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INFERENCE FOR HEAVY TAILED STATIONARY TIME SERIES

BASED ON SLIDING BLOCKS

AXEL BÜCHER AND JOHAN SEGERS

Abstract. The block maxima method in extreme value theory consists of fitting an
extreme value distribution to a sample of block maxima extracted from a time series.
Traditionally, the maxima are taken over disjoint blocks of observations. Alterna-
tively, the blocks can be chosen to slide through the observation period, yielding a
larger number of overlapping blocks. Inference based on sliding blocks is found to
be more efficient than inference based on disjoint blocks. The asymptotic variance of
the maximum likelihood estimator of the Fréchet shape parameter is reduced by more
than 18%. Interestingly, the amount of the efficiency gain is the same whatever the
serial dependence of the underlying time series: as for disjoint blocks, the asymptotic
distribution depends on the serial dependence only through the sequence of scaling con-
stants. The findings are illustrated by simulation experiments and are applied to the
estimation of high return levels of the daily log-returns of the Standard & Poor’s 500
stock market index.

Key words: Apéry’s constant; block maxima; Fréchet distribution; maximum likelihood
estimator; Marshall–Olkin distribution; Pickands dependence function; return level.

1. Introduction

Two major paradigms in extreme value theory are the block maxima method and
the peaks-over-threshold method. The former, more traditional one consists of fitting
an extreme value distribution to a sample of block maxima extracted from a (perhaps
latent) underlying sample. The latter method consists of fitting a generalized Pareto
distribution to the excesses in a sample over a high threshold.

Although the peaks-over-threshold method has become the standard one, there has
been a renewed interest recently in the block maxima method, and more specifically in its
asymptotic properties. The set-up is that of a triangular array of block maxima extracted
from a stationary time series. The block size, r, tends to infinity as the sample size, n,
tends to infinity, in such a way that the number of (disjoint) blocks, approximately
n/r, tends to infinity as well. The underlying sequence of random variables can be
independent (Ferreira and de Haan, 2015; Dombry, 2015; Dombry and Ferreira, 2017)
or can exhibit serial dependence (Bücher and Segers, 2014; Bücher and Segers, 2016).

Usually, maxima are taken over disjoint blocks of observations. For instance, for a se-
quence of daily observations, one may extract monthly or yearly maxima. Alternatively,
one can slide a block or window of a given size through the sample and consider the
corresponding maxima. Obviously, the blocks will be overlapping and thus dependent,
even if the underlying sequence of random variables is independent. Still, as soon the
underlying sequence is stationary, then so are the sliding block maxima. Moreover, the
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sample of sliding block maxima carries more information than the sample of disjoint
block maxima, which suggests the possibility of more accurate inference. Robert et al.
(2009), Northrop (2015) and Berghaus and Bücher (2016) applied this idea to the esti-
mation of the extremal index, a summary measure for the strength of serial dependence
between extremes. They found that estimators based on sliding blocks were indeed more
efficient than their counterparts based on disjoint blocks.

Here, we investigate the potential benefits of using maxima over sliding blocks rather
than over disjoint blocks for fitting extreme value distributions. More precisely, we seek
the asymptotic distribution of the maximum (quasi-)likelihood estimator for the shape
and scale parameters of a Fréchet distribution. The likelihood is computed as if the
sliding block maxima are independent, although they are not, as blocks may overlap.

The solution is based on Theorem 2.5 in Bücher and Segers (2016), which states
high-level conditions for the consistency and asymptotic normality of the maximum like-
lihood estimator of the Fréchet parameter vector based on a general triangular array of
dependent random variables. The biggest challenge is the computation of the estimator’s
asymptotic covariance matrix. In the course of the computations, we find new formulas
for moments of pairs of jointly max-stable random variables in terms of their Pickands
dependence function. These formulas are then applied to the bivariate Marshall–Olkin
distribution, which describes the joint asymptotic distribution of the two maxima over a
pair of overlapping blocks. The Marshall–Olkin parameter is a function of the proportion
of overlap between the two blocks.

We find that the maximum likelihood estimator based on sliding blocks is more efficient
than the maximum likelihood estimator based on disjoint blocks. For the estimator of
the Fréchet shape parameter, the reduction in asymptotic variance is more than 18%.
Remarkably, this number does not depend on the serial dependence of the underlying
stationary time series, in accordance to the findings for disjoint blocks in Bücher and
Segers (2016). Moreover, the efficiency gain carries over to the estimation of high return
levels. The asymptotic results are confirmed in numerical experiments. We illustrate
the method by estimating high quantiles of quarterly maxima of daily log-returns of
the S&P500 index. The Monte Carlo simulations reveal another benefit of using sliding
blocks: it makes the estimator more stable as a function of the block size.

The maximum likelihood estimator is defined and its asymptotic distribution is stated
in Section 2. Estimation of high return levels is considered in Section 3, both theoretically
and through a case study, followed by the results of a Monte Carlo simulation experiment
in Section 4. The proofs are given in Section 5 while the covariance calculations are
deferred to Appendix A.

2. Inference based on sliding blocks

2.1. The maximum likelihood estimator based on sliding block maxima. Let
(Xt)t∈Z be a strictly stationary time series: for any k ∈ N and for any h, t1, . . . , tk ∈ Z,
the distribution of (Xt1+h, . . . , Xtk+h) is the same as the distribution of (Xt1 , . . . , Xtk).
Further, let Pα,σ denote the Fréchet distribution with parameter θ = (α, σ)′ ∈ (0,∞)2,
given by its distribution function Pα,σ([0, x]) = exp{−(x/σ)−α} for x > 0. We assume
the following maximum domain-of-attraction condition. The arrow  denotes conver-
gence in distribution.
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Condition 2.1 (Max-domain of attraction). For some α0 ∈ (0,∞), there exists a se-
quence (σr)r∈N, regularly varying at infinity with index 1/α0, such that

max(X1, . . . , Xr)/σr  Pα0,1, r →∞.

Regular variation of the sequence (σr)r with index 1/α0 means that limr→∞ σbrsc/σr =

s1/α0 for every s > 0, where b · c denotes the integer part. A sufficient condition is that
the common univariate distribution of the variables Xt is in the max-domain of attraction
of the Fréchet distribution (see Section 2.3) and that the extremal index θ of the time
series (Xt)t exists and is positive (Leadbetter, 1983).

Suppose we observe a finite stretch of the time series, X1, . . . , Xn. For some integer
r ∈ {1, . . . , n}, let

Mr,t = Mt:(t+r−1) = max{Xt, . . . , Xt+r−1}, t = 1, . . . , n− r + 1,

denote the maximum over the r successive observations starting at time point t. The
sequence Mr,1, . . . ,Mr,k with k = n− r+ 1 is referred to as the sequence of sliding block
maxima. In contrast, the classical block maxima method in extreme value statistics
is based on the sequence of disjoint block maxima Mr,1,Mr,r+1, . . . ,Mr,(m−1)r+1, where
m = bn/rc. The common big blocks/small blocks heuristics suggests that the latter
sequence may be regarded as asymptotically independent and Fréchet distributed. Any
sensible estimator within the statistical model P = {P⊗mθ : θ = (α, σ)′ ∈ (0,∞)2} is
hence a sensible estimator when applied to the sample of disjoint block maxima as well.

Unfortunately, this idea cannot be directly transferred to the sample of sliding block
maxima, as that sequence is certainly not asymptotically independent, not even for an
underlying iid time series. Still, the sample of sliding block maxima is stationary and the
asymptotic distribution of a single such block maximum is Fréchet. We can therefore
estimate the Fréchet parameters by moment matching, for instance. Being based on
empirical moments only, the maximum likelihood estimator for independent sampling
from the Fréchet distribution (model P) is a case in point.

