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Universitätsplatz 2, 39106 Magdeburg (Germany)

c Max Planck Institute for Dynamics of Complex Technical Systems,
Sandtorstrae 1, 39106 Magdeburg (Germany)

This paper addresses the problem of determining cost-minimal
process designs for ideal multi-component distillation columns.
The special case of binary distillation was considered in former
work [2]. Therein, a problem-specific bound-tightening strategy
based on monotonic mole fraction profiles of single components
was developed to solve the corresponding MINLPs, globally. In
the multi-component setting, the mole fraction profiles of single
components may not be monotonic, which is why the bound-
tightening strategy from the binary case cannot be applied. In this
follow-up paper, a model reformulation for ideal multi-component
distillation columns is presented. The reformulation is achieved
by suitable aggregations of the involved components. Proofs are
given showing that mole fraction profiles of aggregated compo-
nents are monotonic. This property is then used to adapt the
bound-tightening strategy from the two-component case to the
proposed model reformulation. Computational results are pro-
vided that indicate the usefulness of both the model reformula-
tion and the adapted bound tightening technique for deterministic
global optimization of ideal multi-component distillation column
designs.
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1. Introduction

The focus of this paper is on deterministic global mixed-integer non-linear
optimization of distillation columns, often dominating the cost of chemical
production processes. Despite recent progress in deterministic global opti-
mization (e.g., see [5] and [7], for recent surveys), those problems are often
very difficult to solve due to high computational effort, that is caused by
non-convexities and high system order. Deterministic global optimization of
distillation processes is, hence, a very challenging task.

In the literature, rigorous deterministic global optimization of distillation pro-
cesses is not well-covered. In a recent publication [19], optimal sequencing
of multi-component distillation columns at minimum reflux using so-called
short-cut models is calculated with deterministic global optimization meth-
ods.

By dropping simplifying assumptions such as minimum reflux, tray-to-tray
distillation models offer a wider range of validity compared to short-cut mod-
els. The increased computational effort is significantly reduced by applying
problem-specific global optimization strategies as demonstrated for ideal bi-
nary mixtures in our previous work [2]. Therein, it has been shown that
computational cost could be reduced by orders of magnitude using a specific
bound tightening strategy, that is based on monotonicity of molar fractions
throughout the column. The application was demonstrated for a hybrid distil-
lation crystallization process for the separation of two closely boiling isomers.
However, an extension to multi-component mixtures is non-trivial because
molar fraction profiles associated with intermediate boiling components typi-
cally show non-monotonic behavior.

In this follow-up paper, a reformulation of a distillation column model is pre-
sented to overcome this problem. The reformulation is obtained by aggrega-
tion of single components, resulting in a linear transformation of the variables
used for molar fractions. For ideal mixtures, we prove that the transformed
variables show the desired monotonic behavior, which allows us to extend
the bound tightening strategy from the binary case to the multi-component
setting.

Bound tightening, also known as domain reduction or range reduction, is
a common strategy in global optimization to reduce the initial domain of the
problem variables without cutting off the optimal solutions. This results in two
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benefits in view of deterministic global optimization. First of all, a reduction
of the search space is achieved. But most importantly, available global opti-
mization software often relies on the use of convex relaxations for non-linear
mixed-integer optimization problems. In general, such convex relaxations can
be tightened when the underlying domains are reduced.

In the literature, it is mainly distinguished between two basic types of domain
reduction. Feasibility based bound tightening (FBBT) cuts off non-feasible
solutions using the constraints of the underlying problem. Optimization based
bound tightening (OBBT) applies optimization techniques in order to derive
tighter variable bounds. Both types are integrated in many state-of-the-art
global optimization software packages (e.g., see BARON [22], COUENNE [6],
SCIP [26], and GloMIQO [18]).

For FBBT, standard methods are often based on interval arithmetic (e.g., see
[21]) and the description of nonlinearities using expression trees (e.g., see
[23] [25]). Bounds on the variables can be propagated onto the non-linear
expressions via forward propagation. Also, the other way around, tighter
bounds on the variables can be computed using the bounds on the nonlinear-
ities (backward propagation). This procedure can be iterated until no further
strengthening of the bounds is achieved. The iteration can be formally inter-
preted as an operator which is shown in [4] to have a limit point. For special
problems, this point can be determined using polynomial time algorithms. In
[3], the concept of FBBT is expanded on convex combinations of two linear
constraints. In [9] additional results on constraint satisfaction problems with
quadratic constraints are presented.

The key idea of OBBT is to consecutively minimize and maximize each vari-
able appearing in the problem on the feasible set. This is in general as hard
as finding the optimal solution of the problem itself, so a common approach
is to only use (linear) relaxations of the feasible set. This procedure can be
iterated multiple times in order to further tighten the bounds. OBBT can be
more effective, but is often much more time-consuming. It is, hence, used
very rarely or only at the root node of the branch-and-bound tree. For more
details, we refer to work [11]. An early reference in which OBBT is applied
in the context of heat exchanger networks is [20]. In [8], a so-called non-
linearities removal domain reduction is introduced by fixing the value of a
variable whose domain is intended to be tightened. Under some assumptions,
the equivalence of this approach to standard procedures is shown, and it is
concluded that general domain reduction techniques are independent in the
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ordering of the considered variables. In [11], Lagrangian variable bound con-
straints are described, making it easier to propagate bounds throughout the
branching tree. Additionally, enhancements on the computation of OBBT are
given.

According to this terminology, the bound tightening strategy that is developed
in this paper for ideal multi-component distillation column models belongs
to FBBT. We especially make use of interval arithmetics that we apply to two
types of well-structured model constraints. Preliminary results of this work
have already been presented in a conference paper [17].

The remainder of the paper is structured as follows. In Section 2, we present
the ideal multi-component distillation column model we are working with. In
Section 3, we derive an alternative model formulation by introducing suitable
aggregated components. In Section 4, we prove that the transformed variables as-
sociated with each newly introduced aggregated component fulfill the desired
property of monotonicity. This is exploited in Section 5 in order to extend the
bound tightening strategy from the binary case [2] to the general ideal multi-
component case. In Section 6, we solve several numerical test examples to
global optimality and experimentally analyze the influence of the developed
techniques on the running time.

2. Distillation Column Model

In this section, the model under consideration is presented. As in previous
work [2, 15], we focus on a tray-by-tray model of a distillation column in
steady state, and assume ideal liquid and gas phase, total condenser and total
reboiler, single liquid feed flow at boiling temperature, and constant molar
overflow. Notation and model description are basically taken from [2, 15]
and adapted, if necessary. For a general introduction to the topic of thermal
separation processes, we refer to [16].

We are given a mixture consisting of n single components labeled by {1, . . . ,n}.
The order of the components is defined with respect to the boiling point. Here,
component 1 is the component with the lowest boiling point, and component
n refers to the component with the highest boiling point. In the model, the
composition of a mixture is given in terms of molar fractions. Thus, the sum
of molar fractions over all components is equal to one at every position of the
column, also known as the summation conditions.
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Figure 1: A fixed design of a distillation column. Numbers of trays in the
rectifying and stripping sections are lrect and lstrip. The total number
of trays in the column is given by lcol = lrect + lstrip + 1.

A sketch of a distillation column is shown in Figure 1. The mixture enters the
column at the feed tray with molar feed flow F and initial composition xin

i ,
i = 1, . . . ,n. At the top tray (condenser), the distillate molar flow D leaves the
column with composition xdist

i , i ∈ {1, . . . ,n}, and at the bottom tray (reboiler),
the molar flow B leaves the column with composition xbot

i , i ∈ {1, . . . ,n}. V
denotes the vapor flow that streams upwards through the column. The overall
mass balance equations

Fxin
i = Dxdist

i + Bxbot
i , i ∈ {1, . . . ,n} (1)

ensure that the amount of component i entering the column coincides with the
overall amount of component i leaving the column.

