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Quantum information is a radical departure in
information technology, more fundamentally
different from current technology than the digital
computer is from the abacus.

W. D. Phillips, Nobel laureate [Call7]

1 Introduction

Although the scientific community is in agreement that quantum information processing
will offer advantages for certain applications [Lad10], such as Shor’s quantum algorithm
for integer factorization [Sho94] and simulating quantum systems [Fey82; L1096; Bul09;
Cirl2], it is not clear yet which technology (physical system or material) can be used to
ultimately build a quantum computer [Lad10].

Furthermore, quantum simulators based on quantum computers might also become
important for conventional semiconductor technology, as it is approaching the limits of
Moore’s law [Mo0098; Moo75], which states that the number of transistors on a chip will
double every two years [Wall6]: Following this law, the elements on microchips become
successively smaller so that an end of this process might either be given by fundamental
physical limits, if the elements become so small that quantum mechanical effects need
to be considered, or will even make the transistors unreliable, or by economic limits, if
the cost for a transistor will no longer decrease but increase due to downscaling [Wall6].
Quantum simulators might also be used for developing emerging artificial nanotechnology
or for understanding the nanomachinery of biological molecules [Lad10].

A quantum computer is based on the quantum analog to a classical bit: the so-called
qubit. It maintains the properties, which distinguish it from a classical bit, such as
entanglement and quantum interference, during the coherence time T5.

There are several ways to realize a quantum computer, i.e., candidates for physical
representations of qubits: The implementation of quantum algorithms with photons (flying
qubits) [Pol09] was demonstrated and even multi-photon entanglement and interfer-
ometry [Panl2] were achieved. The Knill-Laflamme-Milburn (KLM) scheme allows for
scalable quantum computing, which is solely based on single-photon sources, single-photon
detectors, and linear optics [Kni0l]. While photon-based quantum computing is less
challenged by decoherence compared to other quantum systems, the loss of photons remains
a problem [Lad10].

Another candidate is a superconducting qubit, consisting of a superconducting circuit
with a defined inductance and capacitance. However, this circuit is interrupted by a
thin insulating layer, a so-called Josephson junction, to induce anharmonicity to the
otherwise harmonic LC-resonator. Recently, quantum error correction was demonstrated
on a superconducting circuit with nine qubits [Kell5]. However, according to Ref. [Lad10]
understanding and eliminating decoherence remains a huge challenge, which might require
material engineering on the microscopic level.

The nuclear spins, on the other hand, represent the physical system with the most
preliminary technological development [Lad10], as the nuclear spins have been studied in
nuclear magnetic resonance (NMR) experiments [Blo46; Pur46] since 1946 and for magnetic
resonance imaging (MRI) [Dam71; McRO7; Dam77] since 1971. While a set of 12 nuclear
spin qubits was successfully manipulated using liquid-state NMR techniques [Neg06] and
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Shor’s algorithms was realized using seven qubits in a molecule [Van01], the suitability of
this physical system for quantum computers remains limited, since the coherence times of
the nuclear spin qubits are rather short compared to the timescales for their initialization
and measurement [Lad10].

Qubits in the form of trapped ions, in turn, exhibit coherence times that are much longer
than the necessary operations for computations (initialization, multi-qubit control, and
readout). They show long T} and T times (cf. Section 2.4.2), high homogeneity and can
be entangled by laser-induced coupling of the spins [Lad10]. Furthermore, entanglement
of more than 10 qubits was demonstrated [Monll]. However, scaling this system and
simultaneously maintaining the high-fidelity control is a critical challenge [Lad10; Lei03].

While the scalability of trapped ions is limited by the requirement to cool and trap them,
semiconductor based qubits, e.g., quantum dots (QDs) and impurities, are integrated
into a solid-state host, which could allow for a better scalability and easier cooling of
systems with many qubits [Lad10]. The localization of one or more electrons or holes
due to the potential of the semiconductor nanostructure, impurity or impurity complex
leads to discrete energy levels, forming a so-called artificial atom [Lad10], and reduces the
decoherence of the qubit due to environmental influences. Artificial atoms in the form
of QDs have been realized in two different ways: Electrostatically defined QDs, where
the confinement is accomplished by voltages on lithographically defined metallic gates
(cf., e.g., Ref. [Han07]), and self-assembled QDs, where the confinement results from the
difference of the bandgaps of the dot and host material. While a long coherence time
T5 = (3.0 £ 0.3) ps was demonstrated [Gre06b] for electron spins in self-assembled QDs,
they exhibit a bigger inhomogeneity compared to impurities in semiconductors and the
nuclear spins of the mainly used III-V materials limit the coherence time [Cla09].

Many different kinds of impurities in semiconductors are considered as possible candidates
for qubits: The 3'P impurity in silicon, where the donor-bound electron [Tyr03], as well
as the nuclear spin [Plal3; Stel2; Sael3; Muhl4] are considered as a candidate for a
qubit. Here, a coherence time T5 = 60 ms of the donor-bound electron spin in a silicon
host with natural abundances of isotopes at a temperature of about 7K [Tyr03], and
a Ty time of up to 39min of the nuclear spin of the ionized 3!P donor using dynamic
decoupling at room-temperature [Sael3] were demonstrated. Other candidates for qubits
are electron spins bound to defects in silicon carbide (SiC) [Chrl5] that is already used
for high power semiconductors and optoelectronics. For this material system, a coherence
time of about 1ms at cryogenic temperatures [Chrl5; Seol6] and coherent control of
the electron spin [Wid15] were demonstrated. The silicon-based candidates would offer
technological advantages due to the techniques, developed for manufacturing conventional
semiconductors. However, despite the long coherence times and technological possibilities,
efficient methods to couple these qubits have yet to be developed.

An electron spin bound to the negatively charged nitrogen-vacancy center in diamond
exhibits a coherence time of about 0.6s at liquid nitrogen temperature [Barl3] and the
coherence time of the nuclear spin of the '3C isotope in the vicinity of a nitrogen-vacancy
exceeded 1s [Maul2]. However, the photoluminescence from nitrogen-vacancies is weaker
than for typical quantum dot transitions [Lad10], so connecting them to each other via
flying qubits should prove more difficult.

In contrast to this, the fluorine donor impurity in the wide-bandgap group II-VI semi-



conductor ZnSe (ZnSe:F), studied in this work, shows strong optical characteristics [San09;
Lad10]. The transition of the exciton bound to a donor that was isolated in a ZnSe/ZnMgSe
nanostructure exhibits a small inhomogeneous linewidth and bright photoluminescence
(recombination time of about 210 ps [Grel2]). Quantum interference between photons of
this transition has been demonstrated [San(09]. Similar to phosphor-doped silicon, the single
donor-bound electron spin in its ground state can be used as a spin qubit. Greilich et al.
studied the spin coherence of an ensemble of donor-bound electron spins in homogeneously
fluorine-doped ZnSe epilayers with different dopant concentrations and demonstrated an
inhomogeneous dephasing time 75 of up to 33 ns, which remained stable at temperatures of
up to 40 K. The longitudinal spin relaxation time 7T} of up to 1.6 ps, demonstrated in this
thesis (cf. Chapter 4 and Ref. [Heil5b]), hints at a coherence time T3 in the microsecond
range by far exceeding the inhomogeneous dephasing time 75. Further steps towards the
application of this material system for quantum information include indistinguishable single
photon emission [San09], fluorine ion implantation to ensure a controlled location of single
donor impurities [Kim12], entangled photon pairs from independently tuned and remote
semiconductor emitters [San12], photon antibunching [De 10], and optical control of the
electron spin qubit [Kim12; Slel13].

This work provides a better understanding of the ZnSe:F material system. We gain
further insight by extending the time-resolved Kerr rotation (TRKR) technique with helicity
modulation with variable frequency as well as additional radio frequency (RF) excitation.
Furthermore, we develop the spin inertia method (cf. Chapter 4 and Ref. [Heil5b]) that
allows us to determine the longitudinal electron spin relaxation time 77 in a broad range
of longitudinal magnetic fields Br and at different temperatures. The method is especially
suitable to study the dynamics of strongly localized electron spins, where a measurement
of the Hanle curve would not yield the correct spin relaxation time.

Moreover, this work demonstrates that despite the low natural abundance of isotopes
with nonzero nuclear spin in ZnSe strong nuclear effects can be observed (cf. Chapter 5 and
Ref. [Heilbal) so that the possibility to grow samples from isotopically purified constituents
(zinc and selenium) with zero nuclear spin is promising. Such samples will be nuclear spin
free except for the spin of the fluorine donor and thus should exhibit increased electron
spin coherence times.

The inhomogeneously polarized nuclei, in turn, are controlled coherently (cf. Chapter 6
and Ref. [Heil6]) by additional RF excitation, where we use the advantages of optical
dynamic nuclear polarization and optical detection, such as high sensitivity and selectiv-
ity [San06]. This allows us to measure the nuclear inhomogeneous dephasing time T N
as well as the nuclear spin coherence time Th\. Moreover, modifying the standard TRKR
technique, it is possible to estimate the longitudinal nuclear spin relaxation time TIN under
the conditions of the TRKR experiment (cf. also Chapter 6).






If T have seen further, it is by standing on ye
shoulders of giants.

Sir Isaac Newton, 1675 [Wes94]

2 Theoretical Background

This chapter introduces the basic physical concepts, which are necessary to understand
and analyze the experiments, presented in this thesis.

2.1 Fluorine-doped Zinc Selenide

The spins of electrons and nuclei in the II-VI semiconductor zinc selenide (ZnSe) are the
subject of the research in this work. Here, the Roman numbers refer to the 2nd and the
6th group of the periodic table. In this section, the main properties of this material are
discussed.

2.1.1 Crystal Structure

Figure 2.1 Schematic of the unit cell of ZnSe (stick and ball model), drawn with VESTA [Mom11]
in analogy to Ref. [Grul6b]. It contains four zinc (gray spheres) and four selenium (orange spheres)
atoms (stoichiometric ratio 1 : 1). Each atom of both constituents binds to four atoms of the other
constituent (tetrahedral coordination).

The compound ZnSe crystallizes in the so-called zincblende structure. However, the term
zincblende actually refers to the compound ZnS only, which can be found in two different
phases: the sphalerite and wurtzite structure [Grul6b]. The correct, though hardly used
term, is sphalerite structure. A diatomic base of a zinc atom at (0,0,0) and a selenium
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atom at (1/4,1/4,1/4) is arranged in a face-centered cubic (fcc) lattice. Thus, it can also
be described by two fcc sublattices, which are shifted with respect to each other by a
quarter of the body diagonal. Figure 2.1 shows the unit cell of this crystal as a stick and
ball model. The coordination number of both zinc and selenium is four so that each atom
is bonded to four atoms of the other element. The stacking order along the body diagonal
is given by aAbBcCaAbBcC..., so this crystal exhibits no inversion symmetry (point group
Ty) [Grul6b]. It is important to note that the III-V semiconductor GaAs also crystallizes
in the sphalerite structure. Please refer to Refs. [Yak01; Ast02; Paw11] for details on the
optical properties of ZnSe structures.

In this thesis, ZnSe epilayers (cf. Section 3.3) modulation doped with fluorine (F) during
molecular beam epitaxy (MBE) are studied. The fluorine dopant replaces the selenium
atom, and each fluorine atom provides one additional electron, which is bound to the donor
at low temperatures. Due to the large binding energy F, = (29.3 &+ 0.6) meV [Mer72], the
electron bound to the fluorine impurity in ZnSe represents a promising candidate for a
spin qubit [Grel2]. Its electron spin with a g factor go = 1.1 + 0.1 exhibits a long spin
dephasing time T4 (cf. Section 2.4.2) of up to 33 ns, which was shown to remain stable
at temperatures of up to 40K [Grel2]. Indistinguishable single photons were obtained
from single donors isolated in ZnSe micropillars [San09]. By means of these nanostructures
photon entanglement with photons from two emitters [San12], separated by macroscopic
distances, and optical interference of a single electron spin [De 10; Kim12; Sle13] were
demonstrated.

Moreover, this material system offers a high homogeneity, in the past restricted to atomic
systems, and combines it with the controlled location in a semiconductor [Grel2]: Although
in this thesis only modulation doped samples are studied, ion implantation of the fluorine
donors, which allows for an exact control of the location, was demonstrated as well [Kim12].

A further advantage is the low natural concentration of isotopes with nonzero nuclear
spin in the ZnSe host crystal, since the interaction of the electron spins with the fluctuating
nuclear fields is seen as a main factor leading to electron spin decoherence [Mer02; Grel2].
Table 2.1 lists the different isotopes with nonzero nuclear spin I. Despite their relatively
low concentrations strong signatures of electron-nuclear interaction were demonstrated
for the 57Zn and especially for the 7"Se isotope in this thesis. Furthermore, low threshold

Table 2.1 Parameters of the isotopes with nonzero nuclear spin (I # 0) according to Ref. [Grel2].

Abundance x | Nuclear spin I | Hyperfine constant A
677Zn | 4.11% 5/2 3.7 peV
Se | 7.58% 1/2 33.6 peV
BE 1 100% 1/2 200 neV

microdisk lasers, based on the donor-bound exciton transitions, were demonstrated for this
material system. [Paw08; Paw09].

2.1.2 Band Structure

The band structure depicts the energy levels of the electrons as a function of the modulus
of the wave vector k in a crystal and therefore is of great importance for optical studies of
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the electron spin coherence. Due to the principle of the conservation of momentum, only
nearly vertical optical transitions from one band to another (interband transitions) are
possible, since the length of the light k vector, k = 27/, is very small compared to the
size of the Brillouin zone k < 7/ag [Grul6al. Here, ag is the lattice constant of the crystal.

Figure 2.2 shows a schematic of the ZnSe band structure near the I" point (k = 0) at the
center of the Brillouin zone. The minimum of the conduction band (CB, j = 1/2, m; = %1,
black line) and the maxima of the valence bands (heavy hole (HH, j = 3/2, m; = £3/2):
green line; light hole (LH, j = 3/2, m; = £1/2 ): orange line; split-off hole (SH, j =
1/2m; = £1/2): blue line) are located at the I' point (direct semiconductor) [Dya84].
Here, j denotes the total angular momentum quantum number and m; its projection. Eg
is the so-called band gap, denoting the energy difference between the energy maximum of
the valence band and the energy minimum of the conduction band. Note the degeneracy

CB AE

[
E:{

] -

k

A\()

\

LH SH

Figure 2.2 Bandstructure of ZnSe near the I' point. HH (green line) denotes the heavy hole band,
LH (orange line) the light hole band, SH (blue line) the split-off hole and CB the conduction band
band. E, is the band gap separating the CB from the valence bands (HH and LH), where the third
valence band, the SH band is split-off from the other two due to spin-orbit interaction with the LH
band (energy difference Agp, marked by the gray arrow). In analogy to Ref. [Dya84].

of the HH and LH band at the I point. The schematic in Fig. 2.2 is based on the spherical
approximation [Dya84]. It is valid for sufficiently small k, at which the warping of the
energy surfaces of the HH and LH band, exhibiting actually cubic symmetry, can be
neglected. In this approximation, the energies of the different bands are given by the
following equations for the conduction band

(2.1)
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the HH band -
hek
Eyn = s (2.2)
HH
and the LH band
h2 k2 (2.3)
ELH = " .
2mi g

Here, E, = 2.82¢V [Pawll] denotes the band gap at a temperature 7' = 2K, k the
modulus of the k vector, m} = 0.145m, [Grel2] the effective electron mass (CB), mjyy =
0.96m, [Pawll] the effective HH mass and m{; = 0.27m, [Pawll] the effective LH mass.
Note that the energy difference (gray arrow) between the HH or LH band and the SH band
at the I" point is denoted

Aso = Eyn — Esy = ELg — Esu (2.4)

and caused by the spin-orbit interaction with the LH band. The energy of the SH cannot
be described properly in the spherical approximation so that no effective mass is given for
this band. The schematic, shown in Fig. 2.2, is sufficient to understand the experiments,
presented in this work, but represents a very rough approximation.

A more accurate description of the band structure can be given using k - p perturbation
theory (p : momentum operator) [Yu96; Grul6a]: According to the Bloch theorem [Blo29]
the stationary Schrodinger equation (cf. Eq. (G.1) in Ref. [Grul6a))

2

h
Hwnkz = <_2

me

v2 + U(’I")) Ynk = En(k)wnk (2'5)

for electrons in a periodic potential U(r) = U(r + R) has a solution of the following form

wnk(r) = exp (ikr)un,k(r)’ Un,k (T) = un,k(r + R) (26)

Here, R denotes direct lattice vectors and n labels the eigenstate of the electron with the
corresponding energy E, (k). Inserting Eq. (2.6) into Eq. (2.5) we obtain the following
equation for the periodic Bloch function u, i (7)

(— 92 o)+ ok .p> wn () = (En(k) _ h2k2> k() (2.7)

2me Me 2me

Near the I" point, the k - p term represents only a small perturbation [Grul6a] so that we
obtain the following equation for a nondegenerate (besides spin degeneracy) band up to
second order in k

E(k:)—E(O)#—i L25+i22% ks (2.8)
e = \2me 7 me 52 E,(0) — E;(0) | ‘
i,j=1 l#n

where [ runs over so-called remote bands and p, = (uno|pilui) denotes the momentum
matrix element.
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2.1.3 Lattice Mismatch

Studying heterostructures, we must take into account that at boundaries between different
compounds mechanical stress can occur due to the different lattice constants and crystal
structures. The samples under study in this work are ZnSe epilayers grown on GaAs
substrate (cf. Section 3.3 for details), so it is important to consider how this II-VI on III-V
heteroepitaxy alters the ZnSe crystal structure and thereby changes its band structure.
The lattice mismatch between two crystals is given by the following equation [Tra97]

£ = M, (2.9)
Gsub
and with the lattice constants of GaAs ag,, = 5.6533nm and ZnSe aepi = 5.6686nm [Paw11]

we obtain
e~ —0.27%.

The negative sign indicates that the ZnSe crystal experiences compressive strain. However,
this lattice mismatch is quite small. For example, a wurtzite AIN layer (buffer layer for GaN
epitaxy) grown on (001)-oriented hexagonal sapphire (a-AloO3) has a lattice mismatch
of e = 13.29 % [Yos83; Tra97]). It is possible to grow ZnSe structures, which exhibit only
a small amount of compressive strain by molecular beam epitaxy on GaAs substrates.
Nevertheless, this small lattice mismatch is sufficient to lift the LH and HH degeneracy at
the I" point (cf. Section 2.1.2 and Fig. 2.3(b)) in the samples under study [Grel2].

Note that the strain depends on the temperature [Tho95], i. e., it increases with increasing
temperature due to the different thermal expansion coefficients of GaAs and ZnSe, which
becomes important for nanostructures, e.g., micropillars: Their structural quality can
decrease with the number of cooling cycles (to cryogenic temperatures) that might be
necessary for the measurements.

2.2 Optical Selection Rules

Optical selection rules are important to understand how and which kind of spin polarization
is induced in the studied samples. They represent the key concept necessary to understand
the process of optical orientation (cf. Section 2.4). Direct transitions between different
bands in a semiconductor can be described using the correspondence principle [Dya84]: A
quantum transition from the initial state i to the final state f, e. g., the transition from
a subband of the valence band to the conduction band at k = 0, can be described by a
classical dipole with the frequency wisf = (Ef — Ej)/h. Here, E; and Ef are the energies of
the initial and final states, respectively. The amplitude of the optical transition is given by
the corresponding dipole matrix element

My = (iler|f), (2.10)

where 7 is the modulus of the position vector, e is the elementary charge, and er forms the
dipole moment operator. Taking into account only Mis # 0, we find that only transitions
fulfilling

Al=1 (2.11)
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(a) (b)

m; -1/2 1/2 m;-1/2 1/2
E 31 13 E 3.1, 1:3
7 o o o oy A o
(o} e
m; -3/2  -1/2 1/2 3/2 m; -3/2 3/2
HH LH LH HH HH -1/2 1/2 HH
LH LH

Figure 2.3 (a) Scheme of the optical selection rules of a bulk crystal with sphalerite structure.
HH and LH denote the heavy hole and the light hole, respectively. The relation 3:1 (blue) state the
relative intensity of the HH (thick lines) and the LH (thin, dashed lines) transitions, where right
circularly polarized light (o) is denoted by green lines and left circularly polarized light (¢~) by
orange lines. In analogy to Refs. [Grul6e; Dya84]). (b) Scheme of the optical selection rules of
a strained crystal with sphalerite structure or a quantum well. The strain on the crystal or the
confinement in the quantum well lifts the LH and HH degeneracy, so that the LH states have a
lower energy than the HH states at the I point. In analogy to Ref. [Grul6d]).

are possible. Here, [ is the quantum number of the square of the angular momentum operator
L? (azimuthal quantum number). Furthermore, according to the energy conservation
principle only photons with an energy

E, = hwy (2.12)

can excite the corresponding single-photon transition in the semiconductor. Here, wjr is the
frequency of the corresponding dipole and # is the reduced Planck constant. A photon, as
a massless particle with spin S =1 (Boson, cf. Section 2.3.1), can only have a spin angular
momentum S, = +h = +£hm,, m, = +1 (m, : magnetic quantum number). Combining
this with the principle of angular momentum conservation, one finds that all single-photon
transitions must obey

Am; = +1, (2.13)

where Am; is the difference of the projection of the total angular momentum m; of the
initial and the final state [Grul6e; Dya08]. Following these considerations and taking into
account the band structure of a sphalerite crystal, one can determine the scheme of optical
selection rules, presented in Fig. 2.3.

Figure 2.3(a) illustrates the selection rules for a strain-free bulk crystal, while Fig. 2.3(b)
depicts the rules for a strained crystal or a quantum well. Thus, it displays the situation
for the samples under study, which are strained as a result of the II-VI (ZnSe) on ITI-V
(GaAs) heteroepitaxy. The strain on the ZnSe layer lifts the HH and LH degeneracy at the
I' point [Grel2] and thus only the scheme in Fig. 2.3(b) will be considered in the following.
Figure 2.4 shows the two basic complexes of quasiparticles as they occur in experiments on
coherent spin dynamics [Yak08], where only undoped and n-doped samples are considered
here. These complexes can be excited optically (resonant excitation) following the rules
discussed before. The generation of a spin-oriented exciton (X, see Fig. 2.4(a)) results in
an electron spin coherence, which can be studied during the exciton lifetime (typically
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(a) Electron spin: (b) Electron spin:
S=1/2 S=0
EA $ $
exciton X trion T~

+ +

Figure 2.4 Scheme of optically excited complexes. (a) Undoped semiconductor: The optical
excitation results in the formation of a bound electron-hole pair, a so-called exciton (X). (b) n-doped
semiconductor: Formation of a negatively charged exciton trion (T7) with a singlet electron
spin ground state (S = 0). It can be described as an exciton bound to a resident electron, e.g.,
donor-bound electron, in the semiconductor. The open circles symbolize electrons, and the full
circles symbolize holes. In analogy to Ref. [Yak08].

k=~0

30ps to 1ns) [Yak08]. In contrast to this, the generation of a negatively charged exciton
(trion (T7), see Fig. 2.4(b)) does not result in any obvious electron spin polarization or
electron spin coherence, since the state with the lowest energy (T7) is formed by two
antiparallel electron spins (singlet, S = 0) and one hole [Ast02; Yak08]. However, there are
two ways to explain how an optical excitation, as it is illustrated in Fig. 2.4(b), can result
in the generation of electron spin coherence. Furthermore, it was already demonstrated
experimentally (cf. Ref. [GreO6a]). (i) In a transverse external magnetic field (Voigt
geometry, By) a circularly polarized laser pulse creates a coherent superposition of the
electron and the trion state [Gre06a; Ken06; Sha03; Yak08]. (ii) Considering the whole
ensemble of initially randomly oriented resident (donor-bound) electron spins, which precess
about the external field By one can also explain the generation of electron spin coherence:
The optical excitation of trions with a finite lifetime removes a specific spin orientation
from this ensemble so that, in turn, the ensemble becomes spin polarized in the opposite
direction (polarization with the opposite sign) [Yak08].

2.3 Spin

Considering the electron as a charged, moving particle, one can explain the occurrence of
its magnetic moment using only classical physics. However, in this way one will not obtain
the correct result. Furthermore, there remain experimental observations [Ger22b; Ger22al,
which can be only explained taking into account the essentially quantum mechanical nature
of the electron spin, the fact that the electron has a half-integral spin S = 1/2 and that
this is an intrinsic property of the electron.

In this section, the main interactions related to the electron spins in semiconductors are
described.



12 2 Theoretical Background

2.3.1 Pauli Exclusion Principle

According to the spin-statistics theorem [Fie39; Pau40] the spin of a particle determines
whether multiple particles of the same kind have a Fermi-Dirac statistic [Fer26; Dir26] or a
Bose-Einstein statistic [Bos24]. The behavior of particles with integral spin is determined
by the Bose-Einstein statistic, while the Fermi-Dirac statistic describes the behavior of
particles with half-integral spin. The electron has a half-integral spin (see discussion before).
Thus, it is a so-called “fermion,” and its behavior is determined by the Fermi-Dirac statistic.
The Pauli exclusion principle, in turn, restricts the number of fermions per quantum state
to one [Pau25]. This restriction on the number of electrons per quantum state is of huge
importance for the structure of atoms, their chemical properties and condensed matter
physics in general [Dya08].

2.3.2 Exchange Interaction

Another consequence of the spin-statistics theorem is that the Coulomb interaction between
electrons becomes spin-dependent: The electron wave function must be antisymmetric with
respect to an interchange of the quantum-mechanically indistinguishable electrons. Thus,
either the spin or the coordinate part of the wave function must be antisymmetric. If two
electrons have parallel spins, the spin part is symmetric so that the coordinate part of the
wave function must be antisymmetric [Dya08]. As a result, the Coulomb energy of electrons
with parallel spins is reduced due to the increased spatial separation of the electrons with
an antisymmetric coordinate part of the wave function. The exchange interaction explains,
e. g., the occurrence of ferromagnetism.

2.3.3 Zeeman Energy

In 1896 Pieter Zeeman discovered that the spectral lines of atoms shift in an external
magnetic field [Zee97]. The magnetic momenta of the electrons couple to the magnetic
field B. The strength of this interaction for the electron spin is given by the following
equation [Kal08]

HZe,e = MBQCBS, (214)

where pup = 5.7884 x 107%eV T~! = 9.274 x 10724J/T is the Bohr magneton [Moh15], g.
is the electron g-factor (in vacuum: g./2 = 1.00115965218085 [Odo06; Gab07]) and B is the
magnetic field. Note that the value of g. and its sign strongly depend on the composition
of the sample and its structure.

2.3.4 Larmor Precession

In 1897 Sir Joseph Larmor [FRS97] provided an explanation for the Zeeman effect based on
the rotation of ions in an external magnetic field around a center. Based on this assumption,
he could explain the splitting and the polarization of spectral lines in an external magnetic
field. Hence, the precession of an electron spin or a nuclear spin about the axis defined
by the external magnetic field, the so-called quantization axis, has been named “Larmor
precession”. For these considerations, without loss of generality the magnetic field shall
be aligned along the x axis. One can derive the frequency of this precession, the so-called
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“Larmor frequency,” from classical physics in analogy to a spinning top precessing about
an axis defined by the gravitational force. However, the correct Larmor frequency for the
electron can only be obtained by taking into account the inherently quantum mechanical,
intrinsic angular momentum of the electron - the electron spin (cf. Sec. 2.3). It is given
by [Gril2]

_ :uBgeB
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In analogy to the electron spin, the Larmor precession frequency of the nuclear spins is
given by the following equation

(2.15)
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where pux = 3.1525 x 1078eV/T = 5.051 x 10727J/T is the nuclear magneton [Dya08;
Moh15] and gn the g factor of the nucleus [Kal08]. It is related to the gyromagnetic ratio

7, commonly used for NMR experiments, via v = £NIX,

(2.16)

2.3.5 Spin-Orbit Interaction

The spin-orbit interaction is of most importance to this thesis, since without this interaction
no “optical orientation” (cf. Section 2.4) of the electron spins would be possible [Dya08].
Only the spin-orbit interaction provides a coupling between the angular momentum L
and the electron spin S and thereby provides a means to change the electron spin by
illumination with circularly polarized light. The spin-orbit interaction for an atom is given
by the following expression [Ger10]

K2 1d®

Hyp= .-
0 9mec®  rdr

S-L, (2.17)
where & is the reduced Planck constant, m, the free electron mass, ¢ the speed of light in
vacuum, ® the potential of the electric field of the nucleus, and L the angular momentum
of the electron. Note that the eigenstates of Hy, and therefore of the whole system are
eigenstates of the total angular momentum operator J = L + S, but not of the angular
momentum operator L or the spin angular momentum operator S.

One should also stress that the form Hg, for a semiconductor depends on its structure and
the model used to describe it. In the case of a sphalerite crystal, it leads to a coupling of the

crystal momentum k to the total angular momentum J of the corresponding quasiparticle
(electron or hole). In k - p perturbation theory it has the following form [Yu96; Grul6a]

h
HSO = W (0' X VU) D, (218)

where o is the vector of the Pauli matrices [Yu96]:

Oz ,
01 0 —: 1 0
o= |oy, ;Ug;—<1 O>;Uy_(i 0>;Jz—<0 _1) (2.19)
Oz
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Due to the spin-orbit interaction the term Hy,, given by Eq. (2.18), must be added to
Eq. (2.5) and Eq. (2.7). Furthermore, the momentum operator p in the k - p term in
Eq. (2.7) is replaced by
h
T=p+ —— (6 xVU)p. (2.20)

2.2
dmiéc

2.3.6 Hyperfine Interaction

The interaction of electron spins and nuclear spins is of great importance for the spin
dynamics of electrons in semiconductors. In most semiconductors the coupling of the spin
systems is mediated by the Fermi contact interaction [Kal08|, which is described by the
following equation.
Hye =) cn(SL). (2.21)
n

Here, S is the electron spin, I,, is the nuclear spin of the nth nucleus, and the coefficient
¢ is given by the following equation

Cn = VoA |¥(ry,))?, (2.22)

where vy is the unit cell volume, A,, the hyperfine constant of the nth nucleus, and ¥ (ry,) the
envelope wave function of the electron at this nucleus. Note that the hyperfine interaction
of holes is not caused by the Fermi contact interaction, since their Bloch wave function
is p-type and, as a consequence, their probability density at the position of the nucleus
is zero. Thus, the hyperfine interaction of nuclei and holes is 4 — 5 orders of magnitude
weaker than the interaction of nuclei and electrons in the conduction band [Kal08; Grn77],
since the nuclear spins and the hole spins are coupled by the much weaker dipole-dipole
interaction [Dya08].

2.3.7 Knight Field

An effect of the hyperfine interaction between electrons and nuclei was discovered by W.
D. Knight [Kni49] in 1949. He found a shift of the nuclear magnetic resonance (NMR)
frequency in metals in comparison with the NMR frequencies of the same isotopes in
corresponding salts, using radio frequency (RF) techniques. This shift can be explained
by the effective hyperfine field of the conduction electrons acting on the nuclei. This
field results from the spin polarization (magnetization) of these electrons, which is caused
by the external magnetic field used for the NMR measurement. However, exciting the
sample with circularly polarized light provides another way to polarize the electron spins
(see also Section 2.4) and occurs in the experiments, which are the subject of this thesis.
Here, in contrast to Ref. [Kni49], a spin polarization of localized, donor-bound electrons is
created [Kal08; Heil5a], whose so-called Knight field (effective hyperfine field) at the n-th

nucleus is given by
A
By = — 222" ()28, (2.23)
UNIN,n
Here, gn., is the g factor of the n-th nucleus. Considering only a single nucleus at a

distance r from a donor site the magnitude of the Knight field is given by

Bk (1) = beS exp (=21 /ajoe ), (2.24)
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where a)o. is the localization radius of the donor-bound electron, and the maximal Knight
field amplitude b, is given by the following equation

Avg

be = ———5—.
’VSehﬂ-a?oc

(2.25)

2.3.8 Overhauser Field

An average polarization of the nuclear spins of the nuclei of the lattice, in turn, results in
a magnetic (hyperfine) field acting on the electron spins, which does not depend on the
degree of localization of the electrons [Kal08]. Its effect on the electron Zeeman splitting,
the so-called Overhauser shift [Ber78], was discovered by A. W. Overhauser [Ove53] in
1953. Its strength is given by

_ Yo 2on An (In)

HBYe

By (2.26)

2.3.9 Nuclear Spin Temperature

In 1951 R. V. Pound demonstrated that the low entropy of the nuclear spin system (NSS)
can be conserved for long times under certain conditions [Pou51; Fle84]. This observation,
in turn, led to the concept of a spin temperature: The state of a system in thermodynamic
equilibrium can be described by its temperature. The NSS has the peculiarity that it is
effectively decoupled from the lattice of the crystal: An energy transfer between the latter
and the NSS occurs on the timescale given by the nuclear spin relaxation time T3, while
the NSS is driven towards thermodynamic equilibrium by spin-spin relaxation processes,
whose timescale is given by the nuclear spin coherence time 75 [Fle84]. Thus, providing
the relation

> Ty (2.27)

holds the NSS can be treated as a system in thermodynamic equilibrium and can be
described by the nuclear spin temperature 6,,.. For a system with nuclear spin I = %, as
the selenium 7"Se spins studied in this thesis, it is given by the following equation [Fle84]

1 2 B-S+bS5
e N (B 4 eS)* + ¢B2’

(2.28)

where By, is the root mean square local field due to nuclear dipole-dipole interactions and
¢ =2 to 3 is a dimensionless parameter, characterizing the spin-spin interaction. Note that
the terms b, allow for a cooling of the NSS even in a transverse magnetic field B L S
and describe the cooling in the Knight field By (cf. Section 2.3.7) of the electrons [Fle84].

2.3.10 Interaction of Electron and Nuclear Spin Systems

Figure 2.5 schematically illustrates the complex interaction of the electron and nuclear
spin systems under the conditions of optical orientation of the electron spin system. The
electron and nuclear spin systems are coupled via the hyperfine interaction (black arrows).
The excitation with circularly polarized light (blue arrow) creates an average electron spin
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polarization. The Knight field Bk of the spin-polarized electrons leads to a polarization of
the nuclear spin system. The nuclear spins, in turn, act back on the electron spins system
via the Overhauser field By. The electron spin polarization or the electron Zeeman splitting
resulting from the mutual feedback of electrons and nuclei can be detected optically (light
blue arrow).

Optical Orientation by
Circularly Polarized light Optical Detection

AN/ > E—

Electron Spin System
» P Y

Overhauser Field By Knight Field Bk

Nuclear Spin System

Figure 2.5 Schematic of the “internal feedback” [Fle84] in the system of electron and nuclear
spins. The black arrows illustrate the coupling of these systems, which is mediated by the effective
hyperfine fields, resulting from the electron (Bk) and nuclear spin polarization (By), respectively.
The electron spin polarization is created by excitation with circularly polarized light (blue arrow),
influenced by the nuclear Overhauser field By, and can be measured with different optical techniques
(light blue arrow). In analogy to Ref. [Fle84].

2.4 Optical Orientation

Although all spins, including the nuclear spins, in a sample, which is exposed to a magnetic
field, exhibit Larmor precession, a well-defined, spin-polarized state of the ensemble of
carriers allows one to measure this Larmor precession more easily and to gain better insight
into the spin dynamics of the system under study. The so-called “optical orientation’
of carriers is achieved through circularly polarized optical excitation of the semiconduc-
tor [Dya84] and is the key concept for all experiments, performed for this work. Due to
optical selection rules (cf. Section 2.2), the absorption of circularly polarized photons
results in the creation of spin-polarized carriers. The spin of these carriers may relax with
the characteristic time 7¢ during the lifetime 7 of these carriers [Dya84; Heil5b]. However,
in n-type semiconductors the spin polarization is achieved by replacing unoriented, resident
electrons with optically generated, spin-oriented electrons. Thus, the spin polarization
prevails after the recombination of the photoexcited carriers. The spin relaxation time 7g
of the spin-oriented, resident electrons can exceed by far the lifetime of the photo-generated
carriers, which is the case in the material system studied in this thesis (see Chap. 4 and
Ref. [Heil5b]).

?
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2.4.1 Spin Lifetime

As discussed above, the following processes determine the electron spin relaxation in n-type
semiconductors: the recombination of spin-oriented, photogenerated carriers, the spin
relaxation, which may occur during their lifetime, as well as the spin relaxation of spin-
oriented resident electrons. Depending on the excitation density, more or less spin-oriented
resident electrons and photogenerated carriers, which are spin-oriented as well, are present
in the sample at the same time. Thus, the spin lifetime Tg

L_1 + ! (2.29)

Ts 15 T '
also depends on the excitation density [Dya84] via the recombination time 7 of the
photogenerated carriers. It is given by (see Ref. [Heil5b])

(2.30)

here ng is the resident electron concentration and G is the rate of electron-hole generation,
which influences the macroscopic spin polarization due to the recombination of electrons
with photogenerated holes. Hence, one usually aims to extrapolate to zero excitation density
(G —0,1/7 — 0) and in this way obtains the spin relaxation time 75 (see Chapter 4).