Existence and uniqueness of the maximum likelihood estimator in model P is studied
in Section 2.1 of Bücher and Segers (2016). The estimator is defined as

(α̂n, σ̂n) = arg max
θ∈(0,∞)2

n−r+1∑
t=1

`θ(Xn,t), (2.1)

where `θ(x) = log d exp{−(x/σ)−α}/dx is the contribution of an observation at x > 0
to the Fréchet log-likelihood of the parameter vector θ and where

Xn,t = Mr,t ∨ c (2.2)

with an arbitrary truncation constant c > 0. The reason for the left-truncation is
that otherwise some of the block maxima could be zero or negative. Asymptotically,
the truncation constant does not matter thanks to Condition 2.2 below. In practice,
it should be chosen as small as possible, e.g., equal to the square root of the machine
precision. By Lemma 2.1 in Bücher and Segers (2016), the maximizer exists and is unique
as soon as the n−r+1 values Xn,1, . . . , Xn,n−r+1 are not all equal, which our conditions
will guarantee to occur with probability tending to one. Note that the likelihood is
constructed as if the sliding block maxima were independent, although they are not, not
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even if the underlying sequence is independent, since some blocks overlap. Therefore, the
estimator may be more accurately referred to as a maximum quasi-likelihood estimator.

2.2. Asymptotic normality. For our main result, we need a couple of additional con-
ditions. First of all, let r = rn be an integer sequence tending to infinity such that
rn = o(n). The next condition is a slight adaptation of Condition 3.2 in Bücher and
Segers (2016).

Condition 2.2 (All block maxima of size brn/2c diverge). For every c > 0, the proba-
bility of the event that all disjoint block maxima of size r̃n = brn/2c are larger than c
converges to 1.

The condition in fact implies that the probability of the event that all sliding block
maxima of size rn are larger than c converges to 1 as well. It therefore guarantees that
the left-truncation above does not matter asymptotically. In Section 2.3, the condition
will be shown to hold for iid time series, provided the block sizes are not too small.

The following three conditions are Conditions 3.3, 3.4 and 3.5 in Bücher and Segers
(2016). The alpha-mixing coefficients of the sequence (Xt)t are defined as

α(k) = sup{|P(A ∩B)− P(A)P(B)| : A ∈ σ(Xj , j ≤ i), B ∈ σ(Xj+k, j ≥ i), i ∈ Z},

for k = 1, 2, . . ..

Condition 2.3 (α-Mixing with rate). We have lim`→∞ α(`) = 0. Moreover, there exists
ω > 0 such that

lim
n→∞

(n/rn)1+ωα(rn) = 0.

Condition 2.4 (Moments). There exists ν > 2/ω with ω from Condition 2.3 such that

lim sup
r→∞

E
[
gν,α0

(
(Mr,1 ∨ 1)/σr

)]
<∞, (2.3)

where gν,α0(x) = {x−α0 1(x ≤ e) + log(x) 1(x > e)}2+ν .

An elementary argument shows that if Condition 2.4 holds, then (2.3) continues to
hold with Mr,1 ∨ 1 replaced by Mr,1 ∨ c, for arbitrary c > 0.

Let P = Pα0,1 and write Pf =
∫∞
0 f(x) dP (x) for a real-valued function on (0,∞).

Further, let

f1(x) = x−α0 log(x), f2(x) = x−α0 , f3(x) = log(x) (2.4)

and note that, by Lemma B.1 in Bücher and Segers (2016),

Pf1 = −α−10 Γ′(2) = α−10 (γ − 1), Pf2 = Γ(2) = 1, Pf3 = −α−10 Γ′(1) = α−10 γ,

where Γ and Γ′ denote the gamma function Γ(z) =
∫∞
0 tz−1e−t dt and its derivative,

respectively, while γ = 0.5772 . . . denotes the Euler–Mascheroni constant.

Condition 2.5 (Bias). There exists c0 > 0 such that for j = 1, 2, 3,

lim
n→∞

√
n

rn

(
E
[
fj
(
(Mr,1 ∨ c0)/σr

)]
− Pfj

)
= B(fj)

with fj as defined in (2.4).
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As an interesting consequence of Theorem 2.6 below, the limit B(fj) can be seen not
to depend on the constant c0 under the conditions of the theorem.

Finally, we define the empirical process based on the left-truncated sliding block max-
ima in (2.2) as

Gnf =

√
n

rn

(
k−1n

kn∑
t=1

f(Xn,t/σrn)− Pf
)
.

Recall the maximum (quasi-)likelihood estimator in (2.1). The following theorem is the
main result of this paper.

Theorem 2.6. Suppose Conditions 2.1–2.5 are met. Then, for any c > 0 and with
probability tending to one, there exists a unique maximizer (α̂n, σ̂n) of the Fréchet log-
likelihood based on the left-truncated sliding block maxima Xn,1, . . . , Xn,kn, see (2.1), and
we have, as n→∞,

√
mn

(
α̂n − α0

σ̂n/σrn − 1

)
= M(α0)

Gnx
−α0 log(x)
Gnx

−α0

Gn log(x)

+ oP(1) N2

(
M(α0)B, Σ(α0)

)
.

Here, mn = n/rn, B = (B(f1), B(f2), B(f3))
′ as in Condition 2.5 and

M(α0) =
6

π2

(
α2
0 α0(1− γ) −α2

0

γ − 1 −(Γ′′(2) + 1)/α0 1− γ

)
,

Σ(α0) = M(α0)ΣYM(α0)
T ≈

(
0.4946α2

0 −0.3236
−0.3236 0.9578α−20

)
,

with ΣY = (σij)
3
i,j=1 as in Corollary 5.4 and equation (5.8).

It is interesting to note that the limiting covariance matrix is substantially smaller
than for the estimator based on disjoint blocks, see Theorem 3.6 in Bücher and Segers
(2016):

I−1(α0,1)
=

6

π2

(
α2
0 (γ − 1)

(γ − 1) α−20 {(1− γ)2 + π2/6}

)
≈
(

0.6080α2
0 −0.2570

−0.2570 1.1087α−20

)
.

The improvement is independent of the value of α0 and of the serial dependence of
the time series (e.g., of any of the characteristics like the extremal index or the cluster
distribution). In particular, the quotient of the asymptotic variances for the shape and
scale parameters are 0.8135 and 0.8639, respectively.

More generally, the delta method implies that the asymptotic distribution of a tail
quantity that can be written as a smooth function of (α̂n, σ̂n)′ will be normal with
asymptotic variance equal to β′I−1(α0,1)

β (disjoint blocks) or β′Σ(α0)β (sliding blocks),

where β is a 2× 1 vector of partial derivatives depending on the estimator. The ratio of
asymptotic variances is thus equal to

β′Σ(α0)β

β′I−1(α0,1)
β
. (2.5)

By the method of Lagrange multipliers, this ratio can be found to attain its minimum
and maximum at the smallest and largest eigenvalues of the matrix Σ(α0)(I

−1
(α0,1)

)−1 =
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Σ(α0)I(α0,1). Independently of α0, these eigenvalues are equal to 0.9413 and 0.6448,
respectively, and provide precise lower and upper bounds to the ratio in (2.5).

Should the underlying time series be positive, one might be tempted to omit the
left-truncation introduced above (which amounts to setting c = 0). Working out the
asymptotic theory is possible, but at the cost of more complicated conditions. Even
if Xt > 0 almost surely, the lower tail of the random variable Xt in a neighbourhood
of zero must not be too heavy for the moment and bias conditions to be true without
truncation. In practice, left-truncation at a suitable small constant appears to be non-
restrictive anyway whence we do not pursue this issue any further.

