when dealing with discretised time, the correlations have to be adjusted as
follows [205]:

〈ξα,nξβ,m〉 = 2
kBTγα

∆t
δαβδn,m , 〈ξrot,nξrot,m〉 = 2

kBTγrot
∆t

δn,m, (3.88)

where t = n∆t and t′ = m∆t.
The above properties result from the following Gaussian distributions:

p‖(ξ‖) =
1√

2πσ‖
exp

(
−
ξ2
‖

2σ‖

)
, σ‖ =

2kBTγ‖

∆t
, (3.89)

p⊥(ξ⊥) =
1√

2πσ⊥
exp

(
−
ξ2
⊥

2σ⊥

)
, σ⊥ =

2kBTγ⊥
∆t

, (3.90)

prot(ξrot) =
1√

2πσrot
exp

(
− ξ2

rot
2σrot

)
, σrot =

2kBTγrot
∆t

. (3.91)

Values for the random torques and forces are drawn using the ziggurat method imple-
mented in the GNU Scientific Library.
After forces and torques are calculated, the particles’ translational and angular velo-
cities are calculated according to the Langevin equation (3.60):

v‖ = v0û+ γ−1
‖

[
− (∇U(r))‖ + ξ‖

]
v⊥ = γ−1

⊥ [− (∇U(r))⊥ + ξ⊥] ,

ϕ̇ = γ−1
rot [τU + ξrot] .

(3.92)
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The terms resulting from the external potential are given by Eq. (3.79) and Eq. (3.80):

−∇U(r = bα) =
∑
β

fαβ , τU =
∑
β

ταβ . (3.93)

The particles are rotated and moved one by one. After each rotation and movement, it
is checked whether the new configuration causes rods to intersect. Two rods intersect
when any part of one of them is closer to the other one than the hard-core distance dhc.
If this is the case, the rotation or movement causing the intersection is rejected. If the
simulation cell has fixed boundaries, intersections with these are prevented similarly.
It is checked whether a particle’s new configuration leads to an intersection with one
of the boundaries. However, these rotations and movements are not rejected entirely.
Instead, they are partly carried out up to the point that the minimum distance between
particle and boundary is dhc.

3.3.5 Discretised interactions

Since the interactions between particles have to be calculated in every time-step, a lot
of computing time is spent on those calculations. However, we can save this time by dis-
cretising the interaction. The forces and torques generated by the interaction between
two particles is only dependent on their position relative to each other. So, we can
calculate forces and torques for all relevant positions, save these in an array, and read
out the according values during simulation. Due to the large number of interactions
that would have to be calculated during a simulation, this approach is significantly
reducing computing time – especially since the array only has to be calculated once
and can then be used for several simulations. The disadvantage of this method is that
it is not as accurate as explicitly calculating the interactions.
For calculating the array, we consider a rod at position (0, 0) parallel to the x-axis and
a second rod exerting a force and a torque according to the Lennard-Jones interaction
on the first one. For the second rod, we systematically change position and orientation
in order to cover all configurations for which any part of the second rod is close enough
to the first one to interact with it. These configurations can be interpreted as a volume
C in configuration space (x, y, ϕ). We discretise this volume using the increments dx,
dy, and dϕ dividing it into subvolumes ([xi, xi + dx], [yj , yj + dy], [ϕk, ϕk + dϕ]). For
each of these small volumes, the resulting force and torque acting on the first rod are
calculated and saved in an array. Additionally, it is checked whether a configuration
leads to an intersection of the two rods. This information is also saved as it reduces the
time spent on checking for intersections during simulation. The reason here is the same
as for the interactions – reading a value from an array is much quicker than calculating
whether two rods intersect.
During simulation, we can now obtain forces and torques resulting from the interac-
tion between two rods by simply calculating their relative position (x, y) and relative
orientation ϕ to each other. Next, we find the according subvolume in C, so that

xi ≤ x < xi + dx ∧ yi ≤ y < yi + dy ∧ ϕi ≤ ϕ < ϕi + dϕ . (3.94)

Then, we can read the already calculated values from the array. The procedure for
checking for intersections is analogous.
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3.3.6 Dimensionless parameters

Simulations were performed using dimensionless parameters. As calibrating values, we
used the following relations:

1µm ≡ 1 , 1µs ≡ 1 , kB · 1 K ≡ 1 . (3.95)

This results in a particle length L = 1 and diameter d = 0.1. In dimensionless energy
units, the strength of the Lennard-Jones potential is ε = 100.
The medium’s viscosity of 10−3 Nsm−2 becomes η = 7.24297·107 in dimensionless units.
Since we set the temperature to T = 300 K, we have kBT = 300 in our simulations.
With these values, we can calculate the friction coefficients

γ‖ =
2πηL

ln(L/d)
= 1.97643 · 108 , D‖ =

kBT

γ‖
= 1.51789 · 10−6 , (3.96)

γ⊥ =
4πηL

ln(L/d)
= 3.95286 · 108 , D⊥ =

kBT

γ⊥
= 7.58945 · 10−7 , (3.97)

γrot =
πηL3

3 ln(L/d)
= 3.29405 · 107 , Drot =

kBT

γrot
= 9.10734 · 10−6 . (3.98)

The rotational relaxation time is

τrot =
1

2Drot
= 5.49008 · 104 . (3.99)

Unless indicated otherwise, simulations were performed using time-steps ∆t = 100.

3.3.7 Measurements

During simulation, a variety of quantities is measured for later analysis.

Nematic ordering

Following Section 3.1.4, we use a tensor Q to get information about the nematic order
in a system with N filaments at angles ϕi relative to the x-axis:

Q =
1

N

∑
i

[
2 cos2 ϕi − 1 2 cosϕi sinϕi
2 cosϕi sinϕi 2 sin2 ϕi − 1

]
=

[
q1 q2

q2 −q1

]
,

q1 =
1

N

∑
i

2 cos2 ϕi − 1 , q2 =
1

N

∑
i

2 cosϕi sinϕi

(3.100)

The nematic order parameter S is the positive eigenvalue of Q:

S =
√
q2

1 + q2
2 (3.101)

The director n is the associated eigenvector:

n =

√
q2

2

2q2
1 + 2q2

2 − 2q1

√
q2

1 + q2
2

(
1

q1−
√
q21+q22
q2

)
. (3.102)
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Centre of mass and mass distribution tensor

We call c the centre of mass of a system of N filaments. The centre of mass of a particle
i is given by its position bi. The system’s centre of mass is the average of all bi:

c =
1

N

∑
i

bi (3.103)

Since the centre of mass alone does not give us information about the mass distribution,
we also calculate a mass distribution tensor which we write in analogy to a moment of
inertia tensor as

C =

(
Cxx Cxy
Cxy Cyy

)
=

1

N

∑
i

θi , (3.104)

where the θi are the individual rods’ contributions to the tensor. In a system with
centre of mass c, a rod with centre of mass bi and orientation ûi gives the contribution

θi,αβ =

∫ 1

0

(
cα − bi,α −

L

2
ui,α + sLui,α

)(
cβ − bi,β −

L

2
ui,β + sLui,β

)
ds . (3.105)

Introducing the expressions

di,α = cα − bi,α , Li,α = Lui,α , (3.106)

we get

θi,αβ =

∫ 1
2

− 1
2

(
di,αdi,β + di,αLi,βs

′ + di,βLi,αs
′ + Li,αLi,β s

′ 2
)
ds ′

= di,αdi,β +
1

12
Li,αLi,β .

(3.107)

With this, we can write the mass distribution tensor as

Cαβ =
1

N

∑
i

di,αdi,β +
1

12
Li,αLi,β . (3.108)

This tensor can be understood as measuring the variance of the mass distribution in the
system. By comparing it to the tensor resulting from a homogeneous mass distribution,
we can determine whether the mass distribution of a system is inhomogeneous. In
order to do this, we can illustrate the tensor as an ellipse by calculating its eigenvalues
and eigenvectors. In two dimensions, the calculation of the eigenvalues λ1 and λ2 is
straightforward yielding

λ1,2 =
Cxx + Cyy

2
±

√(
Cxx + Cyy

2

)2

−
(
CxxCyy − C2

xy

)
. (3.109)

The eigenvalues give us the lengths of the ellipse’s main axes. The ellipse’s orientation
is indicated by the eigenvector vc,1 corresponding to the greater of the two eigenvalues
λ1. This eigenvector can be calculated as

vc,1 =

(
Cxy

λ1 − Cxx

)
, (3.110)
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Figure 3.13: Left: Sketch of an ellipse constructed from a mass distribution tensor with
eigenvalues λ1 and λ2 and an angle ϕc between the tensor’s eigenvector vc,1 and the
x-axis. Right: Examples of various mass distributions in a square cell. To simplify
illustration, particles are represented by grey dots without indication of orientation.
Red crosses mark the systems’ centres of mass while red ellipses are drawn according
to the systems’ mass distribution tensors.

and the angle ϕc between the ellipse’s greater main axis and the x-axis is then given as

ϕc = tan−1 λ1 − Cxx
Cxy

. (3.111)

An illustration of such an ellipse as well as a few examples for different mass distribu-
tions in a square cell can be found in Fig. 3.13.

Average speed

The average speed 〈v(t, t0)〉 over a time period [t0, t] is calculated using the filament
positions bi(t0) and bi(t).

〈v(t, t0)〉 =
1

N

∑
i

|bi(t)− bi(t0)|
t− t0

(3.112)

The average absolute speed 〈|v(t, t0)|〉 over a time period [t0, t] is calculated using the
sum of integrals

〈|v(t, t0)|〉 =
1

N(t− t0)

∑
i

∫ t

t0

∣∣∣∣∂ci(t′)∂t′

∣∣∣∣ dt′ . (3.113)

Since the simulation is discrete in time, the integral has to be transformed into a discrete
sum with nt = t−t0

∆t being the number of time-steps in the time interval [t0, t]:

〈|v(t, t0)|〉 =
1

Nnt

∑
i

nt∑
j=1

∣∣∣∣bi(t0 + j∆t)− bi(t0 + (j − 1)∆t)

∆t

∣∣∣∣ . (3.114)

Rejected moves

In a given time interval [t0, t] with nt = t−t0
∆t being the number of time-steps in this

interval, the total number of attempted moves is the product of the total number of
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particles N and nt. Here, a move is the combination of rotation and translational
movement. Dividing the number of rejected moves by the total number of attempted
moves gives us the fraction of rejected moves ηr(t, t0).

Density distribution

For measuring the density distribution, we divide the simulation cell into a grid of
smaller square-shaped cells with dimensions lρ×lρ. The grid covers the whole simulation
cell. In a single cell, the density is given by the number of rods in it divided by the
cell’s area. When a rod is only partly in the cell, it is only partly counted. A rod
of length L of which the length l is in the cell contributes with the ratio l/L to the
number of particles in the cell.
The density distribution at a certain time t is then calculated by using an array of
discrete density intervals. The size of these intervals which we also call the resolution
of the density distribution is ∆ρ. So, the intervals are defined as {[i∆ρ, (i+ 1)∆ρ[}.
For each of those intervals, we count the number of cells with a density in it. Also, the
number of of cells with density 0 is counted separately. Since we want the distribution
to be normalized, we divide all numbers by the total number of cells in the grid.
When mesuring the density distribution over a time interval [t0, t], we sum up the
distributions at each time-step and normalize the resulting distribution by dividing by
the number of time-steps in the interval.
The density distributions presented in the following sections were calculated using
lρ = 2.0〈ρ̃〉−1L since both isotropic and phase separated systems would be correctly
identified for this cell size – see App. C.1.

Calculating phase separation from density distribution

We consider a system with two coexisting phases of low and high density. The density
distribution will then exhibit two maxima – one at a low density and one at a high
density. We want to determine the densities of the two phases from the density dis-
tribution. Ideally, the particles in the two phases would be evenly distributed so that
the density would be homogeneous within each phase. Then, the density distribution
would consist of only two peaks at the respective densities and we could determine the
phases’ densities by simply reading off the positions of the peaks.
However, this was not the case in the studied systems – the observed peaks were not as
sharp for several reasons. First of all, we divide the simulation cell into a grid of small
cells for measuring the local density. The grid’s position is fixed, so it is unlikely that
the phase boundary is equivalent to the cell boundaries. Instead, the phase boundary
will usually cut through some of the cells which will cause the average density in these
to be somewhere in between the densities of the two phases. Also, we do not analyse a
system at a specific point in time but average over a time interval. We have to assume
that the density in the two phases fluctuates over time yielding a smooth distribution
after averaging instead of a sharply peaked one.
One option would be to use the positions of the two maxima, but this would not take
into account the full information contained in the distribution. Instead, we split the
distribution into two parts corresponding to low and high densities. Then, we aver-
age over these two partial distributions and get two densities representing the average
densities in the two phases. This procedure guarantees that we use information about
all densities present in the system instead of just the maximum values. However, by
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splitting the distribution at a certain density ρ̃sp, we manually introduce a parameter
that will affect the results we get for the densities. This parameter is obviously the
value of ρ̃sp.
We opt to use the transition density for the isotropic-nematic phase transition in two-
dimensional systems of infinitely thin rods without propulsion – see Section 3.1.4.
According to Kayser and and Raveché, this is ρ̃IN = 3π/2 [173]. This value is the
geometrical limit up to which an isotropic system of passive rod-like particles can exist
without exhibiting ordering. Therefore, ρ̃IN represents an upper bound for the density
in the low-density phase, so we can definitely associate densities ρ̃ > ρ̃IN to belong to
the high-density phase. Of course, this choice is somewhat arbitrary, and we could also
use other values for ρ̃sp. The effect altering ρ̃sp has on the results for the coexisting
densities is discussed in App. C.2.
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3.4 Simulation Results

The following section presents the results from simulations of active rodlike particles
with and without confinement.

