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Abstract

Driver assistance systems have increasingly relied on more sensors for new functions. As
advanced driver assistance system continue to improve towards automated driving, new
methods are required for processing the data in an efficient and economical manner from
the sensors for such complex systems. The detection of dynamic objects is one of the
most important aspects required by advanced driver assistance systems and automated
driving. In this thesis, an environment model approach for the detection of dynamic ob-
jects is presented in order to realize an effective method for sensor data fusion. A scalable
high-level fusion architecture is developed for fusing object data from several sensors in a
single system, where processing occurs in three levels: sensor, fusion and application. A
complete and consistent object model which includes the object’s dynamic state, existence
probability and classification is defined as a sensor-independent and generic interface for
sensor data fusion across all three processing levels. Novel algorithms are developed for
object data association and fusion at the fusion-level of the architecture. An asynchronous
sensor-to-global fusion strategy is applied in order to process sensor data immediately
within the high-level fusion architecture, giving driver assistance systems the most up-to-
date information about the vehicle’s environment. Track-to-track fusion algorithms are
uniquely applied for dynamic state fusion, where the information matrix fusion algorithm
produces results comparable to a low-level central Kalman filter approach. The existence
probability of an object is fused using a novel approach based on the Dempster-Shafer evi-
dence theory, where the individual sensor’s existence estimation performance is considered
during the fusion process. A similar novel approach with the Dempster-Shafer evidence
theory is also applied to the fusion of an object’s classification. The developed high-level
sensor data fusion architecture and its algorithms are evaluated using a prototype vehicle
equipped with 12 sensors for surround environment perception. A thorough evaluation
of the complete object model is performed on a closed test track using vehicles equipped
with hardware for generating an accurate ground truth. Existence and classification per-
formance is evaluated using labeled data sets from real traffic scenarios. The evaluation
demonstrates the accuracy and effectiveness of the proposed sensor data fusion approach.
The work presented in this thesis has additionally been extensively used in several research
projects as the dynamic object detection platform for automated driving applications on
highways in real traffic.

vii





Contents

Abstract vii

Abbreviations xiii

List of Symbols xv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Automation in Driver Assistance and Safety Systems . . . . . . . . . . . . 3

1.2.1 Level 0 – No Automation . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Level 1 – Driver Assistance . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Level 2 – Partial Automation . . . . . . . . . . . . . . . . . . . . . 8
1.2.4 Level 3 – Conditional Automation . . . . . . . . . . . . . . . . . . . 9
1.2.5 Levels 4 and 5 – Towards Fully Automated Driving . . . . . . . . . 15

1.3 Problem of Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4 Contribution and Outline of the Thesis . . . . . . . . . . . . . . . . . . . . 23

2 Sensor Data Fusion Architectures 27

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.1 Low-Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.2 High-Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.3 Hybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Proposed Modular Sensor Data Fusion Architecture . . . . . . . . . . . . . 38
2.2.1 Object Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.2 Sensor-Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.3 Fusion-Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.4 Application-Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Fusion Strategy and Object Association 46

3.1 Data Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.1 Spatial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.2 Temporal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Fusion Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.1 Sensor-to-Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2 Sensor-to-Global . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.3 State Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.4 Geometrical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

ix



Contents

3.3.5 Association Validation . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.6 Multi-Object Association . . . . . . . . . . . . . . . . . . . . . . . . 60

4 State and Covariance 64

4.1 Sensor-Level Processing with Tracking Algorithms . . . . . . . . . . . . . . 64
4.1.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.2 Data Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.3 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.4 Track Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1.5 Kinematic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Correlation and Sequence of Sensor Data . . . . . . . . . . . . . . . . . . . 69
4.2.1 Process Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.2 Common Information History . . . . . . . . . . . . . . . . . . . . . 71
4.2.3 Out-of-Sequence Data . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Track-to-Track Fusion with the Common State . . . . . . . . . . . . . . . . 73
4.3.1 Adapted Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.2 Covariance Intersection . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.3 Information Matrix Fusion . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Geometrical Fusion using the Object Model . . . . . . . . . . . . . . . . . 86
4.4.1 Dimension Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.2 Extraction of Fused Coordinates . . . . . . . . . . . . . . . . . . . . 90

5 Existence Probability 93

5.1 Sensor-Level Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1.1 Existence Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.1.2 Existence Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.1.3 Generalized Bayes Extension . . . . . . . . . . . . . . . . . . . . . . 97
5.1.4 Modeling the Parameters . . . . . . . . . . . . . . . . . . . . . . . . 98
5.1.5 Object Management . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2.2 Modeling with Dempster-Shafer Evidence Theory . . . . . . . . . . 105
5.2.3 Extension for Occlusion Modeling . . . . . . . . . . . . . . . . . . . 110
5.2.4 Modeling the Trust Probability . . . . . . . . . . . . . . . . . . . . 114

6 Classification 116

6.1 Sensor-Level Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.1.1 Measurement Classification . . . . . . . . . . . . . . . . . . . . . . 117
6.1.2 Temporal Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2.1 Modeling with the Dempster-Shafer Evidence Theory . . . . . . . . 125
6.2.2 Modeling the Trust Probability . . . . . . . . . . . . . . . . . . . . 130

7 Evaluation 133

7.1 Test Vehicle and Sensor Configuration . . . . . . . . . . . . . . . . . . . . 133

x



Contents

7.2 Overtaking Maneuver with Ground Truth . . . . . . . . . . . . . . . . . . 135
7.2.1 Ground Truth Calculation . . . . . . . . . . . . . . . . . . . . . . . 136
7.2.2 State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.2.3 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.2.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.3 Performance in Real Traffic Scenarios . . . . . . . . . . . . . . . . . . . . . 141
7.3.1 Detection Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.3.2 Classification Performance . . . . . . . . . . . . . . . . . . . . . . . 146
7.3.3 Integration in Automated Driving and ADAS Projects . . . . . . . 149

8 Conclusion and Discussion 152

A Synchronous Track-to-Track Fusion Algorithms 155

A.1 Simple Weighted Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.2 Use of Cross-Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
A.3 Covariance Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
A.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

B Information Matrix Fusion Derivation 163

C Determining the Trust Probability 165

C.1 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
C.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

D Evaluation Scenario Descriptions 168

D.1 Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
D.2 Evaluation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

D.2.1 Test Track . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
D.2.2 Real Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

References 173

Publications 199

Supervised Student Theses 201

xi





Abbreviations

ABS Anti-Lock Brakes.

ACC Active Cruise Control.

ADAS Advanced Driver Assistance Systems.

ALA Active Lane Assist.

ANIS Average Normalized Innovation Squared.

AUC Area Under the Curve.

BASt Bundesanstalt für Straßenwesen.

BBA Basic Belief Assignment.

BSD Blind Spot Detection.

CAN Controller Area Network.

DARPA Defense Advanced Research Projects Agency.

DSC Dynamic Stability Control.

DST Dempster-Shafer Evidence Theory.

EBA Emergency Brake Assist.

ESP Electronic Stability Program.

FCW Forward Collision Warning.

FISST Finite Set Statistics.

GDA Gaussian Discriminant Analysis.

GPS Global Positioning System.

IMM Interacting Multiple Model.

IPDA Integrated Probabilistic Data Association.

JIPDA Joint Integrated Probabilistic Data Association.

JPDA Joint Probabilistic Data Association.

LDW Lane Departure Warning.

xiii



Abbreviations

LKA Lane Keeping Assist.

MHT Multiple Hypothesis Tracking.

NEES Normalized Estimation Error Squared.

NHTSA National Highway Traffic Safety Administration.

NIS Normalized Innovation Squared.

PDA Probabilistic Data Association.

PHD Probability Hypothesis Density.

RMSE Root Mean Squared Error.

ROC Receiver Operating Characteristic.

SAE Society of Automotive Engineers.

SVM Support Vector Machines.

TJA Traffic Jam Assist.

V2V Vehicle-to-Vehicle Communication.

VRU Vulnerable Road User.

xiv



List of Symbols

General Notation

a Scalar

a Vector

A Matrix

A′ Transpose of matrix A

A−1 Inverse of matrix A

(̂.) Estimate of the true value of (.)

(̃.) Error between the estimate (̂.) and the true value (.)

(̄.) Complement of (.)

(.)(k) Value of (.) at the discrete time step k

(.)k Value of (.) at the discrete time step k

(.)(k | k) Value of (.) at the discrete time step k conditioned on information from
the current time step k

(.)k|k Value of (.) at the discrete time step k conditioned on information from
the current time step k

(.)(k | k − i) Value of (.) at the discrete time step k conditioned on information from
a previous discrete time step k − i

(.)k|k−i Value of (.) at the discrete time step k conditioned on information from
a previous discrete time step k − i

(.)(k, k − i) Transition from k − i to k with (.)

(.)(t) Value of (.) at the continuous time t

(.)(t− τ) Value of (.) at a previous continuous time t− τ

{(.)}(t) Set of (.) at the continuous time t

{(.)}ba Complete set of (.) from time a up to time b

Bel((.)) Belief function

BetP((.)) Pignistic transformation of (.)

xv



List of Symbols

E [(.)] Expected value of (.)

F−1
(.) Inverse cumulative distribution function for the (.) distribution

m((.)) Dempster-Shafer evidence theory basic belief assignment

Pl((.)) Plausibility function

Latin Letters

C Set of classification hypothesis

D Generic representation for some data

E Environment model

G Generic representation for spatial-based, or grid-based, objects/obstacles

I Generic representation for information

I∗ Generic representation for a-priori information

L Log odds ratio

M Generic representation for digital map information

O Object list

R Generic representation for road infrastructure information

S Generic representation for data perceived from a sensor

T Training set

U Generic representation for control information from the host vehicle plat-
form

X Generic representation for host vehicle localization and pose

c Classification vector of an object

d Dimension vector of an object

dσ2 Dimension uncertainty vector of an object

f Feature vector of an object

m 1-dimensional grid map for geometrical dimension estimation

p Position vector in a Cartesian coordinate system

u Host system control vector

w Normal vector to a decision boundary

x State vector of an object

xa State vector subset of x of an object used for association

xvi



List of Symbols

y Attribute vector for classification

z Measurement vector

A Object association matrix

B Control transformation matrix

C Association cost matrix in the auction algorithm

F State transition matrix

H State-space transformation matrix

I Identity matrix

K Kalman gain

S Innovation covariance matrix

P Covariance matrix of a state estimate x̂

Pab Cross-covariance between the state estimates x̂a and x̂b

Pab Cross-covariance matrices with retrodicted states

Q Process noise covariance matrix

R Covariance matrix of a measurement z

W Kalman gain for an out-of-sequence measurement

a Acceleration of an object

ai,j The element of the association matrix A in the ith row and jth column

w Width of an object

b Bias parameter

d Geometrical dimension of an object

d2 Mahalanobis distance

g Boolean result from geometrical association

l Length of an object

m Single cell of the 1-dimensional map m

na Number of elements, or dimension, of vector a

p Bid price for assignment in the auction algorithm

r Range in a polar coordinate system

v Velocity of an object

x Position of an object on the x-axis in a Cartesian coordinate system

y Position of an object on the y-axis in a Cartesian coordinate system

xvii



List of Symbols

Ci Object class i, where i corresponds to the ith element of c or C
D2 Extended Mahalanobis distance

G Gating threshold during object association

H Object association hypothesis

Oi The ith object in an object list O
Zi List of measurements from sensor i

Greek Letters

γ Dempster-Shafer evidence theory prediction weight

δ Offset/translation of a sensor’s placement on the vehicle

∆(.) Difference of (.) between two values

ǫ Normalized Estimation Error Squared

η Normalization factor

θ Orientation of a sensor’s mounting position on the vehicle

Θ Dempster-Shafer evidence theory frame of discernment

λ Rate parameter of a Poisson process

µ Mean

ρ Correlation weighting factor

σ Standard deviation

σ2 Variance

φ Angle in a 2-dimensional polar coordinate system

ψ Orientation angle of an object

ψ̇ Orientation velocity of an object

ω Covariance intersection weighting factor

Subscripts and Superscripts

(.)Si (.) originates from sensor Si

(.)G (.) results from a global fusion algorithm

(.)obj (.) is in the object coordinate system

(.)sensor (.) is in the sensor coordinate system

(.)veh (.) is in the host vehicle coordinate system

xviii



List of Symbols

(.)f Value of (.) corresponds to the feature f

(.)x Scalar corresponding to the x component of (.) in a Cartesian coordinate
system

(.)y Scalar corresponding to the y component of (.) in a Cartesian coordinate
system

(.)a→b Transformation from a to b

Probabilities

p(a) Continuous probability density function of the random variable a

p(a | b) Continuous conditional probability density of the random variable a con-
ditioned on b

p(∃x) Existence probability of an object

p(∄x) Non-existence probability of an object

pb Birth probability

pc Clutter probability

pd Detection probability

pp Persistence probability

ptrust Trust probability

P(.) Scalar probability value

xix





1 Introduction

Since the introduction of automobiles in the early 1900s, vehicle manufacturers have con-
tinuously worked to increase the safety of vehicles. The first barrier crash tests were
performed in the 1930s, the three-point lap and shoulder seat belt was invented in the late
1950s and become standard with new vehicles in the 1960s, padded instrument panels were
widely adopted in the 1960s, the first Federal Motor Vehicle Safety Standards took effect in
the United States in 1968 and, arguably one of the most important vehicle safety devices,
the air bag, was introduced in the 1970s and became widely adopted in the 1980s and
early 1990s. The aforementioned safety systems, such as air bags, seat belts or improved
vehicle structure, are examples of passive safety systems, meaning that they protect the
driver and the passengers during the event of a crash, reducing bodily injuries.
Beginning in the 1980s, electrical and computer systems in vehicles became more capable

and new active safety systems were introduced. Active safety systems aim to alleviate,
lessen the consequences or altogether prevent a collision before it even occurs. One of
the first active safety systems was Anti-Lock Brakes (ABS), which prevents wheel lock-up
during emergency braking, effectively increasing vehicle stability during braking maneuvers
[249, 301]. Sensor technology, such as wheel speed sensors, combined with new computer
systems which could actively and independently in real-time control the brakes, allowed
such systems to be conceived. Electronic Stability Program (ESP), or Dynamic Stability
Control (DSC), takes ABS technology a step further by helping prevent oversteer and
understeer instabilities of the vehicle using intelligent and electronically controlled brake
intervention [249, 301]. Today, ABS and DSC systems are standard equipment in most
production vehicles.
Active safety systems such as ABS and DSC are all a form of electrical and computer

controlled automation of the vehicle. With such systems activated, the driver’s inputs, or
lack thereof, may be overridden or intervened by an electrical system when an imminent
danger is detected, such as wheel lock in ABS or oversteer in DSC. More recently, such
electrical and computer controlled systems have been introduced as comfort applications,
helping the driver not only in critical situations, but also during everyday driving scenarios.
One of the first examples of an electrical comfort system is cruise control, which allows
the vehicle to maintain a driver-defined speed by automatically controlling acceleration
and braking. Comfort and active safety systems can all be classified as driver assistance
systems. The late 1990s saw the introduction of Active Cruise Control (ACC), where the
typical cruise control system is supplemented with an environment-sensing sensor, such as
a radar, in order to automatically adapt the vehicle’s speed and keep a safe distance to
the vehicle in front.
Automotive research in this area has recently focused on Advanced Driver Assistance

Systems (ADAS), which use more complex environment-sensing sensors [219] to help the
driver in certain situations or even take over complete control of the vehicle, such as in
highly automated driving systems. The ultimate ADAS is an autonomous driving system,
where the vehicle can take the driver and its passengers to their destination completely

1



1 Introduction

autonomously, with no driver intervention at all. A great overview of ADAS can be found
in [249, 327].

This thesis focuses on advancing the methods of environment perception technology for
ADAS, particularly those necessary for automated driving applications. This introductory
chapter will focus on the motivation of such technology for improving driving safety and
comfort and give a brief overview of the state of the art of such technology for varying
degrees of vehicle automation. The last section of this chapter gives a description of the
contribution of this thesis and an overview of the structure of the remaining chapters.

1.1 Motivation

Advances in passive safety systems, such as the air bag, have decreased the number of
fatal injuries due to traffic accidents. However, despite these advances, traffic accidents
are still very common. The challenge of the future will be to reduce the number of traffic
accidents that occur, requiring a preventive strategy for accident avoidance. In order to
avoid an accident in the first place, active safety and assistance systems must be developed,
as opposed to the passive systems which simply reduce the severity of an accident after it
has already occurred.

The key to accident prevention is to understand the underlying cause of most accidents.
The basic fact of the matter is that today’s vehicles are operated solely by people, and
people tend to make mistakes. Accident statistics show that driver error is the main cause
of traffic accidents today. One of the main reasons for driver error is driver distraction
while driving. A study by the US Department of Transportation’s National Highway Traffic
Safety Administration (NHTSA) showed that in 2011 10% of all fatal crashes were due to
driver distraction [223]. Further studies have shown that conversing with a passenger to
be the most common type of distraction before an accident [222]. In a 2008 report to the
US Congress, data from 2005 to 2007 showed that a large portion of investigated crashes
could be attributed to driver error, where various reason were identified, such as recognition
errors, decision errors or an internal non-driving activity [221]. Internationally, a report
by the United Nations Economic Commission for Europe shows that between 1998 and
2008, the general trend of traffic accidents and fatalities has decreased from 4 million road
accidents in 1998 to about 3.5 million road accidents in 2008 [297]. This trend would need
to continue for the next 70 years in order to reach an accident-free society. Despite this
trend in the reduction of accidents, another fact is that the number of vehicles and road
users is continuously on the rise worldwide. In the United States, for example, the number
of registered vehicles has increased by more than 50 million in the last 20 years [61]. It
remains to be seen if the increase of the number of vehicles on the road will continue the
decreasing trend of traffic accidents or if it may actually result in a reversal of the trend,
if technology does not develop and adapt to the traffic of tomorrow.

The solution to an accident-free society, despite the increasing number of vehicles on the
road, is to equip tomorrow’s vehicles with new technologies aimed at preventing accidents.
Only in the recent 10-15 years have driver assistance systems been on the market, mainly
in premium vehicles. It is still too early to tell if these systems will have an impact
on traffic safety, as the penetration rate of such systems is still far too low. The trend,
however, is that assistance systems are becoming cheaper and more available in all vehicle
segments. Initial studies have shown that systems such as ACC and Forward Collision
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Warning (FCW) have a positive effect on traffic safety [34]. Rating agencies for vehicle
safety, such as Euro NCAP, are already including active safety systems, such as FCW, in
their safety assessments and ratings [96]. Due to these activities, it can be assumed that
in the near future, some active safety systems will become standard equipment on most
vehicles, just like the air bag and ABS.
The pinnacle of active safety is autonomous driving. Vehicles which are developed to

function completely without the intervention of the driver have the potential of eliminating
all driver-related accidents which are common today. In order to realize this goal, prac-
tically all automobile manufacturers are working on autonomous driving technology. In
addition to reducing accidents, autonomous driving may also lead to significant financial
savings for society [264]. In the United States alone, a total of $1.3 trillion per year could
be saved if autonomous vehicles reach full penetration, where the savings are calculated
based on accident avoidance savings, fuel savings and productivity gains [264]. It is clear
that autonomous driving could have many benefits. However, many technological chal-
lenges and legislative issues still need to be solved in order to make autonomous driving a
reality.
Apart from the gains in safety, the increased comfort gained from assistance systems is

also major selling point for automobile manufacturers. Driver assistance systems, which
were once only available on high-end sedans, such as park distance control, are now main-
stream features which are well-received by customers. Rear-view camera systems and
active cruise control are also example of assistance systems which increase comfort in dif-
ferent driving situations. This trend will most likely continue in the future, as customers
expect technology to aid them in daily driving situations.
One of the key technological components of active safety and assistance systems is the

sensors which perceive the environment. Common sensor technologies in production ve-
hicles are radar [325], camera [275], lidar [122] and ultrasonic sensors [226], which are
mainly used for detecting other vehicles and obstacles or lane markings and road bound-
aries. Today’s driver assistance systems have fairly basic sensor processing architectures
- a single sensor is used for one or more applications and another sensor for other appli-
cations. As driver assistance systems become more complex, edging towards autonomous
driving technology, this simple sensor processing architecture will not suffice. It will be
necessary to combine the data from all of the vehicle’s sensors into a single description
of the environment, called an environment model, and making this information available
to all assistance and safety applications and functions in the vehicle, thereby increasing
efficiency and reducing the costs of the overall system [76, 148, 220]. The combination of
data from many sensor sources is called sensor data fusion and is the main topic of this
thesis. Figure 1.1 shows the difference between these two basic architectural concepts for
the processing of sensor data.
Before diving into the details of the proposed sensor data fusion concepts and algorithms

in this thesis, an overview of driver assistance and safety systems with respect to their level
of automation is given in the following section.

1.2 Automation in Driver Assistance and Safety Systems

In recent years, an increase in the level of automation in vehicle systems has emerged. Sys-
tems such as ABS have laid the foundation and showed the benefits of electrical automation
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Sensor 1 Sensor 2 . . . Sensor N

Application 1 . . . Application N

(a)

Sensor 1 Sensor 2 . . . Sensor N

Sensor Data Fusion

Application 1 . . . Application N

Environment Model

(b)

Figure 1.1: Basic architectures for sensor data processing: direct sensor data processing by an
ADAS application (a) versus sensor data processing through a common sensor data fusion module
(b).

in vehicles. With the increase of computational power and advances in sensor technology,
higher levels of automation are being developed and will be possible in the future. However,
legislation around the world currently requires that a driver be in control of a vehicle at all
times [295, 296]. These current laws make it difficult to introduce vehicles with a higher
degree of automation [269]. In the United States, several states, such as Nevada [224],
California [62], Florida [99] and Michigan [198], have already passed legislation to pave the
way for a safe introduction and testing procedures of autonomous vehicles. In Germany,
the Federal Highway Research Institute (Bundesanstalt für Straßenwesen (BASt)) have
organized a project group to investigate the legal consequences of increasing automation
in vehicles [120]. As of 2010, this project group has defined a preliminary classification
of different levels of automation in vehicles and driver assistance systems [119, 120]. In
the United States, similar definitions of vehicle automation from NHTSA and their legal
impact have also been investigated [328] and similar results compared to the BASt studies
and definitions have been reached. In 2014, the Society of Automotive Engineers (SAE)
have released a standard, SAE J 3016 [252], which formally define the automation levels.
The SAE standard differs slightly in the nomenclature with regards to the BASt defini-
tions, but the implications of the automation levels are the same. Table 1.1 gives a brief
overview of the SAE automation levels along with a description of an example system for
each level. SAE J 3016 also provides a table describing the various responsibilities of the
automated vehicle and the driver for each of the automation levels. In the recent years,
the SAE automation level definitions have become internationally well accepted and will
therefore be used in this section when describing driver assistance and automated driving
systems.
In this section, current and past projects will be discussed with respect to the automation

levels described in Table 1.1 in order to present an overview of the state of the art of driver
assistance systems and automated driving. For each automation level and project, the
technology used for environment perception will be mentioned, as this is the main focus of
the thesis.
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[252].
Automation Level Brief Description Example System

0 - No Automation The driver continuously carries out longitudinal (acceleration
and braking) and lateral (steering) control of the vehicle.

No driver assistance system is active which inter-
venes in the longitudinal and lateral control. Safety
systems, such as ABS and DSC, or warning systems
may still be active.

1 - Driver Assistance The driver continuously carries out either longitudinal or lateral
control of the vehicle. The driver must continuously monitor the
system and driving environment and at any time be prepared to
take over full control of the vehicle.

Adaptive Cruise Control (ACC): The vehicle takes
over longitudinal control and is able to automati-
cally keep a safe distance to the vehicle in front.

2 - Partial
Automation

The system takes over longitudinal and lateral control of the
vehicle under certain conditions and situations and for a limited
amount of time. The driver must still permanently monitor the
system and driving environment and be prepared to take over
control of the vehicle at any time.

Highway or Traffic Jam Assistant: Vehicle auto-
matically carries out longitudinal and lateral con-
trol on the highway or in a traffic jam up to a cer-
tain speed. The driver permanently monitors the
system and takes over full control when required to
do so.

3 - Conditional
Automation

The systems takes over longitudinal and lateral control of the
vehicle under certain conditions and situations and for a limited
amount of time. The driver need not permanently monitor the
system nor the driving environment when it is activated, but
must still serve as a fallback and take over control in case the
automation fails or reaches a limit.

Highway Pilot: The vehicle takes over longitudi-
nal and lateral control up to a certain speed. The
driver need not permanently monitor the system,
but must be able to take over control upon request
within a certain time frame.

4 - High Automation The system takes over longitudinal and lateral control of the
vehicle under certain conditions and situations and for a limited
amount of time. In case the driver fails to take over during a
system failure or limit, the vehicle will automatically initiate a
maneuver to bring the vehicle to a minimum risk condition (this
is the main difference to Level 3 conditional automation).

Remote Valet Parking: Performs all driving tasks
at low speeds in a parking environment, au-
tonomously driving the vehicle from a start po-
sition to an available parking spot. A driver is
not physically necessary, as the vehicle will sim-
ply come to a stop in case of a system failure or
limit.

5 - Full Automation The system completely takes over longitudinal and lateral con-
trol of the vehicle during all conditions, all driving situations and
at all times. In the event of a system failure or limit, the systems
automatically brings the vehicle to a minimum risk condition.

Automated Taxi: The vehicles completely takes
over longitudinal and lateral control of the vehi-
cle during the complete journey, without any in-
tervention or monitoring necessary by any of the
passengers (a driver is most likely not present).5



1 Introduction

1.2.1 Level 0 – No Automation

When no driver assistance system is activated which actively takes longitudinal or lateral
control of the vehicle, then the vehicle is said to be in no automation mode, where the
driver must assume direct and complete control of the vehicle. However, active safety
systems such as ABS and DSC may still be active and will still have the ability to take
control during critical situations when the vehicle is in an unstable state.
Driver assistance systems which are active when the driver is in control usually inform or

warn the driver visually or haptically of a potential hazard. Today’s production vehicles
include many such driver assistance systems, such as Lane Departure Warning (LDW),
which alerts the driver when an unintentional lane departure is detected [310], or Blind
Spot Detection (BSD), which informs the driver of the presence of other traffic in the blind
spot during a lane change [28]. These and other warning systems all depend on environ-
ment perception sensors for detecting certain situations and then communicating potential
hazards to the driver. Typical sensors for such systems are cameras, for detecting lanes
or speed limit signs, radar, for detecting other traffic or ultrasonic sensors, for detecting
obstacles near the vehicle, such as during parking. Such systems for the most part uses
just one sensor, due to their simplicity and low requirement on reliability, as the driver is
always fully in control. Table 1.2 gives an overview of such driver assistance systems which
warn or inform the driver, along with the sensor technology each system is based on.

Table 1.2: Overview of current driver assistance systems which inform or warn the driver along
with the sensor technology used.

System Brief Description Sensor

Lane Departure
Warning

Warns the driver in the event that the vehicle is im-
minently about to unintentionally depart the lane.

Camera

Blind Spot Detection Informs the driver, usually visually on the side view
mirror, when other traffic is in the vehicle’s blind
spot, preventing a possible lane change.

Radar

Forward Collision
Warning

Acoustically warns the driver of an imminent impact
if immediate braking intervention is not initiated.

Radar

Park Distance Control Acoustically informs the driver about obstacles
around the vehicle during parking maneuvers.

Ultrasonic

Parking Surround and
Rear View

Gives the driver a visual reference of the vehicle’s
surrounding during parking maneuvers.

Camera

Night Vision Provides an enhanced visual view at night, some-
times with an integrated pedestrian warning system.

Thermal camera

Despite not making an active intervention in the longitudinal or lateral control of the ve-
hicle, driver assistance systems which help the driver with warning signals have been proven
to increase safety. The euroFOT project, the first large-scale field test evaluating driver
assistance systems, collected data from over 1,000 vehicles from different manufacturers,
where it was shown that a FCW system has a positive effect on traffic safety [34, 35]. A
report from the Insurance Institute of Highway Safety, which studied the insurance claims
of vehicles equipped with and without driver assistance systems, however, found that some
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systems, such as LDW, did not have a noticeable impact on insurance claims. A lot of
these driver only systems, such as park distance control [157], have become quite common
in today’s production vehicles and can be added as an option to vehicles from almost all
segments.

1.2.2 Level 1 – Driver Assistance

The next level of automation defines systems that actively assist the driver, hence driver
assistance, by making an intervention in the longitudinal or lateral control of the vehicle.
Such systems have also already been available in production vehicle for many years. The
most common is ACC, which is an adaptation of cruise control, where the vehicle auto-
matically keeps a safe distance to the vehicle in front and adjusts its speed appropriately
[249, 326]. This allows the driver to leave the task of braking and accelerating, especially
on the highway, to the vehicle. Another such system is Emergency Brake Assist (EBA),
where the vehicle will automatically brake in order to avoid or reduce the impact of a
collision [324]. Other assisted systems can make a slight intervention in the vehicle’s lat-
eral control, such as an Active Lane Assist (ALA), where the vehicle will make a slight
adjustment in steering if the vehicle is about to cross the lane markings. Assisted parking
systems are also already available in production vehicles, where a vehicle will take over
control of the steering wheel during a parallel parking maneuver [157]. As with the driver
only systems, most of these systems usually rely on just one sensor, or in some cases a
combination of two sensors. Table 1.3 gives several examples of driver assistance systems
which actively assist the driver in longitudinal or lateral control, along with the sensors
used. It is important to note that despite taking an active control of the vehicle, all of
these systems are limited in their capabilities and heavily rely on the fact that a driver is
always in control and ready to override the system if a situation occurs which the system
cannot handle.

Table 1.3: Overview of current driver assistance systems which actively assist the driver along
with the sensor technology used.

System Brief Description Sensor

Active Cruise Control A cruise control system which automatically keeps a
safe distance to the vehicle in front.

Radar

Emergency Brake
Assist

A braking system which initiates automatic braking
in a critical, near-collision situation.

Radar (and camera)

Active Lane Assist Keeps the vehicle from crossing the lane boundaries
by actively applying a force on the steering wheel in
the opposite direction when the vehicle is about to
inadvertently cross a lane boundary.

Camera

Lateral Collision
Avoidance

Makes an active steering intervention during a lane
change situation in order to avoid a collision when
another vehicle is overseen during the lane change.

Radar

Park Assistant Takes over steering control during a parallel parking
maneuver.

Ultrasonic
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The euroFOT project also showed a positive feedback for assisted systems, specifically
ACC, where drivers were surveyed about the usefulness of the systems. It has also been
shown that vehicles equipped with systems such as EBA tend to have lower insurance claim
rates [156]. Despite their relative simplicity, assisted systems are the first step towards
automated driving and are a critical step in introducing drivers to such technology.

1.2.3 Level 2 – Partial Automation

The current generation of driver assistance systems tend more towards partial automation,
meaning that an assistance system can make an active intervention in the longitudinal and
lateral control of the vehicle. However, as with systems classified under assisted, the driver
must continuously monitor the system and the vehicle’s environment and be ready to take
over control at any given moment when a system limit is reached. Therefore, it is essential
that the driver remain active in observing the current driving situation in order to take over
control when the situation becomes critical for the assistance system. Such systems can
also be designated as driver-in-the-loop systems, where the driver remains an integral part
of the driving task. An overview of some example systems which fall under the category
of partial automation, such as a Lane Keeping Assist (LKA) [121], is given in Table 1.4.

Table 1.4: Overview of driver assistance systems classified as Level 2 partial automation, where
the system takes over longitudinal and lateral control, but the driver must continuously monitor
the system.

System Brief Description Sensor

Traffic Jam Assistant Hands-on steering wheel automated driving in traffic
jams up to a certain speed limit.

Several

Advanced Park Assist Automated steering, braking and gas control during
a complete parallel parking maneuver.

Ultrasonic

Lane Keeping Assist Keeps the vehicle actively in the center of the lane
while keeping a safe distance to the vehicle in front.

Several

Several automobile manufacturers currently offer partial automation driver assistance
systems. The Traffic Jam Assist (TJA) system in new premium class vehicles is capable
of longitudinal and lateral control in traffic jam situations up to a certain speed, usually
around 60 km/h. Due to the requirement that the driver must continuously monitor the
system, the driver’s hands must usually remain on the steering wheel when the system
is activated and a hands-on request is initiated if the driver keeps his/her hands off the
steering wheel for too long. New advanced park assist systems have also been introduced,
where the vehicle is capable of a complete automated parallel parking maneuver, for ex-
ample as in [3]. In order to keep the “driver in the loop” during the parking maneuver,
the driver must continuously press and hold a button on the middle console for the system
to function, where the system will automatically come to a halt if the driver releases the
button. For higher speeds, LKA systems have also been recently introduced, which when
combined with an ACC functionality, is able to keep the vehicle in the lane as well as
control the distance to the vehicle in front, practically realizing a basic form of automated
driving. However, such systems are still classified as Level 2 automation since there may
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still be limits in their capabilities, requiring the driver to immediately take over control if
necessary.
Due to the complexity of Level 2 partial automation systems, the sensor configurations

are usually more complex. In contrast to assisted driving systems, where one sensor system
or technology is directly integrated with the functionality, partial automation systems are
the first to introduce the concept of an environment model in the vehicle’s architecture
[125, 128, 228]. The environment model combines the data from many sensors and provides
the ADAS with an abstracted and generic description of the vehicle’s environment. Such
an architecture will be the norm in future ADAS and automated driving systems.

1.2.4 Level 3 – Conditional Automation

Level 3 differs from the lower levels in that the driver’s continuous monitoring of the system
and the vehicle environment is not necessary. This automation level allows the driver to
carry out a secondary task, such as reading E-Mails, making a phone call, watching a
movie, etc. For Level 3, however, it is still assumed that a driver is available to take over
control, given an ample amount of time, in case of a system failure.
Since today’s legal framework [295, 296], as well as the technological and verification

requirements, for such a higher level of automation are not yet mature, such systems
are currently in the research and prototype phase. Many vehicle manufacturers, research
institutes, as well as new companies, are currently building prototype vehicles to prove the
feasibility of Level 3. This section gives a brief overview of various projects which have or
are currently researching such automated driving systems.
Due to the not so obvious differences between Levels 3, 4 and 5, it can be difficult

to categorize various research projects into a specific automation level. A best effort is
made in order to categorize the projects in the following two sections into their most
appropriate automation level, although a proper categorization can only be done with
complete knowledge of the functional design of the system and its expected interaction
with the driver. Despite this, it is important to recognize that all of these projects have
the common goal of removing some, or all, of the driver’s responsibility from continuously
monitoring the system and the vehicle’s environment during the automation mode, even
though most testing of such research vehicles today still require a safety driver due to their
prototype nature.

Automated Driving on Race Tracks

Figure 1.2: The BMW TrackTrainer: Autonomous driving on race tracks (Images Source: [47]).
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A fun application of automated driving is to drive in an automated fashion around a
racing circuit. One of the first projects to take on the challenge of driving automated
around a race track was the BMW TrackTrainer, shown in Figure 1.2. The idea was
to demonstrate the performance of vehicle control algorithms at the limits of a vehicle’s
dynamics and to develop a system to teach the ideal racing line of a track for the purpose
of driver training [308]. Using a highly accurate differential Global Positioning System
(GPS), the ideal racing line is recorded by a professional driver, which can then later be
driven back by the vehicle autonomously. This method was successfully demonstrated on
any many circuits around the world. In addition to autonomously driving the ideal racing
line, the vehicle also provided a visual feedback of the deviation from the ideal line when
driven manually, allowing a driver to assess his/her own performance on the circuit.

However, the system was limited to the availability of the differential GPS signal. This
posed a challenge when the system was to be demonstrated on one of the most challenging
racing circuits in the world: the Nürburgring Nordschleife in Germany. This circuit has
several locations where GPS availability was poor or even non-existent. This problem was
solved by combining the GPS positioning algorithms with a camera-based lane marking
detection system [309]. The use of this type of sensor data fusion and environment percep-
tion made it possible to complete the first fully autonomous lap around the Nürburgring
Nordschleife on October 21st, 2009.

Researchers at Stanford University in conjunction with Audi and Volkswagen Group
Electronics Research Lab have been involved in a similar project. They have developed an
autonomous Audi TTS, pictured in Figure 1.3, with the goal of driving the vehicle on the
Pike’s Peak International Hill Climb [117, 271]. The goal of this project was to develop
control algorithms that are capable of driving a vehicle at the limits [162]. The system
also uses a differential GPS system to determine the exact location of the vehicle, and
then autonomously guides the vehicle at the limits along a predefined path. The vehicle
achieved its goal of ascending the 14,110-foot, 12.42 mile course at the end of 2010, doing
so in 27 minutes and reaching speeds of up to 72 km/h [11].

Figure 1.3: Stanford University’s autonomous Pike’s Peak Audi TTS (Image Source: [273]).

These types of projects had the main goal of further developing vehicle control algo-
rithms. Environment perception was not a priority and was solely used as additional infor-
mation for improving vehicle localization. Perception of the rest of the environment was
neglected and therefore environment sensors and perception algorithms were very limited.
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Automated Driving in Emergency Situations

The emergency stop assistant, an example of automated driving in an emergency situ-
ation, was developed in conjunction with the project SmartSenior, funded by the Ger-
man Ministry for Education and Research (German: Bundesministerium für Bildung und
Forschung) [48, 49, 149, 267]. In [343], the overall system is described in detail. In the
case of a medical condition, such as a heart attack, the emergency stop assistant, shown
in Figure 1.4, is able to take over full control of all driving functions. In the worst case
scenario, driving at highway speeds on the left lane, the vehicle automatically slows down
to a safe speed and performs successive lane change maneuvers, taking into account all
surrounding traffic, until the shoulder of the road is reached and a complete stop is safely
possible. The system is activated only when necessary and remains activated only for the
duration of reaching the shoulder of the road. Even though the system operates only in
this critical situation, several technologies are required in order to successfully perform the
automated maneuvers, the most important of which is the sensing of the vehicle’s envi-
ronment. Surround environment perception using several sensors, such as laser scanners,
radar and cameras, were used in order to detect the vehicle’s environment and localize the
vehicle on the highway in order to bring it to a stop on the shoulder of the road. The early
algorithms developed during this thesis were used in the emergency stop assistant project
described in [343].

Figure 1.4: The emergency stop assistant from the BMW Group Research and Technology
(Images Source: [49]).

In critical scenarios, such as an emergency collision avoidance maneuver, an automated
vehicle must react correctly at the vehicle’s limit in a short amount of time. Further
development of vehicle control algorithms from projects such as the BMW TrackTrainer
has led to the development of new control algorithms which can safely control the vehicle
in sudden critical situations, even if such a situation leads to an oversteer scenario, forcing
the vehicle to recover from a drift-like situation [52], as shown in Figure 1.5. Despite the
fact that the demonstration presented in [52] neglected environment perception technology,
the integration of such vehicle control algorithms and their ability to react to a perceived
environment will be critical in bringing reliable automated driving systems to market.

Automated Driving on Highways

In daily driving situations, Level 3 driving applications can help increase comfort and
safety by taking over the task of driving during specific situations, allowing the driver
to do something else during the trip. A typical situation where safety and comfort can
be increased is highway driving. During routine or longer trips, a driver tends to be

11



1 Introduction

Figure 1.5: Automated driving at the vehicle limit in emergency situations, such as oversteer
(Image Source: [52]).

(a) VaMP (Image Source: [322]) (b) ARGO (Image Source: [58])

(c) Navlab 5 (Image Source: [142])

Figure 1.6: Early prototype vehicles for automated driving on highways.

less attentive and alert while driving, possibly also being distracted from the relatively
monotonous task. In such situations, automated driving has a great benefit and therefore
much research is being done in this area.

The goal of automated driving on highways is not new. Several projects in the 1990s
were able to successfully demonstrate the potential of such technology. During the Euro-
pean Prometheus Project, the Universität der Bundeswehr (German Military University),
under the lead of Prof. Dickmanns, demonstrated automated driving on highways using
camera systems with their vehicles VaMoRs and VaMoRs-P [87]. Based on the devel-
opments from Prof. Dickmanns and in cooperation with Daimler, two further vehicles
were developed, VaMP (see Figure 1.6a) and VITA II, which at the end of the project
demonstrated automated driving on highways between Munich, Germany and Odense,
Denmark [194]. Carnegie Mellon University also pioneered automated driving in the 1990s
with their Navlab 5 vehicle (see Figure 1.6c), equipped with a camera and GPS [142],
where several thousand of automated driving miles were accomplished during a trip across
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America from Pittsburgh, PA to San Diego, CA. A team in Italy from the University of
Parma also pioneered automated driving on highways with their vehicle ARGO [38, 58],
which also made extensive use of camera systems. The ARGO vehicle (see Figure 1.6b)
ended up making a 2,000 km journey through Italy using the road following functionality
[58]. In the late 1990s, similar automated driving tests on highways were developed in the
United State during Demo ’97 in San Diego, CA, organized by the National Automated
Highway System Consortium. Several vehicles were developed for automated driving on
highways, where different approaches were demonstrated, such as magnetic-rail following
or lane-following with environment perception sensors [234, 287]. These early projects
made extensive use of cameras and custom actuator systems, and even with the limited
computing power available at the time, basic automated driving functionalities could be
successfully demonstrated.

Figure 1.7: Volkswagen’s Temporary Auto Pilot, developed during the project HAVEit (Images
Source: [132]).

Today’s sensors, actuators and computing technology have helped push automated driv-
ing technology on highways forward. Some vehicle manufacturers, for example, have de-
veloped a temporary auto pilot (Figure 1.7) system during the HAVEit project [132]. The
temporary auto pilot is able to take over the tasks of driving on a highway by adapting its
speed and keeping itself in the lane automatically. A lane change maneuver, however, is
not possible and must be made by the driver. The system is able to detect frontal traffic
and the lane using a combination of radar, camera, laser scanner and ultrasonic sensors
[29]. The sensors used are integrated into the vehicle body and retain the production
look and feel of the vehicle, as opposed to the more complex sensor configurations used in
some fully automated driving projects, described in Section 1.2.5. Work in HAVEit has
also been done to approach the problem of automated driving on highways from a legal
safety perspective, taking into account the necessary traffic rules [302]. This led to the
development of an intelligent automated driving system capable of following the rules and
making decisions in traffic with other human drivers.
Similar to the temporary auto pilot, automated driving in platoons was demonstrated

during the SARTE project [36, 250, 254]. In this application, a lead vehicle, usually a
truck, is the head of a platoon. Other vehicles, in this case passenger cars, are then able to
join the platoon and activate an automated driving mode. The vehicle then maintains a
close distance to the vehicle in front in the platoon and drives automatically. This allows
the driver the freedom to do something else whilst in the platoon, such as conversing with
a passenger (see Figure 1.8). A platoon can be composed of many vehicles and drivers
can choose to enter and leave a platoon as they wish. Basic automotive sensors which
are already found in production vehicles, such as ultrasonic sensors for parking assistance
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Figure 1.8: Project SARTRE: Automated driving on the highway in a platoon (Images Source:
[254]).

or radar sensors, are used to maintain the following distance in the platoon. Additional
information is obtained by each vehicle in the platoon by communicating wirelessly with the
lead vehicle using Vehicle-to-Vehicle Communication (V2V) technology, which distributes
its driving path information. Platooning, as demonstrated in the SARTE project, uses a
minimalistic approach to on-board environment perception sensors, but is a very restricted
automated driving application, relying on the availability of lead platoon vehicles and V2V
technology in order to activate the system.

Figure 1.9: Testing automated driving on highways in real traffic from Continental AG and the
Bosch Group (Images Source: [55, 70]).

Automated driving has also recently been tested on highways in real traffic by several
vehicle manufacturers and automotive suppliers [10, 50, 55, 70, 83, 307], examples of which
are shown in Figure 1.9. These systems use near-production sensors, such as radar and
stereo cameras, to detect other vehicles and obstacles, as well as the lane markings. The
goal is to develop and test a system that is able to take over the task of driving during
mundane situations, such as traffic jams or long stretches of highway. These systems,
however, have their limitations and are not able to handle all situations, still requiring the
driver to take over control given a sufficient amount of time.

This thesis originates from such a highway automated driving project, described in [50],
[336]. The goal of the project was to drive completely automated on highways, with an
artificial intelligence that is able to initiate and complete automatic lane change maneuvers
in order to maintain a desired speed. The first fully automated drive between Munich and
Ingolstadt in Germany was made on June 16th, 2011 with over 30 completely automated
lane change maneuvers during the trip [8]. A combination of environment perception,
localization and driving strategy technology was used to achieve this type of automated
driving on highways [342, 348]. The environment perception algorithms for object detection
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presented in this thesis were successfully integrated into the prototype vehicles for this
project.

Figure 1.10: Automated driving on the highway from the BMWGroup Research and Technology
(Images Source: [50, 51]).

Despite the success of the above-mentioned projects, many challenges still remain in
such automated driving systems, the most important of which is how to deal with the
driver. The main problem of automated driving is that the system must give the driver a
certain amount of time to retake control of the vehicle if a system limit is reached. The
amount of time required for a driver to retake control while out-of-the-loop is still a topic
of research [74, 126]. This poses a new requirement on the vehicle sensing technology: self-
diagnosis and evaluation is necessary in order to detect ahead of time if a system limit will
be reached. Redundant systems with different sensing technologies will be required, where
the software, hardware and electrical architecture must guarantee a fail-safe operation, at
least for the time required for the driver to retake control of the vehicle or for the vehicle
to perform the minimum risk maneuver. These problems still need to be solved before a
true automated driving system on highways can make it to a production vehicle.

1.2.5 Levels 4 and 5 – Towards Fully Automated Driving

Fully automated driving is more commonly known as autonomous driving, self-driving
cars or driverless cars, where the vehicle takes over complete control without any driver
intervention throughout the trip or for a specific scenario, such as parking. Such systems
are typically classified as Level 4 or Level 5 automation. Autonomous driving has been a
dream shared by many for decades as the Utopian future of personal mobility. The first
mention of autonomous vehicles is from the Futurama exhibit at the 1939 World’s Fair in
New York by General Motors. The dream of such an envisioned automated highway system
was for the first time experimentally realized in 1958 with the General Motors Firebird III
concept [321]. The Firebird III used a pair of coils installed in the front of the vehicle which
could detect an alternating current embedded in the road in order to guide the vehicle in its
own lane. However, beyond this simple demonstration, the dream of autonomous driving
took a break for several decades. Recent advancements made in electronics and computer
technology allow for more advanced sensor systems and computational power in much
smaller form, making autonomous driving soon a possible reality.
Many projects have claimed to develop autonomous driving vehicles or driverless cars.