2.3. Sliding block maxima extracted from an iid sequences. If the sequence
(Xt)t is iid, then all conditions can be expressed in terms of the univariate, marginal
distribution function F (x) = P(Xt ≤ x). Condition 2.1 is equivalent to regular variation
of the function − logF at infinity with index −α0, that is,

lim
u→∞

− logF (ux)

− logF (u)
= x−α0 , x ∈ (0,∞). (2.6)

The scaling sequence can be chosen as σr = inf{u ≥ 1 : F (u) ≥ e−1/r}, for r = 1, 2, . . ..
To control the bias (Condition 2.5), we need to reinforce regular variation in (2.6) to

second-order regular variation of the function − logF together with a growth restriction
on the block size sequence (rn)n. The following condition is identical to Condition 4.1 in
Bücher and Segers (2016, Section 4); see also Remark 4.3 therein for additional context.
For τ ∈ R, define hτ : (0,∞)→ R by

hτ (x) =

∫ x

1
yτ−1 dy =


xτ − 1

τ
, if τ 6= 0,

log(x), if τ = 0.

Condition 2.7 (Second-Order Condition). There exists α0 ∈ (0,∞), ρ ∈ (−∞, 0], and
a real function A on (0,∞) of constant, non-zero sign such that limu→∞A(u) = 0 and
such that, for all x ∈ (0,∞),

lim
u→∞

1

A(u)

(
− logF (ux)

− logF (u)
− x−α0

)
= x−α0 hρ(x). (2.7)

Let ψ = Γ′/Γ denote the digamma function. For (α0, ρ) ∈ (0,∞) × (−∞, 0], define
the bias function

B(α0, ρ) = − 6

π2

(
b1(|ρ| /α0)

b2(|ρ| /α0)/α
2
0

)
, (2.8)

where

b1(x) =

(1 + x) Γ(x){γ + ψ(1 + x)}, if x > 0,

π2

6
, if x = 0,

and

b2(x) =

−
π2

6x
+ (1 + x) Γ(x){Γ′′(2) + γ + (γ − 1)ψ(1 + x)}, if x > 0,

0, if x = 0.

The graphs of these functions are depicted in Figure 1 in Bücher and Segers (2016).
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Theorem 2.8. Let X1, X2, . . . be independent random variables with common distribu-
tion function F satisfiying Condition 2.7. Let the block sizes rn be such that rn → ∞
and mn = bn/rnc → ∞ as n→∞ and assume that

lim
n→∞

√
mnA(arn) = λ ∈ R. (2.9)

Then, for any c > 0 and with probability tending to one, there exists a unique maximizer
(α̂n, σ̂n) of the Fréchet log-likelihood based on the left-truncated sliding block maxima
Xn,1, . . . , Xn,kn, and we have

√
mn

(
α̂n − α0

σ̂n/σrn − 1

)
 N2 (λB(α0, ρ), Σ(α0)) , n→∞,

with Σ(α0) as in Theorem 2.6 and B(α0, ρ) as in (2.8).

Compared to the estimator based on disjoint block maxima (Bücher and Segers, 2016,
Theorem 4.2), the asymptotic bias is the same, but the asymptotic variance is smaller,
as explained after Theorem 2.6.

3. Application to return level estimation

3.1. Estimator. Let Fr(x) = P(M1:r ≤ x). For T ≥ 1, the T -return level of the
sequence of disjoint block maxima is defined as the 1− 1/T quantile of Fr, that is,

RL(T, r) = F←r (1− 1/T ) = inf{x ∈ R : Fr(x) ≥ 1− 1/T}.
Since disjoint blocks are asymptotically independent, it will take on average T disjoint
blocks of size r until the first such block whose maximum exceeds RL(T, r).

By Condition 2.1, for large r, we may approximate Fr by Gα0,σr , the cdf of the Fréchet
distribution with shape parameter α0 and scale parameter σr. The quantile function of
the Fréchet family is given by G−1α,σ(p) = σ{− log(p)}−1/α0 . A reasonable estimator of
RL(T, rn) is therefore

R̂Ln(T, rn) = σ̂nb
−α̂n
T , bT = − log(1− 1/T ).

Also, let R̃L(T, rn) = σrnb
α0
T .

Corollary 3.1. Additionally to the conditions in Theorem 2.6 assume the bias condition

Λn(T ) =
√
mn

(
R̃L(T, rn)

RL(T, rn)
− 1

)
→ Λ(T ) ∈ R, n→∞.

Then, as n→∞,

√
mn

(
R̂Ln(T, rn)

RL(T, rn)
− 1

)
= β(T, α0)

′ ·
√
mn

(
α̂n − α0

σ̂n/σrn − 1

)
+ Λn(T ) + oP(1)

 N
(
β(T, α0)

′M(α0)B + Λ(T ) , β(T, α0)
′Σ(α0)β(T, α0)

)
where β(T, α0) =

(
α−20 log(bT ), 1

)′
.

The same result holds true for the disjoint blocks estimator, but with Σ(α0) replaced
by I−1(α0,1)

, the inverse of the Fisher information matrix for the Fréchet family. In Table 1,

the asymptotic variances are given for various values of T and with α0 = 1.
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T 50 100 200 500 1000 5000 10000
Sliding Blocks 11.01 14.40 18.26 24.07 29.02 42.35 48.87

Disjoint Blocks 12.37 16.34 20.88 27.77 33.66 49.59 57.41
Ratio 0.89 0.88 0.87 0.87 0.86 0.85 0.85

Table 1. Asymptotic variances for the sliding and disjoint blocks ver-

sions of R̂Ln(T, rn), alongside with their ratio, for α0 = 1.

3.2. Case study. We consider daily log-returns on the S&P500 index (data downloaded
from Yahoo Finance) in the fifty-year period from 1967 to 2016, yielding n = 12 584
observations in total. For such a long period, the log-returns can hardly be modelled
by a stationary time series, and therefore we consider ten-year periods instead, yielding
approximately n = 2 500 daily observations per period. We consider a block size equal
to r = 62, which corresponds to approximately one quarter, yielding m = 40 disjoint
quarters in a ten-year period. Then, we estimate the 1−1/T quantile of the distribution
of the quarterly maximum using the sliding block maxima and we check whether or
not this level is exceeded by the quarterly maximum immediately following the ten-year
training sample. We then let the ten-year window roll through the whole fifty-year
period in steps of one quarter, giving 40 × 4 = 160 estimated return levels in total, of
which, on average, 160/T should be exceeded. We consider T = 20, 40, 80, for which one
would thus expect 8, 4, 2 exceedances, respectively. Doing the calculations separately for
the positive and negative log-returns, we find 7, 3, 1 exceedances for the wins and 10, 7, 1
exceedances for the losses.

The results are shown in Figure 1. The black lines depict the quarters following each
ten-year training period, from 1977:Q1 up to 2016:Q4. The estimated return levels are
represented by colored lines; for instance, the value of the red line at 1977:Q1 corresponds
to the estimated 1− 1/20 quantile of the cdf of the quarterly block maxima, estimated
from the data in the period 1967–1976. The dots corresponds to exceedances of the
estimated return levels.

In Figure 2, we show estimated values and 95% confidence intervals (based on the
normal approximation and ignoring the bias) for the Fréchet shape and scale parameters.
The black lines are the same as in Figure 1, except for an affine transformation. The
impact of the occurrence of large block maxima is clearly visible (decrease in α, increase
in σ).

