
 

 

 

 

Modeling and Training Options for 

Handwritten Arabic Text Recognition 

 

Dissertation 

zur Erlangung des Grades eines 

Doktors der  Ingenieurwissenschaften  

der Technischen Universität Dortmund 

an der Fakultät für Informatik 

von 

Irfan Ahmad 

 

 

 

 

Dortmund  

2016 

 

 



 

 

 

 

 

 

Tag der mündlichen Prüfung. Monday, 20th March, 2017  

Dekan: Prof. Dr.-Ing. Gernot A. Fink 

Gutachter: 

Prof. Dr.-Ing. Gernot A. Fink 

Prof. Dr. Laurence Likforman-Sulem (Télécom ParisTech, France) 

 

 

 

 

 

 

 

 

 

 

 

 

Irfan Ahmad: Modeling and Training Options for Handwritten Arabic Text 

Recognition, © November 2016 

 



 

iii 

 

Abstract 

 

Handwritten text recognition is an active and challenging area of research in the field 

of pattern recognition. This area of research although, witnessing great progress in 

recent years is far from being a solved problem. Arabic text recognition research

starting relatively later as compared to text recognition research in other scripts like 

Roman and Chinese benefited from the techniques developed for other scripts. Most 

of the techniques were directly adapted from existing works with little or no 

modifications. Although, this approach had advantages like quick transfer of knowledge 

into Arabic text recognition domain, it led to an area of research less explored the 

study of the peculiarities of Arabic script and utilizing those peculiarities to address 

the challenges in Arabic text recognition research. The present thesis work is an effort 

in this direction; whereby, we investigate some of the peculiarities of Arabic script in 

order to develop methods and techniques which can improve the text recognition 

performance. 

We investigated alternative modeling options for HMM-based Arabic text 

recognition which exploit the fact that many Arabic characters share similar patterns 

between them. We present the idea of Arabic sub-characters which are smaller 

character segments defined utilizing the knowledge of the script. The Arabic characters 

and their position-dependent shapes can, then, be constructed from these fewer number 

of sub-characters which results in a compact recognizer with a significantly reduced 

presented for Arabic 

text. Connector models are the special ligatures that join the Arabic characters in a 

word. Moreover, contextual sub-character modeling was investigated which benefited 

from the proposed connector model.  

Arabic characters have a core shape and a number of dots or other diacritical marks 

either above or below these core shapes. Many Arabic characters have the same core 

shapes but differ from each other due to the diacritics.  Another modeling option that 

was presented in this work is based on separating the core shapes from the diacritics 

thereby reducing the model set considerably. This results in a multi-stage text 

recognition framework where the core shapes are recognized in the first stage and then 

the diacritics information is utilized in the second stage to generate the final text 

hypothesis.  

A third modeling approach was investigated which basically combined the above 

two presented ideas in what we term as sub-core-shape models. Here, the core shapes 
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are separated from the diacritics and, then, the core shapes are further divided into 

sub core-shapes as many characters share similar patterns within the core shapes. This 

leads to further reduction in the number of modeling units.  

We experimented the presented modeling techniques for handwritten Arabic text 

recognition on a benchmark handwritten Arabic text database. We achieve state-of-

the-art results as compared to the other HMM-based Arabic text recognition systems. 

All the presented modeling approaches performed better than the commonly used 

character-shape models under normal training conditions. More importantly, the 

presented techniques performed significantly better under constrained training 

environments where limited handwritten training data was used. Some experiments 

were conducted on a second database which further validated our approaches. 

For systems using the familiar character-shape models, we presented class-based 

contextual modeling. The main idea is to limit the number of unique contextual forms 

by not modeling every contextual form as a separate model, but, instead, by grouping 

the characters in the left and the right context into classes where characters in each 

class have similar effects on its neighboring characters. This leads to a significantly 

compact text recognizer as compared to the HMM systems that use the standard 

contextual models.  

  Our next major investigation was related to recognition of handwritten Arabic 

text when no handwritten training set is available. Our approach was based on the 

observation that Arabic is an inherently cursive script; therefore, it has a degree of 

visual similarity both in the handwritten as well as in the machine printed forms. 

Accordingly, the challenging step of initializing the system in such tasks was performed 

by using computer generated machine printed text as the training data. Unsupervised 

adaptation during recognition was performed to further improve the results. Finally, 

the recognition hypothesis was iteratively fed back to the recognizer to further improve 

. This area of research can have favorable implication 

in the future by alleviating, if not completely removing, the need of preparing manually 

annotated training data for the recognizers which is a costly and time consuming 

activity. A number of text recognition experiments were conducted to validate the 

presented techniques and the results were very impressive keeping in mind that no 

handwritten training set was used. 
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1 Introduction 

 

ext recognition is an active research area in the field of pattern recognition 

with the goal of developing automated systems that are able read text as 

effectively if not better as humans. The core idea is to recognize i.e., provide 

transcription for text from images captured by various means like scanner, 

camera, or video recordings. The term text recognition can include related 

processes in addition to the actual text recognition like text localization, image 

quality improvement, and post-recognition steps like spelling correction. Text 

recognition has many useful and interesting applications ranging from digitization 

and indexing of historical manuscripts, automatic reading of car license-plates, 

automatic processing of bank checks, automatic sorting of envelopes based on postal 

address, automatic processing of forms, automatic white-board reading, and related 

tasks involving word spotting. Furthermore, due to the widespread use of papers 

in our everyday life and the need for them to be stored electronically for efficient 

storage and retrieval, there is a need for highly reliable and robust document 

processing systems. One of the core components of any document processing 

framework is a text recognition system. 

If text recognition is done on machine printed text images, it is commonly 

referred to as printed text recognition or optical character recognition (OCR). On 

the other hand, handwritten text recognition deals with recognizing text from 

images containing text handwritten by humans. Although printed text recognition 

is much easier as compared to handwritten text recognition, it still has its own 

challenges like recognition of degraded documents, recognition of text printed using 

multiple or uncommon font typefaces, and documents having non-uniform text 

alignments and orientations. Handwritten text recognition, on the other hand, does 

face most of the above challenges in addition to its own peculiar problems like huge 

variation in human handwritings both within the same writer and also between 

different writers, variations due to text slants, skews, and uneven writing lines. 

Machine printed text recognition can be considered a solved problem for many 

practical applications like postal address sorting system; whereas, the challenges 

T 
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are far from over when it comes to handwritten text recognition (cf. (Plötz and 

Fink 2009)). Handwritten text recognition is further classified as offline and online 

after the text writing process has completed. Whereas, online text recognition is 

performed on data captured in real-time. This is typically done when text is written 

on touch sensitive screens of tablet computers or smart phones. For online text 

recognition, information like pen-tip pressure and temporal information on writing 

is available which is not available for offline text recognition. Consequently, online 

text recognition is regarded as an easier problem as compared to offline text 

recognition. 

Systems based on Hidden Markov Models (HMMs) are among the most 

successful and widely used text recognizers. HMMs have sound theoretical and 

mathematical background. They do not need explicit segmentation of text into 

recognition units like characters or strokes. Segmentation and recognition is 

performed at the same time. Efficient algorithms exist for decoding and for 

estimating the model parameters during training. Moreover, it can easily integrate 

language models during recognition. The main motivation of using HMMs for text 

recognition originally came from the field of speech recognition which had the same 

inherent difficulty of segmentation and recognition. 

One of the core steps in setting up a text recognition system is to train the 

system. To adequately train a text recognition system, it is important that we have 

enough training samples for each class to be recognized. These classes can represent 

characters, strokes, or other suitable representations of the text in the underlying 

script. Benchmark database are developed to assist research in this area so that the 

systems can be robustly trained and then the systems can be evaluated on the 

evaluation data. Creating these databases is a time consuming and costly activity. 

The amount of training data that is needed to adequately train a text recognizer is 

directly related to the number of classes the basic recognition units in a 

recognition system, i.e., there should be sufficient training samples for each 

recognition class. Thus, for a given script, if we can have alternative representations 

for the recognition units, the representation that leads to the minimum number of 

classes seems to have a clear advantage. For a given amount of training data, the 

text recognizer will have more samples per class which can lead to more robust 

training as compared to a recognizer that uses representation which has more 

classes. On the other hand, in situations where little training data is available, the 

recognizer which has the most compact model set is expected to perform more 
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robustly. Thus, the modeling choice defining the basic recognition units is an 

important decision. For some scripts like Roman, the characters are the most 

straightforward and obvious modeling choice. But, for some other scripts like 

Arabic, the choice is not that obvious.  

One of the main objectives of the current thesis is to investigate alternative 

modeling options for the Arabic script such that it can lead to recognition systems 

that have compact model sets and can perform more effectively for a given text 

recognition task. More importantly, the text recognizer shall be able to perform 

text recognition more robustly when little training data is available. Another 

important objective of the current thesis, which is an extension of the previous 

objective, is to investigate handwritten Arabic text recognition when no 

handwritten training set is available. 

In the remaining part of the chapter, we will present an introduction to our 

thesis work. In Section 1.1, we will present an overview of the text recognition 

process with focus on HMM-based text recognition systems. Our motivations for 

the current work is presented in Section 1.2 and the contributions of the work is 

presented in Section 1.3. Finally, we will present the outline of the thesis in 

Section 1.4.   

1.1. The text recognition process  

In this section, we will present a brief overview of the important stages involved in 

a text recognition system with focus on HMM-based text recognition systems. A 

typical text recognition process consists of a number of stages including image 

acquisition capturing the text into a digital form, preprocessing localizing the 

text and improving the quality of the text image for later stages, feature 

extraction extracting relevant information from the text images, training

training the classifier such that it learns parameters of the models representing the 

recognition classes, decoding generating the recognition hypothesis for the text 

images, and post-processing improving the recognition results. Some of the steps 

might be optional, or even not needed, for a given text recognition task whereas 

others are mandatory. In Figure 1.1, we illustrate the main stages of a typical text 

recognition process along with highlighting the focus of the current thesis. Below, 

we describe the text recognition process in more details:  

Preprocessing: Text to be recognized is first captured as images using devices 

such as scanners and cameras. The text regions are then localized from these images 

before further processing. Text images may, then, undergo a number of steps before 
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they are ready for the next stage, i.e., feature extraction. If an image has multiple 

text lines, it needs to be segmented into line images, each containing a single text 

line. Splitting an image of a paragraph of text into individual text lines might not 

be a trivial task for handwritten paragraphs. Techniques based on connected 

component analysis, Hough transformation, ink pixel projections, and smearing are 

commonly used for this task. For an overview of some common text-line extraction 

algorithms, readers can refer to (Likforman-Sulem, Zahour, and Taconet 2007). 

Further segmentation of text line images may be needed depending on the classifier 

used. HMMs are used with images at the text-line level (where an image consists 

of a single word or multiple words) and, hence, further segmentation is not needed.  

Images may also undergo binarization separating the ink pixels from the 

background in the preprocessing stage depending on what type of features are 

extracted from them. Another step that is commonly involved in preprocessing of 

handwritten text line images is the baseline correction. The writing line in human 

handwriting is normally not straight and thus the text line gets skewed. The skew 

of the individual text lines needs to be estimated and then corrected by rotating 

the text line in the direction opposite to the skew angle. Techniques based on 

projection profiles, principal component analysis, text skeletonization, Hough 

transformation, and text contours are commonly employed for this task (cf., e.g., 

(Al-Shatnawi and Omar 2009; Abed and Märgner 2007)). Moreover, the 

handwritten text may not be completely upright on the vertical axis and this 

variation needs to be minimized correcting the stroke angle with respect to the 

vertical axis by applying a shear transformation. This is commonly referred to as 

slant correction. Common techniques for slant correction are based on chain codes 

and gradient information from the text images (cf., e.g., (Plötz and Fink 2009; 

Parvez and Mahmoud 2013b)) 

Last but not the least, the text size may be normalized to minimize the 

variability across the line images. For handwritten text images, text size 

normalization is not a straightforward task. Normalizing the height of the core text 

across the text line images is a common approach (e.g., (Wienecke, Fink, and 

Sagerer 2005)).  

It is important to note that the order of presentation of the preprocessing steps 

is not necessarily the same order how they are applied in a particular text 

recognition system. Additionally, not all of the mentioned steps are required in 

every text recognition task. 
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Figure 1.1: Process framework for a typical text recognition system. The shaded area shows the 

main focus and the scope of the present thesis.  
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Feature extraction: Feature extraction is an important stage after 

preprocessing. Adequate features are extracted from the text images which are then 

used to train a classifier for text recognition. Selecting effective features is 

important for text recognition. The aim of a feature is to capture the important 

information about the text strokes such that the different recognition-classes are 

well separated and the difference in samples within a class is minimized. Another 

important goal is to keep the dimension of features as low as possible so as to be 

efficient in terms of space and computation-time requirements. 

When using HMMs as classifier for text recognition, the two-dimensional image 

data need to be sequenced and ordered temporally. The sliding-window technique 

is the most popular approach to sequence the text image (cf. (Plötz and Fink 

2009)). Here a window, having a fixed width and the height as the height of the 

image, is slid across the image from one end of the image to the other end (in the 

writing direction). Features are extracted from the image strip under a sliding 

window. 

Training: Training is a core stage of setting up any text recognition system. 

Sufficient number of text images along with their transcription are needed to train 

the underlying  to be recognized. A class is a representative 

unit of text to be recognized such as characters or strokes. For the Arabic script, 

the choice of modelling units is an important decision to be made during the design 

and setup of a text recognition system. As Arabic characters can have a number of 

different visual appearances due to their position in the words, a common approach 

is to model each position-dependent character shape as a class. It is important that 

each class has sufficient number of samples for adequate training. Benchmark 

databases are developed to provide sufficient amounts of data for training, 

under a given environment 

(e.g., (Marti and Bunke 2003; Mahmoud et al. 2014; Pechwitz et al. 2002; Mahmoud 

et al. 2011)). The training labels along with the features extracted from the text 

images are provided to the classifiers during training. 

Decoding: Once the training has been done 

have been adequately calibrated, the recognizer is ready to be used for decoding. 

Decoding basically involves generating the recognition hypothesis for the text 

images. All the preprocessing steps which were performed on the text images used 

for training the recognizer are also applied for the text images during decoding. 

Once the input image is preprocessed, features are extracted from them and are fed 

to the classifier which, in turn, generates the recognition hypothesis.  
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Viterbi decoding is the most commonly used algorithm for hypothesis 

generation in the case of the HMM classifier. An important benefit of using HMMs 

as classifier is that, it is quite straightforward to integrate the statistical n-grams

mainly the bi-grams as language models during decoding (cf., (Plötz and Fink 

2009)). The writing model (using HMMs) along with the n-grams as language 

models form a robust and effective overall model of handwriting. The n-grams are 

generally estimated from an external large-text corpora in addition to the training-

set transcriptions. 

Post-processing: Post-processing steps are optionally used after decoding to 

improve the recognition results. Rescoring the multiple hypothesis generated during 

decoding is a commonly applied post-processing step. In the case of HMMs, an 

initial word network is generated during decoding using shorter n-grams as 

language models, and the long span n-grams are then used to re-score the initial 

network. This is done because integrating long span n-grams with decoding can be 

computationally too expensive to be used during recognition. Another possible post 

processing step is the classifier combination step. If multiple classifiers were trained 

and later used to provide separate hypothesis for a given test image, the hypothesis 

from the different classifiers are finally merged to produce a final recognition 

hypothesis. Spelling correction is another possible post-processing step that has a 

potential to improve the final hypothesis especially in natural and unconstrained 

handwritten text recognition tasks. 

1.2. Motivation for the current work 

Here we will highlight some of the major issues with text recognition in general and 

with Arabic text recognition in particular (in the context of the current work) to 

lay the ground for the motivation of our work. 

As mentioned before, availability of sufficient number of training samples for 

each class is important for adequate training. Moreover, the character frequencies 

in texts are not uniform, i.e., there are some characters that occur more frequently 

e t a

z q  x

characters in the English language (cf., e.g., ). It is 

important that the training corpus is large enough to contain enough samples for 

all the classes. Researchers in this area generally believe that the quantity and 

quality of training data is as important as developing effective features and 

classifiers (cf., e.g., (Baird 2007; Varga and Bunke 2008)). The general trend so far 
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has been to train a classifier using large amounts of annotated training data so as 

-frequency characters. The task of 

collecting and manually transcribing the text images to be used as training sets is 

very costly and time consuming. Moreover, the data collected under a particular 

environment and setup is, normally, not very useful in text recognition tasks under 

different environments and setups. 

Arabic is one of the Semitic languages. It is spoken by over 400 million people 

worldwide and is the official language of 22 countries of the world (UNESCO 2015). 

There are some other languages like Persian and Urdu which use Arabic script for 

writing; although, they have few more characters than Arabic to cover phones not 

present in the Arabic language. Research in Arabic text recognition started later 

than research on scripts like Roman and Chinese. Nevertheless, a lot of effort was 

devoted in the last two decades on Arabic text recognition research as can be 

understood based on the number of publications in high quality journals and 

conferences in addition to a number of text recognition competitions (e.g., (Märgner 

and Abed 2010; Märgner and Abed 2011; Slimane et al. 2013; Mozaffari and 

Soltanizadeh 2009; Slimane et al. 2011)). Researchers adapted, with minimal 

changes, the text recognizers developed for other scripts like Roman to work for 

the Arabic script (e.g., (Schambach, Rottland, and Alary 2008)). Although this 

approach has its advantages like script independence, it leaves an important area 

less explored, i.e., investigating the peculiarities of the Arabic script and using them 

to develop techniques that can improve a recognizer . Selecting the 

basic modeling units for the Arabic script is among one such possible areas of 

investigation.  

Arabic characters can take different visual shapes based on their position in a 

word. While most characters can take four position-dependent visual shapes, some 

of the characters take only two different shapes. Thus, the most widely used and 

common approach is to model each character shape (instead of character) as a 

separate class. It has become the standard modeling choice for Arabic text 

recognition. In general, this approach works well but leads to some issues. Modeling 

each character shape as a class leads to almost a four-fold increase in the number 

of modeling units. This huge model set typically more than 100 HMMs in an 

HMM-based text recognition system in turn, requires even larger amounts of 

training data so that each class has sufficient number of training samples. 

Additionally, some character shapes are very infrequent and, as such, having 

sufficient number of samples for each character shape adds to the difficulty of 
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collection and labelling (by labelling we mean transcribing) the text images for 

training the recognition system. Some character shapes practically end up having 

very few samples while other character shapes, at the same time, may have 

hundreds or thousands of samples. Accordingly, we were interested in investigating 

modelling and training options for Arabic text recognition which can work robustly 

under standard training scenarios and can perform reasonably well when very little 

or no handwritten training data is available. The cursive nature of Arabic script, 

both in machine printed and handwritten form, and the observation that many 

characters and character shapes in Arabic share common patterns between them 

were the main motivating factors that lead us to investigate these properties for 

better modelling and training options for Arabic text recognizers.  

1.3. Contributions of the thesis 

The present thesis is related to offline handwritten Arabic text recognition using 

HMMs. Following are the summaries of the main contributions of the thesis: 

1. Arabic sub-characters are presented as an alternative modeling option. Using 

sub-character HMMs leads to a compact recognizer with a significantly reduced 

model set as compared to when using the standard system using character-

shapes as models. We also present special white-space and connector models. 

Moreover, contextual sub-character modeling was investigated which further 

improved the text recognition performance. The sub-character HMM system 

was evaluated on a benchmark handwritten Arabic text database, in addition 

to a second database, and the performance was compared with the standard 

system. The results were significantly better when using the sub-character 

HMM system and we report state-of-the-art results on the benchmark database. 

Moreover, recognition results are much better as compared to the standard 

system when using limited training data. The work on sub-character HMMs 

resulted in the following publications: 

 Ahmad, Irfan, Leonard Rothacker, Gernot A. Fink, and Sabri A. Mahmoud. 

2013. Novel Sub-Character HMM Models for Arabic Text Recognition. In 

Proceedings of the 12th International Conference on Document Analysis 

and Recognition (ICDAR 2013), 658 62. IEEE. 

doi:10.1109/ICDAR.2013.135. 

 Ahmad, Irfan, Gernot A. Fink, and Sabri A. Mahmoud. 2014. 

Improvements in Sub-Character HMM Model Based Arabic Text 

Recognition. In Proceedings of the 14th International Conference on 
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Frontiers in Handwriting Recognition (ICFHR 2014), 537 42. Crete: IEEE. 

doi:10.1109/ICFHR.2014.96. 

2. A second modeling option was presented which was based on separating the 

core shapes from the diacritics. This resulted in a multi-stage text recognition 

framework where the core shapes are recognized in the first stage and, then, 

the diacritics information is utilized in the second stage to generate the final 

text hypothesis. This approach also led to significant reduction in the number 

of models as compared to the standard system. The multi-stage HMM system 

was evaluated on a benchmark database under normal training conditions the 

complete training set was used to train the system and with limited training 

data. Significant improvement in text recognition results is reported under all 

the training conditions. This work resulted in the following publication:  

 Ahmad, Irfan, and Gernot A. Fink. 2015. Multi-Stage HMM Based Arabic 

Text Recognition with Rescoring. In Proceedings of the 13th International 

Conference on Document Analysis and Recognition (ICDAR 2015), 751 55. 

IEEE. doi:10.1109/ICDAR.2015.7333862. 

3. A third modeling approach was presented which combined the idea of sub-

character HMMs and the multi-stage recognition by separating the core shapes 

from the diacritics. This leads to the highest reduction in the number of 

modeling units as compared to the standard system as well as the above two 

modeling approaches. The presented system was evaluated on a benchmark 

database under normal training conditions and with limited training data. 

Significant improvement in text recognition results is reported under all the 

training conditions. Moreover, contextual sub-core-shape modeling was 

investigated which further improved the text recognition performance. 

4. Class-based contextual modeling was presented by grouping the characters in 

the left and the right context into classes such that characters in each class 

have similar effects on its neighboring characters. This leads to a significantly 

compact text recognizer as compared to the HMM systems that use the 

standard contextual models. This work resulted in the following publication: 

 Ahmad, Irfan, and Gernot A. Fink. 2016. Class-Based Contextual Modeling 

for Handwritten Arabic Text Recognition. In Proceedings of the 15th 

International Conference on Frontiers in Handwriting Recognition (ICFHR 

2016), Shenzhen, China, 2016. 
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5. An approach to handwritten Arabic text recognition in the absence of 

handwritten training data was presented. It resulted in a framework which deals 

with initializing the text recognizer on machine printed material, improving the 

recognition results by performing automatic adaptation to unseen data, and 

iteratively fine-tuning the trained system. Experiments on a benchmark 

database showed the effectiveness of the framework. The results, although lower 

than when using the handwritten training data, were very impressive. This 

work resulted in the following publication: 

 Ahmad, Irfan, and Gernot A. Fink. 2015. Training an Arabic Handwriting 

Recognizer without a Handwritten Training Data Set. In Proceedings of the 

13th International Conference on Document Analysis and Recognition 

(ICDAR 2015), 476 80. IEEE. doi:10.1109/ICDAR.2015.7333807. 

As a side work to this above work, we investigated machine printed Arabic text 

recognition with the aim of recognizing text printed in fonts (i.e., typeface) which 

was not available during training the recognition system. This work resulted in 

the following publication:  

 Ahmad, Irfan, Sabri A. Mahmoud, and Gernot A. Fink. 2016. Open-

Vocabulary Recognition of Machine-Printed Arabic Text Using Hidden 

Markov Models. Pattern Recognition 51 (March): 97 111. 

doi:10.1016/j.patcog.2015.09.011. 

We would like to mention that many of the techniques developed as part of 

this thesis work may work equally well for online text recognition; although, we 

have not evaluated them on online text recognition tasks. Furthermore, the 

techniques presented in this thesis may be applicable for some other languages, 

especially the languages which use Arabic script for writing like Urdu and Persian 

but we have not evaluated these techniques on those languages yet. 

1.4. Outline of the thesis 

We start with an introduction to HMMs and lay the basic background and 

foundations for it in Chapter 2. In Chapter 3, we present an overview of Arabic 

script and focus on some important aspects of the script that is related to our 

research. This chapter will serve as a background and covers the domain knowledge 

necessary for Arabic text recognition research. In Chapter 4, we present the related 

works on handwritten Arabic text recognition research. We will focus on the 
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literature that is related to the scope of our work with emphasis on HMM-based 

Arabic text recognition. Our investigations related to the modeling options for 

Arabic text recognition are presented in Chapter 5 and those related to the training 

options under constrained training environments are presented in Chapter 6. The 

experimentations carried out along with the results of the experiments are 

presented in Chapter 7. Finally, in Chapter 8 we present the conclusions of our 

work and some possible future works. 

 



 

13 

 

2 Fundamentals of Hidden Markov 

Models 

 

idden Markov models (or HMMs) are one of the most popular statistical 

models for modeling sequential and temporal data. They have simple and 

sound mathematical and theoretical foundations and have proven to be quite 

effective in solving real-world problems like automatic speech recognition, text 

recognition, and labelling biological sequences (cf. (Fink 2014)).  

HMMs for speech recognition started gaining popularity in 1970s noticeably 

after the foundational papers from Rabiner on HMMs and their use for speech 

recognition (Rabiner and Juang 1986; Rabiner 1989). Since then, HMMs have been 

extensively researched for speech recognition and many of the state-of-the-art 

speech recognition systems use HMMs as their underlying technology.  

In the context of text recognition, their popularity is also due to the fact that 

HMMs avoid the need for explicit segmentation of text line images into smaller 

recognition units like characters or strokes. Segmentation is done implicitly during 

the recognition of the text lines. Moreover, given a set of observations along with 

the text transcriptions, HMMs  parameters can be efficiently trained using 

Expectation Maximization (EM) algorithm. 

In the rest of the chapter, we will present the fundamentals of HMMs focusing 

on aspects related to text recognition. It should be noted that the discussions 

presented here are informal in nature with the goal of laying the foundations on 

HMMs. For a more detailed understanding on HMMs, its theory and applications 

in pattern recognition, interested readers can refer to (Fink 2014; Young et al. 

2002). For a detailed discussion on using HMMs for text recognition, readers can 

refer to (Plötz and Fink 2011).  

2.1. Use of HMMs for text recognition 

Research on text recognition using HMMs started relatively later in 1990s (cf. 

(Plötz and Fink 2009)). Although the use of HMMs was reported earlier for isolated 

digits and character recognition, their real benefit in the context of text recognition 

H 
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arises when using HMMs for word and text line recognition tasks, where most of 

the other classifiers need an explicit segmentation of text images into characters, 

strokes, or other representation units.  

With regards to text recognition using HMMs, the most common approach was 

to adapt an HMM-based speech recognition system for text recognition. The one 

major issue that needed to be addressed was to find an equivalent representation 

of the time based speech signals being captured as observation. Thus, there was a 

need to map the information from two-dimensional text images into a one-

dimensional observation sequence. This led to the development of sliding window 

technique where a sliding window passes from one end of the text line to the other 

and features are computed from the text line slice under the sliding window 

(Caesar, Gloger, and Mandler 1993). Features from each sliding window are 

sequenced as a vector. 

2.2. Model Definition 

HMMs describe a two-stage stochastic process. The first stage describes the state 

transitions within a finite set of states. In the second stage, an observation is 

generated at every time period. The observation generated depends only on the 

current state and not on the previous states or observation histories. HMMs are 

based on the concept of Markov models which are, essentially, stochastic models 

which assume Markov property (named after the Russian scientist Andrey Markov) 

i.e., the next state depends only the information related to the present state and 

not on the state histories. This assumption works well for many of the real world 

problems like speech recognition and text recognition, and, solutions to such 

problem are tractable. In the case of HMMs, the observations are visible but the 

hidden hidden Markov models. 

Each HMM representing a recognition unit consists of a number of states 

including non-emitting start state and final state. Some representations do not 

explicitly define the non-emitting start and final states. Each emitting state, 

generating an observation, has a number of mixture densities modelling the state 

emissions for that particular state. A mixture is modelled as a probability density 

function (pdf) following a particular distribution. Gaussian pdfs are the most 

commonly used ones. In this case, the state output probability distribution 

𝑏(𝑜𝑡) takes the following form: 
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𝑏𝑗(𝑜𝑡) =  ∑ 𝑐𝑗𝑚𝑁(𝑜𝑡| 𝜇𝑗𝑚 , Σ𝑗𝑚)

𝑀𝑗

𝑚=1

 (1) 

where; 

𝑏𝑗(𝑜𝑡) is the output probability of observation vector ot at time t for state j, 

𝑀𝑗 is the total number of mixtures in state j, 

𝑐𝑗𝑚 is the weight of the mth mixture component of state j, and 

𝑁(𝑜| 𝜇, Σ) is the multivariate Gaussian with mean vector 𝜇 and covariance 

matrix Σ and is given by: 

 𝑁(𝑜|𝜇, Σ) =  
1

√(2𝜋)𝑛|Σ|
 𝑒−

1
2
(𝑜−𝜇)′Σ−1(𝑜−𝜇) (2) 

where; 

n is the dimension of the feature vector. 

Thus a hidden Markov model M, is defined by: 

 A number of states, 

 State-transition probabilities including the start probabilities, and 

 Output probability distribution for each state which is dependent on 

mixture densities and mixture weights. 

An HMM-based text recognition system consists of a number of HMMs. Each 

HMM represents a recognition unit. In case of text recognition, the recognition 

units can be characters, position-dependent character shapes (e.g., for Arabic 

script), strokes, or other suitable representations. It is important to note that, 

although these elementary recognition units need to be decided as part of setting 

up the recognition system, the text images need not be segmented explicitly to 

train the HMMs representing these recognition units. Only the transcriptions of 

text at the line level along with the features (computed from the corresponding 

text line images) are needed to train the HMM models.  

2.3. Continuous, semi-continuous, and discrete HMMs 

The most straightforward and common setup is for each state to have its own set 

of mixture densities modelling the state emissions. This setup is termed as 

continuous HMMs. In a simple scenario, a state may only have a single mixture 

modelling the emissions. But, using a single-mixture state is normally not sufficient 

in text recognition problems. As such, the state emissions are commonly modelled 

using multiple mixture components. Figure 2.1 illustrates a single-mixture per state 

HMM and a multiple-mixtures per state HMM.  
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Figure 2.1: (a) A single mixture per state HMM and (b) A multiple (three) mixture components per 

state HMM; cjm denotes the mixture weight for the mth mixture of the jth state. 

One practical problem which is sometimes faced when using continuous HMMs 

is the lack of enough training data. As each state has multiple mixtures and there 

are many states in an HMM and then there are typically dozens of HMMs in a text 

recognition system, one ends up having hundreds or even thousands of mixtures 

that need to be trained using the limited training data. Training each mixture 

entails estimating its parameters which in the case of Gaussian pdfs are the mean 

and the variance of the individual mixtures along with the mixture weights. These 

parameters are in addition to the other parameters of an HMM system such as the 

state transition probabilities. Thus the need to robustly estimate a huge parameter 

set for the text recognition system. 

One way to mitigate this problem is to involve some level of parameter sharing. 

Mixture tying is one example of parameter sharing. In mixture tying, mixture 

components are shared between more than one states. An extreme example is when 

all the mixtures from all the states of all the HMMs are shared as a global pool. 

This setup is commonly referred to as semi-continuous HMMs (cf., e.g., (Fink 

2014)) or fully tied-mixture system (cf., e.g., (Young et al. 2002)).  

There is a third kind of HMMs system referred to as discrete HMMs system. In 

discrete HMM systems, the pdfs representing the continuous valued observations 

are replaced by discrete symbols. In addition, the mixture weights in a state are 

now replaced by probabilities for observing the discrete symbols in that particular 

state. Discrete HMM systems are natural choice when modelling data which are 

essentially symbolic like DNA sequences (cf. (Fink 2014; Young et al. 2002)). 
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Although discrete HMM systems have been used in text recognition tasks (e.g., 

(Awaida and Khorsheed 2012; Khorsheed 2007; Dehghan et al. 2001)), their use is 

fairly limited and the benefits of using a discrete system over a continuous or semi-

continuous systems are not well established. When using discrete system for text 

recognition, the feature vectors computed from the image should be symbolic or 

they need to be converted into a symbolic representation by quantizing them using 

vector quantization techniques which essentially utilize clustering algorithms. In 

this thesis, our focus will be on continuous HMM systems. Other types of systems 

will be discussed explicitly only when needed. 

2.4. Model decoding and text recognition 

Decoding in the context of HMM-based text recognition refers to transcribing a 

text image. Given a set of trained HMMs representing the recognition units like 

characters (it should be noted that word models can be created by simply 

concatenating the character models) and set of observation vectors representing a 

test image, the recognition problem is to find the symbol sequence (characters or 

words) that maximizes the generation probability for the observation sequence 

computed from the text image. Thus, the recognition problem can be written as: 

 argmax 
𝑤

{𝑃(𝑤|𝑂)} (3) 

where; 

w is the symbol sequence (characters or words for example), and  

O is the observation sequence from the text image. 

: 

 
𝑃(𝑤|𝑂) =

𝑃(𝑂|𝑤)𝑃(𝑤)

𝑃(𝑂)
 (4) 

 

where P(w) represents the prior probabilities for the symbol sequence w. It is 

also commonly termed as language model probabilities (represented typically by 

statistical n-grams). Thus, the most probable symbol sequence given the priors 

depends on 𝑃(𝑂|𝑤).  

The likelihood of a model M (a composite model M representing a symbol 

sequence w) generating a given observation sequence is calculated by finding the 

most likely state sequence (instead of the total probability obtained by summing 

the probabilities through all the possible state sequences) for the observation 
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sequence. The likelihood of a model M generating the observation O is, thus, given 

by: 

 𝑃∗(O|M) =  P(O, 𝑠∗|𝑀) =  max
𝑠
𝑃(𝑂, 𝑠|𝑀) (5) 

 
𝑃∗(O|M) =  max

𝑥
{𝑎𝑥(0)𝑥(1)∏𝑏𝑥(𝑡)(𝑜𝑡)𝑎𝑥(𝑡)𝑥(𝑡+1)

𝑇

𝑡=1

} (6) 

where; 

𝑃∗(O|M) is the optimal probability of observing observation sequence O = {𝑜1, 

𝑜2 𝑜𝑇} given the model M. 𝑜𝑡 is the observation vector at time interval t, 

𝑎𝑥(0)𝑥(1) is the start probability from the entry state 𝑥(0) to the first state 𝑥(1), 

𝑏𝑥(𝑡)(𝑜𝑡) is the probability of generating observation vector 𝑜𝑡 by state x at 

time t, and 

𝑎𝑥(𝑡)𝑥(𝑡+1) is the state transition probability from state 𝑥(𝑡) 𝑡𝑜 𝑥(𝑡 + 1) 

An efficient recursion based algorithm Viterbi algorithm exists that utilizes 

the Markov property to compute Equation 6. For more details on this, readers can 

refer to (Fink 2014). 

2.5. Model training 

Training an HMM estimating its parameters optimally is commonly performed 

using Baum-Welch algorithm (cf. (Young et al. 2002; Fink 2014)). Baum-Welch is 

an expectation maximization (EM) algorithm. It uses the total output probability 

as the optimization criteria instead of the probability over the optimal path as used 

in Viterbi algorithm. 

During training, we essentially have the transcription of the text images and 

the corresponding features extracted from the text image. By employing the Baum-

Welch training algorithm, means, covariances, mixture weights, and the state 

transition probabilities are updated after each iteration of the algorithm. A number 

of iterations of the algorithm is performed to robustly train the parameters. After 

each iteration, the generation probability of the training data from the model 

improves over the previous iteration i.e.: 

 𝑃(𝑂|�̂�) ≥ 𝑃(𝑂|𝑀) (7) 

where; 

�̂� is the updated HMM after an iteration of Baum-Welch training. 
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 The total number of iterations of the Baum-Welch training algorithm are 

either fixed beforehand or the training is terminated when the improvement 

converges i.e.: 

 𝑃(𝑂|�̂�) − 𝑃(𝑂|𝑀) ≤  𝜀 (8) 

The threshold 𝜀 is set manually. Too few iterations may lead to inadequate 

training and on the other hand, too many iterations risks the possibility of over-

fitting the training data. In such cases, the performance of the recognizer may not 

be good enough on the test data. For the actual algorithms and the accompanying 

equations for the Viterbi algorithm and the Baum-Welch training, interested 

readers can refer to (Fink 2014). 