Rectifying section (above the feed tray) and stripping section (below the feed
tray) can contain several trays. Trays of the rectifying section are numbered
from the top to the bottom by lr = 1, . . . , lrect, and trays in the stripping section
are numbered from the bottom to the top by ls = 1, . . . , lstrip. Variables used
for molar fractions of component i in liquid and in vapor phases are denoted
by xi and yi, respectively. In order to specify the tray a variable is associated
with, we introduce superscripts “feed”, “feed-1”, “feed+1”, “rect” and “strip”.
Trays from the rectifying and stripping sections are additionally equipped
with their associated index as subscript. The mass transfer in liquid and vapor
phase through the column is then described by the component mass balance
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equations

yrect
i,lr+1 = νr xrect

i,lr
+ (1 − νr) yrect

i,1 ,

νs yfeed
i + xfeed

i = νs yfeed+1
i + νr νs xfeed-1

i + (1 − νr νs) xin
i ,

xstrip
i,ls+1 = νs ystrip

i,ls
+ (1 − νs) xstrip

i,1 ,
(2)

for i ∈ {1, . . . ,n}, lr ∈ {1, . . . ,urect
} and ls ∈ {1, . . . ,ustrip

}, where urect and ustrip

denote upper bounds imposed on lrect and lstrip, respectively. We remark that
in Equation (2) the subscripts indicating trays formally range to urect + 1 and
ustrip + 1, respectively. This way, two artificial trays are introduced to the
model. These two trays are later used to model the coupling of the feed tray
with the rectifying and the stripping sections (see Equation (6)). The auxiliary
variables νr, νs ∈ [0, 1] defined as

νr =
V −D

V
and νs =

V
V + B

(3)

describe the ratio of upward and downward molar flows in the rectifying and
stripping section.

The separation behavior of component i is given by its volatility. Compo-
nents with higher volatility accumulate in the vapor phase, while components
with lower volatility accumulate in the liquid phase. We assume constant
relative volatilities of the components, expressed by parameters αi > 0, for
i ∈ {1, . . . ,n}. Due to our assumption on the order of the components, we have
that α1 ≥ α2 ≥ . . . ≥ αn. At all trays, the interactions of the mole fractions
in the vapor phase and in the liquid phase are given by the phase equilibrium
equations

yrect
i,lr

=
αi xrect

i,lr∑n
j=1 α jxrect

j,lr

, yfeed
i =

αi xfeed
i∑n

j=1 α jxfeed
j

, ystrip
i,ls

=
αi xstrip

i,ls∑n
j=1 α jx

strip
j,ls

(4)

for i ∈ {1, . . . ,n}, lr ∈ {1, . . . ,urect+1} and ls ∈ {1, . . . ,ustrip+1}.

Total condenser and total reboiler are modeled by

xdist
i = yrect

i,1 and xbot
i = xstrip

i,1 , i = 1, . . . ,n. (5)

The total number lcol of trays used in a distillation column is given by the
number of trays used in the rectifying section, the number of trays used in the
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stripping section, and the feed tray. To specify lcol in our model, the following
coupling conditions are imposed.

xfeed-1
i =

urect∑
lr=1

βrect
lr

xrect
i,lr
, xfeed

i =

urect∑
lr=1

βrect
lr

xrect
i,lr+1, i ∈ {1, . . . ,n}

yfeed+1
i =

ustrip∑
ls=1

β
strip
ls

ystrip
i,ls

, xfeed
i =

ustrip∑
ls=1

β
strip
ls

xstrip
i,ls+1, i ∈ {1, . . . ,n}

(6a)

lcol :=
urect∑
lr=1

βrect
lr

lr +

ustrip∑
ls=1

β
strip
ls

ls + 1,

urect∑
lr=1

βrect
lr

= 1, βrect
lr
∈ {0, 1}, lr = 1, . . . ,urect,

ustrip∑
ls=1

β
strip
ls

= 1, β
strip
ls
∈ {0, 1}, ls = 1, . . . ,ustrip.

(6b)

Note that the binary variables βrect
lr

and βstrip
ls

attain value one if and only if tray
lr of rectifying section and tray ls of stripping section are chosen to be the trays
above and below the feed tray in the column.

The goal of the distillation column is to separate the more volatile components
from the less volatile components under given purity constraints. Let the
split σ ∈ {1, . . . ,n − 1} be the index such that the components 1 to σ belong to
the more volatile part and components σ + 1 to n belong to the less volatile
part of the mixture, and let πdist, πbot

∈ [0, 1] denote the purity requirements
imposed on the more volatile components at the condenser and on the less
volatile components at the reboiler. Then, the purity constraints are given as
follows.

σ∑
i=1

xdist
i ≥ πdist and

n∑
i=σ+1

xbot
i ≥ πbot. (7)

The objective function of our column model reflects the total annualized cost
of the distillation process that needs to be minimized. In our work, we
make use of the following cost function that is taken from previous work
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[15].

cost = 17544 V + 173.6 lcol + 2009.7 (0.2378 V + 0.0221 B) lcol

+ 2364.5 (0.2378 V + 0.0221 B)0.533 (0.2 lcol + 4)0.82

− 171.4 (0.2378 V + 0.0221 B)0.5 lcol.

(8)

This objective function was originally developed for the distillation of dode-
canal and 2-methylundecanal. However, its structure is typical for economical
cost estimation and therefore suitable for the computational studies in our
work.

3. Model Reformulation by Aggregating Components

As already mentioned in the introduction, the molar fractions of a single
component may not behave monotonic in the multi-component setting. Such
a typical situation is illustrated in Figure 2 (a) for component 2 (green curve)
and component 3 (magenta curve). This fact makes it hard to generalize the

(a) Molar fraction profiles of single compo-
nents (original model formulation)

(b) Profiles of transformed variables for ag-
gregated components (aggregated model
formulation)

Figure 2: The figure shows molar fraction profiles and profiles of transformed
variables in liquid phase for a four component mixture.

bound tightening strategy for the binary case [2] to the multi-component case,
directly.
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We overcome this problem by aggregating, for each k ∈ {1, . . . ,n}, the first
k components. This is achieved by summing up the corresponding variables
used for molar fractions at every position of the distillation column.

To be more precise, let xi and yi (for i ∈ {1, . . . ,n}) be the variables used for molar
fractions of component i in the liquid and in the vapor phase at an arbitrary
position. The associated sub- and superscripts indicating the specific position
are omitted for a clean presentation. We label the aggregated components by
k ∈ {1, . . . ,n} and introduce aggregated concentration variables Xk and Yk for
liquid and vapor phases. The original variables used for molar fractions and
the new aggregated concentration variables are linearly linked to each other
by the following bijective relations.

Xk =

k∑
i=1

xi and Yk =

k∑
i=1

yi, k = 1, . . . ,n. (9)

Next, we restate the distillation column model from Section 2 in terms of
the aggregated components. For this, we introduce an (aggregated) dummy
component 0 for which the liquid and vapor phase concentrations X0 and Y0
are zero at all positions. By definition and due to the summation conditions
(i.e.

∑n
i=1 xi =

∑n
i=1 yi = 1), we have

0 = X0 ≤ X1 ≤ . . . ≤ Xn = 1 and 0 = Y0 ≤ Y1 ≤ . . . ≤ Yn = 1. (10)

Note that molar fractions do not appear in the Equations (3),(6b) or in the ob-
jective function (8). Hence, they remain unchanged in our aggregated model
formulation. Observe further that the overall mass balance equations (1),
the component mass balance equations (2), the coupling conditions (6a), total
condenser and total reboiler conditions (5) and the purity constraints (7) are
linear in the variables used for molar fractions. Therefore, we obtain the cor-
responding constraints for each aggregated component k by summing up the
corresponding conditions associated with the first k single components. Only
the phase equilibrium equations (4) are not linear in the original concentration
variables and need to be adapted. The aggregated model formulation reads
as

• The aggregated overall mass balance equations

FXin
k = DXdist

k + BXbot
k , k = 1, . . . ,n. (11)
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• The aggregated component mass balance equations:

Yrect
k,lr+1 = νr Xrect

k,lr
+ (1 − νr) Yrect

k,1 ,

νs Yfeed
k + Xfeed

k = νs Yfeed+1
k + νr νs Xfeed-1

k + (1 − νr νs) Xin
k ,

Xstrip
k,ls+1 = νs Ystrip

k,ls
+ (1 − νs) Xstrip

k,1

(12)

for k ∈ {1, . . . ,n}, lr ∈ {1, . . . ,urect
} and ls ∈ {1, . . . ,ustrip

}.

• The auxiliary variables constraints:

νr =
V −D

V
and νs =

V
V + B

. (13)

• The aggregated phase equilibrium equations:

Yrect
k,lr

=

∑k
j=1 α j(Xrect

j,ls
−Xrect

j−1,ls
)∑n

j=1 α j(Xrect
j,ls
−Xrect

j−1,ls
) ,

Yfeed
k =

∑k
j=1 α j (Xfeed

j −Xfeed
j−1 )∑n

j=1 α j(Xfeed
j −Xfeed

j−1 )
,

Ystrip
k,ls

=

∑k
j=1 α j(X

strip
j,ls
−Xstrip

j−1,ls
)∑n

j=1 α j(X
strip
j,ls
−Xstrip

j−1,ls
)

(14)

for k ∈ {1, . . . ,n}, lr ∈ {1, . . . ,urect + 1} and ls ∈ {1, . . . ,ustrip + 1}.