2.4.2 Spin Relaxation and Spin Coherence
Longitudinal Spin Relaxation

The application of an external magnetic field B can change the spin relaxation time 7g, and
usually a different terminology in analogy to the studies on nuclear spins, preceding similar
experiments on electron spins, is used. The magnetic field leads to a certain alignment of the
electron and nuclear spins due to their respective Zeeman energies (cf. Section 2.3.3). This
alignment occurs in the direction parallel or antiparallel to B, depends on the temperature
for a system in thermodynamic equilibrium, and results in a net magnetization M # 0. As
a result of the electron and the nuclear Zeeman splitting, spin-flips are accompanied by
an energy transfer. After a sufficiently long time the system reaches its thermodynamic
equilibrium, corresponding to an equilibrium magnetization Mcq. The time scale, on which
the system reaches the thermodynamic equilibrium, is defined as the longitudinal spin
relaxation time or spin-lattice relaxation time. It will be denoted T for the electron spins
and TlN for the nuclear spins in the following. For nuclei, this process is approximately
exponential and two cases, illustrated in Fig. 2.6(a) and (b), can be distinguished [LevO01].
Please refer to Chapter 4 for a measurement of 77 and Chapter 6 for a measurement of
TN,

Transverse Spin Relaxation: Homogeneous Dephasing

It is important to note that the timescale given by the 77 time is not the only important
timescale for the spin dynamics. Especially regarding quantum information applications,
the transverse spin relaxation time or spin coherence time, denoted T (electron spins) and
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eq,on

eq,on

eq,off | eqoff | 1

Figure 2.6 (a) Build-up of a net magnetization M, of the nuclear spins upon “switching on” the
external field B. (b) Decay of this magnetization M.y to zero after “switching off” the external
field B. Both processes are characterized by the longitudinal nuclear spin relaxation time 7. In
analogy to [Lev01].

TN (nuclear spins), is of great importance, since it limits the time a spin qubit exhibits
“true” quantum behavior, e. g., superposition or entanglement, and allows one to perform
operations based on quantum computing models [DiV00].

In the case of the electron spins, the transverse relaxation can be observed in experiments
using the Voigt geometry, where the magnetic field By is applied perpendicular to the k
vector of the light wave (By L k). The optical orientation (see the previous discussion)
then results in a superposition of the two eigenstates spin-up |1) and spin-down |}) defined
with respect to the field By. In other words, the process of optical orientation results in
a net magnetization, which is transverse to the external magnetic field By. Thus, the
spins exhibit Larmor precession (cf. Section 2.3.4) about the axis given by By (in the
plane L By). The transverse spin relaxation time or spin coherence time Ty determines
the timescale, on which the phase of the precession of the transverse spin components is
lost [Yak08]. Irreversible processes of different physical origin lead to the dephasing or
decoherence of a single spin or an ensemble of spins for which an average T time can
be defined. It is important to note that in contrast to the longitudinal relaxation the
transverse relaxation is not accompanied by an energy transfer so that any scattering event
can cause spin decoherence [Yak08].

The Ty time is difficult to obtain from measurements on an ensemble of electron spins
due to the contributions of inhomogeneous dephasing to the dephasing of the polarization
of the ensemble (cf. the following discussion). One can use an optical realization of the
Hahn echo sequence [Hah50] or rely on the phenomenon of spin mode-locking [Gre06b].
Furthermore, one could obtain it from measurements on a single spin.

In the case of the nuclear spins the definition of the spin coherence time 73" is the same
as of the electron spin coherence time 75. It can be obtained from measurements on an
ensemble of nuclear spins using the Hahn echo sequence, but it is not feasible to measure
the TJ¥ time of a single nuclear spin using RF techniques. Please refer also to Section 2.3.9
for the implications of TQN and TlN for the spin temperature approach. The decay with
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TN can be explained by microscopic, fluctuating magnetic fields acting on the nuclear
spins [Lev01].

Transverse Spin Relaxation: Inhomogeneous Spin Dephasing

As stated before, the measurement of T on an ensemble electron of spins requires special
experimental techniques or conditions [Hah50; Gre06b]. The macroscopic coherence, studied
in this case, does not decrease with 75, but with the considerably shorter inhomogeneous
spin dephasing time T4 [Yak08]. It is given by the following equation

1 1 1
T + T (2.31)
In addition to the irreversible processes, leading to a decay of the transverse spin components
with 75, the decay of the macroscopic coherence is accelerated by a reversible phase shift
between different spins of the ensemble due to a dispersion of precession frequencies [Yak08].
This phase shift occurs with the inhomogeneous spin relaxation time Tzinh. Two different
mechanisms, causing the phase shift, can be distinguished: (i) At zero and very weak
magnetic fields 73" is determined by fluctuating nuclear fields By, which lead to Larmor
precession about By and thereby to a frequency dispersion of the electron spins. (ii) At
strong magnetic fields, in turn, properties intrinsic to the sample, e. g., differences between
donor sites in bulk semiconductors, monolayer fluctuations in semiconductor quantum
wells (QWs) and size and shape dispersion of quantum dots (QDs) lead to a spread of
g factors and thus to a dispersion of precession frequencies. The g factor spread leads
to a 1/B dependence of Ti™® and therefore to a decrease of Ty with increasing magnetic
field [Sch1l].

Similar to 75 of the electron spins one can define the inhomogeneous nuclear spin
dephasing time T, ’N, which is given by the following equation

1 1 1

T;ﬁ - ™ + Tk (2.32)

Here, the Larmor frequency dispersion, leading to a phase difference between different

spins in the ensemble, is caused by the variation of the magnetic field, either due to the

variation of the macroscopic magnetic field over the sample volume [Lev01] or effective,

static fields in the sample, e. g., the Knight field Bk of the electrons. This phase difference

occurs with the time 75 ™"

2.4.3 Hanle Effect

The Hanle effect denotes the depolarization of the electron spin by a transverse magnetic
field [Dya08]. It is important, since it can be used to measure the electron spin lifetime Ts
as an alternative to the spin inertia effect, presented in Chapter 4 of this work. The Hanle
effect was first observed by Wood and Ellett in 1924 [Wo024; Dya08] as a dependence of
the degree of polarization of mercury vapor fluorescence on the orientation of the direction
of observation with respect to the magnetic field of the earth. W. Hanle studied it in more
detail and provided the theoretical model to describe the underlying physics [Han24]: The
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excitation with circularly polarized light polarizes the spins of the carriers along the light
wave k vector, while a transverse, external magnetic field By leads to Larmor precession
of the spins about the axis defined by this field. The stronger the field, the more rotations
the spins perform during their lifetime Tg. Thus, in a strong magnetic field Tg > i the
average spin polarization along the k is reduced due to these rotations. The so-called
Hanle curve describes this behavior [Dya84; Heil5b]

- S.(0)
S:(BV) = 157 e (2.33)

The half width of this Lorentz curve is given by

h
gc,UBTS ‘

By = (2.34)

One can obtain the Hanle curve by measuring the degree of circular polarization p. of
the photoluminescence (PL, cf. also Section 3.2.1) as a function of the magnetic field
By [Dya84]. Alternatively, it can be determined from a measurement of the Kerr rotation
(KR) angle kg (cf. Section 2.4.4), e.g., from a time-resolved Kerr rotation experiment
(cf. Section 3.2.2), in dependence on By. Commonly, a continuous-wave (CW) excitation
is used to excite the PL or measure the Kerr rotation, resulting from the CW excitation.
However, Astakhov et al. determined similar spin relaxation times 7g of resident electrons
in CdTe/CdMgTe QWs from a KR measurement using a pulsed excitation and one using a
CW excitation [AstO8b].

2.4.4 Kerr Rotation

Incident beam,
linearly polarized

Figure 2.7 Rotation of the polarization axis of a linearly polarized beam (dashed orange arrow)
about the angle fxr. The complex Kerr rotation also leads to an elliptic shape (ellipticity exgr) of
the polarization (orange ellipsis). Here, a and b denote the semiaxes of the polarization ellipsis.
Modified from Ref. [Murl1].

All measurements of the electron spin dynamics presented in this thesis rely on the
magneto-optical Kerr effect [Jah00], which allows one to measure the magnetization M of
a medium by the rotation of the polarization plane of light reflected from the surface of



2.4 Optical Orientation 21

this medium. The complex magneto-optical rotation @ of the reflected light can be defined
as a superposition of the Kerr rotation 6kxr and the Kerr ellipticity exr

6= kR + €KR (2.35)
and we find the following relation to the magnetization M
6=FM, (2.36)

where F is the generalized Fourier coefficient determined by the sample properties and the
experimental setup [Koo03; Koo07].

Figure 2.7 illustrates the complex Kerr rotation of an initially linearly polarized beam
(dashed orange arrow). As a result of the optical Kerr effect, the polarization has now an
elliptic shape (orange ellipsis), and its axis is rotated about the angle Okg.

The magnetization, causing the complex Kerr rotation, can result from the application of
external magnetic field B, a non-vanishing spin polarization S # 0 or both. Thus, we can
determine changes of the average spin polarization by measuring, e. g., the Kerr rotation
angle OkR.
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3 Experimental Details

This chapter provides an overview of the basic principles of the experimental setup, the
function and interplay of the equipment, the experimental methods and the samples under
study.

3.1 Equipment and Setup

3.1.1 Optical Cryostat

Since all measurements required cryogenic sample temperatures (7' < 45 K) and most of
them also an external magnetic field, they were conducted with the sample placed in an
optical cryostat - the Oxford Instruments 3D Vector Magnet.

To achieve cryogenic temperatures a sufficient insulation from the environment at a
temperature of T' ~ 293 K is necessary. To that end, the sample compartment, called
variable temperature insert (VTI) and consisting mainly of a long cylindrical tube with a
diameter of about 25 mm and four windows near the bottom, is “suspended” (mounted with
as less mechanical contact as possible) in a vacuum chamber. This chamber is evacuated
to pressures on the order of 1 x 10~ %mbar. As a result, the thermal conductivity by
convection is reduced to a minimum, and the remaining coupling to the environment would
occur mainly by thermal radiation. The power P of the thermal radiation of a black body
is given by the Stefan-Boltzmann law [Ste79; Bol84|

P =g AT, (3.1)

where A is the area of the black body and o = 5.670367 x 1078 Wm 2K ~* [Moh15] is
the Stefan-Boltzmann constant. Thus, the contribution of thermal radiation to the heat
exchange between two “black bodies” strongly depends on the temperature difference
between them. Therefore, the cryostat employs two coolants stored in different compart-
ments “suspended” in the vacuum volume. The one closest to the enclosure of the cryostat,
containing the outer, so-called room-temperature windows, is filled with liquid nitrogen
(boiling temperature: 77K) and shields the inner compartment, as well as the VTI by
a metal tube, which is in thermal contact with the nitrogen volume. This construction
drastically reduces the evaporation of the liquid helium stored in the inner volume, since
liquid helium has a boiling temperature of 4.2 K and a much lower heat capacity than
liquid nitrogen. The helium volume surrounds the VTI so that the metal tube at liquid
nitrogen temperature around the VTI serves mainly as a shield for the helium volume. This
further reduces the evaporation of helium, since the VTI can be heated up to temperatures
of up to 300 K and has a relatively large thermal contact to the environment due to the
sample holder and the thermal radiation through the windows. A metal enclosure, the
so-called nitrogen shield, is mounted to the bottom of the nitrogen volume and surrounds
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the bottom part of the helium volume, containing the split coil magnets (cf. discussion
in the following), and the bottom part of the VTI. As the VTI, the nitrogen shield has
four windows, facing the VTI and room-temperature windows. Due to thermal contact
to the nitrogen shield, these so-called nitrogen windows are at a temperature close to the
boiling point of liquid nitrogen and therefore provide an additional shield of the VTI and
the helium volume against thermal radiation.

A thin capillary tube connects the VTI to the helium volume. The flow of liquid helium
through this capillary tube can be regulated by an electrically controlled needle valve
to cool the sample either by a controlled gas flow or by immersion in liquid helium. A
second means to regulate the sample and VTI temperature is provided by an electrical
heating with an ohmic resistor, located in the bottom part of the VTI, which is formed by
a massive copper cylinder. Furthermore, this cylinder contains a calibrated semiconductor
resistor, which allows for a measurement of the temperature of this cylinder.

The motor of the needle valve, the electric heating and the semiconductor resistor at the
bottom of the VTI, as well as the optional semiconductor resistor at the sample holder, are
connected to an electronic temperature controller. The device features a controller circuit
that is able to stabilize the temperature at the semiconductor resistor at the bottom of the
VTI. The available temperatures range from about 5K to 300 K without pumping on the
VTI. Setting temperatures below 5 K can lead to a flooding of the VTI with boiling helium,
which hinders the optical access to the sample due to significantly increased scattering.
However, pumping on the liquid helium induces a phase transition to the superfluid phase
(Helium II, cf. Refs. [Kap38; All38]) and one can reach a temperature of about 1.8 K. The
biggest advantage of the superfluid phase is its very low viscosity and, in turn, very high
thermal conductivity, which prevents the formation of bubbles.

It is not recommended to heat up the VTI to temperatures exceeding 285 K and one
should cool down from elevated temperatures > 200 K at reduced speed (needle valve
not completely opened), since the windows of the VTI are mounted and sealed using
two-component adhesive and leaks of this sealing can be caused by thermal stress. Note
that the temperature in the vicinity of the sample (sensor at the sample holder) and at the
bottom of the VTI can deviate by about 8 K to 10 K.

The helium volume not only provides the coolant for the VTI, but contains three
superconducting split coil solenoids that are made from niobium-titanium. They allow us
to apply magnetic fields of up to B = 3T in any direction of space and are maintained
in a superconducting state by immersion in liquid helium. Each coil is operated by a
separate power supply labeled according to the alignment of the respective pair of split
coils: “X” (perpendicular to the optical axis, but parallel to the surface of the optical table,
Voigt geometry, field By, cf. orange ellipses in Fig. 3.5), “Y” (parallel to the optical axis
and to the surface of the table, Faraday geometry, field By, cf. blue ellipses in Fig. 3.5)
and “Z” (perpendicular to the optical axis and the surface of the table). Note that it
was necessary to compensate residual fields along the directions defined by the other, not
magnetized split coils. Especially, if we performed measurements at relatively low magnetic
fields on the order of a few tens of mT. We observe that ramping up the field along a coil
to more than 200 mT magnetizes parts of the cryostat and causes hysteresis effects. To
compensate these fields, we performed either an RSA measurement (“X” or “Z” axis) or a
polarization recovery measurement (“Y” axis) along the axis, which should be compensated.
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The measurement yielded the zero position, which we installed on the power supply to
compensate the residual field along the corresponding axis.

3.1.2 Sample Holder

Sample holder tube

!

~Sample
RF coil~

Figure 3.1 Schematic of the bottom part of the sample holder to illustrate the mounting of the
sample and the position and alignment of the RF coil.

The sample holder consists of a long tube that is inserted into the VTI. It allows us
to adjust the vertical position of the sample in the VTI and its angle with respect to the
optical axis. The sample holder without a radio frequency (RF) coil was equipped with
two hall sensors (first: Faraday geometry (“Y” axis); second: Voigt geometry (“X” axis))
to measure the respective components of the magnetic field and one semiconductor resistor
to measure the temperature in the vicinity of the samples. The sample holder with an RF
coil was equipped with one hall sensor (Voigt geometry (“X” axis)).

Figure 3.1 shows a schematic of the bottom part of the sample holder, illustrating the
mounting of the sample and the position of the RF coil. Here, it is important that the RF
coil was placed directly at the sample surface and the RF signal from the arbitrary function
generator (AFG, Tektronix AFG 3022) was amplified by a class AB RF amplifier with
complementary transistor output stages (cf. Fig. 3.2) for all RF measurements presented
in Chapter 6. Otherwise, the coil used for these measurements could not provide the
necessary RF power for the experiments. In contrast to this, the measurements, presented
in Chapter 5, were performed without additional amplification of the RF signals from the
AFG.

3.1.3 Electro-Optical Modulators

The linear electro-optic effect or Pockels effect [Pasl7], discovered by Pockels [Poc94] in
1894, is the change of the refractive index by an externally applied, static electric field. This
effect creates an additional birefringence in an optically uniaxial nonlinear crystal, e.g., a
potassium dihydrogen phosphate (KDP) crystal [Dem11]. This birefringence depends on
the orientation of the external, static electric field Fg.¢ with respect to the optical axis so
that one distinguishes the transverse (k L Eg,t) and the longitudinal electro-optic effect
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Figure 3.2 Circuit diagram of the Class AB RF amplifier, used for the RF measurements presented
in Chapter 6. Depending on the power supplies used for the transistors the maximum power is
P <40W. Modified from Ref. [St517].

(k || Estat) [Bild9; Zwid4]. These effects are used in so-called Pockels cells in electro-optical
modulators (EOMs) to modulate the phase, the polarization or the intensity of laser beams.
Furthermore, EOMs can be used as intensity modulators in actively mode-locked lasers.
An EOM provided the modulation of the helicity of the pump beam for the experiments
in this work, where two different EOMs were used. These required slightly different setups.
(i) The LINOS LM 0202 5W P acts as a switching half-wave plate, which can rotate the
polarization plane of the linearly polarized (Glan-Taylor prism (Glan)) pump pulses up to
90° depending on the voltage applied to its crystal by the digital high voltage amplifier
(LINOS DIV-20). The digital high voltage amplifier, in turn, is controlled by the AFG
(Tektronix AFG 3022) connected to its transistor-transistor logic (TTL) input. When a
“1” (about 4V to 5V) is applied to this input, the voltage adjusted at the “high” setting
of the amplifier is applied to the EOM and leads to a rotation of the polarization plane
of 90°, while the “offset” voltage is applied for a “0” (0V to 1V) at this input and the
polarization plane is not rotated. Thus, the EOM switches the pump polarization between
two perpendicular linear polarizations. In combination with the quarter-wave plate this
results in a switching between a left- (07) and a right-circularly (o) polarized laser beam.
(ii) The Polytec 350-105 Laser Modulator, in turn, acts as a switching quarter-wave
plate, which can “convert” the linearly polarized laser beam into a circularly polarized one.
It is also provided with a dedicated high voltage amplifier (Modell 25D controller) and
can be controlled with a TTL signal from the AFG. It features a “bias voltage adjustment”
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to set the optical operating point of the system, e. g., set one circular polarization at a logical
“0”(0V to 1V) at the TTL input, and a “drive voltage adjustment” to set the additional
voltage applied at a logical “1” (about 4V to 5V). The “drive voltage” is adjusted so
that the EOM provides the circular polarization with the opposite sign, compared to the
circular polarization at the “bias voltage”.

(a) Sample (b)  Sample

0
i
> =
N . m .
§ Oscilloscope § Oscilloscope
' >
= TExt trigger E
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Function generator Function generator
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=l
N

L

Figure 3.3 Scheme to test the polarization achieved with the EOMs. The optical elements were
placed in the path of the pump beam shortly before the cryostat. Only one focusing lens followed
after the flipable mirror. The purple lines denote the pump beam. After passing through a
Glan-Taylor prism, which ensures a clean linear polarization, and the (a): LINOS LM 0202 5W P
and a A/4 plate or the (b): Polytec 350-105 Laser Modulator its polarization is analyzed using
a A/4 plate, a Glan and a fast photodiode (Thorlabs DET10A/M), connected to an oscilloscope.
The diode was terminated with a 50 ) load to achieve fast operation.

Figure 3.3 illustrates the schemes to allow for a helicity modulation of the pump
beam (purple line) using either the LINOS LM 0202 5W P (cf. Fig. 3.3(a)) or the Polytec
350-105 Laser Modulator (cf. Fig. 3.3(b)) and to test the achieved degree of circular
polarization. To this end a flipable mirror was put in the path of the pump beam so that
its polarization could be analyzed using quarter-wave plate and a Glan. A fast photodiode
(Thorlabs DET10A/M) connected to an oscilloscope allowed us to determine the polarization
for a “0” or “1” TTL signal and check the degree of circular polarization. Here, it is
important to note that a 50 €2 resistor (termination) was required to achieve the fast rise
time of the diode of about 1ns.

3.1.4 Mode-locked Lasers

Compared to continuous-wave (CW) light sources mode-locked lasers are more suitable
to perform time-resolved measurements and can measure coherent spin dynamics directly.
Instead of a standing wave in the resonator, a light pulse travels around the resonator,
and at certain times short, but intense light pulses are emitted from the laser system.
The concept of a mode-locked laser was described by Lamb [Lam64] in 1964 and realized
experimentally the same year by Hargrove et al. [Har64].
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The laser system, used for the experiments in this work, was a Coherent Mira 900-D
titan:sapphire laser or alternatively its high power variant Coherent Mira 900-D HP.
Except for the tuning range of 700 nm to 1000 nm (HP: 700 nm to 980 nm) and the average
output power P ~ 1W (HP: P > 2.8 W) the specifications of both lasers are identical:
They emit pulses of width of about 2ps at a repetition frequency of fg = 75.75 MHz,
which corresponds to a repetition period of Ty = 13.2ns. Both lasers are pumped by
a frequency-doubled, diode-pumped Nd:YVOy solid state laser (Coherent VERDI V-18,
maximum power P = 18 W).

3.1.5 Second Harmonic Generation

To obtain the necessary energies to study the spin coherence in the ZnSe epilayers, we need
to double the frequency w of the Ti:sapphire laser (cf. Section 3.1.4) using a beta barium
borate (BBO) crystal [Fra61]. Thus, instead of being restricted to the titan:sapphire energy
range from about 1.25eV to 1.7eV, we could also work at photon energies from 2.5eV
to 3.4eV [Heilba], which was necessary to study the electron spin coherence in the ZnSe
epilayers.

In the experiments, presented in this thesis, the crystal was located in a dedicated
device (Photop TP-2000B), which contained a half-wave plate to adjust the polarization
and focusing optics. Furthermore, it allowed us to adjust the angle of the crystal with
respect to the k vector of the fundamental laser beam with the frequency w. Thereby, we
achieved the phase matching condition and increased the efficiency of the conversion of
two photons with the frequency w to one photon with the frequency 2w.

3.2 Experimental Techniques

3.2.1 Photoluminescence Spectroscopy

A photoluminescence spectrum allows us to obtain information on the electron states of
the sample. A light source (here a CW laser) provides photons whose energy Eex. must
exceed the band gap E, of the semiconductor or the band gap of the barrier material for
heterostructures, e. g., quantum wells (QWs) or quantum dots (QDs). Upon absorption by
the material, a photon excites an electron from the valence band (VB) into the conduction
band (CB), while a vacancy in the valence band, called hole, remains (cf. Section 2.1.2).
Due to the condition Fe. > FE, the excited electrons have an energy, which exceeds
the minimum energy of the CB. Thus, an electron can either relax non-radiatively to an
energetically lower state up to the minimum of the CB and then recombine with a hole
under emission of a photon or immediately recombine radiatively with a hole. In any case,
the energy of the emitted photon is equal to the energy difference between the hole and
the electron state due to the conservation of energy. As a result, a PL spectrum consists of
a series of peaks whose relative amplitude is proportional to the relative oscillator strength
of the underlying transitions and the occupation of the corresponding electron states (cf.
actual PL spectra of the studied samples in Section 3.3). Figure 3.4 shows the scheme
used for the PL measurements. A CW diode laser (Coherent Cube, Part No. 1069413)
provided an excitation of the sample with a photon energy Fe. = 3.05eV. A cut mirror
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Figure 3.4 Scheme used for PL measurements. The continuous-wave (CW) diode laser provided
the optical excitation of the studied samples, which were mounted in the optical cryostat, described
before. The laser beam was redirected by a cut mirror, a further mirror and then focused onto the
sample surface. A system of lenses and mirrors collected the resulting PL and coupled it into an
optical fiber. This fiber, in turn, was connected to the entrance slit of the imaging spectrometer. The
flippable mirror in front of the fiber entrance allowed us to either image the sample surface on the
auxiliary charge-coupled device (CCD) camera or measure the PL spectrum with the spectrometer.

coupled its beam into the optical path, used for the collection of the PL and for imaging
the sample on the auxiliary CCD camera [Boy70]. The same lens, which collected the PL,
focused the laser beam onto the sample surface. This optical excitation resulted in the
emission of PL from the sample provided it fulfilled the condition Feyxe > Fg.

This PL was collected and coupled into the fiber by the assembly of mirrors and lenses
adjusted for this purpose. The output of the fiber was connected to the entrance slit of the
imaging spectrometer. The spectrometer, an Acton SpectraPro 2500, was an imaging
Czerny-Turner monochromator [Cze30] with a focal length of 0.5m and three different
diffraction gratings (1. 600 gr/mm blazed at 500 nm, 2. 1200 gr/mm and 3. 2400 gr/mm
holographic-visible).

In a Czerny-Turner monochromator, the light from the entrance slit falls upon the first
of two aspherical mirrors so that a collimated beam is reflected onto the diffraction grating
mounted on a motorized turret. This turret allows us to adjust the center wavelength and
switch between the different gratings on the turret. The grating diffracts the light from the
first mirror onto the second aspherical mirror (cf. schematic in Fig. 3.4), which collimates
it and reflects it onto the CCD chip.

The Princeton Instruments PIXIS: 256F-0E CCD featured a 1024 x 256 pixels UV-
enhanced silicon, Peltier cooled photodiode matrix (26.6 mm x 6.7 mm) that was read-out
by an integrated controller.
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3.2.2 Time-resolved Kerr Rotation Technique

Mode-locked lasers providing ultra-short laser pulses offer the advantage of time-resolved
measurements. One of the most common time-resolved spectroscopy techniques is the
pump-probe technique. The basic principle of this technique is to excite or to prepare the
system under study in a specific state with the pump pulse and then observe the response
or evolution of the system with the probe pulse.

The time-resolved Kerr rotation (TRKR) technique represents a realization of this
technique, which is especially suitable to study the electron spin dynamics and based on
the magneto-optical Kerr effect (cf. Section 2.4.4). Figure 3.5 shows a schematic of the
employed TRKR setup. The frequency of the laser pulses, emitted by the mode-locked
titan:sapphire laser, was doubled by the SHG box and then they were divided into a pump
and a probe beam by a beam splitter (BS). The probe beam was directed to the sample on
a fixed optical path, while the pump beam was passed through a mechanical delay line,
which allowed us to vary the temporal distance between the arrival of the pump and probe
pulses at the sample.

The circularly polarized pump pulses create a macroscopic spin polarization of the
ensemble of donor-bound electron spins. The helicity of the pump was modulated by an
EOM with the modulation frequency fu,. The pump helicity modulation frequency fn,
was varied from 10kHz to 1000 kHz. The macroscopic spin polarization, in turn, leads to
a rotation of the polarization plane (see Section 2.4.4) of the reflected, initially linearly
polarized probe pulses, which was measured with a balanced photodetector (New Focus
NFI-2107-FS-M, bandwidth 10 MHz) in combination with a half-wave plate and a Wollaston
prism. This detector was connected to either the Stanford Research Systems SR 844
or the Signal Recovery 7265 lock-in amplifier, depending on the modulation frequency:
The Stanford Research Systems SR 844 can be used for modulation frequencies from
25kHz to 200 MHz, while the Signal Recovery 7265 works at modulation frequencies
from 0.1 Hz to 250kHz. Please note that the data obtained from measurements with
different lock-in amplifiers were normalized to each other by performing a measurement at
the same conditions at a modulation frequency, which fell in the range of both lock-ins,
e.g., 200kHz or 250 kHz, for two times using first one and then the other lock-in. This
approach was used for the measurements presented in Chapter 4.

For the measurements, presented in Chapters 5 and 6, a different lock-in amplifier was
used: The Zurich Instruments HF2LI can be used at modulation frequencies fy, from
DC to 50 MHz so that it was not necessary to switch the lock-in to change f,. However,
please note that frequencies exceeding 2 MHz can only be demodulated, if the internal
reference of the lock-in amplifier is used for the modulation.

The high repetition frequency fr = 75.75 MHz of the mode-locked lasers, used in this
thesis, in combination with lock-in amplifiers greatly improved the signal-to-noise ratio,
since we averaged over a few hundred laser pulses in one helicity modulation cycle. The
signal from one helicity modulation cycle, in turn, was averaged again several thousand
times by the lock-in amplifier, e.g., 5000 times at a helicity modulation frequency of
fm = 50kHz and a time constant (TC) of 100 ms.

Figure 3.6 shows a TRKR measurement for sample #1 at a modulation frequency
fm = 100kHz at zero magnetic field. The peak at At = 0 results from the simultaneous
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Figure 3.5 Schematic of the TRKR setup. A degenerate pump-probe configuration is used for
most of the experiments, nevertheless, the pump (dark violet) and the probe (blue) are drawn in
different colors to enable good differentiation between both beams. The optical components are
partly denoted by the following abbreviations: “BBO” (beta barium borate), “BS” (beam splitter),
“GF” (neutral gray filter, neutral density filter), “Glan” (Glan-Taylor prism), “A/2 plate” (half-wave
plate), “PBS” (polarizing beam splitter, drawn schematically, a Wollaston prism with a beam
separation of 20° is used), “A/4 plate” (quarter-wave plate), “SHG” (second harmonic generation).
The accumulation of ellipses in the cryostat schematically show the arrangement of the split coils,
where the series of blue ellipses illustrate the split coil for the magnetic field in Voigt geometry
(By) and the orange ellipses the split coil for the magnetic field in Faraday geometry (Bp).

arrival of the pump and the probe pulse. Then the KR signal decays, as the spin polarization
decreases. However, the nonzero KR signal at negative time delay indicates that the spin
polarization induced by the pump pulses decays on a timescale that exceeded the laser
repetition period Ty = 13.2ns. This allowed us to measure the spin polarization shortly
before the arrival of the next pump pulse, as it was used for the PR and RSA measurements.
The orange arrow in Fig. 3.6 shows the exact probe pulse position at At = —20ps used for
these measurements.
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Figure 3.6 TRKR measurement at B = 0T, performed at a pump power of Pp, = 1.5mW and a
probe power of Pp, = 0.7mW.

3.3 Investigated Samples

The samples under study were homogeneously fluorine-doped ZnSe:F epilayers, grown by
molecular-beam epitaxy on a (001)-oriented GaAs substrate (see layer structure of the
samples illustrated in Fig. 3.7). The epilayer was separated from the substrate by a 20-
nm-thick Zng g5 Mg ;5S¢ barrier layer to prevent carrier diffusion into the substrate. This

ZnSe:F, 70 nm

np1~1x 10" cm®; ng,~1x10" cm™

Zn,; Mg Se, x<0.15, 20 nm

ZnSe buffer layer

Figure 3.7 Layer structure of the studied samples. A thin buffer layer of ZnSe, grown on (001)-
oriented GaAs substrate, is followed by a higher band gap ZnMgSe barrier. The top layer is formed
by a fluorine-doped ZnSe epilayer. The structure of Samples #1 and #2 is identical except for the
fluorine concentration ny in the top layer.

barrier, in turn, was grown on top of a thin ZnSe buffer layer to reduce the defect density
at the III-V/II-VI heterointerface. Two samples with different fluorine concentrations
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were investigated in this thesis. Here, the fluorine concentration ny depended on the
applied fluorine flux during growth [Grel2] and was estimated from capacitance-voltage
measurements using Schottky contacts [Grel2]. Sample #1 had a fluorine concentration of
np ~ 1 x 10" cm ™3, while sample #2 had a fluorine concentration np ~ 1 x 10'® cm™2 that
was three orders of magnitude higher than for sample #1 and close to the metal-insulator
transition (Mott Transition) [Mot67]. Combining the estimated Bohr radius of ag =
4.825 nm of the donor-bound electron (see Ref. [Grel2]) with the Mott criterion [Grul6c]

3
2ap = %n;{ 3 (3.2)
= apny® ~0.24, (3.3)

we can estimate the critical fluorine concentration, at which the metal-insulator transition
should occur

0.014
= NFc ™~ 3
ap

= npc ~ 1.2 X 107 em?.

Thus, sample #2 had a fluorine concentration that was already above the estimated

0
oL DIEIH FX-HH
Sample #1

0.8 Sample #2
=
g
§ 0.6
&
g
Z 04
2
o
=
~ 0.2

0.0 1 N 1 N 1 N 1 N 1 ]

2.78 2.79 2.80 2.81 2.82
Energy (eV)

Figure 3.8 PL spectra of samples #1 and #2, measured at B =0 and T'= 1.8 K. A CW laser
(Eexe = 4.05€V) provided the necessary above barrier excitation.

critical concentration for the Mott transition. However, we can still observe PL from the
sample (see Fig. 3.8).
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Figure 3.8 shows the photoluminescence spectra of samples #1 and #2. We can assign
their peaks to the optical transitions corresponding to different exciton complexes (cf.
Ref. [Paw06; Grel2]), marked by the following abbreviations: FX denotes the free exciton
lines, containing light hole (LH) and heavy hole (HH, cf. Section 2.1.2), while DX denotes
the respective lines of the donor-bound excitons (trions, cf. Section 2.2).

3.4 Experimental Configurations

3.4.1 Resonant Spin Amplification Configuration

The resonant spin amplification (RSA) configuration of the TRKR technique represents a
very sensitive tool to measure the effective magnetic field felt by the electron spins, i.e., to
determine the electron Larmor precession frequency very precisely (cf. Ref. [Kik98]). In
contrast to the “standard” configuration of the TRKR technique the time delay was not
varied in the RSA configuration. It was fixed at small negative time delay At = —20 ps
of the probe pulse relative to the pump pulse (cf. orange arrow in Fig. 3.6), while the
magnetic field in Voigt geometry (By L k) was scanned to vary the Larmor precession
frequency of the electron spins.

One can imagine the precessing electron spins as a very fast clock intrinsic to the system.
The experimenter then lets this clock interact with a fast external clock, provided by the
mode-locked titan:sapphire laser. At certain magnetic fields By, the frequencies of these
two clocks synchronize, and each following pump pulse increases the spin polarization.
These By can be calculated using the phase synchronization condition (PSC) [Yugl2]

wr, = Nwgr, N € N (3.4)
B
o “BgTV — Nuwg, (3.5)
Nhw
& By = —F&, (3.6)
HUBYe

Figure 3.9 schematically illustrates how the spin-polarized electron ensembles created
by succeeding pump pulses superimpose either with destructive phase (blue line, upper
curve) or constructive phase (red line, lower curve). Here, the blue line shows the “worst-
case,” a superposition with opposite phase that leads to a significant reduction of the
spin polarization after the arrival of the 2nd pump pulse. Note that in this simplified
schematic only spins polarized by three consecutive pump pulses were considered and
superimposed according to Eq. (3.7), while at the experimental conditions the number of
pulses to consider should be infinitely large (cf. Refs.[Yugl2; Bell6)).

This results in the phenomenon called resonant spin amplification (RSA) at these
particular magnetic fields [Kik98], which reveals itself as a series of period peaks in the
Kerr rotation signal in dependence on the magnetic field. By summing up the contributions
of each pump pulse to the macroscopic spin polarization along the z axis for a fixed time
delay At (in analogy to Ref. [Yugl2])

At + T
S.(wr, At) = ZSgeXp< t;J R)cos(wL(At+jTR)), (3.7)
2
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Figure 3.9 Schematic to illustrate the effect of Larmor precession of resident electrons polarized
from different pump pulses. The electron spins oriented by different pumps have either a constructive
phase (red line, lower curve) or a destructive phase (blue line, upper curve) with respect to each
other.

we obtain

(3.8)

At +TR)COS (wr,At) —exp( Ty )cos (wL(At—i—TR))'

SZ((,UL, At) = So exp (— "
T3 cos (w, At) — cosh (Tg)

This expression depends on the magnetic field By via the electron Larmor precession
frequency wry, (cf. Eq. (2.15)) and allows one to determine the inhomogeneous spin dephasing
time from a nonlinear fit to an RSA spectrum, see, e. g., Ref. [Grel2]. Furthermore, we can
measure the effective magnetic field, felt by the ensemble of electron spins, very precisely,
if the g factor is known, e. g., from a TRKR measurement.

3.4.2 Polarization Recovery Configuration

The polarization recovery measurements also employed the pump-probe scheme. As in the
RSA configuration, the time delay At of the probe pulse with respect to the arrival of the
pump pulse was not varied in the polarization recovery configuration, but fixed at a small
negative value At ~ —20ps (cf. orange arrow in Fig. 3.6). Measuring the KR signal at this
temporal position simplifies the interpretation of the results, since these can only arise from
long-living spins, whose polarization decays on a timescale exceeding the laser repetition
period Ty [Heil5b]. For example, the exciton recombination time in fluorine-doped ZnSe
is about (210 £ 40) ps (DYX-HH, cf. Ref. [Grel2]) so that the KR signal at negative time
delays At should originate only from the resident electrons in the epilayer that are bound
to the fluorine donors at low temperatures.
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The circularly polarized pump pulses create a macroscopic spin polarization of the
ensemble of donor-bound electrons by optically pumping one of the two eigenstates |1) and
|{) of the spin of the donor-bound electron, where the eigenstates are defined by the external
magnetic field applied in the Faraday geometry. The macroscopic spin polarization of the
donor-bound electrons hereby occurs due to the replacement of these initially non-polarized
electrons with spin-polarized electrons (see Sec. 2.4 and Refs. [Heilbb; Dya84]).

