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1 The initial problem: the non-symmetric generator

Nowadays the distribution of power in AC systems is not provided by a single
power plant anymore. The growth of importance of renewable energies is reflected
in an increasing decentralization of energy supply. To guarantee a stable and
continuous operation it is important to constantly and precisely measure the
involved currents and voltages.

The question that we discuss in our first part of the text came up during the
testing of high voltage generators. Its components may independently vary in
time, e.g. due to warming, which results in a non-symmetry of the line voltages. In
the system at hand these line voltages can not be measured directly for technical
reasons, but only the phase-to-phase voltages can be measured. Therefore, the
question was how we can get the first ones from the latter ones.

A three-phase AC generator typically is star-shaped. That means that the three
coils of the generator are placed around a turning magnet forming a regular three
armed star. Of each coil one end is grounded (N) and the free ends are the phases
that form the plug socket (Aj, Aa, A3). This situation yields the star circuit as
drawn in Figure 1.

Figure 1: The basic circuit of a star-shaped generator
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The well known symmetric situation is as follows: Between the points A; and N
we have AC voltages with same amplitudes but phase differences ¢ = 120°. Then
the voltages can be described in terms of harmonic oscillations in the following
way:

U' = U cos(wt + o) = U R (ei“’t”%) a=1,2,3.
with (A](’X =U for all a and 1 = ¥, Y = 0,13 = 2¢. The phase-to-phase voltage
Us between the A; and Ag is given by the difference of the two voltages U] and

U, ie.

Us = UR ( piwttivs _ eiwt-‘riwl)
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Y1 — o

= QUsinT CcoS (wt + M

— 900) .
2
Due to the symmetric situation, |¢; — ;| ~ 120°, Ul = (7;, the amplitudes of
U1, Us, and Us are given by

0120220322(]81116002\/30. (1)

Using the relation between complex numbers and plane geometry, where addition
and multiplication are replaced by vector addition and dilatation rotation, we
may translate the above circuit into the plane and get the situation from Figure
2. We emphasize, that in Figure 2 we only draw the amplitudes of the voltages.
To see the vector character let Uj, Uy, and U point inwards. Then Us = U] — U,
points south-east with a phase of ¢ = 330° as angle between the horizontal and Us
measured in the upper point.! Such diagrams related to AC calculations are called

Figure 2: The phasor diagram of the symmetric star-shaped generator

phasor diagrams and a basic introduction can be found in [2, 5, 6] for example.
The main tool for the translation from circuit to phasor diagram is Kirchhoff’s
mesh rule or Kirchhoff’s voltage law that states that the sum of the voltages in a
closed loop of a circuit vanishes.

The non-symmetric variant of this situation is as follows: The phase differences of
the primed line voltages remain 120° but their amplitudes differ.

Problem 1. We start with the star-shaped generator as given in Figure 1 with
non-symmetric line voltages (primed). The configuration of our system only allows
to measure the phase-to-phase voltages (non-primed). We need a way to compute
the primed quantities from the non-primed ones.

"Whenever we use the term ”voltage” from now on, we mean the amplitude of the corre-
sponding physical voltage. Therefore, we will omit the ~ in the notation.
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The geometric reformulation of Problem 1 is as follows:

Problem 2. Given three rays starting from one point M that pairwise form
an angle of 120°. Furthermore, given three points A, B, C each lying on one
ray. These points form a triangle A(ABC), see Figure 3. Starting from this
configuration and given the lengths of the three edges a = |BC|, b = |AC],
c = |AB]| of the triangle, we like to know the lengths a’, ¥/, ¢ of the segments
MA, MB, MC.

Figure 3: The geometric setup for Problem 2 of the non-symmetric generator
according to Problem 1

C

The point M that we introduced above is called Fermat-point and gives the
solution of a classical geometric problem. The result can be formulated as follows.