4. Simulation Study

We compare the performance of the disjoint and sliding blocks variations of the max-
imum likelihood estimator of the Fréchet shape parameter α. We also compare the
results with the Hill estimator (Hill, 1975), which is the maximum likelihood estimator
for the one-parameter Pareto distribution given by Pr(Y > y) = (y ∨ 1)−α fitted to the
relative excesses over a high threshold. To put the estimators on equal footing, we set
the threshold equal to the m + 1 largest order statistic, of which there are m excesses,
where m = bn/rc is the number of disjoint blocks of size r and which acts as an effective
sample size.
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Figure 1. Quarterly block maxima of the negative (left) and posi-
tive (right) log-returns of the S&P500 index (black lines) together with
estimates of the 1 − 1/T quantile of the block maximum distribution
(coloured lines). The estimates for a given quarter are based on sliding
block maxima in the ten-year period immediately preceding that quarter.
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Figure 2. Estimated Fréchet shape (blue) and scale (red) parameters
with pointwise 95% confidence intervals of the distribution of the quar-
terly block maxima of the negative (left) and positive (right) log-returns
of the S&P500 index. The estimates for a given quarter are based on
the sliding block maxima in the ten-year period immediately preceding
that quarter and are depicted together with the actually observed block
maximum (affinely transformed, black line).

We consider two different dependence scenarios: iid sequences and a max-autoregressive
(ARMAX) model

Xt = max{βXt−1, (1− β)Zt}, t ∈ Z,
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with parameter β ∈ [0, 1] and where (Zt)t are nonnegative iid random variables whose
distribution is in the max-domain of attraction of the Fréchet distribution with shape
parameter α > 0. The process (Xt)t is strictly stationary and admits the causal rep-
resentation Xt = maxj≥0{βj(1 − β)Zt−j}. Since P(M1:r ≤ x) = P(X1 ≤ x)P{Z1 ≤
x/(1− β)}r−1, rescaled block maxima of Xt converge weakly to the same Fréchet distri-
bution, but with scaling sequence depending on β. For the simulations, we fix β = 1/2,
and use a burn-in period of length 200 to arrive at approximate stationarity.

We consider three different choices for the iid case and for the innovation distribution
of the max-autoregressive model: the Fréchet distribution itself, the Pareto distribution
with shape parameter α, and the absolute value of the Student t-distribution with α
degrees of freedom.

The mean squared error, squared bias and variance for the estimators of α0 are shown
in Figure 3. We consider a fixed sample size n = 1 000, block sizes r = 2, 3, . . . , 50 for
the blocks estimators (i.e., m = n/r ranging from 20 to 500) and numbers of upper
order statistics m = 20, 30, . . . , 500 for the Hill estimator. The results are based on 3 000
repetitions.

The bias-variance trade-off is clearly visible: small m (large r) yields a large variance
but a small bias, while increasing m (decreasing r) decreases the variance but potentially
increases the bias (with some exceptions for the Hill estimator in the ARMAX-model).
The appearance of the bias curves in the iid scenarios may be explained as follows: The
Hill estimator is the maximum likelihood estimator in the iid Pareto model, while the
blocks estimators are maximum (quasi-)likelihood estimators in the iid Fréchet models.
The absolute t-distribution is in between. The size of the bias is ordered accordingly.

In all cases, the sliding blocks estimator is more accurate than the disjoint blocks
estimator due to its smaller variance.

Finally, another advantage of the sliding blocks estimator is that its trajectories fluc-
tuate less as a function of r, as illustrated in Figure 4.

5. Proofs and auxiliary results

The proof of Theorem 2.6 is based on a sequence of auxiliary lemmas. Let Zrn,t =
(Mrn,t ∨ c)/σrn , with c specified in the subsequent lemmas. All convergences will be for
n → ∞, if not stated otherwise. Throughout the proofs, we will write r = rn, m = mn

etc.

Lemma 5.1 (Joint weak convergence of sliding block maxima). Suppose that Condi-
tion 2.1 is met and that there exists an integer sequence (`n)n such that `n = o(rn) and
α(`n) = o(`n/rn) as n → ∞. Then, for any c ≥ 0 and any ξ ≥ 0, we have, for x > 0
and y > 0 and as n→∞,

lim
r→∞

P(Zrn,1 ≤ x, Zrn,1+brnξc ≤ y)

= Gα0,ξ(x, y) =

{
exp {−ξx−α0 − (1− ξ)(x ∧ y)−α0 − ξy−α0} , if 0 ≤ ξ ≤ 1,

exp(−x−α0 − y−α0), if ξ ≥ 1.
(5.1)

Surprisingly, the joint limiting law does not depend on any quantities related to the
serial dependence of the time series (like the extremal index). The two margins of the
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Figure 3. MSE, Squared Bias and Variance for the estimation of α0

(multiplied by 100) as a function of the effective sample size m, where
m = n/r for the blocks estimators and m is equal to the number of upper
order statistics used for the Hill estimator.
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Figure 4. Three typical trajectories of three different estimators of the
Fréchet shape parameter, based on iid samples of size n = 1 000 from
the t-distribution with 1 degree of freedom (i.e., α0 = 1). The blocks
estimators are based on the 44 unique values r that are obtained by
calculating the integer part of n/m0 with m0 ranging from 16, 17, . . . up
to 250. The Hill estimator is based on the respective 44 values m = bn/rc.

limit distribution are always Pα0,1. For ξ ≥ 1, the two block maxima are asymptotically
independent. For 0 ≤ ξ ≤ 1, the limiting distribution Gα0,ξ is bivariate max-stable with
Pα0,1 margins and with Pickands dependence function (Pickands, 1981) equal to

Aξ(w) = ξ + (1− ξ)(w ∧ (1− w)), w ∈ [0, 1]. (5.2)

If (Z1, Z2) ∼ Gα0,ξ, then (Z−α0
1 , Z−α0

2 ) is a pair of unit expontial random variables with
joint survival function

P(Z−α0
1 ≥ s, Z−α0

2 ≥ t) = exp{−ξs− (1− ξ)(s ∧ t)− ξt}
= exp{−(s+ t)Aξ(s/(s+ t))}. (5.3)

This is the Marshall–Olkin distribution (Marshall and Olkin, 1967) with dependence
parameter ξ. The distribution depends on ξ in such a way that the dependence increases
as ξ decreases, i.e., as the overlap between the two blocks increases.

Proof of Lemma 5.1. Write r = rn, ` = `n and α = α0. Since c/σr → 0 as r → ∞, we
may redefine Zr,i = Mr,i/σr. By Condition 2.1,

lim
r→∞

σbrξc/σr = ξ1/α

for any ξ > 0. As a consequence,

P(M1:brξc ≤ σrx) = P
{
M1:brξc ≤ σbrξc( σr

σbrξc
x)
}
→ exp(−ξx−α), r →∞.

Consider the case ξ ∈ (0, 1). We will show below that

P(Zr,1 ≤ x, Zr,1+brξc ≤ y)

= P
{
M1:brξc ≤ σrx, M(brξc+1):r ≤ σr(x ∧ y), M(r+1):(r+brξc) ≤ σry

}
= P

{
M1:brξc ≤ σrx

}
P
{
M(brξc+1):r ≤ σr(x ∧ y)

}
P
{
M(r+1):(r+brξc) ≤ σry

}
+ o(1) (5.4)



SLIDING BLOCKS ESTIMATORS 13

as r →∞. As a consequence of the previous two displays and by strict stationarity, we
obtain (5.1) for ξ ∈ (0, 1). The case ξ ≥ 1 can be treated similarly while the case ξ = 0
is trivial. It remains to show (5.4).