2.6. Deciding the model architecture and initializing the HMMs 

When initializing the system, one needs to first decide the architecture of the 

system including the HMM topology, the number of states, and the number of 

mixtures per state. Two states are connected if the transition probability between 

them is non-zero. There are many connection topologies possible but the two most 

commonly used ones for text recognition are the linear and the Bakis topologies. 

Figure 2.2 illustrates the two common topologies used for text recognition. In the 

linear topology, the transitions moves from start state to the end state where each 

state on the path can transit only to the next state or to itself. In Bakis topology, 

a state on the path can transit to itself, or to the next state, or to the state after 

the next state thereby skipping the next state. 

 

Figure 2.2: Two common HMM topologies used in text recognition; (a) A left-to-right linear 

topology and (b) A left-to-Right Bakis topology. aij denotes the state-transition probability from 

state i to state j. 
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It is important to note here that many aspects and parameters of an HMM like 

the model topology, the number of states in an HMM, and the number of mixtures 

in a state need to be set manually and, generally speaking, there are no algorithms 

to optimally configure those aspects of the recognition system. One practical way 

of doing this is by trying various setups (utilizing the domain and expert 

knowledge) and selecting the setup that gives the best performance on a validation 

set which is kept separate from the training set. Some heuristic-based techniques 

have been proposed to optimize these parameters (e.g., (Zimmermann and Bunke 

2002; Z. Jiang et al. 2015)). 

After deciding the system architecture and before the training step, one has to 

decide the initial values for the parameters of the system. As mentioned before, 

word and character segmentation information is not needed when training the 

HMMs. Nevertheless, more robust initialization can be performed if the boundary 

information is available as compared to initializing the models when no boundary 

information is available. The latter case is normally termed as uniform initialization 

or flat start. More sophisticated techniques employ a two-stage approach where, 

training based on uniform initialization is used to annotate the boundary 

information in the first stage by aligning the image with the transcription and 

annotating the segmentation information for the elementary units (like character). 

This annotation information is, in-turn, used in the next stage to perform alignment 

based initialization of individual HMMs. 

When using the uniform initialization method, the values for the mean vectors 

and covariances for all the mixtures of all the states are normally set to the global 

(i.e., from training feature sets) means and covariances. When doing initialization 

using the alignment information, Viterbi based model initialization strategies may 

be used (cf. (Young et al. 2002)). For each model, given the model specific training 

data (based on boundary information), the most likely state sequence for 

corresponding training sequence is found using the Viterbi algorithm. Training 

vectors are associated to the states and then to the mixtures having the highest 

likelihood of generating that observation vector. Once the training vectors have 

been assigned to the mixtures within the states, calculating the mean and variances 

for the state mixtures is relatively straightforward. The information on the number 

of training vectors associated with a mixture is also used to calculate the mixture 

weight. In the first iteration, the training utterances are uniformly distributed 

between the states and a clustering algorithm (like k-means) is used to cluster the 

training vectors within a state to a desired number of mixtures. State transition 
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probabilities are updated based on the state occupancy information. A number of 

iterations of the algorithm is performed to robustly initialize the individual models. 

Either a predefined number of iterations of the algorithm is executed or if the model 

converges. For formal details on the algorithm, the readers can refer to (Young et 

al. 2002). 

2.7. Other aspects of HMMs related to text recognition 

In this section, we will present some other aspects of HMMs like contextual HMMs, 

HMM adaptation, and multi-stream HMMs focusing mainly on its application on 

text recognition. 

2.7.1. Modeling the contextual variations 

In speech recognition, each phone is typically represented by an HMM and the 

HMM is termed as monophone (or monomodel in general). A phone may have 

different pronunciations due to its neighboring phones, i.e., its context. Thus, it is 

important to somehow capture these contextual variations in order to have a robust 

speech recognition system. HMMs provide a mechanism to model these contextual 

variations using the concept of contextual HMMs. The various contextual forms of 

a phone which is defined by a phone and its neighboring phones can be modelled 

as separate HMMs. Normally, only the next and the previous neighboring phones 

of a given phone are considered to define its contexts. These contextual forms are 

thus termed as triphones (or trimodels in general) and the term is mostly used 

interchangeably with contextual HMMs. Although contextual HMMs have been 

used successfully in speech recognition and significant improvements in recognition 

results have been reported (e.g., (Young and Woodland 1994; Kosmala, Rottland, 

and Rigoll 1997)), its use in text recognition has not been extensively reported and 

the benefits of using them over the monomodel HMMs have not been clearly 

established (Fink and Plötz 2007; Prasad et al. 2008).  

To setup contextual HMMs, first the monomodels are initialized and trained 

and all the different trimodel forms are generated using the training transcriptions. 

The trimodels for a given monomodel are then created by replicating the 

monomodel. This is followed by a few iterations of training using the contextual 

HMMs instead of the monomodels. Using contextual modeling exponentially 

increases the number of HMMs in the recognition system and this can lead to 

inadequate training for each of the contextual form. This concern is addressed by 

performing some form of parameter sharing between the contextual models. The 
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most common approach is to perform state tying of the different contextual forms 

of the corresponding non-contextual HMM.  

There are two main approaches for state tying, i.e., the bottom-up data driven 

approach and the top-down decision tree based approach. In the data driven 

approach, the corresponding states of the contextual forms are tied if the inter-

state distance is within a threshold. Appropriate distance measure is selected and 

the threshold value for state clustering is normally set empirically. For the decision 

tree based clustering approach, the corresponding states of all the contextual forms 

are initially pooled together and are then successively split based on questions 

(defined by the experts), each splitting the group into two next level nodes until 

all the questions have been used or the increase in likelihood is below a threshold. 

All the states in a resulting leaf node is clustered together.   

During recognition, contextual HMMs are used instead of the monomodels while 

building the recognition network. 

2.7.2. Adapting the system for robust recognition 

No matter how well a recognition system was trained on the available training 

data, its performance on the test data is always going to be challenged. The 

challenges could be due to many reasons like unseen writers, different writing styles, 

and different environments under which the data was collected. Thus, a recognition 

system needs to adapt to these unseen settings in order to perform robustly. HMMs 

provide some adaptation techniques to deal with such situations. 

HMM adaptation has been successfully employed in speech recognition tasks 

where a general purpose recognizer is adapted for speaker specific recognition tasks 

(e.g., (Gales and Woodland 1996; Leggetter and Woodland 1995)). Training a 

speaker specific recognizer from the scratch may not be feasible as large amounts 

of speaker specific training data may be needed. Thus, a small amount of speaker 

specific data is used to adapt the model parameters of a general purpose speech 

recognizer. If labelled data for the specific speaker is available then supervised 

adaptation can be performed. However, if no such data is available then 

unsupervised adaptation can be performed during the recognition step which 

essentially uses the recognition hypothesis as labelled data to be used for adaptation 

in later recognition (Gales and Woodland 1996). In the domain of text recognition, 

HMM adaptation techniques have been employed at various tasks such as for 

adapting handwritten text recognizer for a new writers (Saleem et al. 2009) and to 
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adapt a printed text recognizer to a specific font (Ait-Mohand, Paquet, and Ragot 

2014). 

The task of adaptation to fine-tune the trained model parameters 𝛳 such that 

the adapted parameters 𝛳∗ maximizes the likelihood of adaptation data O. 

𝛳∗ = arg max
𝜃

𝑝(𝜃|𝑂) 

Mixture means and variances are the parameters which are generally adapted. 

One of the most common techniques employed for parameter adaptation is the 

Maximum Likelihood Linear Regression (MLLR). It estimates the linear 

transformations for means and variances and adjusts them accordingly to better fit 

the new data, i.e., the adaptation data. The transformations are linked across 

multiple Gaussians so as to robustly estimate them in the presence of limited 

adaptation data. A group of Gaussians that share the same transform is termed as 

regression class. Readers can refer to (Leggetter and Woodland 1995; Gales and 

Woodland 1996) for more details on MLLR based HMM adaptation. 

2.7.3. Multi-stream HMMs 

It is possible in HMMs to treat the input observation vector as comprising of 

multiple independent data streams. So, instead of modelling the complete vector as 

one stream, it can be split into two or more streams. Training the feature vectors 

as multiple streams, will create separate mixture components for each stream. 

Figure 2.3 illustrates an HMM with the input observation sequence split into two 

independent streams. Multi-stream HMMs are commonly used to separate features 

from two different sources (audio and visual) into two separate streams in audio-

visual automatic speech recognition (e.g., (Luettin, Potamianos, and Neti 2001; 

Manabe and Zhang 2004)). In text recognition, multi-stream HMMs have been used 

to model different features, computed from the text images, as independent streams 

(e.g., (Kessentini, Paquet, and Ben Hamadou 2010)).  

The assumption made is that the data streams are independent and hence the 

likelihood from mixture components of the individual streams are multiplied to get 

the overall likelihood for generating an observation from a state. Thus, the state 

output probability distribution is given by (Young et al. 2002): 

 

𝑏𝑗(𝑜𝑡) =  ∏[∑ 𝑐𝑗𝑠𝑚𝑁(𝑜𝑠𝑡| 𝜇𝑗𝑠𝑚, Σ𝑗𝑠𝑚)

𝑀𝑠

𝑚=1

]

𝛾𝑠𝑆

𝑠=1

 (9) 

where; 

S is the total number of streams, and  
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𝛾𝑠 is the stream weight. 

The other elements in the equation are similar to the corresponding elements 

in Equation (1) with the addition of the stream aspect.  

Different streams can have different weights so as to give different emphasis to 

each of the streams. A common approach is to try different weights and select the 

weights which gives the best recognition results on the validation set. 

 

2.8. Summary 

To summarize, HMMs are generative classifiers for statistical modeling of, 

generally, sequential data. Efficient algorithms like Baum-Welch algorithm and 

Viterbi algorithm are available for robustly training the classifier and for 

recognition respectively. HMMs are very successful and widely used classifiers for 

applications like speech recognition and text recognition. Techniques like 

contextual HMMs, multi-stream HMMs, and HMM adaptations, when used under 

suitable scenarios, can further enhance the performance of HMM-based text 

recognizers. As explicit segmentation of text line images into smaller units like 

characters or strokes is not needed when using HMM-based text recognition 

systems, its use for Arabic text recognition is quite popular. Details on the Arabic 

script in the context of text recognition is presented in the next chapter. 

 

Figure 2.3: An illustration of multi-stream HMMs. The original feature vector split into two 

streams. cjsm denotes weight for the mth mixture component of sth stream of jth state. 
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3 Overview of Arabic Script  

 

rabic is one of the Semitic languages and is the fourth most widely spoken 

language in the world (cf. (Lewis, Simons, and Fennig (eds.), n.d.; UNESCO 

2015)) and the third most widely used writing system in the world. It is spoken by 

more than 400 million people worldwide including more than 200 million people 

who speak Arabic as their first language (Lewis, Simons, and Fennig (eds.), n.d.; 

UNESCO 2015). It is the official language of 22 countries worldwide (UNESCO 

2015). Arabic script is also used by many other languages like Urdu, Persian, and 

Uyghur.  

In this chapter we will present an overview of the Arabic script. We will mainly 

discuss the Arabic writing system without discussing the linguistic aspects of the 

Arabic language like its grammar and pronunciation as they are not directly related 

to the topic of the present thesis. For more details on the Arabic language and 

script, interested readers can refer to (Lewis, Simons, and Fennig (eds.), n.d.). 

3.1. Characters and diacritics 

Arabic script is cursive both in machine printed and handwritten forms. Arabic 

alphabets are Abjads the letters represent the consonants. Arabic is written from 

right to left and has 28 basic characters. The characters do not have different 

upper-case and lower-case forms. Figure 3.1 shows the characters in the Arabic 

script.  

 

Figure 3.1: Characters in the Arabic script1. 

                                         
1 Roman transliteration for the names of Arabic characters are presented in Figure 3.5. 

A 
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A character has a core shape (known as Rasm) and may have dots (known as 

) either above (like ن ت) or below (like ي ب) the core shapes. Many of the 

characters share the same core shape and differ only in the number and position of 

dots. There are eight characters (خ ذ ز ض ظ غ ف ن) having one dot above, two 

characters (ت ق) having two dots above, two characters (ث ش) having three dots 

above, two characters (ب ج) having one dot below, one character (ي) having two 

dots below, and the remaining 13 characters (ا ح د ر س ص ط ع كـ ل م ه و) have no 

dots either above or below the core shapes. There are no characters that have three 

dots below them. 

The characters are normally connected using a horizontal stroke called Kashida. 

Figure 3.2 shows sample machine printed and handwritten texts in Arabic. It can 

be observed from the figure that both the handwritten as well as the machine 

printed texts are cursive and connected. 

Apart from the dots, characters can have other diacritics like Shadda (  ّ ), 

Hamza (ء), and Sukun (  ّ ). Short vowels are also written as diacritics. There are 

three short vowels (  ّ  ّ  ّ ) in Arabic. The diacritics, apart from the dots are for 

the phonetic guidance. In handwritten texts, and to a larger extent even in the 

machine printed texts, most of the diacritics (apart from the mandatory dots and 

Hamza) are not written but can be deduced by the readers from the context. An 

exception to this is when writing sacred texts, legal documents, and texts written 

for the purpose of teaching Arabic. Figure 3.3 shows example Arabic text, with and 

without the optional diacritics. As an extreme example, some historical manuscripts 

contain Arabic texts even with the absence of dots. Figure 3.4 shows an example 

of such a historical manuscript page having Arabic texts (from the Holy Quran) 

without the dots. 

 

Figure 3.2: Sample handwritten (above) and machine printed (below) Arabic texts. 
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Figure 3.3: Sample texts in Arabic, with (above) and without (below) the optional diacritics2. 

 

Figure 3.4: Example page from a historical manuscript showing Arabic texts (from the Holy Quran) 

without the presence of dots and diacritics (Image source: (Abulhab 2009)).  

3.2. Position dependent character shapes, words, and PAWs 

Characters in the Arabic script can take different visual appearances based on their 

position in a word. As the Arabic script is cursive, a character in a word is 

connected to its adjacent characters. 22 of the 28 characters can take up to four 

different position dependent shapes, i.e., beginning when the character is 

connected to a character after it but is not connected to any character before it 

(like the first character in a word), middle when the character is connected both 

before and after it to its adjacent characters, ending when the character is 

connected to a character before it but is not connected to a character after it (like 

the last character in a word), and alone (also termed as isolated) when there are 

no characters connected to it. The remaining six characters can only take two of 

the four position dependent shapes, i.e., ending and alone. Figure 3.5 shows the 

Arabic characters along with their position dependent shapes. 

                                         
2 Transliteration and translation of the Arabic words appearing in the figures in this chapter 

are presented in Appendix A. 
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Those six characters which take only two position dependent shapes basically 

do not allow the characters after them to connect to them and hence they do not 

have the beginning and the middle shapes. If they come in the beginning they take 

the alone shapes and if they come in the middle they take the ending shapes. 

Figure 3.6 shows some illustrative examples using the Arabic characters (س) 

and  (د) as examples of characters taking four and two shapes respectively. 

    

Figure 3.5: Names of Arabic characters3 and their position dependent shapes. An empty cell 

indicates that the character does not take that particular position. 

                                         
3 There is no single standard for the transliteration of Arabic character names. We have 

selected a commonly used representation which seems similar to the one published/endorsed 

by the American Library Association (ALA) and the Library of Congress (LC).  
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Due to the fact that some of the characters do not allow characters to connect 

after them, a word in Arabic may be split into multiple components. Each of the 

split component of a word is called Part of Arabic Word (PAW). Figure 3.7 shows 

some example words in Arabic having different numbers of PAWs. 

3.3. Numerals 

Writers in Arabic use two different types of numerals, i.e., the commonly used 

Arabic numerals also know an Indo-Arabic numerals as well as Eastern-Arabic 

numerals. It is important to note that the numbers in Arabic are read from left to 

right. In machine printed text, numbers are commonly written using the Indo-

Arabic numerals. People in Middle-East and Gulf region normally prefer using 

Eastern-Arabic numerals for handwriting whereas people in North-West Africa 

commonly use the Indo-Arabic numerals. Figure 3.8 shows the ten digits in both 

the numeral system. 

     
Figure 3.6: An illustration, with example words, of characters taking different position dependent 

shapes; (a) Character (س) can take four position dependent shapes, (b) Character (د) takes 

only two position dependent shapes (figure adapted from (Ahmad et al. 2013)). 

 
Figure 3.7: Sample words in Arabic with different numbers of PAWs. (Handwritten text images 

source: IFN/ENIT (Pechwitz et al. 2002)). 
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Figure 3.8: The two numeral systems used in Arabic; the Indo-Arabic system (top) and the Eastern-

Arabic system (bottom). 

3.4. Ligatures 

An important aspect of the Arabic writing system is the presence of special 

ligatures. Some character sequences can be written in special compact forms instead 

of simply connecting them using the horizontal Kashidas. Ligatures, when written, 

take visual appearances which are substantially different from mere concatenation 

of the constituent characters. The character sequence -alif is a mandatory 

ligature, i.e., when writing followed by alif it is always written in the ligature 

form (لا) instead of the non-ligature form (say لـا). Not all character sequences form 

ligatures but some character sequences like - ʼ( -and ʼ ( ـلح ـبج )  ) are 

usually written as ligatures.  

It is important to note that, as mentioned, only -alif is a compulsory 

ligature. Other ligatures are not compulsory and so some writers may write them 

in ligature forms whereas other writers may write the same character sequences in 

the non-ligature forms even in similar contexts. In fact, it is also possible that a 

writer writes a character sequence as a ligature in one instance whereas he/she 

writes it in a non-ligature form in other instances. Figure 3.9 illustrates some 

character sequences, their ligature forms, and their non-ligature forms (except -

alif) both in the machine printed and the handwritten texts. Elarian et al. (Elarian 

et al. 2015a) presented a good analysis on Arabic ligatures and their importance in 

text recognition.  
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Figure 3.9: Example character sequences, their ligature and non-ligature forms with examples from 

machine printed and handwritten texts. (Handwritten text images source: IFN/ENIT (Pechwitz et 

al. 2002)). 

3.5. Challenges in Arabic handwritten text recognition 

Handwritten Arabic text recognition faces a number of challenges and it is an open 

research problem. Some of the problems faced by handwritten Arabic text 

recognition are similar to that faced by other scripts, like handwriting variability 

due to different writers and even for a single writer, problems related to text skews 

and slants, and problems related to touching and overlapping texts. However, as 

the Arabic script has its own characteristics, handwritten Arabic text recognition 

faces some unique issues that need to be addressed appropriately. In the remaining 

part of this section, we will present the major challenges in handwritten Arabic 

text recognition related to the characteristics of the Arabic script. 

Position dependent shapes: One of the major issues related to Arabic text 

recognition is the fact that Arabic characters can take different shapes based on 

their position in a word. Although there are only 28 different characters in the 

Arabic script, position based variations lead to almost 100 different character 

shapes. For some characters, the variations between their various position 

dependent shapes are not very large, whereas for other characters, the intra-

character variations in appearances are quite large as shown in Figure 3.10. In fact 

some of the character shapes of a character may look much different than other 

character shapes of the same character while, at the same time, may look much 

similar to the character shapes of some other characters as illustrated in 

Figure 3.11. 
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Figure 3.10: Different position dependent character shapes of the character ʻayn (ع). We can 

observe that the character shapes are visually quite different from each other. (Handwritten text 

image source: IFN/ENIT (Pechwitz et al. 2002)). 

 

(a)                                            (b) 

Figure 3.11: Examples illustrating the visual similarities between different characters shapes. (a): 

The four different character shapes for the character ʼ(ف). (b): Encircled character shapes that 

visually look similar to ʼ but are not ʼ. Note: The character shapes encircled in a specific color 

belong to one Arabic character. (Handwritten text images source: IFN/ENIT (Pechwitz et al. 

2002)). 

Dots and other diacritics: Another major issue related to handwritten Arabic 

text recognition is related to the dots and other diacritics present in Arabic texts. 

As mentioned before, some characters in the Arabic script have dots either above 

or below them. Moreover, there are up to a maximum of three dots that some of 

the characters have. Writers do write these dots in a number of different ways. 

Some writers write these dots clearly, as is the case with the machine printed texts. 

But sometimes, writers misplace the dots such that the dots do not come directly 

above or below the character they were meant for. Sometimes writers join two dots 

together as a single stroke. Some writers also write three dots either as a single 

stroke or as a dot over a stroke. Another less frequent variation of writing dots is 

to write them as small circles. Additionally, sometimes the dots can be missing or 

riters do not write other diacritics but 

sometimes they may do so, especially the diacritic Shadda. In handwritten texts, 

these diacritics can be easily confused with dots. Moreover, diacritics like Shadda, 

if present over a character, can be viewed as another writing variation for that 
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particular character shape. Figure 3.12 illustrates the problems related to dots and 

diacritics in handwritten Arabic texts. 

Presence of special ligatures: Another prominent issue related to handwritten 

Arabic text recognition is the presence of ligatures. -alif ligatures need to be 

given special attention and in most cases they need to be treated as special 

characters instead of treating them as two separate characters (i.e.,  and alif). 

Additionally, other optional ligatures when present in handwritten texts ideally 

need special attention, too. But due to the fact that these character sequences are 

not always written in ligature form (please refer to Figure 3.9), it is difficult to 

treat these character sequences in a consistent manner. Even if the optional 

ligatures are treated as special characters, the problem arises that we may 

potentially end up with a huge number of special characters that need to be handled 

appropriately for text recognition tasks.  

Irregular white-spaces and the usage of two different numerals: Handling 

white-spaces in handwritten Arabic texts is also not a trivial task. Because of the 

concept of PAWs in Arabic, white-spaces not only appear between words in Arabic 

texts but also within words (please refer to Figure 3.7). Last but not the least, due 

to the fact that both the Indo-Arabic as well as Eastern-Arabic numerals are used 

in the Arabic writing system, attention needs to be paid on the types of numerals 

used by the writers when recognizing handwritten Arabic text. If it is not possible 

to predict the numerals that will be used by writers, or if there are possibilities that 

both the numerals may be used, then this situation needs to be appropriately 

addressed in order to recognize the digits robustly. 

3.6. Summary 

Arabic is a Semitic language and is a widely used language in the world. Some 

other languages also use the Arabic script as their writing system. Arabic script is 

cursive both in machine printed and handwritten forms. Arabic characters can have 

different position dependent shapes. Many characters have dots either above or 

below the core shapes. There are other diacritics that may be present above or 

below the characters. Some characters do not connect to other characters in a word 

leading to some words being segmented into parts which are commonly known as 

PAWs. The Arabic writing system has special ligatures to represent certain 

character sequences. Some of the unique aspects of the Arabic script pose unique 

challenges when recognizing handwritten Arabic texts. How those challenges are 

addressed by the researchers are presented in the next chapter.  
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Figure 3.12: Example illustrations of problems related to dots and diacritics in the context of 

handwritten Arabic text recognition. (Handwritten text images source: IFN/ENIT (Pechwitz et al. 

2002)). 
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4 Related Work 

 

lthough research in optical character recognition (OCR) began in 1940s with 

commercial OCRs appearing in 1950s (cf. (Mantas 1986)), one of the earliest 

studies on Arabic text recognition was conducted in 1970s (cf. (Al-Badr and 

Mahmoud 1995)). Earliest work on handwritten Arabic cursive text recognition, 

where an image contains a word or a sentence in Arabic with connected characters, 

can be dated back to , e.g., (Almuallim and Yamaguchi 1987)). For 

an overview of the early developments in the field of machine printed and 

handwritten Arabic text recognition, readers can refer to the work of Al-Badr and 

Mahmoud (1995). 

In this chapter, we will present the literature review on offline handwritten 

Arabic text recognition research with special focus on HMM-based techniques. We, 

first, start with a brief overview of the historical developments in handwritten 

Arabic text recognition. This is followed by a detailed discussion on HMM-based 

techniques. Other statistical-sequence classifiers particularly those which are based 

on deep neural networks will be presented towards the end of this chapter. Finally, 

we will summarize the representative works done in the field of handwritten Arabic 

text recognition grouped by the nature of the text recognition task. We would like 

to mention that many of the techniques and approaches presented in the literature 

may not, necessarily, be novel in the sense that similar techniques might have 

already been investigated for text recognition of other scripts or in other related 

research areas like speech recognition. 

We will not be discussing the document analysis and preprocessing techniques 

which are concerned with extracting the Arabic text lines from document images 

as they are not the focus of our present thesis. Preprocessing techniques related to 

feature extraction will only be briefly discussed for the sake of completion. 

Interested readers can refer to (Lorigo and Govindaraju 2006; Parvez and 

Mahmoud 2013b; Khorsheed 2002) for published surveys on offline handwritten 

Arabic text recognition.  

 

A 
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4.1. A brief overview of the historical developments  

Some of the earliest works on handwritten Arabic character and word recognition 

were in the online domain (cf. (Al-Badr and Mahmoud 1995; Amin, Al-Sadoun, 

and Fischer 1996)). Online text recognition is, relatively, an easier problem as 

compared to offline text recognition because the temporal information of the pen 

strokes is available. Offline handwritten Arabic text recognition started in the late 

1980s and early 1990s (cf., e.g., (El-Desouky et al. 1991; Almuallim and Yamaguchi 

1987; Goraine, Usher, and Al-Emami 1992)). Most of the earlier systems were based 

on the syntactic/structural pattern recognition techniques pioneered by Murray 

Eden (cf. (Mantas 1986)). In the case of word images, they were explicitly 

segmented and then recognized (e.g., (Almuallim and Yamaguchi 1987; Goraine, 

Usher, and Al-Emami 1992)). This normally involved thinning of the word images. 

Al-Badr and Haralick (1998) presented an interesting work on printed Arabic text 

recognition in 1998 that does not perform explicit segmentation of words in text 

images but tries to perform recognition and segmentation in an overlapping 

manner. In this sense, it is somewhat similar to the HMM-based approaches. The 

system was based on detecting a set of pre-defined shape primitives in a word image 

(using morphological erosion using the shape primitives as structuring element). A 

word is defined by the spatial arrangements of the shape primitives. To recognize 

a word, the system involves a search that tries to maximize the posterior probability 

of the arrangement of the shape primitives.  

One of the earliest works on offline handwritten Arabic text recognition was 

from Almuallim and Yamaguchi in 1987 (1987). They performed handwritten word 

recognition on word images written by two different writers. The images were 

captured using a video camera. The word images were initially preprocessed which 

involved thinning and then segmented into strokes. An algorithm was presented to 

segment the text into strokes. The strokes were grouped and features (stroke-group 

specific) were extracted from these strokes to classify these strokes using rule-based 

pattern matching. Further, the strokes were combined to form characters, again, 

using a set of rules. The system parameters were manually adjusted using training 

samples of 200 words written by two persons. Evaluation was performed on 400 

words. Problems related to segmentation were mentioned as the major issues 

leading to miss-classification.  
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In 1992, Goraine et al. (Goraine, Usher, and Al-Emami 1992) presented a word 

recognition task that, too, involved thinning and segmentation of word images into 

strokes. The strokes were represented by direction codes and were classified into 11 

primitives. The strokes were, later, combined into characters using rules. These 

rules were based on information related to the strokes like their type and position 

and also using the information from dots and other diacritics. A dictionary was 

used as a lookup for words to correct the miss-classified characters. Evaluation 

results were reported on a small dataset of 180 words written by three writers. 

Authors in (Farah, Souici-Meslati, and Sellami 2006) presented holistic Arabic 

word recognition using artificial neural networks (ANNs), k-nearest neighbors (k-

NNs), and fuzzy k-NN classifiers. A lexicon size of 48 words from Arabic literal 

amounts were used. Structural features like number and position of dots, ascenders, 

descenders, loops, and the number of sub-words were extracted from pre-processed 

images. Classifier combination was performed by summing the normalized scores 

for the top three classes from each of the three classifiers. Finally, post-processing 

based on syntax analysis, using Arabic lexicon for bank literal amounts, was 

performed to further improve the results.  

Parvez and Mahmoud (2013a) presented a structural classifier for handwritten 

Arabic text recognition. The main idea was to represent the characters with fuzzy 

polygonal approximation. The fuzzy logic approach (also used in other syntactic 

approaches to text recognition like (Abuhaiba, Holt, and Datta 1998)) was taken 

to account for writer variability. The text line images were first segmented into 

PAWs. Later the PAWs were segmented into characters. During recognition, the 

input segment was matched (fuzzy polygon matching) with the representative 

character sample from each character class using nearest neighbor classifiers. For 

lexicon based word recognition, a lexicon reduction step was employed prior to 

word matching. The lexicon reducer utilizes the information on the number and 

positions of dots.  

Database and competitions for text recognition: The availability of a 

database of annotated text images is paramount to the development and 

improvement of methods and techniques for text recognition which ultimately leads 

to the improvement of the state-of-the-art. Handwritten Arabic text recognition is 

no different. Perhaps, the first most influential and effective database for 

handwritten Arabic text recognition which was made freely available to the 

research community is the IFN/ENIT database (Pechwitz et al. 2002). The 

IFN/ENIT database has played an important role in enabling the research 
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community to come up with new ideas and better methods for handwritten text 

recognition and test them on this database. It has long served as a benchmark 

database for Arabic text recognition research. Moreover, it has gained special 

interest from the research community partly due to the fact that regular 

competitions were held using the database and the results were presented in the 

top conferences related to the field like ICDAR and ICFHR (e.g., (Märgner, 

Pechwitz, and Abed 2005; Märgner and Abed 2007; El Abed and Märgner 2010a; 

Märgner and Abed 2010; Märgner and Abed 2011)). KHATT database of 

handwritten Arabic text is another freely available handwritten Arabic text 

database (Mahmoud et al. 2012; Mahmoud et al. 2014). It consists of text 

paragraphs written by 1000 different writers. The database is divided into disjoint 

training, development, and test sets and contains text lines with unrestricted 

writing style. The database is more challenging than the IFN/ENIT database but, 

as of now, no text recognition competition using the database has been reported. 

Some other databases like the CENPARMI database of Arabic bank checks (Al-

Ohali, Cheriet, and Suen 2003), the AHDB database containing words from Arabic 

check lexicon (Al-Maadeed, Elliman, and Higgins 2002), and the database presented 

in (Kharma, Ahmed, and Ward 1999) are limited in terms of size and writers. 

Moreover, they are either not free (e.g., (Al-Ohali, Cheriet, and Suen 2003)) or not 

easily accessible. In recent years, competitions held under NIST-OpenHaRT 

included large vocabulary text line recognition tasks using larger databases 

developed under DARPA MADCAT program (Tong et al. 2014). These databases 

were previously not available openly to the research community and the use and 

distribution of the database and even reporting the comparative results are still 

restrictive (cf. (Bluche et al. 2014; Tong et al. 2014; NIST 2016)). Maurdor 

evaluation campaign is another competition held recently (Oparin, Kahn, and 

Galibert 2014). It is interesting as well as challenging in the sense that the images 

containing entire text blocks need to be transcribed and not the pre-segmented line 

images.  

4.2. HMM-based Arabic text recognition 

In this section, we will present the literature review on HMM-based handwritten 

Arabic text recognition. An HMM-based text recognition system works on text 

images at line level, i.e., an image containing a line of text. This line of text may 

be anything from a single character or digit to multiple running words. Although 

HMMs can be used for isolated digit and isolated character recognition tasks (such 
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as those presented in (Mahmoud 2008; Awaida and Mahmoud 2009)), other 

classifiers like support vector machines (SVMs), random forests, and ANNs are 

more commonly used for such tasks as recognition can be performed holistically 

without the need of segmentation (cf., e.g., (Mahmoud and Al-Khatib 2010)). Some 

researchers have manually segmented the text image into recognition units (e.g., 

(Safabakhsh and Adibi 2005)). The motivation behind this approach was not very 

clear as explicit segmentation is not needed when using HMMs. 

Preprocessing: When performing text recognition using HMMs, the text images 

are first pre-processed. A number of steps can be carried out during preprocessing 

which aims to enhance the image before feature extraction and recognition stages. 

Some of these steps are related to improving the image quality in general like noise 

removal (e.g., (Benouareth, Ennaji, and Sellami 2008; Pechwitz, Märgner, and 

Abed 2006; Premkumar Natarajan et al. 2012)). Other steps are related to feature 

extraction techniques or to reduce variability due to multiple writers and writings 

like thinning (e.g., (Benouareth, Ennaji, and Sellami 2008; Khorsheed 2003)), 

baseline correction (e.g., (Pechwitz, Abed, and Märgner 2012; Pechwitz, Märgner, 

and Abed 2006; Pradeep Natarajan et al. 2011)), skew and slant correction (e.g., 

(Dehghan et al. 2001; Pechwitz, Märgner, and Abed 2006; Premkumar Natarajan 

et al. 2012; Kessentini, Paquet, and Ben Hamadou 2010; Chammas, Mokbel, and 

Likforman-Sulem 2015)), contour smoothing (e.g., (Kessentini, Paquet, and Ben 

Hamadou 2010)), stroke width normalization (e.g., (Pechwitz, Abed, and Märgner 

Dehghan et al. 2001; Azeem and Ahmed 2013)), line height normalization (e.g., 

(Pechwitz, Abed, and Märgner 2012; Hamdani et al. 2014; Hamdani, Doetsch, and 

Ney 2014)), character width normalization (e.g., (Pechwitz, Märgner, and Abed 

), inter word and inter PAW space 

normalization (e.g., (Azeem and Ahmed 2013)), and ruled line removal (e.g., 

(Saleem et al. 2009; Chammas, Mokbel, and Likforman-Sulem 2015)). Although 

most of the preprocessing steps are optional (unless a particular feature extraction 

technique needs that step mandatorily), performing effective preprocessing has 

shown to improve the recognition results (e.g., (Pechwitz, Abed, and Märgner 2012; 

Azeem and Ahmed 2013; Stahlberg and Vogel 2015; Chammas, Mokbel, and 

Likforman-Sulem 2015)). Some features require that the sliding window be of 

constant height for all the text images. In these situations, the image height is 

normalized while keeping the aspect ratio, i.e., , 

constant (e.g., (Dreuw, Jonas, and Ney 2008)).   
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Sliding Window: Most of the features extraction techniques are based on the 

sliding window principle where a window, having the same height as the image  

height and a few pixels wide, is run from one end of the image to the other along 

the writing direction of the text. A number of features are extracted from the image 

slice under the window and are concatenated to form a feature vector. Sliding 

windows may (e.g., (Azeem and Ahmed 2013; Schambach, Rottland, and Alary 

2008; Chammas, Mokbel, and Likforman-Sulem 2015)) or may not (e.g., (Abed and 

Märgner 2009)) overlap with each other. Additionally, a sliding window maybe be 

further subdivided into a number of vertical cells and features extracted from each 

cell of a window are then concatenated to form a feature vector (e.g., (Pechwitz, 

Abed, and Märgner 2012; Abed and Märgner 2009; Pechwitz, Märgner, and Abed 

2006; El-Hajj, Likforman-Sulem, and Mokbel 2005; Kessentini, Paquet, and Ben 

Hamadou 2010)).  

Normally the sliding windows are of fixed width. However, in (Benouareth, 

Ennaji, and Sellami 2008) the authors presented non-uniform width sliding window 

of the Arabic text image on the horizontal axis and selecting the midpoint between 

adjacent maximum/minima pairs as the . They reported 

improvement in recognition results over the uniform width sliding window 

approach. Al-Hajj et al. (Al-Hajj Mohamad, Mokbel, and Likforman-Sulem 2007; 

Al-Hajj Mohamad, Likforman-Sulem, and Mokbel 2009) presented slanted sliding 

windows for Arabic text recognition. Features were extracted from three different 

sliding windows. One of the sliding windows is the normal vertical window while 

the other two windows slant to the left and to the right of the vertical window 

respectively. Features from each orientation of the sliding window are used to train 

separate HMM systems thus leading to a total of three HMM systems. The 

justification for using the slanted sliding windows was to capture the writing 

inclinations which was cited as the major source of recognition errors. The slant 

angles for the left slanted and the right slanted sliding windows were decided 

empirically.  

In (Khorsheed 2003), the author used structural features without the use of 

sliding window. Also a hybrid HMMs/ANNs system with explicit grapheme 

segmentation was presented in (Menasri et al. 2007) which does not use the sliding 

window approach. 