• The aggregated constraints for the total condenser/reboiler:

Xdist
k = Yrect

k,1 and Xbot
k = Xstrip

k,1 , k ∈ {1, . . . ,n}. (15)

• The aggregated coupling conditions:

Xfeed-1
k =

urect∑
lr=1

βrect
lr

Xrect
k,lr
, Xfeed

k =

urect∑
lr=1

βrect
lr

Xrect
k,lr+1, k ∈ {1, . . . ,n}

Yfeed+1
k =

ustrip∑
ls=1

β
strip
ls

Ystrip
k,ls

, Xfeed
k =

ustrip∑
ls=1

β
strip
ls

Xstrip
k,ls+1, k ∈ {1, . . . ,n}

(16a)
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lcol :=
urect∑
lr=1

βrect
lr

lr +

ustrip∑
ls=1

β
strip
ls

ls + 1,

urect∑
lr=1

βrect
lr

= 1, βrect
lr
∈ {0, 1}, lr = 1, . . . ,urect,

ustrip∑
ls=1

β
strip
ls

= 1, β
strip
ls
∈ {0, 1}, ls = 1, . . . ,ustrip.

(16b)

• The aggregated purity constraints:

Xdist
σ ≥ πdist and (1 − Xbot

σ ) ≥ πbot. (17)

• The objective function:

cost = 17544 V + 173.6 lcol + 2009.7 (0.2378 V + 0.0221 B) lcol

+ 2364.5 (0.2378 V + 0.0221 B)0.533 (0.2 lcol + 4)0.82

− 171.4 (0.2378 V + 0.0221 B)0.5 lcol.

(18)

It turns out that the concentration variables of each aggregated component
show the desired monotonic behavior, i.e. the overall molar fraction of all
components above each possible split position σ ∈ {1, . . . ,n− 1} change mono-
tonically throughout the distillation column. This is illustrated in Figure 2 (b),
and will be proven in Section 4.

4. Monotonicity of the Aggregated Concentration
Profiles

In this section we prove that for each aggregated component, the correspond-
ing concentration variables introduced in Section 3 behave monotonic through
the distillation column. We refer to a sequence of liquid or vapor phase
concentration values of an aggregated component as a (concentration) pro-
file.

In what follows, we investigate the restrictions of each such profile to the
stripping section and to the rectifying section, separately. Subsection 4.1 deals
with the stripping section. We show that each profile is non-decreasing when
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considered from the bottom to the top. For the rectifying section discussed
in Subsection 4.2, we first apply a suitable transformation. That transfor-
mation traces the profiles restricted to the rectifying section back to the case
of profiles restricted a stripping section. We then conclude that each pro-
file also behaves non-decreasing in the rectifying section from bottom to the
top.

As the coupling conditions in Equation (16) ensure that, for each profile, the
parts restricted to the stripping section and restricted to the rectifying sec-
tion must coincide at the feed tray, we finally obtain that each profile of
an aggregated components runs monotonically through the distillation col-
umn.

4.1. Stripping Section

We omit superscript “strip” and denote by X := (Xk,ls)k=0,...,n, ls=1,...,u+1 and
Y := (Yk,ls)k=0,...,n, ls=1,...,u+1 the matrices consisting of all liquid and vapor phase
concentration variables w.r.t. aggregated components (including the dummy
one) and restricted to the stripping section.

With this notation and combining the phase equilibrium equations (14) with
the component mass balance equations (12), we obtain the following subsys-
tem that is satisfied by every feasible solution of our distillation column model
from Section 3.

Xk,ls+1 = νs

∑k
j=1 α j(X j,ls−X j−1,ls )∑n
j=1 α j(X j,ls−X j−1,ls ) + (1 − νs)Xk,1, k = 0, . . . ,n,

ls = 1, . . . ,u,

0 < X1,ls ≤ X2,ls ≤ . . . ≤ Xn,ls , ls = 1, . . . ,u + 1,

X0,ls = 0, Xn,ls = 1, ls = 1, . . . ,u + 1,

X ∈ R(n+1)×(u+1), vs ∈ [0, 1].

(19)

For our analysis, the following remarks are worth to mention.

• In System (19), we impose that all variables Xk,ls , k ≥ 1, are strictly pos-
itive. This assumption can be made with out loss of generality. Indeed,
when Xk,ls = 0 holds, for some k ≥ 1 and some ls, the recursive formula
already implies that the concentration of component k is zero at every
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position in the stripping section, and, hence, in the entire column. In
that case we can exclude component k from our considerations.

• To keep the notation simple, we define the following expressions to
denote the denominators appearing in (19).

Nls(X) :=
n∑

j=1

α j(X j,ls − X j−1,ls), ls = 1, . . . ,u + 1.

Note that Nls(X) > 0 holds for all X such that there is a νs ∈ [0, 1] with
(X, νs) being feasible to system (19).

• Finally, we observe the identities∑k
j=1 α j(X j,ls − X j−1,ls) =

∑k−1
j=1 X j,ls(α j − α j+1) + Xk,lsαk.

for k = {1, . . . ,n} and ls = {1, . . . ,u + 1}, that we will frequently use
throughout the proofs.

For a solution (X, νs) feasible to system (19), we will next show that for each
aggregated component k ∈ {1, . . . ,n}, the sequence {Xk,ls}

u+1
ls=1 is non-decreasing.

More precisely, we will prove a more general statement implying the desired
property.

Theorem 1. Let X ∈ R(n+1)×(u+1) and νs ∈ [0, 1] be feasible to system (19) for some
α ∈ Rn with α1 ≥ α2 ≥ . . . ≥ αn > 0. Then,

Xk,ls+1 − Xk,ls

Xk,ls
≥

Xk+1,ls+1 − Xk+1,ls

Xk+1,ls
(20)

holds for each k ∈ {1, . . . ,n − 1} and for each ls ∈ {1, . . . ,u}.

Proof. The statement is proven by induction on ls. We first consider the case
with ls = 1. For an arbitrary k ∈ {1, . . . ,n − 1}, system (19) yields

Xk,2 − Xk,1 =νsXk,1

(∑k
j=1 α j(X j,1 − X j−1,1)

N1(X) Xk,1
− 1

)
and

Xk+1,2 − Xk+1,1 =νsXk+1,1

(∑k+1
j=1 α j(X j,1 − X j−1,1)

N1(X)Xk+1,1
− 1

)
,
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or equivalently

Xk,2 − Xk,1

Xk,1
=

νs

N1(X)
·


∑k

j=1 α j(X j,1 − X j−1,1)

Xk,1

 − νs,

Xk+1,2 − Xk+1,1

Xk+1,1
=

νs

N1(X)
·


∑k+1

j=1 α j(X j,1 − X j−1,1)

Xk+1,1

 − νs.

Thus, in order to prove our statement for ls = 1, we show that∑k
j=1 α j(X j,1 − X j−1,1)

Xk,1
≥

∑k+1
j=1 α j(X j,1 − X j−1,1)

Xk+1,1
.

Observing that Xk+1,1 ≥ Xk,1 and
∑k

j=1 α j(X j,1−X j−1,1)−αk+1Xk,1 ≥ 0 hold, yields∑k+1
j=1 α j(X j,1 − X j−1,1)

Xk+1,1
=

∑k
j=1 α j(X j,1 − X j−1,1) − αk+1Xk,1

Xk+1,1
+ αk+1

≤

∑k
j=1 α j(X j,1 − X j−1,1) − αk+1Xk,1

Xk,1
+ αk+1

=

∑k
j=1 α j(X j,1 − X j−1,1)

Xk,1
,

i.e. for ls = 1, the statement holds for each k ∈ {1, . . . ,n}.

Now assume that, for some ls ≥ 1, the statement is true for each k ∈ {1, . . . ,n−1}.
We will show that for ls + 1 the statement is then true for each k ∈ {1, . . . ,n− 1},
as well. For this, we define mk := Xk,ls

Xk,ls−1
for each k ∈ {1, . . . ,n}. By induction

hypothesis, we have that mk ≥ mk+1 holds for all k ∈ {1, . . . ,n − 1}.