3.4.1 Inhomogeneity in confined geometries

Simulations were performed in confined geometries of various shapes – equilateral tri-
angles, squares, and regular 12-sided polygons were used as simulation cells at average
densities 〈ρ̃〉 = 1.0, 3.0, 5.0. For self-propelled particles, we notice accumulation of
particles near the cell’s edges with time. This effect is not temporary but persists on
large time scales. These inhomogeneities already occur at relatively low Péclet numbers
like Pe = 10. For the same parameters, simulations with passive particles do not yield
comparable effects. Instead, the particles in those simulations stay evenly distributed
throughout the simulation cell. Snapshots of passive and active particles in a simula-
tion cell shaped like a 12-sided regular polygon are shown in Fig. 3.14.
This observation is in qualitative agreement with the results presented by Fily et al.
for spherical particles in a confined geometry [194] as well as the findings by Kaiser
et al. for self-propelled rodlike particles trapped by a chevron-shaped obstacle [145].
These results are discussed in more detail in Section 3.2.4.
In most cases, the inhomogeneity in active systems can be identified by looking at the
time-development of the system’s centre of mass. In passive systems, this fluctuates
around the position of the centre of mass in a homogeneous system chom within a radius
dependent on the system’s average density. In active systems, the distance between the
centre of mass and chom is usually greater than in passive systems. Additionally, the
centre of mass does not fluctuate around chom on the simulated time scales but tends
to remain displaced towards one of the cell’s edges. An example can be seen in Fig.
3.14. In case the centre of mass trajectories in comparable active and passive systems
are very similar, we can still use the mass distribution tensor to identify inhomogeneity.
This can happen when particles accumulate symmetrically in multiple edges which res-
ults in a centre of mass that is still near chom. This kind of particle accumulation will
yield greater eigenvalues compared to a homogeneous system though. An example for
this is shown in Fig. 3.15.
The accumulation of particles near the edges creates an area of high density in which
the particles consequently have a reduced free volume compared to an isotropic config-
uration. Due to the steric interactions between the particles, this should restrict their
ability to move. By measuring the average speed, we can confirm this. It turns out
that in the simulated active systems at Pe = 10, the average speed would be in the
range [0.15 v0, 0.30 v0] with v0 being the propulsion speed. The exact value as well as
the amount of fluctuations of the average speed depend on the cell shape and the sys-
tems’ average density. Generally speaking, the average speed decreases with increased
average density. The influence of the cell shape is not as clear. Cells with more edges
and thereby wider angles in the edges tend to allow greater average speed.
The decrease of motility due to particle accumulation is so pronounced that the average
speed in the active systems is lower than in the passive systems where particles move
solely due to translational diffusion – at least this is what we find for Pe = 10. An
example of this is shown in Fig. 3.14.
An explanation for the particles’ reduced motility can be found by looking at the frac-
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Figure 3.14: Top left: Typical snapshots of two systems of average density 〈ρ̃〉 = 3.0 in a
12-sided regular polygon. The systems only differ in particle motility. Passive particles
remain evenly distributed while self-propelled particles tend to accumulate near the
cell’s edges even at relatively small Péclet numbers. Arrows indicate the particles’
orientations. Top right: Comparison of the time-development of the two systems’
centres of mass over a time period tmax ≈ 1800τrot. In the passive system, the centre of
mass fluctuates around the position expected for a homogeneous system. In the active
system, the centre of mass is shifted towards the cell’s edges which indicates particle
accumulation. Its movement indicates that the accumulated structure is not static but
changes position over time. Bottom left: Comparison of the time-development of the
average speed 〈v(t, t−∆t)〉 in the two systems; v0 denotes the propulsion speed of the
particles in the active system. The timespan for averaging was chosen as ∆t = 0.91 τrot.
We notice that the particles’ average speed in the active system is lower than in the
passive system despite self-propulsion. The reason for this is the significantly higher
fraction of rejected moves. Bottom right: Comparison of the time-development of the
fraction of rejected moves ηr(t, t − ∆t)〉 in the two systems with the same ∆t as for
the average speed. The fraction of rejected moves is significantly greater in the active
system due to the reduced free volume per particle where they accumulate.
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Figure 3.15: Left: Comparison of the centre of mass trajectories in a passive system
and an active system with Pe = 10 in an equilateral triangle. Both systems have
average density 〈ρ̃〉 = 3.0. The trajectories are very similar making it impossible to
decide whether the active system is inhomogeneous. Right: Comparison of the time-
development of the mass distribution tensor’s eigenvalue λ1 in the two systems over a
timespan t ≈ 1800τrot. In the passive system, λ1 remains similar to the value predicted
for a homogeneous system (dashed line). In the active system, λ1 is significantly greater
– indicating inhomogeneity – at almost all times.

tion of rejected moves ηr. We notice that this value is significantly greater in active
systems than in passive systems which indicates that particles collide more frequently
as a result of their reduced free volume. This obviously leads to a decrease in average
speed – when a large fraction of moves is rejected, particles need longer to travel a
certain distance. Usually, ηr is in the range [0.4, 0.6] in active systems. In passive
systems, ηr strongly depends on the average density. For systems with 〈ρ̃〉 = 1.0, it can
be as low as 0.02 while for 〈ρ̃〉 = 5.0, it can be in the range of 0.3. An example can be
seen in Fig. 3.14.
Plotting the density distributions for the active and passive systems confirms what we
can observe in the snapshots. Regardless of the cell shape, we find density distributions
peaked around the system’s average density indicating isotropy for passive particles.
In active systems, we get distributions with one maximum at ρ̃ = 0 and another one
at a high density indicating phase separation. Density distributions for different cell
shapes can be seen in Fig. 3.16.
Even though inhomogeneity is reflected in all of the measurements described above,

it does not seem to have a clear effect on the degree of nematic order quantified by the
nematic order parameter S. Comparisons of S in passive and active systems do not
show any differences that are consistent for different cell geometries or average densities.
Other works have reported enhanced ordering in active systems compared to passive
systems [179]. However, those simulations were performed with periodic boundary con-
ditions, so the confinement in our simulations could be the factor preventing this effect.

To conclude, we find inhomogeneity in active systems while similar systems with
passive particles remain homogeneous on long time scales. This is not only observed in
snapshots of the simulations but also reflected in the centres of mass, mass distribution
tensors, and density distributions. Since the only difference in the systems is the
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Figure 3.16: Density distributions for active and passive systems of average density
〈ρ̃〉 = 3.0 in simulation cells of different shapes. The particles’ motility in the active
systems is Pe = 10. The simulated cell shapes were regular polygons with 3 (triangle),
4 (square), and 12 (12-sided) edges. Passive systems exhibit distributions that have
a single peak at the average density which is characteristic for homogeneous systems.
For active systems, we find two maxima – one at ρ̃ = 0 and the second one at a density
greater than the average density.

particles’ motility, we can conclude that self-propulsion is the cause for the observed
inhomogeneity. As we can see in snapshots, particles tend to accumulate near the
edges of the simulation cell rather than within the cell. This is also confirmed by
the centres of mass and mass distribution tensors in these systems. As a result of the
accumulation, the particles are significantly slowed down as is reflected in the measured
average speeds.
Active particles have also been observed to form immobile clusters without confinement
though – see Section 3.2.4. The absence of this type of clustering in our simulations in
combination with the occurrence of particle accumulation near the cell edges suggests
that confinement is strongly beneficial for the observed inhomogeneity. The reasoning is
that if particle accumulation is much more likely near the cell edges, immobile clusters
within the cell will not be observed. Once the particles have accumulated near the
edges, the density within the cell is too low to induce clustering.

Reversing orientation at cell boundaries

A first attempt to eliminate the influence of confinement was to provide the particles
with the ability to reverse their orientation when hitting a cell boundary. As described
in the previous section, we observe accumulation of particles near edges of the simula-
tion cell. It is easy to see why a single self-propelled particle would get stuck in an edge
of the simulation cell. The most likely case is that it arrived in the edge by actively
moving there. It would also be possible for the particle to have been moved into the
edge by translational diffusion, but this is less likely. Since Pe� 1 in our simulations,
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particle motion is dominated by self-propulsion with translational diffusion being only
a weak contribution.
Now, when assuming a particle was driven into an edge due to its self-propulsion, its
front end will be pointing towards the edge. Since the cell boundaries are impenet-
rable, the particle can only escape from the edge by rotating until it is pointing away
from the edge. However, the particles are not capable of actively rotating. The only
mechanism causing rotation is rotational diffusion. Hence, the time scale for a single
particle rotating away from an edge is the rotational diffusion time τrot.
When considering multiple particles, rotation could also be caused by angular mo-
mentum resulting from the interaction between particles. However, the main effect
the presence of other particles has is that it significantly hinders rotation due to steric
interactions. In order to rotate freely, a particle needs a free volume in the order of
L2 which is equivalent to a local density in the order of ρ̃ = 1. As soon as the local
density becomes greater than this, particles start blocking each other and preventing
each other’s rotation. Therefore, particle accumulation near edges is a self-perpetuating
process – it increases the local density which in return slows down the breaking up of
the accumulation. Since the rate of particles joining the accumulation does not change
until the density in the rest of the system is significantly lowered, this leads to further
growth, increasing the density even more.
Allowing the particles to reverse their orientation provides a possibility for them to
rotate away from the edge on a time scale much shorter than the rotational diffusion
time without being hindered by other particles. Hence, if this was enough to prevent
particle accumulation, we would have a good indication that confinement is the main
factor causing inhomogeneity.

Simulations were performed in the same simulation cells as the confined systems de-
scribed above with the same simulation parameters. We find that the particles’ ability
to reverse their orientations does affect particle accumulation, but the extent of this
depends on the system’s average density. Evaluating the systems’ centres of mass and
their mass distribution tensors, we see that the degree of inhomogeneity is significantly
reduced at the average densities 〈ρ̃〉 = 1.0. Also, the particles’ average speed is greater
than in passive systems at this average density, and the fraction of rejected moves is
almost as low as in passive systems. These observations are all indications that imple-
menting a reversal mechanism greatly reduces the particles’ tendency to accumulate.
Their increased motility compared to the systems described above can be explained by
the greater free volume they have when not accumulated.
At 〈ρ̃〉 = 5.0, the picture completely changes. None of the measured quantities show a
consistent deviation from the systems without reversal mechanism. Particle accumu-
lation is as pronounced as in those simulations, the particles’ average speed is mostly
the same, and the fraction of rejected moves remains unchanged as well.
In systems of intermediate simulated density 〈ρ̃〉 = 3.0, some of the effects observed at
low densities can be found. The particles’ average speeds in these systems is still signi-
ficantly increased, and the fraction of rejected moves fluctuates between the values for
regular active systems and passive systems. Hence, we still note an increased particle
motility. The degree of inhomogeneity seems to be mainly unchanged though. Only
the system in the 12-sided cell exhibits reduced inhomogeneity. In the other two cells,
simulation snapshots indicate that particle accumulations tend to break up sooner than
in regular systems, but these systems are still mostly inhomogeneous.
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We can summarise that the particles’ ability to reverse their orientation can eliminate
or at least reduce the probability of particle accumulation in confined systems at low
average densities. At medium densities, this ability does not notably suppress particle
accumulation but still increases particle motility. At high densities, there is almost no
difference between systems with and without a reversal mechanism though. Assuming
that reversal of orientation reduces the influence of the confining walls on the sys-
tem, we can confirm that confinement does promote particle accumulation, but at high
densities, particle interactions may be the dominant mechanism driving accumulation.

3.4.2 Inhomogeneity in periodic systems

In order to study particle accumulation as a result of interactions, we performed simu-
lations of self-propelled particles in periodic simulation cells at average densities from
〈ρ̃〉 = 2.0 to 〈ρ̃〉 = 5.0 at Péclet numbers Pe = 10 to Pe = 100. Several other
works have presented the formation of immobile clusters as well as collectively moving
patterns such as lanes, clusters, and swirls exclusively due to interactions among the
particles – see Sections 3.2.4 and 3.2.4. All of these patterns involve inhomogeneous
density distributions as the particle density is greater within the patterns than in the
surrounding area. Hence, these patterns represent a kind of phase separation.
It turns out that we can observe such inhomogeneities at motilities as low as Pe = 20
even at average densities 〈ρ̃〉 = 2.0. We find a variety of different types of configura-
tions in inhomogeneous systems comparable to the patterns mentioned above. These
include asters, polar clusters, and enclosed lanes.

Asters Asters are characterized by an approximately circular shape with the particles
pointing towards the cluster’s centre. Such a configuration causes the particles to block
each other which is reflected in the particles’ average speed 〈v(t, t−∆t)〉. Measuring this
quantity over time intervals ∆t = 0.91 τrot yields values as low as 〈v(t, t−∆t)〉 = 0.002v0

– with v0 being the particles’ propulsion speed – when the system is in an aster con-
figuration. Hence, particle motility is extremely suppressed. These immobile clusters
appear at all simulated densities for Pe ≥ 30 but are quite rare and break up quickly.
The probability of their occurence as well as the time for which they are stable increases
with particle motility. These observations agree well with the findings of Yang et al.
presented in Section 3.2.4. The particles in our asters are also oriented towards the
centre, and increased particle motility – which is equivalent to reduced noise in their
simulations – increases the time it takes for asters to break up.

Polar clusters In a polar cluster, particles are aligned along a common axis with
their orientations varying in a small range around the axis’ orientation. Sometimes,
these clusters are also referred to as swarms [125, 141, 143, 147]. Since the particles
move roughly in the same direction instead of blocking each other, the average speed
is significantly larger than in asters. For the simulated parameters, we find average
speeds ranging from 0.3v0 to 0.6v0 in polar clusters. The lower values tend to occur in
systems with larger average densities and higher Péclet numbers. Compared to asters,
these clusters appear to be less dense which is probably another reason why particles
are still motile.
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Polar clusters are the dominant configuration for almost all simulated parameters. Only
at high particle motilities, their occurence becomes less frequent. For average densities
〈ρ̃〉 = 2.0, this is the case for Pe ≥ 80 whereas for 〈ρ̃〉 = 5.0, this can already be
observed at Pe ≥ 40. The observation of collectively moving clusters is in good agree-
ment with previous works, see Section 3.2.4. Wensink et al. simulated self-propelled
rods with steric interactions and found collectively moving clusters for volume fractions
φ ≈ 0.25 and aspect ratios a & 7 [141, 143]. The authors assumed a particle speed
comparable to that of Bacillus subtilis which they specify as 30 − 100µm/s. In our
model, this corresponds to a Péclet number of Pe = 20 − 66. A volume fraction of
φ = 0.25 is equivalent to ρ̃ = 2.5 for our particles of aspect ratio of L/d = 10. Since
our simulation parameters are in a similar range, it is plausible that we find collect-
ively moving clusters. Yang et al. performed similar simulations and found collectively
moving clusters at all densities [142] which complies with our findings. However, they
observed that the particles’ motility needed to exceed a critical value in the range
Pe > 100 to enable cluster formation which is not the case in our simulations. Ab-
kenar et al. reported collectively moving clusters to be the predominant phase at small
and medium densities in their simulations [147]. Our observations agree with this, but
the simulations are not entirely comparable since Abkenar et al. implemented a soft
potential that allowed overlapping of particles.

Enclosed lanes Enclosed lanes are similar to polar clusters in that they also exhibit
a high degree of order. They consist of a central lane of mostly parallel particles that
is enclosed by two layers of particles pointing towards the lane on either side. The
particles in these layers are also mostly parallel. Due to the high degree of ordering,
particles in enclosed lanes can be tightly packed – resulting in high densities. Judging
from the snapshots, the density is clearly greater than in polar clusters. This high
density significantly slows down the particles. However, the resulting average speed
varies greatly with the particles’ motility. Smaller Péclet numbers yield higher average
speeds in enclosed lanes. For example, in systems with average density 〈ρ̃〉 = 5.0, we
get 〈v(t, t − ∆t)〉 ≈ 0.002v0 for Pe = 100 and 〈v(t, t − ∆t)〉 ≈ 0.05v0 for Pe = 30.
Average speeds were again measured over a timespan ∆t = 0.91 τrot. In fact, not only
is 〈v(t, t−∆t)〉/v0 greater in systems with smaller Péclet numbers but also the absolute
average speed 〈v(t, t−∆t)〉. The reason for this is unclear. One possible explanation is
that the pressure from the outer layers on the central lane decreases with the particles’
propulsion speed. The lower pressure would lead to lower density in the central lane.
This is equivalent to a greater free volume per particle which would allow them to
move faster due to the reduced number of collisions. In fact, we find that the fraction
of rejected moves ηr decreases with the Péclet number in enclosed lanes. In the ex-
ample mentioned above of systems with average density 〈ρ̃〉 = 5.0, we find ηr ≈ 0.98 at
Pe = 100 and ηr ≈ 0.84 at Pe = 30.
The probability of finding enclosed lanes increases with particle motility and is also
dependent on the system’s average density. For 〈ρ̃〉 = 2.0, they become increasingly
prevalent at Pe ≥ 80 whereas for 〈ρ̃〉 = 5.0, this is already the case at Pe ≥ 40. It
should be pointed out that the enclosing layers we observe have not been reported
in other works. Comparable simulations have shown either single lanes in which all
particles move in the same direction or multiple lanes moving in opposite directions,
see Section 3.2.4.
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Figure 3.17: Examples for different types of phase-separated configurations. From left
to right: 1. aster, snapshot from a system of average density 〈ρ̃〉 = 2.0 with particle
motility Pe = 100, 2. polar cluster, 〈ρ̃〉 = 3.0, Pe = 50, 3. enclosed lane, 〈ρ̃〉 = 4.0,
Pe = 80.