As a consequence of Lemma A.8 in Bücher and Segers (2016), we have

lim
n→∞

P(M1:(r′−`) < M(r′−`+1):r′) = 0

for any sequence r′ such that r′/r is bounded away from 0 and infinity; note that
Condition 3.1 in that paper follows from our assumption that (σr)r is regularly varying.
Applying this result four times and using the fact that lim`→∞ α(`) = 0, we may write
the expression in the middle line of (5.4) as

P{M1:(brξc−`) ≤ σrx, M(brξc+1):(r−`) ≤ σr(x ∧ y), M(r+1):(r+brξc) ≤ σry}+ o(1)

= P{M1:(brξc−`) ≤ σrx}P{M(brξc+1):(r−`) ≤ σr(x ∧ y)}P{M(r+1):(r+brξc) ≤ σry}+ o(1)

= P{M1:brξc ≤ σrx}P{M(brξc+1):r ≤ σr(x ∧ y)}P{M(r+1):(r+brξc) ≤ σry}+ o(1)

as n→∞, which proves (5.4). �

Lemma 5.2 (Asymptotic covariances of functions of sliding block maxima). Suppose
Conditions 2.1 and 2.4 are met and that there exists an integer sequence (`n)n such that
`n = o(rn) and α(`n) = o(`n/rn) as n → ∞. Then, for any c > 0, ξ ∈ [0, 1] and any
pair of measurable functions f, g on (0,∞) which are continuous almost everywhere and
satisfy

(|f | ∨ |g|)2 ≤ gη,α0(x) = {x−α0 1(x ≤ e) + log(x) 1(x > e)}2+η

for some 0 < η < ν, we have

lim
n→∞

Cov
(
f(Zrn,1), g(Zrn,1+brnξc)

)
= Covα0,ξ

(
f(Z1), g(Z2)

)
where the right-hand side means that (Z1, Z2) ∼ Gα0,ξ as in (5.1).

Proof of Lemma 5.2. The result is a simple consequence of Lemma 5.1, the Cauchy–
Schwarz inequality and Example 2.21 in van der Vaart (1998). �

Lemma 5.3. Suppose Conditions 2.1, 2.3 and 2.4 are met. Then, for any pair of
measurable functions f, g which are continuous almost everywhere and satisfy

(|f | ∨ |g|)2 ≤ gη,α0(x) = {x−α0 1(x ≤ e) + log(x) 1(x > e)}2+η

for some 0 < η < ν, we have

σf,g = lim
n→∞

Cov(Gnf,Gng) = 2

∫ 1

0
Covα0,ξ

(
f(Z1), g(Z2)

)
dξ.

Proof of Lemma 5.3. Let `n = max{sn, brn
√
α(sn)c}, where sn = b√rnc. Then `n →

∞, `n = o(rn) and α(`n) = o(`n/rn) as n → ∞, so that the results of Lemma 5.1–5.2
become available.

For h = 1, . . . , bn/rnc, let Ih = {(h − 1)rn + 1, . . . , hrn} denote the set of indices
making up the hth disjoint block of size rn. For simplicity assume that mn = n/rn is an
integer. Then, we may write

1

kn

kn∑
t=1

f(Zr,t) =
1

kn

mn∑
h=1

Ah,
1

kn

kn∑
t=1

g(Zr,t) =
1

kn

mn∑
h=1

Bh,
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where Ah =
∑

s∈Ih f(Zr,s) and Bh =
∑

s∈Ih g(Zr,s). As a consequence,

Cov(Gnf,Gng)

=
mn

k2n

(
mn Cov(A1, B1) +

mn−1∑
h=1

(mn − h)
{

Cov(A1, B1+h) + Cov(B1, A1+h)
})

=
m2
n

k2n
Cov(A2, B1 +B2 +B3)−

mn

k2n
Cov(A2, B1 +B3)

+
m2
n

k2n

mn−1∑
h=2

(1− h
mn

)
{

Cov(A1, B1+h) + Cov(B1, A1+h)
}
. (5.5)

Let us proceed by showing that

lim
n→∞

Sn = 2

∫ 1

0
Covα0,ξ(f(Z1), g(Z2)) dξ, where Sn =

1

r2n
Cov(A2, B1 +B2 +B3).

(5.6)

For that purpose, define functions gn1 and gn2 on the positive real line by

gn1(ξ) = Cov
(
f(Zr,1), g(Zr,1+brξc)

)
, gn2(ξ) = Cov

(
f(Zr,1+brξc), g(Zr,1)

)
.

We may then write

1

r2n
Cov(A2, B2) =

1

r2n

rn∑
s=1

rn∑
t=1

Cov
(
f(Zr,s), g(Zr,t)

)
=

1

rn
gn1(0) +

1

rn

rn−1∑
h=1

(
1− h

rn

){
gn1
(
h
rn

)
+ gn2

(
h
rn

)}
,

1

r2n
Cov(A2, B3) =

1

r2n

rn∑
s=1

2rn∑
t=rn+1

Cov
(
f(Zr,s), g(Zr,t)

)
=

1

rn

rn−1∑
h=1

h
rn
gn1
(
h
rn

)
+

1

rn

2rn−1∑
h=rn

(2− h
rn

)gn1
(
h
rn

)
,

1

r2n
Cov(A2, B1) =

1

r2n

rn∑
s=1

2rn∑
t=rn+1

Cov
(
f(Zr,s), g(Zr,t)

)
=

1

rn

rn−1∑
h=1

h
rn
gn2
(
h
rn

)
+

1

rn

2rn−1∑
h=rn

(2− h
rn

)gn2
(
h
rn

)
.

As a consequence of the three previous formulas,

Sn =

∫ 1

0
{gn1(ξ) + gn2(ξ)} dξ +Rn

where the remainder Rn satisfies

|Rn| ≤
1

rn
|gn1(0)|+ 2

∫ 2

1
{|gn1(ξ)|+ |gn2(ξ)|}dξ.
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Note that limn→∞ gn`(ξ) = Covα0,ξ(f(Z1), g(Z2)) by Lemma 5.2, for ` = 1, 2. In partic-
ular, the limit is zero for ξ ≥ 1. Hence, we obtain both Rn → 0 and (5.6) by dominated
convergence.

Let us finally show that the sum on the right-hand side of (5.5) is negligible. The
lemma then follows from (5.5) and (5.6). For that purpose, start by considering the sum
over those summands for which h ≥ 3. In this case, the observations making up A1 and
B1+h are separated by rn(h− 2) observations. As a consequence, invoking Lemma 3.11
in Dehling and Philipp (2002), we have

Cov(A1, B1+h) ≤ 10 ‖A1‖2+ν ‖B1‖2+ν {α(rn(h− 2))}ν/(2+ν),

with ν > 0 from Condition 2.4. Since (mn/kn)2‖A1‖2+ν‖B1‖2+ν = O(1), we can bound

the sum involving Cov(A1, B1+h) by a multiple of
∑mn−3

h=1 {α(hrn)}ν/(2+ν), which con-
verges to 0 by Condition 2.3. The same argument can be used to handle the sum
involving Cov(B1, A1+h) for h ≥ 3. It remains to consider the summand corresponding
to h = 2. We may write

1

r2n
Cov(A1, B3) =

1

r2n

rn∑
s=1

3rn∑
t=2rn+1

Cov(f(Zr,s), g(Zr,t))

=
1

rn

2rn−1∑
h=rn

h
rn
gn1
(
h
rn

)
+

1

rn

3rn−1∑
h=2rn

(2− h
rn

)gn1
(
h
rn

)
,

which can be bounded in absolute value by 3
∫ 3
1 |gn1(ξ)| dξ. As before, this integral

converges to zero by dominated convergence and Lemma 5.2. Similarly, |Cov(B1, A3)| =
o(r2n), and the proof is finished. �

Recall the polygamma function of order m ≥ 0 and the Riemann zeta function:

ψ(m)(z) =
dm+1

dzm+1
log Γ(z), (z > 0), ζ(z) =

∞∑
k=1

k−z, (z > 1).