Next, the values of the terms Xk,ls+1 −Xk,ls and Xk+1,ls+1 −Xk+1,ls are compared.
Using the recursive formula and the definition of mk, we obtain for Xk,ls+1−Xk,ls
that

νs


∑k

j=1 α j(X j,ls − X j−1,ls)

Nls(X)
−

∑k
j=1 α j(X j,ls−1 − X j−1,ls−1)

Nls−1(X)

 =

νs


∑k

j=1 α j(X j,ls − X j−1,ls)

Nls(X)
−

∑k
j=1 α j

(
X j,ls
m j
−

X j−1,ls
m j−1

)
Nls−1(X)

 .
(21)

Moreover, we have that
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∑k
j=1 α j(X j,ls−X j−1,ls )

m1
≤

∑k
j=1 α j

(
X j,ls
m j
−

X j−1,ls
m j−1

)
≤

∑k
j=1 α j(X j,ls−X j−1,ls )

mk
.

By the intermediate value theorem, there must exist some m̃ ∈ [mk,m1] with

k∑
j=1

α j

(
X j,ls

m j
−

X j−1,ls

m j−1

)
=

∑k
j=1 α j(X j,ls − X j−1,ls)

m̃
. (22)

Combining Formula (21) with Formula (22) gives rise to

Xk,ls+1 − Xk,ls = νs

k∑
j=1

α j(X j,ls − X j−1,ls)
( 1
Nls(X)

−
1

m̃ Nls−1(X)

)
= Xk,lsνs

∑k
j=1 α j(X j,ls − X j−1,ls)

Xk,ls

( 1
Nls(X)

−
1

m̃Nls−1(X)

)
.

(23)

Again, using the recursive formula and the definition of mk, the second term
can be rewritten as follows.

Xk+1,ls+1 − Xk+1,ls = νs

(∑k
j=1 α j(X j,ls − X j−1,ls) + αk+1(Xk+1,ls − Xk,ls)

Nls(X)

−

∑k
j=1 α j

(
X j,ls
m j
−

X j−1,ls
m j−1

)
+ αk+1

(Xk+1,ls
mk+1

−
Xk,ls
mk

)
Nls−1(X)

)
= νs

(∑k
j=1 α j(X j,ls − X j−1,ls)

Nls(X)
−

∑k
j=1 α j(

X j,ls
m j
−

X j−1,ls
m j−1

)

Nls−1(X)

)
+ νs

( (αk+1(Xk+1,ls − Xk,ls)
Nls(X)

−

αk+1( Xk+1,ls
mk+1

−
Xk,ls
mk

)

Nls−1(X)

)
.

Using Formula (22) and the fact that mk+1 ≤ mk ≤ m̃ holds, we can further
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estimate

Xk+1,ls+1 − Xk+1,ls = νs

k∑
j=1

α j(X j,ls − X j−1,ls)
( 1
Nls(X)

−
1

m̃Nls−1(X)

)

+ νs
( (αk+1(Xk+1,ls − Xk,ls)

Nls(X)
−

αk+1( Xk+1,ls
mk+1

−
Xk,ls
mk

)

Nls−1(X)

)
≤ νs

k∑
j=1

α j(X j,ls − X j−1,ls)
( 1
Nls(X)

−
1

m̃Nls−1(X)

)
+ νs

( (αk+1(Xk+1,ls − Xk,ls)
Nls(X)

−
αk+1(Xk+1,ls − Xk,ls)

m̃Nls−1(X)

)
= νs

k+1∑
j=1

α j(X j,ls − X j−1,ls)
( 1
Nls(X)

−
1

m̃ Nls−1(X)

)
.

Finally, we exploit that Xk+1,ls ≥ Xk,ls and that
∑k

j=1 α j(X j,ls−X j−1,ls)−αk+1Xk,ls ≥ 0
holds. This yields

Xk+1,ls+1−Xk+1,ls

≤Xk+1,lsνs
(∑k

j=1 α j(X j,ls − X j−1,ls) − αk+1Xk,ls

Xk+1,ls
+ αk+1

)
·

( 1
Nls(X)

−
1

m̃Nls−1(X)

)
≤ Xk+1,lsνs

(∑k
j=1 α j(X j,ls − X j−1,ls) − αk+1Xk,ls

Xk,ls
+ αk+1

)
·

( 1
Nls(X)

−
1

m̃Nls−1(X)

)
=Xk+1,lsνs

(∑k
j=1 α j(X j,ls − X j−1,ls)

Xk,ls

)( 1
Nls(X)

−
1

m̃ Nls−1(X)

)
.

(24)

From Formulas (23) and (24), we can deduce that

Xk,ls+1 − Xk,ls

Xk,ls
≥

Xk+1,ls+1 − Xk+1,ls

Xk+1,ls

holds. �

We are now able to prove that the concentration profiles behave non-decreasing
through the stripping section.
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Corollary 2. Let (X, νs) be a feasible solution to system (19) for some α ∈ Rn

with α1 ≥ α2 ≥ . . . ≥ αn > 0. Let Y be the matrix consisting of all vapor phase
concentration variables Yk,ls that are implied by X through the phase equilibrium
equations (14). Then, for each aggregated component k ∈ {1, . . . ,n}, both sequences
{Xk,ls}

u+1
ls=1 and {Yk,ls}

u+1
ls=1 are non-decreasing.

Proof. By definition, we have that Xn,ls = 1 holds for ls = 1, . . . ,u + 1. Thus,
the statement holds for k = n. For each fixed ls ∈ {1, . . . ,u}, we obtain from
Theorem 1 that

X1,ls+1 − X1,ls

X1,ls
≥

X2,ls+1 − X2,ls

X2,ls
≥ . . . ≥

Xn,ls+1 − Xn,ls

Xn,ls
= 0.

By assumption Xk,ls > 0, for all k ∈ {1, . . . ,n} and ls ∈ {1, . . . ,u+1}, it follows that
Xk,ls+1 − Xk,ls ≥ 0, for all k = 1, . . . ,n. This proves the statement for sequence
{Xk,ls}

u+1
ls=1.

Using Equation (12), and Xk,ls+2 ≥ Xk,ls+1, for all k and ls, we can further derive,
for all k = 1, . . . ,n and ls = 1, . . . ,ustrip, that

νsYk,ls+1 + (1 − νs)Xk,1 ≥ νsYk,ls + (1 − νs)Xk,1 ⇔ νs(Yk,ls+1 − Yk,ls) ≥ 0.

This implies that Yk,ls+1 − Yk,ls ≥ 0 holds for νs > 0. Moreover, if νs = 0, then
we can deduce from equation (12) that Xk,1 = Xk,2 = . . . = Xk,u+1. By phase
equilibrium equations (14), it follows that Yk,1 = Yk,2 = . . . = Yk,u+1. �

4.2. Rectifying Section

Next, we prove monotonicity for the profiles when restricted to the rectifying
section. We omit superscript “rect” and denote the matrices consisting of
all liquid and vapor phase concentration variables of aggregated components
(including the dummy one) and restricted to the rectifying section by X :=
(Xk,lr)k=0,...,n, lr=1,...,u+1 and Y := (Yk,lr)k=0,...,n, lr=1,...,u+1.

Recap that in our model description the trays in the rectifying section are
labeled from top to bottom. For this labeling, we show that the sequences
{Xk,lr}

u+1
lr=1 and {Yk,lr}

u+1
lr=1 are non-increasing for every k ∈ {1, . . . ,n}. Therefore, the

profiles considered from the bottom to the top are non-decreasing.

In order to derive a system for the rectifying section that corresponds to sys-
tem (19) of the stripping section, we need the well-known inverses of the phase
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equilibrium equations (14). For each aggregated component k ≥ 1 and for each
tray lr, they are given as

Xk,lr =

∑k
j=1 α

−1
j (Y j,lr − Y j−1,lr)∑n

j=1 α
−1
j (Y j,lr − Y j−1,lr)

, lr = 1, . . . ,u + 1. (25)

Using (25), we obtain from the component mass balance equations (12) the
following subsystem

Yk,lr+1 = νr

∑k
j=1 α

−1
j (Y j,lr−Y j−1,lr )∑n

j=1 α
−1
j (Y j,lr−Y j−1,lr )

+ (1 − νr)Yk,1, k = 0, . . . ,n,

lr = 1, . . . ,u,
0 < Y1,lr ≤ Y2,lr ≤ . . . ≤ Yn,lr , lr = 1, . . . ,u + 1,

Y0,lr = 0, Yn,lr = 1, lr = 1, . . . ,u + 1,
Y ∈ R(n+1)×(u+1), vr ∈ [0, 1],

(26)

that must be satisfied by every feasible solution of our distillation column
model.

Now, we make use of the following transformation rules.

û := u, ν̂s := νr,

Ŷk,l := (1 − Xn−k,l),
X̂k,l := (1 − Yn−k,l),

k ∈ {0, . . . ,n}, l ∈ {1, . . . ,u + 1},

α̂k := α−1
n+1−k, k ∈ {1, . . . ,n}.