However, only few projects have actually achieved truly autonomous driving, as the fail-
safe requirements in all situations that the vehicle may encounter are still quite difficult to
achieve with today’s technology. In this section, projects which have tested fully automated
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(a) Image Source: [272] (b) Image Source: [280]

Figure 1.11: Winners of the 2005 DARPA Grand Challenge, Stanley, from Stanford University
(a) and the 2007 DARPA Urban Challenge, Boss, from Carnegie Mellon University(b).

driving are presented, as well as projects whose continued goal is to achieve higher levels
of automation.

DARPA Grand and Urban Challenge

The Defense Advanced Research Projects Agency (DARPA) Grand and Urban Challenge
mark the first real tests of truly driverless vehicles, where vehicles were tasked to complete
a course without any persons on board. In 2002, DARPA announced the first Grand
Challenge: a competition to design a driverless vehicle that could navigate a 240 km course
in the Mojave Desert autonomously. The first DARPA Grand Challenge in 2004 consisted
of 21 teams who qualified to participate, with teams coming mostly from universities [80].
The $1 million prize for the 2004 DARPA Grand Challenge remained unclaimed, as none
of the teams came even close to finishing the course.
Shortly after the first competition, the second DARPA Grand Challenge was announced

with a $2 million prize for the team that can finish a 212 km course in the fastest time [81].
The proposed challenge turned the 2005 DARPA Grand Challenge into a large research
effort from academia and industry to demonstrate and develop fully autonomous driving.
This time, 5 teams managed to finish the course, with the team from Stanford University,
in cooperation with Volkswagen of America, Inc. and Intel Research, taking first place
with their vehicle, Stanley (see Figure 1.11a). The system and technology developed for
Stanley is described in Stanford’s DARPA Challenge technical report [289]. The major
step forward is that a lot of the hardware, software and ideas used by Stanley are very
similar to the type of technology relevant to current and future production vehicles and
has set the foundation for continued robotic research with application to driver assistance
systems and autonomous driving.
In 2007, the DARPA Urban Challenge took place [82]. This challenge required vehicles

to autonomously navigate various urban scenarios while obeying traffic laws and avoiding
and passing other moving vehicles and stationary obstacles, still with no one on board the
vehicle. The 96 km urban course would become one of the toughest challenges facing these
types of autonomous vehicles. In the end, a total of six vehicles completed the course, with
the team from Carnegie Mellon University finishing in first place with their vehicle, Boss
(see Figure 1.11b).
Most of the vehicles in the DARPA Grand and Urban Challenge were highly-prototypical

vehicles with many large and expensive sensors mounted on the roof or hanging off of the
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side of the vehicle in order to achieve the detailed perception required for autonomous
driving. For dynamic object detection, the Stanford entry in the DARPA Urban Challenge
relied primarily on a 360◦ multi-beam laser scanner mounted on the roof of the vehicle
[203]. This single sensor provided a high-resolution 3D point cloud of the surrounding
environment, on which object detection and tracking was accomplished. This sensor has
become a popular sensor platform for autonomous driving projects. However, such a
sensor is highly unrealistic in automotive applications at the consumer level, since the
sensor is highly exposed and not integrated into the design of the vehicle. The winning
entry from Carnegie Mellon University used a fusion approach to object detection and
tracking, where raw measurements from sensors were pre-processed and then fused into a
global tracking system to generate a single object list [299, 300]. Team LUX attempted the
Urban Challenge using integrated laser scanner sensors, therefore allowing their vehicle to
maintain its production design. However, the team failed to make it to the final competition
[88]. Other teams used similar approaches, combining data from large laser scanner sensors
and vision systems for perceiving the environment and localizing the vehicle very accurately
[59, 155, 245].
The DARPA Grand and Urban Challenge competitions were a great step forward in

demonstrating the possibility of autonomous driving in complex situations. However, the
competitions showed that a lot more research needs to be done in order to make such
technology a reality in production vehicles. The sensor technology used was too expensive
and bulky and a large amount of computing power was required to process all of the data
and make the correct decisions while driving. But the DARPA Challenge competitions
brought autonomous driving to the attention of the general public, and the universities
and industry partners that participated in the competitions have continued their research
since the challenges have taken place.

Recent Attempts at Autonomous Driving

The DARPA Grand and Urban Challenges proved to be a major milestone in autonomous
driving research and technology. Since then, a lot of the teams that participated in the
competitions are still doing research in the field of autonomous driving and have taken it
upon themselves to achieve new goals.

Figure 1.12: Driving autonomously on Braunschweig’s inner ring road with the Stadtpilot
project from the Technische Universität Braunschweig (Images Source: [281]).

After their participation in the DARPA Urban Challenge, the team from the Technische
Universität Braunschweig decided to take autonomous driving technology into real urban
traffic with its Stadtpilot project (Figure 1.12). The goal of this project was to drive
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(a) VIAC (Images Source: [305]) (b) BRAiVE (Image Source: [57])

Figure 1.13: Recent prototype vehicles for autonomous driving from VisLab at the University
of Parma in Italy.

autonomously on Braunschweig’s inner ring road in real traffic, including the handling of
intersections, merging into moving traffic and lane change maneuvers, all at speeds up to
60 km/h [281, 323]. The test vehicle “Leonie” uses a lot of the same technology from the
DARPA Urban Challenge. However, due to the fact that the vehicle must operate in real
traffic, the test vehicle has been extensively redesigned with a more optimized packaging
of sensor systems [323]. Additional safety precautions so that the driver can take over
control of the vehicle at any time were also added. The first autonomous test drives on
the 12 km inner ring road took place during the summer of 2010. However, in this initial
phase, only a 2.5 km part of the complete course has been driven autonomously. Despite
this, several hundred kilometers have already been successfully driven [255]. Even though
the goal is to drive fully automated, driver intervention was at times still necessary due to
uncontrolled situations or technical difficulties [255], showing that full automation is still
quite a challenging task.

The VisLab, from the University of Parma in Italy, have recently undertaken a large
expedition, attempting to drive autonomously from Italy to China in just over three
months, during their Intercontinental Autonomous Challenge [37, 305]. The team drove
autonomously using two vehicles equipped with various camera and laser scanner sen-
sors (see Figure 1.13a). Their approach to autonomous driving was a “follow the leader”
platooning-type method, where a lead vehicle is driven semi-autonomously and a following
vehicle drives fully autonomously, using information from the lead vehicle. During the
team’s adventure, they covered a distance of over 15,000 km and collected over 20 ter-
abytes of data, which will be used to improve state-of-the-art vision algorithms. However,
their “follow the leader” approach and extensive use of external and roof-mounted sensor
systems are far from a realistic implementation of fully automated driving technology for
mass production vehicles. The team from the University of Parma also developed another
prototype vehicle BRAiVE (see Figure 1.13b) for further researching autonomous driv-
ing technology [57]. As compared to other vehicles for fully automated driving, BRAiVE
uses sensor technologies, mainly cameras and laser scanners, which are integrated into the
vehicle’s design.

The Freie Universität Berlin’s AutoNOMOUS Labs has also continued to develop their
autonomous driving technology beyond the DARPA Urban Challenge [14]. Their proto-
type vehicle, “MadeInGermany”, pictured in Figure 1.14, has recently successfully driven
autonomously on the roads of Berlin, including around Brandenburg Gate. In 2012, the
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Figure 1.14: Freie Universität Berlin’s AutoNOMOUS Labs autonomous driving car (Images
Source: [14]).

vehicle even drove autonomously around Mexico City [108] and in 2015 covered over 2,400
kilometers in Mexico [109]. The goal of the project is to advance the technology for future
driver assistance systems and autonomous driving. The prototype vehicle uses a combi-
nation of laser scanners to detect other traffic, including a large roof-mounted multi-layer
laser scanner, shown in Figure 1.14, the same sensor used by many teams during the
DARPA Urban Challenge.

Other university projects have also recently developed prototype vehicle platforms for
autonomous driving. A consortium of industry and academic partners have developed a
platform for autonomous vehicle testing in cities with close-to-market sensors using an
electrical vehicle for the European Union Project V-Charge [118]. The project will focus
on further developing all aspects of autonomous driving technology. Carnegie Mellon Uni-
versity, with their history and experience with autonomous driving, have also built new
prototypes for autonomous driving [312], where the vehicle can already navigate intersec-
tions, work zones and deal with pedestrians and bicyclists. The University of Ulm has also
developed a complete system for autonomous driving with a sensor-independent fusion
approach [164].

Figure 1.15: Daimler “Bertha” Prototype Mercedes S-Class for autonomous driving (Image
Source: [106]).

Vehicle manufacturers, such as Daimler, have also demonstrated prototype vehicles with
the goal of fully autonomous driving in challenging environments. In 2013, Daimler pre-
sented a Mercedes S-Class capable of driving a 100 km route consisting of urban and
country road environments, replicating the Bertha-Benz route from 1888 [106, 331]. The
vehicle makes strong use of Daimler’s vision systems, which have been in development for
urban environments for many years [105] and parts of which are available in the current
production version of the S-Class.
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Figure 1.16: Google’s self-driving car project (Image Source: [127, 131]).

The world’s premier information technology company, Google, has also been researching
autonomous driving technology since 2009 [98, 127, 131, 192]. Also using the popular 360◦

multi-beam laser scanner mounted on the roof the vehicle, Google has developed a fleet
of cars that have driven several hundreds of thousands of miles in an autonomous driving
mode. Initially, main testing occurred on highway roads, as described in [98], but has
more recently focused on complex and urban environments. The system relies heavily on
the laser scanner sensor for object detection, mapping and localization, with some use of
cameras for applications such as traffic light detection. Despite using a sensor technology
which is far from being integrated in production vehicles, Google has made a lot progress
in the development of software and algorithms necessary for autonomous driving. Since
2014, Google has further developed the system and has produced a fleet of small, low-speed
pod-like vehicles (still using similar sensor technology), which are designed to not have a
steering wheel and pedals, thereby focusing on a truly fully autonomous vehicle [127].

Figure 1.17: MuCAR-3: Research vehicle for autonomous driving in off-road environments from
the Universität der Bundeswehr in Munich, Germany (Image Source: [84]).

An approach to autonomous driving is also being researched for military applications,
where the focus is on unknown, off-road environments. Advances in this area are being
made by the Universität der Bundeswehr in Munich, Germany with the research vehicle
MuCAR-3 [135, 136, 176, 188], shown in Figure 1.17. The MuCAR-3 uses a combination of
mainly a high-definition 360◦ laser scanner and camera sensors to perceive the environment
and carry out autonomous dirt road following [30, 188–191] and vehicle convoy applications
[111–113, 175, 188]. In order to improve perception in such environments, an active per-
ception system was developed which actively focuses a camera system towards the most
important area of the environment [298], thereby effectively increasing the field-of-view
without requiring the installation of more sensors.
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A special situation where fully automated driving may be feasible much sooner is parking.
Due to the generally low speeds and therefore lower risk, a fully automated vehicle in
a valet-parking situation may be quite realistic in the near future. Such valet-parking
functions usually require some form of map of the parking infrastructure in order to localize
the vehicle within the parking infrastructure (usually without GPS due to the indoor nature
of parking facilities), sensors to aid in localization and object detection and motion planning
algorithms for generating a drivable path into the parking space [110, 141, 163, 174, 200].
Several university project demonstrations have shown that such fully automated parking
applications are technically possible [141, 163, 174, 200]. Automobile manufacturers have
also demonstrated such parking applications. A recent demonstration of fully autonomous
valet parking with an electric vehicle equipped with four laser scanner sensors [53] is shown
in Figure 1.18.

Figure 1.18: Valet parking project with a BMW i3 demonstrating fully autonomous driving in
parking situations (Images Source: [53]).

Even with the advances made within the aforementioned projects, all prototype vehicles
still heavily rely on the fact that a driver is necessary during testing and ready to take
over control at a moment’s notice, just in case something does go wrong, demonstrating
the fact that much research still needs to be done before true fully automated driving will
be possible.

1.3 Problem of Object Detection

As shown in Figure 1.1b, future driver assistance systems will require a unified frame-
work and description of the environment for the processing of sensor data. This unified
framework is commonly known as an environment model, denoted in this thesis as E .
Mathematically, the problem of estimating the environment model can be formulated as a
conditional probability density function

p(E(t) | I) (1.1)

where E(t) is the current estimation of the environment model conditioned on some infor-
mation I. Starting with this basic formulation, the problem of object detection can be
derived.

The information I can generally be broken down into some sensed data D and some
a-priori information I∗ stored in memory, where the sensed data can further be broken
down into data detected from sensors perceiving the environment, S, and sensors detecting
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something about the host system, U , in this case the vehicle with an ADAS or automated
driving system:

p(E(t) | D, I∗) = p(E(t) | S,U , I∗). (1.2)

A vehicle can be equipped with any number of sensors perceiving the environment, NS,
where a set of measurements from the moment the system is turned on to the current time
t, denoted as {Z1:NS}t0, contribute to the estimation of the environment model, leading to
the formulation S = {Z1:NS}t0. Similarly, a set of control vectors for the host system is
defined such that U = {u}t0. The a-prior information can be defined as a digital map at
time t, I∗ = {M}t0, where the map’s data source comes from previously stored information,
for example a navigation map on a hard disk drive or from a database. The estimation of
the environment model can now be described as

p(E(t) | {Z1:NS}t0, {u}t0, {M}t0). (1.3)

The problem can further be formulated as a recursive estimation problem, using the prior
estimation of the environment model in the current estimation with the Markov assump-
tion. This leads to the problem of estimating the environment model conditioned on the
previous estimation and current measurement data:

p(E(t) | E(t− τ), {Z1:NS}(t),u(t),M(t)) (1.4)

where the prior estimation of the environment model E(t − τ) is used to estimate the
current environment model p(E(t)). Map information is also only retrieved for the current
time t, such thatM(t) represents the subsection of the map currently relevant for the host
vehicle. This formulation assumes that all of the data from the sensors NS gets processed
synchronously at time t. Another possibility is to process sensor data asynchronously,
where the current environment model is updated with the data from just one sensor at a
time:

p(E(t) | E(t− τ), Zi(t),u(t),M(t)). (1.5)

The next important step is to think about the type of representations which are of in-
terest in an environment model. In ADAS, typically three types of representations are im-
portant: host-vehicle localization and pose, dynamic and static objects/obstacles and the
road infrastructure. The representations for objects and obstacles are usually categorized
into model-based approaches and spatial-based approaches. In total, four environment
representations are to be estimated in an environment model, replacing E with X (host-
vehicle localization and pose), O (model-based object detection), G (spatial-based object
detection, usually realized with a grid-based representation) and R (road infrastructure),
leading to the detailed environment model estimation problem of

p(X (t),O(t),G(t),R(t) | X (t− τ),O(t− τ),G(t− τ),R(t− τ), Zi(t),u(t),M(t)). (1.6)

In this thesis, it is assumed that the various representations are independent of one another,
allowing a separate and parallel estimation for each representation, where (1.6) can now
be written as

p(X (t) | X (t− τ), Zi(t),u(t),M(t)) · p(O(t) | O(t− τ), Zi(t),u(t),M(t))·
· p(G(t) | G(t− τ), Zi(t),u(t),M(t)) · p(R(t) | R(t− τ), Zi(t),u(t),M(t)). (1.7)
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However, for more complex environment models, some dependencies between the repre-
sentations may exist and would need to be properly accounted for. In this thesis, however,
such dependencies are ignored.
The problem to be solved in this thesis is that of the model-based object detection,

where it is additionally assumed that a-priori map information does not contribute to the
estimation, leading to the problem to be solved in this thesis as follows

p(O(t) | O(t− τ), Zi(t),u(t)). (1.8)

The following chapters will go into much further detail on how to estimate a consistent
representation of objects in the environment from several sensor sources and present a
novel approach for doing so.

1.4 Contribution and Outline of the Thesis

The focus of this thesis will be the development of an architecture and concept, including all
necessary algorithms, for combining the data from multiple vehicle-integrated environment
perception sensors with the goal of achieving reliable object detection for the automated
driving on highways project by the BMW Group Research and Technology, as described
in Section 1.2.4. The project sets itself apart from most other projects by achieving a
full vehicle surround perception without any large and expensive sensors mounted exter-
nally onto the vehicle, allowing the original body design of the vehicle to be maintained.
However, the architecture should also meet the requirements for a general and modular
framework for sensor data fusion for future driver assistance systems.
The problem with modern driver assistance systems in production vehicles is that sensor

technologies are unique to a specific application, as was shown in Figure 1.1a. However,
with new and more complex driver assistance systems on the horizon, such as automated
or autonomous driving, more sensors will be required. A single, general framework for
environment perception will be necessary in order to share sensor data between different
applications. The output of this general framework is an environment model, where a part
of this model is the description of detected objects. This will reduce complexity and costs
in integrating several driver assistance and automated driving systems in the future.
This thesis focuses on the problem of sensor data fusion with respect to object detec-

tion for future advanced driver assistance systems and in particular automated driving
on highways. Previous approaches rely on unrealistic sensor configurations for production
vehicles and lack the modularity required for cost-saving and multi-platform applications.
These problems are addressed in this thesis with the proposition of a modular high-level
sensor data fusion architecture for surround environment perception that conforms to the
future requirements of the automotive industry. This novel sensor data fusion architecture
is demonstrated for automated driving applications that are currently being developed at
the BMW Group Research and Technology (Figure 1.19). Experience and results from
this project can be found in [336].
In order to develop the best sensor data fusion architecture for surround environment

perception, algorithms and architecture configurations which already exists in the literature
should be considered and analyzed. The requirements to be met for a sensor data fusion
architecture for future driver assistance systems will be considered based on the following
criteria:
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Figure 1.19: Surround environment perception for automated driving on highways using laser
scanner (green), radar (blue), camera (white) and ultrasonic (dark green) sensors.

• The architecture must be modular and easily reconfigurable for various sensor config-
urations and applications, which will allow the system to be used for different vehicle
platforms.

• Different sensor technologies must be supported in order to guarantee reliability and
robustness through the fusion of different measurement principles.

• The design of the architecture must be held general, in order to support sensors from
different suppliers and manufacturers.

• The algorithms for fusing sensor data must allow for a complete surround environ-
ment perception.

• The quality and uncertainty of the detected objects must be quantified in order to
allow for a probabilistic treatment of object data for situation interpretation and
application parametrization.

The developed architecture and its algorithms will be tested and evaluated in practice
using a prototype vehicle for advanced driver assistance systems and highly automated
driving. This vehicle is equipped in a manner that is realistic for realizing surround envi-
ronment perception for production vehicles in the future. The practical implementation of
the architecture must meet the following requirements:

• The sensors used for surround environment perception should be integrated into the
vehicle’s body in order to preserve the production design of the vehicle.

• Whenever possible, sensors already in production vehicles should be used so that
modern sensor technology already found in vehicles can be taken advantage of,
thereby making the sensor configuration as realistic as possible of future driver as-
sistance systems.

• The sensor data fusion architecture must run in real-time.
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• The architecture should be able to detect, with good reliability, all relevant traffic
participants while reducing false detections.

• The detected objects from the environment must be accurate enough in order to
make a reliable situation interpretation of the environment.

Given these architectural and practical requirements, this thesis makes the following
novel contributions to the problem of surround environment object detection for ADAS
applications:

• A modular high-level sensor data fusion architecture for object-level detection and
fusion, where low-level or feature-level fusion may also contribute.

• A consistent object representation which contains not only the object’s state, but
also quality and uncertainty attributes such as its existence and classification.

• Object association techniques which consider complex object constellations during
association, in particular for areas around the vehicle where sensor field-of-views
overlap, thereby enabling 360◦ object association.

• Integration of attribute information for existence and classification into popular data
association techniques.

• Combination of typical state-space data association techniques with a novel geo-
metrical association method which considers an object’s dimensions during object
association.

• A sensor-to-global fusion strategy such that new sensor data is fused asynchronously
into a global estimate of detected objects.

• Object state fusion algorithms (track-to-track fusion) within the sensor-to-global
fusion strategy concept.

• Demonstration that the information matrix fusion algorithm provides optimal results
in terms of performance compared to a low-level fusion approach using a central
Kalman filter.

• A novel method for the fusion of an object’s dimensions.

• A simple Bayes formulation for object existence estimation at the sensor-level.

• Method for object existence fusion using the Dempster-Shafer evidence theory which
considers sensor existence estimation performance.

• An example Gaussian approach to sensor-level object classification.

• Method for object classification fusion using the Dempster-Shafer evidence theory
which considers sensor classification estimation performance.

• Method for parametrization of the Dempster-Shafer evidence theory based existence
and classification fusion algorithms which take into consideration different sensors’
performance in attribute estimation.
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• Thorough evaluation methods and results for object detection algorithms for state,
existence and classification for surround environment perception with a multitude
sensors.

The thesis begins in Chapter 2 with an overview of different types of sensor data fusion
architecture configurations that have been used in the literature for automotive applica-
tions. Each architecture will be considered for its viability for future driver assistance
systems based on the above-mentioned requirements. Based on this analysis, a sensor data
fusion architecture for surround environment perception is then proposed.
The chapters that follow describe how to process and fuse sensor data in order to obtain

a full description of a detected object in the vehicle’s environment. Chapter 3 considers
how to decide which detected objects from different sensors represent the same object in
reality. This process is called object association. Additionally, Chapter 3 will also consider
the different strategies for actually synchronizing and fusing the sensor data together in
order to form a single object. The problem of how to estimate and fuse the position,
velocity, acceleration, length and width (the state of an object) and its uncertainties, or
the covariance, is described in Chapter 4. In Chapter 5, the calculation of an object’s
existence is described, which is a measure of the detection quality of an object. The
likelihood of what type of object is detected, such as a car, truck, motorcycle, etc., is
called classification and is described in Chapter 6.
The complete sensor data fusion architecture is evaluated in Chapter 7 using a prototype

vehicle designed for testing future driver assistance systems and automated driving. A
summary of the results and experience in developing the sensor data fusion architecture is
given in Chapter 8 with an outlook to future work that could improve surround environment
perception for more applications. Each chapter is followed with a short discussion about
the topics covered in that chapter.
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Single sensor systems are restricted to the performance and field of view of that single
sensor. Applications with a high degree of automation, such as automated driver assistance
systems, require a high degree of robustness and reliability. Through the use of sensor
data fusion, the data from multiple sensors can be used to increase the system’s overall
performance and guarantee a certain degree of robustness. This is achieved by using sensors
which are based on different measuring principles, so that errors or lapses in performance
of a certain sensor type is compensated by a complementary sensor. Sensor data fusion is
also able to increase the field of view, where a single sensor is not able to fully observe the
required area, as is the case in automotive surround environment perception with vehicle-
integrated sensors. Sensor data fusion is a critical part in estimating the environment
model, as described in Section 1.3.
Multi-sensor systems for detecting and tracking objects require an architecture for com-

bining the data from multiple sensor sources, with sensors possibly having different proper-
ties and measurement principles. These types of architectures are called sensor data fusion
architectures. Such systems were first required and designed for the aerospace industry,
where multiple radar sensors and stations were used to track aircraft for defense purposes.
With the advent of stealth aviation technology, the algorithms and methods of sensor data
fusion have become all the more important for reliably detecting aircraft.
Many configurations of sensor data fusion architectures have been proposed and suc-

cessfully used in the aerospace industry [17, 26, 42]. However, in aerospace applications,
detected aircraft can be modeled as point targets since the distances between the radar
stations and targets are relatively large. In automotive applications, the point target as-
sumption is not valid due to the fact that a single vehicle can take up a significant portion
of a sensor’s field of view. With the advent of new Advanced Driver Assistance Systems
(ADAS) and the need for more sensor technologies to support these systems, the sensor
data fusion architectures and algorithms have to be redesigned and optimized for use in
automotive applications.
This chapter aims to give a brief overview of the different types of sensor data fusion

architectures that have been proposed and demonstrated for automotive applications. The
different types of fusion architectures will then be more closely examined and compared to
one another in order to get a better idea of each architecture’s advantages and disadvan-
tages. Finally, a novel sensor data fusion architecture for model-based object detection is
proposed, designed to be modular and optimized for future ADAS, particularly automated
driving applications.

2.1 Overview

There are many possible ways to organize and process the data coming from a multi-
sensor system. These different types of sensor data fusion architectures each have their
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advantages and disadvantages. In this section, some basic sensor data fusion architectures
will be presented in order to gain an understanding of the different ways that a multi-sensor
system can be configured. Fusion architectures can in theory be separated into two general
categories: low-level, or centralized, and high-level, or decentralized, fusion architectures
[17]. The following sections will describe and compare several types of centralized and
decentralized fusion architecture that have been successfully used in ADAS.

2.1.1 Low-Level

A basic and intuitive sensor data fusion architecture is based on a low-level fusion method.
In a low-level fusion architecture, the basic idea is that each sensor transmits raw sensor
data to a central fusion module. At the fusion module, the raw sensor data is then processed
using a single central tracking algorithm. Because of this central filtering algorithm, a low-
level fusion architecture is also called a centralized fusion architecture. There are several
variations of sensor data processing in a low-level fusion architectures.

Raw Data

Sensor 1

Raw Data

Sensor 2

. . . Raw Data

Sensor N

Measurement-to-Measurement Association

Measurement-to-Measurement Fusion

Tracking

Figure 2.1: Low-level fusion architecture using measurement-to-measurement fusion.

Measurement-to-Measurement Fusion

One method of low-level sensor data fusion is to combine the raw sensor data using a
measurement-to-measurement association and fusion algorithm and then feeding the fused
measurements to a central tracking algorithm. The drawback is that sensors must be highly
synchronized in order to achieve successful association results. The low-level measurement-
to-measurement fusion architecture is illustrated in Figure 2.1. This type of low-level
measurement-to-measurement fusion architecture has been successfully used for an auto-
motive pre-crash application using forward-facing radar and laser scanner sensors [238].
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Naab and Frey also describe this type of low-level measurement-to-measurement fusion
and centralized tracking system in order to realize a modular architecture for driver assis-
tance and active safety systems [220]. In [278], a low-level fusion method between a laser
scanner and camera sensor is described, where the measurements of the two sensors are
combined. A variation of this measurement-to-measurement low-level fusion approach is
used in [114, 276], called scan data fusion, where the raw data measurements from several
laser scanner sensors are first aligned to a common coordinate system and time before a
central object recognition module performs the segmentation and tracking of objects. More
recently, [15] describes a measurement-to-measurement fusion approach between laser scan-
ner and stereo camera sensors to detect moving objects at intersections. As shown in the
applications above, such a fusion method has proven to be effective in simple, synchronized
two-sensor systems, or a system where the same sensor type from the same manufacturer,
mounted in different positions, is fused.

Raw Data

Sensor 1

Raw Data

Sensor 2

. . . Raw Data

Sensor N

Tracking

Figure 2.2: Low-level fusion architecture using direct measurement updates.

Centralized Filter with Direct Measurement Updates

Another typical low-level fusion method is to directly use the sensor measurements as
the input measurements to a tracking algorithm, without prior fusion (Figure 2.2). The
measurements from different sensors are chronologically integrated into the central tracking
algorithm. For this type of low-level fusion, sensors have to have an accurate global time
base so that the central tracking algorithm can properly be updated from one measurement
to the next, especially if the sensors have different cycle times, making them asynchronous
[138, 318]. If the sensors are asynchronous and have varying latencies, it is possible that the
measurements arrive at the fusion module out-of-sequence. This problem has been solved
in the literature so that out-of-sequence measurements can be directly integrated into a
central tracking algorithm using out-of-sequence measurement algorithms [20, 23, 248].
This direct type of low-level fusion method has been used in automotive pre-crash and
safety applications using asynchronous radar sensors [86] and out-of-sequence measurement
algorithms [344–346],[208]. A unique low-level fusion approach based on a belief network is
described in [274] using a radar and a camera sensor in order to detect the most plausible
and correct position of vehicles.
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Figure 2.3: Feature-level fusion architecture.

Feature-Level Fusion

Kaempchen developed the idea of a feature-level fusion architecture, which is a derivative
of a low-level fusion architecture [150, 151]. Figure 2.3 illustrates a feature-level fusion
architecture. In a feature-level fusion architecture, a sensor does not transmit raw sensor
data to the fusion module, but more generic, extracted features. This requires that the
sensors operate using a global object model that has defined features which all of the
sensors in the system must be able to detect and transmit. In some configurations, the
sensors also perform the data association step in the tracking process, requiring a feedback
of the fusion module’s already tracked objects. The fusion module is then responsible for
the filtering, or tracking, of sensor feature data.

A similar architecture is described by Darms [76, 77], which also has some characteristics
of a feature-level fusion architecture. In this architecture, the sensors may or may not do
some pre-processing of raw sensor data to generate features. Data association can also
occur at the sensor instead of at the fusion module, which requires information feedback
from the fusion module. Additionally, the described architecture allows for application-
specific filtering properties and models of the sensor data. However, the interfaces between
the sensors and the fusion modules seems to be quite loosely defined, making it difficult
to realize a general architecture when more sensors are necessary. This type of feature-
level fusion architecture was used by Carnegie Mellon University, the winning team in the
DARPA Urban Challenge [79].

The feature-level fusion approach was further developed by the University of Ulm in the
works lead by Mählish [182, 183, 186]. It is argued that the feature-level fusion approach
provides superior classification and detection performance. This feature-level fusion ar-
chitecture was further extended using the Joint Integrated Probabilistic Data Association
(JIPDA) algorithms, which combine state and existence information of detected objects
[185, 187, 211, 213]. A classification approach combining JIPDA and the Dempster-Shafer
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theory was also developed for this feature-level fusion architecture [210–212].
Surround environment perception using contours as a feature was first developed for

the Defense Advanced Research Projects Agency (DARPA) Urban Challenge by Team
CarOLO from the Technische Universität Braunschweig [245]. A central extended Kalman
filter capable of tracking arbitrary contour shapes was used to track objects from laser
scanner and radar sensors mounted in the front and in the rear of the vehicle [91, 245].
This low-level contour-based tracking and sensor data fusion architecture was extended
using evidence theory for the Stadtpilot project in [230–232].
A feature-based object model is used in [71, 72] to track objects in a road environment.

A three-dimensional feature space is defined for each object type, where sensor-specific
features are defined inside this feature space. The idea is that each sensor has the ability
to detect specific and different features of an object. The detected features are then trans-
formed into the feature space and fused using a multiple model filtering algorithm. The
features, however, are very sensor specific, making this approach difficult as the number
and different types of sensors is increased for surround environment perception. In [32],
features are extracted from radar, laser scanner and vision sensors and then fused using
an approach based on an information filter.

Summary

A low-level fusion architecture has proven to be a successful means of sensor data processing
in automotive applications. However, most of the applications described above, with a
few exceptions, were designed for simple two-sensor perception systems mostly for Active
Cruise Control (ACC) or collision avoidance applications. As more sensors are required,
the complexity of a low-level fusion architecture can quickly increase and make a practical
implementation quite difficult. Feature-level fusion attempts to capitalize on some of the
weakness of a traditional low-level fusion architecture by extracting features from the raw
sensor data before performing association and centralized tracking of objects.

2.1.2 High-Level

A high-level fusion architecture can be considered the opposite of a low-level or feature-
level architecture. Otherwise known as a decentralized or distributed fusion architecture,
a high-level fusion architecture depends on the fact that each sensor has its own filtering
and tracking algorithm and the fusion module simply combines the already-filtered results
from multiple sensors. Therefore, high-level fusion consists of fusion at the object-level, or
track-level, where the objects have already been tracked by each sensor independently. A
basic high-level fusion architecture is shown in Figure 2.4.
For surround environment perception, Becker describes and compares several ways of

fusing sensor data from independent sensor tracks for autonomous driving on test tracks
[31]. In [220], the idea of object-level fusion describes a higher-level fusion module, which
combines data from lower-level fusion modules or sensors directly, creating so-called en-
hanced object lists. However, the architecture is only loosely described and does not seem
to depend on standard interfaces between modules, which could increase complexity and
reduced the overall architecture’s modularity.
High-level sensor data fusion architectures have also been used for simple two-sensor

fusion systems. In [201], a high-level architecture is used between a radar and infrared
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Figure 2.4: High-level fusion architecture with decentralized tracking algorithms.

sensor for improved vehicle detection. Labayrade describes a collision mitigation system
using a laser scanner and stereo-vision sensors [166], where the fusion, however, merely
consists of using the stereo camera to verify the relevance of the objects detected by the
laser scanner.

In a high-level sensor data fusion architecture, track-to-track fusion algorithms [64, 290,
292, 293] are usually used to fuse objects from different sensors. Floudas describes a
high-level sensor data fusion architecture between long range radar, short range radar and
camera sensors using track-to-track fusion algorithms that take into account the correlation
of object data between sensors [102]. A similar approach is used in [100, 101] for a fully-
automatic braking application for trucks. Track-to-track fusion is also applied to two-
sensor perception systems for infrared/radar and radar/lidar in [44]. A maximum likelihood
approach for track-to-track fusion is used in [67] for lidar and radar fusion for frontal object
detection. In order to quantify the performance of different fusion algorithms, several
track-to-track fusion algorithms were compared in simulation for automotive applications
in [193]. In [285], track-to-track fusion is applied to vehicular networks, where a vehicle
equipped with a long range radar sensor fuses its data with communicated object data
over vehicular networks in a high-level fusion architecture. Track-to-track fusion is also
used in the proposed fusion architecture of [253], where covariance intersection is used as
the main fusion method.

In summary, high-level sensor data fusion architectures have also been successfully used
in automotive applications. However, unlike with the low-level or feature-level fusion
architectures, not much work has been done for surround environment perception of sensor
data at the object-level. With complex sensor configurations, the object association and
fusion process can become more challenging in a high-level sensor data fusion architecture.

2.1.3 Hybrid

As the name suggests, a hybrid fusion architecture is a combination of different types
of fusion architectures. In some cases, a specific type of fusion architecture may have
advantages over another in specific sensor configurations. Therefore, in order to take
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advantage of this, hybrid fusion architectures have been developed.

Naab describes on overall sensor processing architecture for driver assistance and safety
systems, which could consist of both low-level fusion modules and high-level, or object-
level, fusion modules in one generic overall architecture [219]. This architecture is further
developed in [220]. However, the interfaces between the modules and its detailed implemen-
tation are vaguely described. In [256], Scheunert describes a multi-level fusion architecture
used in the European project PEeVENT. The architectures defines a perception memory
object (PMO), which can be accessed at all levels of data processing and fusion with a
PMO can occur at any level, depending on the type of object and model dealt with.

Hybrid fusion architectures seem to have the advantages of both low-level and high-level
fusion architectures. However, depending on how the architecture is implemented in prac-
tice, a hybrid fusion architecture may end up being quite complex to realize if fusion must
occur between many types of sensors distributed over different types of communication
channels and hardware.

2.1.4 Comparison

The previous section presented several types of sensor data fusion architectures, all of
which have distinct advantages and disadvantages. Depending on the application and
sensor configuration used, one type of architecture may be favorable over another. In
this section, sensor data fusion architectures will be compared to one another in terms of
their performance in an automotive surround environment perception application, which
is necessary for ADAS and automated driving systems, examples of which were presented
in Chapter 1.

Previous work has also compared sensor data fusion architectures for automotive appli-
cations. Becker described three approaches to the fusion of sensor data for autonomous
vehicles in [31], two of which can be considered low-level fusion and the other high-level fu-
sion. Simulation results concluded that a low-level architecture using measurement fusion
was the most suitable. In the dissertation from Kaempchen, it is argued that a feature-
level fusion architecture has better tracking and classification performance than a low-level
and a high-level architecture [150]. In [76], Darms compares centralized (low-level) and
decentralized (high-level) fusion architectures based on their loss of information, accuracy,
bandwidth, processor load, and modularity. Based on the comparison, a feature-level archi-
tecture was developed as a compromise. Herpel et al. focuses on comparing a low-level with
a high-level fusion architecture in simulation for urban and motorway traffic and concludes
that the low-level fusion architecture consistently performs better in terms of accuracy and
detection reliability [133]. More recently, in [332], low-level, feature-level and high-level
fusion architectures were compared and a high-level sensor data fusion architecture was
proposed for automated driving applications.

In this section, low-level, feature-level, high-level and hybrid fusion architectures will
be compared to one another based on their sensor encapsulation, bandwidth, accuracy,
complexity, modularity, sensitivity to errors and bias and practicality. Table 2.1 gives a
qualitative comparison between the different types of architectures, each aspect of which
will be discussed in further detail.
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Table 2.1: Comparison of sensor data fusion architectures (+: positive, −: negative, +/−:
neutral).

Low-Level Feature-Level High-Level Hybrid

Sensor encapsulation − +/− + +/−
Bandwidth − +/− +/− +/−
Accuracy + +/− +/− +
Complexity − +/− +/− +/−
Modularity − +/− + +/−
Sensitivity to errors/bias − − +/− +/−
Practicality − +/− + +/−

Sensor Encapsulation

An important feature in a sensor data fusion architecture for automotive applications is
sensor encapsulation, where senor data can be abstracted and encapsulated, such that
the sensor specific knowledge is not necessary for further processing. In [219], Naab talks
about the idea of a virtual sensor, which can consist of any arbitrary sensor data processing,
consisting of one or more sensors, but is abstracted to an interface such that it appears to
be just one sensor.

The low-level architecture tends to be the most difficult to encapsulate when different
types of sensors are used due to the fact that raw sensor data must be uniquely handled
in a centralized fusion algorithm depending on the type of sensor. Feature-level fusion
architecture improves on this by pre-processing raw sensor data and extracting features,
based on a global object model, which are then transmitted to the centralized fusion
algorithm. The extracted features, if well designed, can be encapsulated from any sensor
specific knowledge. The high-level architecture, however, is the best in terms of sensor
encapsulation, since each sensor processes as much of its data as possible, including filtering
over time, before transmitting it to the fusion module as a complete object.

Bandwidth

Another big concern in sensor data fusion, especially where many sensors are involved, is
the bandwidth required to transmit the data to the fusion modules and to the applications
which require the data. Most work in the literature agrees that a low-level architecture has
the highest demand on bandwidth [76, 133, 151, 182]. The feature-level architecture at-
tempts to improve the demand on bandwidth by transmitting features, which have already
been processed by the sensor such that not every single piece of data must be transmitted
[151, 182]. The high-level architecture also requires less bandwidth than the low-level ar-
chitecture, due to the fact that far less objects are transmitted than sensor measurements
or features. However, it may not be much of an improvement over the feature-level archi-
tecture due to the fact that the amount of data representing already-filtered objects will
be larger than feature data, due to the extra information gained through filtering the data
over time, such as velocity.

34



2.1 Overview

Accuracy

Depending on the application, accuracy is very important in automotive environment per-
ception. The least amount of information is lost in a low-level fusion architecture, where
sensor data is processed in its purest form, thereby arguably resulting in the most accurate
fusion. Many fusion algorithms are optimal if raw sensor data is processed and synchro-
nized at the fusion module [17]. When processing raw sensor data, no model assumptions
are made and data between sensors and over time are independent [76], which improves
accuracy. Accuracy in a feature-level architecture is quite similar, but model assumptions
may decrease the accuracy. The most challenging architecture in terms of accuracy is the
high-level fusion architecture, since data between sensors may be correlated, processed in
an unknown manner and model assumptions are made, which may not be consistent from
one sensor to another. However, it has been shown that some algorithms in a high-level
fusion architecture are able to produce similar results as those of a low-level architecture
[335, 337].

Complexity

It is important to consider the complexity of a sensor data fusion architecture. Different
applications may allow for different amounts of complexity in a system. Typically, for
specific and unique applications, such as the ones usually found in the aerospace industry,
a complex system may be necessary to obtain a precision otherwise not possible. But
in automotive applications, where cost is a very important factor, simpler systems are
usually favored in order to make it possible to bring new technology to the market. In
order to keep costs down, in particular across multiple vehicle platforms, a sensor data
fusion architecture should retain a low degree of complexity so that it is scalable and
useable for many applications with different types of sensors, which all may be separately
developed.
For surround environment perception, a low-level sensor data fusion architecture has the

largest degree of complexity, as the central filtering algorithm must be able to deal with
measurement data from many different types of sensors, observing different areas of the
vehicle. A feature-level architecture, depending on how it is implemented, may increase
the system’s complexity by distributing certain tracking functions, such as association, to
the sensors, requiring feedback of already-fused object information. Hybrid architectures
may also end up being complex, as they attempt to combine aspects of both low-level and
high-level architectures. A high-level architecture tends to have the simplest form, but the
methods required for fusing the object data may be complexer due to the fact that filtered
object data, instead of sensor measurement data, is used, which can result in correlation
problems between the data. Overall, all sensor data fusion architectures have some degree
of complexity, which needs to be properly addressed.

Modularity

For future ADAS, where sensor data will have to be shared among multiple applications,
modularity is of great importance. A modular sensor data fusion architecture also allows
the same algorithms to be used with different types of sensors and sensor configurations,
which could be a cost effective method of offering different driver assistance systems in
different vehicles, all based on the same underlying software and hardware architecture.
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A low-level fusion architecture does not scale very well due to the fact that raw sensor
data must flow to a single central fusion unit. The raw sensor data may come in various
formats, depending on the sensor type and its measuring principle, requiring an adaptation
of the fusion module for every new type of sensor measurement. Feature-level fusion
architectures improve on this by extracting features, which correspond to a specific object
model, before processing at the central fusion unit. However, as seen in [71, 72], features
may still be tied very closely to the type of sensor used. Previous work has also concluded
that low-level architectures have a reduced modularity and scalability compared to high-
level architectures [133]. Additionally, the fact that a central fusion unit is used requires
that it bear the burden of most of the processing in the overall system architecture.
Compared to a low-level or feature-level architecture, a high-level architecture is quite

modular. Sensor data is abstracted at a much higher level, simplifying the interface between
the sensors and the fusion unit. This also distributes the processing of sensor measurements
among the sensor themselves, leading to a more efficient use of computational resources
in the overall system. However, model and filter properties used by the sensors may
be drastically different and could affect the fusion result. Previous work mentions that
some applications may even need to use different filtering properties [76], though concrete
examples proving this theory are not given. It is apparent that high-level fusion is a more
modular architecture and well suited for serving multiple driver assistance applications.
The disadvantage is that less is known about the details of the filtering algorithms used
in the sensors and certain applications may have to be adjusted to use less than optimal
fused object data.

Sensitivity to Errors and Bias

Most sensors in environment perception only have the ability to measure position with
a high degree of accuracy. A velocity and acceleration estimate are usually derived from
the position over time. In a low-level or feature-level fusion architecture, sensor data from
one time step to the next may come from different sensors, which can introduce errors in
the derived velocity and acceleration states. Errors due to sensor bias or time jitter may
occur between sensors. The following expression shows how velocity is a function of time,
position and potential errors when the position data from one time step to the next are
from different sensors:

v(k) =
xi(k) + bi(k)− (xj(k − 1) + bj(k − 1))

tik − tjk−1 + tjitterk−1

(2.1)

where xi(k) is the position measurement from sensor i at time tik, x
j(k) is the position

measurement from sensor j at time tjk−1, b
i(k) is the bias from sensor i at tik, b

j(k − 1) is

the bias from sensor j at tjk−1 and tjitterk−1 is the jitter in the time stamps between the two
sensors. The bias between the two sensors and the time jitter affect the accuracy of the
derived states. It is possible to minimize the effect of the time jitter by modeling it as an
uncertainty, as done in [238]. The jitter between sensor time stamps can also be minimized
by using various techniques to determine a precise time stamp of sensor data [138, 318].
In a high-level sensor data fusion architecture, the derived velocity and acceleration

states are calculated over time from the same sensor. The velocity error due to the sensor
bias is eliminated because the bias from the same sensor between measurement time steps
is approximately the same, bi(k) ≈ bi(k − 1). Time jitter can also be neglected since a
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sensor’s internal cycle time is known very precisely, so tjitterk−1 ≈ 0. Reformulating (2.1)
such that the derived states are estimated from a single sensor, as would be the case in a
high-level fusion architecture, results in the elimination of the bias and jitter terms:

v(k) =
xi(k) + bi(k)− (xi(k − 1) + bi(k − 1))

tik − tik−1 + tjitterk−1

(2.2)

=
xi(k)− xi(k − 1)

tik − tik−1

.

Using a high-level fusion architecture reduces the effect due to sensor bias errors and timing
jitter in the derived states. However, in a high-level fusion architecture, precise timing of
sensor data and the minimization of bias is still desired for accurate state estimation fusion.

