

Modeling and Training Options for

Handwritten Arabic Text Recognition

Dissertation

zur Erlangung des Grades eines

Doktors der Ingenieurwissenschaften

der Technischen Universität Dortmund

an der Fakultät für Informatik

von

Irfan Ahmad

Dortmund

2016

Tag der mündlichen Prüfung. Monday, 20th March, 2017

Dekan: Prof. Dr.-Ing. Gernot A. Fink

Gutachter:

Prof. Dr.-Ing. Gernot A. Fink

Prof. Dr. Laurence Likforman-Sulem (Télécom ParisTech, France)

Irfan Ahmad: Modeling and Training Options for Handwritten Arabic Text

Recognition, © November 2016

iii

Abstract

Handwritten text recognition is an active and challenging area of research in the field

of pattern recognition. This area of research although, witnessing great progress in

recent years is far from being a solved problem. Arabic text recognition research

starting relatively later as compared to text recognition research in other scripts like

Roman and Chinese benefited from the techniques developed for other scripts. Most

of the techniques were directly adapted from existing works with little or no

modifications. Although, this approach had advantages like quick transfer of knowledge

into Arabic text recognition domain, it led to an area of research less explored the

study of the peculiarities of Arabic script and utilizing those peculiarities to address

the challenges in Arabic text recognition research. The present thesis work is an effort

in this direction; whereby, we investigate some of the peculiarities of Arabic script in

order to develop methods and techniques which can improve the text recognition

performance.

We investigated alternative modeling options for HMM-based Arabic text

recognition which exploit the fact that many Arabic characters share similar patterns

between them. We present the idea of Arabic sub-characters which are smaller

character segments defined utilizing the knowledge of the script. The Arabic characters

and their position-dependent shapes can, then, be constructed from these fewer number

of sub-characters which results in a compact recognizer with a significantly reduced

presented for Arabic

text. Connector models are the special ligatures that join the Arabic characters in a

word. Moreover, contextual sub-character modeling was investigated which benefited

from the proposed connector model.

Arabic characters have a core shape and a number of dots or other diacritical marks

either above or below these core shapes. Many Arabic characters have the same core

shapes but differ from each other due to the diacritics. Another modeling option that

was presented in this work is based on separating the core shapes from the diacritics

thereby reducing the model set considerably. This results in a multi-stage text

recognition framework where the core shapes are recognized in the first stage and then

the diacritics information is utilized in the second stage to generate the final text

hypothesis.

A third modeling approach was investigated which basically combined the above

two presented ideas in what we term as sub-core-shape models. Here, the core shapes

iv Abstract

are separated from the diacritics and, then, the core shapes are further divided into

sub core-shapes as many characters share similar patterns within the core shapes. This

leads to further reduction in the number of modeling units.

We experimented the presented modeling techniques for handwritten Arabic text

recognition on a benchmark handwritten Arabic text database. We achieve state-of-

the-art results as compared to the other HMM-based Arabic text recognition systems.

All the presented modeling approaches performed better than the commonly used

character-shape models under normal training conditions. More importantly, the

presented techniques performed significantly better under constrained training

environments where limited handwritten training data was used. Some experiments

were conducted on a second database which further validated our approaches.

For systems using the familiar character-shape models, we presented class-based

contextual modeling. The main idea is to limit the number of unique contextual forms

by not modeling every contextual form as a separate model, but, instead, by grouping

the characters in the left and the right context into classes where characters in each

class have similar effects on its neighboring characters. This leads to a significantly

compact text recognizer as compared to the HMM systems that use the standard

contextual models.

 Our next major investigation was related to recognition of handwritten Arabic

text when no handwritten training set is available. Our approach was based on the

observation that Arabic is an inherently cursive script; therefore, it has a degree of

visual similarity both in the handwritten as well as in the machine printed forms.

Accordingly, the challenging step of initializing the system in such tasks was performed

by using computer generated machine printed text as the training data. Unsupervised

adaptation during recognition was performed to further improve the results. Finally,

the recognition hypothesis was iteratively fed back to the recognizer to further improve

. This area of research can have favorable implication

in the future by alleviating, if not completely removing, the need of preparing manually

annotated training data for the recognizers which is a costly and time consuming

activity. A number of text recognition experiments were conducted to validate the

presented techniques and the results were very impressive keeping in mind that no

handwritten training set was used.

v

Acknowledgements

I would like to thank all those whose help and support has contributed in the

completion of the present work. I would like to begin by thanking my supervisor,

Professor Dr.-Ing. Gernot A. Fink, for his guidance throughout this work. I feel myself

to be fortunate to have an opportunity to work in his research group and under his

supervision. His insights and discussions greatly helped my understanding. Moreover,

I feel that his professional and detail-oriented attitude had a very positive influence on

me professionally. I would also like to thank Professor Lawrence Likforman-Sulem for

agreeing to review this work and for providing her feedback.

Many thanks to my colleagues: Akmal, Axel, Leonard, René, and Sebastian. It was

really nice to be a part of such a cohesive group. They have always helped me and

assisted me in my work and also beyond including the assistance in German language

skills. I would also like to thank Claudia for the administrative support offered by her.

A special thanks to Professor Dr. Sabri A. Mahmoud for all the help and support

he offered me from the very beginning. He introduced me to this area of research and

was instrumental in me pursuing this work. I would like to thank all my friends and

colleagues in KFUPM, Saudi Arabia, for their support and good wishes. This work

benefited from the funded project sponsored by KFUPM under the project grant RG

1313. Thanks to my friend Yousef Elarian for his support and useful advises.

I am indebted to my parents and my wife for their prayers, love, and support which

gave me strength and perseverance during my work and beyond. Thank you for always

being on my side. I understand that I was unable to name all the people who are to be

thanked but I can assure that I do thank you all from my heart.

vii

Table of Contents

Table of Contents ...vii

Acronyms ...xi

1 Introduction .. 1

1.1. The text recognition process .. 3

1.2. Motivation for the current work ... 7

1.3. Contributions of the thesis .. 9

1.4. Outline of the thesis ... 11

2 Fundamentals of Hidden Markov Models .. 13

2.1. Use of HMMs for text recognition ... 13

2.2. Model Definition ... 14

2.3. Continuous, semi-continuous, and discrete HMMs .. 15

2.4. Model decoding and text recognition ... 17

2.5. Model training ... 18

2.6. Deciding the model architecture and initializing the HMMs 19

2.7. Other aspects of HMMs related to text recognition .. 21

2.7.1. Modeling the contextual variations .. 21

2.7.2. Adapting the system for robust recognition 22

2.7.3. Multi-stream HMMs .. 23

2.8. Summary .. 24

3 Overview of Arabic Script .. 25

3.1. Characters and diacritics ... 25

3.2. Position dependent character shapes, words, and PAWs 27

3.3. Numerals .. 29

3.4. Ligatures ... 30

3.5. Challenges in Arabic handwritten text recognition .. 31

3.6. Summary .. 33

4 Related Work .. 35

4.1. A brief overview of the historical developments ... 36

4.2. HMM based Arabic text recognition .. 38

4.3. Other statistical sequential models ... 51

viii Table of Contents

4.4. Summary of the related works ... 54

5 Modeling Options for Arabic Text Recognition .. 73

5.1. Motivation for this work ... 73

5.2. Sub-character modeling for Arabic text recognition 74

5.2.1. Special ‘connector’ and ‘white-space’ models 79

5.3. Modeling core shapes and diacritics separately ... 83

5.3.1. Multi-stage recognition of handwritten Arabic text 84

5.4. Integrating sub-characters with core-and-diacritics system 92

5.4.1. Multi-stage recognition framework .. 92

5.5. Other improvements related to model training .. 95

5.5.1. Multi-stream HMMs .. 95

5.5.2. Contextual HMMs ... 96

5.6. Summary .. 103

6 Handwritten Text Recognition in the Absence of Handwritten Training Set 105

6.1. Motivation for this work ... 105

6.2. Machine printed text recognition ... 107

6.2.1. Features for font Identification .. 109

6.2.2. Framework for machine printed text recognition 110

6.3. Approaches for handwritten text recognition .. 111

6.3.1. Training using computer generated text in single font 111

6.3.2. Training using computer generated text in multiple fonts 113

6.3.3. Performing unsupervised adaptation .. 114

6.3.4. Using test hypothesis as data for iterative training 115

6.4. Summary .. 116

7 Evaluations ... 119

7.1. Databases for text recognition ... 119

7.1.1. IFN/ENIT database of handwritten Arabic names 119

7.1.2. KHATT database of handwritten Arabic texts 120

7.2. Text recognition tasks .. 121

7.2.1. Word recognition ... 121

Table of Contents ix

7.2.2. Character recognition ... 121

7.3. Evaluation measures ... 121

7.3.1. Word Error Rate (WER) ... 122

7.3.2. Character Error Rate (CER) .. 122

7.3.3. Significance interval of the results ... 122

7.4. Experimentations, results, and discussions .. 123

7.4.1. Word recognition using the IFN/ENIT database 123

7.4.2. Character recognition using the IFN/ENIT database 138

7.4.3. Character recognition using the KHATT database 139

7.4.4. Word recognition without handwritten training sets 141

7.5. Summary .. 145

8 Conclusions .. 151

8.1. Summary .. 151

8.2. Possible future works ... 153

Appendix—A .. 155

Appendix—B .. 159

B.1. Databases for machine printed text recognition 159

B.1.1. P-KHATT database of machine printed texts 159

B.1.2. APTI database of machine printed texts ... 159

B.2. Experimentations, results, and discussions 160

B.2.1. Experiments using the P-KHATT database 161

B.2.2. Experiments using the APTI database ... 171

Bibliography .. 177

xi

Acronyms

AI Artificial Intelligence

ANN Artificial Neural Network

BLSTM Bidirectional Long Short-Term Memory

BOF Bag of Features

CER Character Error Rate

CTC Connectionist Temporal Classification

EM Expectation Maximization

GSC Gradient-Structural-Concavity

HMM Hidden Markov Model

LSTM Long Short-Term Memory

MDRNN Multi-Dimensional Recurrent Neural Networks

MLA Model Length Adaptation

MLE Maximum Likelihood Estimation

MLLR Maximum Likelihood Linear Regression

MLP Multilayer Perceptron

NN Nearest Neighbor

OCR Optical Character Recognition

OOV Out of Vocabulary

PAW Part of Arabic Word

PHMM Planar Hidden Markov Model

P-KHATT Printed-KHATT

RBF Radial Basis Function

RNN Recurrent Neural Networks

SVM Support Vector Machine

WER Word Error Rate

1

1 Introduction

ext recognition is an active research area in the field of pattern recognition

with the goal of developing automated systems that are able read text as

effectively if not better as humans. The core idea is to recognize i.e., provide

transcription for text from images captured by various means like scanner,

camera, or video recordings. The term text recognition can include related

processes in addition to the actual text recognition like text localization, image

quality improvement, and post-recognition steps like spelling correction. Text

recognition has many useful and interesting applications ranging from digitization

and indexing of historical manuscripts, automatic reading of car license-plates,

automatic processing of bank checks, automatic sorting of envelopes based on postal

address, automatic processing of forms, automatic white-board reading, and related

tasks involving word spotting. Furthermore, due to the widespread use of papers

in our everyday life and the need for them to be stored electronically for efficient

storage and retrieval, there is a need for highly reliable and robust document

processing systems. One of the core components of any document processing

framework is a text recognition system.

If text recognition is done on machine printed text images, it is commonly

referred to as printed text recognition or optical character recognition (OCR). On

the other hand, handwritten text recognition deals with recognizing text from

images containing text handwritten by humans. Although printed text recognition

is much easier as compared to handwritten text recognition, it still has its own

challenges like recognition of degraded documents, recognition of text printed using

multiple or uncommon font typefaces, and documents having non-uniform text

alignments and orientations. Handwritten text recognition, on the other hand, does

face most of the above challenges in addition to its own peculiar problems like huge

variation in human handwritings both within the same writer and also between

different writers, variations due to text slants, skews, and uneven writing lines.

Machine printed text recognition can be considered a solved problem for many

practical applications like postal address sorting system; whereas, the challenges

T

2 Introduction

are far from over when it comes to handwritten text recognition (cf. (Plötz and

Fink 2009)). Handwritten text recognition is further classified as offline and online

after the text writing process has completed. Whereas, online text recognition is

performed on data captured in real-time. This is typically done when text is written

on touch sensitive screens of tablet computers or smart phones. For online text

recognition, information like pen-tip pressure and temporal information on writing

is available which is not available for offline text recognition. Consequently, online

text recognition is regarded as an easier problem as compared to offline text

recognition.

Systems based on Hidden Markov Models (HMMs) are among the most

successful and widely used text recognizers. HMMs have sound theoretical and

mathematical background. They do not need explicit segmentation of text into

recognition units like characters or strokes. Segmentation and recognition is

performed at the same time. Efficient algorithms exist for decoding and for

estimating the model parameters during training. Moreover, it can easily integrate

language models during recognition. The main motivation of using HMMs for text

recognition originally came from the field of speech recognition which had the same

inherent difficulty of segmentation and recognition.

One of the core steps in setting up a text recognition system is to train the

system. To adequately train a text recognition system, it is important that we have

enough training samples for each class to be recognized. These classes can represent

characters, strokes, or other suitable representations of the text in the underlying

script. Benchmark database are developed to assist research in this area so that the

systems can be robustly trained and then the systems can be evaluated on the

evaluation data. Creating these databases is a time consuming and costly activity.

The amount of training data that is needed to adequately train a text recognizer is

directly related to the number of classes the basic recognition units in a

recognition system, i.e., there should be sufficient training samples for each

recognition class. Thus, for a given script, if we can have alternative representations

for the recognition units, the representation that leads to the minimum number of

classes seems to have a clear advantage. For a given amount of training data, the

text recognizer will have more samples per class which can lead to more robust

training as compared to a recognizer that uses representation which has more

classes. On the other hand, in situations where little training data is available, the

recognizer which has the most compact model set is expected to perform more

1.1 The text recognition process 3

robustly. Thus, the modeling choice defining the basic recognition units is an

important decision. For some scripts like Roman, the characters are the most

straightforward and obvious modeling choice. But, for some other scripts like

Arabic, the choice is not that obvious.

One of the main objectives of the current thesis is to investigate alternative

modeling options for the Arabic script such that it can lead to recognition systems

that have compact model sets and can perform more effectively for a given text

recognition task. More importantly, the text recognizer shall be able to perform

text recognition more robustly when little training data is available. Another

important objective of the current thesis, which is an extension of the previous

objective, is to investigate handwritten Arabic text recognition when no

handwritten training set is available.

In the remaining part of the chapter, we will present an introduction to our

thesis work. In Section 1.1, we will present an overview of the text recognition

process with focus on HMM-based text recognition systems. Our motivations for

the current work is presented in Section 1.2 and the contributions of the work is

presented in Section 1.3. Finally, we will present the outline of the thesis in

Section 1.4.

1.1. The text recognition process

In this section, we will present a brief overview of the important stages involved in

a text recognition system with focus on HMM-based text recognition systems. A

typical text recognition process consists of a number of stages including image

acquisition capturing the text into a digital form, preprocessing localizing the

text and improving the quality of the text image for later stages, feature

extraction extracting relevant information from the text images, training

training the classifier such that it learns parameters of the models representing the

recognition classes, decoding generating the recognition hypothesis for the text

images, and post-processing improving the recognition results. Some of the steps

might be optional, or even not needed, for a given text recognition task whereas

others are mandatory. In Figure 1.1, we illustrate the main stages of a typical text

recognition process along with highlighting the focus of the current thesis. Below,

we describe the text recognition process in more details:

Preprocessing: Text to be recognized is first captured as images using devices

such as scanners and cameras. The text regions are then localized from these images

before further processing. Text images may, then, undergo a number of steps before

4 Introduction

they are ready for the next stage, i.e., feature extraction. If an image has multiple

text lines, it needs to be segmented into line images, each containing a single text

line. Splitting an image of a paragraph of text into individual text lines might not

be a trivial task for handwritten paragraphs. Techniques based on connected

component analysis, Hough transformation, ink pixel projections, and smearing are

commonly used for this task. For an overview of some common text-line extraction

algorithms, readers can refer to (Likforman-Sulem, Zahour, and Taconet 2007).

Further segmentation of text line images may be needed depending on the classifier

used. HMMs are used with images at the text-line level (where an image consists

of a single word or multiple words) and, hence, further segmentation is not needed.

Images may also undergo binarization separating the ink pixels from the

background in the preprocessing stage depending on what type of features are

extracted from them. Another step that is commonly involved in preprocessing of

handwritten text line images is the baseline correction. The writing line in human

handwriting is normally not straight and thus the text line gets skewed. The skew

of the individual text lines needs to be estimated and then corrected by rotating

the text line in the direction opposite to the skew angle. Techniques based on

projection profiles, principal component analysis, text skeletonization, Hough

transformation, and text contours are commonly employed for this task (cf., e.g.,

(Al-Shatnawi and Omar 2009; Abed and Märgner 2007)). Moreover, the

handwritten text may not be completely upright on the vertical axis and this

variation needs to be minimized correcting the stroke angle with respect to the

vertical axis by applying a shear transformation. This is commonly referred to as

slant correction. Common techniques for slant correction are based on chain codes

and gradient information from the text images (cf., e.g., (Plötz and Fink 2009;

Parvez and Mahmoud 2013b))

Last but not the least, the text size may be normalized to minimize the

variability across the line images. For handwritten text images, text size

normalization is not a straightforward task. Normalizing the height of the core text

across the text line images is a common approach (e.g., (Wienecke, Fink, and

Sagerer 2005)).

It is important to note that the order of presentation of the preprocessing steps

is not necessarily the same order how they are applied in a particular text

recognition system. Additionally, not all of the mentioned steps are required in

every text recognition task.

1.1 The text recognition process 5

Figure 1.1: Process framework for a typical text recognition system. The shaded area shows the

main focus and the scope of the present thesis.

Text localization

Preprocessing

Feature extraction

Text recognition

(Decoding)

Training

Trained models

Post-processing

Input document image

Text blocks

Normalized text-line

images

Feature vectors

Recognition hypothesis

Final text recognition

output

6 Introduction

Feature extraction: Feature extraction is an important stage after

preprocessing. Adequate features are extracted from the text images which are then

used to train a classifier for text recognition. Selecting effective features is

important for text recognition. The aim of a feature is to capture the important

information about the text strokes such that the different recognition-classes are

well separated and the difference in samples within a class is minimized. Another

important goal is to keep the dimension of features as low as possible so as to be

efficient in terms of space and computation-time requirements.

When using HMMs as classifier for text recognition, the two-dimensional image

data need to be sequenced and ordered temporally. The sliding-window technique

is the most popular approach to sequence the text image (cf. (Plötz and Fink

2009)). Here a window, having a fixed width and the height as the height of the

image, is slid across the image from one end of the image to the other end (in the

writing direction). Features are extracted from the image strip under a sliding

window.

Training: Training is a core stage of setting up any text recognition system.

Sufficient number of text images along with their transcription are needed to train

the underlying to be recognized. A class is a representative

unit of text to be recognized such as characters or strokes. For the Arabic script,

the choice of modelling units is an important decision to be made during the design

and setup of a text recognition system. As Arabic characters can have a number of

different visual appearances due to their position in the words, a common approach

is to model each position-dependent character shape as a class. It is important that

each class has sufficient number of samples for adequate training. Benchmark

databases are developed to provide sufficient amounts of data for training,

under a given environment

(e.g., (Marti and Bunke 2003; Mahmoud et al. 2014; Pechwitz et al. 2002; Mahmoud

et al. 2011)). The training labels along with the features extracted from the text

images are provided to the classifiers during training.

Decoding: Once the training has been done

have been adequately calibrated, the recognizer is ready to be used for decoding.

Decoding basically involves generating the recognition hypothesis for the text

images. All the preprocessing steps which were performed on the text images used

for training the recognizer are also applied for the text images during decoding.

Once the input image is preprocessed, features are extracted from them and are fed

to the classifier which, in turn, generates the recognition hypothesis.

1.2 Motivation for the current work 7

Viterbi decoding is the most commonly used algorithm for hypothesis

generation in the case of the HMM classifier. An important benefit of using HMMs

as classifier is that, it is quite straightforward to integrate the statistical n-grams

mainly the bi-grams as language models during decoding (cf., (Plötz and Fink

2009)). The writing model (using HMMs) along with the n-grams as language

models form a robust and effective overall model of handwriting. The n-grams are

generally estimated from an external large-text corpora in addition to the training-

set transcriptions.

Post-processing: Post-processing steps are optionally used after decoding to

improve the recognition results. Rescoring the multiple hypothesis generated during

decoding is a commonly applied post-processing step. In the case of HMMs, an

initial word network is generated during decoding using shorter n-grams as

language models, and the long span n-grams are then used to re-score the initial

network. This is done because integrating long span n-grams with decoding can be

computationally too expensive to be used during recognition. Another possible post

processing step is the classifier combination step. If multiple classifiers were trained

and later used to provide separate hypothesis for a given test image, the hypothesis

from the different classifiers are finally merged to produce a final recognition

hypothesis. Spelling correction is another possible post-processing step that has a

potential to improve the final hypothesis especially in natural and unconstrained

handwritten text recognition tasks.

1.2. Motivation for the current work

Here we will highlight some of the major issues with text recognition in general and

with Arabic text recognition in particular (in the context of the current work) to

lay the ground for the motivation of our work.

As mentioned before, availability of sufficient number of training samples for

each class is important for adequate training. Moreover, the character frequencies

in texts are not uniform, i.e., there are some characters that occur more frequently

e t a

z q x

characters in the English language (cf., e.g.,). It is

important that the training corpus is large enough to contain enough samples for

all the classes. Researchers in this area generally believe that the quantity and

quality of training data is as important as developing effective features and

classifiers (cf., e.g., (Baird 2007; Varga and Bunke 2008)). The general trend so far

8 Introduction

has been to train a classifier using large amounts of annotated training data so as

-frequency characters. The task of

collecting and manually transcribing the text images to be used as training sets is

very costly and time consuming. Moreover, the data collected under a particular

environment and setup is, normally, not very useful in text recognition tasks under

different environments and setups.

Arabic is one of the Semitic languages. It is spoken by over 400 million people

worldwide and is the official language of 22 countries of the world (UNESCO 2015).

There are some other languages like Persian and Urdu which use Arabic script for

writing; although, they have few more characters than Arabic to cover phones not

present in the Arabic language. Research in Arabic text recognition started later

than research on scripts like Roman and Chinese. Nevertheless, a lot of effort was

devoted in the last two decades on Arabic text recognition research as can be

understood based on the number of publications in high quality journals and

conferences in addition to a number of text recognition competitions (e.g., (Märgner

and Abed 2010; Märgner and Abed 2011; Slimane et al. 2013; Mozaffari and

Soltanizadeh 2009; Slimane et al. 2011)). Researchers adapted, with minimal

changes, the text recognizers developed for other scripts like Roman to work for

the Arabic script (e.g., (Schambach, Rottland, and Alary 2008)). Although this

approach has its advantages like script independence, it leaves an important area

less explored, i.e., investigating the peculiarities of the Arabic script and using them

to develop techniques that can improve a recognizer . Selecting the

basic modeling units for the Arabic script is among one such possible areas of

investigation.

Arabic characters can take different visual shapes based on their position in a

word. While most characters can take four position-dependent visual shapes, some

of the characters take only two different shapes. Thus, the most widely used and

common approach is to model each character shape (instead of character) as a

separate class. It has become the standard modeling choice for Arabic text

recognition. In general, this approach works well but leads to some issues. Modeling

each character shape as a class leads to almost a four-fold increase in the number

of modeling units. This huge model set typically more than 100 HMMs in an

HMM-based text recognition system in turn, requires even larger amounts of

training data so that each class has sufficient number of training samples.

Additionally, some character shapes are very infrequent and, as such, having

sufficient number of samples for each character shape adds to the difficulty of

1.3 Contributions of the thesis 9

collection and labelling (by labelling we mean transcribing) the text images for

training the recognition system. Some character shapes practically end up having

very few samples while other character shapes, at the same time, may have

hundreds or thousands of samples. Accordingly, we were interested in investigating

modelling and training options for Arabic text recognition which can work robustly

under standard training scenarios and can perform reasonably well when very little

or no handwritten training data is available. The cursive nature of Arabic script,

both in machine printed and handwritten form, and the observation that many

characters and character shapes in Arabic share common patterns between them

were the main motivating factors that lead us to investigate these properties for

better modelling and training options for Arabic text recognizers.

1.3. Contributions of the thesis

The present thesis is related to offline handwritten Arabic text recognition using

HMMs. Following are the summaries of the main contributions of the thesis:

1. Arabic sub-characters are presented as an alternative modeling option. Using

sub-character HMMs leads to a compact recognizer with a significantly reduced

model set as compared to when using the standard system using character-

shapes as models. We also present special white-space and connector models.

Moreover, contextual sub-character modeling was investigated which further

improved the text recognition performance. The sub-character HMM system

was evaluated on a benchmark handwritten Arabic text database, in addition

to a second database, and the performance was compared with the standard

system. The results were significantly better when using the sub-character

HMM system and we report state-of-the-art results on the benchmark database.

Moreover, recognition results are much better as compared to the standard

system when using limited training data. The work on sub-character HMMs

resulted in the following publications:

 Ahmad, Irfan, Leonard Rothacker, Gernot A. Fink, and Sabri A. Mahmoud.

2013. Novel Sub-Character HMM Models for Arabic Text Recognition. In

Proceedings of the 12th International Conference on Document Analysis

and Recognition (ICDAR 2013), 658 62. IEEE.

doi:10.1109/ICDAR.2013.135.

 Ahmad, Irfan, Gernot A. Fink, and Sabri A. Mahmoud. 2014.

Improvements in Sub-Character HMM Model Based Arabic Text

Recognition. In Proceedings of the 14th International Conference on

10 Introduction

Frontiers in Handwriting Recognition (ICFHR 2014), 537 42. Crete: IEEE.

doi:10.1109/ICFHR.2014.96.

2. A second modeling option was presented which was based on separating the

core shapes from the diacritics. This resulted in a multi-stage text recognition

framework where the core shapes are recognized in the first stage and, then,

the diacritics information is utilized in the second stage to generate the final

text hypothesis. This approach also led to significant reduction in the number

of models as compared to the standard system. The multi-stage HMM system

was evaluated on a benchmark database under normal training conditions the

complete training set was used to train the system and with limited training

data. Significant improvement in text recognition results is reported under all

the training conditions. This work resulted in the following publication:

 Ahmad, Irfan, and Gernot A. Fink. 2015. Multi-Stage HMM Based Arabic

Text Recognition with Rescoring. In Proceedings of the 13th International

Conference on Document Analysis and Recognition (ICDAR 2015), 751 55.

IEEE. doi:10.1109/ICDAR.2015.7333862.

3. A third modeling approach was presented which combined the idea of sub-

character HMMs and the multi-stage recognition by separating the core shapes

from the diacritics. This leads to the highest reduction in the number of

modeling units as compared to the standard system as well as the above two

modeling approaches. The presented system was evaluated on a benchmark

database under normal training conditions and with limited training data.

Significant improvement in text recognition results is reported under all the

training conditions. Moreover, contextual sub-core-shape modeling was

investigated which further improved the text recognition performance.

4. Class-based contextual modeling was presented by grouping the characters in

the left and the right context into classes such that characters in each class

have similar effects on its neighboring characters. This leads to a significantly

compact text recognizer as compared to the HMM systems that use the

standard contextual models. This work resulted in the following publication:

 Ahmad, Irfan, and Gernot A. Fink. 2016. Class-Based Contextual Modeling

for Handwritten Arabic Text Recognition. In Proceedings of the 15th

International Conference on Frontiers in Handwriting Recognition (ICFHR

2016), Shenzhen, China, 2016.

1.4 Outline of the thesis 11

5. An approach to handwritten Arabic text recognition in the absence of

handwritten training data was presented. It resulted in a framework which deals

with initializing the text recognizer on machine printed material, improving the

recognition results by performing automatic adaptation to unseen data, and

iteratively fine-tuning the trained system. Experiments on a benchmark

database showed the effectiveness of the framework. The results, although lower

than when using the handwritten training data, were very impressive. This

work resulted in the following publication:

 Ahmad, Irfan, and Gernot A. Fink. 2015. Training an Arabic Handwriting

Recognizer without a Handwritten Training Data Set. In Proceedings of the

13th International Conference on Document Analysis and Recognition

(ICDAR 2015), 476 80. IEEE. doi:10.1109/ICDAR.2015.7333807.

As a side work to this above work, we investigated machine printed Arabic text

recognition with the aim of recognizing text printed in fonts (i.e., typeface) which

was not available during training the recognition system. This work resulted in

the following publication:

 Ahmad, Irfan, Sabri A. Mahmoud, and Gernot A. Fink. 2016. Open-

Vocabulary Recognition of Machine-Printed Arabic Text Using Hidden

Markov Models. Pattern Recognition 51 (March): 97 111.

doi:10.1016/j.patcog.2015.09.011.

We would like to mention that many of the techniques developed as part of

this thesis work may work equally well for online text recognition; although, we

have not evaluated them on online text recognition tasks. Furthermore, the

techniques presented in this thesis may be applicable for some other languages,

especially the languages which use Arabic script for writing like Urdu and Persian

but we have not evaluated these techniques on those languages yet.

1.4. Outline of the thesis

We start with an introduction to HMMs and lay the basic background and

foundations for it in Chapter 2. In Chapter 3, we present an overview of Arabic

script and focus on some important aspects of the script that is related to our

research. This chapter will serve as a background and covers the domain knowledge

necessary for Arabic text recognition research. In Chapter 4, we present the related

works on handwritten Arabic text recognition research. We will focus on the

12 Introduction

literature that is related to the scope of our work with emphasis on HMM-based

Arabic text recognition. Our investigations related to the modeling options for

Arabic text recognition are presented in Chapter 5 and those related to the training

options under constrained training environments are presented in Chapter 6. The

experimentations carried out along with the results of the experiments are

presented in Chapter 7. Finally, in Chapter 8 we present the conclusions of our

work and some possible future works.

13

2 Fundamentals of Hidden Markov

Models

idden Markov models (or HMMs) are one of the most popular statistical

models for modeling sequential and temporal data. They have simple and

sound mathematical and theoretical foundations and have proven to be quite

effective in solving real-world problems like automatic speech recognition, text

recognition, and labelling biological sequences (cf. (Fink 2014)).

HMMs for speech recognition started gaining popularity in 1970s noticeably

after the foundational papers from Rabiner on HMMs and their use for speech

recognition (Rabiner and Juang 1986; Rabiner 1989). Since then, HMMs have been

extensively researched for speech recognition and many of the state-of-the-art

speech recognition systems use HMMs as their underlying technology.

In the context of text recognition, their popularity is also due to the fact that

HMMs avoid the need for explicit segmentation of text line images into smaller

recognition units like characters or strokes. Segmentation is done implicitly during

the recognition of the text lines. Moreover, given a set of observations along with

the text transcriptions, HMMs parameters can be efficiently trained using

Expectation Maximization (EM) algorithm.

In the rest of the chapter, we will present the fundamentals of HMMs focusing

on aspects related to text recognition. It should be noted that the discussions

presented here are informal in nature with the goal of laying the foundations on

HMMs. For a more detailed understanding on HMMs, its theory and applications

in pattern recognition, interested readers can refer to (Fink 2014; Young et al.

2002). For a detailed discussion on using HMMs for text recognition, readers can

refer to (Plötz and Fink 2011).

2.1. Use of HMMs for text recognition

Research on text recognition using HMMs started relatively later in 1990s (cf.

(Plötz and Fink 2009)). Although the use of HMMs was reported earlier for isolated

digits and character recognition, their real benefit in the context of text recognition

H

14 Fundamentals of Hidden Markov Models

arises when using HMMs for word and text line recognition tasks, where most of

the other classifiers need an explicit segmentation of text images into characters,

strokes, or other representation units.

With regards to text recognition using HMMs, the most common approach was

to adapt an HMM-based speech recognition system for text recognition. The one

major issue that needed to be addressed was to find an equivalent representation

of the time based speech signals being captured as observation. Thus, there was a

need to map the information from two-dimensional text images into a one-

dimensional observation sequence. This led to the development of sliding window

technique where a sliding window passes from one end of the text line to the other

and features are computed from the text line slice under the sliding window

(Caesar, Gloger, and Mandler 1993). Features from each sliding window are

sequenced as a vector.

2.2. Model Definition

HMMs describe a two-stage stochastic process. The first stage describes the state

transitions within a finite set of states. In the second stage, an observation is

generated at every time period. The observation generated depends only on the

current state and not on the previous states or observation histories. HMMs are

based on the concept of Markov models which are, essentially, stochastic models

which assume Markov property (named after the Russian scientist Andrey Markov)

i.e., the next state depends only the information related to the present state and

not on the state histories. This assumption works well for many of the real world

problems like speech recognition and text recognition, and, solutions to such

problem are tractable. In the case of HMMs, the observations are visible but the

hidden hidden Markov models.

Each HMM representing a recognition unit consists of a number of states

including non-emitting start state and final state. Some representations do not

explicitly define the non-emitting start and final states. Each emitting state,

generating an observation, has a number of mixture densities modelling the state

emissions for that particular state. A mixture is modelled as a probability density

function (pdf) following a particular distribution. Gaussian pdfs are the most

commonly used ones. In this case, the state output probability distribution

𝑏(𝑜𝑡) takes the following form:

2.3 Continuous, semi-continuous, and discrete HMMs 15

𝑏𝑗(𝑜𝑡) = ∑ 𝑐𝑗𝑚𝑁(𝑜𝑡| 𝜇𝑗𝑚 , Σ𝑗𝑚)

𝑀𝑗

𝑚=1

 (1)

where;

𝑏𝑗(𝑜𝑡) is the output probability of observation vector ot at time t for state j,

𝑀𝑗 is the total number of mixtures in state j,

𝑐𝑗𝑚 is the weight of the mth mixture component of state j, and

𝑁(𝑜| 𝜇, Σ) is the multivariate Gaussian with mean vector 𝜇 and covariance

matrix Σ and is given by:

 𝑁(𝑜|𝜇, Σ) =
1

√(2𝜋)𝑛|Σ|
 𝑒−

1
2
(𝑜−𝜇)′Σ−1(𝑜−𝜇) (2)

where;

n is the dimension of the feature vector.

Thus a hidden Markov model M, is defined by:

 A number of states,

 State-transition probabilities including the start probabilities, and

 Output probability distribution for each state which is dependent on

mixture densities and mixture weights.

An HMM-based text recognition system consists of a number of HMMs. Each

HMM represents a recognition unit. In case of text recognition, the recognition

units can be characters, position-dependent character shapes (e.g., for Arabic

script), strokes, or other suitable representations. It is important to note that,

although these elementary recognition units need to be decided as part of setting

up the recognition system, the text images need not be segmented explicitly to

train the HMMs representing these recognition units. Only the transcriptions of

text at the line level along with the features (computed from the corresponding

text line images) are needed to train the HMM models.

2.3. Continuous, semi-continuous, and discrete HMMs

The most straightforward and common setup is for each state to have its own set

of mixture densities modelling the state emissions. This setup is termed as

continuous HMMs. In a simple scenario, a state may only have a single mixture

modelling the emissions. But, using a single-mixture state is normally not sufficient

in text recognition problems. As such, the state emissions are commonly modelled

using multiple mixture components. Figure 2.1 illustrates a single-mixture per state

HMM and a multiple-mixtures per state HMM.

16 Fundamentals of Hidden Markov Models

Figure 2.1: (a) A single mixture per state HMM and (b) A multiple (three) mixture components per

state HMM; cjm denotes the mixture weight for the mth mixture of the jth state.

One practical problem which is sometimes faced when using continuous HMMs

is the lack of enough training data. As each state has multiple mixtures and there

are many states in an HMM and then there are typically dozens of HMMs in a text

recognition system, one ends up having hundreds or even thousands of mixtures

that need to be trained using the limited training data. Training each mixture

entails estimating its parameters which in the case of Gaussian pdfs are the mean

and the variance of the individual mixtures along with the mixture weights. These

parameters are in addition to the other parameters of an HMM system such as the

state transition probabilities. Thus the need to robustly estimate a huge parameter

set for the text recognition system.

One way to mitigate this problem is to involve some level of parameter sharing.

Mixture tying is one example of parameter sharing. In mixture tying, mixture

components are shared between more than one states. An extreme example is when

all the mixtures from all the states of all the HMMs are shared as a global pool.

This setup is commonly referred to as semi-continuous HMMs (cf., e.g., (Fink

2014)) or fully tied-mixture system (cf., e.g., (Young et al. 2002)).

There is a third kind of HMMs system referred to as discrete HMMs system. In

discrete HMM systems, the pdfs representing the continuous valued observations

are replaced by discrete symbols. In addition, the mixture weights in a state are

now replaced by probabilities for observing the discrete symbols in that particular

state. Discrete HMM systems are natural choice when modelling data which are

essentially symbolic like DNA sequences (cf. (Fink 2014; Young et al. 2002)).

2.4 Model decoding and text recognition 17

Although discrete HMM systems have been used in text recognition tasks (e.g.,

(Awaida and Khorsheed 2012; Khorsheed 2007; Dehghan et al. 2001)), their use is

fairly limited and the benefits of using a discrete system over a continuous or semi-

continuous systems are not well established. When using discrete system for text

recognition, the feature vectors computed from the image should be symbolic or

they need to be converted into a symbolic representation by quantizing them using

vector quantization techniques which essentially utilize clustering algorithms. In

this thesis, our focus will be on continuous HMM systems. Other types of systems

will be discussed explicitly only when needed.

2.4. Model decoding and text recognition

Decoding in the context of HMM-based text recognition refers to transcribing a

text image. Given a set of trained HMMs representing the recognition units like

characters (it should be noted that word models can be created by simply

concatenating the character models) and set of observation vectors representing a

test image, the recognition problem is to find the symbol sequence (characters or

words) that maximizes the generation probability for the observation sequence

computed from the text image. Thus, the recognition problem can be written as:

 argmax
𝑤

{𝑃(𝑤|𝑂)} (3)

where;

w is the symbol sequence (characters or words for example), and

O is the observation sequence from the text image.

:

𝑃(𝑤|𝑂) =

𝑃(𝑂|𝑤)𝑃(𝑤)

𝑃(𝑂)
 (4)

where P(w) represents the prior probabilities for the symbol sequence w. It is

also commonly termed as language model probabilities (represented typically by

statistical n-grams). Thus, the most probable symbol sequence given the priors

depends on 𝑃(𝑂|𝑤).

The likelihood of a model M (a composite model M representing a symbol

sequence w) generating a given observation sequence is calculated by finding the

most likely state sequence (instead of the total probability obtained by summing

the probabilities through all the possible state sequences) for the observation

18 Fundamentals of Hidden Markov Models

sequence. The likelihood of a model M generating the observation O is, thus, given

by:

 𝑃∗(O|M) = P(O, 𝑠∗|𝑀) = max
𝑠
𝑃(𝑂, 𝑠|𝑀) (5)

𝑃∗(O|M) = max

𝑥
{𝑎𝑥(0)𝑥(1)∏𝑏𝑥(𝑡)(𝑜𝑡)𝑎𝑥(𝑡)𝑥(𝑡+1)

𝑇

𝑡=1

} (6)

where;

𝑃∗(O|M) is the optimal probability of observing observation sequence O = {𝑜1,

𝑜2 𝑜𝑇} given the model M. 𝑜𝑡 is the observation vector at time interval t,

𝑎𝑥(0)𝑥(1) is the start probability from the entry state 𝑥(0) to the first state 𝑥(1),

𝑏𝑥(𝑡)(𝑜𝑡) is the probability of generating observation vector 𝑜𝑡 by state x at

time t, and

𝑎𝑥(𝑡)𝑥(𝑡+1) is the state transition probability from state 𝑥(𝑡) 𝑡𝑜 𝑥(𝑡 + 1)

An efficient recursion based algorithm Viterbi algorithm exists that utilizes

the Markov property to compute Equation 6. For more details on this, readers can

refer to (Fink 2014).

2.5. Model training

Training an HMM estimating its parameters optimally is commonly performed

using Baum-Welch algorithm (cf. (Young et al. 2002; Fink 2014)). Baum-Welch is

an expectation maximization (EM) algorithm. It uses the total output probability

as the optimization criteria instead of the probability over the optimal path as used

in Viterbi algorithm.

During training, we essentially have the transcription of the text images and

the corresponding features extracted from the text image. By employing the Baum-

Welch training algorithm, means, covariances, mixture weights, and the state

transition probabilities are updated after each iteration of the algorithm. A number

of iterations of the algorithm is performed to robustly train the parameters. After

each iteration, the generation probability of the training data from the model

improves over the previous iteration i.e.:

 𝑃(𝑂|�̂�) ≥ 𝑃(𝑂|𝑀) (7)

where;

�̂� is the updated HMM after an iteration of Baum-Welch training.

2.6 Deciding the model architecture and initializing the HMMs 19

 The total number of iterations of the Baum-Welch training algorithm are

either fixed beforehand or the training is terminated when the improvement

converges i.e.:

 𝑃(𝑂|�̂�) − 𝑃(𝑂|𝑀) ≤ 𝜀 (8)

The threshold 𝜀 is set manually. Too few iterations may lead to inadequate

training and on the other hand, too many iterations risks the possibility of over-

fitting the training data. In such cases, the performance of the recognizer may not

be good enough on the test data. For the actual algorithms and the accompanying

equations for the Viterbi algorithm and the Baum-Welch training, interested

readers can refer to (Fink 2014).

2.6. Deciding the model architecture and initializing the HMMs

When initializing the system, one needs to first decide the architecture of the

system including the HMM topology, the number of states, and the number of

mixtures per state. Two states are connected if the transition probability between

them is non-zero. There are many connection topologies possible but the two most

commonly used ones for text recognition are the linear and the Bakis topologies.

Figure 2.2 illustrates the two common topologies used for text recognition. In the

linear topology, the transitions moves from start state to the end state where each

state on the path can transit only to the next state or to itself. In Bakis topology,

a state on the path can transit to itself, or to the next state, or to the state after

the next state thereby skipping the next state.