Features: When it comes to feature extraction, a variety of features have been 

investigated by the researchers. Appropriate features need to be selected and 
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computed from the text images. The features should aim at minimizing the intra-

class variability and at the same time maximizing the inter-class variability. 

Moreover, the features also should ideally be scale and rotation invariant (as well 

as to other distortions) as much as possible. Many features reported in the literature 

for handwritten Arabic text recognition are the same features (normally with little 

adaptation) that have been used for other scripts as well; like image pixels ((Dreuw, 

Jonas, and Ney 2008; Hamdani et al. 2014; Abed and Märgner 2009)), pixel 

densities (e.g., (Abed and Märgner 2009; El-Hajj, Likforman-Sulem, and Mokbel 

2005; Al-Hajj Mohamad, Likforman-Sulem, and Mokbel 2009; Azeem and Ahmed 

2013; Kessentini, Paquet, and Ben Hamadou 2010)), number of black-white 

transitions (e.g., (Al-Hajj Mohamad, Likforman-Sulem, and Mokbel 2009)), 

gradient features (e.g., (Premkumar Natarajan et al. 2012; Azeem and Ahmed 

2013)), concavity features (e.g., (Abed and Märgner 2009; El-Hajj, Likforman-

Sulem, and Mokbel 2005; Al-Hajj Mohamad, Likforman-Sulem, and Mokbel 2009; 

Premkumar Natarajan et al. 2012)), chain-code directions (e.g., (Dehghan et al. 

2001; Kessentini, Paquet, and Ben Hamadou 2010)), Fourier descriptors (e.g., 

(Safabakhsh and Adibi 2005)), Gabor filters (e.g., (Cao et al. 2014)), and percentile 

features (e.g., (Premkumar Natarajan et al. 2012)). However, some features were 

specifically designed for the Arabic script (e.g., (Azizi et al. 2010; Al-Hajj 

Mohamad, Likforman-Sulem, and Mokbel 2009)). In (Azizi et al. 2010), authors 

presented the use of structural features like the number and position of dots in 

addition to ascenders and descenders. In (Al-Hajj Mohamad, Likforman-Sulem, and 

Mokbel 2009), authors presented features related to the baseline of the Arabic text 

images. Features like the distance of the center-of-gravity with respect to the 

baseline, pixel densities both above and below the baseline, and number of black-

white transitions above the baseline, and baseline dependent concavity features 

were extracted. In (Pradeep Natarajan et al. 2011), the authors presented baseline 

dependent percentile features. Authors in (Hamdani et al. 2009; Abed and Märgner 

2009), presented the use of on-line features for offline text recognition. It is based 

on recovering the temporal information from offline handwritten text images. In 

(Khorsheed 2003), the author presented the use of line segment lengths and their 

orientation as features. The text image is first skeletonized and then, using a line 

approximation algorithm, is broken down into small line segments. 

It is also common, and has shown to be effective, to append derivative features 

to the original feature vector (e.g., (Hamdani et al. 2014; El-Hajj, Likforman-Sulem, 

and Mokbel 2005; Al-Hajj Mohamad, Likforman-Sulem, and Mokbel 2009; 
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Premkumar Natarajan et al. 2012)). If the feature vector is too large, feature 

reduction techniques like PCA (e.g., (Hamdani, Mousa, and Ney 2013; Hamdani et 

al. 2014)), LDA (e.g., (Premkumar Natarajan et al. 2012; Saleem et al. 2009)), or 

some other transformations (e.g., (Pechwitz, Abed, and Märgner 2012; Cao et al. 

2014)) are employed.  

Type of HMM systems: Most of the HMM systems for Arabic text recognition 

are either continuous HMM systems (e.g., (Hamdani et al. 2014; El-Hajj, 

Likforman-Sulem, and Mokbel 2005; Safabakhsh and Adibi 2005; Premkumar 

Natarajan et al. 2012; Azeem and Ahmed 2013)) or semi-continuous HMM systems 

(e.g., (Benouareth, Ennaji, and Sellami 2008; Pechwitz, Abed, and Märgner 2012)). 

Discrete HMM systems have also been reported in literature (e.g., (Benouareth, 

ns, and Elliman 

2002; Dehghan et al. 2001; Khorsheed 2003)) but no clear reasons were presented 

for preferring it over the commonly used continuous or semi-continuous HMMs. 

When using discrete HMMs, the features need to be converted into symbolic 

representation which is done by employing vector quantization techniques, the core 

of which is a clustering algorithm.  

Rothacker et al. (Rothacker, Vajda, and Fink 2012) presented Bag-of-Features 

(BoF) HMMs for Arabic text recognition. The authors integrated the Bag-of-

Features representation, which is popular in computer vision domain, with HMMs. 

The features from the training set are clustered in an unsupervised way to construct 

the visual vocabulary (the codebook). The HMMs are trained to estimate the 

probabilities of observing the visual words from a sliding window in a given state. 

Multiple visual words can be observed in a given state which makes it different 

from discrete HMMs in that respect. Authors in (Khoury et al. 2013; Giménez et 

al. 2014), presented Bernoulli HMMs for handwritten Arabic text recognition. The 

binary pixels from text images are input directly to the HMMs whose state 

emissions are modelled using Bernoulli distributions instead of the commonly used 

Gaussian distributions. To cope with image distortions in the vertical and 

horizontal axis, window 

center-of-mass is at the center of the sliding window. In (Miled and Amara 2001), 

authors presented Planar HMM (PHMM) for handwritten Arabic text recognition 

, again, an HMM. They argued that planar HMM 

systems can cope with variability and distortions more robustly as compared to the 

normal 1D-HMM systems. A word was modeled as a planar HMM having five states 
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where the states (each again being an HMM) represent the upper diacritics, 

ascenders, core area, descenders, and the lower diacritics respectively.  

Modeling: As Arabic characters have different position dependent shapes, the 

most common approach is to model each character shape as a separate HMM (e.g., 

(Benouareth, Ennaji, and Sellami 2008; Pechwitz, Abed, and Märgner 2012; 

Hamdani et al. 2009; Al-Hajj Mohamad, Likforman-Sulem, and Mokbel 2009; 

Azeem and Ahmed 2013)). This approach is better than modeling each character 

as an HMM (e.g., (Khorsheed 2003)) as the character shape variability due to its 

position forms is difficult to model with a single HMM (cf., e.g., (Schambach, 

Rottland, and Alary 2008)). Additionally, it is also common to model the two-

character special ligatures as separate HMMs instead of modeling their constituent 

characters separately. In (Schambach, Rottland, and Alary 2008), the authors 

presented parallel path HMMs where each character is modelled as an HMM having 

multiple paths and each path models a character shape of the character represented 

by the HMM. In (Menasri et al. 2007), the authors presented what they termed as 

-

resulting from using character shape as models. The technique involves removal of 

dots and other diacritics from the character images and performing explicit 

grapheme segmentation. The resultant set of unique graphemes forms the modeling 

units. This design seems to be developed keeping in mind a word recognition task 

involving words that can uniquely be described even after removal of dots. This 

setup may not work in situations where words may only differ in dots and diacritics, 

or in case of lexicon free character recognition4. Segmentation errors (under 

segmentation) were cited as the major source of recognition problems.   

Word models are built by concatenating the character HMMs (please note that 

here character is used in a loose sense and can mean either character, character 

shape, or other representations as described above). Some researchers have used 

complete word HMMs (e.g., 

Higgins, and Elliman 2004)), i.e., using HMMs to model words holistically. This 

approach has many issues. First of all, this will typically lead to huge model set as 

each word will be represented by a separate HMM. A lexicon may have hundreds, 

or thousands, or even more words. This will also mean need for more training data 

                                         
4 By character recognition we mean character-based recognition where the text 

recognizer hypothesizes characters instead of words. The system is still trained and tested 

on text line images and not on isolated characters. character 

recognition  to mean -  
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as each word should have sufficient samples in training set to adequately train the 

model parameters. It may be suitable only for text recognition tasks involving very 

small lexicon size (cf., (Dehghan et al. 2001)). Moreover, words are of different 

length and, thus, selecting the number of states for a word HMM may not be that 

straightforward. In (Benouareth, Ennaji, and Sellami 2006), the number of states 

for a word HMM was decided based on the number of characters the word has.  

Background space modeling is also useful in Arabic as white spaces do not only 

occur between words but also within words, i.e., between PAWs. Dreuw et al. 

(Dreuw, Jonas, and Ney 2008) presented explicit white space modeling for Arabic 

text recognition. Both between words and within word (i.e., between PAWs) white 

spaces were modelled using a single state HMM model. In (Al-Hajj Mohamad, 

Likforman-Sulem, and Mokbel 2009), authors used explicit space models for 

between word spaces and after the Arabic character alif.  

Topology: The most common HMM topology used in Arabic text recognition 

is the Bakis topology (please refer to Section 2.6) (e.g., (Hamdani et al. 2014; 

Benouareth, Ennaji, and Sellami 2006; Pechwitz, Abed, and Märgner 2012; El-Hajj, 

Likforman-Sulem, and Mokbel 2005)) where a state can skip the next state and 

transit to the state after the next state. Characters in the Arabic script are, 

generally, much wider and have more possibilities for stroke variability as compared 

to the characters in the Roman script. Thus, using Bakis topology seems to be a 

better option as it can cope with variability more robustly. Nevertheless linear 

topologies have also been used successfully (e.g., (Azeem and Ahmed 2013; 

Stahlberg and Vogel 2015; Schambach, Rottland, and Alary 2008)). In (Dehghan 

et al. 2001), the authors presented HMMs where the number of forward jumps from 

a state was empirically set between 2 and 4. In (Khorsheed 2003), no constraints 

were imposed on forward jumps from a state. The author used a single HMM model 

to represent all the character shapes for an Arabic character and thus having no 

restriction on forward jumps might have, to some extent, helped to cope with the 

appearance variability due to a single model representing all the character shapes 

of a character. 

Model length adaptation: The number of HMM states can be fixed for all the 

models (e.g., (Pechwitz and Märgner 2003; Benouareth, Ennaji, and Sellami 2008; 

El-Hajj, Likforman-Sulem, and Mokbel 2005; Premkumar Natarajan et al. 2012)). 

Alternatively, each HMM model can have different number of states. Various 

techniques for model length adaptation (MLA), i.e., deciding the optimal number 

of states for a given HMM model have been proposed (e.g., (Zimmermann and 
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Bunke 2002; Dreuw, Jonas, and Ney 2008; Z. Jiang et al. 2012)). As Arabic 

characters have high variations in width and glyph complexity, adapting the length 

of HMM models seems to be a good approach as compared to using the same 

number of states for every HMM. Additionally, if explicit models are used to model 

the background space, it is normally a single state model. Dreuw et al. (Dreuw, 

Jonas, and Ney 2008) presented model length adaptation based on average 

character width information. The average length of character was found using the 

state occupancy statistics from the training data. The information about the 

average number of frames per class was used in (Dehghan et al. 2001) to decide the 

number of states for a particular model. In (Chammas, Mokbel, and Likforman-

Sulem 2015), the authors used 5-state models for narrow characters and 

punctuation marks and 8-state models were used for characters having wider 

glyphs. In (Hamdani et al. 2011), the authors presented their work on MLA where 

they manually clustered the Arabic character shapes into four groups depending on 

their expected average widths. They assigned HMM models for each group with a 

specific number of states with the models in the group containing the narrowest 

characters having 5 states and the models belonging to the widest characters having 

17 states each. It was not clear how they decided the particular numbers of states. 

In (Khorsheed 2003), the number of line segments (obtained after line 

approximation on skeletonized text images) a character has determines the number 

of states its model contains. Jiang et al. (2012) presented the concept of information 

entropy of states and its use in MLA by removing those states from a model which 

have very low entropies. The low entropy states are the ones which either have 

extremely low self-transition probabilities (termed as slipping states) or have very 

low total incoming probabilities (termed as blocking states) or have very low total 

outgoing probabilities (termed as absorbing states). Further, the authors extended 

the work in (Z. Jiang et al. 2015) to provide more elaborate approach to optimize 

the number of states and the number of mixtures per state using an iterative 

algorithm. The problem with the proposed algorithms is that they are based on 

defining specific rules involving many thresholds which may entail large overheads 

to optimize them for a given recognition task.  

The time duration a state of a given model is active, is mainly decided by the 

transition probabilities for that particular state. Some researchers argue that the 

state duration needs to be explicitly modelled with some appropriate distributions 

instead of using a simple transition probability (Benouareth, Ennaji, and Sellami 

2008). In (Benouareth, Ennaji, and Sellami 2008), authors presented explicit state 
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duration modeling. Three different distributions (two continuous distributions and 

one discrete distribution) were investigated to model the state duration. Gamma 

distribution gave the best improvement. 

Mixtures: In the case of continuous HMM systems, the most common approach 

is to have multiple mixtures per state. The number of mixtures per state is normally 

a fixed constant and is decided based on the systems  performance on the 

development sets (e.g., (Benouareth, Ennaji, and Sellami 2008; Azeem and Ahmed 

2013)). Jiang et al. (Z. Jiang et al. 2015) presented an algorithm for the 

optimization of mixture components per state based on some heuristics and a rule 

based algorithm involving many thresholds. It works together with HMM model 

length optimization. The authors reported improvement in recognition result by 

using the optimization technique for the model length and the number of mixtures 

per state. In (Hamdani et al. 2014; Hamdani, Doetsch, and Ney 2014), mixtures 

were shared between every two consecutive states. The justification for sharing the 

mixtures between two states was to make sure that each Gaussian is visited at least 

once even if a state is skipped because of the Bakis topology. In (Premkumar 

Natarajan et al. 2012), the authors presented two mixture tying approaches for 

Arabic text recognition. In one approach all the mixtures for a given model are 

tied, i.e., all the states of a model share the same mixture pool. In the second 

approach, all the character shape models for Arabic representing the same character 

have their mixtures tied together for the respective states and is referred in the 

paper as state tied mixtures (STM). STM setup gave slightly better results in 

comparison to other setups. 

Training: Baum Welch algorithm is the most common algorithm used to train 

the HMM models (e.g., (

2002; Khorsheed 2003; Premkumar Natarajan et al. 2012; Azeem and Ahmed 2013; 

Chammas, Mokbel, and Likforman-Sulem 2015)). Other researchers preferred 

Viterbi training instead of the Baum Welch training (e.g., (Dreuw et al. 2009; 

Benouareth, Ennaji, and Sellami 2006; Benouareth, Ennaji, and Sellami 2008; 

Pechwitz, Abed, and Märgner 2012; Schambach, Rottland, and Alary 2008)). 

Discriminative training based on modified form of Maximum Mutual Information 

(MMI) was employed in (Dreuw, Heigold, and Ney 2009)

aced in statistical pattern recognition 

problems and handwritten text recognition is no exception. Adding synthetically 

generated training data in addition to the original training data is one of the most 

common approaches in situations where the training data is deemed not big enough. 
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Dreuw et al. (Dreuw, Jonas, and Ney 2008) added additional training data by 

simply shifting the original training images by few pixels on the y-axis. This 

approach, although simple, showed to improve the recognition results. Parameter 

smoothing (see (Young et al. 2002, page 160) for details on parameter smoothing) 

after training was performed in (Dehghan et al. 2001) to overcome the problem of 

non-robust training due to insufficient training data. 

Contextual HMMs: As mentioned in Section 2.7.1, contextual HMMs are used 

characters. Contextual HMMs with decision tree clustering were presented in 

(Bianne-Bernard et al. 2011; Hamdani, Mousa, and Ney 2013; Hamdani et al. 2014; 

Stahlberg and Vogel 2015; Morillot et al. 2013). In (Hamdani, Doetsch, and Ney 

2014), the authors presented decision tree based clustering for contextual HMMs 

where (El-

Hajj, Mokbel, and Likforman-Sulem 2008), the authors presented contextual 

modeling using HMMs for Arabic text recognition where a few contextual forms 

were manually selected to be modelled. These were mainly characters with 

descenders which potentially lead to overlaps with the neighboring characters. A 

total of only 44 contextual forms were added to the original model set. It seems 

that state clustering was not performed which is understandable given that only a 

few contextual models were added. In (Premkumar Natarajan et al. 2012), the 

authors used contextual models for Arabic text recognition. A slight improvement 

was reported over the use of context independent modeling. One possible reason 

for not so large improvement in recognition performance, as stated in the paper, 

was that the use of Arabic character shapes as HMMs already captures most of the 

context and hence additional contextual modeling, with the implication of addition 

of many more models, may not be very helpful. The use of contextual HMMs with 

state clustering was reported in (Cao et al. 2014). 

Multi-stream HMMs: Use of multi-stream HMMs for Arabic text recognition 

was presented by Kessentini et al. in (Kessentini, Paquet, and Ben Hamadou 2010). 

Four different features were extracted from the text line images and multiple 2-

stream HMMs were trained using different combinations of these features. Multi-

stream HMMs performed better than feature fusion or classifier fusion. However, it 

was stated that using stream weights did not improve the results over the equal 

weight streams. 

Model Adaptation: To cope with writing variability during recognition, HMM 

adaptation techniques have been used successfully (see Section 2.7.2). In 
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(Premkumar Natarajan et al. 2012), the authors presented the use of MLLR based 

unsupervised writer adaptation where only the means (and not the standard 

deviations) were updated. In (Dreuw et al. 2009), the authors used the writer 

information in the training set to estimate writer dependent feature transformations 

which are then used to transform the features for every set of writers. These 

transformed features are then used to train the writer dependent models. After 

doing a first pass decoding of the test set, text dependent writer clustering is 

performed. An unsupervised association of writer clusters from the test set to the 

writers in the training set is performed and then the writer dependent models are 

used for decoding in the second pass. The authors in (Dreuw, Heigold, and Ney 

2009) presented confidence based discriminative training where, in the first pass, a 

recognition hypothesis is generated and confidence scores (at the word level and at 

the state level) are used to discriminatively train a second system using the 

hypothesized text in the first pass. The idea of state level confidence scores was not 

to reject a word entirely if its confidence score is low and, instead, utilize data at 

state level (for training) for those states whose confidence level is high. In (Hamdani 

et al. 2014), the authors presented multi-pass decoding where, after the fast pass 

the writing styles are clustered in an unsupervised way. In the next pass, feature 

adaptation is done using these clusters, i.e., the features are transformed using 

MLLR based transformations estimated for the clusters. In (Cao et al. 2014), the 

authors presented two approaches to writer and writing style adaptation. In the 

first approach, a writer independent system is adapted separately for each writer 

in the training set. During recognition, the input document is associated to a writer 

from the training set with a score from an SVM based writer identification system. 

If the score is high (above some threshold), the document is decoded using the 

writer specific system otherwise it is decoded using the writer independent system. 

In the second approach, the input document is decoded as a first step. The text 

hypothesis is used to group documents in the training set having similar writing 

styles. The codebook is then adapted to the set of documents in training set which 

matches the writing style of the input document. The HMM model state transition 

probabilities are then adapted using the average character width information from 

the input document. Finally, the input document is decoded once again using the 

adapted system.  

Multiple Recognition Systems: Another strategy employed to improve the 

recognition results is to use multiple recognition systems and later combine their 

results after recognition. If the recognizers have different characteristics like 
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different features used (e.g., (Abed and Märgner 2009)), different training criteria 

(e.g., (Farah, Souici-Meslati, and Sellami 2006)), or different classifiers (e.g., 

(Farah, Souici-Meslati, and Sellami 2006)), it is expected that they make errors in 

different regions, i.e., their errors are independent of each other. Thus combining 

their results effectively can lead to overall results which are better than the results 

of the best individual system. The challenge is to design the systems such that they 

have different properties and the challenge is also to design effective combination 

schemes. In (Al-Hajj Mohamad, Mokbel, and Likforman-Sulem 2007; Al-Hajj 

Mohamad, Likforman-Sulem, and Mokbel 2009), the authors trained three different 

HMM systems, each using features from sliding windows oriented at specific angles. 

The final recognition output was obtained by combining the recognition results of 

the individual recognizers. Three different combination schemes were investigated, 

i.e., the summation of normalized likelihood scores from the individual recognizers, 

the majority voting scheme, and training (using scores from individual HMM 

classifiers) an ANN (Multilayer Perceptron) system to output the top choice. In 

(Azeem and Ahmed 2013), the authors also used three different HMM systems each 

trained on features from sliding windows tilted in certain angles (similar to (Al-

Hajj Mohamad, Mokbel, and Likforman-Sulem 2007; Al-Hajj Mohamad, Likforman-

Sulem, and Mokbel 2009)). Finally the results from the three system were combined 

using sum, majority vote, and maximum rules. The exact decisions on how and 

which scores to combine were set as rules and involved some score thresholds. In 

(Azizi et al. 2010), the authors presented the use of six different measures (which 

 of classifiers dissimilarity. These 

measures were used to select a sub-set of recognition systems which are the most 

diverse with the hope that the overall combination of the results would be better 

Based on experimental results, the 

authors showed that combining the recognition systems based on diversity is better 

than combining systems which give the highest individual recognition results. In 

(El Abed and Märgner 2010b), the authors presented their investigation on 

combining different recognition systems. Different strategies like majority voting 

and voting schemes based on ranks of different classes from each system were 

presented including training an ANN classifier to output the combination result. In 

(Schambach, Rottland, and Alary 2008), the authors presented classifier 

combination using weighted sum voting where the scores are weighted based on the 

erformances. The individual systems differ from each other 

based on different preprocessing techniques employed before extracting the features 
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from the text images. In , the authors 

presented multiple HMM recognition systems, each to recognize a sub-set of words 

from the Arabic literal amount lexicon. As a first step, an input word is assigned 

to one of the eight groups using features like number and position of dots, and the 

number of PAWs. Next, an HMM system specifically trained on word samples from 

that group is used to recognize the input word. In (Menasri et al. 2007), the authors 

presented a hybrid HMMs and ANNs system which involves explicit segmentation 

of text images into graphemes after the removal of dots and diacritics. Features are 

extracted for individual graphemes. An iterative training is performed where the 

HMM system annotates the data used to train the neural network system which, 

in turn, computes the observation probability distribution for the HMM system. In 

(Pradeep Natarajan et al. 2009), the authors use the segmentation information 

generated by an HMM system to train an SVM classifier for the Arabic characters. 

In the next step, the scores from both the classifiers are combined to output the 

final recognition hypothesis. 

Language Modeling: When it comes to recognizing multiple words in a text 

line image, the use of language model is imperative. The good thing is that the 

HMMs can seamlessly integrate statistical n-grams (as language model) for 

decoding. One of the most important concerns when using the language models is 

to deal with Out of Vocabulary (OOV) words, i.e., words in the test set which were 

not known before. As one increases the lexicon size the OOV rate is, in general, 

expected to decrease. But having a very large lexicon comes with its own issues. It 

can be difficult to estimate the language model robustly as many of the words will 

occur infrequently in the corpus. Moreover, having a large lexicon will also lead to 

more recognition ambiguities (cf. (BenZeghiba, Louradour, and Kermorvant 2015)). 

Thus a balance between the lexicon size and the possibility of missing words due 

to them being OOVs needs to be maintained. In (Premkumar Natarajan et al. 2012; 

Pradeep Natarajan et al. 2011), the authors presented the use of word language 

models for handwritten Arabic text recognition. A lexicon size of 120K words (92K 

in (Pradeep Natarajan et al. 2011)) is trained using a large corpus containing 217 

million words (90 million words with OOV rate of 4.2% in (Pradeep Natarajan et 

al. 2011)). 

As Arabic is a highly inflectional language, the problem of OOV is even higher. 

A simple word based lexicon is generally not the best choice. Authors in (Hamdani, 

Mousa, and Ney 2013) presented open vocabulary Arabic text recognition where 

the Arabic words were morphologically analyzed and decomposed into prefixes, 
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root, and suffixes. For building the lexicon and estimating the language models, 

words with high frequencies in the training corpus were kept in the lexicon and the 

infrequent words were decomposed and the prefixes, roots, and suffixes were added 

to the lexicon. Special markers were used for prefixes and suffixes in order to 

reconstruct the words from the recognized segments. This approach resulted in 

limiting the lexicon size and at the same time, many OOV words can be recognized 

by constructing them by merging different prefixes, roots, and suffixes. BenZeghiba 

et al. in (BenZeghiba, Louradour, and Kermorvant 2015) presented hybrid 

word/PAW language model for Arabic text recognition. The frequently occurring 

Arabic words in the training corpus were included in the lexicon and the remaining 

words were broken into PAWs. This leads to reduction in the lexicon size and also 

reduction in the OOV words. Words were later reconstructed by combining these 

PAWs after recognition.  

When performing lexicon free character recognition, character language models 

can be used. When using character language models, the issue of OOV is not 

present. High order n-grams (typically trigrams or 4 grams) are typically preferred 

but integrating a high order n-gram during decoding is computationally very 

expensive. Bigrams can integrate seamlessly due to the reason that the HMMs are 

first order Markov chains. Some researchers prefer using bigrams in the forward 

pass of decoding and trigrams in the backward pass when the search space is limited 

(e.g., (Premkumar Natarajan et al. 2012; Pradeep Natarajan et al. 2011)). 

Post-processing: In (Khorsheed 2003), the author presented a word recognition 

task using character HMMs without the use of lexicon. Spell checking was employed 

to correct some of the recognized words which were not available in the dictionary. 

In (Premkumar Natarajan et al. 2012) and (Cao et al. 2014), the authors reported 

the use of glyph models without dots to rescore the n-best list generated by the 

recognizer. 

4.3. Other statistical sequential models 

After a deep learning trend in computer vision and speech recognition and the work 

on offline text recognition by Graves and Schmidhuber (e.g., (Graves and 

Schmidhuber 2009; Graves 2012)), deep learning based recognition systems have 

received high interest. One of the main drawbacks of using non-HMM classifiers 

including those based on ANNs was that the text needed to be explicitly segmented 

for training and recognition. The use of connectionist temporal classification (CTC) 

in the context of RNNs allows for recognition without the need for prior 
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segmentation (cf. (Graves and Schmidhuber 2009)). This has enabled the use of 

neural networks based classifier for the task of offline handwritten text recognition 

and, thus, has gained popularity in recent years (e.g., (Graves and Schmidhuber 

2009; Graves 2012; Abandah, Jamour, and Qaralleh 2014; Hamdani et al. 2014; 

Hamdani, Doetsch, and Ney 2014; Moysset et al. 2014; Bluche et al. 2014)). 

Moreover, the RNNs architecture involving long short-term memory (LSTM) 

enables it to capture longer contexts which may be important for offline text 

recognition tasks. Interested readers can refer to (Graves and Schmidhuber 2009; 

Graves 2012) for a detailed discussion on RNNs, CTC, and LSTM in the context 

of offline text recognition.  

There are currently three most popular approaches when using neural network-

based classifiers that avoid the explicit segmentation of the text images. The first 

approach is the one presented by Graves and Schmidhuber (2009) and later 

extended by Graves in (Graves 2012). Raw image pixels are given as input to a 

multi-dimensional RNN (MDRNN). A hierarchical architecture is designed to 

convert the two-dimensional image into a one-dimensional sequence which is finally 

labelled by the output layer. Abandah et al. presented handwritten Arabic text 

recognition using recurrent neural networks (Abandah, Jamour, and Qaralleh 

2014). Their approach is based on explicit segmentation of text line images into 

graphemes. A rule-based algorithm is presented to segment the Arabic text into 

PAWs and then segment them into graphemes. Dots and diacritics were separated 

from text images and later associated with PAWs. A number of features were 

extracted from the segmented graphemes. RNNs with bidirectional LSTMs 

(BLSTMs) and CTC layer is used for training and recognition. The BLSTM 

architecture allows for integrating the contextual information from both the 

directions across the handwritten text. A dictionary is finally used to correct the 

output of the recognizer based on the decoding lexicon.  

The second approach involving neural networks is to use them, as some 

researchers term, in-tandem with HMMs (Hamdani et al. 2014). A hybrid HMMs-

ANNs system was presented in (Hamdani et al. 2014) where the HMM system was 

used in tandem with the BLSTM RNNs. Forced alignment from a pre trained HMM 

system is used to label each observation with its character annotation. This forced 

aligned data is used to train the RNNs. The trained network is used to calculate 

the posterior distribution for each observation over the character labels. This, in 

turn, is used to retrain a new HMM system which is finally used for text recognition.  
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Finally, the third approach is to use neural networks with HMMs in a hybrid 

way where the state output probability is directly estimated using the neural 

networks. A hybrid HMM-ANN system was presented in (Hamdani, Doetsch, and 

Ney 2014) where the HMMs were not retrained again using the features trained on 

the RNN. Instead, the posteriors estimated by the RNN were directly used as 

emission probabilities for the HMMs. In (BenZeghiba, Louradour, and Kermorvant 

2015), the authors presented a hybrid HMM-ANN system where the ANN is a 

Multi Directional LSTM Recurrent Neural Networks and is used to estimate the 

etwork was trained using the CTC 

criterion thereby avoiding the need of explicit segmentation of text images. Due to 

the large training data requirements for such networks, a seed model was trained 

using some external text database and in another text recognition task, some 

artificial training data was added by applying several transformations to the 

original training images. In (Moysset et al. 2014), the authors presented a multi-

lingual text recognition system. It is a hybrid RNN-HMM system where the optical 

modeling is performed using Recurrent Neural Networks (RNNs) with LSTM cells. 

Raw pixels were taken as features to train the network. CTC was used to avoid 

the explicit segmentation of text images into character shapes. A stepwise training 

was performed where simple and clean text images were used initially before 

incorporating the complete dataset which also involves challenging and noisy 

images. For decoding, HMMs were used where each character shape was 

represented by a single state HMM (with self-loop) whose emission probabilities 

were estimated using the RNN system trained as described above. The training 

data size was augmented by adding synthesized data obtained by applying some 

transformations (like shrinking, slanting, and expanding) on the original training 

images. In (Bluche et al. 2014), the authors presented a handwritten text 

recognition system developed for Arabic text recognition. Most of the 

characteristics of the system are similar to the one presented in (Moysset et al. 

2014). Eleven different RNN based systems were trained, each with different 

random seed and different and disjoint training set in the initial training stage 

(stepwise training was employed). After the initial training, all the training data 

was used by each of the eleven systems for further training. Later, the results were 

combined from these systems using an incremental approach based on their 

individual accuracies and based on the improvements in recognition results after 

adding them. In (Stahlberg and Vogel 2015), the authors train an initial HMM 
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system and use the forced alignment information to train a neural network system 

which models the emission probabilities for the final HMM system. 

In (Morillot et al. 2013), the authors presented a comparative study of using 

two recognition systems for handwritten Arabic text recognition. One of the 

systems was based on HMMs while the other was based on RNNs involving 

BLSTMs. They employed same features and sliding window attributes for both the 

system. The RNN-based system outperformed the HMM-based system based on 

the evaluation results. Based on conducting text recognition experiments on two 

separate handwritten text databases, the authors in (Bluche, Ney, and Kermorvant 

2014) concluded that, both Deep multilayer perceptron (MLP) and LSTM-RNNs 

(the popular choice in text recognition domain) are equally suited for training. 

Moreover, they also had similar conclusions for the use of features, whether raw 

pixel value or handcrafted. 

4.4. Summary of the related works 

In this section we will present a summary of published works on handwritten Arabic 

text recognition tasks. We will divide the published works into three groups. The 

first group includes representative works on holistic recognition of isolated digits, 

characters, and PAWs. It also includes some early works on word recognition which 

either recognizes the words holistically or use syntactic classifiers to perform explicit 

segmentation based recognition. The second group contains representative works 

on handwritten text recognition using the IFN/ENIT database (Pechwitz et al. 

2002). Text recognition tasks using the IFN/ENIT database is of particular 

importance due to the popularity of the database, its use in many text recognition 

competitions, and also due to the fact that the database is available free to the 

research community. The third group includes representative works on recognizing 

text images containing multiple words. The main aspects that separate the last 

group from the second group is the use of language models and dealing with the 

out of vocabulary (OOV) words. 

In Table 4.1, we present the summary of the works related to isolated digits, 

isolated characters, holistic PAW recognition, and some early works on word 

recognition. The table includes only a small selection of the published works in this 

area which we believe are representative of the tasks. The main aspects for effective 

recognition are related to careful preprocessing, use of effective features and 

classifiers. Handwritten digits recognition is one of the easiest recognition tasks. It 

is a ten class (representing digits from 0 to 9) problem and is, to a larger extent, 
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considered solved. Rates of over 99% are reported in the literature for already 

segmented isolated digits recognition (e.g., (Awaida and Mahmoud 2009)). In case 

of number recognition (containing multiple digits) involving touching digits, the 

task still faces some challenges (e.g., (Alamri, He, and Suen 2009)). Some practical 

uses of digit recognition is in recognizing numeral amounts in bank checks and in 

zip code reading. Isolated character recognition is the next simplest task. The 

classes represent the characters of the script. The main challenges related to 

isolated character recognition lie in distinguishing the characters which share the 

same core shape and different only with respect to the dots. Isolated character 

recognition is also a largely solved problem and is of limited practical use. 

Recognizing the Arabic PAWs and words holistically may make practical sense 

only when the number of classes are very limited such as the tasks related to literal 

amount recognition form bank checks which typically contains few dozen words or 

PAWs. 

In Table 4.2, we present the summary of the works related to handwritten word 

recognition using the IFN/ENIT database. Apart from the challenges related to 

preprocessing, development of effective features, and the effective use of classifiers; 

word recognition tasks have to deal with defining appropriate modeling units like 

characters (or character shapes for Arabic), training them with or without the 

segmentation of word images, constructing the decoding network from these 

modeling units, and dealing with alternative pronunciations for a word. Use of 

HMM-based classifiers are by far the most common approach under this category. 

In Table 4.3, we present text recognition tasks dealing with text images 

containing multiple words. As mentioned earlier, the main aspects which separates 

it from word recognition tasks are the use of language models and dealing with 

OOV words. Moreover, if a text image includes multiple lines, separating these 

lines is another important challenge that needs to be addressed. 

With this knowledge of the state-of-the-art in handwritten Arabic text 

recognition as foundations, we present our contributions related to HMM-based 

handwritten Arabic text recognition in the next two chapters. 
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Table 4.1: Summary of the representative works on holistic recognition of digits, characters, PAWs, and some early works on words recognition. 

System Key Features Characteristics of the database Recognition results Remarks 

Alamri et al. 2009 

(Alamri, He, and Suen 

2009) 

 SVM system with radial basis function as 

the kernel 

 Gradient features 

 A rule based algorithm to separate 

touching digits 

Digit images from CENPARMI 

database of Arabic checks: 

 24,784 digit images used for 

training 

 6199 digit images used for 

evaluation 

 132 images of pairs of touching 

digits used for evaluation of the 

touching digit recognition task 

 Misclassification rate of 

1.52% for non-touching 

isolated digits recognition 

 Misclassification rate of 

7.78% for touching digits 

recognition 

 

 

Isolated and 

touching digits 

recognition 

Awaidah and Mahmoud 

2009 (Awaida and 

Mahmoud 2009) 

 Discrete HMMs system 

 Gradient, concavity and structural 

features (GSC) 

 A digit image segmented into a number of 

frames such that each segment has 

approximately the same number of pixels 

21,120 digit images written by 44 

writers 

 15,840 images used for training 

and the remaining 5280 images 

were used for evaluation 

 Misclassification rate of 

0.87% 
Isolated digits 

recognition 

Mahmoud and Al-

Khateeb 2010 

(Mahmoud and Al-

Khatib 2010) 

 Three different classifiers (k-NNs, HMMs, 

and SVMs) 

 Log Gabor filters with several scales and 

orientations were used as features 

Isolated digit images from 

CENPARMI database of Arabic 

checks: 

 Misclassification rate of 

1.05% using SVM classifier 

 Misclassification rate of 

2.79% using HMM classifier 

Isolated digits 

recognition 
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 7390 digit images used for 

training 

 3035 digit images used for 

evaluation 

 Misclassification rate of 

1.25% using k-NN classifier 

Al-desouky et al. 1991 

(El-Desouky et al. 