Proposition 3 (The Fermat-point of a triangle). Given a triangle A(ABC) with
all angles less than 120°. Then there is a unique point M in the interior for which
the lines from M to the corners form equal angles of 120°. It can be constructed
as drawn in Figure 4 and described as follows:

1. Over each edge of the triangle A(ABC) draw an equilateral triangle:
A(ARB), A(BPC) and A(ACQ).

2. Draw straight lines BQ, AP and CR.

3. These lines intersect in one point, namely M.

There exists an elementary geometric proof of Proposition 3. The only things that
are used are basic geometric ideas such as congruences of triangles and equality
of certain angles. This is the proof presented by Evangelista Torricelli, see [15]. It
is also published briefly in the English Wikipedia [16] and mentioned in [7].

The Fermat point in addition has the following very interesting minimizing
property.

4
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Proposition 4. For the Fermat point M the sum of the distances to the vertices
of the triangle A(ABC') attains its minimum.

This property is not so obvious although there is a very short geometric proof,
see [16]. For a historical survey of the geometric treatment of this problem see
[11] and the wonderful books [3, 4]. In [3, 4] and in [8] the authors also explain
the mechanical content of the minimizing property that describes the Fermat
point as a point of equilibrium, see also Example 7 for the special situation of an
equilateral triangle.

Figure 4: Construction of the Fermat-point M
R

P

2 The solution of Problem 2: the line voltages of the non-symmetric gener-
ator

In this section we give a solution of Problem 1. This is done by presenting formulas
for the quantities a’, b’, ¢’ from Problem 2 that are symmetric as functions of a, b, c.

As a side result we will get a proof of Proposition 3 that explicitly gives the
Fermat-point M in terms of the vectors that span the triangle from Figure 3. In
Figure 5 we describe this situation by considering C' to be the origin of the plane.
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Remark 5. When we take a look at the technical literature we see that explicit
calculations are usually performed by using complex numbers. Therefore, the
question arises if this would be possible and reasonable here, too. Of course,
it would be possible. But due to the fact that we look for the intersection of
two real lines we would need to consider real and imaginary parts at some point.
Geometrically this means that we would consider all quantities with respect to
the standard basis of the euclidean plane. In our opinion and concerning to our
initial question the use of the vectors that span the triangle is more natural and
more reasonable. In fact, from some point the calculations are almost the same
but — maybe — a little lengthier when we would use complex numbers.

Figure 5: The construction of the Fermat-point: the vector formulation

Cap gBQ

Before starting the calculations we recall some useful facts about vectors of the
euclidean plane.! We consider two non vanishing plane vectors @ and b drawing an
angle ¢ = £(a,b).? It is given by (@, b) = abcos ¢ with (-,-) being the euclidean

product and a := ||@|| = /(@ d).

For any vector @ there exists an unique perpendicular vector @ that has length
as ||@t|| = a and both vectors form a positive basis of the plane w.r.t. the order

'For more details on basics in linear algebra see [12, 13], for example.

*By 4(d, I;) we will always mean the oriented angle 0° < ¢ < 360° that goes from @ in
counterclockwise direction to b. The angle between b and @ is then A(l_;, a) =360° — ¢ if ¢ #0°
and £(b,@) = 0° if ¢ = 0°. If we do not care about the orientation we write e.g. £(@,b) ~ 45°,

-,

ie. £(@,b) ~ 45° ~ 315°.

6
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{@ at}. We have (@t,b) = —(@,b*) = absin ¢.

In our situation @ and b are linearly independent such that we can expand @' and
bt as linear combinations. With @+ = ad + 8b we get (a*+,b) = a(d@,b*) and
(@t,at) = B(b,a+). This yields a = —cot ¢ and B = psing- Doing the same for

bl we get

L a0 @ § o b . gi@
a _sinqb( cosqbaer)7 b _singb(cowb a)' (2)

Let us turn to our situation from Figure 5 and include the additional perpendicular
vectors @' and b’ into our discussion. We note that the lengths hp and hg of

the two heights of the equilateral triangles are given by hp = 73(1 and hg = @b.