The helicity of the pump pulses was modulated by the EOM with the modulation
frequency fi. The pump helicity modulation leads to a spin polarization that alternates
between the |1) and the |]) state. The pump helicity modulation frequency f;,, was varied
from 10kHz to 700 kHz, which was the key for the spin inertia measurements. Note that
we observed a change of the pump polarization upon altering fi,, (only LINOS LM 0202 5W
P EOM) so that we waited a few minutes each time f;,, was changed and used the scheme,
illustrated in Fig. 3.3(a), to check and readjust the pump polarization.

3.4.3 Measurement of the Nuclear Spin Relaxation Time

To estimate the nuclear spin relaxation time at the conditions of the TRKR experiment we
had to quickly switch between to different helicity modulation frequencies fi, 1 and fm 2.
To that end, we employed two AFGs, connected to a TTL multiplexer. The multiplexer
was based on a Texas Instruments SN74LS257AN integrated circuit (high-performance
multiplexer with an average propagation delay of 12ns). Taking into account the rise time
of 8 ns of the EOM (Polytec 350-105 Laser Modulator), we conclude that the switching
of the modulation frequency occurs on a timescale that is much shorter than the measured
nuclear spin relaxation time on the order of a few milliseconds.

The KR signal was continuously demodulated at both modulation frequencies ( fm,1 and
fm,2) by two lock-in amplifiers to allow for the recording of the transients upon switching
fm- The time constants (TCs) of the lock-ins were set to a few tens of microseconds to
allow for a time resolution of a few hundred microseconds. We obtained a time-resolved
signal by recording the output signals of the lock-ins with a National Instruments NI
USB-6251 fast analog-digital converter (ADC). The ADC was triggered using the same
signal (faux) as the TTL multiplexer. Note that the short TCs of the lock-ins led to a signal
to noise ratio (SNR) that was much worse than for the TRKR measurements, where the
much longer TC of 100 ms resulted in an averaging of the KR signal. Here, we improved
the SNR by averaging over about 100 switching cycles, triggered at a rate determined by
the frequency faux, with a LabVIEW program. Note that the ADC actually had a time
resolution of 50 ns so that the limiting factor for these measurements were the TCs of the
lock-ins. See Section 6.1 for details and results.

Figure 3.10 shows a schematic of the connections of these electronic devices. Note
that the different blocks do not necessarily represent separate devices, but are drawn
separately to simplify the scheme. For example, the Tektronix AFG 3022 featured two
channels, and the Zurich Instruments HF2LI contained two demodulators. Note that the
scheme, shown in Fig. 3.10, was extended by an optical shutter (Thorlabs SHO5 shutter
head and Thorlabs SC10 controller) to simultaneously block the pump and the probe
beam and estimate the nuclear spin relaxation time in the dark. The shutter had a close
activation time of 4.08 ms. It was also triggered with the frequency f.ux. However, we used
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Figure 3.10 Schematic to illustrate the electronic devices used for the measurement of the nuclear
spin relaxation time and their connections to each other. The black lines denote connections, made
with Bayonet Neill Concelman (BNC) cables.

a separate channel of the AFG to set a relative phase compared to the trigger of the ADC
and the TTL multiplexer and thereby triggered the shutter shortly after switching fy, (cf.
Section 6.1 for details.).

3.4.4 Optically Detected Nuclear Magnetic Resonance

The goal of an optically detected nuclear magnetic resonance (ODNMR) measurement
is to determine the nuclear magnetic resonance (NMR) frequency fyumgr in the external
magnetic field. Thus, we measured the KR signal at a fixed time delay (RSA configuration,
At = —20ps) and a fixed, transverse magnetic field By in dependence on the frequency frp
of a CW radio frequency (RF) excitation, where the RF amplitude Agrp was kept constant.
Preferably, we selected a magnetic field By, where the KR signal was particular sensitive
to a change of the nuclear spin polarization/the Overhauser field By (cf. Section 2.3.8
and Chapters 5 and 6 for details).

Figure 3.11 shows a schematic of the electronic devices used and how they were con-
nected. To increase the signal-to-noise ratio an additional amplitude modulation (frequency:
faux = 18 Hz, modulation depth: 100 %) of the RF excitation was used (double modula-
tion technique). The first lock-in amplifier (Lock-In 1) was connected to the balanced
photodetector and demodulated the signal modulated with the pump helicity modulation
frequency fm, where the relation fi, > faux held. Its output was connected to the input of
the second lock-in amplifier (Lock-In 2), which thereby determined the difference of the
KR signal with and without RF excitation. The first function generator AFG 1 triggered



38 3 Experimental Details

AFG 1
Pump Mod. EOM
Sig Out
lgO e Ref Qut Lock-In 1 Balanced
o] Detector
>/m Sig In RefIn Sig Out ul
o @ ¥
AFG 2 -
RF excitation | # H
Si(% Ol Tz |—I far: Sweep , AM (ext. trigger) Amplifier
L =
Class AB =
=
= =
Lock-In 2 RF Coil
AFG 3 Sig In ReflIn Sig Out
Amp. Mod. Q ® O
Sig Out Ref Out PC
O @
TTL7 -ﬁluX

Figure 3.11 Schematic to illustrate the electronic devices used for an ODNMR measurement and
their connections to each other. The black lines denote connections, made with BNC cables.

the helicity modulation with the EOM and provided the reference for Lock-In 1. The
function generator AFG 2 was controlled by a Labview program that scanned fry in a
specified range and recorded the KR signal as a function of frrp. The AFG was set to
produce a sine wave and its external trigger input, controlling the amplitude modulation,
was connected to the reference output of AFG 3 that was set to the frequency faux and
provided the reference for Lock-In 2.

3.4.5 Rabi Oscillations

The goal of the Rabi oscillations was to determine the proper RF pulse width 7, for the
measurements, based on coherent control of the nuclear spins (Ramsey fringes, Hahn echo;
cf. the description in the following). The KR signal in dependence on 7, was measured at
fixed magnetic field By and at the corresponding resonance frequency (frr = fnvr(Bv)),
determined from a preliminary ODNMR measurement (cf. Section 3.4.4).

The electronic devices and their connection were the same as for the ODNMR measure-
ments. However, for the Rabi oscillation measurements, AFG 2 was set to “n-burst mode”,
where n denotes the number of cycles at the frequency frr = fxmr. Thus, the trigger from
AFG 3 did not modulate the amplitude of its output signal, but triggered a burst with a
length of n cycles so that Lock-In 2 measured the difference of the KR signal with and
without this RF pulse with a width 7,(n) = n - (27/fxmr). A Labview program varied the
number of cycles n so that we obtained the KR signal in dependence on the pulse width
Tp- Please refer to Section 6.2.1 for a detailed explanation of the physics underlying the
Rabi oscillation measurement.
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3.4.6 Ramsey Fringes
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Figure 3.12 Schematic to illustrate the electronic devices used for a Ramsey fringes measurement
and their connections to each other. The black lines denote connections, made with BNC cables.

The measurement of so-called Ramsey fringes required an additional device compared
to the Rabi oscillation measurements: A computer-controlled delay generator (Quantum
Composers 9528 Digital Delay Pulse Generator) allowed us to apply RF pulses with
variable delay At (cf. schematic in Fig. 3.12). The measurements were performed at fixed
magnetic field, where the resonance frequency frr = famr(By) was determined from a
preliminary ODNMR measurement at the same By. From a preliminary Rabi oscillations
measurement, following the ODNMR measurement, we obtained the pulse width 7, of a /2
pulse at constant RF amplitude Agp (cf. Section 6.2.2 for a discussion of the underlying
physics).

The delay generator, triggered with the rate faux, send a sequence of two short (us) TTL
pulses with a delay At between the pulses. Each pulse, in turn, triggered AFG 2 to send
an RF pulse (“n-burst mode,” n = (7, - frr)/2m) of a pulse width 7,,. Here, the Channels
A and B of the delay generator were both set to the “Channel A output.” Channel A send
a pulse immediately upon the external trigger, while the pulse from channel B was delayed
with respect to the pulse from Channel A /the external trigger. A LabVIEW program varied
this delay At between the Channels A and B of the delay generator so that we obtained
the KR signal as a function of the time delay At between the 7/2 pulses. Due to the finite
pulse width 7, the delay At was defined as the temporal distance between the middle of
the 7/2 pulses. Note that the clock of the delay generator was set to “internal,” while the
trigger was set to “external.”
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3.4.7 Hahn Echo
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Figure 3.13 Pulse sequence used for the Hahn echo measurement, recorded with an oscilloscope.
The orange lines and arrows show the definition of the time delay At. Taking into account the
finite pulse width 7, the intervall 2At started at the beginning of the first 7/2 pulse and ended
after the action of the final 7/2 pulse on the sample.

The Hahn echo sequence requires an additional 7 pulse in between the two 7/2 pulses
so that the scheme, shown in Fig. 3.12, could be used for the Hahn echo measurements,
too. The only difference to the Ramsey fringes measurement was the configuration of the
delay generator. We used the fact that a 7 pulse can be constructed of two consecutive
7/2 pulses. The pulses from channels B, C and D were set to the “channel A output.” All
channels were set to 1 ps TTL pulses. Channel A triggered the first /2 pulse, followed by
a trigger pulse from channel B at t = At — 7, (cf. Fig. 3.13) and a “consecutive” trigger
pulse from channel C at t ~ At. Thus, the trigger pulses from Channels B and C triggered
AFG 2 to send a 7 pulse. To finish the Hahn echo sequence (cf. Section 6.2.3 for the
underlying physics) Channel D sent the trigger pulse at ¢ = 2At — 7, for the final 7/2
pulse.

3.4.8 Relative Phase Between RF Excitation and Helicity Modulation

For the experiments on the orientation of the Knight field By, presented in Section 5.3.3,
we needed to set and measure the relative phase ¢ between the helicity modulation and the
RF excitation with the coil. Figure 3.14 shows a schematic of the used devices and their
connection to each other, where each line symbolizes a BNC cable. The phase between
both can only be well-defined, if they are set to the same frequency (frr = fm). We used
two channels of the same AFG and configured it to operate Channel 2 at the frequency of
Channel 1, while we could adjust the relative phase between the channels. Channel 2 was
connected to a 5§ resistor in line with the RF coil. Connecting a BNC cable before and
after the resistor to different channels of a digital oscilloscope, we could measure the voltage
drop, which is directly proportional to the current through the resistor, as the difference of
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Figure 3.14 Schematic of the devices uses to test the phase between the helicity modulation and
the RF excitation and their connections to each other. The black lines denote connections, made
with BNC cables.

the signals of both channels. Due to the conservation of charge, the current through the
resistor and the coil were the same. Furthermore, this oscilloscope was connected to the
fast photodiode, used to check the pump polarization and the adjustment of the EOM (cf.
Fig. 3.3).






The system of spins can be pushed on and pulled
on with external magnetic fields, so one can do
many tricks with resonances, with relaxation
effects, with spin-echoes, and with other effects.
It serves as a prototype of many complicated
thermodynamics systems.

Richard Feynman [Fey13]

4 Electron Spin Dynamics - The Spin
Inertia Effect

In this chapter the phenomenon, called “spin inertia effect” in Ref. [Heil5b], will be demon-
strated on polarization recovery (PR) measurements for the nominally undoped sample #1
(np =~ 1 x 10 ecm~2) and the strongly doped sample #2 (np ~ 1 x 10®¥ecm ™3, cf. also
Section 3.3). Here, PR refers to the suppression of the effect of the fluctuating nuclear fields
on the electron spin polarization in an external magnetic field. An external field applied in
any direction with respect to the sample surface and the electron spin polarization reduces
the effect of the average hyperfine field of the fluctuating nuclear spins on the electron
spin polarization [Mer02]|. Here, we applied the magnetic field in the Faraday geometry
(parallel to the pump k-vector) to simplify the interpretation of the results and to allow us
to measure the longitudinal spin relaxation time 77 in a broad range of external magnetic

fields.

4.1 Polarization Recovery in a Longitudinal Magnetic Field
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Figure 4.1 Kerr rotation (KR) signal as a function of the magnetic field Br. The PR measurement
was performed at Ppy, = 1.5mW and Pp, = 0.5mW. We find C = 2.05arb. units and D =
1.12 arb. units, so the relation C': D is about 1.83 : 1 (cf. discussion in the text).

43
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The true gain of a measurement at a fixed, negative time delay At (here: At ~ —20ps) is
to measure the Kerr rotation (KR) signal in dependence on the magnetic field. Here, the
dependence of the KR signal on the magnetic field in Faraday geometry By was investigated
by performing a PR measurement (cf. Ref. [Heil5b] and Section 3.4.2). Figure 4.1 shows
such a PR measurement. The magnetic field Br was varied from —18mT to 18 mT,
while all other parameters were kept constant. The KR signal is symmetrical around its
minimum at Br = 0T and shows a saturation behavior for increasing Br. We speak of
the phenomenon of “polarization recovery”: The spin polarization along the direction
of observation is decreased at zero or small magnetic fields, while this depolarization of
the spins is decreasing with increasing magnetic field in Faraday geometry Br. The KR
signal only measures the projection of S on the direction of observation and the electron
spin system is not isolated from the rest of the semiconductor, but also interacts with the
nuclear spins via the hyperfine interaction (cf. Sec. 2.3.6 and note that there are further
interactions, e.g., with phonons, not taken into account here). At external magnetic fields
that are weaker or comparable to the randomly oriented hyperfine fields resulting from the
nuclear spin fluctuations, the Larmor precession of the electron spins in these hyperfine
fields leads to a decrease of the electron spin polarization [Mer02; Heil5b]. Due to their
random orientation, these fields can be described as an isotropic field, whose components
along the x,y and z axes have equal strength or probability p = 1/3 [Pet08]. The z axis
is oriented along the external magnetic field and the optical axis so that this component
of the average hyperfine field does not alter the spin polarization. However, the x and y
components lead to a Larmor precession of the electrons spins, initially oriented along the
z axis, and thereby each component decreases the projection of the spin polarization on
the direction of observation (|| z) by 1/3. This behavior and the resulting dependence of
the PR amplitude Apyr on By are described by the following equation [Pet08; Grel2]

2/3

Apr(Br) =40 |1l - —————— | -
er(Br) = A0 |1~ 1t T

(4.1)
Here, By is the magnitude of the fluctuating hyperfine fields, and Ag is the PR or KR
amplitude at magnetic fields Br > By, where the influence of the fluctuating hyperfine
fields is suppressed by the stronger external field. The blue arrows in Fig. 4.1 illustrate
the depth of the PR dip C and the remaining PR amplitude D at B = 0. According
to the considerations above their ratio should be 2 : 1. We find C' = 2.05 arb. units and
D = 1.12arb. units, so their ratio is about 1.83 : 1. This deviation can be caused by
an offset of the measured signal, which might occur due to scattered pump light, since
no double modulation (no modulation of the probe) was used. The theoretical model
(Eq. (4.1)) allows us to estimate the average hyperfine field By. To account for small
deviations of the zero position of the hall sensor (cf. also Section 3.1.1) and for other
imperfections of the experimental setup (offset (see discussion before, etc.)) two additional
fitting parameters are added to Eq. (4.1)

2/3
1+ ((Br — Bo)/Bn)?

APR(BF> =Ay |1 - + Aog. (42)

Here, By is the shift of the zero magnetic field position, and A.g is the offset.
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Figure 4.2 PR measurement, performed at Ppy, = 1.5 mW and Pp, = 0.5 mW. The red line shows
the best fit to the data based on Eq. (4.2).

Figure 4.2 shows a fit to the data using Eq. (4.2). All parameters of the best fit are shown
in Tab. 4.1. The fit yields an average hyperfine field By = (3.89 £ 0.02) mT. This is
two times larger than the result of Greilich et al. [Grel2] who found a half-width at half
maximum (HWHM) By = 1.65mT for a ZnSe epilayer with a higher fluorine concentration
(nr =~ 6 x 107 cm?3) than sample #1 (ng ~ 1 x 10'% cm?). The difference of the HWHM of

Table 4.1 Parameters of the best fit to the PR data shown in Fig. 4.2. The errors are obtained
from the fit.

Ay 2.96 +0.01 arb. units
By 3.80 £0.02 mT
Ao 0.23 £ 0.01 arb. units
By | —0.22+0.01 mT

the PR dip for sample #1 and the one reported in Ref. [Grel2] cannot be solely explained
by the fluctuating hyperfine fields that should be identical for both samples. This becomes
clear when estimating the inhomogeneous dephasing time 75 from this result with the
following equation [Grel2]

2
1y = 2V3h

= =(9.21 = 0.05) ns. 4.3
> 7 uBgeBx ( ) (43)

This time is considerably smaller than the result from a fit to the zero RSA peak of
T35 = 33 ns, determined for sample #1 in Ref. [Grel2]. Thus, we suggest that the difference
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of the width of the PR dip and the Hanle peak (zero RSA peak, cf. also Section 2.4.3),
which is not predicted by the theory of Merkulov et al. [Mer(02], might originate from some
sample specific anisotropy or novel effect, whose investigation is out of the scope of this
thesis.

4.2 The Spin Inertia Effect

4.2.1 Observation of the Spin Inertia Effect
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3k T=18K

150 kHz

KR (arb. units)

-15 -10 -5 0 5 10 15
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Figure 4.3 Polarization recovery curves, measured at f,, =75kHz, 150 kHz, 200 kHz, and 250 kHz.
All measurements for sample #1 at Pp, = 1.5mW and Pp, = 0.5 mW.

Figure 4.3 shows the dependence of the PR signal on the pump helicity modulation
frequency. We observe a decrease of the magnitude of the PR signal with increasing pump
helicity modulation frequency fi,, while its dependence on By or the shape of the PR
with a dip around Bp = 0 with a full-width at half maximum (FWHM) of about 7.8 mT
remains the same [Heil5b]. The strong decrease of the magnitude of the PR signal in a
frequency range from 75 kHz to 250 kHz suggests that the electron spin relaxation time 7g
(cf. Section 2.4.2) is on the order of a few ns [Heil5b).

In what follows this phenomenon, tentatively called “spin inertia effect” in Ref. [Heil5b],
shall be investigated quantitatively.

4.2.2 Theoretical Model to Extract the Electron Spin Relaxation Time

Starting from the concepts of optical orientation, presented in Ref. [Mei84], we develop a
model that describes the observed dependence of the PR signal on f,, and allows us to
determine the electron spin relaxation time [Heil5b]. Both samples, even the nominally
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undoped sample #1, are n-type semiconductors. Thus, the epilayer contains resident
electrons. The resident electrons are bound to the fluorine donors at low temperatures.
Exciting the D’X-HH transition with circularly polarized light results in a replacement of
these initially unpolarized electrons with photogenerated, spin-oriented electrons [Heil5b;
Dya84]. As a result, the macroscopic spin polarization of the donor-bound electrons
increases. However, this process competes with the electron spin relaxation with the time
7s and the possible recombination of the spin-oriented electrons with photogenerated
holes. The corresponding time constant 7 = % for the latter depends on the electron-hole
generation rate G o« Pp, and the concentration of resident electrons ng. Combined 75 and
7 yield the spin lifetime T's (cf. Eq. (2.29) in Section 2.4.1)

11 1
Ts s 7
1 1 G
Ts 75 o
:>i:m-Ppu+b, (4.4)
Ts

where the last line contains parameters which are accessible in the experiment and can be
used for a linear fit. The parameter m o 1/ng is the slope of this fit. We calculate the
spin relaxation time 7g from the y-intersection b = 1/7g.

Figure 4.4 qualitatively illustrates the effect of a finite spin lifetime T on the spin
polarization under helicity-modulated excitation with the modulation frequency fy, (see
also Section 3.4.2). Tg is the time it takes to reach a steady-state spin polarization
So- The steady-state polarization Sgy, in turn, depends on the experimental conditions
(1/7 < G x Ppy), the spin relaxation time and optical selection rules. The sign of the
macroscopic spin polarization depends on the helicity (o7 - or o~ -polarized) of the exciting
light. Thus, a switching of the helicity changes the sign of the macroscopic spin polarization
with the time Tg. It depends on the speed or frequency f, of the helicity modulation of the
pump whether or not the steady-state spin polarization for a constant circular polarization
So can be reached before the helicity of the pump is inverted again.

In the following, the employed pulsed excitation (cf. Sections 3.1.4 and 3.2.2) shall be
treated as a continuous-wave (CW) excitation. The observations in Fig. 4.3 hint at a spin
lifetime Tg in the microsecond range. Thus, the modulation periods of high frequencies,
e.g., fm = 250kHz, were also in the microsecond range. Comparing a modulation frequency
of fm = 250kHz to the laser repetition frequency fr = 75.75 MHz yields the following

relation . 1
— =dps> —. (4.5)
fm R

At these conditions, the sample is exposed to a train of about 150 pump pulses of the
same circular polarization (6 or 0~) before the pump helicity is inverted again. The high
number of pulses justifies the approximation of the pulsed excitation by a CW excitation
with the same average power. Employing this approximation, a quantitative model is
developed.

The following kinetic equation describes the time dependence of the macroscopic spin
polarization along the direction of observation S, in the absence of static magnetic
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Figure 4.4 Spin polarization (model calculations, see Eqgs. (4.10) and (4.11)) under helicity
modulated excitation with the frequency fy, in the limiting cases 27 f,,, < 1/Ts (orange lines) and
27 fm > 1/Ts (blue lines) [Heil5b]. (a) Spin polarization along the direction of observation (S,):
The orange line illustrates the case when the modulation with fy, is slow compared to the time scale
given by the spin lifetime Ts. Thus, the steady-state spin polarization £S5y is reached before the
helicity of the pump is inverted again. It seems to follow the helicity of the exciting light without
“inertia.” In contrast to this, the spin polarization cannot reach £S5y if the helicity is switched fast
compared to the time scale given by Ts (blue line). (b) Modulus of the spin polarization along
the direction of observation |S,| for both limiting cases. Here, the influence of a fast modulation
(blue line, 27 fy, > 1/Ts) becomes even more obvious: While for a slow modulation (orange line,
21 fm < 1/Ts) |S,| is equal or close to the steady-state value |Sp| for the almost whole modulation
period, |S,| is strongly decreased in the opposite case (blue line, 27 f, > 1/Ts) and the relation
|S:] < Sp holds for the whole modulation period.

fields [Dya84; Heil5b]
dt T Tg '

Here, Sj is the initially injected spin polarization whose sign depends on the laser polarization
and optical selection rules. The first term on the right side S;/7 describes the increase of
the spin polarization due to the optically generated electron spins with the time 7. However,
the possible recombination of already spin-polarized electrons with photogenerated holes
leads to a decrease of the spin polarization. This is described by the term —S,(¢)/7. All
other processes leading to a decrease of the spin polarization are represented by the term
=5, (t)/TS~

For a constant circular polarization of the pump, S, does not change (steady-state)

ds..(t)
de

=0,
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and we obtain the stationary solution Sy

TS Grtg

So = S; =5; . 4.7
0 T + T Gts + ng (4.7)

However, in this experiment, the injected spin polarization changes its sign with the helicity
modulation frequency fy, so that we have to modify Eq. (4.6) and solve the following
equation

dSz(t) _ SO(t) - Sz(t) Sz(t)
dt T g (48)

where So(t) = Si(t) 775 is a square-wave signal with the frequency fi, a constant amplitude
|So| and a duty cycle of 50% [Heil5b).

The lock-in amplifier averages the KR signal, which is proportional to the concentration
of resident electrons ny and their average spin polarization along the z direction S, = S,(t),
over the modulation period T),, = 1/(27fy) and records the modulus of the following

correlator

L(fm) = <TLOSZ eXp(iQ?Tt/Tm)>|Tm,

Tm

B / noS; exp(i2mt/Tim)
= T

dt. (4.9)
0

To determine |L(fy)| we first need to solve Eq. (4.8), where we treat both half cycles
separately. Without loss of generality Sy(¢) shall be equal to +|Sp| in the first half cycle
from t = 0 to t = Ty,/2 and the solution is given by

t
2e Ts
S:(t) = [So| (1 - Tm) ) (4.10)
while in the second half cycle from with Sp(t) = —|Sp| from ¢t = T},,/2 to t = Ty, S, can be

determined to
Tim 1 _ 1
Sz(t) = ’S()| {—1 + 2 (eQTS — Tm> e Ts } . (4.11)
1+e2Ts

Combining Eqgs. (4.9) to (4.11), we determine the following correlator

L(fm) = == 2n0] 5| (4.12)

(’L' + 27Tfme)

and its modulus
Ly _ 2n0|So]

) L )
V14 (27 fimTs)? 0 T

which is the actual quantity measured by the lock-in amplifier. Here, Eq. (4.13) allows us
to extract the spin lifetime T's by measuring the KR amplitude at the same conditions, e. g.,
temperature T, magnetic field Br and pump power Pp,, for different helicity modulation
frequencies f, and determine Ts from a fit to the KR amplitude in dependence on fy,.

[L(fm)| =

(4.13)
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However, the spin lifetime Ts depends on the pump power (G x Ppy, cf. Eq. (4.4)).
Therefore, it is no suitable quantity to characterize the electrons spin dynamics. To obtain
the spin relaxation time 7g, which is independent of the pump power and equal to the T
time in a magnetic field, we have to determine T for several different Pp,, plot the inverse
spin lifetime 1/Tg against Pp, and extrapolate to zero pump power (cf. Eq. (4.4))

lim —(G) — (4.14)
im — —. :
G—0Tg TS
In the following section, this procedure is used to determine the spin relaxation time of the
donor-bound electron spins in sample #1 and sample #2.

4.2.3 Measurement of the Spin Relaxation Time
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Figure 4.5 Measurements of PR amplitudes at constant magnetic field Br = 5mT in dependence
on fy, for sample #1 at two different pump powers (Pp, = 0.5mW and 5mW). The red lines are
nonlinear fits to the corresponding data using Eq. (4.13).

Figure 4.5 shows measurements of PR amplitudes in dependence on fi,, performed at
two different pump powers Pp, = 0.5 mW and 5mW. The amplitude was determined at
Br = 5mT from PR measurements, as shown in Figs. 4.1 and 4.3. At both pump powers,
the PR amplitudes remain nearly constant at low modulation frequencies on the order
of a few 10kHz, while the amplitudes exhibit a strong decrease above 100kHz (“cutoff
frequency”). The red lines show best fits to the data using Eq. (4.13) with the amplitude of
the correlator Ly and the spin lifetime Tg as the fitting parameters. Table 4.2 shows these
parameters. Note that the errors stated are obtained from the fit, and possible systematic
errors might exceed these errors by far. While at the higher pump power Pp, = 5mW we
obtain Tg = 1.0 ps, the spin lifetime increases to 1.5 s at Pp, = 0.5 mW. This indicates
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Table 4.2 Parameters of the best fits to the PR amplitude in dependence on f,, for Pp, = 0.5 mW
and 5mW, shown in Fig. 4.5. The errors are obtained from the fit.

PPu
Ly | 3.84+0.1 arb. units
SuW o 1 10201 s
Lo | 254+0.1 arb. units
0-5mW p 1 15501 s

that a stronger optical excitation indeed speeds up the electron spin relaxation. To
investigate this further and to check the validity of Eq. (4.4), we performed additional
measurements at Ppy, = 1.7mW, 2.3mW, and 3.3 mW.
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10 T=18K
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Figure 4.6 Inverse spin lifetime 1/Ts in dependence on the pump power. The red line is a linear
fit to the data using the following equation: 1/Ts = m - Ppy + b (see Eq. (4.4))

Figure 4.6 shows the inverse spin lifetime 1/Tg in dependence on the pump power Ppy,
where the T are obtained from nonlinear best fits to the PR amplitude as a function of
the modulation frequency with Eq. (4.13). The red line is a linear fit to the data using
Eq. (4.4). Table 4.3 shows the parameters of this fit. We calculated 7g from the fitting

Table 4.3 Parameters of the linear fit shown in Fig. 4.6. The errors are obtained from the fit.

m | 0.07+£0.01 ps~'mW!
b |064+004 ps~!

parameter b (y-intersection)

According to Gaussian error propagation, the relative error of the spin relaxation time 7,
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is equal to the relative error of the y-intersection 7. It can be calculated as follows

g
1 = 6.03%.

Here, the absolute error of the y-intersection oy, = 0.04 ps~'mW ! is used. Using Eq. (4.15)
and n,;, = 7, we obtain a spin relaxation time

T7s = (1.6 £ 0.1) ps.
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Figure 4.7 The blue line is a “typical” PR measurement for sample #1, performed at a pump power
of Ppy = 5mW. The orange diamonds show spin relaxation times 7g for sample #1 in dependence
on Br (right scale), calculated from PR measurements. The PR amplitude in dependence on f, at
fixed Br and Pp, yields the spin lifetime T (cf. Fig. 4.5). The spin relaxation 7g is extrapolated
from 1/Ts as a function of Pp,,.

Figures 4.5 and 4.6 show data determined at fixed magnetic field Br = 5mT. However,
these data were obtained from “full” PR measurements, which cover a range from about
—20mT to 20mT, so we can use these measurements to investigate the magnetic field
dependence of 7g in this range. The orange diamonds in Fig. 4.7 show spin relaxation times
in dependence on Bp, calculated from the PR amplitude in dependence on f;, at fixed
magnetic field. 7g remains nearly constant in the studied magnetic field range, and the
range of the data set is of the same order of magnitude as the error of the fit o4 ~ 0.1 ps.
The blue line in Fig. 4.7 shows a PR measurement for the same magnetic field range as the
Tg data.

While the spin relaxation time 75 remains nearly constant in the displayed magnetic
field range, the KR signal increases from its minimum at Br = 0 to its saturation value
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at about 20mT (cf. Section 4.1). This is in good agreement with the behavior shown in
Fig. 4.3, where the spin inertia effect occurs as a decrease in the overall amplitude of the
PR curves (cf. Ap in Eq. (4.2)) with increasing modulation frequency fy,, but does not
seem to alter the shape of the PR curves. However, we still might observe a dependence of
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Figure 4.8 Two PR measurements over an extended magnetic field range at Pp, = 7mW. The
orange line shows a measurement at f;,, = 75 kHz. The data, obtained at at f,,, = 400 kHz, (blue
line) are multiplied by a factor of 5, so that we can compare the shape of the curves more easily.

the spin relaxation time on By at stronger fields exceeding the range of a PR measurement.
Figure 4.8 shows two PR measurements performed over an extended magnetic field range
from about —0.01T to 0.47T. The pump power is Pp, = 7mW for both measurements.
The PR curve measured at f, = 75kHz (blue line) exhibits a dip at Br = 0, increases to
its saturation value at about 0.02 T and then remains constant. The same behavior can be
observed for the PR curve, measured at f;, = 400 kHz. Here, the data are multiplied by a
factor of 5 to simplify the comparison of both curves. These observations suggest that g
does not depend on Br in the investigated range. Figure 4.9 shows the result of additional
measurements at different Bp of even larger magnitude. The diamond symbols show the
PR amplitude in dependence on fy, at Bp = 0.5T, 1.0T, 1.5T, 2.0T, and 2.5 T for sample
#1. The PR amplitudes do not exhibit any dependence on the magnetic field, and the
whole data set fits well to the best fit to the data at Bp = 0.5 T (red line) using Eq. (4.13).
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Figure 4.9 PR amplitude in dependence on f,, measured at Bp = 0.5T, 1.0T, 1.5T, 2.0 T, and
2.5T. The red line is a fit to the data at Bp = 0.5 T using Eq. (4.13), but also fits well to the data
at other Bp. The pump power is at Pp, = 7mW for all measurements.
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Figure 4.10 PR amplitude in dependence on f, measured at Bp = 5mT at the following
temperatures T = 1.8K, 29K, and 45K. The red line is a fit to the data at T' = 1.8 K using
Eq. (4.13). The pump power is at Pp, = 1.2mW for all measurements.

To gain further inside into the spin dynamics of the donor-bound electrons, we investigate
a possible temperature dependence of the spin relaxation time 7g. Figure 4.10 shows the
PR amplitude in dependence on f,, measured at T'= 1.8 K, 29K, and 45 K. The pump
power is at Ppy, = 1.2mW and the amplitudes are determined from the measured PR
curves at the magnetic field position Bp = 5mT. The PR amplitude decreases at elevated
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temperatures and the data at T' = 29 K are normalized to the measurement at "= 1.8 K
and fi, = 100kHz. The red line is a best fit to the data at T'= 1.8 K yielding Ts = 1.5 ps.
The shape of the PR amplitude in dependence on fy, remains nearly the same at the higher
temperatures, and the data are consistent with the fit. Thus, we conclude that the spin
lifetime Ts and as a consequence also the spin relaxation time 7g (see Eq. (4.4)) do not
exhibit any dependence on the temperature 7" in the range from 1.8 K to 45 K.
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Figure 4.11 Measurements of PR amplitudes at constant magnetic field Bp = 5mT in dependence
on fn, for sample #2 at two different pump powers (Pp, = 0.2mW and 1.5 mW). The red lines are
nonlinear fits to the corresponding data using Eq. (4.13).

As a first test of the influence of the donor concentration, we determine the spin relaxation
time 7g of the donor-bound electrons in sample #2 (np ~ 1 x 10'8 /em?3), whose donor
concentration is three orders of magnitude higher than for sample #1 (np ~ 1 x 10! /ecm3.
Figure 4.11 shows the corresponding measurements to determine the spin lifetime Tg at
different pump powers for this sample. Here, the amplitude at Br = 5mT in dependence
on the modulation frequency is obtained from PR measurements. Note that the procedure
and even more important the conditions were the same as those used for sample #1 (see
Figs. 4.5 and 4.6), while the wavelength of the laser is adjusted to ensure resonant D°X-HH
excitation.

In addition to the shown dependencies at Ppy, = 0.2mW and 1.5 mW, the spin lifetime
was also determined from measurements at Pp, = 0.5 mW and 0.75 mW. Figure 4.12 shows
the resulting inverse spin lifetime as a function of Pp, and a linear fit to the data. The
extrapolated spin relaxation time is 7g = (1.09 £0.03) ps (see Eqgs. (4.15)). Here, the
error is given by Gaussian error propagation of the error of the intersection b of the fit (cf.
Eq. (4.16)).
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Figure 4.12 Inverse spin lifetime 1/T in dependence on the pump power Pp, for sample #2. The
red line is a linear fit to the data using the following equation 1/Ts = m - Ppy + b (see Eq. (4.4)).

4.3 Discussion

The measured spin relaxation times 7¢ = (1.6 & 0.1) ps for sample #1 (np ~ 1 x 10'° /cm?)
and 7¢ = (1.09 £ 0.03) ps for sample #2 (np ~ 1 x 10'® /em?3) are not among the longest
determined in experiment. For example, Jarmola et. al. demonstrated a T; time of
about 200s at T'= 10K for electron spins bound to nitrogen-vacancies (NVs) in synthetic
diamond with a low NV center concentration (cf. also discussion of different material
systems in Chap. 1). Akimov et al. [Aki06; Aki09] determined spin-flip times of about
10 ps for an electron spin in a single CdSe/ZnSe quantum dot.

However, the spin relaxation times 7g determined for fluorine-doped ZnSe are long
enough to hint on a certain potential of this material system as a quantum bit. From
a purely scientific point of view not the determined spin relaxation time for sample #1
itself, but its independence of the temperature 7" in the studied range from 1.8 K to 45K
and of the longitudinal magnetic field By from 0T to 2.5T is a surprising result. One
commonly observes a dependence of the spin relaxation time on the magnetic field, e. g.,
Ty < Br", 3 S v < 4 for electrons bound to donor impurities [Fu06; Lin16].

While Colton et al. [Col04] measured a T} of up to 1.4 s in an n-doped GaAs/AlGaAs
heterostructure (1 um GaAs epilayer) with a donor concentration of np = 3 x 10'° /em?, Fu
et. al [Fu06] demonstrated a T} time of a few ps in an n-doped high purity GaAs sample,
but here the donor concentration (np =~ 5 x 103 cm™3) was two orders of magnitude
smaller. Thereby, the huge discrepancy between the results for the same material was
assigned to the increased spin-spin interaction in the higher doped sample by the authors
of the latter publication. Thus, the spin relaxation time in weaker doped ZnSe layers might
be increased as well.