Practicality

Theory and practice can sometimes be quite a world apart and therefore it is important
to consider the practicality of a fusion architecture in the context of the automotive in-
dustry and ADAS. Issues such as supplier networks, vehicle communication architecture,
cost, ability to offer various configurations, etc. are all quite relevant when choosing an
architecture for combining sensor data in a practical automotive application. The issue of
practicality must also be considered for future mass-production driver assistance applica-
tions, where the practical constraints on what can be implemented and eventually sold to
customers is much more restricted than in research applications.
In [219], it is mentioned that original equipment manufacturers (OEMs) require the

use of several sensors from different sensor manufacturers in order to realize all driver
assistance systems. In the future, it will be necessary to combine sensor data for multiple
applications in one general architecture, otherwise known as the environment model. This
requires strict definitions for sensor interfaces in the architecture for future driver assistance
systems. In [76], the use of standard interfaces in the fusion architecture is also designated
as an important factor for being able to use sensors from different manufacturers in a single
architecture. It is much easier to define a standard interface at an object-level than it is
to do so for raw sensor measurements or features, since they can vary greatly between
sensors. From an interface standpoint, a high-level architecture with an object interface is
better suited in practice.
In practice, OEMs are usually the integrators of a complete driver assistance system

[219]. This would also favor a high-level architecture, where the details of sensor measure-
ment processing is left to the sensor manufacturers themselves, simplifying the integration
process and thereby reducing costs and increasing modularity.
Practicality may end up being the most important factor in choosing a sensor data

fusion architecture that has the potential of serving future driver assistance systems in
mass production, as factors such as cost, complexity, and business models may simply
take precedence over the fact that the alternative may solely improve accuracy by a few
centimeters, a fact that may be irrelevant when realizing most applications.
Another issue to consider is the validation processes required under ISO 26262 [140, 277]

for the functional safety of road vehicles. The applied architecture for sensor data fusion
may play a deciding role in the chosen architecture for more complex ADAS and automated
driving systems.
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2.2 Proposed Modular Sensor Data Fusion Architecture

This thesis proposes a novel modular sensor data fusion architecture, designed to meet
the needs for future ADAS and automated driving applications while supporting many
such applications in one general, unified architecture [332]. From the previously described
architectures, the proposed architecture is derived from a high-level sensor data fusion
architecture, with some aspects of a hybrid sensor data fusion architecture. The idea is to
keep the architecture simple, highly modular and maintain the highest level of abstraction
possible with strictly defined interfaces.

S
en
so
r-
L
ev
el

P
ro
ce
ss
in
g

Sensor 1
Processing

OS1(t1)

. . .

Sensor N
Processing

OSN (tN )

Low/Feature-Level

Fusion

OSF(tF)

F
u
si
on

-L
ev
el

P
ro
ce
ss
in
g

State and
Covariance Fusion

Existence
Fusion

Classification
Fusion

OG(t)

A
p
p
lic
at
io
n
-L
ev
el

P
ro
ce
ss
in
g

Application 1

Processing

Application 2

Processing
. . .

Application M

Processing

Figure 2.5: Proposed modular sensor data fusion architecture, consisting of three levels of sensor
data processing: sensor-level, fusion-level and application-level.

The proposed architecture is organized into three levels of sensor data processing: sensor-
level, fusion-level and application-level (Figure 2.5). The main idea is that each level has
a specific function and communicates with the next level using a simplified and defined
protocol, based on the object model. Each level in the architecture produces an object list
that adheres to the defined object model, described in Section 2.2.1, which serves as the
input for further processing at the next level. Information about the data and its source is
completely abstracted at each level, where the object model contains all of the necessary
information, in a general format, required for further processing at the next level. This
generalized format allows for the architecture to be completely modular, due to the fact
that sensor-specific information is completely eliminated and abstracted. Therefore, as
long as sensors adhere to the defined communication protocol using the object model, it
is possible to add, remove and exchange sensors as required for a specific configuration,
without the need to make any changes to the rest of the architecture or the implemented
fusion algorithms.
The remainder of this section will describe the object model and the details of the

processing flow and function of each level in the architecture. The remainder of this thesis
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will focus on the algorithms required to completely realize and make use of the object
model at each level in the architecture, in particular the algorithms at the fusion-level.

2.2.1 Object Model

Revisiting (1.8), the goal is to estimate an object list O(t) at time t based on the pre-
vious estimate of the object list and any new sensor information. Before continuing, it
is important to define the interface for an object list O. This thesis suggest an object
interface which is complete in terms of describing an object’s state, detection quality and
type attributes. The interface between the different levels of the proposed sensor data
fusion architecture is defined by an object list, O, of the perceived objects in the vehicle’s
environment

O = {O1, O2, . . . , ON} (2.3)

where Oi is a a single object in the list, defined as

Oi = {x̂,P, d̂,dσ2 , p(∃x), c, f} (2.4)

where x̂ is the estimated state vector, P is the state covariance matrix, d̂ is the estimated
object dimension vector, dσ2 the dimension uncertainty vector, p(∃x) is the probability
of existence, c is the classification vector and f is the feature vector. The set {x̂,P},
consisting of the state estimate and its error covariance, is commonly referred to as a
track. This term will be used extensively throughout this thesis, particularly in Chapter 4.
The state vector, x, defines the object’s location and dynamic information relative to the

host vehicle’s coordinate system, as shown in Figure 2.6. The state vector for the object
model is defined in this thesis as

x =
[

x y vx vy ax ay ψ ψ̇
]′

(2.5)

where x and y are the position of the detected object’s geometrical center, vx and vy the
absolute velocity, ax and ay the absolute acceleration, ψ the orientation (or yaw angle) and
ψ̇ the yaw angle rate. The object’s dimension vector

d =
[

l w
]′

(2.6)

defines a two-dimensional rectangular model for each object, consisting of a length, l, and a
width, w. For a three-dimensional object model, the dimension vector could be extended to
also include an object height. The dimension uncertainty vector dσ2 contains the variances
of the dimension vector d.
This type of rectangular object model is able to represent all dynamic objects which

are relevant in driver assistance applications. It is important to note, however, that the
defined object model can vary and should be extended if a new sensor is available that
can detect a new aspect of an object, such as height, for example. It is not necessary that
the full state vector be determined by all of the sensors, as in some cases, this may not be
technically possible. Therefore, each sensor communicates only a subset of the states of
the complete state vector. The information about which sensor states a sensor can detect
can be saved in memory or transmitted directly with each new object list.
In addition to the position and dynamic information, eight features of the object model

are defined and are given by

f =
[

FL FR RL RR FM RM ML MR
]′

(2.7)
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Figure 2.6: Planar rectangular object model depicted with the states and features.

where the features correspond to a corner or a side of the perceived object. For example,
RL is the rear-left corner of an object, RM is the rear-middle side, FL is the front-left and
so on. The middle features, such as RM orML, define that the side of an object in general
is observed and does not specifically mean that the exact mid-point of the side is observed.
The feature information is necessary in order to connect the state vector information, in
particular the position, to a larger rectangular object model. In automotive applications,
objects cannot be modeled by simple point-targets, therefore such a geometrical object
model is required. In order to allow for the proper fusion of objects from different sensors,
it is necessary that the position defined in the state vector is related to one of the defined
features of the object. Note that other geometrical models are also possible, such as
circles or polylines. As with the state vector, the feature vector should be extended if new
information can be detected, such as height. This thesis, however, focuses on the planar
rectangular geometrical model, as this model suffices for detecting relevant dynamic objects
in the vehicle’s environment.

An object’s classification is defined through a vector of classification likelihoods, c, where
the classes are defined as

c =
[

CCar CTruck CMotorcycle CBicycle CPedestrian CStationary COther

]′
. (2.8)

Note that the classification vector must be normalized.

The details on how an object model is estimated for each level in the architecture will
be described and evaluated throughout this thesis.
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2.2.2 Sensor-Level

The first level of the proposed architecture is the sensor-level. At this level, each sensor
used for environment perception processes its data independently and parallel to all of the
other sensors. Each sensor then produces a local object list, depending on the sensor’s
capabilities, as described in the previous section.
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Figure 2.7: Typical sensor data processing flow of a single sensor at the sensor-level of the
proposed sensor data fusion architecture.

A common data processing structure at the sensor-level is shown in Figure 2.7. In this
example, the raw sensor data is pre-processed through a feature extraction algorithm. The
extracted features, which may correspond to the feature vector, fS, of the local object
model, is then tracked over time using common filtering and tracking algorithms [26] to
generate the object’s state vector, xS, and state covariance matrix, PS, as well as an object’s
dimensions, dS, and the dimension uncertainty, dS

σ2 . Parallel to state vector estimation,
the object’s existence probability, pS(∃x), and classification probability vector, cS, are also
determined.
However, in some cases, it may be beneficial to use a low-level or feature-level fusion

architecture between certain sensors. For example, for forward-facing sensors, a feature-
level fusion between a camera and radar sensor may provide a more reliable object list,
due to the camera’s superior object classification performance. In other cases, a low-level
fusion architecture may make sense for practical reasons, such as cost, when the same type
of sensor from the same manufacturer is used several times. In the cases where such an
architecture is desirable, the sensor-level processing for a group of sensors may consist of a
low-level or feature-level fusion processing structure, as described in Section 2.1.1. In the
proposed fusion architecture, the low-level or feature-level fusion is then considered as a
virtual sensor, as illustrated in the lower-right of Figure 2.5. Through the defined general
object list model, how the object data is produced is completely abstracted, therefore, it
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is not transparent if the object list from the sensor-level is generated from a single sensor
or from a low-level or feature-level fusion of a small group of sensors.

2.2.3 Fusion-Level

At the fusion-level of the proposed sensor data fusion architecture, a central fusion module
exists for the purpose of generating a sensor-independent global object list, OG, by com-
bining all of the sensor-level object lists. The data processing flow at the fusion-level is
shown in Figure 2.8.

OS1...SN (t1 . . . tN )

Temporal and Spatial Alignment

Object Association

x̂S1...SN , d̂S1...SN

PS1...SN ,dS1...SN
σ2

pS1...SN (∃x) cS1...SN

State and

Covariance Fusion

Existence

Fusion

Classification

Fusion

x̂G,PG, d̂G,dG
σ2 , f

G pG(∃x) cG

Global Object Management

OG(t)

Figure 2.8: Object list data processing flow at the fusion-level for the proposed sensor data
fusion architecture.

The first step for the fusion-level data processing is to temporally and spatially align
the sensor-level object lists, OS1...SN (t1 . . . tN), from all of the sensors. This includes syn-
chronizing all object lists to the global object list and putting all of the object data in
a common coordinate system. Once this is accomplished, the object lists from all of the
sensors are associated with one another to determine which objects from different sensors
represent the same object in reality. After object association, the state and covariance,
the existence probability and classification for associated objects are fused together into
a single global object list. The fusion process produces a new, global object list, OG,
which represents all of the objects in the vehicle’s environment that the sensors were able
to observe, independent of any sensor specific knowledge. Therefore, sensor knowledge is
completely abstracted in the global object list.
The following chapters in this thesis will mainly focus on the algorithms necessary for

the alignment, association and fusion of sensor data at the fusion-level, as described above.
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2.2 Proposed Modular Sensor Data Fusion Architecture

2.2.4 Application-Level

At the application-level, the global object list, OG, is available to any driver assistance
application that requires object detection for its functionality. Combined with other envi-
ronment perception modules, such as lane detection, digital maps, host vehicle localization
and orientation, etc., an application can apply its own specific situation assessment algo-
rithms and then trigger a warning, change a state, control an actuator or do whatever is
necessary to realize the application. Several applications can run in parallel and use the
same global object list that is generated within the proposed sensor data fusion architec-
ture. This also allows the architecture to be highly modular, because applications can
be added and modified at no additional cost to the overall object detection environment
perception architecture.

OG(t)

Object-to-Lane Matching

Situation Assessment

Driving Strategy and

Trajectory Planning

Actuator Control

Steering BrakingPower

Host Vehicle
Localization

Digital

Map

Figure 2.9: Data processing at the application-level for highly automated driving on highways.

An example of an ADAS developed during this thesis is automated driving on highways,
a subset of which is the emergency stop assistant. In this application, the vehicle is ca-
pable of automated driving in highway situations, including fully autonomous lane change
maneuvers and decision making. The situation assessment and decision making module
for automated driving and other advanced driver assistance systems was developed in [6–
9], [338, 340, 341]. The data processing flow for realizing highly automated driving on
highways is illustrated in Figure 2.9. In addition to the global object list, a digital map
of the highway environment and the localization of the host vehicle must be known. The
host vehicle localization algorithms are able to determine the global position of the vehicle
with centimeter accuracy [244]. Using a highly-accurate digital map, such as the ones
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developed in [244] and [347], the host-vehicle and the detected objects from the global
object list are matched onto lanes in the digital map. Based on the results of this object-
to-lane matching, a situation assessment algorithm determines which objects are relevant
and how critical the current highways situation is [7]. Objects are also predicted in order
to allow for an early reaction to certain situation, such as lane changes [340, 341]. The sit-
uation assessment is then used to make decisions about the vehicle’s driving strategy and
generates trajectories for lateral and longitudinal vehicle guidance, even during the driver
take-over request phase [339]. The parameters for these trajectories are then applied to
control algorithms which alter the vehicle’s steering, throttle and braking, therefore fully
automatically moving the vehicle on the highway.

Other driver assistance applications can also benefit from the global object list. Active
cruise control (ACC), for example, would simply need to select the relevant object in front
of the host vehicle from the global object list in order to perform its function. Similarly, a
lane change warning or blind spot monitoring application would need to find the objects
which may make it difficult for the host vehicle to perform a lane change maneuver, and
if such an object is found, a warning can be given to the driver. The advantage of the
proposed modular sensor data fusion architecture is that one unified architecture for object
recognition, within the environment model, by means of the global object list, can service
many driver assistance and active safety applications and functions.

Discussion

Future drive assistance systems will require multiple sensors for various applications. This
will require an architecture for combining, or fusing, data from many sensors. In this chap-
ter, an overview of possible sensor data fusion architecture configurations was presented.
Based on the qualitative comparison of the architectures, a novel sensor data fusion archi-
tecture was developed, which has a high potential for meeting the requirements of future
driver assistance systems, in particular automated driving applications.

Low-level and feature-level fusion architectures are widely known to offer the best accu-
racy in terms of state estimation and classification performance. However, their practical
disadvantages due to bandwidth, complexity and modularity make them unsuited for more
complex ADAS applications, where many sensors from different manufacturers with dif-
ferent measuring principles are necessary. A high-level sensor data fusion architecture is
quite modular and scales really well as the sensor configuration becomes more complex.
However, more effort is required in the development of the fusion algorithms. Inaccuracies
may also occur when sensors process their data with widely different model and filter pa-
rameters. Another option is to develop a hybrid architecture, which combines sensor data
at both a low and high level.

In Section 2.2, a novel sensor data fusion architecture, based on a high-level architecture,
was proposed. The goal of the proposed architecture was to keep a simple, but strict, inter-
face between interacting modules in the architecture. A planar rectangular object model,
which is able to represent all relevant dynamic objects for automotive environment per-
ception, is used as the interface between the three different levels of the architecture. The
interface is completely abstracted from any sensor-specific information, as generic quality
measures are used to represent different sensors’ performance, such as the state covariance
matrix and existence probability. The architecture is split into three simple levels: sensor,
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fusion and application. The sensor-level is where each sensor independently processes its
data in order to produce an object list, as defined by the object model. At the sensor-level,
however, low-level or feature-level fusion may also occur, making the proposed architec-
ture a part hybrid fusion architecture. The fusion-level combines the sensor-level object
lists using various fusion algorithms for the state and covariance, existence probability and
classification in order to generate a single unified global object list. This global object
list can then by used by any number of application-level driver assistance applications for
further interpretation. Communication using the object model between the levels of the
proposed architecture reduces bandwidth and complexity while increasing modularity and
practicality for automotive applications.
The algorithms required to realize the proposed sensor data fusion architecture will be

described in the chapters that follow. The effectiveness of the proposed architecture and
its algorithms will be demonstrated through simulation and with a prototype vehicle with
real sensor data, designed for automated driving. The goal in the following chapters is to
show that the proposed architecture is able to achieve complete surround-view environ-
ment perception using relatively simple vehicle-integrated sensors, while offering similar
performance in surround perception as more complex low-level architectures using larger
and more capable sensors.
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Association

As shown in the previous chapter, in the proposed high-level sensor data fusion architec-
ture, each sensor produces an object list of the detected objects within its field-of-view.
The problem that presents itself at the fusion level is how to combine sensor object data
from different sensors together. Apart from the actual process of data fusion, other prob-
lems need to be considered. First, the object data must be spatial and temporally aligned
to a common reference frame. Second, in which order and how sensor data is fused to-
gether to generate fused global objects must be considered. Finally, it must be determined
which objects from different sensors actually represent the same object in reality, therefore
providing the association between objects with which to carry out fusion. This chapter
aims to present solutions to each of these problems.

3.1 Data Alignment

Before it is possible to associate object data with one another it is necessary to align
the object data into a common coordinate and spatial frame. In this section, spatial and
temporal alignment of object data is described.

3.1.1 Spatial

Object data from different sensors must first be put into a common spatial coordinate
frame. The vehicle coordinate system, as defined in DIN 70,000 [85], is used as a com-
mon global coordinate system for local object detection, with positive x defined in the
forward longitudinal direction and positive y in the lateral left direction. The origin of the
coordinate system in this thesis was chosen as the vehicle’s emblem on the hood. Other
common origins, such as the middle of the rear-axis are also common. The problem of
spatial alignment is that of transforming an object defined in a sensor’s coordinate system
to that of the common vehicle coordinate system, where the sensor coordinate system in
a planar environment is translated relative to the vehicle coordinate system with δx and
δy and rotated by θ, as shown with a rearward facing sensor in Figure 3.1. In non-planar
environments, translation and rotation amongst a third dimension may also be necessary.
An object in a sensor’s coordinate system is transformed into the common global vehicle

coordinate system with
[

xveh

1

]

= Hsensor→veh

[

xsensor

1

]

(3.1)

where Hsensor→veh is the transformation matrix between the sensor coordinate system and
the common global vehicle coordinate system. The state of an object, x, is that of the
object model interface, as defined in Section 2.2.1. Given the two-dimensional translation,
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yveh

xveh

xsensor ysensor

δx

δy

θ

Figure 3.1: Two-dimensional translation (δx and δy) and rotation (θ) of a sensor’s coordinate
system relative to the common global vehicle coordinate system.

δx and δy, and the rotation about the vertical axis, θ, between the sensor and common
coordinate system gives the following transformation matrix:

Hsensor→veh =





























cos θ − sin θ 0 0 0 0 0 0 ±δx
sin θ cos θ 0 0 0 0 0 0 ±δy
0 0 cos θ − sin θ 0 0 0 0 0
0 0 sin θ cos θ 0 0 0 0 0
0 0 0 0 cos θ − sin θ 0 0 0
0 0 0 0 sin θ cos θ 0 0 0
0 0 0 0 0 0 1 0 θ
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1





























. (3.2)

The sensor-to-vehicle transformation matrix, Hsensor→veh rotates the position, velocity and
acceleration vectors into the common global vehicle coordinate system along with the
proper relative translation of the coordinate systems.

3.1.2 Temporal

Once in a common spatial coordinate system, objects that are to be associated with one
another must also be put into a common temporal frame. This is accomplished by using a
kinematic model to predict the state of an object to some time in the future. Given that
a sensor took a measurement of an object and updated its state at discrete time k− 1 and
needs to be temporally aligned to time k for data association and fusion, then the standard
Kalman filter prediction formulation can be used to predict the object’s state and error
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covariance forward in time:

x̂(k|k − 1) = F(k, k − 1)x̂(k − 1|k − 1) +B(k − 1)u(k − 1) (3.3)

P(k|k − 1) = F(k, k − 1)P(k − 1|k − 1)F(k, k − 1)′ +Q(k, k − 1) (3.4)

where x̂(k− 1|k− 1) is the object state at k− 1, x̂(k|k− 1) is the predicted state, u(k− 1)
is the control vector, B(k − 1) is the control transformation matrix, F(k, k − 1) is the
kinematic model, Q(k, k − 1) is the process noise matrix and P(k|k − 1) is the object’s
predicted error covariance matrix. In moving vehicle applications, the control vector is
used to compensate for the host vehicle’s movement in a given time interval. In this thesis,
a constant-velocity kinematic model is used for temporal alignment of an object’s state (see
Section 4.1 for more information on kinematic models). More complex kinematic models,
such as a constant turn-rate model could also be used, which would result in the extended
Kalman filter prediction formulation for a non-linear model.

3.2 Fusion Strategy

It is important to consider the manner in which sensor-level object data is processed at
the fusion-level in order to create global objects. The method of processing object data
for fusion will be referred to as the fusion strategy in this thesis. Different fusion strategies
require different types of fusion algorithms in order to properly create a global track. These
different algorithms all have their pros and cons in terms of accuracy and practicality.
When deciding which fusion strategy is best for a specific application, it is important to
consider that sensors can be asynchronous to one another and possibly deliver their data
out-of-sequence with respect to the other sensors in the system. Additionally, each sensor’s
field-of-view may be quite different, observing different areas, such that a single object is
not always observed by all of the sensors at any given time. In this section, two typical
fusion strategies found in the literature [69, 89],[335, 337] are described: sensor-to-sensor
and sensor-to-global fusion strategies.

3.2.1 Sensor-to-Sensor

In a high-level sensor data fusion architecture, the most common fusion strategy is a sensor-
to-sensor fusion strategy, also commonly called track-to-track fusion with no memory [290].
In a sensor-to-sensor fusion strategy, sensor-level objects are directly fused together at
the fusion-level at pre-defined fusion intervals. In Figure 3.2, an example of a sensor-to-
sensor fusion strategy is shown with two asynchronous sensors, where the fusion time is
synchronized to the data arrival time of sensor j.
In the example shown, when data from sensor i arrives at time kG − 3, it is buffered

until data arrives from sensor j at kG − 2, which is the fusion processing time. At this
time, the buffered data from sensor i is temporally aligned by predicting the object to
kG − 2, at which time the predicted data from sensor i is directly fused together with the
data from sensor j to create a global object. If there are more than two sensors in the
sensor configuration, then object data from the sensors is sequentially fused together, i.e.
sensor 1 fuses with sensor 2, the result of which is then fused with sensor 3, which is then
fused with sensor 4, etc. until all of the sensor data in the buffer since the previous fusion
is processed. Note that at each fusion cycle, the global object is newly created, without
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Figure 3.2: Sensor-to-sensor fusion strategy with asynchronous sensors. The local sensor data
is buffered and fused together once data from all of the sensors has arrived.

any information from the previously fused global object. Hence, a sensor-to-sensor fusion
strategy is memory-less, since the global tracks are unaware of the fusion result from the
previous fusion cycle.

A sensor-to-sensor fusion strategy is quite popular in systems with a simple sensor con-
figuration with well synchronized sensors observing the same area of the environment.
Many track-to-track fusion algorithms exist for the processing of data using a sensor-to-
sensor fusion strategy (see Appendix A). The sensor-to-sensor fusion strategy, as described
above, has been widely used in automotive perception applications for relatively simple
sensor configurations [102, 137, 193, 284].

3.2.2 Sensor-to-Global

Another method of processing sensor-level object data at the fusion-level is to use a sensor-
to-global fusion strategy, also commonly referred to as track-to-track fusion with memory
[292]. In this configuration, sensor-level object data is processed as it arrives and is directly
fused into a global object which is maintained over time at the fusion-level. An example
of a sensor-to-global fusion strategy with two sensors is depicted in Figure 3.3.

In this example, the sensor-level object data, such as that from sensor i at kG − 3, is
directly fused into a globally maintained object at the fusion-level. When data from sensor
j arrives at kG−2, the global object is predicted to this arrival time, where the sensor-level
data from sensor j is then similarly fused directly into the global track. The advantage of
such a fusion strategy is that sensor data is processed immediately as it arrives, without the
need for buffering sensor data and waiting for the pre-defined fusion processing intervals.
Since a global object is maintained over time at the fusion-level, data from the previous
fusion is not lost when new sensor data arrives. The sensor-to-global fusion strategy is
also quite flexible to all sorts of sensor configurations, due to the fact that sensor data is
not fused directly together and is processed completely independent of one another. This
allows the sensor-to-global fusion strategy to support a “plug-and-play” type of system,
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Figure 3.3: Sensor-to-global fusion strategy. The local sensor data is directly fused into a global
track, independent of the other sensors.

where sensors can be added or removed at ease, without effecting the algorithms at the
fusion-level.

Track-to-track fusion algorithms and their pros and cons in a sensor-to-global fusion
strategy are described in Chapter 4. A common method of implementing a sensor-to-
global fusion strategy is to simply process the sensor-level object data as if they were
measurements to a Kalman filter algorithm, an approach that is quite common in auto-
motive applications [193, 201]. However, this leads to problems, as the sensor-level object
data is correlated over time, as will be described in Section 4.2. Otherwise, a sensor-
to-global fusion strategy has been quite uncommon in automotive applications and has
only recently been considered as a means of fusing sensor data for surround environment
perception [335, 337].

3.3 Association

A vital and challenging problem in object tracking is the problem of data association. In
the proposed high-level sensor data fusion architecture, data association occurs between
already-filtered objects from various sensors. In the literature, data association at this level
is typically called track-to-track association [21, 22, 233, 291] and has been applied to some
automotive applications [103, 137]. In a sensor-to-global fusion strategy, as described in the
previous section, object association occurs between sensor-level objects and global objects
at the fusion-level. The problem boils down to deciding which objects from a specific sensor
represent the same object at the fusion-level. If no such object exists, meaning that an
association with an already existing object was not possible, then the sensor-level object
is initialized as a new global fusion-level object.

The problem of object association is depicted in Figure 3.4. In this example, a sensor-
level local object, OS

i , is to be associated with a fusion-level global object, OG
j . The error

covariance, or uncertainty in the state, for the position is depicted with the dashed ellipses.
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Figure 3.4: Problem of object association between a fusion-level global object (OG
j ) and a

sensor-level local object (OS
i ).

The global object shows a larger lateral uncertainty than the sensor-level object, but has
a smaller longitudinal uncertainty. This is a typical situation in sensor data fusion, where
sensor performance is complementary to one another.
Object association can be formulated using two hypotheses H0 and H1. If a fusion-level

object OG
j and a sensor-level object OS

i represent the same object in reality, then evaluating
H0 shows that the values of OG

j and OS
i are the same, or their difference is zero:

H0 : O
G
j −OS

i = 0. (3.5)

Therefore, H0 represents a true association, whereas the opposing hypothesis H1 represents
a failed association:

H1 : O
G
j −OS

i 6= 0. (3.6)

The goal of object association is to test which hypothesis, given two objects, is more likely.
In this section, novel algorithms will be presented for solving the problem of object asso-

ciation in a multi-object and multi-sensor environment with the planar rectangular object
model. In particular, a novel approach is presented for dealing with various geometrical
constellations of objects, where not necessarily the same point, or feature, on the two ob-
jects is directly used in data association, as is typical of state-of-the-art approaches in the
literature.

3.3.1 Architecture

For point-targets, such as applicable in aerospace applications, the object association prob-
lem has been widely studied and many different algorithms exist [17, 19, 42]. In such cases,
the problem is simpler due to the fact that the object’s dimensions are insignificant com-
pared to the distance the object is from the sensor. In automotive applications, this is
not the case since object dimensions and their distances from the host vehicle can be of
the same order of magnitude. In order to properly detect and represent objects in auto-
motive surround environment perception, a rectangular object model was introduced in
Section 2.2.1. A key element of the object model for association is the feature vector f ,
which is a boolean vector describing which corner and side features of the object were ob-
servable. Sensor-level tracking algorithms do not track the geometrical center of an object,
as this has been shown to produce poor performance [150, 235, 260, 276], but rather track
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a specific feature of an object. It is common that the tracked feature can change over time
and its choice is vital in successful data association [13, 150, 260]. Additionally, depending
on the sensor configuration, an object may only be partially observed by different sensors
due to their restricted field-of-view.
Object association at the fusion-level between two objects consists of three steps: fea-

ture selection, state vector association and geometrical association. As with the traditional
association algorithms, a quantitative value describing the quality of the association be-
tween two objects is calculated, where an extended version of the Mahalanobis distance
will be used (Section 3.3.3). Before calculating the association between two objects, the
objects and their feature-constellation between one another must be examined such that
the proper feature is selected for state vector association (Section 3.3.2). In some cases,
a common feature for association may not be available, such that only one dimension of
the features in the rectangular object model is used in state vector association; association
with the other dimension is solved using a simple geometrical association algorithm (Sec-
tion 3.3.4). The association result between all fusion-level objects and new sensor-level
objects are calculated and entered into an association matrix A, where a single entry in
the matrix is denoted as ai,j. This association matrix is then solved in order to find a
global unique association between objects (Section 3.3.6). The overall processing flow for
object association is shown in Figure 3.5.

3.3.2 Feature Selection

As mentioned in the previous section, successful association depends on a correct feature
selection based on the object model presented in Section 2.2.1. Let a feature be described
by pf where p is the Cartesian coordinate of the feature and f denotes the feature on the
rectangular object model. A feature pf is defined in both vehicle and object coordinate
systems, pveh

f and p
obj
f , respectively, where the origin of the object coordinate system is

the geometrical middle of the rectangular object model. A feature in the object coordinate
system is transformed into the vehicle coordinate system using

pveh
f = Hobj→vehp

obj
f . (3.7)

where

Hobj→veh =





cosψ − sinψ x
sinψ cosψ y
0 0 1



 (3.8)

is the transformation matrix from the object to the vehicle coordinate system and p
obj
f =

[

xobjf yobjf 1
]′
. Depending on the feature to be transformed, xobjf and yobjf are chosen

according to Table 3.1 using the length, l, and width, w, of the object from its estimated
dimension vector d̂obj. Furthermore, in some cases, as will be described later in this section,
only a single dimension, either x or y, is necessary for association. Such a reduced feature
is denoted as pf,x or pf,y.
The remainder of this section describes the different possible feature constellations,

shown in Figure 3.6, between two objects to be associated with one another. Depending on
the feature constellation, the position of the two objects to be associated are transformed
to the proper feature for association. State vector association, described in Section 3.3.3,
is then performed on the transformed feature, the object’s orientation and its dynamics.
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Figure 3.5: Processing flow of object association at the fusion-level, where a sensor-level object
OS

i is tested for association to a global object OG
j .

Table 3.1: Feature coordinates of the rectangular object model in the object coordinate system.

Feature xobjf yobjf

pobj
RM −l/2 0

pobj
RL −l/2 w/2

pobj
RR −l/2 −w/2

pobj
FM l/2 0

pobj
FL l/2 w/2

pobj
FR l/2 −w/2

pobj
ML 0 w/2

pobj
MR 0 −w/2
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If necessary, in the case of a feature constellation where only a single dimension of the
position is used in state vector association, an additional geometrical association step is
performed, described in Section 3.3.4.
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(a) Common corner feature
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(b) Common side feature
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(d) Features unrelated

Figure 3.6: Different feature constellations between two objects to be associated. Each constel-
lation type requires a slightly different variation in the association method.

Common Corner Feature

The simplest feature constellation between two objects is if they are tracking the same
corner feature, as shown in Figure 3.6a. In this case, the position coordinates of both
objects is transformed to the feature and complete state vector association is performed,
without the additional geometrical association step. In the example shown in Figure 3.6a,
the transformation pveh

RR = Hobj→vehp
obj
RR for both objects is carried out.

Common Side Feature

A bit more complicated is when both objects are being tracked by the same side feature,
illustrated in Figure 3.6b. A side feature is not as definite of a representation as a corner
feature, and therefore precaution must be taken when considering such a feature. In theory,
each sensor should robustly identify the best tracked feature for an object, such that ideally
association with a common side feature is the same as with a common corner feature. If a
sensor is not able to actually observe a side feature, which may be the case with occluded
objects, then the sensor should not identify it as the tracked feature.
However, in practice, sensors occasionally misidentify the best feature and identify a

side feature in situations where in reality the side feature is not well observed. Therefore,
an additional plausibility check is made when associating with a side feature. If the side,
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for example the width in Figure 3.6b, is not fully observed, then the feature can vary
depending on how well the side is observed between the two objects. In order to determine
the accuracy of the common side feature, the consistency of the side on which the feature
lies is tested with

|wG
j − wS

i | < σwG
j
+ σwS

i
(3.9)

where the width is used in this example. If the difference between the sides of the two
objects to be associated, in this case the width, is small enough with respect to the uncer-
tainties, then it is assumed that the common side feature is accurate enough to carry out
complete state vector association, as done with a common corner feature. In Figure 3.6b,
this is the case and therefore the transformation pveh

RM = Hobj→vehp
obj
RM for both objects is

carried out, without the additional geometrical association step.

If the side fails the test in (3.9), then the state vector is transformed such that the stable
coordinate of the feature (for RM the stable coordinate is x, for example) is carried into
the state vector association algorithm using the reduced feature transformation pveh

RM,x =

Hobj→veh,xp
obj
RM,x. The uncertain coordinate, in this example y, is then associated with the

help of the side, in this example the width, w, using the geometrical association algorithm.

Features Lie on Common Side

Another complicated feature combination between two objects is when each object tracks
and observes a different feature, but the features lies on a common side, as depicted in
Figure 3.6c where the features both lie on the right side of the length. In this case, there is
no other choice but to use the reduced feature transformation for the common coordinate,
in this case y, where object OG

j is transformed with pveh
FR,y = Hobj→veh,yp

obj
FR,y and object OS

i

with pveh
RR,y = Hobj→veh,yp

obj
RR,y. This common coordinate in the position is then used in state

vector association, whereas the uncommon coordinate is associated with the geometrical
association algorithm along the x-axis of the object using the lengths of the two objects.

Features Unrelated

The most uncommon combination of features during association is when the features of
the objects to be associated are completely unrelated, as shown in Figure 3.6d. This case
usually occurs when the tracked and observed feature of an object from a sensor or the
global fusion module is misidentified. However, the association algorithm must still be able
to cope with such a situation.

In this case, a heuristic approach is chosen for determining the most likely feature con-
stellation. This begins with a two-dimensional state vector association test of all four
corner features; if a common corner feature is found, where the association result of one or
more common features lies below a certain threshold, then the minimum common feature
result is used for complete state vector association. If this fails, then the common coordi-
nate of the sides are tested separately using the reduced feature transformation, once for
x and once for y, where the result of the reduced state vector association on the single
coordinates is tested against a threshold. If this also fails, then the objects are considered
unassociated.
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3.3.3 State Vector

In state vector association, also known as track-to-track association in the literature, two
vectors, assumed to be normally distributed, are to be tested for association. For object
association, the state vector for association consists of a feature position (or reduced feature
if only a single coordinate is considered), the orientation and dynamics of the object, such
that the state vector for association, xa, in the best case is

xa =
[

xvehf yvehf vx vy ax ay ψ ψ̇
]′
. (3.10)

If a reduced feature transformation is used in the feature selection process, then xvehf or
yvehf is simply omitted. Similarly, if two objects to be associated do not contain all of the
dynamic information due to the fact that not all sensors are able to estimate all dynamic
features of an object, then only the common information between the two objects is used
in state vector association. The length and width of the object is not considered in state
vector association and is only used in the geometrical association step, if necessary.
Revisiting (3.5) and (3.6), the same hypotheses are tested using the association state

vector in (3.10), where if the true association state vectors of an object are identical, then
state vector association is successful

H0 : x
G
a − xS

a = 0 (3.11)

and if they are not identical, then state vector association has failed

H0 : x
G
a − xS

a 6= 0. (3.12)

The simplest approach in testing these hypotheses is to use what’s called rectangular
gating [42], where the difference of each state in the two state vectors is compared to a
constant threshold in order to determine if the two state estimates represent the same
object. This approach, however, fails to take into consideration covariance terms of the
state estimate’s error covariance. Another simple approach is to compare the Euclidean
distance for position, velocity and acceleration to a threshold. With this approach, the
different degrees of uncertainty in the longitudinal and lateral directions is ignored.

Mahalanobis Distance Data Association

The most common method used in tracking applications is the statistical distance, or Ma-
halanobis distance, which is a generic statistical distance between two normally distributed
random vectors [17, 19, 42, 178].
The squared statistical distance between two association state vectors from a global

object OG
j and a sensor object OS

i is the squared difference of the two vectors, normalized
by their error covariances and cross-covariance (note that for simplicity, the subscripts i
and j for the specific object in the object list is omitted in the following):

d2G,S =
(

x̂G
a − x̂S

a

)′
SG,S−1 (

x̂G
a − x̂S

a

)

(3.13)

where SG,S is the innovation covariance between the two state estimates:

SG,S = PG +PS −PG,S −PG,S. (3.14)
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The squared statistical distance d2G,S is χ2-distributed with nxa = dim(xa) degrees of
freedom. Hypothesis H0 is accepted if the squared statistical distance falls below a gate
threshold, G:

d2G,S ≤ G. (3.15)

The gate threshold G is chosen such that the statistical test

P (d2G,S > G | H0) = α (3.16)

is fulfilled. In other words, G is chosen such that there is a probability of α that the squared
statistical distance is greater than G under the condition that H0 is true. Under this
formulation, choosing a G too small will result in more misassociations. The gate threshold
G is obtained from the inverse cumulative distribution function of the χ2-distribution with
nxa degrees of freedom at 1− α:

G = F−1
χ2
nxa

(1− α) (3.17)

A typical value of α in tracking applications is 0.05. The statistical distance is a common
approach used for object-to-object [44, 102, 137, 206, 285] and measurement-to-object
[150, 201, 210, 213, 284] association in automotive perception applications.
Several methods exist for improving the robustness of object association using the sta-

tistical distance based on the object quality. In [42], the statistical distance is extended
by adding a logarithmic term dependent on the innovation covariance

D2
G,S = d2G,S + 2 ln

√

|SG,S|. (3.18)

This has the effect of penalizing an association between objects with large error covariances,
such as when an object has just been initialized or the object is unreliable.

Extending the Mahalanobis Distance with Attribute Information

In this section, a novel approach is introduced which extends the statistical distance with
attribute information, such that existence probability and classification information can
be considered in the object association process.
The statistical distance can be extended using the objects’ probability of existences,

pG(∃x) and pS(∃x) (see Chapter 5). From the χ2 inverse cumulative distribution function,
a term based on the existence probabilities are added onto the statistical distance

d2G,S(p(∃x)) = F−1
χ2
nxa

(1− pG(∃x)) + F−1
χ2
nxa

(1− pS(∃x)) (3.19)

which results in the extended statistical distance

D2
G,S = d2G,S + 2 ln

√

|SG,S|+ d2G,S(p(∃x)). (3.20)

The statistical distance is only slightly increased for existence probabilities close to 1,
whereas for small existence probabilities, the statistical distance is significantly increased.
This has the effect of reducing associations between objects with low existence.
In addition to the existence probability, the classification between the objects should

also be considered in the association process. In [22], a sufficient statistics method is used
parallel to the association of the kinematic state. Here, a novel approach, published in
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Figure 3.7: Geometrical association using the global object’s length, where association occurs
in the global object’s coordinate system using the object to vehicle coordinate transformation..

[333], using the cosine similarity is presented in order to determine the similarity between
two classification vectors

sim(cG, cS) = cos(∠) =
cG · cS
‖cG‖‖cS‖ (3.21)

where cG and cS are the normalized classification vectors of the two objects. The evaluated
function sim(cG, cS) results in a value between 0 to 1 due to the fact that the classification
vectors can never have negative values. The similarity measure of the classification vectors
is then also added to the statistical distance using a χ2 inverse cumulative distribution
function, such that the new and final extended statistical distance results in

D2
G,S = d2G,S + 2 ln

√

|SG,S|+ d2G,S(p(∃x)) + F−1
χ2
nxa

(1− sim(cG, cS)). (3.22)

With this formulation, objects whose classification vectors differ will result in larger values
added to the statistical distance. This helps in the association of objects which are spatially
and dynamically close, but have a different classification. This can happen in highway
scenarios when, for example, a motorcycle drives closely next to a car and is even more
relevant when considering urban environments, where different types of objects coexist in
a much denser environment.

3.3.4 Geometrical

The geometrical association step, as mentioned in the previous sections, is necessary when
state vector association does not occur with the same feature from the two objects to be
associated. In these cases, a single common dimension can be identified for which state
vector association is performed, for example the length, if both features lie along the length
of the object’s rectangular model. The other dimension is then associated using a heuristic
algorithm in order to determine if the two objects’ rectangular models overlap with one
another, which is called geometrical association in this thesis.
Consider the example in Figure 3.7: the global object in dark gray is longitudinally

closer to the host vehicle than the sensor object in light gray. The sensor object seems
to be an “extension” of the global object, where the global object has been tracked with
feature pG,veh

f1
(in this case equivalent to feature RL) and the sensor object is detected and
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Algorithm 3.1 Line overlap test for geometrical association.

1: if d(pS,veh
f1

)− σS
d > d(pG,veh

f2
) + σG

d then

2: g ← 0
3: else if d(pS,veh

f2
) + σS

d < d(pG,veh
f1

)− σG
d then

4: g ← 0
5: else

6: g ← 1
7: end if

8: return g

tracked with feature pS,veh
f2

(equivalent to feature FL), resulting in the feature constellation
depicted in Figure 3.6c where the features lie on the same side, in this case the length of the
object. Such a situation occurs quite commonly with longer objects or with objects which
are transitioning from one sensor’s field-of-view to another’s. The goal is to determine a
Boolean g where g = 1 if the geometrical association determines a successful overlap of the
objects’ geometry.

Geometrical association begins with choosing the two features that lie on the common
side, but have an uncommon dimension. The two features describing the length or width of
the global object are denoted as pG,veh

f1
and p

G,veh
f2

. A 1-dimensional coordinate system d is
defined along the side of the global object, on which geometrical association is calculated.
In order to simplify the geometrical association calculation, the relevant features of the
sensor objects, pS,veh

f1
and p

S,veh
f2

, are transformed into the global object’s coordinate system
with

p
S,obj
fn

= H−1
G,obj→vehp

S,veh
fn

(3.23)

where H−1
G,obj→veh is the inverse object to vehicle coordinate transformation matrix for the

global object. The features for the global object are directly calculated as per Table 3.1.
The result of such a transformation from the host vehicle coordinate system into the global
object’s coordinate system is depicted in Figure 3.7.

Given the global and sensor object’s features in the global object’s coordinate system
allows for a simple projection of the features coordinates onto the 1-dimensional coordinate
system d, where the projection is simply the x or y coordinate, depending if d is parallel to
the length or width, respectively, of the global object. The projected feature points onto
the line d are denoted as d(pG,obj

fn
) for the global object and d(pS,obj

fn
) for the sensor object.

In addition to the feature’s location on d, the uncertainty of the objects’ dimension in
form of the standard deviation σd is considered, where d ∈ {w, l} refers to the standard
deviation of the width or the length, respectively. Using the location of the features along
the line d and the uncertainty of the objects’ dimension, a line overlap test according to
Algorithm 3.1 is performed in order to determine if geometrical association is successful.
The line overlap test algorithm checks if there is an overlap between the projection of the
outermost and innermost features of the objects’ on the line along the relevant side of the
global object. If this is the case, the algorithm returns g = 1 for successful association and
g = 0 if unsuccessful.
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xveh
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i
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Figure 3.8: Multi-object association problem: Which global object should be associated with
the sensor-level object OS

i ?

3.3.5 Association Validation

The results of both state vector and geometrical association are validated, where both as-
sociation methods must produce a positive result, before being entered into the association
matrix. The result of state vector association, D2

i,j(k), is validated against a threshold G
such that a positive association results when the following condition, as in (3.15), is met:

D2
i,j(k) ≤ G (3.24)

where G is chosen such that
G = F−1

χ2
nxa

(1− α). (3.25)

An α value of 0.05 is typically used.
Geometrical association is simply validated by checking the Boolean value g, where g = 1

is a positive association and g = 0 is a negative association.
If both state vector association and geometrical association succeed, the value D2

i,j(k)
obtained during state vector association is entered into the association matrix:

Ai,j = D2
i,j(k). (3.26)

3.3.6 Multi-Object Association

In automotive environment perception applications, many objects, or targets, are detected
by a single sensor at any given time, leading to the problem of deciding which sensor-level
objects should be assigned to which fusion-level global objects. Consider the situation
shown in Figure 3.8. Here it is unclear whether the sensor-level object, OS

i , should be
associated with global object OG

1 or OG
2 . Simply taking the association with the minimal

statistical distance may not suffice if other sensor-level objects exist which could also be
associated and assigned. In this section, an algorithm for solving this association problem
is presented.
An object association matrix, denoted as A, is usually generated for solving the object

assignment problem [42]. The columns of the matrix represent the N global fusion-level
objects and the rows of the matrix are the M sensor-level objects, where the matrix is
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filled with the statistical distance between the pairs of objects represented by that specific
row and column:

A =



















a1,1 a1,2 · · · a1,j · · · a1,N
...

...
...

...
...

...
ai,1 ai,2 · · · ai,j · · · ai,N
ai+1,1 ai+1,2 · · · ai+1,j · · · ai+1,N
...

...
...

...
. . .

...
aM,1 aM,2 · · · aM,j · · · aM,N



















. (3.27)

where
ai,j = D2

i,j(k). (3.28)

The gating procedures described in the previous section is used to generate a sparsely filled
association matrix, where two pairs of objects which did not pass the gating test are given
an empty value in the association matrix. Following the example in Figure 3.8, this could
end up looking something similar to

A =



















− − · · · −
...

...
...

...
ai,1 ai,2 · · · −
ai+1,1 − · · · −
...

...
. . .

...
− − · · · −



















. (3.29)

In this example the sensor-level object OSi
i falls within the gate of global objects OG

1 and
OG

2 , and all other association pairs did not pass the gating test. The assignment problem
now needs to decide which global objects, OG

1 or OG
2 , really belong to which sensor-level

object.
The most common family of algorithms for solving the assignment problem are nearest

neighbor algorithms, which will be used here. These algorithms attempt to find the best
one-to-one assignment between the rows and columns of an association matrix. A good
overview of different types of association algorithms, including the more complex proba-
bilistic variations, can be found in [42]. The auction algorithm [39, 42] will be described
in this section as the algorithm of choice for solving the association problem.
The auction algorithm begins with creating a cost matrix Ca out of the association

matrix A, where the cost of an element is

ci,j = 2G− ai,j. (3.30)

This cost value represents the “worth” of a specific element in the association matrix with
respect to the gating threshold G, such that statistical distances closer to the threshold
equal the threshold itself. Elements in A which did not pass the gating threshold are
assigned the value 0. Additionally, a second cost matrix Cb with dimensions M ×M is
defined such that

Cb = G I (3.31)

where this matrix represents the fact that if no assignment of a sensor-level object can be
made to a global object, then the sensor-level object is assigned to itself, i.e. should be
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used to initiate a new global object. The complete cost matrix C is a concatenation of Ca

and Cb, resulting in

C =
[

Ca Cb
]

=



















c1,1 c1,2 · · · c1,j · · · c1,N G · · · 0 0 · · · 0
...

...
...

...
...

...
...

. . .
...

...
...