With sin 60° = @, cos 60° = % and /3 cos ¢ + sin ¢ = 2sin(¢ + 60°) the position
vectors p'and ¢ of P and @ are given by

L 1., V3, sin(¢p+60°)_ V3a -
p=-ad— —d = - a— —b,
2 2 sin ¢ 2bsin ¢ (3)
o Lp @F _ sin(@+60°); V/3b .
=5 2 0 sin ¢ 2asin¢g

Therefore, the lines {4p and fpg that contain the segments AP and BQ are
parametrized by

- <1_ V3a >E+ sin(¢ + 60°)

lap(T)=b4+T7(pP—b) = T — 2bsin¢T g Td,
b i 60°) -
V3 J)c_i—l- sin(é + 60°) )Ub

2asin ¢ sin ¢

(4)
lpo(o) =d+a(d—a)=(1-0-

The intersection point of £4p and fpg is determined by the solution (79, 0¢) of
the equation £4p(7) = {pg(c) that is equivalent to

(sin(¢+60°)T_ (1-0- V/3b >) ,

sin ¢ 2a sin ¢U
sin(¢ + 60°) V3a -
= | P s (1—-7—

( sin ¢ 7 < ’ 2bsin¢7> b

sin(p +60°) sing+ %32\ [+ o 1

= sin
sin ¢ + ‘2[—3,)“ sin(¢ + 60°) o 1
=Q
The determinant of the coefficient matrix is
detQ = = —@ (a® + b* — 2abcos(¢ + 60°))

2ab
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such that the solution (79, 0¢) is given by

o) —sing — sin(¢ + 60°) sin ¢ + % 1
o0 detQ \ ging4+ 32 _sin(¢p+60°) ) \1

V32 + 2absin(¢ — 60°)
B \/g(cﬁ + b2) —2v/3abcos(¢ + 60°) 5)
B V3 a? + 2absin(¢ — 60°)

V3(a? 4 %) — 2v/3 abcos(¢ + 60°)

We use this result to calculate the position vector m of the Fermat-point M in
the situation of Figure 5.

M = Lap(10) = €pg(00) = (1 — 70)b + 70f = (1 — 00)@ + 007 (6)
We use (b, p) = %(l;, ay — @(5, @t) = abcos(¢ + 60°) such that in terms of g

(¢)? = [I]* = (1 = 70)°6* + 73 15]* + 270(1 — 70) (b, )

7
= (1 —70)%% + 72a® + 279(1 — 10)abcos(¢ + 60°) . )
Similarly we get
(a)? = [AM|* = 7§ (a® + b* — 2abcos(¢ + 60°)) (8)
(b")? = |BM|* = 0§ (a® + b* — 2abcos(¢ + 60°)) . 9)

To get formulas for o, V', and ¢’ that are symmetric with respect to a, b, and ¢ we
recall the cosine-theorem that says

2abcos ¢ = a® +b* — 2. (10)
In the same way we express 2absin ¢ as
4a%b? sin? ¢ = 4a*b*(1 — cos? ¢) = 4a*b? — (a® +b* — ?)? = &1 (11)

where we use the abbreviation

@ =(c+a+bla+c—b)(b+c—a)a+b—c) (12)
that is invariant under relabeling the three edges.!
The denominator of a’, V', and ¢’ agrees — up to a factor of 3 — with the denominator

of 79 and oq. It can be written as

1
a® 4+ b* — 2abcos(¢ 4+ 60°) = = (a® + b + ) + @@2 )

2 2

'Formulas (11) with (12) recall the famous Heron formula that gives the area of an triangle
in terms of its three edges. This area is given by 4 - area(A(ABC’)) =02

8
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The numerator of a’ is given by the numerator of Tg. It differs from that of b’ or
02 only by interchanging a and b and is given by

(\/362 + 2absin(¢ — 600))2 = i (\/3(1)2 +c —a?) + @2)2 .

We insert these expressions into (8) and (9) and get expressions for a’ and &'. A
similar calculation yields the remaining length ¢’ from (7).

Proposition 6. Given a triangle A(ABC') and the Fermat-point M as given in
Figure 3. Then d’,V’, and ¢ are given in terms of a, b, and ¢ by

@p2="L. (V3 + ¢ — a?) + ©%)° (13)
6 a+b+c2+v302 7

(b/)2 — 1 . (\/§(a2 + 62 - b2) + 92)2 (14)
6 a2+b2+c2+4302

@z =L (V3(a? + 0 — ) + ©%)° (15)
6  a>+b+c2+/302

This also yields the solution of initial Problem 1 but we postpone the formulation
to the summary, see Section 4.