(27)

These rules allow us to restate system (26) equivalently as follows (see Ap-
pendix A, for details).

X̂k,l+1 = ν̂s

∑k
j=1 α̂ j(X̂ j,l−X̂ j−1,l)∑n
j=1 α̂ j(X̂ j,l−X̂ j−1,l)

+ (1 − ν̂s)X̂k,1, k = 0, . . . ,n,

l = 1, . . . , û,
0 < X̂1,l ≤ X̂2,l ≤ . . . ≤ X̂n,l, l = 1, . . . , û + 1,

X̂0,l = 0, X̂n,l = 1, l = 1, . . . , û + 1,
X̂ ∈ R(n+1)×(û+1), v̂s ∈ [0, 1].

(28)

Note that index k appears in the variables X̂k,l in reverse order compared with
the variables Yk,lr . Therefore, we have that in reverse order

α̂1 ≥ α̂2 ≥ . . . ≥ α̂n > 0
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holds when α1 ≥ α2 ≥ . . . ≥ αn > 0 in the original order. This means that
system (28) satisfies all conditions of Theorem 1 and Corollary 2. We can,
hence, conclude that, for every k ∈ {1, . . . ,n}, both sequences {X̂k,l}

û+1
l=1 and

{Ŷk,l}
û+1
l=1 are non-decreasing. Using the transformations rules (27), again, we

can draw the following conclusion.

Corollary 3. Let (Y, νr) be a feasible solution to system (26) for some α ∈ Rn with
α1 ≥ α2 ≥ . . . ≥ αn > 0. Let X be the matrix consisting of all liquid phase
concentrations variables Xk,lr , that are implied by Y through the phase equilibrium
equations (25). Then, for each aggregated component k ∈ {1, . . . ,n}, both sequences
{Yk,lr}

u+1
lr=1 and {Xk,lr}

u+1
lr=1 are non-increasing.

5. Domain Reduction Techniques

In this section, we use the results from Section 4 to derive a problem-specific
bound tightening strategy for our distillation column model associated with
the aggregated components (Subsection 5.1). For this, we adapt the argu-
ments used in previous work [2] for binary mixtures to the multi-component
case with aggregated components. In Subsection 5.2, we moreover restate a
method to derive additional bounds on the aggregated concentration variables
by computing the fixed points of the concentration profiles. This method has
already been applied in [15] to the binary distillation case. Both techniques
are implemented in global optimization software and their impact is compu-
tationally evaluated in Section 6.

5.1. Bound Tightening Strategy

The monotonic behavior of the aggregated concentration profiles together
with the aggregated component mass balance equations allow us to prop-
agate given bounds on the aggregated concentration variables at a certain
tray to the aggregated concentration variables associated with an adjacent
tray.

For this, recap that, for every k ∈ {1, . . . ,n}, the aggregated component mass
balance equations (12)

Yrect
k,lr+1 = νr Xrect

k,lr
+ (1 − νr) Yrect

k,1 , lr = 1, . . . ,urect,

Xstrip
k,ls+1 = νs Ystrip

k,ls
+ (1 − νs) Xstrip

k,1 , ls = 1, . . . ,ustrip
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associated with the trays in the rectifying and stripping sections form two
families of recursive functions (one for each section). By analyzing the partial
derivatives, one can show that in both cases the recursive functions behave
monotonic in each of their arguments (see also [2] for the binary case). The anal-
ysis is mainly straightforward. Only the partial derivatives

∂Yrect
k,lr+1

∂νr
= Xrect

k,lr
− Yrect

k,1 and
∂Xstrip

k,ls+1

∂νs
= Ystrip

k,ls
− Xstrip

k,1

need special attention. For these, we remark that the monotonicity of the
concentration profiles ensures for each aggregated component k ∈ {1, . . . ,n}
that

Xrect
k,lr
≤ Xrect

k,1 , lr = 1, . . . ,urect and Ystrip
k,ls

≥ Ystrip
k,1 , ls = 1, . . . ,ustrip (29)

hold. As Xk,ls > 0, we moreover observe that the phase equilibrium equations
can be restated as follows.

Yrect
k,lr

= Xrect
k,lr

∑k
j=1 α j

(Xrect
j,lr

Xrect
k,lr
−

Xrect
j−1,lr

Xrect
k,lr

)
Xrect

k,lr

∑k
j=1 α j

(Xrect
j,lr

Xrect
k,lr
−

Xrect
j−1,lr

Xrect
k,lr

)
+

∑n
j=k+1 α j(Xrect

j,lr
− Xrect

j−1,lr
)
. (30)

Note further that the numerator in Equation (30) is a convex combination of
parameters α1, . . . , αk. From αk ≤ αk−1 ≤ . . . ≤ α1, it follows that the numerator
is greater or equal to αk. The denominator is a convex combination of the
numerator and parameters αk+1, . . . , αn. As αn ≤ . . . ≤ αk+1 ≤ αk, we can
conclude that the fractional term in the right-hand-side of Equation (30) is
greater or equal to one. This implies that Yrect

k,lr
≥ Xrect

k,lr
. In a similar way,

we can verify that Ystrip
k,ls
≥ Xstrip

k,ls
holds. Combining these results shows that

∂Yrect
k,lr+1/∂νr ≤ 0 and ∂Xstrip

k,ls+1/∂νs ≥ 0.

Thus, given bounds on the arguments in (12) can be used to compute bounds
on the aggregated concentration variables associated with the consecutive tray
via standard interval arithmetic (e.g., see also [12]). The resulting formulas
are stated in the following two lemmas, where Lemma 4 addresses the strip-
ping section and Lemma 5 deals with the rectifying section. In both lemmas,
superscripts “strip” and “rect” are neglected for keeping the notation sim-
ple.

Lemma 4. (Stripping Section)
Consider any ls ∈ {1, . . . ,u} and k ∈ {1, . . . ,n}. Assume further that νs ranges on
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[νlo
s , ν

up
s ], Yk,ls ranges on [Ylo

k,ls
,Yup

k,ls
] and that Xk,1 ranges on [Xlo

k,1,X
up
k,1]. Then, lower

and upper bounds Xlo
k,ls+1, Xup

k,ls+1 on Xk,ls+1 are given by

Xlo
k,ls+1 = νlo

s Ylo
k,ls

+ (1 − νlo
s )Xlo

k,1, Xup
k,ls+1 = ν

up
s Yup

k,ls
+ (1 − νup

s )Xup
k,1.

Lemma 5. (Rectifying Section)
Consider any lr ∈ {1, . . . ,u} and k ∈ {1, . . . ,n}. Assume further that νr ranges on
[νlo

r , ν
up
r ], Xk,lr ranges on [Xlo

k,lr
,Xup

k,lr
] and that Yk,1 ranges on [Ylo

k,1,Y
up
k,1]. Then, lower

and upper bounds Ylo
k,lr+1, Yup

k,lr+1 on Yk,lr+1 are given by

Ylo
k,lr+1 = ν

up
r Xlo

k,lr
+ (1 − νup

r )Ylo
k,1, Yup

k,lr+1 = νlo
r Xup

k,lr
+ (1 − νlo

r )Yup
k,1.

It is worth to mention that Equation (29) does not hold for the variables used for
the molar fractions in the original model formulation from Section 2, e.g., see
molar fraction profile of second component (green curve) in Figure 2 (a). Thus,
Lemma 4 and Lemma 5 are not applicable in that case.

The purity constraints (17) already provide (strong) valid bounds on the con-
centration variables at the condenser and, hence, at the first tray of the recti-
fying section as well as on the concentration variables at the reboiler and the
first tray (in our ordering) of the stripping section. Starting with these bounds,
our next goal is to propagate bounds on the concentration variables tray by
tray through each section by repeatedly applying the formulas for bound cal-
culations from Lemma 4 and Lemma 5. This procedure defines the bound
tightening strategy.

However, a re-use of the formulas from Lemma 4 and Lemma 5 will make it
necessary to translate bounds on the aggregated concentration variables asso-
ciated with the vapor or the liquid phase into valid bounds on the aggregated
concentration variables in the other phase. This is achieved by exploiting
the phase equilibrium equations (14) and their inverses (25), respectively, and
leads to the formulas as given in Lemma 6 (for the stripping section) and in
Lemma 7 (for the rectifying section). Again, superscripts “strip” and “rect”
are omitted to keep the statements easy to read. The proofs are postponed to
Appendix B.