...
ci,1 ci,2 · · · ci,j · · · ci,N 0 · · · G 0 · · · 0
ci+1,1 ci+1,2 · · · ci+1,j · · · ci+1,N 0 · · · 0 G · · · 0
...

...
...

...
. . .

...
...

...
...

...
. . .

...
cM,1 cM,2 · · · cM,j · · · cM,N 0 · · · 0 0 · · · G



















(3.32)

where the dimensions of the matrix are now dim(C) = {M,N +M}. Two additional data
structures are needed for the auction algorithm. The first is a vector p with dim(p) =
N +M which keeps tracks of the current bid price for an object in a given column, where
pi refers to an element in p and pij is the bid price in p due to the fact that the sensor-level
object i was assigned to global object j. The second is a vector r with dim(r) =M which
contains for each element rj an assignment of a sensor-level object to a global object,
including the additional global objects in the extended cost matrix C that represent a
self-assignment. The vector p is initialized with a zero vector and r is initialized with an
invalid value to signify that no assignments have been made.
In order to find the best 1-to-1 assignment between sensor-level objects and global ob-

jects, the auction algorithm is carried out iteratively with the following steps:

1. Choose the first element rj in r with an invalid value for which no assignment has
yet been made.

2. For the sensor-level object j find an assignment to a global object i with the maximum
benefit, where the benefit is calculated using

ai,j − pij = max
i
{ai,j − pi} (3.33)

3. Assign the sensor-level object j to global object ij such that rj = i. If global object
i was previously assigned to a different element in r, then remove this assignment.

4. Calculate the new bid price for the assignment of i to j using

pij = pij + yj + ǫ (3.34)

where yj is the difference between the best and the second best benefit from step 2
and ǫ is a tolerance value for the deviation of the algorithm to the optimal solution.

5. Return to step 1 until an assignment has been made for all elements in r.

The output of the auction algorithm is the assignment vector r containing an assignment
for each element rj to a global object i. This assignment vector is then used to perform the
fusion of the objects’ state and covariance, existence and classification, as will be described
in the following chapters.
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Discussion

The process of how objects from sensors are fused together at the fusion-level and the
association of sensor-level objects to global fusion-level objects is the critical first step in
a high-level fusion architecture. Fusion is best performed in a common coordinate system,
usually a vehicle-relative coordinate system. The fusion strategy, whether sensor-to-sensor
or sensor-to-global, determines if fusion occurs synchronously at pre-defined fusion intervals
or asynchronously as sensor data arrives at the fusion module. In this thesis, a sensor-to-
global fusion strategy is chosen due to the fact that the fusion-level global object list is
kept as up-to-date as possible, which is important for driver assistance systems which need
to react quickly to a changing environment in order to react properly to critical situations.
Object association is achieved using a combination of the traditional track-to-track as-

sociation algorithms using a statistical distance and a geometrical association step in order
to extend the traditional algorithms to the rectangular object model. Care must be taken
in choosing the proper feature for state vector association, as the wrong feature may lead
to undesired association results. A new approach that extends the statistical distance with
the existence probability and classification vectors was presented, which further improves
association in complex environments. It is assumed that a 1-to-1 assignment can be made
between sensor-level objects and global objects. This assumption, however, may not in all
cases hold, as some sensors may detect more than one object for a single object in reality. In
essence, this is an error of the tracking algorithms at the sensor-level, but could potentially
be compensated for at the fusion-level. For sensor-level tracking, probabilistic association
algorithms such as Probabilistic Data Association (PDA) or Joint Probabilistic Data Asso-
ciation (JPDA) [19, 42] or one of their integrated variations Integrated Probabilistic Data
Association (IPDA) or Joint Integrated Probabilistic Data Association (JIPDA) are some-
times used in automotive applications [185, 201, 210, 213], especially for sensors which
generate a lot of clutter, such as a radar, or in feature-level fusion algorithms. The al-
gorithms presented in this thesis could be extended to also consider such probabilistic
association methods, where the merging and splitting of objects can be directly modeled.
It was found, however, that simple heuristic methods for merging larger objects, such as
trucks, work well in practice. Despite this weakness in the presented association algo-
rithms, a 1-to-1 assignment of objects works quite well in practice for highway scenarios,
but may need to be reevaluated when considering high-level fusion in urban environments.
The following chapters will present algorithms for the fusion of two objects which were

assigned to one another, as described in this chapter. Fusion takes place in three steps,
where the state and covariance, existence probability and classification of an object are
each fused separately using different algorithms.

63



4 State and Covariance

The object model consists of a state estimate, x̂ and its error covariance P, which contain
the position, velocity, acceleration, and orientation of the detected object. Together, x̂
and P is called a track. The error covariance matrix is composed of variances and co-
variance which represent the error of the state estimate. Additionally, the vector d̂ which
represents the object’s estimated geometrical dimensions with dσ2 the dimension variance
vector is defined for a complete physical estimation of an object. In a multi-sensor, multi-
target tracking application, the problem of how to track all of the objects, taking into
consideration all of the sensor data, is non-trivial. Many textbooks have covered this topic
extensively with a strong focus on aerospace applications [17, 26, 42]. In this chapter, algo-
rithms for track estimation within the proposed high-level sensor data fusion architecture
at the sensor and fusion-level are described.

4.1 Sensor-Level Processing with Tracking Algorithms

In a high-level sensor data fusion architecture, each sensor must produce an object list,
OS(t), part of which is the state estimate and its error covariance. This section will
briefly describe multi-target tracking algorithms which are typically used in automotive
environment perception applications at the sensor-level to detect other relevant objects,
such as vehicles, bicycles, pedestrians, etc. Since tracking algorithms have been extensively
studied in the literature, only a short overview is given, where the details will be left to
the cited works.
Tracking at the sensor-level in an automotive environment is usually accomplished in

the follow steps: sensor measurement, feature extraction, data association, filtering and
track management. The process of generating an object list at the sensor-level is shown in
Figure 4.1. A sensor makes a measurement of the environment using its hardware. This raw
sensor data is then pre-processed using feature extraction modules, which extract features
of relevant objects from the raw sensor data. The feature extraction step is different for
every sensor and its performance is crucial for reliable object detection at the sensor-level.
The extracted features are used as the input to the tracking and filtering algorithms in
order to produce tracked objects over time. After a filter update, track management creates
new tracks or deletes old ones depending on the detection and association results. Details
to these different steps will be described in the following sections.
Such tracking algorithms have been extensively used in automotive applications for driver

assistance systems. Most tracking systems in automotive applications have focused on the
detection and tracking of objects in the frontal area of the vehicle using laser scanners
[95, 115, 116, 170, 177, 235, 276], radar [202] and mono or stereo cameras [129, 130].
Such tracking systems have also been used to realize low-level or feature-level sensor data
fusion architectures, where sensor data from many sensors are fed into a single, centralized
tracking algorithm [79, 150, 183, 230].
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Figure 4.1: Typical multi-target tracking processing flow at the sensor-level for producing a
state estimate and its error covariance with sensor measurements.

4.1.1 Feature Extraction

Unlike in aerospace applications, objects cannot be modeled as simple point-targets in
automotive environment perception. Objects such as vehicles and trucks are relatively
large when in range of a vehicle’s sensors. Therefore, the dimensions of an object play
a vital role in accurate and reliable tracking algorithms. Using the object model and its
feature description, as described in Section 2.2.1, sensors must extract the best observable
feature, or sometimes called a reference point, which is then used as the point in space
with which the tracking algorithms estimate the object’s state and error covariance.

With laser scanner sensors, for example, the laser range image, or point cloud, are clus-
tered into groups using segmentation or clustering algorithms to create object hypotheses,
or measurements, for the tracking algorithms [79, 95, 134, 160, 170, 197, 204]. Similar clus-
tering methods are also used with radar [79, 158] and stereo camera [171] sensors. Some
approaches use an intermediate environment representation before segmentation and clus-
tering, such as occupancy grids [12, 68] or a simplified polar representation such as stixels
[236], as opposed to working directly with the sensor’s data. After clustering, line or shape
extraction algorithms can be used in order to extract the general shape and orientation of
the object [12, 54, 197, 199]. From this information, possible observed features, as defined
by the object model, are extracted and handed over to a tracking algorithm, as shown in
Figure 4.1.

Such feature-based or model-based tracking algorithms are common in automotive ap-
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plications and have been extensively studied [33, 78, 79, 151, 235, 260, 313, 330]. For
reliable and accurate tracking of objects in the automotive environment, such a model-
based approach is necessary, since the dimensions of an object are large compared to the
range of an object from a sensor. More recently, occupancy grid methods have been used in
order to accumulate the shape of an object using a local object grid map such that feature
extraction and shape estimation can be improved [12, 13, 261, 262]. However, such feature
and model-based approaches complicates object detection for sensors and, therefore, many
different approaches to solve this problem exist.

4.1.2 Data Association

In multi-target tracking, the problem of deciding which measurements belong to which
tracks is called data association. After data association, filtering algorithms, such as the
Kalman filter, can update their tracks with the assigned measurements. Since sensors do
not generate perfect measurements of all of the real objects in the environment without
false detections, the problem of data association is non-trivial and has been widely studied
in the literature [17, 42]. Data association between objects at the fusion-level in a high-level
sensor data fusion architecture is covered in Chapter 3.
The most basic method of data association attempts to find the best 1-to-1 assignment

between the new measurements and existing tracks. For each track, gating methods are
used to find possible measurements for a track. The simplest method is the nearest neigh-
bor approach, which simply assigns the best measurement within a gate to a track. In
some cases, a measurement may fall within the gate of more than one track. In order to
find the best global solution of the assignment problem, a global nearest neighbor algo-
rithm can be used [17, 42], where the global assignment problem can be solved using the
auction algorithm [207]. These basic association techniques have their limits when sensors
produce a significant amount of clutter measurements or noise. To solve this problem,
probabilistic methods for data association have been developed. The Probabilistic Data
Association (PDA) algorithm allows a track to be updated using a weighted sum of all
of the measurements within the track’s gate [17, 24, 27, 42]. The problem of assigning
a single measurement to more than one track was solved using Joint Probabilistic Data
Association (JPDA) [17, 42, 65, 66]. Simultaneous estimation of state and existence led
to the development of the Integrated Probabilistic Data Association (IPDA) and JPDA
algorithms [216, 218], where the works from Mählisch and Munz have extensively applied
these algorithms in automotive environments [185, 210, 213]. The previously described
PDA methods are all based on the fact that a single target only produces a single mea-
surement. The generalized probabilistic data association (GPDA) algorithm was presented
in [258] and also applied in [1] and solves this problem by loosening the single-target, single-
measurement restriction and allows for multiple measurements to originate from a single
target, which can be common for some sensors in automotive applications.

4.1.3 Filtering

Tracking on object over time is accomplished using a filter which is able to estimate the
state of an object using noisy measurement data. The most popular method for filtering
in tracking systems is the Kalman filter [154], which sequentially estimates an object’s
state over time with the assumption that the state and the input measurement can be
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modeled using a normal distribution. Shortly after its introduction in 1960, the Kalman
filter quickly found an application in estimating trajectories to the moon and the relative
position and velocity between spacecraft in the Apollo space program [195]. Since then, it
has become one of the most widely used and studied algorithms for state estimation and
tracking.
Since the Kalman filter is such an important statistical estimation tool, the filter and its

equations will be shortly described here. For further details on the Kalman filter, many
sources are available [26, 265, 314, 329]. As shown in Figure 4.1, filtering is accomplished
in a two-step process: predict and update. During state prediction, the previous state at
k− 1 is predicted forward to the time of the newly arrived measurement data, k, using an
appropriate model (see Section 4.1.5 for an overview of kinematic models). The Kalman
filter prediction equations are

x̂(k|k − 1) = F(k, k − 1)x̂(k − 1|k − 1) +B(k − 1)u(k − 1) (4.1)

P(k|k − 1) = F(k, k − 1)P(k − 1|k − 1)F(k, k − 1)′ +Q(k, k − 1) (4.2)

where x̂(k− 1|k− 1), P(k− 1|k− 1) is the previous state estimation and error covariance,
F(k, k−1) is the state transition matrix, u(k−1) is the control vector, B(k−1) is the control
transformation matrix, Q(k, k−1) is the process noise covariance and x̂(k|k−1), P(k|k−1)
is the predicted state estimation and error covariance. In automotive applications, the host
vehicle’s motion from k − 1 to k can be modeled as the control in order to estimate the
absolute velocity of detected objects. The process noise matrix, Q(k, k − 1), models the
uncertainty in the state transition model used. After the prediction step, the Kalman filter
algorithm updates the state and covariance with new measurement data from time k:

S(k) = H(k)P(k|k − 1)H(k)′ +R(k) (4.3)

K(k) = P(k|k − 1)H(k)′S(k)−1 (4.4)

x̂(k|k) = x̂(k|k − 1) +K(k) [z(k)−H(k)x̂(k|k − 1)] (4.5)

P(k|k) = [I−K(k)H(k)]P(k|k − 1) (4.6)

where z(k) is the new measurement, H(k) is the measurement-to-state space transforma-
tion matrix, S(k) is the innovation covariance, R(k) is the measurement covariance, K(k)
is the Kalman gain, I is the identity matrix and x̂(k|k), P(k|k) is the updated state and
covariance. The state and covariance is updated in a weighted fashion by means of the
Kalman gain, which weighs the predicted covariance with the innovation covariance.
The Kalman filter algorithm as presented above makes various assumptions. First, the

uncertainties represented by the error covariance, measurement covariance and process
noise covariance are assumed to be normally distributed. Second, the state transition and
measurement models are assumed to be linear. Variations of the Kalman filter exist that
loosen these assumptions. The extended Kalman filter is able to estimate a non-linear
state transition and measurement models by linearizing a non-linear function at a given
point [26, 265, 314, 329]. Another solution to solving the state estimation problem for non-
linear models is to make use of the unscented transformation, resulting in the unscented
Kalman filter [145, 146]. The idea behind the unscented Kalman filter is to propagate
so-called extracted sigma-points from a normally distributed random variable through a
non-linear function and then reconstructing the resulting normal distribution. If the state
or measurements cannot be accurately modeled using a normal distribution, Monte Carlo
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methods of state estimation exist, such as the particle filter, which are able to estimate
states of any arbitrary distribution, but with additional computational costs [265, 288].

4.1.4 Track Management

After every filter update, the creation of new tracks and the deletion of old ones is referred
to as track management. Basic track management techniques are described in [42], where
a track score, depending on whether a track received an association or not, can be used
to delete tracks. New tracks are usually created from unassociated measurements and
later verified using the track score upon further measurement associations. These simple
heuristics work well in most tracking applications.
Track management is simplified when using IPDA or Joint Integrated Probabilistic Data

Association (JIPDA) algorithms, where track existence is also estimated. With these
algorithms, track management is achieved by thresholding a track’s existence probability
in order to delete or confirm tracks. Track management using an existence probability will
also be used in this thesis at the fusion-level and is described in further detail in Chapter 5.
Another problem in track management is how to model uncertain associations and pos-

sible merging and splitting of tracks. The Multiple Hypothesis Tracking (MHT) filter at-
tempts to solve these problems by modeling multiple hypothesis for tracked objects when
association conflicts exist, with the hope that subsequent data will resolve any uncertain-
ties [42, 43, 246]. The most likely hypothesis for each track is then the generated output
for a particular sensor. Application of the MHT algorithm for automotive environments
has been demonstrated in [167, 168, 284].
More advanced algorithms have been developed in order to model the number of targets

in the environment, including their creation and deletion, together with the traditional
state estimation. One such family of algorithms is based on random set theory and Fi-
nite Set Statistics (FISST), introduced by Mahler [179], where all aspects of multi-object
tracking are unified in a single, consistent framework. An algorithm which builds upon this
framework is the Probability Hypothesis Density (PHD) filter, also introduced by Mahler
[180] and further extended in [306]. FISST based tracking methods, including the PHD
filter, have been successfully applied to tracking applications in automotive environments
[167–169, 181, 196, 247].

4.1.5 Kinematic Models

The prediction of dynamic objects in tracking algorithms depends on a kinematic model.
The choice of kinematic model directly effects the accuracy and reliability of tracking per-
formance, as an inaccurate model will lead to misassociations and therefore poor perfor-
mance in state estimation (especially the dynamic states such as velocity and acceleration)
and reliable track management. It is therefore vital to make the correct assumptions about
the movement of objects in the desired environment. An overview of most of the kinematic
models for tracking applications can be found in [259] and the popular tracking works of
[19, 26, 42].
The most common and simplest model is that of constant velocity or constant accelera-

tion. In this model, a kinematic state, either the velocity or acceleration is assumed to be
constant as the object moves forward in time. Such a model usually decouples state esti-
mation in a given coordinate system, where, for example, longitudinal state estimation and
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lateral state estimation are independent of one another. Such models work well if properly
parametrized or if the time-intervals between measurement updates are sufficiently small.
In automotive applications, particularly with the state estimation of vehicles, a constant
turn rate model is more appropriate, as it more closely approximates the dynamics of a
vehicle. In a constant turn rate model, it is assumed that the turn rate of the vehicle is
constant and the vehicle moves in space about a circle whose radius is proportional to the
turn rate. This leads to a state estimation where the longitudinal and lateral directions are
coupled through this rotation, such that the velocity and acceleration must be estimated
along the axis of the vehicle and not in the tracking reference frame.

A typical problem in automotive environments is that different types of dynamics objects
are to be detected, such as vehicles, pedestrians, animals, etc., where a single kinematic
model does not properly describe the motion of all types of objects. Tracking performance
can in this case be improved by using an Interacting Multiple Model (IMM) filter, in-
troduced in [45]. The IMM filter estimates several kinematic models for a single track
simultaneously and combines the results probabilisticly, such that the result of the filter
with the most probable kinematic model is applied to the final state estimation of the track.
An example of successful application of the IMM filter in automotive environments can
be found in [153]. Many approaches also combine the IMM approach with other tracking
algorithms, as done in [46], where the IMM filter is combined with the JPDA algorithm.
Similarly, the MHT approach can also be combined with IMM, as demonstrated in [43].

4.2 Correlation and Sequence of Sensor Data

In a high-level sensor data fusion architecture, the data to be fused is already-filtered
object data. If two sensors observe the same object at the sensor-level using the algorithms
described in the previous section, then the object data from each of the respective sensors
may be correlated. This fact was first considered by Bar-Shalom in [16] and is further
discussed in his book [17].

Consider the fact that two sensors i and j observe the same object and each produce
object data at time k in the form of a state vector, x̂i(k|k) and x̂j(k|k), and covariance
matrix, Pi(k|k) and Pj(k|k). If the object data from these two sensors is correlated, then
the cross-covariance matrix, Pij(k|k), does not equal zero:

Pij(k|k) , E
[

(

x(k)− x̂i(k|k)
) (

x(k)− x̂j(k|k)
)′
]

(4.7)

6= 0.

The source of correlation depends on how object data is fused at the fusion-level. It may
either be due to the common process noise or due to the common information history in
the object data.

In addition to the correlation problem, sensor data may also arrive out-of-sequence at
the fusion-level, which leads to the problem of how to properly temporally fuse all of the
sensor data, while at the same time integrating all of the data as it arrives at the fusion
module.
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Figure 4.2: The process noise from sensors i and j, Qi(k, k − 1) and Qj(k, k − 1), are both in
the fused global object.

4.2.1 Process Noise

One of the sources of correlation between object data is due to the common process noise.
Filtered object data usually follows a kinematic model, such as the ones described in
Section 4.1.5. In order to model the uncertainty in an ideal kinematic model, a process
noise is added onto the kinematic states of the object. When object data from two sensors
have observed the same object, the process noise was added separately by each sensor.
During the fusion of these two sensors, the process noise in the object data exists twice,
whereas for a single observed object it should only be added once. Figure 4.2 shows how the
process noise from sensor i and sensor j from time k−1 to k, Qi(k, k−1) and Qj(k, k−1),
are both included into the fused global object, even though the process noise should only
be included once for every object.
In order to compensate for the common process noise during fusion, the cross-covariance

matrix between two sensors must be calculated. The following shows two methods, one
optimal and one approximate, for calculating the cross-covariance matrix.

Cross-Covariance Recursion

An optimal method for calculating the cross-covariance matrix due to the common pro-
cess noise between two sensors exists and was first presented by Bar-Shalom in [16] and
discussed further in [17]. The optimal method is a recursion, which uses the previously
calculated cross-covariance matrix and sensor-level filtering parameters:

Pij(k|k) =
[

I−Ki(k)Hi(k)
] [

F(k, k − 1)Pij(k − 1|k − 1)F(k, k − 1)′+

+Q(k, k − 1)
] [

I−Kj(k)Hj(k)
]′

(4.8)

where Pij(k − 1|k − 1) is the previously calculated cross-covariance, Ki(k) is the Kalman
gain from time k for sensor i, Q(k, k − 1) is the discretized continuous-time process noise
from time k − 1 to k, F(k, k − 1) is the state transition matrix from time k − 1 to k and
Hi(k) is the state-to-measurement transformation matrix for sensor i.
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Under the assumptions made in the derivation, the cross-covariance recursion method is
optimal. However, the algorithm requires sensor-level parameters from each of the sensors,
such as the Kalman gain. In a high-level sensor data fusion architecture, such internal
filter information is usually not available at the fusion-level. Therefore, this method may
be quite impractical in realistic applications and will not be further considered in this
thesis.

Cross-Covariance Estimation

In [17], a method to estimate the cross-covariance matrix between two sensors was pre-
sented. As opposed to the recursion method presented in the previous section, the estima-
tion method does not require the internal filter parameters, such as the Kalman gain. The
cross-covariance estimation is calculated directly from the covariance matrices of sensors i
and j:

Pij(k|k) ≈ ρ
√

Pi(k|k) •Pj(k|k) (4.9)

where ρ is a correlation weighting factor, which can be seen as a tuning parameter, and • is
the element-wise multiplication operator for the two matrices. For tracking applications, it
was found that ρ = 0.4 provide good results in filter consistency [17]. Though not optimal,
the cross-covariance estimation method provides an approximation of the cross-covariance
when internal filter parameters are not available at the fusion-level.

4.2.2 Common Information History

In a sensor-to-global fusion strategy, as described in Section 3.2.1, another source of cor-
relation can occur: correlation due to common information history. The problem is that
global objects are maintained over time, which leads to the fact that the full state estimate
from a sensor is fused into the global objects at each fusion time.

The problem of correlation due to the common information history is best illustrated
using an example. In Figure 4.3, the state estimate from sensor i is fused into the global
object twice, first at time ki−1 and then again at time ki. At time ki−1, the state estimate
for sensor i contains the measurement data, or information, {Zi}ki−1

0 , which includes the
set of all measurements for sensor i from time 0 to ki − 1. The information for this sensor
up to this time is then fused into the global object, represented by the dashed lines in
Figure 4.3. At this point in time, the global object contains the information from sensor i
up to time ki − 1:

{ZG} = {Zi}ki−1
0 (4.10)

At time ki, the state estimate from sensor i is updated with a new measurement, such that
the new state estimate contains the information {Zi}ki0 , represented by the solid white box.
This state estimate with the new measurement is now also fused into the global object.
Visually, it can be seen from Figure 4.3 that the information from sensor i up to time ki−1
was fused twice, represented by the dashed lines showing up twice. Mathematically, the
sum of the set of measurements also show that this information was fused twice, therefore
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Figure 4.3: Correlation of sensor data due to a common history of previously fused sensor data,
where the data from sensor i from time 0 to ki− 1, {Zi}ki−1

0 and depicted by the boxes with the
dashed lines, is fused twice into the global object at the fusion-level.

leading to a correlation of measurement data in the global object:

{ZG} = {Zi}ki0 + {Zi}ki−1
0 + {Zj}kj0 (4.11)

= {Zi}kiki−1 + {Zi}ki−1
0 + {Zi}ki−1

0 + {Zj}kj0
= {Zi}kiki−1 + 2{Zi}ki−1

0 + {Zj}kj0 .

It is obvious that as time goes on, more measurement data will arrive from sensor i and the
state estimate with new and old measurement data will be fused into the global object. The
more often the sensor-level state estimate gets fused into the global object, the more severe
the effect of the correlation due to common information history. Solving this problem is
one of the main challenges in track-to-track fusion using a sensor-to-global fusion strategy.
In the following sections, it will be shown that some track-to-track fusion algorithms, such
as the information matrix fusion algorithm, are able to fuse tracks while compensating for
the common information history correlation.

4.2.3 Out-of-Sequence Data

Another problem in an asynchronous and multi-sensor configuration is the sequence of the
sensor data at the fusion-level. Each sensor may have a different measurement period and
on top of that may also have a latency of the measurement data due to internal sensor
processing time and communication delays. This could lead to the problem of out-of-
sequence sensor data at the fusion-level, which is a significant problem in a sensor-to-global
fusion strategy.
The problem of out-of-sequence sensor data is illustrated in Figure 4.4. In the configu-

ration shown, sensor i has a different measurement period and is asynchronous to sensor j.
Additionally, sensor i also has a much shorter processing time and communication delay,
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Figure 4.4: Problem of out-of-sequence sensor data at the fusion-level. Sensor j has a much
longer processing time and communication delay, resulting that its sensor data arrives out-of-
sequence at the fusion level with respect to the data from sensor i.

depicted by the arrows to the global fusion-level, than sensor j. The result is that data
from sensor i arrive at the fusion-level at time kG − 2 and kG − 1 and data from sensor j
arrives at time kG. If a sensor has a large latency, such as sensor j in Figure 4.4, it may
arrive out-of-sequence, leading to the problem of how to fuse an older object, in this case
the object originating at time kj, into a newer global object, which resulted from data from
sensor i at time ki, where ki > kj.

It is important that the information from the out-of-sequence sensor is properly incorpo-
rated into the global object, as it can improve the accuracy of the global state estimation.
At the same time, it is important that the data from the potentially less accurate sensor i
is incorporated into the global object immediately after arrival at the fusion-level, in order
to keep the global object list as up-to-date as possible, eliminating any buffering of data.
This can be quite critical in automotive safety applications, where crash probabilities are
calculated using fused sensor data [208].

At the sensor-level, out-of-sequence data can be handled using an adapted version of the
Kalman filter, which is able to integrate such out-of-sequence data [20, 23, 25, 248]. This
Kalman filter can also be used at the fusion-level, but does not compensate for common
information history correlation, as will be shown in the following sections. Some track-to-
track fusion algorithms, in particular the information matrix fusion algorithm, however, are
able to cope with out-of-sequence data, sometimes even without any special modifications.

4.3 Track-to-Track Fusion with the Common State

The fusion of two already-filtered tracks is called track-to-track fusion in the literature and
these family of algorithms will be considered in this section. For the states in a track that
are common between the global object and the sensor-level object, as per the feature se-
lection process in the association step (see Section 3.3), point-target track-to-track fusion
algorithms can be used. The uncommon states are either derived from the geometrical
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Figure 4.5: Example asynchronous fusion situation for integrating the sensor-level data from
sensor i at time ki into the global track at time kG.

fusion algorithm or directly replace the state in the global state vector. The track-to-track
fusion algorithms must be able to deal with asynchronous and possibly out-of-sequence
sensors, and must do so in a sensor-to-global fusion strategy, as described in Section 3.2.2.
This limits the choice of track-to-track fusion algorithms that have been widely used in
the literature, since many algorithms are based on a sensor-to-sensor fusion strategy. For
a comparison of synchronous track-to-track fusion algorithms, see Appendix A. Such syn-
chronous track-to-track fusion algorithms have been successfully implemented in automo-
tive applications [44, 100, 102, 137, 173, 193, 206, 285].

This section gives an overview of different algorithms that have been proposed and can
be adapted for asynchronous track-to-track fusion. Figure 4.5 shows a typical sensor con-
figuration for asynchronous sensor-to-global fusion, where sensor i and j are asynchronous
and have different latencies to the fusion-level to be fused with the global track. The
notation in the following subsections describing the algorithms will be based on that of
Figure 4.5, where each algorithm will be shown to fuse the data from sensor i at time ki to
the global track at time kG, which is the arrival time of the data from sensor i. Note that
all temporal alignment in the following algorithms is carried out using the predict step of
the Kalman filter with a basic constant velocity kinematic model with a proper process
noise, as described in Section 3.1.2. The effect of the kinematic model for small time steps
for data alignment has little effect on the fusion results and therefore a simple kinematic
model is used. For convenience, the notation x̂a will be omitted in the follow sections; it is
always assumed that track-to-track fusion occurs with the common state vector between
the sensor-level object and the global object.

4.3.1 Adapted Kalman Filter

The most obvious and common method for realizing track-to-track fusion in a sensor-to-
global fusion strategy is to simply use a global Kalman filter and treat the sensor-level
tracks as the measurement inputs. In this case, the typical Kalman filter equations are
adapted such that the sensor-level tracks from sensor i at time ki are used to update the
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global Kalman filter at kG. Since the assumption that the input measurements to the
Kalman filter are independent of one another is violated, which is the case for sensor-level
tracks, this algorithm is called the adapted Kalman filter. The sensor-level tracks are in
fact correlated with one another over time due to their common information history, as
described in Section 4.2.2.
As with the measurement-to-track Kalman filter, in a track-to-track Kalman filter, the

global state estimate must be predicted forward in time from the previous track update to
the measuretime time ki of the track from sensor i, such that kG = ki. This is accomplished
using the standard Kalman filter predict equations

x̂G(kG|kG − 1) = F(kG, kG − 1)x̂G(kG − 1|kG − 1) (4.12)

PG(kG|kG − 1) = F(kG, kG − 1)PG(kG − 1|kG − 1)F(kG, kG − 1)′ +Q(kG, kG − 1).
(4.13)

The predicted global track is then updated with the sensor-level track using the adapted
Kalman filter update formulation

S(kG) =PG(kG|kG−1) +Pi(ki|ki) (4.14)

K(kG) =PG(kG|kG−1)
′S(kG)

−1 (4.15)

x̂G(kG|ki) = x̂f (kG|kG−1) +K(kG)
[

x̂i(ki|ki)− x̂G(kG|kG−1)
]

(4.16)

PG(kG|ki) = [I−K(kG)]P
G(kG|kG−1). (4.17)

In case of an out-of-sequence sensor, such that the sensor-level track has a measurement
time ki < kG, where kG is the time of the last update for the global track, then an out-
of-sequence track-to-track fusion algorithm can be used. Out-of-sequence measurement
algorithms are widely known for the normal measurement-to-track Kalman filter [20, 23,
25, 248] and have been used in automotive perception applications [344–346]. In [227],
the Bar-Shalom retrodiction algorithm from [20] is adapted to the problem for a track-
to-track fusion Kalman filter. Using this method, the global track is retrodicted to the
measurement time of the sensor-level track at ki using

S(kG) = PG(kG|kG−1) +Ps(ks|ks) (4.18)

η(kG) = x̂s(kG|kG)− x̂G(kG|kG − 1) (4.19)

Pvv(kG, ki|kG) = Q(kG, ki)−Q(kG, ki)S(kG)
−1Q(kG, ki) (4.20)

Pxv(kG, ki|kG) = Q(kG, ki)−PG(kG|kG−1)S(kG)
−1Q(kG, ki) (4.21)

x̂G(ki|kG) = F(ki, kG)
[

x̂G(kG|kG)−Q(kG, ki)S(kG)
−1η(kG)

]

(4.22)

PG(ki|k) = F(ki, kG)
[

PG(kG|kG) +Pxv(kG, ki|kG)−Pxv(kG, ki|kG)+ (4.23)

−Pxv(kG, ki|kG)′
]

F(ki, kG)
′

where S(kG) is the innovation covariance at kG, η(kG) is the innovation at kG,
Pvv(kG, ki|kG) is the covariance of the retrodicted process noise, Pxv(kG, ki|kG) is the
cross-covariance between the process noise and the state, x̂G(kG|kG − 1), PG(kG|kG−1)
is the state and covariance of the predicted global track before the last sensor-level track
update, x̂s(kG|kG), Ps(ks|ks) is the state and covariance of the last sensor-level track used
to update the global track, regardless of whether it was the same sensor as the out-of-
sequence sensor, F(ki, kG) is the backward prediction where F(ki, kG) = F(kG, ki)

−1 and
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Q(kG, ki) is the process noise between the global track and the measurement time of the
out-of-sequence track. After retrodiction, the global track is updated with the out-of-
sequence sensor-level track with

S(ki) = PG(ki|k) +Pi(ki|ki) (4.24)

Pxz(kG, ki|kG) =
[

PG(kG|kG)−Pxv(kG, ki|kG)
]

F(ki, kG)
′ (4.25)

W(kG, ki) = Pxz(kG, ki|kG)S(ki) (4.26)

x̂G(kG|ki) = x̂G(kG|kG) +W(kG, ki)
[

x̂i(ki|ki)− x̂G(ki|kG)
]

(4.27)

PG(kG|ki) = PG(kG|kG)−W(kG, ki)Pxz(kG, ki|kG)′ (4.28)

where S(ki) is the innovation covariance for the out-of-sequence track, Pxz(kG, ki|kG) is the
covariance between the retrodicted state and the out-of-sequence track, W(kG, ki) is the
gain for updating the global track and x̂G(kG|ki), PG(kG|ki) is the updated global track,
which now includes the information from the out-of-sequence sensor-level track.
It is important to note that simply using a global Kalman filter on already filtered

sensor-level tracks completely ignores any correlation between the sensor-level tracks and
the global track, due to the fact that the Kalman filter assumes that it is being updated
with statistically independent measurements. Additionally, no special consideration of
common process noise correlation is made. Despite this, the adapted Kalman filter is
quite a common method of asynchronous track-to-track fusion and has found its way into
several automotive perception applications, such as the ones described in [193, 201]. In
Section 4.3.4, however, it will be shown that this method has severe disadvantages.

4.3.2 Covariance Intersection

A popular method for track-to-track fusion that does not require the explicit calculation
of the cross-covariance matrix between two estimates is the covariance intersection algo-
rithm. It was introduced by Julier et al. in [143] as a means to obtain a consistent fused
estimate and has been successfully used in simultaneous localization and mapping (SLAM)
algorithms in [144]. Unlike the adapted Kalman filter algorithm, covariance intersection
takes into account the correlation between two estimates. However, the algorithm is typ-
ically used to fuse data in a sensor-to-sensor fusion strategy, where the correlation of the
estimates is due to the common process noise, as was done in [193]. The algorithm works
by interpreting two state estimates in a geometrical fashion, attempting to find a fused
estimate that encloses the intersection of the two estimates [143].
The covariance intersection algorithm is modified to be used in a sensor-to-global fusion

strategy, where an intersection between a global track at the fusion-level is made with
sensor-level tracks, which may have previously already been fused to the global track. Using
a convex combination of the global and sensor-level track results in the fused covariance

PG(kG|kG)−1 = ωPG(kG|kG − 1)−1 + (1− ω)Pi(kG|ki)−1 (4.29)

where PG(kG|kG − 1) is the covariance of the predicted global track, Pi(kG|ki) is the
covariance of the sensor-level track predicted to its arrival time at the fusion-level and
PG(kG|kG) is the fused covariance. The fused state is then given by

x̂G(kG|kG) = PG(kG|kG)
[

ωPG(kG|kG − 1)−1x̂G(kG|kG − 1)+

+ (1− ω)Pi(kG|ki)−1x̂G(kG|ki)
]

(4.30)
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Figure 4.6: Visualization of the information matrix fusion algorithm with a global track and
sensor-level tracks i and j, where the information from sensor i between ki− 1 and ki ({Zi}kiki−1)
is fused into the global track using at kG.

where x̂G(kG|kG − 1) is the predicted global track, x̂G(kG|ki) is the sensor-level state
estimate, x̂G(kG|kG) is the newly fused global state estimate and ω is a weighting factor.
The weighting factor is determined by some form of optimization of the fused estimate
from expression (4.29). A typical method is to minimize the determinate of the fused
covariance:

ω = argmin
(

det
(

PG(kG|kG)
))

(4.31)

where ω ∈ [0, 1]. Such a minimization is equivalent to minimizing the Shannon information
of the fused Gaussian covariance, such that the most information amount of remaining
information from a system is extracted [139]. Geometrically, such an approach finds a
fused covariance which maximizes the volume of the intersection of the input covariances
[143]. Many variations of the minimization exist, in particular fast covariance intersection
[107], which aim to improve real-time computation.
In a sensor-to-sensor fusion strategy, the covariance intersection algorithms has been

successfully used to fuse sensor data in automotive perception applications in a high-level
sensor data fusion architecture [100, 102, 193].

4.3.3 Information Matrix Fusion

The information matrix fusion algorithm was proposed as a means of track-to-track fusion
in [64], which differed compared to previous methods that attempted to explicitly calculate
the cross-covariance between two tracks. However, the fusion configuration used required
that the sensors feedback their fused state estimate to all other sensors in order for the algo-
rithms to be optimal. Recently, the information matrix fusion algorithm has been studied
again by Tian and Bar-Shalom for various sensor configurations and compared to the tra-
ditional track-to-track fusion algorithms that compute the cross-covariance [290, 292, 293].
In this section, a novel approach to track-to-track fusion for automotive applications using
information matrix fusion in a sensor-to-global fusion strategy is presented and has been
published in [335, 337].
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In order to help explain the information matrix fusion algorithm, Figure 4.6 is used as an
example. In Figure 4.6 a global track is updated with track information from sensors i and
j at different points in time. At kG−2, track data from sensor i arrives at the fusion module
and therefore the global track is initialized as the track from sensor i at ki−1, predicted
to the arrival time kG−2. The global track now contains the information from sensor i
from 0 to ki−1, denoted as {Zi}ki−1

0 . Track data from sensor j arrives at kG−1 and since
no data has yet been integrated from sensor j into the global track, no correlation due
to the common information is present, and a typical track-to-track fusion algorithms that
compensates for the process noise can be used (see Appendix A). The track now contains

data from sensors i and j from 0 to kj, {Zi, Zj}kj0 . At kG, new track data from sensor i
arrives. Since track data from sensor i has already been fused into the global track at kG−2,
a correlation due to the common information, {Zi}ki−1

0 , between the new track from sensor
i and the global track exists. The information matrix fusion algorithm calculates from the
previous sensor-level track and the newly arrived sensor-level track the information that is
new to the sensor-level track, and only fuses that part into the global track, avoiding any
correlation. In the current example, the new information from sensor i is {Zi}kiki−1, which
is the information between the previously arrived track at kk−1 and the new updated track
at ki. Using the information form of the covariance, the fused covariance can be calculated
by subtracting the old track’s information matrix from the new track’s and adding this
difference to the global track’s information matrix:

PG(kG|kG)−1 = PG(kG|kG − 1)−1 +
[

Pi(kG|ki)−1 −Pi(kG|ki − 1)−1
]

(4.32)

where PG(kG|kG) is the fused covariance of the global track, PG(kG|kG−1) is the covariance
of the previous global track, Pi(kG|ki) is the covariance of the newly arrived sensor-level
track, Pi(kG|ki − 1) is the covariance of the previously fused sensor-level track and the
inversion of the covariances is the information matrix. Note that all of the tracks are
predicted to the arrival time of the new sensor-level track, such that the information gain
([Pi(kG|ki)−1 −Pi(kG|ki − 1)−1]) can be calculated and fused into the global track in its
proper place in time. The fused state estimate is then updated with

x̂G(kG|kG) = PG(kG|kG)
(

PG(kG|kG − 1)−1x̂G(kG|kG − 1) +
[

Pi(kG|ki)−1x̂i(kG|ki)+

−Pi(kG|ki − 1)−1x̂i(kG|ki − 1)
]

)

(4.33)

where x̂G(kG|kG) is the fused state of the global track, x̂G(kG|kG− 1) is the previous state
of the global track, and x̂i(kG|ki) and x̂i(kG|ki − 1) is the newly arrived and previous
sensor-level track, respectively. No special algorithm is required for out-of-sequence track
information due to the fact that the decorrelation process from (4.32-4.33) is time-aligned.
This is similar to the information matrix decorrelation approach in the two-step method
of out-of-sequence measurement processing in a Kalman filter [25, 248], hence making the
information matrix fusion algorithm an ideal approach for handling out-of-sequence track
data. The formulations (4.32) and (4.33) are similar to the information filter, where the
information of a measurement is extracted by the subtracting process of the new and
previous sensor-level track. The justification and derivation of the information matrix
fusion algorithm is further detailed in Appendix B.
The only disadvantage of the information matrix fusion algorithm is that it requires the

previous sensor-level tracks in order to calculate the information gain, which effects the
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memory that the algorithm requires. However, as will be shown in the following section, the
information matrix fusion algorithm, as presented here, delivers the exact same results as
would a centralized Kalman filter algorithm in a low-level sensor data fusion architecture.

4.3.4 Comparison

The previous sections presented several asynchronous track-to-track fusion algorithms that
can be used in a sensor-to-global fusion strategy. In this section, these algorithms will be
compared to one another with a simulation of an overtaking maneuver. Additionally, the
information matrix fusion algorithm will be compared to a track-to-track fusion algorithm
in a sensor-to-sensor fusion strategy and a centralized Kalman filter in a low-level sensor
data fusion architecture. Note that the comparison will use simulated objects modeled
as point-targets and therefore ignore the dimensions of an object in order to focus on
the track-to-track fusion algorithms and their results. Furthermore, the problem of data
association is omitted in order to focus on the performance of the track-to-track fusion
algorithms.
To gauge the performance of the track-to-track fusion algorithms, two metrics are used

for evaluation: estimate consistency and estimate error. A state estimate’s consistency
is a measure of how well the state estimate’s error covariance represents the real error
of the estimate. An effective way to measure a state estimate’s consistency is to use the
Normalized Estimation Error Squared (NEES) [26], which normalizes the error of the state
estimate to its error covariance at time k

ǫ(k) = x̃(k)′ P(k)−1x̃(k) (4.34)

where P(k) is the error covariance and the true error of the state estimate is

x̃(k) = x(k)− x̂(k) (4.35)

where x(k) is the true state and x̂(k) is the state estimate. The NEES is χ2-distributed
with nx̂ degrees of freedom, where nx̂ = dim(x̂) is the dimension of the state estimate. To
obtain a better statistical average of an estimate’s consistency, the NEES is averaged over
N Monte Carlo runs of a simulation:

ǭ(k) =
1

N

N
∑

i=0

ǫ(k)i. (4.36)

where ǭ(k) is χ2-distributed with Nnx̂ degrees of freedom. An estimate is tested for
consistency by determining if ǭ(k) lies within the interval

ǭ ∈ [r1, r2] (4.37)

The interval [r1, r2] is chosen such that the probability

P (ǭ ∈ [r1, r2] | H0) = 1− α (4.38)

where H0 is the hypothesis that the filter is consistent. A typical value for α is 0.05, which
in effect yields a 95% confidence interval for the consistency test of a state estimate. The
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estimate is considered inconsistent when ǭ /∈ [r1, r2], which when plotted gives an NEES
below r1 or above r2, outside the interval.
The other metric for evaluating the performance of the track-to-track fusion algorithms

is the error. Consider a state, such as the position in the x-direction, then the error is
given by

x̃(k) = x(k)− x̂(k) (4.39)

where x(k) is the true position, x̂(k) is the position estimate and x̃(k) is the error between

the two. Defining a two-dimensional position vector, p(k) =
[

x y
]′
, then the Root

Mean Squared Error (RMSE) of the position over N Monte Carlo runs is given by

RMSE(p̃(k)) =

√

√

√

√

1

N

N
∑

i=0

x̃(k)2i + ỹ(k)2i (4.40)

where x̃(k) is the error in the x-direction and ỹ(k) is the error in the y-direction. Similarly,

using a two-dimensional velocity vector, v(k) =
[

vx vy
]′
, the RMSE of the velocity of

an object over N Monte Carlo runs is given by

RMSE(ṽ(k)) =

√

√

√

√

1

N

N
∑

i=0

ṽx(k)2i + ṽy(k)2i (4.41)

where ṽx(k) is the velocity error in the x-direction and ṽy(k) is the velocity error in the
y-direction.
In the sections that follow, these two evaluation metrics will be used to evaluate the

fusion algorithms.

Simulation Configuration

An overtaking maneuver using a realistic sensor configuration is simulated in order to
evaluate the fusion algorithms. A target vehicle is simulated in a two-dimensional envi-
ronment, traveling at an initial relative velocity of 5m/s and at an initial relative position
of x = −75m and y = 0m to the host vehicle. The overtaking vehicle’s trajectory is
simulated by applying an acceleration profile in the longitudinal, x, and lateral, y, di-
rections over time. The trajectory and the acceleration profiles are shown in Figure 4.7.
To initiate the overtaking maneuver, the target vehicle accelerates during the interval
t = [1.5, 5.5] s with amax

x = 1.5m/s2. To execute a lane change maneuver, lateral accel-
eration of |amax

y | = 1m/s2 is applied between t = [2.5, 5.5] s to move into the overtaking
lane and again between t = [6.5, 9.5] s to move back into the original lane to complete
the maneuver. At the end of the maneuver, a braking maneuver is simulated between
t = [9.5, 12.5] s with amax

x = −2m/s2.
A realistic surround environment perception sensor configuration is used during the sim-

ulation, similar to the one used in the test vehicle described in Chapter 7.1. A sensor in the
simulation is described by five parameters: the measurement period, latency, longitudinal
measurement standard deviation (σx), lateral measurement standard deviation (σy) and
the measurement interval. The measurement period defines how often the sensor takes a
measurement and the latency is the time it takes for the data to arrive at the fusion model
after the measurement is taken. The standard deviations describe the accuracy of the
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Figure 4.7: Simulated scenario, where the target vehicle overtakes the host vehicle (a) with the
acceleration profiles in the x-direction, ax, and y-direction, ay, (b), simulating acceleration to
overtake the host vehicle, a lane change maneuver and a braking maneuver after overtaking.

sensor’s measurements. The time during which the sensor is able to take a measurement
during the simulation is given by the measurement interval, which simulate the sensors’
different field of views. The sensor configuration for the simulation is summarized in Ta-
ble 4.1. Two sensors observe the rear area of the vehicle, two the front and one the side.
The pairs of sensors observing the front and the rear have complementary performance
in their standard deviations, where the sensor with the slightly better performance has a
larger latency and is therefore an out-of-sequence sensor. The sensors in the rear and the
front overlap with the sensor from the side, such there is a one-second transition period
where both the rear and side, or front and side, sensors observe the overtaking vehicle.
There is also a one-second gap, starting at t = 6 s where only the side sensor observes the
overtaking vehicle.