Figure 2.2: Two common HMM topologies used in text recognition; (a) A left-to-right linear

topology and (b) A left-to-Right Bakis topology. aij denotes the state-transition probability from

state i to state j.

20 Fundamentals of Hidden Markov Models

It is important to note here that many aspects and parameters of an HMM like

the model topology, the number of states in an HMM, and the number of mixtures

in a state need to be set manually and, generally speaking, there are no algorithms

to optimally configure those aspects of the recognition system. One practical way

of doing this is by trying various setups (utilizing the domain and expert

knowledge) and selecting the setup that gives the best performance on a validation

set which is kept separate from the training set. Some heuristic-based techniques

have been proposed to optimize these parameters (e.g., (Zimmermann and Bunke

2002; Z. Jiang et al. 2015)).

After deciding the system architecture and before the training step, one has to

decide the initial values for the parameters of the system. As mentioned before,

word and character segmentation information is not needed when training the

HMMs. Nevertheless, more robust initialization can be performed if the boundary

information is available as compared to initializing the models when no boundary

information is available. The latter case is normally termed as uniform initialization

or flat start. More sophisticated techniques employ a two-stage approach where,

training based on uniform initialization is used to annotate the boundary

information in the first stage by aligning the image with the transcription and

annotating the segmentation information for the elementary units (like character).

This annotation information is, in-turn, used in the next stage to perform alignment

based initialization of individual HMMs.

When using the uniform initialization method, the values for the mean vectors

and covariances for all the mixtures of all the states are normally set to the global

(i.e., from training feature sets) means and covariances. When doing initialization

using the alignment information, Viterbi based model initialization strategies may

be used (cf. (Young et al. 2002)). For each model, given the model specific training

data (based on boundary information), the most likely state sequence for

corresponding training sequence is found using the Viterbi algorithm. Training

vectors are associated to the states and then to the mixtures having the highest

likelihood of generating that observation vector. Once the training vectors have

been assigned to the mixtures within the states, calculating the mean and variances

for the state mixtures is relatively straightforward. The information on the number

of training vectors associated with a mixture is also used to calculate the mixture

weight. In the first iteration, the training utterances are uniformly distributed

between the states and a clustering algorithm (like k-means) is used to cluster the

training vectors within a state to a desired number of mixtures. State transition

2.7 Other aspects of HMMs related to text recognition 21

probabilities are updated based on the state occupancy information. A number of

iterations of the algorithm is performed to robustly initialize the individual models.

Either a predefined number of iterations of the algorithm is executed or if the model

converges. For formal details on the algorithm, the readers can refer to (Young et

al. 2002).

2.7. Other aspects of HMMs related to text recognition

In this section, we will present some other aspects of HMMs like contextual HMMs,

HMM adaptation, and multi-stream HMMs focusing mainly on its application on

text recognition.

2.7.1. Modeling the contextual variations

In speech recognition, each phone is typically represented by an HMM and the

HMM is termed as monophone (or monomodel in general). A phone may have

different pronunciations due to its neighboring phones, i.e., its context. Thus, it is

important to somehow capture these contextual variations in order to have a robust

speech recognition system. HMMs provide a mechanism to model these contextual

variations using the concept of contextual HMMs. The various contextual forms of

a phone which is defined by a phone and its neighboring phones can be modelled

as separate HMMs. Normally, only the next and the previous neighboring phones

of a given phone are considered to define its contexts. These contextual forms are

thus termed as triphones (or trimodels in general) and the term is mostly used

interchangeably with contextual HMMs. Although contextual HMMs have been

used successfully in speech recognition and significant improvements in recognition

results have been reported (e.g., (Young and Woodland 1994; Kosmala, Rottland,

and Rigoll 1997)), its use in text recognition has not been extensively reported and

the benefits of using them over the monomodel HMMs have not been clearly

established (Fink and Plötz 2007; Prasad et al. 2008).

To setup contextual HMMs, first the monomodels are initialized and trained

and all the different trimodel forms are generated using the training transcriptions.

The trimodels for a given monomodel are then created by replicating the

monomodel. This is followed by a few iterations of training using the contextual

HMMs instead of the monomodels. Using contextual modeling exponentially

increases the number of HMMs in the recognition system and this can lead to

inadequate training for each of the contextual form. This concern is addressed by

performing some form of parameter sharing between the contextual models. The

22 Fundamentals of Hidden Markov Models

most common approach is to perform state tying of the different contextual forms

of the corresponding non-contextual HMM.

There are two main approaches for state tying, i.e., the bottom-up data driven

approach and the top-down decision tree based approach. In the data driven

approach, the corresponding states of the contextual forms are tied if the inter-

state distance is within a threshold. Appropriate distance measure is selected and

the threshold value for state clustering is normally set empirically. For the decision

tree based clustering approach, the corresponding states of all the contextual forms

are initially pooled together and are then successively split based on questions

(defined by the experts), each splitting the group into two next level nodes until

all the questions have been used or the increase in likelihood is below a threshold.

All the states in a resulting leaf node is clustered together.

During recognition, contextual HMMs are used instead of the monomodels while

building the recognition network.

2.7.2. Adapting the system for robust recognition

No matter how well a recognition system was trained on the available training

data, its performance on the test data is always going to be challenged. The

challenges could be due to many reasons like unseen writers, different writing styles,

and different environments under which the data was collected. Thus, a recognition

system needs to adapt to these unseen settings in order to perform robustly. HMMs

provide some adaptation techniques to deal with such situations.

HMM adaptation has been successfully employed in speech recognition tasks

where a general purpose recognizer is adapted for speaker specific recognition tasks

(e.g., (Gales and Woodland 1996; Leggetter and Woodland 1995)). Training a

speaker specific recognizer from the scratch may not be feasible as large amounts

of speaker specific training data may be needed. Thus, a small amount of speaker

specific data is used to adapt the model parameters of a general purpose speech

recognizer. If labelled data for the specific speaker is available then supervised

adaptation can be performed. However, if no such data is available then

unsupervised adaptation can be performed during the recognition step which

essentially uses the recognition hypothesis as labelled data to be used for adaptation

in later recognition (Gales and Woodland 1996). In the domain of text recognition,

HMM adaptation techniques have been employed at various tasks such as for

adapting handwritten text recognizer for a new writers (Saleem et al. 2009) and to

2.7 Other aspects of HMMs related to text recognition 23

adapt a printed text recognizer to a specific font (Ait-Mohand, Paquet, and Ragot

2014).

The task of adaptation to fine-tune the trained model parameters 𝛳 such that

the adapted parameters 𝛳∗ maximizes the likelihood of adaptation data O.

𝛳∗ = arg max
𝜃

𝑝(𝜃|𝑂)

Mixture means and variances are the parameters which are generally adapted.

One of the most common techniques employed for parameter adaptation is the

Maximum Likelihood Linear Regression (MLLR). It estimates the linear

transformations for means and variances and adjusts them accordingly to better fit

the new data, i.e., the adaptation data. The transformations are linked across

multiple Gaussians so as to robustly estimate them in the presence of limited

adaptation data. A group of Gaussians that share the same transform is termed as

regression class. Readers can refer to (Leggetter and Woodland 1995; Gales and

Woodland 1996) for more details on MLLR based HMM adaptation.

2.7.3. Multi-stream HMMs

It is possible in HMMs to treat the input observation vector as comprising of

multiple independent data streams. So, instead of modelling the complete vector as

one stream, it can be split into two or more streams. Training the feature vectors

as multiple streams, will create separate mixture components for each stream.

Figure 2.3 illustrates an HMM with the input observation sequence split into two

independent streams. Multi-stream HMMs are commonly used to separate features

from two different sources (audio and visual) into two separate streams in audio-

visual automatic speech recognition (e.g., (Luettin, Potamianos, and Neti 2001;

Manabe and Zhang 2004)). In text recognition, multi-stream HMMs have been used

to model different features, computed from the text images, as independent streams

(e.g., (Kessentini, Paquet, and Ben Hamadou 2010)).

The assumption made is that the data streams are independent and hence the

likelihood from mixture components of the individual streams are multiplied to get

the overall likelihood for generating an observation from a state. Thus, the state

output probability distribution is given by (Young et al. 2002):

𝑏𝑗(𝑜𝑡) = ∏[∑ 𝑐𝑗𝑠𝑚𝑁(𝑜𝑠𝑡| 𝜇𝑗𝑠𝑚, Σ𝑗𝑠𝑚)

𝑀𝑠

𝑚=1

]

𝛾𝑠𝑆

𝑠=1

 (9)

where;

S is the total number of streams, and

24 Fundamentals of Hidden Markov Models

𝛾𝑠 is the stream weight.

The other elements in the equation are similar to the corresponding elements

in Equation (1) with the addition of the stream aspect.

Different streams can have different weights so as to give different emphasis to

each of the streams. A common approach is to try different weights and select the

weights which gives the best recognition results on the validation set.

2.8. Summary

To summarize, HMMs are generative classifiers for statistical modeling of,

generally, sequential data. Efficient algorithms like Baum-Welch algorithm and

Viterbi algorithm are available for robustly training the classifier and for

recognition respectively. HMMs are very successful and widely used classifiers for

applications like speech recognition and text recognition. Techniques like

contextual HMMs, multi-stream HMMs, and HMM adaptations, when used under

suitable scenarios, can further enhance the performance of HMM-based text

recognizers. As explicit segmentation of text line images into smaller units like

characters or strokes is not needed when using HMM-based text recognition

systems, its use for Arabic text recognition is quite popular. Details on the Arabic

script in the context of text recognition is presented in the next chapter.

Figure 2.3: An illustration of multi-stream HMMs. The original feature vector split into two

streams. cjsm denotes weight for the mth mixture component of sth stream of jth state.

25

3 Overview of Arabic Script

rabic is one of the Semitic languages and is the fourth most widely spoken

language in the world (cf. (Lewis, Simons, and Fennig (eds.), n.d.; UNESCO

2015)) and the third most widely used writing system in the world. It is spoken by

more than 400 million people worldwide including more than 200 million people

who speak Arabic as their first language (Lewis, Simons, and Fennig (eds.), n.d.;

UNESCO 2015). It is the official language of 22 countries worldwide (UNESCO

2015). Arabic script is also used by many other languages like Urdu, Persian, and

Uyghur.

In this chapter we will present an overview of the Arabic script. We will mainly

discuss the Arabic writing system without discussing the linguistic aspects of the

Arabic language like its grammar and pronunciation as they are not directly related

to the topic of the present thesis. For more details on the Arabic language and

script, interested readers can refer to (Lewis, Simons, and Fennig (eds.), n.d.).

3.1. Characters and diacritics

Arabic script is cursive both in machine printed and handwritten forms. Arabic

alphabets are Abjads the letters represent the consonants. Arabic is written from

right to left and has 28 basic characters. The characters do not have different

upper-case and lower-case forms. Figure 3.1 shows the characters in the Arabic

script.

Figure 3.1: Characters in the Arabic script1.

1 Roman transliteration for the names of Arabic characters are presented in Figure 3.5.

A

26 Overview of Arabic Script

A character has a core shape (known as Rasm) and may have dots (known as

) either above (like ن ت) or below (like ي ب) the core shapes. Many of the

characters share the same core shape and differ only in the number and position of

dots. There are eight characters (خ ذ ز ض ظ غ ف ن) having one dot above, two

characters (ت ق) having two dots above, two characters (ث ش) having three dots

above, two characters (ب ج) having one dot below, one character (ي) having two

dots below, and the remaining 13 characters (ا ح د ر س ص ط ع كـ ل م ه و) have no

dots either above or below the core shapes. There are no characters that have three

dots below them.

The characters are normally connected using a horizontal stroke called Kashida.

Figure 3.2 shows sample machine printed and handwritten texts in Arabic. It can

be observed from the figure that both the handwritten as well as the machine

printed texts are cursive and connected.

Apart from the dots, characters can have other diacritics like Shadda (ّ),

Hamza (ء), and Sukun (ّ). Short vowels are also written as diacritics. There are

three short vowels (ّ ّ ّ) in Arabic. The diacritics, apart from the dots are for

the phonetic guidance. In handwritten texts, and to a larger extent even in the

machine printed texts, most of the diacritics (apart from the mandatory dots and

Hamza) are not written but can be deduced by the readers from the context. An

exception to this is when writing sacred texts, legal documents, and texts written

for the purpose of teaching Arabic. Figure 3.3 shows example Arabic text, with and

without the optional diacritics. As an extreme example, some historical manuscripts

contain Arabic texts even with the absence of dots. Figure 3.4 shows an example

of such a historical manuscript page having Arabic texts (from the Holy Quran)

without the dots.

Figure 3.2: Sample handwritten (above) and machine printed (below) Arabic texts.

3.2 Position dependent character shapes, words, and PAWs 27

Figure 3.3: Sample texts in Arabic, with (above) and without (below) the optional diacritics2.

Figure 3.4: Example page from a historical manuscript showing Arabic texts (from the Holy Quran)

without the presence of dots and diacritics (Image source: (Abulhab 2009)).

3.2. Position dependent character shapes, words, and PAWs

Characters in the Arabic script can take different visual appearances based on their

position in a word. As the Arabic script is cursive, a character in a word is

connected to its adjacent characters. 22 of the 28 characters can take up to four

different position dependent shapes, i.e., beginning when the character is

connected to a character after it but is not connected to any character before it

(like the first character in a word), middle when the character is connected both

before and after it to its adjacent characters, ending when the character is

connected to a character before it but is not connected to a character after it (like

the last character in a word), and alone (also termed as isolated) when there are

no characters connected to it. The remaining six characters can only take two of

the four position dependent shapes, i.e., ending and alone. Figure 3.5 shows the

Arabic characters along with their position dependent shapes.

2 Transliteration and translation of the Arabic words appearing in the figures in this chapter

are presented in Appendix A.

28 Overview of Arabic Script

Those six characters which take only two position dependent shapes basically

do not allow the characters after them to connect to them and hence they do not

have the beginning and the middle shapes. If they come in the beginning they take

the alone shapes and if they come in the middle they take the ending shapes.

Figure 3.6 shows some illustrative examples using the Arabic characters (س)

and (د) as examples of characters taking four and two shapes respectively.

Figure 3.5: Names of Arabic characters3 and their position dependent shapes. An empty cell

indicates that the character does not take that particular position.

3 There is no single standard for the transliteration of Arabic character names. We have

selected a commonly used representation which seems similar to the one published/endorsed

by the American Library Association (ALA) and the Library of Congress (LC).

3.3 Numerals 29

Due to the fact that some of the characters do not allow characters to connect

after them, a word in Arabic may be split into multiple components. Each of the

split component of a word is called Part of Arabic Word (PAW). Figure 3.7 shows

some example words in Arabic having different numbers of PAWs.

3.3. Numerals

Writers in Arabic use two different types of numerals, i.e., the commonly used

Arabic numerals also know an Indo-Arabic numerals as well as Eastern-Arabic

numerals. It is important to note that the numbers in Arabic are read from left to

right. In machine printed text, numbers are commonly written using the Indo-

Arabic numerals. People in Middle-East and Gulf region normally prefer using

Eastern-Arabic numerals for handwriting whereas people in North-West Africa

commonly use the Indo-Arabic numerals. Figure 3.8 shows the ten digits in both

the numeral system.

Figure 3.6: An illustration, with example words, of characters taking different position dependent

shapes; (a) Character (س) can take four position dependent shapes, (b) Character (د) takes

only two position dependent shapes (figure adapted from (Ahmad et al. 2013)).

Figure 3.7: Sample words in Arabic with different numbers of PAWs. (Handwritten text images

source: IFN/ENIT (Pechwitz et al. 2002)).

30 Overview of Arabic Script

Figure 3.8: The two numeral systems used in Arabic; the Indo-Arabic system (top) and the Eastern-

Arabic system (bottom).

3.4. Ligatures

An important aspect of the Arabic writing system is the presence of special

ligatures. Some character sequences can be written in special compact forms instead

of simply connecting them using the horizontal Kashidas. Ligatures, when written,

take visual appearances which are substantially different from mere concatenation

of the constituent characters. The character sequence -alif is a mandatory

ligature, i.e., when writing followed by alif it is always written in the ligature

form (لا) instead of the non-ligature form (say لـا). Not all character sequences form

ligatures but some character sequences like - ʼ(-and ʼ (ـلح ـبج)) are

usually written as ligatures.

It is important to note that, as mentioned, only -alif is a compulsory

ligature. Other ligatures are not compulsory and so some writers may write them

in ligature forms whereas other writers may write the same character sequences in

the non-ligature forms even in similar contexts. In fact, it is also possible that a

writer writes a character sequence as a ligature in one instance whereas he/she

writes it in a non-ligature form in other instances. Figure 3.9 illustrates some

character sequences, their ligature forms, and their non-ligature forms (except -

alif) both in the machine printed and the handwritten texts. Elarian et al. (Elarian

et al. 2015a) presented a good analysis on Arabic ligatures and their importance in

text recognition.

3.5 Challenges in Arabic handwritten text recognition 31

Figure 3.9: Example character sequences, their ligature and non-ligature forms with examples from

machine printed and handwritten texts. (Handwritten text images source: IFN/ENIT (Pechwitz et

al. 2002)).

3.5. Challenges in Arabic handwritten text recognition

Handwritten Arabic text recognition faces a number of challenges and it is an open

research problem. Some of the problems faced by handwritten Arabic text

recognition are similar to that faced by other scripts, like handwriting variability

due to different writers and even for a single writer, problems related to text skews

and slants, and problems related to touching and overlapping texts. However, as

the Arabic script has its own characteristics, handwritten Arabic text recognition

faces some unique issues that need to be addressed appropriately. In the remaining

part of this section, we will present the major challenges in handwritten Arabic

text recognition related to the characteristics of the Arabic script.

Position dependent shapes: One of the major issues related to Arabic text

recognition is the fact that Arabic characters can take different shapes based on

their position in a word. Although there are only 28 different characters in the

Arabic script, position based variations lead to almost 100 different character

shapes. For some characters, the variations between their various position

dependent shapes are not very large, whereas for other characters, the intra-

character variations in appearances are quite large as shown in Figure 3.10. In fact

some of the character shapes of a character may look much different than other

character shapes of the same character while, at the same time, may look much

similar to the character shapes of some other characters as illustrated in

Figure 3.11.

32 Overview of Arabic Script

Figure 3.10: Different position dependent character shapes of the character ʻayn (ع). We can

observe that the character shapes are visually quite different from each other. (Handwritten text

image source: IFN/ENIT (Pechwitz et al. 2002)).

(a) (b)

Figure 3.11: Examples illustrating the visual similarities between different characters shapes. (a):

The four different character shapes for the character ʼ(ف). (b): Encircled character shapes that

visually look similar to ʼ but are not ʼ. Note: The character shapes encircled in a specific color

belong to one Arabic character. (Handwritten text images source: IFN/ENIT (Pechwitz et al.

2002)).

Dots and other diacritics: Another major issue related to handwritten Arabic

text recognition is related to the dots and other diacritics present in Arabic texts.

As mentioned before, some characters in the Arabic script have dots either above

or below them. Moreover, there are up to a maximum of three dots that some of

the characters have. Writers do write these dots in a number of different ways.

Some writers write these dots clearly, as is the case with the machine printed texts.

But sometimes, writers misplace the dots such that the dots do not come directly

above or below the character they were meant for. Sometimes writers join two dots

together as a single stroke. Some writers also write three dots either as a single

stroke or as a dot over a stroke. Another less frequent variation of writing dots is

to write them as small circles. Additionally, sometimes the dots can be missing or

riters do not write other diacritics but

sometimes they may do so, especially the diacritic Shadda. In handwritten texts,

these diacritics can be easily confused with dots. Moreover, diacritics like Shadda,

if present over a character, can be viewed as another writing variation for that

3.6 Summary 33

particular character shape. Figure 3.12 illustrates the problems related to dots and

diacritics in handwritten Arabic texts.

Presence of special ligatures: Another prominent issue related to handwritten

Arabic text recognition is the presence of ligatures. -alif ligatures need to be

given special attention and in most cases they need to be treated as special

characters instead of treating them as two separate characters (i.e., and alif).

Additionally, other optional ligatures when present in handwritten texts ideally

need special attention, too. But due to the fact that these character sequences are

not always written in ligature form (please refer to Figure 3.9), it is difficult to

treat these character sequences in a consistent manner. Even if the optional

ligatures are treated as special characters, the problem arises that we may

potentially end up with a huge number of special characters that need to be handled

appropriately for text recognition tasks.

Irregular white-spaces and the usage of two different numerals: Handling

white-spaces in handwritten Arabic texts is also not a trivial task. Because of the

concept of PAWs in Arabic, white-spaces not only appear between words in Arabic

texts but also within words (please refer to Figure 3.7). Last but not the least, due

to the fact that both the Indo-Arabic as well as Eastern-Arabic numerals are used

in the Arabic writing system, attention needs to be paid on the types of numerals

used by the writers when recognizing handwritten Arabic text. If it is not possible

to predict the numerals that will be used by writers, or if there are possibilities that

both the numerals may be used, then this situation needs to be appropriately

addressed in order to recognize the digits robustly.

3.6. Summary

Arabic is a Semitic language and is a widely used language in the world. Some

other languages also use the Arabic script as their writing system. Arabic script is

cursive both in machine printed and handwritten forms. Arabic characters can have

different position dependent shapes. Many characters have dots either above or

below the core shapes. There are other diacritics that may be present above or

below the characters. Some characters do not connect to other characters in a word

leading to some words being segmented into parts which are commonly known as

PAWs. The Arabic writing system has special ligatures to represent certain

character sequences. Some of the unique aspects of the Arabic script pose unique

challenges when recognizing handwritten Arabic texts. How those challenges are

addressed by the researchers are presented in the next chapter.

34 Overview of Arabic Script

Figure 3.12: Example illustrations of problems related to dots and diacritics in the context of

handwritten Arabic text recognition. (Handwritten text images source: IFN/ENIT (Pechwitz et al.

2002)).

35

4 Related Work

lthough research in optical character recognition (OCR) began in 1940s with

commercial OCRs appearing in 1950s (cf. (Mantas 1986)), one of the earliest

studies on Arabic text recognition was conducted in 1970s (cf. (Al-Badr and

Mahmoud 1995)). Earliest work on handwritten Arabic cursive text recognition,

where an image contains a word or a sentence in Arabic with connected characters,

can be dated back to , e.g., (Almuallim and Yamaguchi 1987)). For

an overview of the early developments in the field of machine printed and

handwritten Arabic text recognition, readers can refer to the work of Al-Badr and

Mahmoud (1995).

In this chapter, we will present the literature review on offline handwritten

Arabic text recognition research with special focus on HMM-based techniques. We,

first, start with a brief overview of the historical developments in handwritten

Arabic text recognition. This is followed by a detailed discussion on HMM-based

techniques. Other statistical-sequence classifiers particularly those which are based

on deep neural networks will be presented towards the end of this chapter. Finally,

we will summarize the representative works done in the field of handwritten Arabic

text recognition grouped by the nature of the text recognition task. We would like

to mention that many of the techniques and approaches presented in the literature

may not, necessarily, be novel in the sense that similar techniques might have

already been investigated for text recognition of other scripts or in other related

research areas like speech recognition.

We will not be discussing the document analysis and preprocessing techniques

which are concerned with extracting the Arabic text lines from document images

as they are not the focus of our present thesis. Preprocessing techniques related to

feature extraction will only be briefly discussed for the sake of completion.

Interested readers can refer to (Lorigo and Govindaraju 2006; Parvez and

Mahmoud 2013b; Khorsheed 2002) for published surveys on offline handwritten

Arabic text recognition.

A

36 Related Work

4.1. A brief overview of the historical developments

Some of the earliest works on handwritten Arabic character and word recognition

were in the online domain (cf. (Al-Badr and Mahmoud 1995; Amin, Al-Sadoun,

and Fischer 1996)). Online text recognition is, relatively, an easier problem as

compared to offline text recognition because the temporal information of the pen

strokes is available. Offline handwritten Arabic text recognition started in the late

1980s and early 1990s (cf., e.g., (El-Desouky et al. 1991; Almuallim and Yamaguchi

1987; Goraine, Usher, and Al-Emami 1992)). Most of the earlier systems were based

on the syntactic/structural pattern recognition techniques pioneered by Murray

Eden (cf. (Mantas 1986)). In the case of word images, they were explicitly

segmented and then recognized (e.g., (Almuallim and Yamaguchi 1987; Goraine,

Usher, and Al-Emami 1992)). This normally involved thinning of the word images.

Al-Badr and Haralick (1998) presented an interesting work on printed Arabic text

recognition in 1998 that does not perform explicit segmentation of words in text

images but tries to perform recognition and segmentation in an overlapping

manner. In this sense, it is somewhat similar to the HMM-based approaches. The

system was based on detecting a set of pre-defined shape primitives in a word image

(using morphological erosion using the shape primitives as structuring element). A

word is defined by the spatial arrangements of the shape primitives. To recognize

a word, the system involves a search that tries to maximize the posterior probability

of the arrangement of the shape primitives.

One of the earliest works on offline handwritten Arabic text recognition was

from Almuallim and Yamaguchi in 1987 (1987). They performed handwritten word

recognition on word images written by two different writers. The images were

captured using a video camera. The word images were initially preprocessed which

involved thinning and then segmented into strokes. An algorithm was presented to

segment the text into strokes. The strokes were grouped and features (stroke-group

specific) were extracted from these strokes to classify these strokes using rule-based

pattern matching. Further, the strokes were combined to form characters, again,

using a set of rules. The system parameters were manually adjusted using training

samples of 200 words written by two persons. Evaluation was performed on 400

words. Problems related to segmentation were mentioned as the major issues

leading to miss-classification.

4.1 A brief overview of the historical developments 37

In 1992, Goraine et al. (Goraine, Usher, and Al-Emami 1992) presented a word

recognition task that, too, involved thinning and segmentation of word images into

strokes. The strokes were represented by direction codes and were classified into 11

primitives. The strokes were, later, combined into characters using rules. These

rules were based on information related to the strokes like their type and position

and also using the information from dots and other diacritics. A dictionary was

used as a lookup for words to correct the miss-classified characters. Evaluation

results were reported on a small dataset of 180 words written by three writers.

Authors in (Farah, Souici-Meslati, and Sellami 2006) presented holistic Arabic

word recognition using artificial neural networks (ANNs), k-nearest neighbors (k-

NNs), and fuzzy k-NN classifiers. A lexicon size of 48 words from Arabic literal

amounts were used. Structural features like number and position of dots, ascenders,

descenders, loops, and the number of sub-words were extracted from pre-processed

images. Classifier combination was performed by summing the normalized scores

for the top three classes from each of the three classifiers. Finally, post-processing

based on syntax analysis, using Arabic lexicon for bank literal amounts, was

performed to further improve the results.

Parvez and Mahmoud (2013a) presented a structural classifier for handwritten

Arabic text recognition. The main idea was to represent the characters with fuzzy

polygonal approximation. The fuzzy logic approach (also used in other syntactic

approaches to text recognition like (Abuhaiba, Holt, and Datta 1998)) was taken

to account for writer variability. The text line images were first segmented into

PAWs. Later the PAWs were segmented into characters. During recognition, the

input segment was matched (fuzzy polygon matching) with the representative

character sample from each character class using nearest neighbor classifiers. For

lexicon based word recognition, a lexicon reduction step was employed prior to

word matching. The lexicon reducer utilizes the information on the number and

positions of dots.

Database and competitions for text recognition: The availability of a

database of annotated text images is paramount to the development and

improvement of methods and techniques for text recognition which ultimately leads

to the improvement of the state-of-the-art. Handwritten Arabic text recognition is

no different. Perhaps, the first most influential and effective database for

handwritten Arabic text recognition which was made freely available to the

research community is the IFN/ENIT database (Pechwitz et al. 2002). The

IFN/ENIT database has played an important role in enabling the research

38 Related Work

community to come up with new ideas and better methods for handwritten text

recognition and test them on this database. It has long served as a benchmark

database for Arabic text recognition research. Moreover, it has gained special

interest from the research community partly due to the fact that regular

competitions were held using the database and the results were presented in the

top conferences related to the field like ICDAR and ICFHR (e.g., (Märgner,

Pechwitz, and Abed 2005; Märgner and Abed 2007; El Abed and Märgner 2010a;

Märgner and Abed 2010; Märgner and Abed 2011)). KHATT database of

handwritten Arabic text is another freely available handwritten Arabic text

database (Mahmoud et al. 2012; Mahmoud et al. 2014). It consists of text

paragraphs written by 1000 different writers. The database is divided into disjoint

training, development, and test sets and contains text lines with unrestricted

writing style. The database is more challenging than the IFN/ENIT database but,

as of now, no text recognition competition using the database has been reported.

Some other databases like the CENPARMI database of Arabic bank checks (Al-

Ohali, Cheriet, and Suen 2003), the AHDB database containing words from Arabic

check lexicon (Al-Maadeed, Elliman, and Higgins 2002), and the database presented

in (Kharma, Ahmed, and Ward 1999) are limited in terms of size and writers.

Moreover, they are either not free (e.g., (Al-Ohali, Cheriet, and Suen 2003)) or not

easily accessible. In recent years, competitions held under NIST-OpenHaRT

included large vocabulary text line recognition tasks using larger databases

developed under DARPA MADCAT program (Tong et al. 2014). These databases

were previously not available openly to the research community and the use and

distribution of the database and even reporting the comparative results are still

restrictive (cf. (Bluche et al. 2014; Tong et al. 2014; NIST 2016)). Maurdor

evaluation campaign is another competition held recently (Oparin, Kahn, and

Galibert 2014). It is interesting as well as challenging in the sense that the images

containing entire text blocks need to be transcribed and not the pre-segmented line

images.

4.2. HMM-based Arabic text recognition

In this section, we will present the literature review on HMM-based handwritten

Arabic text recognition. An HMM-based text recognition system works on text

images at line level, i.e., an image containing a line of text. This line of text may

be anything from a single character or digit to multiple running words. Although

HMMs can be used for isolated digit and isolated character recognition tasks (such

4.2 HMM-based Arabic text recognition 39

as those presented in (Mahmoud 2008; Awaida and Mahmoud 2009)), other

classifiers like support vector machines (SVMs), random forests, and ANNs are

more commonly used for such tasks as recognition can be performed holistically

without the need of segmentation (cf., e.g., (Mahmoud and Al-Khatib 2010)). Some

researchers have manually segmented the text image into recognition units (e.g.,

(Safabakhsh and Adibi 2005)). The motivation behind this approach was not very

clear as explicit segmentation is not needed when using HMMs.

Preprocessing: When performing text recognition using HMMs, the text images

are first pre-processed. A number of steps can be carried out during preprocessing

which aims to enhance the image before feature extraction and recognition stages.

Some of these steps are related to improving the image quality in general like noise

removal (e.g., (Benouareth, Ennaji, and Sellami 2008; Pechwitz, Märgner, and

Abed 2006; Premkumar Natarajan et al. 2012)). Other steps are related to feature

extraction techniques or to reduce variability due to multiple writers and writings

like thinning (e.g., (Benouareth, Ennaji, and Sellami 2008; Khorsheed 2003)),

baseline correction (e.g., (Pechwitz, Abed, and Märgner 2012; Pechwitz, Märgner,

and Abed 2006; Pradeep Natarajan et al. 2011)), skew and slant correction (e.g.,

(Dehghan et al. 2001; Pechwitz, Märgner, and Abed 2006; Premkumar Natarajan

et al. 2012; Kessentini, Paquet, and Ben Hamadou 2010; Chammas, Mokbel, and

Likforman-Sulem 2015)), contour smoothing (e.g., (Kessentini, Paquet, and Ben

Hamadou 2010)), stroke width normalization (e.g., (Pechwitz, Abed, and Märgner

Dehghan et al. 2001; Azeem and Ahmed 2013)), line height normalization (e.g.,

(Pechwitz, Abed, and Märgner 2012; Hamdani et al. 2014; Hamdani, Doetsch, and

Ney 2014)), character width normalization (e.g., (Pechwitz, Märgner, and Abed

), inter word and inter PAW space

normalization (e.g., (Azeem and Ahmed 2013)), and ruled line removal (e.g.,

(Saleem et al. 2009; Chammas, Mokbel, and Likforman-Sulem 2015)). Although

most of the preprocessing steps are optional (unless a particular feature extraction

technique needs that step mandatorily), performing effective preprocessing has

shown to improve the recognition results (e.g., (Pechwitz, Abed, and Märgner 2012;

Azeem and Ahmed 2013; Stahlberg and Vogel 2015; Chammas, Mokbel, and

Likforman-Sulem 2015)). Some features require that the sliding window be of

constant height for all the text images. In these situations, the image height is

normalized while keeping the aspect ratio, i.e., ,

constant (e.g., (Dreuw, Jonas, and Ney 2008)).

40 Related Work

Sliding Window: Most of the features extraction techniques are based on the

sliding window principle where a window, having the same height as the image

height and a few pixels wide, is run from one end of the image to the other along

the writing direction of the text. A number of features are extracted from the image

slice under the window and are concatenated to form a feature vector. Sliding

windows may (e.g., (Azeem and Ahmed 2013; Schambach, Rottland, and Alary

2008; Chammas, Mokbel, and Likforman-Sulem 2015)) or may not (e.g., (Abed and

Märgner 2009)) overlap with each other. Additionally, a sliding window maybe be

further subdivided into a number of vertical cells and features extracted from each

cell of a window are then concatenated to form a feature vector (e.g., (Pechwitz,

Abed, and Märgner 2012; Abed and Märgner 2009; Pechwitz, Märgner, and Abed

2006; El-Hajj, Likforman-Sulem, and Mokbel 2005; Kessentini, Paquet, and Ben

Hamadou 2010)).

Normally the sliding windows are of fixed width. However, in (Benouareth,

Ennaji, and Sellami 2008) the authors presented non-uniform width sliding window

of the Arabic text image on the horizontal axis and selecting the midpoint between

adjacent maximum/minima pairs as the . They reported

improvement in recognition results over the uniform width sliding window

approach. Al-Hajj et al. (Al-Hajj Mohamad, Mokbel, and Likforman-Sulem 2007;

Al-Hajj Mohamad, Likforman-Sulem, and Mokbel 2009) presented slanted sliding

windows for Arabic text recognition. Features were extracted from three different

sliding windows. One of the sliding windows is the normal vertical window while

the other two windows slant to the left and to the right of the vertical window

respectively. Features from each orientation of the sliding window are used to train

separate HMM systems thus leading to a total of three HMM systems. The

justification for using the slanted sliding windows was to capture the writing

inclinations which was cited as the major source of recognition errors. The slant

angles for the left slanted and the right slanted sliding windows were decided

empirically.

In (Khorsheed 2003), the author used structural features without the use of

sliding window. Also a hybrid HMMs/ANNs system with explicit grapheme

segmentation was presented in (Menasri et al. 2007) which does not use the sliding

window approach.

Features: When it comes to feature extraction, a variety of features have been

investigated by the researchers. Appropriate features need to be selected and

4.2 HMM-based Arabic text recognition 41

computed from the text images. The features should aim at minimizing the intra-

class variability and at the same time maximizing the inter-class variability.

Moreover, the features also should ideally be scale and rotation invariant (as well

as to other distortions) as much as possible. Many features reported in the literature

for handwritten Arabic text recognition are the same features (normally with little

adaptation) that have been used for other scripts as well; like image pixels ((Dreuw,

Jonas, and Ney 2008; Hamdani et al. 2014; Abed and Märgner 2009)), pixel

densities (e.g., (Abed and Märgner 2009; El-Hajj, Likforman-Sulem, and Mokbel

2005; Al-Hajj Mohamad, Likforman-Sulem, and Mokbel 2009; Azeem and Ahmed

2013; Kessentini, Paquet, and Ben Hamadou 2010)), number of black-white

transitions (e.g., (Al-Hajj Mohamad, Likforman-Sulem, and Mokbel 2009)),

gradient features (e.g., (Premkumar Natarajan et al. 2012; Azeem and Ahmed

2013)), concavity features (e.g., (Abed and Märgner 2009; El-Hajj, Likforman-

Sulem, and Mokbel 2005; Al-Hajj Mohamad, Likforman-Sulem, and Mokbel 2009;

Premkumar Natarajan et al. 2012)), chain-code directions (e.g., (Dehghan et al.

2001; Kessentini, Paquet, and Ben Hamadou 2010)), Fourier descriptors (e.g.,

(Safabakhsh and Adibi 2005)), Gabor filters (e.g., (Cao et al. 2014)), and percentile

features (e.g., (Premkumar Natarajan et al. 2012)). However, some features were

specifically designed for the Arabic script (e.g., (Azizi et al. 2010; Al-Hajj

Mohamad, Likforman-Sulem, and Mokbel 2009)). In (Azizi et al. 2010), authors

presented the use of structural features like the number and position of dots in

addition to ascenders and descenders. In (Al-Hajj Mohamad, Likforman-Sulem, and

Mokbel 2009), authors presented features related to the baseline of the Arabic text

images. Features like the distance of the center-of-gravity with respect to the

baseline, pixel densities both above and below the baseline, and number of black-

white transitions above the baseline, and baseline dependent concavity features

were extracted. In (Pradeep Natarajan et al. 2011), the authors presented baseline

dependent percentile features. Authors in (Hamdani et al. 2009; Abed and Märgner

2009), presented the use of on-line features for offline text recognition. It is based

on recovering the temporal information from offline handwritten text images. In

(Khorsheed 2003), the author presented the use of line segment lengths and their

orientation as features. The text image is first skeletonized and then, using a line

approximation algorithm, is broken down into small line segments.

It is also common, and has shown to be effective, to append derivative features

to the original feature vector (e.g., (Hamdani et al. 2014; El-Hajj, Likforman-Sulem,

and Mokbel 2005; Al-Hajj Mohamad, Likforman-Sulem, and Mokbel 2009;

42 Related Work

Premkumar Natarajan et al. 2012)). If the feature vector is too large, feature

reduction techniques like PCA (e.g., (Hamdani, Mousa, and Ney 2013; Hamdani et

al. 2014)), LDA (e.g., (Premkumar Natarajan et al. 2012; Saleem et al. 2009)), or

some other transformations (e.g., (Pechwitz, Abed, and Märgner 2012; Cao et al.

2014)) are employed.

Type of HMM systems: Most of the HMM systems for Arabic text recognition

are either continuous HMM systems (e.g., (Hamdani et al. 2014; El-Hajj,

Likforman-Sulem, and Mokbel 2005; Safabakhsh and Adibi 2005; Premkumar

Natarajan et al. 2012; Azeem and Ahmed 2013)) or semi-continuous HMM systems

(e.g., (Benouareth, Ennaji, and Sellami 2008; Pechwitz, Abed, and Märgner 2012)).

Discrete HMM systems have also been reported in literature (e.g., (Benouareth,

ns, and Elliman

2002; Dehghan et al. 2001; Khorsheed 2003)) but no clear reasons were presented

for preferring it over the commonly used continuous or semi-continuous HMMs.

When using discrete HMMs, the features need to be converted into symbolic

representation which is done by employing vector quantization techniques, the core

of which is a clustering algorithm.

Rothacker et al. (Rothacker, Vajda, and Fink 2012) presented Bag-of-Features

(BoF) HMMs for Arabic text recognition. The authors integrated the Bag-of-

Features representation, which is popular in computer vision domain, with HMMs.

The features from the training set are clustered in an unsupervised way to construct

the visual vocabulary (the codebook). The HMMs are trained to estimate the

probabilities of observing the visual words from a sliding window in a given state.

Multiple visual words can be observed in a given state which makes it different

from discrete HMMs in that respect. Authors in (Khoury et al. 2013; Giménez et

al. 2014), presented Bernoulli HMMs for handwritten Arabic text recognition. The

binary pixels from text images are input directly to the HMMs whose state

emissions are modelled using Bernoulli distributions instead of the commonly used

Gaussian distributions. To cope with image distortions in the vertical and

horizontal axis, window

center-of-mass is at the center of the sliding window. In (Miled and Amara 2001),

authors presented Planar HMM (PHMM) for handwritten Arabic text recognition

, again, an HMM. They argued that planar HMM

systems can cope with variability and distortions more robustly as compared to the

normal 1D-HMM systems. A word was modeled as a planar HMM having five states

4.2 HMM-based Arabic text recognition 43

where the states (each again being an HMM) represent the upper diacritics,

ascenders, core area, descenders, and the lower diacritics respectively.

Modeling: As Arabic characters have different position dependent shapes, the

most common approach is to model each character shape as a separate HMM (e.g.,

(Benouareth, Ennaji, and Sellami 2008; Pechwitz, Abed, and Märgner 2012;

Hamdani et al. 2009; Al-Hajj Mohamad, Likforman-Sulem, and Mokbel 2009;

Azeem and Ahmed 2013)). This approach is better than modeling each character

as an HMM (e.g., (Khorsheed 2003)) as the character shape variability due to its

position forms is difficult to model with a single HMM (cf., e.g., (Schambach,

Rottland, and Alary 2008)). Additionally, it is also common to model the two-

character special ligatures as separate HMMs instead of modeling their constituent

characters separately. In (Schambach, Rottland, and Alary 2008), the authors

presented parallel path HMMs where each character is modelled as an HMM having

multiple paths and each path models a character shape of the character represented

by the HMM. In (Menasri et al. 2007), the authors presented what they termed as

-

resulting from using character shape as models. The technique involves removal of

dots and other diacritics from the character images and performing explicit

grapheme segmentation. The resultant set of unique graphemes forms the modeling

units. This design seems to be developed keeping in mind a word recognition task

involving words that can uniquely be described even after removal of dots. This

setup may not work in situations where words may only differ in dots and diacritics,

or in case of lexicon free character recognition4. Segmentation errors (under

segmentation) were cited as the major source of recognition problems.

