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Abstract

This thesis is concerned with new numerical and algorithmic tools for flows with pressure and

shear dependent viscosity together with the necessary background of the generalized Navier-

Stokes equations.

In general the viscosity of a material can be constant, e.g. water and this kind of fluid is

called as Newtonian fluid. However the flow can be complicated for quasi-Newtonian fluid,

where the viscosity can depend on some physical quantity. For example, the viscosity of Bing-

ham fluid is a function of the shear rate. Moreover even further complications can arise when

the dependencies of both shear rate and pressure occur for the viscosity as in the case of the

granular materials, e.g. Poliquen model. The Navier-Stokes equations in primitive variables

(velocity-pressure) are regarded as the privilege answer to incorporate these phenomena. The

modification of the viscous stresses leads to generalized Navier-Stokes equations extending the

range of their validity to such flow.

The resulting equations are mathematically more complex than the Navier-Stokes equations

and several problems arise from the numerical point of view. Firstly, the difficulty of ap-

proximating incompressible velocity fields and secondly, poor conditioning and possible lack of

differentiability of the involved nonlinear functions due to the material laws.

The difficulty related to the approximation of incompressible velocity fields is treated by ap-

plying the conforming Stokes element Q2/P1 and the lack of differentiability is taken care of by

regularization. Then the continuous Newton method as linearization technique is applied and

the method consists of working directly on the variational integrals. Next the corresponding

continuous Jacobian operators are derived and consequently a convergence rate of the nonlin-

ear iterations independent of the mesh refinement is achieved. This continuous approach is

advantageous: Firstly the explicit accessibility of the Jacobian allows a robust method with

respect to the starting guess and secondly it avoids the delicate task of choosing the step-length

which is required for divided differences approaches.

We denote the full Jacobian matrix on the discrete level by A and separate it into two parts:

A1 and A2 corresponding to Fixed point and Newton method respectively. A fundamental

issue for the continuous Newton method arises when the problem is not ready for it at the
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initial state due to the poor condition of the ’bad-part’ A2 of the Jacobian. Although the

Newton method is popular for its local quadratic convergence behavior, however the solver

may show unpredictable and undesirable divergent behavior if A2 is poor conditioned. This

particular difficulty is handled by our Adaptive Newton method, where we introduce a chara-

teristic function f(Qn), which depends solely on the relative residual change Qn and controls

the weighing parameter δn for the ’bad-part’ A2 resulting in the swinging back and forth of

the solver between Fixed point and Newton state.

Finally the new Adaptive Newton method is validated for the Bingham fluid for the benchmark

geometry Flow around cylinder and a test case of 2D Couette flow for (modified) Poliquen model

having the scope of real world applications is studied to fulfill the objective need of performance.

Key words: Finite Element Method, Adaptive Newton Method, Nonlinear Fluids, Bingham

Fluid, Granular Materials, Poliquen Model.
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1 Introduction

Dense granular materials are universal in nature and some common examples of this kind of

materials in our daily lives are sand, rice, sugar etc. A granular media can flow like a liquid,

e.g. in an hourglass, or can be transported by the wind to create dunes in the desert. Research

in this area is motivated by numerous applications encountered in industrial processes, such as

hopper discharge, chute flow, moving beds, sandpipe flow, etc. and also in geophysics for the

description and prediction of natural hazards like landslide and rock avalanches. Depending

upon the way it is handled, a granular material can behave like a solid, liquid or gas (Fig. 1).

Figure 1: Different behaviour of granular materials

Grains can sustain stresses and create a static pile, but can also flow like a liquid in an

hourglass, or can create a gas when they are strongly agitated and sometimes these different

flow regimes can coexist in a single configuration. The dynamics of granular materials under

shear stresses draw a significant attention due to its applications in various technological fields.

Some researchers model the phenomenon as the stress is dependent on the strain rate, while

some others focus on the rate-independent response. The granular materials are treated as

Figure 2: Regimes of granular materials

rigid under increasing load until the

shear stress exceeds a certain threshold,

and then it undergoes a transition from

a solid state to a fluidized state (yield)

as in Fig. 2. The physical properties and

mechanisms of this transition are still

not completely understood and some-

times the material remains in a mul-

tiphase state. In general, a granular

medium is a collection of macroscopic

particles of size varying from 1 µm to

100 µm. The limitation in size corresponds to a limitation in the type of interaction between
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particles, i.e. granular materials of different size exhibit different kind of interaction forces.

For example, larger particles are nonbrownian particles which interact solely by friction and

collision, whereas in the case of smaller particles other forces like van-der-Waals forces are also

present and even smaller size particles interact through thermal agitation.

1.1 Motivation

We can find numerous number of materials in our surrounding, which exhibits both the prop-

erties of solids and fluids and often termed as ’soft matter’. It is a subfield of condensed

matter comprising a variety of physical states that are easily deformed by thermal stresses

or thermal fluctuations. The very common examples of this kind of materials are colloids,

polymers, foams, gels, granular materials and a number of biological materials. They exhibit

an important common feature in that predominant physical behaviors occur at an energy scale

comparable with room temperature thermal energy. From the stated examples of this kind

of materials, it can be easily understood that soft matters are important in a wide range of

technological applications. They may appear as detergents and cosmetics, rubbers in tires,

food additives, paints, foams and adhesives, etc. Also one can find the applications of this

soft matter in the fields ranging from blood particles to soil mechanics or the mechanism for

landing on an extraterrestial object. In a nutshell, as this soft matter topic is quite new and

there still exists a large number of unexplained physical behaviors, this makes the consequent

applications to be extremely useful and important.

Some behaviors of soft matter are very interesting, but sometimes it is very difficult to predict

such interesting behaviours directly from its atomic or molecular constituents. This is often

because soft matter self-organizes into mesoscopic physical structures that are much larger than

the microscopic scale, and yet are much smaller than the macroscopic scale of the material.

The properties and interactions of these mesoscopic structures may determine the macroscopic

behavior of the material. If we take the example of jel or paste, one can observe its fluidic

behaviour when it is in large quantity, while it behaves like a solid material when it comes in

small quantities. Also in the case of granular materials or powders, sometimes they can jam

when the flow is about to stop and unjam just before the flow starts. This jamming part is

often regarded as the solid (or static) phase and the part in the motion is considered as the

fluid (or dynamic) phase. The static phase is often characterized by a high degree of disorder,

inhomogeneity and anisotropy, while the dynamic phase is frequently dominated by dissipative

interaction forces leading to a dissipation time scale that interacts with other time scales in the

system. So as it lies in the border of fluid and solid regimes, one can simulate the behaviours
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of this kind of materials either from a discrete particle point of view or continuum approach.

However, flowing of granular materials brings a new challenging and interesting problem to the

Computational Fluid Dynamics (CFD) community: At very high concentrations and low rate

of strain, a frictional stress model must be taken into account as the grains are in permanent

contact. This can be done using plasticity theory in which one assumes that the material be-

haviour does not depend on the velocity gradient or the strain-rate. However it is in contrast

to viscous Newtonian flow where stress specifically depends on the strain-rate. Furthermore, as

the flowing materials do not exhibit viscosity unlike fluids, that is why a Newtonian rheology

cannot describe granular flow accurately. It is assumed that the material is incompressible,

cohesionless and perfectly rigid-plastic. Based on continuum theories, equations for such ma-

terial have been derived which closely resemble the generalized Navier-Stokes equations where

the viscosity is dependent on the pressure and shear forces or stresses. Moreover the software

package Featflow [32] is designed for the continuum point of view and hence we will do the

simulation of Granular materials from the continuum side and after that, we will study its

macroscopic physical properties.

Many different approaches have been taken to simulate this kind of material over the past few

decades. The simulation techniques can be categorized broadly into two major approaches -

discrete models and continuum models. Usually the granular media are composed of a large

number of particles, e.g. a cup of sugar contains around two million of grains, which is a big

challenge to simulate with ideal spherical particles. That is why a continuum description is

needed to simulate a system of granular media which has a relevant size to the real world. In

this model, we define the averaged quantities and model the granular media as a continuum

medium. If one considers gases or liquids, the presence of thermal agitation allows a proper

statistical approach, by which macroscopic quantities can be derived from the microscopic ones.

Sometimes the particles are too large to experience Brownian motion and the statistical average

over different configurations is not possible. The system is stuck in metastable states and

then it is often termed as athermal system. Another difficulty in applying statistical physics

in granular media is the dissipative nature of the particle interaction. Contact interactions

including friction and inelastic collisions are highly nonlinear and dissipative in nature and this

dissipation at the microscopic level is an important distinction to the classical systems studied

in statistical physics.
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1.2 Experimental study

Figure 3: Schematic diagram of a Couette device

A schematic representation of a

Couette device is shown in Fig.

3 with details of the sensors and

the rotating cylinder. The vertical

shear gap forms between the rotat-

ing cylinder and the outer wall and

both its width and height can be

adjusted by appropriate choice of

the radius and height of the rotat-

ing cylinder. The walls of the Cou-

ette are made rough by gluing sand

paper on the shearing surfaces and

the roughness of the walls is chosen

to match or exceed the coefficient of

internal friction of the material thereby trying to assure a non-slip boundary condition. The

Couette device can be operated in batch mode or in continuous mode by feeding and remov-

ing material to achieve a steady state vertical flow. The material above the rotating cylinder

(denoted overburden in the figure) is stationary and only provides dead weight to the shearing

layer. Experiments in the Couette device can be performed without (batch) and with axial

flow (continuous), and several depths of overburdens to control the pressure in the shearing

gap. Normal stresses were measured on both the outer, stationary wall as well as the inner,

rotating (shearing) wall of the device as shown in the figure. Shear stresses were measured

indirectly and recalculated from the torque on the rotating cylinder.

Figure 4: Experimental finding

The shear stress on the rotating cylinder can

be measured indirectly using the torque on

the shaft exerted by the granular medium on

the entire length of the cylinder. The most

interesting result from the measurements is

that one can calculate the ratio of the aver-

age shear to normal stresses as a function of

shear rate. The normal stress shows a very

interesting behavior: It is constant and lower

at low shear rates (where the shear stress is
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also constant) and then increases abruptly and remains practically constant thereafter even

though the shear stress increases continuously. The ratio of the two stresses (apparent friction

coefficient) is given in Fig. 4 and the ratio exhibits a similarly interesting behavior: At very

low shear rates, the ratio is constant and only slightly lower than the tangent of the friction

coefficient of glass particles (about 0.5) as one would expect from quasi-static flow theory. As

Figure 5: Characteristic curves

the dimensionless shear rate increases be-

yond a certain critical value, the ratio of

shear stress vs. normal stress increases sig-

nificantly. This behavior is mainly due to

the superposition of collisions between par-

ticles on the sliding friction of surfaces so

that the overall shear stress and friction co-

efficient also increase. Numerical simulations

can also be done for different granular mate-

rials (crushed glass, round glass etc) as shown

in Fig. 5 to study the respective characteris-

tic curves (see [3]).
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2 General Overview

Fluid, in many cases, is part of our life. Our body consists of 80% of fluids, a tiny single cell

of plankton consists of fluids, the earth and the atmosphere consist of a large area of fluids.

Fluid is everywhere and becomes a very important element in all human aspects. Thus, it

is not only interesting but also very important to explore fluid with experiments, modelling

and simulations. This study focuses on the simulation part of fluids and bases on FEM (Finite

Element Method). Water is one of the simple fluids which is classified as Newtonian fluid where

its stress depends linearly on the deformation rate. Polymer, on the other hand, is classified

as non-Newtonian fluids because its stress depends nonlinearly on the deformation rate. The

essence of any fluids is that the basic fluid motion is always described by a sound mathematical

foundation. This is well-known as the Navier-Stokes equation which serves as the basis of many

CFD applications.

Physically, the fluid is considered Newtonian when its viscosity is constant, whereas it is called

quasi-Newtonian when the viscosity is a function of other physical parameters. For example,

the viscosity is dependant on the shear rate for Bingham fluid and it is dependant on both shear

rate and the pressure for granular materials. The flow of Newtonian fluids is categorized by

the non dimensional Reynold number, Re, which tells us whether the flow is laminar, transient,

or turbulent. The extreme developement of computer resources in the last 10 years provides

a wider possibility towards FEM methods which was hardly done 20 years ago. This is also

driven by the fact that many CFD solvers used an operator splitting approach together with a

low order finite element implementation which is in fact very efficient but needs an extra care

when it comes into accuracy of the solution. To the contrary, the high order finite element Q2

towards fully coupled monolithic approach maintains highly accurate solutions. This element

together with discontinuous P1 element for the pressure space approximation satisfies the well-

known LBB (named after Ladyzhenskaya, Babuska and Brezzi) condition and is, without doubt

from years of experiences, one of the preferable finite element pairs in the Stokes problem [22],

[23], [24]. An example of benchmark flow around cylinder [32] shows that this element pair can

obtain an accurate direct steady solution for medium Re numbers within few Newton steps.
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2.1 Mathematical Challenges

The main mathematical problems of the generalized incompressible continuum material model

can be summarized as follows.