1991) 

 Image thinning and normalization before 

feature extraction 

 Direction chain code along with character 

zone and dots information are used as 

features 

 Each character image if first associated to 

a group and then classified using some 

distance measure computed from the 

features 

Isolated character images written 

by two writers with specific 

constraints imposed when writing 

 Information not available on 

the database size 

 Character error rate (CER) 

of 6% 
Isolated character 

recognition 

Cheriet et al. 2007 

(Cheriet et al. 2007) 

 Discrete HMMs system 

 Freeman chain codes (length and 

used as features 

 PAWs modelled as HMMs 

 Number of states in an HMM is decided 

based on the number of characters in a 

PAW 

Isolated PAW images from 

CENPARMI database of Arabic 

checks 

 Lexicon size of 67 PAWs 

 PAW error rate of 26.47% 

on the evaluation set 
Holistic recognition 

of PAWs 

Almuallim and 

Yamaguchi 1987 

(Almuallim and 

Yamaguchi 1987) 

 Syntactic classifier for word recognition 

 Thinning and segmentation into strokes 

 Strokes are classified into groups as a first 

step and features (group specific) are 

extracted from strokes in order to classify 

the strokes in the second step 

 Strokes are combined to form characters 

using rule based pattern matching 

 Use of word dictionary as post-processing 

 200 words written by two 

writers are used for training 

 Evaluation was performed on 

400 word images 

 Word error rate (WER) of 

9% 
Word recognition 

task 
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Goraine et al. 1992 

(Goraine, Usher, and 

Al-Emami 1992) 

 Syntactic classifier for word recognition 

 Thinning and segmentation into strokes 

 Strokes represented as direction codes and 

classified into 11 primitives 

 Strokes are combines into characters using 

rules 

 A dictionary lookup for words to correct 

misclassified characters was used as post-

processing 

180 word images with a total of 

600 characters written by three 

writers were used for evaluation 

 WER of 10% Word recognition 

task 

Abuhaiba et al. 1998 

(Abuhaiba, Holt, and 

Datta 1998) 

 Syntactic classifier for character 

recognition from text line images 

 Thinning and segmentation into strokes 

 Segmentation of strokes into tokens 

 Token recognition 

 Token recombination to form core shapes 

 Adding secondary strokes information to 

core shapes using rules to form characters 

Handwritten text line images: 

 13 pages written by 13 different 

writers used for training 

 20 pages written by 20 different 

writers not in training used for 

evaluation 

 CER of 48.9%  Character 

recognition from 

text line images 

 CER includes 

both errors and 

rejections 

Dehghan et al. 2001 

(Dehghan et al. 2001)  

 

 Discrete HMMs system 

 An HMM for each word in the lexicon 

 Stroke width normalization, baseline 

correction 

 Histograms of chain-code directions from 

the image strips within a sliding window 

are used as features 

 The number of states in a word HMM is 

set based on the average number of 

frames the word has in the training set 

17,000 handwritten word images 

of 198 city names 

 Lexicon size of 198 names 

 60% of the data used for 

training and the rest 40% is 

used for evaluation 

 

 WER of 34.95% Holistic word 

recognition task 

and Elliman 2004) 

 Discrete HMMs based multi-stage 

recognition 

 An HMM for each word in the lexicon 

4700 handwritten words written 

by 100 writers 

 Lexicon size of 47 words 

 WER of 40%  

 WER of 31% with some 

post-processing 

Holistic word 

recognition task 
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  Normalization of image height and stroke 

width, slope correction 

 Words grouped in the first stage based on 

features like number and position of dots, 

HMM systems specific to groups are then 

used to classify the words 

 Two-third of the word images 

used for training and the 

remaining one-third was used 

for evaluation 

Farah et al. 2006 

(Farah, Souici-Meslati, 

and Sellami 2006) 

 

 Multi-classifier system (ANNs, k-NN, and 

fuzzy k-NN) 

 Text image binarization and smoothing 

 Structural features like loops, ascenders, 

descenders, and dots information 

 Classifier combination using score 

summation 

4800 handwritten words written 

by 100 writers 

 Lexicon size of 48 words 

 1200 word images were used for 

training and the remaining 

3600 word images were used for 

evaluation 

 WER of 6% Holistic word 

recognition task 
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Table 4.2: Summary of the representative works on text recognition using the IFN/ENIT database. 

System Key Features 

Recognition results (WER) 

Remarks Train Test Configuration 

abc d abcd e abcde f abcde s 

Menasri et al. 2007 

(Menasri et al. 2007) 

 Hybrid HMMs/ANNs recognition system 

 Explicit segmentation of word images into 

recognition units 

 -

is one of the core shape segments after 

separation of dots and other diacritics 

 HMMs observation probability 

distribution was computed using neural 

networks 

12.6 - - - 

 

Benouareth et al. 2008 

(Benouareth, Ennaji, 

and Sellami 2008) 

 Semi-continuous HMMs system 

 Explicit state duration modelling (using 

Gamma distribution)  

 Non-uniform sliding windows with 

projection information  

 Character shape HMMs with fixed number 

of states for all models 

 Bakis topology 

 Viterbi training 

9.80 - - - 

 

Schambach et al. 2008 

(Schambach, Rottland, 

and Alary 2008) 

 HMMs system 

 Arabic character modelled with parallel 

path HMMs where each path represents a 
- - 12.78 26.06 

It was the winning system in 

ICDAR2007 competition 

(Märgner and Abed 2007) 
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character shape of the representing 

character 

 Model length adaptation 

 3 systems combined using weighted 

majority voting 

 

Al-Hajj et al. 2009 (Al-

Hajj Mohamad, 

Likforman-Sulem, and 

Mokbel 2009) 

 Multiple continuous HMMs system 

 Pixel density and concavity features 

 Two slanted sliding windows in addition to 

vertical sliding windows provide features 

for three different HMM systems 

respectively 

 Character shape HMMs with Bakis 

topology 

 Explicit white-space modelling between 

words, and after alifs 

 Classifier combination using an MLP 

system 

9.04 - - - 

The authors presented the 

winning system ((El-Hajj, 

Likforman-Sulem, and Mokbel 

2005)) in ICDAR2005 

competition (Märgner, 

Pechwitz, and Abed 2005) 

 

Dreuw et al. 2008 and 

2009 (Dreuw, Jonas, 

and Ney 2008)(Dreuw 

et al. 2009) 

 Continuous HMMs system 

 Image slice and its horizontal derivatives 

as feature 

 PCA for dimensionality reduction 

 Explicit white-space modelling 

 Model length adaptation with each 

character model having additional variants 

 Additional virtual training samples by 

shifting the image pixels along y-axis 

 Use of writing variant probability 

 Writer adaptive training 

5.82 11.22 - - 

 

Kessentini et al. 2010 

(Kessentini, Paquet, 

 Multi stream HMMs system 

 Slant and slope correction, contour 

smoothing 

- 20.4 17.91 25.49 
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and Ben Hamadou 

2010) 

 Contour and pixel features 

 Each feature forms a separate stream 

Pechwitz et al. 2012 

(Pechwitz, Abed, and 

Märgner 2012) 

 Semi-continuous HMMs 

 Baseline correction, line thickness 

normalization 

 Pixel values from sliding window used as 

features after dimensionality reduction 

 Sliding window divided into vertical cells 

 Character shape HMMs with Bakis 

topology 

 Viterbi training 

8.2 - - - 

 

Natarajan et al. 2012 

(Premkumar 

Natarajan et al. 2012) 

 Continuous HMMs system 

 Skew and slant correction 

 Percentile features, angle and concavity 

features, and derivatives. Feature 

reduction using LDA 

 Contextual HMMs (triphones) 

 State tied mixtures (STM) for different 

character shape models of a character 

 Unsupervised writer adaptation (only 

means updated) 

10.6 - - - 

 

Rothacker and Fink 

2012 (Rothacker, 

Vajda, and Fink 2012) 

 Bag-of-features HMM 

 Slant and slope correction 

 Harris Corners detectors and SIFT 

descriptors for features computations 

 PCA for dimensionality reduction 

3.8 7.1 9.8 19.3 

 

Graves 2012 (Graves 

2012) 

 RNN (BLSTM) system 

 Image pixels as features 

 CTC output layer with word dictionary for 

decoding 

- - 6.63 18.94 

The author presented the 

winning system in ICDAR2009 
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 For words with more than one variant, the 

sum of probabilities for all the variants was 

used as the probability for the word 

competition (Mozaffari and 

Soltanizadeh 2009) 

Parvez and Mahmoud 

2013 (Parvez and 

Mahmoud 2013a) 

 Structural classifier 

 Characters represented using fuzzy 

polygonal approximation 

 Nearest neighbour classifier with fuzzy 

polygonal matching 

 Lexicon reduction using dots information 

- 20.42 - - 

Training set included pre-

segmented characters from 

another database. IFN/ENIT 

training sets were not used 

Azeem and Ahmed 

2013 (Azeem and 

Ahmed 2013)  

 Multiple continuous HMMs system 

 Stroke width and white-space 

normalization 

 Character shape models 

 Concavity and gradient features 

 Slanted sliding windows (same as Al-Hajj 

et al. (Al-Hajj Mohamad, Likforman-

Sulem, and Mokbel 2009)) 

 Classifier combination using sum, majority 

vote, maximum rules 

2.3 6.56 6.9 15.2 

 

Giménez et al. 2014 

(Giménez et al. 2014) 

 Bernoulli HMMs based system 

 Binary image pixels as features 

 Sliding window repositioning based on ink 

centre-of-mass  
4.7 6.1 7.80 15.38 

The authors presented the 

winning system ((Giménez, 

Khoury, and Juan 2010)) in 

ICFHR2010 competition 

(Märgner and Abed 2010) 

Abandah et al. 2014 

(Abandah, Jamour, 

and Qaralleh 2014) 

 RNN (BLSTM) system 

 Explicit segmentation of text into 

graphemes 

 Statistical, skeleton, boundary, diagonal 

features, Fourier descriptors 

1.04 6.54 7.54 15.20 
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 Word recognition using CTC output layer 

and dictionary 

Hamdani et al. 2014 

(Märgner and Abed 

2011)(Hamdani et al. 

2014) 

 BLSTM (RNNs) in tandem with 

continuous HMMs 

 Pixel grey values as features extracted 

from repositioned sliding windows and 

PCA for feature reduction for HMM 

training in step one 

 RNNs trained features used in the next 

step to train the HMMs 

 Gaussians shared between two successive 

states of HMMs 

 Viterbi training with MLE criteria  

 Contextual HMMs (triphones) with 

decision tree based clustering 

- - 7.80 15.45 

The authors presented the 

winning system in ICDAR2011 

competition (Märgner and 

Abed 2011) 

Stahlberg and Vogel 

2015 (Stahlberg and 

Vogel 2015) 

 HMMs system with deep neural network 

training 

 Baseline and slant correction, image 

height and line thickness normalization 

 Pixel values as features after PCA based 

reduction and segment based features 

 Deep neural networks based 

discriminative training after forced 

alignment using HMMs  

 The use of space and connector models as 

proposed in (Ahmad, Fink, and 

Mahmoud 2014) 

 Contextual triphones with decision tree 

based clustering 

 Writer adaptive training 

2.4 

(ranges 

from 2.9 to 

2.4) 

6.1 

(ranges 

from 6.1 to 

6.9) 

6.8 

(ranges 

from 6.8 to 

7.3) 

11.5 

(ranges 

from 11.5 

to 12.5) 

The results vary for different 

configurations of features and 

training strategies 
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Table 4.3: Summary of the representative works on recognition of text images containing multiple words and on the use of language models.  

System Key Features 
Characteristics of the 

database  
Recognition results Remarks 

Saleem et al. 2009 

(Saleem et al. 

2009) 

 Continuous HMMs system 

 Percentile, angle, correlation, energy, 

gradient, and GSC features. Feature 

reduction using LDA 

 Character shapes as HMMs with position 

dependent tied mixtures 

 MLLR based unsupervised adaptation 

(only mixture means updated) 

 Ruled line removal 

 Trigram language model estimated on a 

text corpus of 90 million words with 

vocabulary size of 92K words 

 Forward pass of decoding using bigrams 

and backward pass using trigrams 

DARPA MADCAT 

dataset: 

 8250 documents for 

training, 218 

documents for 

development, and 224 

documents for 

evaluation 

 WER of 30.0%  

Natarajan et al. 

2012 (Premkumar 

Natarajan et al. 

2012) 

 Continuous HMMs system 

 Skew and slant correction 

 Percentile, angle, correlation, energy, and 

GSC features, and derivatives. Feature 

reduction using LDA 

 State tied mixtures (STM) for different 

character shape models of a character 

 Contextual HMMs (triphones) 

 Unsupervised writer adaptation (only 

mixture means updated) 

DARPA MADCAT 

dataset: 

 37,608 documents for 

training, 868 

documents for 

development, and 885 

documents for 

evaluation 

 WER of 25.2%  
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 Trigram language model estimated on a 

text corpus of 217 million words with 

lexicon size of 120K words 

Hamdani et al. 

2013 (Hamdani, 

Mousa, and Ney 

2013) 

 Continuous HMMs systems 

 Pixel grey values as features extracted 

from repositioned sliding windows 

 PCA for feature reduction 

 Contextual HMMs (triphones) with 

decision tree based clustering 

 Language model (n-grams) built using 

most frequent Arabic words in training 

corpus + less frequent words were 

decomposed morphologically into prefixes, 

roots, and suffixes 

1. DARPA MADCAT 

dataset available 

under OpenHaRT: 

 42K pages for training 

470 pages for 

development 

 

2. The KHATT 

database: 

 9475 lines for training, 

1902 lines for 

development, and 

1997 lines for 

evaluation 

1. OpenHaRT database: 

 WER of 34.1 on 

constrained task with 

94K vocabulary size 

(90K full words) 

 WER 25.9 on 

unconstrained task 

with vocabulary size of 

200K full words 

 

2. KHATT database 

 WER of 32.5 on 

constrained task with 

15K vocabulary size 

(10K full words) 

 WER 26.8 on 

unconstrained task 

with vocabulary size of 

200K full words 

 Constrained task refers to LM 

training on only the training 

set of the used database. 

Unconstrained task uses a text 

corpus of 1 billion words 

 It seems for the KHATT 

database, the lines which 

included the fixed repetitive 

text has also been included for 

training and evaluation 

 Details on the evaluation set 

for the OpenHaRT Database 

are missing 

Hamdani et al. 

2014 (Hamdani et 

al. 2014) 

 BLSTM (RNNs) in tandem with 

continuous HMMs 

 Pixel grey values as features extracted 

from repositioned sliding windows and 

PCA for feature reduction for HMM 

training in step one 

DARPA MADCAT 

dataset available under 

OpenHaRT:  

 42K pages for training 

470 pages for 

development 

 WER of 26.8 (CER of 

10.1) on constrained 

task with 94K 

vocabulary size 

Constrained task refers to LM 

training on only the training set 

of the used database. 

Unconstrained task uses a text 

corpus of 1 billion words (cf. 
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 RNNs trained features used in the next 

step to train the HMMs 

 Gaussians shared between two successive 

states of HMMs 

 Viterbi training with MLE criteria  

 Contextual HMMs (triphones) with 

decision tree based clustering 

 Unsupervised writer adaptation 

 Language model (n-grams) built using 

most frequent Arabic words in training 

corpus + less frequent words were 

decomposed morphologically into prefixes, 

roots, and suffixes 

 WER of 17.0 (CER of 

4.5) on unconstrained 

task  

(Hamdani, Mousa, and Ney 

2013)) 

Hamdani et al. 

2014 (Hamdani, 

Doetsch, and Ney 

2014) 

 Hybrid HMMs/RNNs system 

 Pixel grey values as features extracted 

from repositioned sliding windows for 

HMM training in step one 

 Gaussians shared between two successive 

states of HMMs 

 Model length adaptation 

 Emission probability of HMM states 

simulated using trained LSTM-RNNs in 

step two  

 Contextual HMMs (triphones) with 

decision tree based clustering with 

core shape 

 4-gram closed vocabulary language model 

with 400K vocabulary size estimated using 

a text corpus containing about 1 billion 

words 

DARPA MADCAT 

dataset available under 

OpenHaRT: 

 42K pages for 

training, 470 pages for 

development, and 633 

pages for evaluation 

 WER of 19.9 (CER of 

8.3)  
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Cao et al. 2014 

(Cao et al. 2014) 

 Continuous HMMs system 

 Percentile feature, gradient and concavity 

features, and Gabor filter based features. 

Feature reduction using region dependent 

transformation (RDT) 

 State tied mixtures (STM) for different 

character shape models of a character 

 Contextual HMMs (triphones) with state 

tying 

 Discriminative training 

 Writer adaptation 

 Trigram language models and recurrent 

neural network language models (RNNLM) 

estimation using training set and Gigaword 

text corpus and 300K vocabulary size 

 N-best rescoring using SVM 

 Revaluation of N-best scores using dots and 

diacritics free glyph models 

 Multiple systems (differs in preprocessing) 

combination using a weighted voting 

algorithm 

DARPA MADCAT 

dataset: 

 NIST OpenHaRT 

2013 evaluation 

 Evaluation on 

uncontrolled  

 WER of 7.4% on NIST 

OpenHaRT 2013 

evaluation 

 WER of 22.1% on the 

 

 

Bluche et al. 2014 

(Bluche et al. 

2014) 

 Hybrid HMM/MDLSTM (RNNs) system 

 Image pixels as features 

 4 LSTM layers applied in parallel, one for 

each scanning direction 

 Initial training on isolated words followed 

by text line images 

 11 different RNNs trained, each with 

different random seeds and different 

initialization data 

DARPA MADCAT 

dataset available under 

OpenHaRT 

 WER of 20.1 on 

constrained task 

 WER of 18.4 on 

unconstrained task 

Constrained task refers to LM 

estimation on the training set. 

Unconstrained task uses Arabic 

GigaWord text corpus for 

language model estimation 
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 Character shapes as models (recognition 

units) 

 Each character shape represented by a 

single state HMM whose emission model is 

the trained MDLSTM system 

 Use of 3-gram language model with 60K 

vocabulary size 

 Stepwise classifier combination  

Moysset et al. 2014 

(Moysset et al. 

2014) 

 Hybrid HMM/MDLSTM (RNNs) system 

 Raw image pixels as features 

 4 LSTM layers applied in parallel, one for 

each scanning direction 

 Initialization on clearer image samples 

 Augmented training data used by 

applying several transformation to the 

original text images 

 Character shapes as models (recognition 

units) 

 Each character shape represented by a 

single state HMM whose emission model is 

the trained MDLSTM system 

 Hybrid word/PAW language model 

The Maurdor database: 

 9729 text zones for 

training, 1835 text 

zones for 

development, and 

1582 text zones for 

evaluation 

 WER of 29.5 using 3-

gram hybrid 

word/PAW language 

model 

Text images were at zone level 

with many images having more 

than one text line. Thus, 

segmentation of text zone into 

lines was part of the recognition 

task 

BenZeghiba et al. 

2015 (BenZeghiba, 

Louradour, and 

Kermorvant 2015) 

 Hybrid HMMs/RNNs system 

 An RNNs system (MDLSTM) estimated 

the emission probabilities for HMMs 

 Initial seed model trained on OpenHaRT 

2013 dataset 

 Hybrid word/PAW language model where 

most frequent words are included in the 

recognition lexicon and the remaining 

1. The Maurdor 

database: 

 13,496 line images for 

training and 1125 line 

images for 

development, and 

2093 line images for 

evaluation 

1. The Maurdor 

database: 

 WER of 33.5 using 4-

gram PAW language 

model trained on the 

training and the 

development set 

Synthesized training data, after 

applying several transformation 

to the original training images, 

was added to train the system 



70       Related Work 

 

 

words are broken into PAWs. Words are 

reconstructed after PAW recognition 

 

2. The KHATT 

database: 

 4428 line images for 

training, 876 line 

images for 

development, and 959 

line images for 

evaluation 

 WER of 33.2 using 3-

gram hybrid 

word/PAW language 

model trained on 

training and 

development set 

 

2. KHATT database 

 WER of 30.9 using 4-

gram PAW language 

model trained on the 

training and the 

development set 

 WER of 31.3 using 3-

gram hybrid 

word/PAW language 

model trained on 

training and 

development set 

Stahlberg and 

Vogel 2015 

(Stahlberg and 

Vogel 2015) 

 HMMs system with Deep neural network 

training 

 Baseline and slant correction, image 

height and line thickness normalization 

 Pixel values as features after PCA based 

reduction and segment based features 

 Deep neural networks based discriminative 

training after forced alignment using 

HMMs  

1. The KHATT 

database: 

 9462 line images for 

training, 1899 line 

images for 

development, and 

1996 line images for 

evaluation 

 WER ranges between 

30.5 to 31.6 for 

different configurations 

of features and 

training strategies 

It seems for the KHATT 

database, the lines which 

included the fixed repetitive text 

has also been included for 

training and evaluation 
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 Contextual triphones with decision tree 

based clustering 

 Writer adaptive training 

 Trigram language model estimated from 

KHATT training corpus 

 



 

 

 



 

73 

 

5 Modeling Options for Arabic Text 

Recognition 

 

e have seen in Chapter 3 a brief overview of the Arabic script and its 

peculiarities and some of the resulting challenges related to Arabic text 

recognition. Moreover, we have also seen in Chapter 4 how the researchers 

addressed some of these issues when dealing with offline handwritten Arabic text 

recognition. Based on these discussions we concluded that, although a lot of work 

and effort have been put in the area of handwritten Arabic text recognition, there 

are aspects which are not well explored. One of these aspects is the modeling choice 

for Arabic text recognition. Investigating the modeling options for Arabic text 

recognition is one of the main objectives of the present thesis.  

In this chapter, we will present the different modeling options we have 

investigated during the course of this work. First, in Section 5.1, we present some 

discussions which motivated us for these investigations. In the next three sections, 

we will present the three different, but related, approaches to modeling which we 

have investigated. We will discuss the modeling approaches and the methods and 

techniques involved to use these modeling approaches for the text recognition tasks. 

Finally, in the last section, we present some other aspects which we have 

investigated for training an HMM-based recognizer which are related to multi 

stream HMMs and modeling contexts using contextual HMMs. The experiments 

and the results related to these modeling and training options will be presented in 

Chapter 7. 

5.1. Motivation for this work 

As presented in Chapter 4, some researchers, mostly in the initial days of Arabic 

text recognition, selected characters as modeling units. Due to the fact that Arabic 

characters have many position dependent shapes, using characters as models is not 

the best choice. Some other researchers used Arabic words or PAWs as the 

modeling units. This approach has its own set of problems as was discussed in 

Section 4.2. There are some other approaches to modeling but it seems that either 

W 
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they were not explored thoroughly enough or they were not very successful due to 

reasons like poor recognition performance, or the need to explicitly segment the 

text into these recognition units.  

The most successful and commonly used approach is to model Arabic character 

shapes as separate models. Although this approach works well in general, there are 

issues related to this modeling approach. The number of modeling units increases 

four-fold from 28 (i.e., the number of Arabic characters) to around 100 excluding 

the digits and other special characters. This results in a bulky recognizer with a 

large model set. A large number of modeling units also means the need for large 

amounts of training data so that each model gets trained adequately. Lack of 

enough training data is a common issue in text recognition research.  

Moreover, as with other languages, the frequency of different characters 

appearing in any text corpus is not uniformly distributed. In fact, based on text 

analysis of an Arabic corpus containing more than five million characters (Intellaren 

2016), it was found that not only the characters are unevenly distributed but also 

the distribution is highly skewed. The two most common characters, i.e., alif (ا) 

and  (ل), constituted almost a quarter of all the texts. On the other hand, the 

five least occurring characters (out of the total of 28 characters) constitute only 

around 2% of the entire text. The frequency of character ʼ(ظ) was almost 70 

times lower than the frequency of character alif (ا). Now, if we consider the 

distribution of character shapes the preferred choice of modeling unit instead of 

characters, the distribution will be even more skewed. Some character shapes from 

the low frequency characters will have very few occurrences and, thus, the issue of 

adequately training them is present. These considerations led us to investigate some 

alternative representations for the modeling units which can possibly alleviate the 

above mentioned concerns. In the following sections, we will present the alternative 

modeling options that we have explored. 

5.2. Sub-character modeling for Arabic text recognition  

Most of the Arabic characters are wider when compared to the Roman characters. 

Moreover, some character shapes have high visual similarity with other character 

shapes of the same character as well as with the character shapes of other 

characters. Figure 5.1 illustrates these observations by showing four different 

Arabic characters and their position dependent shapes. From the figure we can 

clearly see a high degree of similarity between different character shapes. In fact, 

many of the character shapes differ from each other only due to the presence of 
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horizontal connecting strokes (i.e., Kashidas). But, it should be noted that it is 

important to model even the small differences between the character shapes for 

optimal recognition performance as was stated/demonstrated in (Schambach, 

Rottland, and Alary 2008). 

Characters Isolated Beginning Middle Ending 

 ـس ـسـ سـ س س
 ـش ـشـ شـ ش ش
 ـص ـصـ صـ ص ص
 ـض ـضـ ضـ ض ض

Figure 5.1: Sample character shapes in Arabic illustrating common patterns. (Figure adapted from 

(Ahmad et al. 2013)) 

In order to exploit the similarity in patterns between different characters and 

their position dependent shapes, we propose what we term as sub-character 

modeling. The idea of sub-characters (and sub-strokes) modeling is present in the 

literature mainly for the task of online text recognition of East-Asian scripts like 

Kanji. Nakai et al. (Nakai et al. 2001) presented sub-stroke HMM modeling for 

online Kanji handwritten text recognition. Kanji has more than 6000 characters 

and using a separate HMM for each character leads to a huge system with a large 

model set. Thus, the idea was to represent these characters using a set of 25 

elementary sub-strokes. A hierarchical dictionary was constructed which included 

a mapping of sub-strokes to strokes which are, in-turn, mapped to Kanji sub-

characters which were, finally, mapped to Kanji characters. The main motivations 

stated behind sub-stroke modeling were: to have a compact recognizer consuming 

less memory, faster recognition as a result of efficient network search involving sub-

strokes, and the need for less training data. As stroke orders can vary while writing 

a character, multiple variations can be added to the dictionary. Automatic 

generation of multiple definitions for dictionary entry in terms of stroke order was 

presented by the authors in (Nakai, Shimodaira, and Sagayama 2003). Tokuno et 

al. (Tokuno et al. 2002) presented contextual sub-stroke modeling as an extension 

to the work presented in (Nakai et al. 2001). It was stated that the presented 25 
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elementary strokes which can construct the Kanji characters are influenced by their 

neighboring strokes and, thus, for recognizing real and challenging handwriting, it 

was necessary that this context is modelled. Bottom up data driven clustering was 

not feasible to merge the similar states as the amount of training data was not 

sufficient to robustly train all the contextual forms before tying the states. Thus a 

top-down approach of successive state splitting was used instead. Hu et al. (Hu, 

Gek Lim, and Brown 2000) presented sub-character HMMs for online handwriting 

recognition of isolated digits, characters, and words. The two main reasons stated 

for using sub-character/stroke models were that it results in a reduced model set 

and that it will need fewer training samples. Characters are defined in terms of 

strokes. Each character has multiple definitions due to the possibility of different 

stroke orders. 

The notion of sub-character (or sub-stroke) modeling in online domain is 

somewhat different than what we propose for offline text recognition. In online 

domain, the timing information for strokes is available which can be utilized 

relatively easily to logically define a character (or word) into strokes. Whereas, in 

offline text recognition such timing information is not available and the division of 

characters or words into smaller units is purely visual and should satisfy the 

sequencing constraint from the sliding windows . The main idea of our 

sub-character modeling is to have character segments instead of characters shapes 

as HMMs. Splitting the character shapes will allow sharing of parameters. The 

Arabic characters and their position dependent shapes can, then, be constructed 

from these fewer number of sub-characters which results in a compact recognizer 

with reduced model set. To illustrate this idea, in Figure 5.2, we present the same 

four characters as was shown in Figure 5.1 along with the sub-character units that 

can be used to reconstruct all the position dependent character shapes for these 

four characters. By using character shapes as modeling units, one ends up having 

16 different HMMs to model these four characters. Using the presented sub-

character patterns, these 16 different character shapes can be reconstructed using 

only five different sub-character patterns in addition to a white-space model and a 

connector model. These two models are shared by sub-character representations of 

many other characters. It is important to note that the technique proposed here 

does not require explicit segmentation of characters into these sub-character units 

as is the case with other segmentation based approaches like the ones discussed in 

(Bose and Kuo 1994; Lorigo and Govindaraju 2006). 
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(a) 

 

 (b) 

Figure 5.2: The 16 character shapes in (a) can be represented using only five sub-character shapes 

as illustrated in (b). (Figure adapted from (Ahmad et al. 2013)) 

Figure 5.3 illustrates the benefit of sub-character modeling using some word 

examples. In Figure 5.3 (a), a number of Arabic words are presented. These words 

can be constructed using 28 character shapes as listed in Figure 5.3 (b). The same 

words can be constructed using only 15 sub-character shapes, including the 

connector stroke, as listed in Figure 5.3 (c). 

Many of these similar patters across different characters can be captured in the 

horizontal writing direction. This is important because in offline handwritten text 

recognition, we do not have the sequence information regarding the writing stroke 

which is, otherwise, available in online handwriting recognition tasks. Thus, the 

patterns are normally converted into features using the sliding windows which run 

across a text image in the writing direction. The HMM models for sub-characters 

can learn the patterns automatically during the embedded training as long as they 

have been defined adequately in the dictionary. Once all the different sub-character 

patterns have been identified for the Arabic characters, creating the complete HMM 

structure is a straightforward process. Character models can be constructed by 
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concatenating the sub-character models. For lexicon based recognition, the 

structure can be extended hierarchically. Figure 5.4 illustrates an example HMM 

structure for building the different position dependent variations of the character 

Seen (س). 

 

 

(a) 

 

(b) 

 

(c) 

Figure 5.3: Sample words in (a) can be constructed using 28 character shapes listed in (b) or using 

the 15 sub-character shapes listed in (c). 

 

Figure 5.4: An illustration of constructing character models using sub-character HMMs. (Figure 

adapted from (Ahmad et al. 2013)) 
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5.2.1. e- models 

As we have briefly presented above, apart from the different sub-character patterns 

for the Arabic script, we have also defined two special models. One is for the 

Kashida stroke connecting two characters which we term as the connector model 

and the other is for the background space which we term as the white-space model 

or simply the space model. Many character shapes differ from other character 

shapes of the same character by the absence (or presence) of the Kashida stroke. 

This connecting stroke plays an important role in Arabic handwriting due to the 

cursive nature of the script. The Kashida stroke is a highly variable stroke which, 

in some cases, may be just a small horizontal glyph; whereas, in other instances it 

may be a long stretching stroke and it may even be wider than the average 

character widths. Additionally, in some case, the Kashida stroke might almost be 

missing between two connecting characters when the text is written compactly. 

Several factors effect this variability in pairs 

of connecting characters. Figure 5.5 illustrates the variability of Kashida stroke 

with the help of some examples. 

Observations related to 

Kashida stroke 
Text image samples 

Long Kashida strokes 

 

Same words written in 

different Kashida styles 

 

 

Figure 5.5: Some examples to illustrate the variability in the Kashida stroke. (Handwritten text 

images source: IFN/ENIT (Pechwitz et al. 2002)). 
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Dealing with background white-spaces is also not a trivial issue in Arabic 

handwriting. White spaces in Arabic texts do not appear only between words but 

also between PAWs. Moreover, white spaces between two words or PAWs are not 

very uniform in Arabic handwriting. In principle, any character shape having the 

ending or the alone position should be followed by white-spaces in the text. To 

address white-spaces in Arabic text recognition, Dreuw et al. (Dreuw, Jonas, and 

Ney 2008) presented white-space modeling by adding variants to the lexicon 

dictionary which contain explicit white-space models between words and between 

PAWs. Using writing variants containing explicit white-space models as presented 

in (Dreuw, Jonas, and Ney 2008) does improve the recognition performance as was 

demonstrated in the paper but, it is not the best solution to the problem. A hard 

decision needs to be made during recognition between selecting a definition that 

contains white-space models and a definition that does not contain white-space 

models. Whereas, in handwritten Arabic text, it is easy to find situations where 

white-spaces are present between some PAWs but are absent between other PAWs 

in the same text line as is illustrated in Figure 5.6 (a). Moreover, the width of 

white-space between two PAWs may be similar, or even larger, to the width of 

white-space between two words as is illustrated in Figure 5.6 (b). Last but not the 

least, in some situations it may be difficult to find white-spaces between two words 

but there might still exist white-space between two PAWs (in the same text line) 

as is illustrated in Figure 5.6 (c). Based on these observations we concluded that a 

more robust approach to white-space modeling is needed when dealing with 

handwritten Arabic text recognition. 
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(a) 

 

(b) 

 

(c) 

Figure 5.6: Illustrations of problems associated with white-spaces in handwritten Arabic texts. 

(Figure adapted from (Ahmad, Fink, and Mahmoud 2014)). 

We propose a single state white-space and connector models for Arabic text 

recognition. Additionally, we propose a special structure for these two models such 

that the models can be used during recognition in some instances and can be 

skipped in other instances. White-space model can be skipped when white spaces 

are not present between two words or PAWs whereas the connector model can be 

skipped when the Kashida stroke is either two small or is entirely missing between 

two characters. The idea of a skipping model was adapted from the concept of tee 

models for short pauses in speech recognition (Young et al. 2002 pages 109 110; 

Shih, Narayanan, and Kuo 2003). We allow transition from non-emitting entry 

states to the non-emitting exit states for the two models thereby allowing a 

LEGEND 

Space between 

words 
 

Space between 

PAWs 
 

Overlapping 

PAWs 

 

Overlapping 

words 
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possibility to skip the emitting state in some situations. The models are trained 

using the training data so that it learns the skip probability along with the other 

model parameters. This way, no hard decisions need to be made to include the 

space model (and the connector) between two PAWs (between two connected 

characters in the case of connector model) during the recognition stage. The model 

will be included, or skipped, based on the model parameters and the observation 

sequences. Thus, the skip decisions are embedded as a part of the model. In order 

to guide the training of the space model, we added a special space model both at 

the beginning and the end of each text line. This model has a rigid structure such 

that it uses only the first and the last observation sequence from the text line image 

during the training stage. The beginning and end of the text line image was padded 

with background patches (i.e., white-space). The state of this special space model 

was tied with the state of the space model for robust training of the space model. 

Figure 5.7 illustrates our space modeling idea. As we will see in Section 5.5.2, the 

use of connector model also seems to help in contextual modeling as the connector 

captures the connecting context between two characters. Key steps in sub-character 

modeling based Arabic text recognition are presented in Figure 5.8. 

 

Figure 5.7: Illustration of the proposed white-space model. (Figure adapted from (Ahmad, Fink, and 

Mahmoud 2014)). 
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Data Preparation: 

1. Training annotation: The character-shape-based annotations for the training set images are 

converted to sub-character representation by utilizing the character shape to sub-character 

mapping. 

2. Dictionary: Words (or characters for character recognition tasks) are defined as a sequence of 

sub-characters in the dictionary. 

Training: 

1. The connector and the white-space models are defined as single state models. 

2. All the sub-character models are initialized using the initialization procedures as presented in 

Section 2.5.  

3. Transitions are added from non-emitting entry states to the non-emitting exit states of the 

connector and the white-space models. 

4. All the models are iteratively trained using the Baum-Welch training algorithm. 

Decoding: 

1. Standard decoding using the Viterbi algorithm utilizing the modified dictionary. 

Figure 5.8: Key steps in the presented sub-character modeling based Arabic text recognition. 

 

5.3. Modeling core shapes and diacritics separately 

In this section, we will present the second modeling approach we investigated and 

the text recognition framework incorporating this new modeling option. This 

modeling options comes from the observation that many characters in the Arabic 

script share the same core shapes (the Rasm) but differ only based on the numbers 

and positions of dots and other diacritics. Thus, if we can separate the core shapes 

from the diacritics, we can end up having a significantly reduced model set. Using 

the same word examples as the ones presented in Figure 5.3, we can notice that 

the words can be constructed using 19 core shapes (and four diacritics: one-dot 

above, three-dots above, one-dot below, and three-dots below) as illustrated in 

Figure 5.9. 

To have a comprehensive look, in Figure 5.10, we present the different 

character-shape groups that share the same core shapes in the Arabic script. On 

counting the number of unique core shapes, we find that the 121 different character 

shapes in the Arabic script, as shown in Figure 5.10, have a total of 58 unique core 

shapes. Apart from the core shapes, there are a total of eight different diacritics 
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including the Shadda and the Hamza diacritics. Thus, if we can separate the 

diacritics from the core shapes, we can end up with a much smaller number of 

classes to model and to train. 