Word models are built by concatenating the character HMMs (please note that

here character is used in a loose sense and can mean either character, character

shape, or other representations as described above). Some researchers have used

complete word HMMs (e.g.,

Higgins, and Elliman 2004)), i.e., using HMMs to model words holistically. This

approach has many issues. First of all, this will typically lead to huge model set as

each word will be represented by a separate HMM. A lexicon may have hundreds,

or thousands, or even more words. This will also mean need for more training data

4 By character recognition we mean character-based recognition where the text

recognizer hypothesizes characters instead of words. The system is still trained and tested

on text line images and not on isolated characters. character

recognition to mean -

44 Related Work

as each word should have sufficient samples in training set to adequately train the

model parameters. It may be suitable only for text recognition tasks involving very

small lexicon size (cf., (Dehghan et al. 2001)). Moreover, words are of different

length and, thus, selecting the number of states for a word HMM may not be that

straightforward. In (Benouareth, Ennaji, and Sellami 2006), the number of states

for a word HMM was decided based on the number of characters the word has.

Background space modeling is also useful in Arabic as white spaces do not only

occur between words but also within words, i.e., between PAWs. Dreuw et al.

(Dreuw, Jonas, and Ney 2008) presented explicit white space modeling for Arabic

text recognition. Both between words and within word (i.e., between PAWs) white

spaces were modelled using a single state HMM model. In (Al-Hajj Mohamad,

Likforman-Sulem, and Mokbel 2009), authors used explicit space models for

between word spaces and after the Arabic character alif.

Topology: The most common HMM topology used in Arabic text recognition

is the Bakis topology (please refer to Section 2.6) (e.g., (Hamdani et al. 2014;

Benouareth, Ennaji, and Sellami 2006; Pechwitz, Abed, and Märgner 2012; El-Hajj,

Likforman-Sulem, and Mokbel 2005)) where a state can skip the next state and

transit to the state after the next state. Characters in the Arabic script are,

generally, much wider and have more possibilities for stroke variability as compared

to the characters in the Roman script. Thus, using Bakis topology seems to be a

better option as it can cope with variability more robustly. Nevertheless linear

topologies have also been used successfully (e.g., (Azeem and Ahmed 2013;

Stahlberg and Vogel 2015; Schambach, Rottland, and Alary 2008)). In (Dehghan

et al. 2001), the authors presented HMMs where the number of forward jumps from

a state was empirically set between 2 and 4. In (Khorsheed 2003), no constraints

were imposed on forward jumps from a state. The author used a single HMM model

to represent all the character shapes for an Arabic character and thus having no

restriction on forward jumps might have, to some extent, helped to cope with the

appearance variability due to a single model representing all the character shapes

of a character.

Model length adaptation: The number of HMM states can be fixed for all the

models (e.g., (Pechwitz and Märgner 2003; Benouareth, Ennaji, and Sellami 2008;

El-Hajj, Likforman-Sulem, and Mokbel 2005; Premkumar Natarajan et al. 2012)).

Alternatively, each HMM model can have different number of states. Various

techniques for model length adaptation (MLA), i.e., deciding the optimal number

of states for a given HMM model have been proposed (e.g., (Zimmermann and

4.2 HMM-based Arabic text recognition 45

Bunke 2002; Dreuw, Jonas, and Ney 2008; Z. Jiang et al. 2012)). As Arabic

characters have high variations in width and glyph complexity, adapting the length

of HMM models seems to be a good approach as compared to using the same

number of states for every HMM. Additionally, if explicit models are used to model

the background space, it is normally a single state model. Dreuw et al. (Dreuw,

Jonas, and Ney 2008) presented model length adaptation based on average

character width information. The average length of character was found using the

state occupancy statistics from the training data. The information about the

average number of frames per class was used in (Dehghan et al. 2001) to decide the

number of states for a particular model. In (Chammas, Mokbel, and Likforman-

Sulem 2015), the authors used 5-state models for narrow characters and

punctuation marks and 8-state models were used for characters having wider

glyphs. In (Hamdani et al. 2011), the authors presented their work on MLA where

they manually clustered the Arabic character shapes into four groups depending on

their expected average widths. They assigned HMM models for each group with a

specific number of states with the models in the group containing the narrowest

characters having 5 states and the models belonging to the widest characters having

17 states each. It was not clear how they decided the particular numbers of states.

In (Khorsheed 2003), the number of line segments (obtained after line

approximation on skeletonized text images) a character has determines the number

of states its model contains. Jiang et al. (2012) presented the concept of information

entropy of states and its use in MLA by removing those states from a model which

have very low entropies. The low entropy states are the ones which either have

extremely low self-transition probabilities (termed as slipping states) or have very

low total incoming probabilities (termed as blocking states) or have very low total

outgoing probabilities (termed as absorbing states). Further, the authors extended

the work in (Z. Jiang et al. 2015) to provide more elaborate approach to optimize

the number of states and the number of mixtures per state using an iterative

algorithm. The problem with the proposed algorithms is that they are based on

defining specific rules involving many thresholds which may entail large overheads

to optimize them for a given recognition task.

The time duration a state of a given model is active, is mainly decided by the

transition probabilities for that particular state. Some researchers argue that the

state duration needs to be explicitly modelled with some appropriate distributions

instead of using a simple transition probability (Benouareth, Ennaji, and Sellami

2008). In (Benouareth, Ennaji, and Sellami 2008), authors presented explicit state

46 Related Work

duration modeling. Three different distributions (two continuous distributions and

one discrete distribution) were investigated to model the state duration. Gamma

distribution gave the best improvement.

Mixtures: In the case of continuous HMM systems, the most common approach

is to have multiple mixtures per state. The number of mixtures per state is normally

a fixed constant and is decided based on the systems performance on the

development sets (e.g., (Benouareth, Ennaji, and Sellami 2008; Azeem and Ahmed

2013)). Jiang et al. (Z. Jiang et al. 2015) presented an algorithm for the

optimization of mixture components per state based on some heuristics and a rule

based algorithm involving many thresholds. It works together with HMM model

length optimization. The authors reported improvement in recognition result by

using the optimization technique for the model length and the number of mixtures

per state. In (Hamdani et al. 2014; Hamdani, Doetsch, and Ney 2014), mixtures

were shared between every two consecutive states. The justification for sharing the

mixtures between two states was to make sure that each Gaussian is visited at least

once even if a state is skipped because of the Bakis topology. In (Premkumar

Natarajan et al. 2012), the authors presented two mixture tying approaches for

Arabic text recognition. In one approach all the mixtures for a given model are

tied, i.e., all the states of a model share the same mixture pool. In the second

approach, all the character shape models for Arabic representing the same character

have their mixtures tied together for the respective states and is referred in the

paper as state tied mixtures (STM). STM setup gave slightly better results in

comparison to other setups.

Training: Baum Welch algorithm is the most common algorithm used to train

the HMM models (e.g., (

2002; Khorsheed 2003; Premkumar Natarajan et al. 2012; Azeem and Ahmed 2013;

Chammas, Mokbel, and Likforman-Sulem 2015)). Other researchers preferred

Viterbi training instead of the Baum Welch training (e.g., (Dreuw et al. 2009;

Benouareth, Ennaji, and Sellami 2006; Benouareth, Ennaji, and Sellami 2008;

Pechwitz, Abed, and Märgner 2012; Schambach, Rottland, and Alary 2008)).

Discriminative training based on modified form of Maximum Mutual Information

(MMI) was employed in (Dreuw, Heigold, and Ney 2009)

aced in statistical pattern recognition

problems and handwritten text recognition is no exception. Adding synthetically

generated training data in addition to the original training data is one of the most

common approaches in situations where the training data is deemed not big enough.

4.2 HMM-based Arabic text recognition 47

Dreuw et al. (Dreuw, Jonas, and Ney 2008) added additional training data by

simply shifting the original training images by few pixels on the y-axis. This

approach, although simple, showed to improve the recognition results. Parameter

smoothing (see (Young et al. 2002, page 160) for details on parameter smoothing)

after training was performed in (Dehghan et al. 2001) to overcome the problem of

non-robust training due to insufficient training data.

Contextual HMMs: As mentioned in Section 2.7.1, contextual HMMs are used

characters. Contextual HMMs with decision tree clustering were presented in

(Bianne-Bernard et al. 2011; Hamdani, Mousa, and Ney 2013; Hamdani et al. 2014;

Stahlberg and Vogel 2015; Morillot et al. 2013). In (Hamdani, Doetsch, and Ney

2014), the authors presented decision tree based clustering for contextual HMMs

where (El-

Hajj, Mokbel, and Likforman-Sulem 2008), the authors presented contextual

modeling using HMMs for Arabic text recognition where a few contextual forms

were manually selected to be modelled. These were mainly characters with

descenders which potentially lead to overlaps with the neighboring characters. A

total of only 44 contextual forms were added to the original model set. It seems

that state clustering was not performed which is understandable given that only a

few contextual models were added. In (Premkumar Natarajan et al. 2012), the

authors used contextual models for Arabic text recognition. A slight improvement

was reported over the use of context independent modeling. One possible reason

for not so large improvement in recognition performance, as stated in the paper,

was that the use of Arabic character shapes as HMMs already captures most of the

context and hence additional contextual modeling, with the implication of addition

of many more models, may not be very helpful. The use of contextual HMMs with

state clustering was reported in (Cao et al. 2014).

Multi-stream HMMs: Use of multi-stream HMMs for Arabic text recognition

was presented by Kessentini et al. in (Kessentini, Paquet, and Ben Hamadou 2010).

Four different features were extracted from the text line images and multiple 2-

stream HMMs were trained using different combinations of these features. Multi-

stream HMMs performed better than feature fusion or classifier fusion. However, it

was stated that using stream weights did not improve the results over the equal

weight streams.

Model Adaptation: To cope with writing variability during recognition, HMM

adaptation techniques have been used successfully (see Section 2.7.2). In

48 Related Work

(Premkumar Natarajan et al. 2012), the authors presented the use of MLLR based

unsupervised writer adaptation where only the means (and not the standard

deviations) were updated. In (Dreuw et al. 2009), the authors used the writer

information in the training set to estimate writer dependent feature transformations

which are then used to transform the features for every set of writers. These

transformed features are then used to train the writer dependent models. After

doing a first pass decoding of the test set, text dependent writer clustering is

performed. An unsupervised association of writer clusters from the test set to the

writers in the training set is performed and then the writer dependent models are

used for decoding in the second pass. The authors in (Dreuw, Heigold, and Ney

2009) presented confidence based discriminative training where, in the first pass, a

recognition hypothesis is generated and confidence scores (at the word level and at

the state level) are used to discriminatively train a second system using the

hypothesized text in the first pass. The idea of state level confidence scores was not

to reject a word entirely if its confidence score is low and, instead, utilize data at

state level (for training) for those states whose confidence level is high. In (Hamdani

et al. 2014), the authors presented multi-pass decoding where, after the fast pass

the writing styles are clustered in an unsupervised way. In the next pass, feature

adaptation is done using these clusters, i.e., the features are transformed using

MLLR based transformations estimated for the clusters. In (Cao et al. 2014), the

authors presented two approaches to writer and writing style adaptation. In the

first approach, a writer independent system is adapted separately for each writer

in the training set. During recognition, the input document is associated to a writer

from the training set with a score from an SVM based writer identification system.

If the score is high (above some threshold), the document is decoded using the

writer specific system otherwise it is decoded using the writer independent system.

In the second approach, the input document is decoded as a first step. The text

hypothesis is used to group documents in the training set having similar writing

styles. The codebook is then adapted to the set of documents in training set which

matches the writing style of the input document. The HMM model state transition

probabilities are then adapted using the average character width information from

the input document. Finally, the input document is decoded once again using the

adapted system.

Multiple Recognition Systems: Another strategy employed to improve the

recognition results is to use multiple recognition systems and later combine their

results after recognition. If the recognizers have different characteristics like

4.2 HMM-based Arabic text recognition 49

different features used (e.g., (Abed and Märgner 2009)), different training criteria

(e.g., (Farah, Souici-Meslati, and Sellami 2006)), or different classifiers (e.g.,

(Farah, Souici-Meslati, and Sellami 2006)), it is expected that they make errors in

different regions, i.e., their errors are independent of each other. Thus combining

their results effectively can lead to overall results which are better than the results

of the best individual system. The challenge is to design the systems such that they

have different properties and the challenge is also to design effective combination

schemes. In (Al-Hajj Mohamad, Mokbel, and Likforman-Sulem 2007; Al-Hajj

Mohamad, Likforman-Sulem, and Mokbel 2009), the authors trained three different

HMM systems, each using features from sliding windows oriented at specific angles.

The final recognition output was obtained by combining the recognition results of

the individual recognizers. Three different combination schemes were investigated,

i.e., the summation of normalized likelihood scores from the individual recognizers,

the majority voting scheme, and training (using scores from individual HMM

classifiers) an ANN (Multilayer Perceptron) system to output the top choice. In

(Azeem and Ahmed 2013), the authors also used three different HMM systems each

trained on features from sliding windows tilted in certain angles (similar to (Al-

Hajj Mohamad, Mokbel, and Likforman-Sulem 2007; Al-Hajj Mohamad, Likforman-

Sulem, and Mokbel 2009)). Finally the results from the three system were combined

using sum, majority vote, and maximum rules. The exact decisions on how and

which scores to combine were set as rules and involved some score thresholds. In

(Azizi et al. 2010), the authors presented the use of six different measures (which

 of classifiers dissimilarity. These

measures were used to select a sub-set of recognition systems which are the most

diverse with the hope that the overall combination of the results would be better

Based on experimental results, the

authors showed that combining the recognition systems based on diversity is better

than combining systems which give the highest individual recognition results. In

(El Abed and Märgner 2010b), the authors presented their investigation on

combining different recognition systems. Different strategies like majority voting

and voting schemes based on ranks of different classes from each system were

presented including training an ANN classifier to output the combination result. In

(Schambach, Rottland, and Alary 2008), the authors presented classifier

combination using weighted sum voting where the scores are weighted based on the

erformances. The individual systems differ from each other

based on different preprocessing techniques employed before extracting the features

50 Related Work

from the text images. In , the authors

presented multiple HMM recognition systems, each to recognize a sub-set of words

from the Arabic literal amount lexicon. As a first step, an input word is assigned

to one of the eight groups using features like number and position of dots, and the

number of PAWs. Next, an HMM system specifically trained on word samples from

that group is used to recognize the input word. In (Menasri et al. 2007), the authors

presented a hybrid HMMs and ANNs system which involves explicit segmentation

of text images into graphemes after the removal of dots and diacritics. Features are

extracted for individual graphemes. An iterative training is performed where the

HMM system annotates the data used to train the neural network system which,

in turn, computes the observation probability distribution for the HMM system. In

(Pradeep Natarajan et al. 2009), the authors use the segmentation information

generated by an HMM system to train an SVM classifier for the Arabic characters.

In the next step, the scores from both the classifiers are combined to output the

final recognition hypothesis.

Language Modeling: When it comes to recognizing multiple words in a text

line image, the use of language model is imperative. The good thing is that the

HMMs can seamlessly integrate statistical n-grams (as language model) for

decoding. One of the most important concerns when using the language models is

to deal with Out of Vocabulary (OOV) words, i.e., words in the test set which were

not known before. As one increases the lexicon size the OOV rate is, in general,

expected to decrease. But having a very large lexicon comes with its own issues. It

can be difficult to estimate the language model robustly as many of the words will

occur infrequently in the corpus. Moreover, having a large lexicon will also lead to

more recognition ambiguities (cf. (BenZeghiba, Louradour, and Kermorvant 2015)).

Thus a balance between the lexicon size and the possibility of missing words due

to them being OOVs needs to be maintained. In (Premkumar Natarajan et al. 2012;

Pradeep Natarajan et al. 2011), the authors presented the use of word language

models for handwritten Arabic text recognition. A lexicon size of 120K words (92K

in (Pradeep Natarajan et al. 2011)) is trained using a large corpus containing 217

million words (90 million words with OOV rate of 4.2% in (Pradeep Natarajan et

al. 2011)).

As Arabic is a highly inflectional language, the problem of OOV is even higher.

A simple word based lexicon is generally not the best choice. Authors in (Hamdani,

Mousa, and Ney 2013) presented open vocabulary Arabic text recognition where

the Arabic words were morphologically analyzed and decomposed into prefixes,

4.3 Other statistical sequential models 51

root, and suffixes. For building the lexicon and estimating the language models,

words with high frequencies in the training corpus were kept in the lexicon and the

infrequent words were decomposed and the prefixes, roots, and suffixes were added

to the lexicon. Special markers were used for prefixes and suffixes in order to

reconstruct the words from the recognized segments. This approach resulted in

limiting the lexicon size and at the same time, many OOV words can be recognized

by constructing them by merging different prefixes, roots, and suffixes. BenZeghiba

et al. in (BenZeghiba, Louradour, and Kermorvant 2015) presented hybrid

word/PAW language model for Arabic text recognition. The frequently occurring

Arabic words in the training corpus were included in the lexicon and the remaining

words were broken into PAWs. This leads to reduction in the lexicon size and also

reduction in the OOV words. Words were later reconstructed by combining these

PAWs after recognition.

When performing lexicon free character recognition, character language models

can be used. When using character language models, the issue of OOV is not

present. High order n-grams (typically trigrams or 4 grams) are typically preferred

but integrating a high order n-gram during decoding is computationally very

expensive. Bigrams can integrate seamlessly due to the reason that the HMMs are

first order Markov chains. Some researchers prefer using bigrams in the forward

pass of decoding and trigrams in the backward pass when the search space is limited

(e.g., (Premkumar Natarajan et al. 2012; Pradeep Natarajan et al. 2011)).

Post-processing: In (Khorsheed 2003), the author presented a word recognition

task using character HMMs without the use of lexicon. Spell checking was employed

to correct some of the recognized words which were not available in the dictionary.

In (Premkumar Natarajan et al. 2012) and (Cao et al. 2014), the authors reported

the use of glyph models without dots to rescore the n-best list generated by the

recognizer.

4.3. Other statistical sequential models

After a deep learning trend in computer vision and speech recognition and the work

on offline text recognition by Graves and Schmidhuber (e.g., (Graves and

Schmidhuber 2009; Graves 2012)), deep learning based recognition systems have

received high interest. One of the main drawbacks of using non-HMM classifiers

including those based on ANNs was that the text needed to be explicitly segmented

for training and recognition. The use of connectionist temporal classification (CTC)

in the context of RNNs allows for recognition without the need for prior

52 Related Work

segmentation (cf. (Graves and Schmidhuber 2009)). This has enabled the use of

neural networks based classifier for the task of offline handwritten text recognition

and, thus, has gained popularity in recent years (e.g., (Graves and Schmidhuber

2009; Graves 2012; Abandah, Jamour, and Qaralleh 2014; Hamdani et al. 2014;

Hamdani, Doetsch, and Ney 2014; Moysset et al. 2014; Bluche et al. 2014)).

Moreover, the RNNs architecture involving long short-term memory (LSTM)

enables it to capture longer contexts which may be important for offline text

recognition tasks. Interested readers can refer to (Graves and Schmidhuber 2009;

Graves 2012) for a detailed discussion on RNNs, CTC, and LSTM in the context

of offline text recognition.

There are currently three most popular approaches when using neural network-

based classifiers that avoid the explicit segmentation of the text images. The first

approach is the one presented by Graves and Schmidhuber (2009) and later

extended by Graves in (Graves 2012). Raw image pixels are given as input to a

multi-dimensional RNN (MDRNN). A hierarchical architecture is designed to

convert the two-dimensional image into a one-dimensional sequence which is finally

labelled by the output layer. Abandah et al. presented handwritten Arabic text

recognition using recurrent neural networks (Abandah, Jamour, and Qaralleh

2014). Their approach is based on explicit segmentation of text line images into

graphemes. A rule-based algorithm is presented to segment the Arabic text into

PAWs and then segment them into graphemes. Dots and diacritics were separated

from text images and later associated with PAWs. A number of features were

extracted from the segmented graphemes. RNNs with bidirectional LSTMs

(BLSTMs) and CTC layer is used for training and recognition. The BLSTM

architecture allows for integrating the contextual information from both the

directions across the handwritten text. A dictionary is finally used to correct the

output of the recognizer based on the decoding lexicon.

The second approach involving neural networks is to use them, as some

researchers term, in-tandem with HMMs (Hamdani et al. 2014). A hybrid HMMs-

ANNs system was presented in (Hamdani et al. 2014) where the HMM system was

used in tandem with the BLSTM RNNs. Forced alignment from a pre trained HMM

system is used to label each observation with its character annotation. This forced

aligned data is used to train the RNNs. The trained network is used to calculate

the posterior distribution for each observation over the character labels. This, in

turn, is used to retrain a new HMM system which is finally used for text recognition.

4.3 Other statistical sequential models 53

Finally, the third approach is to use neural networks with HMMs in a hybrid

way where the state output probability is directly estimated using the neural

networks. A hybrid HMM-ANN system was presented in (Hamdani, Doetsch, and

Ney 2014) where the HMMs were not retrained again using the features trained on

the RNN. Instead, the posteriors estimated by the RNN were directly used as

emission probabilities for the HMMs. In (BenZeghiba, Louradour, and Kermorvant

2015), the authors presented a hybrid HMM-ANN system where the ANN is a

Multi Directional LSTM Recurrent Neural Networks and is used to estimate the

etwork was trained using the CTC

criterion thereby avoiding the need of explicit segmentation of text images. Due to

the large training data requirements for such networks, a seed model was trained

using some external text database and in another text recognition task, some

artificial training data was added by applying several transformations to the

original training images. In (Moysset et al. 2014), the authors presented a multi-

lingual text recognition system. It is a hybrid RNN-HMM system where the optical

modeling is performed using Recurrent Neural Networks (RNNs) with LSTM cells.

Raw pixels were taken as features to train the network. CTC was used to avoid

the explicit segmentation of text images into character shapes. A stepwise training

was performed where simple and clean text images were used initially before

incorporating the complete dataset which also involves challenging and noisy

images. For decoding, HMMs were used where each character shape was

represented by a single state HMM (with self-loop) whose emission probabilities

were estimated using the RNN system trained as described above. The training

data size was augmented by adding synthesized data obtained by applying some

transformations (like shrinking, slanting, and expanding) on the original training

images. In (Bluche et al. 2014), the authors presented a handwritten text

recognition system developed for Arabic text recognition. Most of the

characteristics of the system are similar to the one presented in (Moysset et al.

2014). Eleven different RNN based systems were trained, each with different

random seed and different and disjoint training set in the initial training stage

(stepwise training was employed). After the initial training, all the training data

was used by each of the eleven systems for further training. Later, the results were

combined from these systems using an incremental approach based on their

individual accuracies and based on the improvements in recognition results after

adding them. In (Stahlberg and Vogel 2015), the authors train an initial HMM

54 Related Work

system and use the forced alignment information to train a neural network system

which models the emission probabilities for the final HMM system.

In (Morillot et al. 2013), the authors presented a comparative study of using

two recognition systems for handwritten Arabic text recognition. One of the

systems was based on HMMs while the other was based on RNNs involving

BLSTMs. They employed same features and sliding window attributes for both the

system. The RNN-based system outperformed the HMM-based system based on

the evaluation results. Based on conducting text recognition experiments on two

separate handwritten text databases, the authors in (Bluche, Ney, and Kermorvant

2014) concluded that, both Deep multilayer perceptron (MLP) and LSTM-RNNs

(the popular choice in text recognition domain) are equally suited for training.

Moreover, they also had similar conclusions for the use of features, whether raw

pixel value or handcrafted.

4.4. Summary of the related works

In this section we will present a summary of published works on handwritten Arabic

text recognition tasks. We will divide the published works into three groups. The

first group includes representative works on holistic recognition of isolated digits,

characters, and PAWs. It also includes some early works on word recognition which

either recognizes the words holistically or use syntactic classifiers to perform explicit

segmentation based recognition. The second group contains representative works

on handwritten text recognition using the IFN/ENIT database (Pechwitz et al.

2002). Text recognition tasks using the IFN/ENIT database is of particular

importance due to the popularity of the database, its use in many text recognition

competitions, and also due to the fact that the database is available free to the

research community. The third group includes representative works on recognizing

text images containing multiple words. The main aspects that separate the last

group from the second group is the use of language models and dealing with the

out of vocabulary (OOV) words.

In Table 4.1, we present the summary of the works related to isolated digits,

isolated characters, holistic PAW recognition, and some early works on word

recognition. The table includes only a small selection of the published works in this

area which we believe are representative of the tasks. The main aspects for effective

recognition are related to careful preprocessing, use of effective features and

classifiers. Handwritten digits recognition is one of the easiest recognition tasks. It

is a ten class (representing digits from 0 to 9) problem and is, to a larger extent,

4.4 Summary of the related works 55

considered solved. Rates of over 99% are reported in the literature for already

segmented isolated digits recognition (e.g., (Awaida and Mahmoud 2009)). In case

of number recognition (containing multiple digits) involving touching digits, the

task still faces some challenges (e.g., (Alamri, He, and Suen 2009)). Some practical

uses of digit recognition is in recognizing numeral amounts in bank checks and in

zip code reading. Isolated character recognition is the next simplest task. The

classes represent the characters of the script. The main challenges related to

isolated character recognition lie in distinguishing the characters which share the

same core shape and different only with respect to the dots. Isolated character

recognition is also a largely solved problem and is of limited practical use.

Recognizing the Arabic PAWs and words holistically may make practical sense

only when the number of classes are very limited such as the tasks related to literal

amount recognition form bank checks which typically contains few dozen words or

PAWs.

In Table 4.2, we present the summary of the works related to handwritten word

recognition using the IFN/ENIT database. Apart from the challenges related to

preprocessing, development of effective features, and the effective use of classifiers;

word recognition tasks have to deal with defining appropriate modeling units like

characters (or character shapes for Arabic), training them with or without the

segmentation of word images, constructing the decoding network from these

modeling units, and dealing with alternative pronunciations for a word. Use of

HMM-based classifiers are by far the most common approach under this category.

In Table 4.3, we present text recognition tasks dealing with text images

containing multiple words. As mentioned earlier, the main aspects which separates

it from word recognition tasks are the use of language models and dealing with

OOV words. Moreover, if a text image includes multiple lines, separating these

lines is another important challenge that needs to be addressed.

With this knowledge of the state-of-the-art in handwritten Arabic text

recognition as foundations, we present our contributions related to HMM-based

handwritten Arabic text recognition in the next two chapters.

56 Related Work

Table 4.1: Summary of the representative works on holistic recognition of digits, characters, PAWs, and some early works on words recognition.

System Key Features Characteristics of the database Recognition results Remarks

Alamri et al. 2009

(Alamri, He, and Suen

2009)

 SVM system with radial basis function as

the kernel

 Gradient features

 A rule based algorithm to separate

touching digits

Digit images from CENPARMI

database of Arabic checks:

 24,784 digit images used for

training

 6199 digit images used for

evaluation

 132 images of pairs of touching

digits used for evaluation of the

touching digit recognition task

 Misclassification rate of

1.52% for non-touching

isolated digits recognition

 Misclassification rate of

7.78% for touching digits

recognition

Isolated and

touching digits

recognition

Awaidah and Mahmoud

2009 (Awaida and

Mahmoud 2009)

 Discrete HMMs system

 Gradient, concavity and structural

features (GSC)

 A digit image segmented into a number of

frames such that each segment has

approximately the same number of pixels

21,120 digit images written by 44

writers

 15,840 images used for training

and the remaining 5280 images

were used for evaluation

 Misclassification rate of

0.87%
Isolated digits

recognition

Mahmoud and Al-

Khateeb 2010

(Mahmoud and Al-

Khatib 2010)

 Three different classifiers (k-NNs, HMMs,

and SVMs)

 Log Gabor filters with several scales and

orientations were used as features

Isolated digit images from

CENPARMI database of Arabic

checks:

 Misclassification rate of

1.05% using SVM classifier

 Misclassification rate of

2.79% using HMM classifier

Isolated digits

recognition

4.4 Summary of the related works 57

 7390 digit images used for

training

 3035 digit images used for

evaluation

 Misclassification rate of

1.25% using k-NN classifier

Al-desouky et al. 1991

(El-Desouky et al.

1991)

 Image thinning and normalization before

feature extraction

 Direction chain code along with character

zone and dots information are used as

features

 Each character image if first associated to

a group and then classified using some

distance measure computed from the

features

Isolated character images written

by two writers with specific

constraints imposed when writing

 Information not available on

the database size

 Character error rate (CER)

of 6%
Isolated character

recognition

Cheriet et al. 2007

(Cheriet et al. 2007)

 Discrete HMMs system

 Freeman chain codes (length and

used as features

 PAWs modelled as HMMs

 Number of states in an HMM is decided

based on the number of characters in a

PAW

Isolated PAW images from

CENPARMI database of Arabic

checks

 Lexicon size of 67 PAWs

 PAW error rate of 26.47%

on the evaluation set
Holistic recognition

of PAWs

Almuallim and

Yamaguchi 1987

(Almuallim and

Yamaguchi 1987)

 Syntactic classifier for word recognition

 Thinning and segmentation into strokes

 Strokes are classified into groups as a first

step and features (group specific) are

extracted from strokes in order to classify

the strokes in the second step

 Strokes are combined to form characters

using rule based pattern matching

 Use of word dictionary as post-processing

 200 words written by two

writers are used for training

 Evaluation was performed on

400 word images

 Word error rate (WER) of

9%
Word recognition

task

58 Related Work

Goraine et al. 1992

(Goraine, Usher, and

Al-Emami 1992)

 Syntactic classifier for word recognition

 Thinning and segmentation into strokes

 Strokes represented as direction codes and

classified into 11 primitives

 Strokes are combines into characters using

rules

 A dictionary lookup for words to correct

misclassified characters was used as post-

processing

180 word images with a total of

600 characters written by three

writers were used for evaluation

 WER of 10% Word recognition

task

Abuhaiba et al. 1998

(Abuhaiba, Holt, and

Datta 1998)

 Syntactic classifier for character

recognition from text line images

 Thinning and segmentation into strokes

 Segmentation of strokes into tokens

 Token recognition

 Token recombination to form core shapes

 Adding secondary strokes information to

core shapes using rules to form characters

Handwritten text line images:

 13 pages written by 13 different

writers used for training

 20 pages written by 20 different

writers not in training used for

evaluation

 CER of 48.9% Character

recognition from

text line images

 CER includes

both errors and

rejections

Dehghan et al. 2001

(Dehghan et al. 2001)

 Discrete HMMs system

 An HMM for each word in the lexicon

 Stroke width normalization, baseline

correction

 Histograms of chain-code directions from

the image strips within a sliding window

are used as features

 The number of states in a word HMM is

set based on the average number of

frames the word has in the training set

17,000 handwritten word images

of 198 city names

 Lexicon size of 198 names

 60% of the data used for

training and the rest 40% is

used for evaluation

 WER of 34.95% Holistic word

recognition task

and Elliman 2004)

 Discrete HMMs based multi-stage

recognition

 An HMM for each word in the lexicon

4700 handwritten words written

by 100 writers

 Lexicon size of 47 words

 WER of 40%

 WER of 31% with some

post-processing

Holistic word

recognition task

4.4 Summary of the related works 59

 Normalization of image height and stroke

width, slope correction

 Words grouped in the first stage based on

features like number and position of dots,

HMM systems specific to groups are then

used to classify the words

 Two-third of the word images

used for training and the

remaining one-third was used

for evaluation

Farah et al. 2006

(Farah, Souici-Meslati,

and Sellami 2006)

 Multi-classifier system (ANNs, k-NN, and

fuzzy k-NN)

 Text image binarization and smoothing

 Structural features like loops, ascenders,

descenders, and dots information

 Classifier combination using score

summation

4800 handwritten words written

by 100 writers

 Lexicon size of 48 words

 1200 word images were used for

training and the remaining

3600 word images were used for

evaluation

 WER of 6% Holistic word

recognition task

60 Related Work

Table 4.2: Summary of the representative works on text recognition using the IFN/ENIT database.

System Key Features

Recognition results (WER)

Remarks Train Test Configuration

abc d abcd e abcde f abcde s

Menasri et al. 2007

(Menasri et al. 2007)

 Hybrid HMMs/ANNs recognition system

 Explicit segmentation of word images into

recognition units

 -

is one of the core shape segments after

separation of dots and other diacritics

 HMMs observation probability

distribution was computed using neural

networks

12.6 - - -

Benouareth et al. 2008

(Benouareth, Ennaji,

and Sellami 2008)

 Semi-continuous HMMs system

 Explicit state duration modelling (using

Gamma distribution)

 Non-uniform sliding windows with

projection information

 Character shape HMMs with fixed number

of states for all models

 Bakis topology

 Viterbi training

9.80 - - -

Schambach et al. 2008

(Schambach, Rottland,

and Alary 2008)

 HMMs system

 Arabic character modelled with parallel

path HMMs where each path represents a
- - 12.78 26.06

It was the winning system in

ICDAR2007 competition

(Märgner and Abed 2007)

4.4 Summary of the related works 61

character shape of the representing

character

 Model length adaptation

 3 systems combined using weighted

majority voting

Al-Hajj et al. 2009 (Al-

Hajj Mohamad,

Likforman-Sulem, and

Mokbel 2009)

 Multiple continuous HMMs system

 Pixel density and concavity features

 Two slanted sliding windows in addition to

vertical sliding windows provide features

for three different HMM systems

respectively

 Character shape HMMs with Bakis

topology

 Explicit white-space modelling between

words, and after alifs

 Classifier combination using an MLP

system

9.04 - - -

The authors presented the

winning system ((El-Hajj,

Likforman-Sulem, and Mokbel

2005)) in ICDAR2005

competition (Märgner,

Pechwitz, and Abed 2005)

Dreuw et al. 2008 and

2009 (Dreuw, Jonas,

and Ney 2008)(Dreuw

et al. 2009)

 Continuous HMMs system

 Image slice and its horizontal derivatives

as feature

 PCA for dimensionality reduction

 Explicit white-space modelling

 Model length adaptation with each

character model having additional variants

 Additional virtual training samples by

shifting the image pixels along y-axis

 Use of writing variant probability

 Writer adaptive training

5.82 11.22 - -

Kessentini et al. 2010

(Kessentini, Paquet,

 Multi stream HMMs system

 Slant and slope correction, contour

smoothing

- 20.4 17.91 25.49

62 Related Work

and Ben Hamadou

2010)

 Contour and pixel features

 Each feature forms a separate stream

Pechwitz et al. 2012

(Pechwitz, Abed, and

Märgner 2012)

 Semi-continuous HMMs

 Baseline correction, line thickness

normalization

 Pixel values from sliding window used as

features after dimensionality reduction

 Sliding window divided into vertical cells

 Character shape HMMs with Bakis

topology

 Viterbi training

8.2 - - -

Natarajan et al. 2012

(Premkumar

Natarajan et al. 2012)

 Continuous HMMs system

 Skew and slant correction

 Percentile features, angle and concavity

features, and derivatives. Feature

reduction using LDA

 Contextual HMMs (triphones)

 State tied mixtures (STM) for different

character shape models of a character

 Unsupervised writer adaptation (only

means updated)

10.6 - - -

Rothacker and Fink

2012 (Rothacker,

Vajda, and Fink 2012)

 Bag-of-features HMM

 Slant and slope correction

 Harris Corners detectors and SIFT

descriptors for features computations

 PCA for dimensionality reduction

3.8 7.1 9.8 19.3

Graves 2012 (Graves

2012)

 RNN (BLSTM) system

 Image pixels as features

 CTC output layer with word dictionary for

decoding

- - 6.63 18.94

The author presented the

winning system in ICDAR2009

4.4 Summary of the related works 63

 For words with more than one variant, the

sum of probabilities for all the variants was

used as the probability for the word

competition (Mozaffari and

Soltanizadeh 2009)

Parvez and Mahmoud

2013 (Parvez and

Mahmoud 2013a)

 Structural classifier

 Characters represented using fuzzy

polygonal approximation

 Nearest neighbour classifier with fuzzy

polygonal matching

 Lexicon reduction using dots information

- 20.42 - -

Training set included pre-

segmented characters from

another database. IFN/ENIT

training sets were not used

Azeem and Ahmed

2013 (Azeem and

Ahmed 2013)

 Multiple continuous HMMs system

 Stroke width and white-space

normalization

 Character shape models

 Concavity and gradient features

 Slanted sliding windows (same as Al-Hajj

et al. (Al-Hajj Mohamad, Likforman-

Sulem, and Mokbel 2009))

 Classifier combination using sum, majority

vote, maximum rules

2.3 6.56 6.9 15.2

Giménez et al. 2014

(Giménez et al. 2014)

 Bernoulli HMMs based system

 Binary image pixels as features

 Sliding window repositioning based on ink

centre-of-mass
4.7 6.1 7.80 15.38

The authors presented the

winning system ((Giménez,

Khoury, and Juan 2010)) in

ICFHR2010 competition

(Märgner and Abed 2010)

Abandah et al. 2014

(Abandah, Jamour,

and Qaralleh 2014)

 RNN (BLSTM) system

 Explicit segmentation of text into

graphemes

 Statistical, skeleton, boundary, diagonal

features, Fourier descriptors

1.04 6.54 7.54 15.20

64 Related Work

 Word recognition using CTC output layer

and dictionary

Hamdani et al. 2014

(Märgner and Abed

2011)(Hamdani et al.

2014)

 BLSTM (RNNs) in tandem with

continuous HMMs

 Pixel grey values as features extracted

from repositioned sliding windows and

PCA for feature reduction for HMM

training in step one

 RNNs trained features used in the next

step to train the HMMs

 Gaussians shared between two successive

states of HMMs

 Viterbi training with MLE criteria

 Contextual HMMs (triphones) with

decision tree based clustering

- - 7.80 15.45

The authors presented the

winning system in ICDAR2011

competition (Märgner and

Abed 2011)

Stahlberg and Vogel

2015 (Stahlberg and

Vogel 2015)

 HMMs system with deep neural network

training

 Baseline and slant correction, image

height and line thickness normalization

 Pixel values as features after PCA based

reduction and segment based features

 Deep neural networks based

discriminative training after forced

alignment using HMMs

 The use of space and connector models as

proposed in (Ahmad, Fink, and

Mahmoud 2014)

 Contextual triphones with decision tree

based clustering

 Writer adaptive training

2.4

(ranges

from 2.9 to

2.4)

6.1

(ranges

from 6.1 to

6.9)

6.8

(ranges

from 6.8 to

7.3)

11.5

(ranges

from 11.5

to 12.5)

The results vary for different

configurations of features and

training strategies

4.4 Summary of the related works 65

Table 4.3: Summary of the representative works on recognition of text images containing multiple words and on the use of language models.

System Key Features
Characteristics of the

database
Recognition results Remarks

Saleem et al. 2009

(Saleem et al.

2009)

 Continuous HMMs system

 Percentile, angle, correlation, energy,

gradient, and GSC features. Feature

reduction using LDA

 Character shapes as HMMs with position

dependent tied mixtures

 MLLR based unsupervised adaptation

(only mixture means updated)

 Ruled line removal

 Trigram language model estimated on a

text corpus of 90 million words with

vocabulary size of 92K words

 Forward pass of decoding using bigrams

and backward pass using trigrams

DARPA MADCAT

dataset:

 8250 documents for

training, 218

documents for

development, and 224

documents for

evaluation

 WER of 30.0%

Natarajan et al.

2012 (Premkumar

Natarajan et al.

2012)

 Continuous HMMs system

 Skew and slant correction

 Percentile, angle, correlation, energy, and

GSC features, and derivatives. Feature

reduction using LDA

 State tied mixtures (STM) for different

character shape models of a character

 Contextual HMMs (triphones)

 Unsupervised writer adaptation (only

mixture means updated)

DARPA MADCAT

dataset:

 37,608 documents for

training, 868

documents for

development, and 885

documents for

evaluation

 WER of 25.2%

66 Related Work

 Trigram language model estimated on a

text corpus of 217 million words with

lexicon size of 120K words

Hamdani et al.

2013 (Hamdani,

Mousa, and Ney

2013)

 Continuous HMMs systems

 Pixel grey values as features extracted

from repositioned sliding windows

 PCA for feature reduction

 Contextual HMMs (triphones) with

decision tree based clustering

 Language model (n-grams) built using

most frequent Arabic words in training

corpus + less frequent words were

decomposed morphologically into prefixes,

roots, and suffixes

1. DARPA MADCAT

dataset available

under OpenHaRT:

 42K pages for training

470 pages for

development

2. The KHATT

database:

 9475 lines for training,

1902 lines for

development, and

1997 lines for

evaluation

1. OpenHaRT database:

 WER of 34.1 on

constrained task with

94K vocabulary size

(90K full words)

 WER 25.9 on

unconstrained task

with vocabulary size of

200K full words

2. KHATT database

 WER of 32.5 on

constrained task with

15K vocabulary size

(10K full words)

 WER 26.8 on

unconstrained task

with vocabulary size of

200K full words

 Constrained task refers to LM

training on only the training

set of the used database.

Unconstrained task uses a text

corpus of 1 billion words

 It seems for the KHATT

database, the lines which

included the fixed repetitive

text has also been included for

training and evaluation

 Details on the evaluation set

for the OpenHaRT Database

are missing

Hamdani et al.

2014 (Hamdani et

al. 2014)

 BLSTM (RNNs) in tandem with

continuous HMMs

 Pixel grey values as features extracted

from repositioned sliding windows and

PCA for feature reduction for HMM

training in step one

DARPA MADCAT

dataset available under

OpenHaRT:

 42K pages for training

470 pages for

development

 WER of 26.8 (CER of

10.1) on constrained

task with 94K

vocabulary size

Constrained task refers to LM

training on only the training set

of the used database.

Unconstrained task uses a text

corpus of 1 billion words (cf.

4.4 Summary of the related works 67

 RNNs trained features used in the next

step to train the HMMs

 Gaussians shared between two successive

states of HMMs

 Viterbi training with MLE criteria

 Contextual HMMs (triphones) with

decision tree based clustering

 Unsupervised writer adaptation

 Language model (n-grams) built using

most frequent Arabic words in training

corpus + less frequent words were

decomposed morphologically into prefixes,

roots, and suffixes

 WER of 17.0 (CER of

4.5) on unconstrained

task

(Hamdani, Mousa, and Ney

2013))

Hamdani et al.