• Mathematical analysis: There is a lack of research concerning the characteristics and

properties of solutions for the flow of non-Newtonian fluids.

• Singular viscosity: The part of the stress tensor containing (1/|γ̇|) is well defined only for

nonzero values of the rate of strain tensor and for ’non-negative’ pressures, which requires

some relarization techniques of singular phenomena due to the nonlinear viscosity.

• Discretization method: It is well known that the computation of solutions to such in-

compressible systems requires that some care is taken in the choice of the approximating

spaces in order to make the discrete problem well posed.

• Newton multigrid solver: For this highly nonlinear problem, coupling the pressure and

the velocity, linearization using Newton’s techniques is an advantageous technique and

therefore efficient multigrid methods for these new types of saddle-point problems need

to be developed.

2.2 Solver Characteristics

The Solution method to the discrete nonlinear system arised from the discretization follows

Newton iteration and this technique is well accepted as the most robust iteration technique

due to its quadratic convergence. The Jacobian is computed analytically by Frechet-derivative

at the continuous level and the complete Jacobian A in the Saddle point problem can be

thought of a combination of two operators A1 and A2 which corresponds to Fixed point and

full Newton method separately. We also introduce a parameter δn balancing the Fixed point

and full Newton iteration. However the study shows that over-contribution from the operator

A2 can be harmful for the convergence behavior sometimes and hence the value of δn should

be remained under control. So essentially new in this study is the implementation of δn and to

provide an adaptive way to control this parameter to have a balance between the Fixed point

and full Newton method. Since this is also an extension of the 2D Navier-Stokes solver that is

used in our chair, step by step validation through benchmarking is also part of the study.

2.3 Thesis structure

This thesis is structured as follows: The first two chapters have been used for the introduc-

tion to the granular materials and why it is important to study them. After giving a general
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overview in the current chapter, we will present different approaches to study granular ma-

terials, namely Discrete models, Statistical approaches and Continuous models in chapter 3.

The most emphasized continuous model, Poliquen model will also be introduced and discussed

in detail in this chapter. Next we will present the mathematical background including Weak

formulation, Error analysis, the classical Newton solver and the new Adaptive Newton solver

in chapter 4. Then in chapter 5, step-by-step validation of the code with respect to the Flow

around cylinder problem will be done. Then a prototype application for the Couette geometry

will be examined in Chapter 6 and the results of the convergence behavior will be represented

alongwith visual support. Ultimately the study will be completed by summarizing and giving

an outlook for future research and additionally some extra results is appended in the Appendix

section 8.
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3 Modeling of granular materials

In this chapter, we will describe some mathematical models for granular media with different

kind of approaches. We denote the physical properties as follows: We take a finite system

of granular materials where each particle has mass mi and velocity vi. For simplicity of

calculations we will assume that each particle is of spherical shape with radius Ri with the

position vector ri. Any pair of two particles Pi and Pj will have atmost one contact point with

Fij being the contact force, nij being the normal unit vector and tij being the unit vector in the

tangential plane. There are total N number of particles in the system and the whole system

has the volume V . In case of a system of homogeneous particles, we assume the diameter of

each particle as d. We denote the volume fraction as ϕ and the total number of contacts as Nc.

Macroscopically ρ is the density, ρs is the gross density and η is the viscosity of the system. We

also define p as the pressure and u as the velocity at any given point in the system. The stress

tensor, the stress deviator tensor and the shear strain are denoted by T , σ, and γ, whereas

the normal stress and the shear stress on a particular plane are denoted by σn and τ . We also

denote two important physical properties corresponding to the modeling of granular materials

- µ(I) as the friction coefficient and I as the inertial number.

3.1 Physical Background

3.1.1 Mohr Coulomb criterion for friction

The Mohr theory suggests that the shear stress on a failure reaches some unique function of

normal stress, τ = f(σ), where τ is the shear stress and σ is the normal stress. Coulomb found

that for frictional motion the yield shear stress can be expressed as a combination of a normal

stress dependent component and a stress independent component. While the normal stress

dependent component is connected with the internal angle of friction φ, the former seems to be

related to the intrinsic cohesion and is denoted by the symbol c. Then, the Coulomb equation

reads:

τ = σ tanφ+ c, (3.1)

where φ and c are the material constants defined as the angle of internal friction and the

cohesive strength respectively: A material is called non-cohesive if c = 0. Eq. 3.1 represents

the simple law of friction of two solids sliding on each other with the shear force proportional

to the normal force where µ = tanφ is the friction coefficient. A similar condition also exists at

the interface between the granular material and the walls of the container: Here only the angle
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of internal friction is replaced by the angle of wall friction φW . The angle satisfies φW < φ

since the wall is usually less rough than a powder layer which is mainly due to the void fraction

near the wall.

3.1.2 Regimes of powder flow

Similar to fluid flow, where several characteristic numbers, like Froude number, Reynolds

number, etc. can be used to characterize the qualitative flow behavior, the various powder

regimes can be represented as a function of a dimensionless shear rate γo∗ = γo[dp/g]1/2 which

contains a gravitational term g and a particle size dp. Based on such a characterization, one

has the following three different regimes.

• Quasi-static regime: This regime is valid when the flow is slow enough so that any

movement between two static states can be neglected. In this case the static equilibrium

equation can be applied. With this approach only stress and condition of the onset of

flow can be computed, while no flow field can be predicted which circumscribes the range

of applications of this approach. There is a large number of analytical and numerical

solutions to this case and an important number of literature devoted to this regime, see

for instance [14],[16].

• Slow and frictional regime: In this regime the frictional forces between particles

are predominant, so the inertial effect is added to the static equations as well as the

consideration of continuity beside a yield condition. The first model invoking a flow

rule was introduced by Schaeffer (1987) [17]. This regime is very important since it can

be used for modeling a wide range of practical phenomena and industrial applications.

However, for the serious challenges which arise in this regime, for instance ill-posed

partial differential equations and the prediction of stress fluctuations, there is still a lack

of fundamental research so that dealing with these problems requires a multidisciplinary

treatment. Our contribution has the goal of supporting this part by modern numerical

methods which will be described in the subsequent sections.

• Intermediate and rapid granular regimes: For the intermediate regime, in addition

to inter-particle friction energy, collision energy is also important. For the rapid regime,

the short particle-particle contacts are important while frictional forces are neglected and

this regime is often described via kinetic models (see [18] for more details).
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3.1.3 Flow rule

• Venant Principle: The Saint Venant principle of solid mechanics says that stresses

cause deformations preferentially in the same direction. This leads to the co-axiality flow

rule condition which states that the principal directions of the stress and rate of defor-

mation are parallel and neglects the rotation of a material element during deformation.

In two-dimensional Cartesian coordinates, this condition takes the form, for example:

Tii − Tjj
Tij

=
2(∂u1

∂x −
∂u2

∂y )
∂u1

∂x + ∂u2

∂y

.

This was postulated by Schaeffer [17] for the deformation of granular material. However,

since the deformation of the granular material requires that the stresses in different

directions must be different, Schaeffer claimed that ”the response of the material to such

unequal stresses should be to contract in the directions of greater stress and to expand

in the directions of smaller stress”. This reflects the requirement that the eigenvectors of

stress tensor and strain rate are aligned and it quantitatively links the deviatoric stress

and the strain rate tensor by the formula σ = λγ̇.

• Plastic deformation: The deformation of a granular material is considered to be plastic

in the sense that, if after deformation the shearing stress is reduced, the material would

not show any tendency to return to its original state. Plastic deformation was already

proposed by E. C. Bingham, in 1922, in the context of non-Newtonian fluids, and in

which the rheological behavior is governed by the following equation in modified state

introduced by Oldroyd:

T = −pI +

(
µ0

‖ γ̇ ‖
+ µ

)
γ̇ (µ0 > 0, µ > 0) .

• Dilatancy: A simple manifestation of this phenomenon occurs when one leaves dry

footprints while walking along a wet beach: The deformed sand dilates, therefore space

between grains increases, allowing for upper water to invade the sand. As a consequence,

footsteps get dry and water goes down. This is the phenomenon of dilatancy which was

explained by Reynolds in 1885, and demonstrated experimentally: A glass tube attached

to a balloon showed that the amount of excess water decreased when the sand was

deformed, thus showing that deformation increases the space between grains. Dilatancy

is important in the dynamics of granular material, introducing a stick-slip instability at

low velocity (see [19]), and it occurs because each grain needs more space in the flowing
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state than at rest. Then, the flow theory of plasticity must be applied to the constitutive

modeling for describing the deformation process of a granular material.

3.2 Discrete model

3.2.1 Spring-dashpot model

Here we assume that the inertial effects associated with the individual particle interactions are

negligible in this model and the stress is largely independant of deformation rate. We take all

the particles to be spherical and they interact via contact forces. Two spherical particles with

position vectors ri, rj and radii Ri, Rj experience a force

Fij = Fnij + Ftij ,

when δij = Ri +Rj − |ri − rj | > 0,

where nij =
ri − rj
|ri − rj |

is the normal unit vector

and tij is a unit vector in the tangential plane.

The normal and tangential components of the interaction force acting on a particle i for the

Hookean contact model are:

Fnij
= knδijnij − γnm∗vnij

,

Ftij = −ktυtij − γtm∗vtij ,

where kn,t and γn,t are the spring elastic and the viscous damping constants, vnij
and vtij are

the normal and tangential component of particle relative velocity and m∗ = mimj/(mi +mj)

is the effective mass of the two particle system satisfying Fji = −Fij . The tangential force can

be computed from the elastic shear displacement, υtij and its rate is given by:

dυtij
dt

= vtij −
(υtij · vij)rij

r2
ij

.

The last term arises from the rigid-body rotation around the contact point and ensures that

υtij always lies in the local tangent plane of contact. As the shear displacement increases, the

tangential force reaches the limit imposed by a static yield criterion, |Ftij | ≤ µ′|Fnij
|, charac-

terized by a local particle friction coefficient , µ′. The tangential force is then set to the limit

value by truncating the magnitude of υtij .
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This spring-dashpot model is very similar to the Hertzian model, where the contact forces are

defined as:

FnHzij =
√
δijR∗

(
knHzδijnij − γnm∗vnij

)
,

FtHzij =
√
δijR∗

(
− ktHzυtij − γtm∗vtij

)
,

where R∗ = RiRj/(Ri+Rj) is the effective radius. The normal and tangential elastic constants

in the Hertzian model are related to the particle material properties as:

knHz =
3

4
E∗, where E∗ =

(
1− ν2

i

Ei
+

1− ν2
j

Ej

)−1

ktHz = 8G∗, where G∗ =

(
2− νi
Gi

+
2− νj
Gj

)−1

with Ei,j ,νi,j and Gi,j denoting particle Young’s modulus, Poisson ratio and shear modulus

respectively. The value of the linear spring elastic constant is chosen to be large enough to

minimize particle overlap, yet not so large as to require an unreasonably small simulation time

step.

In the Hookean model, we set

kt =
2

7
kn, γt =

1

2
γn,

e = exp

(
−γnπ

√
m∗ − γ2

n

4kn

)

and γn is chosen to yield e = 0.7 for the normal restitution coefficient. The model does

not incorporate the effect of gravity and simple shear flow is induced via the Lees-Edwards

boundary conditions. The x−, y− and z−directions refer to the flow, neutral (vorticity) and

gradient directions respectively. The macroscopic rate of deformation tensor γ̇m at the steady

state is expressed as:

γ̇m =
1

2
γ̇
(
e(x)e(z) + e(z)e(x)

)
,

where e(x) and e(z) are unit vectors in x and z directions and γ̇ is the shear rate. Homogeneous

stress and strain can be extracted from this type of flows, which facilitates the constitutive
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modeling. The macroscopic stress is calculated as:

σ =
1

V

∑
i

[∑
j 6=i

1

2
rijFij +mi(v

′
i)(v

′
i)

]
,

where v′i is the fluctuating velocity of a particle relative to its mean streaming velocity in the

shear flow. The average coordination number is defined as the mean contacts per particle in

the contact network, Z = 2Nc/N , where Nc is the total number of contacts (with non-zero

contact forces) and N is the total number of particles in the contact network. When the

coordination number is equal to a critical value Zc, the granular assembly is at an isostatic

state and the number of degrees of freedom is matched by the number of constraints between

particles. The particles with zero (floaters) or one contact (rattlers) can be neglected as they

do not participate in the contact network and Z2 is used to distinguish from the model where

the floaters and rattlers are not neglected. The unit contact normal vector pointing from centre

to centre of two spherical particles in contact is denoted by n and the fabric tensor is defined

as the symmetric traceless second rank tensor

A =
1

Nc

Nc∑
α=1

nαnα − 1

3
I3,

where I3 is the three dimensional unit tensor. The structural anisotropy can be easily related

to the shear component of the fabric tensor Axz. Next we demonstrate a simple model which

can capture the dynamic shear results for the microstructural quantities. We define:

γ̇md = γ̇m −
1

3
tr(γ̇m)I

and σ = pI − pη γ̇md
|γ̇m|

,

where γ̇md is the deviotric strain rate tensor and η is a scalar macroscopic friction coefficient

in the solid regime (equivalent to viscosity in the fluid regime). p and η are expressed in terms

of Z2 and A as:

pd

k
= (a1 + a2|A|)(Z2 − Zc)α,

η = b1 + b2A : Ŝ,

where a1 and a2 are material parameters and α = 2. The micromechanical equation involving
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elasticity and pressure can be written as:

σ ≈=
3φZ

2πd3
r̄

(
knδ̄n

1

Nc

∑
i

∑
j 6=i

nn− ktδ̄t
1

Nc

∑
i

∑
j 6=i

nt

)
,

where r̄, δ̄n, δ̄t are mean quantities. We define W as the spin tensor and Ȧ denotes its material

derivative and the evolution equation for fabric is expressed as:

W =
1

2
(∇v −∇vT )

A∗ = c1S + c2|D|A+ c3(A : S)A

= Ȧ+A ·W +W ·A .