For the discussion of possible spin relaxation mechanisms in the studied samples in
particular, but also from a more general point of view, it is useful to describe the spin
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relaxation as the effect of temporally fluctuating magnetic fields on the electron spin [Heil5b].
If these fields fluctuate on timescales, which are very short compared to the spin relaxation
time (75 > 7¢, T: correlation time of the fluctuating magnetic fields), they are averaged
dynamically, and the spin relaxation can be described by the relatively simple Eq. (4.6).
The spin relaxation time does not change for magnetic fields B from 0T to 2.5T, and we
can conclude that the fluctuating fields can overcome the Zeeman splitting of the electron
spins even at 2.5T. This implies that the field, which describes the dominating relaxation
mechanism must have a wide frequency range and, thus, a correlation time 7., which is
limited by (energy-time uncertainty principle) [Heil5b]

h
Te < ——— ~ 4.0ps.
¢ MBgeBF

As a consequence, the following discussion of possible relaxation mechanisms focuses on
processes which could occur on very short timescales [Heil5b):

1. Spin-flip scatterings by phonons (Elliott-Yafet mechanism) [Ell54; Akel5].

2. Spin relaxation due to spin-orbit coupling and its modulation by lattice vibrations
(phonons) [Pin57].

3. Jumps of electrons between different donor: The exchange interaction between
electrons on neighboring donors and jumps of electrons to unoccupied donor sites
can lead to electron spin flip-flop transitions [Kav08].

4. Scattering between free and donor-bound electrons, which leads to electron spin flips
due to the exchange interaction.

5. Charge fluctuations in the environment of the donors, which, e. g., could occur during
the pulsed optical excitation with a pulse width of about 1.5 ps [Heil5b).

We can discard the 1. process, since we do not observe a dependence of the spin relaxation
time 7g on the temperature 7" in the range from 1.8 K to 45K and a spin relaxation rate
due to phonon scattering should exhibit a temperature dependence.

The 2. process can be excluded as an explanation for the spin relaxation in the studied
magnetic field range, because according to Eq. (12) in Ref. [Pin57] the inverse relaxation
time (1/71)go resulting from this mechanism is proportional to the fourth power of the
Zeeman splitting between the |])- and the |1)-state - in other words to the fourth power
of the Larmor frequency wy, = (E4 — E|)/h = (gepsBr)/h. Thus, 7¢ and the T} time
respectively should exhibit a By 4 dependence. However, Fu et al. [Fu06] measured a
T time of several milliseconds of the donor-bound electrons in n-doped GaAs (see also
Ref. [Lin16]) and found that this particular mechanism occurred only at sufficiently high
magnetic fields (Bp > 5T). Here, the magnitude of the field at which the mechanism
became dominant could be approximated with the following inequality

gettg By > kpT. (4.17)
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For the parameters of the samples go = 1.1 + 0.1 [Grel2], the experiment 7' = 1.8 K and the
values of the constants [Moh15] ug = 5.7884 x 107°eV T~ and kg = 8.6173 x 107° eV K !
we obtain

Bp > (24+0.2)T,

which is close to the maximum of the investigated field range. Thus, it might be interesting
to investigate the magnetic field dependence at even lower temperatures or at higher
magnetic fields using a different cryostat with only a single split-coil.

The spin relaxation due to jumps of electrons between donor-sites (3. process) was
described theoretically by Kavokin [Kav08]. Calculations by Korenev (see Ref. [Heil5b))
with the parameters of the material system studied here yielded a jump time, which by far
exceeds the estimated 4 ps.

The 4. process is implausible, because the binding of the electrons to the fluorine donors
should depend on the temperature in the range from 30K to 45K [Heil5b]. Furthermore,
the laser was tuned into resonance with the donor-bound heavy hole exciton, so there
should not be any photo-excited electrons with excess energy relaxing to this state, which,
in turn, could be scattered by the donor-bound electrons.

Thus, the only mechanism remaining is the 5. process - charge fluctuations in the vicinity
of the donors, which could be caused by the pulsed laser excitation. However, we tested
the influence of a pulsed pump on the spin relaxation time 7g by performing measurements
with a CW pump, while the probe beam remained a train of picosecond pulses. The change
of 75 was negligible and neither its dependence on the magnetic field (7s = 75(Bp)) nor its
dependence on the temperature exhibited any changes compared to the measurements with
the pulsed pump beam. Nevertheless, this mechanism is the most likely explanation apart
from new and unknown mechanisms. Here, it is important to note that these observations
only allow us to exclude a direct influence of the pulsed pump beam. Even a CW excitation
can induce charge fluctuations due to the fast carrier recombination within hundreds of
picoseconds [Grel2; Heil5b].

4.4 Conclusion

The spin inertia method is neither the first nor the only method to measure the longitudinal
spin relaxation time of electrons in semiconductors. However, it represents a novel approach
to study the longitudinal spin dynamics and offers some advantages, especially in comparison
to the “common” measurement of the Hanle curve [Han24; Hap72; Ale73; Bud02].

The method based on the Hanle effect employs the Larmor precession of the electron
spins in a magnetic field applied in the Voigt geometry as a “clock” intrinsic to the system.
However, to calculate the spin lifetime Tg from the half-width at half maximum By,
of the Hanle curve an independent measurement of the electron g factor ge is required.
The method does not allow one to determine the spin relaxation time 75 as a function of
the magnetic field, while the spin inertia method, which uses an external “clock,” can be
used to determine 7g in the whole range of longitudinal magnetic field limited only by the
specifications of the magnet. Furthermore, the measurement of the Hanle curve only yields
the spin lifetime Tg (the spin relaxation time 7g in the limit of zero excitation density),
if the relaxation time approximation is valid [Heil5b], i.e., the relaxation is caused by
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processes with short correlation times (Markovian processes [Mar90; How12]). Then one
can assume a dynamic averaging of the magnetic fields of different origin, which cause
the relaxation of the electron spin. If, however, the electrons spins are strongly localized
as it is the case in the material system under study or, e. g., in QDs, this approximation
is not valid, because here the dwell time of an electron at the fluorine donor or in the
QD is long compared to the precession period in the hyperfine fields of the nuclei with
nonzero nuclear spin. As a result, the width of the Hanle curve is then determined by the
inhomogeneous spin dephasing time 75 in these fields [Eps01; Dzh02; Mer02; Kuz13] and
not by the spin lifetime Ts or the spin relaxation time 7¢ and longitudinal spin relaxation
time 17, respectively, in the limit of zero excitation density.

In contrast to this, the spin inertia method can and has been used to study material
systems with strongly localized electron spins - here the electron spins bound to the fluorine
donors in ZnSe - where there is no dynamic averaging of the magnetic fields of different
origin, i.e., the measurement of the Hanle curve does not allow one to determine the T
time. It can be used to measure the 77 time in the whole range of longitudinal magnetic
field starting from zero field. However, two requirements have to be fulfilled to employ this
method [Heil5b]:

1. It must be possible to optically create a detectable spin polarization (at least a few
percent).

2. The spin relaxation time or the lifetime of the polarized carriers should be neither
too long (line filter of the lock-in amplifier) nor too short (maximum frequency of
the EOM, the lock-in amplifier or the balanced photoreceiver; increased risk of a
frequency dependent response of the equipment or cables). For the setup employed
here the author recommends to study samples with estimated 75 from about 100 ns
to 5 ms.

These two rather technical requirements are the only limitations of the spin inertia method,
but one should characterize the frequency dependence of all equipment before the measure-
ments to ensure an accurate result.

Below a comparison to other methods, which did not involve a measurement of the Hanle
curve, is presented. The comparison is made in chronological order.

Colton et al. determined the T time of electron spins in n-doped GaAs from time-resolved
measurements of the degree of circular polarization of the PL of free excitons [Col04].
Here, nanosecond pulses (pump: 256 ns, probe: 16 ns) were cut from a CW laser using an
acousto-optical modulator (AOM). Both pulses were circularly polarized and their time
delay was varied. A photoelastic modulator (PEM, retardance: A/4 plate) in combination
with a linear polarizer in the detection path analyzed the PL excited by the probe pulses. A
disadvantage of this pioneering scheme compared to the spin inertia method is that the probe
pulses also alter the spin polarization, since they are circularly polarized. Furthermore,
the time resolution is limited by the minimum pulse width of about 15ns compared to
mode-locked lasers with pulses in the femtosecond range and the detection relies on the
fast spin exchange of photoexcited and resident electrons [Vek76; Pag81; Pag82; Col04].

Akimov et al. used another method, which is very similar to the spin inertia method,
to study the electron spin dynamics in a CdSe/ZnSe Stranski-Krastanov quantum dot
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(QD) [Aki06; Aki09]. While the helicity was also modulated, here the detection relied on
a time-resolved measurement of the polarization degree of the emission from the trion
ground state singlet, but the transients upon switching the helicity were recorded directly.
The method presented in this thesis is a very similar approach adapted to the pump-probe
regime. However, it is important to note that this modification of the method with the
pulsed excitation has an advantage, when it is employed to study samples with resident
carriers: The measurement of the KR signal at a small negative time-delay prior to the
arrival of the next pump pulse simplifies the interpretation of the origin of the signal.
Usually, the exciton recombination time 7x is much shorter than the laser repetition period
Tr (here: 7x = 210ps < TR [Grel2]) so that the signal before the next pump pulse should
originate from spin-polarized resident electrons only. In contrast to this, the trion lifetime
had to be taken into account for the analysis of the transients in Refs. [Aki06; Aki09].

Fu et al. used a technique, which was based on optical pumping to the [1)-state
and a consecutive PL excitation measurement of the repopulation of the |])-state, to
measure the magnetic field dependence of the T time of the donor-bound electrons in high
purity n-doped GaAs. In contrast to the spin inertia method and the work of Colton et
al. [Col04], the magnetic field was applied in the Voigt geometry. However, the spectral
filtering, employed for the detection of the spin polarization, only worked for magnetic
fields By > 4T. Thus, this method can only yield a lower limit of the T} time at By < 4T,
which is a disadvantage compared to the spin inertia method.

Heiss ef al. determined the hole spin relaxation time 77 directly from the degree of circular
polarization of the electroluminescence of an ensemble of singly charged InGaAs/GaAs
QDs [Hei07]. To that end, single QD layers were located in the intrinsic region of a
n — ¢ — metal photodiode. The charge of the dots and the spin polarization were prepared
optically, stored and subsequently read out by a forward bias pulse at the photodiode after
a variable time delay At. Using this scheme the hole spin relaxation time in dependence
on the temperature and the magnetic field was investigated, where the maximal time
T = (270 + 180) ps was measured at T'= 8 K and B = 1.5 T. While allowing for a direct
measurement of the spin relaxation time, this technique is limited to sample structures
(diodes, gated QDs) that allow one to apply a voltage to induce electroluminescence.
Moreover, it is more perturbative than the spin inertia method, since the system is strongly
disturbed by the current injection.

Another direct approach was based on measurements of the photoinduced circular
dichroism (PCD) using the optical pump-probe technique [Frall], where the range of
possible delays between the pump and the probe was extended by increasing the interval
between the pump pulses with a pulse picker and by modulating the probe beam at
fm = 470kHz. This way the hole spin relaxation time T} = (650 + 100) ns in InAs/GaAs
QDs was measured, but according to the authors the signal-to-noise ratio decreased for
increased intervals between the pump pulses and the decrease of the average pump power
with increasing interval required a complex model rather than a simple mono-exponential
decay. In addition to this modification of the “conventional” pump-probe scheme, a second
method, called dark-bright time-scanning spectroscopy (DTS), was used to verify this
result and a similar hole spin relaxation time of T = (900 4+ 100) ns was measured. The
DTS was based on a differential absorption measurement (PCD measurement), where the
intensity of the pump beam was modulated using an acousto-optical modulator (AOM),
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which allowed one to set bright and dark intervals of variable duration. Thus, this method
is similar to the spin inertia method and according to the authors of Ref. [Frall] can be
used for a similar range of relaxation times from 50 ns to 1 ms.

In Ref. [Coll12] a direct measurement of the electron spin relaxation time 7} in an
n-doped 14nm GaAs quantum well (QW), based on a two-color pump-probe scheme, was
demonstrated. Removing the influence of the nuclear polarization with an additional radio
frequency excitation a T} time of about 1 s was measured at T'=1.5K and Br = 1.5T.
While the spin polarization was determined from the KR of the linearly polarized probe
beam as in the “traditional” TRKR technique, the time-delay between pump and probe
was controlled by electronic gating, which allowed for much longer delays than a commonly
used mechanical delay line. The probe pulses were cut from a CW laser with an AOM
(pulse width about 10ns) and the pump pulses provided by fast diode laser so that the
time resolution of this scheme was limited.

Belykh et al. extended the “traditional” pump-probe Faraday rotation technique with
tailored trains of pump pulses down to single pulses, cut out from the pulse train of a
mode-locked laser with a repetition rate of 76 MHz with an EOM, and by increasing the
interval between probe pulses with a pulse picker [Bell6]. This scheme provided access to
a very long time range compared to a mechanical delay, but in contrast to Ref. [Col12] still
offered a picosecond time resolution. Thereby, the submicrosecond electron spin dynamics
in n-type bulk GaAs was measured, where a spin relaxation time 77 of up to 270 ns was
observed. Compared to the spin inertia method the so-called extended pump-probe Faraday
rotation spectroscopy offers many advantages, e.g., resolving nontrivial spin dynamics
and access to electron or hole spin synchronization under periodic laser excitation [Bell6],
but is more demanding in terms of the necessary equipment and suffers from a decreased
signal-to-noise ratio due to the decreased average pump and probe power. Thus, the spin
inertia method can be an alternative to this more universal and sophisticated method, if
the signal-to-noise ratio is already low in “traditional” pump-probe Faraday spectroscopy
or the necessary equipment is not available.






There is nothing that nuclear spins will not do for
you, as long as you treat them as human beings.

Erwin Hahn [Lia99]

5 Inhomogeneous Nuclear Spin
Polarization

Zhukov et al. [Zhul4] demonstrated that despite contrary claims in the literature [Ast08a;
F1i10; Grel2; Col12] a helicity modulated excitation does not necessarily suppress the
build-up of a dynamic nuclear polarization (DNP). Moreover, the authors even developed an
all-optical nuclear magnetic resonance (NMR) technique. It was based on the time-resolved
Kerr rotation (TRKR) in the resonant spin amplification (RSA) configuration and relied
on a helicity modulated pump beam to address the NMR. In this chapter, the nature of
the observed NMR in fluorine-doped zinc selenide will be investigated.

5.1 Observation of Nuclear Polarization under
Helicity-modulated Excitation

Despite the claims in the literature we observe signatures, indicating nuclear effects, in the
RSA spectra (cf. Section 3.4.1) for samples #1 and #2, which were measured using a helicity
modulated pump beam. Figure 5.1(a) shows several RSA spectra of sample #2, measured
at different pump powers Pp, ranging from 0.1 mW to 8 mW. The measurements were
performed at a temperature of T' = 1.8 K, a helicity modulation frequency of fy,, = 185 kHz,
and a probe power of Pp, = 0.5 mW. The spectra are normalized and translated vertically
relative to each other in order to stress the key observation: The positions of the peaks in
the range from 15mT to 40 mT change in dependence on the pump power Pp, compared
to their position at Ppy, = 0.1 mW. This behavior shall be denoted “shift” from here on.
The left inset is a magnified illustration of the peak at By = 28.5mT that shows how
the shift compared to the peak position at Pp, = 0.1 mW increased when increasing the
pump power. The shift as a function of the pump power (right inset) exhibits a saturation
behavior.

We calculated the difference between the peak positions at Pp, = 8 mW compared to
the positions at Ppy, = 0.1 mW as a function of the peak position (magnetic field By) at
Ppy = 0.1mW (see black solid circles in Fig. 5.1(b), the black lines are shown as a guide
to the eye). Figure 5.2 shows how the peak positions, needed for the calculation of this
shift, were obtained: To reproducibly determine the peak positions, the Peak Analyzer of
Origin Pro 9.0 was used to fit Lorentz curves (Lorentzians) to the peaks

24; Brwawm,i
Oxr(By) = Aot + ) — 7 ' (51
° XZ: T 4(By — Bei)? + Biwmw

Here, Ay is the offset of the KR signal; A; are the amplitudes of the Lorentzians and
Brww,i their full-width at half maximum (FWHM). Most important are the location
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Figure 5.1 (a) Normalized RSA spectra, measured at different pump powers. The left inset
illustrates the changes of a single peak with increasing pump power Pp,, while the right inset shows
the dependence of the peak position on Pp,. (b) Pump power induced change of the peak position
(peak shift) as a function of the peak position (magnetic field By) at Ppy, = 0.1 mW.

parameters B.; of the Lorentzians, yielding the RSA peak positions. The resulting
dependence exhibits a dispersive profile with the resonance at By ~ 23 mT, i.e., the peaks
at smaller By than the resonance are shifted in the direction of smaller magnetic field,
while the peaks at higher magnetic field are shifted towards higher magnetic fields.

However, the peak at By = 23.85mT (Pp, = 0.1 mW), i.e., the peak at the resonance
position, deviates from a single Lorentzian and exhibits a small additional peak at the left
flank at Ppy > 0.5 mW. The magnitude of this additional peak increases with increasing
pump power, while its position remains unchanged at By = 22.6 mT. Explanations of these
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Figure 5.2 Example of the determination of the RSA peak position. Here the RSA spectrum at
Pp, = 0.1mW, also depicted in Fig. 5.1, was fitted with Lorentzians (blue lines) using the Peak
Analyzer of Origin Pro 9.0. The green line is the baseline data used for the fit, and the red
line represents the superposition of all Lorentzians.

phenomena will be given in Section 5.4. For now the dispersive profile shall be referred to
as broad signature and the small additional peak as narrow signature.

Considering the theory of RSA, the spacing of the RSA peaks should be given by the
phase synchronization condition (cf. Section 3.4.1 and Ref. [Yugl2])

2
w,=NZ NeN, (5.2)
Tr
pBYge B 2w
FBIeZ _ N7 5.3
- T (5.3)

RSA is a very sensitive method to measure the Larmor precession frequency of the
electron spins. However, the magnitude of the magnetic field B, which determines the
Larmor frequency wr,, is not necessarily solely determined by the external magnetic field
By. It can be a superposition of the external field and additional fields within the sample,
which change the effective magnetic field leading to the Larmor precession.

Thus, a shift of the RSA peaks reflects a change of the Larmor precession frequency
wr, and we conclude that this change is caused by an additional magnetic field. It was
demonstrated that nuclear magnetic resonances (NMRs) could be provided all-optically by
helicity-modulated excitation in the RSA regime [Zhul4]. We calculated the magnetic field
of NMR of the 77Se isotope at a resonance frequency fxmr = fm = 185kHz and obtained

27 fim

Se

BNMR = BNMR ~ 22.68 HlT, (54)
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Figure 5.3 (a) RSA spectra (sample #2), measured at a broad, symmetric range of magnetic field
at fm = 250kHz and T' = 1.8 K for two pump powers. The spectrum at Pp, = 0.2mW (blue) is
multiplied by a factor of 20 and translated vertically to allow for an easier comparison of the peak
positions. (b) Pump power induced peak shift, determined as described before, as a function of the
peak position (magnetic field By) at Pp, = 0.2mW.

where s, = 5.125387 x 10" rads~! T (see Ref. [Har02]) was the gyromagnetic ratio of the
selenium nuclei. The field Byyr is at the resonance of the observed dispersive profile of
the shift, supporting the hypothesis that the shift originates from a polarization of the
nuclear spins of this isotope. We further suggest that this polarization is induced by the
helicity-modulated optical excitation at a frequency f, = 185kHz, since the resonance
at BNwmR, revealing itself in the form of the dispersive profile of the shift and in the
form of the small additional peak in the RSA spectra, corresponds to an NMR frequency
fxumr = 185kHz = f,. Thus, we conclude that both the narrow signature and broad
signature are caused by the nuclear spin polarization of the 7’Se nuclei and shall be referred
to simply as resonance in the following.

To further support this and to check for possible effects of other isotopes with nonzero
nuclear spin, e.g. the 7Zn isotope (See also Table 2.1 in Section 2.1), we performed an
RSA measurement at a bigger, symmetric range of magnetic field By. Figure 5.3(a) shows
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the corresponding RSA spectra, measured at T'= 1.8K, fi, = 250kHz and pump powers
of Pp, = 8 mW (orange, top spectrum) and Pp, = 0.2mW (blue, bottom spectrum). The
spectrum at Pp, = 0.2mW is multiplied by a factor of 20 and translated vertically for an
easier comparison of both spectra. The dashed lines mark the calculated positions of NMR
(BxuR, cf. Eq. (5.4)) at fi, = 250kHz for the ""Se (dashed, purple lines) and the 57Zn
(dashed, green lines) isotopes, where the gyromagnetic ratio vz, = 1.676 688 x 107 rads~! T
(cf. Ref. [Har02]) was used.

Both spectra exhibit a decreasing amplitude when increasing By. The spectrum at
Pp, = 8 mW exhibits two small additional peaks that are both located between two RSA
peaks and are quite close to the calculated values Byygr = £30.65mT. However, we do
not observe such peaks for zinc (see dashed, light red lines at Bxyr = £93.68 mT).

The power induced shift as a function of the peak position/magnetic field By, shown in
Fig. 5.3(b), reveals resonances of both the ""Se and the "Zn isotope (cf. Table 2.1). The
magnitude of the peak shift Agpis, defined by the difference between the maximum shift
towards stronger magnetic field and the maximum shift towards weaker magnetic field, is
much weaker in the case of zinc. While for the selenium isotope we find Agpigy =~ 0.99 mT
at By < 0 and Agpire = 1.07mT at By > 0, the magnitude of the shift is almost 10 times
smaller for the zinc isotope - Agpiry = 0.15mT at By < 0 and By > 0.

This discrepancy of the shift for both isotopes is probably caused by the different natural
abundances x of the isotopes (xse = 7.58% and xz, = 4.11%, cf. Ref. [Grel2] and
Table 2.1) and their different hyperfine constants (Age = 33.6 peV and Az, = 3.7peV, cf.
Ref. [Grel2]). The %7Zn isotope has a nuclear spin of I = 2, and the nuclear Zeeman
levels are split six-fold (27 + 1), while selenium with I = % does not exhibit a quadrupole
moment and the nuclear Zeeman levels represent a two-level system. Thus, the nuclear
spin transitions of 7Zn are not limited to a single transition, i.e., the central (first order)
transition from I, = —% to I, = % determining the gyromagnetic ratio ~vz,, but the
resonance exhibits additional, weaker transitions between the other levels. We assume that
this makes the processes, leading to a nuclear spin polarization (cf. discussions in this
chapter), less efficient for zinc - another reason for the difference of Agpier between zinc and
selenium.

Nevertheless, the RSA measurements are sensitive enough to observe at least the central
transition of the 67Zn isotope, which demonstrates the high sensitivity of optical methods
for studying nuclear effects (cf. also Ref. [San06]). In the following, we will focus on the
effects related to the 7"Se isotope. Indeed those effects are much stronger, and this isotope
dominates when it comes to electron-nuclear interaction in this material system.

5.2 Experimental Investigations of the Shift of the RSA
Peaks

To learn more about the nature of the shift of the RSA peaks, caused by the nuclear
spins of the 7"Se isotope, and to obtain hints at underlying mechanisms of nuclear spin
polarization, we investigate its dependence on the magnetic field, the temperature, and
the electron spin polarization. Figure 5.4 shows the shift of the RSA peaks around the
NMR of "Se at different magnetic field ranges and modulation frequencies f,,. Here, the
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Figure 5.4 Shift of RSA peaks (sample #2) at different modulation frequencies f,,=100kHz,
400kHz, 700 kHz, and 1000 kHz and magnetic field ranges, respectively. The shift was calculated
from the difference of the peak positions of RSA spectra at Pp, = 10mW and at Pp, = 0.2mW.
T=18K.

resonance shifts when changing f,,. This observation supports the hypothesis that the
nuclear polarization is induced by the helicity-modulated excitation with the modulation
frequency fi,. Using Eq. (5.4) we calculated Bxyr for the 77Se isotope and performed
RSA measurements in a small range of magnetic field By around the resonance, where two
RSA spectra, one at Pp, = 0.2mW and one at Pp, = 10 mW, were recorded. The shift
was then calculated from these spectra as described before.

Although the shift and its dispersive profile were studied at a magnetic field range from
0mT to 140mT and at modulation frequencies fn, from 100 kHz to 1000 kHz, the shape of
the dispersive profile and the magnitude of the shift Agnir remain nearly the same.

Figure 5.5 illustrates the shift of the RSA peaks (sample #1) at different temperatures
T=1.8K, 18K, and 26 K. We observe a reduction of the shift of the RSA peaks with
increasing temperature. This behavior is in contrast to the electron spin dynamics: The
longitudinal spin relaxation time of the donor-bound electrons is independent of the
temperature in the range from 1.8 K to 45K (cf. Chapter 4) and Greilich et al. (see
Ref. [Grel2]) reported that the inhomogeneous spin dephasing time 75 was stable up to
temperatures of T' = 40 K. Thus, the observation of a temperature dependence of the shift
of the RSA peaks might be caused by a decrease in the efficiency of the processes, which
lead to this shift, or by an increase in the nuclear spin temperature (cf. Section 2.3.9) due
to the increased lattice temperature.

The magnetic field dependence and the temperature dependence support the two hy-
potheses about the origin of the shift:

1. The shift of the RSA peaks is caused by the nuclear spins of the 7"Se isotope.

2. The shift is induced by the helicity-modulated excitation of the donor-bound electron
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Figure 5.5 Shift at of RSA peaks (sample #1) at different temperatures T=1.8 K, 18 K, and 26 K.
The shift was calculated from the difference of the peak positions of RSA spectra at Pp, = 10 mW
and at Ppy = 0.2mW. The modulation frequency was set to fi,, = 200 kHz for all measurements.

spins.

The latter hypothesis leads to the assumption that the nuclear spins are influenced by
the electron spin polarization, induced by the circularly polarized pump pulses and, thus,
alternating with the modulation frequency f,. We examine the influence of the degree of
the circular polarization of the pump beam and thereby the degree of the electron spin
polarization on the shift of the RSA peaks (cf. Section 2.2). To that end, we altered
the adjustment of the EOM so that it modulated the pump beam between two elliptical
polarizations (cf. Section 3.1.3). Note that the conditions for these measurements were
chosen to reflect those of the measurements of the RSA spectra in dependence on the
pump power Pp, (see Fig. 5.1(a) and (b)), so that we can easily compare the behavior as a
function of these two parameters.

Figure 5.6(a) shows several RSA spectra measured at different degree of circular polar-
ization p. of the pump beam ranging from 15 % to 100 %. Note that due to the nature of
the Kerr rotation effect the magnitude of the RSA signals is proportional to the degree of
electron spin polarization and thereby also proportional to the circular polarization degree,
so the spectra are normalized and translated vertically with respect to each other for a
better comparison of the peak positions. The positions of the RSA peaks change with
increasing p. and the magnitude of the small additional peak increases when increasing
pe, similar to the behavior observed for the pump power dependence of the RSA spectra,
illustrated in Fig. 5.1(a).

In analogy to the analysis of the power dependence of the shift (cf. right inset of
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Figure 5.6 (a) RSA spectra (sample #2) at different degrees of circular polarization p. of the
pump beam. (b) Position of the RSA peak at By =~ 28.4mT (p. = 15 %) as a function of the degree
of circular polarization p.. (c) Relative peak shifts for different circular polarization degrees in
dependence on By. The data are normalized to the shift of the peak at By = 24mT. The shift was
calculated as the difference of the peak positions at the given p. and at p. = 15 %. The modulation
frequency was set to fi, = 185kHz, the pump power was at Pp, = 10mW, and the temperature
was kept at T'= 1.8 K for all measurements.

Fig. 5.1(a)) Fig. 5.6(b) shows the position of the RSA peak at By &~ 28.4mT as a function
of the degree of circular polarization p. of the pump beam. The peak position shifts
towards higher magnetic field with increasing p. as it is the case for increasing Pp,, but
quantitatively the behavior differs: While the dependence of the position of this peak on
Pp, exhibits a saturation behavior, here we can fit the peak position as a function of p. by
a quadratic function

Agite (pe) = ¢2 - p2 + co. (5.5)

The nonlinear fit of Eq. (5.5) to the data yields ¢ = 7.64 x 1075 mT/%? and ¢y = 28.38 mT.
The fit is shown by the red line in Fig. 5.6(b).
Figure 5.6(c) shows the dependence of the normalized shift (normalized to the shift of the
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peak at By ~ 24 mT) on the peak position (magnetic field By) measured at p. = 15 %. The
decay of the shift with increasing By is accelerated at lower degrees of circular polarization
Pc-

These results stress the importance of the electron spin polarization for the observed
shift of the RSA peaks. The position of the resonance at the field of NMR of the 7"Se
isotope indicates that the shift is related to the nuclear spins of this isotope. However,
comparing the Larmor precession frequencies of the electrons wy, and the nuclei wy we find
that the Larmor precession frequency of the electron spins is several orders of magnitude
larger. Their ratio was calculated using the following equation

WL gepBv/h

WN YseBv
Thus, the nuclei should only be able to interact with the time-averaged electron spin
polarization, which is constant for each half-cycle of the helicity modulation (cf. discussion
in Section 4.2.2). The question remains, how the electron spins, precessing in the yz plane,
can induce a nuclear spin polarization along the z axis (|| By). Thus, we performed a
complete tomography of the average electron spin.

~ 1940. (5.6)

5.3 Tomography of the Electron Spin

5.3.1 S, Component: Time-resolved Kerr Rotation Measurements

Although RSA is a very sensitive method to determine the Larmor precession frequency wy,
and thereby the effective magnetic field acting on the electron spins, it has the restriction
that this very precise measurement can be performed only at certain external magnetic
fields By at the position of the RSA peaks. Between these peaks, the KR signal is minimal,
since the spin polarization from different pumps destructively interferes. The distance
between the RSA peaks, in turn, is determined by the laser repetition frequency wg and
the electron g factor ge (cf. Eq. (3.6) in Section 3.4.1). Only the former, wg can be altered
without altering parameters, which are relevant for the studied physics, e.g., the excitation
wavelength. However, this requires the use of a pulse picker and can only reduce the
described problem to a certain extend due to the finite width of the RSA peaks, determined
by the inhomogeneous spin dephasing time 75

There is another, technically less demanding possibility to determine the Larmor pre-
cession frequency wy, of the electron spins and thereby the nuclear fields, leading to the
shift of the RSA peaks, in very fine steps. We fixed the magnetic field and performed a
time-resolved Kerr rotation measurement using (almost) the full range of the delay line.
Here, an additional retroreflector was used to double the range of the accessible delay. We
performed a sequence of measurements at different magnetic fields By, increased in steps
of 1mT.

Figure 5.7 shows a single TRKR spectrum at By = 25.3mT. We observe oscillations,
indicating a Larmor precession of the spins of the donor-bound electrons about the
superposition of the external magnetic field By and possible nuclear fields By. The red
line is a fit to the data using the following equation

QKR(t) = Apcos (th + (,0) exp (—(t/TQ*)) + Aog (5.7)
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Figure 5.7 Single TRKR spectrum (sample #2) measured at By = 25.3mT, f,, = 185kHz,
Pp, =8mW, and T'= 1.8 K. The delay line was scanned at constant By at steps of 2.5 mm, which
corresponded to time steps of about 33.4ps. The red line is the best fit to the data according to
Eq. (5.7).

This allows us to determine the electron Larmor frequency wy, and other quantities, such
as the inhomogeneous spin dephasing time 7. Note, however, that the focus here is on
the precise determination of wr, and that large T35 ~ TR on the order of the laser repetition
period can only be precisely determined from RSA measurements. Table 5.1 shows the
parameters of the best fit to the data. Figure 5.8 shows a contour plot interpolated from 33

Table 5.1 Parameters of the best fit to the TRKR data at By = 22.3mT shown in Fig. 5.7. The
errors are obtained from the fit.

Ag 18.2+ 0.3 arb. units
wr, | 2.600+0.003 GHz
%) 0.06 £0.01 1
15 59+0.1 ns
Ao 4.14 +0.05 arb. units

TRKR spectra, measured at By ranging from 7mT to 38 mT. The increase of the number
of minima and maxima when increasing the field By indicates that the Larmor precession
frequency wr, increases with increasing By. This is expected due to the nature of the
Zeeman energy (cf. Eq. (2.15)). However, the spectra exhibit deviations from a strictly
monotonic increase: Around the field of NMR Bnyg = 22.68 mT we observe a small kink,
marked by the dashed black circle. This indicates that the nuclear fields alter the electron
Larmor frequency wr,. By performing these series of measurements at two different pump
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Figure 5.8 Contour plot interpolated from the TRKR spectra at different By. The measurements
were performed at f,, = 185kHz, Pp, = 8mW and T = 1.8 K. By was varied using incremental
steps of 1mT. The time step is about 33.4ps. The black dashed circle marks the kink in the
monotonic dependence of the oscillations on the magnetic field By .

powers Pp, = 8mW and Pp, = 0.12mW, we calculated the shift AB from the difference
of the Larmor frequencies, obtained from the fits to the data using the following relation

h(wi(Ppy = 8mW) — wr,(Ppy = 0.12mW))
HBYe

AB =

(5.8)

and the electron g factor g = 1.1 [Grel2].

This allows us to determine the dispersive profile at a finer resolution of the magnetic
field By. Furthermore, we calculated the spin polarization along the z direction S,(¢) for
the whole laser repetition period Tg using Eq. (5.7) and the parameters of the fits to the
measured data, where the offset parameter A,g was set to zero. Integrating S, over Ty we
obtained the average spin polarization S, as a function of the magnetic field By, depicted
in Fig. 5.9(a). The averaging of the S, component is expected to result in a finite value at
low magnetic fields By at which the Larmor precession period 71, and the inhomogeneous
spin dephasing time 75 fulfill the following relation [Heilbal:

7= 2" >y (5.9)
WL,
Combining this relation with Eq. (2.15), we estimate the magnetic field range with finite
spin polarization

By < 2mh

< ~=7.9mT. 5.10
GetBTS (5.10)
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Figure 5.9 (a) Average spin polarization along the z direction S, as a function of By calculated
using the nonlinear fits with Eq. (5.7) to the data depicted in Fig. 5.8. (b) Peak shift determined
from TRKR measurements, depicted in Fig. 5.8 and from RSA measurements (cf. Fig. 5.1). In
analogy to Ref. [Heil5a].

Following these considerations, we do not expect a significant spin polarization along the
z axis S, at magnetic fields By up to 140mT, where the shift of the RSA peaks is still
observed. The dependence of S, on By calculated from the experimental data, shown in
Fig. 5.9(a) allows us to test this hypothesis.

We observe a quickly decaying, finite polarization S, in the range of By from 10 mT to
15mT, while it remains at S, ~ 0 at fields By > 15mT. We interpret the decay occurring
from 10mT to 15mT as the tail of the Hanle curve (cf. Section 2.4.3 and Refs. [Han24;
Heilba; Dya84]), which resembles a Lorentzian centered at By = 0, whose half-width at
half maximum (HWHM) is given by Eq. (5.10).

The maximum of the shift occurs at the resonance Byyg = 22.68 mT (7"Se, cf. Eq. (5.4))
at this modulation frequency f,, = 185kHz, where the tail of the Hanle curve already
decreases to zero. Keeping in mind that the magnitude of the shift Agii and the shape of
its dispersive profile remain constant at magnetic fields By ranging from 0 mT to 140 mT
(cf. Fig. 5.4), in stark contrast to the observed dependence of the spin polarization along
the z axis S,, we conclude that the high nuclear fields, corresponding to strong shifts of
the RSA peaks, are probably induced by a spin polarization along the z or the y axis.
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5.3.2 S, Component: Possible Shift of the NMR Frequency

The results so far indicate that the shift of the RSA peaks results from a magnetic field
By of nuclear origin, which should have at least a certain component along the x direction
(|| By) to cause the observed shift of the RSA peaks. Thus, the nuclear spin polarization
of the 7"Se isotope might result from a finite average electron polarization along the x
direction .S,.

However, such a spin polarization should result in an effective magnetic field acting on
the nuclear spins, the so-called Knight field (cf. Ref. [Kni49]). It will be denoted Bk in
the following. This field, in turn, would alter the nuclear Larmor precession frequency wy.
It would not only be determined by the external field By, but by the superposition of
By and Bgk. Thus, the idea of the measurements, presented in the following, is to check
for a deviation of the nuclear Larmor frequency or NMR frequency as a function of By
from that described by Eq. (2.16) in Chapter 2. Especially, a significant offset at By =0T
would indicate a Knight field Bk along the z direction.

Experimentally, we tested this by optically detected nuclear magnetic resonance (ODNMR,
cf. Section 3.4.4) measurements. A small radio frequency (RF) coil (cf. Section 3.1.2) near
the sample surface resonantly heated the nuclear spin system, if the resonance condition
frF = fnMmr was met. A double modulation technique was used to increase the signal-to-
noise ratio, where an amplitude modulation with 100 % modulation depth was applied to
the RF excitation (cf. Section 3.4.4 for the experimental details) in addition to the helicity
modulation of the pump beam with the frequency fi,.