2014 (Hamdani,

Doetsch, and Ney

2014)

 Hybrid HMMs/RNNs system

 Pixel grey values as features extracted

from repositioned sliding windows for

HMM training in step one

 Gaussians shared between two successive

states of HMMs

 Model length adaptation

 Emission probability of HMM states

simulated using trained LSTM-RNNs in

step two

 Contextual HMMs (triphones) with

decision tree based clustering with

core shape

 4-gram closed vocabulary language model

with 400K vocabulary size estimated using

a text corpus containing about 1 billion

words

DARPA MADCAT

dataset available under

OpenHaRT:

 42K pages for

training, 470 pages for

development, and 633

pages for evaluation

 WER of 19.9 (CER of

8.3)

68 Related Work

Cao et al. 2014

(Cao et al. 2014)

 Continuous HMMs system

 Percentile feature, gradient and concavity

features, and Gabor filter based features.

Feature reduction using region dependent

transformation (RDT)

 State tied mixtures (STM) for different

character shape models of a character

 Contextual HMMs (triphones) with state

tying

 Discriminative training

 Writer adaptation

 Trigram language models and recurrent

neural network language models (RNNLM)

estimation using training set and Gigaword

text corpus and 300K vocabulary size

 N-best rescoring using SVM

 Revaluation of N-best scores using dots and

diacritics free glyph models

 Multiple systems (differs in preprocessing)

combination using a weighted voting

algorithm

DARPA MADCAT

dataset:

 NIST OpenHaRT

2013 evaluation

 Evaluation on

uncontrolled

 WER of 7.4% on NIST

OpenHaRT 2013

evaluation

 WER of 22.1% on the

Bluche et al. 2014

(Bluche et al.

2014)

 Hybrid HMM/MDLSTM (RNNs) system

 Image pixels as features

 4 LSTM layers applied in parallel, one for

each scanning direction

 Initial training on isolated words followed

by text line images

 11 different RNNs trained, each with

different random seeds and different

initialization data

DARPA MADCAT

dataset available under

OpenHaRT

 WER of 20.1 on

constrained task

 WER of 18.4 on

unconstrained task

Constrained task refers to LM

estimation on the training set.

Unconstrained task uses Arabic

GigaWord text corpus for

language model estimation

4.4 Summary of the related works 69

 Character shapes as models (recognition

units)

 Each character shape represented by a

single state HMM whose emission model is

the trained MDLSTM system

 Use of 3-gram language model with 60K

vocabulary size

 Stepwise classifier combination

Moysset et al. 2014

(Moysset et al.

2014)

 Hybrid HMM/MDLSTM (RNNs) system

 Raw image pixels as features

 4 LSTM layers applied in parallel, one for

each scanning direction

 Initialization on clearer image samples

 Augmented training data used by

applying several transformation to the

original text images

 Character shapes as models (recognition

units)

 Each character shape represented by a

single state HMM whose emission model is

the trained MDLSTM system

 Hybrid word/PAW language model

The Maurdor database:

 9729 text zones for

training, 1835 text

zones for

development, and

1582 text zones for

evaluation

 WER of 29.5 using 3-

gram hybrid

word/PAW language

model

Text images were at zone level

with many images having more

than one text line. Thus,

segmentation of text zone into

lines was part of the recognition

task

BenZeghiba et al.

2015 (BenZeghiba,

Louradour, and

Kermorvant 2015)

 Hybrid HMMs/RNNs system

 An RNNs system (MDLSTM) estimated

the emission probabilities for HMMs

 Initial seed model trained on OpenHaRT

2013 dataset

 Hybrid word/PAW language model where

most frequent words are included in the

recognition lexicon and the remaining

1. The Maurdor

database:

 13,496 line images for

training and 1125 line

images for

development, and

2093 line images for

evaluation

1. The Maurdor

database:

 WER of 33.5 using 4-

gram PAW language

model trained on the

training and the

development set

Synthesized training data, after

applying several transformation

to the original training images,

was added to train the system

70 Related Work

words are broken into PAWs. Words are

reconstructed after PAW recognition

2. The KHATT

database:

 4428 line images for

training, 876 line

images for

development, and 959

line images for

evaluation

 WER of 33.2 using 3-

gram hybrid

word/PAW language

model trained on

training and

development set

2. KHATT database

 WER of 30.9 using 4-

gram PAW language

model trained on the

training and the

development set

 WER of 31.3 using 3-

gram hybrid

word/PAW language

model trained on

training and

development set

Stahlberg and

Vogel 2015

(Stahlberg and

Vogel 2015)

 HMMs system with Deep neural network

training

 Baseline and slant correction, image

height and line thickness normalization

 Pixel values as features after PCA based

reduction and segment based features

 Deep neural networks based discriminative

training after forced alignment using

HMMs

1. The KHATT

database:

 9462 line images for

training, 1899 line

images for

development, and

1996 line images for

evaluation

 WER ranges between

30.5 to 31.6 for

different configurations

of features and

training strategies

It seems for the KHATT

database, the lines which

included the fixed repetitive text

has also been included for

training and evaluation

4.4 Summary of the related works 71

 Contextual triphones with decision tree

based clustering

 Writer adaptive training

 Trigram language model estimated from

KHATT training corpus

73

5 Modeling Options for Arabic Text

Recognition

e have seen in Chapter 3 a brief overview of the Arabic script and its

peculiarities and some of the resulting challenges related to Arabic text

recognition. Moreover, we have also seen in Chapter 4 how the researchers

addressed some of these issues when dealing with offline handwritten Arabic text

recognition. Based on these discussions we concluded that, although a lot of work

and effort have been put in the area of handwritten Arabic text recognition, there

are aspects which are not well explored. One of these aspects is the modeling choice

for Arabic text recognition. Investigating the modeling options for Arabic text

recognition is one of the main objectives of the present thesis.

In this chapter, we will present the different modeling options we have

investigated during the course of this work. First, in Section 5.1, we present some

discussions which motivated us for these investigations. In the next three sections,

we will present the three different, but related, approaches to modeling which we

have investigated. We will discuss the modeling approaches and the methods and

techniques involved to use these modeling approaches for the text recognition tasks.

Finally, in the last section, we present some other aspects which we have

investigated for training an HMM-based recognizer which are related to multi

stream HMMs and modeling contexts using contextual HMMs. The experiments

and the results related to these modeling and training options will be presented in

Chapter 7.

5.1. Motivation for this work

As presented in Chapter 4, some researchers, mostly in the initial days of Arabic

text recognition, selected characters as modeling units. Due to the fact that Arabic

characters have many position dependent shapes, using characters as models is not

the best choice. Some other researchers used Arabic words or PAWs as the

modeling units. This approach has its own set of problems as was discussed in

Section 4.2. There are some other approaches to modeling but it seems that either

W

74 Modeling Options for Arabic Text Recognition

they were not explored thoroughly enough or they were not very successful due to

reasons like poor recognition performance, or the need to explicitly segment the

text into these recognition units.

The most successful and commonly used approach is to model Arabic character

shapes as separate models. Although this approach works well in general, there are

issues related to this modeling approach. The number of modeling units increases

four-fold from 28 (i.e., the number of Arabic characters) to around 100 excluding

the digits and other special characters. This results in a bulky recognizer with a

large model set. A large number of modeling units also means the need for large

amounts of training data so that each model gets trained adequately. Lack of

enough training data is a common issue in text recognition research.

Moreover, as with other languages, the frequency of different characters

appearing in any text corpus is not uniformly distributed. In fact, based on text

analysis of an Arabic corpus containing more than five million characters (Intellaren

2016), it was found that not only the characters are unevenly distributed but also

the distribution is highly skewed. The two most common characters, i.e., alif (ا)

and (ل), constituted almost a quarter of all the texts. On the other hand, the

five least occurring characters (out of the total of 28 characters) constitute only

around 2% of the entire text. The frequency of character ʼ(ظ) was almost 70

times lower than the frequency of character alif (ا). Now, if we consider the

distribution of character shapes the preferred choice of modeling unit instead of

characters, the distribution will be even more skewed. Some character shapes from

the low frequency characters will have very few occurrences and, thus, the issue of

adequately training them is present. These considerations led us to investigate some

alternative representations for the modeling units which can possibly alleviate the

above mentioned concerns. In the following sections, we will present the alternative

modeling options that we have explored.

5.2. Sub-character modeling for Arabic text recognition

Most of the Arabic characters are wider when compared to the Roman characters.

Moreover, some character shapes have high visual similarity with other character

shapes of the same character as well as with the character shapes of other

characters. Figure 5.1 illustrates these observations by showing four different

Arabic characters and their position dependent shapes. From the figure we can

clearly see a high degree of similarity between different character shapes. In fact,

many of the character shapes differ from each other only due to the presence of

5.2 Sub-character modeling for Arabic text recognition 75

horizontal connecting strokes (i.e., Kashidas). But, it should be noted that it is

important to model even the small differences between the character shapes for

optimal recognition performance as was stated/demonstrated in (Schambach,

Rottland, and Alary 2008).

Characters Isolated Beginning Middle Ending

 ـس ـسـ سـ س س
 ـش ـشـ شـ ش ش
 ـص ـصـ صـ ص ص
 ـض ـضـ ضـ ض ض

Figure 5.1: Sample character shapes in Arabic illustrating common patterns. (Figure adapted from

(Ahmad et al. 2013))

In order to exploit the similarity in patterns between different characters and

their position dependent shapes, we propose what we term as sub-character

modeling. The idea of sub-characters (and sub-strokes) modeling is present in the

literature mainly for the task of online text recognition of East-Asian scripts like

Kanji. Nakai et al. (Nakai et al. 2001) presented sub-stroke HMM modeling for

online Kanji handwritten text recognition. Kanji has more than 6000 characters

and using a separate HMM for each character leads to a huge system with a large

model set. Thus, the idea was to represent these characters using a set of 25

elementary sub-strokes. A hierarchical dictionary was constructed which included

a mapping of sub-strokes to strokes which are, in-turn, mapped to Kanji sub-

characters which were, finally, mapped to Kanji characters. The main motivations

stated behind sub-stroke modeling were: to have a compact recognizer consuming

less memory, faster recognition as a result of efficient network search involving sub-

strokes, and the need for less training data. As stroke orders can vary while writing

a character, multiple variations can be added to the dictionary. Automatic

generation of multiple definitions for dictionary entry in terms of stroke order was

presented by the authors in (Nakai, Shimodaira, and Sagayama 2003). Tokuno et

al. (Tokuno et al. 2002) presented contextual sub-stroke modeling as an extension

to the work presented in (Nakai et al. 2001). It was stated that the presented 25

76 Modeling Options for Arabic Text Recognition

elementary strokes which can construct the Kanji characters are influenced by their

neighboring strokes and, thus, for recognizing real and challenging handwriting, it

was necessary that this context is modelled. Bottom up data driven clustering was

not feasible to merge the similar states as the amount of training data was not

sufficient to robustly train all the contextual forms before tying the states. Thus a

top-down approach of successive state splitting was used instead. Hu et al. (Hu,

Gek Lim, and Brown 2000) presented sub-character HMMs for online handwriting

recognition of isolated digits, characters, and words. The two main reasons stated

for using sub-character/stroke models were that it results in a reduced model set

and that it will need fewer training samples. Characters are defined in terms of

strokes. Each character has multiple definitions due to the possibility of different

stroke orders.

The notion of sub-character (or sub-stroke) modeling in online domain is

somewhat different than what we propose for offline text recognition. In online

domain, the timing information for strokes is available which can be utilized

relatively easily to logically define a character (or word) into strokes. Whereas, in

offline text recognition such timing information is not available and the division of

characters or words into smaller units is purely visual and should satisfy the

sequencing constraint from the sliding windows . The main idea of our

sub-character modeling is to have character segments instead of characters shapes

as HMMs. Splitting the character shapes will allow sharing of parameters. The

Arabic characters and their position dependent shapes can, then, be constructed

from these fewer number of sub-characters which results in a compact recognizer

with reduced model set. To illustrate this idea, in Figure 5.2, we present the same

four characters as was shown in Figure 5.1 along with the sub-character units that

can be used to reconstruct all the position dependent character shapes for these

four characters. By using character shapes as modeling units, one ends up having

16 different HMMs to model these four characters. Using the presented sub-

character patterns, these 16 different character shapes can be reconstructed using

only five different sub-character patterns in addition to a white-space model and a

connector model. These two models are shared by sub-character representations of

many other characters. It is important to note that the technique proposed here

does not require explicit segmentation of characters into these sub-character units

as is the case with other segmentation based approaches like the ones discussed in

(Bose and Kuo 1994; Lorigo and Govindaraju 2006).

5.2 Sub-character modeling for Arabic text recognition 77

(a)

 (b)

Figure 5.2: The 16 character shapes in (a) can be represented using only five sub-character shapes

as illustrated in (b). (Figure adapted from (Ahmad et al. 2013))

Figure 5.3 illustrates the benefit of sub-character modeling using some word

examples. In Figure 5.3 (a), a number of Arabic words are presented. These words

can be constructed using 28 character shapes as listed in Figure 5.3 (b). The same

words can be constructed using only 15 sub-character shapes, including the

connector stroke, as listed in Figure 5.3 (c).

Many of these similar patters across different characters can be captured in the

horizontal writing direction. This is important because in offline handwritten text

recognition, we do not have the sequence information regarding the writing stroke

which is, otherwise, available in online handwriting recognition tasks. Thus, the

patterns are normally converted into features using the sliding windows which run

across a text image in the writing direction. The HMM models for sub-characters

can learn the patterns automatically during the embedded training as long as they

have been defined adequately in the dictionary. Once all the different sub-character

patterns have been identified for the Arabic characters, creating the complete HMM

structure is a straightforward process. Character models can be constructed by

78 Modeling Options for Arabic Text Recognition

concatenating the sub-character models. For lexicon based recognition, the

structure can be extended hierarchically. Figure 5.4 illustrates an example HMM

structure for building the different position dependent variations of the character

Seen (س).

(a)

(b)

(c)

Figure 5.3: Sample words in (a) can be constructed using 28 character shapes listed in (b) or using

the 15 sub-character shapes listed in (c).

Figure 5.4: An illustration of constructing character models using sub-character HMMs. (Figure

adapted from (Ahmad et al. 2013))

5.2 Sub-character modeling for Arabic text recognition 79

5.2.1. e- models

As we have briefly presented above, apart from the different sub-character patterns

for the Arabic script, we have also defined two special models. One is for the

Kashida stroke connecting two characters which we term as the connector model

and the other is for the background space which we term as the white-space model

or simply the space model. Many character shapes differ from other character

shapes of the same character by the absence (or presence) of the Kashida stroke.

This connecting stroke plays an important role in Arabic handwriting due to the

cursive nature of the script. The Kashida stroke is a highly variable stroke which,

in some cases, may be just a small horizontal glyph; whereas, in other instances it

may be a long stretching stroke and it may even be wider than the average

character widths. Additionally, in some case, the Kashida stroke might almost be

missing between two connecting characters when the text is written compactly.

Several factors effect this variability in pairs

of connecting characters. Figure 5.5 illustrates the variability of Kashida stroke

with the help of some examples.

Observations related to

Kashida stroke
Text image samples

Long Kashida strokes

Same words written in

different Kashida styles

Figure 5.5: Some examples to illustrate the variability in the Kashida stroke. (Handwritten text

images source: IFN/ENIT (Pechwitz et al. 2002)).

80 Modeling Options for Arabic Text Recognition

Dealing with background white-spaces is also not a trivial issue in Arabic

handwriting. White spaces in Arabic texts do not appear only between words but

also between PAWs. Moreover, white spaces between two words or PAWs are not

very uniform in Arabic handwriting. In principle, any character shape having the

ending or the alone position should be followed by white-spaces in the text. To

address white-spaces in Arabic text recognition, Dreuw et al. (Dreuw, Jonas, and

Ney 2008) presented white-space modeling by adding variants to the lexicon

dictionary which contain explicit white-space models between words and between

PAWs. Using writing variants containing explicit white-space models as presented

in (Dreuw, Jonas, and Ney 2008) does improve the recognition performance as was

demonstrated in the paper but, it is not the best solution to the problem. A hard

decision needs to be made during recognition between selecting a definition that

contains white-space models and a definition that does not contain white-space

models. Whereas, in handwritten Arabic text, it is easy to find situations where

white-spaces are present between some PAWs but are absent between other PAWs

in the same text line as is illustrated in Figure 5.6 (a). Moreover, the width of

white-space between two PAWs may be similar, or even larger, to the width of

white-space between two words as is illustrated in Figure 5.6 (b). Last but not the

least, in some situations it may be difficult to find white-spaces between two words

but there might still exist white-space between two PAWs (in the same text line)

as is illustrated in Figure 5.6 (c). Based on these observations we concluded that a

more robust approach to white-space modeling is needed when dealing with

handwritten Arabic text recognition.

5.2 Sub-character modeling for Arabic text recognition 81

(a)

(b)

(c)

Figure 5.6: Illustrations of problems associated with white-spaces in handwritten Arabic texts.

(Figure adapted from (Ahmad, Fink, and Mahmoud 2014)).

We propose a single state white-space and connector models for Arabic text

recognition. Additionally, we propose a special structure for these two models such

that the models can be used during recognition in some instances and can be

skipped in other instances. White-space model can be skipped when white spaces

are not present between two words or PAWs whereas the connector model can be

skipped when the Kashida stroke is either two small or is entirely missing between

two characters. The idea of a skipping model was adapted from the concept of tee

models for short pauses in speech recognition (Young et al. 2002 pages 109 110;

Shih, Narayanan, and Kuo 2003). We allow transition from non-emitting entry

states to the non-emitting exit states for the two models thereby allowing a

LEGEND

Space between

words

Space between

PAWs

Overlapping

PAWs

Overlapping

words

82 Modeling Options for Arabic Text Recognition

possibility to skip the emitting state in some situations. The models are trained

using the training data so that it learns the skip probability along with the other

model parameters. This way, no hard decisions need to be made to include the

space model (and the connector) between two PAWs (between two connected

characters in the case of connector model) during the recognition stage. The model

will be included, or skipped, based on the model parameters and the observation

sequences. Thus, the skip decisions are embedded as a part of the model. In order

to guide the training of the space model, we added a special space model both at

the beginning and the end of each text line. This model has a rigid structure such

that it uses only the first and the last observation sequence from the text line image

during the training stage. The beginning and end of the text line image was padded

with background patches (i.e., white-space). The state of this special space model

was tied with the state of the space model for robust training of the space model.

Figure 5.7 illustrates our space modeling idea. As we will see in Section 5.5.2, the

use of connector model also seems to help in contextual modeling as the connector

captures the connecting context between two characters. Key steps in sub-character

modeling based Arabic text recognition are presented in Figure 5.8.

Figure 5.7: Illustration of the proposed white-space model. (Figure adapted from (Ahmad, Fink, and

Mahmoud 2014)).

Shared State

Space model for

image boundaries

White-space

model

5.3 Modeling core shapes and diacritics separately 83

Data Preparation:

1. Training annotation: The character-shape-based annotations for the training set images are

converted to sub-character representation by utilizing the character shape to sub-character

mapping.

2. Dictionary: Words (or characters for character recognition tasks) are defined as a sequence of

sub-characters in the dictionary.

Training:

1. The connector and the white-space models are defined as single state models.

2. All the sub-character models are initialized using the initialization procedures as presented in

Section 2.5.

3. Transitions are added from non-emitting entry states to the non-emitting exit states of the

connector and the white-space models.

4. All the models are iteratively trained using the Baum-Welch training algorithm.

Decoding:

1. Standard decoding using the Viterbi algorithm utilizing the modified dictionary.

Figure 5.8: Key steps in the presented sub-character modeling based Arabic text recognition.

5.3. Modeling core shapes and diacritics separately

In this section, we will present the second modeling approach we investigated and

the text recognition framework incorporating this new modeling option. This

modeling options comes from the observation that many characters in the Arabic

script share the same core shapes (the Rasm) but differ only based on the numbers

and positions of dots and other diacritics. Thus, if we can separate the core shapes

from the diacritics, we can end up having a significantly reduced model set. Using

the same word examples as the ones presented in Figure 5.3, we can notice that

the words can be constructed using 19 core shapes (and four diacritics: one-dot

above, three-dots above, one-dot below, and three-dots below) as illustrated in

Figure 5.9.

To have a comprehensive look, in Figure 5.10, we present the different

character-shape groups that share the same core shapes in the Arabic script. On

counting the number of unique core shapes, we find that the 121 different character

shapes in the Arabic script, as shown in Figure 5.10, have a total of 58 unique core

shapes. Apart from the core shapes, there are a total of eight different diacritics

84 Modeling Options for Arabic Text Recognition

including the Shadda and the Hamza diacritics. Thus, if we can separate the

diacritics from the core shapes, we can end up with a much smaller number of

classes to model and to train.

Based on these observations, we investigated a multi-stage text recognition

approach where a core-shape recognition system is trained separately from a

diacritics recognition system and the final text recognition hypothesis is made by

combining the results from the two systems. The details of the multi-stage

recognition framework is presented in the next sub-section.

5.3.1. Multi-stage recognition of handwritten Arabic text

The main idea is to model the core shapes separately from the diacritics, and later

combine the information from both sources to make the final text recognition

hypothesis. Thus, we will have two separate HMM systems: one for the core shapes

and the other for the diacritics. These two systems will be trained separately and

independently from each other. Recognition results from the two systems are

integrated during decoding based on the framework presented in Section 5.3.1.2.

(a)

(b)

Figure 5.9: Sample words in (a) can be constructed using the 19 core shapes (and four different

diacritics) listed in (b).

5.3 Modeling core shapes and diacritics separately 85

Isolated character

shapes

Core

shapes

Beginning

character shapes

Core

shapes

Middle

character

shapes

Core

shapes

Ending

character

shapes

Core

shapes

Figure 5.10: Character shape to core shape mapping for Arabic script. (Figure adapted from

(Ahmad and Fink 2015a)).

In order to model and train the core shapes separately from the diacritics, we

need to separate them from the text images. Thus, a text image will be split into

two images: one containing the core shapes and the other containing the diacritics.

We will present our core shape and diacritics separation algorithm shortly. We also

need to modify the transcriptions for the text images of the training set. Two

separate transcriptions need to be generated, one for the core shapes and the other

86 Modeling Options for Arabic Text Recognition

for the diacritics. Modifying the transcriptions is straightforward based on the

script knowledge and the mapping as illustrated in Figure 5.10.

Once we have the text images containing the core shapes and the accompanying

transcriptions, the core-shape HMMs can then be trained using the standard

training procedures. Similarly, training a diacritics recognition system is

straightforward too; although, it should be noted that appropriated features need

to be computed from the diacritic images which may not, necessarily, be the same

set of features which are computed from the core shape images. We will discuss

feature extraction in more details in Chapter 7 when we present our experiments.

5.3.1.1 Core Shapes and diacritics separation algorithm

Before going into the details of the algorithm, we would like to point out that, in

principle, separating the core shapes from the diacritics is not a very difficult task

for the Arabic script. The reason behind this is the fact that the average component

sizes of the different diacritics are too small as compared to the component sizes of

the core shapes. Thus, doing some basic component analysis should work quite

robustly for the Arabic script. That being said, it is also true that the task is not

that trivial once it comes to separation of core shapes and diacritics from

handwritten text images. The most common problem faced in handwritten text

scenario is the fact that the diacritics are sometimes sticking to the core-shape

glyph as a single component (this issue was discussed in Section 3.5 and an example

of this situation was illustrated in Figure 3.12). Also the issues of broken or

incomplete strokes and the presence of alifs (ا) in the alone form add to the problem.

Thus, a simple component analysis is not sufficient and the use of some additional

heuristics becomes inevitable.

Our algorithm for separating core shapes and diacritics, along with two

illustrative examples, is presented in Figure 5.11. First, we compute the average

size of all the components in the input text image. Next, all the components whose

sizes are less than the average component size are removed from the original image

and are placed in a new empty image. This new image now contains all the possible

diacritics in addition to a few core shapes. This image, now, undergoes a second

analysis stage to filter out the core shapes. Vertical strokes, representing the

character alif (ا) or broken stroke segments from characters like ʼ(ط), are among

the most common core shapes that get added to the list of probable diacritics and,

accordingly, need to be removed. These strokes can be identified by their height-

to-width ratio (if the height of the component is twice, or more, its width) and by

5.3 Modeling core shapes and diacritics separately 87

its size (the component is not too small like the dots). Another set of strokes that

belong to the core shapes, but can get added to the list of possible-diacritics, are

the characters like (د), or the broken strokes around the baseline. These strokes

can be identified by their sizes, which are significantly bigger than the diacritics,

and based on the fact that these strokes are not too far from the core text region.

The remaining components in the new image are expected to be the diacritics and

are saved as such. The core-shape image is obtained from the original image by

removing the components identified as diacritics.

5.3.1.2 Multi-stage text recognition framework using the core-shape system and the

diacritics system

In this section, we will present our multi-stage text recognition system based on

the idea of modeling and training the core shapes and the diacritics separately. In

the first stage, an input image is processed to separate the core shapes from the

diacritics which results in two separate images: one for the core shape and the other

for the diacritics. Next, features from the core-shape image is fed to the core-shape

HMMs and the recognition hypothesis is generated. Now, depending on the text

recognition task, i.e., character recognition vs. word recognition, a slightly different

approach is taken. First we will detail the character recognition task (i.e.,

hypothesizing characters for text line images using the system trained on text line

images) and, later, we will discuss the word recognition task.

Algorithm Illustration Example 1 Illustration Example 2
Input: Original image (img)

Output: An image having core shapes

(imgCore), and an image having diacritics

(imgDia)

1. img : The original image

2. imgDia : Includes all the components

from the original image whose size is less

than the average size of components in

the original image

3. Remove from imgDia a , if:

 T thresh1, AND

 The length is at least twice the width

(For alifs and characters having

vertical long stroke)

4. Remove from imgDia a , if:

 T thresh2, AND

 It is within the core text region, i.e., it

is not too far away from the baseline

(For fragmented core shapes or small

isolated characters like)

5. imgCore : img imgDia

Figure 5.11: Core shapes and diacritics separation algorithm. (Figure adapted from (Ahmad and

Fink 2015a))

88 Modeling Options for Arabic Text Recognition

Character recognition: In case of character recognition, the core-shape system

generates hypothesis for the core shapes. Some core shapes, representing characters

that do not have diacritics over them (like and), will have exactly one

character represented by them. Other core shapes will be representing more than

one character. Thus, for each core shape in the recognition hypothesis, a lookup is

used to generate all the possible character alternatives represented by that core

shape. This information is used to build the character recognition network for the

diacritics system. The recognition network along with the features from the

diacritics image is used by the diacritics system to generate the final character

hypothesis. Thus, the diacritics system assists the primary core-shape system. Its

search space is limited by the output of the core-shape system.

As an extension to the above described method, it is also possible to generate

N-best list when performing core-shape recognition. The justification for doing this

is to explore more alternatives instead of only a single hypothesis for a core shape.

Many of these alternatives can be, relatively, easily ruled out by the diacritics

system. Thus, there might be some benefit in expanding the search space for the

diacritics system. The multi-stage character recognition framework is illustrated in

Figure 5.12.

Word recognition: In the case of word recognition, we construct a dictionary

that defines every word as a sequence of only the core shapes. This dictionary can

easily be built by utilizing the character to core-shape mapping. Feature from the

core-shape image is fed to the core-shape system to generate word hypothesis by

utilizing the dictionary. Again, an N-best list of words can be generated instead of

hypothesizing only a single word. The list of hypothesized words is then fed to the

diacritics system to generate recognition scores for all the words. Scores from the

core-shape system and the diacritics system are added for each word respectively.

Finally, the word having the best score is output as the final recognition hypothesis.

The need to add scores from both the system in the case of word recognition is

important because there are words in Arabic which consists of no diacritics (like

 and thus the score from the diacritics system alone will not be helpful in (سلام

making a final decision. Moreover, there can be two different words (like الحب and

-having exactly the same diacritics distribution. Thus, the scores from the core (اللب

shape system as well as the diacritics system are combined for outputting the final

search space is limited by the output of the core-shape system. Figure 5.13

5.3 Modeling core shapes and diacritics separately 89

illustrates our multi-stage word recognition framework with the help of an example.

Key steps in the multi-stage Arabic text recognition are presented in Figure 5.14.

Figure 5.12: The multi-stage character recognition framework. (Handwritten text image source:

IFN/ENIT (Pechwitz et al. 2002)).

Separate text image

into core-shape image

and diacritics image

Core-shape

recognition

system

Recognize the core

shapes

Core-shape hypothesis

Diacritics

recognition

system

Build the character

recognition network based

on core-shape hypothesis

Generate character

hypothesis based on

diacritics information and

the recognition network

Character recognition network

 ز + ا +ـر| ـ+ ـشـ| ـسـ+ ـا + ل

 غ ـع | ـ+ | ئـ بـ | تـ | ثـ | نـ | يـ

Character hypothesis

 عـيـ + + ا + + ر ـشـ+ ـا + ل

)الشرايع(

90 Modeling Options for Arabic Text Recognition

Figure 5.13: An illustration of the multi-stage word recognition system. (Figure adapted from

(Ahmad and Fink 2015a))

5.3 Modeling core shapes and diacritics separately 91

Data Preparation:
1. Training annotation:

 The character or character shape based annotations for the training set are converted to

core shape representation, utilizing the character shape to core shape mapping.

 Another set of annotations are created for diacritics by utilizing the character shape to

diacritics mapping. Characters having no diacritics are replaced by spaces.

2. Dictionary: Two separate dictionaries are created.

 One of the dictionary contains word (or character for character recognition tasks)

definitions in terms of core shapes.

 The other dictionary contains word (or character for character recognition tasks) definitions

in terms of diacritics.

Training:
(a) Core-Shape system

1. All the core-shape models are initialized using the initialization procedures as presented in

Section 2.5.

2. The models are iteratively trained using the Baum-Welch training algorithm and utilizing the

core-shape annotations.

(b) Diacritics system

1. The white-space model is defined as a single-state model.

2. All the diacritics models are initialized using the initialization procedures as presented in

Section 2.5.

3. The models are iteratively trained using the embedded Baum-Welch training algorithm and

utilizing the diacritics annotations.

Decoding:
(a) Character recognition

1. An input image is separated into a core-shape image and a diacritics image.

2. The core-shape system utilizes the features from the core-shape image to hypothesize a

sequence of core shapes. It uses the character to core shape dictionary for decoding. (Optional)

An N-best list of core-shape sequences is generated.

3. A character recognition network is constructed based on the hypothesized core-shape sequence.

4. The diacritics system utilizes the features from the diacritics image along with the constructed

character network from step 3 to generate the final recognition hypothesis. It uses the

character to diacritics dictionary for decoding.

(b) Word recognition

1. An input image is separated into a core-shape image and a diacritics image.

2. The core-shape system utilizes the features from the core-shape image to generate an N-best

list of words. It uses the word-to-core-shape dictionary for decoding.

3. A word recognition network is constructed to include only the N-best hypothesized words.

4. The diacritics system utilizes the features from the diacritics image along with the constructed

word network from step 3 to score the N-best words. It uses the words-to-diacritics dictionary

for scoring.

5. Scores from the systems are added for respective words and the word having the best score is

output as the final hypothesized word.

Figure 5.14: Key steps in the multi-stage Arabic text recognition consisting of the core-shapes

system and the diacritics system.

92 Modeling Options for Arabic Text Recognition

5.4. Integrating sub-characters with core-and-diacritics system

In this section, we will present our third approach to modeling Arabic characters.

It is a natural extension to the first two approaches, namely the sub-character

approach and the core-shape and diacritics approach. The idea here was to combine

both the approaches which can lead to even further reduction in the number of

basic HMMs needed to model all the Arabic characters and their position-

dependent shapes. We can remove the dots and other diacritics from the characters

in the first step and, then, share the similar patterns in the core-shapes using the

sub-character approach. If we take a look at the four Arabic characters and their

16 position-dependent shapes that were presented in Figure 5.1, we can see that,

by removing the diacritics and using the sub-character approach, we can

reconstruct the 16 position-dependent shapes using only five patterns (including

the Kashida connector and the white-space model) in addition to two different

diacritics (one-dot above and three-dots above). Using the word examples from

Figure 5.3, we can notice that the words can be constructed using only 10 unique

patterns (and four diacritics: one-dot above, three-dots above, one-dot below, and

three-dots below) as illustrated in Figure 5.15.

5.4.1. Multi-stage recognition framework

A multi-stage text recognition framework using this modeling approach is quite

similar to the one presented in Section 5.3.1. For setting up the training procedure,

the training transcriptions are modified to represent the core shapes in terms of the

sub-core shapes including the connector stroke. The sub-core-shape models are

trained using the modified transcriptions along with the features from the core-

shape images. There is no change in the training procedure for the diacritics system.

The recognition setup is also similar to the multi-stage approach, discussed

before, except some small modifications which will be discussed here. For character

recognition task, the stage which involves recognition of the core shapes needs a

core shapes to sub-core shapes dictionary. Similarly, for word recognition tasks, the

-core shapes are needed. The rest of the decoding

procedure is exactly the same. Key steps in the multi-stage Arabic text recognition

involving the sub-core shapes and diacritics are presented in Figure 5.16.

5.4 Integrating sub-characters with core-and-diacritics system 93

(a)

(b)

(c)

(d)

(e)

Figure 5.15: Sample words in (a) can be constructed using 28 character shapes listed in (b), or using

15 sub-character shapes as listed in (c), or using 19 core shapes (and four different diacritics) as

listed in (d), or using 10 sub-core shapes (and four different diacritics) as listed in (e).

Data Preparation:

1. Training annotation:

 The character shape based annotations for the training set are converted to sub-core shape

representation, utilizing the character shape to sub-core shape mapping.

 Another set of annotations are created for diacritics by utilizing the character shape to

diacritics mapping. Characters having no diacritics are replaced by spaces.

2. Dictionary: Two separate dictionaries are created.

 One of the dictionary contains word (or character for character recognition tasks)

definitions in terms of sub-core shapes.

94 Modeling Options for Arabic Text Recognition

 The other dictionary contains word (or character for character recognition tasks) definitions

in terms of diacritics.

Training:

(a) Core-Shape system

1. The connector and white-space models are defined as single state models.

2. All the sub-core shape models are initialized using the initialization procedures as presented

in Section 2.5.

3. Transitions are added from non-emitting entry state to the non-emitting exit state for the

connector and white-space models.

4. The models are iteratively trained using the embedded Baum-Welch training algorithm and

utilizing the core-shape annotations.

(b) Diacritics system

1. The white-space model is defined as a single-state model.

2. All the diacritics models are initialized using the initialization procedures as presented in

Section 2.5.

3. The models are iteratively trained using the embedded Baum-Welch training algorithm and

utilizing the diacritics annotations.

Decoding:

(a) Character recognition

1. An input image is separated into a core-shape image and a diacritics image.

2. The sub-core shape system utilizes the features from the core-shape image to hypothesize a

sequence of core shapes. It uses the character to sub-core shape dictionary for decoding.

(Optional) An N-best list of core-shape sequences is generated.

3. A character recognition network is constructed based on the hypothesized core-shape sequence.

4. The diacritics system utilizes the features from the diacritics image along with the constructed

character network from step 3 to generate the final recognition hypothesis. It uses the

character-to-diacritics dictionary for decoding.

(b) Word recognition

1. An input image is separated into a core-shape image and a diacritics image.

2. The sub-core shape system utilizes the features from the core-shape image to generate an N-

best list of words. It uses the word to sub-core shape dictionary for decoding.

3. A word recognition network is constructed to include only the N-best hypothesized words.

4. The diacritics system utilizes the features from the diacritics image along with the constructed

word network from step 3 to score the N-best words. It uses the words to diacritics dictionary

for scoring.

5. Scores from the systems are added for respective words and the word having the best score is

output as the final hypothesized word.

Figure 5.16: Key steps in the multi-stage Arabic text recognition consisting of the sub-core shapes

system and the diacritics system.

5.5 Other improvements related to model training 95

5.5. Other improvements related to model training

In this section, we will present some other strategies we investigated for

improvement in model training. We investigated two major areas: one is related to

multi-stream HMMs, while the other is related to contextual HMMs. We will

present these two approaches in this section.

5.5.1. Multi-stream HMMs

Multi-stream HMMs (please refer to Section 2.7.3 for an introduction on it) has

been used successfully in the domain of speech recognition. They are mainly popular

in audio-visual speech recognition domain, where features from each source form a

separate stream (cf., e.g., (Luettin, Potamianos, and Neti 2001; Manabe and Zhang

2004)). Kessentini et al. (Kessentini, Paquet, and Ben Hamadou 2010) investigated

multi-stream HMMs for handwritten Arabic text recognition. Different

combinations of four different features, computed from the text image, were trained

as two-stream HMMs. The recognition results of two-stream HMM systems were

better than the recognition results obtained when the respective features were fused

or when results were combined from separate HMMs trained on the individual

features.

In our case, we tried a slightly different approach to multi-stream HMMs.

Instead of using completely different features as individual streams, we computed

the horizontal derivative features for every feature frame and use the derivative

features as a separate stream. Based on the experimental results (presented in

Chapter 7), we observe that using multi-stream HMMs, as presented here, does

improve the recognition performance. One possible justification for this

improvement can be attributed to the fact that, as the features are split into two

different streams, the dimension of each stream is essentially half the original

feature dimension. This reduction in dimension can help in more robust output

modeling at the mixtures level. Modeling low-dimension features is more robust

than modeling high-dimension features due to the, relatively, less complex sub-

feature space. Moreover, splitting features into multiple streams also enables the

use of stream weights; thereby, allowing us to assign different importance to each

feature. The issue of selecting optimal weights for the streams was addressed by

experimenting with different weights and selecting the weight combinations that

gives the best recognition performances on the development set. Using different

stream weights for the two streams showed improvement in the text recognition

96 Modeling Options for Arabic Text Recognition

performance as presented in Chapter 7. Figure 5.17 summarizes the multi-stream

training procedure.

Multi-stream training:

1. The models are initialized and trained using the standards procedures in conjunction with the

specific steps related to the modeling technique followed.

2. The mixtures are split into two streams such that the features computed from the image forms

one stream and the derivative features form the second stream.

3. The stream weights are set for each stream by selecting the weight combination that performs

the best in terms of recognition rate on the development set.

Figure 5.17: Steps for multi-stream HMMs training.

5.5.2. Contextual HMMs

In this section we will present our investigations related to contextual modeling for

handwritten Arabic text recognition. Readers can refer to Section 2.7.1 for some

general introduction on contextual modeling using HMMs. As indicated before,

contextual modeling is an important aspect of any HMM-based speech recognition

system; however, its use in the domain of text recognition is not that universal. In

this section, we will, first, discuss the justification and the need for contextual

modeling for handwritten Arabic text recognition. Next, we will discuss the issues

related to contextual modeling for Arabic text recognition. This will be followed by

studying the effect of sub-character modeling on contextual modeling and the role

and benefit of the connector model. Finally, we will discuss class-based contextual

modeling for Arabic text recognition.

5.5.2.1 The need of contextual modeling for handwritten Arabic text recognition

Contextual variations in Arabic text can be visualized and understood at multiple

levels. As each character in Arabic can take different shapes based on its position,

this is the first contextual level that need to be modelled. Figure 5.18 shows

different Arabic words where the encircled glyphs in every row represent the same

character. It can be clearly seen from the figure that the characters have significant

variations due to their position in a word (please refer to Section 3.2 for more

details). The most common way to accommodate these contextual variations

between different character shapes is by treating each character shape as a separate

model (please refer to Section 4.2). An alternative approach is to model a character,

instead of character shape, as an HMM and use contextual HMM modeling to

capture the shape-based variations as was presented by Prasad et al. for printed

Arabic text recognition (Prasad et al. 2008).

5.5 Other improvements related to model training 97

Figure 5.18:

encircled by a color in each row represent the same Arabic character. (Handwritten text images

source: IFN/ENIT (Pechwitz et al. 2002)).

The second level of contextual variations is at the character-shape level. Even

the character shapes show visual variations due to a number of reasons. As

characters in Arabic script are connected to their neighboring characters in a word

(a more correct term will be PAW instead of word as some characters do not

connect to other characters in front of them), some stroke variations do occur when

connecting a character shape to the next character shape in a word. Some variations

are simply due to the different handwriting styles, but some variations seem to be

. A prominent example of this

phenomenon is the occurrence of character pairs that are treated as special ligatures

like -alif (لا). A solution to address this is by modeling these ligatures as separate

models. But, the problem is that, some of these character pairs do not always

appear in ligature form (please refer to Figure 3.9 and Section 3.5 for more details)

and, thus, it is not always possible to model these character pairs as a special model.

Another reason for variations at the character-shape level is a result of sliding

window technique for feature extractions. Some characters partially overlap with

other characters even though they might not, necessarily, be connected. These

overlap get captured within the sliding window passing over a character and, as a

result, effects the features computed for the character. Figure 5.19 illustrates

contextual variation at character-shape level due to neighboring characters. Each

row marks a character shape in a specific color to illustrate the variations in visual

appearances due to its neighboring characters. In order to account for these

variations, the most common approach is to model each character shape as a

separate model and do contextual HMM modeling at the character-shape level, i.e.,

a contextual HMM represents a character shape in the context of its neighboring

character shapes.

98 Modeling Options for Arabic Text Recognition

Figure 5.19: Figure illustrating the effect of neighboring characters on character shapes. Each row

shows instances of a specific character shape (enclosed within a colored-edge rectangle) and the

variations in its visual appearance due to the neighboring characters. (Handwritten text images

source: IFN/ENIT (Pechwitz et al. 2002)).

5.5.2.2 The issues associated with contextual modeling

Because of the fact that variations at character-shape level, due to the neighboring

character shapes, exists in handwritten Arabic texts, it becomes important to model

them for better recognition performances. Contextual HMMs are, thus, a natural

choice for Arabic text recognition. However, using tri-character (tri-character-shape

in this case) HMMs for contextual modeling comes with their own issues, especially

for Arabic script. The concern is related to the high number of contextual models

that results from converting the mono-character-shape HMMs to tri-character-

shape HMMs. Using character shapes as HMMs instead of character HMMs already

led to a four-fold increase in the number of HMMs. Now, converting these

character-shape HMMs into the contextual forms leads to a further increase in the

number of HMMs. One can easily end up having thousands of HMMs. Having a

huge number of HMMs leads to the problem of insufficient training data. Moreover,

some low occurring character-shapes will have even lower number of its different

contextual forms in the training data. This leads to inadequate model training. To

alleviate this problem, some form of clustering is performed. The two most common

approaches are the data-driven clustering and the decision-tree clustering (see

Section 2.7.1 for more details). Both these techniques have been used for Arabic

text recognition, as was presented in Section 4.2. However, model clustering is

applied after training the contextual forms and, thus, if the training was not

5.5 Other improvements related to model training 99

adequate, the clustering will not be optimal. Thus, although there are strong

justifications for using contextual HMMs for Arabic text recognition, its potential

has not been greatly achieved.