3.2.2 Discrete element method

The Discrete Element Method (DEM) has been adopted as an analysis tool in many fields

dealing with granular matter such as process and pharmaceutical industries [15]. DEM is

closely related to Molecular Dynamics (MD) and also called as soft particle Molecular Dynam-

ics sometimes. The principle of both methods can be summarized as finding the trajectories

of particles obeying principles of classical mechanics by solving Newton’s equation of motion.

However as the name suggets, MD is mainly used to study thermodynamic properties of en-

sembles of atoms and molecules, DEM on the other hand is generally used to simulate the

motion of macroscopic particles. Consequently the interactions between particles are usually

dissipative in DEM, whereas the forces are conservative i.e. derived from a potential in MD.

If particles are large enough, long range interactions such as van-der-Waals forces are negligi-

ble. In this case particles interact only when they are in close contact. At this point they start

deforming due to the forces exerted on to each other. In real granular materials particles have

complicated shapes and their deformation and forces acting on them can be very complex. To

reduce the computational cost, particles are typically modeled as spheres or disks in DEM and

it is assumed that they are in contact when they overlap. Furthermore the contact forces are

computed as a function of the overlap.
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Micro formulation: Here first the normal collision of two spherical particles is viewed as

the linear spring-dashpot contact force model and the overlap of two particles with diameters

di, dj and position vectors ri, rj is defined as:

δ = max

(
0,

1

2
(di − dj)− (ri − rj) · nij

)
,

where nij is the normal unit vector parallel to the line connecting their centers. The relative

speed and acceleration can be expressed as:

δ̇ = −(vi − vj) · nij = −vij · nij ,

δ̈ = −(ai − aj) · nij = −(fi/mi − fj/mj) · nij = − 1

mij
fi · nij = − fi

mij
,

where mij =
mimj

mi+mj
is the effective mass and fi = −fj is the contact force acting on the

particles. According to the spring-dashpot model:

fi = −mij δ̈ = kδ + γδ̇,

where k is the linear spring constant and γ is the viscous damping coefficient. Regarding this

equation and using the following substitutions for the natural frequency ω0 =
√
k/mij and

the viscous dissipation η = γ
2mij

, we obtain the ordinary differential equation of the harmonic

oscillator:

ω2
0δ + 2ηδ̇ + δ̈ = 0.

With the initial condition δ(0) = 0 and δ̇ = ν0, the solution is given as:

δ(t) =
ν0

ω
exp(−ηt) sin(ωt),

where ω =
√
ω2

0 − η2 is the oscillation frequency of the damped system. The duration of a

contact can be defined in two ways. The first criterion is expressed by δ(tδc) = 0 and then tc

corresponds to the half-priod of the oscillator

tδc =
π

ω
.

Another way is to assume that the contact ends when the force is zero i.e. f(tfc ) = 0. Then tfc

can be obtained as:
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tfc =
1

ω

(
π − arctan

2ηω

ω2 − η2

)
.

Finally using one of the tc described above, we can obtain the restitution coefficient with

r = −ν(tc)
ν0

and this gives r = exp(−ηtδc) for tδc. The contact duration and the coefficient

of restitution for the bouncing of a particle on a wall can be computed following the same

procedure and assuming mwall = ∞. Linear elastic and viscous tangential contact forces are

modeled in a similar way

f t = −ktδt − γtvtij ,

with the spring stiffness kt, viscous dissipation γt and tangential displacement δt and the

tangential velocity at contact

vtij = vij − (vij · nij)nij − Ωi × Lij + Ωj × Lji,

where Ωj is the angular velocity of particle i and Lij = −((di − δ)/2)nij is the branch vector

from the center of particle i to the contact point. The tangential spring length is calculated

by integrating

dδt

dt
= vtij −

(δt · nij)nij
|ri − rj |

starting from the time of contact. The second term is needed to rotate the spring so that it is

always perpendicular to the contact normal nij .

Contact friction is described by the Coulomb friction model where µ is the coefficient of friction

which limits the tangential contact forces such that |f t| ≤ µ|fn| with fn being the normal

contact force. Particles slide past each other if |f t| = µ|fn| and are stuck otherwise. If

|f t| > µ|fn|, the tangential displacement is adjusted to satisfy Coulomb criterion. After force

calculation, the next step of DEM is the integration of the equations of motion and it can be

achieved by using any numerical integration scheme:

miai = fi and Ii
dΩi
dt

= qi,

where Ii is the moment of inertia and fi and qi are the total force and torque acting on the

particle respectively.
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Micro-Macro tansition: DEM allows a very detailed description of granular materials includ-

ing contact forces and exact position of the particles. However the amount of data generated

during a DEM simulation is huge and in order to compare it to macroscopic experiments or

theories, smoothing and averaging are necessary. Here some averaging procedures are pre-

sented, which are used to obtain macroscopic tensorial quantities such as the fabric tensor and

the stress for granular materials.

• Averaging formalism

The general rule to obtain any average quantity Q in an area V is defined as:

Q =
1

V

∑
p∈V

wpV V
pQp, (3.2)

where V p is the volume of the particle and wpV is the weight of the contribution to the

average and Qp is the pre-averaged particle quantity

Qp =

Cp∑
c=1

Qc

with Qc the local quantity at the contact and Cp the number of contacts of the particle.

The simplest example of averaging is the solid volume fraction of a particle assembly

obtained with Qp = 1:

v =
1

V

∑
p∈V

wpV V
p .

From this the average density can be easily computed by assigning the weight to the

particle densities wpV = ρp.

• Fabric Tensor

The fabric is a tensorial quantity which is used to characterize the internal structure of

an assembly of grains. For a single particle its definition is given as:

F p =

Cp∑
c=1

nc ⊗ nc,

where nc is the unit vector pointing outwards in the direction of the contact. An equiva-

lent definition is given in terms of the branch vectors connecting the center of the particle
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to the contact points

F p =
1

a2

Cp∑
c=1

Lpc ⊗ Lpc,

where a is the particle radius assuming that it is spherical. The average fabric is computed

as:

F = 〈F p〉 =
1

V

∑
p∈V

wpV V
p
Cp∑
c=1

nc ⊗ nc .

Note that tr(F p) is equal to the number of contacts of the particle Cp. In a regular lattice

arrangement assuming that wpV = 1∀p, tr(F ) is exactly equal to Cv i.e. the coordination

number times the volume fraction.

• Stress

The average stress of a body inside a volume V is defined by:

σ̄ =
1

V

∫
V

σdV .

Using the static equilibrium condition ÷σ = 0 and the divergence theorem it can be

shown that:

σ̄ =
1

V

∫
∂V

(x⊗ σ) · ndV,

where x is the position vector and n is the outward normal vector. Therefore the average

stress inside a particle which is in contact with other particles can be expressed as:

σp =
1

V p

Cp∑
c=1

Lpc ⊗ Lpc .

Here we have assumed that the contact forces f c are equal to point loads such that

σc ·n = f c where σc is the stress tensor at the contact point. Now following the formalism

expressed in Eq. 3.2, the average stress tensor in a particle assembly can be written as:

σ = 〈σp〉 =
1

V

∑
p∈V

wpV

Cp∑
c=1

Lc ⊗ Lc .
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If the weights wpV are ignored, the average stress can also be expressed as a sum over all

contacts inside the assembly. Since f c = fpq = −fqp where fpq and fqp are the forces

exerted by particles q and p on to each other respectively, it is possible to write:

σ =
1

V

∑
c∈V

Lc ⊗ f c .

3.3 Model based on Statistical Distribution

3.3.1 3D granular flows down an inclined surface

The macroscopic fields in this model involve density, velocity, granular temperature, as well as

strain-rate, stress and fabric tensors. Due to the plane strain flow, each tensor can be expressed

in an inherently anisotropic form with only four objective, coordinate frame invariant variables

[7]. For example, the stress can be decomposed as

1. the isotrpic pressure

2. the anisotropy of the deviatoric stress

3. the anisotropic stress in the principal direction

4. the anisotropic stress in the orientation of its eigensystem

In this model, it is assumed that each particle’s mass is located at the center. The particles

are soft so that the collisions are not instantaneous, but not too soft so that the contact area

can be replaced by a contact point. Furthermore, the particles are convex so that each particle

pair has a single point of contact. Flow particles are labeled from 1 to N , while the boundary

particles are labeled from N + 1 to N + Nb. We take the material to be homogeneous, each

particle has mass mi = m. From statistical mechanics, the microscopic (point) mass density

of the flow, ρmic, at a point r at time t is defined by:

ρmic(r, t) =

n∑
i=1

mδ(r − ri(t)),

where δ(r) is the Dirac-delta distribution. The macroscopic mass density field can be extracted

by convoluting the microscopic mass density with a coarse-graining function W (r) (which can

be chosen arbitrarily) yielding
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ρ(r, t) =

n∑
i=1

m

∫
R3

δ(r′ − ri(t))W (r − r′)dr′

=

n∑
i=1

mW (r − ri(t)) .

One example of W (r) can be Lucy function and it has the advantages of producing twice

differentiable fields and having compact support:

W (r) =
105

16πc3

(
− 3

(
r

c

)4

+ 8

(
r

c

)3

− 6

(
r

c

)2

+ 1

)
,

for r := |r| < c, 0 else

with c being the range and w = c/2 being the half-width, or standard deviation. We define the

volume function ν, coarse-grained momentum density vector j and the macroscopic velocity

field u as:

ν(r, t) =
ρ(r, t)

ρp
=

N∑
i=1

VW
(
r − ri(t)

)
,

j(r, t) =

N∑
i=1

mviW
(
r − ri(t)

)
,

u(r, t) =
j(r, t)

ρ(r, t)

with V = π
6 d

3 the particle volume and vi the velocity of particle i. Now the momentum balance

equation takes the form:

∂j

∂t
= −∇ · [ρuu]−∇ · σ + Fb + ρg,

where uu denotes the tensor product of two velocity vectors and σ denotes the macroscopic

stress tensor. It can be divided into its kinetic and contact contributions as:

σ = σk + σc,

where σk =

N∑
i=1

mv′iv
′
iW
(
r − ri(t)

)
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and σc =

N∑
i=1

N∑
j=i+1

Fijrij

∫ 1

0

W
(
r − ri + srij

)
ds

+

N∑
i=1

N+Nb∑
k=N+1

Fikaik

∫ 1

0

W
(
r − ri + saik

)
ds

with interaction forces Fij = −Fji, branch vectors rij = ri − rj and contact-to-center vectors

aik = ri − cik, where cik denotes the contact point between the fluid particle i and the wall

particle k. The fluctuation velocity v′i of particle i and the pressure are defined by:

v′i(r, t) = vi(t)− u(r, t),

p(r, t) =
1

3
tr
(
σ(r, t)

)
.

The boundary interaction force density, Fb, is applied by the base to the flow and has nonzero

values only near the basal surface. It can be introduced into continuum models as a boundary

condition for the stress. The expressions will look like:

Fb =

N∑
i=1

N+Nb∑
k=N+1

fikW
(
r − cik

)
,

σiz(z = b) =

∫
R

Fbi(z)dz, for i = x, y, z .

The so called granular temperature is a measure of the squared fluctuation velocities, that can

be obtained by scaling the kinetic fluctuation energy density:

Tg =
tr(σk)

3ρ
.

The fabric tensor, which is an approximate macroscopic measure of the contact orientation

distribution, is defined by:

F =

N∑
i=1

N∑
j=1,j 6=i

Vnijnij
∫ 1

0

W
(
r − ri + srij

)
ds

+

N∑
i=1

N+Nb∑
k=N+1

Vniknik
∫ 1

0

W
(
r − ri + saik

)
ds

with the contact normal unit vector nij =
rij
|rij | . The trace of the fabric is its isotropic invariant
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and it is proportional to the contact number density. This leads to the coordination number

Z =
tr(F )

ν
.