Example 7. As a first example and also a first check of our result we consider
a = b = ¢, ie. an equilateral triangle. In this case we have ® = 1/3a® and
ad=b=<cd= %a which is exactly the result from (1). In particular 77 = (@ +b)

is the position vector of the geometric center of the triangle.

Remark 8. To finish a proof of Proposition 3 we have to do some more calcula-
tions:

Firstly, we have to show that M lies on the line that connects the origin and R,

i.e. there exists o such that 7 = fop(Xo) = AoFf = A (a+ b+ V3@t — EL)).

Secondly, we have to show that the angles £(p— @,q — b), £(m,p — @), and

L(m,q— E) coincide and, therefore, are given by 120°.

Remark 9. Starting from our results (13)-(15) we can prove the minimizing
property from Proposition 4. For this we look for critical points of the function
fla',b,c v, ¢) = a + b + ¢ wr.t. the three constraints g.(x,vy, 2, ¢,%) = y* +
2?2 —2yzcos¢ — a? = 0, gy(z,y,2,0,0) = 2% + 22 — 2z2c08¢ — b? = 0, and
g-(2,y, 2, 6,9) = 22 +y? — 227y cos(¢ + 1) — ¢ = 0 by using the Lagrange method.

We have to show that our solution yields a critical point of the Lagrange function
L=f+ Zwe{x,y,z} A9 for Lagrange parameters 2(zy + 2z 4+ yz)A, = w.

Moreover, we have to show that this critical point is indeed a minimum, for
example by using the rendered Hessian, see [9].
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3 A generalization: the unbalanced star circuit

We consider a 3-phase AC star circuit with unbalanced star point, i.e. the line
between the star point IV of the generator and the star point M of the circuit is
missing, see Figure 6.

Figure 6: The unbalanced star circuit

UO 1

Uos Uo2 Us
/\ N(\

U]

Us

Let us first assume that the perfect generator provides three equal line-voltages
Uor = Uy = Ups = %U with a phase difference of 120°. Then the phase-to-phase
voltages fulfill U; = Us = Us = U and they have a phase difference of 120°, too,
resulting in an equilateral phasor diagram.

The unbalanced configuration typically yields U] # U; # U for the primed line
voltages of the load. This is reflected in the phasor diagram in such a way that the
star point is displaced in the equilateral triangle defined by Uj, Us, Us, see Figure
7. We emphasize the fact that the phase-to-phase voltages of the generator and
the load are the same due to the mesh rule. Such unbalanced star circuits have
been considered in [14] for special almost symmetric configurations, e.g. U] = Uj.

We will now consider non-equal phase-to-phase-voltages U, that are provided by
a non-symmetric generator according to Section 1. We now ask the following
question: Knowing the phase-to-phase voltages of the load/generator we want to
recover the primed line voltages of the load.

Of course, the phase-to-phase voltages alone do not contain enough information
to obtain a solution. Typically, you know about the technical configuration of the
load, for example about resistors, capacities or inductances, see [14]. To create a
purely geometric problem, we assume the load to be a black box of which we do
not know the exact components but we know about the phase differences of the
primed voltages.

Problem 10. Given the phase-to-phase-voltages U;, Usa, Us of the load provided
by a non-symmetric generator as well as the phase-differences v, and 9 of the
primed line voltages of the load: What are the values of the line voltages Uy, UJ,
and U4?

10
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Figure 7: The phasor diagram of the load of an unbalanced star circuit for a
symmetric generator

The geometric reformulation is as follows.

Problem 11. Given a plane triangle A(ABC') with lengths a, b, ¢ of its edges.
Furthermore, given an unknown point X in the interior of A(ABC) of which we
know the angles ¢, = Z(BXC) and 1, = Z(CX A): What are the lengths of the
connecting edges o' = |AX|,V/ = |BX|, and ¢ = |CX|?

In fact, for phase differences 1, = ¥, = 1. = 120° this yields another formulation
of Problem 1 in terms of load instead of generator.

For the discussion of Problem 11 we consider Figure 7 with non equal phase-to-
phase voltages and translate it to the vector picture from Figure 8. We will make
use of the preliminaries and the notation from Section 2 and add a few more
quantities that we describe next.