Snapshots of the inhomogeneous patterns described above are shown in Fig. 3.17.
They all have in common that they consist of two coexisting phases. One of these
has a high density and exhibits some kind of order: in asters, particles point towards
a common centre, and in collectively moving clusters as well as in enclosed lanes,
particles are oriented along a common axis. The other phase is unordered and has a
low density. We can therefore regard all the phenomena described above as a kind of
phase separation.
In most cases, the patterns can be distinguished by their different nematic order

parameters S. An example plot for a system in which all three patterns occur over
time is shown in Fig. 3.18. In asters, S is low since the particles point towards the
centre and therefore are not aligned. In polar clusters, we get the greatest values for S
as the involved particles are aligned along a common axis with only small deviations.
In enclosed lanes, S is lower than in polar clusters as the particles in the central lane are
almost perfectly aligned, but the particles in the outer layers point towards the central
lane at an angle. Depending on this angle as well as the ratio between the number
of particles in the central lane and outer layers, S can vary significantly in enclosed
lanes and can become as low as in asters. Hence, the nematic order parameter is not
in all cases sufficient for identifying a system’s configuration. However, we have never
observed the formation of asters after the system had already been in one of the other
two configurations. Hence, when observing a transition from a configuration with large
S to another stable configuration with lower S, we can safely assume that this is a
transition from a polar cluster configuration to an enclosed lane. This can of course
easily be checked by looking at snapshots from the simulation.

The separation of the two coexisting phases seems to be more pronounced at higher
propulsion speeds – increasing the density in the dense phase and further emptying
the phase of low density. We want to quantify this observation and use the density
distribution to measure the densities in the coexisting phases and how they depend on
the particles’ motility. The method we used is described in Section 3.3.7.
Using the values we obtain for the coexisting densities, we can plot a phase diagram
illustrating the dependence of the resulting densities on the particles’ motility – see Fig.
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Figure 3.18: Time-development of the nematic order parameter in a system with av-
erage density 〈ρ̃〉 = 5.0 and Pe = 100 and simulation snapshots. We see that the
transition from an aster configuration at t/τrot < 3500 to a polar cluster is accompan-
ied by a drastic increase in S. For t/τrot > 7500, the system exhibits an enclosed lane
configuration with a nematic order parameter that is clearly lower than in the polar
cluster configuration.

3.19. The data points in this plot are average values of simulations of 10 systems with
about N = 200 particles each. The size of the simulation cell was adjusted to yield the
desired average density for each system. We see that for all values 〈ρ̃〉, systems remain
in a homogeneous single-phase state up to a Péclet number of Pe = 10. At Pe ≥ 20, we
find two coexisting phases of different densities. This phase separation becomes more
pronounced at greater particle motilities meaning that the density of the high-density
phase increases, and the density of the low-density phase decreases.

In conclusion, we can say that we can find a variety of collectively moving patterns as
well as immobile clusters in systems without confinement. This is in agreement with a
number of other works as outlined in Sections 3.2.4 and 3.2.4. All of these phenomena
are associated with inhomogeneous density distributions as the patterns have greater
particle densities than the surrounding area. These patterns also have a certain kind
of order in contrast to the surrounding which is isotropic. Therefore, we have two
coexisting phases, and we can therefore regard the phenomena described above as a
kind of phase separation. By measuring the density distributions, we were able to
get a phase diagram indicating the inhomogeneity. This diagram shows that phase
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Figure 3.19: Coexisting densities as a function of particle motility in periodic systems of
varying average densities. We see that for all average densities, phase separation occurs
when Pe ≥ 20. For smaller Péclet numbers, systems remain homogeneous. Phase
separation becomes more pronounced with increased particle motility – the density of
the high-density phase increases while the density of the low-density phase decreases.

separation occurs as soon as the particles’ motility exceeds a certain Péclet number
and becomes more pronounced with increasing Péclet numbers.

3.4.3 Swirling patterns

As described in Section 3.2.4, circular patterns have been observed in a number of
different active particle systems. Swirls were reported to form in systems of vibrated
rods with a non-symmetrical mass distribution [110] as well as in motility assays of
biofilaments propelled by motor proteins [124–126]. In some cases, these findings could
also be reproduced in simulations [110, 124, 126]. In all of these examples, a sufficiently
large particle density was required to enable the formation of swirls. The swirls’ typical
diameters ranged from 5L [110] to 40L [125] with L denoting the particle size.
We did not observe any comparable patterns in our simulations even though our

simulation parameters such as particle density and motility were in the same range as
in the works mentioned above. One major difference was the particles’ aspect ratio
though. While the particles in our simulations had an aspect ratio of a = 10, the
vibrated rods studied by Kudrolli et al. only had an aspect ratio of 2 [110] while the
biofilaments in the motility assays by Schaller et al. and Sumino et al. had aspect ratios
> 500 [124–126]. This could be a reason why swirls were not found in our simulations.
Another possible explanation is the system size in our simulations which is significantly
smaller than in the mentioned experiments. The maximum system size we used was in
the range of 10L which is already smaller than the swirl sizes observed in the motility
assays by Schaller et al. and Sumino et al. [124–126]. Even in comparison to the swirls
observed by Kudrolli et al. for vibrated rods [110], this is not very large. A comparable
swirl would have to span almost the entire simulation cell.
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In order to check whether we might still be able to find swirling patterns, we generated
systems that were already in a swirling configuration from the start of the simulation.
This way, we could study if a swirling configuration would even be stable in our systems.
It turned out that the swirling patterns would break up almost immediately regardless
of cell shape and particle motility. Therefore, we have to conclude that our systems
were not suitable for reproducing swirling patterns. These patterns were not even stable
when they were manually generated, so they would not occur spontaneously during a
regular simulation either.
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3.5 Analytical approaches I: force equilibrium

3.5.1 Force equilibrium in enclosed lanes

In this section, we will try to find an approximation for the density of the high-density
phase in a phase-separated system using a simplified model of the enclosed lanes com-
monly found in phase-separated systems. We derive this density from a force equilib-
rium ansatz.
In Fig. 3.17, snapshots of frequently observed configurations in phase-separated sys-
tems are shown. One recurring pattern are enclosed lanes. These can be described as
being divided into three distinct areas. In the centre, we see a lane of particles with
almost perfect alignment extending throughout the whole length of the simulation cell.
This lane is enclosed by two layers of aligned particles pointing towards the centre. We
will use an idealised version of this configuration to calculate the relevant forces and
derive the lane’s density.
We approximate the central lane to consist of Nlane parallel layers. Each layer consists
of a column of particles in which each particle’s front end is in direct contact with the
rear end of the particle in front of it. The distance between two neighbouring layers is
x. For the layers enclosing the central lane, we assume perfectly parallel particles at
distance dout to each other whose front end is in direct contact with the particles in the
outmost layer of the central lane. The angle between these particles’ orientation and
an axis perpendicular to the central lane, we call αout. A sketch of this approximation
can be found in Fig. 3.20.
We know the particles’ propulsion speed v0 and their friction coefficient γ‖, so we can
calculate the force a single particle in the outer layer exerts on the central lane:

f1(αout) = γ‖v0 cosαout . (3.115)

The distance lout between the contact points on the central lane of two neighbouring
particles in the outer layer is

lout =
dout

cosαout
=

L

ρ̃out cosαout
(3.116)

with ρ̃out being the dimensionless density of the outer layer. The number of particles
exerting a force onto a single particle in the outmost layer of the central lane is then
given by

nout =
L

lout
= ρ̃out cosαout , (3.117)

so the total force exerted onto the same particle is

ftot(αout) = noutf1(αout) = ρ̃outγ‖v0 cos2 αout . (3.118)

Next, we calculate the forces within the central lane. As described in Section 3.3.2,
we assume the interaction between particles to be given by a Lennard-Jones potential.
The force fLJ(x) between two perfectly aligned filaments at a distance x can easily be
calculated from the force between individual segments presented in (3.78):

fLJ(x) = 48
ε

x

(
d

x

)12

− 24
ε

x

(
d

x

)6

. (3.119)
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Figure 3.20: Sketch of the configuration used for calculating the density of the high-
density phase in a phase-separated system via a force equilibrium. Particles in the
central lane are perfectly aligned with their neighbours. Particles in the outer layer are
also parallel to each other but hit the central lane at an angle αout.

Since we assume the layers within the central lane to be equidistant, the forces acting
between all of them are the same. Considering a section of length L of the central lane,
the total force is then fLJ(x). On each side of this section, the outer layer exerts the
force ftot(αout). Hence, the force equilibrium is given by

ftot(αout)− fLJ(x) = 0 (3.120)

ρ̃outγ‖v0 cos2 αout − 48
ε

x

(
d

x

)12

+ 24
ε

x

(
d

x

)6

= 0 . (3.121)

We solve this for x numerically using Mathematica3 to get the distance of the particles
in the central lane that leads to exact compensation of the forces exerted by the outer
particles and the forces resulting from repulsive interaction within the central lane.
With x, we can calculate the density of the central lane

ρ̃in =
L

x
. (3.122)

To get the total density of the whole area ρ̃fe, we have to calculate the average of ρ̃in
and ρ̃out weighted by the respective areas Ain = NlaneLx and Aout = L2 cosαout:

ρ̃fe = (ρ̃inAin + ρ̃outAout)/(Ain +Aout) . (3.123)

The total density is affected by a number of parameters, namely: the density in the
outer layer ρ̃out, the outer filaments’ angle relative to the central lane αout, the particle
motility Pe, and the number of layers in the central lane Nlane. We used the following
parameter ranges for calculating the density: ρ̃out ∈ [5, 10], αout ∈ [0, π4 ], Pe ∈ [10, 100],
Nlane ∈ [2, 20]. Plotting ρ̃fe as a function of Pe for different parameters gives us
curves that we can compare to the phase diagram we generated using our simulation
results. Qualitatively, these look similar, i.e., the density increases with the Péclet

3Mathematica uses Newton’s Method for finding roots
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Figure 3.21: Total density ρ̃fe as a function of particle motility from force equilibrium
calculation (coloured lines) compared with simulation results (dashed lines). Different
shades of grey indicate different average densities in the simulated systems while dif-
ferent colours indicate different numbers of layers Nlane in the calculation. Parameter
values for the density of the outer layer ρ̃out = 8.0 and the angle αout = π/4 were
chosen within the range that yields good agreement with the simulation data – espe-
cially at high particle motilities. At low Péclet numbers, the simulation results cannot
be reproduced though. The different curves also demonstrate that larger Nlane yield
larger total densities.

number. However, this dependence is very weak for the densities we derived using the
above model – they are almost constant in contrast to the simulation results which
exhibit a significant increase in density for particle motilities in the range Pe < 50.
At higher particle motilities, the densities we obtain from simulations also become
almost independent from the Péclet number – except for systems with average density
〈ρ̃〉 = 2.0.
Quantitatively, we find that the analytical results vary a lot, and we only find good
agreement for certain parameter values. The most significant parameter seems to be
the density of the outer layer ρ̃out which is not surprising as it not only determines the
density of the central lane but also directly affects the total density to a large extent –
see Eq. (3.123). The number of layers in the central lane Nlane also has a significant
effect on the calculated results while the angle αout as well as the particle motility only
have a minor influence. The calculated densities match best with simulation data for
ρ̃out ∈ [6.5, 8.5]. This is especially true at high particle motilities Pe ≥ 50 and average
densities 〈ρ̃〉 ≥ 3.0. As we can see in the simulation results, these values for ρ̃out are
in the range we find for the high-density phase, so we can be assured that they are
realistic. Higher values of ρ̃out result in significantly higher total densities while lower
values result in lower total densities.
A direct comparison of simulation data and analytical results for ρ̃out = 8.0 and αout =
π/4 is shown in Fig. 3.21.

To conclude, this model can give a good estimate for the density of the high-density
phase in a phase-separated system when the parameters are chosen accordingly. How-
ever, the model has a few weaknesses. First of all, it is based on a very specific config-
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uration that occurs frequently in systems with high particle motility but is not the only
configuration we find for phase-separated systems. Especially at lower Péclet numbers,
polar clusters are more common than enclosed lanes. Since these clusters tend to have
a lower density than enclosed lanes – judging from simulation snapshots – the average
density in phase-separated systems will be decreased when the probability of finding
enclosed lanes decreases. This is one likely reason why the model does not reproduce
the total density’s strong dependence on particle motility we find in simulation data at
Péclet numbers Pe < 50.
Another weakness of the model is that it is not very sensitive to changes in the particle
motility. This results from the Lennard-Jones potential between the particles – more
precisely the repulsive contribution. This term is proportional to x−12, so a small
decrease in the layer distance would result in a greatly increased force between the
layers. Vice versa, a great increase in force would be required to achieve even a small
increase in density in the central lane as this density is inversely proportional to the
layer distance. Since the force applied by the outer layers is directly proportional to
the particle motility, such an increase in force is not achieved in the range of Péclet
numbers we considered. This could be another explanation why the model does not
simultaneously agree with the simulation data at low and high Péclet numbers.
Another major weak point is that this model does not take into account the low-density
phase. Neither do we consider it for calculating ρ̃fe, nor do we get any prediction for
the density of the low-density phase itself. Instead, the model includes the density of
the outer layer ρ̃out as a freely chosen parameter. To a large extent, the total density
is immediately determined by this parameter as can be seen in Eq. (3.123). This as-
pect is another weakness of the model since we cannot gain a lot of new insight into
the problem at hand when the results depend so strongly on a parameter that is not
determined by prior experimental, analytical, or numerical results.

3.5.2 Particle currents

A method for approximating the density of the gas phase in a phase-separated system
of active spherical particles has been presented by Redner et al. [135] – see Section
3.2.5. This has been adapted for rod-like particles by Abkenar et al. [147]. The general
idea is to consider a dynamic equilibrium between a gas phase and a cluster of particles.
Exchange of particles between the two phases is described by rate equations which have
to give equal particle currents to maintain an equilibrium state. Assuming an isotropic
distribution in the gas phase, the attachment rate can be derived as

Jatt =
ρgasD‖Pe

4L
. (3.124)

For the cluster phase, it is expected that only particles at the outermost layer can
leave the cluster by detaching. These particles are assumed to rotate freely until their
orientation is perpendicular to the cluster surface and then detach. The time it takes a
particle to rotate from an orientation parallel to the cluster surface by π/2 is determined
by the rotational diffusion constant Drot. The detachment rate is then given by

Jdet =
8Drot

π2L
. (3.125)
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Figure 3.22: Density of the isotropic phase as a function of particle motility in a phase-
separated system as derived from a model using attachment and detachment rates (blue
line) compared to simulation results (dashed lines). At Péclet numbers that cause phase
separation in simulated systems, the densities of the isotropic phase are greater than
those predicted by the model but are generally in the same order of magnitude.