Figure 5.10(a) depicts an RSA spectrum at fn, = 50kHz to illustrate the magnetic field
position By (orange dashed line) at which the RF measurement, shown in Fig. 5.10(b),
was performed. We chose the position By = 5.1 mT on the right flank of the RSA peak left
of the small resonance, since this position is expected to be most sensitive to a resonant
heating of the nuclear spins. This heating reduces the shift of this peak and thereby leads
to an increase of the KR signal at fixed By = 5.1mT.

The KR signal as a function of the RF frequency frr is depicted in Fig. 5.10(b). At
frr =~ 40kHz the KR signal shows a peak with a width of about 2.3 kHz (full-width at half
maximum (FWHM), cf. fit using Eq. (5.11)). Note that the RF amplitude Arp = 0.05 V,,
(Vpp="“Volt peak to peak”) was chosen as low as possible to avoid a broadening of the
NMR [Heilba]. The exact NMR frequency can be determined by a fit of a Lorentzian to
the data
24 r

T 4-(frr — fxur)? + T2

This fit, illustrated by the red line in Fig. 5.10(b), yields a resonance frequency of fxvr =
(39.27 + 0.02) kHz. Table 5.2 is a summary of all parameters of the fit and their errors.
Here, Ag is the amplitude, I' the FWHM, and A.g the offset.

By performing measurements at different By in the range from 4 mT to 20mT and the
corresponding fits with Eq. (5.11) we determine the NMR frequency fxumg as a function of
the magnetic field By, shown in Fig. 5.10(c). The red line is a linear fit to the data using
the following equation

Okr(frF) = + Ao (5.11)

faMR(By) = By -m +b. (5.12)
The data are weighted using the errors from the fits of the Lorentzians (cf. Eq. (5.11)).
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Figure 5.10 (a) RSA spectrum measured at f,,, = 50kHz. The orange dashed line is the magnetic
field position By at which the RF measurement, shown in panel (b), was performed. (b) Kerr
rotation at fixed By = 5.1 mT in dependence on the applied RF frequency frp. The red line is a
nonlinear fit using Eq. (5.11). (c) Dependence of fxur on By. Red line is a linear fit to the data.
All measurements at T'= 1.8 K and Pp, = 8 mW. In analogy to Ref. [Heil5a).

We find a slope of m = (7.78 £ 0.03) kHzmT !, which is about 4.5 % lower than the value
from the literature (cf. Ref. [Har02]) yse/(27) ~ 8.157kHzmT L. From the y-intersection
b= (—0.4 4+ 0.2) kHz we estimate the magnitude of a possible Knight field Bk along the x
direction
_27b
Se
where the relative error of the Knight field Bk is equal to the relative error of the y-
intersection 1, = 03,/b according to Gaussian error propagation. These findings indicate
that the Knight field, resulting from a possible average spin polarization along the x
direction S, is on the order of a few tens of nuT.

By

= (49 + 25) pT, (5.13)

Table 5.2 Parameters of the best fit to the KR signal at By = 5.1mT in dependence on frp
shown in Fig. 5.10(b). The errors are obtained from the fit.

Ag 18.2+ 0.3 arb. units
faMmr | 39.27+0.02  kHz
r 2.31+0.05 kHz

Aog | 0.009 £ 0.009 arb. units
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5.3.3 5,: Compensation of the Knight Field with RF Fields

As discussed before (cf. Eq. (5.6) and its discussion in Section 5.2), the electron Larmor
frequency wy, is much bigger than the nuclear Larmor frequency wy so that any interaction
between the electron spin system and the nuclear spin system should originate from an
average electron spin polarization, which is temporally constant or constant on the time-
scale given by the nuclear Larmor precession period Ty = 27/wn. To test for the latter
possibility, we used the same arbitrary function generator (AFG) to trigger the EOM and
provide the RF voltage, where both channels were set to the same frequency: fi, = frr.
This ensures that the Knight field, following the helicity-modulation, and the oscillating
magnetic field, originating from the RF coil, had defined a phase with respect to each
other. This phase ¢ was controlled with the AFG and was determined from the voltage
drop at an additional resistor connected in line with the RF coil (cf. Section 3.4.8).

The advantages and peculiarities of this approach can be best explained in the frame of
the rotating wave approximation, where we change to a coordinate system rotating with
the frequency 27 f, about the z axis in the direction of the nuclear precession (rotating
frame system(RFS)). In the RFS, the nuclear spin, the parts of the average electron spin
polarization S following the helicity modulation and the corresponding Knight field By, as
well as the magnetic field of the RF coil Brp, do not exhibit any precession, but are fixed.

Laboratory frame Rotating frame

Z Z

B,.(t)
o l BV * B B X

k l
pump
S

Figure 5.11 (a) Illustration of the zz plane in the laboratory frame. The pump beam kpymp, the
part of the average spin polarization following the helicity modulation S and the RF field Brr
are oriented along the z direction, where the z components of S and Bgp alternate sign with fp,,
denoted by the double arrows. The external magnetic field By is oriented along the x direction.
(b) Hlustration of the zz plane in a frame rotating about the x axis with 27 f,,. Here kpump cannot
be shown, but the rotating frame is more suitable to illustrate the Knight field Bk (yellow arrow),
which results from the average electron spin polarization S (orange arrow).

Figure 5.11 illustrates this transition and the concept of these measurements by depicting
these vectors in both the zz plane of the laboratory frame (a) and in the zz plane of
the rotating frame (b). For simplicity the nuclear spin is not shown yet. In Fig. 5.11(a)
(laboratory frame) S and Bgp are shown as a blue-orange and a purple-red double arrow
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to emphasize that they alternate sign with f,,. Due to the transformation to the frame
rotating about the z axis (cf. Fig. 5.11(b)), they become fixed vectors, but their relative
orientation/angle with respect to each other depends on the relative phase ¢ between the
helicity modulation and the RF voltage.

Here, they are shown in parallel configuration to illustrate the main idea of the measure-
ments presented in the following: The goal is to determine suitable parameters for the RF
excitation to compensate or at least to decrease the effect of the Knight field Bk on the
nuclei. While both the RF amplitude Agp and the phase ¢ should influence the shift of
the RSA peaks, its dependence on the phase is of special importance, because it allows us
to conclude which component of the average spin polarization S induces the nuclear spin
polarization through its corresponding Knight field Bk.

To that end, we performed a series of measurements: We varied the parameters of the
RF excitation and recorded the KR signal. The KR signal is recorded for an interval of
20 s for each pair of parameters (Agrp,p), where the first and last 5s of the interval the KR
signal was measured without RF excitation and a consecutive interval of 10s in the middle
was measured with RF excitation. The measurements were performed in this way (i) to
ensure that there is enough time to repolarize the nuclei in between the RF excitations
and (ii) to average over laser power fluctuations and other noise to improve the signal to
noise ratio. Figure 5.12 shows an example of such a measurement.
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Figure 5.12 KR signal in dependence on the time at By = 26.0mT, Pp, = 10mW, and T' = 1.8 K.
From ¢t = 5s to t = 15s an RF excitation with Arr = 3.0V, and ¢ = 90° was applied to the
sample (sample #2), while no RF excitation was applied during the rest of the time.

To determine the change induced by the RF excitation, we averaged both the KR signal
without RF excitation and the signal with RF excitation and calculated their difference.
Here, specific intervals (“RF off”(blue lines): 0s to 5s and 18s to 20s; “RF on”(orange
line): 5.6s to 15s) were selected for the averaging to exclude to a good extend the transients
connected with the switching of the RF excitation. Here, a common average for both “RF
off’-intervals was calculated.
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Figure 5.13 shows the difference of KR signals with and without RF excitation, calculated
as described before, at fixed magnetic field (Fig. 5.13(a) By = 26.0mT and Fig. 5.13(b)
By = 27.8mT) in dependence on Arp and . The magnetic field position By = 26.0mT
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Figure 5.13 (a) Contour plot: KR signal difference at fixed By = 26.0mT and f,, = frr = 185kHz
in dependence on the RF amplitude Agp (x axis) and the phase ¢ between the RF excitation and
the helicity modulation. The graphs to the right of the contour plot show cuts through this plot at
fixed phase ¢ = —90° (b) and RF amplitude Agr = 5V, (c), respectively. (d) Same as in (a), but
at By = 28.7mT. All measurements at 7= 1.8 K and Pp, = 8mW. In analogy to Ref. [Heil5a].

(Fig. 5.13(a)) corresponds to the right flank of the first RSA peak following the resonance at
Bnuvr = 22.68 mT. Thus, a reduction of the shift of this peak, caused by the RF excitation,
should lead to a decrease of the KR signal (denoted by blue color), while an increase of
the shift should lead to an increase of the KR signal (denoted by red color). We observe
that the higher is the RF amplitude Agrp, the stronger is the change of the KR signal,
but the efficiency of this change and its sign strongly depend on the phase ¢ between the
helicity modulation of the pump and the RF excitation. It exhibits a maximum (red region
in the contour plot) around ¢ = 90° and a minimum (blue region in the contour plot)
around ¢ = —90°. The cut through the contour plot at Agy = 5 Vpp, shown in Fig. 5.13(c),
confirms this observation.

We interpret the maximum of the KR signal difference occurring at RF excitation with
@ = 90° as an amplification of the nuclear spin polarization by the RF field. The minimum
of the KR signal difference at ¢ = —90° suggests that here the nuclear spin polarization is
reduced by this field.

The phase that compensates the shift of the RSA peak most efficiently is ¢ = —90°. This
hints at the orientation of the Knight field By, which induced the nuclear spin polarization.
This phase difference between the helicity modulation and the RF field means that the
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Knight field, oscillating with the helicity modulation frequency fy,, is oriented along the y
axis in the laboratory system at the beginning of a modulation cycle, rotates about the
external field By, and, thus, becomes oriented parallel to the z axis (+z direction). Since
this rotation takes a finite time, a quarter of the modulation period :%m, it equals a phase
difference of 90° in the RFS. Thus, the Knight field is best compensated, when the RF
field is applied directly along the —z direction (¢ = —90°). The reduction of the Knight
field, in turn, decreases the nuclear spin polarization and, thereby, compensates the shift
of this RSA peak (see also Figs. 5.11 and 5.14).

The occurrence of the maximum KR signal at a phase of ¢ = 90° supports this inter-
pretation. This phase ¢ corresponds to an RF field applied along the +z direction, which
should enhance the effect of the Knight field oriented in the same direction and therefore
increase the shift of the RSA peak. The observed increase of the signal most likely results
from an increased shift of the RSA peak, so this observation confirms the considerations
on the orientation of the Knight field described before.

The dependence of the difference of the KR signals (“RF on” - “RF off”) on the RF
amplitude Agp is shown by the cut through the contour plot at ¢ = —90° (Fig. 5.13(b)).
It decreases with increasing Arr, and this decrease saturates at Arp = 5 V,p. Performing
Rabi oscillation measurements (cf. Section 3.4.5), we estimate the strength of the effective
field at the saturated RF amplitude level Agp =5V, to Brp ~ 170 nT (cf. Section 3.4.5,
Eq. (6.4), and Chapter 6). However, it is important to note that this saturation amplitude
is determined at fixed magnetic field By = 26.0mT and thus a possible dependence of the
saturation effect on the distance from the field of NMR Bnyg is not tested here.

b
() Phase ¢ = - 90° (b) Phase ¢ = + 90°

v T FNMR

Figure 5.14 Illustration of the Knight field Bk and the RF field Bry in the rotating frame systems
(RFSs) at By — Bnur > 0 and a phase of ¢ = —90° (a) and ¢ = 90° (b), respectively. In analogy
to Ref. [Heilbal.

The previous observations (cf. Fig. 5.4) already suggest that the shift of the RSA peaks
and therefore the underlying mechanism, e.g., the Knight field component inducing the
nuclear spin polarization, should not depend on By in the range from OmT to 140 mT. To
further confirm this hypothesis, we performed the same measurements at By = 28.7mT.
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This magnetic field corresponds to the left flank of the second peak following the RSA
peak, which exhibits the small additional peak at By = Byugr. Since the KR signal was
measured on the left flank instead of on the right flank as in Fig. 5.13(a), the interpretation
of an increase or a decrease of the KR signal difference (“RF on” - “RF off”) is reversed.
Thus, blue color denotes an increase of the shift of the RSA peak, while red color means
that the shift was reduced by the RF excitation.

Except for a reversed dependence of the KR signal difference on the RF excitation the
overall behavior is very similar to that at By = 26.0mT (cf. Fig. 5.13(a)). The shift
and thus the nuclear spin polarization is reduced at ¢ = —90° and increases at ¢ = 90°,
which indicates that the Knight field component inducing the nuclear spin polarization
has a constant phase relative to the RF excitation and is oriented along the y axis at the
beginning of the modulation cycle. Note that the asymmetry of the change of the KR
signal difference probably results from the specific position on the flank of the RSA peak,
e.g., the slopes for a shift towards higher and lower magnetic fields differ.

As in Fig. 5.13(b) the effect of the RF excitation at ¢ = —90° saturates at Arp = 5 Vyp.
However, the magnitude of the induced change differs, which probably is a result of a
different position on the flank compared to Fig. 5.13(a).

The effect of an RF excitation with frr = fi, was investigated further by recording
RSA spectra, while the sample was exposed to the RF field. Figure 5.15(a) shows several
RSA spectra, measured for sample #2 at a pump power of Pp, = 10mW, a helicity
modulation/RF frequency of fi, = frr = 185kHz, a phase of ¢ = —90° and RF amplitudes
Agr in the range from 1.2V, to 2.4V,,. In addition, two spectra measured without
RF excitation are shown: The spectrum at the bottom of the waterfall plot (black line)
is measured at low power (Pp, = 0.2mW) and serves as a reference (cf. also vertical
dashed black lines referring to their positions) to calculate the shift of the RSA peaks of
all other spectra, while the top spectrum (light orange line) is recorded at high power
(Ppy, = 10mW) and serves as a reference for the shift of the peaks without the influence of
the RF excitation.

Starting from the second spectrum from the top of the waterfall plot (blue line, Agp =
1.2V,;,) the measurements are performed with increasing RF amplitude Agp (increment:
0.2Vpp). The data are arranged in this way to illustrate how the increasing RF amplitude
let the peaks approach the positions at Pp, = 0.2mW (bottom spectrum (black line) and
cf. vertical dashed black lines denoting its peak positions). Here, the peaks close to the
resonance even exhibit a shift in the opposite direction compared to the reference spectrum
(black line, Pp, = 0.2mW) without RF excitation.

In addition to the shift of the peak positions we observe another deviation from the high
power RSA spectrum without RF excitation (top spectrum, light orange line, Pp,, = 10 mW):
While the shift of the peaks around Bnyir in the opposite direction only becomes pronounced
at “higher” RF amplitudes Arr > 1.8V, the small, additional peak almost completely
disappeared already at Arrp = 1.2 V.. The corresponding RSA spectrum (second spectrum
from the top, blue line) only exhibits a slight kink at its former position. This kink was
even inverted at higher RF amplitudes Agrp.

Figure 5.15(b) shows the shift of the RSA peak positions under RF excitation compared
to the reference spectrum at Ppy, = 0.2mW without RF excitation. Similar to the
measurements at fixed magnetic field (cf. Fig. 5.13), we observe a decrease of the shift of



82 5 Inhomogeneous Nuclear Spin Polarization

Kerr rotation

Peak shift (mT)

A ] A ]
0 10 20 30 40

Magnetic field, B, (mT)

Figure 5.15 (a) RSA spectra (sample #2) under RF excitation at ¢ = —90°, Pp, = 10mW,
T =18K, fm = frr = 185kHz, and different RF amplitudes Agr (cf. legend in (b)). The RSA
spectrum at the bottom of the waterfall plot (black line, Pp,, = 0.2mW) and the spectrum at the
top (light orange line), Pp, = 10 mW) are measured without additional RF excitation and serve
as a reference to calculate the shift. The vertical dashed black lines mark the peak positions of
the bottom spectrum. (b) Shift of the RSA peaks in relation to their position at Pp, = 0.2 mW
without RF excitation as a function of the magnetic field (their positio)n at low power without RF
excitation.

the RSA peaks at ¢ = —90° under RF excitation for all Agp. As the shift itself depends
strongly on the distance By — Bnygr from the resonance, we expect that the influence of
the RF excitation will also depend on it.

Indeed the data support this hypothesis: While an RF amplitude of Agp = 1.2V, is
sufficient to decrease the shift of the peaks on the left side and the right side of Byyg to
a large extent, the effect on the shift of the peaks at the tails of the dispersive profile is
significantly weaker. The spectra at higher Agrr add further support to these considerations:
Although the first peaks on both sides of the resonance already shifted in the opposite
direction with increasing Agrp, so that the dispersive profile was inverted close to BNumR,
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the peaks at the tails exhibited only a weak shift in the opposite direction. Note that the
shift of all spectra exhibits a significant, positive offset, which is subject of further studies
and is out of the scope of this work.

5.4 Theoretical Model of the Shift of the RSA Peaks

All-optical NMR, as it occurs in the form of the resonances of the 7’Se and the 7Zn
isotopes in the RSA spectra, can be the result of two different processes [Zhul4]: resonant
heating or resonant cooling of the nuclear spin system (NSS). The former occurs when
the exciting light has a constant helicity, but is intensity modulated with a frequency
fm =~ fumr. The optical pumping (cf. Ref. [Coh66]) with variable intensity results in
fluctuations in the number of photoexcited electrons and thus the optically induced spin
polarization S. Hence the Knight field By, which is directly proportional to S, oscillates
with fi,. This field efficiently heats up the NSS at fi, ~ fxumr and thereby decreases the
polarization of the nuclear spins [Zhul4]. The process of resonant heating is observed in
Fig. 5.10(a), where the KR signal in dependence on the RF frequency frr at fixed By was
measured. The only difference is that here the nuclei are not heated by the oscillating
Knight field Bk, but by the RF field Brr. In both cases, the nuclear spin heating occurs
as an absorption-like signal (cf. Fig. 5.10(a)).

The main observation - the shift of the RSA peaks - can be explained by resonant
cooling of the NSS, which can occur under helicity modulated optical excitation. A helicity
modulation is usually considered to reduce or even suppress dynamic nuclear polarization
(DNP) [Ast08a; Flil0; Grel2; Coll2]. However, it is important to note that this is not
always the case and it depends on the exact experimental conditions and the properties of
the sample under study. If the helicity modulation period T}, is longer than the transverse
relaxation time of the nuclear spins T4' (cf. [Heil6] and Chapter 6) [Mei84; Zhul4] or
the helicity modulation frequency fy, is tuned into resonance with the nuclear Larmor
frequency or NMR frequency fxumr, a significant DNP can be observed [Zhul4]. In the
latter case, the DNP is the result of resonant nuclear spin cooling in the oscillating Knight
field Bk, which in contrast to resonant heating exhibits a dispersive profile [Zhul4], as it
is observed for the shift of the RSA peaks in dependence on the magnetic field By.

5.4.1 Classical Nuclear Spin Cooling in the Rotating Frame System

To describe this process in relation to the experimental results, we should recall the
experimental configuration and its peculiarities. Figure 5.16(a) shows the orientation of
the pump beam k vector kpump, the resulting average electron spin S, oscillating with fi,
and the external field By in the laboratory frame system (LFS). Since the strongest shift
and most pronounced additional, small RSA peaks are observed for the 7Se nuclei, only
the nuclear spins of this isotope shall be considered in the theoretical model. According to
Ref. [Fle84], dynamic nuclear polarization is the result of nuclear spin flips in the Knight
field Bk of the electron spins, which is given by the following equation

By = b.S. (5.14)
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Figure 5.16 (a) Illustration of the spin orientation and the external magnetic field in the zz plane
of the laboratory frame system (LFS). The orange and blue arrows denote the average spin S for a
oT- and o~ -polarized pump, respectively. Since the pump helicity is modulated with f,,, the spin
oscillates between an orientation along the z and the —z direction: S = S(¢) The turquoise arrow
denotes the orientation of the pump beam k vector kpyump (along the z direction), while the external
magnetic field By is oriented along the x direction and perpendicular to S and kpymp. (b) Scheme
of internal and external magnetic fields in the rotating frame system (RFS). Bk (gray arrow) and
S are the average Knight field and spin, respectively. The superposition of the field Bk resulting
from the average spin and the external field By leads to a total magnetic field Biotal (green arrow),
which deviates from the x direction. The red and light red arrows denote the induced nuclear spin
polarization of 7"Se and its projection on the z axis, respectively. In analogy to Ref. [Heil5a).

Here b, denotes the maximal Knight field amplitude at the center of the donor and is given
by

ASeUO

be = (5.15)

VSe Fm—a?oc ’
where ajo. is the localization radius of the electron at the donor and vg is the primitive cell
volume with a two-atom basis [Fle84; Heil5a]. It is given by vg = aj /4. Here ag = 0.566 nm
denotes the lattice constant of ZnSe [Pawll].

Near the resonance (By ~ Bnumg), the Knight field By precesses synchronously with
the nuclear spins (cf. Fig. 5.16(b)) and provides a temporally constant energy flow into
the NSS. This energy flow, in turn, results in the build-up of a nuclear spin polarization I.
If the external field By is close to the field of NMR Bywmr, the projection of the nuclear
spin polarization on the x axis is given by

(S - Bx)(By — BNMR)

I, = .
v (BV — BNMR)2 + B%{ + B%

(5.16)

Here, By, denotes the root mean square local field resulting from the nuclear dipole-dipole
interactions [Fle84; Zhul4; Heil5a]. The build-up of the nuclear spin polarization can be
interpreted as nuclear spin cooling in the RFS. The Knight field, oscillating at a frequency
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of 27 fin, is described by a superposition of two components rotating about the x axis
(magnetic field) in opposite directions. At By &~ Bnyr the component, which rotates in
the same direction as the nuclear spin, is the important one, while the other one can be
neglected. Since the selenium spins have g, > 0, the nuclear spins rotate counterclockwise
in the yz" plane. The Knight field component rotating in the same direction as the nuclear
spins is constant. Therefore, the nuclear spin polarization is projected onto the direction of
the external magnetic field By (x direction) by the superposition of the constant Knight
field Bk and the external magnetic field By, which results in a total magnetic field
Bt = (By — Byumr) + Bk deviating from the z direction. The projected component of
the nuclear spin I, alters the electron Larmor precession frequency and thereby causes the
shift of the RSA peaks, which will be explained in more detail in the following. Note that
according to Eq. (5.16) I, vanishes at the resonance By = Bnyg in agreement with the
dispersive profile of the shift of the RSA peaks.

The shift is caused by a nuclear field By acting back on the electron spins, the so-called
Overhauser field [Ove53]. In analogy to the Knight field Bk, the Overhauser field By
results from the collective magnetic moments of a polarized spin ensemble - here the nuclear
spins. Thus, its projection on the x axis By, is directly proportional to I,:

A I
BN,x _ SeXSelz (517)

UBYe

Here, Age = 33.6 1€V is the hyperfine constant of selenium, taken for a primitive cell with
two nuclei [Sypl1b; Syplla], and xse = 0.0758 is the natural abundance of the ""Se isotope.

Combining Eq. (5.16) and Eq. (5.17) we can begin to explain the observed shift of the
RSA peaks: The projection of the nuclear spin polarization on the x axis as a function of
the magnetic field By has a dispersive profile, where its sign is determined by the detuning
By — Byur from the NMR. The superposition of the external field and the Overhauser field
leads to an effective field Beg = By + BN ., determining the Larmor precession frequency
wy, = ¥B% (By 4 Bn,) of the electron spins so that it deviates from the expected strictly
linear dependence on By. These equations can explain the observed shift, but we should
keep into account the sign of the observed shift, determined by the signs of all quantities in
Egs. (5.15) to (5.17). The gyromagnetic ratio g > 0 and the hyperfine constant Age > 0
have a positive sign, so that Eq. (5.15) yields b, < 0. Thus, for g, > 0, as it is the case in
this material, Egs. (5.16) and (5.17) reproduce the sign of the induced shifts, illustrated
in Figs. 5.1(b), 5.3(b), 5.4, 5.5 and 5.9(b). According to Eq. (5.17), the Overhauser field
component By, is positive at By < Byur and thus leads to a shift of the RSA peaks
towards smaller By, while it is zero at By = Byur and becomes negative at By > BNMR
so that the RSA peaks shift towards higher magnetic field.

Combining Eq. (5.14) and Eq. (5.16) yields

beS?(By — BNMR)

I, = .
v (BV - BNMR)2 + ng2 + B]%

(5.18)

The induced nuclear spin polarization and the resulting shift of the RSA peaks should
exhibit an S? dependence, which is in very good agreement with the experimentally
observed dependence (cf. Fig. 5.6(b)). In addition, it also fits to the fast decrease of the
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shift with increasing detuning from the resonance illustrated by the data in Fig. 5.6(c),
because there also is an S? term in the denominator of Eq. (5.18).

5.4.2 Nuclear Spin Polarization and Nuclear Spin Diffusion

To test if the model can describe the observe shift also quantitatively, we search proper
parameters to simulate the data calculated from fits to the TRKR spectra, which are
shown by the blue triangles in Fig. 5.9(b). The simulation was performed on the basis of
the following equation, obtained by combining Eq. (5.17) and Eq. (5.18)

ASeXSe beS2 (BV - BNMR)
pBYe (By — Bamr)? + 0252 + B

BN o (By) = (5.19)
This equation contains only two free parameters: the spin polarization S and the maximal
Knight field amplitude b.. Here, we find that the spin polarization should be fixed at
S = 0.07 (cf. the following discussions) and the only remaining parameter is b.
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Figure 5.17 Peak shifts calculated from TRKR spectra (blue triangles, left axis, shifted downwards
to compensate for the offset) and the nuclear field component By, according to the theoretical
model represented by Eq. (5.19) for two different maximal Knight field amplitudes b, = —10mT
(orange line) and b = —100mT (green line). The purple line represents By, obtained from a
nonlinear best fit to a model, which takes into account that the magnitude of the Knight field
depends on the distance from the donor (cf. Eq. (5.27).

Figure 5.17 shows two attempts to determine the proper maximal Knight amplitude
be to fit the model to the experimentally determined shift (blue triangles): While a
value of be = —10mT results in a very steep, fast decaying dispersive profile around
Bv = BxwuR, whose maximum exceeds the experimentally determined value, a higher value
of bo = —100mT leads to a broader, slowly decaying dispersive profile, which mirrors the
long tails of the experimental data, but not the steep change around the resonance. We
already assume that a superposition of profiles with different b, might be able to model
the observed profile, but how do we motivate or explain this superposition?



5.4 Theoretical Model of the Shift of the RSA Peaks 87

The flaw of the model given by Eq. (5.19) is that it assumes a homogeneous Knight
field over the whole localization volume of the donor-bound electron [Heilbal, while the
probability density of the electron

WQ(T) = 13 exp (_2T/aloc) (5.20)

loc

and therefore also the magnitude of its Knight field
BK(T) = b.Sexp (_2T/aloc) (5.21)

depend on the distance from the donor 7.

The approximation by a homogeneous Knight field Bk is only valid, if nuclear spin
diffusion due to flip-flop processes between neighboring nuclei leads to a uniform nuclear
spin polarization (cf. Refs. [Blo54; Dya08]). This approximation was successfully used
to explain the occurrence of the small additional peak in RSA spectra, measured for
a fluorine-doped ZnSe epilayer (sample #1 in this thesis) and other kinds of material
systems (CdTe/CdMgTe QW heterostructure, a single ZnSe/ZnMgSe QW and a GaAs
epilayer) [Zhul4].

It is important to note that nuclear spin flips are only allowed, if they obey the law of
conservation of energy. Thus, the energy difference due to the nuclear spin flip-flops must
not exceed the energy hvyseBr,, which can be compensated by the nuclear dipole-dipole
reservoir. To estimate if the spin diffusion is possible in this material we first need to
calculate the average distance between neighboring nuclei with non-zero nuclear spin ("7Se).
It is determined by the lattice constant ag = 0.566 nm and the natural abundance of 7*Se

Xse = 0.0758
ag
1/3
XSe

R = ~ 1.34nm. (5.22)
This allows us to obtain the difference of the Knight field at two neighboring “*Se nuclei

in dependence on the distance r from a donor, and compare it to the local nuclear field
B, = 0.006 mT [Zhul4]

beS exp (—27r/aioc)[1 — exp (—2R/ajoc)] < Br. (5.23)

From this equation, we obtain an estimation of the distance r from the donor at which
nuclear spin diffusion becomes possible.

We also need to determine the maximal Knight field amplitude b.. The localization
radius of the donor-bound electron can be calculated from its donor binding energy or
activation energy E, ~ 27meV [Grel2] (see also Ref. [Mer72]) and its effective mass
m} = 0.145m, [Grel2] via the following equation [Heil5a]

h
QAloc = 7@

where me = 0.511 MeV is the electron rest mass [Mohl5]. Evaluating Eq. (5.15) with
aloc = 3.4nm yields a significant Knight field of

~ 3.4nm, (5.24)

be =~ =370mT
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at the donor center, which can be explained by the strong localization of the electron at
the donor. As stated before (cf. also Ref. [Heilba]), the average spin polarization has a
value of S = 0.07 and together with the Knight field amplitude b = —370 mT allows us
to estimate the area around a donor, where the nuclear spin diffusion would violate the
principle of conservation of energy. Using Eqs. (5.22) and (5.23), we find that the nuclear
spin polarization should be spatially inhomogeneous in a radius of about 3.9aj,. around a
donor.

At the doping level np ~ 1 x 10'8 cm ™2 of sample #2 the average distance d between
them can be calculated as

_ 3 1/3
d= ( ) ~ 6.2nm ~ 1.8ajoc. (5.25)
47 ng
As a result, nuclear spin diffusion should be completely hindered in sample #2, since the
distance from a donor at which nuclear spin diffusion would become possible is not reached
at this dopant concentration.
For sample #1 with a donor concentration of ny ~ 1 x 10" cm™ we find

d =~ 62nm ~ 18ajoc

so that here the nuclear spin diffusion is possible at least in the volume between the donors.
However, the spin diffusion should still be hindered at distances r < 3.9aj,. and the nuclear
spin polarization is very small outside this volume (cf. discussion of Fig. 5.18). Thus, the
main contribution to the shift should stem from inhomogeneously polarized nuclei, as it is
the case for sample #2. These considerations are supported by the observed shifts of the
RSA peaks and the corresponding dispersive profiles for sample #1, which are very similar
to those for sample #2.

Following these considerations, we improve the model by taking into account the spatial
inhomogeneity of the nuclear spin polarization. Due to the spherical symmetry of the
Knight field of the donor-bound electrons, the induced nuclear spin polarization is still
isotropic, but depends on the distance from the donor. It is given by

beS2 (BV — BNMR) exp (—2T/(2L10C)

I(r) = 2 262 ’
(By — BnMr)” + 0252 exp (—4r/ajoc)

(5.26)

where the small local nuclear field By, is neglected. To determine the projection of the
Overhauser field on the x direction, we integrate over the I, (r) at different distances from
the donor and weigh them with the probability density of the donor-bound electron

A
SeXSe / L (r) W2 (r)Amr2dr. (5.27)
HBYe

The best fit (purple line) to the data (blue triangles), using Eq. (5.27) and shown in
Fig. 5.17, yields bo = —370mT and S = 0.07.

Now that we know the parameters for the model it is instructive to illustrate the
characteristic quantities (Bk, Br, I;) as a function of their distance from the donor.
Figure 5.18 shows on a logarithmic scale how the magnitude of the Knight field Bk (gray
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Figure 5.18 Tllustration of the Knight field By (gray line, left axis), the local nuclear field By, (blue
line, left axis), and the projection of the nuclear spin polarization on the x axis I, as a function of the
distance from the donor as a function of the localization radius of the donor-bound electron ajo.. The
data were calculated using Egs. (5.21) and (5.26) with following parameters: b, = 370mT, S = 0.07,
and ajoc = 3.4nm, resulting in a maximal Knight field amplitude Bk (0) = b5 = 25.9mT. The
yellow filling marks the nuclear spin diffusion area, beginning at r > 3.9aj,.. In analogy to
Ref. [Heilbal.

line, left axis) intersects with the local nuclear field By, (blue line, left axis) at a distance
of about 3.9aj,.. At this distance (dashed line, border to the yellow-filled nuclear spin
diffusion area) the projection of the nuclear spin polarization on the z axis I, already
decreases by three orders of magnitude (factor 1200) compared to its maximal value directly
at the donor center. Thus, the nuclear spin polarization in the nuclear spin diffusion area
is homogeneous, yet very small compared to the polarization in the spatial inhomogeneous
area (r < 3.9aj,.). Moreover, evaluating the integral

3.9a15c
@2 (r)dmridr (5.28)

we find that the donor-bound electron is to 98% confined to the area with a spatial
inhomogeneous nuclear polarization [Heil5a]. Thus, even at the dopant level of sample #1,
where should be a large volume of homogeneously polarized nuclei in between the donor
centers, the main contribution to the Overhauser field component By, should originate
from the inhomogeneously polarized nuclei in the vicinity of the donors.
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5.4.3 Estimations of the S, Spin Polarization

We do not find a significant spin polarization along the z axis S, at magnetic fields
By > 15mT, which is in good agreement with the dependence S, = S,(By) predicted
by the Hanle curve (cf. Section 2.4.3). The half-width of the Hanle curve is given by (cf.
Eq. (2.34))

-~ 1.26mT. (5.29)
geptB Lo

Here the natural constants [Moh15] i = 6.5821 x 1070eV's, ug = 5.7884 x 107°eV T},

the electron g factor g, = 1.1 + 0.1 [Grel2], and the inhomogeneous spin dephasing time

T3 ~ 8ns (sample #2, cf. Ref. [Grel2]) were used. Thus, according to the Hanle curve,

the average spin polarization should be reduced by a factor

2 20mT \?
(Bv/Bi) z<12ng) ~ 240. (5.30)

By =

However, the nonlinear fit using Eq. (5.27) to the dispersive profile of the experimentally
determined shift (see the purple line in Fig. 5.17) yields a constant, average spin polarization
of § = 0.07 and the dispersive profile of the shift itself does not exhibit any changes for
increasing external field By even up to 140mT. This observation allows us to assume
that, in contrast to the considerations regarding the Hanle curve of the electron spins, a
significant average spin polarization is present at a wide range of magnetic fields By. The
experiments using additional RF fields with f,, = frr hint at an average spin polarization
along the y direction Sy. Thus, we estimate the average spin polarization components S,
and S, based on the theory by I.A. Yugova, presented in Ref. [Zhul4]. Figure 5.19(a) shows
both components as a function of the magnetic field By. The data were calculated using
Eq. (13) from Ref. [Zhul4], where the averaging was done over one laser repetition period TR.
Realistic parameters T5 ~ 10ns and T = 13.2ns were chosen for the calculations [Heilbal,
where we assumed an optical pulse area [Zhul4]

o= /2(d>E(t)dt/h —0.5. (5.31)

Here, (d) is the dipole transition matrix element, and E(¢) is the electric field of the laser
pulse. A pulse area of © = 7 results in a 100% generation of the donor-bound excitons
(DYX-HH).

For these realistic parameters the .S, component exhibits a significant polarization only
around By = 0 and decays to nearly zero for By > 10mT in good agreement with
the experimental data (cf. Fig. 5.9(a)), while the S, component decays much slower
with increasing By. The inset emphasizes their difference at higher fields. According to
Ref. [Zhul4] the vector sum of the components decreases with increasing magnetic field as
1/By. Note that both components exhibit small oscillations in dependence on the magnetic
field By.

Figure 5.19(b) illustrates the relative phase between the two spin polarization components
in dependence on the magnetic field By. Except for a narrow region around By = 0, we
find a nearly constant phase difference of 0.57 or 1.57 of S, relative to S, for By > 5mT,
which is in good agreement with the experimental results presented in Fig. 5.13. As said
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Figure 5.19 (a) Average spin components (orange line: S, blue line: S;) in dependence on the
magnetic field By. The inset emphasizes the difference of the magnitudes of the Sy and the S,
component at elevated magnetic fields By from 30 mT to 40mT. (b) Phase ¢ between the spin
components S, and S, simulated at two different spin dephasing times T = 3TR (red line) and
Ty = 0.5Tr (black line). Note that the colors correspond to the curves, shown in the inset. This
inset illustrates the phase oscillation amplitude ¢s. in dependence on the optical pulse area ©
for three different spin dephasing times. The longer the spin dephasing takes in relation to the
repetition period TR, the larger the theoretically predicted phase oscillation amplitude ¢osc. In

analogy to Ref. [Heilbal.

before, the phase between Sy and S, is only nearly constant: It exhibits small oscillations.
The inset of Fig. 5.19(b) shows these oscillations as a function of the optical pulse area
© and for three different inhomogeneous spin dephasing times 75 in units of the laser
repetition period Tr. The longer the spin dephasing time is in relation to the repetition
period TR, the larger the theoretically predicted phase oscillation amplitude ¢os., which
explains the small oscillations of both components in Fig. 5.19(a).