Based on these observations, we investigated a multi-stage text recognition 

approach where a core-shape recognition system is trained separately from a 

diacritics recognition system and the final text recognition hypothesis is made by 

combining the results from the two systems. The details of the multi-stage 

recognition framework is presented in the next sub-section. 

5.3.1. Multi-stage recognition of handwritten Arabic text 

The main idea is to model the core shapes separately from the diacritics, and later 

combine the information from both sources to make the final text recognition 

hypothesis. Thus, we will have two separate HMM systems: one for the core shapes 

and the other for the diacritics. These two systems will be trained separately and 

independently from each other. Recognition results from the two systems are 

integrated during decoding based on the framework presented in Section 5.3.1.2. 

  

 

 

(a) 

 

(b) 

Figure 5.9: Sample words in (a) can be constructed using the 19 core shapes (and four different 

diacritics) listed in (b). 
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Figure 5.10: Character shape to core shape mapping for Arabic script. (Figure adapted from 

(Ahmad and Fink 2015a)). 

In order to model and train the core shapes separately from the diacritics, we 

need to separate them from the text images. Thus, a text image will be split into 

two images: one containing the core shapes and the other containing the diacritics. 

We will present our core shape and diacritics separation algorithm shortly. We also 

need to modify the transcriptions for the text images of the training set. Two 

separate transcriptions need to be generated, one for the core shapes and the other 
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for the diacritics. Modifying the transcriptions is straightforward based on the 

script knowledge and the mapping as illustrated in Figure 5.10. 

Once we have the text images containing the core shapes and the accompanying 

transcriptions, the core-shape HMMs can then be trained using the standard 

training procedures. Similarly, training a diacritics recognition system is 

straightforward too; although, it should be noted that appropriated features need 

to be computed from the diacritic images which may not, necessarily, be the same 

set of features which are computed from the core shape images. We will discuss 

feature extraction in more details in Chapter 7 when we present our experiments. 

5.3.1.1 Core Shapes and diacritics separation algorithm 

Before going into the details of the algorithm, we would like to point out that, in 

principle, separating the core shapes from the diacritics is not a very difficult task 

for the Arabic script. The reason behind this is the fact that the average component 

sizes of the different diacritics are too small as compared to the component sizes of 

the core shapes. Thus, doing some basic component analysis should work quite 

robustly for the Arabic script. That being said, it is also true that the task is not 

that trivial once it comes to separation of core shapes and diacritics from 

handwritten text images. The most common problem faced in handwritten text 

scenario is the fact that the diacritics are sometimes sticking to the core-shape 

glyph as a single component (this issue was discussed in Section 3.5 and an example 

of this situation was illustrated in Figure 3.12). Also the issues of broken or 

incomplete strokes and the presence of alifs (ا) in the alone form add to the problem. 

Thus, a simple component analysis is not sufficient and the use of some additional 

heuristics becomes inevitable. 

Our algorithm for separating core shapes and diacritics, along with two 

illustrative examples, is presented in Figure 5.11. First, we compute the average 

size of all the components in the input text image. Next, all the components whose 

sizes are less than the average component size are removed from the original image 

and are placed in a new empty image. This new image now contains all the possible 

diacritics in addition to a few core shapes. This image, now, undergoes a second 

analysis stage to filter out the core shapes. Vertical strokes, representing the 

character alif (ا) or broken stroke segments from characters like ʼ(ط), are among 

the most common core shapes that get added to the list of probable diacritics and, 

accordingly, need to be removed. These strokes can be identified by their height-

to-width ratio (if the height of the component is twice, or more, its width) and by 
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its size (the component is not too small like the dots). Another set of strokes that 

belong to the core shapes, but can get added to the list of possible-diacritics, are 

the characters like  (د), or the broken strokes around the baseline. These strokes 

can be identified by their sizes, which are significantly bigger than the diacritics, 

and based on the fact that these strokes are not too far from the core text region. 

The remaining components in the new image are expected to be the diacritics and 

are saved as such. The core-shape image is obtained from the original image by 

removing the components identified as diacritics. 

5.3.1.2 Multi-stage text recognition framework using the core-shape system and the 

diacritics system 

In this section, we will present our multi-stage text recognition system based on 

the idea of modeling and training the core shapes and the diacritics separately. In 

the first stage, an input image is processed to separate the core shapes from the 

diacritics which results in two separate images: one for the core shape and the other 

for the diacritics. Next, features from the core-shape image is fed to the core-shape 

HMMs and the recognition hypothesis is generated. Now, depending on the text 

recognition task, i.e., character recognition vs. word recognition, a slightly different 

approach is taken. First we will detail the character recognition task (i.e., 

hypothesizing characters for text line images using the system trained on text line 

images) and, later, we will discuss the word recognition task. 

Algorithm Illustration Example 1 Illustration Example 2 
Input: Original image (img) 

Output: An image having core shapes 

(imgCore), and an image having diacritics 

(imgDia) 

1. img : The original image 

2. imgDia : Includes all the components 

from the original image whose size is less 

than the average size of components in 

the original image 

3. Remove from imgDia a , if: 

 T thresh1, AND 

 The length is at least twice the width 

(For alifs and characters having 

vertical long stroke)  

4. Remove from imgDia a , if:  

 T thresh2, AND  

 It is within the core text region, i.e., it 

is not too far away from the baseline 

(For fragmented core shapes or small 

isolated characters like )  

5. imgCore : img  imgDia 
  

Figure 5.11: Core shapes and diacritics separation algorithm. (Figure adapted from (Ahmad and 

Fink 2015a)) 
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Character recognition: In case of character recognition, the core-shape system 

generates hypothesis for the core shapes. Some core shapes, representing characters 

that do not have diacritics over them (like  and ), will have exactly one 

character represented by them. Other core shapes will be representing more than 

one character. Thus, for each core shape in the recognition hypothesis, a lookup is 

used to generate all the possible character alternatives represented by that core 

shape. This information is used to build the character recognition network for the 

diacritics system. The recognition network along with the features from the 

diacritics image is used by the diacritics system to generate the final character 

hypothesis. Thus, the diacritics system assists the primary core-shape system. Its 

search space is limited by the output of the core-shape system. 

As an extension to the above described method, it is also possible to generate 

N-best list when performing core-shape recognition. The justification for doing this 

is to explore more alternatives instead of only a single hypothesis for a core shape. 

Many of these alternatives can be, relatively, easily ruled out by the diacritics 

system. Thus, there might be some benefit in expanding the search space for the 

diacritics system. The multi-stage character recognition framework is illustrated in 

Figure 5.12. 

Word recognition: In the case of word recognition, we construct a dictionary 

that defines every word as a sequence of only the core shapes. This dictionary can 

easily be built by utilizing the character to core-shape mapping. Feature from the 

core-shape image is fed to the core-shape system to generate word hypothesis by 

utilizing the dictionary. Again, an N-best list of words can be generated instead of 

hypothesizing only a single word. The list of hypothesized words is then fed to the 

diacritics system to generate recognition scores for all the words. Scores from the 

core-shape system and the diacritics system are added for each word respectively. 

Finally, the word having the best score is output as the final recognition hypothesis. 

The need to add scores from both the system in the case of word recognition is 

important because there are words in Arabic which consists of no diacritics (like 

 and thus the score from the diacritics system alone will not be helpful in (سلام

making a final decision. Moreover, there can be two different words (like الحب and 

-having exactly the same diacritics distribution. Thus, the scores from the core (اللب

shape system as well as the diacritics system are combined for outputting the final 

search space is limited by the output of the core-shape system. Figure 5.13 



 

5.3 Modeling core shapes and diacritics separately       89 

 

 

illustrates our multi-stage word recognition framework with the help of an example. 

Key steps in the multi-stage Arabic text recognition are presented in Figure 5.14. 

 

Figure 5.12: The multi-stage character recognition framework. (Handwritten text image source: 

IFN/ENIT (Pechwitz et al. 2002)). 
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Figure 5.13: An illustration of the multi-stage word recognition system. (Figure adapted from 

(Ahmad and Fink 2015a)) 
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Data Preparation: 
1. Training annotation:  

 The character or character shape based annotations for the training set are converted to 

core shape representation, utilizing the character shape to core shape mapping.  

 Another set of annotations are created for diacritics by utilizing the character shape to 

diacritics mapping. Characters having no diacritics are replaced by spaces. 

2. Dictionary: Two separate dictionaries are created.  

 One of the dictionary contains word (or character for character recognition tasks) 

definitions in terms of core shapes. 

 The other dictionary contains word (or character for character recognition tasks) definitions 

in terms of diacritics. 

Training: 
(a) Core-Shape system 

1. All the core-shape models are initialized using the initialization procedures as presented in 

Section 2.5.  

2. The models are iteratively trained using the Baum-Welch training algorithm and utilizing the 

core-shape annotations. 

(b) Diacritics system 

1. The white-space model is defined as a single-state model. 

2. All the diacritics models are initialized using the initialization procedures as presented in 

Section 2.5. 

3. The models are iteratively trained using the embedded Baum-Welch training algorithm and 

utilizing the diacritics annotations. 

Decoding: 
(a) Character recognition 

1. An input image is separated into a core-shape image and a diacritics image. 

2. The core-shape system utilizes the features from the core-shape image to hypothesize a 

sequence of core shapes. It uses the character to core shape dictionary for decoding. (Optional) 

An N-best list of core-shape sequences is generated. 

3. A character recognition network is constructed based on the hypothesized core-shape sequence. 

4. The diacritics system utilizes the features from the diacritics image along with the constructed 

character network from step 3 to generate the final recognition hypothesis. It uses the 

character to diacritics dictionary for decoding. 

(b) Word recognition 

1. An input image is separated into a core-shape image and a diacritics image. 

2. The core-shape system utilizes the features from the core-shape image to generate an N-best 

list of words. It uses the word-to-core-shape dictionary for decoding.  

3. A word recognition network is constructed to include only the N-best hypothesized words. 

4. The diacritics system utilizes the features from the diacritics image along with the constructed 

word network from step 3 to score the N-best words. It uses the words-to-diacritics dictionary 

for scoring. 

5. Scores from the systems are added for respective words and the word having the best score is 

output as the final hypothesized word. 

Figure 5.14: Key steps in the multi-stage Arabic text recognition consisting of the core-shapes 

system and the diacritics system. 
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5.4. Integrating sub-characters with core-and-diacritics system 

In this section, we will present our third approach to modeling Arabic characters. 

It is a natural extension to the first two approaches, namely the sub-character 

approach and the core-shape and diacritics approach. The idea here was to combine 

both the approaches which can lead to even further reduction in the number of 

basic HMMs needed to model all the Arabic characters and their position-

dependent shapes. We can remove the dots and other diacritics from the characters 

in the first step and, then, share the similar patterns in the core-shapes using the 

sub-character approach. If we take a look at the four Arabic characters and their 

16 position-dependent shapes that were presented in Figure 5.1, we can see that, 

by removing the diacritics and using the sub-character approach, we can 

reconstruct the 16 position-dependent shapes using only five patterns (including 

the Kashida connector and the white-space model) in addition to two different 

diacritics (one-dot above and three-dots above). Using the word examples from 

Figure 5.3, we can notice that the words can be constructed using only 10 unique 

patterns (and four diacritics: one-dot above, three-dots above, one-dot below, and 

three-dots below) as illustrated in Figure 5.15. 

5.4.1. Multi-stage recognition framework 

A multi-stage text recognition framework using this modeling approach is quite 

similar to the one presented in Section 5.3.1. For setting up the training procedure, 

the training transcriptions are modified to represent the core shapes in terms of the 

sub-core shapes including the connector stroke. The sub-core-shape models are 

trained using the modified transcriptions along with the features from the core-

shape images. There is no change in the training procedure for the diacritics system.  

The recognition setup is also similar to the multi-stage approach, discussed 

before, except some small modifications which will be discussed here. For character 

recognition task, the stage which involves recognition of the core shapes needs a 

core shapes to sub-core shapes dictionary. Similarly, for word recognition tasks, the 

-core shapes are needed. The rest of the decoding 

procedure is exactly the same. Key steps in the multi-stage Arabic text recognition 

involving the sub-core shapes and diacritics are presented in Figure 5.16. 

 



 

5.4 Integrating sub-characters with core-and-diacritics system       93 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 5.15: Sample words in (a) can be constructed using 28 character shapes listed in (b), or using 

15 sub-character shapes as listed in (c), or using 19 core shapes (and four different diacritics) as 

listed in (d), or using 10 sub-core shapes (and four different diacritics) as listed in (e). 

Data Preparation: 

1. Training annotation:  

 The character shape based annotations for the training set are converted to sub-core shape 

representation, utilizing the character shape to sub-core shape mapping.  

 Another set of annotations are created for diacritics by utilizing the character shape to 

diacritics mapping. Characters having no diacritics are replaced by spaces. 

2. Dictionary: Two separate dictionaries are created.  

 One of the dictionary contains word (or character for character recognition tasks) 

definitions in terms of sub-core shapes.  
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 The other dictionary contains word (or character for character recognition tasks) definitions 

in terms of diacritics. 

Training: 

(a) Core-Shape system 

1. The connector and white-space models are defined as single state models. 

2. All the sub-core shape models are initialized using the initialization procedures as presented 

in Section 2.5.  

3. Transitions are added from non-emitting entry state to the non-emitting exit state for the 

connector and white-space models. 

4. The models are iteratively trained using the embedded Baum-Welch training algorithm and 

utilizing the core-shape annotations. 

(b) Diacritics system 

1. The white-space model is defined as a single-state model. 

2. All the diacritics models are initialized using the initialization procedures as presented in 

Section 2.5. 

3. The models are iteratively trained using the embedded Baum-Welch training algorithm and 

utilizing the diacritics annotations.   

Decoding: 

(a) Character recognition 

1. An input image is separated into a core-shape image and a diacritics image. 

2. The sub-core shape system utilizes the features from the core-shape image to hypothesize a 

sequence of core shapes. It uses the character to sub-core shape dictionary for decoding. 

(Optional) An N-best list of core-shape sequences is generated. 

3. A character recognition network is constructed based on the hypothesized core-shape sequence. 

4. The diacritics system utilizes the features from the diacritics image along with the constructed 

character network from step 3 to generate the final recognition hypothesis. It uses the 

character-to-diacritics dictionary for decoding. 

(b) Word recognition 

1. An input image is separated into a core-shape image and a diacritics image. 

2. The sub-core shape system utilizes the features from the core-shape image to generate an N-

best list of words. It uses the word to sub-core shape dictionary for decoding.  

3. A word recognition network is constructed to include only the N-best hypothesized words. 

4. The diacritics system utilizes the features from the diacritics image along with the constructed 

word network from step 3 to score the N-best words. It uses the words to diacritics dictionary 

for scoring. 

5. Scores from the systems are added for respective words and the word having the best score is 

output as the final hypothesized word. 

Figure 5.16: Key steps in the multi-stage Arabic text recognition consisting of the sub-core shapes 

system and the diacritics system. 
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5.5. Other improvements related to model training 

In this section, we will present some other strategies we investigated for 

improvement in model training. We investigated two major areas: one is related to 

multi-stream HMMs, while the other is related to contextual HMMs. We will 

present these two approaches in this section.  

5.5.1. Multi-stream HMMs 

Multi-stream HMMs (please refer to Section 2.7.3 for an introduction on it) has 

been used successfully in the domain of speech recognition. They are mainly popular 

in audio-visual speech recognition domain, where features from each source form a 

separate stream (cf., e.g., (Luettin, Potamianos, and Neti 2001; Manabe and Zhang 

2004)). Kessentini et al. (Kessentini, Paquet, and Ben Hamadou 2010) investigated 

multi-stream HMMs for handwritten Arabic text recognition. Different 

combinations of four different features, computed from the text image, were trained 

as two-stream HMMs. The recognition results of two-stream HMM systems were 

better than the recognition results obtained when the respective features were fused 

or when results were combined from separate HMMs trained on the individual 

features. 

In our case, we tried a slightly different approach to multi-stream HMMs. 

Instead of using completely different features as individual streams, we computed 

the horizontal derivative features for every feature frame and use the derivative 

features as a separate stream. Based on the experimental results (presented in 

Chapter 7), we observe that using multi-stream HMMs, as presented here, does 

improve the recognition performance. One possible justification for this 

improvement can be attributed to the fact that, as the features are split into two 

different streams, the dimension of each stream is essentially half the original 

feature dimension. This reduction in dimension can help in more robust output 

modeling at the mixtures level. Modeling low-dimension features is more robust 

than modeling high-dimension features due to the, relatively, less complex sub-

feature space. Moreover, splitting features into multiple streams also enables the 

use of stream weights; thereby, allowing us to assign different importance to each 

feature. The issue of selecting optimal weights for the streams was addressed by 

experimenting with different weights and selecting the weight combinations that 

gives the best recognition performances on the development set. Using different 

stream weights for the two streams showed improvement in the text recognition 
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performance as presented in Chapter 7. Figure 5.17 summarizes the multi-stream 

training procedure. 

Multi-stream training: 

1. The models are initialized and trained using the standards procedures in conjunction with the 

specific steps related to the modeling technique followed. 

2. The mixtures are split into two streams such that the features computed from the image forms 

one stream and the derivative features form the second stream. 

3. The stream weights are set for each stream by selecting the weight combination that performs 

the best in terms of recognition rate on the development set. 

Figure 5.17: Steps for multi-stream HMMs training. 

5.5.2. Contextual HMMs 

In this section we will present our investigations related to contextual modeling for 

handwritten Arabic text recognition. Readers can refer to Section 2.7.1 for some 

general introduction on contextual modeling using HMMs. As indicated before, 

contextual modeling is an important aspect of any HMM-based speech recognition 

system; however, its use in the domain of text recognition is not that universal. In 

this section, we will, first, discuss the justification and the need for contextual 

modeling for handwritten Arabic text recognition. Next, we will discuss the issues 

related to contextual modeling for Arabic text recognition. This will be followed by 

studying the effect of sub-character modeling on contextual modeling and the role 

and benefit of the connector model. Finally, we will discuss class-based contextual 

modeling for Arabic text recognition.  

5.5.2.1 The need of contextual modeling for handwritten Arabic text recognition 

Contextual variations in Arabic text can be visualized and understood at multiple 

levels. As each character in Arabic can take different shapes based on its position, 

this is the first contextual level that need to be modelled. Figure 5.18 shows 

different Arabic words where the encircled glyphs in every row represent the same 

character. It can be clearly seen from the figure that the characters have significant 

variations due to their position in a word (please refer to Section 3.2 for more 

details). The most common way to accommodate these contextual variations 

between different character shapes is by treating each character shape as a separate 

model (please refer to Section 4.2). An alternative approach is to model a character, 

instead of character shape, as an HMM and use contextual HMM modeling to 

capture the shape-based variations as was presented by Prasad et al. for printed 

Arabic text recognition (Prasad et al. 2008). 
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Figure 5.18: 

encircled by a color in each row represent the same Arabic character. (Handwritten text images 

source: IFN/ENIT (Pechwitz et al. 2002)). 

The second level of contextual variations is at the character-shape level. Even 

the character shapes show visual variations due to a number of reasons. As 

characters in Arabic script are connected to their neighboring characters in a word 

(a more correct term will be PAW instead of word as some characters do not 

connect to other characters in front of them), some stroke variations do occur when 

connecting a character shape to the next character shape in a word. Some variations 

are simply due to the different handwriting styles, but some variations seem to be 

. A prominent example of this 

phenomenon is the occurrence of character pairs that are treated as special ligatures 

like -alif (لا). A solution to address this is by modeling these ligatures as separate 

models. But, the problem is that, some of these character pairs do not always 

appear in ligature form (please refer to Figure 3.9 and Section 3.5 for more details) 

and, thus, it is not always possible to model these character pairs as a special model. 

Another reason for variations at the character-shape level is a result of sliding 

window technique for feature extractions. Some characters partially overlap with 

other characters even though they might not, necessarily, be connected. These 

overlap get captured within the sliding window passing over a character and, as a 

result, effects the features computed for the character. Figure 5.19 illustrates 

contextual variation at character-shape level due to neighboring characters. Each 

row marks a character shape in a specific color to illustrate the variations in visual 

appearances due to its neighboring characters. In order to account for these 

variations, the most common approach is to model each character shape as a 

separate model and do contextual HMM modeling at the character-shape level, i.e., 

a contextual HMM represents a character shape in the context of its neighboring 

character shapes. 
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Figure 5.19: Figure illustrating the effect of neighboring characters on character shapes. Each row 

shows instances of a specific character shape (enclosed within a colored-edge rectangle) and the 

variations in its visual appearance due to the neighboring characters. (Handwritten text images 

source: IFN/ENIT (Pechwitz et al. 2002)). 

5.5.2.2 The issues associated with contextual modeling 

Because of the fact that variations at character-shape level, due to the neighboring 

character shapes, exists in handwritten Arabic texts, it becomes important to model 

them for better recognition performances. Contextual HMMs are, thus, a natural 

choice for Arabic text recognition. However, using tri-character (tri-character-shape 

in this case) HMMs for contextual modeling comes with their own issues, especially 

for Arabic script. The concern is related to the high number of contextual models 

that results from converting the mono-character-shape HMMs to tri-character-

shape HMMs. Using character shapes as HMMs instead of character HMMs already 

led to a four-fold increase in the number of HMMs. Now, converting these 

character-shape HMMs into the contextual forms leads to a further increase in the 

number of HMMs. One can easily end up having thousands of HMMs. Having a 

huge number of HMMs leads to the problem of insufficient training data. Moreover, 

some low occurring character-shapes will have even lower number of its different 

contextual forms in the training data. This leads to inadequate model training. To 

alleviate this problem, some form of clustering is performed. The two most common 

approaches are the data-driven clustering and the decision-tree clustering (see 

Section 2.7.1 for more details). Both these techniques have been used for Arabic 

text recognition, as was presented in Section 4.2. However, model clustering is 

applied after training the contextual forms and, thus, if the training was not 
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adequate, the clustering will not be optimal. Thus, although there are strong 

justifications for using contextual HMMs for Arabic text recognition, its potential 

has not been greatly achieved.  

5.5.2.3 The effects of using sub-character HMMs and the connector model  

In this section, we will present some of the observations regarding the positive 

effects of using the sub-character HMMs, along with the connector model, in 

relation to contextual modeling. Sub-character modeling, as presented in the 

previous sections, leads to a significant reduction in the number of HMMs in a 

recognition system, a direct impact of this is the large reduction of tri-character 

forms for these modeling units. As the number of contextual HMMs is relatively 

low, the problem of inadequate training is alleviated to some extent. However, the 

most significant effect on contextual modeling seems to be the result of using the 

connector model as proposed in Section 5.2.1. Use of the connector model leads to 

two major positive implications on the contextual modeling approach. Due to the 

fact that a connector appears between every two characters connected in a word, 

the most abundant tri-character models are, therefore, the different contextual 

forms of the connector model. The other models mostly have the connector and the 

space model as their neighbors; therefore, having fewer contextual forms. Thus, the 

tri-character model set is, comparatively, very small when using the sub-character 

different neighboring characters are mainly localized towards the periphery of the 

characters, and not around the core area. The periphery of the characters where 

two characters connect to each other is what the connector basically models. Thus, 

having different tri-character forms of the connector model and, at the same time, 

limiting the number of tri-character forms of other models, seems to be an effective 

approach. Experimental results related to contextual modeling, as presented in 

Chapter 7, supports our observations in this regard.  

For all the contextual modeling experiments, we initialize the tri-character 

HMMs for a character by using the trained context-independent HMM for that 

character as an initial model. Next, we train the tri-character models by applying 

a number of iterations of the Baum-Welch training algorithm. After this, state level 

data-driven clustering is performed to tie similar states across different contextual 

forms of a character. State tying between different contextual forms is performed 

while preserving the state sequence, i.e., the corresponding states in the different 

contextual forms are tied if the distance between two states is within a threshold.  
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Training the contextual HMMs 

1. The non-contextual models are initialized and trained using the standards procedures in 

conjunction with the specific steps related to the modeling technique followed. 

2. Different tri-character* forms for each character* are generated using the training-set 

transcriptions. 

3. Each tri-character model is initialized as a replica of its corresponding mono-character model 

which was trained in step 1. 

4. The state-transition matrices of all the tri-character models of a character are tied. 

5. The tri-character models are iteratively trained using the Baum-Welch training algorithm. 

6. State level data-driven clustering is performed to tie similar states across different contextual 

forms of a character while preserving the state sequence. The thresholds are selected based on 

the recognition performance on the development set. 

7. The state-tied tri-character models are, again, are iteratively trained using the Baum-Welch 

training algorithm. 

* d in a loose sense here and it can mean any modeling unit like character shape, 

sub-character, and core shape. 

Figure 5.20: Key steps involved in training the contextual HMMs. 

The distance d(x,y) between two states, x and y, is computed using the 

following equation as presented in (Young et al. 2002): 

 

 
𝑑(𝑥, 𝑦) =  −

1

𝑀
∑ 𝑙𝑜𝑔[𝑏𝑦(𝜇𝑥𝑚) ]

𝑀

𝑚=1

+ 𝑙𝑜𝑔[𝑏𝑥(𝜇𝑦𝑚) ] (10) 

where; 

M is the number of mixture components,  

μxm is the mean vector for the xth mixture component of state m, and 

by(o) is the probability of generating observation o by state y which is given by 

Equation 1. 

Figure 5.20 outlines the key steps involved in training the contextual models. 

5.5.2.4 Class-based contextual modeling for Arabic text recognition 

As we discussed above, one of the main problems when using contextual HMMs for 

Arabic text recognition is the inadequate training of the resulting high number of 

tri-character models. We also observed that, by using sub-character modeling 

approach and particularly the connector models, we can reduce the number of 

unique tri-characters. These observations led us to investigate class-based 

contextual modeling for Arabic text recognition. The core idea was to limit the 

number of unique tri-characters by not modeling every tri-character as a separate 
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model, but, instead, by grouping the characters in the left and the right context 

into classes where characters in each class have similar effects on its neighboring 

characters. 

The idea of class-based contextual modeling for handwritten text recognition is 

not new. A similar idea was presented by Fink and Plötz (Fink and Plötz 2007) for 

offline recognition of handwritten text in Latin script. The authors grouped the 

characters appearing in the left and the right context into six different categories: 

characters occupying core area, characters with ascenders, characters with 

descenders, characters with both ascenders and descenders, numerals, and the 

upper case characters. The groups were identical for both the left and the right 

context. Authors reported improvement in recognition results, as compared to the 

baseline context-independent system, when using this approach. At the same time, 

the normal approach to contextual HMMs resulted in poorer results when compared 

to the baseline system. 

We grouped the Arabic characters into seven different classes for the left 

context, i.e., for character appearing after a given character, and four different 

classes for the right context, i.e., for the characters appearing before a given 

character. This grouping is subjective and was based on 

behavior in the context of other characters. Table 5.1 lists the character classes for 

the left context and Table 5.2 list the character classes for the right context. It 

should be noted that the number of classes as well as the specific characters in a 

given class is different for the two contexts. This is because the characters in Arabic 

have different influence on their neighboring characters. For example, the character 

ʼ(ر) has a strong descender which affects the characters after it, i.e., to its left, 

but does not affect the characters before it, i.e., to its right. Figure 5.21 outlines 

the key steps involved in training the class-based contextual models and performing 

word recognition using them. 

In Chapter 7, we will present the experiments we conducted and the results we 

obtained by employing the modeling and the training approaches presented in this 

chapter. 
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Table 5.1: List of character classes for the left context. 

Left contexts 

Class 
Example character 

shapes 

Ascenders ـا ـل ـلـ 
Descenders  ج ح خ ع غ 
Core ـد ـر ـب ـبـ ـت ـتـ ـث ـثـ 
Loop ـمـ ـط ـف ـقـ ـص 
Angular ـجـ ـحـ ـخـ ـعـ ـغـ 

 ـكـ 
Space ا ب ت ن ل و د ر 

 

Table 5.2: List of character classes for the right context. 

Right contexts 

Class 
Example character 

shapes 

Ascenders ــظ ــط ـلـ ـل 
Descenders ـر ر و ـو د ـد  
Core ـ ـعــجـ ـح ـثـ ــتـ ث ـبـ تـ ـب 
Space  ـج  ـث ـت ـب ـل ـاا

 ـص ـض ـح ـخ ـع ـغ
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Data preparation: 

1. Training annotation:  

 The training set annotations are converted into tri-character forms. 

 The tri-character annotations are modified such that the left and the right contexts are 

mapped to the respective classes. 

 A list of unique class-based tri-characters are generated from the modified annotations. 

2. Dictionary:  

 Word are defined in terms of class-based tri-characters. 

Model Training: 

1. The non-contextual models are initialized and trained using the standards procedures in 

conjunction with the specific steps related to the modeling technique followed. 

2. Each class-based tri-character model is initialized as a replica of its corresponding mono-

character model which was trained in step 1. 

3. The state-transition matrices of all the class-based tri-character models of a character are tied. 

4. The class-based tri-character models are iteratively trained using the Baum-Welch training 

algorithm. 

5. State level data-driven clustering is performed to tie similar states across different contextual 

forms of a character while preserving the state sequence. The thresholds are selected based on 

the recognition performance on the development set. 

6. The state-tied tri-character models are, again, are iteratively trained using the Baum-Welch 

training algorithm. 

Decoding: 

1. The class-based tri-character models along with the modified dictionary are used for 

recognizing the words. The Viterbi algorithm is used for decoding. 

Figure 5.21: Key steps involved in training the class-based contextual HMMs and text recognition 

utilizing the class-based contextual HMMs. 

5.6. Summary 

The standard approach, as reported in the literature, is to use position-dependent 

character shapes as basic modeling units for Arabic text recognition. This leads to 

text recognition systems with large models sets typically around 100 models. 

Large number of models in a system implies the need for large amounts of data for 

robust training. In this chapter, three alternative modelling approaches were 

presented for Arabic text recognition. These alternative modeling approaches were 

proposed based on the observations that Arabic characters share common patterns 

between them and many characters differ from other characters only in diacritics. 

All the presented modeling approaches lead to significant reductions in the total 

number of models in the resulting systems as compared to the system using the 
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standard character shapes as models. The systems using the presented modeling 

approaches are expected to perform more robustly when compared to the standard 

system, especially when little training data is available. Strategies to deal with 

situations where no handwritten training data is available are presented in the next 

chapter. 
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6 Handwritten Text Recognition in the 

Absence of Handwritten Training Set 

 

n the last chapter, we presented the different modeling options we investigated 

for Arabic text recognition. In this chapter, we will present our investigations 

related to recognition of handwritten Arabic text when no handwritten training set 

is available. We will first present the motivations for our work. This is followed by 

techniques we investigated for machine printed Arabic text recognition in the 

presence of multiple font typefaces (referred to simply as font hereafter) and also 

recognition of machine printed text in a font which was not seen during training. 

The work related to machine printed text was a by-product of our efforts towards 

the original problem, i.e., on how to recognize handwritten text when no 

handwritten training data is available, as it can be regarded as a, relatively, simpler 

but a similar problem. Finally, we will present our approach to handwritten text 

recognition without handwritten training set.  

6.1. Motivation for this work  

Training a recognizer is one of the most important stages for any text recognition 

task. Availability of enough training samples of each class is very important to 

adequately train a recognizer. The classes can represent characters, character 

shapes, strokes, or other suitable representation like the ones discussed in the 

previous sections. To assist the research in the area, benchmark databases are 

developed to provide data for training and calibrating the recognizer and to 

(Marti and Bunke 

2003; Mahmoud et al. 2014; Pechwitz et al. 2002)). In order to ensure adequate 

training, huge amounts of data are collected and labelled. Data collection, labelling, 

and verification are labor-intensive and time-consuming activities. Researchers 

generally agree that quantity as well as quality of training data is important (cf., 

e.g., (Baird 2007; Varga and Bunke 2008)). Moreover, as the data collected in one 

environment is mostly not suitable for text recognition task in a different 

environment, there is a constant need to prepare new datasets for different text 

I 



106       Handwritten Text Recognition in the Absence of Handwritten Training Set 

 

 

 

recognition scenarios. To alleviate the problem of manual data labelling and 

verification, some semi-supervised approaches to label the data have been 

investigated (e.g., (Richarz et al. 2014)), but the problem is far from being solved 

in this respect. 

This issue has been identified by the researchers and, accordingly, some work 

has been published to deal with situations involving smaller training sets. The most 

notable approaches are related to text-image synthesis; where, training data is 

augmented by synthesizing text images from the original handwritten training set 

which was deemed not big-enough to adequately train the recognizer (e.g., (Moysset 

et al. 2014; Elarian et al. 2014)). Varga and Bunke (2008) presented perturbation 

models to synthesize text images from handwritten text images. A number of 

geometric distortions were applied in addition to thinning and thickening of pen 

strokes. The synthesized text line images augmented the training set. Experiments 

conducted for offline handwritten text recognition tasks showed that adding the 

synthetic data, to the original training set, led to improvements in recognition rates. 

Improvements were observed both when the original training set was small as well 

as large. Although, it was stated that it is easier to improve in situations where the 

training set is small. Miyao and Maruyama (2006) presented use of synthesized 

characters, in addition to the original samples, to improve the training of a 

Japanese Hiragana characters. Affine transformation was applied on strokes of the 

characters to synthesize additional characters. For Arabic text recognition, Elarian 

et al. (2015) presented two approaches to synthetically generate additional training 

data from a small set of handwritten Arabic text images. One of the approaches 

concatenate isolated character samples to form words. Some fitness criteria were 

proposed to select adequate samples for smooth concatenation. The second 

approach was based on connector (i.e., Kashida) modeling such that two adjacent 

characters can be joined by synthesizing the connector between them. The results 

from a handwritten Arabic word recognition task showed that the addition of 

synthetic data to the original training set can improve the text recognition results. 

For more details on text-image synthesis for improving text recognition 

performance, readers can refer to (Elarian et al. 2014). 

Techniques based on semi-supervised learning where few labelled data is used 

to annotate the complete training set is another notable approach to deal with the 

problems of limited training data. Frinken et al. (2011) -

approach where two separate systems were initialized using few labelled samples. 

The two systems were, then, iteratively trained such that a system annotates the 
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unlabeled data which is supplied as training data to the other system after filtering 

the good results. An approach to train a recognizer using only unlabeled data was 

presented by Kozielski et al. (2014). The most challenging part was to initialize the 

system as no labeled data was available for training. The authors generated an 

initial transcription of the unlabeled data by using a language model and 

information related to the width of the word images. They also used some heuristics 

to train white-space models separate from the character models. An iterative 

approach was employed to fine tune the recognizer by, first, generating 

transcription for the training data and then, in-turn, training the recognizer on the 

hypothesized data in each iteration. The approach was effective based on word 

recognition experiments conducted on two separate datasets. The results were quite 

promising even though they were lower than the results of the systems trained on 

labeled training data. 

According to the best of our knowledge, no work has been reported in the 

literature which deals with situations where no handwritten training set is 

available. This area of research has favorable implications as, in future, this can 

lead to greatly minimizing, if not completely removing, the need for handwritten 

training set. In this section, we will present our approach to handwritten Arabic 

text recognition where no handwritten training set is available. Our approach was 

based on the observation that Arabic is an inherently cursive script; therefore, it 

has a degree of visual similarity both in the handwritten as well as in the machine 

printed forms. Thus, to initialize the text recognition system (which is the most 

challenging part in such problems) we use computer generated machine printed 

text as the training data. The problem of recognizing handwritten text using a 

system trained on machine printed text is to a degree similar, even though much 

harder, to the problem of recognizing machine printed text in a font which was not 

seen during the training of an OCR system. Thus, to investigate this approach 

further, we first investigated text recognition of machine printed text in a font not 

seen by the recognizer during training. We will first present this work before 

returning back to the original problem of handwritten text recognition when no 

handwritten training data is available.  

6.2. Machine printed text recognition  

Researchers have addressed text recognition for unseen font using various 

approaches. The most common approach is to train the recognizer with samples 

from as many fonts as possible to address the variability during recognition (e.g., 
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(Bazzi, Schwartz, and Makhoul 1999; Prasad et al. 2008; Bazzi et al. 1997; 

Khorsheed 2007)). This approach, normally, results in better overall recognition 

when compared with using a recognizer that was trained using texts from only a 

single font. However, the error rates are significantly higher than the error rates for 

text recognition for known fonts. Another approach for unseen font text recognition 

was proposed by Ait-Mohand et al. (Ait-Mohand, Paquet, and Ragot 2014). They 

proposed a supervised HMM adaptation technique in which both the model states 

as well as the model lengths were adapted. They demonstrated the effectiveness of 

their technique for mixed-font and unseen-font text recognition. However, the 

technique has two issues: the need for a few labeled text samples in the recognition 

font, i.e., the need for adaptation data, and the dependency of the technique on the 

assumption that all text line images to be recognized will belong to a single font. 