Equating the two and solving for ρgas gives us

ρgas =
192

πL2

1

Pe
(3.126)

for the density of the gas phase. It is independent of the systems’s average density.
The calculation includes several approximations, e.g., particles are assumed to rotate
freely even though they are part of the cluster. Also, they are assumed to stay at-
tached to the cluster until they have rotated by an angle π/2. However, Abkenar et al.
found good agreement between their analytical estimate and their simulation results
for Péclet numbers Pe ≤ 25. Also, their model allows particles to overlap for which
an energy E is necessary. When increasing E, they found that their analytical result
for the density of the gas phase held up for even higher values of Pe. Since our model
does not allow particles to overlap – which could be expressed as the limit E → ∞ –
Eq. (3.126) should provide a good prediction for our simulation results.
The plot in Fig. 3.22 compares the theoretical prediction to our results. It shows

qualitative agreement in that higher Péclet numbers result in lower densities for both.
However, the model gives us the density of a gas phase for every Péclet number, while
in simulations, we only find phase separation for Pe ≥ 20. This discrepancy can be
explained by the fact that the model already assumes the existence of phase separation
without ensuring that this is a stable configuration at the given parameters. Quantit-
atively, the densities predicted by the above model agree fairy well with the simulation
results for Pe ≥ 20 even though they are generally lower. This deviation could have
several causes. Considering the margins of error associated with the splitting density
– see App. C.2 – it is possible that we just chose an incorrect value ρ̃sp. Also, it is
conceivable that the measured density distributions are smeared out due to the limited
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Figure 3.23: Sketch of the model used for deriving the density of the high-density phase
from the forces applied by the two phases in a phase-separated system. Particles in the
central lane are perfectly aligned with all their neighbours. The low-density phase is
isotropic with a density ρ̃iso.

number of particles we used in the simulations. Density distributions of larger system
would possibly have more pronounced peaks and densities between them would be less
likely. This suppression of intermediate densities would yield an average density for
the isotropic phase that was closer to the distribution’s maximum at low densities.
Additionally, there are still the approximations described above to derive Eq. (3.126).
In contrast to the model implemented by Abkenar et al., the particles in our model
are not allowed to overlap which makes them even more unlikely to rotate freely in the
high-density phase. Particles hindering each other’s rotation in the high-density phase
would lower the detachment rate Jdet and therefore result in lower values for ρgas.

3.5.3 Force equilibrium of coexisting phases

In Section 3.5.1, we found that we could derive a fairly good estimate for the density of
the high-density phase in a phase-separated system – at least at high particle motility
– from analysing the force equilibrium in a specific configuration. In Section 3.5.2, we
saw that analysing the dynamic equilibrium of particle exchange between a coexisting
gas phase and a dense cluster can yield a prediction for the density of the gas phase.
We will now try to combine the two models in order to get a complete description
of the densities in phase-separated systems. Similar to the approach in Section 3.5.1,
we consider a lane of perfectly aligned particles as the high-density phase. Again, we
assume this lane to consist of Nlane layers with a distance x between them. Instead
of two high-density layers enclosing this lane, we now consider an isotropic phase of
density ρ̃iso exerting a force on the high-density phase; see Fig. 3.23.
This assumed configuration resembles characteristics of both polar clusters and enclosed
lanes. The absence of enclosing lanes is a property we find in polar clusters. However,
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the perfect alignment of particles is something we find in enclosed lanes rather than
polar clusters.
We now consider a section Sint of length L from the interface between the two phases.
For the force exerted on this section by the isotropic phase, we can calculate a stat-
istical average. Let the normal vector of the interface be nint. To get the number
of particles with orientation ϕ that will reach the section within a timespan ∆t, we
calculate the maximum distance parallel to nint they will cover at a propulsion speed
v0. Multiplying this distance by the length of Sint, we get the area within which all
particles of orientation ϕ will reach Sint. The number of particles niso(ϕ) in this area
is calculated by multiplying with the isotropic phase’s density ρ̃iso:

niso(ϕ) =
ρ̃iso
L2

Lv0∆t(u(ϕ) · nint) . (3.127)

Here, u(ϕ) is the orientation vector associated with a particle’s orientation ϕ. The
force a single particle exerts on the section is then given by

f1(ϕ) = γ‖v0(u(ϕ) · nint) (3.128)

with the friction coefficient γ‖. To get the total force fiso of all particles reaching Sint
within the timespan ∆t, we have to multiply the number of particles niso(ϕ) with the
force per particle and integrate over all orientations. Only particles pointing towards
the interface have to be considered since particles pointing away will obviously move
away also. We assume the interface to be parallel to the axis defined by ϕ = 0, so we
integrate over the interval ϕ ∈ [0, π]:

fiso =

∫ π

0
ψiso(ϕ)niso(ϕ)f1(ϕ) dϕ (3.129)

In an isotropic system, all angles are equally distributed, so we have ψiso(ϕ) = 1
2π in

two dimensions. Using this, we get the total force

fiso =

∫ π

0

1

2π

ρ̃iso
L2

Lv0∆t(u(ϕ) · nint)γ‖v0(u(ϕ) · nint) dϕ

=
ρ̃isov

2
0∆tγ‖

2πL

∫ π

0
sin2 ϕdϕ =

ρ̃isov
2
0∆tγ‖

4L
.

(3.130)

The relevant time scale in this model is the rotational diffusion time τrot since this is
the time we can assume particles in the isotropic phase to move straight. At longer
times, the above derivation of the number of particles reaching Sint would be inaccurate
since it assumes straight moving particles. The rotational diffusion time is τrot = 1

2Dr

with Drot = kBT
γrot

= 6kBT
L2γ‖

. Setting ∆t = τrot and using v0 = PekBT
Lγ‖

, we can rewrite
(3.130) to

fiso =
ρ̃isoPe

2kBT

48L
. (3.131)

Within the high-density lane, forces result from the Lennard-Jones interaction between
the particles as outlined in Section 3.5.1:

fLJ(x) = 48
ε

x

(
d

x

)12

− 24
ε

x

(
d

x

)6

. (3.132)
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Additionally, we also want to take into account diffusive effects within the lane. To
include this, we first consider a single particle in a box of width w and length equal to
the particle’s length L. Due to its self-propulsion with speed v0, the particle will exert
a force on the box’s walls when it hits them at an angle αb:

fbox(αb) = γ‖v0 sinαb . (3.133)

The maximum angle is defined by the dimensions of the box:

αb,max = arcsin
w

L
. (3.134)

We limit the calculation to boxes with w < L. Assuming that αb will take all possible
values with equal probability, we can calculate the average force on one wall 〈fbox〉 as
a function of the box’s dimensions. Even though αb ∈ [−αb,max, αb,max], only angles
αb ≥ 0 give a contribution since αb < 0 represents the particle pointing away from the
wall and therefore not exerting a force:

〈fbox〉 =
1

2αb,max

∫ αb,max

−αb,max

γ‖v0 sinαb dαb =
γ‖v0

2 arcsin w
L

[
1−

√
1− w2

L2

]
. (3.135)

Now, we apply the above result to a particle within the lane. Its neighbouring particles
constitute an effective box within which it can rotate. As stated earlier, x is the distance
between the layers in the lane and therefore equal to the distance of neighbouring
particles. In principle, we could use 2x as the box’s width, but since the Lennard-
Jones potential is strongly repulsive for distances smaller than rmin (see Section 3.3.2),
we limit the width in which the particle can freely rotate to wlane = 2(x − rmin). If
x becomes smaller than rmin, there is no space for the particle to rotate and we set
wlane = 0. With this, we get a force contribution of

fbox(wlane) =
γ‖v0

2 arcsin wlane
L

[
1−

√
1−

w2
lane
L2

]
. (3.136)

This gives us the total force within the lane:

flane(x) = fLJ(x) + fbox (wlane(x)) . (3.137)

As in Section 3.5.1, we now have a force equlibrium

fiso − flane(x) = 0 (3.138)

ρ̃isoPe
2kBT

48L
− 48

ε

x

(
d

x

)12

+ 24
ε

x

(
d

x

)6

−
γ‖v0

2 arcsin wlane(x)
L

[
1−

√
1−

w2
lane(x)

L2

]
= 0 .

(3.139)

Next, we eliminate ρ̃iso using Eq. (3.126) which leaves us with the particle motility Pe as
the only free parameter. Again, we solve the equation numerically using Mathematica
for particle motilities Pe ∈ [10, 100]. Next, we calculate the lane’s density

ρ̃lane =
L

x
(3.140)

114



3.5. ANALYTICAL APPROACHES I: FORCE EQUILIBRIUM

Figure 3.24: Lane density ρ̃lane as a function of particle motility calculated from
force equilibrium of coexisting phases (blue line) in comparison with simulation res-
ults (dashed lines). Different shades of grey indicate different average densities in the
simulated systems. We find fairly good agreement at Péclet numbers Pe ≥ 40, but
the calculated density is generally too high. At low particle motilities, this deviation
is even more pronounced.

and plot the resulting values as a function of Pe. A comparison with simulation results
can be seen in Fig. 3.24.
We find that ρ̃lane increases with the Péclet number but only to a small degree. This
is in qualitative agreement with the simulation results at high particle motilities. At
Pe < 40 though, ρ̃lane would have to depend strongly on Pe to match the simulation
results.
When checking for quantitative agreement between our model and the simulation data,
we also find differences between low and high Péclet numbers. At Pe ≥ 40, our pre-
dicted densities are slightly larger than the densities we find in simulated systems at
average densities 〈ρ̃〉 ≥ 3.0. Taking into account the degree of uncertainty regarding
the simulation results (see below), we can still regard this as a fairly good agreement.
At Pe < 40 however, we find significant deviations: since our model does not reproduce
the strong dependence on particle motility we see in simulation results, the values we
get for ρ̃lane are too high.

To conclude, this model for a phase-separated system gives good results for the density
in the high-density phase at large particle motilities. We find fairly good agreement
with simulation results for average densities 〈ρ̃〉 ≥ 3.0. This is plausible considering
the fact that inhomogeneities with a very dense phase such as asters and enclosed
lanes occur more frequently and are more stable at large particle motilities and average
densities as described in Section 3.4.2. This stability is one of the assumptions of the
model.
Unfortunately, the model cannot reproduce the density’s strong dependence on particle
motility we find in simulations at Péclet numbers Pe < 40. One possible explanation
for this was already addressed in Section 3.5.1: the lane’s density is not very sensitive
to the particles’ motility due to the repulsive term in the Lennard-Jones potential.
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Another reason might be that that we assume a stable and perfectly ordered high-
density phase even at low Péclet numbers. When looking at simulation snapshots
though, we see a variety of different types of phase-separated configurations – especially
in the relevant range of particle motilities. So, the densities measured in simulations
are the result of averaging over several types of configurations and configurations that
would occur as transitions between these. The configuration we presumed for our
model may be too different from polar clusters to account for their frequent occurrence
in systems with Péclet numbers Pe < 40. In polar clusters, the included particles are
loosely packed and their orientations vary within a small range which is not resembled
by our model in which the particles are perfectly ordered. Still, the model can be
regarded as a rough approximation of polar clusters in contrast to configurations with
even less order. Hence, the more frequent occurrence of those configurations – as is
the case at low particle motilities – will only make the deviations from the model more
pronounced.
Another factor that has to be considered regarding deviations between the analytical
model and simulation results is that the measured densities depend on the splitting
density ρ̃sp as described in App. C.2. Therefore, the simulation results are not perfectly
precise which could also be an explanation for the deviations.
One more weakness of this model is that it does not explicitly take into account thermal
effects even though these are a significant factor in simulations. Within the high-
density phase, thermal fluctuations would increase the distance between particles and
thereby reduce its density. The rotational diffusion considered here is only a rough
approximation of the relevant thermal effects.
The two major advantages of this model compared to the one presented in Section
3.5.1 are the occurrence of only one free parameter – the particle motility – and the
integration of a model predicting the isotropic phase’s density as a function of the Péclet
number. Due to the second aspect, the model describes both phases simultaneously
making it quite successful – particularly at large particle motilities.
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3.6 Analytical approaches II: density functional theory

3.6.1 Basics

As described in Section 3.1.4, the coexisting densities of an isotropic and a nematic
phase in a three-dimensional systems of hard rods without propulsion can be calculated
by the Onsager theory – a density functional theory for a system with inhomogeneously
distributed orientations. The theory uses the virial expansion – see App. A – to express
the free energy density of infinitely thin rods as

βF

V
=ρ
(
ln(ρΛ3)− 1

)
+ ρ

∫
ψα(Ω) ln(4πψα(Ω)) dΩ

+ ρ2L2d

∫∫
ψα(Ω)ψα(Ω′) sin γ dΩ dΩ′ +O(ρ3) .

(3.141)

Here, β = 1
kBT

is the inverse temperature, V is the system’s volume, and Λ is the
thermal de Broglie wavelength. A rod’s orientation is expressed using the spatial angle
Ω, and the orientational distribution function is ψα(Ω). In the third term, γ denotes
the angle between two rods at spatial angles Ω and Ω′.
The first term in (3.141) is the ideal gas contribution, and the second term is an addition
resulting from the rods’ orientations not being distributed uniformly. The third term
corresponds to the second virial coefficient and takes into account the excluded volume
between two rods.
Onsager’s approach was using a trial function ψα(Ω) = ψα(ϑ) = α cosh(α cosϑ)

4π sinh(α) with ϑ
being the angle between a rod’s main axis and the nematic director and α being the
degree of ordering – ranging from 0 for an isotropic system to ∞ for perfect ordering.
In the isotropic phase, this yields ψα(Ω) = 1

4π .
We see that for nematic ordering, the free energy is not only a function of ρ but also of
α. At any given density, the particles will order themselves to a degree that minimises
the free energy. This means that F (ρ) for a specific ρ is given by the minimum of F
with respect to α. For the isotropic phase, the calculation of F (ρ) is straightforward.
We then have two free energies describing the two phases. The coexisting densities are
calculated by constructing a common tangent to the two curves.
Since we want to apply the above method to a two-dimensional system of active particles
exhibiting polar ordering, we have to modify it. First of all, the rods’ orientation is
defined by a planar angle ϑ instead of a spatial angle Ω. We replace the orientation
distribution function by a term that is similar to nematic ordering but takes into account
polar ordering:

ψα(ϑ) = A cosh(α cos
1

2
ϑ) (3.142)

The factor A can be calculated using the fact that the distribution function has to be
normalized: ∫

ψα(ϑ) dϑ = 1⇒ A =
1

2πI0(α)
(3.143)

Here, I0 is the modified Bessel function of the first kind. In the isotropic phase,
I0(α = 0) = 1 and hence ψα(ϑ) = 1

2π . Next, the excluded volume between two thin
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rods is independent of their diameter in two dimensions which leads to a modified
prefactor in the third term:

ρ2L2d→ ρ2L2 (3.144)

Also, we have to account for the rods’ propulsion and therefore include an excess term

Fex =

∫ ρ

0

1

2
ln(1 +

v(s, ψα)2τrot
2Dt

) ds (3.145)

as described by Cates and Tailleur [178] – see also Section 3.2.5. Since we are dealing
with elongated particles, this term may depend on their orientations which is accounted
for by considering a velocity that is a function of ψα(ϑ).
Introducing the dimensionless density ρ̃ = ρL2 and taking into account the above
modifications, we arrive at the following expression for the rescaled free energy density:

f̃ =
βFL2

V
= ρ̃ (ln(ρ̃)− 1) + ρ̃

∫
ψα(ϑ) ln(2πψα(ϑ)) dϑ

+ ρ̃2

∫∫
ψα(ϑ)ψα(ϑ′) sin(ϑ− ϑ′)dϑdϑ′

+

∫ ρ̃

0

1

2
ln(1 +

v(s̃, ψα)2τrot
2Dt

) ds̃+ ρ̃ ln
Λ2

L2

(3.146)

It can easily be shown that the addition of a linear term to both functions has no effect
on the calculation of their common tangent, see App. D. Therefore, we can just ignore
the last term when calculating the densities of the coexisting phases.