A special value that we will need is Apéry’s constant, ζ(3) ≈ 1.2020569. Recall the
functions f1, f2, f3 in (2.4). For i, j ∈ {1, 2, 3}, define

σij = 2

∫ 1

0
Covα0,ξ

(
fi(Z1), fj(Z2)

)
dξ. (5.7)

Corollary 5.4. For σij as in (5.7), we have

σ11 = α−20

[
4 log(2)

(
ψ(2)2 +

π2

6
− ψ(2) log(2) + log2(2)/3

)
+ ψ(2)

π2

3
− 7

8
ζ(3)− 2ψ(2)2

]
,

σ22 = 4 log(2)− 2,

σ33 = α−20

[
8 log(2)− 4

]
,

σ12 = α−10

[
2 log2(2)− π2

6
− (1− γ)(4 log(2)− 2)

]
,

σ13 = α−20

[
(1 + ψ(2))

π2

6
+ 2 log2(2)− 4ψ(2) log(2) + 2ψ(2)− 7

16
ζ(3)

]
,
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σ23 = α−10

[
4 log(2)− 2− π2

6

]
.

Proof. If (Z1, Z2) ∼ Gα0,ξ, then (S, T ) = (Z−α0
1 , Z−α0

2 ) is a pair of unit exponential
random variables whose distribution is jointly min-stable with Marshall–Olkin Pickands
dependence function Aξ; see (5.2)–(5.3). Further, we have

f1(Z1) = Z−α0
1 log(Z1) = −α−10 S log(S),

f2(Z1) = Z−α0
1 = S,

f3(Z1) = log(Z1) = −α−10 log(S),

and similarly for fj(Z2). We obtain

Covα0,ξ

(
f1(Z1), f1(Z2)

)
= α−20 Covξ

(
S log(S), T log(T )

)
,

Covα0,ξ

(
f2(Z1), f2(Z2)

)
= Covξ(S, T ),

Covα0,ξ

(
f3(Z1), f3(Z2)

)
= α−20 Covξ

(
log(S), log(T )

)
,

Covα0,ξ

(
f1(Z1), f2(Z2)

)
= −α−10 Covξ

(
S log(S), T

)
,

Covα0,ξ

(
f1(Z1), f3(Z2)

)
= α2

0 Covξ
(
S log(S), log(T )

)
,

Covα0,ξ

(
f2(Z1), f3(Z2)

)
= −α−10 Covξ

(
S, log(T )

)
,

where the index ξ ∈ [0, 1] stresses the dependence of the covariances on the Marshall–
Olkin parameter. In Appendix A, the covariances on the right-hand side are denoted
by Hk,`(a, b; ξ) = Covξ(S

a(log(S))k, T b(log(T ))`), and their integrals over ξ ∈ [0, 1] are
computed in Corollary A.3. Multiplying by two, we find the stated formulas. �

Approximate values of σij in (5.7) are summarized in the following matrix:

ΣY = (σij)
3
i,j=1 =

1

α2
0

 1.5140 −1.0107 · α0 0.8712

−1.0107 · α0 0.7726 · α2
0 −0.8723 · α0

0.8712 −0.8723 · α0 1.5434

 . (5.8)

Proof of Theorem 2.6. The theorem is a consequence of Theorem 2.5 in Bücher and
Segers (2016). In the notation of that paper, let vn =

√
mn and recall that kn = n−rn+1

and mn = bn/rnc. As before, write k = kn, m = mn, and so on. Subsequently, redefine
Xn,t = Mr,t ∨ c0 with c0 > 0 from Condition 2.5. Recall that, as a consequence of
Condition 2.2, such a redefinition does not change the estimator on a sequence of events
whose probability converges to one. Hence, the asymptotic distribution is unaffected
as well and in particular the asymptotic bias (which is identifiable from the limiting
distribution) does not depend on c0. We need to show the following three properties:

(i) limn→∞ P(Xn,1 = · · · = Xn,k) = 0.
(ii) There exist constants 0 < α− < α0 < α+ <∞ such that

Pnf =
1

k

k∑
t=1

f(Xn,t/σr) 
∫ ∞
0

f(x) pα0,1(x) dx

for all f ∈ F2(α−, α+), where

F2(α−, α+) = {x 7→ log x} ∪ {x 7→ x−α(log x)k : k = 0, 1, 2, α ∈ (α−, α+)}.
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(iii) For fj as in (2.4), we have

(Gnf1,Gnf2, Gnf3)
T  Y ∼ N3(B,ΣY ), n→∞,

where Gn and B are as in Theorem 2.6 and where ΣY is as in Corollary 5.3, see
in particular equation (5.8).

The not-all-tied property in (i) follows immediately from Lemma A.5 in Bücher and
Segers (2016): note that kn in Condition 3.3 in that paper corresponds to mn here.

Consider (ii). Choose η ∈ (2/ω, ν) with ω and ν from Condition 2.3 and 2.4. Further,
let 0 < α− < α0 < α+ be arbitrary (further constraints on α+ will be imposed below).
Lemma A.6 in Bücher and Segers (2016) implies that limn→∞ E[Pnf ] = Pf , as long as
α+ is chosen smaller than 2α0 (in that case, any f ∈ F2(α−, α+) can be bounded in

absolute value by g0,α0). Further, Pnf − E[Pnf ] = m−1/2Gnf = OP(m−1/2) = oP(1), as
will be shown below in the proof of (iii). These two facts imply (ii).

Consider (iii). The empirical process Gn can be decomposed into a stochastic term
and a bias term:

Gn =
√
m(Pn − Pn) +

√
m(Pn − P ) ≡ G̃n +Bn,

where Pn denotes the distribution of Xn,1/σr. For j = 1, 2, 3, we have Bn(fj)→ B(fj) by

Condition 2.5. Let us show that the finite-dimensional distributions of (G̃n(f))f∈F2(α−,α+)

converge weakly to those of a zero-mean Gaussian process G with covariance

Cov(Gf,Gg) = 2

∫ 1

0
CovQα0,ξ(f(U1), g(U2)) dξ, f, g ∈ F2(α−, α+).

This certainly implies (iii), and is also sufficient to close the missing gap in the proof of
(ii) above.

By the Cramér–Wold device, it suffices to show weak convergence G̃n(h)  G(h)
for h = vT g where v is a column vector and where g is a column vector of functions
in F2(α−, α+). Here, G̃n(h) and G(h) are defined by linearity; in particular, G(h) is

centred Gaussian with variance 2vT
( ∫ 1

0 CovQα0,ξ(g(U1), g(U2)) dξ
)
v, the integral being

defined entrywise. Also, note that |h|2+δ . gη,α0 , provided we choose δ ∈ (2/ω, η) and
α+ > α0 sufficiently small. Now, let

I1 = {1, . . . , r}, I2 = {r + 1, . . . , 2r}, . . . , Im = {(m− 1)r + 1, . . . ,mr}

denote the indices making up the m disjoint blocks of size r. Further, let m∗ = m∗n ≥ 3,
m∗ ≤ m, be an integer sequence converging to infinity such that m∗ = o(mδ/(2(1+δ))) as
n→∞. Define

J+
1 = I1 ∪ · · · ∪ Im∗−2, J−1 = Im∗−1 ∪ Im∗ ,
J+
2 = Im∗+1 ∪ · · · ∪ I2m∗−2, J−2 = I2m∗−1 ∪ I2m∗ ,
J+
3 = I2m∗+1 ∪ · · · ∪ I3m∗−2, J−3 = I3m∗−1 ∪ I3m∗ , . . .

and so on, that is, successively merge m∗ − 2 of the initial disjoint blocks to a new big
block J+

j , and then 2 of the initial disjoint blocks to a new small block J−j . In total,

we obtain q = qn = bm/m∗c → ∞ new (disjoint) big blocks and small blocks. For
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simplicity, assume that m∗q = m, so that each time point 1, . . . , n is covered by exactly
one of the new blocks; otherwise, a negligible remainder term arises. We may then write

G̃n(h) =
√
m

(
1

k

k∑
t=1

h(Xn,t/σr)− E[h(Xn,t/σr)]

)
=

1
√
q

q∑
j=1

S+
nj +

1
√
q

q∑
j=1

S−nj

≡ A+
n +A−n ,

where, for j = 1, . . . , q,

S±nj =

√
mq

k

∑
s∈J±j

{h(Xn,s/σr)− E[h(Xn,s/σr)]}.