The simulation is carried out by generating a noisy trajectory, perpetrated by a process
noise with spectral density q̃ = 0.5. From this trajectory, each sensor takes noisy measure-
ments as per their defined measurement period and interval. Each sensor then process its
measurements using a Kalman filter, producing tracks. The tracks, based on the sensor la-
tency, are then sorted according to their arrival time at the fusion level and then processed
using a track-to-track fusion algorithm. In addition to the high-level method of processing
the sensor data, a low-level method is carried out by sorting the measurements of all of
the sensors according to their arrival time and then processing the measurements using a
single, centralized Kalman filter.
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Table 4.1: Sensor configuration for the simulation of an overtaking maneuver.

Sensor Rear 1 Rear 2 Side Front 1 Front 2

Measurement period (ms) 80 60 100 80 60
Latency (ms) 40 150 80 40 150
σx (m) 1.50 0.25 1.00 1.50 0.25
σy (m) 0.75 1.75 1.50 0.75 1.75
Measurement interval (s) [0, 5] [1, 6] [5, 8] [7, 12] [8, 15]

Table 4.2: Average root mean square error for the position and velocity of the sensor-to-global
track-to-track fusion algorithms.

Algorithm µ, Position (m) µ, Velocity (m/s)

Information matrix fusion 0.51 1.00
Covariance intersection 0.66 1.23
Adapted Kalman filter 0.68 1.20

Evaluation of Sensor-to-Global Track-to-Track Fusion Algorithms

First, the three asynchronous track-to-track fusion algorithms presented in the previous
sections (adapted Kalman filter, covariance intersection and information matrix fusion)
are compared to one another. The RMSE of the position and the velocity for the three
algorithms for the duration of the simulation is shown in Figure 4.8. The information
matrix fusion provides the best performance, having the lowest error in both position and
velocity. Though having a smooth error signal, the adapted Kalman filter has the worst
error of the three algorithms. The covariance intersection algorithm is slightly better than
the adapted Kalman filter, but its error fluctuates and is a bit unstable. The mean RMSE
over time for the three algorithms is summarized in Table 4.2. The result clearly shown
that the information matrix fusion algorithm offers the best performance.
The consistency of the fused tracks using the three track-to-track fusion algorithms is

evaluated using the NEES. The NEES for the three algorithms is shown in Figure 4.9, with
the 95% confidence interval depicted by the two horizontal dashed lines. In Figure 4.9a, it
can be seen that the consistency of the adapted Kalman filter algorithm diverges immedi-
etaly and eventually reaches a value of around 80, which is far above the 95% confidence
interval upper bound of 6.70. Figure 4.9b zooms in on the confidence interval in order to
show the results of the consistency of the covariance intersection and information matrix
fusion algorithms. As with the error, the covariance intersection algorithm exhibits insta-
bilities. Only the information matrix fusion algorithm delivers a consistent result for most
of the duration of the simulation, being only slightly inconsistent shortly after the first
lane change maneuver at around t = 5 s.
In a probabilistic framework for driver assistance systems, it is important that the state

estimates are consistent and that the uncertainty realistically represents the true error of
the estimate. The uncertainty information is used at the application-level of the proposed
high-level sensor data fusion architecture in order to carry out probabilistic-based situation
interpretations for various applications. For a pre-crash application, for example, the
state estimate and its error covariance can be used to calculate a crash probability [209].
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Figure 4.8: The RMSE for the position (a) and velocity (b) of the three evaluated track-to-track
fusion algorithms using a sensor-to-global fusion strategy.

In automated driving applications, the uncertainty in the detect objects can be used to
determine worst-case situation prediction in order to guarantee safe and reliable decisions
on vehicle maneuvers, such as automated lane changes [7, 8].

Evaluation of Fusion Strategies and Architecture

In a sensor-to-global fusion strategy, the information matrix fusion algorithm delivers the
best results. In this section, fusion strategies and fusion architectures will be compared
to one another. The sensor-to-global fusion strategy is compared to a sensor-to-sensor
fusion strategy and a low-level sensor data fusion architecture. The sensor-to-sensor fusion
strategy is implemented with a 100ms fusion cycle, where the buffered sensor data between
the current and previous fusion cycle is fused together to create a global track. A new global
track is created at each fusion cycle, where the previous global track is not used, hence a
memory-less fusion process [290]. A typical synchronous track-to-track fusion algorithm
which calculates the cross-covariance (here donated as the use of cross-covariance (UoCC)
algorithm) between the sensor-level tracks is used, as further described in Appendix A. A
low-level fusion architecture is implemented by sorting the measurements from all of the
sensors according to their arrival time and processing the measurements using a centralized
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Figure 4.9: Consistency test using the NEES of the three evaluated track-to-track fusion algo-
rithms using a sensor-to-global fusion strategy.

Kalman filter algorithm. In case of an out-of-sequence measurement, the retrodiction
method of processing the out-of-sequence measurement is used [20, 23].

The root mean square error of the position and the velocity of the different fusion
strategies and architectures is shown in Figure 4.10. Two phenomenon occur with the
use of cross-covariance algorithm. First, the error momentarily increases, for example at
t = [1.1, 2.3, 4.7] s, due to the fact that at that particular fusion cycle, no data arrives
from the out-of-sequence sensor because its latency is larger than the fusion cycle. The
other problem with the use of cross-covariance algorithm is that as the observed vehicle
exits the field of view of a sensor, such as at t = 6 s and t = 12 s, the error also increases.
Since track-to-track fusion using a sensor-to-sensor fusion strategy is memory-less, data
from a sensor that is available at one fusion cycle, but not at the next, is completely lost
at the new fusion cycle. The information matrix fusion algorithm actually performs the
same as the centralized Kalman filter algorithm in a low-level fusion architecture, typically
considered to be the optimal method of fusion. The mean RMSE over the simulation is
summarized in Table 4.3. Here it can be seen that the information matrix fusion algorithm
actually slightly outperforms the centralized Kalman filter. This is due to the fact that
the centralized Kalman filter uses the retrodiction method of out-of-sequence processing,
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Figure 4.10: The root mean square error (RMSE) of the position (a) and velocity (b) estimations
for the different fusion strategies and a level-fusion using a centralized Kalman filter (CMF).

which is only optimal in a 1-lag out-of-sequence situation, which is not the case with the
simulated sensor configuration.
The consistency of the different fusion strategies and the low-level architecture is shown

in Figure 4.11. Similar results appear for the consistency. The use of cross-covariance
algorithm is inconsistent during various portions of the simulation. The information matrix
fusion algorithm and the centralized Kalman filter again have the same result in the NEES,
showing that the information matrix fusion algorithm performs just as well as a low-level
fusion architecture.

Summary

Based on the results from this section, Table 4.4 gives a quick summary of the comparison
between the different track-to-track fusion algorithms for various criteria. The informa-
tion matrix fusion algorithms demonstrated the best accuracy, as shown in Figure 4.8 and
Figure 4.10, where the other algorithms tend to have slightly less accurate state estimates.
The consistency, presented in Figure 4.9 and Figure 4.9 was also shown to be best with
the information matrix fusion algorithm, where the adapted Kalman filter performs par-
ticularly poorly due to the accumulation of the correlated information history. All of the
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Figure 4.11: The NEES for the sensor-to-global and sensor-to-sensor fusion strategies using the
information matrix fusion (IMF) algorithm and the use of cross-covariance (UoCC) algorithms
and also a low-level fusion using a centralized Kalman filter (CKF).

Table 4.3: Average position and velocity root mean square error for different fusion strategies
and low-level centralized Kalman filter processing.

Fusion Strategy µ, Position (m) µ, Velocity (m/s)

Sensor-to-global (IMF) 0.51 1.00
Sensor-to-sensor (UoCC) 0.64 1.32
Centralized Kalman filter 0.52 1.02

algorithms, except for the use of cross-covariance algorithm, are able to process data arriv-
ing from sensor in an asynchronous fashion using a sensor-to-global fusion strategy. Due
to the nature of the information matrix fusion’s decorrelation process, no special modifica-
tions are necessary in order to process out-of-sequence data, whereas the other algorithms
do not perform optimally unless properly addressed. The computational efficiency of the
information matrix fusion algorithm is not as positive compared to some of the other al-
gorithms due to its reliance on several matrix inversion operations, which can be time
consuming to compute on platforms with limited processing capability, particularly for
higher dimensional states. Memory is one of the main drawbacks of the information ma-
trix fusion algorithm, as all previous state estimates from all of the input sensors, as well
as the global state estimates, need to be saved in order to perform the decorrelation on
which the algorithm relies.

4.4 Geometrical Fusion using the Object Model

The geometry of the object is handled differently than the position and dynamical states of
the object, hence the separate dimension vector d. This is due to the fact that the geometry
cannot be easily modeled with traditional tracking and track-to-track fusion algorithms.
This is partially due to the fact that different sensors have different estimation performance
regarding the geometry, but more importantly due to the fact that an object’s geometry,
as observed by a sensor, varies greatly depending on the sensor’s position and orientation
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Table 4.4: Comparison of track-to-track fusion algorithms (+: positive, −: negative, +/−:
neutral).

Information
Matrix Fusion

Covariance
Intersection

Adapted
Kalman Filter

Use of Cross
Covariance

Accuracy + +/− +/− +/−
Consistency + +/− − +/−
Asynchronous + + + −
Out-of-Sequence Data + +/− +/− −
Computation +/− +/− + +
Memory − + +/− −

relative to the observed object over time. Previous work, such as [150], have attempted to
estimate the dimensions of an object by including it in the normal state-based filter, where
the observability of the dimensions are carefully modeled in the measurement model. The
problem is that such models for determining the observability turn out to be quite heuristic
and error-prone in practice. Furthermore, the geometry of an object, as opposed to the
position and dynamics, is a static property: once confirmed to be fully observed with a
high degree of confidence, then the geometry of the object should not change anymore over
time, which differs from the idea of state-based estimation filter, where the states of an
object are allowed to converge given new measurement information.
In this section, a novel 1-dimensional grid-based algorithm for accumulating information

about an object’s geometry, in particular its length and width, is presented in order to
estimate the fused object’s dimension. Furthermore, the relationship between the feature-
based association and state vector fusion methods play an important role together with
the object’s dimensions in order to properly estimate and extract an object’s position, as
it relates to its dimensions.

4.4.1 Dimension Estimation

Since the dimensions, d, of an object, in the two-dimensional case its length and width, as
seen by different sensors at a similar time can vary greatly, for example an object which is
partially seen from a sensor with different field-of-views and angle to the object, it is not
practical to fuse or filter the dimensions using traditional algorithms. In this section, a
novel approach for estimating the dimensions of an object at the fusion-level is presented.
The idea for estimating and updating the dimensions of an object are based on the

methods of occupancy grid mapping [288]. For each dimension d, where d ∈ {w, l} for
a 2-dimensional object, a 1-dimensional map md with a discretization ∆d and maximum
size dmax is established, representing the probability that a location along the dimension
has been observed by a sensor. Such a dimension map, along with the notation used, is
shown in Figure 4.12 for the length and width of a 2-dimensional object.
The goal is to estimate the estimated length or width of the global object at time t

p(dG(t) | {dS1...SN}t0) (4.42)

conditioned on the length or width estimations from the sensors S1 to SN for all observed
times 0 to t of the object. A 1-dimensional map md along the dimensions of the object
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Figure 4.12: Updating the dimensions of an object at the fusion-level using a 1-dimensional
grid map along each dimension.

is used to estimate the dimensions, where an element md
i represents the probability that

the dimension up to that element has been observed by sensor data. The size of such a
dimension map is defined by dim(md) = ⌈dmax/∆d⌉ where ∆d is the discretization of the
map. As in the problem of occupancy grid mapping, it is assumed that each element in
the map is independent of the others such that

p(md | {dS1...SN}t0) =
∏

i

p(md
i | {dS1...SN}t0) (4.43)

which allows for the calculation of each element p(md
i | {dS1...SN}t0) separately. A binary

Bayes filter [288] is used to recursively calculate the probability that an element of the
dimension map has been observed by sensor data with

p(md
i | {dS1...SN}t0) =

p(md
i | dS) p(dS) p(md

i | {dS1...SN}t−1
0 )

p(md
i ) p(d

S | {dS1...SN}t−1
0 )

. (4.44)

In order to avoid numerical instabilities, the log odds ratio is used to efficiently calculate
(4.44) with

Ld
i (t) = log

p(md
i | {dS1...SN}t0)

1− p(md
i | {dS1...SN}t0)

(4.45)

= log
p(md

i | dS)
1− p(md

i | dS)
+ log

p(md
i | {dS1...SN}t−1

0 )

1− p(md
i | {dS1...SN}t−1

0 )
+ log

1− p(md
i )

p(md
i )

= log
p(md

i | dS)
1− p(md

i | dS)
+ Ld

i (t− 1)− log
p(md

i )

1− p(md
i )

where p(md
i | dS) is the estimate with current sensor data, Ld

i (t−1) is the previous estimate
for this element in log odds ratio form and p(md

i ) is the prior probability for the element,
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typically chosen to be p(md
i ) = 0.5. The probability of the element md

i can be recovered
from the log odds ratio form with

p(md
i | {dS1...SN}t0) = 1− 1

1− eL
d
i (t)

. (4.46)

The probability that an element is observed based on the current sensor’s estimate of
the dimension, p(md

i | dS), is modeled as a piecewise function where the complementary
cumulative distribution function of the normal distribution of the dimension estimate with
mean dS and standard deviation σS

d , weighted by a maximum update probability Pdmax is
used for xdi ≤ dS and the sigmoid function for xdi > dS:

p(md
i | dS) = pd(x

d
i , d

S, σS
d) =



















Pdmax ·
(

1− Pdmax

2

[

1 + erf

(

xdi − dS

σS
d

√
2

)])

, xdi ≤ dS

−p(md
i )

1 + e−k(xd
i−

dS+dmax
2

)
+ p(md

i ), xdi > dS

(4.47)
where erf() is the error function and k is the steepness of the sigmoid function. An example
of this update model is shown in Figure 4.13. To update an element md

i , the mid-point
value of the cell, xdi , is used with the function pd(x

d
i , d

S, σS
d) in order to calculate the up-

date probability to be used in (4.45). This model of the dimension update function was
chosen for several important reasons. First, the sensor-level dimension estimate, up to the
dimension value itself, is given a confidence larger than the prior probability p(md

i ), where
higher confidence is given at the lower end of σS

d , therefore resulting in a positive increase
of the dimension’s grid model. Since the sensor-level dimension estimation is a normal dis-
tribution, the complementary cumulative distribution function of the normal distribution
is naturally chosen to model this behavior. As the observability of the dimension model is
not explicitly modeled, it is assumed that previous observations were fairly correct. There-
fore the model after dS should not immediately continue towards 0, as the complementary
cumulative distribution function would do, but should retain the prior such that previous
observations of the dimension are not negatively influenced. However, in order to counter
act temporary false large dimension estimation at the sensor-level, a sigmoid function was
chose beyond dS such that a very gradual decline in confidence up to dmax is modeled.

Given the grid-based accumulation of the dimensions of the object, it is desired to
extract an estimate of the dimension using the grid md. As with the update model, it is
assumed that the accumulated grid, in a histogram form, roughly approximates a discrete
complementary cumulative distribution function of a normal distrubition, such that

p(md | {dS1...SN}t0) ≈ 1− FdG(m
d
i ). (4.48)

A normal distribution estimating the dimension of the object from the grid can be recovered
by taking the finite difference of the discrete cumulative distribution function FdG(m

d
i ),

which results in a discrete probability distribution approximating a normal distribution
N (dG, σ2

dG):

p(dG(t) | {dS1...SN}t0) ≈
dFdG(m

d
i )

dmd
i

∼ N (dG(t), σ2
dG(t)). (4.49)
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Figure 4.13: Probability function used for updating the dimension grid map with a sensor’s
current dimension estimate dS and standard deviation σS

d .

From this discrete probability distribution function, the mean and variance of the dimen-
sion can be calculated with

dG(t) =
∑

xdi pi (4.50)

σ2
dG(t) =

∑

(

xdi − dG
)2
pi (4.51)

where pi is the probability of the value at xdi from the discrete probability function p(dG(t) |
{dS1...SN}t0). The new estimated dimension vector, for the two-dimensional case, is then

d̂(t) =

[

lG(t)
wG(t)

]

(4.52)

with the new dimension uncertainty vector of

dσ2(t) =

[

σ2
lG(t)

σ2
wG(t)

]

. (4.53)

4.4.2 Extraction of Fused Coordinates

After fusion of the common associated state and the object’s geometry, the object’s new
coordinates, as defined by the object model interface in Section 2.2.1, must be extracted.
The new box-middle coordinates of the object are extracted from the fused association
state and the newly extracted dimensions of the object. In order to extract the proper
coordinates, the type of feature constellation, determined during state vector association
(see Section 3.3.2) is used.
For the feature constellation cases “common corner feature” and “common side feature”,

as described in Section 3.3.2, the selected feature pveh
f used during association and fusion is

used as the base feature for extracting the new fused box-middle coordinate of the object.
In the feature constellation case where the feature lie on a common side, the feature which
belongs to the global object and which was used as the origin in geometrical association,
p
G,veh
f1

, is used as the base feature.
Once the base feature is identified, a transformation similar to the one described in

Section 3.3.2, where in this case the opposite transformation is desired. The vector de-
scribing the fused base feature in the object coordinate system is the opposite of that used
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in Section 3.3.2, denoted here as pobj
−f , where the negative sign inverts the direction, such

that

p
obj
−f =

[

−xobjf −yobjf 1
]′
. (4.54)

The object to vehicle transformation matrix also differs in that the base feature’s position
in the vehicle coordinate system is used in the transformation matrix:

Hobj→veh,f =





cosψ − sinψ xvehf

sinψ cosψ yvehf

0 0 1



 . (4.55)

By similarly applying (3.8), the box-middle position of the object, pveh, can be determined
with

pveh = Hobj→veh,fp
obj
−f (4.56)

where the length and the width used in p
obj
−f is the estimation of the fused length and

width, described in the previous section.

Discussion

In a high-level sensor data fusion architecture, the challenge is to fuse the state estimate of
already filtered data from several number of sensors. This requires the use of track-to-track
fusion algorithms which consider the temporal correlation of data. In this chapter, it was
shown that the information matrix fusion algorithm can deliver the same performance in
a high-level sensor data fusion architecture as a low-level central Kalman filter approach
and is therefore considered the algorithm of choice for track-to-track fusion. However, the
algorithm comes with a slight cost in memory, where for each sensor the previous estimate
of the state and covariance must be saved in order to calculate the information gain to
be fused into the global object. If memory is an important issue in an application, the
covariance intersection algorithm also produces favorable results and can be used as a
suboptimal track-to-track fusion algorithm in a sensor-to-global fusion strategy.
An often overlooked aspect of fusion algorithms is the resulting covariance estimation.

Automated driving applications are showing the trend of relying heavily on probabilistic
approaches in situation interpretation, prediction and planning algorithms. Once a proba-
bilistic description of an object is required, it is important to guarantee that the resulting
covariance after fusion represents the true error of the estimation as much as possible. An
overestimate error covariance may result in later algorithms “trusting” the data too much,
which could result in critical situations in automated driving. A far too conservative er-
ror covariance could result in many false reactions of an automated driving system which
may end up driving far too conservatively than desired. In this chapter, it was shown,
through the evaluation of the algorithms using the NEES metric, that the information
matrix fusion algorithm results in the most consistent error covariance estimation. The
straight-forward fusion approach using a second filtering algorithm at the fusion-level in
a high-level fusion architecture has severe consequences on the error covariance, resulting
in a far over-estimated result, which could have adverse effects on further algorithms us-
ing these results. This approach should be avoided at all costs and an algorithm such as
information matrix fusion or covariance intersection should be used instead.
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Furthermore, care must be taking in considering the geometrical shape of an object in
automotive application. Most track-to-track fusion algorithms in the literature thus far
have been developed with an aerospace application in mind, where targets could be con-
sidered as point-objects. In the automotive environment, other objects are represented
using a rectangular box model, making the choice of and treatment of which point on the
box to fuse non-trivial. Additionally, a proper algorithm for fusing the dimension of an
object must be used. Both of these issues were resolved in this chapter by considering
a parallel state vector and geometrical fusion approach, where based on the feature con-
stellation after association, track-to-track fusion is carried out on on a specific common
feature between the sensor and global object and the uncommon features are then treated
using a grid map motivated approach for dimension estimation.
In scenarios with more dense traffic with varying types of objects, additional methods

may need to be considered in order to extend the track-to-track and geometrical fusion
approaches described in this chapter. A tighter coupling between association and fusion
could help improve results by extending known JPDA algorithms for sensor-level tracking
to the track-to-track fusion problem, since some sensors tend to output multiple objects
for certain objects, such as large trucks. This would improve the robustness of fusion-level
algorithms against weak sensor-level results. Considering multiple geometrical models or
a more general geometrical model, for example local object grids typically used at the
sensor-level [12, 13, 261, 262], could also improve the estimation of objects which do not
fit well to the rectangular box-model used in this thesis.
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In object tracking, it is very important to have a good estimate of the state and the error
covariance, as discussed in the previous chapter. In real applications, however, sensor data
is far from perfect and false sensor measurements, which do not represent a relevant object
for a specific application, may occur. A false sensor measurement which is interpreted by
the object tracking algorithms as a real measurement is called a false positive. Contrary, a
sensor measurement which actually does come from a relevant object, such as a vehicle, is
called a true positive. In automotive environments, sensors generate a lot of false positives,
such as from trees, bushes, guard rails and other sources. Since these are not relevant
traffic objects for a driver assistance application, it is desired to filter these objects out.
In essence, whether a detected object is a real and relevant object or if it is a false

detection is a measure of the quality of the detected object. In this chapter, the idea of an
existence probability is introduced as a means of measuring the quality of detected objects.
The basic idea is that each detected object is assigned a probability which represents the
existence and relevance of the detected object. Using the existence probability, sporadic
detections, such as the ones from trees and bushes, for example, can be filtered out using
a threshold. Traditional methods for measuring an object’s quality are done using a track
score, where a track’s quality measure is increased the more often it is observed [42]. The
advantages of using an existence probability is that it can be modeled in various ways
using different probabilistic methods, allowing for a single generic representation of object
quality, even though the methods for calculating the quality may differ between sensors.
In this chapter, algorithms for calculating the existence probability are presented. Sec-

tion 5.1 presents an algorithm for calculating the existence probability at the sensor-level.
The fusion of existence probabilities from many sensors at the fusion-level is presented in
Section 5.2. At the application-level, the existence probability can be used in situation
interpretation algorithms in order to carry out various driver assistance functionalities.

5.1 Sensor-Level Processing

Many methods exist for producing an existence probability for sensor-level tracking of
objects. A popular approach is to use an Integrated Probabilistic Data Association (IPDA)
algorithm [217, 218], where data existence estimation is integrated with a probabilistic data
association algorithm. This approach was later further developed into the Joint Integrated
Probabilistic Data Association (JIPDA) algorithm [216]. For automotive environment
perception, IPDA [184] and JIPDA [129, 130, 185, 187, 210, 213, 214] have been extensively
used. Another approach is to more loosely decouple existence probability estimation with
state estimation, where a 1-to-1 data association method, such as global nearest neighbor,
can be used. Popular methods for calculating a more decoupled existence probability are
based on Bayesian formulations. A confidence measure using a generalized Bayes estimator
for automotive applications was done in [4].

93



5 Existence Probability

p(∃xk−1 | Z
k−1) Existence

Predict

p(∃xk | Z
k−1)

pmod
p , pmod

b

Existence

Update

p(∃xk | Z
k)

pmod
d , pmeas

d , pc

poccp , poccb ptrackd

x̂(k − 1|k − 1)

P(k − 1|k − 1) State

Predict

x̂(k|k − 1)

P(k|k − 1) State

Update

x̂(k|k)

P(k|k)

z(k)

O
b
ject

M
a
n
a
g
em

en
t

OS(k)

Figure 5.1: Sensor-level processing flow of decoupled existence probability estimation and state
estimation.

In this section, a Bayesian approach is presented to calculate an object’s existence prob-
ability in a loosely decoupled fashion from the state estimation, where some aspects of
the state estimation are used to improve the existence probability. The approach is kept
general in that no parameters are sensor-specific and can be modeled differently for various
sensors. An existence probability at time k with measurement information up to time k
for an object track x(k) is denoted as p(∃xk | Zk), where the probability of non-existence
is simply given by the complement p(∄xk | Zk) = 1− p(∃xk | Zk).

The processing flow of a Bayesian existence probability estimation, loosely decoupled
from the state estimation, is shown in Figure 5.1. Just like in state estimation, an a-priori
existence probability is predicted forward in time and then updated depending on the
quality of the measurement associated with that particular track or if a measurement was
even associated with the track at all. Various parameters, as shown in the figure, influence
the prediction and update steps of existence probability estimation. Some of these param-
eters can be modeled and others come directly from other sources, such as classification or
state estimation. The following sections will describe the process of existence probability
prediction and updating and how to model or obtain the required parameters.

5.1.1 Existence Prediction

Object existence can be modeled as a two-state Markov process, as presented in [216,
218], where the object at time k can either exist (∃xk) or not exist (∄xk). Using the
Chapman-Kolmogrov equation, the Markov chain can be transitioned from k − 1 to k
using a probability transition matrix. The probability of object existence is predicted from
k − 1 to k by

[

p(∃xk | Zk−1)
p(∄xk | Zk−1)

]

=

[

p(∃x | ∃x) p(∃x | ∄x)
p(∄x | ∃x) p(∄x | ∄x)

] [

p(∃xk−1 | Zk−1)
p(∄xk−1 | Zk−1)

]

(5.1)

where p(∃x | ∃x), p(∃x | ∄x), p(∄x | ∃x) and p(∄x | ∄x) are the state transition probabil-
ities from k − 1 to k. Substituting p(∃x | ∃x) = pp(x̂k|k−1), p(∄x | ∃x) = 1 − pp(x̂k|k−1),
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p(∃x | ∄x) = pb(x̂k|k−1) and p(∄x | ∄x) = 1 − pb(x̂k|k−1) leads to the evaluation of the
following two expressions

p(∃xk | Zk−1) = pp(x̂k|k−1)p(∃xk−1 | Zk−1) + pb(x̂k|k−1)p(∄xk−1 | Zk−1) (5.2)

p(∄xk | Zk−1) =
[

1− pp(x̂k|k−1)
]

p(∃xk−1 | Zk−1) +
[

1− pb(x̂k|k−1)
]

p(∄xk−1 | Zk−1) (5.3)

where p(∃xk−1 | Zk−1) is the probability that x exists at k−1 given that measurements Zk−1

have been integrated, p(∃xk | Zk−1) is the predicted probability that x exists at k given
that measurements Zk−1 have been integrated, pp(x̂k|k−1) is the persistence probability of
the object given the predicted state x̂(k|k − 1) and pb(x̂k|k−1) is the birth probability of
the object given the predicted state x̂(k|k − 1).
The prediction step serves two main purposes for existence probability estimation in

practice. First, the persistence probability is usually chosen such that it does not equal
1, guaranteeing that a predicted existence probability is never exactly 1. This models
the fact that during prediction, an assumption is made that the object continues to exist,
which may not necessarily be true. Second, the existence probability is reduced as an
object moves into an area where the persistence probability is low, which allows for proper
deletion of tracks that leave the field of view of a sensor. Modeling of the persistence and
birth probability are described in Section 5.1.4.
The modeling of existence could also be extended by introducing an extra state in the

Markov process which represents that an object exists, but is currently occluded [216, 218].
In the proposed high-level sensor data fusion architecture, the problem of occlusions will be
handled at the fusion-level and, therefore, the simple two-state Markov process to model
existence will be considered at the sensor-level.

5.1.2 Existence Update

Existence probability update is achieved using a basic Bayes estimator update formulation,
which is based on Bayes rule. For estimation applications, Bayes rule for the update step
is usually formulated as

p(x | z) = p(z | x) p(x)
p(z)

(5.4)

where x is the value to be estimated, p(x) is the prior probability of the value, p(x | z) is
the posterior of the value to be estimated after observing a measurement, p(z | x) is the
measurement made from the value to be estimated and p(z) is a normalizing factor. In
order to simplify the expression, p(z) is often replaced by a normalizing factor η such that

p(x | z) = η p(z | x) p(x) (5.5)

where η ensures that the result of evaluating Bayes rules amongst the value x and its
complement sums to 1.
For existence probability, the value to be estimated, x, and its complement, x, is the

existence probability, its complement the non-existence and the measurement is the infor-
mation about the probabilistic nature of the measurement, z, associated with the object,
if one was associated at all. From (5.5), this results in

p(x | z) = η p(z | x) p(x) = p(∃xk | Zk) (5.6)

p(x | z) = η p(z | x) p(x) = p(∄xk | Zk). (5.7)
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Measurement Associated

Given that an object is updated with a measurement at k, it is desired to update the
existence probability with the quality of the measurement. From expressions (5.6) and
(5.7) and given that a measurement zk was made and associated with the predicted track
x̂(k|k − 1), the existence and non-existence probability update is

p(∃xk | Zk) = η p(zk | ∃xk) p(∃xk | Zk−1) (5.8)

p(∄xk | Zk) = η p(zk | ∄xk) p(∄xk | Zk−1) (5.9)

where p(∃xk | Zk) is the posterior existence probability with information from the mea-
surement set Zk up to time k, p(∃xk | Zk−1) is the prior existence probability with the
information from the measurement set Zk−1 up to time k − 1, p(zk | ∃xk) is the mea-
surement information about the track at time k and η is the normalizing factor. With
p(∄xk | Zk), the complement of the object’s existence, its non-existence, is calculated. The
prior existence probability and non-existence, p(∃xk | Zk−1) and p(∄xk | Zk−1), is obtained
from the output of the prediction step described in the previous section. The normalizing
factor can then be caluculated using

η =
[

p(zk | ∃xk) p(∃xk | Zk−1) + p(zk | ∄xk) p(∄xk | Zk−1)
]−1

(5.10)

and then used to evaluate p(∃xk | Zk) and p(∄xk | Zk).
The probability that a measurement was made given that the track exists is p(zk | ∃xk),

where this probability is proportional to the quality of the measurement associated to the
track. This probability can be called the detection probability pd such that

p(zk | ∃xk) = pd(k). (5.11)

Similarly, p(zk | ∄xk) is the probability that a measurement was made, even though the
track does not exist. This probability can be called the clutter probability pc, or false
positive probability, such that

p(zk | ∄xk) = pc(k). (5.12)

Rewriting (5.8) and (5.9) with the above definitions yields the final expressions for updating
the existence and non-existence probability if a measurement was associated

p(∃xk | Zk) = η pd(k) p(∃xk | Zk−1) (5.13)

p(∄xk | Zk) = η pc(k) p(∄xk | Zk−1). (5.14)

Examples of how to model the parameters pd(k) and pc(k) is described in Section 5.1.4.

No Measurement Associated

If a measurement was not associated with a track at k, then a similar Bayes formulation
as from (5.6) and (5.7) is used to update the existence and non-existence of the track

p(∃xk | Zk) = η p(zk | ∃xk) p(∃xk | Zk−1) (5.15)

p(∄xk | Zk) = η p(zk | ∄xk) p(∄xk | Zk−1) (5.16)
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where zk represents the probability that no measurement was associated with the object.
The normalizing factor in this case is calculated with

η =
[

p(zk | ∃xk) p(∃xk | Zk−1) + p(zk | ∄xk) p(∄xk | Zk−1)
]−1

(5.17)

The probability that a measurement was not associated conditioned on whether the
object exists or does not exist is the complement of the definitions in (5.11) and (5.12)
such that

p(zk | ∃xk) = 1− pd(k). (5.18)

and
p(zk | ∄xk) = 1− pc(k). (5.19)

Similarly rewriting (5.15) and (5.16) with the above definitions yields the final expres-
sions for updating the existence and non-existence probability if a measurement was not
associated

p(∃xk | Zk) = η [1− pd(k)] p(∃xk | Zk−1) (5.20)

p(∄xk | Zk) = η [1− pc(k)] p(∄xk | Zk−1). (5.21)

Again, examples of how to model the parameters pd(k) and pc(k) is described in Sec-
tion 5.1.4.

5.1.3 Generalized Bayes Extension

Traditional Bayes estimation is formulated such that the value to be estimated is updated
with only the newest measurement information. Under the Markov assumption, the in-
formation from previous measurements is inherently contained in the prior of the value
to be estimated. In [4], a generalized Bayes estimation method was introduced, which
loosens the restriction that only the newest measurement is used in the update process.
With the generalized Bayes formulation, the measurement update can consist up to several
consecutive previous measurements, resulting in a filtering effect of the Bayes update.
The update formulation for existence and non-existence probability if a measurement

was associated from (5.8) and (5.9) can be extended to a generalized Bayes formulation
with

p(∃xk | Zk) = η p(zk | Zk−1
k−L, ∃xk) p(∃xk | Zk−1) (5.22)

p(∄xk | Zk) = η p(zk | Zk−1
k−L, ∄xk) p(∄xk | Zk−1) (5.23)

where p(zk | Zk−1
k−L, ∃xk) and p(zk | Zk−1

k−L, ∄xk) is the measurement update information
between time k and k − L, where L is the number of previous measurements to consider.
A simple method for calculating p(zk | Zk−1

k−L, ∃xk) and p(zk | Zk−1
k−L, ∄xk) is to simply take

the average of the current measurement information and the previous L measurements
such that

p(zk | Zk−1
k−L, ∃xk) =

1

L+ 1

k
∑

i=k−L

pd(i) (5.24)

and

p(zk | Zk−1
k−L, ∃xk) =

1

L+ 1

k
∑

i=k−L

pc(i) (5.25)
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Figure 5.2: Comparison of the generalized Bayes and Bayes update method for existence prob-
ability calculation. Generalized Bayes is less sensitive to sporadic missed detections.

where pd(i) is the detection probability and pc(i) the clutter probability at time i of the
summation.
The expressions (5.15) and (5.16) for when a measurement is not associated with the

track can be similarly extended such that

p(∃xk | Zk) = η p(zk | Zk−1
k−L, ∃xk) p(∃xk | Zk−1) (5.26)

p(∄xk | Zk) = η p(zk | Zk−1
k−L, ∄xk) p(∄xk | Zk−1) (5.27)

where the measurement probabilities are again a summation of the complement of the
detection probability

p(zk | Zk−1
k−L, ∃xk) =

1

L+ 1

k
∑

i=k−L

1− pd(i) (5.28)

and clutter probability

p(zk | Zk−1
k−L, ∃xk) =

1

L+ 1

k
∑

i=k−L

1− pc(i). (5.29)

An example of the generalized Bayes update method compared to the normal Bayes
update formulation is demonstrated in Figure 5.2. In this example, constant parameters of
pd(k) = 0.9 and pc(k) = 0.3 were chosen where the window size for the generalized Bayes
method was L = 3. It can be seen that the generalized Bayes method is far less sensitive
to sporadic missed detections. A window size of L = 3 seems to be a good compromise
between the delay in the existence probability when there are several missed detections
and for dealing with sporadic missed detections.

5.1.4 Modeling the Parameters

The previous sections described the predict and update steps for calculating an existence
probability. For each of these steps, parameters such as the persistence probability, birth
probability, detection probability and clutter probability were mentioned. This section will
describe methods for determining these parameters.
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5.1 Sensor-Level Processing

Persistence Probability

The persistence probability, pp, is used in the predict step of the process for estimating the
existence probability, as described in Section 5.1.1. For aerospace radar applications, as was
the case where IPDA and JIPDA were introduced [216, 218], the persistence probability
in the Markov process was chosen as a constant, since aerial ground radars have a 360◦

field of view. In automotive applications, the field of view of a single sensor is much
more restricted and therefore the persistence probability can be modeled on the specific
observation properties of the sensor.
The concept of using the sensor’s field of view to model the persistence probability

in automotive applications was introduced in [184]. The persistence probability has also
sometimes been called the survival probability [187]. The total persistence probability
consists of a combination of the persistence probability in the polar coordinates such that

pmod
p (r, φ) = pp(r) pp(φ) (5.30)

where the range, r, is in the interval [rmin, rmax] and the angle, φ, is in the interval
[−φmax, φmax] where the minimum and maximum range and angle are given by the sensor’s
field of view. The persistence probability for a predicted track x̂(k|k − 1) is denoted as
pp(x̂k|k−1), where r and φ are obtained from the position of the state vector.
The persistence probability for the range is modeled as a four-part piecewise function:

pp(r) =























0 r < rmin

pmax
p rmin ≤ r < rmax(1−mr)

pmax
p

(

e
− log(α)(r−rmax)

rmax−rmax(1−mr) + 1
)

rmax(1−mr) ≤ r ≤ rmax

0 r > rmax.

(5.31)

From the minimum range up to a mr percent part of the maximum range, denoted as the
cut-off range (obtained with rmax(1 − mr)), the persistence probability is constant at a
maximum persistence probability, pmax

p . After the cut-off range and up to the maximum
range of the sensor, the persistence probability is modeled as a falling inverted exponential,
where α is a factor that defines the steepness of the exponential. Similarly, the persistence
probability of the angle is modeled as a five-part piecewise function:

pp(φ) =















































0 φ < −φmax

pmax
p

(

e
− log(α)(φ+φmax)

φmax(1−mφ)−φmax + 1

)

−φmax ≤ φ ≤ −φmax(1−mφ)

pmax
p −φmax(1−mφ) < φ < φmax(1−mφ)

pmax
p

(

e
− log(α)(φ−φmax)

φmax−φmax(1−mφ) + 1

)

φmax(1−mφ) ≤ φ ≤ φmax

0 φ > φmax

(5.32)

where φmax is the maximum viewing angle of the sensor in the positive and negative
direction of the sensor forward axis. As with the range, an exponential is used to model
the persistence probability on the edges of the field of view up to a mφ percent part of the
maximum angle (obtained with φmax(1−mφ)).
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Figure 5.3 shows an example of how the persistence probability can be modeled for a
forward facing sensor with a maximum range of 200m and a maximum angle of ±50◦ along
with a two-dimensional visualization of the persistence probability after the polar parts
are multiplied together, as in (5.30). The cut-off range and angle were chose as mr = 0.4
and mφ = 0.3, respectively, and α was chosen to be 0.01.
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Figure 5.3: Modeling of the persistence probability in polar coordinates of a sensor with a
maximum range of 200m and a maximum angle of ±50◦, where (a) shows the modeling of the
range, r, (b) shows the modeling of the angle φ, and (c) visualizes the combined persistence
probability in a Cartesian coordinate system.

The persistence probability can be extended with occlusion information obtained from
the predicted object list, OS(k|k − 1). Similar to [184], the modeled persistence proba-
bility based on the field of view is multiplied with the occlusion persistence probability,
poccp (OS(k|k − 1)),

pp(x̂k|k−1) = pmod
p (r, φ) poccp (OS(k|k − 1)) (5.33)

where the persistence probability in poccp (OS(k|k − 1)) is 0 for locations which are in the
“shadow” of an object from OS(k|k− 1). Note that using the occlusion persistence proba-
bility only makes sense for line-of-sight sensors, such as laser scanners, which are not able
detect occluded objects. A sensor which can detect or partially detect occluded objects,
such as a radar, should not use the occlusion persistence probability or may need to derive
a more complex model representing the sensor’s capabilities.
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5.1 Sensor-Level Processing

Birth Probability

The birth probability pb(x̂k|k−1) was introduced in Section 5.1.1 for the existence prediction.
Additionally, the birth probability is used to initialize the existence probability for a newly
detected object from an unassigned measurement in the environment.

The most simple method for modeling the birth probability is to assume a reasonable
constant value, for example pb(x̂k|k−1) = 0.1. Such a constant should be above the deletion
threshold (see Section 5.1.5), but low enough such that the object’s existence can be verified
over time as the object continues to be observed with measurements. Choosing a constant
birth probability is also the most typical approach used in the literature when used in
conjunction with IPDA and Joint Probabilistic Data Association (JPDA) [216, 218].

In [184], knowledge about the sensor’s field of view and other detected objects is used
to determine a more precise birth probability. The birth probability is modeled by taking
the gradient of the persistence probability such that at locations where the persistence
probability changes is proportional to a higher birth probability. This results in the effect
that a high birth probability is chosen at the edges of the sensor’s field of view and at the
edges of object occlusion.

The birth probability is approached differently in [215], where the assumption is made
that new objects cannot be created in the near vicinity of already detected objects with a
high existence probability. The idea of a Probability Hypothesis Density (PHD) function
are used to derive the probability that an object over a specific region exists. The com-
plement of this probability over all objects in the environment results in a spatial birth
probability for any new object hypothesis.

There are many options for modeling a birth probability. The various options and their
simplicity or complexity should be considered when choosing a birth probability model.
The type of sensor being used may also influence the choice. For example, the model with
the PHD function presented in [215] works well for sensors which can detect the extent of
an object’s dimensions. Other sensors, such as a camera, may rely more on a polar model
of birth probability, similar to the model presented in [184]. But the simplest method of
choosing a constant value can also be effective enough if the rest of the existence probability
estimation problem is well formulated.

Detection Probability

From (5.11) and (5.12), the detection probability, pd(k), represents the probability whether
or not a valid measurement for a relevant object was detected and associated. The detection
probability influences how fast the existence probability rises and falls when measurements
are associated with an object. There are many ways to model this probability and can vary
depending on the sensor. In [215], the detection probability for a laser scanner is modeled
by the vehicle’s pitch and detected object’s z coordinate, which reduces the detection
probability when the laser scanner’s measurement layers are above or below the detectable
object. The detection probability of a camera sensor is also modeled in [215] by using
the camera’s field of view, detected object’s position, length and width and the object’s
orientation. The detection probability could also be derived directly from the result of a
classifier, such as Adaboost clusters for a camera [184]. The simplest solution for modeling
the detection probability would be simply to choose an appropriate constant.

A more generic approach is presented here, where the detection probability is a combi-
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nation of three values: the modeled detection probability pmod
d (x̂k|k−1), measurement true

positive probability pmeas
d (zk) and the track probability ptrackd (x̂k|k):

pd(k) = pmod
d (x̂k|k−1) p

meas
d (zk) p

track
d (x̂k|k). (5.34)

If a measurement was not associated with an object, then pmeas
d (zk) and ptrackd (x̂k|k) are

simply omitted.
The modeled detection probability pmod

d (x̂k|k−1) depends solely on the predict state of
the track, therefore no measurement information is considered. The idea is to model the
fact that given any location in the sensor’s field of view, what is the probability that the
sensor is able to produce a valid measurement at that location if an object were to exist.
The simplest method is to simply assume that the sensor can detect an object everywhere
if it exists, resulting in a constant value for pmod

d (x̂k|k−1). Such an assumption may suffice
in many applications. A similar model which considers the sensor’s field-of-view, as done
with the persistence probability, can improve the model. Other sensor properties, such
as an a-priori spatial signal-to-noise ratio could also be considered, particularly for radar
sensors. The host vehicle’s state, as done in [215], can also be considered for improving
the model.
The measurement true positive probability, pmeas

d (zk), is a measure of the quality of
the new measurement, zk, associated with the object. It represents how well a specific
measurement could represent a relevant object in the environment. For automotive ap-
plications, relevant objects usually include cars, trucks, motorcycles, road infrastructure,
etc. Such relevant objects are usually determined using a classifier on the measurement,
as will be described in Chapter 6. One possible generic model for pmeas

d (zk) is to simply
use the classification result as a representation of the measurement’s quality, where any
classification, other than the class “Other” which may not represent a relevant object,
signals a strong measurement:

pmeas
d (zk) = 1− COther. (5.35)

Modeling the measurement true positive probability in this manner makes the existence
probability update sensor independent, since the classification algorithms take into account
the sensor-specific information in order to determine the classification likelihoods. However,
a more sensor-specific model could also be used, for example using classifier results from
an image processing algorithm for camera sensors or using a function dependent on the
radar cross-section of an object for radar sensors.
The track probability, ptrackd (x̂k|k), represents the quality of the state estimate of the

track. This ensures that objects which are being tracked in an unstable fashion do not
contribute strongly to the detection probability, as an unstable track is usually a sign of a
false track. The measure for track state estimate quality used is the Average Normalized
Innovation Squared (ANIS) [26]. The Normalized Innovation Squared (NIS) is a measure of
how well the innovation, z̃(k), of the new measurement to the predicted track is consistent
with the innovation covariance, S(k), at time k and is given by

ǫz̃(k) = z̃(k)′S(k)−1z̃(k). (5.36)

The NIS is χ2 distributed with nz degrees of freedom, where nz is the dimension of the
measurement space. For a more stable measure of the state estimate’s quality over time,
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the NIS is averaged over the K previous measurement updates in order to obtain the ANIS:

ǭz̃(k) =
1

K

K−1
∑

i=0

z̃(k − i)′S(k − i)−1z̃(k − i). (5.37)

The ANIS, ǭz̃(k), is χ
2 distributed with K · nz degrees of freedom. Using the inverse χ2

distribution, a probability is derived which represents the object’s state estimate quality:

ptrackd (x̂k|k) = 1− P{χ2(x;Knz) ≤ Kǭz̃(k)}. (5.38)

The larger the inconsistency of the track from the ANIS, the smaller the track detection
probability.
In combination, the modeled, measurement and track detection probability have the

effect of raising the existence probability either more quickly or slowly, depending on the
location and quality of the measurement associated with an object.