5.5.2.3 The effects of using sub-character HMMs and the connector model

In this section, we will present some of the observations regarding the positive

effects of using the sub-character HMMs, along with the connector model, in

relation to contextual modeling. Sub-character modeling, as presented in the

previous sections, leads to a significant reduction in the number of HMMs in a

recognition system, a direct impact of this is the large reduction of tri-character

forms for these modeling units. As the number of contextual HMMs is relatively

low, the problem of inadequate training is alleviated to some extent. However, the

most significant effect on contextual modeling seems to be the result of using the

connector model as proposed in Section 5.2.1. Use of the connector model leads to

two major positive implications on the contextual modeling approach. Due to the

fact that a connector appears between every two characters connected in a word,

the most abundant tri-character models are, therefore, the different contextual

forms of the connector model. The other models mostly have the connector and the

space model as their neighbors; therefore, having fewer contextual forms. Thus, the

tri-character model set is, comparatively, very small when using the sub-character

different neighboring characters are mainly localized towards the periphery of the

characters, and not around the core area. The periphery of the characters where

two characters connect to each other is what the connector basically models. Thus,

having different tri-character forms of the connector model and, at the same time,

limiting the number of tri-character forms of other models, seems to be an effective

approach. Experimental results related to contextual modeling, as presented in

Chapter 7, supports our observations in this regard.

For all the contextual modeling experiments, we initialize the tri-character

HMMs for a character by using the trained context-independent HMM for that

character as an initial model. Next, we train the tri-character models by applying

a number of iterations of the Baum-Welch training algorithm. After this, state level

data-driven clustering is performed to tie similar states across different contextual

forms of a character. State tying between different contextual forms is performed

while preserving the state sequence, i.e., the corresponding states in the different

contextual forms are tied if the distance between two states is within a threshold.

100 Modeling Options for Arabic Text Recognition

Training the contextual HMMs

1. The non-contextual models are initialized and trained using the standards procedures in

conjunction with the specific steps related to the modeling technique followed.

2. Different tri-character* forms for each character* are generated using the training-set

transcriptions.

3. Each tri-character model is initialized as a replica of its corresponding mono-character model

which was trained in step 1.

4. The state-transition matrices of all the tri-character models of a character are tied.

5. The tri-character models are iteratively trained using the Baum-Welch training algorithm.

6. State level data-driven clustering is performed to tie similar states across different contextual

forms of a character while preserving the state sequence. The thresholds are selected based on

the recognition performance on the development set.

7. The state-tied tri-character models are, again, are iteratively trained using the Baum-Welch

training algorithm.

* d in a loose sense here and it can mean any modeling unit like character shape,

sub-character, and core shape.

Figure 5.20: Key steps involved in training the contextual HMMs.

The distance d(x,y) between two states, x and y, is computed using the

following equation as presented in (Young et al. 2002):

𝑑(𝑥, 𝑦) = −

1

𝑀
∑ 𝑙𝑜𝑔[𝑏𝑦(𝜇𝑥𝑚)]

𝑀

𝑚=1

+ 𝑙𝑜𝑔[𝑏𝑥(𝜇𝑦𝑚)] (10)

where;

M is the number of mixture components,

μxm is the mean vector for the xth mixture component of state m, and

by(o) is the probability of generating observation o by state y which is given by

Equation 1.

Figure 5.20 outlines the key steps involved in training the contextual models.

5.5.2.4 Class-based contextual modeling for Arabic text recognition

As we discussed above, one of the main problems when using contextual HMMs for

Arabic text recognition is the inadequate training of the resulting high number of

tri-character models. We also observed that, by using sub-character modeling

approach and particularly the connector models, we can reduce the number of

unique tri-characters. These observations led us to investigate class-based

contextual modeling for Arabic text recognition. The core idea was to limit the

number of unique tri-characters by not modeling every tri-character as a separate

5.5 Other improvements related to model training 101

model, but, instead, by grouping the characters in the left and the right context

into classes where characters in each class have similar effects on its neighboring

characters.

The idea of class-based contextual modeling for handwritten text recognition is

not new. A similar idea was presented by Fink and Plötz (Fink and Plötz 2007) for

offline recognition of handwritten text in Latin script. The authors grouped the

characters appearing in the left and the right context into six different categories:

characters occupying core area, characters with ascenders, characters with

descenders, characters with both ascenders and descenders, numerals, and the

upper case characters. The groups were identical for both the left and the right

context. Authors reported improvement in recognition results, as compared to the

baseline context-independent system, when using this approach. At the same time,

the normal approach to contextual HMMs resulted in poorer results when compared

to the baseline system.

We grouped the Arabic characters into seven different classes for the left

context, i.e., for character appearing after a given character, and four different

classes for the right context, i.e., for the characters appearing before a given

character. This grouping is subjective and was based on

behavior in the context of other characters. Table 5.1 lists the character classes for

the left context and Table 5.2 list the character classes for the right context. It

should be noted that the number of classes as well as the specific characters in a

given class is different for the two contexts. This is because the characters in Arabic

have different influence on their neighboring characters. For example, the character

ʼ(ر) has a strong descender which affects the characters after it, i.e., to its left,

but does not affect the characters before it, i.e., to its right. Figure 5.21 outlines

the key steps involved in training the class-based contextual models and performing

word recognition using them.

In Chapter 7, we will present the experiments we conducted and the results we

obtained by employing the modeling and the training approaches presented in this

chapter.

102 Modeling Options for Arabic Text Recognition

Table 5.1: List of character classes for the left context.

Left contexts

Class
Example character

shapes

Ascenders ـا ـل ـلـ
Descenders ج ح خ ع غ
Core ـد ـر ـب ـبـ ـت ـتـ ـث ـثـ
Loop ـمـ ـط ـف ـقـ ـص
Angular ـجـ ـحـ ـخـ ـعـ ـغـ

 ـكـ
Space ا ب ت ن ل و د ر

Table 5.2: List of character classes for the right context.

Right contexts

Class
Example character

shapes

Ascenders ــظ ــط ـلـ ـل
Descenders ـر ر و ـو د ـد
Core ـ ـعــجـ ـح ـثـ ــتـ ث ـبـ تـ ـب
Space ـج ـث ـت ـب ـل ـاا

 ـص ـض ـح ـخ ـع ـغ

5.6 Summary 103

Data preparation:

1. Training annotation:

 The training set annotations are converted into tri-character forms.

 The tri-character annotations are modified such that the left and the right contexts are

mapped to the respective classes.

 A list of unique class-based tri-characters are generated from the modified annotations.

2. Dictionary:

 Word are defined in terms of class-based tri-characters.

Model Training:

1. The non-contextual models are initialized and trained using the standards procedures in

conjunction with the specific steps related to the modeling technique followed.

2. Each class-based tri-character model is initialized as a replica of its corresponding mono-

character model which was trained in step 1.

3. The state-transition matrices of all the class-based tri-character models of a character are tied.

4. The class-based tri-character models are iteratively trained using the Baum-Welch training

algorithm.

5. State level data-driven clustering is performed to tie similar states across different contextual

forms of a character while preserving the state sequence. The thresholds are selected based on

the recognition performance on the development set.

6. The state-tied tri-character models are, again, are iteratively trained using the Baum-Welch

training algorithm.

Decoding:

1. The class-based tri-character models along with the modified dictionary are used for

recognizing the words. The Viterbi algorithm is used for decoding.

Figure 5.21: Key steps involved in training the class-based contextual HMMs and text recognition

utilizing the class-based contextual HMMs.

5.6. Summary

The standard approach, as reported in the literature, is to use position-dependent

character shapes as basic modeling units for Arabic text recognition. This leads to

text recognition systems with large models sets typically around 100 models.

Large number of models in a system implies the need for large amounts of data for

robust training. In this chapter, three alternative modelling approaches were

presented for Arabic text recognition. These alternative modeling approaches were

proposed based on the observations that Arabic characters share common patterns

between them and many characters differ from other characters only in diacritics.

All the presented modeling approaches lead to significant reductions in the total

number of models in the resulting systems as compared to the system using the

104 Modeling Options for Arabic Text Recognition

standard character shapes as models. The systems using the presented modeling

approaches are expected to perform more robustly when compared to the standard

system, especially when little training data is available. Strategies to deal with

situations where no handwritten training data is available are presented in the next

chapter.

105

6 Handwritten Text Recognition in the

Absence of Handwritten Training Set

n the last chapter, we presented the different modeling options we investigated

for Arabic text recognition. In this chapter, we will present our investigations

related to recognition of handwritten Arabic text when no handwritten training set

is available. We will first present the motivations for our work. This is followed by

techniques we investigated for machine printed Arabic text recognition in the

presence of multiple font typefaces (referred to simply as font hereafter) and also

recognition of machine printed text in a font which was not seen during training.

The work related to machine printed text was a by-product of our efforts towards

the original problem, i.e., on how to recognize handwritten text when no

handwritten training data is available, as it can be regarded as a, relatively, simpler

but a similar problem. Finally, we will present our approach to handwritten text

recognition without handwritten training set.

6.1. Motivation for this work

Training a recognizer is one of the most important stages for any text recognition

task. Availability of enough training samples of each class is very important to

adequately train a recognizer. The classes can represent characters, character

shapes, strokes, or other suitable representation like the ones discussed in the

previous sections. To assist the research in the area, benchmark databases are

developed to provide data for training and calibrating the recognizer and to

(Marti and Bunke

2003; Mahmoud et al. 2014; Pechwitz et al. 2002)). In order to ensure adequate

training, huge amounts of data are collected and labelled. Data collection, labelling,

and verification are labor-intensive and time-consuming activities. Researchers

generally agree that quantity as well as quality of training data is important (cf.,

e.g., (Baird 2007; Varga and Bunke 2008)). Moreover, as the data collected in one

environment is mostly not suitable for text recognition task in a different

environment, there is a constant need to prepare new datasets for different text

I

106 Handwritten Text Recognition in the Absence of Handwritten Training Set

recognition scenarios. To alleviate the problem of manual data labelling and

verification, some semi-supervised approaches to label the data have been

investigated (e.g., (Richarz et al. 2014)), but the problem is far from being solved

in this respect.

This issue has been identified by the researchers and, accordingly, some work

has been published to deal with situations involving smaller training sets. The most

notable approaches are related to text-image synthesis; where, training data is

augmented by synthesizing text images from the original handwritten training set

which was deemed not big-enough to adequately train the recognizer (e.g., (Moysset

et al. 2014; Elarian et al. 2014)). Varga and Bunke (2008) presented perturbation

models to synthesize text images from handwritten text images. A number of

geometric distortions were applied in addition to thinning and thickening of pen

strokes. The synthesized text line images augmented the training set. Experiments

conducted for offline handwritten text recognition tasks showed that adding the

synthetic data, to the original training set, led to improvements in recognition rates.

Improvements were observed both when the original training set was small as well

as large. Although, it was stated that it is easier to improve in situations where the

training set is small. Miyao and Maruyama (2006) presented use of synthesized

characters, in addition to the original samples, to improve the training of a

Japanese Hiragana characters. Affine transformation was applied on strokes of the

characters to synthesize additional characters. For Arabic text recognition, Elarian

et al. (2015) presented two approaches to synthetically generate additional training

data from a small set of handwritten Arabic text images. One of the approaches

concatenate isolated character samples to form words. Some fitness criteria were

proposed to select adequate samples for smooth concatenation. The second

approach was based on connector (i.e., Kashida) modeling such that two adjacent

characters can be joined by synthesizing the connector between them. The results

from a handwritten Arabic word recognition task showed that the addition of

synthetic data to the original training set can improve the text recognition results.

For more details on text-image synthesis for improving text recognition

performance, readers can refer to (Elarian et al. 2014).

Techniques based on semi-supervised learning where few labelled data is used

to annotate the complete training set is another notable approach to deal with the

problems of limited training data. Frinken et al. (2011) -

approach where two separate systems were initialized using few labelled samples.

The two systems were, then, iteratively trained such that a system annotates the

6.2 Machine printed text recognition 107

unlabeled data which is supplied as training data to the other system after filtering

the good results. An approach to train a recognizer using only unlabeled data was

presented by Kozielski et al. (2014). The most challenging part was to initialize the

system as no labeled data was available for training. The authors generated an

initial transcription of the unlabeled data by using a language model and

information related to the width of the word images. They also used some heuristics

to train white-space models separate from the character models. An iterative

approach was employed to fine tune the recognizer by, first, generating

transcription for the training data and then, in-turn, training the recognizer on the

hypothesized data in each iteration. The approach was effective based on word

recognition experiments conducted on two separate datasets. The results were quite

promising even though they were lower than the results of the systems trained on

labeled training data.

According to the best of our knowledge, no work has been reported in the

literature which deals with situations where no handwritten training set is

available. This area of research has favorable implications as, in future, this can

lead to greatly minimizing, if not completely removing, the need for handwritten

training set. In this section, we will present our approach to handwritten Arabic

text recognition where no handwritten training set is available. Our approach was

based on the observation that Arabic is an inherently cursive script; therefore, it

has a degree of visual similarity both in the handwritten as well as in the machine

printed forms. Thus, to initialize the text recognition system (which is the most

challenging part in such problems) we use computer generated machine printed

text as the training data. The problem of recognizing handwritten text using a

system trained on machine printed text is to a degree similar, even though much

harder, to the problem of recognizing machine printed text in a font which was not

seen during the training of an OCR system. Thus, to investigate this approach

further, we first investigated text recognition of machine printed text in a font not

seen by the recognizer during training. We will first present this work before

returning back to the original problem of handwritten text recognition when no

handwritten training data is available.

6.2. Machine printed text recognition

Researchers have addressed text recognition for unseen font using various

approaches. The most common approach is to train the recognizer with samples

from as many fonts as possible to address the variability during recognition (e.g.,

108 Handwritten Text Recognition in the Absence of Handwritten Training Set

(Bazzi, Schwartz, and Makhoul 1999; Prasad et al. 2008; Bazzi et al. 1997;

Khorsheed 2007)). This approach, normally, results in better overall recognition

when compared with using a recognizer that was trained using texts from only a

single font. However, the error rates are significantly higher than the error rates for

text recognition for known fonts. Another approach for unseen font text recognition

was proposed by Ait-Mohand et al. (Ait-Mohand, Paquet, and Ragot 2014). They

proposed a supervised HMM adaptation technique in which both the model states

as well as the model lengths were adapted. They demonstrated the effectiveness of

their technique for mixed-font and unseen-font text recognition. However, the

technique has two issues: the need for a few labeled text samples in the recognition

font, i.e., the need for adaptation data, and the dependency of the technique on the

assumption that all text line images to be recognized will belong to a single font.

To deal with the situation of unseen-font text recognition, we use a two-step

font association based recognition. We train multiple mono-font text recognizers

instead of training a recognizer on text mages from multiple fonts. Moreover, we

propose a font identification module which can associate a text line image to the

closest font. During recognition, the input text line image is, first, associated with

a known font. As a second step, we will use the mono-font recognizer, which was

trained on the associated font, to generate the recognition hypothesis. If there are

multiple text lines images to be recognized using the identified recognizer, we

perform unsupervised HMM adaptation during the recognition. Supervised HMM

adaptations can be performed, instead, if some labelled samples are available for

the input font. If the unseen font is much different than any of the trained fonts,

the text line image to be recognized may not be associated to a single font with a

high confidence. In such cases, a group of fonts (which is a subset of all the trained

fonts) may be more representative of the input text line instead of a single font. A

recognizer trained on the subset of the fonts maybe used instead of using a

recognizer trained on a single font. Investigating this approach is a future work.

Based on the experimental results presented in Section B.2, this approach looks

effective. Moreover, this approach enables the use of font specific aspects (if any)

for feature extraction (for example, font specific features or parameters) and

training (for example, different fonts can have different ligature models) which can

further optimize the recognition performance. To train the font association module,

one can use appropriate features and classifiers. In the present work, we present a

set of simple and effective features for font identification that rely mainly on the

projection profile of the text line image. These features were used with support

6.2 Machine printed text recognition 109

vector machines (SVM) classifier, and the font identification results are very

promising, as demonstrated in Section B.2. Below we describe our font

identification features.

6.2.1. Features for font Identification

The features are extracted from height normalized (i.e., keeping the aspect ratio

constant) text line images. Before introducing the features, we would like to

introduce a function 𝑝(𝑖, 𝑗) that we will use frequently to define our features.

𝑝(𝑖, 𝑗) = {
1, 𝑖𝑓 𝑟𝑜𝑤 ′𝑖′ 𝑐𝑜𝑙𝑢𝑚𝑛 ′𝑗′ 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒 ℎ𝑎𝑠 𝑖𝑛𝑘 𝑝𝑖𝑥𝑒𝑙
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Moreover, we use the term to denote to denote image

width.

a. Maximum ink projection (F1): This feature calculates the maximum

value of the ink projection of a text image. The value is normalized by

the image width. The dimension of the feature is one.

𝐹1 =
max

𝑖≔ 1 𝑡𝑜 ℎ
(∑ 𝑝(𝑖, 𝑗)𝑤

𝑗=1)

𝑤

b. Ratio of ink-pixels (F2): It is the ratio of the number of ink-pixels in a

row over the maximum ink projection. The dimension of the feature is

the same as the normalized height of the image.

𝐹2(𝑖) =
∑ 𝑝(𝑖, 𝑗)𝑤
𝑗=1

max
𝑖≔ 1 𝑡𝑜 ℎ

(∑ 𝑝(𝑖, 𝑗)𝑤
𝑗=1)

c. Percentage increase/decrease of pixel projection (F3): It is the

percentage of increase/decrease of pixel projection in a given row as

compared to the row immediately above it. The dimension of the

features is one less than the normalized height of the image.

𝐹3(𝑖) =
∑ 𝑝(𝑖, 𝑗)𝑤
𝑗=1 − ∑ 𝑝(𝑖 − 1, 𝑗)𝑤

𝑗=1

∑ 𝑝(𝑖 − 1, 𝑗)𝑤
𝑗=1

 ; 𝑤ℎ𝑒𝑟𝑒 1 < 𝑖 ≤ ℎ

110 Handwritten Text Recognition in the Absence of Handwritten Training Set

d. Compaction (F4): It is defined as the ratio of the total number of ink-

pixels in a text line image over the total area of the line image. The

dimension of the feature is one.

𝐹4 =
∑ ∑ 𝑝(𝑖, 𝑗)𝑤

𝑗=1
ℎ
𝑖=1

ℎ × 𝑤

e. Count of projections above average (F5): It is the count of the number

of rows in the image whose ink-pixel count is above the average ink-

pixel count of the image rows. The dimension of the feature is one.

𝐹5 =∑𝑎(𝑖)

ℎ

𝑖=1

; 𝑤ℎ𝑒𝑟𝑒,

𝑎(𝑖) =

{

 1, 𝑖𝑓 ∑𝑝(𝑖, 𝑗)

𝑤

𝑗=1

>
∑ ∑ 𝑝(𝑖, 𝑗)𝑤

𝑗=1
ℎ
𝑖=1

ℎ

 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

We concatenate all the above defined features into one feature vector for a text

line image.

6.2.2. Framework for machine printed text recognition

Based on the above discussions, we propose a framework for machine printed text

recognition using the HMMs. In the first step, we train an HMM recognizer for

individual fonts. We also train the font association module using the features

described in Section 6.2.1 and an SVM classifier. For an input text line image that

has to be recognized, we, first, associate the text image to the closest known font

after extracting the font features and providing them to the font association

module. Next, we extract features from the text line image for text recognition. If

font-specific parameters for feature extraction (such as window width and overlap)

exist, they can be employed during feature extraction. After feature extraction, we

utilize the HMM recognizer (for the associated font) for decoding. If we expect a

batch of text line images from a single font during decoding, we have the following

two options: (i) If some labeled samples are avai

perform supervised HMM adaptation prior to decoding; otherwise, (ii) we perform

6.3 Approaches for handwritten text recognition 111

unsupervised adaptation during decoding. If we expect random input images from

a number of fonts, then we decode the text using the associat

Figure 6.1 illustrates the framework steps.

6.3. Approaches for handwritten text recognition

Now, we will focus back on the original problem handwritten text recognition

without the handwritten training set. As we mentioned before, initializing the

recognizer is one of the most important and challenging issues in such situations.

To initialize the recognition system at some reasonable level, we use computer

generated machine printed text as training data and later perform unsupervised

HMM adaptation during recognition. As Arabic script is cursive both in machine

printed and handwritten forms, using computer generated machine printed text for

training and adapting it for handwritten text recognition proves to be promising.

In the following sub-sections, we will present our step-wise approach to deal with

the scenario of handwritten text recognition in the absence of handwritten training

data.

6.3.1. Training using computer generated text in single font

We generated Arabic text in a number of different fonts and trained separate

recognition systems for each of the font. We were interested in knowing how

effective a mono-font recognizer will be in recognizing handwritten Arabic texts.

Due to the cursive nature of the Arabic script, machine printed texts do have a

degree of visual resemblance to handwritten texts; although, the variability in

handwritten texts is quite high. Moreover, we were also interested to investigate

the effects of different font on the recognition performance. It will be useful to know

if all the recognizers, each trained on specific-font texts, perform similar or the

performance is different for different fonts. If the performance is different, can the

visual complexity of a font give us some indications about its handwritten text

recognition capability in the sense that more complex fonts perform better or vice-

versa. Figure 6.2 shows samples of Arabic word images in one machine printed font

and also samples of handwritten images of the same words. From the figure we can

notice that the machine printed text (the right column) has some visual similarities

to the handwritten texts (the left column); although, handwritten texts have more

variability.

112 Handwritten Text Recognition in the Absence of Handwritten Training Set

Figure 6.1: Framework for machine printed text recognition. (Figure adapted from (Ahmad,

Mahmoud, and Fink 2016))

Associate font with the text line

image

Trained HMM

recognizers for

individual fonts

Extract features (with associated

font-specific parameters)

Recognize text using the adapted

HMM recognizer

Input text line image

Recognition Hypothesis

Font association

module

Labeled

samples

available?

Recognize text using the associated

font’s HMM recognizer with

unsupervised adaptation

Font-specific

feature parameters

Adapt the mono-font HMM

recognizer for the associated font

using adaptation data

o

Yes No

6.3 Approaches for handwritten text recognition 113

Samples handwritten word

images

Computer generated images

(Naskh font)

Figure 6.2: Samples of computer generated text images in one font (Naskh) along with samples from

handwritten text images for the same texts. (Figure from (Ahmad and Fink 2015b))

6.3.2. Training using computer generated text in multiple fonts

In this step, we want to investigate the effects on handwritten text recognition

when using a recognizer which is trained on multiple fonts, instead of just one font.

Does the recognizer trained on text images from multiple fonts perform better than

the recognizers trained on only a single font? There is a good reason to believe that

the recognizer may perform better when trained on multiple fonts as this may, to

some extent, enables it to model the handwriting variability better when compared

to the recognizers trained on text from only one font. Figure 6.3 shows sample word

images for two words in eight different fonts as well as sample handwritten word

images for the same two words. We can observe from the figure that different fonts

add to the variability in appearance which may help, to some extent, model the

handwriting variability.

114 Handwritten Text Recognition in the Absence of Handwritten Training Set

Computer generated Images

(font name)

Handwritten word

images

(Arabic Typesetting)

(Diwani)

(Naskh)

(Rekaa)

(Tahoma)

(Thuluth)

(Traditional Arabic)

(Zarnew)

(Arabic Typesetting)

(Diwani)

(Naskh)

(Rekaa)

(Tahoma)

(Thuluth)

(Traditional Arabic)

(Zarnew)

Figure 6.3: Samples of computer generated text images in different fonts along with samples from

handwritten text images for the same texts. (Figure from (Ahmad and Fink 2015b)).

6.3.3. Performing unsupervised adaptation

Unsupervised HMM adaptation techniques recalibrate the trained parameters

based on the new data they see during recognition (please refer to Section 2.7.2 for

more details on HMM adaptation techniques). It has been used for adaptation of

handwritten text recognizer for new writers (e.g., (Saleem et al. 2009)). HMM

6.3 Approaches for handwritten text recognition 115

adaptations techniques were applied for adapting a multi-font text recognizer to a

specific-font text recognition task in (Ait-Mohand, Paquet, and Ragot 2014). In the

present work, we investigated the use of HMM adaptation to adapt a recognizer

trained on printed text to handwritten text recognition task. As we do not use any

labeled training data, we perform unsupervised HMM adaption during recognition.

6.3.4. Using test hypothesis as data for iterative training

In this approach, we generate recognition hypothesis for the handwritten test

images using the system developed by the previous approach. Next, we use these

recognition hypothesis to re-train the classifier. Once the handwritten text has been

-turn, for training can prove to be

an effective approach and may perform better than the previous approaches. In

this case, the previous approaches can be regarded as initialization steps to start-

up the recognizer. Clearly, for this approach to work, it will be important that the

recognition hypothesis generated at this stage is reliable to, at least, some degree.

Training on poorly hypothesized data can, in fact, do more harm than good and

can even perform worse than the previous approaches as the classifier will be

trained on huge amounts of wrongly labeled data (cf. (Baird 2007)). Thus we need

to limit, if not completely remove, the mislabeled data from the correctly

hypothesized data. To address this issue, we remove the bottom five percent of the

hypothesized data based on the length-normalized scores. Figure 6.4 shows a typical

graph for normalized recognition scores. The bottom five percent is marked to give

an indication of the score range of the removed data. The bottom five percent does

not necessarily mean wrongly hypothesized data; however, there is a high likelihood

that many of the images were wrongly hypothesized. Another approach, which we

have not yet investigated, is to use the recognition hypothesis on the test set

together with the computer generated text as the training data. This will require a

careful mix of the two sets so as not to over-train a classifier on one type of data.

116 Handwritten Text Recognition in the Absence of Handwritten Training Set

Figure 6.4: An example graph showing the normalized recognition scores (sorted) for the text

images.

performance by iteratively feeding the improved recognition hypothesis as training

data (after removing the images having the worst length-normalized recognition

scores) which in-turn can lead to better recognition. After certain iterations, the

recognition performance may reach an improvement threshold and further

iterations may not, necessarily, improve much. This improvement threshold can be

judged by looking at the average log-probability of the frames during training. If

there is no significant improvement in the average log-probability of the training

feature frames, the iterative algorithm can be terminated at that step. Figure 6.5

shows the block diagram of the complete recognition process as proposed here.

6.4. Summary

A step-wise approach to system initialization and training in the absence of

handwritten training data was presented in this chapter. As Arabic script is cursive

both in the machine printed and the handwritten forms, there is a degree of visual

similarity between the two forms. This observation led us to investigate the use of

computer generated texts in multiple font typefaces as training data for system

adapting the system, trained on machine printed texts, on handwritten text

recognition tasks. The adaptation was done in an unsupervised manner while

performing text recognition. Finally, using the test hypothesis as training data in

an iterative way has a potential to further improve the results. The three

alternative modeling approaches presented in the previous chapter along with the

approaches presented in this chapter to deal with situations where no handwritten

training data is available are evaluated in the next chapter.

6.4 Summary 117

Figure 6.5: The process framework for Arabic text recognition without handwritten training set.

(Handwritten text image source: IFN/ENIT (Pechwitz et al. 2002)).

Generate machine

printed text images in

various fonts

Train an HMM system

using the machine printed

text images

Computer

generated text

images

Initial system

Generate recognition

hypothesis for the test set

employing unsupervised

HMM adaptation

Recognition

hypothesis

Remove hypothesis

having low scores

Filtered recognition

hypothesis
Train the HMM system

with the new hypothesis

Improved

system

Generate recognition

hypothesis for the test set

 9المنزه 2ار المن 18ارة المح

Iterative

training

119

7 Evaluations

n this chapter, we will present the evaluations for the different modeling and

training options that were presented in Chapter 5 and Chapter 6. We will first

present the text recognition databases we used for evaluations. Next, in Section 7.2,

we will present a brief description of the text recognition tasks we performed. In

Section 7.3, we present the evaluation measures we used. The details of the

experiments conducted, the results obtained, and the discussions will be presented

in Section 7.4. Finally, in Section 7.5 we present a summary of the experiments,

the results, and the discussions. The experiments and the results related to our

contributions to machine printed text recognition, as presented in Section 6.2, can

be found in Appendix B.

7.1. Databases for text recognition

We employed two handwritten Arabic text recognition databases for the

evaluation. Below we present a brief description of the databases.

7.1.1. IFN/ENIT database of handwritten Arabic names

IFN/ENIT database is the most popular and the commonly used benchmark

database for handwritten Arabic text recognition research (Pechwitz et al. 2002).

The database consists of handwritten images of the names of Tunisian cities and

towns divided into seven sets a to f, and s. The lexicon size is 937 names where

each name has one or more words. Some names have two or more variations. The

database originally consisted of 32,492 images divided into sets a to e. Later, set f

and set s, consisting of 8671 and 1573 images respectively, were added. Set s is

regarded as the most difficult set. One of the reasons being that it was collected in

a different country and hence has different writing styles as compared with the

other sets. Figure 7.1 shows some sample images from the IFN/ENIT database.

IFN/ENIT database has been used in various text recognition competitions and

the results are presented in the top conferences, related to the field, like ICDAR

and ICFHR (e.g., (Märgner, Pechwitz, and Abed 2005; Märgner and Abed 2007;

El Abed and Märgner 2010a; Märgner and Abed 2010; Märgner and Abed 2011)).

I

120 Evaluations

Figure 7.1: Sample text images from the IFN/ENIT database.

7.1.2. KHATT database of handwritten Arabic texts

KHATT database consists of unconstrained handwritten Arabic text images

(Mahmoud et al. 2014; Mahmoud et al. 2012). A total of 1000 writers wrote the

text where each writer wrote four paragraphs. Two of the paragraphs contain

similar text written by all writers and are, therefore, not included in the text

recognition experiments. Text line images were extracted from the paragraph

images. The database is divided into three disjoint sets for training, development,

and testing respectively. The train, development, and test sets currently contain

4808, 937, and 966 text line images respectively which were extracted from the

paragraph images. The KHATT database is more challenging than the IFN/ENIT

database as it contains unconstrained handwritten text. Figure 7.2 shows some

sample text line images from the database.

Figure 7.2: Sample text images from the KHATT database.

 7.3 Evaluation measures 121

7.2. Text recognition tasks

In this section, we describe the different text recognition tasks we conducted using

the different databases.

7.2.1. Word recognition

The first set of experiments we conducted are the word recognition tasks using the

IFN/ENIT database. In a strict sense it may be termed as name recognition instead

of word recognition as a name may consist of multiple words. We used the most

common train test configuration as reported in the literature including the various

competitions held using the database. Apart from the common configurations, we

also experimented under constrained training scenarios where we used smaller sets

for training the recognizer. Unless otherwise stated, set d was used as the

development set to optimize the parameters.

Word recognition on the IFN/ENIT database was also carried out when we

investigated our proposed approach to perform handwritten text recognition

without using handwritten training sets.

7.2.2. Character recognition

Apart from performing word recognition tasks using the IFN/ENIT database, we

performed lexicon-free character recognition experiments generating character

hypothesis instead of word hypothesis using a system trained on text line images.

Not using the lexicon, as well as the language models, makes the recognition tasks

harder but it leads to more insights regarding the effects of the use of the different

modeling options. Standard train test configurations were used for

experimentation.

We also performed character recognition experiments using the KHATT

database. We used the same partitions of the database for training, development,

and test as is provided in the KHATT database. Word recognition using the

KHATT database was not experimented as it involves dealing with a number of

issues related to the selection of lexicon size and appropriate n-grams which were

not the focus of the present research.

7.3. Evaluation measures

In this section, we present the measures we used to evaluate the text recognition

results depending on the text recognition tasks.

122 Evaluations

7.3.1. Word Error Rate (WER)

When performing word recognition task, we use Word Error Rate (WER) as the

performance measure. WER is defined as follows:

𝑊𝐸𝑅 (%) =
𝑆 + 𝐼 + 𝐷

𝑁
× 100

where;

S is the substitution error, i.e., the total number of words substituted,

I is the insertion error, i.e., the total number of words inserted,

D is the deletion error, i.e., the total number of words deleted, and

N is the total number of words in the evaluation set.

The number of words substituted, inserted, and deleted are counted after

aligning the recognized word string against the transcription. The alignment is

known as maximum substring matching problem (cf. (Huang et al. 2001) pages

419 421). In case of isolated word recognition, the equation simplifies to:

𝑊𝐸𝑅 (%) =
𝑆

𝑁
× 100

7.3.2. Character Error Rate (CER)

For character recognition tasks, we report the results using Character Error Rate

(CER) as the performance measure. Similar to WER, CER is defined as:

𝐶𝐸𝑅 (%) =
𝑆 + 𝐼 + 𝐷

𝑁
× 100

where;

S is the substitution error, i.e., the total number of characters substituted,

I is the insertion error, i.e., the total number of characters inserted,

D is the deletion error, i.e., the total number of characters deleted, and

N is the total number of characters in the evaluation set.

The number of characters substituted, inserted, and deleted are counted after

aligning the recognized character string against the transcription.

7.3.3. Significance interval of the results

In addition to reporting the results in terms of WERs or CERs, we also report the

statistical significance of results when comparing the results from different systems

 7.4 Experimentations, results, and discussions 123

on the same text recognition task. We use the statistical test for the difference of

two proportions as presented in (Dietterich 1998) to report the significance interval

of results. Thus, for a given text recognition task, we report the significance interval

of the results at 95% confidence level.

7.4. Experimentations, results, and discussions

In this section, we will present the experiments we conducted, the results we

obtained, and the resulting discussions. First we will present the word recognition

experiments we conducted on the IFN/ENIT database. This will be followed by

the character recognition experiments that were conducted using the IFN/ENIT

database. Next, the character recognition experiments conducted on the KHATT

database will be presented. Experiments related to handwritten text recognition

without the use of handwritten training data is presented next. Finally, character

recognition using machine printed databases will be presented.

7.4.1. Word recognition using the IFN/ENIT database

We will present the word recognition experiments we conducted using the

IFN/ENIT database using the different modeling choices presented in Chapter 5.

7.4.1.1 Modeling choice: Character shapes

In this section, we will present the details of the recognition system that uses

character shapes as models and the results we obtained using the system for the

word recognition tasks. Our text recognizer is a system based on continuous HMMs.

We use HTK tools (Young et al. 2002) to build our recognizer. Below, we will

describe the key aspects of our system before discussing the experiments and the

results.

The first step involved preprocessing of the text images. The text images were

already binarized. The only preprocessing step we performed was the baseline

correction of the text images. To correct the baseline, we, first, remove the small

components from the text image. Next, we select the ink pixels from the lower

contour of the text. The position of the selected ink pixels were, then, used to

estimate a course-baseline. Next, the ink pixels which were far (more than one

standard deviation) from the estimated course-baseline were removed from the

selection. We then perform regression on these selected points to estimate the skew

angle of the baseline. Finally, the image is rotated based on the estimated skew

angle.

124 Evaluations

After correcting the baseline of the text images, we extract the features from

them. We used the sliding window approach for feature extraction with the height

of the window being the same as the image height and the width of the window

was selected as 8 pixels. Consecutive windows overlap by 4 pixels such that the

window shift is 4 pixels (i.e., 8 4 = 4 pixels). It should be noted that the sliding

window runs from right to left across the text image as Arabic is written from right

to left. We computed nine features from the sliding window frames running across

the text line images. Apart from the nine features computed from the image-slices,

we appended nine additional features for every window frame. These features are

the derivative features. Thus, the dimension of the feature vector is 18. These

feature were adapted from Wienecke et al. (Wienecke, Fink, and Sagerer 2005).

Figure 7.3 lists down the features extracted from the text line images.

The IFN/ENIT database contains the transcriptions for the word image at

character-shape level. In addition to the -alif ligature, few other character pairs

are also represented by special ligatures. Moreover, some characters have optional

Shadda diacritic over them and, as such, are represented by special models. We

replaced some low occurring models (i.e., models whose counts were less than 30 in

the training set) having Shadda by the models of the same character but without

the Shadda. We ended up with a total of 157 models in our recognition system. All

the models have Bakis topology. A dictionary consisting of definitions for the town

and city names was constructed based on the annotations provided in the

IFN/ENIT database. Some names have alternate variations and, as such, all the

definitions were added to the dictionary.

Features for text recognition

Following are the list of features we computed from the text line images for text recognition

tasks. These features were adapted from Wienecke et al. (Wienecke, Fink, and Sagerer 2005):

1. The average distance of the baseline to the upper contour of the ink pixels.

2. The average distance of the baseline to the lower contour of the ink pixels.

3. The average distance of the baseline to the center of gravity of the ink pixels.

4. The angle of the upper contour of the ink pixels with respect to the baseline.

5. The angle of the lower contour of the ink pixels with respect to the baseline.

6. The angle of the center of gravity of the ink pixels with respect to the baseline.

7. The average of the number of black-to-white transitions per column.

8. The percentage of ink pixels in a frame.

9. The average number of ink pixels between the upper and lower contours of the ink

pixels.

Figure 7.3: The list of features extracted from the text line images for text recognition.

 7.4 Experimentations, results, and discussions 125

To initialize and train the models, we first performed model length adaptation

by Z. Jiang et al. (Z.

Jiang et al. 2012) for MLA. All the models were initialized with large number of

states (20 states with Bakis topology) and then the states having very low self-

transition probabilities were removed from the model. After deciding the number

of states for each model, we followed a multi-step approach to system initialization

and training. In the first step, the models were initialized using the flat-start

procedure (also known as uniform initialization) followed by a number of iterations

of Baum-Welch training. The trained system was then used to perform forced

alignment of the training data. Next, the information from forced alignment of the

training samples was used to initialize individual HMMs using Viterbi initialization.

This was followed by a number of iterations of Baum-Welch training. Finally, the

trained system was used to decode the evaluation set using the Viterbi algorithm.

It is important to note that the remaining system parameters like the number of

mixtures per state and the parameters used by the HTK tools were optimally

configured based on the recognition results on the development set. Set d was used

as the development set for all the experiments involving the IFN/ENIT database.

For the first set of experiments, we used the standard train test configurations.

We used abc d as the train test set configuration for system development. Key

system statistics related to the training the system using sets a, b, and c are

presented in Table 7.1. It is interesting to note that 23 models have less than 100

samples and almost half the models have less than 200 samples.

Table 7.2 presents the summary of the results for standard train test

configurations. It can be seen from the table that our character shape system

performs reasonably well when compared to the state-of-the-art systems evaluated

on the IFN/ENIT database (cf. Table 4.2). The best results are reported for set d

which is understandable given the fact that all the parameters were optimized using

this evaluation set. The lowest rate (i.e., the highest WER) is reported on the

evaluation set s which confirms that it is the most difficult set. These results will

be treated as our baseline results and our character shape systems will be regarded

as the baseline systems for the following experiments.

126 Evaluations

Table 7.1: Key statistics related to training the system with the IFN/ENIT training sets a, b, and c

using character shapes as models.

Number of HMMs 157

Average number of samples per model 531

Median number of samples per model 186

Number of models having less than 100 samples 23

Number of models having less than 200 samples 80

Table 7.2: Summary of the word recognition results (in WERs) using character shapes as models on

the IFN/ENIT database with standard train test configurations.

Train Test Configurations

abc d abcd e abcde f abcde s

4.01 8.47 9.87 17.74

 Our next experiments were related to investigating the various contextual

modeling approaches. We performed two sets of contextual modeling experiments.

In the first set of experiments, we investigated the standard approach of contextual

modeling along with the data-driven state clustering technique as was summarized

in Figure 5.20. Again, the parameters like distance threshold (for state clustering)

were calibrated based on the evaluations results on set d. In the second set of

experiments, we investigated the class-based contextual modeling approach as

proposed by us in Section 5.5.2.4 and summarized in Figure 5.21.

The evaluation results on the development set d for the three systems (including

the results from the baseline system), in addition to key system statistics like total

number of HMMs in the systems as well as the total number of states in the systems

(using the training sets a to c), are presented in Table 7.3. The total number of

states in a system is more indicative than the number of HMMs as many HMMs

have their states tied to other HMMs in a system in the case of contextual modeling.

The reduction in the number of HMMs after tying happens when all the

corresponding states of two HMMs are tied together thereby merging the two

logical HMMs into one physical HMM. It can be seen from the table that

improvement in WER is reported for both the standard contextual HMM system

as well as the class-based contextual HMM system. However, the improvement in

WER for the class-based contextual system is higher as compared to the

improvement obtained by using the standard contextual system. Moreover, there

is a significant reduction in the number of HMMs and the total number of states

in the class-based contextual HMM system as compared to the standard contextual

HMM system. In fact, the total number of states in the class-based contextual

 7.4 Experimentations, results, and discussions 127

HMM system is only a fraction higher when compared to the non-contextual

baseline system (only a 20% increase). This results in a compact contextual HMM

system.

Table 7.4 presents the recognition results on all the training test configurations.

It can be seen from the table that improvements are observed in all the experiment

configurations for the class-based contextual HMM systems when compared to the

non-contextual HMM systems (i.e., the baseline systems) as well as when compared

to the standard contextual HMM systems. For one experiment configuration (abcd

e) the standard contextual HMM system shows a lower performance than the

baseline system whereas the class-based contextual HMM system still shows a small

improvement over the baseline system. More importantly, both the contextual

systems perform significantly better (significance interval of the error is ±1.53 at

95% confidence level) than the baseline system on the set s which is, relatively, a

difficult evaluation set. Again, the class-based contextual system performs better

than the plain contextual system on set s.

Table 7.3: Comparison of number of HMM models, total number of states, and the WERs for the

different contextual HMM-based systems using the IFN/ENIT database with training sets a to c

and evaluation on set d.