3.6.2 Basic Model

Now, we want to explicitly calculate the phase separation in a two-dimensional system
of thin self-propelled rods. Since we do not know the exact dependence of a rod’s
velocity on the local density, we use two different forms that we derive by considering
the main characteristics we can expect the velocity to exhibit. At densities approaching
0, we can expect the rods’ velocity to be equal to their propulsion speed v0 since no
interactions are taking place. In an isotropic system, the rods will block each other’s
path and therefore be slower in areas of higher density. As a first ansatz for the velocity,
we assume that there is a critical density ρ̃∗ at which rods become incapable of moving
and their velocity decreases linearly up to this density:

v1,iso(ρ̃) =

{
v0

(
1− ρ̃

ρ̃∗

)
, ρ̃ ≤ ρ̃∗

0 , ρ̃ > ρ̃∗
. (3.147)

This ansatz is motivated by the fact that a similar density-dependent velocity was
predicted by kinetic theory and confirmed in simulations for spherical active Brownian
particles [178].
For the second ansatz, we assume an exponentially decreasing velocity as this is a
significantly different alternative to the first ansatz and was implemented in other
works as well [133, 178]. In this case, an infinitely large density would be required to
completely slow down the rods with ρ̃∗ defining the rapidity of the decrease:

v2,iso(ρ̃) = v0 exp

(
− ρ̃

ρ̃∗

)
. (3.148)
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In the polar phase, we can expect the rods to still be motile at very high densities.
Since this phase is highly ordered, collisions are happening at flat angles resulting in
alignment of the rods rather than blocking. So, we modify the above ansatzes by
making them dependent on an order parameter p ranging from 0 for no order to 1
for perfect ordering. These conditions are met when choosing p(α) to be the expected
value of cosϑ with the orientation distribution given by ψα(ϑ):

p(α) =

∫
ψα(ϑ) cosϑ dϑ =

I2(α)

I0(α)
, (3.149)

where I0 and I2 are modified Bessel functions of the first kind. For the first ansatz, we
assume that rods in a perfectly ordered system can move as fast as in an empty system:

v1,pol(ρ̃) = v0

(
1− ρ̃

ρ̃∗
(1− p(α))

)
(3.150)

For some combinations of ρ̃ and α, this expression can become negative in which case
we just set the velocity to be 0. In the second ansatz, we assume the velocity to
exponentially approach a finite velocity v∞ at infinitely large densities:

v2,pol(ρ̃) = v0 exp

(
− ρ̃

ρ̃∗

)
+ v∞p(α)

[
1− exp

(
− ρ̃

ρ̃∗

)]
(3.151)

The following calculations were performed for v∞ = {0.1v0, 0.5v0, 0.9v0}, but since
v∞ = 0.1v0 yielded the best results, only those will be presented here.

Calculation of the ideal degree of order

At any specific density ρ̃, the free energy density in a system of polarly ordered rods
is still a function of the degree of ordering α. The system will arrive at a degree of
ordering for which the free energy density has a minimum with respect to α. We call
this minimum αmin and note that it is a function of ρ̃. Since we cannot derive αmin(ρ̃)
analytically, we have to calculate it numerically. This is made more difficult by the
fact that the excess term is an integral over the density and a function of α since the
velocity is a function of α. This means that for calculating the free energy density at
a certain ρ̃, we have to know αmin(ρ̃′) for all ρ̃′ < ρ̃. So, we can only calculate αmin(ρ̃)
– and thereby f̃(ρ̃, αmin) – iteratively starting at ρ̃ = 0 and incrementally increasing ρ̃
while in each step using the previous results. For a more detailed description, see App.
E.
After calculating the ideal degree of order, we automatically have f̃pol(ρ̃) for the polar
phase.

Variant: Universal calculation of ideal degree of order

As described above, the excess term forces us to calculate αmin(ρ̃) iteratively because
it depends not only on the degree of order at the actual density ρ̃ but on the degree
of order for all densities ρ̃′ ≤ ρ̃. We can eliminate this problem by calculating αmin(ρ̃)
using only the first three terms of the free energy – assuming that the excess term does
not have much of an influence on the result. The justification for this is that the excess
term is an integral over the particle velocity v which in our ansatzes only depends on
α via the order parameter p(α). This function rapidly approaches 1 with increasing
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α. Iterative calculations showed that αmin(ρ̃) = 0 up to a certain density at which
we first find a minimum at a finite α. This finite value was never lower than α = 20
which is equivalent to an order parameter p(α) > 0.9. With increasing density, αmin
would rapidly increase as well which would make p(α) quickly approach 1. Hence, for
a wide range of densities, the p(α) and thereby the particle velocity would be almost
constant. As a result, αmin would be determined only by the other terms in the free
energy density.
This approach allows us to calculate the ideal degree of order universally. Parameters
like the propulsion speed and the critical density, as well as the form of v(ρ̃) only affect
the excess term. Hence, using the altered free energy density

f̃ ′ = f̃ −
∫ ρ̃

0

1

2
ln(1 +

v(s̃, ψα)2τrot
2Dt

) ds̃

= ρ̃ (ln(ρ̃)− 1) + ρ̃

∫
ψα(ϑ) ln(2πψα(ϑ)) dϑ

+ ρ̃2

∫∫
ψα(ϑ)ψα(ϑ′) sin(ϑ− ϑ′) dϑ dϑ′ ,

(3.152)

we only have to apply the method described above to find αmin(ρ̃) once. After this,
we have f̃ ′(ρ̃) and αmin(ρ̃). For getting f̃pol(ρ̃) for a specific velocity v(ρ̃) and certain
parameters v0 and ρ̃∗, we just need to evaluate the excess term at all densities ρ̃ and
add it to the corresponding value for f̃ ′(ρ̃). This method saves a lot of computation
time since we do not have to perform the iterative minimisation routine for each set of
parameters. As will be described below, comparisons of the iterative method and the
universal calculation show that the resulting αmin are almost identical which confirms
that the error we make by using the computationally more efficient universal calculation
is negligible.

Free energy density in the isotropic phase

Some terms of the free energy density in the isotropic phase can be calculated analyt-
ically. Since there is no ordering, we have α = 0 and the first two integrals in the free
energy become∫

ψ0(ϑ) ln(4πψ0(ϑ)) dΩ =

∫
1

2π
ln(2π

1

2π
) dϑ = 0 (3.153)∫∫

ψ0(ϑ)ψ0(Ω′) sin γ dϑ dϑ′ =

∫∫
1

4π2
sin(ϑ− ϑ′) dϑ dϑ′ = 2

π
(3.154)

reducing the free energy density to

f̃iso(ρ̃) = ρ̃ (ln(ρ̃)− 1) +
2

π
ρ̃2 +

∫ ρ̃

0

1

2
ln(1 +

viso(s̃, ψα)2τrot
2Dt

) ds̃ (3.155)

This expression still has to be evaluated numerically due to the excess term.

Common tangent construction

For the common tangent construction, we use the numerically calculated values f̃pol(ρ̃)
and f̃iso(ρ̃) and derive a polynomial fit for each of them. We do this because we can
then easily calculate the first derivative which we need for finding the common tangent
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Figure 3.25:
Exemplary plot
of the common
tangent con-
struction for
two free energy
densities in the
isotropic phase
f̃iso and in the
polar phase f̃pol.
The resulting co-
existing densities
are ρ̃iso and ρ̃pol.

of the two functions.
Generally, a common tangent of two functions f1(x) and f2(x) is defined to be the line
through two points (x1, f1(x1)) and (x2, f2(x2)) with the additional condition that the
line’s slope m is equal to the first derivatives of f1 at x1 and f2 at x2 respectively:

m =
df1

dx

∣∣∣∣
x=x1

=
df2

dx

∣∣∣∣
x=x2

. (3.156)

This can be expressed by the two conditions

I.
df1

dx

∣∣∣∣
x=x1

=
df2

dx

∣∣∣∣
x=x2

(3.157)

II. f2(x2) = f1(x1) + (x2 − x1)
df1

dx

∣∣∣∣
x=x1

(3.158)

Applying this to our problem, we need to find the densities ρ̃iso and ρ̃pol for which

I.
df̃iso
dρ̃

∣∣∣∣∣
ρ̃=ρ̃iso

=
df̃pol
dρ̃

∣∣∣∣∣
ρ̃=ρ̃pol

(3.159)

II. f̃pol(ρ̃pol) = f̃iso(ρ̃iso) + (ρ̃pol − ρ̃iso)
df̃iso
dρ̃

∣∣∣∣∣
ρ̃=ρ̃iso

(3.160)

We solve this system of equations numerically using Mathematica. The resulting dens-
ities ρ̃iso and ρ̃pol are the densities of the coexisting phases. For an illustration, see Fig.
3.25.

Results for linear velocity

Calculating the coexisting densities for the linearly declining velocities v1,iso(ρ̃) and
v1,pol(ρ̃), we see that the critical density ρ̃∗ significantly influences the results we get for
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Figure 3.26: Phase separation at Pe = 100 as a function of the critical density ρ̃∗ (black
dots) compared to values measured in simulations at different average densities (dashed
lines). There is no value for ρ̃∗ at which both theoretical values are in agreement with
the simulation results implying that the model with the linearly declining velocity is
not valid for describing the phase separation.

ρ̃iso and ρ̃pol. However, the results do not completely agree with the simulation results.
Fig. 3.26 shows the values we get at a Péclet number Pe = 100 using the method
described above in comparison to the simulation results. The ideal degree of order was
calculated using the iterative method. The critical density was varied in the interval
ρ̃∗ ∈ [1, 10], and for each value of ρ̃∗, two data points are plotted in the diagram. The
lower one marks ρ̃iso and the upper one ρ̃pol. The dashed lines represent the coexisting
densities measured in simulated systems of average densities 〈ρ̃〉 ∈ [2, 5]. We notice
that if we choose ρ̃∗ ∈ [6.0, 8.0], ρ̃pol will agree with the high density we measured in
simulations. However, for all critical densities, the calculation yields values for ρ̃iso that
are far greater than the corresponding values in simulations. Hence, the above model
using a linearly declining velocity can at best predict the density of the polar phase.

Results for universal calculation with linear velocity

As described above, we can efficiently explore a wide range of parameters by universally
calculating the ideal degree of order at a certain density. However, we have to make
sure that neglecting the excess term is a valid approximation. We find that αmin(ρ̃) is
almost identical for all critical densities in the calculation described in Section 3.6.2.
We again get almost identical values for αmin(ρ̃) when calculating the ideal degree of
order using f̃ ′ – the free energy density without the excess term. Apparently, the excess
term is negligible when it comes to calculating the ideal degree of order.
Using the ideal degree of order we obtain from the universal calculation, we can study
the influence of the critical density and the propulsion speed on the phase separation.
Specifically, this means calculating the excess term as a function of ρ̃ at different para-
meters and adding this to f̃ ′(ρ̃). Also, the free energy density of the isotropic phase is
calculated at the different parameters. With the free energy densities, we can find the
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Figure 3.27: Phase separation as a function of the Péclet number for several critical
densities ρ̃∗ when particle velocity declines linearly with density. Curves of the same
color belong to the same ρ̃∗ with the upper one representing the density of the polar
phase and the lower one representing the density of he isotropic phase.

polar isotropic

Figure 3.28: Comparison of the calculated densities as a function of Péclet number to
simulation results. Left: polar phase, right: isotropic phase. Solid, coloured curves
represent calculation results at different critical densities ρ̃∗ with linearly declining
particle velocity. Dashed, grey curves represent simulation results at different average
densities. At Péclet numbers Pe ≥ 20 and average densities 〈ρ̃〉 ≥ 3.0, the model
can predict the densities in the polar phase. However, the predicted densities in the
isotropic phase are significantly greater than the measured densities for all parameters.
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phase separations corresponding to the different parameters. The results are shown in
Fig. 3.27 plotting ρ̃iso (lower curves) and ρ̃pol (upper curves) as functions of the Péclet
number for several critical densities ρ̃∗ ∈ [1, 10]. Different colours indicate different
critical densities.
Again, we want to compare the theoretical results to the simulation data. For the
non-universal calculation at a Péclet number Pe = 100, we found our model to only
predict the density in the polar phase correctly. To check if this is the case at all
Péclet numbers and critical densities, we plot the densities of the polar phase and of
the isotropic phase as a function of the Péclet number at different ρ̃∗. In Fig. 3.28, we
see that for critical densities ρ̃∗ ∈ [6.0, 8.0], the predicted density of the polar phase is
similar to the simulation results at certain parameters, i.e., Péclet numbers Pe ≥ 20
and average densities 〈ρ̃〉 ≥ 3.0. While this is a limited validity, it covers most of the
parameter range explored in simulations. Unfortunately, the predictions for the dens-
ity of the isotropic phase do not agree with the simulation data, see also Fig. 3.28.
Independent of the parameters used, the densities we obtain from the calculation are
significantly greater than the measured densities in the isotropic phase. Therefore, we
have to conclude that this model is only suitable for describing the polar phase.