Clutter Probability

The clutter probability is often modeled as a spatial Poisson process in tracking applications
[159, 172, 184]. It represents the probability that a false measurement occurs in a given
area or during a given time frame. The basic Poisson process for the probability that
exactly m measurements are false measurements at time k, denoted as the set of false
measurements ZF

k , is

pc(|ZF
k | = m;λ) =

λme−λ

m!
(5.39)

where λ is the rate parameter of the Poisson process. The rate parameter, depending on
the application of the Poisson process, can be defined as the unit occurrence of an event,
in this case a false measurement, with respect to either time or space. For the probability
that up to and including m false measurements have occurred is given by the sum

pc(|ZF
k | ≤ m;λ) =

|ZF
k
|

∑

i

λmie−λ

mi!
. (5.40)

In order to apply (5.40), it is necessary to estimate the number of potential false measure-
ments |ZF

k | and the rate parameter λ.
The estimated number of false measurements, N̂Z = |ẐF

k |, can be calculated using

N̂Z(k) = |ẐF
k | = |Zk| − N̂A(k)− N̂B(k) (5.41)

where |Zk| is the total number of measurements at time k, N̂A(k) is the estimated number
of measurements successfully assigned to an object at time k and N̂B(k) is the estimated
number of potentially newly valid (birth) objects from the measurements at time k. The
estimated number of successful measurement-to-object assignments, N̂A(k), can be deter-
mined by combining the predicted existence probability of the object, p(∃xk | Zk−1), and
the measurement true positive probability, pmeas

d (zk), for all successful measurement-to-
object assignments, such that

N̂A(k) =

∀Ai,j
∑

i,j

p(∃xk | Zk−1)i p
meas
d (zk)j (5.42)
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where ∀Ai,j are the elements of the association matrix where a successful measurement-
to-object association was made. The number of potentially new and valid objects, or birth
objects, are given by

N̂B(k) =

∀zk /∈Ai,j
∑

i

pb(zk)i (5.43)

where ∀zk /∈ Ai,j are the measurements at time k which were not assigned to an object
and pb(zk) is the birth probability as a new potential object of the measurement.
The rate parameter λ is usually assumed constant and is known a-priori for a sensor and

is usually determined experminentally. This assumption may be valid for radar applications
in the aerospace industry, where such Poisson processes were first applied in tracking
applications. In automotive applications, however, sensors are quite sensitive to their
current environment. The rate at which false measurements are made are dependent on
the weather, speed of the host vehicle and many other factors. Due to these reasons, it
is more practical to make an online calculation of an estimated rate parameter λ̂(k) at
every new time step k. In order for the estimated rate parameter to adapt to a changing
environment, it is estimated recursively with

λ̂(k) = (1− w)λ̂+ wλ̂(k − 1) (5.44)

where λ̂ is the current estimated rate parameter, λ̂(k− 1) is the estimated rate parameter
from the previous time step k − 1 and w is a recursive weight factor. A simple method
for choosing the current rate parameter is to model it as the number of potential false
measurements per time step such that

λ̂ = N̂Z(k). (5.45)

In this case, the rate parameter in the Poisson process models the number of occurrences
(the false measurements) per unit time (a single iteration). With the recursive estimation,
the rate parameter should converge to reflect the current state of the vehicle’s environment.

5.1.5 Object Management

Object management is achieved by thresholding the existence probability of an object.
In general, three threshold levels can be defined where an action on the object occurs:
confirmation threshold (τc), unconfirmation threshold (τuc) and the deletion threshold (τd).
When an object’s existence probability reaches the confirmation threshold τc, it is promoted
to a validated object and is included in the list of objects which the sensor delivers as its
output. As an object’s existence probability falls below the unconfirmation threshold τuc,
then the object is not considered to be a validated object anymore, but it is still kept in the
sensor’s internal object list. Note that the unconfirmation threshold should be chosen such
that τuc < τc which has the effect of keeping objects validated for a longer period of time
once they have reached τc sometime in their history. As an object’s existence probability
falls further, it will eventually reach the deletion threshold τd, after which it is completely
deleted from the sensor’s object list. Figure 5.4 visualizes the relations between the various
existence thresholds.
The thresholds should be chosen such that the detection rate (true positive and false

positive rates) at the thresholds guarantee a certain desired level. It is also possible to
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Figure 5.4: Existence thresholds for confirming and deleting objects.

define several confirmation thresholds, each corresponding to a different desired detection
rate such that the existence probability between confirmation thresholds correspond to
a logical reliability of an object. Such a logical reliability can interpreted with respect
to a driver assistance application, for example, a safety system such as an emergency
braking system with high decelerations should only react to objects that meets the highest
confirmation threshold, whereas a comfort system such as active cruise control would react
earlier to objects which meet a lower confirmation threshold.

5.2 Fusion

At the fusion-level, it is necessary to fuse the existence probability from several sensors into
the global object list using a sensor-to-global fusion strategy, as described in Section 3.2.2.
This section describes a novel approach to existence probability fusion at the object-level
using the Dempster-Shafer Evidence Theory (DST).

5.2.1 Architecture

The object model interface treats the existence probability as a single probability, typi-
cally derived from a Bayesian estimation algorithm, as described for the sensor-level in
Section 5.1, or from an IPDA/JIPDA algorithm [216, 218]. However, in order to take
advantage of different sensors’ performance and to deal with complex situations, such as
occlusions, a single value for modeling the existence probability at the fusion-level does not
suffice. Therefore, the existence probability is modeled using the DST within the fusion
module, as will be described in the following sections, and then converted back to a single
existence probability value at the output of the fusion module. The processing flow for
existence probability fusion is shown in Figure 5.5.

5.2.2 Modeling with Dempster-Shafer Evidence Theory

Modeling and fusing existence using the DST was described in [334] for a sensor-to-sensor
fusion strategy. In this section, the same method is used, but in a sensor-to-global fusion
strategy, where existence information from sensor-level objects is fused into a global ob-
ject at the fusion-level. For a detailed introduction and overview of the Dempster-Shafer
evidence theory and its many applications, refer to [161, 242, 263].

The DST defines a frame of discernment, Θ, which consists of mutually exclusive hy-
potheses, or states, of a system. For modeling existence, the most simple set of mutually
exclusive hypotheses are that an object exists, ∃, or does not exist, ∄, such that

Θ = {∃, ∄}. (5.46)
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Figure 5.5: Fusion-level processing flow of fusing existence probabilities from several sensors
using Dempster-Shafer evidence theory.

DST then defines the power set, 2Θ, which is the set of all of the subsets of Θ, including
the empty set ∅. For modeling existence, as defined by (5.46), this results in

2Θ = {∅, {∃}, {∄}, {∃, ∄}}. (5.47)

The power set contains all of the combinations of Θ, which allows for an assignment of
belief, or evidence, to not just the mutually exclusive hypotheses themselves, but also their
combinations. This can be exploited to model ignorance, or uncertainty, in evidence and is
quite useful when fusing data from several sensors which may have different performance
in estimating the mutually exclusive hypotheses. Such a modeling of uncertainty in evi-
dence is not easily possible in traditional Bayesian inference methods. The power set for
object existence includes the subset {∃, ∄}, which allows for an assignment of belief that
information about an object’s existence is not explicitly known. For each set in the power
set, a Basic Belief Assignment (BBA), often also called a mass function, can be made,
where

m : 2Θ → [0, 1] . (5.48)

This BBA, or mass function, represents the amount of evidence that a given element in 2Θ

is believed to be true. If BBAs are made only to the mutually exclusive hypotheses of Θ,
then DST is equivalent to traditional Bayesian methods. The assignments of BBAs over
the power set must be normalized such that

∑

A:A⊆Θ

m(A) = 1. (5.49)
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Furthermore, DST defines a belief function

Bel(A) =
∑

B:B⊆A

m(B) (5.50)

which contains the BBAs of all of the subsets of A, which can be interpreted as a lower-
bound probability of the evidence for A. The upper-bound probability for the evidence in
A is defined as the plausibility

Pl(A) =
∑

B:B∩A 6=∅

m(B) (5.51)

where Pl(A) contains all of the sets in 2Θ that support the belief in A. The difference
between the belief and plausibility represents the amount of uncertainty in the evidence
for A.
Given the BBAs for the power set from two different sources, DST defines a rule of

combination that combines the BBAs. In the framework of object existence fusion using a
sensor-to-global fusion strategy, one source is the global object, G, and the other source the
object existence probability from sensor i, then the DST rule of combination for obtaining
the new global object existence with the information from sensor i is

mG
k|k(C) =

∑

A∩B=C m
G
k|k−1(A)m

i
k(B)

1−∑

A∩B=∅m
G
k|k−1(A)m

i
k(B)

. (5.52)

For calculating the DST combination of a BBA, it is useful to evaluate the table of in-
tersections in order to determine the expressions A ∩ B = C and A ∩ B = ∅ in (5.52).
The table of intersections for modeling existence with the power set from (5.47) is shown
in Table 5.1. Each time object data from a sensor arrives at the fusion-level, each global
object’s BBAs are updated using (5.52) either with the fact that an object was associated
to the global track or that no object was associated. The modeling of the BBAs from a
sensor i for updating a global object G will be described in the following.

Table 5.1: Intersections of the power set for existence, useful for evaluating DST combinations.

∩ {∃} {∄} {∃, ∄}
{∃} {∃} ∅ {∃}
{∄} ∅ {∄} {∄}
{∃, ∄} {∃} {∄} {∃, ∄}

Existence Prediction

Before fusion, existence prediction is carried out in a similar fashion as done at the sensor-
level (Section 5.1.1). At the fusion-level, however, existence prediction is carried out within
the DST framework. This is achieved by transferring evidence from the mutually exclusive
elements in 2Θ to the existence uncertainty element {∃, ∄}. Given a prediction weight of
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γ, a percentage of the evidence for {∃} and {∄} is transferred to the existence uncertainty
element {∃, ∄} using

mG
k|k−1({∃}) = (1− γ)mG

k−1|k−1({∃}) (5.53)

mG
k|k−1({∄}) = (1− γ)mG

k−1|k−1({∄}) (5.54)

mG
k|k−1({∃, ∄}) = mG

k|k−1({∃, ∄}) + γ (mG
k−1|k−1({∃}) +mG

k−1|k−1({∄})). (5.55)

The prediction weight γ can be chosen to be constant, but is more appropriately modeled as
a function of time, where longer prediction steps result in a larger prediction weight, thereby
modeling the greater uncertainty in the existence of an object during longer prediction.
This approach is similar to the discounting method for aging evidence, as described in
[263].

Object Associated

If an object from sensor i is associated to a global object G, then more evidence should
be assigned to the fact that the object exists. The assignments of the BBAs for sensor
i should reflect this fact. The BBA for object existence is the weighted probability of
existence from sensor i

mi
k({∃}) = pip(x̂k|k) p

i
trust p

i(∃xk) (5.56)

where pip(x̂k|k) is the persistence probability and pitrust is the sensor’s trust probability. The
trust probability represents the sensor’s performance in providing a reliable existence prob-
ability at the sensor-level. The BBA for existence is then also weighted by the persistence
probability, which is described in Section 5.1.4, in order to weigh the evidence for existence
less at the edges of the sensor’s field-of-view. Similarly, the BBA for non-existence is then
the weighted non-existence of the object from sensor i

mi
k({∄}) = pip(x̂k|k) p

i
trust

[

1− pi(∃xk)
]

(5.57)

The remainder due to the weights assigned to the existence and non-existence is assigned
to the BBA for {∃, ∄}, which represents the uncertainty that knowledge about the object’s
existence is unknown

mi
k({∃, ∄}) = 1−

[

mi
k({∃}) +mi

k({∄})
]

. (5.58)

Using the persistence probability and trust probability as a weight of the existence and non-
existence, a modeling of uncertainty in the sensor’s ability to provide a reliable existence
probability is achieved using the fact that DST is able to model ignorance by assigning
evidence to the BBA for {∃, ∄}.
The global object’s BBAs are then updated with the sensor-level BBAs from the asso-

ciated object from sensor i, as described above, using the DST rule of combination from
(5.52). Using the DST rule of combination and referencing Table 5.1, the BBA for the fact
that the object exists is update with

mG
k|k({∃}) =

∑

A∩B=∃m
G
k|k−1(A)m

i
k(B)

1−∑

A∩B=∅m
G
k|k−1(A)m

i
k(B)

(5.59)

=
mG

k|k−1({∃})mi
k({∃}) +mG

k|k−1({∃})mi
k({∃, ∄}) +mG

k|k−1({∃, ∄})mi
k({∃})

1−
[

mG
k|k−1({∃})mi

k({∄}) +mG
k|k−1({∄})mi

k({∃})
] .
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Similarly, the hypothesis that the object does not exist is updated with

mG
k|k({∄}) =

∑

A∩B=∄m
G
k|k−1(A)m

i
k(B)

1−∑

A∩B=∅m
G
k|k−1(A)m

i
k(B)

(5.60)

=
mG

k|k−1({∄})mi
k({∄}) +mG

k|k−1({∄})mi
k({∃, ∄}) +mG

k|k−1({∃, ∄})mi
k({∄})

1−
[

mG
k|k−1({∃})mi

k({∄}) +mG
k|k−1({∄})mi

k({∃})
] .

Finally, the ignorance, or uncertainty, about the object’s existence is updated with

mG
k|k({∃, ∄}) =

∑

A∩B=∃,∄m
G
k|k−1(A)m

i
k(B)

1−∑

A∩B=∅m
G
k|k−1(A)m

i
k(B)

(5.61)

=
mG

k|k−1({∃, ∄})mi
k({∃, ∄})

1−
[

mG
k|k−1({∃})mi

k({∄}) +mG
k|k−1({∄})mi

k({∃})
] .

No Object Associated

If a sensor-level object is not associated to a global object, then existence must also be
updated to reflect the fact that the global object was not observed. This has the effect of
reducing the global object’s existence over time, if an association fails several times in a
row. Similar to when an object is associated, the BBAs for sensor i are updated as a weight
using the persistence probability and the trust probability. However, since an object was
not associated, the BBA for existence is given a value of 0:

mi
k({∃}) = 0. (5.62)

The BBA for the hypothesis that the object does not exist is then

mi
k({∄}) = pip(x̂k|k) p

i
trust. (5.63)

The remainder is assigned to the BBA for the hypothesis that information about the
object’s existence is unknown:

mi
k({∃, ∄}) = 1− pip(x̂k|k) p

i
trust. (5.64)

The DST combination for updating the global object’s BBAs are carried out in a similar
fashion as when an object is associated. The DST combination for the object’s existence,
due to the fact that the sensor-level BBA for existence is zero, is now

mG
k|k({∃}) =

mG
k|k−1({∃})mi

k({∃, ∄})
1−mG

k|k−1({∃})mi
k({∄})

(5.65)

where the combined BBA for the hypothesis that the object does not exist or information
about the object’s existence is unknown remains the same as in (5.60-5.61).
The global object should only be updated with non-existence evidence as described in

this section if it falls within the field-of-view of sensor i. This can be determined by a
threshold on the persistence probability.
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5 Existence Probability

Conversion to Bayesian Probability

The object model interface described in Section 2.2.1 requires that the existence probability
is a single value, which requires a conversion of existence from the Dempster-Shafer frame-
work form back to a Bayesian probabilistic form. A conversion from the Dempster-Shafer
framework to a probability function can be achieved using the Pignistic transformation
[268], given by

BetP(A) =
∑

B⊆Θ

|A ∩B|
|B| m(B) (5.66)

where |A∩B| is the number of elementary elements of the power set in A∩B and |B| is the
number of elementary elements of B. Therefore, the probability of existence for the fused
global object, pG(∃xk), from the DST framework can be calculating using the Pignistic
transformation with

pG(∃xk) = BetP({∃}) =
∑

B⊆Θ

|{∃} ∩ B|
|B| mG

k|k(B) (5.67)

= mG
k|k({∃}) +

1

2
mG

k|k({∃, ∄}).

The non-existence is then simply the complement

pG(∄xk) = 1− pG(∃xk). (5.68)

5.2.3 Extension for Occlusion Modeling

The problem with the existence models from the previous section is that some sensors are
able to reliably detect objects, even during occlusions. When such a sensor exists and
is observing the same area as a sensor that is unable to detect occluded objects, then
the situation occurs that one sensor tends to raise the existence and the other tends to
decrease it, creating a conflict. Occlusion modeling in tracking applications is a common
problem for which many different solutions have been presented [168, 257]. In this section,
an approach to model existence with occlusions using DST is described.
The frame of discernment for existence is changed slightly compared to (5.46). The

hypothesis that an object exists is now split into two separate hypotheses, one representing
that the object exists but is not occluded and the other representing the fact the object
exists, but is occluded:

Θ = {∃Ō, ∃O, ∄} (5.69)

where Ō stands for not occluded and O for occluded. Expanding Θ to the power set results
in

2Θ = {∅, {∃Ō}, {∃O}, {∄}, {∃Ō, ∄}, {∃O, ∄}, {∃Ō, ∃O},Θ} (5.70)

where new possibilities for modeling ignorance, or uncertainty, exist. With {∃O, ∄} it is
possible to assign evidence to the fact that the object may exists and is occluded or that
it does not exist at all, an uncertainty that is very realistic for sensors that are not able
to detect occluded objects. Using {∃Ō, ∃O}, evidence can be assigned to the fact that an
object exists, regardless of whether it is occluded or not, which would model the existence
evidence for a sensor that is able to detect occluded objects. Only {∃Ō, ∄} is an element
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5.2 Fusion

Table 5.2: Intersections of the power set for existence with occlusion modeling, useful for eval-
uating DST combinations.

∩ {∃Ō} {∃O} {∄} {∃Ō, ∄} {∃O, ∄} {∃Ō, ∃O} Θ

{∃Ō} {∃Ō} ∅ ∅ {∃Ō} ∅ {∃Ō} {∃Ō}
{∃O} ∅ {∃O} ∅ ∅ {∃O} {∃O} {∃O}
{∄} ∅ ∅ {∄} {∄} {∄} ∅ {∄}

{∃Ō, ∄} {∃Ō} ∅ {∄} {∃Ō, ∄} {∄} {∃Ō} {∃Ō, ∄}
{∃O, ∄} ∅ {∃O} {∄} {∄} {∃O, ∄} {∃O} {∃O, ∄}
{∃Ō, ∃O} {∃Ō} {∃O} ∅ {∃Ō} {∃O} {∃Ō, ∃O} {∃Ō, ∃O}

Θ {∃Ō} {∃O} {∄} {∃Ō, ∄} {∃O, ∄} {∃Ō, ∃O} Θ

that is not realistic in practice and will therefore not be used. As in the previous section,
complete ignorance can be modeled by assigning evidence to Θ.

With the help of Table 5.2, showing the intersections of the power set, the DST rule
of combination can be used to update a global object’s existence at k using the predicted
object’s existence and the existence probability of the sensor i. For each update, all of the
BBAs of the power set must be evaluated:

mG
k|k({∃Ō}) =

∑

A∩B=∃Ōm
G
k|k−1(A)m

i
k(B)

1−∑

A∩B=∅m
G
k|k−1(A)m

i
k(B)

(5.71)

mG
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G
k|k−1(A)m

i
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1−∑

A∩B=∅m
G
k|k−1(A)m

i
k(B)

(5.72)
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G
k|k−1(A)m

i
k(B)

1−∑

A∩B=∅m
G
k|k−1(A)m

i
k(B)

(5.73)
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k|k({∃Ō, ∄}) =
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k(B)

1−∑
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G
k|k−1(A)m

i
k(B)

(5.74)
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1−∑
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i
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(5.75)

mG
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G
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i
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1−∑

A∩B=∅m
G
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i
k(B)

(5.76)

mG
k|k(Θ) =

∑

A∩B=Θm
G
k|k−1(A)m

i
k(B)

1−∑

A∩B=∅m
G
k|k−1(A)m

i
k(B)

(5.77)

Assigning the BBAs for sensor i is a bit more involved as in the previous section, due
to the fact that the information about the sensor’s occlusion detecting abilities must be
known and properly modeled. The following will describe how to predict and update a
global object’s existence with this new modeling of occlusion information.

111



5 Existence Probability

Existence Prediction

Prediction of the existence probability at the fusion-level with occlusion modeling is
achieved in the same manner as described in the previous section. Using a weight fac-
tor γ, a small amount of evidence is removed from all of the elements of the power sets
except for Θ. The removed evidence is then added to the element Θ representing complete
ignorance or uncertainty in the object’s existence.

Object Associated with Occlusion Detecting Sensor

The first possibility is that an object is associated to the global object with a sensor that is
able to detect potentially occluded objects. Therefore, evidence for the object’s existence,
weighted by pip(x̂k|k) and pitrust, is assigned to the BBA mi({∃Ō, ∃O}), which represents
the fact that the object exists, whether it is actually occluded or not:

mi({∃Ō, ∃O}) = pip(x̂k|k) p
i
trust p

i(∃xk). (5.78)

The complement of the existence probability is also weighted and assigned to the BBA for
non-existence, just as in (5.57):

mi({∄}) = pip(x̂k|k) p
i
trust(1− pi(∃xk)). (5.79)

Similar to (5.58), the remainder is modeled as complete ignorance

mi(Θ) = 1−
[

mi({∃Ō, ∃O}) +mi({∄})
]

. (5.80)

By assigning evidence to {∃Ō, ∃O}, object existence, whether the object is occluded or
not, is modeled for a sensor that has the ability to detect occluded objects, for example a
radar sensor or a vehicle-to-vehicle communications unit.

Object Associated with Non-Occlusion Detecting Sensor

More specific knowledge about an object’s occlusion is known if a sensor-level object is
associated to a global object with a sensor which does not have the ability to detect
occluded objects. With such a sensor, it is specifically known that the detected object is
not occluded, and therefore evidence is assigned to the BBA for {∃Ō}

mi({∃Ō}) = pip(x̂k|k) p
i
trust p

i(∃xk). (5.81)

As usual, the weighted complement of the existence probability is assigned to the BBA
that the object does not exist

mi({∄}) = pip(x̂k|k) p
i
trust(1− pi(∃xk)) (5.82)

and the remainder is assigned to the BBA for complete ignorance about the object’s
existence

mi(Θ) = 1−
[

mi({∃Ō}) +mi({∄})
]

. (5.83)

Using this new model for existence with occlusions, such specific information that an object
exists and is definitely not occluded can be defined if a sensor detects an object and it is
known that this sensor, for example line-of-sight sensors such as a camera or a laser scanner,
does not have the ability to detect occlusions.
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No Object Associated with Occlusion Detecting Sensor

When no sensor-level object was associated with a global object, then the persistence
probability of the sensor can be used to determine if the global object falls within the
field-of-view of the sensor. If it does, then the BBAs for existence need to be updated
with the fact that the sensor should have detected something, but did not. For a sensor
which can detect occlusions, there is no question on whether the sensor should have or
should have not detected something. Therefore, weighted evidence of the trust probability
is assigned directly to the BBA that the object does not exist:

mi({∄}) = pip(x̂k|k) p
i
trust. (5.84)

The remaining evidence goes to the BBA for complete ignorance about the object’s exis-
tence

mi(Θ) = 1−mi({∄}). (5.85)

With an occlusion detecting sensor, if no sensor-level object was associated, then it can
be inferred that it is very likely that no object actually exists. Therefore, the evidence for
complete non-existence, regardless of occlusion, is updated.

No Object Associated with Non-Occlusion Detecting Sensor

For a sensor which cannot detect occlusions, updating the global track when no sensor-
level object was associated is a bit different than with an occlusion detecting sensor. The
fact that an object was not associated, since it is a sensor that cannot detect occlusions,
does not give the global object any real new information on whether the object exists or
not. With a non-occlusion detecting sensor, one of two things is true: either the object
exists, but is occluded, or the object simply does not exist. The set {∃O, ∄} from 2Θ

models exactly this situation, and therefore, the weighted evidence of the trust probability
is assigned to this BBA:

mi({∃O, ∄}) = pip(x̂k|k) p
i
trust. (5.86)

The remaining evidence, as always, goes to the BBA for complete ignorance about the
object’s existence

mi(Θ) = 1−mi({∃O, ∄}). (5.87)

Updating the BBA for {∃O, ∄} has the effect of equally assigning evidence to the fact that
the object could exist, but is occluded, or that it does not exist. This trick allows for a
stable existence estimation of an occluded object at the fusion-level, even with sensors that
do not have the ability to detect occluded objects.

Conversion to Bayesian Probability

Similar to existence modeling without occlusion, the Pignistic transformation from (5.66) is
used to convert to a probability from the DST framework. This time, however, the Pignistic
transformation is applied to the evidence associated with {∃Ō, ∃O}, which represents that
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5 Existence Probability

an object exists, regardless of occlusion. Applying (5.66) leads to

pG(∃xk) = BetP({∃Ō, ∃O}) =
∑

B⊆Θ

|{∃Ō, ∃O} ∩ B|
|B| mG

k|k(B) (5.88)

= mG
k|k({∃Ō}) +mG

k|k({∃O}) +
1

2
mG

k|k({∃O, ∄}) +
1

2
mG

k|k({∃Ō, ∄})+

+mG
k|k({∃Ō, ∃O}) +

2

3
mG

k|k(Θ).

For calculating the non-existence, (5.68) is also used.

5.2.4 Modeling the Trust Probability

The reason for using a trust probability is that the existence probability can be modeled
and calculated differently for various sensors. The problem is that an existence probability
for a sensor S1 may not be statistically equivalent to the same existence probability from
sensor S2, such that for a probability P , pS1(∃xk) = P 6≡ pS2(∃xk) = P . Therefore,
when fusing the existence probabilities for a sensor, a weight is used to normalized the
statistically meaning of the existence probability for each sensor. In this thesis, this weight
is called the trust probability ptrust.
The trust probability ptrust can be derived from experimental evaluation of a sensor’s per-

formance regarding its ability to accurately calculate an existence probability for relevant
objects. This is achieved by evaluating the existence probability against a large data set,
where true and relevant objects are labeled. A Receiver Operating Characteristic (ROC)
curve can be calculated from the data set by varying the existence probability and using
it as a threshold in order to determine the sensor’s performance regarding its true positive
rate (TPR) and false positive rate (FPR) [97, 181]. The ROC curve shows the relationship
between the true positive rate and false positive rate as the existence probability threshold
is varied and can therefore be exploited to obtain a statistically meaningful value for ptrust.
It can be chosen to normalize the fusion of existence probabilities using a desired false
positive rate, such that a defined false positive rate, FPR = f , is used to bring a statistical
equivalency to all of the sensors. From a given existence probability ROC curve for sensor
i, ROCi

∃, a true positive rate can be obtained given a false positive rate f such that

pitrust = TPRi
FPR=f = ROCi

∃(FPR = f) (5.89)

where the trust probability for sensor i is defined by the true positive rate for existence
given a fixed false positive rate f amongst all of the sensors. This trust probability, in
conjunction with the fusion methods presented in this chapter, is then used to weight the
existence probabilities from the various senors in order to obtain a more consistent fusion
result.

Discussion

Next to the estimation of an object’s state and covariance, it is just as important to cal-
culate a proper quality measure for an object’s existence, thereby improving the detection
rate and reducing false detections. In this chapter, the well known concept of the existence
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probability for such a quality measure is used. In a high-level sensor data fusion archi-
tecture, it is important to properly calculate the existence probability at the sensor-level
and fusion-level. At the sensor-level, it is typical to use an IPDA or JIPDA algorithm
in order to simultaneously estimate state and existence. In this thesis, however, a Bayes
formulation for object existence was presented, thereby allowing for a simple and loosely
coupled estimation of existence, which only slightly depends on the state and covariance
estimation process. This allows for more flexibility in the existence probability calculation,
especially when applying the algorithm generically for different sensors. The result of the
existence probability calculation at the sensor-level can then be used in order to make
decisions about object confirmation and deletion by thresholding the existence probability.
At the fusion-level, an approach for fusing the existence probability using the Dempster-
Shafer evidence theory was presented. The motivation for using DST lies in the fact that
existence probabilities from different sensors do not necessarily have a statistically similar
meaning. DST allows for a simple representation of uncertainty between hypothesis, in
this case existence and non-existence. By weighting the existence probability from various
sensors based on their statistical performance, different amount of evidence for unknown
existence are represented and exploited during fusion using the Dempster-Shafer rule of
combination. A further extension of the DST formulation for existence fusion for object
occlusion was also presented.
At the application-level, the existence probability plays an important role in driver assis-

tance systems and automated driving. As opposed to using heuristics and experimentation
for setting the object selection parameters in a driver assistance system’s reaction to a de-
tected object, a threshold on the existence probability based on statistical evaluation can
reveal information about the relationship between the true positive rate and false positive
rate of detection. This information, contained in the existence probability, can be used to
trigger a driver assistance system or variably condition the reaction of an assistance system,
given the reliability of a detected object. However, such a usage of existence probability
and the direct integration of such a quality measure in driver assistance and automated
driving systems is still quite new and much still needs to be learned. The effect of setting
the thresholds of an existence probability of a driver assistance function, and the increase
in safety, comfort and reliability it could provide, still need to be proven.
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Besides the state and covariance estimation and the existence probability, the object model
introduced in Section 2.2.1 defines a classification vector c. In vehicle environment per-
ception, classification serves the purpose of determining if an object belongs to a certain
class type, or label, for example car, truck, motorcycle, pedestrian, etc. Such a classifi-
cation attribute allows different driver assistance system to react specifically to objects of
a certain type. A pedestrian safety system, for example, should only warn the driver if a
pedestrian is detected and if that pedestrian poses a potential risk for a collision.
In the field of machine learning, classification is typically considered to be a type of

pattern recognition algorithm [41, 90, 283]. For the purposes in this thesis, the problem of
classification can be formulated as follows. Given a set of classes

C = {C1, C2, . . . , CK} (6.1)

determine the probability p(Ci | I) that some given information I describes an object of
type Ci from the set of classes C. For automotive applications the class set can be defined
as

C = {CCar, CTruck, CMotorcycle, CBicycle, CPedestrian, CStationary, COther} (6.2)

where the classification probabilities are summarized in a normalized classification vector

c =
[

CCar CTruck CMotorcycle CBicycle CPedestrian CStationary COther

]′
(6.3)

where, for example, CCar = p(CCar | I).
In the previous chapter, the existence probability represented a quality measure for the

detection of a relevant object for a driver assistance system. It is often argued what is
meant by “relevant object”. In this thesis, relevant objects will be considered the traffic
object classes from (6.2) and the stationary class, where the stationary class represents
free-standing objects (such as cones, tress, etc.) which may obstruct the vehicle’s direct
driving path. Large stationary objects such as buildings, or continuous road barriers are
not considered, since these types of stationary objects cannot be properly represented
using a rectangular object model. For more complex stationary objects, a grid-based
representation is better suited for detection and collision-checking [288]. The class “Other”
includes objects which may be potential relevant objects but have not yet been reliably
detected as a member of another class. The class “Other” can also be thought of as a
classification hypothesis for an unknown class.
Following the proposed sensor data fusion architecture from Section 2.2, the classifi-

cation vector is first processed at the sensor-level using only sensor-specific information
(Section 6.1). At the fusion-level, classification vectors from several sensors are combined
in order to generate a refined classification vector for a specific object (Section 6.2). The
presented algorithms and methods in this section, as well as the results from Chapter 7,
have been published in [333].
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6.1 Sensor-Level Processing

At the sensor-level, it is desired to determine an object’s class based solely on that sensor’s
data over time. The process can vary depending on the type of sensor being used, as the
most effective classification algorithm is dependent on the type of data that a sensor can
generate for an object.

In the follow sections, some algorithms for object classification at the sensor-level will be
described. Throughout these sections, example data extracted from an automotive laser
scanner (see Section 7.1) are used to demonstrate the proposed algorithms for classification.
Other sensors can follow a similar classification process, but may use different types of input
data, depending on which features are the most relevant for distinguishing between the
class types described by (6.2).

Note that approaches presented here are a very small subset of the different possibilities
for classification, where many other approaches have been applied to automotive applica-
tions. For example, a classification framework [316] applied to a laser scanner has been
developed, where a classifier based on neural networks is used [315, 317]. Gaussian mix-
ture models with a Bayesian classifier on laser scanner data have also been developed [241].
Classification in urban environment with dense 3D laser scanner data can also be performed
[282]. For camera-based systems, typically some form of histogram of oriented gradients
(HOG) [73] or Haar-like [304] features are used to detect objects in an image [266], such
as vehicles, pedestrians [5, 124], etc., which are then typically trained using a classifier
such as neural networks [5] or Support Vector Machines (SVM)s [124]. Classification on
intermediate representations, such as stixels, can also be performed, as in [92] with neu-
ral networks. Fusion of sensor classification data at a low-level within a Joint Integrated
Probabilistic Data Association (JIPDA) framework using lidar and camera have also been
implemented [186, 210], where classification focused on whether an object is relevant to an
Advanced Driver Assistance Systems (ADAS) function or not.

6.1.1 Measurement Classification

The first opportunity to classify object data is with a sensor measurement, zk, before data
association in the tracking process. For some sensors, the measurements are the raw sensor
detections, whereas for other sensors the measurements may already be the result of a pre-
processing step, such as point cloud segmentation for a laser scanner sensor. It is desired
to determine p(Ci | zk), the probability that the measurement zk belongs to the class Ci,
for all classes C = {C1, C2, . . . , CK}. In this section, a few supervised learning techniques
will be presented and compared to one another for measurement classification, although
many other possibilities exist.

The first step is to determine which attributes of the measurements in a training set are
relevant, or the most useful, for being able to separate the measurement as distinctly as
possible into each of the classes. This is usually, and most easily, determined empirically by
analyzing a training data set’s attributes with respect to each of the classes and identifying
the minimal number of attributes that best separate the data into the desired classes. Given
a training set of measurement attribute data

T = {(y1, C1), . . . , (yi, Ci), . . . , (yL, CL)} where i = 1 . . . L, Ci ∈ C,y ∈ RD (6.4)
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where
yi = Hczi (6.5)

is the attribute vector from the full measurement zi with attribute transformation matrix
Hc, L is the size of the training set T and D is the dimension of the attribute space used
for classification. Based on this labeled training set, it is desired to generate a model
which can be used to classify new sensor measurement data. This section will discuss two
such algorithms and their application to laser scanner measurement classification: SVM
and Gaussian Discriminant Analysis (GDA). Supervised machine learning, however, is a
very large field and many other algorithms exist, such as neural networks [40] or Relevance
Vector Machines [294]. Classification of measurement data may heavily depend on the
type of sensor used and the sensor data’s ability to distinguish between the desired classes.
Please refer to [41, 90, 251, 283] for an overview of many different types of machine learning
and classification algorithms.
The remainder of this section will present the aforementioned methods for measurement

classification and will apply the methods on a training set from a forward-facing laser
scanner sensor in a highway scenario. The classification problem on the highway can be
restricted to determining if a measurement belongs to the classes Car, Truck or Motorcycle,
which is a subset of the full set of classes in the object model. The training data is
extracted from a combination of a highway scenario and motorcycle scenarios on a test track
(see Appendix D.1). After pruning the training data set from occluded and implausible
measurements, a total of L = 21, 592 data points are used for classification (14,860 Car,
2,334 Truck and 4,398 Motorcycle). After empirical analysis of the training data set, it
was determined that the width, w, and range r, where r =

√

x2 + y2, were the attributes

that best separate the data into the three desired classes, such that yi =
[

wi ri
]′
. The

attribute space with a reduced visualization of the training data set for the three classes
is shown in Figure 6.1.

Support Vector Machines

A common and popular method for classification is SVM, which are a type of maximum
margin classifier [41]. SVMs were first introduced by Boser in 1992 [56] and have since been
widely studied and used in various pattern recognition applications. For a comprehensive
explanation on SVMs, refer to [41, 60, 90, 283, 303]. Traditionally, SVM is a binary
classification algorithm, but has been extended to the multi-class problem using various
methods [41, 319, 320].
The idea behind SVMs is to find a decision boundary that maximizes the margin between

data points from two separate classes using training data T . SVM is based on a linear
model decision function of the form

f(y) = w′φ(y) + b (6.6)

where y is a data point, φ(y) is an attribute-space transformation, w is a vector normal to
the decision boundary and b is a bias parameter. The hyperplane defined by f(y) = 0 is a
decision boundary that separates two target classes, t, into two regions where the classes
are defined by t ∈ {+1,−1}. The goal is to find the parameters w and b such that for all
of the training data T , f(yi) > 0 for ti = +1 and f(yi) < 0 for ti = −1 is satisfied, which
can also be written as

tif(y) ≥ 0 ∀i (6.7)
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Figure 6.1: Training data from a forward-facing laser scanner sensor in a highway scenario for
the classes Car, Truck and Motorcycle using an attribute space containing the range r and width
w of a measurement.

and such that the margin, or distance, between the hyperplanes defined by f(y) = +1 and
f(y) = −1 is maximized. It is assumed that the two classes are linearly separable with the
attribute-space transformation, meaning that there exists a hyperplane that can perfectly
separate all of the data points from the two classes. The perpendicular distance from a
data point to the decision boundary is then defined as

tif(y)

||w|| . (6.8)

The goal of SVM is to maximize the margin, which from (6.8) is ||w||−1. This is equivalent
to maximizing the expression

argmin
w,b

1

2
‖w‖2 such that ti(φ(yi)w + b)− 1 ≥ 0 ∀i (6.9)

where the factor 1
2
is introduced in order to formulate a quadratic programming problem.

This optimizing problem is usually solved by introducing Lagrange multipliers which are
to be solved in order to determine the optimal values for w and b [41]. Once the model has
been trained, new data points are classified by evaluating the sign of the original expression
from (6.6).
The introduction of a slack variables ξi allows the SVM problem to be reformulated such

that some of the training data may lie on the wrong side of the decision boundary, where
the optimization from (6.9) becomes an additional term which introduces a penalization
for data points whose slack variable puts them on the wrong side of the decision boundary.
Furthermore, the linearity of SVM can be avoided by introducing a non-linear kernel
function which operates on the input feature space in order to transform the data into a
higher dimensional feature space such that a linear separator can be found. In [239], an
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Figure 6.2: Example output of applying SVMs on the laser scanner data from Figure 6.1. The
red region corresponds to CCar, blue to CTruck and green to CMotorcycle, where the line between
the regions is the maximum margin decision boundary from the SVM models.

approach for producing probabilistic outputs from an SVM model is demonstrated based
on the idea of fitting a sigmoid function dependent on a trained model of the classifier.

SVM inherently solves a two-class classification problem. However, most practical ap-
plications, as is the case with the classification of objects in this thesis, it is necessary
to distinguish between more than two classes. This is solved using SVM by formulating
several classifiers and evaluating the results of each against one another. Two schemes for
multi-class SVM are typically used: one-versus-all and one-versus-one. In one-versus-all,
K classifiers (one for each class to be classified) is trained, where for each classifier the neg-
ative samples are defined as the samples which do not belong to the positive class (hence
the name one-versus-all). In one-versus-one, several SVM classifiers are trained such that
every class is trained against every other class, hence also the name one-versus-one. The
most probable class for a new data point is then determined using a heuristic voting ap-
proach. This approach can be more effective, but at the cost of higher computation in
training and in new data point evaluation. Using a directed acyclic graph approach can
reduce these computational costs [240].

The above described SVM approach was applied to the laser scanner data from Figure 6.1
using a one-versus-one multi-class SVM. The classifiers were trained using the LIBSVM
[63] software. The resulting decision boundaries are shown in Figure 6.2, where the red
region corresponds to CCar, blue to CTruck and green to CMotorcycle.

Gaussian Discriminant Analysis

A Bayesian probabilistic view is an alternative approach to classification. The idea is to use
probabilistic models in order to separate data into various classes. A familiar model is to
use a Gaussian distribution to represent data for a specific class. This Gaussian model can
then be used to discriminate between classes, thus called Gaussian discriminant analysis
(GDA). In [41], such approaches are called probabilistic generative models, whose approach
is the basis for the work presented in this section.

Consider the case with just two classes. It is desired to calculate the posterior probability
of a class Ci given input data y. Using Bayes’ theorem with two classes, this can be
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accomplished for C1 with

p(C1 | y) =
p(y | C1)p(C1)

p(y | C1)p(C1) + p(y | C2)p(C2)
(6.10)

where p(y | C1) is the class-conditional density of the data y and p(C1) is the prior
probability. By substituting the log-ratio of the probabilities, (6.10) can be rewritten in
the form of a logistic sigmoid function:

p(C1 | y) = σ(a) =
1

1 + e−a
(6.11)

a = ln
p(y | C1)p(C1)

p(y | C2)p(C2)
. (6.12)

For more than two classes, where N > 2, using Bayes’ theorem gives

p(Ci | y) =
p(y | Ci)p(Ci)

∑N
j=1 p(y | Cj)p(Cj)

(6.13)

which can be written in the normalized exponential form with

p(Ci | y) =
eai

∑N
j=1 e

aj
(6.14)

ai = ln p(y | Ci)p(Ci). (6.15)

In order to evaluate p(Ci | y), the class-conditional density p(y | Ci) and the prior class
probability p(Ci) must be determined. For GDA, a Gaussian distribution is used to model
the class-conditional density

p(y | Ci) =
1

(2π)
D
2 |Σi|

1
2

exp
{

− 1

2
(y − µi)

′Σ−1
i (y − µi)

}

(6.16)

whereD is the dimension of the attribute space used for classification, µi is the model mean
for Ci and Σi is its covariance. The parameters of the Gaussian distribution are calculated
using a maximum likelihood estimator on the training data set T for the labeled data
corresponding to class Ci. For each class in the data set, a separate Gaussian distribution,
and therefore model, is calculated. The prior class probability is the fraction of data points
in the training set T assigned to class Ci to the total number of data points:

p(Ci) =
Li

L
(6.17)

where Li is the number labeled data point corresponding to class Ci and L is the total
number of data points in the training set T . Based on the training set, this prior class
probability represents how often a given class occurs with respect to the other classes.
If the covariance parameter in p(y | Ci) is forced to be the same over all of the classes

Ci in the training set T , then a simple linear decision boundary between the classes results
[41]. From (6.14-6.15), for the shared covariance case, ai can be written in the form

ai = w′
iy + wi0 (6.18)
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Figure 6.3: Classification using Gaussian discriminant analysis (GDA) using a shared covari-
ance, resulting in a linear decision boundary (a) and class-independent covariances, resulting
in quadratic decision boundaries (b). The class posterior probability is color-coded as an RGB
image, where red is p(CCar | y), blue is p(CTruck | y) and green is p(CMotorcycle | y).

where the parameters wi and wi0 are

wi = Σ−1
µi (6.19)

wi0 = −
1

2
µi

′Σ−1
µi + ln p(Ci) (6.20)

where here Σ, without a class subscript, is the shared covariance result of the maximum
likelihood estimator over all of the classes [41]. The results of applying the shared covari-
ance method for GDA classification to the data from Figure 6.1 is shown in Figure 6.3a.
Notice the linear decision boundary between the three classes.
Alternatively, the Gaussian model for each class can have its own, independent covari-

ance. Assuming independent covariances between class models, (6.14-6.15) evaluates to
the quadratic form

ai = y′Wiy +w′
iy + wi0 (6.21)

where

Wi = −
1

2
Σ−1

i (6.22)

wi = Σ−1
i µi (6.23)

wi0 = −
1

2
µi

′Σ−1
i µi + ln

1

|Σi|
1
2

+ ln p(Ci). (6.24)

This time Σi represents the covariance of the Gaussian model for class Ci, where for each
class there exists a separate covariance. The results of applying the quadratic form of GDA
classification to the laser scanner training data from Figure 6.1 is shown in Figure 6.3b.
Note that the decision boundaries are no longer linear, but quadratic.
The shared covariance GDA method results in a linear separator quite similar to maxi-

mum margin separator from the SVM algorithm. However, the GDA method more easily
calculates a classification probability. For simple attribute spaces, as the one in the example
training data from Figure 6.1, the GDA algorithm is a great alternative to SVM.
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6.1 Sensor-Level Processing

Mahalanobis Distance Class Likelihood

In the previous section, a Gaussian model was used to generate decision boundaries be-
tween classes in order to calculate the class posterior probability. The problem with the
aforementioned approach is that the method fails to properly model data points which lie
far from the class Gaussian median. For example, using the linear GDA model on the
training data set used in this section (see Figure 6.3a) and calculating the class posterior

probability for the data point y =
[

w r
]′
=

[

10 100
]′

for the class truck results in
p(y | CTruck) = 1, which is an unrealistic result (it is very improbable that a truck has
a width of 10m). It is desired to model the posterior probability that a data point does
not belong to any of the modeled classes, which can be represented in the class COther. In
this section, a class likelihood method using a Gaussian model based on the Mahalanobis
distance is introduced in order to solve this problem.
In the state vector object association methods presented in Section 3.3, the Mahalanobis

distance is used to determine if two objects from different sources represent the same
object in reality. The same idea can be used to determine how well a data point in the
classification attribute space represents one of the modeled classes. Given the data point
y and the Gaussian class model, then the Mahalanobis distance is

d2Ci
= (y − µi)

′Σ−1
i (y − µi). (6.25)

The resulting statistical distance, d2Ci
, is χ2 distributed with D degrees of freedom. Using

the χ2 cumulative distribution function Fχ2
D
, the posterior probability, or likelihood, p(Ci |

y) that the data point represents the class Ci can be calculated:

p(Ci | y) = 1− Fχ2
D
(d2Ci

). (6.26)

The probability that a data point does not belong to one of the modeled classes can be
computed with

p(COther | y) = 1− [p(CCar | y) + p(CTruck | y) + p(CMotorcycle | y)] . (6.27)

Note that in some cases, the classification vector, c, must be normalized if the sum of all of
the classes is greater than 1. The result of applying the Mahalanobis distance method of
class membership likelihood on the training set used in this section is shown in Figure 6.4a.
In contrast to the methods presented in the previous section, the likelihood that the data
point cannot be classified to one of the modeled classes (p(COther | y)) is visualized as
black.
Unfortunately, using the maximum likelihood estimator for modeling the class Gaussian,

depending on the distribution of the training set, leads to conservative posterior class
probabilities with a large assignment to COther. In practice, this problem can be easily
solved by introducing a gain γ on the class covariance Σi, which has the effect of inflating
the spread of the Gaussian distribution:

d2Ci
= (y − µi)

′(γΣi)
−1(y − µi). (6.28)

This modified calculation of the Mahalanobis distance allows data points which lie further
from the class Gaussian median to be assigned higher posterior probabilities. The result
of applying the modified Mahalanobis distance to the training set used in this section is
shown in Figure 6.4b, where a gain of γ = 5 was used for each class. Ideally, γ should be
chosen such that for any value of the attribute space, the sum of the posterior probabilities
is maximized and at most equal to 1.
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Figure 6.4: Classification using a Gaussian class model with the Mahalanobis distance (a). This
method is able to represent the fact that a data point in the attribute space could not be classified
to one of the modeled classes (shown in black). In (b), a gain of γ = 5 is used to inflate the
Gaussian model for improved class association.