3.3.2 Vibrated powder and molecular analogies

In this model, a Brownian motion at a macroscopic scale is created by a vibrating cell and it

has been seen that the dense-phased vibrated powders exhibit rheological behaviour archetypal

of non-Newtonian viscoelastic fluids [8]. The evolution of steady state viscosity has been accu-

rately expressed as a function of the shear rate, the frictional stress, the granular pressure, the

mass of the sample, the vibration frequency, the vibration energy, the intergranular contact

network meanlife and the free volume distribution. In the case of monodispersed spherical

particles, the system is a suspension of unconnected particles below the random loose packing

fraction φrlp = 0.56 and the momentum transport is collisional as in a gas. Between φrlp and

the random close packing fraction φrcp = 0.64, the stress transmission is throuh intergran-

ular contacts. As a consequence, the collisional part of momentum transport can generally

be neglected in dense granular media and the samples behave rather like a liquid or a solid,

depending on the circumstances. The intergranular contacts form a bimodal heterogeneous

network constituted by a strong contact network (SCN) carrying stresses larger than the aver-

age stress and a weak contact network (WCN) carrying stresses lower than the average stress.

Experimental studies show that only a small number of grains belong to the strong network and

hence, solid-like and liquid-like states coexist in the system. So the stationary dense granular

flows can be described by a nonlocal constitutive law accounting for the existence of transient

clusters, when the medium is near the random close packing fraction. The flowing system is

depicted as depicted as a temporary network of solid chains (SCN) immersed in an assembly of

mobile particles (WCN) acting like an isotropic interstitial fluid. As a consequence, the stress

tensor is written as a sum of three contributions: A frictional term derived from the Coulomb’s

law, a viscous term and a nonlocal term. The macroscopic nature of granular materials, coupled

with the existence of the contact network and the resulting long-range interactions implies that

their transport properties mainly depend upon the spatial arrangement of the grains resulting

from the sample conditioning. So in order to determine any significant physical characteristic

of a powder, one needs to obtain an average value that takes into account a representative set

of spatial configurations. A system is ergodic only if it can explore all the accessible configu-

rations during the measurement time, e.g, Brownian motion in the case of molecular system.

The powders also show vertical vibrations, which generate granular agitation that have been

shown to be (macro-)Brownian. The granular agitation can be quantified through the fluc-
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tuating part of the average kinetic energy of the grains in terms of a granular temperature

Tg, which can be viewed as the control parameter of the random kinetics of the grains. The

transport properties depend strongly on their density since grains need adjacent empty spaces

large enough to rearrange themselves. The required space is the free volume Vf of the system,

defined as:

Vf = NV̄f = V − Vp − Vi = V − V0 = Vp(
1

ϕ
− 1

ϕm
) = V (1− ϕ

ϕm
),

where N is the total number of particles, V̄f is the average free volume per free particle, V is

the total volume, Vp the volume of particles, Vi the interstitial volume, ϕ = Vp/V the packing

volume fraction and ϕm = Vp/(V − Vf ) the maximum packing volume fraction. Common

observation of a sand pile evidences that the sample behaves as a Hookean solid, until the

tangential force Ft does not exceed a critical force Fc. In such a situation, Ft is given by:

Ft = Fe = kex with x < xc,

where Fe is the elastic force and ke is the elastic constant. The granular pressure p on a surface

∆S is related to the normal force Fn exerted on a grain by:

p = N̄dFn,

where d̄ is the thickness of one layer of grains, N̄ = N/V is the average number of grains per

unit volume, N is the total number of grains and V is the total volume of the sample. The

work W done by Fe when the grain moves from x = 0 to x = xc is equal to the work done

against the granular pressure p, to create the corresponding volume v = vc or equivalently

against Fn to displace the adjacent grains on a characteristic length lc. So we can write:

W =
1

2
kex

2
c = pvc = Fnlc,

ke =
2vc
x2
c

p =
2lc
x2
c

Fn =
2lc
x2
c

p

nd̄
with vc =

lc
N̄ d̄

.

The intergranular connections are broken beyond xc, resulting in a plastic irreversible defor-

mation leading to a stick-slip process. In this configuration, the relative displacement x can be

linked to the macroscopic shear strain γ and shear rate γ̇ in the steady-state regime through
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γ =
x

d̄
= γ̇t,

γc =
xc
d̄

= γ̇ct,

where d is the distance between two adjacent layers of grains and tc the critical time. The

vibrations are considered to be sinusoidal and the energy Ev is calculated as that of the

harmonic oscillator owning the same mass m having vibration frequency f and amplitude A,

Ev =
1

2
m(2πf)2f2 .

When a sample is submitted to vibrations, the related reorganization frequency fb is equal to

the vibration frequency of the cell f , modulated by the probability p(vf < v∗f ) that a given

grain has a free volume vf greater than a characteristic free volume v∗f beyond which spatial

arrangement of neighbouring contacts becomes possible. Assuming a Boltzmann distribution

of the free volume, we can write:

fb = fp(vf > v∗f ) = f

∫ inf

v∗f

ρ(vf )dvf = f exp(−ξv∗f/v̄f ) .

Both reorganization processes, induced by shear and vibrations, are independent from each

other and hence we write the total reorganization frequency λ−1 as:

λ−1 =
γ̇

γc
+ fb .

λ can also be seen as the mean lifetime of intergranular contacts, when the sample is under

shear and vibrations. Now we can express the impulse per grain ι, the shear stress τ and the

steady-state viscosity η as:

ι =

∫ λ

o

Fe(t)dt =

∫ λ

o

kedγ̇tdt =
1

2
kedγ̇λ

2,

τ = ι
N̄∆x∆y∆z

λ∆x∆z
=

1

2
N̄ked̄

2γ̇λ, with G =
1

2
N̄ked̄

2 =
lcd

x2
c

p =
µc
γc
p,

η =
τ

γ̇
=

G

fb + γ̇
γc

=
η0

1 + γ̇
γcfb

=
τc

γcfb + γ̇
, with τc = Gγc = η0γcfb = η0γ̇c = µcp,

where λ is the average lifetime, ∆y = d̄ the separation between two adjacent layers and

µc = lc/xc and γc = xc/d̄ are two characteristic parameters.
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Here we can see:

1. if γ̇ � γ̇c = γcfb, η → η0: the Brownian motion becomes more efficient than the shear, the

viscosity becomes independent of shear rate and consequently the regime is Newtonian.

2. if γ̇ � γ̇c = γcfb, τ → τc: the Brownian motion becomes negligible and the stress

becomes independent of the shear rate. As τc is also proportional to the pressure, we can

write:

τc = µcp = µcσn,

which is nothing but the Coulomb law, resulting the corresponding regime to be Coulm-

bian. Moreover, as this frictional stress also depend on η0 and the viscosity itself is

proportional to the pressure, the effect of the pressure on the viscosity has to be taken

into account as a first-order parameter.

For more details on how the viscosity depends on the vibrations in terms of frequency and

energy, one can look up for the Vogel-Fulcher-Tammann equation.

3.4 Continuous model

As stated earlier that any kind of flow-problem can be modeled mathematically very precisely

by the Navier-Stokes equation, it is one of the most common and important equations in

continuum mechanics. We apply the law of conservation of mass and momentum on a small

element in a control volume and with the help of Reynolds transport theorem, we get the

following form of the Navier-Stokes equation:

ρ
Du

Dt
= ∇ · T + f in Ω

with ∇ · u = 0 in Ω,

where ρ and u are the density and the velocity of the fluid medium in the continuous level,

D
Dt represents the material derivative, T is the Cauchy stress tensor and f is the external force

present in the domain Ω of the system. Now if we express the Cauchy stress tensor in terms of

the deviatoric stress tensor σ and the pressure p and furthermore the deviatoric stress tensor
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σ in terms of viscosity η and the rate of deformation tensor γ̇ as:

T = σ − pI

and σ = 2ηγ̇,

the generalized Navier-Stokes equation takes the form:

ρ
Du

Dt
= −∇p+∇ · (2η(|γ̇|, p)γ̇) + f in Ω,

with ∇ · u = 0 in Ω,

where the viscosity η can be constant or a function of the shear rate |γ̇| and the pressure p.

For example,

η(|γ̇|, p) = η0, for Newtonian fluid, (3.3)

= η0|γ̇|(m−2), for Power law, (3.4)

= η0 +

√
2

2

τ0
|γ̇|
, for Bingham fluid, (3.5)

=

√
2

2

p sinφ

|γ̇|
, for Schaeffer model, (3.6)

=

√
2

2
p

(
sinφ

|γ̇|
+ b cosφ|γ̇|(n−1)

)
, for Tardos model, (3.7)

=

√
2

2

αp
|γ̇|

+
βdp

δ
√

p
ρ + |γ̇|d

 , for Poliquen model. (3.8)

Here η0 is a constant for the Newtonian fluid. The power index in the power law model is

represented by m and τ0 represents the yield stress of the particular Bingham fluid. For the

subsequent Schaeffer, Tardos and the Poliquen model, the viscosity is dependent on the shear

rate |γ̇| and the pressure p, φ is the angle of internal friction of the material and b, n, α, β,

d, δ are experimental constants. The shear rate is expressed as γ̇ = 1
2 (∇u + (∇u)T ) and its

magnitude is defined as |γ̇|2 = tr[(γ̇)2] = γ̇ : γ̇. Since sometimes the shear rate also appears

in the denomenator, we replace |γ̇| by
√
|γ̇|2 + ε2 to avoid singularity with ε being a typical

(small) regularization parameter. The advantage of this generalized Navier-Stokes equation is

that we can formulate almost every kind of most common fluid flows (e.g. Newtonian, Power

law, etc.) and we can also get a similar formulation to study the physical properties granular

materials (e.g. Poliquen model).
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3.5 Mathematical modeling of Granular materials

3.5.1 Landau Approach

This model is based on the Landau theory of phase transitions. It is assumed that the shear

stresses in a partially fluidized granular matter are composed of two parts: The dynamic part

proportional to the shear strain rate and the static part, which is strain-indepenent. The

relative magnitude of the static shear stress is controlled by the order parameter (OP), which

varies from 0 in the liquid phase to 1 in the solid phase. The OP can be related to the local

entropy of the granular material and OP dynamics is coupled to the hydrodynamic equation

for the granular flow. The continuum description of granular flows can be described by the

momentum conservation equation:

ρ
Dui
Dt

=
∂σij
∂xj

+ ρgi, j = 1, 2, 3

with ∇ · u = 0,

where ui are the components of the velocity, g is gravity and D
Dt = ∂t + ui∂xi

denotes the

material derivative. On the boundary, we assume no-slip conditions ui = 0 on solid walls

and kinematic boundary condition Dξ
Dt = un on free surfaces, where ξ is the displacement

of the free surface and un is the component of velocity normal to the surface. In the static

regimes, the shear stresses are determined by the applied forces, whereas in fast and dilute

granular flows the shear stresses are proportional to shear strain rates and the transition from

one state to another is governed by the Mohr-Coulomb criterion. We can write the stress

tensor as a sum of the hydrodynamic part proportional to the flow strain rate γ̇ij , and the

strain-independent part σsij . It is assumed that diagonal elements of the tensor σsii coincide

with the corresponding components of the ’true’ static stress tensor σ0
ii for the immobile grain

configuration in the same geometry and the shear stresses are reduced by the value of the order

parameter κ characterizing the phase state of granular matter. So we write the stress tensor

in the form:

σij = σsij + η

(
∂ui
∂xj

+
∂uj
∂xi

)
,

where σsij = ρσoij for i 6= j and σsii = σoii. In a static state, κ = 1, σij = σoij , vi = 0, whereas

in a fully fluidized state κ = 0 and the shear stresses are simply proportional to the strain rates

as in ordinary fluids. To have an equation for the order parameter κ, we adopt the standard

landau form for the free-energy-type functional F ∼
∫
dr[D|∇κ|2 + f(κ, φ)], which includes a

local potential energy and diffusive spatial coupling. We apply pure dissipative dynamics for
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the order parameter κ,

Dκ

Dt
= −δF

δκ
.

The potential energy density f(κ, φ) should have extrema at κ = 0 and κ = 1 corresponding

to uniform solid and liquid phases. Without loss of generality, we write the equation for κ as:

τ ′
Dκ

Dt
= l2∇2κ− κ(1− κ)F (κ, ψ),

where τ ′ and l are the characteristic time and length, and ψ = max|σ0
mn/σ

0
nn|, the maximum

is sought over all possible orthogonal directions n and m in the bulk of the granular material.

The simplest form of F (κ, ψ) which satisfies the microscopic constraints is

F (κ, ψ) = −κ+
ψ2 − ψ2

0

ψ2
1 − ψ2

0

,

where the values of ψ0 and ψ1 depend on the microscopic properties of the granular material.

We use a square of ψ to avoid nonanalytical behaviour at σ0
xz = 0. Rescaling t → t/τ and

xi → xi/l leads to

Dκ

Dt
= ∇2κ− κ(1− κ)(κ− δ) .