Results for universal calculation with exponential velocity

For a linearly declining velocity, we have already found the excess term to not affect the
ideal degree of order. It is reasonable to assume the same to be true for an exponentially
declining velocity. In fact, checking this at the arbitrarily chosen parameters Pe = 20,
ρ̃∗ = 2.0 yields the same result for αmin(ρ̃) as in the universal calculation without the
excess term. So, we can again calculate the excess term as a function of ρ̃ at different
parameters, add this to f̃ ′(ρ̃) to get the free energy density of the polar phase, calculate
the free energy density in the isotropic phase at the same parameters, and finally find
the corresponding phase separation. The results – ρ̃iso (lower curves) and ρ̃pol (upper
curves) as functions of the Péclet number for several critical densities ρ̃∗ ∈ [1, 10] – are
shown in Fig. 3.29. Different colours indicate different critical densities.
Compared to the results with linear velocity, we notice some differences. For the
isotropic phase, we find lower densities which are almost identical regardless of the
chosen parameters – with the only exception being ρ̃∗ = 1.0. For the polar phase, the
densities also depend only weakly on critial density and Péclet number – again ρ̃∗ = 1.0
being the exception. Despite these differences, the agreement with the simulation
results is similar. The densities predicted for the polar phase agree with the simulation
results on the same range of parameters than the results for linearly declining velocities
but for a wider range of critical densities ρ̃∗ ∈ [2.0, 6.0]. For the isotropic phase, the
model still yields densities that are too great, see Fig. 3.30. Therefore, the model
assuming an exponentially declining velocity is also only valid for the polar phase.
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Figure 3.29: Phase separation as a function of the Péclet number for several critical
densities ρ̃∗ when particle velocity declines exponentially with density. Curves of the
same color belong to the same ρ̃∗ with the upper one representing the density of the
polar phase and the lower one representing the density of the isotropic phase.

polar isotropic

Figure 3.30: Comparison of the calculated densities as a function of Péclet number to
simulation results. Left: polar phase, right: isotropic phase. Solid, coloured curves rep-
resent calculation results at different critical densities ρ̃∗ with exponentially declining
particle velocity. Dashed, grey curves represent simulation results at different average
densities. The predicted densities in the polar phase are similar to the measured dens-
ities for a wide range of parameters, but the model predicts densities in the isotropic
phase that are too large for all parameters.
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3.6.3 Model with Persistence Length

As mentioned before, the third term in (3.146) is the second virial coefficient which
accounts for the rods’ excluded volume interaction. As explained in Section 3.1.4, this
term favours alignment as a reduced excluded volume yields greater positional entropy.
It was shown by Kraikivski et al. that self-propulsion enhances nematic order in that
the isotropic-nematic transition in two-dimensional systems occurs at lower densities
when the particles are actively driven [179]. They were able to map the active systems
onto passive systems by introducing an effective length

Leff =
√
L(L+ lp) , (3.161)

with lp being the persistence length. Since we are studying similar systems, this effect
should also be relevant here.
To take into account the effective elongation of rods due to propulsion, we replace the
rod length L in the prefactor of the excluded volume term in (3.146) by the effective
length as given by Kraikivski et al. [179] which results in the prefactor

ρL2 → ρL(L+ lp) =: ρL2
p (3.162)

Again, we want to express the free energy in terms of a dimensionless density – this
time choosing ρ̃p = ρL2

p. In this case, we get for the free energy density:

f̃p =
βfL2

p

V
= ρ̃p (ln(ρ̃p)− 1) + ρ̃p

∫
ψα(ϑ) ln(2πψα(ϑ)) dϑ

+ ρ̃2
p

∫∫
ψα(ϑ)ψα(ϑ′) sin(ϑ− ϑ′) dϑ dϑ′

+

∫ ρ̃p

0

1

2
ln(1 +

v(s̃p, ψα)2τrot
2Dt

) ds̃p + ρ̃ ln
Λ2

L2
p

(3.163)

As explained earlier, the last term can be ignored for the common tangent calculation.

Results for universal calculation with linear velocity

We can assume that the ideal degree of order is unaffected by the excess term as was the
case in the basic model. So, we use a modified free energy density again for calculating
αmin(ρ̃):

f̃ ′p = f̃p −
∫ ρ̃p

0

1

2
ln(1 +

v(s̃p, ψα)2τrot
2Dt

) ds̃p

= ρ̃p (ln(ρ̃p)− 1) + ρ̃p

∫
ψα(ϑ) ln(2πψα(ϑ)) dϑ

+ ρ̃2
p

∫∫
ψα(ϑ)ψα(ϑ′) sin(ϑ− ϑ′) dϑ dϑ′

(3.164)

The following steps are equivalent to the ones described for the basic model. We find
the minimum value f̃ ′p(ρ̃p) of the above term with respect to α for a certain density ρ̃p.
Then, we vary the propulsion speed and the critical density, calculate the excess term,
and add this to f̃ ′p(ρ̃p) in order to get the total free energy density. This – together

126



3.6. ANALYTICAL APPROACHES II: DENSITY FUNCTIONAL THEORY

linear exponential

Figure 3.31: Phase separation as a function of the Péclet number for several critical
densities ρ̃∗ when considering effectively elongated particles. Left: linearly declining
velocity, right: exponentially declining velocity. Curves of the same colour belong to
the same ρ̃∗ with the upper one representing the density of the polar phase and the
lower one representing the density of the isotropic phase.

with the free energy density in the isotropic phase – is used for calculating the common
tangent.
First, we assume a linearly declining velocity of the rods. Checking the result for
αmin(ρ̃p) we obtain from the universal calculation, we notice that neglecting the excess
term is in fact justified. This was done by iteratively calculating αmin(ρ̃p) using the
full free energy density at arbitrarily chosen parameters Pe = 100, ρ̃∗ = 1.0. This
calculation yields the same ideal degree of order as the universal calculation.
The coexisting densities we find still include the persistence length. For comparison
with the results from the basic model and the simulation data, we convert these back
to ρ̃ = ρ̃p

L2

L2
p
. The resulting values at different propulsion speeds and critical densities

are plotted in Fig. 3.31. Varying the critical density in the interval ρ̃∗ ∈ [1, 10] has
only little influence on the coexisting densities in this model.
We already notice that the density of the polar phase declines with increasing Péclet
number which contradicts what we find in simulations. A direct comparison shows
major deviations of the calculated results from simulation data – see Fig. 3.32. For
the isotropic phase, the densities predicted by this ansatz are in good agreement with
the simulation data. This is especially true for a critical density ρ̃∗ = 1.0 and Péclet
numbers Pe ≥ 20. The predicted values are generally lower than the measured densities
with slightly better agreement at higher Péclet numbers, but as already pointed out
in Section 3.5.2, the explanation for this deviation could be that the parameter ρ̃sp
was chosen incorrectly or that the simulated systems were too small. Hence, we can
conclude that this approach gives a good prediction for the density of the isotropic
phase.

Results for universal calculation with exponential velocity

Finally, we want to investigate if we can get a better prediction of the phase separation
when taking into account effective elongation due to propulsion while assuming an
exponentially declining velocity as introduced in (3.148) and (3.151). First, we check
again if the ideal degree of order we get from using the modified free energy density
defined in (3.164) is the same as if we would minimise the full free energy density. This
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polar isotropic

Figure 3.32: Comparison of the calculated densities as a function of Péclet number when
considering effectively elongated particles to simulation results. Left: polar phase, right:
isotropic phase. Solid, coloured curves represent calculation results at different critical
densities ρ̃∗ with linearly declining particle velocity. Dashed, grey curves represent
simulation results at different average densities. Regardless of the chosen parameters,
the predicted densities in the polar phase are significantly smaller than the measured
densities. In the isotropic phase, the predicted densities are in good agreement with
the simulation results – especially for ρ̃∗ = 1.0 and Péclet numbers Pe ≥ 20.

turns out to be true with the arbitrarily chosen parameters Pe = 60, ρ̃∗ = 4.0. The
maximum deviation we find for αmin(ρ̃p) is smaller than 8%, and the deviations we find
for the coexisting densities are in the range of 1%. This indicates that neglecting the
excess term when calculating αmin(ρ̃p) is justified.
The coexisting densities we obtain from this calculation are again converted to ρ̃ = ρ̃p

L2

L2
p

and plotted in Fig. 3.31. We see that the results do not differ greatly from the ones with
linear velocity – ρ̃pol declines with increasing Péclet number and the critical density
has almost no effect. Due to this similarity to the results from calculation with linear
velocity, the comparison to simulation data leads to the same conclusions: this variant
of the model is also only valid for the isotropic phase.

3.6.4 Summary

We tried calculating the phase separation in a system of self-propelled rods using a
modified Onsager theory based on a model presented by Cates and Tailleur [178] for
spherical particles. The model uses a simplified density functional theory and expresses
the free energy density as a function of density and degree of order. The particles’ motil-
ity was taken into account by including an excess term. Several different ansatzes were
tested in order to consider possibly relevant features of the system such as an effective
elongation of the rods, slowing down of particles at high densities, and high degrees of
order counteracting this effect.
None of these ansatzes was successful in predicting the phase separation comprehens-
ively, but they yielded good agreement with the simulation results for one of the phases.
The basic model omitting effective elongation of the rods gave a good approximation for
the density of the polar phase for most of the parameter range explored in simulations,
but the density it predicted for the isotropic phase was significantly greater than the
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simulation results. The model considering effectively elongated particles yielded dens-
ities for the isotropic phase which agreed with simulation data, but the density of the
polar phase exhibited an incorrect dependence on propulsion speed and no agreement
with simulation data.
Therefore, we have to conclude that the phase separation can only be partially described
by the presented model. This could have several reasons. First of all, the applied free
energy density was derived for dilute suspensions and is not valid at high densities –
this deviation could be great enough to lead to false results for the coexisting densities.
Also, as pointed out in Section 3.1.4, considering only terms up to second order in the
virial expansion when deriving the free energy density is not a good approximation in
two dimensions. Additionally, the model does not take into account the rods’ finite
thickness and the – weak but still existent – attractive potential between them. It is
also possible that the effective elongation we assumed was too simplistic. We used the
persistence length of a single particle in a vacuum as additional length, but in dense
systems, the persistence length of a particle will be smaller due to rotation-inducing
interactions with other particles. Finally, it may simply be impossible to map a com-
plex dynamical system like this onto an effective equilibrium system.
Interestingly, the two presented approaches are each valid for one of the phases which
suggests an opportunity for further research: a combination of the two could give a
more comprehensive description of the phase separation.
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3.7 Conclusion and discussion

This chapter presented the author’s work on the collective dynamics of self-propelled
rodlike particles. In Section 3.2, various methods of studying active matter were intro-
duced as well as a variety of discoveries these methods led to. Special emphasis was
given to collective phenomena most relevant to this work – see Section 3.2.4. These
included particle aggregation in confined geometries, the formation of asters, and col-
lective motion. Many of these phenomena can be described as phase-separated con-
figurations consisting of an ordered high-density phase and an unordered low-density
phase. A current problem in these systems is predicting the densities of the coexist-
ing phases. Analytical models developed for doing this in systems of spherical particles
were described in Section 3.2.5. The main focus of this work was adapting these models
to systems of rodlike particles. The secondary aim was to reproduce rotating structures
that were observed in experiments but not in simulations of straight-moving particles
without explicit alignment interactions so far.
The simulations performed for studying systems of self-propelled rodlike particles were
described in Section 3.3. Particles were modelled as spherocylinders with hard-core in-
teractions and an additional Lennard-Jones potential. They were simulated in confined
environments of various shapes as well as without confinement. Particles’ trajectories
were calculated using the established framework of Brownian dynamics simulations in
which the particles’ dynamics result from a combination of self-propulsion and thermal
diffusion. Simulations were performed using a variety of average densities and propul-
sion speeds. Systems were investigated by measuring inter alia their degree of nematic
ordering, average particle speed, centre of mass, and density distributions.
In Section 3.4, the simulation results were presented. In confined geometries, self-
propelled particles would accumulate near the edges of the simulation cell. This effect
was not observed for passive particles, so we can conclude that particle accumulation
is caused by self-propulsion. Systems without confinement exhibited particle accumu-
lation as well. For particle motilities Pe ≥ 20, static asters or collectively moving
structures such as polar clusters and enclosed lanes could be observed. The probab-
ility of finding the different patterns depended on the systems’ average density and
the particles’ propulsion speed. The observed patterns met the criteria for phase-
separated systems with an ordered high-density phase and an unordered low-density
phase. Summarising them, a phase diagram indicating the coexisting densities in the
phase-separated systems as a function of particle motility was generated. Phase separ-
ation was found to become more pronounced with increased particle motility.
Despite the variety of observed collectively moving patterns, rotating structures could
not be found in the studied parameter space. Besides not occurring spontaneously,
swirling configurations were demonstrated to not be stable even when enforced at the
start of simulations. A comparison with circular patterns observed in experiments
[124–126] indicated that these could not be reproduced as the simulated systems were
too small.
In the last two sections, analytical models for phase separation in systems of spherical
particles were adapted to rodlike particles in order to predict the coexisting densities.
In Section 3.5, a force equilibrium approach was used to describe the coexistence of
a perfectly ordered high-density phase and an isotropic low-density phase. The dens-
ity in the isotropic phase was derived assuming a dynamic equilibrium between a gas
phase and a cluster of particles as presented by Abkenar et al. [147]. This model
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Figure 3.33: Illustration of the agreement of the different analytical models with the
simulation results (dashed, grey lines). The force equilibrium model – indicated by
the blue ellipses – predicts the density in the isotropic phase fairly well for Pe ≥ 20
while also yielding good agreement in the high-density phase for large enough average
densities and Pe ≥ 40. The basic density functional theory approach (red rectangle)
yields good results for the high-density phase only. Taking into account the particles’
effective elongation by their persistence length lp, this model describes only the low-
density phase well (yellow rectangle).

predicts densities that are generally lower than the simulation results but are still in
fairly good agreement. Possible explanations for the deviations are the choice of the
parameter ρ̃sp, the system size, and approximations made by the model. The density
in the ordered phase was then calculated from an equilibrium condition for the forces
the two phases would exert on the interface between them. This approach yielded good
agreement with the simulation results for particle motilities Pe ≥ 40 and large enough
average densities. Even though the predicted densities were too large at smaller Péclet
numbers, the model is quite accurate in a large range of parameters – especially when
considering that it not only describes the high-density phase but also the isotropic
phase. For an illustration of the agreement, see Fig. 3.33. One likely explanation for
the occurring deviations is the perfect order and stability assumed for the high-density
phase. Configurations observed in simulations would not exhibit same degree of or-
der and stability as the model. Also, the simulation data was calculated by averaging
over different types of configurations such as asters, collectively moving clusters, and
enclosed lanes. Due to their fundamental differences, they cannot be expected to be
described by the same model.
In Section 3.6, a density functional theory was used to derive the coexisting densities
following a similar approach for spherical particles presented by Cates and Tailleur
[178]. The system’s free energy was expressed as a function of the local density ρ and
minimised with regards to the orientational order parameter α. Since the free energy
contained an excess term depending on the particles’ speed v(ρ),but the precise form
of v(ρ) was unknown, two different ansatzes were tested – a linear and an exponential
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dependence. This model made good predictions for the density in the ordered phase,
but the density in the isotropic phase would be significantly larger than the simulation
results. In order to take into account the particles’ increased excluded volume due to
their motility, the model was modified by introducing an effective elongation of the
particles. In this case, the model could reproduce the density in the isotropic phase
for certain parameters but would yield an incorrect density in the ordered phase. This
agreement for different phases is also illustrated in Fig. 3.33. We have to conclude that
the density functional theory presented here is only suitable for correctly predicting one
of the coexisting densities. This is not ideal but could be a promising starting point
for further research. The deviations could have several reasons. First, the free energy
density derived in the underlying theory is only valid in dilute systems. Secondly,
only terms up to second order in the virial expansion are considered which is not a
good approximation in two dimensions – see Section 3.1.4. Thirdly, the particles’ finite
thickness is not taken into account by the model, and it is uncertain whether their
effective elongation is correctly described by the simplistic ansatz used here. Finally,
self-propelled rodlike particles constitute a non-equilibrium system. Mapping it onto
an effective equilibrium system may not be possible as it is for spherical particles. This
is the worst case scenario but still a possibility.
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Chapter 4

Conclusion

In this thesis, two biophysical topics were investigated numerically and analytically.