6.1.2 Temporal Filtering

In the previous section, some examples were shown for generating a classification model
based on some measurement data. This data, however, is newly classified for every pro-
cessing cycle, which may be prone to temporal outliers if for a single given processing cycle
the classification results were not that reliable. Therefore, it is desired to temporally filter
the classification results over time in order to avoid such outliers.
A simple Bayesian approach can be used for filtering the classification vector c over time

p(ck | Zk) = η p(zk | ck) p(ck | Zk−1) (6.29)

where p(ck | Zk−1) is the predicted classification vector at time k given measurement data
up to time k − 1, p(zk | ck) is the new classification information at the current time k,
p(ck | Zk) is the updated classification vector at time k with new measurement data from
time k and η is a normalization factor. The predicted classification vector p(ck | Zk−1) can
be realized by defining a classification transition probabilities p(ck | Ck−1

i ) for transitioning
the classification vector from time k − 1 to time k:

p(ck | Zk−1) =
∑

Ci∈C

p(ck | Ck−1
i ) p(Ck−1

i | Zk−1). (6.30)

The new classification information p(zk | ck) is derived directly from the classification
results using the trained sensor models:

p(zk | ck) =
∑

Ci∈C

p(Ck
i | yk). (6.31)

6.2 Fusion

As with the existence probability, an object’s classification probabilities from various sen-
sors also need to be fused together using a sensor-to-global fusion strategy. Unlike with an
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existence probability, the classification vector is multi-dimensional and probabilities per-
taining to several classes need to be fused together in a consistent manner. In this chapter,
a novel algorithm for fusing classification probabilities together will be presented.

6.2.1 Modeling with the Dempster-Shafer Evidence Theory

A similar approach is used to fuse classification probabilities as was done with existence
probabilities in Chapter 5. The process of classification fusion with the Dempster-Shafer
evidence theory (DST) begins with defining the frame of discernment of mutually exclusive
hypotheses. The individual classes for possible objects in a vehicle’s environment is used

Θ = {CCar, CTruck, CMotorcycle, CBicycle, CPedestrian, CStationary} (6.32)

where (6.32) differs from (6.2) in that the class COther is not included in the frame of
discernment, as it does not represent an identifiable class of an object and is rather a
placeholder class for objects that do not fit the characteristics of an identifiable object
class. However, as will be shown, the class COther will still be determined within the
Dempster-Shafer Evidence Theory (DST) fusion framework.
With the six object class hypotheses, a power set 2Θ with 26 = 64 combinations of the

frame of discernment would result. However, a DST formulation with such a large power
set is quite impractical. In order to reduce the complexity, the power set is reduced to a
subset of the complete power set

2Θr ⊂ 2Θ = {∅, {CCar}, {CTruck}, {CMotorcycle}, {CBicycle}, {CPedestrian}, {CStationary},
{C∗

Vehicle}, {C∗
VRU}, {C∗

Traffic}, {C∗
Vehicle, CStationary}, {C∗

VRU, CStationary},Θ} (6.33)

where the following “super classes” are defined as a superset of the class definitions in Θ:

C∗
Vehicle = {CCar, CTruck, CMotorcycle} (6.34)

C∗
VRU = {CBicycle, CPedestrian} (6.35)

C∗
Traffic = {C∗

Vehicle, C
∗
VRU}. (6.36)

These so-called “super classes” define a logical grouping of the individual object classes,
such that a distinction can be made to a “category” of a class using these supersets. The
three supersets chosen are that of a vehicle, which contains the classes Car, Truck and
Motorcycle, which are all three typical traffic vehicles that have the capability of reaching
all traffic speeds (city or highway) and tend to follow the same rules on the road. The
second superset is that of a Vulnerable Road User (VRU), which contains the classes
pedestrian and bicycle, both of which are objects not protected by their own vehicle and
follow different rules on the road, but are still involved in many traffic scenarios, especially
in cities. Furthermore, the superset Traffic refers simply to any object which can actively
participate and influence traffic in some way. Using these distinctions, it is not necessary
to assign evidence directly to a specific class, but to a category of classes. This will be
useful for sensors which may not be able to differentiate well between individual classes,
but may have the ability to differentiate between the supersets.
The basic belief assignments (BBAs) are then made to the reduced power set

m : 2Θr → [0, 1] (6.37)
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6 Classification

where the sum of all of the Basic Belief Assignment (BBA)s add to one. The fusion
module tracks the BBAs for each object over time, where new sensor evidence, also in
form of BBAs, is combined into the global running evidence. The Dempster-Shafer rule
of combination is used to combine new sensor evidence into the fused, global classification
evidence of the object:

mG
k (C) =

∑

A∩B=C m
G
k−1(A)m

i
k(B)

1−∑

A∩B=∅m
G
k−1(A)m

i
k(B)

(6.38)

where mG
k (C) is the updated BBA with the new evidence provided by sensor i for the set

C of the reduced power set 2Θr .

Evaluating the Basic Belief Assignments

The BBAs for the new sensor evidence, mi
k(C), is assigned to the sets in the reduced power

set 2Θr using the input classification vector, cik from sensor i at the current time k. The
problem lies in how to assign the classification vector in the sets of the reduced power set,
where dim(cik) < dim(2Θr ).

Not all sensors will be able to equally quantify the classification of an object, therefore
weighting factors are introduced in order to compensate for the quality of classification
estimation for each sensor. For each class, a separate weighting class, or trust probability,
is defined, similar to the weighting process for existence probability fusion in Section 5.2.
Using the trust probabilities for the classes in c, the BBA for the class sets in Θ are
assigned as follows:

mi
k({CCar}) = pitrust(CCar) · pik(CCar) (6.39)

mi
k({CTruck}) = pitrust(CTruck) · pik(CTruck) (6.40)

mi
k({CMotorcycle}) = pitrust(CMotorcycle) · pik(CMotorcycle) (6.41)

mi
k({CBicycle}) = pitrust(CBicycle) · pik(CBicycle) (6.42)

mi
k({CPedestrian}) = pitrust(CPedestrian) · pik(CPedestrian) (6.43)

mi
k({CStationary}) = pitrust(CStationary) · pik(CStationary). (6.44)

Each BBA of the single class set is a weighted factor of the probability in the classification
vector for sensor i. The trust probabilities are either given by the sensor or determined
experimentally; see Section 6.2.2 for an example.

With the trust probabilities, the BBAs of the single class sets allow for some uncertainty
in the classification estimation for each sensor. The left over evidence after assigning the
single class sets is distributed over the remaining sets in 2Θr . First, the super sets C∗

Vehicle

and C∗
VRU are assigned proportionally to the amount of evidence for or against a vehicle

or VRU und on the probability that the object has moved. For C∗
Vehicle, this leads to

mi
k({C∗

Vehicle}) = pimoved · pik(C∗
Vehicle) ·

[

(1− pitrust(CCar)) · pik(CCar)+

+ (1− pitrust(CTruck)) · pik(CTruck) + (1− pitrust(CMotorcycle)) · pik(CMotorcycle)
]

(6.45)
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where

pik(C
∗
Vehicle) =

mi
k({CCar}) +mi

k({CTruck}) +mi
k({CMotorcycle})

mi
k({CCar}) +mi

k({CTruck}) +mi
k({CMotorcycle}) +mi

k({CBicycle}) +mi
k({CPedestrian})

(6.46)

and for C∗
VRU this leads to

mi
k({C∗

VRU}) = pimoved · pik(C∗
VRU) ·

[

(1− pitrust(CBicycle)) · pik(CBicycle)+

+ (1− pitrust(CPedestrian)) · pik(CPedestrian)
]

(6.47)

where

pik(C
∗
VRU) =

mi
k({CBicycle}) +mi

k({CPedestrian})
mi

k({CCar}) +mi
k({CTruck}) +mi

k({CMotorcycle}) +mi
k({CBicycle}) +mi

k({CPedestrian})
(6.48)

and where pimoved can be determined using a simple state machine or other method which
keeps track if an object has moved or not. The remaining evidence that the object is a
traffic object and has moved is assigned to the super set C∗

Traffic

mi
k({C∗

Traffic}) = pimoved · pik(C∗
VRU) ·

[

(1− pitrust(CCar)) · pik(CCar)+

+ (1− pitrust(CTruck)) · pik(CTruck) + (1− pitrust(CMotorcycle)) · pik(CMotorcycle)
]

+

+ pimoved · pik(C∗
Vehicle) ·

[

(1− pitrust(CBicycle)) · pik(CBicycle)+

+ (1− pitrust(CPedestrian)) · pik(CPedestrian)
]

. (6.49)

The remaining evidence that the object is a vehicle or VRU, disregarding that the object
has moved, is assigned to the BBA of the respective super set in union with the set
CStationary. For C

∗
Vehicle this results in

mi
k({C∗

Vehicle, CStationary}) = (1− pimoved) · pik(C∗
Vehicle) ·

[

(1− pitrust(CCar)) · pik(CCar)+

+ (1− pitrust(CTruck)) · pik(CTruck) + (1− pitrust(CMotorcycle)) · pik(CMotorcycle)
]

(6.50)

and for C∗
VRU

mi
k({C∗

VRU, CStationary}) = (1− pimoved) · pik(C∗
VRU) ·

[

(1− pitrust(CBicycle)) · pik(CBicycle)+

+ (1− pitrust(CPedestrian)) · pik(CPedestrian)
]

. (6.51)
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All remaining evidence, including pik(COther) from the original classification vector cik, is
assigned to the BBA for all sets of the frame of discernment Θ, representing complete
ignorance about object classification:

mi
k(Θ) = 1−

[

mi
k({CCar}) +mi

k({CTruck}) +mi
k({CMotorcycle}) +mi

k({CBicycle})+
+mi

k({CPedestrian}) +mi
k({CStationary}) +mi

k({C∗
Vehicle}) +mi

k({C∗
VRU})+

+mi
k({C∗

Traffic}) +mi
k({C∗

Vehicle, CStationary}) +mi
k({C∗

VRU, CStationary})
]

. (6.52)

Note that evidence for pik(COther) is implied as the evidence for the other classes in c have
already been fully assigned.

Fusion with the Dempster-Shafer Rule of Combination

Once the BBAs for the input sensor i are assigned, then the Dempster-Shafer rule of
combination is used to fuse the sensor’s evidence with the previous classification evidence
for the global object from time k − 1. Note that only the evidence for the defined sets in
2Θr are assigned, as a combination with the undefined evidences from 2Θ (which are all 0)
is not necessary. The following DST rule of combination formulas must be evaluated:

mG
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mG
k ({C∗

Vehicle, CStationary}) =
∑

A∩B=CCar,CTruck,CMotorcycle,CStationary
mG
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.

After fusion, mG
k (C) contains the newly fused evidence for all of the BBAs in 2Θr . Refer to

Table 6.1 for an overview of the reduced power set intersections, useful for evaluating the
Dempster-Shafer rule of combination expressions above.

Classification Vector Output from DST Fusion

From the Dempster-Shafer formulation of object classification a conversion must be made
to a normalized vector of classification probabilities. Similar to Section 5.2 as done with
the existence probability, the Pignistic transformation [268] is used in order to properly
divide the evidence of the reduced power set 2Θr to the fused classification probabilities
pGk (Ci). The Pignistic transformation of (5.66) is slightly modified such that it does not
include the element Θ, resulting in

BetP(A) =
∑

B⊆Θ,B 6=Θ

|A ∩B|
|B| m(B) (6.53)

where mG(Θ) is interpreted to be equivalent to pGk (COther). Generalizing (6.53) results in
evaluating the follow expression for obtaining the fused classification probabilities:

pGk (Ci) = BetP({Ci}) =
∑

B⊆Θ,B 6=Θ

|Ci ∩ B|
|B| mG

k (B). (6.54)

Evaluating this expression for all of the defined classes results in

pGk (CCar) =mG
k ({CCar) +

1

3
mG

k ({C∗
Vehicle) +

1

5
mG

k ({C∗
Traffic)+ (6.55)

+
1

4
mG

k ({C∗
Vehicle, CStationary})

pGk (CTruck) =mG
k ({CTruck) +

1

3
mG

k ({C∗
Vehicle) +

1

5
mG

k ({C∗
Traffic)+ (6.56)

+
1

4
mG
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Vehicle, CStationary})

pGk (CMotorcycle) =mG
k ({CMotorcycle) +

1

3
mG

k ({C∗
Vehicle) +

1

5
mG

k ({C∗
Traffic)+ (6.57)

+
1

4
mG

k ({C∗
Vehicle, CStationary})
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pGk (CBicycle) =mG
k ({CBicycle) +

1

2
mG

k ({C∗
VRU) +

1

5
mG

k ({C∗
Traffic)+ (6.58)

+
1

3
mG

k ({C∗
VRU, CStationary})

pGk (CPedestrian) =mG
k ({CPedestrian) +

1

2
mG

k ({C∗
VRU) +

1

5
mG

k ({C∗
Traffic)+ (6.59)

+
1

3
mG

k ({C∗
VRU, CStationary})

pGk (CStationary) =mG
k ({CStationary) +

1

3
mG

k ({C∗
Vehicle, CStationary})+ (6.60)

+
1

3
mG

k ({C∗
VRU, CStationary})

where pGk (COther) is the remaining probability

pGk (COther) = 1−
[

pGk (CCar) + pGk (CTruck) + pGk (CMotorcycle) + pGk (CBicycle)+

+ pGk (CPedestrian) + pGk (CStationary)
]

(6.61)

such that the complete classification vector sums up to 1.

6.2.2 Modeling the Trust Probability

As with the existence probability fusion, described in Section 5.2.4, a weighting factor,
the trust probability pitrust(Ci), for each class is introduced in order to model each sensor’s
specific ability to correctly identify that particular class. Again, it is assumed that different
sensors will produce a different statistical meaning for their probability values, such that
for a given probability P , pS1k (Ci) = P 6≡ pS2k (Ci) = P . This requires that the input
classification vectors from various sensors should be normalized to some common statistical
meaning.

As with the trust probability from the existence fusion, the trust probability for classi-
fication fusion is derived from experimental data in order to identify the performance of
each sensor’s ability to classify objects. This performance is again evaluated in form of
an Receiver Operating Characteristic (ROC) curve, used to evaluated classification perfor-
mance [97]. For each class Ci for a given sensor, a ROC curve is generated in order to gain
an understanding of the relationship between the true positive rate and false positive rate
of that sensor’s ability to classify the class Ci. For each of these ROC curves, the trust
probability pitrust(Ci) is determined by evaluating the true positive rate given a specific
false positive rate f , such that

pitrust(Ci) = TPRi
FPR=f = ROCi

Ci
(FPR = f) (6.62)

where ROCi
Ci
(FPR = f) is the resulting ROC curve evaluated at FPR = f in order to

produce TPRi
FPR=f , which in turn is interpreted as the trust probability pitrust(Ci). For

the complete fusion algorithm, the same f should be used on each ROC curve across all
classes and all sensors such that the fusion result remains consistent given this parameter.
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Discussion

Classification estimation completes the object estimation problem as defined by the object
model in this thesis. This chapter demonstrated some basic ways classification can be
achieved at the sensor-level and introduced a novel approach for classification fusion using
the Dempster-Shafer evidence theory. The field of machine learning is quite large and many
different algorithms exist for classification given a data set. It is impossible to touch on even
just a small portion of the possibilities. However, when choosing a classification approach
at the sensor-level, it is important to understand the data for the particular sensor and
choose an algorithm which has the potential to provide the best results given the data type.
Point-cloud type sensors, such as laser scanner, will perform better using certain machine
learning techniques than on a visual sensor, such as a camera, where image processing
techniques offer completely different possibilities. As with any classification approach, the
larger and more diverse the training data, the better the result that can be achieved. With
the recent improvements in memory size and cost and the added benefit of multi-core
processing, it is possible to collect an immense amount of data and process it with some
quite complex training methods. Despite these recent developments, classification results
will always contain some form of uncertainty, which makes it important to output the
results in a probabilistic fashion, as done here using the classification vector c, such that
further processing of the data can consider the uncertainty.
The presented fusion approach using Dempster-Shafer theory does not rely on any ma-

chine learning methods for classification fusion. Instead, the problem is formulated such
that it simply boils down to a combination of probability vectors, given their uncertainty,
in order to provide the best fused classification result for each detected object. The input
data from the sensor-level is handled probabilistically in that the complete classification
vector and its class probabilities are considered, but also each sensor’s classification perfor-
mance for each class is also modeled using the trust probability pitrust(Ci). This should give
the most confidence possible when weighting the results of the sensor-level classification
vectors into the fused global object.
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7 Evaluation

The proposed high-level sensor data fusion architecture presented in the previous chapters
is evaluated using real data from a prototype test vehicle designed for automated driving on
the highways. Two main evaluation scenarios are considered: object estimation accuracy
with ground truth data and detection rate performance using labeled scenes. For each
of the two scenarios, different metrics are used to evaluated the performance of the fused
global object list compared to the results of each individual sensor.
The following sections describe the test vehicle and test setup used during evaluation

and present the results for the two evaluation scenarios.

7.1 Test Vehicle and Sensor Configuration

The test vehicle is a 2011 BMW 528i outfitted with several prototype sensors by the BMW
Group Research and Technology in order to achieve full surround environment perception.
In addition to these sensors, the vehicle is also equipped with a differential Global Posi-
tioning System (GPS) in order to obtain highly accurate global positioning. Prototype
computers process all of the data from the sensors and control the actuators for vehicle
control. This vehicle is used for research in Advanced Driver Assistance Systems (ADAS)
and is capable of automated driving on highways, as described in [336]. Figure 7.1 shows
a picture of the test vehicle along with its sensor configuration and system architecture.
Note that all twelve of the sensors are integrated into the body of the vehicle, thereby
realizing a close-to-production integration of the automated driving technology.
The research hardware for development is integrated into the trunk of the test vehicle.

The system’s hardware architecture is shown in Figure 7.1d. The processing of the system
is distributed across two computing platforms: an industry-grade PC and a real-time em-
bedded prototyping computer (RTEPC). The environment perception sensors, GPS and
vehicle data and actuators are connected to these two computing platforms either via
Controller Area Network (CAN) or Ethernet. An Ethernet connection allows for commu-
nication between the two computers. The PC handles most of the sensor data processing,
including some of the senser-level processing as well as the described fusion-level algo-
rithms presented in this thesis, and also contains the database for the high-precision maps
used during automated driving. The RTEPC platform processes the application-level algo-
rithms which have real-time constraints, which are vehicle localization, maneuver planning
and trajectory planning and vehicle control.
Each area of the vehicle is observed by at least two sensors of different measurement

principles, achieving the redundancy and reliability required for automated driving. The
front of the vehicle features three sensors, each of a different measurement principle. A
four-layer laser scanner with a field of view of ± 55◦ and maximum range between 150m-
200m offers object detection with a large field-of-view. In addition to object detection, the
four-layer laser scanner can also be used for lane marking and road boundary detection. A
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Figure 7.1: BMW 5 Series test vehicle (a) with research development platform in the trunk
(b) and sensor configuration for surround environment perception (c). The vehicle’s system
architecture is shown in (d).
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7.2 Overtaking Maneuver with Ground Truth

H

vtarget

vhost
x

y

Figure 7.2: Illustration of the evaluated overtaking scenario on the test track, where the target
vehicle with a speed of vtarget overtakes the host vehicle with a speed of vhost.

radar sensor with a field-of-view of around ± 25◦ and a maximum range of 250m is used for
reliable object detection, even under partial occlusions and in various weather conditions.
The radar sensor used is very similar to the type of radar found in production vehicles for
Active Cruise Control (ACC). In order to achieve high reliability in object classification,
a camera sensor with a field-of-view of ± 20◦ and a maximum range of ca. 120m is used.
The camera sensor is also capable of reliable lane marking detection. The camera sensor
used is similar to the type used in production vehicles for Lane Departure Warning (LDW)
or lane keeping systems.

Each side of the vehicle is covered by three sensors with two different measurement
principles. A wide-angle single-layer laser scanner with a field-of-view of ± 80◦ and an
effective range of around 80m-100m is used to detect objects in neighboring lanes. This
laser scanner partially overlaps with the laser scanners in the front and rear, ensuring
complete 360◦ perception coverage. The laser scanner is supported by two ultrasonic
sensors on each side, aimed at improving the reliability of object detection for objects that
find themselves directly next to the vehicle. The ultrasonic sensors are similar to the ones
used in production vehicles for park assist applications.

The rear area of the vehicle is perceived using three sensors with two different measure-
ment principles. The primary sensors for rear perception are two automotive radar sensors,
similar to the one mounted in the front of the vehicle. These two sensors provide reliable
perception of moving objects up to 150m-200m. This allows for early detection of objects
with high relative velocity, which is critical for robust lane change maneuvers. The radar
sensors are supported by a 4-layer laser scanner, also similar to the front-mounted sensor,
and provides additional robustness and a wider field-of-view for detecting objects.

The above described sensor configuration allows for a reliable 360◦ surround environment
perception. Some of the sensors used, such as the radar, camera and ultrasonic sensors, are
already proven sensors that are in today’s production vehicles. The addition of prototype
laser scanner sensors further increase reliability in order to realize a thorough research
platform for automated driving applications.

7.2 Overtaking Maneuver with Ground Truth

The algorithms for object detection and sensor data fusion are evaluated on a closed test
track using two prototype vehicles for testing driver assistance systems, as described in
the previous section. The following sections will evaluate the state estimation, existence
probability and classification against a single known vehicle in the environment on the test
track. An overtaking maneuver is performed for evaluation such that the target vehicle
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being perceived is observed by all sensors of the host vehicle during a single maneuver.
The overtaking maneuver is shown in Figure 7.2. The progress of the state estimation,
existence probability and classification will be shown for a single overtaking maneuver
with vhost = 80 km/h and vtarget = 100 km/h. Additional overtaking maneuvers will be
evaluated statistically in order to evaluate the errors of the state estimation over several
overtaking scenarios with varying parameters.

7.2.1 Ground Truth Calculation

Both vehicles are equipped with a highly accurate global positioning system, consisting
of an integrated carrier-phase differential GPS and inertial measurement unit, providing a
global positioning accuracy of 2 cm and velocity accuracy of 0.014m/s [270]. In order to
evaluate the algorithms, a ground truth trajectory of the target vehicle relative to the host
vehicle is calculated using this highly accurate position system in both vehicles. Global
positioning data is recorded from both vehicles and a temporal and spatial synchronization
of the data is carried out in order to obtain a ground truth position and velocity of the
target vehicle in the host vehicle’s coordinate system. The target vehicle’s ground truth
position and velocity is then used to evaluate the object detection algorithms from the
sensors and the proposed high-level fusion architecture and its algorithms.

7.2.2 State Estimation

The estimation of the state vector is evaluated against the ground truth trajectory and
velocity of the target vehicle. The information matrix fusion algorithm is implemented as
the global fusion algorithm using a sensor-to-global fusion strategy. For the ground truth
overtaking scenarios, the orientation and yaw rate of the target vehicle are assumed to have
a constant value of 0 and will therefore not be evaluated. This section will show the results
for the state estimation, presented separately for the position, velocity and dimensions.
Additionally the consistency of the state estimation is tested.

The proposed feature-based association algorithm was able to successfully track the
target vehicle as a unique object in the vehicle’s environment throughout the entire over-
taking maneuver. Figure 7.3 shows the absolute errors for the positions and velocity in
the x and y-directions. The fusion results are plotted against the absolute errors of each
sensor individually.

Despite fluctuations in the absolute error of the individual sensors, the proposed fusion
algorithm produces a stable state estimation as the target vehicle enters and leaves the
field-of-views of all of the sensors. The error is greatest as the target vehicle enters the
side area of the vehicle. This is due to the fact that the sensor-level tracking algorithms
for the side-viewing laser scanner do not produce good results, as tracking objects with
large dimensions at such a close distance is a challenge for the sensor. Other than in
the side area, the absolute error in the longitudinal and lateral positions remain below
0.5m. Throughout the entire overtaking maneuver, an average absolute error of 0.23m
longitudinally and 0.08m laterally is achieved. Similarly for the velocities, the absolute
error in the longitudinal and lateral positions remains for the most part below 0.5m/s, other
than in the side area, with an average absolute error of 0.22m/s and 0.24m/s, respectively.
Note that some of the sensors were not able to estimate all of the states of the object model
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Figure 7.3: Absolute error of the longitudinal and lateral position, (a) and (b), and the lon-
gitudinal and lateral velocity, (c) and (d), during the overtaking maneuver with a host vehicle
speed of vhost = 80 km/h and a target vehicle speed of vtarget = 100 km/h. The error of the fusion
algorithm is plotted against the error of each of the individual sensors.
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interface, for example, the camera does not estimate a lateral velocity and the ultrasonic
sensors do not measure states in the longitudinal direction.
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Figure 7.4: The Normalized Estimation Error Squared (NEES), demonstrating the consistency
of the state estimation of the fused global object and the sensors. The 95% confidence interval is
shown by the horizontal dashed line.

The state estimation is also consistent with respect to the estimated covariance error
throughout the overtaking maneuver. The NEES, as described in Section 4.3.4, is evaluated
against the ground truth. Figure 7.4 shows the NEES and its 95% confidence interval for
the duration of the overtaking maneuver. The low NEES shows that in a real application,
the sensor tracking algorithms are conservatively parametrized in order to guarantee a
consistent estimation which does not overestimate the true error. Only in the side area,
where the laser scanner tracking is not quite as robust, does the NEES increase and for a
brief moment cross the 95% confidence interval.
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Figure 7.5: Estimation of the width (a) and length (b) of the fused global object. The true
width and length is depicted by the horizontal dashed gray line. The fusion result is shown in
black. Refer to Figure 7.3 for a legend identifying the various sensors.

The evolution of the estimation of the target vehicle’s dimensions (length and width) are
shown in Figure 7.5, where the real vehicle has a width of 1.86m and a length of 4.90m
(shown in the figure with a horizontal dashed line). The width of the target vehicle is
very quickly correctly estimated, as the front of the target vehicle is well observable at the
beginning of the overtaking maneuver. The length of the target vehicle is eventually also
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7.2 Overtaking Maneuver with Ground Truth

accurately estimated once the length is fully observable as the target vehicle moves closer
to the host vehicle and into its side area. Even after the vehicle has moved out in front of
the host vehicle, the estimated length remains at the correct length, despite the fact that
the length is no longer directly observable from a sensor.

(a) t = 12.24 s (b) t = 14.96 s (c) t = 18.80 s

(d) t = 12.24 s (e) t = 14.96 s (f) t = 18.80 s

Figure 7.6: Visualization of the overtaking maneuver when the target vehicle is in different
positions around the host vehicle (rear, side and front). The top row (a)-(c) shows object detection
results at the sensor-level and and the bottom row (d)-(f) shows the result of the fused object.
The ground truth of the target vehicle is shown as a wire-frame white box. Radar is shown orange,
front/rear laser scanner in green, side laser scanner in violet, camera in yellow and ultrasonic in
gray. The fused result is in blue.

Three scenes from the overtaking maneuver are shown in Figure 7.6 using the vehicle’s
3D visualization software. The top row of the figure shows the sensor-level object detection
results for the target vehicle whereas the bottom row shows the fused result in blue. In all
of the images, the ground truth is visualized as a white wire-frame box. The first column
shows a scene where the target vehicle is perceived by the rear-facing sensors, where in
Figure 7.6a the orange boxes are the radar sensors’ object detections and the green box
that from the laser scanner sensor. It can be seen that at this range, the laser scanner
is already able to get quite an accurate measurement of the length of the target vehicle.
The fusion result in Figure 7.6d confirms the consistent and well estimated object. The
second column shows the perception and fusion results as the target vehicle is directly in
the side area of the host vehicle. The results from the side laser scanner are visualized in
violet and the ultrasonic sensors in gray. Again, the fusion result shows a consistent object
with proper dimensions with respect to the ground truth, despite the fact that the side
laser scanner has a limited observability of the object, such as its width. Finally, the third
column shows the results as the target vehicle has moved in front of the host vehicle, where
again the orange box belongs to the radar sensor, the green to the front laser scanner and
yellow to the camera sensor. These three scenes show how the fused object is consistently
detected throughout the overtaking maneuver, including the proper detection of the target
vehicle’s dimensions.
In addition to evaluating the results of a single overtaking maneuver, the position and
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velocity errors are evaluated statistically over a total of 12 overtaking scenarios with var-
ious parameters (see Appendix D.2.1 for a detailed description of the scenarios). For the
statistical evaluation of the overtaking maneuvers, the Root Mean Squared Error (RMSE)
of the position and velocity, as per (4.40) and (4.41), is calculated over all for the scenarios.
The results are shown in Table 7.1.

Table 7.1: Position and velocity RMSE evaluated for 12 overtaking scenarios.

Result RMSE(p̃(k)) RMSE(ṽ(k)) Evaluated Cycles

Fusion 0.51 0.60 4,891

Laser scanner front 0.51 0.75 2,488
Laser scanner rear 0.53 0.75 2,109
Laser scanner side 0.58 0.78 1,344
Radar front 1.04 0.92 2,354
Radar rear 0.69 0.71 3,734
Camera 0.89 0.79 2,077
Ultrasonic 0.32 0.49 464

For the 12 scenarios evaluated, the fusion result has an RMSE of 0.51m for the position
and 0.60m/s for the velocity, both of which are the best results when compared to every
sensor individually. Only the front mounted laser scanner has a similar position accuracy
as the fusion result. Note that for the ultrasonic sensors only the lateral position and
velocity was evaluated, which, for the small area in which the sensors can actively detect
objects, showed a better performance than the fusion results.

7.2.3 Existence

As presented in Chapter 5, a detected object’s probability of existence is also estimated.
The existence estimation is a measure of quality representing the fact that the object
actually exists, as opposed to a short-term false detection from a sensor. The global fused
existence probability, pG(∃x), is plotted in Figure 7.7 against the existence probability
of the individual sensors. The fusion trust probability parameter, pitrust, for each of the
sensors is chosen using the process described in Section 5.2.4, where a system false positive
rate per iteration of 0.5 is used. See Section C.1 for details on how the specific values of
pitrust were derived.
The existence probability during the overtaking maneuver very quickly converges to

1, since all three of the rear sensors immediately observe the oncoming target vehicle.
As the target vehicle moves into the host vehicle’s side area, the existence probability of
the rear sensors begins to decrease as the existence probability of the side sensors begin to
increase. However, throughout the transition from rear to side to front, the global existence
probability estimation remains very close to 1, correctly suggesting that the target vehicle
being tracked is detected by the system with a very high reliability.

7.2.4 Classification

The classification vector cG produces an estimation of the vehicle’s class, where for this
overtaking scenario the target vehicle is of class CCar. The results of classification esti-
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Figure 7.7: Evolution of the existence probability of the fused global object and the sensors as
the target vehicle passes by the host vehicle.

mation is shown in Figure 7.8. Only classification results for CCar, CTruck, CMotorcycle and
COther are shown, since the other classes CPedestrian, CBicycle and CStationary are throughout
the overtaking maneuver practically 0 and as a result irrelevant. As with the previous
results for state estimation and existence, the classification estimations are also plotted
against the results of each of the sensors individually. The trust parameters for the fusion
of sensor-level classification results were determined using the process described in Sec-
tion 6.2.2, where a false positive rate of 0.2 is used. See Section C.2 for more details on
the specific values of the trust probability as well as the Receiver Operating Characteristic
(ROC) curves from which they were derived. The parameters for the classes CPedestrian,
CBicycle and CStationary are again omitted. Furthermore, it is important to note that some
sensors have a continually changing estimation of an object’s classification, such as the
laser scanner, whereas other sensors use a more heuristic approach, which results in a
more discrete output from the sensor’s classification vector. Regardless of the classifica-
tion approach at the sensor-level, the fusion algorithm described in Section 6.2 fuses the
results together using the trust probability quality parameters.

The results in Figure 7.8 show that the classification fusion algorithm successfully classi-
fies the target vehicle belonging to the class CCar for the complete duration of the overtaking
maneuver. The classification probability pG(CCar) converges to the maximum value of 1 in
the front and rear area of the host vehicle and drops slightly as the target vehicle passes
the side area. Despite this reduction in pG(CCar) in the side area, the value for CCar is still
the maximum probability value when considered over the complete classification vector cG.
The reduction of pG(CCar) in the side area is due to the intermittent increase in pG(CTruck),
as the side-viewing laser scanner’s performance in classification estimation contains a fair
amount of uncertainty.

7.3 Performance in Real Traffic Scenarios

In addition to the evaluation of controlled scenarios on a closed test track, the proposed
architecture and algorithms are also evaluated against real-world highway scenarios. Each
scenario is semi-manually labeled in order to provide a ground truth for the number and
location of cars, trucks and motorcycles at each processing cycle. An overview of the
scenarios used for the evaluation can be found in Appendix D.
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Figure 7.8: Evolution of the classification vector for the classes CCar (a), CTruck (b), CMotorcycle

(c) and COther (d) for the evaluated overtaking scenario. The fusion result is shown in black.
Refer to Figure 7.7 for a legend identifying the various sensors.

For these highway scenarios, only the detection rate and classification performance is
evaluated, as it is impractical to obtain ground truth data about the surrounding traffic’s
true state. Therefore, only existence and classification is evaluated, as ground truth data
for these attributes can be correctly generated. For each scenario, the ground truth data
and the results of the proposed fusion architecture are compared to one another. In
each processing cycle, a unique 1-to-1 association is made between labeled ground truth
data and a resulting object from the fusion architecture. This association is made semi-
manually, first by processing the data using the auction algorithm (see Section 3.3.6) and
then manually correcting incorrect associations by visual inspection in a 3D visualizer (see
Figure 7.9). These associations between labeled ground truth data and results from the
fusion architecture are the basis on which the evaluations in the following sections are
made.

The evaluation of the highway traffic scenarios is restricted to a rectangular area around
the vehicle, representing the relevant field-of-view for typical driver assistance systems and
automated driving. Furthermore, this rectangular area is divided into three regions: front,
rear and side. These regions are illustrated in Figure 7.10. These regions are again chosen
due to their relevance in typical driver assistance systems, for example the front area of the
vehicle is important for ACC or lane keeping, whereas the side of the vehicle is important
for lane changes. Each of these driver assistance systems and applications have different
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7.3 Performance in Real Traffic Scenarios

Figure 7.9: 3D visualization used for correcting the association between ground truth data
(orange) and results from the fusion architecture (green). The red lines between the objects
visualize the associations, which can be manually corrected using a graphical user interface.

requirements on the detection performance and by evaluating the scenarios separately for
each of these regions, much can be learned about how to apply the proper parameters in a
system in order to take into account the performance of the object detection in a specific
region. The parameters of the regions were chosen as follows: dfront = 150m, drear = 150m,
dside = 50m and wlane = 4m.

drear dfront

dside

wlaneFront AreaRear Area

Side Area

Side Area

Figure 7.10: Areas around the host vehicle for which the detection rate and classification per-
formance was evaluated. This area was chosen in order to simulate a three-lane highway, because
most ADAS and automated driving applications depend on the detection of objects in these areas
for various purposes.

An impression of the fusion results with the evaluated highway scenarios is shown in
Figure 7.11, with the detection of several objects around the host vehicle’s environment,
including a some trucks and a motorcycle. In Figure 7.11a, the sensor-level objects are
visualized with front/rear laser scanners as green, side laser scanners as violet, radar as
orange and camera as yellow. The fusion result is shown in Figure 7.11b, where the colors
correspond to the classification result with car as blue, truck as dark blue, motorcycle as

143



7 Evaluation

light blue and others as dark violet. The fused result in this scenario successfully combines
the sensor-level objects into a single and consistent object list at the fusion-level.

(a) (b)

Figure 7.11: Results from an evaluated highway scenario for the sensor-level (a) and the fusion-
level (b). At the sensor-level the colors correspond to the sensor type (laser scanner, radar or
camera) and at the fusion-level to the estimated object classification (car, truck or motorcycle).

7.3.1 Detection Rate

The detection rate of the proposed fusion architecture and its algorithms is evaluated
based on the existence probability pG(∃x) of a global object. Results are presented in form
of a ROC curve, which shows the relationship between the true positive rate and false
positive rate of a classifier [97]. For evaluating detection performance with the existence
probability, the classes ∃ and ∄ are used to symbolize if an object exists or not. Existence
of an object is determined by comparing the ground truth data and the results of the
fusion architecture from the evaluated scenario. Since no negative instances are labeled
in the ground truth data (for the problem of object existence, everything not labeled as
on object is per definition a non-existent object; it is not possible to put a finite number
on this value), a slightly modified version of a ROC curve is used, where the false positive
rate is instead replaced by the false positive rate per iteration. This metric is similar to
the one used in [181] for existence probability evaluation.
For a given existence probability threshold pG(∃x) = P , the true positive rate (TPR) is

given by

TPRpG(∃x)=P =

∑K
k=1N

tp
pG(∃x)=P

(k)
∑K

k=1N
p(k)

(7.1)

where N tp
pG(∃x)=P

(k) is the number of true positives (global fusion objects with pG(∃x) ≥ P

which were associated with a labeled ground truth object) for a given processing cycle k,
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Np(k) is the number of positives (total number of ground truth labels) for a given process-
ing cycle k and K is the total number of processing cycles used during the evaluation. Each
of these entities is evaluated only for the relevant regions, as illustrated by Figure 7.10.
Similarly, the false positive rate per iteration (FPR) is given by

FPRpG(∃x)=P =
1

K

K
∑

k=1

N fp
pG(∃x)=P

(k) (7.2)

where N fp
pG(∃x)=P

(k) is the number of false positives (global fusion objects with pG(∃x) ≥ P

which were not associated with a labeled ground truth object) for a given processing cycle
k and again K being the total number of processing cycles used during the evaluation.
Combining the TPR and FPR for all evaluated existence probabilities pG(∃x) = [0 . . . 1]

results in an ROC curve, defined as

ROCpG(∃x) =

[

TPRpG(∃x)=[0...1]

FPRpG(∃x)=[0...1]

]

. (7.3)

Furthermore, the evaluation is carried out twice such that two ROC curves are evaluated
for the highway scenarios, one which considers the fact that certain objects in the scenarios
are occluded by objects and one which does not. For the evaluation considering occlusions,
labeled ground truth objects which are occluded by other labeled ground truth objects are
not counted to Np(k).
In order to quantify a ROC curve in a single scalar value, the Area Under the Curve

(AUC), metric is used [97], which is defined as

AUCpG(∃x) =

1
∫

FPR=0

ROCpG(∃x). (7.4)

The AUC can be used as a ROC performance metric in order to quantitatively compare
ROC curves.
The ROC curves for the evaluated highways scenarios are shown in Figure 7.12, where

each figure shows the results for the complete evaluation area, but also separately for
the sub-regions front, rear and side. Furthermore, the evaluation is shown once without
occlusion detection (Figure 7.12a) and once with the consideration of object occlusions
(Figure 7.12b). Occluded objects are defined as objects where at least three features on
the rectangular object model (including the geometric middle) are in the polar shadow of
another object.
For the defined evaluation area, a total of Np = 70, 764 positive samples were evaluated

over K = 13, 080 processing cycles, from which 15,774 samples were occluded. Of these
total samples, 36,287 were in the front area (of which 11,140 were occluded), 38,192 in
the rear area (9,320 occluded) and 12,866 in the side (192 occluded). The detection rate
performance is best in the front area of the vehicle, which is to be expected as it is the only
area where three sensors observe the environment with different measurement principles.
The side area performs at first glance surprisingly well, but this is also to be expected,
as objects which appear in the side area have already had a long tracking history, coming
either from the front or the rear of the vehicle. The rear area of the vehicle has the worst
performance, but is at the same time the least relevant area for most driver assistance and
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Figure 7.12: ROC curves showing the results of the detection performance using the existence
probability for the evaluated highway scenarios. The ROC curve in (a) is not lenient to occluded
objects whereas the ROC curve in (b) ignores occluded objects in the evaluation.

automated driving applications. Evaluating the complete evaluation area while allowing for
occluded objects results in a convergence of the true positive rate at about 0.88 at around a
false positive rate per iteration of 0.5. Without occluded objects, the performance increases
such that a true positive rate of 0.94 at a false positive rate per iteration of 0.5 is reached.
The AUC for the evaluation with and without occluded objects for each of the evaluation
areas is given in Table 7.2. When occluded objects are not considered in the evaluation, a
roughly 11% increase in performance is achieved.

Table 7.2: AUC of the detection rate performance for the evaluated highway scenarios.

AUCpG(∃x) Complete Area Front Rear Side

With Occlusions 0.803 0.906 0.720 0.927
Without Occlusions 0.894 0.967 0.847 0.934

7.3.2 Classification Performance

The performance of the proposed fusion architecture with regard to its ability to correctly
classify objects is evaluated using the global object’s classification vector cG. For the evalu-
ated highway scenarios, only car, truck and motorcycle objects were recorded and therefore
the evaluation will only consider the results for classifying these types of objects. Addition-
ally, the super-class C∗

Vehicle, where p
G(C∗

Vehicle) = pG(CCar) + pG(CTruck) + pG(CMotorcycle),
is also evaluated.

As with the evaluation of the detection rate using the existence probability, ROC curves
are used in order to evaluate the classification performance of the proposed fusion archi-
tecture, where each class is evaluated separately. The true positive rate is evaluated in a
similar manner as with the detection rate performance, such that for a given classification
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probability threshold pG(Ci) = P , the true positive rate (TPR) is given by

TPRpG(Ci)=P =

∑K
k=1N

tp
pG(Ci)=P

(k)
∑K

k=1N
p
Ci
(k)

(7.5)

where N tp
pG(Ci)=P

(k) is the number of true positives for the class Ci where the classification

probability pG(Ci) ≥ P for a given processing cycle k, Np
Ci
(k) is the number of positives

(ground truth labels) for the given class Ci and K is the total number of cycles evaluated.
Unlike with the detection rate evaluation, the false positive rate for the classification

evaluation is calculated using the traditional formulation, where for a given classification
probability threshold pG(Ci) = P , the false positive rate (FPR) is given by

FPRpG(Ci)=P =

∑K
k=1N

fp
pG(Ci)=P

(k)
∑K

k=1N
n
Ci
(k)

(7.6)

where N fp
pG(Ci)=P

(k) is the number of false positives for the class Ci where the classification

probability pG(Ci) ≥ P for a given processing cycle k, Nn
Ci
(k) is the number of negatives

for the given class (ground truth labels which are not the class Ci) and K is the total
number of cycles evaluated.
Combining the TPR and FPR for all evaluated classification probabilities pG(Ci) =

[0 . . . 1] results in an ROC curve, defined as

ROCpG(∃x) =

[

TPRpG(Ci)=[0...1]

FPRpG(Ci)=[0...1]

]

. (7.7)

The AUC is also used in the classification performance evaluation in order to quantify an
ROC curve into a single value for comparison:

AUCpG(Ci) =

1
∫

FPR=0

ROCpG(Ci). (7.8)

The ROC curves for each of the evaluated areas are shown in Figure 7.13. For the
complete evaluation area, a total of Np

C∗
Vehicle

= 64, 987 positive vehicle samples were evalu-

ated (50,168 of which were CCar, 12,503 CTruck and 2,316 CMotorcycle). The samples divide
themselves into the separate evaluation areas as follows: 36,138 in the front (27,177 CCar,
7,698 CTruck and 1,263 CMotorcycle), 30,993 in the rear (23,166 CCar, 7,008 CTruck and 819
CMotorcycle) and 12,728 in the side (8,189 CCar, 3,875 CTruck and 664 CMotorcycle). Note that
only global fusion objects which were successfully associated with a ground truth label
were evaluated (hence the lower amount of a positive samples compared to the detection
rate performance evaluation). As should be expected, the performance of the super-class
C∗

Vehicle shows a better performance than each of the individual classes, demonstrating that
the proposed classification algorithms are quite successful in identifying relevant traffic ob-
jects in highway scenarios. Of the three individual classes, CCar has the best performance
with CTruck only slightly behind. This demonstrates that the classification performance is
very good in identifying the two most common types of vehicles found on highways. Clas-
sification of CMotorcycle, however, does not perform as well. This is mainly due to the fact
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Figure 7.13: ROC curves for the classification performance for the classes CCar, CTruck,
CMotorcycle and the super-class C∗

Vehicle in each of the evaluated areas around the host vehicle.
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that most of the sensors do not distinguish between motorcycle and bicycle classes, where
the evidence for these two classes was split evenly between the evidences for motorcycle
and bicycle with the proposed Dempster-Shafer Evidence Theory (DST) fusion approach.
Furthermore, comparatively less training samples were used in order to train some of the
sensors’ classification algorithms for the less common motorcycle object type. As with
the detection rate performance, the classification performance is also for the same reasons
quite good in the side area of the vehicle, due to the fact that the class of the object has
already been determined from the front or rear areas once the object arrives in the side
area. The AUC results for the classification performance is shown in Table 7.3.

Table 7.3: AUC of the classification performance for the evaluated highway scenarios.