To deal with the situation of unseen-font text recognition, we use a two-step 

font association based recognition. We train multiple mono-font text recognizers 

instead of training a recognizer on text mages from multiple fonts. Moreover, we 

propose a font identification module which can associate a text line image to the 

closest font. During recognition, the input text line image is, first, associated with 

a known font. As a second step, we will use the mono-font recognizer, which was 

trained on the associated font, to generate the recognition hypothesis. If there are 

multiple text lines images to be recognized using the identified recognizer, we 

perform unsupervised HMM adaptation during the recognition. Supervised HMM 

adaptations can be performed, instead, if some labelled samples are available for 

the input font. If the unseen font is much different than any of the trained fonts, 

the text line image to be recognized may not be associated to a single font with a 

high confidence. In such cases, a group of fonts (which is a subset of all the trained 

fonts) may be more representative of the input text line instead of a single font. A 

recognizer trained on the subset of the fonts maybe used instead of using a 

recognizer trained on a single font. Investigating this approach is a future work. 

Based on the experimental results presented in Section B.2, this approach looks 

effective. Moreover, this approach enables the use of font specific aspects (if any) 

for feature extraction (for example, font specific features or parameters) and 

training (for example, different fonts can have different ligature models) which can 

further optimize the recognition performance. To train the font association module, 

one can use appropriate features and classifiers. In the present work, we present a 

set of simple and effective features for font identification that rely mainly on the 

projection profile of the text line image. These features were used with support 
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vector machines (SVM) classifier, and the font identification results are very 

promising, as demonstrated in Section B.2. Below we describe our font 

identification features. 

6.2.1. Features for font Identification 

The features are extracted from height normalized (i.e., keeping the aspect ratio 

constant) text line images. Before introducing the features, we would like to 

introduce a function 𝑝(𝑖, 𝑗) that we will use frequently to define our features.  

 

𝑝(𝑖, 𝑗) = {
1, 𝑖𝑓 𝑟𝑜𝑤 ′𝑖′ 𝑐𝑜𝑙𝑢𝑚𝑛 ′𝑗′ 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒 ℎ𝑎𝑠 𝑖𝑛𝑘 𝑝𝑖𝑥𝑒𝑙
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Moreover, we use the term  to denote  to denote image 

width. 

 

a. Maximum ink projection (F1): This feature calculates the maximum 

value of the ink projection of a text image. The value is normalized by 

the image width. The dimension of the feature is one. 

 

𝐹1 =
max

𝑖≔ 1 𝑡𝑜 ℎ 
(∑ 𝑝(𝑖, 𝑗)𝑤

𝑗=1 )

𝑤
 

 

b. Ratio of ink-pixels (F2): It is the ratio of the number of ink-pixels in a 

row over the maximum ink projection. The dimension of the feature is 

the same as the normalized height of the image. 

 

𝐹2(𝑖) =
∑ 𝑝(𝑖, 𝑗)𝑤
𝑗=1

max
𝑖≔ 1 𝑡𝑜 ℎ 

(∑ 𝑝(𝑖, 𝑗)𝑤
𝑗=1 )

 

   

c. Percentage increase/decrease of pixel projection (F3): It is the 

percentage of increase/decrease of pixel projection in a given row as 

compared to the row immediately above it. The dimension of the 

features is one less than the normalized height of the image. 

 

𝐹3(𝑖) =
∑ 𝑝(𝑖, 𝑗)𝑤
𝑗=1 − ∑ 𝑝(𝑖 − 1, 𝑗)𝑤

𝑗=1

∑ 𝑝(𝑖 − 1, 𝑗)𝑤
𝑗=1

         ; 𝑤ℎ𝑒𝑟𝑒 1 < 𝑖 ≤ ℎ 
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d. Compaction (F4): It is defined as the ratio of the total number of ink-

pixels in a text line image over the total area of the line image. The 

dimension of the feature is one. 

 

𝐹4 =
∑ ∑ 𝑝(𝑖, 𝑗)𝑤

𝑗=1
ℎ
𝑖=1

ℎ ×  𝑤
 

 

e. Count of projections above average (F5): It is the count of the number 

of rows in the image whose ink-pixel count is above the average ink-

pixel count of the image rows. The dimension of the feature is one. 

 

𝐹5 =∑𝑎(𝑖)

ℎ

𝑖=1

;    𝑤ℎ𝑒𝑟𝑒,  

 

𝑎(𝑖) =

{
 
 

 
 1, 𝑖𝑓 ∑𝑝(𝑖, 𝑗)

𝑤

𝑗=1

> 
∑ ∑ 𝑝(𝑖, 𝑗)𝑤

𝑗=1
ℎ
𝑖=1

ℎ
 

 
 

 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

We concatenate all the above defined features into one feature vector for a text 

line image. 

6.2.2. Framework for machine printed text recognition 

Based on the above discussions, we propose a framework for machine printed text 

recognition using the HMMs. In the first step, we train an HMM recognizer for 

individual fonts. We also train the font association module using the features 

described in Section 6.2.1 and an SVM classifier. For an input text line image that 

has to be recognized, we, first, associate the text image to the closest known font 

after extracting the font features and providing them to the font association 

module. Next, we extract features from the text line image for text recognition. If 

font-specific parameters for feature extraction (such as window width and overlap) 

exist, they can be employed during feature extraction. After feature extraction, we 

utilize the HMM recognizer (for the associated font) for decoding. If we expect a 

batch of text line images from a single font during decoding, we have the following 

two options: (i) If some labeled samples are avai

perform supervised HMM adaptation prior to decoding; otherwise, (ii) we perform 
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unsupervised adaptation during decoding. If we expect random input images from 

a number of fonts, then we decode the text using the associat

Figure 6.1 illustrates the framework steps.  

6.3. Approaches for handwritten text recognition 

Now, we will focus back on the original problem handwritten text recognition 

without the handwritten training set. As we mentioned before, initializing the 

recognizer is one of the most important and challenging issues in such situations. 

To initialize the recognition system at some reasonable level, we use computer 

generated machine printed text as training data and later perform unsupervised 

HMM adaptation during recognition. As Arabic script is cursive both in machine 

printed and handwritten forms, using computer generated machine printed text for 

training and adapting it for handwritten text recognition proves to be promising. 

In the following sub-sections, we will present our step-wise approach to deal with 

the scenario of handwritten text recognition in the absence of handwritten training 

data. 

6.3.1. Training using computer generated text in single font  

We generated Arabic text in a number of different fonts and trained separate 

recognition systems for each of the font. We were interested in knowing how 

effective a mono-font recognizer will be in recognizing handwritten Arabic texts. 

Due to the cursive nature of the Arabic script, machine printed texts do have a 

degree of visual resemblance to handwritten texts; although, the variability in 

handwritten texts is quite high. Moreover, we were also interested to investigate 

the effects of different font on the recognition performance. It will be useful to know 

if all the recognizers, each trained on specific-font texts, perform similar or the 

performance is different for different fonts. If the performance is different, can the 

visual complexity of a font give us some indications about its handwritten text 

recognition capability in the sense that more complex fonts perform better or vice-

versa. Figure 6.2 shows samples of Arabic word images in one machine printed font 

and also samples of handwritten images of the same words. From the figure we can 

notice that the machine printed text (the right column) has some visual similarities 

to the handwritten texts (the left column); although, handwritten texts have more 

variability. 
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Figure 6.1: Framework for machine printed text recognition. (Figure adapted from (Ahmad, 

Mahmoud, and Fink 2016)) 
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Figure 6.2: Samples of computer generated text images in one font (Naskh) along with samples from 

handwritten text images for the same texts. (Figure from (Ahmad and Fink 2015b)) 

6.3.2. Training using computer generated text in multiple fonts 

In this step, we want to investigate the effects on handwritten text recognition 

when using a recognizer which is trained on multiple fonts, instead of just one font. 

Does the recognizer trained on text images from multiple fonts perform better than 

the recognizers trained on only a single font? There is a good reason to believe that 

the recognizer may perform better when trained on multiple fonts as this may, to 

some extent, enables it to model the handwriting variability better when compared 

to the recognizers trained on text from only one font. Figure 6.3 shows sample word 

images for two words in eight different fonts as well as sample handwritten word 

images for the same two words. We can observe from the figure that different fonts 

add to the variability in appearance which may help, to some extent, model the 

handwriting variability.  
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Figure 6.3: Samples of computer generated text images in different fonts along with samples from 

handwritten text images for the same texts. (Figure from (Ahmad and Fink 2015b)). 

6.3.3. Performing unsupervised adaptation 

Unsupervised HMM adaptation techniques recalibrate the trained parameters 

based on the new data they see during recognition (please refer to Section 2.7.2 for 

more details on HMM adaptation techniques). It has been used for adaptation of 

handwritten text recognizer for new writers (e.g., (Saleem et al. 2009)). HMM 
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adaptations techniques were applied for adapting a multi-font text recognizer to a 

specific-font text recognition task in (Ait-Mohand, Paquet, and Ragot 2014). In the 

present work, we investigated the use of HMM adaptation to adapt a recognizer 

trained on printed text to handwritten text recognition task. As we do not use any 

labeled training data, we perform unsupervised HMM adaption during recognition.  

6.3.4. Using test hypothesis as data for iterative training 

In this approach, we generate recognition hypothesis for the handwritten test 

images using the system developed by the previous approach. Next, we use these 

recognition hypothesis to re-train the classifier. Once the handwritten text has been 

-turn, for training can prove to be 

an effective approach and may perform better than the previous approaches. In 

this case, the previous approaches can be regarded as initialization steps to start-

up the recognizer. Clearly, for this approach to work, it will be important that the 

recognition hypothesis generated at this stage is reliable to, at least, some degree. 

Training on poorly hypothesized data can, in fact, do more harm than good and 

can even perform worse than the previous approaches as the classifier will be 

trained on huge amounts of wrongly labeled data (cf. (Baird 2007)). Thus we need 

to limit, if not completely remove, the mislabeled data from the correctly 

hypothesized data. To address this issue, we remove the bottom five percent of the 

hypothesized data based on the length-normalized scores. Figure 6.4 shows a typical 

graph for normalized recognition scores. The bottom five percent is marked to give 

an indication of the score range of the removed data. The bottom five percent does 

not necessarily mean wrongly hypothesized data; however, there is a high likelihood 

that many of the images were wrongly hypothesized. Another approach, which we 

have not yet investigated, is to use the recognition hypothesis on the test set 

together with the computer generated text as the training data. This will require a 

careful mix of the two sets so as not to over-train a classifier on one type of data. 
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Figure 6.4: An example graph showing the normalized recognition scores (sorted) for the text 

images. 

performance by iteratively feeding the improved recognition hypothesis as training 

data (after removing the images having the worst length-normalized recognition 

scores) which in-turn can lead to better recognition. After certain iterations, the 

recognition performance may reach an improvement threshold and further 

iterations may not, necessarily, improve much. This improvement threshold can be 

judged by looking at the average log-probability of the frames during training. If 

there is no significant improvement in the average log-probability of the training 

feature frames, the iterative algorithm can be terminated at that step. Figure 6.5 

shows the block diagram of the complete recognition process as proposed here. 

6.4. Summary 

A step-wise approach to system initialization and training in the absence of 

handwritten training data was presented in this chapter. As Arabic script is cursive 

both in the machine printed and the handwritten forms, there is a degree of visual 

similarity between the two forms. This observation led us to investigate the use of 

computer generated texts in multiple font typefaces as training data for system 

adapting the system, trained on machine printed texts, on handwritten text 

recognition tasks. The adaptation was done in an unsupervised manner while 

performing text recognition. Finally, using the test hypothesis as training data in 

an iterative way has a potential to further improve the results. The three 

alternative modeling approaches presented in the previous chapter along with the 

approaches presented in this chapter to deal with situations where no handwritten 

training data is available are evaluated in the next chapter.  
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Figure 6.5: The process framework for Arabic text recognition without handwritten training set. 

(Handwritten text image source: IFN/ENIT (Pechwitz et al. 2002)). 
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7 Evaluations 

n this chapter, we will present the evaluations for the different modeling and 

training options that were presented in Chapter 5 and Chapter 6. We will first 

present the text recognition databases we used for evaluations. Next, in Section 7.2, 

we will present a brief description of the text recognition tasks we performed. In 

Section 7.3, we present the evaluation measures we used. The details of the 

experiments conducted, the results obtained, and the discussions will be presented 

in Section 7.4. Finally, in Section 7.5 we present a summary of the experiments, 

the results, and the discussions. The experiments and the results related to our 

contributions to machine printed text recognition, as presented in Section 6.2, can 

be found in Appendix B. 

7.1. Databases for text recognition 

We employed two handwritten Arabic text recognition databases for the 

evaluation. Below we present a brief description of the databases.  

7.1.1. IFN/ENIT database of handwritten Arabic names 

IFN/ENIT database is the most popular and the commonly used benchmark 

database for handwritten Arabic text recognition research (Pechwitz et al. 2002). 

The database consists of handwritten images of the names of Tunisian cities and 

towns divided into seven sets a to f, and s. The lexicon size is 937 names where 

each name has one or more words. Some names have two or more variations. The 

database originally consisted of 32,492 images divided into sets a to e. Later, set f 

and set s, consisting of 8671 and 1573 images respectively, were added. Set s is 

regarded as the most difficult set. One of the reasons being that it was collected in 

a different country and hence has different writing styles as compared with the 

other sets. Figure 7.1 shows some sample images from the IFN/ENIT database. 

IFN/ENIT database has been used in various text recognition competitions and 

the results are presented in the top conferences, related to the field, like ICDAR 

and ICFHR (e.g., (Märgner, Pechwitz, and Abed 2005; Märgner and Abed 2007; 

El Abed and Märgner 2010a; Märgner and Abed 2010; Märgner and Abed 2011)). 

I 
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Figure 7.1: Sample text images from the IFN/ENIT database. 

7.1.2. KHATT database of handwritten Arabic texts 

KHATT database consists of unconstrained handwritten Arabic text images 

(Mahmoud et al. 2014; Mahmoud et al. 2012). A total of 1000 writers wrote the 

text where each writer wrote four paragraphs. Two of the paragraphs contain 

similar text written by all writers and are, therefore, not included in the text 

recognition experiments. Text line images were extracted from the paragraph 

images. The database is divided into three disjoint sets for training, development, 

and testing respectively. The train, development, and test sets currently contain 

4808, 937, and 966 text line images respectively which were extracted from the 

paragraph images. The KHATT database is more challenging than the IFN/ENIT 

database as it contains unconstrained handwritten text. Figure 7.2 shows some 

sample text line images from the database. 

 

Figure 7.2: Sample text images from the KHATT database. 
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7.2. Text recognition tasks 

In this section, we describe the different text recognition tasks we conducted using 

the different databases. 

7.2.1. Word recognition  

The first set of experiments we conducted are the word recognition tasks using the 

IFN/ENIT database. In a strict sense it may be termed as name recognition instead 

of word recognition as a name may consist of multiple words. We used the most 

common train test configuration as reported in the literature including the various 

competitions held using the database. Apart from the common configurations, we 

also experimented under constrained training scenarios where we used smaller sets 

for training the recognizer. Unless otherwise stated, set d was used as the 

development set to optimize the parameters. 

Word recognition on the IFN/ENIT database was also carried out when we 

investigated our proposed approach to perform handwritten text recognition 

without using handwritten training sets.  

7.2.2. Character recognition  

Apart from performing word recognition tasks using the IFN/ENIT database, we 

performed lexicon-free character recognition experiments generating character 

hypothesis instead of word hypothesis using a system trained on text line images. 

Not using the lexicon, as well as the language models, makes the recognition tasks 

harder but it leads to more insights regarding the effects of the use of the different 

modeling options. Standard train test configurations were used for 

experimentation. 

We also performed character recognition experiments using the KHATT 

database. We used the same partitions of the database for training, development, 

and test as is provided in the KHATT database. Word recognition using the 

KHATT database was not experimented as it involves dealing with a number of 

issues related to the selection of lexicon size and appropriate n-grams which were 

not the focus of the present research. 

7.3. Evaluation measures 

In this section, we present the measures we used to evaluate the text recognition 

results depending on the text recognition tasks. 



122       Evaluations 

 

 

 

7.3.1. Word Error Rate (WER) 

When performing word recognition task, we use Word Error Rate (WER) as the 

performance measure. WER is defined as follows: 

𝑊𝐸𝑅 (%)  =
𝑆 + 𝐼 + 𝐷

𝑁
× 100 

where; 

S is the substitution error, i.e., the total number of words substituted, 

I is the insertion error, i.e., the total number of words inserted,  

D is the deletion error, i.e., the total number of words deleted, and  

N is the total number of words in the evaluation set. 

The number of words substituted, inserted, and deleted are counted after 

aligning the recognized word string against the transcription. The alignment is 

known as maximum substring matching problem (cf. (Huang et al. 2001) pages 

419 421). In case of isolated word recognition, the equation simplifies to: 

𝑊𝐸𝑅 (%)  =
𝑆

𝑁
× 100 

 

7.3.2. Character Error Rate (CER) 

For character recognition tasks, we report the results using Character Error Rate 

(CER) as the performance measure. Similar to WER, CER is defined as: 

𝐶𝐸𝑅 (%)  =
𝑆 + 𝐼 + 𝐷

𝑁
× 100 

where; 

S is the substitution error, i.e., the total number of characters substituted, 

I is the insertion error, i.e., the total number of characters inserted,  

D is the deletion error, i.e., the total number of characters deleted, and  

N is the total number of characters in the evaluation set. 

The number of characters substituted, inserted, and deleted are counted after 

aligning the recognized character string against the transcription. 

7.3.3. Significance interval of the results 

In addition to reporting the results in terms of WERs or CERs, we also report the 

statistical significance of results when comparing the results from different systems 
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on the same text recognition task. We use the statistical test for the difference of 

two proportions as presented in (Dietterich 1998) to report the significance interval 

of results. Thus, for a given text recognition task, we report the significance interval 

of the results at 95% confidence level. 

7.4. Experimentations, results, and discussions 

In this section, we will present the experiments we conducted, the results we 

obtained, and the resulting discussions. First we will present the word recognition 

experiments we conducted on the IFN/ENIT database. This will be followed by 

the character recognition experiments that were conducted using the IFN/ENIT 

database. Next, the character recognition experiments conducted on the KHATT 

database will be presented. Experiments related to handwritten text recognition 

without the use of handwritten training data is presented next. Finally, character 

recognition using machine printed databases will be presented. 

7.4.1. Word recognition using the IFN/ENIT database 

We will present the word recognition experiments we conducted using the 

IFN/ENIT database using the different modeling choices presented in Chapter 5.  

7.4.1.1 Modeling choice: Character shapes 

In this section, we will present the details of the recognition system that uses 

character shapes as models and the results we obtained using the system for the 

word recognition tasks. Our text recognizer is a system based on continuous HMMs. 

We use HTK tools (Young et al. 2002) to build our recognizer. Below, we will 

describe the key aspects of our system before discussing the experiments and the 

results. 

The first step involved preprocessing of the text images. The text images were 

already binarized. The only preprocessing step we performed was the baseline 

correction of the text images. To correct the baseline, we, first, remove the small 

components from the text image. Next, we select the ink pixels from the lower 

contour of the text. The position of the selected ink pixels were, then, used to 

estimate a course-baseline. Next, the ink pixels which were far (more than one 

standard deviation) from the estimated course-baseline were removed from the 

selection. We then perform regression on these selected points to estimate the skew 

angle of the baseline. Finally, the image is rotated based on the estimated skew 

angle. 
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After correcting the baseline of the text images, we extract the features from 

them. We used the sliding window approach for feature extraction with the height 

of the window being the same as the image height and the width of the window 

was selected as 8 pixels. Consecutive windows overlap by 4 pixels such that the 

window shift is 4 pixels (i.e., 8  4 = 4 pixels). It should be noted that the sliding 

window runs from right to left across the text image as Arabic is written from right 

to left. We computed nine features from the sliding window frames running across 

the text line images. Apart from the nine features computed from the image-slices, 

we appended nine additional features for every window frame. These features are 

the derivative features. Thus, the dimension of the feature vector is 18. These 

feature were adapted from Wienecke et al. (Wienecke, Fink, and Sagerer 2005). 

Figure 7.3 lists down the features extracted from the text line images. 

The IFN/ENIT database contains the transcriptions for the word image at 

character-shape level. In addition to the -alif ligature, few other character pairs 

are also represented by special ligatures. Moreover, some characters have optional 

Shadda diacritic over them and, as such, are represented by special models. We 

replaced some low occurring models (i.e., models whose counts were less than 30 in 

the training set) having Shadda by the models of the same character but without 

the Shadda. We ended up with a total of 157 models in our recognition system. All 

the models have Bakis topology. A dictionary consisting of definitions for the town 

and city names was constructed based on the annotations provided in the 

IFN/ENIT database. Some names have alternate variations and, as such, all the 

definitions were added to the dictionary. 

Features for text recognition 

Following are the list of features we computed from the text line images for text recognition 

tasks. These features were adapted from Wienecke et al. (Wienecke, Fink, and Sagerer 2005): 

1. The average distance of the baseline to the upper contour of the ink pixels. 

2. The average distance of the baseline to the lower contour of the ink pixels. 

3. The average distance of the baseline to the center of gravity of the ink pixels. 

4. The angle of the upper contour of the ink pixels with respect to the baseline. 

5. The angle of the lower contour of the ink pixels with respect to the baseline. 

6. The angle of the center of gravity of the ink pixels with respect to the baseline. 

7. The average of the number of black-to-white transitions per column. 

8. The percentage of ink pixels in a frame. 

9. The average number of ink pixels between the upper and lower contours of the ink 

pixels. 

Figure 7.3: The list of features extracted from the text line images for text recognition. 
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To initialize and train the models, we first performed model length adaptation 

by Z. Jiang et al. (Z. 

Jiang et al. 2012) for MLA. All the models were initialized with large number of 

states (20 states with Bakis topology) and then the states having very low self-

transition probabilities were removed from the model. After deciding the number 

of states for each model, we followed a multi-step approach to system initialization 

and training. In the first step, the models were initialized using the flat-start 

procedure (also known as uniform initialization) followed by a number of iterations 

of Baum-Welch training. The trained system was then used to perform forced 

alignment of the training data. Next, the information from forced alignment of the 

training samples was used to initialize individual HMMs using Viterbi initialization. 

This was followed by a number of iterations of Baum-Welch training. Finally, the 

trained system was used to decode the evaluation set using the Viterbi algorithm. 

It is important to note that the remaining system parameters like the number of 

mixtures per state and the parameters used by the HTK tools were optimally 

configured based on the recognition results on the development set. Set d was used 

as the development set for all the experiments involving the IFN/ENIT database.  

For the first set of experiments, we used the standard train test configurations. 

We used abc d as the train test set configuration for system development. Key 

system statistics related to the training the system using sets a, b, and c are 

presented in Table 7.1. It is interesting to note that 23 models have less than 100 

samples and almost half the models have less than 200 samples. 

Table 7.2 presents the summary of the results for standard train test 

configurations. It can be seen from the table that our character shape system 

performs reasonably well when compared to the state-of-the-art systems evaluated 

on the IFN/ENIT database (cf. Table 4.2). The best results are reported for set d 

which is understandable given the fact that all the parameters were optimized using 

this evaluation set. The lowest rate (i.e., the highest WER) is reported on the 

evaluation set s which confirms that it is the most difficult set. These results will 

be treated as our baseline results and our character shape systems will be regarded 

as the baseline systems for the following experiments. 
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Table 7.1: Key statistics related to training the system with the IFN/ENIT training sets a, b, and c 

using character shapes as models. 

Number of HMMs 157 

Average number of samples per model 531 

Median number of samples per model 186 

Number of models having less than 100 samples 23 

Number of models having less than 200 samples 80 

Table 7.2: Summary of the word recognition results (in WERs) using character shapes as models on 

the IFN/ENIT database with standard train test configurations. 

Train Test Configurations 

abc d abcd e abcde f abcde s 

4.01 8.47 9.87 17.74 

 Our next experiments were related to investigating the various contextual 

modeling approaches. We performed two sets of contextual modeling experiments. 

In the first set of experiments, we investigated the standard approach of contextual 

modeling along with the data-driven state clustering technique as was summarized 

in Figure 5.20. Again, the parameters like distance threshold (for state clustering) 

were calibrated based on the evaluations results on set d. In the second set of 

experiments, we investigated the class-based contextual modeling approach as 

proposed by us in Section 5.5.2.4 and summarized in Figure 5.21.  

The evaluation results on the development set d for the three systems (including 

the results from the baseline system), in addition to key system statistics like total 

number of HMMs in the systems as well as the total number of states in the systems 

(using the training sets a to c), are presented in Table 7.3. The total number of 

states in a system is more indicative than the number of HMMs as many HMMs 

have their states tied to other HMMs in a system in the case of contextual modeling. 

The reduction in the number of HMMs after tying happens when all the 

corresponding states of two HMMs are tied together thereby merging the two 

logical HMMs into one physical HMM. It can be seen from the table that 

improvement in WER is reported for both the standard contextual HMM system 

as well as the class-based contextual HMM system. However, the improvement in 

WER for the class-based contextual system is higher as compared to the 

improvement obtained by using the standard contextual system. Moreover, there 

is a significant reduction in the number of HMMs and the total number of states 

in the class-based contextual HMM system as compared to the standard contextual 

HMM system. In fact, the total number of states in the class-based contextual 
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HMM system is only a fraction higher when compared to the non-contextual 

baseline system (only a 20% increase). This results in a compact contextual HMM 

system. 

Table 7.4 presents the recognition results on all the training test configurations. 

It can be seen from the table that improvements are observed in all the experiment 

configurations for the class-based contextual HMM systems when compared to the 

non-contextual HMM systems (i.e., the baseline systems) as well as when compared 

to the standard contextual HMM systems. For one experiment configuration (abcd

e) the standard contextual HMM system shows a lower performance than the 

baseline system whereas the class-based contextual HMM system still shows a small 

improvement over the baseline system. More importantly, both the contextual 

systems perform significantly better (significance interval of the error is ±1.53 at 

95% confidence level) than the baseline system on the set s which is, relatively, a 

difficult evaluation set. Again, the class-based contextual system performs better 

than the plain contextual system on set s. 

Table 7.3: Comparison of number of HMM models, total number of states, and the WERs for the 

different contextual HMM-based systems using the IFN/ENIT database with training sets a to c 

and evaluation on set d. 

System Description Number of HMMs Total Number of States WER 

Character-shape HMM system 

(baseline) 
157 1534 4.01 

Contextual HMM system using 

the standard approach 

4575  

(3212 after tying) 

38512  

(2767 after tying) 
3.86 

Class-based contextual HMM 

system 

626  

(359 after tying) 

5775  

(1845 after tying) 
3.37 

Table 7.4: Summary of the results (in WERs) related to Contextual HMM modeling approaches 

with character shapes as models. 

System Description 

WERs 

Train Test Configurations 

abc d abcd e abcde f abcde s 

Character-shape HMM system(baseline) 4.01 8.47 9.87 17.74 

Contextual HMM system using the standard approach 3.86 8.81 9.81 15.89 

Class-based contextual HMM system 3.37 8.27 9.66 15.38 
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Our final set of experiments was related to 

performance on constrained training environments. Specifically, we were interested 

to see how the system will perform when only few training samples are available. 

Only a subset of the complete training set was used to train the system. We 

performed four different sets of experiments under constrained training settings by 

using 250, 500, 1000, and 2000 text line images respectively from set a of the 

database to train the system. It should be noted that under constrained training, 

we did not perform MLA as well as forced alignment based initialization. Thus, 

only uniform initialization in conjunction with Baum-Welch training was performed 

with every model having the same number of states. The number of states and 

other system parameters were optimized based on the evaluation results on set d 

of the database.  

Table 7.5 presents the text recognition results on the four different evaluation 

sets under different constrained training setups. We can observe from the table 

that high WERs are reported for all the evaluation sets when using only 250 text 

line images for training. The worst results are reported for set s. The poor results 

are understandable given that very few training samples were used. The results 

improve as we keep increasing the number of training samples with the best results 

reported when using the 2000 text line images from set a as the training data. 

These results will help us compare the other modeling approaches when used under 

constrained training setups. 

  

Table 7.5: Summary of the results (in WERs) using the character shapes as models under 

constrained training setups. 

The Training Set Size 
Evaluation Sets 

d e f s 

250 text images  50.22 52.83 54.26 63.45 

500 text images  31.54 33.90 32.67 47.23 

1000 text images 20.03 26.07 25.74 39.48 

2000 text images 14.30 20.90 22.64 35.73 

Complete training set 4.01 8.47 9.87 17.74 
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7.4.1.2 Modeling choice: Sub-characters 

In this section we will present the experiments we conducted and the results we 

obtained when using the sub-characters, as presented in Section 5.2, as our 

modeling units. The details of setting up the text recognition system the 

preprocessing steps, feature extraction, and setting up the continuous HMM-based 

system are same as the ones followed for setting up the text recognition system 

using character shapes as models as was presented in the previous section. The 

difference was in the choice of modeling units (sub-characters as HMMs in the 

present case), and the related training procedure it involves, as was presented in 

Section 5.2.  

For the first set of experiments, we used the standard train test configurations. 

We used abc d as the train test set configuration for system development. Key 

system statistics related to training the system using the training sets a, b, and c 

are presented in Table 7.6. The sub-character representation uses 97 HMMs to 

model all the characters and their shape variations. This by itself is a great 

improvement in terms of system compactness and efficiency. It can perform 

relatively well under constrained training environments as we shall see shortly. It 

is interesting to note that only two models have less than 100 samples and only 

nine models have less than 200 samples. Moreover, the median number of samples 

per model is more than twice the number of samples per model in the case of the 

character-shape system. 

Table 7.7 presents the summary of the results for standard train test 

configurations. It can be seen from the table that our sub-character system performs 

quite well when compared to the state-of-the-art systems evaluated on the 

IFN/ENIT database (cf. Table 4.2). The improvements in WERs are significant 

when compared to the results obtained when using character shapes as models 

(significance interval of the errors are ±0.38, ±0.57, ±0.51, and ±1.53 for 

evaluation sets d, e, f, and s respectively at 95% confidence level). In fact, the 

results for the sub-character systems are better than, or at least as good as, the 

results obtained for contextual HMMs with character shapes as modeling units (cf. 

Table 7.4). The best result is still reported for set d and the result for set s being 

the lowest.  
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Table 7.6: Key statistics related to training the system with the IFN/ENIT training sets a to c 

using sub-characters as models. 

Number of HMMs 97 

Average number of samples per model 1734 

Median number of samples per model 492 

Number of models having less than 100 samples 2 

Number of models having less than 200 samples 9 

Table 7.7: Summary of the word recognition results (in WERs) using sub-characters as models on 

the IFN/ENIT database with standard train test configurations. 

Train Test Configurations 

abc d abcd e abcde f abcde s 

3.64 8.06 8.64 15.77 

Our next set of experiments was related to investigating the use of multi-stream 

HMMs as presented in Section 5.5.1. The details of setting up the multi-stream 

HMM system was summarized in Figure 5.17. Each stream has a dimension of 9 as 

we split the features into two streams with the computed features forming one 

stream and the derivative forming the second stream. The weights for the two 

streams (stream 1: 0.2; stream 2: 1.0) were empirically calibrated based on the 

set d. The third row of Table 7.8 

shows the results obtained using multi-stream HMMs. We can see that significant 

improvements are reported with multi-stream HMMs.  

Next, we experimented with the contextual sub-character HMMs as presented 

in Section 5.5.2.3. The last row of Table 7.8 shows the experimental results when 

using contextual sub-character HMMs. From the results we can notice a relative 

reduction between 11% and 19% in the error rates when using contextual HMMs. 

This improvement is higher than the improvements achieved when using contextual 

HMMs with systems having character shapes as models. Thus, the experiment 

results corroborates our understanding that the use of sub-character models along 

with the connector model helps in contextual modeling for Arabic text recognition. 
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Table 7.8: Summary of the word recognition results (in WERs) related to multi-stream HMMs and 

contextual HMMs with sub-characters as models. 

System Description 

WERs* 

Train Test Configurations 

abc d abcd e abcde f abcde s 

Character-shape HMM system (baseline) 4.01 8.47 9.87 17.74 

Sub-character HMM system 3.64 8.06 8.64 15.77 

Sub-character HMM system + multi-stream HMMs 2.97 6.66 7.22 15.00 

Contextual sub-character HMM system + multi-

stream HMMs 
2.44 5.55 6.40 12.14 

*Significance interval of the errors are ±0.38, ±0.57, ±0.51, and ±1.53 for evaluation sets d, e, f, 

and s respectively at 95% confidence level. 

 Our final set of experiments was 

performance on constrained training environments. As in the case of character 

shapes as models, we performed four different sets of experiments under constrained 

training settings by using 250, 500, 1000, and 2000 text line images respectively 

from set a to train the systems. We did not perform MLA as well as forced 

alignment based initialization. Thus, only uniform initialization in conjunction with 

Baum-Welch training was performed with every model having the same number of 

states. The number of states and other system parameters were optimized based 

on the evaluation results on set d of the database.  

Table 7.9 presents the text recognition results on the four different evaluation 

sets under different constrained training setups. Results are reported in terms of 

WERs. We can observe from the table that high WERs are reported for all the 

evaluation sets when using only 250 text line images for training. But it is 

important to note that, although the results are low when compared to using the 

entire training set, the results are significantly better than the results reported 

when using character shapes as models (cf. Table 7.5). The recognition results 

improve as we keep increasing the number of training samples with the best results 

reported when using the 2000 text line images from set a as the training data, 

which is still significantly lower than the results obtained when using the complete 

training sets. In all the experiments conducted under constrained training setups, 

the results for sub-characters models are better than the results obtained when 

using character shapes as models. This confirms that using sub-characters as models 

leads to a system which is more robust and performs significantly better under 

constrained training environments.  
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Table 7.9: Summary of the results (in WERs) using the sub-characters models under constrained 

training setups. 

The Training Set Size 

Evaluation Set 

d e f s 

250 text images (from set a) 32.44 34.48 35.75 48.57 

500 text images (from set a) 20.52 23.17 22.78 37.70 

1000 text images (from set a) 16.08 20.74 21.19 36.81 

2000 text images (from set a) 11.82 19.39 19.86 35.22 

Complete training set 3.64 8.06 8.64 15.77 

7.4.1.3 Modeling choice: Core shapes and diacritics with multi-stage recognition  

In this section, we will present the experiments we conducted and the results we 

obtained using the multi-stage text recognition framework as presented in 

Section 5.3. The overall details of setting up the core shape recognition system

the preprocessing steps, feature extraction, and setting up the continuous HMM-

based system are same as the ones followed for setting up the text recognition 

system using character shapes as models as was presented in Section 7.4.1.1. The 

difference was in the choice of modeling units (core shapes as HMMs for the core-

shape system), and the related training procedure it involves, as was presented in 

Section 5.25.3. Moreover, an extra preprocessing step was involved to separate the 

core shapes from the diacritics using the algorithm presented in Figure 5.11.  

For the diacritics system, there were some differences in the system setup. Some 

of the features extracted from the diacritics images were different from the features 

listed in Figure 7.3. We did not use the three orientation features as the diacritics 

are too small and, most of the time, are dots. Instead, we replaced these three 

features by two other features the number of components and the average size of 

components in an image strip. These two features seem to be more suitable as the 

main idea was to distinguish the number of dots. Thus, we computed a total of 

eight features from the diacritics image and appended the derivative features to it 

leading to feature vectors of 16 dimension. Figure 7.4 lists down the features 

extracted from the diacritics images. Moreover, we did not perform MLA as well 

as forced alignment based initialization for the diacritics system. Thus, only 

uniform initialization in conjunction with Baum-Welch training was performed 

with every model having the same number of states. 
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Features computed from diacritics images for recognition 

Following are the list of features we computed from the text line images for text recognition 

tasks: 

1. The average distance of the baseline to the upper contour of the ink pixels. 

2. The average distance of the baseline to the lower contour of the ink pixels. 

3. The average distance of the baseline to the center of gravity of the ink pixels. 

4. The number of connected components in a frame. 

5. The average size of connected components in a frame. 

6. The average of the number of black-to-white transitions per column. 

7. The percentage of ink pixels in a frame. 

8. The average number of ink pixels between the upper and lower contours of the ink 

pixels. 