3.5.2 Schaeffer model

For a powder, a constitutive equation was first introduced by Schaeffer [17] which has to obey

the yield condition ‖ σ ‖=
√

2p sinφ and the flow rule σ = λγ̇ respectively with λ ≥ 0. In fact,

the flow rule is based on a yield criterion for granular materials of von Mises type, which is

basically derived from a law of sliding friction applied to the individual particles. Specifically

in terms of the principal stresses Si, this condition is written as:

3∑
i=1

(Si − p)2 ≤ k2p2 p =
1

3
trT,

where k =
√

2 sinφ is a characteristic constant of the material and Si are the eigenvectors of

Tij . For a material that deforms plastically, equality must hold

3∑
i=1

(Si − p)2 = k2p2 .
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Under plain strain p = 1
2 (S1 + S2), we may consider a strictly 2D-yield condition:

(S1 − p)2 + (S2 − p)2 = 2p2 sin2 φ .

A constitutive equation between stress and strain was proposed for slow powder by Schaeffer

[17]. This equation obeys the von Mises yield condition and the described flow rule:

T = −pI +
√

2p sinφ
γ̇

|γ̇|
.

In fact, the flow rule is assumed to have the form T = −pI + λγ̇, where λ is a coefficient. To

satisfy the yield condition of the given flow rule in terms of von Mises, i.e. ‖ σ ‖=
√

2p sinφ,

then there must hold:

λ =

√
2p sinφ

|γ̇|
.

Next we deduct the deviatoric stress and then use this correlation to obtain finally the viscosity

formulation as:

σ =

√
2p sinφ

|γ̇|
γ̇,

η =
σ

2γ̇
=

√
2

2

p sinφ

|γ̇|
.

3.5.3 Tardos model

There is theoritical evidence that in the intermediate regime, where the flow is fast enough

but still dense, the friction coefficient (the ratio of shear to normal stress) increases from its

constant value. While friction during very slow motion is only a function of the character of

the surface and the normal load, at higher shearing rates, it becomes a function of the rate

itself and increases as the rate of shearing increases. An experimental yield condition can be

obtained from the experiments in the Couette device for the case when the powder transitions

from the quasi-static to the intermediate regime of the flow [17],

τ

σ
= a+ b|γ̇|n,

where τ and σ are the shear and the normal stresses and a, b and n are coefficients characterized

by the experimental curve. The notation for the modulus of the shear rate |γ̇| is used to

designate that only its magnitude is of relevance and not its direction. The experimental value

of the coefficient a falls in the majority of cases between sinφ and tanφ and we make a slight
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generalization here by replacing it by tanφ to obtain:

τ

σ
= tanφ+ b|γ̇|n,

where φ is the angle of internal friction of the material. This equation has a great advantage

that it reduces to the Coulomb yield condition at zero shearing. An equivalent representation

of the Coulomb yield condition τ = σ tanφ + c can be obtained from the characteristic Mohr

circle, by replacing σ by p and τ/ tanφ by q/ sinφ in the form prescribed by R. M. Nedderman

[14]:

q = p sinφ+ c cosφ,

where q is half of the difference betwen the principal stresses and c is referred to as cohesion.

The deviatoric part of the constitutive equation for flow of a dry powder in the quasi-static

regime is:

σ =

√
2p sinφ

|γ̇|
γ̇ =

√
2q

|γ̇|
γ̇,

where γ̇ is the rate of deformation tensor, |γ̇| is its magnitude. We replace q by c = b|γ̇|n to

obtain:

σ =
√

2p (sinφ+ b cosφ|γ̇|n)
γ̇

|γ̇|
.

This is the constitutive equation that includes the behavior at very low and higher shear rates

characteristic of the intermediate regime of powder flow. The first term in the right hand side

of the above equation corresponds to the plastic deformation (frictional or solid-like behavior),

while the second term corresponds to the viscous behavior (liquid-like) of the granular material.

The effective viscosity is calculated by:

η =
σ

2γ̇
=

√
2

2
p

(
sinφ

|γ̇|
+ b cosφ|γ̇|(n−1)

)
.

3.5.4 Poliquen model

In this model, the rheology assumes that the granular material behaves like an incompressible

fluid with a visco-plastic constitutive law [1]. For rigid particles in the large systems, the

system is controlled by Inertial field I, which is a single dimensionless parameter and defined
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by:

I =
|γ̇|d√
p/ρ

.

It is important to note that the macroscopic friction coefficient µ(I) does not depend on the

microscopic properties of the grains in the range of inertial number corresponding to the dense

flow regime. Changing the coefficient of restitution of the grains or the inter-particle friction

coefficient, does not change the macroscopic friction. The inertial field can be interpreted as

the ratio between two time scales - a microscopic time scale d√
p/ρ

, which represents the time

required for a particle to fall in a hole of size d under pressure p, and which gives the typical

timescale of rearrangements and a macroscopic timescale 1
γ̇ coming from the mean deformation.

Also small I corresponds to a quasi-static regime in the sense that macroscopic deformation is

slow as compared to microscopic rearrangements, whereas large values of I correspond to rapid

flows. It could be seen that to switch from quasi-static to inertial regime, one can either increase

the shear rate or decrease the pressure. Fitting the experiments and numerical simulations, it

is possible to propose analytical expressions for the friction law and volume fraction law, which

can be then used to study other configurations. An example of phenomenological expressions

are:

µ(I) = µs +
µ2 − µs
1 + I0

I

,

where µs, µ2 and I0 are the material dependent parameters. Here as we consider that the shear

stress tensor is colinear to the shear rate tensor and the flow is incompressible, i.e. we neglect

the variation of volume fraction and assume that the pressure is isotropic in nature. Then we

can write the stress tensor in terms of effective viscosity as:

σ =

√
2µ(I)p

|γ̇|
γ̇,

where |γ̇| being the modulus shear rate tensor. Now we combine all the expressions for inertial

number, frictional coefficient and the effective viscosity and we get following expression:
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σ =

√
2µ(I)p

|γ̇|
γ̇

=
√

2

(
µs +

µ2 − µs
1 + I0

I

)
pγ̇

|γ̇|

=
√

2

(
α+

βI

I + I0

)
pγ̇

|γ̇|
where α = µs, β = µ2 − µs

=
√

2

α+
β |γ̇|d√

p/ρ

|γ̇|d√
p/ρ

+ δ

 pγ̇

|γ̇|
where δ = I0

=
√

2

(
αp

|γ̇|
+

βdp

|γ̇|d+ δ
√
p/ρ

)
γ̇ .

Within this description, the granular liquid is described as an incompressible non-Newtonian

fluid with an effective viscosity

ηeff =

√
2

2

(
αp

|γ̇|
+

βdp

|γ̇|d+ δ
√
p/ρ

)
.

This general described formulation can be used to investigate different type of configurations

for the flow of granular media. For example, we aim to study the velocity distribution in a 2D

couette flow, which is presented in Section 6. So the govering equation for this model takes

the form:

−∇ ·

[
√

2

(
αp

|γ̇|
+

βdp

|γ̇|d+ δ
√
p/ρ

)
γ̇

]
+ u · ∇u+∇p = 0 in Ω

with ∇ · u = 0 in Ω
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4 Mathematical Background

4.1 Preliminaries

4.1.1 Sobolev space

Let Ω denote an open subset of RN with boundary Γ. We define D(Ω) to be the linear space

of infinitely differentiable functions with compact support on Ω. Then we set

D(Ω̄) = φ|Ω; φ ∈ D(RN )

or equivalently, if Θ denotes any open subset of RN such that Ω̄ ⊂ Θ,

D(Ω̄) = φ|Ω; φ ∈ D(Θ) .

Now let D′(Ω) denote the dual space of D(Ω), often called the space of distributions on Ω. We

denote the duality pairing between D′(Ω) and D(Ω) by 〈., .〉 and we remark that when f is a

locally integrable function, then f can be identified with a distribution by:

〈f, φ〉 =

∫
Ω

f(x)φ(x)dx ∀φ ∈ D(Ω) .

Now we can define the derivatives of distributions. Let α = (α1, α2, ..., αN ) ∈ NN and set

|α| =
N∑
i=1

αi .

For u in D′(Ω), we define ∂αu in D′(Ω) by:

〈∂αu, φ〉 = (−1)|α|〈u, ∂αφ〉 ∀φ ∈ D(Ω) .

If u is α times differentiable, ∂αu coincides with the usual notion of derivative

∂αu =
∂|α|u

∂xα1
1 ...∂xαN

N

.

For each integer m ≥ 0 and real p with 1 ≤ p ≤ ∞, we define the Sobolev space:

Wm,p(Ω) = {v ∈ Lp(Ω); ∂αv ∈ Lp(Ω) ∀|α| ≤ m},
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which is a Banach space with the norm

‖ u ‖m,p,Ω=

 ∑
|α|≤m

∫
Ω

|∂αu(x)|pdx

1/p

, p <∞

or

‖ u ‖m,∞,Ω= max
|α|≤m

(
ess sup

x∈Ω
|∂αu(x)|

)
, p =∞ .

We also provide Wm,p(Ω) with the following seminorm

|u|m,p,Ω =
( ∑
|α|=m

∫
Ω

|∂αu(x)|pdx
)1/p

p <∞

and we make the above modification when p =∞. If u belongs to Wm,p(Θ) for every measur-

able, compact proper subset Θ of Ω, we say that u is locally in Wm,p(Ω) and write:

u ∈Wm,p
loc (Ω) .

When p = 2, Wm,2(Ω) is usually denoted by Hm(Ω) and if there is no ambiguity, we drop the

subscript p = 2 when refering to its norm and seminorm. Hm(Ω) is a Hilbert space for the

scalar product

(u, v)m,Ω =
∑
|α|≤m

∫
Ω

∂αu(x)∂αv(x)dx .

In particular, we write the scalar product of L2(Ω) with no subscript at all and we also define

the subspace Hm
0 (Ω) to be all functions in the Sobolev space Wm,2(Ω), whose trace is zero.

4.1.2 Bilinear form

Let us define the bilinear form using the Poisson equation in a convex polygonal domain Ω [34]

−∆u = f,

u|∂Ω = 0,

where f ∈ L2(Ω). For u ∈ H1
0 (Ω) ∩H2(Ω),

||u||2 ≤ CΩ||f ||0,
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where || · ||2 := || · ||H2(Ω) and || · ||0 := || · ||L2(Ω) .

To derive the weak formulation, first consider a test function v ∈ H1
0 (Ω) and then multiply the

above equation with v and integrate by parts to obtain the problem:

Find u ∈ H1
0 (Ω) such that:

a(u, v) = F (v) ∀v ∈ H1
0 (Ω), where

a(u, v) =

∫
Ω

∇u∇vdx, F (v) =

∫
Ω

fvdx .

Let Th be a triangulation of the domain Ω and Vh be the space of approximations, then the

approximate problem reads:

Find uh ∈ Vh(Ω) such that

ah(uh, v) = F (v)∀v ∈ Vh, where

ah(u, v) =
∑
T∈Th

∫
T

∇u∇vdx∀u, v ∈ Vh .

4.1.3 Error Analysis

In order to obtain a conforming finite element approximation, let us introduce a finite dimen-

sional subspace V ch ⊆ H1
0 (Ω) [35]

V ch = {v ∈ L2(Ω) : v|T ∈P1(T ),∀T ∈ Th, v is continuous at the

vertices of Th and v = 0 at the vertices along ∂Ω}

and define the norm ||v||1 = (a(v, v))
1
2 = |v|H1(Ω). It follows from V ch ⊆ H1

0 (Ω) that if

ah(u, v) = a(u, v) ∀u, v ∈ V ch , then

||u− uh||1 = min
v∈Vh

||u− v||1 .

With the linear interpolation operator πh and for u ∈ H2(Ω) the error estimate holds:

||u− uh||1 ≤ ||u− πhu||1 ≤ Ch||u||2 .
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4.1.4 Weak formulation

We express the Cauchy stress tensor T as:

T = 2ηγ̇ − pI,

where γ̇ =
1

2

[
∇u+ (∇u)T

]
.

So the Navier Stokes equation takes the form:

ρ
Du

Dt
= ∇ · (2ηγ̇ − pI) + f

= ∇ ·
(

2η
1

2
(∇u+ (∇u)T )− pI

)
+ f

= η∇2u+ η∇ · (∇u)T −∇p+ f

= η∇2u+ η∇(∇ · u)−∇p+ f

= η∇2u−∇p+ f .

Here we use the condition ∇ · u = 0 for incompressible flow.

From the Navier Stokes equation, we take the stationary form as:

u · ∇u = η∇2u−∇p+ f .