It suffices to show that A−n = oP(1) and that A+
n  G(h) as n→∞.

Let us prove that A−n is negligible, and for that purpose consider its variance, since it
is already centered. We have

Var(A−n ) = Var(S−n1) +
2

q

q−1∑
j=1

(q − j) Cov(S−n1, S
−
n,1+j)

≤ 3 Var(S−n1) + 2

q−1∑
j=2

Cov(S−n1, S
−
n,1+j).

Recall that |h|2+δ . gη,α0 with δ ∈ (2/ω, η). Hence, by Condition 2.4 and since q =
bm/m∗c,

‖S−n1‖2+η ≤
√
mq

k
4r · ‖h(Xn,1/σr)‖2+η .

1√
m∗
· ‖h(Xn,1/σr)‖2+η = o(1).

Thus Var(S−n1) = o(1) as well. Further, by Lemma 3.1 in Dehling and Philipp (2002),

q∑
j=2

Cov(S−n1, S
−
n,1+j) . q ‖S−n1‖

2
2+δ α(r)δ/(2+δ) .

m

(m∗)2
α(r)δ/(2+δ),

which is of the order o((m∗)−2) by Condition 2.3 and the fact that 2/δ > ω by the choice
of δ.

Now, consider the weak convergence of A+
n . By a standard argument based on char-

acteristic functions (see, e.g., the proof of Theorem 3.6 in Bücher and Segers, 2016), we
may assume that the triangular array S+

n1, . . . , S
+
nq is rowwise independent. As a conse-

quence, we may apply Lyapounov’s central limit theorem (Theorem 27.3 in Billingsley,
1979): provided that E[(S+

nj)
2] converges to Var(G(h)) and that

lim
n→∞

∑q
j=1 E[|S+

nj |2+δ](∑q
j=1 E[|S+

nj |2]
)1+δ/2 = 0, (5.9)

we obtain that A+
n converges weakly to G(h) and the proof of the claimed convergence

of the finite-dimensional distributions of the empirical process (G̃n(f))f∈F2(α−,α+) is
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finished. Now,

‖S+
nj‖2+δ ≤

√
mq

k
2(m∗ − 2)r · ‖h(Xn,1/σr)‖2+δ .

√
m∗ · ‖h(Xn,1/σr)‖2+δ = O(

√
m∗)

by Condition 2.4 (recall that |h|2+δ . gη,α0). As a consequence, provided that E[(S+
nj)

2]

is converging, the fraction in (5.9) is of the order O(q−δ/2(m∗)1+δ/2). Since q = bm/m∗c
and m∗ = o(mδ/(2(1+δ))), this expression converges to 0.

It remains to show that E[(S+
nj)

2] = Var(S+
nj) converges to Var(G(h)). This follows

similarly as in the proof of Lemma 5.3: since q = bm/m∗c and m = bn/rc, we may write

S+
n1 =

√
mq

k

m∗−2∑
j=1

Cj =

(
1

r
√
m∗

m∗−2∑
j=1

Cj

)
(1 + o(1)), n→∞,

where Cj =
∑

s∈Ij{h(Zr,s)− E[h(Zr,s)]}. Now,

Var

(
1

r
√
m∗

m∗−2∑
j=1

Ch

)
=
m∗ − 2

m∗
1

r2
Var(C1) +

2

r2

m∗−3∑
j=1

(1− (2+j)
m∗ ) Cov(C1, C1+j).

Exactly as in the proof of Lemma 5.3, the right-hand side can be seen to be equal to
Cov(C2, C1 +C2 +C3)/r

2 + o(1), which further can be seen to converge to Var(G(h)) =
2vT Cov(g(U1), g(U2)) v, as asserted. �

Proof of Theorem 2.8. We apply Theorem 2.6 and need to check Conditions 2.1–2.5 as
well as the expression of the bias function.

The max-domain of attraction Condition 2.1 follows from first-order regular variation
of − logF in (2.6), which is a consequence of second-order regular variation in Condi-
tion 2.7. Condition 2.2 on the smallest block maxima follows in the same way as the
proof of Condition 3.2 in the proof of Theorem 4.2 in Bücher and Segers (2016); in
particular, (2.9) implies that log(mn) = o(rn) as n→∞, see Remark 4.5 in Bücher and
Segers (2016). Strong mixing with rate in Condition 2.3 is trivially fulfilled. Finally,
Conditions 2.4 and 2.5 are the same as Conditions 3.4 and 3.5 in Bücher and Segers
(2016), respectively, and are shown to be implied by second-order regular variation in
the proof of Theorem 4.2 in the cited paper. �

Proof of Corollary 3.1. The bias condition implies that

√
mn

(
R̂Ln(T, rn)

RL(T, rn)
− 1

)
=
√
mn

(
R̂Ln(T, rn)

R̃L(T, rn)
− 1

)
R̃L(T, rn)

RL(T, rn)
+ Λn(T )

=
√
mn

(
R̂Ln(T, rn)

R̃L(T, rn)
− 1

)
(1 + o(1)) + Λn(T ).

The first factor on the right-hand side of this display can be written as

√
mn

( σ̂n
σrn

b
1/α0−1/α̂n
T − 1

)
=
√
mn

( σ̂n
σrn
− 1
)(
b
1/α0−1/α̂n
T − 1

)
+
√
mn

( σ̂n
σrn
− 1
)

+
√
mn

(
b
1/α0−1/α̂n
T − 1

)
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= oP(1) +
√
mn

( σ̂n
σrn
− 1
)

+
√
mn(α̂n − α0)

log(bT )

α̂nα0

=β(T, α0)
′ ·
√
mn

(
α̂n − α0

σ̂n/σrn − 1

)
+ oP(1),

which proves the corollary. �

Appendix A. Covariance calculations for min-stable distributions

Let the pair of random variables (S, T ) have a min-stable distribution with unit ex-
ponential margins and Pickands dependence function A : [0, 1]→ [1/2, 1], i.e.,

Pr(S > x, T > y) = exp{−(x+ y)A(x/(x+ y))}, (x, y) ∈ [0,∞)2 \ {(0, 0)}.

The function A is convex and satisfies w∨(1−w) ≤ A(w) ≤ 1 for all w ∈ [0, 1]. Tiago de
Oliveira (1980) obtained the formula

Cov(logS, log T ) =

∫ 1

0

− logA(w)

w(1− w)
dw. (A.1)

To compute the asymptotic covariance matrix of the maximum likelihood estimator
based on sliding blocks, we seek to generalize (A.1) to

Hk,`(a, b) = Cov
(
Sa(logS)k, T b(log T )`

)
, (A.2)

for a, b ∈ [0,∞) and k, ` ∈ N0 = {0, 1, 2, . . . }. In particular, we are interested in the
Marshall–Olkin distribution with parameter ξ ∈ [0, 1], which has Pickands dependence
function A = Aξ in (5.2).

For any a ∈ [0,∞) and k ∈ N0,

E[Sa(log(S))k] =

∫ ∞
0

sa(log(s))ke−s ds = Γ(k)(1 + a),

where Γ(k) denotes the k-th derivative of the Euler gamma function. For k = 1, we may
further write Γ′(1+a) = Γ(1+a)ψ(1+a), where ψ = Γ′/Γ is the digamma function. For
notational convenience, the zero-th (partial) derivative of a function is to be interpreted
as the function itself.