Due to the inscribed angle theorem, all points X that draw an angle 1, with the
endpoints of the segment AC' lie on a circle with center S, the circumcircle of
A(XAC), see [1] for example. Suppose 1, > 90° then S and X lie on different
sides of AC and the central angle is given by 2(180° — ;) = 360° — 2¢). If the
angle 1, obeys the restriction ¥, > 90°, too, the point X is the intersection of
the two circles with centers R and S that contain the two chords AC and BC,
respectively.!

The radii of the circumcircles of A(XCB) and A(XAC) are given by p, =

Feos( ooy = sV 1+ cot? 9, and p, = 21/1 + cot? 1)y, respectively. The heights

!The restriction on the two angles 14,5 before is actually no restriction, because due to
Ya, ¥, Pe < 180° at least two of the three angles 1., ¥y, and . = 360° — 1, — ¥y are of this
form. Therefore, Figure 8 describes the general situation, at least after renaming the points and
edges of the triangle.

11
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Figure 8: The geometric description of the load of an unbalanced star circuit with
non-symmetric generator

of the corresponding triangles A(BCR) and A(ASC) are hg = § tan(y, —90°) =

—5coty, and hg = —3 cot 1y, respectively. Therefore, the posmon vectors of
the centers of the circumcn"cles are 7 = ;EL’ hf it = 2(@ + cot 9, @) and

§= %(5— cot by b).

We will calculate the position vector # of X whose length is given by /. For this,
we write Z as a linear combination of the two vectors that span the triangle:

g

+ 0.
3

. a
T=—

2

As said before, X is given as an intersection point of the two circles

{?j ‘ |’g_ 7_"”2 = pg} and {?j ‘ ”g»_ g»H2 _ pg}

such that the coefficients of  obey

Ha—la—cotwa_’L—i—ﬁbH 2(1 + cot?1hy,)
1(8 — 1)b + cot gy b+ + @i :b2(1+cot21pb)

]
- { 0 = o?a® + B26% + 208(@, b) — 20a® — 2B(a, b) — 2 cot P (@*, b)

-

0 = o?a® + 8%0% + 208(@, b) — 268b* — 2a/(@, b) — 2a cot Py (@, b)

12
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We subtract the two equations and get

a<a2 —@,b) - cowb@{z?)) - B(b2 —(@,b) — cotzba(&d‘,l;» ~0.

. . N . _a2—(@,by—cot by, (@L,b) .
We write this as f = ta with ¢t = (@ D) cot pe(d D)’ We introduce the length of

the third edge of the triangle, ¢ = ||@ — b||, and use 2(@,b) = a2 + b2 — ¢2 as well
as 2(at,b) = @2, see (10)-(12), and write

L c? 4 a? — b? — cot 1,02 y 202+b2—a2—cot1/)a®2 (16)
402 —a2—coth,02 T 2+a2—b2—cot02
We insert this into the quadratic equations and get for a, 8 # 0
2a2 + t(a® 4+ b* — %) + t cot(¢),)©?
“= a? + t2b% + t(a? + b — ¢?) ’
20% + t,(a? + b% — %) + t, cot (v, )O?
b= b2 +t2a2 + ty(a? + b2 — c2) ’
The length of &,

(17)

(C’)2 — i (a2a2 + ﬁQbQ + 2046<C_i, g>) — i (042612 + B2b2 + Oéﬁ(CLQ + b2 . 62)) ’

is now obtained by a lengthy calculation. In particular, we use
1 — cot ¢, cot ¢y, = — cot(thg + p) (cot ¥, + cot hy) = cot Pe(cot g + cot ) .
The result is formulated in the next Proposition.