So now we have the following system of equations in strong form:

u · ∇u− η∇2u+∇p = f

and ∇ · u = 0,

where the unknown variables are u ∈ C2 and p ∈ C1. But we derive the weak formulation so

that the solution space can be relaxed. We take v ∈ H1
0 and multiply with the first equation

and by integrating over the whole domain, we get:∫
Ω

(u · ∇u)vdΩ− η
∫

Ω

∇2uvdΩ +

∫
Ω

∇pvdΩ =

∫
Ω

fvdΩ

Or,

∫
Ω

(u · ∇u)vdΩ− η
(∫

dΩ

∇uvdτ −
∫

Ω

∇u∇vdΩ

)
+

(∫
dΩ

pvdτ −
∫

Ω

p∇ · vdΩ

)
=

∫
Ω

fvdΩ

Or,

∫
Ω

(u · ∇u)vdΩ + η

∫
Ω

∇u∇vdΩ−
∫

Ω

p∇ · vdΩ =

∫
Ω

fvdΩ .
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Similarly we take q ∈ L2 and multiply with the second equation and by integrating the whole

domain, we get: ∫
Ω

∇ · uqdΩ = 0 .

Now we define bilinear forms as:

A(u, v) =

∫
Ω

(u · ∇u)vdΩ + η

∫
Ω

∇u∇vdΩ

B(p, v) = −
∫

Ω

p∇ · vdΩ

l(v) =

∫
Ω

fvdΩ .

So we get the system of weak formulation as:

A(u, v) +B(p, v) = l(v)

BT (q, v) = 0 .

Now we can write the complete algorithm of the approximate linearized problem in following

algebraic system: Compute u and p by solving A B

BT 0

×
u
p

 =

Resu
Resp


4.1.5 Weak formulation with Deformation tensor

Let us again take the stationary form of Navier-Stokes equation for Newtonian fluid as:

u · ∇u = 2η∇ · γ̇ −∇p+ f

Or, u · ∇u− 2η∇ ·D(u) +∇p = f, where D(u) = γ̇ =
1

2

[
∇u+ (∇u)T

]
.

If we take a test function v and integrate after multiplying the above equation with v, we get

the weak formation:∫
Ω

(u · ∇u)vdΩ + 2η

∫
Ω

D(u) : ∇vdΩ +

∫
Ω

(u · ∇u)vdΩ−
∫

Ω

p∇ · vdΩ =

∫
Ω

fvdΩ .
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Now we write:

∇v =
1

2

[
∇v + (∇v)T

]
+

1

2

[
∇v − (∇v)T

]
= D(v) +

1

2

[
∇v − (∇v)T

]
.

Then we show:

D(u) :
[
∇v − (∇v)T

]
= tr

 2∂u1

∂x
∂u1

∂y + ∂v2
∂x

∂u1

∂y + ∂v2
∂x

∂v2
∂y

×
 0 ∂v1

∂y −
∂v2
∂x

∂v2
∂x −

∂v1
∂y 0


=

(
∂u1

∂y
+
∂v2

∂x

)(
∂v2

∂x
− ∂v1

∂y

)
+

(
∂u1

∂y
+
∂v2

∂x

)(
∂v1

∂y
− ∂v2

∂x

)
= 0 .

So,

2η

∫
Ω

D(u) : ∇vdΩ = 2η

∫
Ω

D(u) :

(
D(v) +

1

2

[
∇v − (∇v)T

])
dΩ

= 2η

∫
Ω

D(u) : D(v)dΩ + 2η

∫
Ω

D(u) :
1

2

[
∇v − (∇v)T

]
dΩ

= 2η

∫
Ω

D(u) : D(v)dΩ + η

∫
Ω

D(u) :
[
∇v − (∇v)T

]
dΩ

= 2η

∫
Ω

D(u) : D(v)dΩ .

Therefore we get the same weak formulation also with the deformation tensor as: A B

BT 0

×
u
p

 =

Resu
Resp



where A(u, v) =

∫
Ω

(u · ∇u)vdΩ + 2η

∫
Ω

D(u) : D(v)dΩ

B(p, v) = −
∫

Ω

p∇ · vdΩ

l(v) =

∫
Ω

fvdΩ .
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4.1.6 Problem formulation with Generalized Navier Stokes equation

Let us consider the stationary generalized Navier-Stokes problem in a bounded domain Ω ⊂ R2.

If we restrict the set V of test functions to be divergence-free and take the constitutive laws

into account, the (stationary) equations lead to: Find u ∈ V such that∫
Ω

2η(|γ̇|, p)D(u) : D(v)dx+

∫
Ω

(u · ∇u)vdx =

∫
Ω

fvdx, ∀v ∈ V .

It is straightforward to penalize the constraint ∇ · u = 0 to derive the equivalent mixed

formulation: Find (u, p) ∈ X ×M such that∫
Ω

2η(|γ̇|, p)D(u) : D(v)dx+

∫
Ω

(u · ∇u)vdx+

∫
Ω

p div vdx =

∫
Ω

fvdx, ∀v ∈ X;

with

∫
Ω

q div udx = 0, ∀q ∈M

with spaces X = H1
0 (Ω) and M = L2(Ω) for the Newtonian case. In general these spaces

depend on the function η. Also, the related Stokes problems has to be considered, which

means that the convective term
∫

Ω
(u · ∇u)vdx has to be omitted. For the following analysis,

let us introduce the bilinear forms:

〈L(w, q)u, v〉 =

∫
Ω

2η(|γ̇|(w), q)D(u) : D(v)dx;

〈N(w)u, v〉 =

∫
Ω

(w · ∇u)vdx;

〈Bq, v〉 =

∫
Ω

q div vdx .

Then we can rewrite the generalized flow problem in the compact form: Find (u, p) ∈ X ×M
such that

〈L(u, p)u, v〉+ 〈N(u)u, v〉+ 〈Bp, v〉 =

∫
Ω

fvdx, ∀v ∈ X;

〈Bq, u〉 = 0, ∀q ∈M .

4.1.7 Discrete Newton solver

There is a well known solver technique named Discrete Newton solver as an alternative of

its continuous version and here we give a short description about that. After applying the

discretization method to the above system where the approximations belong to the finite di-

mensional spaces 4.10 and 4.11, a system for the residual of nonlinear algebraic equations is
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obtained:

Res(x) = 0,

where x represents the vector of the coefficients corresponding to the unknowns (uh, ph). To

solve this system, let us apply a Newton method with damping which results in iterations of

the form:

xn+1 = xn − wn
[
∂Res(xn)

∂x

]−1

Res(xn) .

This iteration is repeated until a certain conditions on the quality of the solution are met, which

means a certain norm of the residual ||Res(xn)|| is small enough. The damping parameter

wn ∈ (0, 1) is chosen such that

Res(xn+1) · xn+1 ≤ Res(xn) · xn .

The damping greatly improves the robustness of the Newton iteration in the case when the

current approximation xn is not close enough to the final solution since the Newton method

without damping is not guaranteed to converge. The Jacobian matrix
[
∂Res(xn)

∂x

]
can be

approximated using central finite differences as:[
∂Res(xn)

∂x

]
ij

=
Resi(x

n + εej)−Resi(xn − εej)
2ε

,

where the vector ej = (δij) and δij is the standard Kronecker symbol. The parameter ε can

be fixed or can be modified according to some norm of the solution ||xn|| or the norm of the

update in the previous step ||xn − xn−1||.

4.1.8 Continuous Newton solver

The nonlinearity in the problem can be handled by a continuous Newton solver on the contin-

uous level. Let (ul, pl) be the initial state for the diffusive term, then the continuous Newton

method consists of finding (u, p) ∈ V ×M such that∫
Ω

2η(|γ̇|(ul), pl)D(u) : D(v)dx+

∫
Ω

2∂1η(|γ̇|(ul), pl)[D(ul) : D(u)][D(ul) : D(v)]dx

+

∫
Ω

2∂2η(|γ̇|(ul), pl)[D(ul) : D(v)]pdx

=

∫
Ω

fvdx−
∫

Ω

2η(|γ̇|(ul), pl)D(ul) : D(v)dx,∀v ∈ V,
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where V is a divergence free velocity field and ∂iη(·, ·); i = 1, 2 is the partial derivative of η

related to the first and second variables respectively. To see this, set X = D(ul), x = D(u), Y =

pl, y = p, F (x, y) = η( 1
2 |x|

2, y)x and f(t) = F (X + tx, Y + ty) so that

∂xj
Fi(x, y) = ∂xj

η(
1

2
|x|2, y)xjxi + η(

1

2
|x|2, y)δij

∂yFi(x, y) = ∂yη(
1

2
|x|2, y)xi,

where δij stands for the standard Kronecker symbol. Having

f ′i(t) =
∑
j

∂xj
Fi(X + tx, Y + ty)xj + ∂yFi(X + tx, Y + ty)y

= η(
1

2
|X + tx|2, Y + ty)xi + ∂1η(

1

2
|X + tx|2, Y + ty)(X + tx, x)(Xi + txi)

+ ∂2η(
1

2
|X + tx|2, Y + ty)y(Xi + txi)

and then decreasing t towards zero, we obtain the Frechet derivative:

∇ · [2η(|γ̇|(ul), pl)D(u) + 2∂1η(|γ̇|(ul), pl)(D(ul) : D(u))D(ul)

+ 2∂2η(|γ̇|(ul), pl)pD(ul)] .

Finally, the resulting auxiliary subproblems in each Newton step consist of finding (u, p) ∈
X ×M as the solutions of the linear systems:

L(ul, pl)u+ δdL
∗(ul, pl)u+Bp+ δpB

∗(ul, pl)p = Resu(ul, pl)

BTu = Resp(u
l, pl),

where Resu(·, ·) and Resp(·, ·) corresponds the nonlinear residual terms for the momentum and

continuity equations. The operators L∗(ul, pl) and B∗(ul, pl) are defined as follows:

〈L∗(ul, pl)u, v〉 =

∫
Ω

2∂1η(|γ̇|(ul), pl)[D(ul) : D(u)][D(ul) : D(v)]dx;

〈B∗(ul, pl)v, p〉 =

∫
Ω

2∂2η(|γ̇|(ul), pl)[D(ul) : D(v)]pdx .

Similarly, the corresponding Newton linearization applied to the convective term 〈N(u)u, v〉
leads to the additional bilinear form:
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〈N(ul)u, v〉+ δc〈N∗(ul)u, v〉 ∀v ∈ X,

where 〈N∗(ul)u, v〉 =

∫
Ω

(u · ∇ul)vdx ∀v ∈ X .

Finally we can write the complete algorithm of the approximate linearized problem in following

algebraic system: Compute u and p by solving A B̃

BT 0

×
u
p

 =

Resu
Resp

 (4.9)

where Au = [(L+ δdL
∗)(ul, pl) + (Ñ + δcN

∗)(ul)]u,

B̃p = [B + δpB
∗(ul, pl)]p .

Remarks: The full Newton method is performed for δd = 1, δc = 1 and δp = 1, while the Fixed

point method corresponds to δd = 0, δc = 0 and δp = 0.

4.2 Discretization aspect

The finite element pair Q2/P1, being potentially of 3rd order accuracy due to the biquadratic

polynomials for velocity and the linear pressure approximation, is one of the most popular dis-

cretization techniques in the CFD community. Though special nonconforming FEM elements

like Q̃1/Q0 Stokes element have been developed which provide an optimal approximation error

of one order less; such linear finite elements seem to require much more degrees of freedom to

satisfy a prescribed accuracy than compared with the quadratic Q2/P1 ansatz, while they show

a much superior behavior at the same time with respect to the efficiency of the involved solvers.

We discretize our continuous problem by the standard Galerkin finite element method, hereby

approximating the domain Ω by a domain Ωh with piecewise linear boundary which is equipped

with a quadrilateral mesh Th. On this mesh, we define the finite dimensional spaces Vh and

Ph for the velocity and the the pressure approximation as:

Vh = {vh ∈ H1
0 (Ωh)2, vh|T ∈ Q2(T )2 ∀T ∈ Th, vh = 0 on ∂Ωh}, (4.10)

Ph = {ph ∈ L2(Ωh), ph|T ∈ P1(T ) ∀T ∈ Th} . (4.11)
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By Q2(T ) we denote the standard biquadratic space on the quadrilateral T which, when trans-

formed by the bilinear transformation to the reference quadrilateral Tref = (−1, 1)2, is defined

by:

Q2(Tref ) = span{1, x, y, xy, x2, y2, x2y, xy2, x2y2}

with the 9 local degrees of freedom located at the vertices, midpoints of the edges and in the

center of the quadrilateral. The space P1(T ) consists of linear functions defined on the reference

element by:

P1(Tref ) = span{1, x, y}

with the function value and both partial derivatives in the center of the quadrilateral as its 3

local degrees of freedom. Recently, we modified the ansatz via using a non-parametric version

for P1(T ) working without transformation to the reference element.

4.3 The Numerical Solver

As it has been specified earlier that the choice of the characteristic function f(Qn) for the

increment of the weighing parameter δi ∈ [0, 1], δi = δd, δc, δp of the discretization matrices

is based on simple and preliminary numerical experiments, the motivation and the evolution

of this particular function will be now discussed in details in this chapter. In this context we

would like to mention that the results, which are presented here, are for the simulations of

the Navier Stokes equation on the level 2 for the regularized Bingham fluid Eq. 3.3 with the

physical parameters η0 = 1E − 3, ε = 0.01 in the Flow around cylinder geometry Fig. 5.1 with

the tolerence limit of 1E − 12. The associated geometry and the benchmarking results will be

presented in details in Section 5.