Lemma A.1. Let (S, T ) have a min-stable distribution with unit exponential mar-
gins and Pickands dependence function A. Then, for all a, b > 0 and all k, ` ∈ N =
{0, 1, 2, 3, . . . }, we have

Hk,`(a, b) =

∫ 1

0

∂k+`

∂ak∂b`

(
abΓ(a+ b)

wa−1(1− w)b−1

(A(w))a+b

)
dw − Γ(k)(1 + a) Γ(`)(1 + b),

Hk,1(a, 0) =

∫ 1

0

∂k

∂ak
(
Γ(a+ 1)

(
(A(w))−a − 1

)
wa−1(1− w)−1

)
dw,

H1,1(0, 0) =

∫ 1

0

− logA(w)

w(1− w)
dw.

Further cases can be obtained by symmetry: we have Hk,`(a, b) = H̃`,k(b, a), where H̃ is
given by the above formulas, but with A(w) replaced by A(1− w).
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Proof. In the following, let a, b > 0.

• Case H0,0(a, b). By Fubini’s theorem,

E[SaT b] = E

[∫ S

0
axa−1 dx

∫ T

0
byb−1 dy

]
= E

[∫
(0,∞)2

1(S > x, T > y) axa−1 byb−1 d(x, y)

]

=

∫
(0,∞)2

P(S > x, T > y) axa−1 byb−1 d(x, y)

=

∫
(0,∞)2

e−(x+y)A(x/(x+y)) axa−1 byb−1 d(x, y).

Substituting x+ y = s and x/(x+ y) = w, so x = sw and y = s(1− w), with Jacobian
|∂(x, y)/∂(s, w)| = s, and following up by substituting sA(w) = t, we find

E[SaT b] =

∫ 1

w=0

∫ ∞
s=0

e−sA(w) a(sw)a−1 b(s(1− w))b−1 s ds dw

= ab

∫ 1

w=0

∫ ∞
t=0

e−t (tw/A(w))a−1 (t(1− w)/A(w))b−1 (A(w))−2 t dt dw

= ab

∫ 1

w=0

wa−1(1− w)b−1

(A(w))a+b

∫ ∞
t=0

ta+b−1e−t dt dw

= abΓ(a+ b)

∫ 1

w=0

wa−1(1− w)b−1

(A(w))a+b
dw.

• Case Hk,`(a, b). By the mean value theorem, we have, for b > 0, t > 0 and h such that
b+ h > 0, the inequality ∣∣∣∣ tb+h − tbh

∣∣∣∣ ≤ max(tb+h, tb)|log t|.

Since E[T b(log(T ))`] < ∞ for all b > 0 and ` = 0, 1, 2, . . ., an application of the dom-
inated convergence theorem implies that we can interchange expectation and partial
derivatives to find that

E[Sa(log(S))kT b(log(T ))`] = E

[
∂kSa

∂ak
∂`T b

∂b`

]
=

∂k+`

∂ak∂b`
E[SaT b]

=
∂k+`

∂ak∂b`

∫ 1

w=0
abΓ(a+ b)

wa−1(1− w)b−1

(A(w))a+b
dw.

By the same type of argument, we can interchange the partial derivatives and the in-
tegral over w: in a small neighbourhood of a fixed pair (a, b) ∈ (0,∞)2, the partial
derivatives with respect to a and b are bounded by a constant multiple of the function
w 7→ wa−h−1|log(w)|kwb−h−1|log(1 − w)|`, for some 0 < h < a ∧ b, a function which is
integrable over w ∈ (0, 1).
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• Case H0,1(a, 0). By Hoeffding’s covariance formula,

Cov (Sa, log(T )) =

∫
(0,∞)×R

{P(Sa > x, log(T ) > y)− P(Sa > x)P(log(T ) > y)} d(x, y),

where

P(Sa > x, log(T ) > y) = exp

{
−(x1/a + ey)A

(
x1/a

x1/a + ey

)}
.

Apply the change of variables s = x1/a + ey and w = x1/a/(x1/a + ey), so x = (sw)a and
y = log(s(1− w)) with Jacobian |∂(x, y)/∂(s, w)| = asa−1wa−1(1− w)−1. We obtain

Cov (Sa, log(T )) =

∫ 1

0

{∫ ∞
0

(
e−sA(w) − e−s

)
asa−1 ds

}
wa−1(1− w)−1 dw

=

∫ 1

0

(
(A(w))−a − 1

)
Γ(a+ 1)wa−1(1− w)−1 dw.

• Case Hk,1(a, 0). As in the case Hk,`(a, b), we can interchange expectation (or integra-
tion) and differentiation to find

Cov
(
Sa log(S), log(T )

)
= Cov

(
∂kSa

∂ak
, log(T )

)
=

∂k

∂ak
Cov (Sa, log(T ))

=

∫ 1

0

∂k

∂ak
{

Γ(a+ 1)
(
(A(w))−a − 1

)
wa−1(1− w)−1

}
dw.

• Case H1,1(0, 0). This is (A.1) and can be found by a similar argument as the one for
H0,1(a, 0). �

Of special interest are the cases a = b = 1 and k, ` ∈ {0, 1}.

Corollary A.2. Let (S, T ) have a min-stable distribution with unit exponential margins
and Pickands dependence function A. With Hk,`(a, b) as in (A.2) we have

H0,0(1, 1) =

∫ 1

0

1

(A(w))2
dw − 1,

H0,1(1, 1) =

∫ 1

0

1

(A(w))2

[
1 + log(1− w) + ψ(2)− log(A(w))

]
dw − ψ(2),

H1,1(1, 1) =

∫ 1

0

1

(A(w))2

[
ψ(2)2 + 2ψ(2) + ψ′(2) + 1

+ (1 + ψ(2))
{

log(w) + log(1− w)− 2 log(A(w))
}

+
(

log(w)− log(A(w))
)(

log(1− w)− log(A(w))
)]

dw − ψ(2)2,

H0,1(1, 0) =

∫ 1

0

1−A(w)

(1− w)A(w)
dw,
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H1,1(1, 0) =

∫ 1

0

(
1−A(w)

)(
log(w) + ψ(2)

)
− log(A(w))

(1− w)A(w)
dw,

H1,1(0, 0) =

∫ 1

0

− logA(w)

w(1− w)
dw.

Of further special interest is the Marshall–Olkin Pickands dependence function Aξ
in (5.2). Write Hk,`(a, b; ξ) for the covariance in (A.2) if A = Aξ with ξ ∈ [0, 1]. The
asymptotic covariance matrix of the maximum likelihood estimator based on sliding
blocks involves the integrals of Hk,`(a, b; ξ) over ξ ∈ [0, 1].

Corollary A.3. We have∫ 1

0
H0,0(1, 1; ξ) dξ = 2 log(2)− 1,∫ 1

0
H0,1(1, 1; ξ) dξ =

π2

12
− log2(2) + (1− γ)(2 log(2)− 1),∫ 1

0
H1,1(1, 1; ξ) dξ = 2 log(2)

(
ψ(2)2 +

π2

6
− ψ(2) log(2) + log2(2)/3

)
+ ψ(2)

π2

6
− 7

4
ζ(3)− ψ(2)2,∫ 1

0
H0,1(1, 0; ξ) dξ =

π2

12
+ 1− 2 log(2),∫ 1

0
H1,1(1, 0; ξ) dξ = (1 + ψ(2))

π2

12
+ log2(2)− 2ψ(2) log(2) + ψ(2)− 7

8
ζ(3),∫ 1

0
H1,1(0, 0; ξ) dξ = 4 log(2)− 2.

Proof. The expressions of Hk,`(a, b; ξ) follow from Corollary A.2 with A = Aξ. Inte-
grating over ξ yields a double integral over ξ and w. By interchanging integration with
respect to ξ and w if necessary, we can calculate all six integrals explicitly. The alge-
braic details are tedious and are omitted for brevity. All formulas have been checked
numerically. �
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