Figure 7.4: The list of features extracted from the diacritics images for recognition. 

For the first set of experiments, we used the standard train test configurations. 

We used abc d as the train test set configuration for system development. Key 

system statistics related to training the system using the training sets a, b, and c 

are presented in Table 7.10. The core-shape representation uses only 71 HMMs to 

model all the characters and their shape variations which is less than half the 

number of models needed in the character shape system. In fact, the core-shape 

system has even fewer models as compared to the sub-character system. This helps 

in constrained training environments especially when very few training samples are 

available. Only one model has less than 100 samples and three models have less 

than 200 samples. 

Table 7.11 presents the summary of the results for standard train test 

configurations. It can be seen from the table that the multi-stage system performs 

quite well when compared to the state-of-the-art systems evaluated on the 

IFN/ENIT database (cf. Table 4.2). The improvements in WER are significant 

(significance interval of the errors are ±0.38, ±0.57, ±0.51, and ±1.53 for 

evaluation sets d, e, f, and s respectively at 95% confidence level) when compared 

to the results obtained when using character shapes as models. Although, the 

results from the sub-character systems are better than the multi-stage recognition 

system for most of the train test configurations. The best result is still reported for 

set d and the result for set s being the lowest.  
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Table 7.10: Key statistics related to training the system with the IFN/ENIT training sets a to c on 

the multi-stage recognition framework using core shapes (in addition to diacritics) as models. 

Number of HMMs 
71 (core-shape system), 

17 (diacritics system) 

Average number of samples per model 2290 

Median number of samples per model 972 

Number of models having less than 100 samples 1 

Number of models having less than 200 samples 3 

Table 7.11: Summary of the experimental results on the IFN/ENIT database with multi-stage 

recognition framework using core shapes and diacritics as models with standard train test 

configurations. 

Train Test Configurations 

abc d abcd e abcde f abcde s 

3.30 7.81 9.33 16.15 

Our next set of experiments was related to investigating the use of multi-stream 

HMMs as presented in Section 5.5.1 and is similar to the one followed when using 

sub-characters as models. The weights for the two streams (stream 1: 0.2; stream

development set d. The third row of Table 7.12 shows the results obtained using 

multi-stream HMMs. We can see that significant improvements are reported with 

multi-stream HMMs. Next, we experimented with the contextual HMMs as 

presented in Figure 5.20. The last row of Table 7.12 shows the experimental results 

when using contextual HMMs. No significant change in results were observed when 

using contextual core-shape HMMs. In fact, two of the configurations report a drop 

in recognition rates when using contextual HMMs. 

Our final set of experiments was 

performance on constrained training environments. As with the case of character 

shapes as models, we performed four different sets of experiments under constrained 

training settings by using 250, 500, 1000, and 2000 text line images from set a to 

train the system respectively. Table 7.13 presents the text recognition results on 

the four different evaluation sets under different training setups. Results are 

reported in terms of WERs. We can observe from the table that, although the 

results are low as compared to using the entire training sets, the results are 

significantly better than the results reported when using character shapes as models 

(cf. Table 7.5).  
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Table 7.12: Summary of the word recognition results (in WERs) related to multi-stream HMMs and 

contextual HMMs with multi-stage recognition framework using core shapes and diacritics as 

models. 

System Description 

WERs* 

Train Test Configurations 

abc d abcd e abcde f abcde s 

Character-shape HMM system (baseline) 4.01 8.47 9.87 17.74 

Multi stage HMM system with core shape and 

diacritic models 

3.30 7.81 9.33 16.15 

Multi stage HMM system with core shape and 

diacritic models + multi-stream HMMs 
2.63 6.27 7.54 14.49 

Contextual Multi stage HMM system with core 

shape and diacritic models + multi-stream HMMs 
2.46 6.27 7.74 14.88 

*Significance interval of the errors are ±0.38, ±0.57, ±0.51, and ±1.53 for evaluation sets d, e, f, 

and s respectively at 95% confidence level. 

Table 7.13: Summary of the results (in WERs) with multi-stage recognition framework using core 

shapes and diacritics as models under constrained training setups. 

The Training Set Size 
Evaluation Set 

d e f s 

250 text images  30.91 36.78 38.38 48.63 

500 text images  20.91 27.90 27.40 39.54 

1000 text images 15.29 21.71 23.71 37.57 

2000 text images 13.70 19.84 21.53 35.22 

Complete training sets 3.30 7.81 9.33 16.15 

7.4.1.4 Modeling choice: Sub-core shapes and diacritics with multi-stage recognition  

In this section, we will present the experiments we conducted and the results we 

obtained using the multi-stage text recognition framework with sub-core shapes 

and diacritics as models as presented in Section 5.4. The overall details of setting 

up the sub-core shape recognition system as well as the diacritics system the 

preprocessing steps, feature extraction, and setting up the continuous HMM-based 

system is same as the ones followed for setting up the multi-stage system using 

core shapes and diacritics as models as was presented in Section 7.4.1.3. The 

difference was in the choice of modeling units (sub-core shapes as HMMs instead 

of core shapes as HMMs), and the related training procedure it involves, as was 

presented in Section 5.4.1. 
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For the first set of experiments, we used the standard train test configurations. 

We used abc d as the train test set configuration for system development. Key 

system statistics related to the training sets a, b, and c are presented in Table 7.14. 

The sub-core-shape representation uses only 43 HMMs to model all the characters 

and their shape variations which is almost a fourth of the number of models needed 

in the character shape system. In fact, it even has less than half the number of 

models as compared to the sub-character system. Thus, the system is quite compact 

and is expected to perform robustly. It also helps in constrained training 

environments especially when very few training samples are available. Only one 

model has less than 100 samples and three models have less than 200 samples.  

Table 7.14: Key statistics related to training the system with the IFN/ENIT training sets a to c on 

the multi-stage recognition framework using sub-core shapes and diacritics as models. 

Number of HMMs 
43 (core-shape system), 

17 (diacritics system) 

Average number of samples per model 4066 

Median number of samples per model 1713 

Number of models having less than 100 samples 1 

Number of models having less than 200 samples 3 

In Table 7.15, we present the summary of the results for standard train test 

configurations. It can be seen from the table that the multi-stage system, with sub-

core shapes as models, performs quite well when compared to the state-of-the-art 

systems evaluated on the IFN/ENIT database (cf. Table 4.2). The improvements 

in WER are significant (significance interval of the errors are ±0.38, ±0.57, ±0.51, 

and ±1.53 for evaluation sets d, e, f, and s respectively at 95% confidence level.) 

when compared to the results obtained when using character shapes as models. 

Although, the results from the sub-character systems are better than the multi-

stage recognition system for most of the train test configurations. Moreover, the 

results are similar to the results obtained when using multi-stage system with core 

shapes as models but with significantly fewer models in the system. The best result 

is still reported for set d and the result for set s being the lowest.  

Table 7.15: Summary of the experimental results on the IFN/ENIT database with multi-stage 

recognition framework using sub-core shapes and diacritics as models with standard train test 

configurations. 

Train Test Configuration 

abc d abcd e abcde f abcde s 

3.62 7.31 9.08 16.40 
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Our next set of experiments was related to investigating the use of multi-stream 

HMMs as presented in Section 5.5.1. The weights for the two streams (stream 1: 

0.2; stream

on the development set d. The third row of Table 7.16 shows the results obtained 

using multi-stream HMMs. We can see that significant improvements are reported 

with multi-stream HMMs. Next, we experimented with the contextual sub-core 

HMMs which has similar properties to the contextual sub-character HMMs. The 

last row of Table 7.16 shows the experimental results when using contextual sub-

core HMMs. As with the case of sub-character HMMs, significant improvements in 

results are observed; thereby, confirming the benefits of using the sub-character 

modeling approach in addition to the use of the connector model. 

Table 7.16: Summary of the word recognition results (in WERs) related to multi-stream HMMs and 

contextual HMMs with the multi-stage recognition framework using sub-core shapes and diacritics 

as models. 

System Description 

WERs* 

Train Test Configuration 

abc d abcd e abcde f abcde s 

Character-shape HMM system (baseline) 4.01 8.47 9.87 17.74 

Multi stage HMM system with core shape and 

diacritic models 

3.62 7.31 9.08 16.40 

Multi stage HMM system with sub-core shape and 

diacritic models + multi-stream HMMs 
2.91 6.36 7.68 14.94 

Contextual Multi stage HMM system with sub-core 

shape and diacritic models + multi-stream HMMs 
2.29 5.24 6.68 13.48 

*Significance interval of the errors are ±0.38, ±0.57, ±0.51, and ±1.53 for evaluation sets d, e, f, 

and s respectively at 95% confidence level. 

Our final set of experiments was 

performance on constrained training environments. As with the case of character 

shapes as models, we performed four different sets of experiments under constrained 

training settings by using 250, 500, 1000, and 2000 text line images from set a to 

train the system respectively. Table 7.17 presents the text recognition results on 

the four different evaluation sets under different constrained training setups. 

Results are reported in terms of WERs. We can observe from the table that, 

although the results are low as compared to using the entire training sets, the 

results are significantly better than the results reported when using character 

shapes as models (cf. Table 7.5). In fact, for very few training data (i.e., the first 
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row), the results are even significantly better than the sub-character system. This 

may be attributed to the fact that under very few training samples, having the 

 

Table 7.17: Summary of the results (in WERs) with multi-stage recognition framework using sub-

core shapes and diacritics as models under constrained training setups. 

The Training Set Size 
Evaluation Set 

d e f s 

250 text images  21.10 28.28 29.93 41.32 

500 text images  17.83 26.26 26.47 37.76 

1000 text images 15.71 22.56 24.10 37.64 

2000 text images 13.62 20.16 22.30 35.28 

Complete training sets 3.62 7.31 9.08 16.40 

7.4.2. Character recognition using the IFN/ENIT database 

In this section, we will present the character recognition experiments we conducted 

using the IFN/ENIT database using the four different modeling choices presented 

in Chapter 5. It should be noted that the corresponding systems are the same 

systems that were used in word recognition tasks as presented in the previous 

section. The only difference is that we perform plain character recognition instead 

of word recognition. There was no use of dictionary and language models. 

Table 7.18 summarizes the character recognition results for the standard train

test configurations using the systems with the four modeling options. The first row 

of the table presents the results using character shapes as modeling units. We can 

notice that the character error rates are quite high as compared to the word error 

rates reported for the same system (cf. Table 7.2). The main reason behind this is 

the fact that no lexicon or language models are used and hence the recognition is 

done purely on the basis of appearance modeling. Thus, the results are more 

revealing regarding the effects of modeling choice on the text recognition 

performance. The use of lexicon or language models have an effect of masking the 

impact of modeling choices.  

The second row of the table presents the results when using sub-character as 

modeling units. We can see that the improvements using the sub-character HMMs 

are significantly higher that the results using character shapes as HMMs 

(Significance interval of the errors are ±0.35, ±0.38, ±0.32, and ±0.75 for 

evaluation sets d, e, f, and s respectively at 95% confidence level). The reduction 
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in error rates is proportionately much higher than the corresponding reductions 

observed in the word recognition tasks. Rows three and four of the table presents 

the results when using the multi-stage recognition with core shapes and diacritics 

and when using the multi-stage recognition with sub-core shapes and diacritics 

respectively. Again, we can observe that the reduction in error rates is much more 

significant when compared to the reductions in the word recognition tasks. 

Table 7.18: Summary of the character recognition results (in CERs) using the IFN/ENIT database. 

System Description 

CERs* 

Train Test Configuration 

abc d abcd e abcde f abcde s 

Character-shape HMM system (baseline) 45.12 51.98 47.20 54.21 

Sub-character system 35.95 44.63 38.26 47.91 

Multi stage system with core shapes and 

diacritics as models 
37.85 46.35 39.71 48.19 

Multi stage HMM system with sub-core 

shapes and diacritics models  
36.84 43.41 40.27 49.44 

*Significance interval of the errors are ±0.35, ±0.38, ±0.32, and ±0.75 for evaluation sets d, e, f, 

and s respectively at 95% confidence level. 

7.4.3. Character recognition using the KHATT database 

In this section, we will present the character recognition experiments we conducted 

using the KHATT database.  

The first step involved preprocessing of the text line images. As KHATT 

database consists of unconstrained handwritten text, we needed to perform 

adequate preprocessing before the feature extraction step. Baseline and slant 

correction was performed based on the technique presented in (Mahmoud et al. 

2014). Finally, the core text of the image was normalized before the feature were 

extracted from them. Same features as the one presented in Figure 7.3 were 

computed from the text line images. The sliding window with the width of 4 pixels 

and the overlap of 2 pixels were used for feature extraction. The initialization and 

training procedures are similar to the ones presented in Section 7.2.1. Thus, a multi-

step initialization and training was performed which included MLA, a uniform 

initialization followed by alignment based initialization. All the parameters were 

optimally calibrat

We use the same training development test partition as provided in the database. 
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Accordingly, we used 4808 images for training, 937 images for development, and 

966 images for the test. 

For the character-shape system, there are a total of 157 models in the KHATT 

database that represent the various character shapes in Arabic in addition to the 

numerals and some punctuation marks. For the sub-character system, we ended up 

with 97 models representing the same text. Table 7.19 presents the character 

recognition results (in CERs) when using character shape as models (first row) and 

when using sub-characters as models (second row). Results for both the 

development set and the test set are presented. From the table we can see that the 

sub-character system outperforms the character-shape system (significance interval 

of the errors are ±0.37 for the development and the test sets at 95% confidence 

level). In addition, we also performed contextual sub-character modeling where 

contexts only within a character were modeled in terms of sub-characters. The 

third row of the table summarizes the results for contextual modeling experiments. 

Finally, we performed multi-stream HMMs based training and the results are 

presented as the last row in the table. We can see that improvements were observed 

in all the proposed modeling and training approaches besides the fact that 

significantly lower number of models are used by the sub-character system. The 

results are worse than the results we obtained for the character recognition tasks 

on the IFN/ENIT database which confirms that the KHATT database, in general, 

is more difficult and challenging than the IFN/ENIT database. However, the results 

are comparable to the results we obtained on set s of the IFN/ENIT database. 

Table 7.19: Summary of the character recognition results (in CERs) using the KHATT database. 

System Description 
CERs* 

Development Set Test Set 

Character-shape HMM system (baseline) 52.10 51.09 

Sub-character system 51.52 50.69 

Sub-character system + contextual modelling (within character) 50.72 50.07 

Sub-character system + contextual modelling (within character) 

+ multi-stream HMMs 
49.49 49.93 

*Significance interval of the errors are ±0.37 for the development and the test sets at 95% 

confidence level. 
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7.4.4. Word recognition without handwritten training sets 

In this section, we will present the experiments we conducted related to 

handwritten text recognition in the absence of handwritten training sets. We first 

present the experiments on using a recognizer trained on computer generated texts 

in a single font. This is followed by experiments using a recognizer trained on 

computer generated text on multiple fonts. Next, we present the text recognition 

using unsupervised HMM adaptation. Finally, we present experiments related to 

the use of recognition hypothesis on the test set as training data. Our task is offline 

Arabic handwritten word recognition using the IFN/ENIT database (Pechwitz et 

al. 2002). 

For the experimentation, we use the Arabic sub-character model based HMM 

recognizer as presented in Section 5.2 as it seems to be the most robust and effective 

recognition system (especially under constrained training environments) based on 

the experimental results presented in Section 7.4.1. However, it is important to 

note that only uniform initialization (flat-start) on the training set was performed. 

Moreover, no MLA was performed either. 

In the first set of experiments, we use computer generated text from individual 

fonts to train our recognizer. To generate text, we use the IFN/ENIT lexicon with 

all its variations. Using the IFN/ENIT lexicon was not a prerequisite, as the only 

thing we needed was to have some training samples to train the different HMM 

models. Since our recognition task was on the IFN/ENIT database, we generated 

text using its lexicon. We generated 1929 images for each font corresponding to 

1929 entries in the dictionary, i.e., we generated one sample per entry for eight 

different fonts. Samples of computer generated text in different fonts along with 

handwritten text images from the IFN/ENIT database for the same word were 

shown in Figure 6.3. We trained eight different recognizers, each trained on text 

from only one font. Once the recognizer was trained, we evaluated the recognizer 

by recognizing word images from set d of the IFN/ENIT database. The evaluation 

results are shown in Table 7.20. The results are shown in terms of WERs. From 

the results shown in the table we have following observations: Although the results 

were not entirely disappointing, in general the recognition rates were very low for 

most of the fonts, which is understandable. The character glyphs for computer 

generated texts are very regular with only one fixed pattern. It is very difficult for 

a recognizer to train the models which can cope with the huge variations found in 

human handwriting. Nevertheless, some fonts did relatively well; the recognizer 

trained on the Naskh font was able to achieve 73.08% WER, i.e., it was successful 
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in recognizing approximately one-fourth of the total word images from set d. 

Another interesting observation was that, although the recognizer trained on 

visually simple font like Tahoma did worst, the recognizers trained on very complex 

fonts like Rekaa and Diwani did poorly as well. Thus, just having a look at the 

visual complexity of a font is not enough to predict its capabilities for effective 

training. Moreover, not all the fonts have similar behavior. 

Table 7.20: Text recognition results on set d of the IFN/ENIT database using recognizers trained 

on machine printed texts from single fonts. 

Font Name WER (%) 

Arabic Typesetting 88.75 

Diwani 89.99 

Naskh 73.08 

Rekaa 92.72 

Tahoma 95.69 

Thuluth 82.33 

Traditional Arabic 87.13 

Zarnew 81.25 

image samples from multiple fonts. In this experiment we train our recognizer with 

computer generated word images from all the eight fonts together. Thus, a total of 

15,432 (1929 × 8) word images are used for training. Once the recognizer was 

trained, we evaluated the recognizer by recognizing word images from set d of the 

IFN/ENIT database. The evaluation results are shown in Table 7.21 (first row). It 

can be seen from the table that a significant improvement in recognition rate is 

achieved when we trained the recognizer on multiple fonts. Thus, the variability 

observed in the training samples due to the different fonts helps, to some extent, 

to model the variability in human handwriting in the case of Arabic script. A part 

of the improvement is also due to an eight-fold increase in the training data. To 

understand the contribution of multiple fonts alone, we carried one more 

experiment where we randomly selected only 1929 word images in the eight fonts 

for training the recognizer and evaluated the recognizer on set d. The recognizer 

was able to achieve 46.55% WER which explains that most of the improvement 

was indeed due to the use of multiple fonts. 

Our next experiment was to use the recognizer trained on multiple fonts and 

perform unsupervised HMM adaptation during recognition. We used MLLR for 

parameter tuning (please refer to Section 2.7.2 for more details on HMM 

adaptation). We experimented with different number of regression classes. The 
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evaluation results on IFN/ENIT set d is presented in Table 7.21 (second row). It 

can be seen from the table that significant improvements are achieved using 

unsupervised HMM adaptation. In the best configuration using 48 regression 

classes, it leads to improvement in recognition rate by 9.12%, i.e., a reduction in 

error by one-fourth approximately. 

Table 7.21: Text recognition results (in WERs) on set d of the IFN/ENIT database using 

recognizers trained on machine printed texts on multiple typefaces and using unsupervised 

adaptation. 

System WER (%) 

All fonts together  38.65 

All fonts together + 

Unsupervised adaptation 
29.53 

Our next set of experiments was related to the idea of using the recognition 

hypothesis on the test set as training data for the recognizer. To start, we use the 

recognition hypothesis from the previous step (i.e., multi-fonts training and 

unsupervised adaptation during recognition) and use it to generate labels at the 

character level for each word image of the test set by forced alignment technique. 

An interesting aspect to investigate was to compare the results of the recognizer 

trained on computer generated text on multiple fonts with the recognizer trained 

on handwritten text images, but with imperfect labeling (as close to 30% of the 

word images were wrongly hypothesized). To limit the mislabeled data, we remove 

the bottom five percent of hypothesized data based on the length-normalized score 

(please refer to Section 6.3.4 for more details). After training the recognizer with 

the hypothesized set d of the IFN/ENIT database, we perform recognition on the 

same set. The evaluation results are presented in Table 7.22 (first row). It can be 

seen from the table that the results are significantly better as compared to the 

results from the previous approaches. As an extension to this experiment, we use 

this improved hypothesis to re-label the test set and use it to train our recognizer. 

After retraining our recognizer using the improved hypothesis for a few more 

iterations (until the average length-normalized scores for the hypothesis converges), 

we evaluate it on the same set. The results are presented in the second row of 

Table 7.22. We can see from the table that there is a small, but significant, 

improvement in the recognition rate. In our final set of experiments we use the 

multi-stream HMMs as was used in our previous experiments. Use of multi-stream 

HMMs led to a further small, but significant, improvement in the recognition rate 

as can be seen from the third row of Table 7.22. 
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Once we validated our approaches using the set d of the IFN/ENIT database, 

we replicated our experiments on sets e, f, and s of the database without changing 

the system parameters, i.e., our single font, multiple fonts, and adaptation systems 

were exactly the same as the ones used to evaluate set d. The only difference was 

the use of hypothesized data for the corresponding sets as training data. The 

summary of all the experiments are presented in Table 7.23. From the table we can 

see that the results, although below the state-of-the-art (cf. Table 4.2), are very 

promising considering that no handwritten data was used for training. The area of 

research seems exciting and needs further investigation. It has huge implications as 

this may greatly reduce, if not completely eliminate, the need for creating the 

handwritten training sets and its manual transcription which are very laborious 

and time consuming tasks. 

Table 7.22: Text recognition results (in WER) on set d of the IFN/ENIT database using 

hypothesized test set for training. 

System WER (%) 

Hypothesized data of the test set 

used for training 

 

12.84 

 

9.77 

Hypothesised test-data used for 

training after five iterations 

Hypothesised test-data used for 

training after five iterations + 

multi-stream HMMs 

8.39 

Table 7.23: Summary of the results (in WERs) for handwritten text recognition on the IFN/ENIT 

database without using handwritten training data. 

System 
The Recognition System  

Training Data 

Evaluation Set 

d e f s 

1 Best individual font (Naskh) 73.08 77.90 75.9 72.61 

2 Text images from all fonts together 38.65 44.16 44.86 48.06 

3 
Text images from all fonts together + 

unsupervised adaptation 
29.53 33.47 39.07 45.26 

4 
Test set hypothesised using system 3 

used as training data 
12.84 15.57 18.56 33.4 

5 
Five iterations of Test set hypothesised 

using system 4 used as training data 
9.77 12.35 15.22 29.26 

6 System 5 + Multi-stream HMMs 8.39 10.39 13.42 26.89 
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7.5. Summary 

In this section, we will present the main summary of our experiments and results 

and some comparisons to the state-of-the-art. For the handwritten Arabic text 

recognition, we experimented with four different modeling approaches one of them 

being the standard modeling approach as reported in the literature and the 

remaining three were proposed by us in this work. Figure 7.5 presents a comparison 

of the number of models in the resulting systems using the four modeling 

approaches respectively. It can be see that our proposed approaches lead to 

significant reduction in the number of models defined in the systems which leads 

to a compact and robust system with reduced model sets. The result is that the 

systems are trained more robustly with the same amount of available training data. 

Figure 7.6 shows the key training statistics on the IFN/ENIT training sets a to 

c. Again, we observe that our modeling approaches lead to higher mean and median 

number of training samples per model using the same amount of training data. 

Thus, the presented modeling approaches allow for, relatively, better training of 

each model and, as a result, better training for each character. This fact was shown 

to be even more important under constrained training environments where only a 

few training samples are available for training. 

 

 

Figure 7.5: A comparison of the number of models in systems using the four modeling approaches. 

The numbers are based on the experiments conducted on the IFN/ENIT database. 
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Figure 7.6: Key statistics related to training the system with the IFN/ENIT training sets a to c 

using the four modeling approaches. 

 

Figure 7.7 shows the performance of the four different systems on various 

evaluation sets from the IFN/ENIT database under constrained training 

environments. All the systems perform better than the standard system that uses 

character shapes as models. The performance of the sub-core shape system is the 

best when very few training data is available, but, in general, the sub-character 

systems perform better under most of the training configurations. One of the 

possible reasons for this could be the fact that the benefits of excessive sharing in 

sub-core shape systems, especially when enough training data is available, are 

balanced by losses due to the diacritics removal procedure which does not work 

perfect all the time. Nevertheless, the results are still significantly better when 

compared to the character shape systems in addition to the fact that the model-set 

size for the sub-core systems is only one-fourth the model-set size for the character-

shape systems. Moreover, when employing contextual sub-character modeling and 

contextual sub-core modeling, the performance improvements are even larger. 
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                (a) Evaluation set: d                                        (b) Evaluation set: e 

 

   
               (c) Evaluation set: f                                         (d) Evaluation set: s 

Figure 7.7: Performance of the systems with different modeling options under constrained training 

environments. 

Table 7.24 presents a comparison of the results from the state-of-the-art systems 

evaluated on the IFN/ENIT database with the best results obtained by our systems 

using the three presented modeling approaches. We can see from the table that the 

overall results from our presented systems are among the best compared to the 

other state-of-the-art systems. In fact, our systems outperforms the best reported 

systems in the literature on the evaluation set e and set f of the database. We 

report the second best result on set s of the database which is regarded as the most 

difficult set in the database. Moreover, the best performing system on set s, 

presented by Stahlberg and Vogel (2015), uses our proposed special space and 

connector models for modeling. This further validates the effectiveness of our 

presented techniques. Set d of the database is used to calibrate the system and 

hence the systems have a tendency to over-fit on this evaluation set. The systems 
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that are reporting the best results on set d are not necessarily performing very high 

on other evaluation sets. 

Table 7.24: Comparison with other state-of-the-art systems evaluted on the IFN/ENIT database. 

Systems 

WERs 

Train Test Configurations 

abc d abcd e abcde f abcde s 

Graves 2012 (Graves 2012) - - 6.63 18.94 

Azeem and Ahmed 2013 (Azeem and Ahmed 2013) 2.3 6.56 6.9 15.2 

Giménez et al. 2014 (Giménez et al. 2014) 4.7 6.1 7.80 15.38 

Abandah et al. 2014 (Abandah, Jamour, and 

Qaralleh 2014) 
1.04 6.54 7.54 15.20 

Hamdani et al. 2014 (Märgner and Abed 2011; 

Hamdani et al. 2014) 
- - 7.80 15.45 

Stahlberg and Vogel 2015 (Stahlberg and Vogel 

2015) 
2.4 6.1 6.8 11.5 

Present Works 

Sub-character HMM system  2.44 5.55 6.40 12.14 

Multi-stage HMM system with core shape and 

diacritic models  
2.46 6.27 7.74 14.88 

Multi-stage HMM system with sub-core shape and 

diacritic models 
2.29 5.24 6.68 13.48 

As for the character recognition experiments on the IFN/ENIT database, we 

did not find any reported work on the literature that does the same task except 

one system which was presented by Jiang et al. (2015). Table 7.25 compares the 

character recognition results of our systems with the only system presented in the 

literature. Again, we can observe that our systems clearly outperforms the other 

system. In fact, a similar system, presented by the same authors in (Z. Jiang et al. 

2012), was evaluated for word recognition tasks and performed reasonably well as 

compared to the state-of-the-art. Unfortunately, we cannot find any system 

presented in the literature that performs character recognition task on the KHATT 

database. We did not perform word recognition task on the KHATT database as 

it involves using the word n-grams and dealing with OOV words which was not in 

the scope of our present research. 
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Table 7.25: Comparison with other systems evaluted on the IFN/ENIT database for the charcater 

recognition tasks. 

Systems 

CERs 

Train Test Configurations 

abc d abcd e abcde f abcde s 

Jiang et al. (Z. Jiang et al. 2015) 50.97 58.38 - - 

Present Works 

Sub-character HMM system  35.95 44.63 38.26 47.91 

Multi-stage HMM system with core shape and 

diacritic models  
37.85 46.35 39.71 48.19 

Multi-stage HMM system with sub-core shape and 

diacritic models 
36.84 43.41 40.27 49.44 

Regarding machine printed text recognition, a subjective comparison of our text 

recognition system with other HMM-based machine printed Arabic text recognition 

systems that are available in the literature is presented in Appendix B. Moreover, 

a comparison of our recognition results using the APTI database with results from 

other systems reported in the literature, that uses the APTI database, is also 

presented in Appendix B. 

Finally, for handwritten text recognition without the use of handwritten 

training data, we present, in Table 7.26, our best results on this task and compare 

them to the best results obtained by our systems when using the complete training 

set. We can see from the table that the results are significantly lower than the 

results we obtain when using the full handwritten training sets. Nevertheless, the 

results are still quite impressive considering the fact that no handwritten training 

set was used. We feel that this line of research is very promising and can have 

favorable implications in the future by limiting, if not completely avoiding, the 

need for handwritten training sets. 
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Table 7.26: Comparison of results for handwritten text recognition tasks with and without the use 

of handwritten training sets. 

Systems 

WERs 

Evaluation Set 

d e f s 

Sub-character HMM system without the use of 

handwritten training sets 
8.39 10.39 13.42 26.89 

With Complete Training Sets 

Sub-character HMM system  2.44 5.55 6.40 12.14 

Multi-stage HMM system with core shape and 

diacritic models  
2.46 6.27 7.74 14.88 

Multi-stage HMM system with sub-core shape and 

diacritic models 
2.29 5.24 6.68 13.48 
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8 Conclusions  

 

andwritten text recognition is a challenging task. A lot of research has been 

done in this area with major attention to the Roman script. But, the 

challenges are far from over. Handwritten Arabic text recognition research has seen 

a huge interest in the last two decades. Research in handwritten Arabic text 

recognition benefitted from the extensive research that has already been carried 

out for other scripts like Roman and Chinese. Consequently, most of the researchers 

adapted the handwritten text recognition systems, already developed for other 

scripts, to work for the Arabic script.  

HMMs have traditionally been the most successful classifier for text recognition 

after their success in speech recognition. They have sound theoretical and 

mathematical foundations. Moreover, they avoid the need to explicitly segment the 

text line images into smaller units like characters or strokes. This aspect is even 

more important for Arabic text recognition as Arabic script is inherently cursive 

both in handwritten and machine printed forms. Adapting the text recognition 

systems, developed for other scripts, to work for Arabic script led to a quick transfer 

of technology to this domain and recognizers with reasonably good text recognition 

capabilities were reported up and running in a fairly short time period. Although 

the progress was good in general, it led to investigating the knowledge of the Arabic 

script and improvising on it to build better and more efficient recognizers less 

explored. The peculiarities of the Arabic script poses its own issues and challenges 

in the area of text recognition. With challenges comes the opportunities to further 

enhance the research in this area. The present work was an attempt in this 

direction, i.e., to study the peculiarities of the Arabic script in the context of text 

recognition and investigate them in order to contribute to the developments in this 

area of research. 

8.1. Summary 

Among the peculiarities of the Arabic script is the aspect of modeling. Arabic 

characters can take different shapes based on their position in a word. Accordingly, 

researchers use the character shapes as models instead of using the characters as 

H 
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the modeling unit. This approach leads to almost a four-fold increase in the number 

of models in the system. Apart from leading to a system with a huge model set, the 

system also suffers from inadequate training because of the large number of models 

whose parameters need to be trained effectively from the training data. Performing 

contextual modeling over these character-shape models further increases the models 

by many times. To address these problems, we presented three alternative modeling 

options for Arabic text recognition. As a first option, we presented sub-character 

modeling where a character is split into sub-characters exploiting the similar 

patterns between different characters and their position-dependent shapes. The 

sub-character patterns are then used to reconstruct the characters leading to a huge 

reduction in the number of HMMs. The sub-character modeling, as presented in 

this work, does not need explicit segmentation of characters into the smaller units. 

We also investigated the impact of sub-character modeling from the perspective of 

contextual HMM modeling and found that the sub-character modeling, including 

the proposed connector model, lends favorably to contextual HMM modeling and 

the gains in recognition rates are higher than the gains obtained using the standard 

character-shape based contextual modeling. 

The second modeling approach we investigated was related to separating the 

core shapes in Arabic texts from the diacritics and modeling the core shapes and 

the diacritics as separate HMMs. This approach also leads to a large reduction in 

the number of basic HMMs. A multi-stage text recognition framework was proposed 

which uses the core-shape HMM system along with the diacritics HMM system to 

perform text recognition.  

Our third and final modeling approach integrates the idea of sub-character 

modeling with the idea of modeling the core shapes separately from the diacritics. 

Accordingly, this leads to multi-stage text recognition where sub-core shapes and 

diacritics are trained separately and text recognition is performed by utilizing the 

sub-core shape HMM system and the diacritics system. This approach leads to the 

greatest reduction of the number of modeling units in a system. Contextual HMMs 

utilizing the sub-core shapes were also investigated with favorable outcomes. 

We performed a number of experiments to study the effects of different 

modeling approaches on the text recognition accuracy. We found that our modeling 

approaches performed better than the traditional character-shape modeling 

approach besides the fact that we end up with more compact systems with reduced 

model sets. This was even more important when performing text recognition under 
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constrained training environments, i.e., when few text image samples are available 

for training. 

Apart from the above mentioned three modeling approaches, we also presented 

our contributions related to white-space modeling for Arabic text recognition, 

multi-stream HMMs, and class-based contextual HMM modeling. White-space 

modeling based on our approach adds more flexibility in text recognition by 

skipping the space models at times and incorporating them at other times 

depending on the handwriting. We experimented with multi-stream HMMs by 

splitting our features into two streams such the features computed from the text 

images formed one stream and the derivative features formed the second stream. 

Having different stream weights for the two streams showed improvements in text 

recognition accuracies. Class-based contextual modeling was presented as a way to 

limit the number of unique tri-character models that result when using the standard 

contextual modeling approach. Instead of modeling every tri-character pairs, the 

neighboring characters are grouped into classes in a way that characters in each 

class have similar contextual influence to a character whose contexts are being 

modeled. This resulted in significantly fewer contextual models as compared to the 

number of contextual models resulting from the standard approach; thereby, 

leading to a relatively compact recognizer with better recognition performances. 

Last but not the least, we investigated some approaches to initialize and train 

a text recognition system when no handwritten training data is available. 

Specifically, we studied the impact of training a recognizer with machine printed 

texts for the handwritten text recognition task. This approach was employed 

together with unsupervised HMM adaptation. Further, we use the test hypothesis 

to retrain our recognizer in an iterative approach. We achieved reasonably good 

text recognition results keeping in mind that no handwritten training set was used. 

These results can have favorable implication in the future as this can significantly 

reduce, if not completely avoid, the need of preparing large annotated training sets 

which is a time consuming and costly task. 

8.2. Possible future works 

A number of possible future works can enhance the current work. Some of the 

possible extensions can be as follows: 

 The use of NN-based deep learning strategies is gaining a lot of attention from 

the researchers in the field of text recognition and the results are very 

promising. A number of published works have shown its superiority over HMMs 
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in terms of text recognition accuracy. NN-based deep learning has also been 

successfully integrated with HMMs to benefit from both the approaches. 

Accordingly, an interesting future work can be investigate the effects of utilizing 

the modeling approaches presented in this work with NN-based deep learning 

frameworks. Training is, many a times, an issue in deep learning based text 

recognition systems and thus by significantly reducing the number of basic 

recognition units, the NN-based systems might benefit even more as compared 

to a purely HMM-based system. 

 It can also be interesting to investigate the impact of the presented modeling 

approaches on the use of statistical n-grams as language models when using it 

for text recognition tasks. Specially, the impact of core shape representation of 

words (after removing the dots and other diacritics) on the language model 

estimation and even on the word lexicon may be investigated. Many words will 

get reduced to same core-shape representation thereby reducing the lexicon size. 

This can potentially lead to efficient recognition and with better overall 

recognition accuracy in a multi-stage recognition framework. 

 For the task of text recognition without the handwritten training data, the use 

of text synthesis together with the approaches presented in the present work 

has a potential to further improve the text recognition results and seems worthy 

of investigation. When using the hypothesis on test data to retrain the system, 

one generally needs to exclude those hypothesis which have poor scores. Thus, 

one may end up with only a few training samples. If these handwritten test 

images can be used, along with its hypothesized annotations, for text image 

synthesis to augment the training data, more robust training can be performed. 