Following these considerations and the experimental results, only the spin polarization
component S, could explain the occurrence of the shift, resulting from a polarization of the
nuclei, even at higher magnetic fields By. Nevertheless, the total average spin polarization
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S should decay with the inverse external magnetic field o %V according to the theory

presented in Ref. [Zhul4]. The nuclear spin polarization, in turn, is proportional to 52
(cf. Eq. (5.26) and the experimental results, shown in Fig. 5.6) and thus in contrast to
the experimental results, presented in Fig. 5.4, should decay as B\72. These experimental
results (Fig. 5.4) hint at the existence of a significant average spin polarization component
even at elevated external magnetic field up to By = 140 mT.

This assumption is further supported by the experiments on the compensation of the
Knight field Bk with an additional RF field Brp(cf. Fig. 5.13), which demonstrate that
there is a significant average spin polarization component S, in the range of the investigated
fields By from 20mT to 40 mT. Taking into account these two experimental observations,
we conclude that a strong average spin polarization component S, exists and does not
change in the studied magnetic field range from O mT to 140 mT, which contradicts the
theoretical simulation, presented in Fig. 5.19. The spin polarization component S, causes
the nuclear spin polarization, which, in turn, leads to a shift of the RSA peaks at higher
excitation densities.

5.5 Conclusion

We present a detailed study of the electron-nuclear interaction at the conditions of a
time-resolved Kerr rotation (TRKR) experiment. Despite the low natural abundance of
isotopes with nonzero nuclear spin in the studied material system ZnSe (cf. Table 2.1), we
observe significant effects resulting from the nuclear spins. Since the low natural abundance
is emphasized as an advantage of this material system [Grel2], these effects might seem
surprising at first. Comparing the maximum Overhauser field By in InGaAs QDs reported
by Auer et al. [Aue09]
BN**=69T

with estimations for our material system according to Eq. (5) from Ref. [Tes08§]

I A I A
pmax _ SeXSeAse + {znX7ZnAzn ~ 25.3mT, (5.32)

gellB

the strong effects resulting from the nuclear spin polarization are even more surprising.

However, adapting the considerations of Akimov et al. [Aki06], who studied CdSe/ZnSe
quantum dots (QDs), for donor-bound electrons in ZnSe, we can explain the strong nuclear
signatures in the resonant spin amplification (RSA) signals: The strength of the electron-
nuclear hyperfine interaction is not only characterized by the isotope abundances y and
the hyperfine constants A, but also by the number of nuclei Ny, effectively seen by the
electron [Aki06].

Due to the low natural abundance and the strong localization of the electron spin at the
fluorine donor the number of nuclei interacting with a single electron spin is very small.
About 790 "Se and 430 7Zn nuclei interact with a donor-bound electron confined to its
localization volume with radius aj. [Grel2], so the total number of nuclei with nonzero
spin in this volume is about Ny, = 1220. This is in stark contrast to the situation in typical
III-V QDs, where Ny, is in the range from 1 x 10° to 1 x 10° [Aki06]. Taking into account
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that the effect of the Knight field Bk on a single nucleus scales like A/Ny,, we can explain
the significant electron-nuclear interaction in the studied material system.

We use the TRKR in RSA configuration and obtain a deep insight into the electron-
nuclear spin dynamics. The optical orientation of the electron spins by the pump beam
results in a dynamic nuclear polarization (DNP) at high pump power and reveals itself as
a shift of the RSA peak positions. Zhukov et al. already demonstrated that the TRKR
technique in RSA configuration allows one to all-optically measure the nuclear magnetic
resonance (NMR) frequency, where the NMR in the external field By (Voigt geometry) was
addressed by the helicity modulation frequency of the pump beam. While in that study the
pump was modulated using different photoelastic modulators (PEMs), which allowed only
for a modulation at certain, fixed frequencies, in this work an electro-optical modulator
(EOM) modulated the pump beam and allowed us to vary the helicity modulation frequency
fm in a broad range. Furthermore, we focus on the detailed study of a single material
system and the nature of the inhomogeneous nuclear spin polarization, revealing itself not
only in the form of the small additional peak in the RSA spectra, but also in the form of
the shift of the RSA peaks.

To obtain an even better understanding, we performed TRKR measurements in the same
magnetic field range as the RSA spectra, where By was increased in incremental steps of
1mT. This allows us to determine the induced nuclear fields not only at the positions of
RSA peak but also in between the peaks. The increased magnetic field resolution reveals
the sharp transition at By = BNMR.

The experimental findings allow us to develop and test a quantitative model, describing
the observed shifts of the RSA peaks at high pump power with all their peculiarities. The
model is based on classical nuclear spin cooling in the rotating frame system, which results
in a DNP. This conclusion is supported by the position of the small additional peak in the
RSA spectra and its dependence on the helicity modulation frequency fy,. The shape and
the width of the dispersive profile of the shift of the RSA peaks indicate that the DNP is
driven by the inhomogeneous Knight field Bk of the donor-bound electrons. Measurements
using an additional RF field indicate that the field Bk is pointing along the y direction
and does not depend on the external magnetic field By in the studied range from 20 mT
to 40mT. Furthermore, the dispersive profile of the peak shift, measured at increased
modulation frequencies fy, to shift it to higher By, exhibits no changes in the studied
By range from OmT to 140 mT. The model equation for the nuclear polarization along
the = direction allows us to estimate the value of the Knight field Bk. This value, in
turn, leads to the conclusion that the nuclear spin diffusion is hindered within a radius of
about 3.9aj,. around a fluorine donor center. Taking into account the average distance
between donors for sample #2 of d ~ 1.8a1,, we conclude that no nuclear spin diffusion
can take place in this sample so that the DNP results in an inhomogeneous nuclear spin
polarization explaining the occurrence of the broad dispersive profile of the shift of the
RSA peaks. While the average distance between donors is much larger for sample #1
(cz ~ 18ajoc) and thus nuclear spin diffusion is possible in the area between the donors, the
magnitude of the Knight field Bk at distances exceeding 3.9a). is very small, and so the
main contribution to the Overhauser field By should originate from the inhomogeneous
nuclear spin polarization within r < 3.9ajoc.

While the presented model accurately describes the observed dispersive profile of the
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shift of the RSA peaks, except for the offset of the dispersive profiles, which is out of
the scope of this thesis and is subject of further studies, the significant, constant spin
polarization component .S, providing the DNP contradicts the theoretical model presented
in Ref. [Zhul4]. According to this model the modulus of the average spin polarization
should decay as B{,l and, in turn, should lead to a reduction of the shift of the RSA peaks.
However, this is not observed in experiment and this suggests that there is a relatively
strong spin polarization component S, that does not depend on the magnetic field By in
the studied range. This component S, could result from certain intrinsic anisotropies of
fluorine-doped ZnSe. The fluorine donor, placed in the lattice at a selenium site, could
cause such an anisotropy. A further possible explanation is an anisotropy of the electron
spin generation, resulting from strain in the crystal lattice.

However, a DNP mechanism, which does not rely on a relatively strong, constant spin
polarization component S, was considered and investigated experimentally. At sufficiently
high pump power the DNP could be provided via the optical Stark effect, which denotes the
interaction of the absorption resonance with the circularly polarized light. Korenev [Korl1]
described that in the case of pulsed excitation the laser pulses can induce an electron spin
polarization component S, along the external field By, if the electron spins precess in
phase with multiples of the laser repetition frequency (cf. phase synchronization condition
for RSA peaks (Eq. (3.6))). Due to the interaction with the absorption resonance, the sign
of the induced spin polarization should depend on the energy difference between absorption
and excitation. Thus, we determined the shift of the RSA peaks at excitation energies
below and above the D’X-HH resonance. We observe no sign changes of the induced shift
and conclude that the DNP is not provided via the optical Stark effect.



It is for low fields,[...], that a theoretical
examination making use of thermodynamic
principles yields new quantitative predictions. In
particular, a spin temperature is analytically
defined, and its identity with thermodynamic
temperature is experimentally established.

A. Abragam and W. G. Proctor [Abr58]

6 Dynamics of the Nuclear Spin
Polarization

In Chapter 5, the induced spatially inhomogeneous nuclear spin polarization is explained
using a model based on the concept of classical nuclear spin cooling (see also Ref. [Heilbal).
However, this concept implies that the nuclear spin system (NSS) can be described using
the spin temperature approach (cf. Section 2.3.9). Thus, the spin relaxation time T lN
and the spin coherence time T5' of the ensemble of nuclear spins must fulfill the following
relation (cf. Eq. (2.27))

> 13, (6.1)

where both characteristic times of the NSS will be measured at the conditions of the
pump-probe experiment in this chapter.

6.1 Measurement of the Nuclear Spin Relaxation Time TN

To determine the first of these two times, we develop an all-optical approach. It is based on
a fast switching between two different pump helicity modulation frequencies f, 1 and fm 2
(cf. Section 3.4.3 for a description of the employed electronic components). Note that all
measurements presented in this chapter were performed for sample #2 (np ~ 1 x 10'® cm=3,
cf. Section 3.3) at the following conditions (unless specified otherwise): Pp, = 8mW,
Pp, =0.5mW and T' = 1.8 K. The first modulation frequency fi, 1 (example measurement
in Fig. 6.1: fm,1 = 100kHz) was selected to ensure that the magnetic field of the optically
addressed nuclear magnetic resonance (example: Byvg = 12.3mT) is close to the external
field (example: By = 15.7mT) so that the KR signal is maximally influenced by the nuclear
polarization, corresponding to the shift of the RSA peak near the resonance. We chose
the second modulation frequency fm 2 = 1050 kHz so that the distance between the field of
NMR Bxmr = 128.7mT (cf. Eq. (5.4)) and the external field (example: By = 15.7mT)
was very large. This ensures that the nuclear polarization becomes very small upon
switching to fn, 2 despite the extended tails of the dispersive profile of the shift of the RSA
peaks, described in Section 5.1. As a result, the change of the KR signal due to the change
of fn, will be maximal, if the external field By is set to the right flank of the RSA peak
following the resonance (cf. Fig. 6.1(a)). This is the case for the example measurement,
where the magnetic field position By is illustrated by the arrow in Fig. 6.1(a). Note the
relatively large KR signal difference between fi, 1 and fp, 2 at this field, which improves the
signal-to-noise ratio of the KR transient recorded upon switching the helicity modulation
frequency.

Figure 6.1(a) shows a comparison of two RSA spectra: The spectrum at fn, 1 = 100 kHz
is illustrated by the blue line and the one at fi,2 = 1050kHz by the green line. All

95
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Figure 6.1 (a) RSA spectra (sample #2), measured at fy 1 = 100kHz (blue line) and fm 2 =
1050 kHz (green line). The optically induced NMR of the 7"Se isotope at fn, 1 = 100kHz is shown
by the gray arrow, and the red arrow marks the magnetic field position (By = 15.72mT) for the
measurement shown in Fig. 6.1(b). (b) KR signal transients at fixed By, induced by switching
from fi, 2 (green line) to fu,1 (blue line). The red line shows a double exponential fit to the data.
Its parameters are given in Table 6.1. In analogy to [Heil6].

peak positions slightly differ for the two modulation frequencies, where the peak at fi, 1
following the NMR of the ""Se (see gray arrow) exhibits the largest shift with respect to
the corresponding peak at fi 2.

Figure 6.1(b) illustrates the transient upon switching the modulation frequency from
fm,2 to fm,1 averaged over many switching cycles. The measurement at fixed By allows us
to detect the change of the KR signal due to the shift of the RSA peak, which, in turn,
results from a change of the spin polarization of the ""Se nuclei. Upon switching from fu 2
to fm,1 at t = 0 the KR signal increases and saturates in less than a second. The transient
from Os to 0.9 s is fitted with a double exponential function, given by the following equation

t t
HKR(t) = Aoff — A1 exp (_7'1> - AQ exp (—7_2> . (62)

Here, A1 and As are the amplitudes of the exponential functions, 71 and 7o their rise times
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and Aqg is the offset of the KR signal. Table 6.1 shows the parameters of the best fit
to the data. Since the transient is the result of a repolarization of the nuclear spins, a

Table 6.1 Parameters of the best fit to the transient shown in Fig. 6.1(b). The errors are obtained
from the fit.

Aq 0.0425 + 0.0001 arb. units
Ag 0.0189 + 0.0001 arb. units
T1 134+1 ms
T 136 £1 ms
Asg | 0.06603 +0.00001 arb. units

possible explanation of this double exponential behavior might be the inhomogeneity of
the Knight field Bx and the nuclear spin polarization, discussed in the previous chapter
(cf. Chapter 5). Then the minimal repolarization time 71 should stem from the strongly
polarized nuclei near the donor centers, which, in turn, interact with the strongest Knight
field Bk and thus are most sensitive to a change of the helicity modulation frequency. We
suggest that the maximal repolarization time 7o corresponds to a repolarization of the
weaker polarized nuclei at the edge of the localization volume of the donor-bound electrons,
where a much weaker Knight field Bk leads to a slower repolarization process. Figure 6.2
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Figure 6.2 Maximal 75 (left y axis, orange squares) and minimal 71 (right axis, violet circles)
polarization time as a function of the magnetic field By. The corresponding lines are shown as a
guide to the eye. The off-resonant (nuclei) frequency fi, 2 was kept at 1050 kHz for all measurements,
while fi 1 was varied together with By and set to the following values 50 kHz, 100 kHz, 200 kHz,
300kHz, 400 kHz, and 500 kHz. Pp, = 8 mW, Pp, = 0.5mW, and T = 1.8 K. In analogy to [Heil6].

summarizes the results of several measurements, which are similar to the one depicted
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in Fig. 6.1(a) and (b). We performed the measurements at different magnetic fields By,
where the first modulation frequency f,1 was adapted to ensure that we achieved a high
degree of nuclear spin polarization and thus a maximal change of the KR signal upon
switching to fm2. We determine an estimation of the maximal 7 (left y axis, orange
squares) and minimal 71 (right axis, purple circles) polarization time as a function of By.
The corresponding orange and purple lines are shown as a guide to the eye. We observe an
increase of both polarization times 71 and 75 with increasing magnetic field By. A possible
explanation of this behavior is the increasing difference between the electron (cf. Eq. (2.15))
and nuclear (cf. Eq. (2.16)) Zeeman splitting. In summary, the nuclear polarization time,
which corresponds to the nuclear spin relaxation time T: 1N at the conditions of the TRKR
experiment, is between about 10 ms (minimal polarization time 7 at By = 10.3mT) and
about 400 ms (maximal polarization time 75 at By = 132.2mT).

However, we expect a much longer time TlN in the dark due to the lack of spin-polarized
electrons, whose Knight field Bk leads to nuclear spin flips. To check this hypothesis,
we performed an additional measurement, where the repolarization process due to the
switching of f,, was interrupted with an optical shutter (Thorlabs SHO5 shutter head
and Thorlabs SC10 controller, cf. also Section 3.4.3). Figure 6.3 depicts the results of

KR

8.02 8.04 8.06
Time, (s)

Figure 6.3 KR transient (blue line) upon switching from fi, 1 = 50kHz to fy 2 = 1050 kHz, where
the depolarization of the nuclear spins was started and then interrupted for 8 s by the mechanical
shutter. Note that the time axis (z axis) exhibits a break from 0.0275s to 8.0025s to allow for a
better comparison of the signal before closing the shutter and after reopening it. The dashed line
at the KR signal level upon closing the shutter is shown as a guide to the eye. The inset illustrates
the whole interrupted depolarization process (blue line) and shows the same transient without an
interruption by a shutter (green line) for comparison. The dashed line in the inset is also a guide to
the eye. In analogy to Ref. [Heil6].
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this measurement. The modulation frequency was switched from f, 1 to fm2 at ¢ =0 and
shortly afterward the shutter was closed (¢ ~ 24 ms). As a result, the depolarization process
is started, but is interrupted for 8s. Nevertheless, the KR signal level (see dashed line)
before closing and after reopening the shutter are nearly identical. Thus, we conclude that
blocking the illumination of the sample slows down the depolarization or repolarization
process by preventing electron-nuclear spin flip-flops with spin-polarized electrons. The
fact that no nuclear spin relaxation occurs during the dark time allows us to conclude that
the nuclear spin relaxation time in the dark TlN dark ohould exceed several tens of seconds.
Please note that the measurement presented here only provides a lower limit for TlN dark

In summary, an all-optical technique allows us to determine the order of magnitude of
the nuclear spin relaxation time T} at the conditions of the TRKR experiments, presented
in the previous chapters (cf. Chapter 4 and Chapter 5), and also to obtain a lower limit of
this time in the dark TlN dark However, to obtain the nuclear spin coherence time %, we
have to achieve coherent control of the nuclear spins and thus have to leave the all-optical

regime.

6.2 Coherent Control of the Nuclear Spins

The coherent control of the 7"Se nuclei in sample #2 was achieved by an additional radio
frequency (RF) excitation with a small coil near the surface of the sample, which was
similar but not identical to the one used in Sections 5.3.2 and 5.3.3. We performed all
measurements using a double modulation technique (cf. Sections 3.4.4 to 3.4.7 for details).

6.2.1 Preliminary Measurements

Resonant RF pulses are most effective to manipulate the nuclear spins. Thus, we first
determine the NMR frequency at fixed external magnetic field By by an optically detected
nuclear magnetic resonance (ODNMR) measurement. Figure 6.4 shows an RSA spectrum
(blue line), measured at a helicity modulation frequency of f;, = 50kHz. The orange
arrow marks the magnetic field position By = 7.5mT, where the ODNMR, measurement
(cf. Section 3.4.4 for the technical details) was performed. The inset depicts the result
of the actual ODNMR measurement with continuous-wave (CW) RF excitation: the KR
signal (blue line) at f,, = 50kHz as a function of the RF frequency frr at fixed RF
amplitude Agp = 0.5 Vpp (Vpp="“Volt peak to peak”). Here, frr was varied from 56.5kHz
to 65.5kHz. The KR signal exhibits a dip at about 61kHz, which we interpret as the
result of a decrease of the nuclear spin polarization along the external magnetic field
By due to resonant heating of the nuclear spin system (NSS). The red line is a fit of a
Lorentzian (cf. Eq. (5.11)) to the data. Table 6.2 shows the parameters of this fit, where the
NMR frequency fnmr = (60.93 +0.01) kHz is the most important parameter. Performing
measurements, based on the same approach, we determined the NMR frequency fnumr
for each magnetic field position By before proceeding with the further measurements,
presented in the following. To achieve coherent control of the nuclear spin ensemble, we
had to switch from a CW RF excitation to a pulsed RF excitation, where the variation of
the pulse width 7, allowed us to control the effect on the nuclear spins. The measurement,
depicted in Fig. 6.5, shows the KR signal (blue line) at f,, = 50kHz as a function of the RF
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KR

Magnetic field, B, (mT)

Figure 6.4 Kerr rotation signal (blue line) in dependence on the magnetic field By (RSA spectrum).
The orange arrow marks the magnetic field By = 7.5 mT for the measurement, shown in the inset.
The inset depicts the KR signal in dependence on frp, where the red line is a nonlinear fit using
Eq. (5.11). The values of the fitting parameters are given in Table 6.2. In analogy to Ref. [Heil6].

Table 6.2 Parameters of the best fit to the KR signal in dependence on fry, shown in Fig. 6.4.
See also Eq. (5.11). The errors are obtained from the fit.

Amplitude Ag —950 £ 25 arb. units
NMR frequency fxmr | 60.93 +£0.01 kHz
FWHM r 2.194+0.06 kHz
Offset Ao —8+2 arb. units

pulse width at a fixed RF amplitude Arp = 4 Vpp. It exhibits oscillations, which we can
explain by the rotation of the nuclear spins about the effective magnetic field Beg produced
by the RF coil. These oscillations are known as so-called Rabi oscillations [Rab37; Rab38;
Rab39]. The red line in Fig. 6.5 shows a fit to the data, using the following equation
(exponentially damped oscillation):

T .
Okr(p) = Ag exp <Tz) sin (27 fRabiTp + @) + Aot (6.3)

Table 6.3 shows the values of the parameters of the best fit to the data. Here, the Rabi
frequency frabi is the most important parameter, since it allows us to estimate the effective
magnetic field Beg of the RF coil [Heil6]

27TfRabi
VSe

Bt = (6.4)
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Figure 6.5 Kerr rotation (blue line) in dependence on the RF pulse width 7, at By = 7.5mT,
Arr =4V, and frr = 60.9kHz =~ fymr. The red line is a nonlinear fit to the data (cf. Eq. (6.3)
and Table 6.3. The inset illustrates the effective magnetic field Beg of the RF coil (violet squares
with error bars) as a function the applied RF amplitude Agp (cf. Eq. (6.4) and discussion in the
text). The red line is a weighted linear fit to the data using Eq. (6.5). In analogy to Ref. [Heil6].

Combining the Rabi frequency frapi &~ (2.61 4+ 0.01) kHz, determined from the fit to the

Table 6.3 Parameters of the best fit to the data shown in Fig. 6.5. The errors are obtained from
the fit.

Amplitude Ag 114 +4 arb. units
Rabi frequency  frani | 2.61 £0.01 kHz
Phase % 1.0+£01 1

Decay constant 0 70+4 ps

Offset Ao 165+ 1 arb. units

data in Fig. 6.5, with the gyromagnetic ratio of ""Se vg, = 5.125387 x 10" rads™ ! T (see
Ref. [Har02]) we obtain an effective field of

Beg ~ (320 + 1) uT,

where the relative errors of frapi and Beg are identical according to Gaussian error
propagation.

The inset shows the effective magnetic field of the coil as a function of the applied RF
amplitude Arp and thereby summarizes the results of several of such measurements (violet
squares with error bars). The red line is a weighted linear fit to the data according to the
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following equation:
Bet(Arr) = m - Arp (6.5)

The fit yields a slope of
m=(79.1+0.2)pTV,,.

It is important to note that the frequency dependence of the effective field produced
by the coil is not studied here. However, this rather technical detail is not important for
the validity of the results on the nuclear spin dynamics, presented in the following. The
NMR frequency and Rabi oscillation measurements were performed prior to the following
measurements for each magnetic field position By to determine the proper parameters for
the Ramsey and Hahn echo measurements.

6.2.2 Measurement of the Inhomogeneous Nuclear Spin Dephasing
Time

Using the methods (ODNMR and Rabi oscillation measurements) described in the previous
chapter, we determined the parameters for the actual measurements, relying on a coherent
control of the nuclear spins. Using these parameters we performed different experiments.
The Ramsey method [Ram49; Ram50; Ram95] employs a sequence of two /2 pulses with
a variable delay At between the pulses (cf. Section 3.4.6 for the details of the experimental
setup). The inset of Fig. 6.6 illustrates how we determined the width 7, of a m/2 pulse
from a Rabi oscillation measurement (KR signal (blue line) in dependence on the pulse
width 75,). The orange arrow marks the length of a 7/2 pulse. The measurement using the
Ramsey method (cf. Fig. 6.6) was performed at the same conditions as the Rabi oscillation
measurement. The blue line illustrates the KR signal at f,, = 50kHz as a function of
the time delay At. Here, At was the distance between the middle of the pulses (width
Tp A~ 65 ps) and the distance of 65 ps was subtracted. The KR signal exhibits oscillations
with a period of (2.3301 4 0.0001) ps, determined from the fit with an exponentially damped
oscillation shown by its envelope (red lines). Please refer to Eq. (6.3) for the fitting function
(Rabi frequency frabi replaced with “Ramsey frequency” framsey) and to Table 6.4 for the
values of the parameters of the best fit. We can explain the oscillations in Fig. 6.6 using

Table 6.4 Parameters of the best fit to the data shown in Fig. 6.6. The errors are obtained from
the fit.

Amplitude Ag 133 £2 arb. units
Ramsey frequency framsey | 429.16 0.02 kHz
Phase %) 5.99+0.01 1

Decay constant T0 1605 ps

Offset Ao 647.1 £0.4 arb. units

the “graphical” representation of a quantum mechanical two-level system, developed by
Felix Bloch [Blo46], the so-called Bloch sphere. The north pole of the sphere represents the
ground state |0), while the south pole corresponds to the excited state |1); both are defined
with respect to the external magnetic field By. The equator represents the superposition
state of |0) and |1) with equal probability of both states, where each point on the equator
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Figure 6.6 Kerr rotation signal (blue line) in dependence on the time delay At. By = 52.7mT,
frr = 429.5kHz, Arp = 10V, and 7, = 65s. The red lines show the envelope of the best fit of
a damped oscillation to the data. The inset shows the Kerr signal (blue line) as a function of the
pulse width 7,,. The orange arrow marks the width of the 7/2 pulse used for the measurement of
the Ramsey fringes. In analogy to Ref. [Heil6].

corresponds to a different relative phase between these two eigenstates. The actual state of
the system is denoted by the Bloch vector

|¥) = cos (2) |0) + exp (i¢) sin (2) 1) . (6.6)

This graphical representation is illustrated in Fig. 6.7. It is important to note that this
representation can be used for single spins as well as the collective magnetization or average
spin polarization of an ensemble. There it can be useful to draw more than one Bloch
vector to illustrate, e.g., dephasing processes.

The first 7/2 pulse applied during the Ramsey method rotates the Bloch vector of the
ensemble of the nuclear spins from the north pole (|¥) = |0), ® = 0) to the equator
(6 = 7/2) of the Bloch sphere. The system is in a superposition state, and the spins
precess in the equatorial plane with the nuclear Larmor frequency, which is determined
by the Zeeman splitting of the nuclear spins. The relative phase ¢ changes due to the
precession and the subsequent 7/2 pulse rotates the Bloch vector either back to the north
pole (]0)) or to the south pole (|1)) depending on the time delay At between the pulses,
which determines the change of ¢. This explains the oscillations of the KR signal in
dependence on At, so-called Ramsey fringes. We should also note that the frequency of
these oscillations corresponds to the nuclear Larmor frequency in the external magnetic

field By: fRamsey = % - fNMR-
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—x=1)

Figure 6.7 Schematic of a Bloch sphere [Blo46]. Each point on the surface of the sphere (Bloch
vector) denotes a specific superposition state of the eigenstates |0) and |1) or an average polarization
of an ensemble of spins. Rendered with Asymptote with code in analogy to Ref. [Glo12].

We can explain the exponential decay of the signal in Fig. 6.6 by the following considera-
tions: Due to inhomogeneities in the sample, different 7"Se spins of the ensemble may have
slightly different nuclear Larmor frequencies wy. Thus, the average polarization decreases
during the precession on the equator of the Bloch sphere, which, in turn, results in a smaller
KR signal upon rotation to the |0) or |1) state by the second 7/2 pulse. It is important
to note that this is not the only effect decreasing the average polarization. Nevertheless,
the decay constant 7y of the fit (envelope is shown by red lines in Fig. 6.6) represents the
inhomogeneous nuclear spin dephasing time T, ’N, which describes the dephasing due to
ensemble inhomogeneities as well as other mechanisms, e.g., spin flips. At the experimental
conditions (By = 52.7mT), the initially coherently precessing nuclei run out of phase
during the time

TN = 79 = (160 & 5) ps.

6.2.3 Measurement of the Nuclear Spin Coherence Time
To determine the nuclear spin coherence time T2N , we have two options:
1. Measure Ramsey fringes of a single spin, which is not feasible for nuclear spins.

2. Eliminate the dephasing due to ensemble inhomogeneities. Here, it is important that
the inhomogeneous dephasing is a reversible effect.

We realize the second option by applying a 7 pulse, while the spins precess about the equator
of the Bloch sphere. The 7 pulse then inverts the orientation of the spins. Modifying the
Ramsey method with an additional 7 pulse in between the two 7/2 pulses we obtain the
Hahn echo sequence [Hah50]. The first m/2 pulse rotates the spins to the equator of the
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Bloch sphere, where they precess with the nuclear Larmor frequency wy. As a result, the
spin ensemble dephases during the interval At before the arrival of the « pulse, which
inverts the orientation of all spins of the ensemble. The spins, in turn, rephase during the
next interval At, so that the dephasing due to ensemble inhomogeneities during the first
interval At is reversed. After a time 2At a subsequent 7/2 pulse rotates the average spin
of the ensemble to the south pole (|1)) of the Bloch sphere, which leads to a Hahn echo
(nuclear spin echo) [Heil6; Hahb50]. Since it was experimentally very difficult to measure
the amplitude exactly at the occurrence of the nuclear spin echo and to time the arrival of
the second /2 pulse properly, we only set the first interval exactly to At, but varied the
arrival time of the final 77/2 pulse and measured the KR as a function of the time after the
arrival of this pulse.

KR

200 250 300 350 400 450 500 550
Time, t (ps)

Figure 6.8 KR signal (blue line) as a function of the time ¢ of the arrival of the second 7/2 pulse.
fm = 50kHz, frrp = 77.9ps, By = 52.7mT. The time delay, determining only the interval between
first /2 pulse and the 7 pulse, was at At = 100 ps.

Figure 6.8 shows an example of such a measurement. The KR signal exhibits oscillations
that we interpret as a signature similar to the Ramsey fringes, shown in Fig. 6.6. We
suggest that the absence of a pronounced nuclear spin echo peak results from the weak
inhomogeneity of the nuclear spin ensemble, addressed by our rather long RF pulses (cf.
also Section 6.3). However, we calculated the echo amplitude at ¢ = 2At using the result
of a fit of an exponentially damped oscillation to the KR signal as a function of time. The
echo amplitude, determined from these fits and shown in Fig. 6.9, decays exponentially with
the nuclear spin coherence time T: 2N . The inset in Fig. 6.9 illustrates the RF pulse sequence
used for the Hahn echo measurement at By = 9.6 mT, frr = 77.9kHz, and Arp = 10 V.
We determined the width of a 7/2 pulse 7, = 50 ps (four cycles at 77.9kHz) from a Rabi
oscillation measurement and the 7 pulse, in turn, was constructed of two successive 7/2
pulses. The orange lines and arrows in the inset depict how the time delay At was defined.
Figure 6.9 illustrates the actual result of the Hahn echo measurement - the nuclear spin
echo amplitude (blue squares with error bars) as a function of the time 2At¢ between the
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Figure 6.9 Nuclear spin echo amplitude as a function of the total time 2At between the arrival of
the first /2 pulse and after the arrival of the second /2 pulse. The red line is the best fit to the
data using Eq. (6.7) (cf. Table 6.5 for the values of the fitting parameters). The inset shows the
RF pulse sequence used for the measurements. The orange lines illustrate how the interval At was

determined. In analogy to Ref. [Heil6].

/2 pulses. The red line is a fit to the data using the following equation:

2At
Aecho(QAt) = AO exp <_ (T’N>> + Aoff (67)
2

Table 6.5 shows the values of the parameters of the best fit to the data. We obtain a

Table 6.5 Parameters of the best fit to the data shown in Fig. 6.6. The errors are obtained from
the fit.

Amplitude Ap 125 £3 arb. units
Nuclear spin coherence time 73" | 520 25 ps
Offset Aogr 7+1 arb. units

nuclear spin coherence time of

T = (520 + 25) ps.

6.3 Discussion

Note that ideally all employed pulses should be instantaneous compared to all characteristic
timescales of the system under study, i.e., the nuclear Larmor precession period 27 /wn,
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the inhomogeneous nuclear spin dephasing time 7% N and the nuclear spin coherence time
TXN. This consideration also holds for the measurement of the Ramsey fringes described
before. However, we should note that the same physics applies in the case, where the
pulse width 7, is longer than the Larmor precession period 27 /wyn of the nuclear spins,
but is still shorter than the inhomogeneous spin dephasing time 75 N [All12]. A longer
pulse duration results in the selection of a spectral subensemble of the inhomogeneously
broadened spin ensemble. This, in turn, leads to a reduction of the amplitude of the
signal, but should not alter the measured 75 time (Hahn echo measurement). However, it
might lead to a slightly longer inhomogeneous nuclear spin dephasing time 7% N (Ramsey
fringes measurement), since the subensemble exhibits less inhomogeneity than the whole
inhomogeneously broadened spin ensemble. Our considerations are supported by the fact
that the nuclear spin coherence time T ~ 520 s ~ 3T} N is not much longer than the
nuclear inhomogeneous spin dephasing time Ty N despite the strongly inhomogeneous
Knight field Bk and the inhomogeneous nuclear spin polarization in the studied sample
(sample #2, cf. Chapter 5).

Nevertheless, the results presented in this chapter allow us to conclude that the nuclear
spin temperature approach is valid in the fluorine-doped ZnSe material system at the
conditions of the time-resolved Kerr rotation (TRKR) experiments, presented in Chapters 4
and 5, since the following relation holds

TN ~ 10ms > T3 ~ 520 s,

Thus, we can explain the inhomogeneous nuclear spin polarization, studied in Chapter 5,
using the classical model of nuclear spin cooling.

Comparing the results presented here with the data from the literature we find that
they are in reasonable agreement: Sanada et al. measured a nuclear spin dephasing time
of Ty N'— 90 s and a nuclear spin coherence time of TN = 270 ps for GaAs/(Al,Ga)As
quantum wells (QWs). Similar times (T5 N = 16 s and T = 310p1s) were determined for
a single GaAs/(Al,Ga)As quantum dot (QD) [Mak11]. Thus, the times for systems with
weaker localized electrons in QWs as well as for systems with strongly localized electrons
(QDs) are on the same order of magnitude as those reported in this thesis. However, we
should note that there is an import difference between the GaAs and the ZnSe material
system: In GaAs/(Al,Ga)As all nuclei have a nonzero spin and all these spins interact not
only via dipole-dipole interaction, but also via quadrupole interaction, since I > % for all
nuclei. This interaction plays an import role in the GaAs material system [Chel4].

6.4 Conclusion

We perform a complete study of the nuclear spin dynamics at the conditions of the
TRKR experiments. Known advantages of optical detection are exploited: Despite the low
natural abundance of the nuclear spins in the ZnSe epilayer, we observe clear signatures of
the nuclear spin polarization, which is an example of the high sensitivity of the optical
detection [San06]. Furthermore, the optical detection allows us to selectively study the
nuclear spins in the epilayer in the vicinity of the fluorine donors. This high selectivity is a
further advantage compared to methods solely based on RF excitation and detection [San06].
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The detection of the nuclear spin polarization by means of coherently precessing elec-
tron spins (cf. also the pioneering work in Ref. [Zhul4], the results in Chapter 5, and
Ref. [Heilba)) instead of the circular polarization degree of the photoluminescence, as it
is commonly used to detect nuclear fields by measurements of the Hanle curve (cf. for
example Refs. [Che09; F1i10; Chell]), offers an additional advantage [Zhul4]: The width of
the Hanle curve and thereby the magnetic field range (By range) for the measurements are
determined by the electron spin relaxation time 7g or inhomogeneous spin dephasing time
T5. This is an especially severe limitation for systems with very long 7¢ or 73, where the
Hanle curve is as narrow as a few tenth of mT [Zhul4]. As a result, one cannot resolve the
contributions of different isotopes to the Overhauser field By on the magnetic field axis.

In contrast to this, the detection of the nuclear fields by coherently precessing electron
spins allows us to address and resolve a single isotope by working at higher magnetic fields
By, where the nuclear Zeeman splitting of the isotopes becomes so large that the NMR
frequencies of different isotopes, addressed by the pump helicity modulation frequency fu,,
split up on the magnetic field scale By [Zhul4; Heil6).

A further advantage of the detection by coherently precessing electron spins is the
possibility to determine the nuclear Overhauser field By [Oveb3] even for an ensemble of
electron spins, where one cannot resolve the Zeeman splitting in the field By spectrally as
it is the case for single dot spectroscopy [Heil6; Mak11; Chel3b; Chel3al.



[...] nature isn’t classical, dammit, and if you
want to make a simulation of nature, you’d better
make it quantum mechanical, and by golly it’s a
wonderful problem, because it doesn’t look so
easy.

Richard Feynman [Fey82; Tral2]

7 Summary

In this thesis, a comprehensive study of the spin dynamics in the fluorine-doped ZnSe
material system is presented. Here, the dynamics of the ensemble of the donor-bound
electron spins is investigated via the time-resolved pump-probe Kerr rotation technique.
Modifying the “standard” scheme with helicity modulation of the pump beam with variable
frequency, we develop the spin inertia method (cf. Chapter 4 and [Heil5b]). Studying
the coherently precessing donor-bound electron spins in the resonant spin amplification
(RSA) configuration at different modulation frequencies allows us to characterize the
inhomogeneous nuclear spin polarization of the constituent isotopes with nonzero nuclear
spin (I # 0, cf. Chapter 5 and Ref. [Heilba]). This polarization is the result of dynamic
nuclear polarization (DNP) in the inhomogeneous Knight field Bk of the precessing electrons.
We employ a novel approach, using additional radio frequency (RF) excitation during
RSA measurements and at fixed magnetic fields in RSA configuration. This approach
allows for a deeper understanding of the underlying mechanism. The RF excitation
also provides coherent control of the nuclear spins of the “"Se isotope, demonstrated in
Chapter 6 and Ref. [Heil6]. The coherent control allows us to measure the inhomogeneous
nuclear spin dephasing time T, N = (160 £+ 5) ps and the nuclear spin coherence time
TN = (520 £ 25) pis of the 7"Se nuclei under the conditions of the pump-probe experiment,
presented in Chapter 5. Moreover, the longitudinal nuclear spin relaxation time TlN is
determined under these conditions. Here, we use a novel approach based on the fast
switching between two different modulation frequencies (cf. Section 3.4.3), where a fast
analog-digital converter (ADC) recorded the corresponding KR signal transients.