Lemma 6. (Stripping Section)
Let ls ∈ {1, . . . ,u + 1} be fixed. Assume further that, for every k ∈ {1, . . . ,n}, lower
and upper bounds Xlo

k,ls
,Xup

k,ls
on Xk,ls are given, where

Xlo
k,ls
≤ Xlo

k+1,ls
and Xup

k,ls
≤ Xup

k+1,ls
, hold for k = 1, . . . ,n.
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Then, for each k, lower and upper bounds Ylo
k,ls

, Yup
k,ls

on Yk,ls are given by

Ylo
k,ls

=

∑k
j=1 α j(X

ak
j,ls
− Xak

j−1,ls
)∑n

j=1 α j(X
ak
j,ls
− Xak

j−1,ls
)

and Yup
k,ls

=

∑k
j=1 α j(X

bk
j,ls
− Xbk

j−1,ls
)∑n

j=1 α j(X
bk
j,ls
− Xbk

j−1,ls
)
,

where we define for j = 1, . . . ,n

Xak
j,ls

:=

 Xlo
j,ls
, if j ≤ k,

Xup
j,ls
, if j > k,

and Xbk
j,ls

=

 Xup
j,ls
, if j ≤ k,

max{Xup
k,ls
,Xlo

j,łs
}, if j > k.

Lemma 7. (Rectifying Section)
Let lr ∈ {1, . . . ,u + 1} be fixed. Assume further that, for every k ∈ {1, . . . ,n}, lower
and upper bounds Ylo

k,lr
, Yup

k,lr
on Yk,lr are given, where

Ylo
k,lr
≤ Ylo

k+1,lr
and Yup

k,lr
≤ Yup

k+1,lr
, hold for k = 1, . . . ,n.

Then, for each k, lower and upper bounds Xlo
k,lr

, Xup
k,lr

on Xk,lr are given by

Xlo
k,lr

=

∑k
j=1 α

−1
j (Yak

j,lr
− Yak

j−1,lr
)∑n

j=1 α
−1
j (Yak

j,lr
− Yak

j−1,lr
)

and Xup
k,lr

=

∑k
j=1 α

−1
j (Ybk

j,lr
− Ybk

j−1,lr
)∑n

j=1 α
−1
j (Ybk

j,lr
− Ybk

j−1,lr
)
,

where we define for j = 1, . . . ,n

Yak
j,lr

:=

 min{Yup
j,lr
,Ylo

k,lr
}, if j < k,

Yup
j,lr
, if j ≥ k,

and Ybk
j,lr

=

 Ylo
j,lr
, if j < k,

Yup
j,łr
, if j ≥ k.

5.2. Fixed Points

A further way to tighten the model formulation from Section 3 is to deter-
mine the fixed points from the recursive functions given by the component
mass balance equations (12) and the phase equilibrium equations (14). Corol-
laries 2 and 3 imply that, for each aggregated component k, the four infinite
sequences{

Xstrip
k,ls

}
ls∈Z≥1

,
{
Ystrip

k,ls

}
ls∈Z≥1

and
{
Xrect

k,lr

}
lr∈Z≥1

,
{
Yrect

k,lr

}
lr∈Z≥1

must converge since they are monotonic and range on the bounded interval
[0, 1]. Due to the monotonic behavior, the limit of each sequence further
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provides either a lower or an upper bound valid for each element of the
sequence. As done in [15] for the binary case, we can exploit that property
by incorporating, for each k ∈ {1, . . . ,n}, the following (redundant) non-linear
constraints to the aggregated model formulation.

Xstrip,?
k = νsY

strip,?
k + (1 − νs)X

strip
k,1 ,

Ystrip,?
k =

∑k
j=1 α j(X

strip,?
j − Xstrip,?

j−1 )∑n
j=1 α j(X

strip,?
j − Xstrip,?

j−1 )
,

Xstrip,?
k ≥ Xstrip

k,ls
, Ystrip,?

k ≥ Ystrip
k,ls

, ls = 1, . . . ,ustrip + 1,

Yrect,?
k = νrXrect,?

k + (1 − νr)Yrect
k,1 ,

Xrect,?
k =

∑k
j=1 α

−1
j (Yrect,?

j − Yrect,?
j−1 )∑n

j=1 α
−1
j (Yrect,?

j − Yrect,?
j−1 )

,

Xrect,?
k ≤ Xrect

k,lr
, Yrect,?

k ≤ Yrect
k,lr
, lr = 1, . . . ,urect + 1.

(31)

We however remark that, in general, the fixed points lead to weaker bounds
than the bounds that can be obtained by the bound tightening strategy.

6. Computational Studies

In this section, we computationally evaluate the impact of the presented tech-
niques on the performance of global optimization software. For this, we con-
sider several numerical test instances dealing with ideal multi-component dis-
tillation processes. The objective of all instances is to find an optimal column
design w.r.t. cost function (18) that separates the more volatile components
from the less volatile components.

6.1. Test Setting

We consider 16 test instances.

The reference test instance ex-ref consists of a mixture of n = 4 components
with initial composition xin

i = 1
4 , i ∈ {1, 2, 3, 4}, and with the constant relative

volatilities (α1, α2, α3, α4) = (6, 4, 1.2, 1). The number lcol of trays that can
be used in the entire distillation column is bounded by 25. Every section
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consists of at least one tray, so that the upper bound on the number of trays
used for the rectifying as well as for the stripping section is given by urect =
ustrip = 23. Molar flows F, B, D and V are given in terms of mol s−1. The
feed molar flow F is fixed to 1, while the remaining molar flows are variable
and may range as follows. 0 ≤ V ≤ 20, 0 ≤ B,D ≤ 1. We choose the
split σ to be 2. Recap from Section 3 that σ defines the more volatile single
components (1, . . . , σ) withdrawn from the condenser and the less volatile
single components (σ + 1, . . . ,n) withdrawn from the reboiler. With respect
to split σ, we call the components σ and σ + 1 key components, while the
others are called non-key components. The purity requirements are given by
πdist = πbot = 0.99.

The remaining test instances are defined by changing the values of several
parameters, resulting in five groups of further test instances that are briefly
explained, next.

The first group is defined by varying the constant relative volatilities for the
non-key components from the reference instance. The specifications are given
in Table 1.

Instance ex-adis1 ex-adis2 ex-adis3

(α1, α2, α3, α4) (12, 4, 1.2, 1) (12, 8, 2.4, 1) (24, 8, 2.4, 1)

Table 1: Specification of test instances with change in the distribution of
volatilities

The second group consists of two further instances for that the split σ is
changed. Moreover, the constant relative volatilities are adapted in such a
way that the ratios between the volatilities of the key components are the
same as in the reference setting. Table 2 shows the concrete specifications.

Instance ex-apos1 ex-apos2

σ 1 3

(α1, α2, α3, α4) (6.67, 2, 1.5, 1) (8, 5, 3.33, 1)

Table 2: Specification of test instances with changing σ

In the third group, we change the initial composition of the mixture as given
in Table 3.
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Instance ex-con1 ex-con2 ex-con3

(xin
1 , x

in
2 , x

in
3 , x

in
4 ) ( 1

10 ,
2
5 ,

2
5 ,

1
10 ) ( 1

4 ,
2
5 ,

1
10 ,

1
4 ) ( 1

4 ,
1

10 ,
2
5 ,

1
4 )

Table 3: Specification of test instances by varying the initial composition of the
mixture

Group four consists of the test instances, for that we vary the purity require-
ments on condenser and reboiler. In addition, we adapt the constant relative
volatilities in order to keep the separation processes approximately as difficult
as the separation process of the reference instance. Table 4 provides the specific
setting for the changed parameters.

Instance ex-pur1 ex-pur2 ex-pur3

(πdist, πbot) (0.95, 0.95) (0.99, 0.95) (0.95, 0.99)

(α1, α2, α3, α4) (3.64, 2.42, 1.2, 1) (4.62, 3.08, 1.2, 1) (4.62, 3.08, 1.2, 1)

Table 4: Specification of test instances with different purity requirements

Finally, we define a fifth group of test instances where different numbers of
components are considered. For each such instance, we adapt split σ, initial
composition and relative volatilities accordingly, as summarized in Table 5.

Instance ex-comp1 ex-comp2 ex-comp3 ex-comp4

n 2 3 5 5

σ 1 1 2 1

(xin
1 , . . . , x

in
n ) ( 1

2 ,
1
2 ) ( 1

2 ,
1
4 ,

1
4 ) ( 1

4 ,
1
4 ,

1
4 ,

1
8 ,

1
8 ) ( 1

2 ,
1
4 ,

1
10 ,

3
40 ,

3
40 )

(α1, . . . , αn) (3.33, 1) (4, 1.2, 1) (6, 4, 1.2, 1.1, 1) (6.67, 2, 1.5, 1.2, 1)

Table 5: Test instances where the number of components is changed

6.2. Results

For each instance, two MINLP formulations are derived. The first formu-
lation, called MINLP-orig, is based on the original distillation column model
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as presented in Section 2. The second formulation makes use of the model
formulation with aggregated concentration variables introduced in Section 3
and is called MINLP-ref. Both formulations have been implemented using the
following standard reformulation techniques. Due to their redundancy, all
variables that are associated with the (corresponding) last component n as
well as the variables xdist

i , xbot
i , i = 1, . . . ,n, and Xdist

k ,Xbot
k , k = 1, . . . ,n, are

eliminated. Moreover, each rational function appearing in one of the model
constraints is expanded by its denominator and restated by polynomial con-
straints.