AUCpG(Ci) Complete Area Front Rear Side

Vehicle 0.966 0.963 0.936 0.967
Car 0.957 0.966 0.919 0.963
Truck 0.953 0.958 0.931 0.957
Motorcycle 0.874 0.805 0.853 0.852

7.3.3 Integration in Automated Driving and ADAS Projects

The high-level sensor data fusion architecture and its algorithms as presented in this the-
sis have been successfully integrated into projects for automated driving systems on the
highway driving as well as other ADAS systems.
The most prominent project which made use of the methods presented is BMW’s research

prototypes for automated driving on the highway, where a visualization of the automated
driving system’s functionality and environment model is shown in Figure 7.14. These
prototype vehicles have been testing on public roads since 2011 [8, 50], [336, 342, 348]
and have since accumulated many thousands of kilometers of automated driving on the
highways in the Munich area.
An earlier project where one of the first versions of the high-level sensor data fusion ar-

chitecture was integrated was BMW’s Emergency Stop Assistant project [48, 49, 149, 267],
[343]. Since the functionality of the Emergency Stop Assistant is designed for short dura-
tions and in emergency situations, the initial requirements on the environment perception
were lower, which made it an ideal project to test and integrate the proposed algorithms
into a complete automated driving system.
The research project Ko-FAS [104], which went from 2009 to 2013, developed novel

applications with vehicle-to-vehicle and vehicle-to-infrastructure (Car2X) communication
technology. A prototype vehicle developed by BMW in this project demonstrated a vehicle-
to-vehicle communication system, where one vehicle is able to warn another of potentially
dangerous situations by transmitting portions of its environment model via a wireless
communication interface. For the local perception in this vehicle, as described in [243], the
high-level sensor data fusion architecture presented in thesis was successfully used.
The latest European Union funded automated driving project called AdaptIVe [2] will

demonstrate automated driving on highways, in the city and in parking situations. For
this project, BMW is developing a prototype vehicle which will be capable of Level 3
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Figure 7.14: Visualization of the automated driving system for highways in BMW’s research
prototypes, where the blue boxes visualize the output of the integrated high-level sensor data
fusion approach for object detection from this thesis.

automation on the highway as well as Level 2 automation in urban environments. The
object detection for this project in BMW’s prototype will also be based on the approaches
presented in this thesis.

Furthermore, recent production vehicles, such as the new BMW 7 series which debuted
in 2015, have made a large step towards automated driving. A crucial step was the intro-
duction of the central environment model concept, as described in Chapter 1. As part of
this first production environment model for BMW, the concept of a high-level sensor data
fusion architecture for object detection were successfully industrialized, with basic versions
of the methods and algorithms presented in this thesis being implemented [152].

Discussion

In this chapter, the algorithms which were developed in this thesis for the proposed sen-
sor data fusion architecture were evaluated. An evaluation with a precise ground truth
target vehicle using a DGPS system showed that the proposed high-level fusion method
provides quite accurate results in the state estimation, but also with the estimation of the
existence and classification probabilities. On average, a positional error of about 0.5m can
be achieved. The majority of this error comes from the longitudinal position, where the
lateral position error is much less. This demonstrated performance meets the requirements
of ADAS and automated driving applications, where there are higher performance require-
ments on the lateral position than the longitudinal position, for example when matching
an object onto a lane, doing lane-change prediction [340, 341] or estimating a road model
using object data [286]. Furthermore, performance requirements from ADAS are higher
for the front area of the host vehicle than for the side and the rear, which also matches the
presented results. However, given that an error is inevitable, it is important that further
processing of object data is always done so probabilistically, such that the uncertainty in
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7.3 Performance in Real Traffic Scenarios

the estimation can be taken into account. Using the NEES consistency measure, it was
shown that the estimated state and its error covariance provide a truthful estimation of
the error for application-level algorithms, which is critical for reducing false reactions of
an ADAS or automated driving system.
Furthermore, the developed algorithms were evaluated for their detection and classifica-

tion performance using labeled data sets from real highway traffic scenarios. Such results
are also important for application-level processing. The resulting ROC curves give an im-
pression of the performance of the algorithms with regards to the relationship between the
true positive rate and false positive rate given a variation of the probability thresholds.
This information can be used by application-level processing in order to define thresholds
for various applications such that a desired detection rate or classification performance is
guaranteed. For both the detection rate and classification performance, the front of the
vehicle tends to have the best performance, which is expected and desired, as the front of
the vehicle is observed by three sensors and is also the most relevant and critical area for
most ADAS and automated driving applications.
It is important to note that fusion algorithms can only be as good as the input received

from the sensor-level. This can been seen in the previous evaluations regarding the perfor-
mance of the side area, where the estimation accuracy is reduced due to the fact that the
sensor-level processing using the side-viewing laser scanner is quite difficult. Therefore, it
is important that data from the sensor-level is not only accurate in order to get a good
fusion result, but also consistent, such that if there is an error or some uncertainty about
the data, it should be properly modeled such that the fusion algorithms can properly weigh
the uncertain data during the fusion process.
In general, however, the evaluation showed that the proposed sensor data fusion ar-

chitecture and the developed algorithms provide a solid platform for model-based object
detection for ADAS and automated driving applications. These algorithms have not only
been thoroughly evaluated in this thesis, but are also being actively used by the BMW
Group Research and Technology’s prototype vehicle for automated driving on highways
[336], where thousands of kilometers of successful automated driving have shown the effec-
tiveness of the proposed architecture and algorithms for surround environment perception.
Additionally, this thesis presented a complete and thorough evaluation for object detec-
tion using multiple sensors in a surround environment perception algorithms, where not
only the state-based (position, velocity, etc.) aspect of an object was evaluated, but also
the detection and classification performance, giving a solid result for object detection and
fusion performance not yet available in the current literature.
Despite the positive results, it remains to evaluate the object detection performance

in conjunction with actual ADAS or automated driving applications. To date this has
been done on a case-by-case basis in an empirical fashion, but a solid methodology for
understanding how the performance of an object detection algorithm directly effects the
performance of a driving function is still on open topic of research. This is especially true
when a driving function relies on several modules, where these modules also rely on object
detection, which then further complicates the performance analysis of a complete system
given these types of dependencies.
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8 Conclusion and Discussion

Environment perception has been and will remain one of the main challenges in Advanced
Driver Assistance Systems (ADAS) and automated driving applications, in particular as
higher degrees of automation will begin to be implemented. Early systems, such as Active
Cruise Control (ACC), have been developed over many generations, and with each gen-
eration, such systems are improved due to the better performance of the sensors and the
sensor processing algorithms. Only in recent years are series production vehicles beginning
to implement fusion algorithms, which will further improve these driver assistance sys-
tems. Sensor data fusion will become a key aspect in future ADAS and automated driving
systems in order to optimally and efficiently describe the complete environment of the ve-
hicle for not just one, but several applications simultaneously. Furthermore, recent series
production systems focus quite heavily on perception in the frontal area of the vehicle,
with some systems, such as lane change warning, requiring some side and rear perception.
As driver assistance systems become more complex and the level of automation increases,
complete surround perception will be required in order realize more complex and intelligent
behaviors of the vehicle.
This thesis proposed a sensor data fusion architecture with a high-level, or object-level,

approach for model-based object detection. The goal was to develop an architecture and
the necessary algorithms such that complete 360◦ surround environment perception with
up to 12 automotive-grade and vehicle body integrated sensors can be realized for auto-
mated driving applications. Chapter 2 gave an overview and analysis of different fusion
architecture concepts and presented a novel high-level sensor data fusion architecture which
was developed within this thesis. The remaining chapters elaborated on the developed al-
gorithms which implemented this sensor data fusion architecture and its concepts. The
evaluation in Chapter 7 showed that the proposed architecture provide good results in
accuracy and detection performance in the prototype vehicle. Furthermore, the presented
sensor data fusion concepts have been successfully deployed in the BMW Group Research
and Technology’s prototypes for automated driving on highways.
Several new contributions were made in this thesis to the problem of object detection

and fusion using multiple sensors for ADAS and automated driving applications. The
analysis of the different sensor data fusion architectures showed that the high-level fusion
method chosen in the proposed architecture has many advantages in performance and
practicality for ADAS applications. A complete object representation is formulated, where
object state, existence and classification form the object representation. Unique object
association techniques are described for the high-level fusion method, in particular how to
consider existence and classification attributes in the association process, as well as dealing
with extended objects and their dimensions in sensor-overlap scenarios. In the literature,
a sensor-to-sensor fusion strategy has been typically applied, whereas in this thesis the
sensor-to-global fusion strategy is introduced, allowing for true asynchronous processing of
object data within the high-level sensor data fusion architecture. The track-to-track fusion
algorithms were evaluated and compared to one another using such a sensor-to-global fusion
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strategy, where it was shown that the information matrix fusion algorithm performs exactly
the same as a low-level central filtering approach. For object existence, a novel, yet simple,
Bayes formulation was presented for sensor-level existence estimation. At the fusion-level,
a new approach for existence fusion was developed using the Dempster-Shafer evidence
theory framework, where sensor performance can be modeled during the fusion process.
Similarly for classification fusion, a method was also derived from the Dempster-Shafer
evidence theory for fusing object class information, also considering sensor performance
during fusion. Finally, the proposed algorithms for object detection and fusion were for
the first time thoroughly evaluated for such a surround environment perception setup with
up to 12 sensors, where the state, existence and classification performance of the object
detection algorithms were evaluated.
The results showed that the proposed sensor data fusion approach works quite well in

highways scenarios. However, it remains to be evaluated in more complex, urban environ-
ments, where environment perception is quite a bit more challenging. Urban environments
are very dense, making it difficult to properly separate objects near one another. There are
also a greater number of objects to detect, including pedestrians, bicyclists and other poten-
tially dynamic objects, such as animals, which further pose challenges in properly detecting
and classifying such objects so that a driver assistance system can properly react. At the
sensor-level, there already exist many algorithms which offer solutions to some of these
challenges. Grid-based algorithms have also proven to be quite useful in detecting static
and dynamic environments in complex, urban scenarios [12, 13, 75, 147, 165, 205, 225, 279].
The challenge in such approaches lies within the proper discrimination between static ob-
stacles and dynamic objects and the combination of the grid-based environment perception
algorithms with that of the more traditional model-based approaches. Some approaches
have already been presented which attempt to consistently combine different environment
model representations [125, 228, 229, 260, 311]. Additionally, the grid-based approach has
also been extended for model-based object tracking, where object local grid serve as a
basis for a better estimation of an object’s shape and position [13, 147, 261], similar to
the one-dimensional grid-based approach presented in Section 4.4 used to estimate a fused
object’s dimensions. A lot of research has also been done with stereo camera environ-
ment perception in urban environments using the stixel representation for object detection
[94, 236], where a confidence representation [123, 237] and semantic labeling have also
been shown to play a crucial role [93] in developing robust object representations in com-
plex environments. Despite these advances at the sensor-level, the fusion of object data
for complex environments for complete surround environment perception is still an open
topic of research. However, it would be interesting to investigate the potential of applying
some of the sensor-level techniques at the fusion-level, for example object local grid maps
or semantic labeling. Furthermore, complex data association still tends to be a problem,
particularly in dense environments, where a one-to-one data association scheme, as pre-
sented in this thesis, may not suffice at the fusion-level. An application of probabilistic
data association techniques, as common at the sensor-level or with low-level fusion algo-
rithms using, for example, Joint Integrated Probabilistic Data Association (JIPDA), will
most likely need to also be applied at the fusion-level in order to obtain the desired per-
formance and accuracy. Combining such techniques and further developing the proposed
high-level sensor data fusion architecture could in turn also provide a reliable platform for
surround environment perception in such complex, urban environments while maintaining
the advantages of an object-level data abstraction in a multi-sensor configuration.
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8 Conclusion and Discussion

As the level of automation continues to increase in driver assistance systems and as
the scenarios in which such systems are to be used becomes more complex, the need for
reliable, robust and accurate environment perception will remain. It will continue to be
one of the main challenges facing ADAS, autonomous driving and the robotics research
community, with the continued goal of improving safety, efficiency and comfort in personal
mobility.
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A Synchronous Track-to-Track Fusion

Algorithms

The most common track-to-track fusion algorithms studied in the literature pertain to
synchronous sensor configurations. In order to avoid the correlation due to common in-
formation history, these algorithms use a sensor-to-sensor fusion strategy. If the sensors
are asynchronous, they are temporally aligned for the sensor-to-sensor fusion process, as
described in Section 3.1.2. These algorithms have also been the most commonly used in au-
tomotive applications. In [193], synchronous track-to-track fusion algorithms are compared
to one another and their practicality and performance considered for automotive applica-
tions. This Appendix will give a brief overview of the most commonly used synchronous
track-to-track fusion algorithms.

A.1 Simple Weighted Fusion

The most basic fusion algorithm takes two state estimates from sensors i and j and com-
bines them together into a fused state. The simple weighted fusion algorithm is derived
from the static linear estimation equation [17], which calculates the posterior mean x̂ in
terms of the prior mean, x, and measurement z

x̂ = x+PxzP
−1
zz

(z− z) . (A.1)

The posterior mean for the fusion, or global state estimate, is the expected value of the
true state conditioned on the measurement information from sensors i and j

x̂→ E
[

x | Zi, Zj
]

= x̂G. (A.2)

The prior mean in (A.1) can be considered to be the current state estimation from sensor
i with measurement information Zi

x→ E
[

x | Zi
]

= x̂i. (A.3)

The “measurement” z in (A.1) can be seen as the current state estimation from sensor j

z→ E
[

x | Zj
]

= x̂j. (A.4)

The predicted “measurement” z is the expected value of the state estimation from sensor
j, but conditioned on the measurement information from the prior mean, or sensor i

z→ E
[

x̂j | Zi
]

= x̂i. (A.5)
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A Synchronous Track-to-Track Fusion Algorithms

The simple weighted fusion algorithm assumes that the state estimations between sensors
i and j are independent, leading to the evaluation of the covariances from (A.1)

Pxz = E
[

(

x− E
[

x | Zi
]) (

x̂j − E
[

x̂j | Zi
])′

]

= E
[

x̃i
(

x̂j − x̂i
)′
]

= E
[

x̃i
(

x̃i − x̃j
)′
]

= E
[

x̃i(x̃i)
′
]

− E
[

x̃i(x̃j)
′
]

= Pi (A.6)

and

Pzz = E
[

(

x̂j − E
[

x̂j | Zi
]) (

x̂j − E
[

x̂j | Zi
])′

]

= E
[

(

x̂j − x̂i
) (

x̂j − x̂i
)′
]

= E
[

(

x̃i − x̃j
) (

x̃i − x̃j
)′
]

= Pi +Pj (A.7)

where x̃i and x̃j are the errors of the sensor-level state estimates

x̃i = xi − x̂i (A.8)

x̃j = xj − x̂j. (A.9)

Substituting the above expressions into the static linear estimation equation from (A.1)
leads to the fused, or global, state estimate after combining the state estimations from
sensors i and j

x̂G = x̂i +Pi
(

Pi +Pj
)−1 (

x̂j − x̂i
)

. (A.10)

Rearranging the above expression as follows gives the more traditional symmetrical form
of the fused state

x̂G = x̂i +Pi
(

Pi +Pj
)−1 (

x̂j − x̂i
)

= x̂i +Pi
(

Pi +Pj
)−1

x̂j −Pi
(

Pi +Pj
)−1

x̂i

=
[

I−Pi
(

Pi +Pj
)−1

]

x̂i +Pi
(

Pi +Pj
)−1

x̂j

=
[

(

Pi +Pj
) (

Pi +Pj
)−1 −Pi

(

Pi +Pj
)−1

]

x̂i +Pi
(

Pi +Pj
)−1

x̂j

=
(

Pi +Pj −Pi
) (

Pi +Pj
)−1

x̂i +Pi
(

Pi +Pj
)−1

x̂j

= Pj
(

Pi +Pj
)−1

x̂i +Pi
(

Pi +Pj
)−1

x̂j. (A.11)

The covariance of the static linear estimation equation is

Pxx|z = Pxx −PxzP
−1
zz
Pzx (A.12)

which when substituting the expressions for the covariances yields

PG = Pi −Pi
(

Pi +Pj
)−1

Pi′. (A.13)
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A.2 Use of Cross-Covariance

The expression for the covariance can also be rearranged into a symmetrical form

PG = Pi −Pi
(

Pi +Pj
)−1

Pi′

= Pi
(

I−
(

Pi +Pj
)−1

Pi
)

= Pi
[

(

Pi +Pj
)−1 (

Pi +Pj
)

−
(

Pi +Pj
)−1

Pi
]

= Pi
(

Pi +Pj
)−1 (

Pi +Pj −Pi
)

= Pi
(

Pi +Pj
)−1

Pj. (A.14)

As the name suggests, this algorithm is the simplest method for fusing two state estimates
in a sensor-to-sensor fashion. However, the simple weighted fusion algorithm ignores the
correlation between the estimates from two sensors due to the common process noise by
assuming that the estimates are independent. In [18], it was shown by evaluating the error
ellipses that the simple weighted fusion algorithm overestimates the true error of the fused
state estimation, meaning that the fused covariance is smaller with respect to the true
error of the estimate.
Despite the fact that this algorithm ignores the dependence between sensor data, its

simplicity makes it quite a favorable algorithm in practical applications. Linzmeier uses this
algorithm to fuse data from an infrared and a radar sensor for pedestrian detection [173].
He argues that the error made in ignoring the dependence is negligible in practice. Other
automotive applications have also used the simple weighted fusion algorithm [137, 206].

A.2 Use of Cross-Covariance

In reality, the state estimates from two sensors i and j using a sensor-to-sensor fusion
strategy are correlated due to their common process noise, therefore making the estimates
dependent [18]. The simple weighted fusion algorithm did not take this dependence into
account. The use of cross-covariance algorithm, as the name implies, is derived in a similar
manner as the simple weighted fusion algorithm, but instead considers the dependence of
the sensor-level state estimates.
From (A.1) to (A.5), the derivation of the use of cross-covariance algorithm is the same.

The derivation of the covariances from (A.1) differ in that the correlation between the
sensor estimates is not zero:

Pxz = E
[

(

x− E
[

x | Zi
]) (

x̂j − E
[

x̂j | Zi
])′

]

= E
[

x̃i
(

x̂j − x̂i
)′
]

= E
[

x̃i
(

x̃i − x̃j
)′
]

= E
[

x̃i(x̃i)
′
]

− E
[

x̃i(x̃j)
′
]

= Pi −Pij (A.15)

and

Pzz = E
[

(

x̂j − E
[

x̂j | Zi
]) (

x̂j − E
[

x̂j | Zi
])′

]

= E
[

(

x̂j − x̂i
) (

x̂j − x̂i
)′
]

= E
[

(

x̃i − x̃j
) (

x̃i − x̃j
)′
]

= Pi +Pj −Pij −Pji (A.16)
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where Pij is the cross-covariance matrix between the state estimates of sensors i and j,
which accounts for the common process noise between the sensor estimates.
Using these new expressions for the covariances from the static linear estimation equation

yields the expression for the fusion of the state from sensors i and j using the cross-
covariance

x̂G = x̂i +
(

Pi −Pij
) [

Pi +Pj −Pij −Pji
]−1 (

x̂j − x̂i
)

(A.17)

with the fused global covariance

PG = Pi −
(

Pi −Pij
) [

Pi +Pj −Pij −Pji
]−1 (

Pi −Pij
)′
. (A.18)

The cross-covariance matrix can be calculated using one of the methods described in Sec-
tion 4.2.1. The algorithm is optimal if it is carried out each time a sensor updates its
local state estimate and the recursive method for calculating the cross-covariance matrix
is used.
The use of cross-covariance algorithm has been successfully used to fuse sensor data in

automotive applications. In [44], the algorithm is used to fuse infrared and radar and radar
and lidar for general obstacle detection. It has also been used to fuse data in vehicle-to-
vehicle communications applications, where radar sensor data is fused with communicated
object data from other vehicles [285]. However, most of these applications are simple
two-sensor configurations using a basic sensor-to-sensor fusion strategy where one sensor
is synchronized to the other for fusion.

A.3 Covariance Intersection

An alternative to the previous fusion methods is the covariance intersection algorithm.
This method of fusion was described by Julier and Uhlmann in [143] and applied to a
simultaneous localization and mapping (SLAM) application in [144]. The method assumes
from the very beginning that the cross-covariance between sensors is unknown and goes
about fusing two sensor estimates without explicitly calculating it, as done with the use of
cross-covariance algorithm described in the previous section.
The covariance intersection algorithm is derived from a geometrical interpretation of the

Kalman filter equations [143]. In general form, the Kalman filter equations can be written
as follows to combine two state estimates x̂i, Pi and x̂j, Pj using weights Wi and Wj

x̂G = Wix̂i +Wjx̂j (A.19)

PG = WiPiWi′ +WiPijWj ′ +WjPjiWi′ +WjPjWj ′. (A.20)

The weights Wi and Wj are chosen to minimize the trace of the fused covariance PG

[143]. Geometrically, these equations, regardless of the choice of Pij guarantee that the
fused covariance ellipse PG is enclosed within the intersection of the covariances of the
two sensor estimates Pi and Pj . The fused covariance that most tightly fits into the
intersection best utilizes the available information.
Using a convex combination of the covariance, the fused state estimate is combined as

follows:

(PG)−1 = ω(Pi)−1 + (1− ω) (Pj)−1 (A.21)

x̂G = PG
[

ω(Pi)−1x̂i + (1− ω)(Pj)−1x̂j
]

(A.22)
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A.4 Comparison

Table A.1: Sensor configuration for the simulation of synchronous track-to-track fusion algo-
rithms.

Sensor 1 Sensor 2

Measurement Period (ms) 80 80
σx (m) 2.00 0.75
σy (m) 0.50 1.20

where ω ∈ [0, 1] is a free parameter that weighs the state estimates from sensors i and j.
The parameter ω can be chosen to adhere to a specific performance criteria. Typically, ω
is chosen such that the determinant of the fused covariance PG is minimized:

ω = argmin
(

det
(

PG
))

. (A.23)

The covariance intersection algorithm has been used by Floudas to fuse sensor data from
vision and radar sensors for automotive safety applications [102] and the fusion of radar
and laser scanner object detection for collision mitigation [100].

A.4 Comparison

In this section, the synchronous track-to-track fusion algorithms described in previous sec-
tion are evaluated using a sensor-to-sensor fusion strategy. The simulation in the previous
section is carried out with two sensors observing an object traveling in the x-direction at
20m/s. The two sensors both have a measurement period of 80ms and are synchronized
to one another, meaning that they both take measurements at exactly the same time and
have no latency to the fusion module. Table A.1 gives an overview of the two sensors
used in the simulation, with the sensor measurement errors in the x- and y-direction given
as a standard deviation σx and σy. As in a realistic automotive application, the sensors’
performance to one another is complementary: the weakness of one sensor is compensated
by the strength of the other. In this case, the uncertainties in the x- and y-directions
complement each other.

The consistency of the synchronous track-to-track fusion algorithms is evaluated first.
The NEES over 100 Monte Carlo runs for the 10-second simulation is shown in Figure A.1.
The 95% confidence interval is depicted by the dark gray horizontal lines at ǭ = 6.70
and ǭ = 5.34. As expected, the use of cross-covariance algorithm using the recursion
method for calculating the cross-covariance matrix is consistent, as its NEES lies within
the condifence interval. It is also the only optimal track-to-track fusion algorithm that
fully compensates for the common process noise between the two sensor state estiamtes.
The next best algorithm in terms of consistency is the use of cross-covariance algorithm
using the estimation method for calculating the cross-covariance matrix. However, the
algorithm slightly overestimates the true error, which means that the error covariance,
PG, is smaller than the true error. This can be seen in Figure A.1 in that the algorithm’s
NEES hovers around or is slightly above the upper bound of the confidence interval. The
simple weighted fusion algorithm, which ignores the correlation between sensor estimates,
largely overestimates the true error. On the opposite end of the spectrum is the covariance
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Figure A.1: The normalized estimation error squared (NEES) for synchronous track-to-track
fusion algorithms during a simulation with 100 Monte Carlo runs.

intersection algorithm, which attempts to compensate for the correlation without explicit-
ley calculating the cross-covariance matrix. This algorithm underestimates the true error
of the fused state estimate, in that the error covariance, PG, is larger than the true error.
Underestimation of the error covariance is less critical than the overestimation due to the
fact it is conservative in producing the fused accuracy of the state estimate.

The root mean square error for the position and velocity is shown in Figure A.2. The
algorithm with the best performance in position is use of cross-covariance with the recursion
method of calculating the cross-covariance matrix, with, after filter steady-state, yields
an average RMSE over the simulation time of 0.4262m. However, the simple weighted
fusion and covariance intersection algorithms only have a very slightly larger RMSE in the
position, with 0.4285m and 0.4282m, respectively, a difference which is for the most part
negligible. The use of cross-covariance algorithm with the estimation method of calculating
the cross-covariance matrix is the only algorithm that has a significantly larger RMSE in
the position than the others, with a time-average RMSE over the simulation of 0.4481m.
Even this difference in error, given practical considerations, is quite good performance.

The relational performance of the velocity estimation between the different algorithms
is similar to that of the position. The use of cross-covariance algorithm with the re-
cursion method of calculating the cross-covariance matrix has a time-averaged RMSE of
0.9744m/s, after filter steady-state, making it the algorithm with the best performance, as
can be seen in Figure A.2b. The other three algorithms have a slightly larger error in the
velocity estimate, with errors at around 0.988m/s. Despite the difference in errors between
the algorithms, as with the position, the difference can be considered to be negligible in
practical applications.

Overall, the performance of the position and velocity state estimation for all of the
synchronous track-to-track fusion algorithms is quite good. The significant difference in
the algorithms is revealed in the consistency. Only the use of cross-covariance algorithm
using the recursion method for calculating the cross-covariance matrix yields a consistent
state estimate. The simple weighted fusion algorithm yields the most inconsistent estimate,
overestimating the state by quite a bit. On the other hand, the covariance intersection
algorithm underestimates the estimate.

Given all of the factors evaluated, for practical applications, the use of cross-covariance
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Figure A.2: The root mean square error (RMSE) of the position (a) and velocity (b) for syn-
chronous track-to-track fusion algorithms during a simulation with 100 Monte Carlo runs.
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algorithm using the estimation method for calculating the cross-covariance matrix is the
best algorithm. Its independence from internal filter parameters make it feasible for use in
practice. Additionally, it is the second-most consistent filter, only slightly overestimating
the state.
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B Information Matrix Fusion Derivation

It can be shown that the information matrix fusion algorithm is equivalent to a centralized
Kalman filter by manipulating the standard Kalman filter equations in their normal and
information filter form [19].
A single sensor i produces a track with state estimate x̂i(ki|ki) and error covariance

Pi(ki|ki) with the normal Kalman filter equations, where the prediction step is carried out
with

x̂i(ki|ki − 1) = F(ki, ki − 1)x̂i(ki − 1|ki − 1) (B.1)

Pi(ki|ki − 1) = F(ki, ki − 1)Pi(ki − 1|ki − 1)F(ki, ki − 1)′ +Q(ki, ki − 1) (B.2)

and the state and covariance update with new measurement zi(ki) and its covarianceRi(ki)
with

x̂i(ki|ki) = x̂i(ki|ki − 1) +Ki(ki)
[

zi(ki)−Hi(ki)x̂
i(ki|ki − 1)

]

(B.3)

Pi(ki|ki) =
[

I−Ki(ki)H
i(ki)

]

Pi(ki|ki − 1). (B.4)

Alternatively, the covariance update can be written in the information matrix form

Pi(ki|ki)−1 = Pi(ki|ki − 1)−1 +Hi(ki)
′Ri(ki)

−1Hi(ki) (B.5)

where the inverse of the covariance can be interpreted as the Fisher information of the
estimate.
From (B.4), the Kalman gain can be written as

Ki(ki) = Hi(ki)
−1 −Pi(ki|ki)Hi(ki)

−1Pi(ki|ki − 1)−1 (B.6)

and from (B.5), the predicted covariance can be written as

Pi(ki|ki − 1)−1 = Pi(ki|ki)−1 −Hi(ki)
′Ri(ki)

−1Hi(ki). (B.7)

Now substituting (B.7) into (B.6) yields

Ki(ki) = Hi(ki)
−1 −Pi(ki|ki)Hi(ki)

−1
[

Pi(ki|ki)−1 −Hi(ki)
′Ri(ki)

−1Hi(ki)
]

= Hi(ki)
−1 −Pi(ki|ki)Hi(ki)

−1Pi(ki|ki)−1 +Pi(ki|ki)Hi(ki)
−1Hi(ki)

′Ri(ki)
−1Hi(ki)

= Hi(ki)
−1 −Hi(ki)

−1 +Pi(ki|ki)Hi(ki)
′Ri(ki)

−1

= Pi(ki|ki)Hi(ki)
′Ri(ki)

−1 (B.8)

which is an expression of the Kalman gain which does not depend on the predicted co-
variance Pi(ki|ki − 1). Using this result, the state update from (B.3) can now be written
as

x̂i(ki|ki) = x̂i(ki|ki − 1) +Pi(ki|ki)Hi(ki)
′Ri(ki)

−1
[

zi(ki)−Hi(ki)x̂
i(ki|ki − 1)

]

. (B.9)
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B Information Matrix Fusion Derivation

In the information filter, the information state is related to the state and covariance
by ŷ = P−1x̂. Using this definition, (B.9) can be written in information state form by
multiplying all terms by Pi(ki|ki)−1, which results in

Pi(ki|ki)−1x̂i(ki|ki) = Pi(ki|ki)−1x̂i(ki|ki − 1)+

+Pi(ki|ki)−1Pi(ki|ki)Hi(ki)
′Ri(ki)

−1
[

zi(ki)−Hi(ki)x̂
i(ki|ki − 1)

]

= Pi(ki|ki)−1x̂i(ki|ki − 1)+

+Hi(ki)
′Ri(ki)

−1
[

zi(ki)−Hi(ki)x̂
i(ki|ki − 1)

]

. (B.10)

Substituting (B.5) into (B.10) yields

Pi(ki|ki)−1x̂i(ki|ki) =
[

Pi(ki|ki − 1)−1 +Hi(ki)
′Ri(ki)

−1Hi(ki)
]

x̂i(ki|ki − 1)+

+Hi(ki)
′Ri(ki)

−1
[

zi(ki)−Hi(ki)x̂
i(ki|ki − 1)

]

= Pi(ki|ki − 1)−1x̂i(ki|ki − 1)+

+Hi(ki)
′Ri(ki)

−1Hi(ki)x̂
i(ki|ki − 1)+

+Hi(ki)
′Ri(ki)

−1zi(ki)−
−Hi(ki)

′Ri(ki)
−1Hi(ki)x̂

i(ki|ki − 1)

= Pi(ki|ki − 1)−1x̂i(ki|ki − 1) +Hi(ki)
′Ri(ki)

−1zi(ki) (B.11)

where in (B.11) the term containing the measurement zi(ki) can be written as follows

Hi(ki)
′Ri(ki)

−1zi(ki) = Pi(ki|ki)−1x̂i(ki|ki)−Pi(ki|ki − 1)−1x̂i(ki|ki − 1) (B.12)

which is an expression of the information state of the measurement solely using the updated
and predicted Kalman filter state estimates in information state form. This allows for the
extraction of the measurement information which was used to update the state of the single
sensor Kalman filter at time ki, without explicitly having access to the measurement itself,
or any other internal values of the Kalman filter other than the predicted and updated state
at ki. This is formulation exploited in the information matrix fusion algorithm, presented
in Section 4.3.3, in order to extract out the measurement information zi(ki) during the
transition of the state from ki− 1 to ki and then integrate it into a running estimate of an
object’s state at the fusion-level.
Note that adding a small prediction step to kG where kG > ki, which represents the ar-

rival time of the sensor’s object estimate at the fusion-level, does not effect the algorithm’s
ability to properly extract the measurement information state of zi(kG|ki), such that

Hi(kG|ki)′Ri(kG|ki)−1zi(kG|ki) = Pi(kG|ki)−1x̂i(kG|ki)−Pi(kG|ki − 1)−1x̂i(kG|ki − 1)
(B.13)

is valid and can be interpreted as the measurement information state as it appears at kG,
i.e. including the prediction. This can be proven trivially with a simple numerical example
which does the measurement information extraction and fusion into a global state at ki
first, with (B.12), and then doing the prediction to kG and comparing the result with the
direct integration of the measurement information state into the global state at kG using
(B.13). If the process noise and kinematic model used for prediction are the same, the
results are equivalent.
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C Determining the Trust Probability

For the fusion of the existence and classification probability, a trust probability, ptrust for
existence and pitrust(Ci) for classification, was introduced in Section 5.2 and Section 6.2.
The idea of this trust probability is based on the hypothesis that sensor performance
with respect to the existence and classification probabilities is not equal between different
sensors. Therefore, the trust probability serves as a weighting factor during the fusion
process, with the goal of properly considering sensor’s performance during fusion.

In this appendix, the trust probability values are derived using the process described in
Section 5.2.4 and Section 6.2.2 with the training data described in Section D.1.

C.1 Existence

In order to derived the trust probabilities for existence, Receiver Operating Characteristic
(ROC) curves are generated for each sensor on the test vehicle from the training data of
Section 6.2.2 using the evaluation process described in Section 7.3.1. The resulting ROC
curves showing the sensor’s detection performance is shown in Figure C.1.

A false positive rate per iteration f = 0.5 is used as the normalizing performance criteria
for deriving the trust probabilities (depicted as the dashed vertical line in Figure C.1). The
trust probabilities for each sensor, given in Table C.1, are determined by taking the true
positive rate value of the ROC curves where they intersect with the false positive rate line
of f = 0.5. These values were used as the sensor-level existence trust probability values for
all of the evaluation results presented in Chapter 7. Note that the the ultrasonic sensors
were not evaluated in Figure C.1 and are therefore given a value of pultrasonictrust = 0.50.

Table C.1: Derived weighting probabilities for each sensor’s individual detection performance
with the existence probability.

Sensor pitrust

Laser scanner front 0.90
Laser scanner rear 0.80
Laser scanner side 0.70
Radar front 0.65
Radar rear 0.85
Camera 0.97
Ultrasonic 0.50
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C Determining the Trust Probability
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Figure C.1: ROC curves of sensor-level detection performance for the sensors on the test vehicle
used for evaluation. The vertical line depicts the f = 0.5 false positive rate per iteration value
from which the trust probabilities are derived.

C.2 Classification

The trust probability for the classification performance of a sensor is derived in a similar
manner as for the existence trust probability. However, since the classification vector c

consists of several classification hypothesis, a separate ROC curve is generated for each
class type for every sensor. Since this thesis focuses mainly on highway scenarios, a trust
probability is derived only for the classes CCar, CTruck and CMotorcycle. However, the same
process applies for the other classes of the classification hypothesis set C. Figure C.2 shows
the ROC curves for the mentioned three classes.
For deriving the classification trust probabilities, a common false positive rate of f = 0.2

is used, where the trust probability for each sensor and each class Ci takes on the value of
the ROC curve where it intersects the line for f = 0.2. The results are shown in Table C.2.
Again, for the ultrasonic sensor, no evaluation was performed and therefore a low trust
probability of 0.10 for all classes was chosen. These trust probability values were used
during all of the results from Chapter 7.

Table C.2: Derived weighting probabilities for each sensor’s individual classification perfor-
mance.

Sensor pitrust(CCar) pitrust(CTruck) pitrust(CMotorcycle)

Laser scanner front 0.83 0.94 0.80
Laser scanner rear 0.81 0.92 0.60
Laser scanner side 0.70 0.80 0.40
Radar front 0.89 0.88 0.62
Radar rear 0.73 0.94 0.54
Camera 0.96 0.70 0.98
Ultrasonic 0.10 0.10 0.10
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Figure C.2: ROC curves of the classification performance for the sensors on the test vehicle
used for evaluation. Each class is shown in a separate ROC curve, where (a) shows CCar, (b)
CTruck and (c) CMotorcycle. The false positive rate of f = 0.2 for deriving the trust probabilities
is depicted by the vertical dashed line.
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D Evaluation Scenario Descriptions

Sensor data during several highway scenarios were recorded using the prototype test vehicle
described in Section 7.1. The data from these scenarios were used to train and evaluate
the algorithms presented in this thesis. This appendix gives a short description of the
recorded scenarios.

D.1 Training Data

Data from scenarios on a closed test track (denoted with “TT”) and real highway traffic
(denoted with “RT”) were used for training and parameterizing some of the algorithms
presented in this thesis. Mainly the training of sensor-level classification algorithms and
the parametrization of existence and classification fusion algorithms made use of the data
described in this section.
A total of 16 scenarios were used as training data sets, summarized in Table D.1. Each

scenario was semi-automatically labeled such that vehicles in the scenario, their type and
their approximate location is saved for each processing cycle. Fifteen of the training sce-
narios were conducted on a closed test track, focusing on the collection of motorcycle object
data. Another scenario, recorded in real highway traffic was used to collect data on typical
highway traffic objects. In total, 15,920 cycles of data was collected, which corresponds
to over 25 minutes of recorded data. A total of 55,990 car, 9,977 truck and 10,552 motor-
cycle samples make up the complete training data set. Note that these numbers do not
correspond to any defined field-of-view.
Figure D.1 shows some camera images from the training data, where the top row of

the figure shows example scenes from the real highway traffic scenario (T-RT-S1) and the
bottom rows shows some examples of the motorcycle scenarios on a closed test track.

D.2 Evaluation Data

A different set of data was used in Chapter 7 to evaluate the algorithms presented in
this thesis. Two types of data was collected: test track scenarios with differential Global
Positioning System (GPS) ground truth and real highway traffic scenarios with labeled
vehicle data.

D.2.1 Test Track

On a closed test track, several overtaking scenarios were performed with the host vehicle
and a target vehicle. Both vehicles were equipped with differential GPS in order to obtain
ground truth data evaluating the surround object detection algorithms presented in this
thesis. The ground truth consists of highly accurate position and velocity information of
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D.2 Evaluation Data

Table D.1: Overview of the data sets used for algorithm training and parametrization.

Scenario # Cycles Car Samples Truck Samples Motorcycle Samples

T-RT-S1 5,368 54,701 9,977 0
T-TT-S1 1,265 340 0 1,265
T-TT-S2 580 0 0 580
T-TT-S3 1,101 380 0 1,101
T-TT-S4 562 0 0 562
T-TT-S5 1,109 320 0 1,109
T-TT-S6 876 0 0 876
T-TT-S7 484 0 0 484
T-TT-S8 326 0 0 326
T-TT-S9 222 0 0 222
T-TT-S10 203 0 0 203
T-TT-S11 529 0 0 529
T-TT-S12 973 0 0 973
T-TT-S13 807 249 0 807
T-TT-S14 567 0 0 567
T-TT-S15 948 0 0 948

Total 15,920 55,990 9,977 10,552

the two vehicles. A total of 12 overtaking maneuvers were performed and recorded, as sum-
marized in Table D.2. Each of the scenarios varies the overtaking maneuver’s constellation
slightly, where the host and target vehicles perform the maneuver with different velocities
in addition to the target and host vehicle taking turns being the overtaking vehicle.

In total, 4,891 cycles are recorded across the data sets and were available for evaluation.
Figure D.2 shows an excerpt of such an overtaking scenario as seen from a camera sensor
and the 3D visualization software, where the target vehicle has just passed the host vehicle-

D.2.2 Real Traffic

For the detection and classification performance, labeled scenarios from real highway traf-
fic were used for evaluation. In these scenarios, the location and type of traffic objects
(cars, trucks and motorcycles) were semi-automatically labeled using a labeling software
in order to generate a ground truth for the true objects and their type in the host vehicle’s
environment. The labeling process is not able to provide the position accuracy as with a
differential GPS system and therefore these data sets are only used in order to evaluate
detection and classification performance and not state estimation performance.

A total of three highway scenarios were recorded and labeled for evaluation, summarized
in Table D.3. The scenarios were recorded on highways just outside of Munich, Germany
with moderate to heavy traffic conditions. One of the scenarios, E-RT-S3, was specifically
recorded with a motorcycle constantly in the surrounding environment in order to increase
the samples available for motorcycle object evaluation. In total, 12,881 cycles of data were
recorded across the three data sets, which contained 88,385 car samples, 24,496 trucks and
3,047 motorcycles. In total, this corresponds to over 20 minutes of data from driving on
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D Evaluation Scenario Descriptions

(a) (b) (c)

(d) (e) (f)

Figure D.1: Examples camera images from the training scenarios. The images (a)-(c) show
scenes from the real highway traffic scenario and the images (d)-(f) shows some scenes from the
motorcycle data sets.

highways with real traffic. As with the training data, note that these numbers do not
correspond to any defined field-of-view.
In order to get an impression of some of the scenes recorded, Figure D.3 shows images as

recorded from a camera sensor from the host vehicle. Each row of the image refers to one
of three data sets, where the images for the top row (a)-(c) are from the data set E-RT-S1
and so on. Note that the traffic scenes are a good mix of moderate traffic with normal
sized vehicles, but also traffic scenes with more heavy traffic, especially dense traffic with
trucks on the right lane. Note that the third scenario, E-RT-S3, for the majority of the
time contains a motorcycle in the vicinity of the host vehicle.
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D.2 Evaluation Data

Table D.2: Summary of the overtaking scenarios with precise ground truth data for evaluation.

Scenario # Cycles Overtaking Vehicle vhost vtarget

E-TT-S1 365 target 80 100
E-TT-S2 339 host 90 80
E-TT-S3 397 target 80 90
E-TT-S4 317 host 100 80
E-TT-S5 513 host 90 80
E-TT-S6 581 target 90 80
E-TT-S7 516 host 90 80
E-TT-S8 536 target 90 80
E-TT-S9 428 host 90 80
E-TT-S10 407 target 90 80
E-TT-S11 226 host 110 80
E-TT-S12 266 target 110 80

Total 4,891

(a) (b)

Figure D.2: A scene from an overtaking maneuver scenario used for evaluation, as seen from a
camera sensor (a) and the 3D visualization software (b), where the ground truth for the target
vehicle is represented as a white wire-frame box.

Table D.3: Overview of the data sets used for real-traffic evaluation of detection and classification
performance.

Scenario # Cycles Car Samples Truck Samples Motorcycle Samples

E-RT-S1 4,960 30,499 9,817 0
E-RT-S2 5,365 45,381 7,130 712
E-RT-S3 2,556 12,505 7,549 2,335

Total 12,881 88,385 24,496 3,047
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D Evaluation Scenario Descriptions

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure D.3: Example camera images for the highway scenarios used for evaluation. The top
row (a)-(c) is from scenario E-RT-S1, (d)-(f) from E-RT-S2 and (g)-(i) from E-RT-S3.
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sium, Alcalá de Henares, Spain, June 2012, pp. 855–860.

[172] X. Li, “Integrated Real-Time Estimation of Clutter Density for Tracking,” IEEE
Transactions on Signal Processing, vol. 48, no. 10, pp. 2797–2805, October 2000.

[173] D. Linzmeier, “Real-Time Detection of Pedestrians from a Moving Vehicle Using
Thermopile and Radar Sensor Fusion,” Ph.D. dissertation, Technische Universität
Chemnitz, July 2006.
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[181] M. Mählisch, “Filtersynthese zur simultanen Minimierung von Existenz-,
Assoziations- und Zustandsunsicherheiten in der Fahrzeugumfelderfassung mit het-
erogenen Sensordaten,” Ph.D. dissertation, University of Ulm, August 2009.

186



References
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[183] M. Mählisch, T. Kauderer, W. Ritter, and K. Dietmayer, “Feature-Level Video and
Multibeam Lidar Sensor Fusion for Full-Speed ACC State Estimation,” in 4th Inter-
national Workshop on Intelligent Transportation, Hamburg, Germany, March 2007.
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Ph.D. dissertation, Universität der Bundeswehr München, Neubiberg, 2013.

[189] M. Manz, M. Himmelsbach, T. Luettel, and H.-J. Wuensche, “Fusing LIDAR and
Vision for Autonomous Dirt Road Following – Incorporating a visual feature into the
tentacles approach,” in Proceedings of 21. Fachgespraech Autonome Mobile Systeme
(AMS), Karlsruhe, Germany, December 2009.

[190] ——, “Detection and Tracking of Road Networks in Rural Terrain By Fusing Vision
and LIDAR,” in Proceedings of IEEE International Conference on Intelligent Robots
and Systems, San Francisco (CA) USA, September 2011, pp. 4562–4568.

[191] M. Manz, F. von Hundelshausen, and H.-J. Wuensche, “A Hybrid Estimation Ap-
proach for Autonomous Dirt Road Following using Multiple Clothoid Segments,”
in Proceedings of the IEEE International Conference on Robotics and Automation,
Anchorage (AK) USA, May 2010, pp. 2410–2415.

[192] J. Markoff, “Smarter Than You Think: Google Cars Drive Themselves, In
Traffic,” The New York Times, October 2010. [Online]. Available: http:
//www.nytimes.com/2010/10/10/science/10google.html

[193] S. Matzka and R. Altendorfer, “A Comparison of Track-to-Track Fusion Algorithms
for Automotive Sensor Fusion,” in IEEE International Conference on Multisensor

187



References

Fusion and Integration for Intelligent Systems, Seol, Korea, August 2008, pp. 189–
194.

[194] M. Maurer, R. Behringer, S. Furst, F. Thomanek, and E. D. Dickmanns, “A Compact
Vision System for Road Vehicle Guidance,” in 13th International Conference on
Pattern Recognition, Vienna, Austria, August 1996, pp. 313–317.

[195] L. McGee and S. Schmidt, “Discovery of the Kalman Filter as a Practical Tool for
Aerospace and Industry,” National Aeronautics and Space Administration, Tech.
Rep. 86857, 1985.

[196] D. Meissner, S. Reuter, and K. Dietmayer, “Road User Tracking at Intersections
Using a Multiple-Model PHD Filter,” in IEEE Intelligent Vehicles Symposium, Gold
Coast, Australia, June 2013, pp. 377–382.

[197] A. Mendes, L. Bento, and U. Nunes, “Multi-target Detection and Tracking with a
Laserscanner,” in IEEE Intelligent Vehicles Symposium, Parma, Italy, June 2004,
pp. 796–801.

[198] Michigan Senate Bill 0169, December 2013.

[199] J. A. Mieghem, H. I. Avi-Itzhak, and R. D. Melen, “Straight Line Extraction Us-
ing Iterative Total Least Squares Methods,” Journal of Visual Communication and
Image Representation, vol. 6, no. 1, pp. 59–68, March 1995.

[200] K. Min and J. Choi, “Design and Implementation of Autonomous Vehicle Valet
Parking System,” in IEEE International Conference on Intelligent Transportation
Systems, The Hague, Netherlands, October 2013, pp. 2082–2087.
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