Initially we start with a pure Fixed Point solver, which is slow and a pure Newton solver,

which can be unstable. So we try to figure out whether it is possible to build a mixed Newton

solver with the advantages of both the Fixed point and Newton solver. To be more specific, at

this moment such a solver is desirable, which is not as slow as the Fixed Point solver and also

not unstable like the pure Newton solver. So we want to make an adaptive version of Newton

solver, which starts from the Fixed Point state and changes ultimately to pure (full) Newton

state in an adaptive way. In the transient (mixed) state, it changes itself from (more) Fixed

Point to (more) Newton if faster convergence is possible and conversely it changes from (more)
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Newton to (more) Fixed Point if it finds itself unstable. Or in other words, we start with an

initial δi, which is zero or small non-zero (typically ≤ 0.5), and after some transient values it

finally takes a steady value of 1.

4.3.1 Phase 1

As we have no idea how to modulate the transient states in the beginning, we start with

only two states - namely Fixed Point and pure Newton states. We are aware from our initial

experiments that our configuration for the Bingham fluid is still stable for δi = 0.5 and we

incorporate a module based on a parameter named as convergence radius ε, which can be

prescribed any desired value. We start the solver with partial Fixed Point state with δi = 0.5

and as soon as the residual becomes less than ε, it converts itself to pure Newton states with

δi = 1.0. So δi takes the value initially 0.5 and finally 1.0 and the change happens only one

time and at one direction.

Figure 6: Initial strategy of the Adaptive Newton solver

For a successful convergent result we represent the solver statistics as ’a+b’, where there are ’a’

number of partial Fixed Point sweeps and ’b’ number of full Newton sweeps. The simulation

is done on level 2 with the tolerance limit of 1E − 12 and the other physical parameters are

taken as: η0 = 1E − 3, ε = 0.01.

ε τ0 = 0.001 τ0 = 0.01 τ0 = 0.1 τ0 = 0.5 τ0 = 1.0

1E-1 osci osci osci osci 23+6

1E-2 osci osci 22+5 24+5 24+6

1E-3 osci 15+5 23+5 29+3 37+4

1E-4 6+5 16+4 45+4 83+3 103+3

1E-5 9+4 28+3 79+3 142+2 170+2

1E-6 14+3 44+2 112+2 201+2 239+2

Table 1: Number of partial and full Newton iterations for Bingham fluid
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Remarks:

1. We can clearly see that the problem becomes harder with the increase of yield stress τ0,

as the number of nonlinear iterations are more for a higher yield stress.

2. For a fixed τ0, there is a threshold value of the convergenge radius ε and if the conversion

from the partial Fixed Point to full Newton takes place with the residual value more

than this threshold value, the solver will always fail to converge (or it oscillates in other

words).

3. It is expected that if the conversion takes place at two different values ε1 and ε2 with

ε1 > ε2, the later will always take more number of iterations to converge, as the Fixed

Point is slow and the solver is in this state for more time.

4.3.2 Phase 2

Next we try to improve our solver by allowing δi to have also more intermediate values. We

start with an initial δiinitial value and if the Qn = (Resnew/Resold) is less than 1, we multiply

δi with an increment factor and if the Qn is more than 1, we multiply δi with an decrement

factor. We stop the increment when δi reaches 1.

Figure 7: Intermediate strategy of the Adaptive Newton solver

Here we do not stick to a particular δiinitial, as we can take any prescribed value. However we

fix the maximum initial value to be 0.6. We experiment with several pairs of the increment

and decrement factor and here we present the scenario, where they are 1.2 and 0.8 respectively.

So mathematically

δn+1

δn
=

1.2 if Qn < 1.0

0.8 if Qn ≥ 1.0 .
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δiinitial τ0 = 0.001 τ0 = 0.01 τ0 = 0.1 τ0 = 0.5 τ0 = 1.0

0.1 15 21 osci 21 20

0.2 13 osci osci 20 21

0.3 12 23 osci 32 18

0.4 12 osci 25 77 osci

0.5 11 14 osci 19 19

0.6 11 osci 21 98 95

Table 2: Nonlinear iterations of the intermediate Adaptive Newton solver for Bingham fluid

Remarks:

1. Definitely the behavior of the solver improves for the harder problems (high τ0).

2. There are some cases where it fails to converge. However given the characteristic of the

strategy, it is difficult to pinpoint the exact reason.

4.3.3 Phase 3

0 0.5 1 1.5 2

x

0.5

1

1.5

2

2.5

3

f(
x
)

Figure 8: Visualization of Phase 3

Now we prefer to smoothen the factor and

hence we came up with the idea of express-

ing the factor as a (almost)-piecewise contin-

uous function. Here also we try several com-

binations of different functions and show the

results with a particular piecewise continu-

ous function. As the Qn can take the val-

ues between (0,∞), the particular domain is

divided into 3 subdomains - (0, 0.8), (0.8, 1)

and (1,∞) and instictively we can say that

the function will be mostly decreasing in na-

ture. As the small value of δn means that the

solver is going in the right direction, we keep a range of high value of (3.48, 1.4) in the first in-

terval with a hyperbolic function. Next when δn is close to 1, that means that the convergence

rate is not so good and we use a slow decreasing quadratic function for the range [1.4, 1) in the

second interval. Now as Qn > 1 means that the solver is going in the wrong direction, we use

a rapidly decreasing hyperbolic function in the third interval. We had to leave the continuity

around the point 1, as we wanted to make it strongly decreasing on the right side and it has

to be more than 1 on the left side, because Qn < 1 means that the solver is going in the right
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direction. Mathematically it is expressed as:

δn+1

δn
=


4 + 0.52

(Qn−1) if Qn < 0.8

1 + 10(Qn − 1)2 if 0.8 ≤ Qn < 1.0

0.8
Qn

if 1.0 ≤ Qn .

δiinitial τ0 = 0.001 τ0 = 0.01 τ0 = 0.1 τ0 = 0.5 τ0 = 1.0

0.1 11 21 57 40 39

0.2 11 17 40 34 34

0.3 10 22 36 34 33

0.4 osci 19 35 33 30

0.5 16 20 33 19 32

0.6 20 24 32 32 31

Table 3: Nonlinear iterations of the pre-Adaptive Newton solver for Bingham fluid

Remarks:

1. Clearly we can see that this variant of the solver is much more stable compared to the

previous versions, as the number of iterations have decreased by a big margin overall.

2. It also encourages us to find a continuous version of the increment/decrement factor, so

that it would be more elegant.

4.3.4 Phase 4
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Figure 9: Visualization of Phase 4

As stated previously, this is the final version

of our Adaptive Newton solver and the solver

swings back and forth between the Fixed

point state and the Newton state continu-

ously implicitly in this variant. The third

version showed the possible shape of the func-

tion and it comes out that the function of

the family f(x) = d + a
b+exp(cx) shows sig-

nificant saturation on the left side and rapid

decrement on the right side of the interval.

We want to restrict the lowest value by 0.2

and so d = 0.2. It also means that when the
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solver shows no convergence (or is unstable in words), δn is reset to 0.2. After a few ex-

periments we come up with the restrictions f(0) = 2.5, f(0.8) = 1.2 and f(1) = 0.97 and

the values of a, b and c are obtained from them after rounding off as in this particular set

a = 4, b = 0.7, c = 1.5 and d = 0.2. The function f(x) is expressed in the below:

δn+1

δn
= f(Qn) = 0.2 +

4

0.7 + exp(1.5Qn)
, (4.12)

where Qn =
‖ Resn ‖
‖ Resn−1 ‖

. (4.13)

Now we present the convergence statistics and we can see that for all the different choices of

δiinitial and τ0, we are able to get convergent behaviour of our solver.

δiinitial τ0 = 0.001 τ0 = 0.01 τ0 = 0.1 τ0 = 0.5 τ0 = 1.0

0.1 11 23 33 30 31

0.2 10 18 28 26 27

0.3 09 18 24 23 23

0.4 10 16 24 19 20

0.5 30 16 18 19 19

0.6 15 16 20 19 20

0.7 18 18 26 20 23

0.8 50 15 26 19 18

0.9 61 16 18 21 18

1.0 46 15 18 22 21

Table 4: Nonlinear iterations of the Adaptive Newton solver for Bingham fluid

Hence we can infer that we have been successful to implement the Adaptive Newton solver and

next we present an example of the convergence behavior of one particular instance, namely

δiinitial = 0.2 and τ0 = 0.5.
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Figure 10: Convergence statistics of the Adaptive Newton solver for Bingham fluid with τ0 = 0.5

We can see in Fig. 10 that the residual shows a slow but steady convergence for the first 18

nonlinear iterations due to the fact that δn is very small in the beginning and Qn also remains

close to 1. Next at the 19th step, δn becomes 1 for the first time. However the solver shows a

bad behavior as the Jacobian is not yet ready to be used for the Full Newton solver and we can

see an increase in the residual, which results in the decrement of δn. However as Qn remains

less than 1, δn slowly increases and become 1 again at the 22nd step. From this moment the

solver stays in the Full Newton state, as it shows good convergence behavior and we can also

see a rapid decrement in the residual value, resulting in to be converged in 26 iterations.

4.3.5 Conclusion

If we closely look at the solver statistics for the different phases and compare them qualita-

tively, we can clearly see that our solver has evolved to be more stable compared to its previous

version. It means that the final version of our Adaptive Newton solver is able to produce a

convergent result for a large range of δiinitial and τ0, whereas the first couple of versions failed

to produce a convergent result for several pairs of δiinitial and τ0.

Also if we compare the different phases quantitatively, it clearly shows that for the convergent

53



result with a particular pair of δiinitial and τ0; the number of nonlinear iterations to solve the

system, i.e, the solver statistics, improves too upon the introduction of continuous function for

the increment/decrement factor. Hence we can comprehensively conclude that the final version

of our continuous Newton solver is both qualitatively and quantitatively more superior than

its predecessors and so it is the best variant possible to be made. However we would like to

mention in this context that the particular continuous function f(Qn) is not unique and it is

possible to define it in other several ways. For example, the subsequent results presented for

Phase 2 in this section is computed with a different f(Qn):

δn+1

δn
=


1.1 if Qn < 0.5

1.05 if 0.5 ≤ Qn < 1.0

0.8 if 1.0 ≤ Qn .

We take the Bingham fluid with a particular yield stress τ0 = 0.5 and regularization parameter

ε = 0.01 in the Flow around cylinder benchmark and compare the convergence behavior for

different phases of the Adaptive Newton method.
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Figure 11: The residual convergence for the three phases of the Adaptive Newton method

We can see in Fig. 11 that the Fixed point method takes a large number (901) of iterations

to get a convergent result; whereas the different phases of the Adaptive Newton solver (i.e,

Phase 2, Phase 3 and Phase 4) take 55, 34 and 26 iterations respectively. Next we show the
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corresponding residual improvement Qn and the extent of Newton solver δn for each version

of the Adaptive Newton solver.
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Figure 12: The residual Resn, the increment Qn and the corresponding δn for Phase 2 of the Adaptive
Newton method
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Figure 13: The residual Resn, the increment Qn and the corresponding δn for Phase 3 of the Adaptive
Newton method
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Figure 14: The residual Resn, the increment Qn and the corresponding δn for Phase 4 of the Adaptive
Newton method

Fig. 12-14 show similar behavior in the sense that the residual is slow but steady in the

beginning, then it goes up and down for a few intermediate iterations and finally it converges

rapidly at the end. When the resdiual increases, the δn indeed decreases first and then it

increases again to reach the Full Newton state. When δn remains as 1 in the final iterations,

the residual shows quadratic convergence as expected from a Full Newton solver. Hence we

can conclude that our Adaptive Newton solver shows the characteristic as discussed in the

algorithm and can handle the problems, which cannot be solved by the direct use of Full

Newton solver.
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5 Numerical Validation

This chapter is dedicated to the validation of the code [33], which is a very crucial part of

the thesis. First, the well-known benchmark of Flow around cylinder [32] is described and

then tests with different fluids are performed step by step towards the final target of solving

quasi-Newtonian flow problems. The validation shows also the quality of the high order finite

element space (Q2/P1) with a strong Newton solver. The benchmark is without doubt very

interesting for the research and important as well for the industrial purposes.

5.1 Flow around cylinder benchmark

Flow around a cylinder is a popular benchmark for the evaluation of numerical algorithms for

incompressible Navier-Stokes equations in the laminar case. It was developed in 1995 as part of

the high-priority research program ”Flow simulation on high-performance computers” funded

by the German Research Association (DFG).

5.1.1 Geometry

Here we take a cylinder and put it in a rectangular channel at a fixed position. Now we let a

fluid with a specific density flow from one of the narrow boundaries. The other boundaries are

being kept generally as ’do nothing’ boundary condition. Then we calculate the drag and the

lift, the body-force experienced by the cylinder due to the flow of the fluid. For the simplicity

purpose, we will stick to the 2D version of it, where it is considered as a circle placed in a

laminar channel.