4.1 Sheared semiflexible polymer networks

4.1.1 Summary

In Chapter 2, wrinkling in semiflexible polymer networks due to shear strain was stud-
ied. Linear elasticity theory for thin membranes was used to find predictions for the
critical shear angle γc at which wrinkling sets in, the wrinkles’ wavelength λ, and their
amplitude A. The derived expressions were then applied to discrete networks. The
resulting predictions were tested in numerical simulations using an athermal model for
semiflexible polymer networks. The simulated networks were generated with a regular
or random geometry in two dimensions, and displacements into the third dimension
were enabled via positional perturbations of the networks’ nodes.
The simulation results yielded good agreement with the theoretical predictions for γc
and λ suggesting that these measurements can be used in experimental setups to de-
termine the elasticity of sheet-like semiflexible polymer networks and comparable ma-
terials. At large strains, deviations from the theory were observed indicating nonlinear
effects: Instead of increasing steadily with the shear strain, A would decrease above a
maximum shear angle in regular networks. Also, the elastic energies in wrinkled and
planar networks would become similar at large strains in contrast to maintaining a
constant ratio as predicted by linear elasticity theory. The latter effect is likely to be
caused by strain stiffening. Nonlinear elasticity in semiflexible polymer networks has
been associated with a transition from a bending dominated regime at small strains to
a stretching dominated regime at large strains. It is therefore relevant that the simula-
tion results presented here indicate that wrinkling causes an immediate transition into
the stretching dominated regime.

4.1.2 Outlook

As pointed out in Section 2.1.5, this work may be the first studying wrinkling in sheared
semiflexible polymer networks. Hence, there are many open questions that could not
be addressed yet. The following section aims to outline some viable options for further
research.
The simulations described here implemented an athermal model of two-dimensional
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networks. The crosslinks forming these were modelled as freely rotating and perman-
ent. There are many ways in which this model could be modified. First, instead of using
two-dimensional networks, it would be interesting to study three-dimensional networks
with a finite thickness. These are computationally more expensive but would be a more
realistic representation of semiflexible polymer networks we find in biological systems
such as the cytoskeleton of eukaryotic cells. The elasticity of three-dimensional net-
works has been studied in simulations [57–59, 206–208], but none of those considered
networks that are thin in one dimension. It is quite possible that in these networks,
the results for two-dimensional networks regarding wrinkling should remain valid. An
indication for this is that wrinkling patterns in experiments with other sheet-like ma-
terials have proven to be in good agreement with predictions from elasticity theory
[65–67, 74, 76, 79, 85]. However, it has been argued that the mechanical response of
three-dimensional networks is more likely to be dominated by nonaffine deformations
than in two-dimensional networks [12] which could also affect wrinkling.
Another point to consider is that realistic networks are not necessarily composed of only
individual fibers. Depending on the crosslinker density, composite networks of single
and bundled filaments can be found as well as networks consisting of only bundles [24,
25]. These networks differ greatly from non-bundled networks regarding their elastic
properties [34, 52, 209–213]. Hence, we can expect significant differences with regards
to wrinkling as well. For example, the anisotropic structure in composite networks
could yield anisotropic wrinkling patterns - an effect that has already been reported in
experiments with metal and polyimide films [73, 80]. One simple numerical approach
that has been used to generate and investigate composite networks is to use a mixture
of rods with different bending rigidities [212, 214, 215].
Another option for making the simulated networks more realistic would be to move
away from the purely athermal model and consider the polymers’ thermal fluctuations.
A viable method for doing this would be to generate the networks using undulated
filaments as described by Onck et al. [43] and Huisman et al. [57].
Finally, there is a number of modifications one can make to the crosslinks. Some
crosslinking proteins enforce a fixed angle between filaments, see Section 1.2.1. This
could be implemented in simulations by an additional energy contribution for angular
changes. The resulting networks would have a fundamentally different microstructure
than the random networks simulated here which could also affect their elastic proper-
ties. Another important property of the crosslinking proteins in real polymer networks
is their ability to unbind from the polymers which is a stochastic process that provides
the networks with a stress release mechanism [24]. In experiments, unbinding of cross-
linkers was shown to have a significant effect on the networks’ elasticity [39, 52, 216,
217], so considering it in simulations would yield more realistic behaviour. Due to the
stochastic nature of the unbinding mechanism, it would require simulating the systems’
time-development though. This would make the simulations computationally expens-
ive compared to the non-dynamic simulations presented here. In addition to stochastic
unbinding, crosslinkers can also be forced to unbind by external forces [39, 218–220].
This mechanism is easier to consider in non-dynamic simulations as it does not include
a time-dependence. An example for these kinds of simulations has been presented by
Åström et al. [59].
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4.2 Collective behaviour of active rods

4.2.1 Summary

In Chapter 3, the collective behaviour of active rodlike particles was studied in simula-
tions. These systems are known to exhibit phase separation into an ordered high-density
phase and an unordered low-density phase. The main focus of this chapter was finding
an analytical model for predicting the coexisting densities by adapting similar models
developed for spherical particles. The secondary aim was to reproduce experimentally
observed rotating structures.
Simulations were performed using the established framework of Brownian dynamics.
The particles were modelled as spherocylinders interacting via a Lennard-Jones poten-
tial and a hard-core interaction. Confined systems as well as systems without confine-
ment were considered.
The simulated systems exhibited a variety of patterns including static asters and col-
lectively moving structures such as clusters and enclosed lanes. These patterns met the
criteria for phase-separated systems mentioned above which yielded a phase diagram
indicating the coexisting densities. Phase separation would occur for particle motilities
Pe ≥ 20 and become more pronounced with increased Péclet number. Despite the
variety of the observed patterns, rotating structures did not occur. When manually
enforced at the start of simulations, these were not stable leading to the conclusion
that the simulated systems were too small to allow the formation of circular structures.
The phase separation observed in the simulations was analysed using two different ap-
proaches adapted from analytical models developed for spherical particles. First, the
coexisting densities of the two phases were derived from a force equilibrium at the
interface between them. This approach could not describe the coexisting densities at
small particle motilities – most likely because the model assumes a perfectly ordered
and stable high-density phase which is not the case in the simulations. At high particle
motilities and large enough average densities, the model was quite successful yielding
fairly good agreement with the simulation results for both coexisting densities.
Secondly, the systems’ free energy density was approximated using a density functional
theory, and the coexisting densities were derived from a common tangent construction.
The two variants of this model were able to reproduce one of the coexisting densities
each but not both. Possible reasons for this shortcoming could be that some of the
approximations made for deriving the free energy density are not valid. Also, this
approach tries to map a non-equilibrium systems onto an effective equilibrium system
which may not be possible for this problem.

4.2.2 Outlook

As summarised above, the simulations presented here were not able to reproduce ro-
tating structures that were observed in experiments with active rodlike particles. Also,
the analytical models developed in this work could only partly describe the phase sep-
aration in the simulated systems. The following section will present some options for
adjusting the simulations and analytical models in order to obtain better results.
Circular patterns have been reported in experiments and simulations of active rodlike
particles [109, 110, 124–126, 137, 155]. In comparison to those examples, the systems
simulated here were too small to allow the formation of circular patterns. The obvious
solution to this would be to simulate larger systems, but this would of course result in
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increased computation time. Hence, increasing the system size would only be a viable
option if the simulation algorithm could be made more efficient. Other crucial factors
affecting the formation of circular patterns are the interactions between particles. Lushi
et al. found in simulations of self-propelled rods confined in a circular geometry that
the particles would form a single vortex but only when hydrodynamic interactions
were considered [155]. The occurrence of swirling patterns due to hydrodynamic in-
teractions has also been confirmed in analytical models by Yang and Marchetti [196].
The simulations presented here did not include hydrodynamics though. This could
be an explanation why circular patterns were not observed. Besides hydrodynamic
interactions, explicit aligning interactions between particles were found to enable the
formation of such patterns. Yang et al. found in analytical investigations that the
strength of an explicit aligning interaction had to be in a certain range in order to
generate spiralling patterns [153]. In this work, interactions between particles were
modelled as a Lennard-Jones potential with an additional hard-core potential. This
interaction favours alignment of particles, but its strength was kept constant at a low
value throughout different simulations. This could be another reason why circular pat-
terns were not observed. We could test the influence these interactions have on the
formation of circular patterns by implementing hydrodynamic interactions and modi-
fying the strength of the implemented Lennard-Jones potential.
There are also a few possibilities to improve the analytical models for calculating the
coexisting densities in phase separated systems. The main shortcomings of the force
equilibrium model were its oversimplified modelling of the ordered phase and the fact
that it was based on a specific configuration while trying to describe simulation data
that was extracted by averaging over different types of configurations. One solution
to the second aspect would be to find a way to identify the occurring patterns in real-
time. This way, their density distributions could be evaluated separately which would
yield more specific results. Then, individual force equilibrium models could be used
to describe each of the configurations, and the coexisting densities could be predicted
for each of them individually. This approach would eliminate averaging over different
configurations as a source of error. The oversimplified modelling could be improved by
assuming a high-density phase that is not perfectly ordered since this is not the case in
simulations either. Also, the model presented here neglects thermal effects which are a
significant factor in simulations. Taking into account thermal fluctuations in the high-
density phase would yield additional internal forces that would increase the distance
between particles and thereby reduce density.
The density functional theory presented here has two intrinsic deficiencies that are hard
to resolve: only taking into account terms up to second order in the virial expansion is
not a good approximation in two dimensions, and the free energy density derived with
this approach is only valid in dilute systems. The second point has been addressed by
Wensink and Trizac who modified the Onsager theory for elongated particles by com-
bining the second-virial approach with a mean-field approximation that is valid at high
densities [221]. The resulting theory is an interpolation between the low-density and
the high-density regime, but the authors explicitly pointed out that it is not applicable
to the Lennard-Jones potential considered here. Other shortcomings of the density
functional theory presented here might be possible to eliminate. One of those is the
particles’ effective elongation due to their propulsion. We assumed the particles to be
elongated by their persistence length in a vacuum which is a very simplistic model. This
could be improved by taking into account interactions with other particles that might
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reduce the particles’ persistence length. The resulting elongation would likely depend
on the local density. Another problem was that the precise form of the particles’ speed
as a function of local density and degree of order is unknown. The assumed depend-
encies were adapted from models for spherical particles but not derived analytically.
Such an explicit derivation could yield a more accurate model for the particle speed
and hence improve the theory’s validity. In this context, it would also be useful if the
simulations allowed measuring the particles’ speed as a function of local density and
degree of order because this would allow testing the analytical model. This problem is
not trivial since it is hard to control the particles’ density and ordering in simulations
– see App. F.
Another possibility for further research was already pointed out in Section 3.6.4: the
two variants of the model presented here yielded good results for one of the phases
each, so it might be possible to get a more comprehensive description by combining the
two.
However, it is also possible that other models are more suitable for describing systems
of self-propelled rods than the density functional theory. In the last years, continuum
models have been reported to successfully describe collective motion in such systems
including the formation of collectively moving clusters [191, 195], lanes [153, 192], and
even swirling patterns [153, 196]. Some of these models consider hydrodynamic effects
which were shown to significantly affect the behaviour of active particles in general
[155, 222] and flagellated bacteria specifically [223]. Since the density functional theory
does not include hydrodynamics, those other approaches may be the better choice.
Finally, it should be noted that the investigation of three-dimensional systems is likely
to become important in the near future since most biological systems are three-dimen-
sional. Self-propelled spherical particles have already been studied in three-dimensional
simulations and were found to exhibit phase separation and collectively moving pat-
terns similar to their two-dimensional counterparts [224, 225]. This raises the question
whether three-dimensional systems of self-propelled rodlike particles would also behave
similarly to two-dimensional ones. At this point in time, the main difficulty with these
kinds of systems is probably the requirement for very large systems [224] which makes
the simulations computationally expensive.
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Appendix A

The virial expansion

Since biological systems consist of large numbers of particles, it makes sense to study
them using thermodynamics. Ideally, we would like to know the system’s equation of
state from which we can derive all thermodynamic quantities. However, we are dealing
with systems of interacting particles, so the equation of state cannot be derived exactly
as would be the case for a gas of non-interacting particles. However, it is possible to
approximate the equation of state as a power series in the system’s density ρ. This de-
scription is called the virial expansion and will be introduced here following the books
“Statistische Physik” by Torsten Fließbach [226] and “Statistische Mechanik” by Franz
Schwabl [227].

We consider a dilute gas of N identical particles with the Hamiltonian

H =
N∑
i=1

p2
i

2m
+

N∑
i=2

i−1∑
j=1

v(ri, rj) , (A.1)

where m is the particles’ mass, pi the momentum of particle i, and v(ri, rj) is a
potential describing the interaction between two particles at positions ri and rj . The
assumption that the system’ particle density ρ is small is important because it allows
us to neglect rarely occurring interactions of three or more particles. We also assume
that we can treat the system classically which is usually true.
In the grand canonical ensemble, the natural variables are the temperature T , the
volume V and the chemical potential µ. We start by expressing the grand canonical
partition function Zg in terms of the canonical partition function Z:

Zg(T, V, µ) =
∞∑
N=0

Z(T, V,N) exp(βµN) =
∞∑
N=0

ZN exp(βµN) , (A.2)

where β = (kBT )−1 and we have defined ZN = Z(T, V,N). From the ideal gas, we
know that the fugacity z = exp(βµ) is small when ρ is small. However, since the ZN
grow exponentially with N , we cannot neglect the terms of greater N in this series.
For the grand canonical potential which is given as

J = −kBT lnZg = −kBT ln
(
1 + Z1z + Z2z

2 + . . .
)
, (A.3)

139



APPENDIX A. THE VIRIAL EXPANSION

this is possible though as we can see when we calculate the Taylor series of the right-
hand side with z as the variable of the expansion:

ln
(
1 + Z1z + Z2z

2 + . . .
)

= Z1z +

(
Z2 −

Z2
1

2

)
z2 + . . . . (A.4)

From this, we can calculate the average number of particles

N = −∂J
∂µ

= Z1z + 2Z2z
2 + . . . , (A.5)

which we can rearrange to

z =
N

Z1
−

2
(
Z2 −

Z2
1

2

)
Z1

z2 +O(z3) . (A.6)

Entering this into the approximation for J yields

J = −kBT

[
N −

(
Z2 −

Z2
1

2

)(
N

Z1

)2

+ . . .

]
. (A.7)

With J = −pV where p denotes the pressure, we arrive at the equation of state

p = kBTρ

[
1−

(
Z2 −

Z2
1

2

)
N

Z2
1

+ . . .

]
. (A.8)

In order to express this in terms of the density, we calculate the canonical partition
function Z1 explicitly:

Z1 = (2π~)−3

∫
V
d3r

∫
d3p exp

(
− p2

2mkBT

)
= V Λ−3 , (A.9)

with Λ =
√

2π~2
mkBT

being the thermal de Broglie wavelength. With this result, the
equation of state becomes

p = kBTρ

[
1− Λ6

V

(
Z2 −

V 2

2Λ6

)
ρ+ . . .

]
, (A.10)

which we can identify as a power series in ρ. The generalised form of this is the virial
expansion

p = kBTρ
[
1 +B2(T )ρ+B3(T )ρ2 + . . .

]
. (A.11)

The Bn are the virial coefficients which are determined by the n-particle canonical
partition function Zn and therefore take into account n-particle interactions.
In our case, we want to consider pair interactions only, so we neglect terms of order
ρ3 and higher. Due to the calculations above, we already know how to determine the
second virial coefficient:

B2(T ) = − V

Z2
1

(
Z2 −

Z2
1

2

)
. (A.12)
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We still need to calculate Z2 which yields

Z2 =
1

2!
(2π~)−6

∫∫
V
d3r1 d

3r2

∫∫
d3p1 d

3p2 exp

(
− p

2
1 + p2

2

2mkBT
− v((r1, r2)

kBT

)
=

1

2!
Λ−6

∫∫
V
d3r1 d

3r2 exp

(
−v((r1, r2)

kBT

)
.