In Chapter 4, the spin inertia method is explained and used to measure the longitudinal
spin relaxation time T of the ensemble of donor-bound electrons in a wide range of
magnetic fields By, temperatures, and pump powers. The 77 time of about 1.6 ps of the
donor-bound electron spins in the weakly doped sample #1 (np ~ 1 x 101° cm™3) remains
nearly constant at external magnetic fields Bp (Faraday geometry) varied from zero up
to 2.5 T and in a temperature range 1.8 K to 45 K. These observations impose strong
restrictions on possible spin relaxation mechanisms: We rule out scattering between free
and donor-bound electrons, jumping of electrons between different donor centers, scattering
between phonons and donor-bound electrons, and with less certainty charge fluctuations
in the environment of the donors caused by the 2 ps pulsed laser excitation, while charge
fluctuations still could result from the fast recombination (a~ 210 ps [Grel12]) of the DOX-HH
complex. Measurements of the strongly doped sample #2 (np ~ 1 x 10¥cm™3) yield
a slightly shorter longitudinal spin relaxation time 77 ~ 1.1 s, where the difference to
the weaker doped sample #1 might be caused by increased interaction between spins at
neighboring donor centers. These longitudinal spin relaxation times hint at a potential
electron spin coherence time 75 in the microsecond range, especially of donor-bound electron
spins isolated in nanostructures, e.g., Refs. [San09; De 10; Kim12; Sle13]. This underlines
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the potential of the ZnSe:F material system for quantum information applications (cf. also
discussion in Chapter 1).

We find that an excitation with helicity-modulated laser pulses results in a transverse
nuclear spin polarization that we detect as a change of the Larmor precession frequency
of the donor-bound electron spins in a magnetic field applied in the Voigt geometry (cf.
Chapter 5). The frequency shift in dependence on the magnetic field By shows a pronounced
dispersion-like shape with resonances at the fields of nuclear magnetic resonance Byyg of
the constituent zinc and selenium isotopes that are addressed by the helicity modulation
frequency fi, of the pump beam. We study the frequency shift as a function of the external
magnetic field By, the temperature and under the influence of additional RF excitation.
The width of the resonance and its shape hint at a strong spatial inhomogeneity of the
nuclear spin polarization in the vicinity of a fluorine donor. Considering the results of a
complete tomography of the average electron spin, we suggest a mechanism of the optically
induced nuclear spin polarization that is based on the concept of resonant nuclear spin
cooling driven by the inhomogeneous Knight field Bk of the donor-bound electrons. This
explanation relies on the validity of the spin temperature approach that we, in turn, verify
by the measurements presented in Chapter 6.

Using the all-optical induction and detection of the nuclear spin polarization by coherently
precessing electron spins we measure the longitudinal nuclear spin relaxation time 77
of the ""Se isotope in a magnetic field range from 10 to 130 mT under illumination (cf.
Chapter 6). We extend the optical TRKR spectroscopy with RF methods to measure
the inhomogeneous nuclear spin dephasing time T N — (160 £ 5) ps and the nuclear spin
coherence time T5' = (520 + 25) s of this isotope. This way, we maintain the advantages of
the optical detection, such as high selectivity and sensitivity [San06], while the RF methods
provide coherent control of the nuclear spins. The T time is on the order of several
milliseconds, while the TQN time is several hundred microseconds. The experimentally
determined condition T} > T3 verifies the validity of the classical model of nuclear spin
cooling that describes the optically induced nuclear spin polarization in Chapters 5 and 6.

The strong nuclear effects, presented in Chapters 5 and 6 of this thesis, support the
considerations of Greilich et al. [Grel2] that despite the low natural abundance of isotopes
with nonzero nuclear spin in the ZnSe host crystal, the spin coherence of the donor-bound
electrons is still limited by the fluctuating hyperfine fields. Taking into account the
longitudinal electron spin relaxation time 77, measured in Chapter 4, this indicates that
structures, grown from isotopically purified, nuclear spin free ZnSe, could exhibit increased
electron spin coherence times T5 of several microseconds. Still, a possible influence of the
nuclear spin of the fluorine donor on the electron spin coherence needs to be clarified.



111

List of Publications

F. Heisterkamp, E. A. Zhukov, A. Greilich, D. R. Yakovlev, V. L. Korenev, A.
Pawlis, and M. Bayer. “Longitudinal and transverse spin dynamics of donor-bound
electrons in fluorine-doped ZnSe: Spin inertia versus Hanle effect”. Phys. Rev. B 91
(23 June 2015), p. 235432

F. Heisterkamp, A. Greilich, E. A. Zhukov, E. Kirstein, T. Kazimierczuk, V. L.
Korenev, I. A. Yugova, D. R. Yakovlev, A. Pawlis, and M. Bayer. “Inhomogeneous
nuclear spin polarization induced by helicity-modulated optical excitation of fluorine-
bound electron spins in ZnSe”. Phys. Rev. B 92 (24 Dec. 2015), p. 245441

F. Heisterkamp, E. Kirstein, A. Greilich, E. A. Zhukov, T. Kazimierczuk, D. R.
Yakovlev, A. Pawlis, and M. Bayer. “Dynamics of nuclear spin polarization induced

and detected by coherently precessing electron spins in fluorine-doped ZnSe”. Phys.
Rev. B 93 (8 Feb. 2016), p. 081409

E. A. Zhukov, E. Kirstein, N. Kopteva, F. Heisterkamp, D. R. Yakovlev, V. L.
Korenev, I. A. Yugova, A. Pawlis, M. Bayer, and A. Greilich. “Quantization of
electron spin precession and reduction of spin dephasing through coupling to nuclear
bath in ZnSe:F”. In preparation for submission to Phys. Rev. Lett. (2017)






113

Bibliography

[Abr58]

[Akel5]

[AKi06]

[AKi09)]

[Ale73]

[All12]
[A1138]

[Ast02]

[Ast08a]

[AstO8b]

[Aue09]

A. Abragam and W. G. Proctor. “Spin Temperature”. Phys. Rev. 109 (5 Mar.
1958), pp. 1441-1458.

Hiroshi Akera, Hidekatsu Suzuura, and Yoshiyuki Egami. “Spin relaxation
in a quantum well by phonon scatterings”. Phys. Rev. B 92 (20 Nov. 2015),
p. 205311.

I. A. Akimov, D. H. Feng, and F. Henneberger. “Electron Spin Dynamics in
a Self-Assembled Semiconductor Quantum Dot: The Limit of Low Magnetic
Fields”. Phys. Rev. Lett. 97 (5 Aug. 2006), p. 056602.

I.A. Akimov, D.H. Feng, and F. Henneberger. “Nonequilibrium Optical Spin
Cooling in Charged Quantum Dots”. In: Semiconductor Quantum Bits. Pan
Stanford Publishing, 2009.

E. B. Aleksandrov. “OPTICAL MANIFESTATIONS OF THE INTERFER-
ENCE OF NONDEGENERATE ATOMIC STATES”. Soviet Physics Uspekhi
15.4 (1973), p. 436.

L. Allen and J.H. Eberly. Optical Resonance and Two-Level Atoms. Dover
Books on Physics. Dover Publications, 2012.

J. F. Allen and A. D. Misener. “Flow of liquid helium II”. Nature 141.3558
(1938), p. 75.

G. V. Astakhov, D. R. Yakovlev, V. P. Kochereshko, W. Ossau, W. Faschinger,
J. Puls, F. Henneberger, S. A. Crooker, Q. McCulloch, D. Wolverson, N. A.
Gippius, and A. Waag. “Binding energy of charged excitons in ZnSe-based
quantum wells”. Phys. Rev. B 65 (16 Apr. 2002), p. 165335.

G. V. Astakhov, R. I. Dzhioev, K. V. Kavokin, V. L. Korenev, M. V. Lazarev,
M. N. Tkachuk, Yu. G. Kusrayev, T. Kiessling, W. Ossau, and L. W. Molenkamp.
“Suppression of Electron Spin Relaxation in Mn-Doped GaAs”. Phys. Rev. Lett.
101 (7 Aug. 2008), p. 076602.

G. V. Astakhov, M. M. Glazov, D. R. Yakovlev, E. A. Zhukov, W. Ossau,
L. W. Molenkamp, and M. Bayer. “Time-resolved and continuous-wave optical
spin pumping of semiconductor quantum wells”. Semiconductor Science and
Technology 23.11 (2008), p. 114001.

T. Auer, R. Oulton, A. Bauschulte, D. R. Yakovlev, M. Bayer, S. Yu. Verbin,
R. V. Cherbunin, D. Reuter, and A. D. Wieck. “Measurement of the Knight
field and local nuclear dipole-dipole field in an InGaAs/GaAs quantum dot
ensemble”. Phys. Rev. B 80 (20 Nov. 2009), p. 205303.



114

Bibliography

[Bar13]

[Bel16]

[Ber78§]

[Bil49]
[Blo29]

[Blo46]
[Blo54]

[Bol4]

[Bos24]
[Boy70]

[Bud02]

[Bul09]

[Call7]

[Che09]

N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth. “Solid-
state electronic spin coherence time approaching one second”. NATURE COM-
MUNICATIONS 4 (Apr. 2013).

V. V. Belykh, E. Evers, D. R. Yakovlev, F. Fobbe, A. Greilich, and M. Bayer.
“Extended pump-probe Faraday rotation spectroscopy of the submicrosecond
electron spin dynamics in n-type GaAs”. Phys. Rev. B 94 (24 Dec. 2016),
p. 241202.

V. L. Berkovits, C. Hermann, G. Lampel, A. Nakamura, and V. I. Safarov.
“Giant Overhauser shift of conduction-electron spin resonance due to optical
polarization of nuclei in semiconductors”. Phys. Rev. B 18 (4 Aug. 1978),

pp. 1767-1779.

Bruce H. Billings. “The Electro-Optic Effect in Uniaxial Crystals of the Type
X H2PO4. I. Theoretical”. J. Opt. Soc. Am. 39.10 (Oct. 1949), pp. 797-801.

Felix Bloch. “Uber die Quantenmechanik der Elektronen in Kristallgittern”.
Zeitschrift fir Physik 52.7-8 (1929), pp. 555-600.

F. Bloch. “Nuclear Induction”. Phys. Rev. 70 (7-8 Oct. 1946), pp. 460-474.

N. Bloembergen. “Nuclear magnetic relaxation in semiconductors”. Physica
20.7-12 (1954), pp. 1130-1133.

Ludwig Boltzmann. “Ableitung des Stefan’schen Gesetzes, betreffend die Ab-
héangigkeit der Warmestrahlung von der Temperatur aus der electromagnetischen
Lichttheorie”. Annalen der Physik 258.6 (1884), pp. 291-294.

S. N. Bose. “Plancks Gesetz und Lichtquantenhypothese”. Zeitschrift fiir Physik
26.1 (1924), pp. 178-181.

W. S. Boyle and G. E. Smith. “Charge coupled semiconductor devices”. Bell
System Technical Journal 49.4 (1970), pp. 587-593.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and
A. Weis. “Resonant nonlinear magneto-optical effects in atoms”. Rev. Mod.
Phys. 74 (4 Nov. 2002), pp. 1153-1201.

Iulia Buluta and Franco Nori. “Quantum Simulators”. Science 326.5949 (2009),
pp- 108-111. eprint: http://science.sciencemag.org/content/326/5949/
108.full.pdf.

Tommaso Calarco. QUantum TEchnologies Flagship QUTE-F. 2017. eprint:
http://cordis . europa.eu/fp7/ict/fet-proactive/docs/flagship-
ie-jan10-18_en.pdf. URL: http://cordis . europa.eu/fp7/ict/fet-
proactive/docs/flagship-ie-jan10-18_en.pdf.

Roman V. Cherbunin, Sergey Yu. Verbin, Thomas Auer, Dmitri R. Yakovlev,
Dirk Reuter, Andreas D. Wieck, Ilya Ya. Gerlovin, Ivan V. Ignatiev, Dmitry V.
Vishnevsky, and Manfred Bayer. “Dynamics of the nuclear spin polarization
by optically oriented electrons in a (In,Ga)As/GaAs quantum dot ensemble”.
Phys. Rev. B 80 (3 July 2009), p. 035326.


http://science.sciencemag.org/content/326/5949/108.full.pdf
http://science.sciencemag.org/content/326/5949/108.full.pdf
http://cordis.europa.eu/fp7/ict/fet-proactive/docs/flagship-ie-jan10-18_en.pdf
http://cordis.europa.eu/fp7/ict/fet-proactive/docs/flagship-ie-jan10-18_en.pdf
http://cordis.europa.eu/fp7/ict/fet-proactive/docs/flagship-ie-jan10-18_en.pdf
http://cordis.europa.eu/fp7/ict/fet-proactive/docs/flagship-ie-jan10-18_en.pdf

Bibliography 115

[Chell]

[Chel3a]

[Chel3b)

[Chel4]

[Chrl5]

[Cir12)

[Cla09]

[Coh66]

[Col04]

[Col12]

[Cze30]

[Dam71]

[Dam?77]

R. V. Cherbunin, K. Flisinski, I. Ya. Gerlovin, I. V. Ignatiev, M. S. Kuznetsova,
M. Yu. Petrov, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer. “Resonant
nuclear spin pumping in (In,Ga)As quantum dots”. Phys. Rev. B 84 (4 July
2011), p. 041304.

E. A. Chekhovich, M. M. Glazov, A. B. Krysa, M. Hopkinson, P. Senellart,
A. Lemaitre, M. S. Skolnick, and A. I. Tartakovskii. “Element-sensitive mea-
surement of the hole-nuclear spin interaction in quantum dots”. Nat. Phys. 9.2
(Feb. 2013), pp. 74-78.

E. A. Chekhovich, M. N. Makhonin, A. I. Tartakovskii, A. Yacoby, H. Bluhm,
K. C. Nowack, and L. M. K. Vandersypen. “Nuclear spin effects in semiconductor
quantum dots.” Nature materials 12.6 (2013), pp. 494-504.

E. A. Chekhovich, M. Hopkinson, M. S. Skolnick, and A. I. Tartakovskii.
“Quadrupolar induced suppression of nuclear spin bath fluctuations in self-
assembled quantum dots”. Nat. Commun. 6 (2014), pp. 1-7.

David J. Christle, Abram L. Falk, Paolo Andrich, Paul V. Klimov, Jawad
Ul Hassan, Nguyen T. Son, Erik Janzen, Takeshi Ohshima, and David D.

Awschalom. “Isolated electron spins in silicon carbide with millisecond coherence
times”. NATURE MATERIALS 14.2 (Feb. 2015), pp. 160-163.

J. Ignacio Cirac and Peter Zoller. “Goals and opportunities in quantum simula-
tion”. NATURE PHYSICS 8.4 (Apr. 2012), pp. 264-266.

Susan M. Clark, Kai-Mei C. Fu, Qiang Zhang, Thaddeus D. Ladd, Colin Stanley,
and Yoshihisa Yamamoto. “Ultrafast Optical Spin Echo for Electron Spins in
Semiconductors”. Phys. Rev. Lett. 102 (24 June 2009), p. 247601.

C. Cohen-Tannoudji and A. Kastler. “Optical Pumping”. In: Progress in Optics.
Ed. by E. Wolf. Vol. 5. North-Holland, Amsterdam, 1966. Chap. I, pp. 3-78.

J. S. Colton, T. A. Kennedy, A. S. Bracker, and D. Gammon. “Microsecond
spin-flip times in n — GaAs measured by time-resolved polarization of photolu-
minescence”. Phys. Rev. B 69 (12 Mar. 2004), p. 121307.

J. S. Colton, D. Meyer, K. Clark, D. Craft, J. Cutler, T. Park, and P. White.
“Long-lived electron spins in a modulation doped (100) GaAs quantum well”.
Journal of Applied Physics 112.8, 084307 (2012).

M. Czerny and A.F. Turner. “Uber den Astigmatismus bei Spiegelspektrome-
tern”. German. Zeitschrift fir Physik 61.11-12 (1930), pp. 792-797.

Raymond Damadian. “Tumor Detection by Nuclear Magnetic Resonance”.
Science 171.3976 (1971), pp. 1151-1153. eprint: http://science.sciencemag.
org/content/171/3976/1151.full.pdf.

R Damadian, M Goldsmith, and L Minkoff. “NMR in cancer: XVI. FONAR
image of the live human body”. Physiological chemistry and physics 9.1 (1977),
pp- 97-100, 108.


http://science.sciencemag.org/content/171/3976/1151.full.pdf
http://science.sciencemag.org/content/171/3976/1151.full.pdf

116

Bibliography

[De 10]

[Dem11]

[Dir26]

[DiV00]

[Dya08)]

[Dya84]

[Dzh02]

[Ell54]

[Eps01]

[Fer26]

[Fey13]

[Fey82]
[Fie39)]

[Fle84]

K. De Greve, S. M. Clark, D. Sleiter, K. Sanaka, T. D. Ladd, M. Panfilova,
A. Pawlis, K. Lischka, and Y. Yamamoto. “Photon antibunching and magne-

tospectroscopy of a single fluorine donor in ZnSe”. Applied Physics Letters 97.24
(2010).

W. Demtréder. Laserspektroskopie 1: Grundlagen. Springer Berlin Heidelberg,
2011.

P. A. M. Dirac. “On the Theory of Quantum Mechanics”. Proceedings of the
Royal Society of London A: Mathematical, Physical and Engineering Sciences
112.762 (1926), pp. 661-677.

David P. DiVincenzo. “The Physical Implementation of Quantum Computation”.
Fortschritte der Physik 48.9-11 (2000), pp. 771-783.

Mikhail I. Dyakonov. “Basics of Semiconductor and Spin Physics”. In: Spin
Physics in Semiconductors. Ed. by Mikhail I. Dyakonov. Berlin: Springer-Verlag,
2008. Chap. 1.

Mikhail I. Dyakonov and Vladimir I. Perel. “Theory of Optical Spin Orientation
of Electrons and Nuclei in Semiconductors”. In: Optical Orientation. Ed. by F.
Meier and B.P. Zakharchenya. Modern Problems in Condensed Matter Sciences.
Amsterdam: North-Holland, 1984. Chap. 2, p. 15.

R. I. Dzhioev, V. L. Korenev, I. A. Merkulov, B. P. Zakharchenya, D. Gammon,
Al L. Efros, and D. S. Katzer. “Manipulation of the Spin Memory of Electrons
in n-GaAs”. Phys. Rev. Lett. 88 (25 June 2002), p. 256801.

R. J. Elliott. “Theory of the Effect of Spin-Orbit Coupling on Magnetic Reso-
nance in Some Semiconductors”. Phys. Rev. 96 (2 Oct. 1954), pp. 266-279.

R. J. Epstein, D. T. Fuchs, W. V. Schoenfeld, P. M. Petroff, and D. D. Awschalom.
“Hanle effect measurements of spin lifetimes in InAs self-assembled quantum
dots”. Applied Physics Letters 78.6 (2001), pp. 733-735.

E. Fermi. “Zur Quantelung des idealen einatomigen Gases”. Zeitschrift fiir
Physik 36.11-12 (1926), pp. 902-912.

R.P. Feynman, Feynman Richard P Sands Matthew L Leighton Robert B, R.B.
Leighton, and M. Sands. “The Feynman Lectures on Physics, Desktop Edition
Volume II: The New Millennium Edition”. In: Feynman Lectures on Physics.
Basic Books, 2013. Chap. 37, p. 13.

Richard P Feynman. “Simulating physics with computers”. International journal
of theoretical physics 21.6 (1982), pp. 467-488.

Markus Fierz. “Uber die relativistische Theorie kraftefreier Teilchen mit be-
liebigem Spin”. Helvetica Physica Acta 12 (1939).

V. G. Fleisher and I.A. Merkulov. “Optical orientation of the Coupled Electron-
Nuclear Spin System of a Semiconductor”. In: Optical Orientation. Ed. by F.
Meier and B.P. Zakharchenya. Modern Problems in Condensed Matter Sciences.
Amsterdam: North-Holland, 1984. Chap. 5.



Bibliography 117

[F1i10]

[Frall]

[Fra61]

[FRS97]

[Fu06]

[Gab07]

[Ger10]

[Ger22a]

[Ger22b)]

[Glo12]

[Gre06a]

[Gre06b]

K. Flisinski, I. Ya. Gerlovin, I. V. Ignatiev, M. Yu. Petrov, S. Yu. Verbin, D. R.
Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer. “Optically detected magnetic
resonance at the quadrupole-split nuclear states in (In,Ga)As/GaAs quantum
dots”. Phys. Rev. B 82 (8 Aug. 2010), p. 081308.

F. Fras, B. Eble, P. Desfonds, F. Bernardot, C. Testelin, M. Chamarro, A. Miard,
and A. Lemaitre. “Hole-spin initialization and relaxation times in InAs/GaAs
quantum dots”. Phys. Rev. B 84 (12 Sept. 2011), p. 125431.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich. “Generation of
Optical Harmonics”. Phys. Rev. Lett. 7 (4 Aug. 1961), pp. 118-119.

J. Larmor D.Sc. F.R.S. “LXIII. On the theory of the magnetic influence on
spectra; and on the radiation from moving ions”. Philosophical Magazine Se-
ries 5 44.271 (1897), pp. 503-512. eprint: http://dx.doi.org/10.1080/
14786449708621095.

Kai-Mei C. Fu, Wenzheng Yeo, Susan Clark, Charles Santori, Colin Stanley,
M. C. Holland, and Yoshihisa Yamamoto. “Millisecond spin-flip times of donor-
bound electrons in GaAs”. Phys. Rev. B 74 (12 Sept. 2006), p. 121304.

G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and B. Odom. “Erratum: New
Determination of the Fine Structure Constant from the Electron g Value and
QED [Phys. Rev. Lett. 97 , 030802 (2006)]”. Phys. Rev. Lett. 99 (3 July 2007),
p. 039902.

C. Gerthsen and D. Meschede. Gerthsen Physik. Springer-Lehrbuch. Springer
Berlin Heidelberg, 2010.

Walther Gerlach and Otto Stern. “Das magnetische Moment des Silberatoms”.
Zeitschrift fiur Physik 9.1 (1922), pp. 353-355.

Walther Gerlach and Otto Stern. “Der experimentelle Nachweis der Rich-
tungsquantelung im Magnetfeld”. Zeitschrift fir Physik 9.1 (1922), pp. 349—
352.

Glosser.ca. Bloch sphere; a geometrical representation of a two-level quantum
system. Rendered with Asymptote. Dec. 19, 2012. URL: https://commons .
wikimedia.org/wiki/File:Bloch_Sphere.svg (visited on 12/02/2016).

A. Greilich, R. Oulton, E. A. Zhukov, I. A. Yugova, D. R. Yakovlev, M. Bayer,
A. Shabaev, Al. L. Efros, I. A. Merkulov, V. Stavarache, D. Reuter, and A.
Wieck. “Optical Control of Spin Coherence in Singly Charged (In, Ga)As/GaAs
Quantum Dots”. Phys. Rev. Lett. 96 (22 June 2006), p. 227401.

A. Greilich, D. R. Yakovlev, A. Shabaev, Al. L. Efros, I. A. Yugova, R. Oulton,
V. Stavarache, D. Reuter, A. Wieck, and M. Bayer. “Mode Locking of Electron
Spin Coherences in Singly Charged Quantum Dots”. Science 313.5785 (2006),
pp. 341-345. eprint: http://science.sciencemag.org/content/313/5785/
341.full.pdf.


http://dx.doi.org/10.1080/14786449708621095
http://dx.doi.org/10.1080/14786449708621095
https://commons.wikimedia.org/wiki/File:Bloch_Sphere.svg
https://commons.wikimedia.org/wiki/File:Bloch_Sphere.svg
http://science.sciencemag.org/content/313/5785/341.full.pdf
http://science.sciencemag.org/content/313/5785/341.full.pdf

118

Bibliography

[Grel2]

[Gril2]
[Grn77]

[Grul6al

[Grul6b]

[Grul6c]

[Grul6d]

[Grul6e]

[Hah50]
[Han07]

[Han24]

[Hap72]

[Har(2]

[Har64]

[HeiO7]

A. Greilich, A. Pawlis, F. Liu, O. A. Yugov, D. R. Yakovlev, K. Lischka, Y.
Yamamoto, and M. Bayer. “Spin dephasing of fluorine-bound electrons in ZnSe”.
Phys. Rev. B 85 (12 Mar. 2012), p. 121303.

D.J. Griffiths. In: Quantenmechanik. Always learning. Pearson, 2012. Chap. 4.

E. I. Grncharova and V. I. Perel. “Relaxation of Nulear Spins Interacting With
Holes in Semiconductors”. Soviet Physics-Semiconductors 11.9 (1977), pp. 997—
1000.

M. Grundmann. The Physics of Semiconductors: An Introduction Including
Nanophysics and Applications. Graduate Texts in Physics. Springer International
Publishing, 2016.

Marius Grundmann. “Crystals”. In: The Physics of Semiconductors: An Intro-
duction Including Nanophysics and Applications. Cham: Springer International
Publishing, 2016, pp. 41-80.

Marius Grundmann. “Electronic Defect States”. In: The Physics of Semiconduc-
tors: An Introduction Including Nanophysics and Applications. Cham: Springer
International Publishing, 2016, pp. 203—253.

Marius Grundmann. “Heterostructures”. In: The Physics of Semiconductors:
An Introduction Including Nanophysics and Applications. Cham: Springer Inter-
national Publishing, 2016. Chap. 12, pp. 399-435.

Marius Grundmann. “Optical Properties”. In: The Physics of Semiconduc-
tors: An Introduction Including Nanophysics and Applications. Cham: Springer
International Publishing, 2016. Chap. 9, pp. 291-341.

E. L. Hahn. “Spin Echoes”. Phys. Rev. 80 (4 Nov. 1950), pp. 580-594.

R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vander-
sypen. “Spins in few-electron quantum dots”. Rev. Mod. Phys. 79 (4 Oct. 2007),
pp. 1217-1265.

Wilhelm Hanle. “Uber magnetische Beeinflussung der Polarisation der Reso-
nanzfluoreszenz”. German. Zeitschrift fir Physik 30.1 (1924), pp. 93-105.

William Happer. “Optical Pumping”. Rev. Mod. Phys. 44 (2 Apr. 1972), pp. 169—
249.

Robin K. Harris, Edwin D. Becker, Sonia M. Cabral De Menezes, Robin Good-
fellow, and Pierre Granger. “NMR nomenclature: Nuclear spin properties and
conventions for chemical shifts (IUPAC recommendations 2001)”. Concept.
Magnetic Res. 14.5 (2002), pp. 326-346.

L. E. Hargrove, R. L. Fork, and M. A. Pollack. “LOCKING OF He-Ne LASER
MODES INDUCED BY SYNCHRONOUS INTRACAVITY MODULATION".
Applied Physics Letters 5.1 (1964), pp. 4-5.

D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. Finley, D. Bulaev,
and Daniel Loss. “Observation of extremely slow hole spin relaxation in self-
assembled quantum dots”. Phys. Rev. B 76 (24 Dec. 2007), p. 241306.



Bibliography 119

[Heilba)

[Heil5b]

[Heil6]

[How12]
[J2h00]
[Kal0g]
[Kap38]
[Kav0s]

[Kell5]

[Ken06]

[Kik9s]

[Kim12]

[Kni01]

[Kni49]

F. Heisterkamp, A. Greilich, E. A. Zhukov, E. Kirstein, T. Kazimierczuk, V. L.
Korenev, I. A. Yugova, D. R. Yakovlev, A. Pawlis, and M. Bayer. “Inhomoge-
neous nuclear spin polarization induced by helicity-modulated optical excitation
of fluorine-bound electron spins in ZnSe”. Phys. Rev. B 92 (24 Dec. 2015),
p. 245441.

F. Heisterkamp, E. A. Zhukov, A. Greilich, D. R. Yakovlev, V. L. Korenev,
A. Pawlis, and M. Bayer. “Longitudinal and transverse spin dynamics of donor-
bound electrons in fluorine-doped ZnSe: Spin inertia versus Hanle effect”. Phys.
Rev. B 91 (23 June 2015), p. 235432.

F. Heisterkamp, E. Kirstein, A. Greilich, E. A. Zhukov, T. Kazimierczuk, D. R.
Yakovlev, A. Pawlis, and M. Bayer. “Dynamics of nuclear spin polarization
induced and detected by coherently precessing electron spins in fluorine-doped
ZnSe”. Phys. Rev. B 93 (8 Feb. 2016), p. 0814009.

R.A. Howard. “Dynamic Probabilistic Systems: Markov Models”. In: Dover
Books on Mathematics. Dover Publications, 2012, pp. 551-576.

J. Jahns. Photonik: Grundlagen, Komponenten und Systeme. De Gruyter, 2000.

V.K. Kalevich, K.V. Kavokin, and [.A. Merkulov. “Dynamic Nuclear Polarization
and Nuclear Fields”. In: Spin Physics in Semiconductors. Ed. by Mikhail 1.
Dyakonov. Berlin: Springer-Verlag, 2008. Chap. 11.

P. Kapitza. “Viscosity of Liquid Helium below the A-Point”. Nature 141 (1938),
pp. 74-74.

K. V. Kavokin. “Spin relaxation of localized electrons in n-type semiconductors”.
Semiconductor Science and Technology 23.11 (2008), p. 114009.

J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank,
J. Y. Mutus, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, I. -C.
Hoi, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, J.
Wenner, A. N. Cleland, and John M. Martinis. “State preservation by repetitive
error detection in a superconducting quantum circuit”. NATURFE 519.7541
(Mar. 2015), pp. 66-69.

T. A. Kennedy, A. Shabaev, M. Scheibner, Al. L. Efros, A. S. Bracker, and
D. Gammon. “Optical initialization and dynamics of spin in a remotely doped
quantum well”. Phys. Rev. B 73 (4 Jan. 2006), p. 045307.

J. M. Kikkawa and D. D. Awschalom. “Resonant Spin Amplification in n-Type
GaAs”. Phys. Rev. Lett. 80 (19 May 1998), pp. 4313-4316.

Y. M. Kim, D. Sleiter, K. Sanaka, Y. Yamamoto, J. Meijer, K. Lischka, and
A. Pawlis. “Semiconductor qubits based on fluorine implanted ZnMgSe/ZnSe
quantum-well nanostructures”. Phys. Rev. B 85 (8 Feb. 2012), p. 085302.

E Knill, R Laflamme, and GJ Milburn. “A scheme for efficient quantum compu-
tation with linear optics”. NATURE 409.6816 (Jan. 2001), pp. 46-52.

W. D. Knight. “Nuclear Magnetic Resonance Shift in Metals”. Phys. Rev. 76 (8
Oct. 1949), pp. 1259-1260.



120

Bibliography

[Koo03]

[Koo07]

[Korl1]

[Kuz13]

[Lad10]

[Lam64]

[Lei03]

[LevO1]

[Lia99]

[Lin16]

[L1096]

[Mak11]

[Mar90]

[Maul2]

Bert Koopmans. “Laser-Induced Magnetization Dynamics”. In: Spin Dynamics
in Confined Magnetic Structures II. Ed. by Burkard Hillebrands and Kamel
Ounadjela. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 256—-323.

Bert Koopmans. “Time-resolved Kerr-effect and Spin Dynamics in Itinerant
Ferromagnets”. In: Handbook of Magnetism and Advanced Magnetic Materials.
John Wiley & Sons, Ltd, 2007.

V. L. Korenev. “Multiple stable states of a periodically driven electron spin in a
quantum dot using circularly polarized light”. Phys. Rev. B 83 (23 June 2011),
p- 235429.

M. S. Kuznetsova, K. Flisinski, I. Ya. Gerlovin, I. V. Ignatiev, K. V. Kavokin,
S. Yu. Verbin, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer. “Hanle
effect in (In,Ga)As quantum dots: Role of nuclear spin fluctuations”. Phys. Rev.
B 87 (23 June 2013), p. 235320.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L.
O’Brien. “Quantum computers”. NATURE 464.7285 (Mar. 2010), pp. 45-53.

Willis E. Lamb. “Theory of an Optical Maser”. Phys. Rev. 134 (6A June 1964),
A1429-A1450.

D. Leibfried, R. Blatt, C. Monroe, and D. Wineland. “Quantum dynamics of
single trapped ions”. Rev. Mod. Phys. 75 (1 Mar. 2003), pp. 281-324.

M.H. Levitt. Spin Dynamics: Basics of Nuclear Magnetic Resonance. Wiley,
2001.

7.P. Liang and P.C. Lauterbur. Principles of Magnetic Resonance Imaging: A
Signal Processing Perspective. IEEE Press Series on Biomedical Engineering.
Wiley, 1999, p. 291.

Xiayu Linpeng, Todd Karin, M. V. Durnev, Russell Barbour, M. M. Glazov,
E. Ya. Sherman, S. P. Watkins, Satoru Seto, and Kai-Mei C. Fu. “Longitudinal
spin relaxation of donor-bound electrons in direct band-gap semiconductors”.
Phys. Rev. B 94 (12 Sept. 2016), p. 125401.

Seth Lloyd. “Universal Quantum Simulators”. Science 273.5278 (1996), pp. 1073—
1078. eprint: http://science.sciencemag.org/content/273/5278/1073.
full.pdf.

M. N. Makhonin, K. V. Kavokin, P. Senellart, A. Lemaitre, A. J. Ramsay, M. S.
Skolnick, and A. I. Tartakovskii. “Fast control of nuclear spin polarization in an
optically pumped single quantum dot”. Nat. Mater. 10.11 (2011), pp. 844-848.

Andrei Andreyevich Markov. “Ob odnom voproce DI Mendeleeva”. Zapiski
Imperatorskoi Akademii Nauk SP6 62 (1890), pp. 1-24.

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F.
Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac,
and M. D. Lukin. “Room-Temperature Quantum Bit Memory Exceeding One
Second”. Science 336.6086 (2012), pp. 1283-1286. eprint: http://science.
sciencemag.org/content/336/6086/1283.full.pdf.


http://science.sciencemag.org/content/273/5278/1073.full.pdf
http://science.sciencemag.org/content/273/5278/1073.full.pdf
http://science.sciencemag.org/content/336/6086/1283.full.pdf
http://science.sciencemag.org/content/336/6086/1283.full.pdf

Bibliography 121

[McRO7]
[Meig4]
[Mer02]
[Mer72]

[Moh15]

[Mom11]

[Mon11]

[Moo75]

[Mo098]

[Mot67]

[Muh14]

[Murl1]

[Neg06]

[Odo06]

D.W. McRobbie, E.A. Moore, M.J. Graves, and M.R. Prince. MRI from Picture
to Proton. Cambridge University Press, 2007.

F. Meier and B.P. Zakharchenya. Optical orientation. Modern problems in
condensed matter sciences. North-Holland, 1984.

I. A. Merkulov, Al. L. Efros, and M. Rosen. “Electron spin relaxation by nuclei
in semiconductor quantum dots”. Phys. Rev. B 65 (20 Apr. 2002), p. 205309.

J. L. Merz, H. Kukimoto, K. Nassau, and J. W. Shiever. “Optical Properties of
Substitutional Donors in ZnSe”. Phys. Rev. B 6 (2 July 1972), pp. 545-556.

P. J. Mohr, B. N. Taylor, and D. B. Newell. The 201/ CODATA Recommended
Values of the Fundamental Physical Constants (Web Version 7.1). Website. Feb.
2015.

Koichi Momma and Fujio Izumi. “ VESTAS for three-dimensional visualization
of crystal, volumetric and morphology data”. Journal of Applied Crystallography
44.6 (Dec. 2011), pp. 1272-1276.

Thomas Monz, Philipp Schindler, Julio T. Barreiro, Michael Chwalla, Daniel
Nigg, William A. Coish, Maximilian Harlander, Wolfgang Hénsel, Markus
Hennrich, and Rainer Blatt. “14-Qubit Entanglement: Creation and Coherence”.
Phys. Rev. Lett. 106 (13 Mar. 2011), p. 130506.

G. E. Moore. “Progress in digital integrated electronics”. IEDM Tech. Digest
(1975), pp. 11-13.

GE Moore. “Cramming more components onto integrated circuits (Reprinted
from Electronics, pg 114-117, April 19, 1965)”. PROCEEDINGS OF THE IEEE
86.1 (Jan. 1998), pp. 82-85.

NF Mott. “Electrons in disordered structures”. Advances in Physics 16.61 (1967),
pp- 49-144.