All MINLPs are implemented and solved within a SCIP 3.2 framework [1] using
CPLEX 12.6.0 [14] as LP-sub-solver and IPOPT 3.12.4 [27] (incl. HSL-routines [13])
as NLP-sub-solver.

Additionally, we apply several different solution strategies to MINLP-ref. The
first strategy, indicated by w/ Mo, adds the (redundant) conditions on mono-
tonicity from Corollaries 2 and 3. The second strategy takes the fixed-point
equations (31) into account and is labeled by w/ Fix. In the third strategy, the
bound tightening procedure as described in Section 5 is used at every node
in the branch and bound tree. This is achieved by implementing a domain
propagation routine as an own constraint handler in SCIP. The label w/ BT
indicates that the bound tightening strategy is switch on.

All computations are carried out on a 3.00GHz Intel Xeon E5450 Processor
with a limit of 30 GB memory space for each run. Moreover, running time is
limited to 24 hours and the relative optimality gap is chosen to be 10−4. Symbol
time indicates that the corresponding instance is not solved within the given
time limit.

Our computational results are summarized in Table 6. Using the original
formulation MINLP-orig, most instances are not solved to global optimality
within the time limit (see Column 2 of Table 6). For some instances, this is
also the case when formulation MINLP-ref is used (see Column 3 of Table 6).
Using MINLP-ref we, however, observe less running times for those instances
that are solved within the time limit.

Adding the (redundant) monotonicity conditions and the fixed point equations
(w/Mo and w/Mo, Fix) has a mixed influence on the running time (see Columns
3,4 of Table 6). On the one hand, some instances are solved faster or can
only be solved in the time limit with the additional strategies. On the other
hand, there are instances that need more running time or even exceed the time
limit.
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Ex. MINLP MINLP MINLP-ref MINLP-ref MINLP-ref MINLP-ref

-orig -ref w/Mo w/Mo, Fix w/ BT w/Mo, BT

ref time 7151 time 67801 2419 11948

adis1 42117 16564 2715 9783 327 2134

adis2 time 84832 2827 5273 1009 541

adis3 time time 3817 1865 1536 483

apos1 71870 6530 49186 3592 8014 2976

apos2 time time 9911 5494 312 181

con1 31080 8056 1311 27391 1102 352

con2 time time 66749 3178 332 1186

con3 time 9566 20944 28785 1958 789

pur1 time 72917 70301 12230 26859 2815

pur2 time 23620 38988 70112 1961 593

pur3 time 26157 time time 1126 395

comp1 136 62 74 27 12 11

comp2 3254 464 281 1066 239 234

comp3 time time 6534 time 871 562

comp4 time time 15914 8291 2130 3658

Table 6: Running time in CPU seconds using the SCIP framework. Label time
means that the time limit of 24 hours of computation time is exceeded.

When applying the bounding tightening strategy w/ BT, we first notice that all
instances are globally solved within the time limit (see Column 5 of Table 6).
Our results further show that the use of that strategy has a positive influence
on the running time for all but instance apos1. When the bound tightening
strategy is combined with the strategy that adds the redundant conditions on
the monotonicity (w/Mo, BT), similar observations can be made (see Column 6
of Table 6).

Comparing our results for MINLP-orig either with the results for MINLP-ref w/
BT or with the results for MINLP-ref w/ BT, Mo, it turns out that on average
the running times are reduced to less than 5% in the latter cases. In these
calculations, the running time is set to the time limit of 24 hours of computation
time for those instances exceeding it.

27



6.3. Optimization using Gams

For sake of completeness, we finally investigate the computational behavior
of non-opensource software packages on our MINLP formulations. For this,
we chose the global optimization solvers BARON 16.3.4 [24] and SCIP 3.2 as
provided within the modeling system GAMS 24.7.1[10]. We remark that our
focus is on the question how the solvers work on the different model formu-
lations rather than on comparing the performances of the solvers against each
other.

Again, the computations are carried out on a 3.00GHz Intel Xeon E5450 Proces-
sor with a limit of 30 GB memory space, a time limit of 24 hours of computation
time and relative optimality gap of 10−4, for each run. Both solvers are used
with default settings, CPLEX as LP-subsolver and CONOPT (for BARON) and
IPOPT (for SCIP) as NLP-subsolver.

In the following, we consider the model formulations MINLP-orig, MINLP-
ref and MINLP-ref w/ Mo, Fix as defined in Subsection 6.2. We are not able
to implement the bound-tightening strategy in the non-open-source envi-
ronment GAMS, so that this strategy is excluded from further considera-
tions.

As most of the test instances from Subsection 6.1 could not be solved within
the time limit of 24 hours computation time, we derive from our reference
test instance ex-ref a new test set consisting of four simpler separation tasks.
The specifications of the parameters differing from ex-ref are given in Table 7.

Instance exg-ref exg-adis exg-apos exg-fcon

σ 2 2 1 2

ucol/urect/ustrip 10/8/8 10/8/8 10/8/8 10/8/8

(α1, α2, α3, α4) (24, 16, 1.2, 1) (48, 16, 1.2, 1) (26.67, 2, 1.5, 1) (24, 15, 1.2, 1)

(xin
1 , x

in
2 , x

in
3 , x

in
4 ) ( 1

4 ,
1
4 ,

1
4 ,

1
4 ) ( 1

4 ,
1
4 ,

1
4 ,

1
4 ) ( 1

4 ,
1
4 ,

1
4 ,

1
4 ) ( 1

10 ,
2
5 ,

2
5 ,

1
10 )

Table 7: Specification of the test setting used for the computations with GAMS

The computational results obtained by applying the solvers BARON and SCIP
are displayed in Tables 8 and 9, respectively. The results indicate that the
proposed formulation in terms of the aggregated components as well as the
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redundant monotonicity conditions and fixed point constraints can have a
quite positive influence on the running time, even though this does not hold
for every test instance.

Instance MINLP-orig MINLP-ref MINLP-ref

w/Mo, Fix

exg-ref 4649 894 61

exg-adis 183 321 66

exg-apos 140 1612 147

exg-con 1886 2770 141

Table 8: Running time in seconds using the GAMS software, solver: BARON.

Instance MINLP-orig MINLP-ref MINLP-ref

w/Mo, Fix

exg-ref 529 31 72

exg-adis 391 80 57

exg-apos 44 66 88

exg-con 116 28 36

Table 9: Running time in seconds using the GAMS software, solver: SCIP.

7. Conclusion

This article introduced a reformulation of the variables used for mole frac-
tions of ideal multi-component distillation column models. The reformulated
variables turned out to be monotonic, which allowed us to design a bound
tightening strategy and to apply it onto deterministic global optimization soft-
ware. It was shown that a significant reduction in running time is already given
by using the reformulated model. Further significant reduction was achieved
with the proposed problem-specific bound tightening strategy. Focus in the
present paper was on simple column configurations and ideal thermodynam-
ics. Future work will focus on global optimization of more complex column
configurations, including hybrid separation processes as well as non-ideal
thermodynamics.
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A. Proof of Corollary 3

Consider system (26) with parameters α1 ≥ α2 ≥ . . . ≥ αn > 0 and variables
(Y, νr). We show that applying the transformation rules (27) to (Y, νr) and
α1, . . . , αn leads to system (28) with parameters α̂1 ≥ α̂2 ≥ . . . ≥ α̂n > 0 and with
variables X̂, ν̂s whose feasible solutions satisfy the conditions of Theorem 1
(and Corollary 2). Note that feasible solutions to system (26) are in one-to-one
correspondence to solutions feasible to (28) via the transformation rules (27).
As we obtain from Corollary 2 that, for every feasible solution (X̂, ν̂s), the
sequences {X̂k,l̂s}

û+1
l̂s=1

with k = 1, . . . ,n are non-decreasing, the corresponding

sequences {Yk,lr}
u+1
lr=1, k = 1, . . . ,n are non-increasing.

The first part of system (26) is given as a combination of the mass balance equa-
tions (12) and the inverted phase equilibrium equations (25).