Proposition 12. We consider the situation from Problem 11. Then the length
¢’ of the connecting edge is given by

(¢)? = 1 ((1 = cot by cot 1) O — (cot ¥, + cot i) (a? + b2 — 02))2

(€% + a? cot? ¢hg + b2 cot? ¢y ) + cot g cot ¢y (a? + b2 — c2) — (cot 1, + cot 1) O?
i(cot g + cot ¢b)2((a2 + b2 — %) — B?cot wC)Q

T @2(1 + cot? g) + b2(1 + cot? ) — (cot g + cot Up) ((a® + % — ¢2) cot Y. + ©2)
(18)

By interchanging the roles of a,b, and ¢ we get the results for a’ and ¥'. To end
up this section we will check our result by discussing some special examples:

e The equilateral triangle with a = b = ¢ yields ®% = v/3a? and

d = a (1 — cot hq cot 1) V'3 — (cot 1ha + cot )
2 \/1 + cot2 1, + cotZ ey + cot 1, cot P — v/3(cot by 4 cot 1)
a (cot by + cot hy) (V3 cot . — 1)

2 \/2+cot2¢a+cot2¢b—(cotwa+cot¢b)(cot¢c+\/g) '

13
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e The situation of equal angles, ¥, = 1, = ¥, = 120°, with cot ¢, = e

3
yields

1(©% +V3(a2 + b2 — 2))’

() =
2+ a?+b* + /30?2

which is exactly the result we obtained in (15).

The isosceles triangle with a = b, 1, = v, yields ©% = cv/4a2 — ¢2. This
is the case mainly discussed in [14]. In this case the formulas for o’ and ¥
analogue to (18) coincide such that o’ = b'. Moreover, we have

Jo (1 — cot?9),)0? — 2 cot 1,(2a® — c?)
N c2 — @2 cot 1, '

The limiting situation ¢ = 0 is obtained if and only if cot?t, +
2_ .2

% cot 1), —1 = 0. Because in this situation v, obeys 180° > 1, > 90°

we have cot 9, < 0. Therefore, the remaining negative solution the quadratic

equation is

0?2 4a? — ¢ he
== ==

where h. is length of A(ABC') over its edge c. If we denote half the angle of
A(ABC) at C by ¢, then cot ¢ = fjg such that 1, = 180° — ¢. As expected,
we see that in the limiting case v, coincides with the angle between the lines

extending a and h.. Moreover, again as expected, ¥, = 2¢ and @’ = bV = a.

For the explicit translation of the result to a solution of Problem 10, see again
the summarizing Section 4.

4 Summary: The solutions of Problems 1 and 10

The solution of the initial Problem 1.

We consider a generator with non-symmetric phase-to-phase voltages Uy, Usa, Us
as described in Figure 1. Then the line voltages U, Us, Us are given by

14

1 V3(UF+U5 -UF) + 07
G \/U12+U§+U§+\/§®2
g L V3(U3 + Ut - U3) + ©2
= .

V6 U+ U3+ U2+ V32

Up
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gr— L V3(UE + Ui — U3) +©2
=
Ve \/U12+U22+U§+\/§®2

The solution of the general Problem 10

Given an unbalanced star circuit according to Figure 6. We know the non-
symmetric phase-to-phase voltages Ui, Us,Us of the load — or the generator.
Furthermore, we know the phase differences 1, 12, and 93 = 360° — 1)1 — o of
the load. Then the line voltages U, Uj, U} of the load are given by

1 | (cot ¥ 4 cotpz) (Us + Uz — U — ©% cotihy) |
2 \/U22(1 + cotZ hg) + UZ(1 + cot? ¢)3) — (cot iha + cot 1/)3)((U22 + U2 — U?) cot 91 + @2)
1 | (cot s + cot 1) (U + UE — U3 — ©2 cot 1hy) |
2 \/U32(1 + cot? ap3) + UZ(1 + cot? 1) — (cot b3 + cot wl)((Ug2 + U2 — U2) cothg + @2)
1 ’(cot¢1+cot¢2)(U12+U22—U;—@Qcotd;g”

2 \/Uf(l + cot? 1) + UZ(1 + cot? 1b3) — (cot 1y + cot @bg)((Ulz + U2 — U2) cot s + @2)

The special case ¥1 = 19 = 13 = 120° coincides with the solution of our initial
Problem 1. This situation in particular occurs when we consider the star circuit
from Figure 6 to be balanced.

In both sets of formulas we use the abbreviation

82:\/(U1+U2+U3)(U2+U3—U1)(U3+U1—Ug)(Ul—i—UQ—Ug,)
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