Juha T. Muhonen, Juan P. Dehollain, Arne Laucht, Fay E. Hudson, Rachpon
Kalra, Takeharu Sekiguchi, Kohei M. Itoh, David N. Jamieson, Jeffrey C. Mc-
Callum, Andrew S. Dzurak, and Andrea Morello. “Storing quantum information
for 30 seconds in a nanoelectronic device”. NATURE NANOTECHNOLOGY
9.12 (Dec. 2014), pp. 986-991.

Frank Murmann. Deutsch: Das Bild beschreibt die Drehung der Polarisation-
sachse um den Winkel Theta, sowie die daraus resultierende Elliptizitdt. Ed. by
Frank Murmann. Sept. 23, 2011. URL: https://commons . wikimedia . org/
wiki/File:Kerrwinkel.svg (visited on 01/03/2017).

C. Negrevergne, T. S. Mahesh, C. A. Ryan, M. Ditty, F. Cyr-Racine, W. Power,
N. Boulant, T. Havel, D. G. Cory, and R. Laflamme. “Benchmarking Quantum
Control Methods on a 12-Qubit System”. Phys. Rev. Lett. 96 (17 May 2006),
p- 170501.

B. Odom, D. Hanneke, B. D’Urso, and G. Gabrielse. “New Measurement of the
Electron Magnetic Moment Using a One-Electron Quantum Cyclotron”. Phys.
Rev. Lett. 97 (3 July 2006), p. 030801.


https://commons.wikimedia.org/wiki/File:Kerrwinkel.svg
https://commons.wikimedia.org/wiki/File:Kerrwinkel.svg

122

Bibliography

[Ove53]

[Pag81]

[Pag82]

[Pan12]

[Pasl7]

[Pau2b]

[Pau40]

[Paw00]

[Paw08]

[Paw(09]

[Pawl1]

[Pet08]

[Pin57]

Albert W. Overhauser. “Polarization of Nuclei in Metals”. Phys. Rev. 92 (2 Oct.
1953), pp. 411-415.

Daniel Paget. “Optical detection of NMR in high-purity GaAs under optical
pumping: Efficient spin-exchange averaging between electronic states”. Phys.
Rev. B 24 (7 Oct. 1981), pp. 3776-3793.

Daniel Paget. “Optical detection of NMR, in high-purity GaAs: Direct study of
the relaxation of nuclei close to shallow donors”. Phys. Rev. B 25 (7 Apr. 1982),
pp- 4444-4451.

Jian-Wei Pan, Zeng-Bing Chen, Chao-Yang Lu, Harald Weinfurter, Anton
Zeilinger, and Marek Zukowski. “Multiphoton entanglement and interferometry”.
Rev. Mod. Phys. 84 (2 May 2012), pp. 777-838.

Riidiger Paschotta. FElectro-optic Modulators. Jan. 4, 2017. URL: https://
www . rp - photonics . com/ electro _optic _modulators . html (visited on
01/04/2017).

W. Pauli. “Uber den Zusammenhang des Abschlusses der Elektronengruppen
im Atom mit der Komplexstruktur der Spektren”. Zeitschrift fiir Physik 31.1
(1925), pp. 765-783.

W. Pauli. “The Connection Between Spin and Statistics”. Phys. Rev. 58 (8 Oct.
1940), pp. 716-722.

A. Pawlis, K. Sanaka, S. Gotzinger, Y. Yamamoto, and K. Lischka. “Investigation
of excitons bound to fluorine donors in ZnSe”. Semiconductor Science and
Technology 21.10 (2006), p. 1412.

A. Pawlis, M. Panfilova, D. J. As, K. Lischka, K. Sanaka, T. D. Ladd, and
Y. Yamamoto. “Lasing of donor-bound excitons in ZnSe microdisks”. Phys. Rev.
B 77 (15 Apr. 2008), p. 153304.

A. Pawlis, M. Panfilova, K. Sanaka, T.D. Ladd, D.J. As, K. Lischka, and Y.
Yamamoto. “Low-threshold ZnSe microdisk laser based on fluorine impurity
bound-exciton transitions”. Microelectronics Journal 40.2 (2009). Wide Band

Gap Semiconductor Nanostructures for Optoelectronic Applications, pp. 256—
258.

A. Pawlis, T. Berstermann, C. Briiggemann, M. Bombeck, D. Dunker, D. R.
Yakovlev, N. A. Gippius, K. Lischka, and M. Bayer. “Exciton states in shallow

ZnSe/(Zn,Mg)Se quantum wells: Interaction of confined and continuum electron
and hole states”. Phys. Rev. B 83 (11 Mar. 2011), p. 115302.

M. Yu. Petrov, I. V. Ignatiev, S. V. Poltavtsev, A. Greilich, A. Bauschulte,
D. R. Yakovlev, and M. Bayer. “Effect of thermal annealing on the hyperfine
interaction in InAs/GaAs quantum dots”. Phys. Rev. B 78 (4 July 2008),
p. 045315.

David Pines, John Bardeen, and Charles P. Slichter. “Nuclear Polarization and
Impurity-State Spin Relaxation Processes in Silicon”. Phys. Rev. 106 (3 May
1957), pp. 489-498.


https://www.rp-photonics.com/electro_optic_modulators.html
https://www.rp-photonics.com/electro_optic_modulators.html

Bibliography 123

[Plal3]

[Poc94]

[Pol09]

[Poub51]

[Pur46]

[Rab37]

[Rab38]

[Rab39]

[Ram49]
[Ram50]
[Ram95]

[Sael3]

[San06]

Jarryd J. Pla, Kuan Y. Tan, Juan P. Dehollain, Wee H. Lim, John J. L. Morton,
Floris A. Zwanenburg, David N. Jamieson, Andrew S. Dzurak, and Andrea
Morello. “High-fidelity readout and control of a nuclear spin qubit in silicon”.
NATURE 496.7445 (Apr. 2013), pp. 334-338.

F. Pockels. “Ueber den Einfluss des elektrostatischen Feldes auf das optis-
che Verhalten piezoelektrischer Krystalle. Mit 14 Textfiguren”. Abhandlungen
der Gesellschaft der Wissenschaften in Gottingen, Mathematisch-Physikalische
Klasse 39 (1894), pp. 1-204.

Alberto Politi, Jonathan C. F. Matthews, and Jeremy L. O’Brien. “Shor’s
Quantum Factoring Algorithm on a Photonic Chip”. Science 325.5945 (2009),
pp. 1221-1221. eprint: http://science . sciencemag. org/content/ 325/
5945/1221 . full.pdf.

R. V. Pound. “Nuclear Spin Relaxation Times in Single Crystals of LiF”. Phys.
Rev. 81 (1 Jan. 1951), pp. 156-156.

E. M. Purcell, H. C. Torrey, and R. V. Pound. “Resonance Absorption by
Nuclear Magnetic Moments in a Solid”. Phys. Rev. 69 (1-2 Jan. 1946), pp. 37—
38.

I. I. Rabi. “Space Quantization in a Gyrating Magnetic Field”. Phys. Rev. 51
(8 Apr. 1937), pp. 652-654.

I. I. Rabi, J. R. Zacharias, S. Millman, and P. Kusch. “A New Method of
Measuring Nuclear Magnetic Moment”. Phys. Rev. 53 (4 Feb. 1938), pp. 318
318.

I. I. Rabi, S. Millman, P. Kusch, and J. R. Zacharias. “The Molecular Beam
Resonance Method for Measuring Nuclear Magnetic Moments. The Magnetic
Moments of 3L16, 3Li7 and gF197. Phys. Rev. 55 (6 Mar. 1939), pp. 526-535.

Norman F. Ramsey. “A New Molecular Beam Resonance Method”. Phys. Reuv.
76 (7 Oct. 1949), pp. 996-996.

Norman F. Ramsey. “A Molecular Beam Resonance Method with Separated
Oscillating Fields”. Phys. Rev. 78 (6 June 1950), pp. 695-699.

N.F. Ramsey. “Successive oscillatory fields at radio to optical frequencies”.
English. Appl. Phys. B 60.2-3 (1995), pp. 85-88.

Kamyar Saeedi, Stephanie Simmons, Jeff Z. Salvail, Phillip Dluhy, Helge Rie-
mann, Nikolai V. Abrosimov, Peter Becker, Hans-Joachim Pohl, John J. L.
Morton, and Mike L. W. Thewalt. “Room-Temperature Quantum Bit Storage
Exceeding 39 Minutes Using lonized Donors in Silicon-28”. Science 342.6160
(2013), pp. 830-833. eprint: http://science.sciencemag.org/content/342/
6160/830.full.pdf.

H. Sanada, Y. Kondo, S. Matsuzaka, K. Morita, C. Y. Hu, Y. Ohno, and H.
Ohno. “Optical Pump-Probe Measurements of Local Nuclear Spin Coherence in
Semiconductor Quantum Wells”. Phys. Rev. Lett. 96 (6 Feb. 2006), p. 067602.


http://science.sciencemag.org/content/325/5945/1221.full.pdf
http://science.sciencemag.org/content/325/5945/1221.full.pdf
http://science.sciencemag.org/content/342/6160/830.full.pdf
http://science.sciencemag.org/content/342/6160/830.full.pdf

124

Bibliography

[San09]

[San12]

[Sch11]

[Seol6]

[Sha03]

[Sho94]

[Slel3]

[Stel2]

[Ste79]

[St617)
[Syp11a]

[Sypllb]

Kaoru Sanaka, Alexander Pawlis, Thaddeus D. Ladd, Klaus Lischka, and Yoshi-
hisa Yamamoto. “Indistinguishable Photons from Independent Semiconductor
Nanostructures”. Phys. Rev. Lett. 103 (5 July 2009), p. 053601.

Kaoru Sanaka, Alexander Pawlis, Thaddeus D. Ladd, Darin J. Sleiter, Klaus Lis-
chka, and Yoshihisa Yamamoto. “Entangling Single Photons from Independently
Tuned Semiconductor Nanoemitters”. Nano Lett. 12.9 (2012), pp. 4611-4616.

A. Schwan, B.-M. Meiners, A. B. Henriques, A. D. B. Maia, A. A. Quivy, S.
Spatzek, S. Varwig, D. R. Yakovlev, and M. Bayer. “Dispersion of electron g-
factor with optical transition energy in (In,Ga)As/GaAs self-assembled quantum
dots”. Applied Physics Letters 98.23 (2011), p. 233102. eprint: http://dx.doi.
org/10.1063/1.3588413.

Hosung Seo, Abram L. Falk, Paul V. Klimov, Kevin C. Miao, Giulia Galli, and
David D. Awschalom. “Quantum decoherence dynamics of divacancy spins in
silicon carbide”. NATURE COMMUNICATIONS 7 (Sept. 2016).

A. Shabaev, Al. L. Efros, D. Gammon, and I. A. Merkulov. “Optical readout
and initialization of an electron spin in a single quantum dot”. Phys. Rev. B 68
(20 Nov. 2003), p. 201305.

P. W. Shor. “Algorithms for quantum computation: discrete logarithms and
factoring”. In: Proceedings 35th Annual Symposium on Foundations of Computer
Science. Nov. 1994, pp. 124-134.

Darin J. Sleiter, Kaoru Sanaka, Y. M. Kim, Klaus Lischka, Alexander Pawlis,
and Yoshihisa Yamamoto. “Optical Pumping of a Single Electron Spin Bound
to a Fluorine Donor in a ZnSe Nanostructure”. Nano Lett. 13.1 (2013), pp. 116
120.

M. Steger, K. Saeedi, M. L. W. Thewalt, J. J. L. Morton, H. Riemann, N. V.
Abrosimov, P. Becker, and H.-J. Pohl. “Quantum Information Storage for over
180 s Using Donor Spins in a 28Si “Semiconductor Vacuum””. Science 336.6086
(2012), pp. 1280-1283. eprint: http://science.sciencemag.org/content/
336/6086/1280.full.pdf.

Jozef Stefan and Kaiserlich-Kéniglichen Hof und Staatsdruckerie. Uber die
Beziehung zwischen der Wairmestrahlung und der Temperatur. Aus der kk Hof-
und Staatsdruckerei, 1879.

Thomas Stohr. “Private communication”. 2017. unpublished.

M. Syperek, D. R. Yakovlev, I. A. Yugova, J. Misiewicz, I. V. Sedova, S. V.
Sorokin, A. A. Toropov, S. V. Ivanov, and M. Bayer. “Erratum: Long-lived

electron spin coherence in CdSe/Zn(S,Se) self-assembled quantum dots [Phys.
Rev. B 84 , 085304 (2011)]”. Phys. Rev. B 84 (15 Oct. 2011), p. 159903

M. Syperek, D. R. Yakovlev, I. A. Yugova, J. Misiewicz, I. V. Sedova, S. V.
Sorokin, A. A. Toropov, S. V. Ivanov, and M. Bayer. “Long-lived electron spin
coherence in CdSe/Zn(S,Se) self-assembled quantum dots”. Phys. Rev. B 84 (8
Aug. 2011), p. 085304.


http://dx.doi.org/10.1063/1.3588413
http://dx.doi.org/10.1063/1.3588413
http://science.sciencemag.org/content/336/6086/1280.full.pdf
http://science.sciencemag.org/content/336/6086/1280.full.pdf

Bibliography 125

[Tes08]

[Tho95]

[Tral2]
[Tra97]

[Tyr03]

[VanO1]

[VekT76]

[Wall6]
[Wes94]

[Wid15]

[Wo024]

[YakO1]

[Yakog)]

C. Testelin, B. Eble, F. Bernardot, G. Karczewski, and M. Chamarro. “Signature
of the Overhauser field on the coherent spin dynamics of donor-bound electrons
in a single CdTe quantum well”. Phys. Rev. B 77 (23 June 2008). Useful article
to calculate maximal Overhauser field, p. 235306.

R. J. Thomas, Benjamin Rockwell, H. R. Chandrasekhar, Meera Chandrasekhar,
A. K. Ramdas, M. Kobayashi, and R. L. Gunshor. “Temperature dependence
of strain in ZnSe(epilayer)/GaAs(epilayer)”. Journal of Applied Physics 78.11
(1995), pp. 6569-6573.

Andreas Trabesinger. “Quantum simulation”. Nat. Phys. 8 (2012), p. 263.

A. Trampert, O. Brandt, and K.H. Ploog. “Chapter 7 Crystal Structure of
Group III Nitrides”. In: Gallium Nitride (GaN) I. Ed. by Jacques I. Pankove
and Theodore D. Moustakas. Vol. 50. Semiconductors and Semimetals. Elsevier,
1997, pp. 167-192.

A. M. Tyryshkin, S. A. Lyon, A. V. Astashkin, and A. M. Raitsimring. “Electron
spin relaxation times of phosphorus donors in silicon”. Phys. Rev. B 68 (19 Nov.
2003), p. 193207.

LMK Vandersypen, M Steffen, G Breyta, CS Yannoni, MH Sherwood, and IL
Chuang. “Experimental realization of Shor’s quantum factoring algorithm using
nuclear magnetic resonance”. NATURE 414.6866 (Dec. 2001), pp. 883-887.

VL Vekua, RI Dzhioev, BP Zakharchenya, and VG Fleisher. “Hanle effect
in optical orientation of electrons in n-type semiconductors”. Soviet Physics-
Semiconductors 10.2 (1976), pp. 210-212.

M. Mitchell Waldrop. “The chips are down for Moore’s law”. Nature News
530.7589 (2016), p. 144.

R.S. Westfall. The Life of Isaac Newton. Canto original series. Cambridge
University Press, 1994, p. 106.

Matthias Widmann, Sang-Yun Lee, Torsten Rendler, Nguyen Tien Son, Helmut
Fedder, Seoyoung Paik, Li-Ping Yang, Nan Zhao, Sen Yang, lan Booker, Andrej
Denisenko, Mohammad Jamali, S. Ali Momenzadeh, Ilja Gerhardt, Takeshi
Ohshima, Adam Gali, Erik Janzen, and Joerg Wrachtrup. “Coherent control of
single spins in silicon carbide at room temperature”. NATURE MATERIALS
14.2 (Feb. 2015), pp. 164-168.

R. W. Wood and A. Ellett. “Polarized Resonance Radiation in Weak Magnetic
Fields”. Phys. Rev. 24 (3 Sept. 1924), pp. 243-254.

D.R. Yakovlev, G.V. Astakhov, W. Ossau, S.A. Crooker, N. Miura, A. Waag,
N.A. Gippius, A.Yu. Sivachenko, and A.B. Dzyubenko. “Trions in ZnSe-Based
Quantum Wells Probed by 50 T Magnetic Fields”. physica status solidi (b)
227.2 (2001), pp. 353-363.

D. R. Yakovlev and M. Bayer. “Coherent Spin Dynamics of Carriers”. In: Spin
Physics in Semiconductors. Ed. by Mikhail I. Dyakonov. Berlin, Heidelberg;:
Springer Berlin Heidelberg, 2008, pp. 135-177.



126 Bibliography

[Yos83]  S. Yoshida, S. Misawa, and S. Gonda. “Improvements on the electrical and
luminescent properties of reactive molecular beam epitaxially grown GaN films
by using AIN-coated sapphire substrates”. Applied Physics Letters 42.5 (1983),
pp. 427-429. eprint: http://aip.scitation.org/doi/pdf/10.1063/1.93952.

[Yu96] Peter Y. Yu and Manuel Cardona. “Electronic Band Structures”. In: Fundamen-
tals of Semiconductors: Physics and Materials Properties. Berlin, Heidelberg;:
Springer Berlin Heidelberg, 1996. Chap. 2, pp. 17-105.

[Yugl2] I. A. Yugova, M. M. Glazov, D. R. Yakovlev, A. A. Sokolova, and M. Bayer.
“Coherent spin dynamics of electrons and holes in semiconductor quantum
wells and quantum dots under periodical optical excitation: Resonant spin
amplification versus spin mode locking”. Phys. Rev. B 85 (12 Mar. 2012),
p- 125304.

[Zee97]  Pieter Zeeman. “XXXII. On the influence of magnetism on the nature of the
light emitted by a substance”. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science 43.262 (1897), pp. 226-239.

[Zhul4]  E. A. Zhukov, A. Greilich, D. R. Yakovlev, K. V. Kavokin, I. A. Yugova, O. A.
Yugov, D. Suter, G. Karczewski, T. Wojtowicz, J. Kossut, V. V. Petrov, Yu. K.
Dolgikh, A. Pawlis, and M. Bayer. “All-optical NMR, in semiconductors provided
by resonant cooling of nuclear spins interacting with electrons in the resonant
spin amplification regime”. Phys. Rev. B 90 (8 Aug. 2014), p. 085311.

[Zhul7]  E. A. Zhukov, E. Kirstein, N. Kopteva, F. Heisterkamp, D. R. Yakovlev, V. L.
Korenev, I. A. Yugova, A. Pawlis, M. Bayer, and A. Greilich. “Quantization
of electron spin precession and reduction of spin dephasing through coupling

to nuclear bath in ZnSe:F”. In preparation for submission to Phys. Rev. Lett.
(2017).

[Zwid4] B Zwicker and P Scherrer. “Elektrooptische Eigenschaften der seignette-elektrischen
Kristalle KH2PO4 und KD2PO4”. Helv. Phys. Acta 17 (1944), p. 346.


http://aip.scitation.org/doi/pdf/10.1063/1.93952

127

List of Figures

2.1 Model of the Crystal Structure of ZnSe . . . . . ... ... ... ... ... 5
2.2 Band Structure of ZnSe . . . . . ... ... 7
2.3 Optical Selection Rules . . . . . . . .. ... .. ... ... ... . ...... 10
2.4 Scheme of Optically Excited Complexes . . . . . ... ... ... ...... 11
2.5 Interaction of Electron and Nuclear Spin Systems . . . . . . ... ... ... 16
2.6 Ilustration of the Spin-Lattice Relaxation Time . . . . . . . ... ... ... 18
2.7 Illustration of the Complex Kerr Rotation . . . . . ... .. ... ... ... 20
3.1 Schematic: Lower Part of the Sample Holder . . . . .. ... ... ..... 25
3.2 Circuit Diagram: Class AB RF Amplifier . . ... ... ... ... ..... 26
3.3 Schematic of the Test of the Pump Polarization . . . . . .. ... ... ... 27
3.4 Setup for Photoluminescence Measurements . . . . . . .. ... .. ..... 29
3.5 Schematic of the TRKR Setup . . . . .. ... ... ... ... ....... 31
3.6 TRKR Measurement for Sample #1 at Zero Magnetic Field . . . . . . . .. 32
3.7 Layer Structure of the Studied Samples . . . . . ... ... ... ... ... 32
3.8 Photoluminescence of Samples #1 and #2 . . . . . . .. .. ... ... ... 33
3.9 Schematic Illustration of RSA . . . . . . . . . .. ... ... ... ... 35
3.10 Schematic: Nuclear Spin Relaxation Time . . . . . . . ... ... ... ... 37
3.11 Schematic: ODNMR . . . . . . . . . . .. . 38
3.12 Schematic: Ramsey Fringes . . . . . .. .. . ... Lo 39
3.13 Hahn Echo Pulse Sequence . . . . . .. ... ... ... ... ... .. 40
3.14 Schematic: Relative Phase of RF Excitation . . . . . . . .. ... ... ... 41
4.1 Single PR Measurement for Sample #1 . . . . . ... .. ... ... ... 43
4.2 Fit of PR Measurement for Sample #1 . . . . . . ... ... ... ... .. 45
4.3 Polarization Recovery Curves at Different Pump Helicity Modulation Fre-
QUENCIES . . v v v v v e e e e e e e e e e e e 46
4.4 Tllustration of the Spin Inertia Effect . . . . . . .. .. .. ... ... ... 48
4.5 PR Amplitude in Dependence on the Modulation Frequency (Sample #1) . 50
4.6 Inverse Spin Lifetime in Dependence on Pump Power for Sample #1 . . . . 51

4.7 Spin Relaxation Time in Dependence on the Magnetic Field for Sample #1 52
4.8 PR Measurements Over an Extended Magnetic Field Range for Sample #1 53
4.9 PR Amplitude in Dependence on the Modulation frequency at Different

Magnetic Fields . . . . . . . . .. o L 54
4.10 PR Amplitude in Dependence on Modulation Frequency at Different Tem-
peratures . . . . ... L e e e e e e e 54

4.11 PR Amplitude in Dependence on the Modulation Frequency (Sample #2) . 55
4.12 Inverse Spin Lifetime in Dependence on the Pump Power for Sample #2 . . 56



128 List of Figures
5.1 RSA Spectra at Different Pump Powers . . . . . ... .. ... ....... 64
5.2 Determination of the RSA Peak Positions . . . .. .. ... ......... 65
5.3 RSA Spectra at Broader Range of Magnetic Field. . . . . . ... ... ... 66
5.4 Shift of RSA Peaks of Sample #2 in Dependence on the Magnetic Field . . 68
5.5 Shift of RSA Peaks of Sample #1 in Dependence on the Temperature . . . 69
5.6 RSA Spectra of Sample #2 in Dependence on the Degree of Circular Polar-

ization . . . . . L. 70
5.7 Single TRKR Spectrum (Sample #2) . . . . . . .. ... ... .. ... ... 72
5.8 Contour Plot: TRKR Spectra of Sample #2 . . . . . . ... ... ... ... 73
5.9 Calculated S, and Shift From RSA and TRKR Spectra . . . ... ... .. 74
5.10 ODNMR Measurements for Sample #2 . . . . . ... ... ... ... ... 76
5.11 Illustration of the Transition to the Rotating Frame System . . . . . . . .. 7
5.12 Example of an RF Measurement . . . . ... ... ... ... ........ 78
5.13 Effect of RF Excitation in Phase With the Helicity Modulation on the Peak

Shift . . . . 79
5.14 Ilustration of the Fields and Their Dependence on the Phase in the RFS . 80
5.15 Effect of RF excitation on RSA spectra . . . . . .. ... ... .. ..... 82
5.16 Illustration of the Nuclear and Electronic Fields in Both the LFS and the RFS 84
5.17 RSA Peak Shift and Nuclear Fields . . . . . ... .. ... ... ....... 86
5.18 Different Fields as a Function of the Distance From the Donor . . . .. .. 89
5.19 Calculated Magnetic Field Dependence of the Average Spin Polarization

Components . . . . . . . . ..o 91
6.1 Nuclear Spin Relaxation Time: Example Measurement for Sample #2 . . . 96
6.2 Nuclear Spin Relaxation Time in Dependence on the Magnetic Field . . . . 97
6.3 Nuclear Spin Relaxation Time in the Dark . . . . . ... .. ... ... ... 98
6.4 Optically Detected NMR to Determine the Resonance Frequency . . . . . . 100
6.5 Rabi Oscillations of the Nuclear Spins . . . . . . ... .. ... ....... 101
6.6 Ramsey Fringes of the Nuclear Spins . . . . . . . .. ... ... ....... 103
6.7 Bloch Sphere . . . . . . . .. 104
6.8 KR Signal After Hahn Echo Sequence . . . . . . . ... ... ... ..... 105
6.9 Nuclear Spin Echo . . . . . . . . .. ... . 106



Abbreviations
A/2 plate half-wave plate
A/4 plate quarter-wave plate
ADC analog-digital converter
AFG arbitrary function generator
AOM acousto-optical modulator
BBO beta barium borate
BNC Bayonet Neill Concelman
BS beam splitter
CB conduction band
CCD charge-coupled device
cf. from Latin confer="“compare”
CW continuous-wave
DYX-HH  donor-bound exciton
DNP dynamic nuclear polarization
DTS dark-bright time-scanning spectroscopy
EOM electro-optical modulator
fcc face-centered cubic
FWHM full-width at half maximum
FX free exciton
GF neutral gray filter
Glan Glan-Taylor prism
HH heavy hole
HWHM half-width at half maximum
KLM Knill-Laflamme-Milburn
KR Kerr rotation
LFS laboratory frame system
LH light hole
MBE molecular beam epitaxy
MRI magnetic resonance imaging
NMR nuclear magnetic resonance
NSS nuclear spin system
ODNMR optically detected nuclear magnetic resonance
PBS polarizing beam splitter
PCD photoinduced circular dichroism
PEM photoelastic modulator
PL photoluminescence
PR polarization recovery
PSC phase synchronization condition

129



130 Abbreviations
QD quantum dot
QW quantum well
RF radio frequency
RFS rotating frame system
RSA resonant spin amplification
SH split-off hole
SHG second harmonic generation
SNR signal to noise ratio
T trion
TC time constant
TRKR time-resolved Kerr rotation
TTL transistor-transistor logic
VB valence band
VESTA visualization for electronic and structural analysis
VTI variable temperature insert
X exciton

ZnSe

zinc selenide



131

Symbols
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b

be
By s
By
By

Bﬁax
By

BN,:L"

Hyperfine constant or area.

Parameter for the amplitude in non-linear fits.

Lattice constant of the crystal (here usually ZnSe).

Parameter for the amplitude in non-linear fits.

Parameter for the amplitude in non-linear fits.

Bohr radius.

Hahn echo (nuclear spin echo) amplitude.

Lattice constant of the crystal, which shall be grown on the substrate.
Lattice constant of the substrate, on which the crystal shall be grown.
Hyperfine constant of the nth nucleus.

Parameter for the amplitude of the i-th peak.

Localization radius of the electron at the donor.

Offset parameter in non-linear fits.

Polarization recovery amplitude.

Amplitude of the signal applied to the RF coil.

Hyperfine constant of the 7"Se isotope.

Magnitude/Maximum of the RSA peak shift induced by a particular
resonance.

Hyperfine constant of the 67Zn isotope.

Fitting parameter for the y-intersection for a linear fit.

Maximal Knight field amplitude at the center of the donor.

Halfwidth of the Hanle curve.

Vector representation of the Overhauser field.

Overhauser field (absolute value) or strength of the average fluctuating
hyperfine field.

Maximal Overhauser field.

Overhauser field vector or vector of the average fluctuating hyperfine
field.

x-component of the Overhauser field.

Magnetic field (absolute value).

Deviation of zero on magnetic field scale (hall sensor) from actual zero
position.

Center position of Lorenz peak (RSA peak).

Effective magnetic field determining the electron Larmor precession
frequency or effective magnetic field produced by the RF coil.
Full-width half maximum of the i-th Lorenz peak (RSA peak).
Magnetic field (absolute value) in Faraday geometry.
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Brr Magnetic field produced by the RF coil at the sample.

By Magnetic field (absolute value) in Voigt geometry.

B Magnetic field vector.

Bnuvr Vector representation of the field of nuclear magnetic resonance

BRrr Vector representation of the magnetic field produced by the RF coil at
the sample.

Bioial Vector representation of the superposition of different magnetic fields.

By Vector representation of the external magnetic field (Voigt geometry).

C Depth of the PR dip at Br = 0.

c Speed of light in vacuum: 299792458 ms~! [Moh15].

co Coefficient of the constant term in a polynomial.

ca Coefficient of the quadratic term of a polynomial.

X Natural abundance of an isotope.

XSe Natural abundance of the 7"Se isotope with nonzero nuclear spin.

XZn Natural abundance of the 57Zn isotope with nonzero nuclear spin.

D Remaining PR amplitude at Br = 0.

d Average distance between donors.

AB Shift of RSA peaks (usually compared to their position at low Pp.)

Al Difference of the azimuthmal quantum numbers .

Am; Difference of the projection of the total angular momentum m;.

Aso Energy offset of the split-off hole band due to spin-orbit interaction.

At Time delay between the pump and the probe pulses can be varied by

faux

fm,l
fm,2

moving the retroreflector on the delay line.

Dipole transition matrix element.

Electric field of the laser beam /pulse.

Elementary charge.

Donor binding energy or activation energy

Photon energy of the laser.

Energy difference between maximum energy in the valence band and
minimal energy in the conduction band of a semiconductor or insulator.
Lattice mismatch between two crystals.

Energy (eigenenergy) of the n-th electron eigenstate.

Kerr ellipticity.

Energy of the spin-down (]})) state in a longitudinal magnetic field Br.
Energy of the spin-down (|{)) state in a longitudinal magnetic field Bp.
Static electric field, e.g. used in electro-optical modulators

Relative error of the y-intersection b in linear fits.

Relative error of the spin relaxation time .

Auxiliary reference frequency.

Pump helicity modulation frequency.

First pump helicity modulation frequency.

Second pump helicity modulation frequency.
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f Rabi

f Ramsey
JrRF

F
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v
r

Se
YZn
Ge
gNn

S

T
[oe}

Ak
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W)

™
B

x>

pump
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Nuclear magnetic resonance frequency.

Rabi frequency.

Ramsey frequency.

Frequency of the radio frequency (RF) excitation.

Generalized Fresnel coefficient.

Electron-hole generation rate (photogeneration).

g-factor, dimensionless quantity, which measures the magnetic moment
or gyromagnetic ratio of a particle or nuclei [Odo06; Gab07].
Gyromagnetic ratio.

Full width half maximum (FWHM) of a Lorentzian or I" point: Center
of the Brillouin zone (k = 0).

Gyromagnetic ratio of the 7"Se isotope.

Gyromagnetic ratio of the 7Zn isotope.

Electron g-factor

g-factor of the nth nucleus.

g-factor of nuclear spin.

Reduced Planck constant.

Hamilton operator of the electron-nuclear hyperfine interaction.
Hamilton operator of the spin-orbit interaction.

Hamilton operator of the electronic Zeeman energy.

Nuclear spin.

Nuclear spin of 7"Se.

Nuclear spin of 47Zn.

Nuclear spin vector. Can either refer to the vector representation of the
components of the spin of a single nucleus or to the macroscopic spin
polarization of an ensemble of nuclear spins.

x-component of the nuclear spin.

z-component of the nuclear spin.

Total angular momentum quantum number.

Total angular momentum operator.

Boltzmann constant.

Ground state of quantum mechanical two-level system (eigenstate).
Excited state of quantum mechanical two-level system (eigenstate).
Electron spin in spin-down state.

Electron spin in spin-up state.

State of a quantum mechanical system.

Magnitude of the Knight fieldF.

Vector representation of the Knight field.

Modulus of the wavevector of an electromagnetic wave or of a particle,
e.g. electron.

Wavevector of an electromagnetic wave or of a particle, e.g. electron.
Wavevector of the pump beam, a pump pulse.

Correlator measured by the lock-in amplifier.

Azimuthal quantum number.
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Symbols

NnEc

Value of the correlator measured

Wavelength.

Angular momentum vector.

Fitting parameter for the slope in linear fits. Here m o 1/nq.

Free electron mass in vacuum (rest mass).

Effective electron mass.

Effective heavy hole mass.

Projection of the total angular momentum.

Effective light hole mass.

Modulus of the magnetization vector.

Modulus of the equilibrium magnetization vector.

Bohr magneton, a physical constant and a unit for the magnetic moment.
Nuclear magneton.

Magnetization vector.

Magnetic quantum number.

Resident electron concentration.

Concentration of donors in an n-doped semiconductor.

Critical concentration of the fluorine dopant, at which the metal-insulator
transition occurs.

Concentration of the fluorine dopant.

Number of nuclei in the localization of the donor.

v € R, exponent of the magnetic field dependence of g

Repetition frequency of the pulsed laser.

Laser repetition frequency.

Power.

Probability, p € [0, 1].

Potential of the electric field.

Parameter for the phase in non-linear fit of oscillations and relative phase
of the RF excitation.

Phase between the spin components S, and S, or azimuthal angle (phase)
of the Bloch vector.

Amplitude of the oscillations of the phase between the spin components
Sy and S.

Average power of the probe beam.

Average power of the pump beam.

Envelope wave function of the electron.

Momentum vector/momentum operator.

Degree of circular polarization.

Average distance between neighboring isotopes with non-zero nuclear
spin.

Modulus of the electron position vector.

Electron position vector.

Modulus of the electron spin vector. Can either refer to the vector
representation of the components of the spin of a single electron or to
the macroscopic spin polarization of an ensemble of electron spins.
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So Steady-state spin polarization, which is determined by G « Ppy, ng, Sj
and 7g.

o Stefan-Boltzmann constant.

Org Absolute error of the spin relaxation time 7g.

op Absolute error of the y-intersection b in linear fits.

o Vector of the Pauli matrices.

Oz Pauli matrix for z-component of the spin.

oy Pauli matrix for y-component of the spin.

0 Pauli matrix for z-component of the spin.

Si z-component of the initially generated spin polarization, which depends
on the pump helicity and optical selection rules.

o~ Left-circular polarization.

ot Right-circular polarization.

S Electron spin vector. Can either refer to the vector representation of the

components of the spin of a single electron or to the macroscopic spin
polarization of an ensemble of electron spins.

Sz x-component of the electron spin. Can either refer to the xz-component
of the spin of a single electron or to the macroscopic spin polarization of
an ensemble of electron spins.

Sy y-component of the electron spin. Can either refer to the z-component
of the spin of a single electron or to the macroscopic spin polarization of
an ensemble of electron spins.

S, z-component of the electron spin. Can either refer to the z-component
of the spin of a single electron or to the macroscopic spin polarization of
an ensemble of electron spins.

T Absolute/thermodynamic temperature, here the Kelvin scale shall be
used.

t Time: Newtonian, absolute time, since relativistic corrections are not
important for the phenomena studied in this thesis.

Ty Longitudinal spin relaxation time of the electron spin.

N Longitudinal spin relaxation time of the nuclear spin.

T4 Tongitudinal spin relaxation time of the nuclear spin without optical
excitation.

15 Transverse spin relaxation time/coherence time of the electron spin.

Tinh Inhomogeneous spin relaxation time (due to a dispersion of the precession
frequencies) of the electron spins.

T 2N Transverse spin relaxation time/coherence time of the nuclear spin.

T 2N oinh Inhomogeneous spin relaxation time (due to a dispersion of the precession
frequencies) of the nuclear spins.

T5 Inhomogeneous spin dephasing time of the electron spins.

Ty N Inhomogeneous spin dephasing time of the nuclear spins.

T Recombination time of photogenerated carriers.

0 Decay time of a mono exponentially damped function.

1 1st rise time of double exponential fit.
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T 2nd rise time of double exponential fit.

Te Correlation of the donor-bound electrons with the donor.

Tp Pulse width of RF or laser pulses.

TS Electron spin relaxation time, equals the T time in a magnetic field in
Faraday geometry.

X Exciton recombination time.

© Optical pulse area.

OkRr Kerr rotation angle or amplitude.

O nuc Nuclear spin temperature.

0 Complex Kerr rotation.

11, Electron Larmor precession period.

Th Helicity modulation period.

N Period of the nuclear Larmor precession.

TR Laser repetition period.

Ts Electron spin lifetime.

Un, & Periodic Bloch function.

25 Unit cell volume.

w Frequency of the electromagnetic wave (light).

wr, Larmor precession frequency of the electron spin.

WN Larmor precession frequency of the nuclear spin.

x Coordinate on the x axis of a cartesian coordinate system.
Dimensionless parameter.

§ p

Y Coordinate on the y axis of a cartesian coordinate system.

z Coordinate on the z axis of a cartesian coordinate system.
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