System Description Number of HMMs Total Number of States WER

Character-shape HMM system

(baseline)
157 1534 4.01

Contextual HMM system using

the standard approach

4575

(3212 after tying)

38512

(2767 after tying)
3.86

Class-based contextual HMM

system

626

(359 after tying)

5775

(1845 after tying)
3.37

Table 7.4: Summary of the results (in WERs) related to Contextual HMM modeling approaches

with character shapes as models.

System Description

WERs

Train Test Configurations

abc d abcd e abcde f abcde s

Character-shape HMM system(baseline) 4.01 8.47 9.87 17.74

Contextual HMM system using the standard approach 3.86 8.81 9.81 15.89

Class-based contextual HMM system 3.37 8.27 9.66 15.38

128 Evaluations

Our final set of experiments was related to

performance on constrained training environments. Specifically, we were interested

to see how the system will perform when only few training samples are available.

Only a subset of the complete training set was used to train the system. We

performed four different sets of experiments under constrained training settings by

using 250, 500, 1000, and 2000 text line images respectively from set a of the

database to train the system. It should be noted that under constrained training,

we did not perform MLA as well as forced alignment based initialization. Thus,

only uniform initialization in conjunction with Baum-Welch training was performed

with every model having the same number of states. The number of states and

other system parameters were optimized based on the evaluation results on set d

of the database.

Table 7.5 presents the text recognition results on the four different evaluation

sets under different constrained training setups. We can observe from the table

that high WERs are reported for all the evaluation sets when using only 250 text

line images for training. The worst results are reported for set s. The poor results

are understandable given that very few training samples were used. The results

improve as we keep increasing the number of training samples with the best results

reported when using the 2000 text line images from set a as the training data.

These results will help us compare the other modeling approaches when used under

constrained training setups.

Table 7.5: Summary of the results (in WERs) using the character shapes as models under

constrained training setups.

The Training Set Size
Evaluation Sets

d e f s

250 text images 50.22 52.83 54.26 63.45

500 text images 31.54 33.90 32.67 47.23

1000 text images 20.03 26.07 25.74 39.48

2000 text images 14.30 20.90 22.64 35.73

Complete training set 4.01 8.47 9.87 17.74

 7.4 Experimentations, results, and discussions 129

7.4.1.2 Modeling choice: Sub-characters

In this section we will present the experiments we conducted and the results we

obtained when using the sub-characters, as presented in Section 5.2, as our

modeling units. The details of setting up the text recognition system the

preprocessing steps, feature extraction, and setting up the continuous HMM-based

system are same as the ones followed for setting up the text recognition system

using character shapes as models as was presented in the previous section. The

difference was in the choice of modeling units (sub-characters as HMMs in the

present case), and the related training procedure it involves, as was presented in

Section 5.2.

For the first set of experiments, we used the standard train test configurations.

We used abc d as the train test set configuration for system development. Key

system statistics related to training the system using the training sets a, b, and c

are presented in Table 7.6. The sub-character representation uses 97 HMMs to

model all the characters and their shape variations. This by itself is a great

improvement in terms of system compactness and efficiency. It can perform

relatively well under constrained training environments as we shall see shortly. It

is interesting to note that only two models have less than 100 samples and only

nine models have less than 200 samples. Moreover, the median number of samples

per model is more than twice the number of samples per model in the case of the

character-shape system.

Table 7.7 presents the summary of the results for standard train test

configurations. It can be seen from the table that our sub-character system performs

quite well when compared to the state-of-the-art systems evaluated on the

IFN/ENIT database (cf. Table 4.2). The improvements in WERs are significant

when compared to the results obtained when using character shapes as models

(significance interval of the errors are ±0.38, ±0.57, ±0.51, and ±1.53 for

evaluation sets d, e, f, and s respectively at 95% confidence level). In fact, the

results for the sub-character systems are better than, or at least as good as, the

results obtained for contextual HMMs with character shapes as modeling units (cf.

Table 7.4). The best result is still reported for set d and the result for set s being

the lowest.

130 Evaluations

Table 7.6: Key statistics related to training the system with the IFN/ENIT training sets a to c

using sub-characters as models.

Number of HMMs 97

Average number of samples per model 1734

Median number of samples per model 492

Number of models having less than 100 samples 2

Number of models having less than 200 samples 9

Table 7.7: Summary of the word recognition results (in WERs) using sub-characters as models on

the IFN/ENIT database with standard train test configurations.

Train Test Configurations

abc d abcd e abcde f abcde s

3.64 8.06 8.64 15.77

Our next set of experiments was related to investigating the use of multi-stream

HMMs as presented in Section 5.5.1. The details of setting up the multi-stream

HMM system was summarized in Figure 5.17. Each stream has a dimension of 9 as

we split the features into two streams with the computed features forming one

stream and the derivative forming the second stream. The weights for the two

streams (stream 1: 0.2; stream 2: 1.0) were empirically calibrated based on the

set d. The third row of Table 7.8

shows the results obtained using multi-stream HMMs. We can see that significant

improvements are reported with multi-stream HMMs.

Next, we experimented with the contextual sub-character HMMs as presented

in Section 5.5.2.3. The last row of Table 7.8 shows the experimental results when

using contextual sub-character HMMs. From the results we can notice a relative

reduction between 11% and 19% in the error rates when using contextual HMMs.

This improvement is higher than the improvements achieved when using contextual

HMMs with systems having character shapes as models. Thus, the experiment

results corroborates our understanding that the use of sub-character models along

with the connector model helps in contextual modeling for Arabic text recognition.

 7.4 Experimentations, results, and discussions 131

Table 7.8: Summary of the word recognition results (in WERs) related to multi-stream HMMs and

contextual HMMs with sub-characters as models.

System Description

WERs*

Train Test Configurations

abc d abcd e abcde f abcde s

Character-shape HMM system (baseline) 4.01 8.47 9.87 17.74

Sub-character HMM system 3.64 8.06 8.64 15.77

Sub-character HMM system + multi-stream HMMs 2.97 6.66 7.22 15.00

Contextual sub-character HMM system + multi-

stream HMMs
2.44 5.55 6.40 12.14

*Significance interval of the errors are ±0.38, ±0.57, ±0.51, and ±1.53 for evaluation sets d, e, f,

and s respectively at 95% confidence level.

 Our final set of experiments was

performance on constrained training environments. As in the case of character

shapes as models, we performed four different sets of experiments under constrained

training settings by using 250, 500, 1000, and 2000 text line images respectively

from set a to train the systems. We did not perform MLA as well as forced

alignment based initialization. Thus, only uniform initialization in conjunction with

Baum-Welch training was performed with every model having the same number of

states. The number of states and other system parameters were optimized based

on the evaluation results on set d of the database.

Table 7.9 presents the text recognition results on the four different evaluation

sets under different constrained training setups. Results are reported in terms of

WERs. We can observe from the table that high WERs are reported for all the

evaluation sets when using only 250 text line images for training. But it is

important to note that, although the results are low when compared to using the

entire training set, the results are significantly better than the results reported

when using character shapes as models (cf. Table 7.5). The recognition results

improve as we keep increasing the number of training samples with the best results

reported when using the 2000 text line images from set a as the training data,

which is still significantly lower than the results obtained when using the complete

training sets. In all the experiments conducted under constrained training setups,

the results for sub-characters models are better than the results obtained when

using character shapes as models. This confirms that using sub-characters as models

leads to a system which is more robust and performs significantly better under

constrained training environments.

132 Evaluations

Table 7.9: Summary of the results (in WERs) using the sub-characters models under constrained

training setups.

The Training Set Size

Evaluation Set

d e f s

250 text images (from set a) 32.44 34.48 35.75 48.57

500 text images (from set a) 20.52 23.17 22.78 37.70

1000 text images (from set a) 16.08 20.74 21.19 36.81

2000 text images (from set a) 11.82 19.39 19.86 35.22

Complete training set 3.64 8.06 8.64 15.77

7.4.1.3 Modeling choice: Core shapes and diacritics with multi-stage recognition

In this section, we will present the experiments we conducted and the results we

obtained using the multi-stage text recognition framework as presented in

Section 5.3. The overall details of setting up the core shape recognition system

the preprocessing steps, feature extraction, and setting up the continuous HMM-

based system are same as the ones followed for setting up the text recognition

system using character shapes as models as was presented in Section 7.4.1.1. The

difference was in the choice of modeling units (core shapes as HMMs for the core-

shape system), and the related training procedure it involves, as was presented in

Section 5.25.3. Moreover, an extra preprocessing step was involved to separate the

core shapes from the diacritics using the algorithm presented in Figure 5.11.

For the diacritics system, there were some differences in the system setup. Some

of the features extracted from the diacritics images were different from the features

listed in Figure 7.3. We did not use the three orientation features as the diacritics

are too small and, most of the time, are dots. Instead, we replaced these three

features by two other features the number of components and the average size of

components in an image strip. These two features seem to be more suitable as the

main idea was to distinguish the number of dots. Thus, we computed a total of

eight features from the diacritics image and appended the derivative features to it

leading to feature vectors of 16 dimension. Figure 7.4 lists down the features

extracted from the diacritics images. Moreover, we did not perform MLA as well

as forced alignment based initialization for the diacritics system. Thus, only

uniform initialization in conjunction with Baum-Welch training was performed

with every model having the same number of states.

 7.4 Experimentations, results, and discussions 133

Features computed from diacritics images for recognition

Following are the list of features we computed from the text line images for text recognition

tasks:

1. The average distance of the baseline to the upper contour of the ink pixels.

2. The average distance of the baseline to the lower contour of the ink pixels.

3. The average distance of the baseline to the center of gravity of the ink pixels.

4. The number of connected components in a frame.

5. The average size of connected components in a frame.

6. The average of the number of black-to-white transitions per column.

7. The percentage of ink pixels in a frame.

8. The average number of ink pixels between the upper and lower contours of the ink

pixels.

Figure 7.4: The list of features extracted from the diacritics images for recognition.

For the first set of experiments, we used the standard train test configurations.

We used abc d as the train test set configuration for system development. Key

system statistics related to training the system using the training sets a, b, and c

are presented in Table 7.10. The core-shape representation uses only 71 HMMs to

model all the characters and their shape variations which is less than half the

number of models needed in the character shape system. In fact, the core-shape

system has even fewer models as compared to the sub-character system. This helps

in constrained training environments especially when very few training samples are

available. Only one model has less than 100 samples and three models have less

than 200 samples.

Table 7.11 presents the summary of the results for standard train test

configurations. It can be seen from the table that the multi-stage system performs

quite well when compared to the state-of-the-art systems evaluated on the

IFN/ENIT database (cf. Table 4.2). The improvements in WER are significant

(significance interval of the errors are ±0.38, ±0.57, ±0.51, and ±1.53 for

evaluation sets d, e, f, and s respectively at 95% confidence level) when compared

to the results obtained when using character shapes as models. Although, the

results from the sub-character systems are better than the multi-stage recognition

system for most of the train test configurations. The best result is still reported for

set d and the result for set s being the lowest.

134 Evaluations

Table 7.10: Key statistics related to training the system with the IFN/ENIT training sets a to c on

the multi-stage recognition framework using core shapes (in addition to diacritics) as models.

Number of HMMs
71 (core-shape system),

17 (diacritics system)

Average number of samples per model 2290

Median number of samples per model 972

Number of models having less than 100 samples 1

Number of models having less than 200 samples 3

Table 7.11: Summary of the experimental results on the IFN/ENIT database with multi-stage

recognition framework using core shapes and diacritics as models with standard train test

configurations.

Train Test Configurations

abc d abcd e abcde f abcde s

3.30 7.81 9.33 16.15

Our next set of experiments was related to investigating the use of multi-stream

HMMs as presented in Section 5.5.1 and is similar to the one followed when using

sub-characters as models. The weights for the two streams (stream 1: 0.2; stream

development set d. The third row of Table 7.12 shows the results obtained using

multi-stream HMMs. We can see that significant improvements are reported with

multi-stream HMMs. Next, we experimented with the contextual HMMs as

presented in Figure 5.20. The last row of Table 7.12 shows the experimental results

when using contextual HMMs. No significant change in results were observed when

using contextual core-shape HMMs. In fact, two of the configurations report a drop

in recognition rates when using contextual HMMs.

Our final set of experiments was

performance on constrained training environments. As with the case of character

shapes as models, we performed four different sets of experiments under constrained

training settings by using 250, 500, 1000, and 2000 text line images from set a to

train the system respectively. Table 7.13 presents the text recognition results on

the four different evaluation sets under different training setups. Results are

reported in terms of WERs. We can observe from the table that, although the

results are low as compared to using the entire training sets, the results are

significantly better than the results reported when using character shapes as models

(cf. Table 7.5).

 7.4 Experimentations, results, and discussions 135

Table 7.12: Summary of the word recognition results (in WERs) related to multi-stream HMMs and

contextual HMMs with multi-stage recognition framework using core shapes and diacritics as

models.

System Description

WERs*

Train Test Configurations

abc d abcd e abcde f abcde s

Character-shape HMM system (baseline) 4.01 8.47 9.87 17.74

Multi stage HMM system with core shape and

diacritic models

3.30 7.81 9.33 16.15

Multi stage HMM system with core shape and

diacritic models + multi-stream HMMs
2.63 6.27 7.54 14.49

Contextual Multi stage HMM system with core

shape and diacritic models + multi-stream HMMs
2.46 6.27 7.74 14.88

*Significance interval of the errors are ±0.38, ±0.57, ±0.51, and ±1.53 for evaluation sets d, e, f,

and s respectively at 95% confidence level.

Table 7.13: Summary of the results (in WERs) with multi-stage recognition framework using core

shapes and diacritics as models under constrained training setups.

The Training Set Size
Evaluation Set

d e f s

250 text images 30.91 36.78 38.38 48.63

500 text images 20.91 27.90 27.40 39.54

1000 text images 15.29 21.71 23.71 37.57

2000 text images 13.70 19.84 21.53 35.22

Complete training sets 3.30 7.81 9.33 16.15

7.4.1.4 Modeling choice: Sub-core shapes and diacritics with multi-stage recognition

In this section, we will present the experiments we conducted and the results we

obtained using the multi-stage text recognition framework with sub-core shapes

and diacritics as models as presented in Section 5.4. The overall details of setting

up the sub-core shape recognition system as well as the diacritics system the

preprocessing steps, feature extraction, and setting up the continuous HMM-based

system is same as the ones followed for setting up the multi-stage system using

core shapes and diacritics as models as was presented in Section 7.4.1.3. The

difference was in the choice of modeling units (sub-core shapes as HMMs instead

of core shapes as HMMs), and the related training procedure it involves, as was

presented in Section 5.4.1.

136 Evaluations

For the first set of experiments, we used the standard train test configurations.

We used abc d as the train test set configuration for system development. Key

system statistics related to the training sets a, b, and c are presented in Table 7.14.

The sub-core-shape representation uses only 43 HMMs to model all the characters

and their shape variations which is almost a fourth of the number of models needed

in the character shape system. In fact, it even has less than half the number of

models as compared to the sub-character system. Thus, the system is quite compact

and is expected to perform robustly. It also helps in constrained training

environments especially when very few training samples are available. Only one

model has less than 100 samples and three models have less than 200 samples.

Table 7.14: Key statistics related to training the system with the IFN/ENIT training sets a to c on

the multi-stage recognition framework using sub-core shapes and diacritics as models.

Number of HMMs
43 (core-shape system),

17 (diacritics system)

Average number of samples per model 4066

Median number of samples per model 1713

Number of models having less than 100 samples 1

Number of models having less than 200 samples 3

In Table 7.15, we present the summary of the results for standard train test

configurations. It can be seen from the table that the multi-stage system, with sub-

core shapes as models, performs quite well when compared to the state-of-the-art

systems evaluated on the IFN/ENIT database (cf. Table 4.2). The improvements

in WER are significant (significance interval of the errors are ±0.38, ±0.57, ±0.51,

and ±1.53 for evaluation sets d, e, f, and s respectively at 95% confidence level.)

when compared to the results obtained when using character shapes as models.

Although, the results from the sub-character systems are better than the multi-

stage recognition system for most of the train test configurations. Moreover, the

results are similar to the results obtained when using multi-stage system with core

shapes as models but with significantly fewer models in the system. The best result

is still reported for set d and the result for set s being the lowest.

Table 7.15: Summary of the experimental results on the IFN/ENIT database with multi-stage

recognition framework using sub-core shapes and diacritics as models with standard train test

configurations.

Train Test Configuration

abc d abcd e abcde f abcde s

3.62 7.31 9.08 16.40

 7.4 Experimentations, results, and discussions 137

Our next set of experiments was related to investigating the use of multi-stream

HMMs as presented in Section 5.5.1. The weights for the two streams (stream 1:

0.2; stream

on the development set d. The third row of Table 7.16 shows the results obtained

using multi-stream HMMs. We can see that significant improvements are reported

with multi-stream HMMs. Next, we experimented with the contextual sub-core

HMMs which has similar properties to the contextual sub-character HMMs. The

last row of Table 7.16 shows the experimental results when using contextual sub-

core HMMs. As with the case of sub-character HMMs, significant improvements in

results are observed; thereby, confirming the benefits of using the sub-character

modeling approach in addition to the use of the connector model.

Table 7.16: Summary of the word recognition results (in WERs) related to multi-stream HMMs and

contextual HMMs with the multi-stage recognition framework using sub-core shapes and diacritics

as models.

System Description

WERs*

Train Test Configuration

abc d abcd e abcde f abcde s

Character-shape HMM system (baseline) 4.01 8.47 9.87 17.74

Multi stage HMM system with core shape and

diacritic models

3.62 7.31 9.08 16.40

Multi stage HMM system with sub-core shape and

diacritic models + multi-stream HMMs
2.91 6.36 7.68 14.94

Contextual Multi stage HMM system with sub-core

shape and diacritic models + multi-stream HMMs
2.29 5.24 6.68 13.48

*Significance interval of the errors are ±0.38, ±0.57, ±0.51, and ±1.53 for evaluation sets d, e, f,

and s respectively at 95% confidence level.

Our final set of experiments was

performance on constrained training environments. As with the case of character

shapes as models, we performed four different sets of experiments under constrained

training settings by using 250, 500, 1000, and 2000 text line images from set a to

train the system respectively. Table 7.17 presents the text recognition results on

the four different evaluation sets under different constrained training setups.

Results are reported in terms of WERs. We can observe from the table that,

although the results are low as compared to using the entire training sets, the

results are significantly better than the results reported when using character

shapes as models (cf. Table 7.5). In fact, for very few training data (i.e., the first

138 Evaluations

row), the results are even significantly better than the sub-character system. This

may be attributed to the fact that under very few training samples, having the

Table 7.17: Summary of the results (in WERs) with multi-stage recognition framework using sub-

core shapes and diacritics as models under constrained training setups.

The Training Set Size
Evaluation Set

d e f s

250 text images 21.10 28.28 29.93 41.32

500 text images 17.83 26.26 26.47 37.76

1000 text images 15.71 22.56 24.10 37.64

2000 text images 13.62 20.16 22.30 35.28

Complete training sets 3.62 7.31 9.08 16.40

7.4.2. Character recognition using the IFN/ENIT database

In this section, we will present the character recognition experiments we conducted

using the IFN/ENIT database using the four different modeling choices presented

in Chapter 5. It should be noted that the corresponding systems are the same

systems that were used in word recognition tasks as presented in the previous

section. The only difference is that we perform plain character recognition instead

of word recognition. There was no use of dictionary and language models.

Table 7.18 summarizes the character recognition results for the standard train

test configurations using the systems with the four modeling options. The first row

of the table presents the results using character shapes as modeling units. We can

notice that the character error rates are quite high as compared to the word error

rates reported for the same system (cf. Table 7.2). The main reason behind this is

the fact that no lexicon or language models are used and hence the recognition is

done purely on the basis of appearance modeling. Thus, the results are more

revealing regarding the effects of modeling choice on the text recognition

performance. The use of lexicon or language models have an effect of masking the

impact of modeling choices.

The second row of the table presents the results when using sub-character as

modeling units. We can see that the improvements using the sub-character HMMs

are significantly higher that the results using character shapes as HMMs

(Significance interval of the errors are ±0.35, ±0.38, ±0.32, and ±0.75 for

evaluation sets d, e, f, and s respectively at 95% confidence level). The reduction

 7.4 Experimentations, results, and discussions 139

in error rates is proportionately much higher than the corresponding reductions

observed in the word recognition tasks. Rows three and four of the table presents

the results when using the multi-stage recognition with core shapes and diacritics

and when using the multi-stage recognition with sub-core shapes and diacritics

respectively. Again, we can observe that the reduction in error rates is much more

significant when compared to the reductions in the word recognition tasks.

Table 7.18: Summary of the character recognition results (in CERs) using the IFN/ENIT database.

System Description

CERs*

Train Test Configuration

abc d abcd e abcde f abcde s

Character-shape HMM system (baseline) 45.12 51.98 47.20 54.21

Sub-character system 35.95 44.63 38.26 47.91

Multi stage system with core shapes and

diacritics as models
37.85 46.35 39.71 48.19

Multi stage HMM system with sub-core

shapes and diacritics models
36.84 43.41 40.27 49.44

*Significance interval of the errors are ±0.35, ±0.38, ±0.32, and ±0.75 for evaluation sets d, e, f,

and s respectively at 95% confidence level.

7.4.3. Character recognition using the KHATT database

In this section, we will present the character recognition experiments we conducted

using the KHATT database.

The first step involved preprocessing of the text line images. As KHATT

database consists of unconstrained handwritten text, we needed to perform

adequate preprocessing before the feature extraction step. Baseline and slant

correction was performed based on the technique presented in (Mahmoud et al.

2014). Finally, the core text of the image was normalized before the feature were

extracted from them. Same features as the one presented in Figure 7.3 were

computed from the text line images. The sliding window with the width of 4 pixels

and the overlap of 2 pixels were used for feature extraction. The initialization and

training procedures are similar to the ones presented in Section 7.2.1. Thus, a multi-

step initialization and training was performed which included MLA, a uniform

initialization followed by alignment based initialization. All the parameters were

optimally calibrat

We use the same training development test partition as provided in the database.

140 Evaluations

Accordingly, we used 4808 images for training, 937 images for development, and

966 images for the test.

For the character-shape system, there are a total of 157 models in the KHATT

database that represent the various character shapes in Arabic in addition to the

numerals and some punctuation marks. For the sub-character system, we ended up

with 97 models representing the same text. Table 7.19 presents the character

recognition results (in CERs) when using character shape as models (first row) and

when using sub-characters as models (second row). Results for both the

development set and the test set are presented. From the table we can see that the

sub-character system outperforms the character-shape system (significance interval

of the errors are ±0.37 for the development and the test sets at 95% confidence

level). In addition, we also performed contextual sub-character modeling where

contexts only within a character were modeled in terms of sub-characters. The

third row of the table summarizes the results for contextual modeling experiments.

Finally, we performed multi-stream HMMs based training and the results are

presented as the last row in the table. We can see that improvements were observed

in all the proposed modeling and training approaches besides the fact that

significantly lower number of models are used by the sub-character system. The

results are worse than the results we obtained for the character recognition tasks

on the IFN/ENIT database which confirms that the KHATT database, in general,

is more difficult and challenging than the IFN/ENIT database. However, the results

are comparable to the results we obtained on set s of the IFN/ENIT database.

Table 7.19: Summary of the character recognition results (in CERs) using the KHATT database.

System Description
CERs*

Development Set Test Set

Character-shape HMM system (baseline) 52.10 51.09

Sub-character system 51.52 50.69

Sub-character system + contextual modelling (within character) 50.72 50.07

Sub-character system + contextual modelling (within character)

+ multi-stream HMMs
49.49 49.93

*Significance interval of the errors are ±0.37 for the development and the test sets at 95%

confidence level.

 7.4 Experimentations, results, and discussions 141

7.4.4. Word recognition without handwritten training sets

In this section, we will present the experiments we conducted related to

handwritten text recognition in the absence of handwritten training sets. We first

present the experiments on using a recognizer trained on computer generated texts

in a single font. This is followed by experiments using a recognizer trained on

computer generated text on multiple fonts. Next, we present the text recognition

using unsupervised HMM adaptation. Finally, we present experiments related to

the use of recognition hypothesis on the test set as training data. Our task is offline

Arabic handwritten word recognition using the IFN/ENIT database (Pechwitz et

al. 2002).

For the experimentation, we use the Arabic sub-character model based HMM

recognizer as presented in Section 5.2 as it seems to be the most robust and effective

recognition system (especially under constrained training environments) based on

the experimental results presented in Section 7.4.1. However, it is important to

note that only uniform initialization (flat-start) on the training set was performed.

Moreover, no MLA was performed either.

In the first set of experiments, we use computer generated text from individual

fonts to train our recognizer. To generate text, we use the IFN/ENIT lexicon with

all its variations. Using the IFN/ENIT lexicon was not a prerequisite, as the only

thing we needed was to have some training samples to train the different HMM

models. Since our recognition task was on the IFN/ENIT database, we generated

text using its lexicon. We generated 1929 images for each font corresponding to

1929 entries in the dictionary, i.e., we generated one sample per entry for eight

different fonts. Samples of computer generated text in different fonts along with

handwritten text images from the IFN/ENIT database for the same word were

shown in Figure 6.3. We trained eight different recognizers, each trained on text

from only one font. Once the recognizer was trained, we evaluated the recognizer

by recognizing word images from set d of the IFN/ENIT database. The evaluation

results are shown in Table 7.20. The results are shown in terms of WERs. From

the results shown in the table we have following observations: Although the results

were not entirely disappointing, in general the recognition rates were very low for

most of the fonts, which is understandable. The character glyphs for computer

generated texts are very regular with only one fixed pattern. It is very difficult for

a recognizer to train the models which can cope with the huge variations found in

human handwriting. Nevertheless, some fonts did relatively well; the recognizer

trained on the Naskh font was able to achieve 73.08% WER, i.e., it was successful

142 Evaluations

in recognizing approximately one-fourth of the total word images from set d.

Another interesting observation was that, although the recognizer trained on

visually simple font like Tahoma did worst, the recognizers trained on very complex

fonts like Rekaa and Diwani did poorly as well. Thus, just having a look at the

visual complexity of a font is not enough to predict its capabilities for effective

training. Moreover, not all the fonts have similar behavior.

Table 7.20: Text recognition results on set d of the IFN/ENIT database using recognizers trained

on machine printed texts from single fonts.

Font Name WER (%)

Arabic Typesetting 88.75

Diwani 89.99

Naskh 73.08

Rekaa 92.72

Tahoma 95.69

Thuluth 82.33

Traditional Arabic 87.13

Zarnew 81.25

image samples from multiple fonts. In this experiment we train our recognizer with

computer generated word images from all the eight fonts together. Thus, a total of

15,432 (1929 × 8) word images are used for training. Once the recognizer was

trained, we evaluated the recognizer by recognizing word images from set d of the

IFN/ENIT database. The evaluation results are shown in Table 7.21 (first row). It

can be seen from the table that a significant improvement in recognition rate is

achieved when we trained the recognizer on multiple fonts. Thus, the variability

observed in the training samples due to the different fonts helps, to some extent,

to model the variability in human handwriting in the case of Arabic script. A part

of the improvement is also due to an eight-fold increase in the training data. To

understand the contribution of multiple fonts alone, we carried one more

experiment where we randomly selected only 1929 word images in the eight fonts

for training the recognizer and evaluated the recognizer on set d. The recognizer

was able to achieve 46.55% WER which explains that most of the improvement

was indeed due to the use of multiple fonts.

Our next experiment was to use the recognizer trained on multiple fonts and

perform unsupervised HMM adaptation during recognition. We used MLLR for

parameter tuning (please refer to Section 2.7.2 for more details on HMM

adaptation). We experimented with different number of regression classes. The

 7.4 Experimentations, results, and discussions 143

evaluation results on IFN/ENIT set d is presented in Table 7.21 (second row). It

can be seen from the table that significant improvements are achieved using

unsupervised HMM adaptation. In the best configuration using 48 regression

classes, it leads to improvement in recognition rate by 9.12%, i.e., a reduction in

error by one-fourth approximately.

Table 7.21: Text recognition results (in WERs) on set d of the IFN/ENIT database using

recognizers trained on machine printed texts on multiple typefaces and using unsupervised

adaptation.

System WER (%)

All fonts together 38.65

All fonts together +

Unsupervised adaptation
29.53

Our next set of experiments was related to the idea of using the recognition

hypothesis on the test set as training data for the recognizer. To start, we use the

recognition hypothesis from the previous step (i.e., multi-fonts training and

unsupervised adaptation during recognition) and use it to generate labels at the

character level for each word image of the test set by forced alignment technique.

An interesting aspect to investigate was to compare the results of the recognizer

trained on computer generated text on multiple fonts with the recognizer trained

on handwritten text images, but with imperfect labeling (as close to 30% of the

word images were wrongly hypothesized). To limit the mislabeled data, we remove

the bottom five percent of hypothesized data based on the length-normalized score

(please refer to Section 6.3.4 for more details). After training the recognizer with

the hypothesized set d of the IFN/ENIT database, we perform recognition on the

same set. The evaluation results are presented in Table 7.22 (first row). It can be

seen from the table that the results are significantly better as compared to the

results from the previous approaches. As an extension to this experiment, we use

this improved hypothesis to re-label the test set and use it to train our recognizer.

After retraining our recognizer using the improved hypothesis for a few more

iterations (until the average length-normalized scores for the hypothesis converges),

we evaluate it on the same set. The results are presented in the second row of

Table 7.22. We can see from the table that there is a small, but significant,

improvement in the recognition rate. In our final set of experiments we use the

multi-stream HMMs as was used in our previous experiments. Use of multi-stream

HMMs led to a further small, but significant, improvement in the recognition rate

as can be seen from the third row of Table 7.22.

144 Evaluations

Once we validated our approaches using the set d of the IFN/ENIT database,

we replicated our experiments on sets e, f, and s of the database without changing

the system parameters, i.e., our single font, multiple fonts, and adaptation systems

were exactly the same as the ones used to evaluate set d. The only difference was

the use of hypothesized data for the corresponding sets as training data. The

summary of all the experiments are presented in Table 7.23. From the table we can

see that the results, although below the state-of-the-art (cf. Table 4.2), are very

promising considering that no handwritten data was used for training. The area of

research seems exciting and needs further investigation. It has huge implications as

this may greatly reduce, if not completely eliminate, the need for creating the

handwritten training sets and its manual transcription which are very laborious

and time consuming tasks.

Table 7.22: Text recognition results (in WER) on set d of the IFN/ENIT database using

hypothesized test set for training.

System WER (%)

Hypothesized data of the test set

used for training

12.84

9.77

Hypothesised test-data used for

training after five iterations

Hypothesised test-data used for

training after five iterations +

multi-stream HMMs

8.39

Table 7.23: Summary of the results (in WERs) for handwritten text recognition on the IFN/ENIT

database without using handwritten training data.

System
The Recognition System

Training Data

Evaluation Set

d e f s

1 Best individual font (Naskh) 73.08 77.90 75.9 72.61

2 Text images from all fonts together 38.65 44.16 44.86 48.06

3
Text images from all fonts together +

unsupervised adaptation
29.53 33.47 39.07 45.26

4
Test set hypothesised using system 3

used as training data
12.84 15.57 18.56 33.4

5
Five iterations of Test set hypothesised

using system 4 used as training data
9.77 12.35 15.22 29.26

6 System 5 + Multi-stream HMMs 8.39 10.39 13.42 26.89

 7.5 Summary 145

7.5. Summary

In this section, we will present the main summary of our experiments and results

and some comparisons to the state-of-the-art. For the handwritten Arabic text

recognition, we experimented with four different modeling approaches one of them

being the standard modeling approach as reported in the literature and the

remaining three were proposed by us in this work. Figure 7.5 presents a comparison

of the number of models in the resulting systems using the four modeling

approaches respectively. It can be see that our proposed approaches lead to

significant reduction in the number of models defined in the systems which leads

to a compact and robust system with reduced model sets. The result is that the

systems are trained more robustly with the same amount of available training data.

Figure 7.6 shows the key training statistics on the IFN/ENIT training sets a to

c. Again, we observe that our modeling approaches lead to higher mean and median

number of training samples per model using the same amount of training data.

Thus, the presented modeling approaches allow for, relatively, better training of

each model and, as a result, better training for each character. This fact was shown

to be even more important under constrained training environments where only a

few training samples are available for training.

Figure 7.5: A comparison of the number of models in systems using the four modeling approaches.

The numbers are based on the experiments conducted on the IFN/ENIT database.

146 Evaluations

Figure 7.6: Key statistics related to training the system with the IFN/ENIT training sets a to c

using the four modeling approaches.

Figure 7.7 shows the performance of the four different systems on various

evaluation sets from the IFN/ENIT database under constrained training

environments. All the systems perform better than the standard system that uses

character shapes as models. The performance of the sub-core shape system is the

best when very few training data is available, but, in general, the sub-character

systems perform better under most of the training configurations. One of the

possible reasons for this could be the fact that the benefits of excessive sharing in

sub-core shape systems, especially when enough training data is available, are

balanced by losses due to the diacritics removal procedure which does not work

perfect all the time. Nevertheless, the results are still significantly better when

compared to the character shape systems in addition to the fact that the model-set

size for the sub-core systems is only one-fourth the model-set size for the character-

shape systems. Moreover, when employing contextual sub-character modeling and

contextual sub-core modeling, the performance improvements are even larger.

 7.5 Summary 147

 (a) Evaluation set: d (b) Evaluation set: e

 (c) Evaluation set: f (d) Evaluation set: s

Figure 7.7: Performance of the systems with different modeling options under constrained training

environments.

Table 7.24 presents a comparison of the results from the state-of-the-art systems

evaluated on the IFN/ENIT database with the best results obtained by our systems

using the three presented modeling approaches. We can see from the table that the

overall results from our presented systems are among the best compared to the

other state-of-the-art systems. In fact, our systems outperforms the best reported

systems in the literature on the evaluation set e and set f of the database. We

report the second best result on set s of the database which is regarded as the most

difficult set in the database. Moreover, the best performing system on set s,

presented by Stahlberg and Vogel (2015), uses our proposed special space and

connector models for modeling. This further validates the effectiveness of our

presented techniques. Set d of the database is used to calibrate the system and

hence the systems have a tendency to over-fit on this evaluation set. The systems

148 Evaluations

that are reporting the best results on set d are not necessarily performing very high

on other evaluation sets.

Table 7.24: Comparison with other state-of-the-art systems evaluted on the IFN/ENIT database.

Systems

WERs

Train Test Configurations

abc d abcd e abcde f abcde s

Graves 2012 (Graves 2012) - - 6.63 18.94

Azeem and Ahmed 2013 (Azeem and Ahmed 2013) 2.3 6.56 6.9 15.2

Giménez et al. 2014 (Giménez et al. 2014) 4.7 6.1 7.80 15.38

Abandah et al. 2014 (Abandah, Jamour, and

Qaralleh 2014)
1.04 6.54 7.54 15.20

Hamdani et al. 2014 (Märgner and Abed 2011;

Hamdani et al. 2014)
- - 7.80 15.45

Stahlberg and Vogel 2015 (Stahlberg and Vogel

2015)
2.4 6.1 6.8 11.5

Present Works

Sub-character HMM system 2.44 5.55 6.40 12.14

Multi-stage HMM system with core shape and

diacritic models
2.46 6.27 7.74 14.88

Multi-stage HMM system with sub-core shape and

diacritic models
2.29 5.24 6.68 13.48

As for the character recognition experiments on the IFN/ENIT database, we

did not find any reported work on the literature that does the same task except

one system which was presented by Jiang et al. (2015). Table 7.25 compares the

character recognition results of our systems with the only system presented in the

literature. Again, we can observe that our systems clearly outperforms the other

system. In fact, a similar system, presented by the same authors in (Z. Jiang et al.

2012), was evaluated for word recognition tasks and performed reasonably well as

compared to the state-of-the-art. Unfortunately, we cannot find any system

presented in the literature that performs character recognition task on the KHATT

database. We did not perform word recognition task on the KHATT database as

it involves using the word n-grams and dealing with OOV words which was not in

the scope of our present research.

 7.5 Summary 149

Table 7.25: Comparison with other systems evaluted on the IFN/ENIT database for the charcater

recognition tasks.

Systems

CERs

Train Test Configurations

abc d abcd e abcde f abcde s

Jiang et al. (Z. Jiang et al. 2015) 50.97 58.38 - -

Present Works

Sub-character HMM system 35.95 44.63 38.26 47.91

Multi-stage HMM system with core shape and

diacritic models
37.85 46.35 39.71 48.19

Multi-stage HMM system with sub-core shape and

diacritic models
36.84 43.41 40.27 49.44

Regarding machine printed text recognition, a subjective comparison of our text

recognition system with other HMM-based machine printed Arabic text recognition

systems that are available in the literature is presented in Appendix B. Moreover,

a comparison of our recognition results using the APTI database with results from

other systems reported in the literature, that uses the APTI database, is also

presented in Appendix B.

Finally, for handwritten text recognition without the use of handwritten

training data, we present, in Table 7.26, our best results on this task and compare

them to the best results obtained by our systems when using the complete training

set. We can see from the table that the results are significantly lower than the

results we obtain when using the full handwritten training sets. Nevertheless, the

results are still quite impressive considering the fact that no handwritten training

set was used. We feel that this line of research is very promising and can have

favorable implications in the future by limiting, if not completely avoiding, the

need for handwritten training sets.

150 Evaluations

Table 7.26: Comparison of results for handwritten text recognition tasks with and without the use

of handwritten training sets.

Systems

WERs

Evaluation Set

d e f s

Sub-character HMM system without the use of

handwritten training sets
8.39 10.39 13.42 26.89

With Complete Training Sets

Sub-character HMM system 2.44 5.55 6.40 12.14

Multi-stage HMM system with core shape and

diacritic models
2.46 6.27 7.74 14.88

Multi-stage HMM system with sub-core shape and

diacritic models
2.29 5.24 6.68 13.48

151

8 Conclusions

andwritten text recognition is a challenging task. A lot of research has been

done in this area with major attention to the Roman script. But, the

challenges are far from over. Handwritten Arabic text recognition research has seen

a huge interest in the last two decades. Research in handwritten Arabic text

recognition benefitted from the extensive research that has already been carried

out for other scripts like Roman and Chinese. Consequently, most of the researchers

adapted the handwritten text recognition systems, already developed for other

scripts, to work for the Arabic script.

HMMs have traditionally been the most successful classifier for text recognition

after their success in speech recognition. They have sound theoretical and

mathematical foundations. Moreover, they avoid the need to explicitly segment the

text line images into smaller units like characters or strokes. This aspect is even

more important for Arabic text recognition as Arabic script is inherently cursive

both in handwritten and machine printed forms. Adapting the text recognition

systems, developed for other scripts, to work for Arabic script led to a quick transfer

of technology to this domain and recognizers with reasonably good text recognition

capabilities were reported up and running in a fairly short time period. Although

the progress was good in general, it led to investigating the knowledge of the Arabic

script and improvising on it to build better and more efficient recognizers less

explored. The peculiarities of the Arabic script poses its own issues and challenges

in the area of text recognition. With challenges comes the opportunities to further

enhance the research in this area. The present work was an attempt in this

direction, i.e., to study the peculiarities of the Arabic script in the context of text

recognition and investigate them in order to contribute to the developments in this

area of research.

8.1. Summary

Among the peculiarities of the Arabic script is the aspect of modeling. Arabic

characters can take different shapes based on their position in a word. Accordingly,

researchers use the character shapes as models instead of using the characters as

H

152 Conclusions

the modeling unit. This approach leads to almost a four-fold increase in the number

of models in the system. Apart from leading to a system with a huge model set, the

system also suffers from inadequate training because of the large number of models

whose parameters need to be trained effectively from the training data. Performing

contextual modeling over these character-shape models further increases the models

by many times. To address these problems, we presented three alternative modeling

options for Arabic text recognition. As a first option, we presented sub-character

modeling where a character is split into sub-characters exploiting the similar

patterns between different characters and their position-dependent shapes. The

sub-character patterns are then used to reconstruct the characters leading to a huge

reduction in the number of HMMs. The sub-character modeling, as presented in

this work, does not need explicit segmentation of characters into the smaller units.

We also investigated the impact of sub-character modeling from the perspective of

contextual HMM modeling and found that the sub-character modeling, including

the proposed connector model, lends favorably to contextual HMM modeling and

the gains in recognition rates are higher than the gains obtained using the standard

character-shape based contextual modeling.

The second modeling approach we investigated was related to separating the

core shapes in Arabic texts from the diacritics and modeling the core shapes and

the diacritics as separate HMMs. This approach also leads to a large reduction in

the number of basic HMMs. A multi-stage text recognition framework was proposed

which uses the core-shape HMM system along with the diacritics HMM system to

perform text recognition.

Our third and final modeling approach integrates the idea of sub-character

modeling with the idea of modeling the core shapes separately from the diacritics.

Accordingly, this leads to multi-stage text recognition where sub-core shapes and

diacritics are trained separately and text recognition is performed by utilizing the

sub-core shape HMM system and the diacritics system. This approach leads to the

greatest reduction of the number of modeling units in a system. Contextual HMMs

utilizing the sub-core shapes were also investigated with favorable outcomes.

We performed a number of experiments to study the effects of different

modeling approaches on the text recognition accuracy. We found that our modeling

approaches performed better than the traditional character-shape modeling

approach besides the fact that we end up with more compact systems with reduced

model sets. This was even more important when performing text recognition under

8.2 Possible future works 153

constrained training environments, i.e., when few text image samples are available

for training.

Apart from the above mentioned three modeling approaches, we also presented

our contributions related to white-space modeling for Arabic text recognition,

multi-stream HMMs, and class-based contextual HMM modeling. White-space

modeling based on our approach adds more flexibility in text recognition by

skipping the space models at times and incorporating them at other times

depending on the handwriting. We experimented with multi-stream HMMs by

splitting our features into two streams such the features computed from the text

images formed one stream and the derivative features formed the second stream.