Yk,lr+1 = νr Xk,lr + (1 − νr) Yk,1 and Xk,lr =

∑k
j=1 α

−1
j (Y j,lr − Y j−1,lr)∑n

j=1 α
−1
j (Y j,lr − Y j−1,lr)

,

for k ∈ {1, . . . ,n} and lr ∈ {1, . . . ,u}. We apply the transformation rules (27)
to each constraint, separately. Recap that after the transformation, the com-
ponents appear in reverse order. To indicate that, we introduce a new index
m := n − k.

For all k ∈ {0, . . . ,n} and all l ∈ {1, . . . ,u}, we obtain

Yk,l+1 = νrXk,l + (1 − νr)Yk,1 ⇔ (1 − Yk,l+1) = 1 − (νrXk,l + (1 − νr)Yk,1)
⇔ (1 − Yk,l+1) = νr(1 − Xk,l) + (1 − νr)(1 − Yk,1).

Thus, the transformation rules (27) yield

X̂k,l+1 = ν̂sŶk,l + (1 − ν̂s)X̂k,1, m = 0, . . . ,n, l = 1, . . . ,u. (32)
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For the inverted phase equilibrium equations, we further derive that

Ŷn−k,l = 1 − Xk,l = (1 −

∑k
j=1 α

−1
j (Y j,l − Y j−1,l)∑n

j=1 α
−1
j (Y j,l − Y j−1,l)

) =

∑n
j=k+1 α

−1
j (Y j,l − Y j−1,l)∑n

j=1 α
−1
j (Y j,l − Y j−1,l)

=

∑n
j=k+1 α

−1
j ((1 − X̂n− j,l − (1 − X̂n−( j−1),l))∑n

j=1 α
−1
j ((1 − X̂n− j,l − (1 − X̂n−( j−1),l))

=

∑n
j=k+1 α

−1
j (X̂n−( j−1),l − X̂n− j,l)∑n

j=1 α
−1
j (X̂n−( j−1),l − X̂n− j,ls)

=

∑n
j=k+1 α̂n+1− j(X̂n+1− j,l − X̂n− j,l)∑n

j=1 α̂n+1− j(X̂n+1− j,l − X̂n− j,l)

holds for every k ∈ {1, . . . ,n} and for every l ∈ {1, . . . ,u + 1}. By an index shift
p := n + 1− j, we derive the equivalence to the non-inverted phase equilibrium
equation (14).

Ŷn−k,l =

∑n−k
p=1 βp(X̂p,l − X̂p−1,l)∑n
p=1 βp(X̂p,l − X̂p−1,l)

, n = 0, . . . ,n

l = 1, . . . ,u + 1

⇔ Ŷm,l =

∑m
p=1 βp(X̂p,l − X̂p−1,l)∑n+1
p=1 βp(X̂p,l − X̂p−1,l)

, m = 0, . . . ,n

l = 1, . . . ,u + 1

(33)

Combining equation (32) and (33), we obtain the first line from system (28).

The second line of system (28) results from the following relation.

Yk+1,l ≥ Yk,l, k = 0, . . . ,n − 1 ⇔ X̂m−1,l ≤ X̂m,l, m = 1, . . . ,n.

The third line of system (28) trivially holds.

It remains to argue that the transformed constant relative volatilities α̂m =
α−1

(n+1)−m, m = 1, . . . ,n, are strictly positive and monotonically non-decreasing in
the new ordering of the components. This, however, holds as α1 ≥ . . . ≥ αn > 0
implies that

0 < α−1
1 ≡ α̂n ≤ . . . ≤ α

−1
n ≡ α̂1.

Now, we can conclude that any feasible solution to system (28) satisfies the
conditions of Theorem 1 and Corollary 2. �
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B. Proof of Lemma 6 and Lemma 7

We only give a proof for Lemma 6 dealing with the stripping section. The
correctness of Lemma 7 can be shown in a similar way.

In what follows, superscript “strip” is omitted, again.

Proof. (Lemma 6)

We interpret the aggregated phase equilibrium equations (14)

Yk,ls(X) =

∑k
j=1 α j(X j,ls − X j−1,ls)∑n
j=1 α j(X j,ls − X j−1,ls)

as functions in the liquid phase concentration variables. For all k, q ∈ {1, . . . ,n}
and for all ls ∈ {1, . . . ,u + 1}, we consider the partial derivatives ∂Yk,ls (X)/∂Xq,ls

where we distiguish the three cases q ≤ k − 1, q = k and q ≥ k + 1. To keep
notation short, we introduce constant αn+1 := 0.

For q ≤ k − 1, we obtain

∂Yk,ls(X)
∂Xq,ls

=
(αq − αq+1)

∑n
j=1 α j(X j,ls − X j−1,ls)

(
∑n

j=1 α j(X j,ls − X j−1,ls))2
−

∑k
j=1 α j(X j,ls − X j−1,ls)(αq − αq+1)

(
∑n

j=1 α j(X j,ls − X j−1,ls))2

=
(αq − αq+1)

∑n
j=k+1 α j(X j,ls − X j−1,ls)

(
∑n

j=1 α j(X j,ls − X j−1,ls))2
.

As (αq − αq+1) ≥ 0 holds, this derivative is non-negative for all k ∈ {1, . . . ,n}
and all ls ∈ {1, . . . ,u + 1}.

For q = k we obtain

∂Yq,ls(X)

∂Xq,ls
=
αq

∑n
j=1 α j(X j,ls − X j−1,ls) −

∑q
j=1 α j(X j,ls − X j−1,ls)(αq − αq+1)

(
∑n

j=1 α j(X j,ls − X j−1,ls))2

=
αq

∑n
j=q+1 α j(X j,ls − X j−1,ls) + αq+1

∑q
j=1 α j(X j,ls − X j−1,ls)

(
∑n

j=1 α j(X j,ls − X j−1,ls))2
,

(34)

which is also non-negative for all q ∈ {1, . . . ,n} and all ls ∈ {1, . . . ,u + 1}.
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For q ≥ k + 1 we obtain

∂Yk,ls(X)
∂Xq,ls

=
−

∑k
j=1 α j(X j,ls − X j−1,ls)(αq − αq+1)

(
∑n

j=1 α j(X j,ls − X j−1,ls))2
, (35)

which is non-positive for all k ∈ {1, . . . ,n} and all ls ∈ {1, . . . ,u + 1} due to
(αq − αq+1) ≥ 0.

This shows that the phase equilibrium equations are component-wise mono-
tonic. Therefore, we can apply simple interval arithmetic, again, leading to
following lower and upper bounds on the vapor phase concentration variables
Yk,ls+1.

Ylo
k,ls

=

∑k
j=1 α j(X

ak
j,ls
− Xak

j−1,ls
)∑n

j=1 α j(X
ak
j,ls
− Xak

j−1,ls
)

and Yup
k,ls

=

∑k
j=1 α j(X

bk
j,ls
− Xbk

j−1,ls
)∑n

j=1 α j(X
bk
j,ls
− Xbk

j−1,ls
)
,

where for j = 1, . . . ,n

Xak
j,ls

:=

 Xlo
j,ls
, if j ≤ k,

Xup
j,ls
, if j > k,

and Xbk
j,ls

=

 Xup
j,ls
, if j ≤ k,

Xlo
j,łs
, if j > k,

(36)

We remark that the upper bound Yup
k,ls

on Yk,ls is not tight when Xup
k,ls

> Xlo
k′,ls

holds for some k′ > k. In those cases, we can compute an improved upper
bound on Yk,ls by finding the maximum of

Yk,ls(X) =

∑k
j=1 α j(X j,ls − X j−1,ls)∑n
j=1 α j(X j,ls − X j−1,ls)

restricted to Xlo
k′,ls
≤ Xk,ls ≤ Xk′,ls ≤ Xup

k,ls
. As ∂Yk,ls (X)/∂Xk,ls ≥ 0 and ∂Yk,ls (X)/∂Xk′ ,ls ≤ 0,

it follows that Xk,ls = Xk′,ls must hold for a solution on that the maximum is
attained. A comparison of Equations (34) and (35) gives rise to the relation

∂Yk,ls(X)
∂Xk,ls

+

n∑
j=k+1

∂Yk,ls(X)
∂X j,ls

≥ 0.

This shows that the maximum is attained when Xk,ls = Xk′,ls = Xup
k,ls

. Hence, we

can replace the definition of Xbk
j,ls

in Equation (36) by

Xbk
j,ls

=

 Xup
j,ls
, if j ≤ k,

max
{
Xup

k,łs
,Xlo

j,łs

}
, if j > k.

This completes the proof. �
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