Moreover, using machine printed text images and the test images together with 

text synthesis in a balanced proportion might also prove to be a useful 

approach. 

 Last but not the least, the modeling options we presented in this work needed 

the knowledge of the script. A possible future work could be to develop methods 

to automatically decide the optimal modeling units by utilizing pattern 

recognition techniques. Starting with a system having character-shape models 

trained on a dataset, techniques to investigate the state-sequence similarity 

between parts of HMMs maybe one way to explore this possibility. Also, using 

machine printed text to train the character-shape models and then deciding the 

ideal number of sub-patterns using state clustering algorithms could prove to 

be useful as well.  



 

155 

 

Appendix A 

Transliteration and Translation of Arabic Texts from 

the Figures in Chapter 3 

 

 

 

(alif- ʼ- ʼ- - - - ʼ- ʼ) (alif- -alif- ʼ- ʼ- ʼ- ʼ- -

- - ʼ- ʼ) (alif- - - -alif-hamzah) 

Have mercy to those on earth; the one above (God) will have mercy on you. 

Figure A 1: Arabic text (top row), its transliteration5 (middle row), and meaning (bottom row) for 

Figure 3.2. 

 

 

(alif- ʼ- ʼ -alif- ʼ- ʼ- - ʼ- ʼ- ʼ - - ʼ- -  

Love for your brother (i.e., others) what you love for yourself. 

Figure A 2: Arabic text (top row), its transliteration (middle row), and meaning (bottom row) for 

Figure 3.3. 

                                         
5 The transliteration for individual characters (separated by -) are presented from left-

to-right although the character sequence in Arabic is from right-to-left. Thus, the first 

character transliteration from the left represents the first Arabic character from the right. 

Moreover, the transliterations as presented here does not represent how the character 

sequences are pronounced. The words are enclosed in (). 
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NA 

And what will be the supposition of those who invent falsehood about Allah (God) 

on the Day of Resurrection? Indeed, Allah (God) is full of bounty to the people, but 

most of them are not grateful. 

Figure A 3: Arabic text (top row), its transliteration (middle row), and meaning (bottom row) for 

Figure 3.4. 

 مجلس إنسان سلام ناس
(n -alif- ) (s - -alif- ) (alif-n - -alif-n ) (m - - -s ) 

People Peace Human Gathering 

(a) 

 أسد مدرسة دنيا أسود
(alif-s - - ) ( -n - ʼ-alif) (m - - ʼ-s -t ) (alif-s - ) 

Black World School Lion 

(b) 

Figure A 4: Arabic texts (top row), its transliteration (middle row), and meaning (bottom row) for 

Figure 3.6. 
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 السلام سيدي خليفة
ʼ- - ʼ- ʼ-t ) - ʼ- - ʼ) (alif- - - -alif-  

Caliph My Master The Peace 

  الذويبات العروسة

(alif- -ʻayn- ʼ- - -t ) (alif- - - - ʼ- ʼ-alif- ʼ) 
 

The Bride Azzūybaat 
 

Figure A 5: Arabic texts (top row), its transliteration (middle row), and meaning (bottom row) for 

Figure 3.7. 

 المنزه ثالجة سلامال
(alif- - - -alif-  ( ʼ-alif- - - ) (alif- - - - - ʼ) 

The Peace Thaalja Almunzah 

 مجلس نّحال
 

( - ʼ-alif- ) ( - - - )  

Nihhaal Gathering  

Figure A 6: Arabic texts (top row), its transliteration (middle row), and meaning (bottom row) for 

Figure 3.9. 

 

 الرضاع شعال عين الشرايع
(alif- - shin- ʼ- alif- 

ʼ- ʻayn)   

(ʻayn- ʼ- ) (shin- ʻayn-alif- ) (alif- - ʼ- -alif- 

ʻayn)  

Asshraae’ Eye She’aal Arridae’ 

Figure A 7: Arabic texts (top row), its transliteration (middle row), and meaning (bottom row) for 

Figure 3.10. 
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 الفرش نكريف بو فيشة الشلّوف
(alif- -shin- - -

ʼ) 

ʼ- - ʼ- ʼ-shin-

t ) 

( - - ʼ- ʼ-

ʼ) 

(alif- - ʼ- ʼ-

shin) 

Assallouf   Bofesha Nakreef Alfarash 

(a) 

 الغزلان الفايض القباضة الخضراء
(alif- - ʼ- - ʼ-

alif-hamzah) 

(alif- - - ʼ-alif-

-t ) 

(alif- - ʼ-alif-

ʼ-  

(alif- -ghayn- - -

alif- ) 

Green Alqabaadha Alfaaedh Algazlaan 

(b) 

Figure A 8: Arabic texts (top row), its transliteration (middle row), and meaning (bottom row) for 

Figure 3.11. 

 

 ربانة سيدي عجنقة المنزه الشرايع
(alif- - shin- ʼ- 

alif- ʼ- ʻayn) 

(alif- - - -

- ʼ) 

(ʻayn- - - - 

t ) 

- ʼ- -

ʼ) 

( ʼ- ʼ-

alif- -t ) 

Asshraae’ Almunnaza E’jneka My Master Rabaana 

 شوّاط بولحناش الخليج مارث
( -alif- ʼ- 

ʼ) 

(alif- - ʼ- 

- ʼ-  

ʼ- - - ʼ- 

-alif-  

(shin- -

alif- ʼ) 

Maarth The Gulf Bulhanaash Shawwaat 

Figure A 9: Arabic texts (top row), its transliteration (middle row), and meaning (bottom row) for 

Figure 3.12. 
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Appendix B 

e will present the experiments and the results related to machine printed 

Arabic text recognition based on the approaches presented in Section 6.2. 

First, we will present the machine printed text databases we used for the 

experiments. This will be followed by the details of the experiments, the results, 

and the discussions. 

B.1. Databases for machine printed text recognition 

We used two machine printed Arabic text databases for the experiments. Below we 

present a brief description of both the databases. 

B.1.1. P-KHATT database of machine printed texts 

The P-KHATT database is the machine printed version of the KHATT database 

presented in Section 7.1.2. The database includes text from eight different fonts; 

each text is divided into three non-overlapping sets (train, development, and test). 

The train, development, and test sets contain 6472, 1414, and 1424 text line images 

respectively. The text and the divisions are similar to the text and divisions of the 

KHATT database. Figure B 1 presents sample text images from the P-KHATT 

database in eight fonts. In addition to the data and the images for the eight fonts, 

the P-KHATT database has text line images and their annotations for a ninth font 

for the purpose of text recognition on unseen fonts. The ninth font does not include 

the training and the development sets. The text documents were printed using a 

laser printer and, then, scanned at a resolution of 300 Dots-Per-Inch (DPI). 

B.1.2. APTI database of machine printed texts 

The APTI database is a publicly available database of machine printed Arabic 

texts and is free for noncommercial use (Slimane et al. 2009). The database contains 

low-resolution (72 DPI) synthetically generated printed Arabic word images in 

many fonts, sizes, and styles. The database is partitioned into six sets for each 

combination of font, size, and style. Five of the six sets are open, whereas; the sixth 

set has not been disclosed to the public and is employed in competitions to evaluate 

submitted OCR systems. According to the database developers, the characteristics 

of the sixth set is similar to the characteristics of the remaining sets (Slimane et al. 

2009). Each set contains different word images but the distribution of the 

W 
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characters is nearly identical in every set. Figure B 2 presents sample text images 

from the APTI database. Some experiments were conducted using the APTI 

database in order to validate our approaches on multiple databases and as well as 

to use it as a benchmark to compare our results to other OCR systems reported in 

the literature that uses the same database under similar experimental 

configurations. 

Font (Code) Sample Text Image 

Akhbar (AKH) 
 

Andalus (AND) 
 

Naskh (NAS)  

(KFGQPC Uthman Taha Naskh)  

Simplified Arabic (SIM) 
 

Tahoma (TAH) 
 

Thuluth (TLT)  

DecoType Thuluth  

Times New Roman (TNR) 
 

Traditional Arabic (TRA) 
 

Figure B 1: Sample text line images in different fonts from the P-KHATT database. Image 

degradation due to the printing and scanning process is apparent (Image source (Ahmad, 

Mahmoud, and Fink 2016)). 

B.2. Experimentations, results, and discussions 

In this section, we will present our experiments and results conducted on the P-

KHATT and the APTI databases of machine printed texts. First, we will present 

the experiments conducted on the P-KHATT database which will be followed by 

the experiments conducted on the APTI database. 
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Font (Code) Sample Text Images 

Andalus 

            

ArabicTransparent 

        

Diwani Letter 

              

Simplified Arabic 

        

Traditional Arabic  

             

Figure B 2: Sample text line images in different fonts from the APTI database. 

B.2.1. Experiments using the P-KHATT database  

The text line images were normalized to a fixed height of 96 pixels while 

maintaining the aspect ratio of individual line images. Next, sliding window 

technique was used to extract the features from the normalized text line images. 

The frames of the sliding window were further divided into individual cells (a total 

of 6 cells). The height of individual cells were not constant as is commonly the case. 

Instead, the height of the cells were adaptive to the text line such that the cells are 

smaller around the writing line where the pixel concentration is higher and the size 

gradually increase as we move away from the writing line (both below and above 

it). A cell is placed around the writing line and a number of cells are placed above 

it and below it. The number of cells below the writing line is less than the number 

of cells above the line as this design suits the properties of Arabic script. The 

algorithm for cell division of the sliding window is presented in Figure B 3. The 

width and the overlap for the window frames were decided based on the text 

recognition results on the evaluation set on one of the fonts (Times New Roman). 

The sliding window width and overlap for the Thuluth font was calibrated 

separately using its development set as the Thuluth font has quite different 

characteristics as compared to other fonts in the database. Density of ink pixels 

were computed from each cell of the sliding window frames running across the text 

line images in addition to its horizontal and vertical derivative images. The features 
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from each frame were concatenated for all the three images such the feature vector 

has the dimension 18.  

Our text recognition system is based on continuous HMMs. We use HTK tools 

(Young et al. 2002) to implement our recognizer. Each character shape is treated 

as an individual model with a simple right-to-left linear topology. White space was 

explicitly modeled using a separate HMM. We have a total of 153 different HMMs 

in our recognition system. Each character-shape HMM was modeled with the same 

number of states, with the exception of some narrow-width characters (such as alif 

 which were modeled with half the number of states. The optimal number of ,(ا 

states (for each font) was determined based on the uniform initialization (flat start) 

 

User Inputs:= total no. of cells ‘totalCells’ in a frame,  

  no. of cells ‘cellsAbove’ above the writing line,  

    text-line image 

 Place the cell cellwl around the writing line such that the baseline 

of the text is in the middle of the cell. The width of the cell shall 

be such that the following condition is satisfied: 

(𝑆𝑢𝑚 𝑜𝑓 𝑖𝑛𝑘 𝑝𝑖𝑥𝑒𝑙𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑐𝑒𝑙𝑙)

(𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑘 𝑝𝑖𝑥𝑒𝑙𝑠)
≅  

1

(𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑎 𝑓𝑟𝑎𝑚𝑒)
 

 Divide the area above the cellwl into ‘cellsAbove’ cells such that 

each of the cell has the same percentage of ink pixels. 

 Divide the area below the cellwl into ‘totalCells – cellsAbove - 1’ 

cells such that each of the cell has the same percentage of ink 

pixels. 

Figure B 3: Algorithm for determining the size and the position of the cells of the sliding window 

frames. 

We employed 2,000 text line images for training instead of the complete training 

set for each font. Training was conducted in two stages. In the first stage, uniform 

initialization (flat start) was performed using the training data. In the next stage, 

the alignment information from the training data was employed to initialize 

individual HMMs using Viterbi initialization followed by a number of iterations of 

Baum-Welch training. Character hypotheses for the evaluation set were generated 

using Viterbi decoding. The experimental results related to configuring the sliding 

window width and overlap are presented in Table B 1. Accordingly, based on the 

results, we applied a window width of 6 pixels with an overlap of 3 pixels for all 

other fonts (except the Thuluth font which has window width of 4 pixels with an 

overlap of 2 pixels). 
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Once the sliding window parameters were selected, we performed the two-step 

training (i.e., uniform initialization and alignment-based initialization) for all eight 

fonts. The recognition results for each of the eight fonts are presented in Table B

2. The best result CER 1.04% was achieved for the Tahoma font. The worst 

result CER 7.55% was achieved for the Thuluth font. The mean CER of 2.89% 

was achieved for the eight fonts on the evaluation sets. 

 

Table B 1: Configuration of sliding w on the 

development set using the Times New Roman font from the P-KHATT database. 

Window (W|O)* No. of states CER (%) 

4|2 10 1.43 

2|0 11 1.78 

3|1 10 2.54 

1|0 17 2.60 

3|0 7 1.65 

4|1 7 1.37 

5|2 7 1.26 

6|3 7 1.23 

4|0 6 2.32 

6|2 6 1.87 

8|4 5 1.56 

*W: Width; O: Overlap 

Table B 2: Summary of the character recognition results for mono-font machine printed text 

recognition using the P-KHATT database. 

Font 
Window 

(W|O) 
No. of States 

CER (%) Statistical  

Significance Development Evaluation 

Times New Roman 6|3 7 1.23 1.20 ±0.06 

Andalus 6|3 8 1.20 1.35 ±0.07 

DecoType Thuluth 4|2 7 7.51 7.55 ±0.15 

Tahoma 6|3 9 1.00 1.04 ±0.06 

Traditional Arabic 6|3 6 4.75 4.35 ±0.12 

Naskh  6|3 6 2.61 3.06 ±0.10 

Akbaar 6|3 6 2.80 2.87 ±0.09 

Simplified Arabic 6|3 7 2.02 1.67 ±0.07 

Mean   2.89 2.89  
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Our next set of experiments was related to mixed font text recognition. As an 

initial experiment, we trained a mixed-font recognizer (i.e., the recognizer was 

trained using training samples from all fonts). The optimal HMM parameters were 

selected based on the results from the development set, and a final evaluation was 

conducted on the evaluation set. A CER of 12.19% for the development set and a 

CER of 12.14% for the evaluation sets were achieved, which are significantly higher 

than the mean CER of 2.89% that was achieved for mono-font text recognition. 

This increase in error rates can be partly explained by the large variation in font 

styles and the fact that each font has individual parameters (such as number of 

states), which is difficult to generalize. This motivated us to explore font-

identification-based recognition, as described in Section 6.2.2, in which the image  

font is identified in the first step and the mono-font recognizer for the identified 

font is subsequently employed for text recognition in the second step. 

For the font-identification-based recognition, we trained the font identification 

module. The font features, as described in Section 6.2.1, were computed from the 

training samples for each of the eight fonts. An SVM, with Radial Basis Function 

(RBF) as the kernel, was employed as a classifier. The font identification module 

was evaluated using a set that contained 1414 text line images for each font, which 

were randomly distributed. Table B 3 presents the font identification results and 

the confusion matrix. As shown in the table, we achieve reasonable results for the 

font identification, which demonstrates the effectiveness of our proposed features 

for font identification. Common confusion occurred between the Simplified Arabic 

font and the Times New Roman font. A closer look at the text images from the 

two fonts reveals that the two fonts are quite similar; this observation has been 

noted in other studies (cf., e.g., (Luqman, Mahmoud, and Awaida 2014)). Another 

observation is that both fonts employ the same number of HMM states per model, 

which provides clues regarding their similar properties. To confirm that the fonts 

are indeed similar, we recognized the text images from the Times New Roman font 

using the mono-font recognizer that was trained on the Simplified Arabic font. A 

CER of 3.68% was achieved, which confirmed that the two fonts are not only 

visually similar but also exhibit similar properties with respect to text recognition. 

When they were combined as one font, our font identification rate was 97.27%. 
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Table B 3: Font identification results and the confusion matrix on the P-KHATT database. 

Font AKH AND NAS SIM TAH TLT TNR TRA Identification Rate (%) 

AKH 1337 0 20 11 2 4 1 39 94.55 

AND 2 1402 0 1 2 4 1 2 99.15 

NAS 9 1 1352 1 0 20 2 29 95.62 

SIM 5 1 14 1269 2 3 118 2 89.75 

TAH 2 0 0 0 1405 4 1 2 99.36 

TLT 2 1 26 2 0 1367 2 14 96.68 

TNR 2 1 3 129 3 3 1272 1 89.96 

TRA 14 1 33 3 0 8 3 1352 95.62 

        Mean 95.08 

After associating the font of the input text image, we performed feature 

extraction and recognition using the mono-font text recognizer of the associated 

font. With this approach, we achieved a CER of 3.44%, which is closer to the mean 

CER that we achieved in the mono-font setups. Thus, the results demonstrate the 

effectiveness of this approach compared with the commonly employed approach of 

recognizing the text image using a recognizer that is trained on multiple fonts. To 

understand the recognition errors caused by errors in font identification, we 

conducted another experiment, in which we manually separated the text line images 

mono-font recognizer. The CER was 2.86%; thus, the text recognition error caused 

by the error in font identification was 0.58% (i.e., 3.44–2.86). Table B 4 

summarizes the results of the recognition for both scenarios.  

Table B 4: Summary of the results (in CER) for the mixed-font machine printed text recognition 

experiments using the P-KHATT database. 

Setup CER (%) 

Recognizer trained on samples from all 

fonts 
12.19 

Using font-association-based recognition 3.44 

Recognition using the mono-font recognizer 

after manually separating text lines into 

different fonts.  

2.86 

In the last set of experiments involving the P-KHATT database, we performed 

text recognition on an unseen font. We attempted different configurations to 

investigate the effectiveness of various approaches presented in Section 6.2.2. In the 

first exper

trained on text line images from all the eight fonts. In the second experiment, we 

associated the input text line images to the closest of the eight fonts using the font 
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association m

recognize the input text. In the next few experiments, we evaluated the HMM 

adaptation techniques that were presented in Section 6.2.2. In one of the 

experiments, we investigated unsupervised HMM adaptation, in which no labeled 

data for the unseen fonts were employed. Recognition was performed after the 

adaptation step. In another set of experiments, we employed 100 labeled text line 

images for the unseen font to perform MLLR-based supervised adaptation. A 

summary of the recognition results for the unseen fonts is presented in Table B 5. 

Although the supervised and unsupervised adaptation techniques improve the 

results, the improvements based on the supervised adaptation are optimal, which 

is understandable. It assumes the availability of labeled samples for the input font, 

which may not always be feasible.  

Table B 5: Summary of the character recognition results (in CER) for the unseen font using the P-

KHATT database. 

System Description CER (%) 

Recognizer trained on samples from all fonts 19.28 

Recognizer for the closest identified font 15.39 

Recognizer for the closest identified font + 

Unsupervised adaptation 11.76 

Recognizer for the closest identified font +  

Supervised adaptation 9.43 

 

We present a subjective comparison of our text recognition system with other 

HMM-based printed Arabic text recognition systems that have been discussed in 

the literature. Only studies that performed text recognition using text lines instead 

of systems that recognized isolated characters, digits, or word images were selected. 

Systems that employed synthetic databases were not selected because they did not 

address many of the practical challenges of real and scanned databases. In Table 

B 6, we present a comparative study of different studies related to printed Arabic 

text line image recognition. This comparison was not performed to quantitatively 

compare different works because this task would be impossible due to the different 

databases utilized by different groups. Thus, this comparison should be understood 

from a complementary viewpoint. In the comparison presented in Table B 6, we 

highlight different aspects of the study, such as the selected database, which was 

considered to be one of the most important aspects. The nature of the database, 
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its text sources, its characteristics (such as scanning resolution and noise level), 

and its division into different sets (for training, development, and evaluation) serve 

an important role in text recognition performance.  

Another important aspect is the nature of text recognition with respect to font 

variability. Some studies only reported their results for mono-font or mixed-font 

text recognition, whereas other studies discussed the performance of both mono-

font and mixed-font text recognition. Our current work focuses on mixed-font text 

recognition as well as text recognition of unseen fonts. Other important aspects 

include the decoding network and the use of language models. Some studies 

optionally decode at the character level using character n-grams as their language 

models. Other studies have employed word lexicons with the optional use of word 

n-grams as language models. The issue of out-of-vocabulary (OOV) words is 

important when using word lexicons in open vocabulary word recognition tasks. 

One study (Prasad et al. (Prasad et al. 2008)) also investigated the use of parts of 

Arabic words (PAW) language models. These models can also be used after 

decoding to re-score the N-best list that is generated during decoding. In addition 

to these aspects, other aspects can be compared between different studies, including 

the nature of the HMM system (continuous vs. discrete vs. systems with differing 

levels of tying, e.g., mixture tying and state tying), the sliding window technique 

and features employed for recognition. 
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Table B 6: A Subjective comparison of other HMM-based printed Arabic text recognition systems that perform recognition at the text line level. 

Work Characteristics of the database  
Main aspects of text 

recognition 
System description Error rates (%) 

Bazzi et al. 

(Bazzi, 

Schwartz, 

and 

Makhoul 

1999) 

DARPA Arabic OCR Corpus of 345 

pages of Arabic text scanned at 600 

DPI 

 

For mixed font text recognition: 

 Text line images from 30 pages 

were used for training  

 Text line images from 10 pages 

were used for evaluation  

 Mono-font text 

recognition 

 Mixed-font text 

recognition where the 

training set and the 

evaluation set 

contains line images 

from four different 

fonts 

 HMM-based OCR system 

 Pixels density features with vertical 

and horizontal derivatives in 

addition to local slope and 

correlation features across a 

window of two cells  

 lexicon obtained from a large text 

corpus with closed vocabulary of 

30k words 

 A language model for recognition 

from the same text corpus 

CER of 0.40 for mono-font text 

recognition 

 

CER of 2.60 for mixed-font system 

with closed vocabulary word 

recognition 

 

CER of 4.50 on mixed font open 

vocabulary text recognition using 

trigram character language model 

Natarajan 

et al. 

(Premkum

ar 

Natarajan 

et al. 2001) 

DARPA Arabic OCR Corpus of 345 

pages of Arabic text scanned at 600 

DPI 

 

 Text line images from 192 text 

zones were used for training 

 Text line images from 102 text 

zones were used for evaluation 

 Mixed-font text 

recognition 

 HMM-based OCR system with 

mixture tying at character level 

 Percentile features with vertical 

and horizontal derivatives in 

addition to local slope and 

correlation features 

CER of 3.86  

 

Khorsheed 

(Khorshee

d 2007) 

A database of 15,000 text line images 

in six different fonts, i.e., 2,500 text 

line images in each font. 

 Training set includes 1,500 text 

line images in each of the six 

font  

 Mono-font text 

recognition for six 

different fonts 

 

 Discrete-HMMs based OCR system 

 Pixel density features extracted 

from the sliding windows over the 

text line images and their 

horizontal and vertical derivatives  

 Contextual HMM modeling 

CER ranging from 7.40 (for 

Andalus font) to 14.00 (for Naskh 

font) 
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 Development Set includes 1,000 

text line images in each of the 

six font 

 

 Character bigrams from training 

transcriptions 

Prasad et 

al. (Prasad 

et al. 2008) 

DARPA Arabic Machine Print 

(DAMP) scanned at 600 DPI 

 Training set includes text line 

images from 177 page images in 

addition to text line images 

from 380 synthetically 

generated page images in 

multiple fonts and sizes 

 Development set includes text 

line images from 60 page images 

 Evaluation set includes text line 

images from 60 page images 

 Mixed-font text 

recognition  

 HMM-based OCR system with 

discriminative training 

 Position-dependent tied mixtures 

where the Gaussians for 

corresponding states of all the 

presentation forms of character is 

tied 

 Contextual HMM modeling 

 Character, PAW, and word 

trigrams from 2.6 million words of 

Arabic newswire data in addition 

to the training transcriptions  

 Word lexicon of 65k words 

Best word error rate of 9.60 using 

PAW language model and N-Best 

rescoring using contextual HMMs 

estimated using discriminative 

training procedure 

Dreuw et 

al. (Dreuw 

et al. 2012) 

RAMP-N printed Arabic database in 

20 different fonts scanned at 600 DPI: 

 222,421 text line images for 

training 

 1,155 text line images for the 

development set 

 3,480 text line images for the 

evaluation set 

 Mixed-font text 

recognition (two of 

the fonts cover more 

than 95% of all the 

text line images in 

the evaluation set) 

 Word recognition task 

with Out Of 

Vocabulary rate of 

2.21% 

 HMM-based system with ML 

trained GMMs with globally pooled 

variances 

 Appearance-based image slice 

features along with spatial 

derivatives  

 Language model using a corpus of 

228 million running words  

 Vocabulary size of 106k words 

WER of 4.76 and  

CER of 0.15 on the rendered data 

 

WER of 5.79 and  

CER of 0.66 on the scanned data 
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Present 

Work 

P-KHATT printed Arabic text 

database in eight different fonts 

scanned at 300 DPI:  

 Training set includes 6,472 text 

line images in each of the eight 

font (2,000 text line images 

used for training in current 

work) 

 Development Set includes 1,414 

text line images in each of the 

eight font 

 Evaluation Set includes 1,424 

text line images in each of the 

eight font 

 

 

 Mono-font text 

recognition 

 Mixed-font text 

recognition 

 Text recognition for 

unseen font (i.e., 

having no training 

samples) 

 HMM-based OCR system 

 Adaptive sliding window for feature 

extraction 

 Pixel density features and its 

vertical and horizontal derivatives 

 Font identification based text 

recognition 

 Use of supervised and unsupervised 

HMM adaption techniques to deal 

with font variability 

 Character bigrams from training 

transcriptions 

CER ranging from 1.04 (for 

Tahoma) to 7.55 (for Thuluth) for 

mono-font text recognition without 

using any language model or word 

lexicon 

 

CER of 3.44 for mixed-font text 

recognition without using any 

language model or word lexicon 

 

For unseen-font text recognition: 

CER of 11.76 using unsupervised 

adaptation without any language 

models and lexicon 

CER 7.18 using supervised 

adaptation and character bigrams 

as language model 
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B.2.2. Experiments using the APTI database  

In this section, we will present the character recognition experiments we conducted 

on the publically available APTI database. As mentioned before, we conducted 

some experiments using the APTI database in order to validate our machine 

printed text recognition approaches on multiple databases and as well as to use it 

as a benchmark to compare our results to other OCR systems reported in the 

literature that uses the same database under similar experimental configurations. 

The details of the system initialization, training, and decoding are similar to the 

ones presented for the experiments using the P-KHATT database. The minor 

differences will be presented along the discussions of the results. 

In the first set of experiments involving the APTI database, we perform mono-

font text recognition. We experimented with five different fonts from the APTI 

database the same five fonts were selected in the first competition that was held 

using the APTI database (Slimane et al. 2011). For each font, we selected 24-point 

images in plain text. Set 1 was selected as the training data, and 3000 images from 

set 2 were selected as the development set to optimally configure the number of 

states per HMM. Set 

images, with the exception of the images in the Diwani Letter font, were height-

normalized to 64 pixels while maintaining a constant aspect ratio. Because Diwani 

Letter is very compact with many vertically overlapping ligatures, it was height-

normalized to 96 pixels. An explicit white space model was not employed in these 

experiments. 

The mono-font text recognition results for the individual fonts is presented in 

Table B 7. The best results were obtained for the Arabic Transparent font, whereas 

the results for the Andalus and Simplified Arabic fonts were also comparable. The 

poorest results were obtained for the Diwani Letter font, which is a complex and a 

compact font. The mean CER for all the fonts was 2.07%. For optimal performance, 

parameters such as the sliding window width and overlap, the number of mixtures 

per HMM state, and the image height can be calibrated for individual fonts using 

their corresponding development sets. Use of the font-specific ligature models also 

has the potential to improve recognition performances (e.g., (Slimane et al. 2010; 

Slimane et al. 2012)).  
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Table B 7: Summary of the character recognition results for mono-font machine printed text 

recognition using the APTI database. 

Font CER (%) 

Andalus  0.76 

Arabic Transparent 0.57 

Diwani Letter 4.67 

Simplified Arabic 0.69 

Traditional Arabic 3.65 

Mean 2.07 

In the next set of experiments, we performed mixed-font text recognition. 

Similar to the experiments with the P-KHATT database, we investigated two 

approaches to this text recognition task. The first approach was to train an HMM 

recognizer using samples from all five fonts. The second approach was to perform 

font-association-based recognition. For the first approach, we selected 3000 word 

images from set 1 of each font at 24 point size; the training data included 15,000 

word images. The optimal number of states for the HMM was selected based on 

the recognition performance on the development set, which included 600 word 

images from set 2 of each font (a total of 3000 images). The final evaluation was 

conducted using the evaluation set, which included 15,000 word images in the five 

fonts (3000 images from each font from set 5). A CER of 7.71% was obtained that 

was reasonable but higher than the mean CER of 2.07%, which was achieved in 

the mono-font experiments. 

For the second approach, we train our font-association module, which utilizes 

an SVM classifier with RBF kernel. The font identification features, as proposed in 

Section 6.2.1, were extracted from the 15,000 word images in the training set. These 

features and the information about the word image font typefaces were employed 

to train the SVM classifier. The trained classifier was applied to associate the word 

image  font in the evaluation set. The font identification results for the evaluation 

set are presented in Table B 8. An average identification rate of 96.99% was 

obtained. After associating the input text image  font, we perform feature 

extraction and recognition using the mono-font text recognizer for the associated 

font. Using this approach, we achieved a CER of 2.92%, which demonstrates that 

the two-step font-association-based text recognition proved to be a better approach 

than performing text recognition trained on multiple font images. In Table B 9, 

we summarize the text recognition results for the mixed-font text recognition task. 

When the text line images were manually separated based on the font, the CER 
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was 2.12%. Consequently, the recognition errors caused by the misclassified fonts 

was 0.80% (i.e., 2.92 2.12). 

Table B 8: Font identification results and the confusion matrix on the APTI database. 

Font Andalus 
Arabic 

Transparent 

Diwani 

Letter 

Simplified 

Arabic 

Traditional 

Arabic 

Identification 

Rate (%) 

Andalus  2994 2 0 3 1 99.80 

Arabic Transparent 0 2806 12 178 4 93.53 

Diwani Letter 0 4 2944 0 52 98.13 

Simplified Arabic 0 140 0 2856 4 95.20 

Traditional Arabic 3 3 44 2 2948 98.27 

     Mean 96.99 

Table B 9: Summary of the results (in CERs) for the mixed-font machine printed text recognition 

experiments using the APTI database. 

Setup CER (%) 

Recognizer trained on samples from all fonts 7.71 

Using font-association based recognition 2.92 

Recognition using mono-font recognizer after 

manually separating text lines of different 

fonts.  

2.12 

We compare our text recognition results using the APTI database with results 

from other HMM systems that have been reported in the literature using the APTI 

database. The comparison is presented in Table B 10. The comparison is based on 

recognition results on Arabic Transparent font because this font was included in 

the reference protocols for the text recognition competitions that employed the 

APTI database (Slimane et al. 2011; Slimane et al. 2013). For the remaining fonts, 

the results in the competitions are presented for mixed-font and multi-size text 

recognition scenarios. Thus, comparisons including other fonts are not possible. For 

the Arabic Transparent font, a completely objective comparison is still not possible 

for many reasons. One of the most important reasons is that set 6, which is not 

publicly available, was employed to evaluate the systems in the competitions. For 

the systems that utilized the APTI database and that are available in the literature, 

each group created individual training, development, and evaluation set partitions. 

Some systems applied word lexicons and n-gram language models, whereas other 

systems did not use any word lexicons or language models. For some systems, these 

details are not explicitly mentioned. Nevertheless, the comparison table can provide 

useful qualitative insights. 
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Table B 10: Comparison with other HMM-based text recognition systems evaluated using the APTI database. 

OCR systems Database setup for experimentation Error rates (%) System description 

UPV-PRHLT (cf. 

(Slimane et al. 2011)) 

APTI database of printed Arabic text 

Font: Arabic Transparent, size: 24 

- set 1 to set 5: used as training 

and development sets 

- set 6 (not publicly available) used 

for evaluation 

Character level: 4.00  

Word level: 15.60 
- Bernoulli-mixture-based HMM system (BHMM) 

Awaida and 

Khorsheed (Awaida 

and Khorsheed 2012) 

APTI database of printed Arabic text 

- Training Set: 80,000 images 

Sub-Training Set: 8,000 images 

Development Set: 1,000 images 

- Evaluation Set: 14,418 images 

Character level: 3.35 

- Discrete HMM-based OCR system 

- Sliding-window-based run-length encoding (RLE) features  

- Number of states per model and codebook size for feature 

quantization were optimized using the development set  

IPSARec System (cf. 

(Slimane et al. 2011)) 

APTI database of printed Arabic text 

Font: Arabic Transparent, size: 24 

- sets 1 to 5: used as training and 

development sets 

- set 6 (not publicly available) used 

for evaluation 

Character level: 3.20 

Word level: 22.50 

- Discrete HMM-based OCR system 

- Pixel density features from the text image and its 

horizontal and vertical derivatives 

THOCR1 (cf. 

(Slimane et al. 2013)) 

APTI database of printed Arabic text 

Font: Arabic Transparent, size: 24 

- set 1 to 5: used as training and 

development sets 

- set 6 (not publicly available) used 

for evaluation 

Character level: 1.05 

Word level: 8.23 

- HMM-based OCR system 

- Statistical and structural features and their derivatives 

- No language model used 
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THOCR2 (cf. 

(Slimane et al. 2013)) 

APTI database of printed Arabic text 

Font: Arabic Transparent, size: 24 

- sets 1 to 5: used as training and 

development sets 

- set 6 (not publicly available) used 

for evaluation 

Character level: 0.81 

Word level: 4.97 

- HMM-based OCR system 

- Statistical and structural features and their derivatives 

- Four-gram language model trained on the APTI training 

corpus used for rescoring 

Khoury et al. 

(Khoury et al. 2013) 

APTI database of printed Arabic text. 

Font: Arabic Transparent, size: 24 

- Training set: 10,000 images  

- Development set: 2000 images  

- Evaluation set: 3000 images  

Character level: 0.30 

- Bernoulli-mixture-based HMM system (BHMM) 

- Image height, sliding window width, number of states per 

model, and number of mixture components per state were 

optimized using the development set. 

- Five-gram language model at the character level 

UPV-BHMM (cf. 

(Slimane et al. 2013)) 

APTI database of printed Arabic text 

Font: Arabic Transparent, size: 24 

- sets 1 to 5: used as training and 

development sets 

- set 6 (not publicly available) used 

for evaluation 

Character level: 0.04 

Word level: 0.10 

- Character-based windowed BHMMs (Bernoulli HMMs) 

- Image height, sliding window width, number of states per 

model, and number of mixture components per state were 

optimized using the development set. 

- Five-gram language model at the character level 

DIVA-REGIM (cf., 

(Slimane et al. 2011; 

Slimane et al. 2010)) 

APTI database of printed Arabic text 

Font: Arabic Transparent, size: 24 

- sets 1 to 5: used as training and 

development sets 

- set 6 (not publicly available) used 

for evaluation 

Character level: 0.30 

Word level: 1.10 

- HMM-based OCR system 

- Character shape as HMM models with some models 

merged into one model, which produced a total of 65 

HMM models 

- Ergodic HMM topology with all possible transitions 

allowed 

- System parameters tuned using sets 1 to 5 

- Number of connected black and white components, centers 

of gravity, density, compactness, vertical and horizontal 

- projection, baseline position, number of relative extrema 

in the vertical projection, and number of relative extrema 

in the horizontal projection used as features and their 

horizontal derivatives 
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SID (cf. (Slimane et 

al. 2013)) 

APTI database of printed Arabic text 

Font: Arabic Transparent, size: 24 

- set 1 to 5: used as training and 

development set 

- set 6 (not publicly available) used 

for evaluation 

Character level: 0.01 

Word level: 2.59 

- HMM-based OCR system 

- Sliding-window-based features 

Present Work 

APTI database of printed Arabic text 

Font: Arabic Transparent, size: 24 

- Set 1 used as training set 

- Set 2 used as development set 

- Set 5 used as evaluation set 

Character level: 0.57 

Word level: 2.12 

- HMM-based system with adaptive sliding window features 

and statistical feature in addition to its horizontal 

derivatives 

- Number of states per model optimized using the 

development set 

- No use of language models or word lexicons. 
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