Having different stream weights for the two streams showed improvements in text

recognition accuracies. Class-based contextual modeling was presented as a way to

limit the number of unique tri-character models that result when using the standard

contextual modeling approach. Instead of modeling every tri-character pairs, the

neighboring characters are grouped into classes in a way that characters in each

class have similar contextual influence to a character whose contexts are being

modeled. This resulted in significantly fewer contextual models as compared to the

number of contextual models resulting from the standard approach; thereby,

leading to a relatively compact recognizer with better recognition performances.

Last but not the least, we investigated some approaches to initialize and train

a text recognition system when no handwritten training data is available.

Specifically, we studied the impact of training a recognizer with machine printed

texts for the handwritten text recognition task. This approach was employed

together with unsupervised HMM adaptation. Further, we use the test hypothesis

to retrain our recognizer in an iterative approach. We achieved reasonably good

text recognition results keeping in mind that no handwritten training set was used.

These results can have favorable implication in the future as this can significantly

reduce, if not completely avoid, the need of preparing large annotated training sets

which is a time consuming and costly task.

8.2. Possible future works

A number of possible future works can enhance the current work. Some of the

possible extensions can be as follows:

 The use of NN-based deep learning strategies is gaining a lot of attention from

the researchers in the field of text recognition and the results are very

promising. A number of published works have shown its superiority over HMMs

154 Conclusions

in terms of text recognition accuracy. NN-based deep learning has also been

successfully integrated with HMMs to benefit from both the approaches.

Accordingly, an interesting future work can be investigate the effects of utilizing

the modeling approaches presented in this work with NN-based deep learning

frameworks. Training is, many a times, an issue in deep learning based text

recognition systems and thus by significantly reducing the number of basic

recognition units, the NN-based systems might benefit even more as compared

to a purely HMM-based system.

 It can also be interesting to investigate the impact of the presented modeling

approaches on the use of statistical n-grams as language models when using it

for text recognition tasks. Specially, the impact of core shape representation of

words (after removing the dots and other diacritics) on the language model

estimation and even on the word lexicon may be investigated. Many words will

get reduced to same core-shape representation thereby reducing the lexicon size.

This can potentially lead to efficient recognition and with better overall

recognition accuracy in a multi-stage recognition framework.

 For the task of text recognition without the handwritten training data, the use

of text synthesis together with the approaches presented in the present work

has a potential to further improve the text recognition results and seems worthy

of investigation. When using the hypothesis on test data to retrain the system,

one generally needs to exclude those hypothesis which have poor scores. Thus,

one may end up with only a few training samples. If these handwritten test

images can be used, along with its hypothesized annotations, for text image

synthesis to augment the training data, more robust training can be performed.

Moreover, using machine printed text images and the test images together with

text synthesis in a balanced proportion might also prove to be a useful

approach.

 Last but not the least, the modeling options we presented in this work needed

the knowledge of the script. A possible future work could be to develop methods

to automatically decide the optimal modeling units by utilizing pattern

recognition techniques. Starting with a system having character-shape models

trained on a dataset, techniques to investigate the state-sequence similarity

between parts of HMMs maybe one way to explore this possibility. Also, using

machine printed text to train the character-shape models and then deciding the

ideal number of sub-patterns using state clustering algorithms could prove to

be useful as well.

155

Appendix A

Transliteration and Translation of Arabic Texts from

the Figures in Chapter 3

(alif- ʼ- ʼ- - - - ʼ- ʼ) (alif- -alif- ʼ- ʼ- ʼ- ʼ- -

- - ʼ- ʼ) (alif- - - -alif-hamzah)

Have mercy to those on earth; the one above (God) will have mercy on you.

Figure A 1: Arabic text (top row), its transliteration5 (middle row), and meaning (bottom row) for

Figure 3.2.

(alif- ʼ- ʼ -alif- ʼ- ʼ- - ʼ- ʼ- ʼ - - ʼ- -

Love for your brother (i.e., others) what you love for yourself.

Figure A 2: Arabic text (top row), its transliteration (middle row), and meaning (bottom row) for

Figure 3.3.

5 The transliteration for individual characters (separated by -) are presented from left-

to-right although the character sequence in Arabic is from right-to-left. Thus, the first

character transliteration from the left represents the first Arabic character from the right.

Moreover, the transliterations as presented here does not represent how the character

sequences are pronounced. The words are enclosed in ().

156 Appendix A

NA

And what will be the supposition of those who invent falsehood about Allah (God)

on the Day of Resurrection? Indeed, Allah (God) is full of bounty to the people, but

most of them are not grateful.

Figure A 3: Arabic text (top row), its transliteration (middle row), and meaning (bottom row) for

Figure 3.4.

 مجلس إنسان سلام ناس
(n -alif-) (s - -alif-) (alif-n - -alif-n) (m - - -s)

People Peace Human Gathering

(a)

 أسد مدرسة دنيا أسود
(alif-s - -) (-n - ʼ-alif) (m - - ʼ-s -t) (alif-s -)

Black World School Lion

(b)

Figure A 4: Arabic texts (top row), its transliteration (middle row), and meaning (bottom row) for

Figure 3.6.

Appendix A 157

 السلام سيدي خليفة
ʼ- - ʼ- ʼ-t) - ʼ- - ʼ) (alif- - - -alif-

Caliph My Master The Peace

 الذويبات العروسة

(alif- -ʻayn- ʼ- - -t) (alif- - - - ʼ- ʼ-alif- ʼ)

The Bride Azzūybaat

Figure A 5: Arabic texts (top row), its transliteration (middle row), and meaning (bottom row) for

Figure 3.7.

 المنزه ثالجة سلامال
(alif- - - -alif- (ʼ-alif- - -) (alif- - - - - ʼ)

The Peace Thaalja Almunzah

 مجلس نّحال

(- ʼ-alif-) (- - -)

Nihhaal Gathering

Figure A 6: Arabic texts (top row), its transliteration (middle row), and meaning (bottom row) for

Figure 3.9.

 الرضاع شعال عين الشرايع
(alif- - shin- ʼ- alif-

ʼ- ʻayn)

(ʻayn- ʼ-) (shin- ʻayn-alif-) (alif- - ʼ- -alif-

ʻayn)

Asshraae’ Eye She’aal Arridae’

Figure A 7: Arabic texts (top row), its transliteration (middle row), and meaning (bottom row) for

Figure 3.10.

158 Appendix A

 الفرش نكريف بو فيشة الشلّوف
(alif- -shin- - -

ʼ)

ʼ- - ʼ- ʼ-shin-

t)

(- - ʼ- ʼ-

ʼ)

(alif- - ʼ- ʼ-

shin)

Assallouf Bofesha Nakreef Alfarash

(a)

 الغزلان الفايض القباضة الخضراء
(alif- - ʼ- - ʼ-

alif-hamzah)

(alif- - - ʼ-alif-

-t)

(alif- - ʼ-alif-

ʼ-

(alif- -ghayn- - -

alif-)

Green Alqabaadha Alfaaedh Algazlaan

(b)

Figure A 8: Arabic texts (top row), its transliteration (middle row), and meaning (bottom row) for

Figure 3.11.

 ربانة سيدي عجنقة المنزه الشرايع
(alif- - shin- ʼ-

alif- ʼ- ʻayn)

(alif- - - -

- ʼ)

(ʻayn- - - -

t)

- ʼ- -

ʼ)

(ʼ- ʼ-

alif- -t)

Asshraae’ Almunnaza E’jneka My Master Rabaana

 شوّاط بولحناش الخليج مارث
(-alif- ʼ-

ʼ)

(alif- - ʼ-

- ʼ-

ʼ- - - ʼ-

-alif-

(shin- -

alif- ʼ)

Maarth The Gulf Bulhanaash Shawwaat

Figure A 9: Arabic texts (top row), its transliteration (middle row), and meaning (bottom row) for

Figure 3.12.

159

Appendix B

e will present the experiments and the results related to machine printed

Arabic text recognition based on the approaches presented in Section 6.2.

First, we will present the machine printed text databases we used for the

experiments. This will be followed by the details of the experiments, the results,

and the discussions.

B.1. Databases for machine printed text recognition

We used two machine printed Arabic text databases for the experiments. Below we

present a brief description of both the databases.

B.1.1. P-KHATT database of machine printed texts

The P-KHATT database is the machine printed version of the KHATT database

presented in Section 7.1.2. The database includes text from eight different fonts;

each text is divided into three non-overlapping sets (train, development, and test).

The train, development, and test sets contain 6472, 1414, and 1424 text line images

respectively. The text and the divisions are similar to the text and divisions of the

KHATT database. Figure B 1 presents sample text images from the P-KHATT

database in eight fonts. In addition to the data and the images for the eight fonts,

the P-KHATT database has text line images and their annotations for a ninth font

for the purpose of text recognition on unseen fonts. The ninth font does not include

the training and the development sets. The text documents were printed using a

laser printer and, then, scanned at a resolution of 300 Dots-Per-Inch (DPI).

B.1.2. APTI database of machine printed texts

The APTI database is a publicly available database of machine printed Arabic

texts and is free for noncommercial use (Slimane et al. 2009). The database contains

low-resolution (72 DPI) synthetically generated printed Arabic word images in

many fonts, sizes, and styles. The database is partitioned into six sets for each

combination of font, size, and style. Five of the six sets are open, whereas; the sixth

set has not been disclosed to the public and is employed in competitions to evaluate

submitted OCR systems. According to the database developers, the characteristics

of the sixth set is similar to the characteristics of the remaining sets (Slimane et al.

2009). Each set contains different word images but the distribution of the

W

160 Appendix B

characters is nearly identical in every set. Figure B 2 presents sample text images

from the APTI database. Some experiments were conducted using the APTI

database in order to validate our approaches on multiple databases and as well as

to use it as a benchmark to compare our results to other OCR systems reported in

the literature that uses the same database under similar experimental

configurations.

Font (Code) Sample Text Image

Akhbar (AKH)

Andalus (AND)

Naskh (NAS)

(KFGQPC Uthman Taha Naskh)

Simplified Arabic (SIM)

Tahoma (TAH)

Thuluth (TLT)

DecoType Thuluth

Times New Roman (TNR)

Traditional Arabic (TRA)

Figure B 1: Sample text line images in different fonts from the P-KHATT database. Image

degradation due to the printing and scanning process is apparent (Image source (Ahmad,

Mahmoud, and Fink 2016)).

B.2. Experimentations, results, and discussions

In this section, we will present our experiments and results conducted on the P-

KHATT and the APTI databases of machine printed texts. First, we will present

the experiments conducted on the P-KHATT database which will be followed by

the experiments conducted on the APTI database.

Appendix B 161

Font (Code) Sample Text Images

Andalus

ArabicTransparent

Diwani Letter

Simplified Arabic

Traditional Arabic

Figure B 2: Sample text line images in different fonts from the APTI database.

B.2.1. Experiments using the P-KHATT database

The text line images were normalized to a fixed height of 96 pixels while

maintaining the aspect ratio of individual line images. Next, sliding window

technique was used to extract the features from the normalized text line images.

The frames of the sliding window were further divided into individual cells (a total

of 6 cells). The height of individual cells were not constant as is commonly the case.

Instead, the height of the cells were adaptive to the text line such that the cells are

smaller around the writing line where the pixel concentration is higher and the size

gradually increase as we move away from the writing line (both below and above

it). A cell is placed around the writing line and a number of cells are placed above

it and below it. The number of cells below the writing line is less than the number

of cells above the line as this design suits the properties of Arabic script. The

algorithm for cell division of the sliding window is presented in Figure B 3. The

width and the overlap for the window frames were decided based on the text

recognition results on the evaluation set on one of the fonts (Times New Roman).

The sliding window width and overlap for the Thuluth font was calibrated

separately using its development set as the Thuluth font has quite different

characteristics as compared to other fonts in the database. Density of ink pixels

were computed from each cell of the sliding window frames running across the text

line images in addition to its horizontal and vertical derivative images. The features

162 Appendix B

from each frame were concatenated for all the three images such the feature vector

has the dimension 18.

Our text recognition system is based on continuous HMMs. We use HTK tools

(Young et al. 2002) to implement our recognizer. Each character shape is treated

as an individual model with a simple right-to-left linear topology. White space was

explicitly modeled using a separate HMM. We have a total of 153 different HMMs

in our recognition system. Each character-shape HMM was modeled with the same

number of states, with the exception of some narrow-width characters (such as alif

 which were modeled with half the number of states. The optimal number of ,(ا

states (for each font) was determined based on the uniform initialization (flat start)

User Inputs:= total no. of cells ‘totalCells’ in a frame,

 no. of cells ‘cellsAbove’ above the writing line,

 text-line image

 Place the cell cellwl around the writing line such that the baseline

of the text is in the middle of the cell. The width of the cell shall

be such that the following condition is satisfied:

(𝑆𝑢𝑚 𝑜𝑓 𝑖𝑛𝑘 𝑝𝑖𝑥𝑒𝑙𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑐𝑒𝑙𝑙)

(𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑘 𝑝𝑖𝑥𝑒𝑙𝑠)
≅

1

(𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑎 𝑓𝑟𝑎𝑚𝑒)

 Divide the area above the cellwl into ‘cellsAbove’ cells such that

each of the cell has the same percentage of ink pixels.

 Divide the area below the cellwl into ‘totalCells – cellsAbove - 1’

cells such that each of the cell has the same percentage of ink

pixels.

Figure B 3: Algorithm for determining the size and the position of the cells of the sliding window

frames.

We employed 2,000 text line images for training instead of the complete training

set for each font. Training was conducted in two stages. In the first stage, uniform

initialization (flat start) was performed using the training data. In the next stage,

the alignment information from the training data was employed to initialize

individual HMMs using Viterbi initialization followed by a number of iterations of

Baum-Welch training. Character hypotheses for the evaluation set were generated

using Viterbi decoding. The experimental results related to configuring the sliding

window width and overlap are presented in Table B 1. Accordingly, based on the

results, we applied a window width of 6 pixels with an overlap of 3 pixels for all

other fonts (except the Thuluth font which has window width of 4 pixels with an

overlap of 2 pixels).

Appendix B 163

Once the sliding window parameters were selected, we performed the two-step

training (i.e., uniform initialization and alignment-based initialization) for all eight

fonts. The recognition results for each of the eight fonts are presented in Table B

2. The best result CER 1.04% was achieved for the Tahoma font. The worst

result CER 7.55% was achieved for the Thuluth font. The mean CER of 2.89%

was achieved for the eight fonts on the evaluation sets.

Table B 1: Configuration of sliding w on the

development set using the Times New Roman font from the P-KHATT database.

Window (W|O)* No. of states CER (%)

4|2 10 1.43

2|0 11 1.78

3|1 10 2.54

1|0 17 2.60

3|0 7 1.65

4|1 7 1.37

5|2 7 1.26

6|3 7 1.23

4|0 6 2.32

6|2 6 1.87

8|4 5 1.56

*W: Width; O: Overlap

Table B 2: Summary of the character recognition results for mono-font machine printed text

recognition using the P-KHATT database.

Font
Window

(W|O)
No. of States

CER (%) Statistical

Significance Development Evaluation

Times New Roman 6|3 7 1.23 1.20 ±0.06

Andalus 6|3 8 1.20 1.35 ±0.07

DecoType Thuluth 4|2 7 7.51 7.55 ±0.15

Tahoma 6|3 9 1.00 1.04 ±0.06

Traditional Arabic 6|3 6 4.75 4.35 ±0.12

Naskh 6|3 6 2.61 3.06 ±0.10

Akbaar 6|3 6 2.80 2.87 ±0.09

Simplified Arabic 6|3 7 2.02 1.67 ±0.07

Mean 2.89 2.89

164 Appendix B

Our next set of experiments was related to mixed font text recognition. As an

initial experiment, we trained a mixed-font recognizer (i.e., the recognizer was

trained using training samples from all fonts). The optimal HMM parameters were

selected based on the results from the development set, and a final evaluation was

conducted on the evaluation set. A CER of 12.19% for the development set and a

CER of 12.14% for the evaluation sets were achieved, which are significantly higher

than the mean CER of 2.89% that was achieved for mono-font text recognition.

This increase in error rates can be partly explained by the large variation in font

styles and the fact that each font has individual parameters (such as number of

states), which is difficult to generalize. This motivated us to explore font-

identification-based recognition, as described in Section 6.2.2, in which the image

font is identified in the first step and the mono-font recognizer for the identified

font is subsequently employed for text recognition in the second step.

For the font-identification-based recognition, we trained the font identification

module. The font features, as described in Section 6.2.1, were computed from the

training samples for each of the eight fonts. An SVM, with Radial Basis Function

(RBF) as the kernel, was employed as a classifier. The font identification module

was evaluated using a set that contained 1414 text line images for each font, which

were randomly distributed. Table B 3 presents the font identification results and

the confusion matrix. As shown in the table, we achieve reasonable results for the

font identification, which demonstrates the effectiveness of our proposed features

for font identification. Common confusion occurred between the Simplified Arabic

font and the Times New Roman font. A closer look at the text images from the

two fonts reveals that the two fonts are quite similar; this observation has been

noted in other studies (cf., e.g., (Luqman, Mahmoud, and Awaida 2014)). Another

observation is that both fonts employ the same number of HMM states per model,

which provides clues regarding their similar properties. To confirm that the fonts

are indeed similar, we recognized the text images from the Times New Roman font

using the mono-font recognizer that was trained on the Simplified Arabic font. A

CER of 3.68% was achieved, which confirmed that the two fonts are not only

visually similar but also exhibit similar properties with respect to text recognition.

When they were combined as one font, our font identification rate was 97.27%.

Appendix B 165

Table B 3: Font identification results and the confusion matrix on the P-KHATT database.

Font AKH AND NAS SIM TAH TLT TNR TRA Identification Rate (%)

AKH 1337 0 20 11 2 4 1 39 94.55

AND 2 1402 0 1 2 4 1 2 99.15

NAS 9 1 1352 1 0 20 2 29 95.62

SIM 5 1 14 1269 2 3 118 2 89.75

TAH 2 0 0 0 1405 4 1 2 99.36

TLT 2 1 26 2 0 1367 2 14 96.68

TNR 2 1 3 129 3 3 1272 1 89.96

TRA 14 1 33 3 0 8 3 1352 95.62

 Mean 95.08

After associating the font of the input text image, we performed feature

extraction and recognition using the mono-font text recognizer of the associated

font. With this approach, we achieved a CER of 3.44%, which is closer to the mean

CER that we achieved in the mono-font setups. Thus, the results demonstrate the

effectiveness of this approach compared with the commonly employed approach of

recognizing the text image using a recognizer that is trained on multiple fonts. To

understand the recognition errors caused by errors in font identification, we

conducted another experiment, in which we manually separated the text line images

mono-font recognizer. The CER was 2.86%; thus, the text recognition error caused

by the error in font identification was 0.58% (i.e., 3.44–2.86). Table B 4

summarizes the results of the recognition for both scenarios.

Table B 4: Summary of the results (in CER) for the mixed-font machine printed text recognition

experiments using the P-KHATT database.

Setup CER (%)

Recognizer trained on samples from all

fonts
12.19

Using font-association-based recognition 3.44

Recognition using the mono-font recognizer

after manually separating text lines into

different fonts.

2.86

In the last set of experiments involving the P-KHATT database, we performed

text recognition on an unseen font. We attempted different configurations to

investigate the effectiveness of various approaches presented in Section 6.2.2. In the

first exper

trained on text line images from all the eight fonts. In the second experiment, we

associated the input text line images to the closest of the eight fonts using the font

166 Appendix B

association m

recognize the input text. In the next few experiments, we evaluated the HMM

adaptation techniques that were presented in Section 6.2.2. In one of the

experiments, we investigated unsupervised HMM adaptation, in which no labeled

data for the unseen fonts were employed. Recognition was performed after the

adaptation step. In another set of experiments, we employed 100 labeled text line

images for the unseen font to perform MLLR-based supervised adaptation. A

summary of the recognition results for the unseen fonts is presented in Table B 5.

Although the supervised and unsupervised adaptation techniques improve the

results, the improvements based on the supervised adaptation are optimal, which

is understandable. It assumes the availability of labeled samples for the input font,

which may not always be feasible.

Table B 5: Summary of the character recognition results (in CER) for the unseen font using the P-

KHATT database.

System Description CER (%)

Recognizer trained on samples from all fonts 19.28

Recognizer for the closest identified font 15.39

Recognizer for the closest identified font +

Unsupervised adaptation 11.76

Recognizer for the closest identified font +

Supervised adaptation 9.43

We present a subjective comparison of our text recognition system with other

HMM-based printed Arabic text recognition systems that have been discussed in

the literature. Only studies that performed text recognition using text lines instead

of systems that recognized isolated characters, digits, or word images were selected.

Systems that employed synthetic databases were not selected because they did not

address many of the practical challenges of real and scanned databases. In Table

B 6, we present a comparative study of different studies related to printed Arabic

text line image recognition. This comparison was not performed to quantitatively

compare different works because this task would be impossible due to the different

databases utilized by different groups. Thus, this comparison should be understood

from a complementary viewpoint. In the comparison presented in Table B 6, we

highlight different aspects of the study, such as the selected database, which was

considered to be one of the most important aspects. The nature of the database,

Appendix B 167

its text sources, its characteristics (such as scanning resolution and noise level),

and its division into different sets (for training, development, and evaluation) serve

an important role in text recognition performance.

Another important aspect is the nature of text recognition with respect to font

variability. Some studies only reported their results for mono-font or mixed-font

text recognition, whereas other studies discussed the performance of both mono-

font and mixed-font text recognition. Our current work focuses on mixed-font text

recognition as well as text recognition of unseen fonts. Other important aspects

include the decoding network and the use of language models. Some studies

optionally decode at the character level using character n-grams as their language

models. Other studies have employed word lexicons with the optional use of word

n-grams as language models. The issue of out-of-vocabulary (OOV) words is

important when using word lexicons in open vocabulary word recognition tasks.

One study (Prasad et al. (Prasad et al. 2008)) also investigated the use of parts of

Arabic words (PAW) language models. These models can also be used after

decoding to re-score the N-best list that is generated during decoding. In addition

to these aspects, other aspects can be compared between different studies, including

the nature of the HMM system (continuous vs. discrete vs. systems with differing

levels of tying, e.g., mixture tying and state tying), the sliding window technique

and features employed for recognition.

168 Appendix B

168

Table B 6: A Subjective comparison of other HMM-based printed Arabic text recognition systems that perform recognition at the text line level.

Work Characteristics of the database
Main aspects of text

recognition
System description Error rates (%)

Bazzi et al.

(Bazzi,

Schwartz,

and

Makhoul

1999)

DARPA Arabic OCR Corpus of 345

pages of Arabic text scanned at 600

DPI

For mixed font text recognition:

 Text line images from 30 pages

were used for training

 Text line images from 10 pages

were used for evaluation

 Mono-font text

recognition

 Mixed-font text

recognition where the

training set and the

evaluation set

contains line images

from four different

fonts

 HMM-based OCR system

 Pixels density features with vertical

and horizontal derivatives in

addition to local slope and

correlation features across a

window of two cells

 lexicon obtained from a large text

corpus with closed vocabulary of

30k words

 A language model for recognition

from the same text corpus

CER of 0.40 for mono-font text

recognition

CER of 2.60 for mixed-font system

with closed vocabulary word

recognition

CER of 4.50 on mixed font open

vocabulary text recognition using

trigram character language model

Natarajan

et al.

(Premkum

ar

Natarajan

et al. 2001)

DARPA Arabic OCR Corpus of 345

pages of Arabic text scanned at 600

DPI

 Text line images from 192 text

zones were used for training

 Text line images from 102 text

zones were used for evaluation

 Mixed-font text

recognition

 HMM-based OCR system with

mixture tying at character level

 Percentile features with vertical

and horizontal derivatives in

addition to local slope and

correlation features

CER of 3.86

Khorsheed

(Khorshee

d 2007)

A database of 15,000 text line images

in six different fonts, i.e., 2,500 text

line images in each font.

 Training set includes 1,500 text

line images in each of the six

font

 Mono-font text

recognition for six

different fonts

 Discrete-HMMs based OCR system

 Pixel density features extracted

from the sliding windows over the

text line images and their

horizontal and vertical derivatives

 Contextual HMM modeling

CER ranging from 7.40 (for

Andalus font) to 14.00 (for Naskh

font)

Appendix B 169

 Development Set includes 1,000

text line images in each of the

six font

 Character bigrams from training

transcriptions

Prasad et

al. (Prasad

et al. 2008)

DARPA Arabic Machine Print

(DAMP) scanned at 600 DPI

 Training set includes text line

images from 177 page images in

addition to text line images

from 380 synthetically

generated page images in

multiple fonts and sizes

 Development set includes text

line images from 60 page images

 Evaluation set includes text line

images from 60 page images

 Mixed-font text

recognition

 HMM-based OCR system with

discriminative training

 Position-dependent tied mixtures

where the Gaussians for

corresponding states of all the

presentation forms of character is

tied

 Contextual HMM modeling

 Character, PAW, and word

trigrams from 2.6 million words of

Arabic newswire data in addition

to the training transcriptions

 Word lexicon of 65k words

Best word error rate of 9.60 using

PAW language model and N-Best

rescoring using contextual HMMs

estimated using discriminative

training procedure

Dreuw et

al. (Dreuw

et al. 2012)

RAMP-N printed Arabic database in

20 different fonts scanned at 600 DPI:

 222,421 text line images for

training

 1,155 text line images for the

development set

 3,480 text line images for the

evaluation set

 Mixed-font text

recognition (two of

the fonts cover more

than 95% of all the

text line images in

the evaluation set)

 Word recognition task

with Out Of

Vocabulary rate of

2.21%

 HMM-based system with ML

trained GMMs with globally pooled

variances

 Appearance-based image slice

features along with spatial

derivatives

 Language model using a corpus of

228 million running words

 Vocabulary size of 106k words

WER of 4.76 and

CER of 0.15 on the rendered data

WER of 5.79 and

CER of 0.66 on the scanned data

170 Appendix B

Present

Work

P-KHATT printed Arabic text

database in eight different fonts

scanned at 300 DPI:

 Training set includes 6,472 text

line images in each of the eight

font (2,000 text line images

used for training in current

work)

 Development Set includes 1,414

text line images in each of the

eight font

 Evaluation Set includes 1,424

text line images in each of the

eight font

 Mono-font text

recognition

 Mixed-font text

recognition

 Text recognition for

unseen font (i.e.,

having no training

samples)

 HMM-based OCR system

 Adaptive sliding window for feature

extraction

 Pixel density features and its

vertical and horizontal derivatives

 Font identification based text

recognition

 Use of supervised and unsupervised

HMM adaption techniques to deal

with font variability

 Character bigrams from training

transcriptions

CER ranging from 1.04 (for

Tahoma) to 7.55 (for Thuluth) for

mono-font text recognition without

using any language model or word

lexicon

CER of 3.44 for mixed-font text

recognition without using any

language model or word lexicon

For unseen-font text recognition:

CER of 11.76 using unsupervised

adaptation without any language

models and lexicon

CER 7.18 using supervised

adaptation and character bigrams

as language model

Appendix B 171

B.2.2. Experiments using the APTI database

In this section, we will present the character recognition experiments we conducted

on the publically available APTI database. As mentioned before, we conducted

some experiments using the APTI database in order to validate our machine

printed text recognition approaches on multiple databases and as well as to use it

as a benchmark to compare our results to other OCR systems reported in the

literature that uses the same database under similar experimental configurations.

The details of the system initialization, training, and decoding are similar to the

ones presented for the experiments using the P-KHATT database. The minor

differences will be presented along the discussions of the results.

In the first set of experiments involving the APTI database, we perform mono-

font text recognition. We experimented with five different fonts from the APTI

database the same five fonts were selected in the first competition that was held

using the APTI database (Slimane et al. 2011). For each font, we selected 24-point

images in plain text. Set 1 was selected as the training data, and 3000 images from

set 2 were selected as the development set to optimally configure the number of

states per HMM. Set

images, with the exception of the images in the Diwani Letter font, were height-

normalized to 64 pixels while maintaining a constant aspect ratio. Because Diwani

Letter is very compact with many vertically overlapping ligatures, it was height-

normalized to 96 pixels. An explicit white space model was not employed in these

experiments.

The mono-font text recognition results for the individual fonts is presented in

Table B 7. The best results were obtained for the Arabic Transparent font, whereas

the results for the Andalus and Simplified Arabic fonts were also comparable. The

poorest results were obtained for the Diwani Letter font, which is a complex and a

compact font. The mean CER for all the fonts was 2.07%. For optimal performance,

parameters such as the sliding window width and overlap, the number of mixtures

per HMM state, and the image height can be calibrated for individual fonts using

their corresponding development sets. Use of the font-specific ligature models also

has the potential to improve recognition performances (e.g., (Slimane et al. 2010;

Slimane et al. 2012)).

172 Appendix B

Table B 7: Summary of the character recognition results for mono-font machine printed text

recognition using the APTI database.

Font CER (%)

Andalus 0.76

Arabic Transparent 0.57

Diwani Letter 4.67

Simplified Arabic 0.69

Traditional Arabic 3.65

Mean 2.07

In the next set of experiments, we performed mixed-font text recognition.

Similar to the experiments with the P-KHATT database, we investigated two

approaches to this text recognition task. The first approach was to train an HMM

recognizer using samples from all five fonts. The second approach was to perform

font-association-based recognition. For the first approach, we selected 3000 word

images from set 1 of each font at 24 point size; the training data included 15,000

word images. The optimal number of states for the HMM was selected based on

the recognition performance on the development set, which included 600 word

images from set 2 of each font (a total of 3000 images). The final evaluation was

conducted using the evaluation set, which included 15,000 word images in the five

fonts (3000 images from each font from set 5). A CER of 7.71% was obtained that

was reasonable but higher than the mean CER of 2.07%, which was achieved in

the mono-font experiments.

For the second approach, we train our font-association module, which utilizes

an SVM classifier with RBF kernel. The font identification features, as proposed in

Section 6.2.1, were extracted from the 15,000 word images in the training set. These

features and the information about the word image font typefaces were employed

to train the SVM classifier. The trained classifier was applied to associate the word

image font in the evaluation set. The font identification results for the evaluation

set are presented in Table B 8. An average identification rate of 96.99% was

obtained. After associating the input text image font, we perform feature

extraction and recognition using the mono-font text recognizer for the associated

font. Using this approach, we achieved a CER of 2.92%, which demonstrates that

the two-step font-association-based text recognition proved to be a better approach

than performing text recognition trained on multiple font images. In Table B 9,

we summarize the text recognition results for the mixed-font text recognition task.

When the text line images were manually separated based on the font, the CER

Appendix B 173

was 2.12%. Consequently, the recognition errors caused by the misclassified fonts

was 0.80% (i.e., 2.92 2.12).

Table B 8: Font identification results and the confusion matrix on the APTI database.

Font Andalus
Arabic

Transparent

Diwani

Letter

Simplified

Arabic

Traditional

Arabic

Identification

Rate (%)

Andalus 2994 2 0 3 1 99.80

Arabic Transparent 0 2806 12 178 4 93.53

Diwani Letter 0 4 2944 0 52 98.13

Simplified Arabic 0 140 0 2856 4 95.20

Traditional Arabic 3 3 44 2 2948 98.27

 Mean 96.99

Table B 9: Summary of the results (in CERs) for the mixed-font machine printed text recognition

experiments using the APTI database.

Setup CER (%)

Recognizer trained on samples from all fonts 7.71

Using font-association based recognition 2.92

Recognition using mono-font recognizer after

manually separating text lines of different

fonts.

2.12

We compare our text recognition results using the APTI database with results

from other HMM systems that have been reported in the literature using the APTI

database. The comparison is presented in Table B 10. The comparison is based on

recognition results on Arabic Transparent font because this font was included in

the reference protocols for the text recognition competitions that employed the

APTI database (Slimane et al. 2011; Slimane et al. 2013). For the remaining fonts,

the results in the competitions are presented for mixed-font and multi-size text

recognition scenarios. Thus, comparisons including other fonts are not possible. For

the Arabic Transparent font, a completely objective comparison is still not possible

for many reasons. One of the most important reasons is that set 6, which is not

publicly available, was employed to evaluate the systems in the competitions. For

the systems that utilized the APTI database and that are available in the literature,

each group created individual training, development, and evaluation set partitions.

Some systems applied word lexicons and n-gram language models, whereas other

systems did not use any word lexicons or language models. For some systems, these

details are not explicitly mentioned. Nevertheless, the comparison table can provide

useful qualitative insights.

174 Appendix B

Table B 10: Comparison with other HMM-based text recognition systems evaluated using the APTI database.

OCR systems Database setup for experimentation Error rates (%) System description

UPV-PRHLT (cf.

(Slimane et al. 2011))

APTI database of printed Arabic text

Font: Arabic Transparent, size: 24

- set 1 to set 5: used as training

and development sets

- set 6 (not publicly available) used

for evaluation

Character level: 4.00

Word level: 15.60
- Bernoulli-mixture-based HMM system (BHMM)

Awaida and

Khorsheed (Awaida

and Khorsheed 2012)

APTI database of printed Arabic text

- Training Set: 80,000 images

Sub-Training Set: 8,000 images

Development Set: 1,000 images

- Evaluation Set: 14,418 images

Character level: 3.35

- Discrete HMM-based OCR system

- Sliding-window-based run-length encoding (RLE) features

- Number of states per model and codebook size for feature

quantization were optimized using the development set

IPSARec System (cf.

(Slimane et al. 2011))

APTI database of printed Arabic text

Font: Arabic Transparent, size: 24

- sets 1 to 5: used as training and

development sets

- set 6 (not publicly available) used

for evaluation

Character level: 3.20

Word level: 22.50

- Discrete HMM-based OCR system

- Pixel density features from the text image and its

horizontal and vertical derivatives

THOCR1 (cf.

(Slimane et al. 2013))

APTI database of printed Arabic text

Font: Arabic Transparent, size: 24

- set 1 to 5: used as training and

development sets

- set 6 (not publicly available) used

for evaluation

Character level: 1.05

Word level: 8.23

- HMM-based OCR system

- Statistical and structural features and their derivatives

- No language model used

Appendix B 175

THOCR2 (cf.

(Slimane et al. 2013))

APTI database of printed Arabic text

Font: Arabic Transparent, size: 24

- sets 1 to 5: used as training and

development sets

- set 6 (not publicly available) used

for evaluation

Character level: 0.81

Word level: 4.97

- HMM-based OCR system

- Statistical and structural features and their derivatives

- Four-gram language model trained on the APTI training

corpus used for rescoring

Khoury et al.

(Khoury et al. 2013)

APTI database of printed Arabic text.

Font: Arabic Transparent, size: 24

- Training set: 10,000 images

- Development set: 2000 images

- Evaluation set: 3000 images

Character level: 0.30

- Bernoulli-mixture-based HMM system (BHMM)

- Image height, sliding window width, number of states per

model, and number of mixture components per state were

optimized using the development set.

- Five-gram language model at the character level

UPV-BHMM (cf.

(Slimane et al. 2013))

APTI database of printed Arabic text

Font: Arabic Transparent, size: 24

- sets 1 to 5: used as training and

development sets

- set 6 (not publicly available) used

for evaluation

Character level: 0.04

Word level: 0.10

- Character-based windowed BHMMs (Bernoulli HMMs)

- Image height, sliding window width, number of states per

model, and number of mixture components per state were

optimized using the development set.

- Five-gram language model at the character level

DIVA-REGIM (cf.,

(Slimane et al. 2011;

Slimane et al. 2010))

APTI database of printed Arabic text

Font: Arabic Transparent, size: 24

- sets 1 to 5: used as training and

development sets

- set 6 (not publicly available) used

for evaluation

Character level: 0.30

Word level: 1.10

- HMM-based OCR system

- Character shape as HMM models with some models

merged into one model, which produced a total of 65

HMM models

- Ergodic HMM topology with all possible transitions

allowed

- System parameters tuned using sets 1 to 5

- Number of connected black and white components, centers

of gravity, density, compactness, vertical and horizontal

- projection, baseline position, number of relative extrema

in the vertical projection, and number of relative extrema

in the horizontal projection used as features and their

horizontal derivatives

176 Appendix B

SID (cf. (Slimane et

al. 2013))

APTI database of printed Arabic text

Font: Arabic Transparent, size: 24

- set 1 to 5: used as training and

development set

- set 6 (not publicly available) used

for evaluation

Character level: 0.01

Word level: 2.59

- HMM-based OCR system

- Sliding-window-based features

Present Work

APTI database of printed Arabic text

Font: Arabic Transparent, size: 24

- Set 1 used as training set

- Set 2 used as development set

- Set 5 used as evaluation set

Character level: 0.57

Word level: 2.12

- HMM-based system with adaptive sliding window features

and statistical feature in addition to its horizontal

derivatives

- Number of states per model optimized using the

development set

- No use of language models or word lexicons.

177

Bibliography

Abandah, Gheith A., Fuad T. Jamour, and Esam A. Qaralleh. 2014. Recognizing

Handwritten Arabic Words Using Grapheme Segmentation and Recurrent Neural

Networks. International Journal on Document Analysis and Recognition (IJDAR)

17 (3): 275 91. doi:10.1007/s10032-014-0218-7.

Abed, Haikal El, and Volker Märgner. 2007. Comparison of Different Preprocessing

and Feature Extraction Methods for Offline Recognition of Handwritten

ArabicWords. In Proceedings of the Ninth International Conference on Document

Analysis and Recognition (ICDAR 2007), 2:974 78.

doi:10.1109/ICDAR.2007.4377060.

. 2009. How to Improve a Handwriting Recognition System. In Proceedings of

the 10th International Conference on Document Analysis and Recognition

(ICDAR 2009), 1181 85. IEEE. doi:10.1109/ICDAR.2009.11.

Abuhaiba, Ibrahim S., M.J.J Holt, and S Datta. 1998. Recognition of Off-Line Cursive

Handwriting. Computer Vision and Image Understanding 71 (1): 19 38.

doi:10.1006/cviu.1997.0629.

Abulhab, Saad D. 2009. Roots of Modern Arabic Script: From Musnad to Jazm. Sawt

Dahesh 50 51.

Ahmad, Irfan, and Gernot A. Fink. 2015a. Multi-Stage HMM Based Arabic Text

Recognition with Rescoring. In Proceedings of the 13th International Conference

on Document Analysis and Recognition (ICDAR 2015), 751 55. IEEE.

doi:10.1109/ICDAR.2015.7333862.

. 2015b. Training an Arabic Handwriting Recognizer without a Handwritten

Training Data Set. In Proceedings of the 13th International Conference on

Document Analysis and Recognition (ICDAR 2015), 476 80. IEEE.

doi:10.1109/ICDAR.2015.7333807.

Ahmad, Irfan, Gernot A. Fink, and Sabri A. Mahmoud. 2014. Improvements in Sub-

Character HMM Model Based Arabic Text Recognition. In Proceedings of the

14th International Conference on Frontiers in Handwriting Recognition (ICFHR

2014), 537 42. Crete: IEEE. doi:10.1109/ICFHR.2014.96.

Ahmad, Irfan, Sabri A. Mahmoud, and Gernot A. Fink. 2016. Open-Vocabulary

Recognition of Machine-Printed Arabic Text Using Hidden Markov Models.

Pattern Recognition 51 (March): 97 111. doi:10.1016/j.patcog.2015.09.011.

Ahmad, Irfan, Leonard Rothacker, Gernot A. Fink, and Sabri A. Mahmoud. 2013.

Novel Sub-Character HMM Models for Arabic Text Recognition. In Proceedings

178 Bibliography

of the 12th International Conference on Document Analysis and Recognition

(ICDAR 2013), 658 62. IEEE. doi:10.1109/ICDAR.2013.135.

Ait-Mohand, Kamel, Thierry Paquet, and Nicolas Ragot. 2014. Combining Structure

and Parameter Adaptation of HMMs for Printed Text Recognition. IEEE

Transactions on Pattern Analysis and Machine Intelligence 36 (9): 1716 32.

doi:10.1109/TPAMI.2014.2306423.

Al-Badr, Badr, and Robert M. Haralick. 1998. A Segmentation-Free Approach to Text

Recognition with Application to Arabic Text. International Journal on Document

Analysis and Recognition (IJDAR) 1 (3): 147 66. doi:10.1007/s100320050014.

Al-Badr, Badr, and Sabri A. Mahmoud. 1995. Survey and Bibliography of Arabic

Optical Text Recognition. Signal Processing 41 (1). Elsevier: 49 77.

Al-Hajj Mohamad, R, Laurence Likforman-Sulem, and Chafic Mokbel. 2009.

Combining Slanted-Frame Classifiers for Improved HMM-Based Arabic

Handwriting Recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence 31 (7). IEEE: 1165 77.

Al-Hajj Mohamad, R, Chafic Mokbel, and Laurence Likforman-Sulem. 2007.

Combination of Hmm-Based Classifiers for the Recognition of Arabic Handwritten

Words. In Proceedings of the Ninth International Conference on Document

Analysis and Recognition (ICDAR 2007), 2:959 63.

Al-Maadeed, S., Dave Elliman, and Colin Higgins. 2002. A Data Base for Arabic

Handwritten Text Recognition Research. In Proceedings of the Eighth

International Workshop on Frontiers in Handwriting Recognition (IWFHR 2002),

485 89. IEEE Comput. Soc. doi:10.1109/IWFHR.2002.1030957.

Al-Ohali, Yousef, Mohamed Cheriet, and Ching Y. Suen. 2003. Databases for

Recognition of Handwritten Arabic Cheques. Pattern Recognition 36 (1): 111 21.

doi:10.1016/S0031-3203(02)00064-X.

Al-Shatnawi, A M, and K Omar. 2009. A Comparative Study between Methods of

Arabic Baseline Detection. In Proceedings of the International Conference on

Electrical Engineering and Informatics, 1:73 77. doi:10.1109/ICEEI.2009.5254814.

Alamri, Huda, Chun He, and Ching Y. Suen. 2009. A New Approach for Segmentation

and Recognition of Arabic Handwritten Touching Numeral Pairs. Edited by

Xiaoyi Jiang and Nicolai Petkov. Computer Analysis of Images and Patterns,

Lecture Notes in Computer Science, 5702. Berlin, Heidelberg: Springer Berlin

Heidelberg: 165 72. doi:10.1007/978-3-642-03767-2.