(A.13)

For a potential v(r1, r2) = v(r) that is only a function of the distance r = |r1 − r2|,
this can be written as

Z2 =
V

2
Λ−6

∫
V
d3r exp

(
− v(r)

kBT

)
. (A.14)

With this, we get

B2(T ) = −1

2

[∫
V
d3r exp

(
− v(r)

kBT

)
− V

]
= −1

2

∫
V
d3r

[
exp

(
− v(r)

kBT

)
− 1

]
.

(A.15)

For a usual gas, the term in the integral only gives a contribution for distances way
smaller than the system size, so we get the same result when integrating over the whole
position space. This has the advantage that we are left with only the radial integration:

B2(T ) = −2π

∫
dr r2

[
exp

(
− v(r)

kBT

)
− 1

]
. (A.16)

This expression allows us to apply the virial expansion to any gas as long as we know
the exact form of the pair potential v(r). Interactions of more than two particles are
neglected in this description.
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Appendix B

Calculation of hard-core distance

In areas of high particle density, the distances between particles can become very small.
Due to the repulsive Lennard-Jones interaction, this would lead to large forces acting
on the particles causing them to move very far. However, since the density is high,
it is very unlikely that a particle can actually move far without collisions. Such a
collision would interrupt the move and hence prevent the force from coming into effect
completely. So, large forces are a problem in simulation because they decrease the
algorithm’s efficiency.
We want to find an expression for the minimum distance dhc we allow between particles
as a function of the length of the resulting move lm. For simplicity, we consider two
perfectly aligned rodlike particles at a distance r. The repulsive force then acts exactly
perpendicular to the rods’ main axes and does not generate a torque. Therefore, the
resulting move of the entire rod is equivalent to the move of each segment, so we can
just calculate the force on a single segment. We neglect interactions with all but the
nearest segment – at distance r – which leads to the resulting force

FLJ(r) = 48
ε

r

(
d

r

)12

− 24
ε

r

(
d

r

)6

. (B.1)

At small distances, the repulsive term is dominant, so we also neglect the attractive
term:

FLJ(r) ≈ 48
ε

r

(
d

r

)12

. (B.2)

Since this force acts perpendicularly to the rod’s orientation, the resulting velocity is

vLJ(r) =
1

γ⊥
FLJ(r) . (B.3)

In a time-step ∆t, the segment will then move a distance lm which we can express as
a multiple of d:

lm = nd = vLJ(r)∆t . (B.4)

Finally, we solve the above equation for r which yields an expression for dhc as a
function of n – the factor defining the maximum length of a move resulting from the
Lennard-Jones interaction – at given parameters:

dhc(n) =

[
48εd11∆t

nγ⊥

] 1
13

. (B.5)
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Appendix C

Density Distributions

C.1 Determining grid cell size

As described in Section 3.3.7, density distributions in the simulated systems are meas-
ured using a grid of square-shaped cells with dimensions lρ × lρ. Since we want to be
able to distinguish phase separation from isotropic configurations, we have to choose
the cell size carefully. Using cells that are too large could lead to averaging over areas
with different densities. An extreme example of this would be using only one cell as
large as the simulation cell itself. In this case, the measured density would always
be the average density of the system – regardless of whether or not areas of different
densities exist. On the other hand, cells that are too small would cover areas that do
not contain multiple particles. Hence, these cells would measure densities on the level
of single particles instead of phases which could yield distributions that falsely indicate
phase separation. The relevant length scale in this case should be the mean distance
between particles in the isotropic phase. Below this length scale, only one particle
contributes to the measured density making it mainly dependent on the cell size. The
reason is that the length of the particle in the cell is proportional to lρ while the area of
the cell is proportional to l2ρ, so the density in the cell is proportional to l−1

ρ . When lρ
is greater than the average distance between particles though, the number of particles
in the cell scales with lρ making the total length in the cell proportional to l2ρ. Hence,
the measured density in the cell should be independent of its size in this case.
For finding the ideal cell size, we measured the density distributions in systems with
isotropic density and with phase separation and varied the cell size. The aim was to
find a cell size at which both configurations would be identified correctly. In an iso-
tropic system, the particles are evenly distributed yielding a uniform density thoughout
the whole system. Hence, we expect the density distribution to be peaked around the
system’s average density 〈ρ̃〉. In a system of two perfectly separated phases, we have
one area of low density and one of high density. In this case, the density distribution
should consist of only two peaks – one at a density smaller than 〈ρ̃〉 and one at a density
greater than 〈ρ̃〉.
As outlined above, we can expect the average distance of particles in the isotropic phase
to be an important length scale. This distance is inversely proportional to the average
density, so we will from now on specify the cell size in terms of use the dimensionless
parameter l̃ρ = lρL

−1〈ρ̃〉.

As isotropic systems, we used initial configurations of systems at average densities
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Figure C.1: Comparison of different cell sizes l̃ρ for measuring the density distribution
of an isotropic system with average density 〈ρ̃〉 = 4.0. For l̃ρ ≤ 0.75, the distribution
does not consist of just one peak at the average density which we would expect in an
isotropic system. In fact, even for l̃ρ = 1.0, the peak is shifted to a slightly greater
density than 〈ρ̃〉 and we notice a local maximum at ρ̃ = 0.

〈ρ̃〉 ∈ {2.0, 3.0, 4.0, 5.0} with a total number of particles in the range of N ≈ 2000.
Since these were generated by depositing particles into the simulation cell at random
positions and orientations, we can safely expect the particle positions to be distributed
evenly. We varied the cell size in the range l̃ρ ∈ [0.5, 5.0] and measured the density
distribution at each cell size.
We found that for l̃ρ ≤ 0.75, the distributions would have two maxima – one at ρ̃ = 0
and another one at a density greater than the average density in the system – see Fig.
C.1 for an example at 〈ρ̃〉 = 4.0. Since the systems were isotropic, we could conclude
that the cells were too small and the indicated phase separation was an effect of the
cell size. Deviations also occured for l̃ρ = 1.0. The resulting distributions would have
peaks at slightly larger densities than 〈ρ̃〉 and a second small maximum at ρ̃ = 0. Since
the deviations from the expected distribution were small, we did not rule out this cell
size yet and concluded that cell sizes of at least l̃ρ ≥ 1.0 were necessary to correctly
identify an isotropic system by its density distribution.

For measuring density distributions in systems with phase separation, we used snap-
shots from simulations in which the particles were clearly divided into one bulk phase
of high density and another phase of very low density. Again, we used several average
densities 〈ρ̃〉 ∈ {2.0, 3.0, 4.0, 5.0} but with a total number of particles in the range of
N ≈ 200. This time, we only used cell sizes meeting the condition that they would give
a correct distribution for isotropic systems: l̃ρ ∈ [1.0, 5.0].
For 〈ρ̃〉 = 2.0 and cell sizes l̃ρ ≥ 3.0, the distributions would exhibit multiple peaks

over a wide range of densities. Distributions for l̃ρ ∈ [1.0, 2.0] would have two maxim-
ums as expected in a system with two separate phases of different density. This was
also the case for larger average densities – see the example plot for a system of 〈ρ̃〉 = 4.0
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Figure C.2: Comparison of different cell sizes l̃ρ for measuring the density distribution
of a system exhibiting phase separation with average density 〈ρ̃〉 = 4.0 and particle
motility Pe = 100. For all l̃ρ, the distribution has two maximums – one at ρ̃ = 0 and
one at ρ̃ ≈ 11. This meets our expectation for systems with two separate phases of
different density. However, for l̃ρ = 1.0, we find an additional local maximum near 〈ρ̃〉.

and Pe = 100. in Fig. C.2. The correct form of the density distributions would make
the according cell sizes viable options for correctly identifying phase separation. How-
ever, the density distributions for l̃ρ = 1.0 would in some cases exhibit a small local
maximum near the system’s average density. For l̃ρ = 2.0, this effect was not observed.
As mentioned before, small deviations from the expected density distribution were also
found in isotropic systems for l̃ρ = 1.0 but not for l̃ρ = 2.0. Therefore, l̃ρ = 2.0 was
used for further measurements of the density distribution.

C.2 Influence of the splitting density

As described in Section 3.3.7, we used ρ̃crit = 3π/2 as the splitting density ρ̃sp when cal-
culating the coexisting densities in a system with phase separation. We chose this value
because it is the geometrical limit up to which a two-dimensional system of infinitely
thin rods can remain isotropic – see Section 3.1.4. However, this value is not distin-
guished, and it would also be possible to split the density distributions at a different
values ρ̃sp. Different splitting densities would yield different results for the coexisting
densities as illustrated in Fig. C.3 for a system with average density 〈ρ̃〉 = 5.0 at differ-
ent particle motilities. We see both coexisting densities increasing with ρ̃sp. This is not
surprising since the simulated systems would not exhibit perfect phase separation, i.e.,
their density distributions would consist of two smoothed out peaks. Hence, depend-
ing on which phase the densities in the intermediate range would be assigned to, the
coexisting densities would vary. Since we would average over all densities attributed to
each phase, including higher densities in the low-density phase would increase its aver-
age density. Coincidently, the same densities would be excluded from the high-density
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high density low density

Figure C.3: High density (left) and low density (right) in a phase-separated system with
average density 〈ρ̃〉 = 5.0 at different particle motilities as a function of the splitting
density ρ̃sp. The obtained results vary significantly with the value of splitting density
in the examined range.

phase increasing this average density as well.

In order to quantify the effect the splitting density ρ̃sp has on the coexisting densities,
we calculated the phases’ average densities with respect to different values ρ̃sp. These
values would be different for each particle motility. Next, we compared the average
value to the corresponding minimum and maximum density. We found that these
values could deviate from the average value by up to 102% in the low-density phase. In
the high-density phase, the greatest deviation was 30%. Hence, we have to acknowledge
that the coexisting densities we measured were quite sensitive to the choice of ρ̃sp. As
mentioned before, we would not necessarily have to use ρ̃sp = ρ̃crit. This should be
considered when evaluating the simulation results as these would only be accurate
within the above mentioned margins of error.
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Appendix D

Consistence of common tangent
when adding a linear term

The common tangent of two functions f1(x), f2(x) is defined by two points (x1, f1(x1))
and (x2, f2(x2)) with x1, x2 meeting the following conditions:

I.
df1

dx

∣∣∣∣
x=x1

=
df2

dx

∣∣∣∣
x=x2

(D.1)

II. f2(x2) = f1(x1) + (x2 − x1)
df1

dx

∣∣∣∣
x=x1

(D.2)

Now, we add a linear term αx with α = const. to both functions and call the resulting
functions f̃1 and f̃2:

f̃1 = f1 + αx (D.3)

f̃2 = f2 + αx (D.4)

We want to demonstrate that x1 and x2 also meet the two conditions presented above
for f̃1 and f̃2:

I.
df̃1

dx

∣∣∣∣∣
x=x1

?
=
df̃2

dx

∣∣∣∣∣
x=x2

(D.5)

II. f̃2(x2)
?
= f̃1(x1) + (x2 − x1)

df̃1

dx

∣∣∣∣∣
x=x1

(D.6)

The solution is straight-forward:

I.
df̃1

dx

∣∣∣∣∣
x=x1

=
df1

dx

∣∣∣∣
x=x1

+ α =
df2

dx

∣∣∣∣
x=x2

+ α =
df̃2

dx

∣∣∣∣∣
x=x2

(D.7)

II. f̃1(x1) + (x2 − x1)
df̃1

dx

∣∣∣∣∣
x=x1

= f1(x1) + αx1 + (x2 − x1)
df1

dx

∣∣∣∣
x=x1

+ α(x2 − x1)

= f2(x2) + αx1 + α(x2 − x1) = f2(x2) + αx2

= f̃2(x2)

(D.8)
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So, adding the same linear term to two functions f1 and f2 does not alter the x-values
of the points defining their common tangent.
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Appendix E

Iterative Calculation of the degree
of ordering as a function of density

When calculating the free energy

F̃ =
βFL2

V
= ρ̃ (ln(ρ̃)− 1) + ρ̃

∫
ψα(ϑ) ln(2πψα(ϑ)) dϑ

+ ρ̃2

∫∫
ψα(ϑ)ψα(ϑ′) sin(ϑ− ϑ′) dϑ dϑ′

+

∫ ρ̃

0

1

2
ln(1 +

v(s̃)2τr
2Dt

) ds̃

(E.1)

at a certain density ρ̃, we have to find the minimum of F̃ with respect to α. However,
the velocity is also a function of α. In the excess term, we have to integrate the
logarithm of the velocity over all densities s̃ ≤ ρ̃. Therefore, we need to know the
degree of ordering that minimises F̃ for each density below ρ̃.
So, we have to perform the calculation iteratively starting at ρ̃ = 0 and incrementally
increasing ρ̃.
In each step i of the iteration, we numerically calculate F̃ as a function of α at the fixed
density ρ̃i. Then, we identify the value α > 0 for which F̃ has a minimum and call
this αi. For the evaluation of the integral in the excessive term, we calculate a fitting
function α(ρ̃) using the pairs of values {(ρ̃0, α0) , . . . , (ρ̃i−1, αi−1)}. For densities in the
interval [ρ̃i−1, ρ̃i], we interpolate linearly between αi−1 and the value of α for which we
are calculating the free energy.
As mentioned above, we start at ρ̃0 = 0 which gives F̃ = 0 independent of α, so we set
α0 = 0 as well. We also set αi = 0 every time we cannot find a minimum in F̃ . When
we do find a minimum though, we have automatically calculated F̃ (ρ̃i). In the end, this
gives us pairs of values

{(
ρ̃i, F̃ (ρ̃i)

)}
we need for the common tangent construction.
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Appendix F

Measuring particle speed

In Section 3.6, an analytical model for calculating the coexisting densities in a phase-
separated system of self-propelled rods was presented. One important element of this
approach was approximating the system’s free energy density using a density functional
theory. In order to take into account the particles’ motility, an excess term was con-
sidered in the free energy density. This term turned out to be a source of uncertainty
though since it depends on the particles’ speed as a function of density v(ρ) of which
the precise form is unknown. Different ansatzes were tested throughout the analysis,
but none of these was based on experimental or numerical results.
In order to improve the analytical model, we tried measuring the particles’ speed in
simulations. We used a slightly different environment in the simulations than the ones
described in Section 3.3.1: particles were confined in channels with fixed boundaries
in one dimension and periodic boundary conditions in the other dimension. Also, dur-
ing system the generation process, the rods’ orientations were restricted to an angular
range centered around an axis parallel to the confinement. The latter aspect was imple-
mented to generate systems with a specific degree of ordering, and the confinement in
one dimension was supposed to stabilise this ordered configuration during simulation.
Simulations were performed at various densities and degrees of order with the intention
to measure the particles’ speed as a function of these two parameters. However, the
systems evolved differently than expected. Instead of maintaining their initial degree
of order, the particles would aggregate near the channel walls. The resulting configura-
tions therefore had inhomogeneous density distributions and degrees of order deviating
from their initial ones. As a result, it was not possible to perform controlled, systematic
measurements of the particles’ speed as a function of density and degree of order. In
order to obtain these data, a different simulation setup would have to be designed in
which density and degree of order could be more rigorously controlled.
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