-Line

Handwritten Arabic Words Using Hidden Markov Model Approach. In

Proceedings of the Object Recognition Supported by User Interaction for Service

Bibliography 179

Robots, 3:481 84. IEEE Comput. Soc. doi:10.1109/ICPR.2002.1047981.

. 2004. Off-Line Recognition of Handwritten Arabic Words Using Multiple

Hidden Markov Models. Knowledge-Based Systems 17 (2 4): 75 79.

doi:http://dx.doi.org/10.1016/j.knosys.2004.03.002.

Almuallim, H, and S Yamaguchi. 1987. A Method of Recognition of Arabic Cursive

Handwriting. IEEE Transactions on Pattern Analysis and Machine Intelligence,

no. 5. IEEE: 715 22.

Amin, Adnan, Humoud Al-Sadoun, and Stephen Fischer. 1996. Hand-Printed Arabic

Character Recognition System Using an Artificial Network. Pattern Recognition

29 (4): 663 75. doi:10.1016/0031-3203(95)00110-7.

Awaida, Sameh M., and Mohammad S. Khorsheed. 2012. Developing Discrete Density

Hidden Markov Models for Arabic Printed Text Recognition. In Proceedings of

the IEEE International Conference on Computational Intelligence and

Cybernetics (CyberneticsCom), 35 39. IEEE.

doi:10.1109/CyberneticsCom.2012.6381612.

Awaida, Sameh M., and Sabri A. Mahmoud. 2009. A Multiple Feature/resolution

Scheme to Arabic (Indian) Numerals Recognition Using Hidden Markov Models.

Signal Processing 89 (6): 1176 84.

Azeem, SherifAbdel, and Hany Ahmed. 2013. Effective Technique for the Recognition

of Offline Arabic Handwritten Words Using Hidden Markov Models. International

Journal on Document Analysis and Recognition (IJDAR) 16 (4). Springer Berlin

Heidelberg: 399 412. doi:10.1007/s10032-013-0201-8.

Azizi, Nabiha, Nadir Farah, Mokhtar Sellami, and Adellatif Ennaji. 2010. Using

Diversity in Classifier Set Selection for Arabic Handwritten Recognition. In

Proceedings of the 9th International Workshop on Multiple Classifier Systems

(MCS), edited by Neamat Gayar, Josef Kittler, and Fabio Roli, 235 44. Berlin,

Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-12127-2_24.

Baird, Henry S. 2007. The State of the Art of Document Image Degradation Modelling.

In Digital Document Processing, edited by Bidyut B. Chaudhuri, 261 79.

Advances in Pattern Recognition. London: Springer London. doi:10.1007/978-1-

84628-726-8.

Bazzi, Issam, C. LaPre, John Makhoul, C. Raphael, and Richard Schwartz. 1997.

Omnifont and Unlimited-Vocabulary OCR for English and Arabic. In Proceedings

of the Fourth International Conference on Document Analysis and Recognition

(ICDAR 1997), 2:842 46. doi:10.1109/ICDAR.1997.620630.

Bazzi, Issam, Richard Schwartz, and John Makhoul. 1999. An Omnifont Open-

Vocabulary OCR System for English and Arabic. IEEE Transactions on Pattern

180 Bibliography

Analysis and Machine Intelligence 21 (6): 495 504. doi:10.1109/34.771314.

Benouareth, A., Adellatif Ennaji, and Mokhtar Sellami. 2006. HMMs with Explicit

State Duration Applied to Handwritten Arabic Word Recognition. In Proceedings

of the 18th International Conference on Pattern Recognition (ICPR 2006), 2:897

900. IEEE. doi:10.1109/ICPR.2006.631.

. 2008. Semi-Continuous HMMs with Explicit State Duration for Unconstrained

Arabic Word Modeling and Recognition. Pattern Recognition Letters 29 (12).

Elsevier: 1742 52.

BenZeghiba, Mohamed Faouzi, Jerome Louradour, and Christopher Kermorvant. 2015.

Hybrid word/Part-of-Arabic-Word Language Models for Arabic Text Document

Recognition. In Proceedings of the 13th International Conference on Document

Analysis and Recognition (ICDAR 2015), 671 75. IEEE.

doi:10.1109/ICDAR.2015.7333846.

Bianne-Bernard, Anne Laure, Fares Menasri, Rami Al-Hajj Mohamad, Chafic Mokbel,

Christopher Kermorvant, and Laurence Likforman-Sulem. 2011. Dynamic and

Contextual Information in HMM Modeling for Handwritten Word Recognition.

IEEE Transactions on Pattern Analysis and Machine Intelligence 33 (10): 2066

80. doi:10.1109/TPAMI.2011.22.

Bluche, Théodore, Jerome Louradour, Maxime Knibbe, Bastien Moysset, Mohamed

Faouzi Benzeghiba, and Christopher Kermorvant. 2014. The A2iA Arabic

Handwritten Text Recognition System at the Open HaRT2013 Evaluation. In

Proceedings of the 11th IAPR International Workshop on Document Analysis

Systems (DAS 2014), 161 65. IEEE. doi:10.1109/DAS.2014.40.

Bluche, Théodore, Hermann Ney, and Christopher Kermorvant. 2014. A Comparison

of Sequence-Trained Deep Neural Networks and Recurrent Neural Networks

Optical Modeling for Handwriting Recognition. In Proceedings of Second

International Conference on Statistical Language and Speech Processing,

SLSP2014, edited by Laurent Besacier, Adrian- -

Vide, 199 210. Grenoble: Springer International Publishing. doi:10.1007/978-3-

319-11397-5_15.

Bose, Chinmoy B, and Shyh-Shiaw Kuo. 1994. Connected and Degraded Text

Recognition Using Hidden Markov Model. Pattern Recognition 27 (10): 1345 63.

doi:10.1016/0031-3203(94)90069-8.

Caesar, T, J M Gloger, and E Mandler. 1993. Preprocessing and Feature Extraction

for a Handwriting Recognition System. In Proceedings of the Second International

Conference on Document Analysis and Recognition (ICDAR 1993), 408 11.

doi:10.1109/ICDAR.1993.395706.

Bibliography 181

Cao, Huaigu, Prem Natarajan, Xujun Peng, Krishna Subramanian, David Belanger,

and Nan Li. 2014. Progress in the Raytheon BBN Arabic Offline Handwriting

Recognition System. In Proceedings of the International Conference on Frontiers

in Handwriting Recognition (ICFHR 2014), 555 60. IEEE.

doi:10.1109/ICFHR.2014.99.

Chammas, E, Chafic Mokbel, and Laurence Likforman-Sulem. 2015. Arabic

Handwritten Document Preprocessing and Recognition. In Proceedings of the 13th

International Conference on Document Analysis and Recognition (ICDAR 2015),

451 55. doi:10.1109/ICDAR.2015.7333802.

Cheriet, Mohamed, Yousef Al-Ohali, N Ayat, and Ching Y. Suen. 2007. Arabic Cheque

Processing System: Issues and Future Trends. In Digital Document Processing,

edited by Bidyut B Chaudhuri, 213 34. Advances in Pattern Recognition. London:

Springer London. doi:10.1007/978-1-84628-726-8.

Dehghan, M., Karim Faez, M. Ahmadi, and M. Shridhar. 2001. Handwritten Farsi

(Arabic) Word Recognition: A Holistic Approach Using Discrete HMM. Pattern

Recognition 34 (5): 1057 65. doi:10.1016/S0031-3203(00)00051-0.

Dietterich, Thomas G. 1998. Approximate Statistical Tests for Comparing Supervised

Classification Learning Algorithms. Neural Computation 10 (7). MIT Press 238

Main St., Suite 500, Cambridge, MA 02142-1046 USA journals-info@mit.edu:

1895 1923. doi:10.1162/089976698300017197.

Dreuw, Philippe, Georg Heigold, and Hermann Ney. 2009. Confidence-Based

Discriminative Training for Model Adaptation in Offline Arabic Handwriting

Recognition. In Proceedings of the 10th International Conference on Document

Analysis and Recognition (ICDAR 2009), 596 600. IEEE.

doi:10.1109/ICDAR.2009.116.

Dreuw, Philippe, S Jonas, and Hermann Ney. 2008. White-Space Models for Offline

Arabic Handwriting Recognition. In Proceedings of the 19th International

Conference on Pattern Recognition (ICPR 2008), 1 4.

Dreuw, Philippe, David Rybach, Christian Gollan, and Hermann Ney. 2009. Writer

Adaptive Training and Writing Variant Model Refinement for Offline Arabic

Handwriting Recognition. In Proceedings of the 10th International Conference on

Document Analysis and Recognition (ICDAR 2009), 21 25. IEEE.

doi:10.1109/ICDAR.2009.9.

Dreuw, Philippe, David Rybach, Georg Heigold, and Hermann Ney. 2012. RWTH

OCR: A Large Vocabulary Optical Character Recognition System for Arabic

Scripts. In Guide to OCR for Arabic Scripts SE - 9, edited by Volker Märgner

and Haikal El Abed, 215 54. Springer London. doi:10.1007/978-1-4471-4072-6_9.

182 Bibliography

El-Desouky, A.I., M.M. Salem, A.O. Abd El-Gwad, and H. Arafat. 1991. A

Handwritten Arabic Character Recognition Technique for Machine Reader. In

Proceedings of the Third International Conference on Software Engineering for

Real Time Systems, 212 16. Cirencester: IET.

El-Hajj, Ramy, Laurence Likforman-Sulem, and Chafic Mokbel. 2005. Arabic

Handwriting Recognition Using Baseline Dependant Features and Hidden Markov

Modeling. In Proceedings of Eighth International Conference on Document

Analysis and Recognition (ICDAR 2005), 893 97.

El-Hajj, Ramy, Chafic Mokbel, and Laurence Likforman-Sulem. 2008. Recognition of

Arabic Handwritten Words Using Contextual Character Models. Document

Recognition and Retrieval XV-SPIE.

El Abed, Haikal, and Volker Märgner. 2010a. ICDAR 2009-Arabic Handwriting

Recognition Competition. International Journal on Document Analysis and

Recognition (IJDAR) 14 (1): 3 13. doi:10.1007/s10032-010-0117-5.

. 2010b. A Framework for the Combination of Different Arabic Handwritten

Word Recognition Systems. In Proceedings of the 20th International Conference

on Pattern Recognition (ICPR 2010), 1904 7. IEEE. doi:10.1109/ICPR.2010.469.

Elarian, Yousef S., Radwan Abdel-Aal, Irfan Ahmad, Mohammad Tanvir Parvez, and

Abdelmalek Zidouri. 2014. Handwriting Synthesis: Classifications and Techniques.

International Journal on Document Analysis and Recognition (IJDAR) 17 (4):

455 69. doi:10.1007/s10032-014-0231-x.

Elarian, Yousef S., Irfan Ahmad, Sameh M. Awaida, Wasfi G. Al-Khatib, and

Abdelmalek Zidouri. 2015a. Arabic Ligatures: Analysis and Application in Text

Recognition. In Proceedings of the 13th International Conference on Document

Analysis and Recognition (ICDAR 2015), 896 900. IEEE.

. 2015b. An Arabic Handwriting Synthesis System. Pattern Recognition 48 (3):

849 61. doi:10.1016/j.patcog.2014.09.013.

Farah, Nadir, Labiba Souici-Meslati, and Mokhtar Sellami. 2006. Classifiers

Combination and Syntax Analysis for Arabic Literal Amount Recognition.

Engineering Applications of Artificial Intelligence 19 (1): 29 39.

doi:10.1016/j.engappai.2005.05.005.

Fink, Gernot A. 2014. Markov Models for Pattern Recognition. 2nded. London:

Springer London. doi:10.1007/978-1-4471-6308-4.

Fink, Gernot A., and Thomas Plötz. 2007. On the Use of Context-Dependent Modeling

Units for HMM-Based Offline Handwriting Recognition. In Proceedings of the

Ninth International Conference on Document Analysis and Recognition (ICDAR

2007) Vol 2, 2:729 33. IEEE. doi:10.1109/ICDAR.2007.4377011.

Bibliography 183

Frinken, V, A Fischer, Horst Bunke, and A Foornes. 2011. Co-Training for

Handwritten Word Recognition. In Proceedings of the Eleventh International

Conference on Document Analysis and Recognition (ICDAR 2011), 314 18.

doi:10.1109/ICDAR.2011.71.

Gales, M.J.F., and P.C. Woodland. 1996. Mean and Variance Adaptation within the

MLLR Framework. Computer Speech & Language 10 (4): 249 64.

doi:10.1006/csla.1996.0013.

Giménez, Adrià, Ihab Khoury, Jesús Andrés-Ferrer, and Alfons Juan. 2014.

Handwriting Word Recognition Using Windowed Bernoulli HMMs. Pattern

Recognition Letters 35 (January): 149 56. doi:10.1016/j.patrec.2012.09.002.

Giménez, Adrià, Ihab Khoury, and Alfons Juan. 2010. Windowed Bernoulli Mixture

HMMs for Arabic Handwritten Word Recognition. In Proceedings of the 12th

International Conference on Frontiers in Handwriting Recognition (ICFHR 2010),

533 38. IEEE. doi:10.1109/ICFHR.2010.88.

Goraine, H, M Usher, and S Al-Emami. 1992. Off-Line Arabic Character Recognition.

Computer 25 (7): 71 74. doi:10.1109/2.144444.

Graves, Alex. 2012. Offline Arabic Handwriting Recognition with Multidimensional

Recurrent Neural Networks. In Guide to OCR for Arabic Scripts, edited by Volker

Märgner and Haikal El Abed, 297 313. London: Springer London.

doi:10.1007/978-1-4471-4072-6_12.

Graves, Alex, and J Schmidhuber. 2009. Offline Handwriting Recognition with

Multidimensional Recurrent Neural Networks. In Advances in Neural Information

Processing Systems, 21:545 52.

Hamdani, Mahdi, Patrick Doetsch, Michal Kozielski, Amr El-Desoky Mousa, and

Hermann Ney. 2014. The RWTH Large Vocabulary Arabic Handwriting

Recognition System. In Proceedings of the 11th IAPR International Workshop on

Document Analysis Systems (DAS 2014), 111 15. IEEE.

doi:10.1109/DAS.2014.61.

Hamdani, Mahdi, Patrick Doetsch, and Hermann Ney. 2014. Improvement of Context

Dependent Modeling for Arabic Handwriting Recognition. In Proceedings of the

14th International Conference on Frontiers in Handwriting Recognition (ICFHR

2014), 494 99. IEEE. doi:10.1109/ICFHR.2014.89.

Hamdani, Mahdi, Haikal El Abed, Monji Kherallah, and Adel Mohamed Alimi. 2009.

Combining Multiple HMMs Using on-Line and off-Line Features for off-Line

Arabic Handwriting Recognition. In Proceedings of the 10th International

Conference on Document Analysis and Recognition (ICDAR 2009), 201 5. Ieee.

doi:10.1109/ICDAR.2009.40.

184 Bibliography

Hamdani, Mahdi, Tarek M. Hamdani, Adel Mohamed Alimi, Haikal El Abed, and

Volker Märgner. 2011. Unsupervised Selection of HMMs Architectures for

Handwritten Text/word Recognition. In Proceedings of the 5th International

Symposium on Computational Intelligence and Intelligent Informatics (ISCIII

2011), 19 24. IEEE. doi:10.1109/ISCIII.2011.6069735.

Hamdani, Mahdi, Amr El-Desoky Mousa, and Hermann Ney. 2013. Open Vocabulary

Arabic Handwriting Recognition Using Morphological Decomposition. In

Proceedings of the 12th International Conference on Document Analysis and

Recognition (ICDAR 2013), 280 84. IEEE. doi:10.1109/ICDAR.2013.63.

Hu, J, S Gek Lim, and M K Brown. 2000. Writer Independent on-Line Handwriting

Recognition Using an HMM Approach. Pattern Recognition 33 (1). Elsevier: 133

47.

Huang, Xuedong, Alex Acero, Hsiao-Wuen Hon, and Raj Foreword By-Reddy. 2001.

Spoken Language Processing: A Guide to Theory, Algorithm, and System

Development. Prentice hall PTR.

Intellaren. 2016. A Study of Arabic Letter Frequency Analysis. Accessed March 9.

http://www.intellaren.com/articles/en/a-study-of-arabic-letter-frequency-

analysis.

Jiang, Zhiwei, Xiaoqing Ding, Liangrui Peng, and Changsong Liu. 2012. Analyzing the

Information Entropy of States to Optimize the Number of States in an HMM-

Based off-Line Handwritten Arabic Word Recognizer. In Proceedings of the 21st

International Conference on Pattern Recognition (ICPR 2012), 697 700.

. 2015. Exploring More Representative States of Hidden Markov Model in

Optical Character Recognition: A Clustering-Based Model Pre-Training

Approach. International Journal of Pattern Recognition and Artificial Intelligence

(IJPRAI) 29 (3): 1550014. doi:10.1142/S0218001415500147.

Kessentini, Y, Thierry Paquet, and A M Ben Hamadou. 2010. Off-Line Handwritten

Word Recognition Using Multi-Stream Hidden Markov Models. Pattern

Recognition Letters 31 (1). Elsevier: 60 70.

Kharma, N., M. Ahmed, and R. Ward. 1999. A New Comprehensive Database of

Handwritten Arabic Words, Numbers, and Signatures Used for OCR Testing. In

Proceedings of the 1999 IEEE Canadian Conference on Electrical and Computer

Engineering. Engineering Solutions for the Next Millennium, 2:766 68. IEEE.

doi:10.1109/CCECE.1999.808042.

Khorsheed, Mohammad S. 2002. Off-Line Arabic Character Recognition--a Review.

Pattern Analysis & Applications 5 (1). Springer: 31 45.

. 2003. Recognising Handwritten Arabic Manuscripts Using a Single Hidden

Bibliography 185

Markov Model. Pattern Recognition Letters 24 (14). Elsevier: 2235 42.

. 2007. Offline Recognition of Omnifont Arabic Text Using the HMM ToolKit

(HTK). Pattern Recognition Letters 28 (12): 1563 71.

doi:10.1016/j.patrec.2007.03.014.

Khoury, Ihab, Adrià Giménez, Alfons Juan, and Jesús Andrés-Ferrer. 2013. Arabic

Printed Word Recognition Using Windowed Bernoulli HMMs. In Image Analysis

and Processing ICIAP 2013 SE - 34, edited by Alfredo Petrosino, 8156:330 39.

Lecture Notes in Computer Science. Springer Berlin Heidelberg. doi:10.1007/978-

3-642-41181-6_34.

Kosmala, A, J Rottland, and G Rigoll. 1997. Improved on-Line Handwriting

Recognition Using Context Dependent Hidden Markov Models. In Proceedings of

the Fourth International Conference on Document Analysis and Recognition

(ICDAR 1997), 2:641 44. IEEE Comput. Soc. doi:10.1109/ICDAR.1997.620584.

Kozielski, Michal, Malte Nuhn, Patrick Doetsch, and Hermann Ney. 2014. Towards

Unsupervised Learning for Handwriting Recognition. In Proceedings of the 14th

International Conference on Frontiers in Handwriting Recognition (ICFHR 2014),

549 54. doi:10.1109/ICFHR.2014.98.

Leggetter, C.J., and P.C. Woodland. 1995. Maximum Likelihood Linear Regression for

Speaker Adaptation of Continuous Density Hidden Markov Models. Computer

Speech & Language 9 (2): 171 85. doi:10.1006/csla.1995.0010.

Letter Frequency. 2016. Accessed November 13.

https://en.wikipedia.org/wiki/Letter_frequency.

Lewis, M. Paul, Gary F. Simons, and Charles D. Fennig (eds.). n.d. Ethnologue:

Languages of the World, Dallas, Texas: SIL International. Online Version:

Http://www.ethnologue.com [Accessed:03-Dec-2015].

Likforman-Sulem, Laurence, Abderrazak Zahour, and Bruno Taconet. 2007. Text Line

Segmentation of Historical Documents: A Survey. International Journal of

Document Analysis and Recognition (IJDAR) 9 (2). Springer-Verlag: 123 38.

doi:10.1007/s10032-006-0023-z.

Lorigo, Liana M, and Venu Govindaraju. 2006. Offline Arabic Handwriting

Recognition: A Survey. IEEE Transactions on Pattern Analysis and Machine

Intelligence 28 (5): 712 24. doi:10.1109/TPAMI.2006.102.

Luettin, J, G Potamianos, and C Neti. 2001. Asynchronous Stream Modeling for Large

Vocabulary Audio-Visual Speech Recognition. In Proceedings of the IEEE

International Conference on Acoustics, Speech, and Signal Processing (ICASSP

2001), 1:169 72 vol.1. doi:10.1109/ICASSP.2001.940794.

Luqman, Hamzah, Sabri A. Mahmoud, and Sameh M. Awaida. 2014. KAFD Arabic

186 Bibliography

Font Database. Pattern Recognition 47 (6): 2231 40.

doi:10.1016/j.patcog.2013.12.012.

Mahmoud, Sabri A. 2008. Recognition of Writer-Independent off-Line Handwritten

Arabic (Indian) Numerals Using Hidden Markov Models. Signal Processing 88 (4).

Elsevier: 844 57.

Mahmoud, Sabri A., Irfan Ahmad, Wasfi G. Al-Khatib, Mohammed Alshayeb,

Mohammad Tanvir Parvez, Volker Märgner, and Gernot A. Fink. 2014. KHATT:

An Open Arabic Offline Handwritten Text Database. Pattern Recognition 47 (3):

1096 1112. doi:10.1016/j.patcog.2013.08.009.

Mahmoud, Sabri A., Irfan Ahmad, Mohammed Alshayeb, and Wasfi G. Al-Khatib.

2011. A Database for Offline Arabic Handwritten Text Recognition. In Lecture

Notes in Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), edited by Mohamed Kamel and

Aurélio C Campilho, 6754 LNCS:397 406. Burnaby, BC, Canada: Springer.

doi:10.1007/978-3-642-21596-4_40.

Mahmoud, Sabri A., Irfan Ahmad, Mohammed Alshayeb, Wasfi G. Al-Khatib,

Mohammad Tanvir Parvez, Gernot A. Fink, Volker Märgner, and Haikal EL

Abed. 2012. KHATT: Arabic Offline Handwritten Text Database. In Proceedings

of the 13th International Conference on Frontiers in Handwriting Recognition

(ICFHR 2012), 447 52. IEEE.

Mahmoud, Sabri A., and Wasfi G. Al-Khatib. 2010. Recognition of Arabic (Indian)

Bank Check Digits Using Log-Gabor Filters. Applied Intelligence 35 (3). Springer

Netherlands: 445 56. doi:10.1007/s10489-010-0235-2.

Manabe, H., and Z. Zhang. 2004. Multi-Stream HMM for EMG-Based Speech

Recognition. In Proceedings of the 26th Annual International Conference of the

IEEE Engineering in Medicine and Biology Society, 4:4389 92. IEEE.

doi:10.1109/IEMBS.2004.1404221.

Mantas, J. 1986. An Overview of Character Recognition Methodologies. Pattern

Recognition 19 (6): 425 30. doi:10.1016/0031-3203(86)90040-3.

Märgner, Volker, and Haikal El Abed. 2007. Arabic Handwriting Recognition

Competition. In Proceedings of the Ninth International Conference on Document

Analysis and Recognition (ICDAR 2007) Vol 2, 2:1274 78. IEEE.

doi:10.1109/ICDAR.2007.4377120.

. 2010. ICFHR 2010 - Arabic Handwriting Recognition Competition. In

Proceedings of the 12th International Conference on Frontiers in Handwriting

Recognition (ICFHR 2010), 709 14. IEEE. doi:10.1109/ICFHR.2010.115.

. 2011. ICDAR 2011 - Arabic Handwriting Recognition Competition. In

Bibliography 187

Proceedings of the 11th International Conference on Document Analysis and

Recognition (ICDAR 2011), 1444 48. IEEE. doi:10.1109/ICDAR.2011.287.

Märgner, Volker, Mario Pechwitz, and Haikal El Abed. 2005. ICDAR 2005 Arabic

Handwriting Recognition Competition. In Proceedings of the Eighth International

Conference on Document Analysis and Recognition (ICDAR 2005), 70 74 Vol. 1.

IEEE. doi:10.1109/ICDAR.2005.52.

Marti, U. V., and Horst Bunke. 2003. The IAM-Database: An English Sentence

Database for Offline Handwriting Recognition. International Journal on

Document Analysis and Recognition (IJDAR) 5 (1): 39 46.

doi:10.1007/s100320200071.

Menasri, F, N Vincent, E Augustin, and Mohamed Cheriet. 2007. Shape-Based

Alphabet for off-Line Arabic Handwriting Recognition. In Proceedings of the

Ninth International Conference on Document Analysis and Recognition (ICDAR

2007), 2:969 73.

Miled, H, and N E B Amara. 2001. Planar Markov Modeling for Arabic Writing

Recognition: Advancement State. In Proceedings of the Sixth International

Conference on Document Analysis and Recognition (ICDAR 2001), 69 73.

Miyao, Hidetoshi, and Maruyama Minoru. 2006. Virtual Example Synthesis Based on

PCA for Off-Line Handwritten Character Recognition. In Document Analysis

Systems VII, edited by Horst Bunke and A. Lawrence Spitz, 3872:96 105. Lecture

Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg.

doi:10.1007/11669487.

Morillot, Olivier, Cristina Oprean, Laurence Likforman-Sulem, Chafic Mokbel, Edgar

Chammas, and Emmanuèle Grosicki. 2013. The UOB-Telecom ParisTech Arabic

Handwriting Recognition and Translation Systems for the OpenHart 2013

Competition. In Proceedings of the 12th International Conference on Document

Analysis and Recognition (ICDAR 2013), NIST. Washington DC, United States.

https://hal.archives-ouvertes.fr/hal-00948985.

Moysset, Bastien, Théodore Bluche, Maxime Knibbe, Mohamed Faouzi Benzeghiba,

Ronaldo Messina, Jerome Louradour, and Christopher Kermorvant. 2014. The

A2iA Multi-Lingual Text Recognition System at the Second Maurdor Evaluation.

In Proceedings of the 14th International Conference on Frontiers in Handwriting

Recognition (ICFHR 2014), 297 302. IEEE. doi:10.1109/ICFHR.2014.57.

Mozaffari, Saeed, and H Soltanizadeh. 2009. ICDAR 2009 Handwritten Farsi/Arabic

Character Recognition Competition. In Proceedings of the 10th International

Conference on Document Analysis and Recognition (ICDAR 2009), 1413 17.

doi:10.1109/ICDAR.2009.283.

188 Bibliography

Nakai, M, N Akira, H Shimodaira, and S Sagayama. 2001. Substroke Approach to

HMM-Based on-Line Kanji Handwriting Recognition. In Proceedings of Sixth

International Conference on Document Analysis and Recognition (ICDAR 2001),

491 95. IEEE Comput. Soc. doi:10.1109/ICDAR.2001.953838.

Nakai, M, H Shimodaira, and S Sagayama. 2003. Generation of Hierarchical Dictionary

for Stroke-Order Free Kanji Handwriting Recognition Based on Substroke HMM.

In Proceedings of the Seventh International Conference on Document Analysis

and Recognition (ICDAR 2003), 1:514 18. IEEE Comput. Soc.

doi:10.1109/ICDAR.2003.1227718.

Natarajan, Pradeep, David Belanger, Rohit Prasad, Matin Kamali, Krishna

Subramanian, and Prem Natarajan. 2011. Baseline Dependent Percentile Features

for Offline Arabic Handwriting Recognition. In Proceedings of the 11th

International Conference on Document Analysis and Recognition (ICDAR 2011),

329 33. IEEE. doi:10.1109/ICDAR.2011.74.

Natarajan, Pradeep, Krishna Subramanian, Anurag Bhardwaj, and Rohit Prasad. 2009.

Stochastic Segment Modeling for Offline Handwriting Recognition. In Proceedings

of the 10th International Conference on Document Analysis and Recognition

(ICDAR 2009), 971 75.

Natarajan, Premkumar, Zhidong Lu, Richard Schwartz, Issam Bazzi, and John

Makhoul. 2001. Multilingual Machine Printed OCR. International Journal of

Pattern Recognition and Artificial Intelligence (IJPRAI) 15 (1). World Scientific

Publishing Company: 43 63. doi:10.1142/S0218001401000745.

Natarajan, Premkumar, Rohit Prasad, Huaigu Cao, Krishna Subramanian, Shirin

Saleem, David Belanger, Shiv Vitaladevuni, Matin Kamali, and Ehry MacRostie.

2012. Arabic Text Recognition Using a Script-Independent Methodology: A

Unified HMM-Based Approach for Machine-Printed and Handwritten Text. In

Guide to OCR for Arabic Scripts, edited by Volker Märgner and Haikal El Abed,

485 505. London: Springer London. doi:10.1007/978-1-4471-4072-6_20.

NIST. 2016. OpenHaRT 2013 Information Page. Accessed February 25.

http://www.nist.gov/itl/iad/mig/hart2013.cfm.

Oparin, Ilya, Juliette Kahn, and Olivier Galibert. 2014. First Maurdor 2013 Evaluation

Campaign in Scanned Document Image Processing. In Proceedings of the IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP

2014), 5090 94. IEEE. doi:10.1109/ICASSP.2014.6854572.

Parvez, Mohammad Tanvir, and Sabri A. Mahmoud. 2013a. Arabic Handwriting

Recognition Using Structural and Syntactic Pattern Attributes. Pattern

Recognition 46 (1): 141 54. doi:10.1016/j.patcog.2012.07.012.

. 2013b. Offline Arabic Handwritten Text Recognition: A Survey. ACM

Bibliography 189

Comput. Surv. 45 (2). New York, NY, USA: ACM: 23:1--23:35.

doi:10.1145/2431211.2431222.

Pechwitz, Mario, Haikal El Abed, and Volker Märgner. 2012. Handwritten Arabic

Word Recognition Using the IFN/ENIT-Database. In Guide to OCR for Arabic

Scripts, edited by Volker Märgner and Haikal El Abed, 297 313. Springer London.

doi:10.1007/978-1-4471-4072-6{_}8.

Pechwitz, Mario, Samia Snoussi Maddouri, Volker Märgner, Noureddine Ellouze, and

Hamid Amiri. 2002. IFN/ENIT - Database of Handwritten Arabic Words. In 7th

,

129--136. Hammamet, Tunis.

Pechwitz, Mario, and Volker Märgner. 2003. HMM Based Approach for Handwritten

Arabic Word Recognition Using the IFN/ENIT-Database. In Proceedings of the

Seventh International Conference on Document Analysis and Recognition

(ICDAR 2003), 890 94.

Pechwitz, Mario, Volker Märgner, and Haikal El Abed. 2006. Comparison of Two

Different Feature Sets for Offline Recognition of Handwritten Arabic Words.

Proceedings of the Tenth International Workshop on Frontiers in Handwriting

Recognition (IWFHR 2006). Suvisoft. https://hal.archives-ouvertes.fr/inria-

00112643/.

Plötz, Thomas, and Gernot A. Fink. 2009. Markov Models for Offline Handwriting

Recognition: A Survey. International Journal on Document Analysis and

Recognition (IJDAR) 12 (4): 269 98. doi:10.1007/s10032-009-0098-4.

. 2011. Markov Model Based Handwriting Recognition. Springer.

Prasad, Rohit, Shirin Saleem, Matin Kamali, Ralf Meermeier, and Prem Natarajan.

2008. Improvements in Hidden Markov Model Based Arabic OCR. In Proceedings

of the 19th International Conference on Pattern Recognition (ICPR 2008), 1 4.

IEEE. doi:10.1109/ICPR.2008.4761446.

Rabiner, L.R. 1989. A Tutorial on Hidden Markov Models and Selected Applications

in Speech Recognition. Proceedings of the IEEE 77 (2). IEEE: 257 86.

doi:10.1109/5.18626.

Rabiner, L.R., and B. Juang. 1986. An Introduction to Hidden Markov Models. IEEE

ASSP Magazine 3 (1): 4 16. doi:10.1109/MASSP.1986.1165342.

Richarz, Jan, Szilard Vajda, Rene Grzeszick, and Gernot A. Fink. 2014. Semi-

Supervised Learning for Character Recognition in Historical Archive Documents.

Pattern Recognition 47 (3): 1011 20. doi:10.1016/j.patcog.2013.07.013.

Rothacker, Leonard, Szilard Vajda, and Gernot A. Fink. 2012. Bag-of-Features

Representations for Offline Handwriting Recognition Applied to Arabic Script. In

Proceedings of the 13th International Conference on Frontiers in Handwriting

190 Bibliography

Recognition (ICFHR 2012), 149 54. doi:10.1109/ICFHR.2012.185.

Safabakhsh, R, and P Adibi. 2005. Nastaaligh Handwritten Word Recognition Using a

Continuous-Density Variable-Duration HMM. Arabian Journal for Science and

Engineering 30 (1). KFUPM Dhahran: 95 118.

Saleem, Shirin, Huaigu Cao, Krishna Subramanian, Matin Kamali, Rohit Prasad, and

-Based Offline Arabic

Handwriting Recognition System. In Proceedings of the 10th International

Conference on Document Analysis and Recognition (ICDAR 2009), 773 77. IEEE.

doi:10.1109/ICDAR.2009.282.

Schambach, M P, J Rottland, and T Alary. 2008. How to Convert a Latin Handwriting

Recognition System to Arabic. In Proceedings of the 11th International

Conference on Frontiers in Handwriting Recognition (ICFHR 2008), 265 70.

Shih, Hsuan-Huei, S S Narayanan, and C.-C.J. Kuo. 2003. A Statistical

Multidimensional Humming Transcription Using Phone Level Hidden Markov

Models for Query by Humming Systems. In Proceedings of the International

Conference on Mul , 1:I-61-4 vol.1.

doi:10.1109/ICME.2003.1220854.

Slimane, Fouad, Rolf Ingold, Slim Kanoun, Adel Mohamed Alimi, and Jean Hennebert.

2009. A New Arabic Printed Text Image Database and Evaluation Protocols. In

Proceedings of the 10th International Conference on Document Analysis and

Recognition (ICDAR 2009), 946 50. IEEE. doi:10.1109/ICDAR.2009.155.

. 2010. Impact of Character Models Choice on Arabic Text Recognition

Performance. In Proceedings of the 12th International Conference on Frontiers in

Handwriting Recognition (ICFHR 2010), 670 75. IEEE.

doi:10.1109/ICFHR.2010.110.

Slimane, Fouad, Slim Kanoun, Haikal El Abed, Adel Mohamed Alimi, Rolf Ingold, and

Jean Hennebert. 2011. ICDAR 2011 - Arabic Recognition Competition: Multi-

Font Multi-Size Digitally Represented Text. In Proceedings of the 11th

International Conference on Document Analysis and Recognition (ICDAR 2011),

1449 53. IEEE. doi:10.1109/ICDAR.2011.288.

Slimane, Fouad, Slim Kanoun, Haikal El Abed, Adel Mohamed Alimi, Rolf Ingold, and

Jean Hennebert. 2013. ICDAR2013 Competition on Multi-Font and Multi-Size

Digitally Represented Arabic Text. In Proceedings of the 12th International

Conference on Document Analysis and Recognition (ICDAR 2013), 1433 37.

IEEE. doi:10.1109/ICDAR.2013.289.

Slimane, Fouad, O. Zayene, Slim Kanoun, Adel Mohamed Alimi, Jean Hennebert, and

Rolf Ingold. 2012. New Features for Complex Arabic Fonts in Cascading

Recognition System. In Proceedings of the of 21st International Conference on

Bibliography 191

Pattern Recognition (ICPR 2012), 738 41.

Stahlberg, Felix, and Stephan Vogel. 2015. The QCRI Recognition System for

Handwritten Arabic. In Proceedings of the 18th International Conference on

Image Analysis and Processing (ICIAP 2015), edited by Vittorio Murino and

Enrico Puppo, 276 86. Genoa, Italy: Springer International Publishing.

doi:10.1007/978-3-319-23234-8_26.

Tokuno, J, N Inami, S Matsuda, M Nakai, H Shimodaira, and S Sagayama. 2002.

Context-Dependent Substroke Model for HMM-Based on-Line Handwriting

Recognition. In Proceedings of the Eighth International Workshop on Frontiers

in Handwriting Recognition (IWFHR 2002), 78 83. IEEE Comput. Soc.

doi:10.1109/IWFHR.2002.1030888.

Tong, Audrey, Mark Przybocki, Volker Märgner, and Haikal El Abed. 2014. NIST 2013

Open Handwriti

Proceedings of the 11th IAPR International Workshop on Document Analysis

Systems (DAS 2014), 81 85. IEEE. doi:10.1109/DAS.2014.43.

UNESCO. 2015. World Arabic Language Day. Accessed December 3.

http://www.unesco.org/new/en/unesco/events/prizes-and-

celebrations/celebrations/international-days/world-arabic-language-day/.

Varga, Tamás, and Horst Bunke. 2008. Machine Learning in Document Analysis and

Recognition. Edited by Simone Marinai and Hiromichi Fujisawa. Vol. 90. Studies

in Computational Intelligence. Berlin, Heidelberg: Springer Berlin Heidelberg.

doi:10.1007/978-3-540-76280-5.

Wienecke, M, Gernot A. Fink, and G Sagerer. 2005. Toward Automatic Video-Based

Whiteboard Reading. International Journal on Document Analysis and

Recognition (IJDAR) 7 (2). Springer: 188 200.

Young, S.J., G Evermann, T Hain, D Kershaw, G Moore, J J Odell, D Ollason, D

Povey, V Valtchev, and P.C. Woodland. 2002. The HTK Book (for HTK Version

3.2. 1). Cambridge University Engineering Department.

Young, S.J., and P.C. Woodland. 1994. State Clustering in Hidden Markov Model-

Based Continuous Speech Recognition. Computer Speech & Language 8 (4): 369

83. doi:10.1006/csla.1994.1019.

Zimmermann, M, and Horst Bunke. 2002. Hidden Markov Model Length Optimization

for Handwriting Recognition Systems. In Proceedings of the Eighth International

Workshop on Frontiers in Handwriting Recognition (IWFHR 2002), 369 74.

doi:10.1109IWFHR.2002.1030938.

	Table of Contents
	Acronyms
	1 Introduction
	1.1. The text recognition process
	1.2. Motivation for the current work
	1.3. Contributions of the thesis
	1.4. Outline of the thesis

	2 Fundamentals of Hidden Markov Models
	2.1. Use of HMMs for text recognition
	2.2. Model Definition
	2.3. Continuous, semi-continuous, and discrete HMMs
	2.4. Model decoding and text recognition
	2.5. Model training
	2.6. Deciding the model architecture and initializing the HMMs
	2.7. Other aspects of HMMs related to text recognition
	2.7.1. Modeling the contextual variations
	2.7.2. Adapting the system for robust recognition
	2.7.3. Multi-stream HMMs

	2.8. Summary

	3 Overview of Arabic Script
	3.1. Characters and diacritics
	3.2. Position dependent character shapes, words, and PAWs
	3.3. Numerals
	3.4. Ligatures
	3.5. Challenges in Arabic handwritten text recognition
	3.6. Summary

	4 Related Work
	4.1. A brief overview of the historical developments
	4.2. HMM-based Arabic text recognition
	4.3. Other statistical sequential models
	4.4. Summary of the related works

	5 Modeling Options for Arabic Text Recognition
	5.1. Motivation for this work
	5.2. Sub-character modeling for Arabic text recognition
	5.2.1. Special ‘connector’ and ‘white-space’ models

	5.3. Modeling core shapes and diacritics separately
	5.3.1. Multi-stage recognition of handwritten Arabic text
	5.3.1.1 Core Shapes and diacritics separation algorithm
	5.3.1.2 Multi-stage text recognition framework using the core-shape system and the diacritics system

	5.4. Integrating sub-characters with core-and-diacritics system
	5.4.1. Multi-stage recognition framework

	5.5. Other improvements related to model training
	5.5.1. Multi-stream HMMs
	5.5.2. Contextual HMMs
	5.5.2.1 The need of contextual modeling for handwritten Arabic text recognition
	5.5.2.2 The issues associated with contextual modeling
	5.5.2.3 The effects of using sub-character HMMs and the connector model
	5.5.2.4 Class-based contextual modeling for Arabic text recognition

	5.6. Summary

	6 Handwritten Text Recognition in the Absence of Handwritten Training Set
	6.1. Motivation for this work
	6.2. Machine printed text recognition
	6.2.1. Features for font Identification
	6.2.2. Framework for machine printed text recognition

	6.3. Approaches for handwritten text recognition
	6.3.1. Training using computer generated text in single font
	6.3.2. Training using computer generated text in multiple fonts
	6.3.3. Performing unsupervised adaptation
	6.3.4. Using test hypothesis as data for iterative training

	6.4. Summary

	7 Evaluations
	7.1. Databases for text recognition
	7.1.1. IFN/ENIT database of handwritten Arabic names
	7.1.2. KHATT database of handwritten Arabic texts

	7.2. Text recognition tasks
	7.2.1. Word recognition
	7.2.2. Character recognition

	7.3. Evaluation measures
	7.3.1. Word Error Rate (WER)
	7.3.2. Character Error Rate (CER)
	7.3.3. Significance interval of the results

	7.4. Experimentations, results, and discussions
	7.4.1. Word recognition using the IFN/ENIT database
	7.4.1.1 Modeling choice: Character shapes
	7.4.1.2 Modeling choice: Sub-characters
	7.4.1.3 Modeling choice: Core shapes and diacritics with multi-stage recognition
	7.4.1.4 Modeling choice: Sub-core shapes and diacritics with multi-stage recognition

	7.4.2. Character recognition using the IFN/ENIT database
	7.4.3. Character recognition using the KHATT database
	7.4.4. Word recognition without handwritten training sets

	7.5. Summary

	8 Conclusions
	8.1. Summary
	8.2. Possible future works

	Appendix—A
	Appendix—B
	B.1. Databases for machine printed text recognition
	B.1.1. P-KHATT database of machine printed texts
	B.1.2. APTI database of machine printed texts

	B.2. Experimentations, results, and discussions
	B.2.1. Experiments using the P-KHATT database
	B.2.2. Experiments using the APTI database

	Bibliography