Figure 15: Geometry for the ‘flow around cylinder’ configuration

The geometry of the benchmark consists of a simple channel of length 2.2 and height 0.41. At

(x, y) = (0.2, 0.2) a cylinder with diameter L = 0.1 is placed. The left wall is set to a parabolic

inflow profile with maximum inflow velocity U = 0.3, which can be prescribed as:

(u1, u2) =

(
4Uy(0.41− y)

0.412
, 0

)
∀(x, y) ∈ [0]× [0, 0.41] .
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It is presscribed as Dirichilet-0 boundary conditions on the upper and lower wall and the

cylinder with (u1, u2) = (0, 0) and the boundary conditions on the right wall is ’do nothing’

boundary conditions. We can calculate the Reynolds number, Drag coefficient and the Lift

coefficient for this benchmark setup as:

Re =
UmeanL

η
= 20, CD =

2FD

ρUmean
2L
, CL =

2FL

ρUmean
2L

.

FD and FL are defined by:

FD =

∫
S

(
ρη
∂ut
∂n̄

ny − pnx
)
dS, FL = −

∫
S

(
ρη
∂ut
∂n̄

nx + pny

)
dS,

where S is the surface of the cylinder and n̄ is the normal vector of S.

5.1.2 Mesh specification

Figure 16: Coarse grid (level 1) for the ‘flow around cylinder’ configuration

We take the mesh presented above as the coarse mesh and refine it for the subsequent levels.

The element statistics is presented in the table, where NEL, NVT and NMP represent the

number of elements, vertices and mid points and Unknowns represents the total number of

unknowns for Q2/P1 discretization.

Level NEL NVT NMP Unknowns

L1 130 156 286 1533

L2 520 572 1092 5927

L3 2080 2184 4264 23295

L4 8320 8528 16848 92351

L5 33280 33696 66976 367743

Table 5: Element statistics for the bench1 mesh
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5.2 Convergence Statistics

Now we let different kind of fluids flow in the geometry (Fig. 15) with the specified boundary

conditions and here we present the convergence statistics.

5.2.1 Newtonian flow

First we let a Newtonian fluid flow with viscosity η = η0 = 0.001 (Re=20) and the reference

value of Drag and Lift values for it are found to be 5.579535 and 1.061894E-02 respectively

[30].

Drag Lift Solver Statistics

Level Fixed Point Newton Fixed Point Newton Fixed Point Newton

3 5.572228E+00 5.572234E+00 1.060067E-02 1.059862E-02 11/3 3/2

4 5.577628E+00 5.577649E+00 1.061565E-02 1.061018E-02 10/2 3/1

5 5.579065E+00 5.579143E+00 1.061781E-02 1.063458E-02 9/2 2/1

Table 6: Numerical results of full Newton solver for Newtonian fluid

5.2.2 Shear thinning fluid

Then we simulate the results for a shear thinning fluid, where the viscosity is represented as:

η = η0(|γ̇|2 + ε)
m
2 −1, where η0 = 10−3, ε = 0.1,m = 1.5. The reference value of Drag and Lift

values for this model are 3.27833 and -0.01332 respectively [30].

Drag Lift Solver Statistics

Level Fixed Point Newton Fixed Point Newton Fixed Point Newton

3 3.229269E+00 3.229259E+00 -1.313980E-02 -1.314073E-02 32/3 4/2

4 3.266370E+00 3.266363E+00 -1.334047E-02 -1.334371E-02 29/3 3/2

5 3.275334E+00 3.275314E+00 -1.330595E-02 -1.331410E-02 26/3 3/2

Table 7: Numerical results of full Newton solver for shear thinning fluid

5.2.3 Shear thickening fluid

Next we let a shear thickening fluid flow, where the viscosity takes the form: η = η0(|γ̇|2 +

ε)
m
2 −1, where η0 = 10−3, ε = 0.1,m = 3. The reference value of Drag and Lift values for this

model are 13.8271 and 0.3529 respectively [30].
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Drag Lift Solver Statistics

Level Fixed Point Newton Fixed Point Newton Fixed Point Newton

3 1.386694E+01 1.386694E+01 3.518391E-01 3.518386E-01 14/7 3/2

4 1.383631E+01 1.383630E+01 3.515629E-01 3.515616E-01 13/5 3/1

5 1.382972E+01 1.382967E+01 3.526886E-01 3.526851E-01 12/4 3/1

Table 8: Numerical results of full Newton solver for shear thickening fluid

5.2.4 Bingham Fluid

Lastly we consider the case of the Bingham fluid, which is conceived of as the simplest model

used to describe the viscoplastic fluid behavior. The constitutive law is characterized by a

flow curve which is a straight line having an intercept τ0 on the shear stress axis. We take

the regularized viscosity models to approximate the viscosity to be a smooth and differential

function. The reference value of Drag and Lift values for this model are 3.499933E3 and

3.094673E1 respectively [31]. The viscosity is represented as: η = η0 +
√

2
2 τ0(|γ̇|2 + ε)−

1
2 , where

η0 = 1, ε = 0.01, τ0 = 0.5.

Drag Lift Solver Statistics

Level Fixed Point Newton Fixed Point Newton Fixed Point Newton

3 3.492406E+03 3.492406E+03 3.152649E+01 3.152649E+01 17/2 4/2

4 3.497411E+03 3.497411E+03 3.153195E+01 3.153195E+01 17/2 3/2

5 3.499157E+03 3.499157E+03 3.158351E+01 3.158351E+01 16/2 2/3

Table 9: Numerical results of full Newton solver for Bingham fluid

5.2.5 Conclusion

We can see in Tables 6-9 that the calculated Drag and Lift values match with their respective

reference values for 4 different fluids and they tend to show convergence behavior on successive

refinements. Also from the point of view of the solvers, we can say that the Full Newton solver

is much faster compared to the Fixed point solver and hence one can use Full Newton method

for these kind of fluids in the Flow around cylinder benchmark problem.
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5.3 Adaptive Newton solver

Next we have try to solve the Bingham fluid with the parameter η = 1E − 3 instead of η = 1,

but suprisingly we come across a peculiar difficulty. Our studies show that the current problem

is solvable with the Fixed point slover, which is linear in behaviour; but whenever we want

to have a ’pure’ Newton solver to make it faster, which is quadratic in behaviour (locally);

unfortunately the solver failed to converge. So we develop an adaptive version of the Newton

method based on the direct calculation of the Jacobian and the explicit accessibility to the

Jacobian allows the adaptive treatment of it. Firstly a robust Newton method is made with

respect to the initial guess and then an efficient linear solver is applied due to selective strategy

of the nonsingular part of the Jacobian. We use the weighing parameter δn in order to balance

the operators A1 (corresponding to the typical fixed point approach) and A2, both being part

of the complete Jacobian A in Eq. 4.9:

A = A1 + δnA2 . (5.14)

In the present note, we concentrate on the choice of the optimal weighing parameter δn bal-

ancing the fixed point and the full Newton iteration. We set the standard tolerance limit as

1E − 8 and we take the classical flow around cylinder benchmark and perform corresponding

simulations for Bingham flow. First, we take a very small yield stress parameter, τ0 = 10−4,

and apply the Fixed point (δn = 0) and classical Newton (δn = 1) methods. Both the Newton

and the fixed point methods easily converges towards the solution and moreover, the Newton

method overcomes the fixed point method, as expected, due to the moderate nonlinearity. To

highlight the insufficiency of the globally damped Newton to simulate Bingham flow problems,

we further increase the yield stress. Now, the Newton method can only converge with a strong

damping parameter ωn as the yield stress increases, for instance ωn = 0.1 for τ0 = 10−2, and

no convergence at all can be obtained for higher yield stress, τ0 ≥ 10−1. Instead, the fixed

point method can converge for all cases, however being very slow and not being robust w.r.t.

mesh level and/or yield stress.

τ0 = 1E − 4 τ0 = 1E − 3 τ0 = 1E − 2 τ0 = 1E − 1 τ0 = 1

Level FP Newton FP Newton FP Newton FP FP

2 21 3 67 99 212 210 490 1032

3 24 5 84 95 308 200 728 2135

4 20 5 98 90 408 190 1375 3444

Table 10: The number of NL iterations for Bingham flow for increasing yield stress
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Clearly, with increasing yield stress (Table 10), it is hard if not impossible to solve the cor-

responding flow problems with the globally damped Newton. Therefore, in the next step, we

take a static δn, i.e. δn = δ0 for n ≥ 1. The balancing parameter δn is taken as a constant

increasing from 0 to 1. Next we present the numbers of nonlinear iterations for Bingham flow

with different values for the yield stress.

τ0 = 1E − 2 τ0 = 1E − 1

Level δ0 = 0.1 δ0 = 0.25 δ0 = 0.5 δ0 = 0.6 δ0 = 0.1 δ0 = 0.25 δ0 = 0.5 δ0 = 0.6

2 236 198 135 110 551 461 311 251

3 352 295 199 160 848 708 475 382

4 455 380 256 206 1455 1214 813 653

Table 11: The number of NL iterations for Bingham flow for increasing yield stress

From the results in Table 11, it is clear that increasing the contribution from the operator A2

improves the convergence behavior, but this contribution needs to remain under control. To

do so, we go for a dynamic change of δn w.r.t. the residual changes. From the numerical exper-

iment it can be noticed that the dynamic changes of the residual give a precious information

about the singularity of the Jacobian. Indeed, the larger relative changes in the residual with

the operator A1 reflect the ‘singularity’ of the operator A2. In this case, the parameter δn

should have a small relative change and remain small. Moreover, when the relative changes in

the residual are close to zero, this indicates that the operator A2 has the nicest properties and

δn can be increased accordingly and maintained close to 1.

We recall the previously defined characteristic function f(Qn) in Eq. 4.13 and point out

again that the choice of f(Qn) is derived so far based on simple and preliminary numerical

experiments only. We check the robustness of the dynamic changes of δn, as the numbers

of nonlinear iterations for Bingham flow for a wide range of yield stress values and different

starting weighing parameters δ0 for the Jacobian in Table 12.

τ0 = 1E − 2

δ0 0.001 0.01 0.1 0.5 1.0 2.0 5.0

0.0 10 15 20 19 19 20 20

0.3 10 16 20 19 19 20 20

0.7 18 18 22 22 20 18 18

1.0 46 14 19 21 21 22 22

Table 12: The number of NL iterations for Bingham flow for wide range of yield stress
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Since the convergence typically gets harder with smaller values for the regularization parameter

ε, we check the robustness of the dynamic changes of δn for decreasing ε and a wide range of

yield stress values. Next we show the numbers of nonlinear iterations for Bingham flow using

continuation strategies w.r.t. ε as well as w.r.t. τ0 in Table 13.

τ0

ε 0.001 0.01 0.1 0.5 1.0 2.0 5.0

Continuation w.r.t. ε

1E-2 10 15 20 19 19 20 20

1E-3 11 11 12 17 16 15 15

1E-4 15 13 18 16 15 26 15

1E-5 16 10 22 22 17 15 17

Continuation w.r.t. τ0

1E-2 10 14 19 12 8 7 7

1E-3 14 20 26 15 8 8 8

1E-4 21 26 34 23 10 17 8

1E-5 22 45 41 29 11 10 10

Table 13: The number of NL iterations for Bingham flow for wide range of yield stress
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6 Application

The range of practical real world problems which involve granular materials is growing and

since the considered problems become more complex and experimentally more expensive, one is

particularly interested in the development of new and more powerful computational methods

for solving these problems numerically. In this section we show that our Adaptive Newton

strategy based on FEM techniques is well suited to address the illustrated type of nonlinear

powder problems and lead to comparative results with related experiments. We consider the

following configuration, powder flow in a Couette device as shown in Fig. 17.

6.1 Geometry

Figure 17: Geometry and used mesh (level 1) for Couette flow

Here we want to study the flow of granular materials in the 2D version of a couette configuration

and we use a hydrostatic pressure parameter P instead of pressure p in the Poliquen model

3.3. We assume that P has a constant value on the whole domain and hence we claim that

a (modified) Poliquen model 6.15 is used as the viscosity formulation. We take the circular

channel between two concentric circles of radii 19 mm and 24 mm as the computational domain

and use the ’no-slip’ boundary condition on the perimeters of both the circles. The inner circle

is rotated at 10 rpm, while the outer one is kept at rest. Next we present the complete model

formulation, which is used fo solving the this benchmark problem.
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6.2 Mathematical formulation

We take the generalized Navier Stokes equation as:

ρ
Du

Dt
= −∇p+∇ · σ in Ω

with ∇ · u = 0 in Ω,

where ρ, u and p are the density, velocity and pressure of the fluid medium on the continuous

level, D
Dt represents the material derivative and σ is the stress tensor in the domain Ω. Now

we express σ = 2ηγ̇, where η is the viscosity and γ̇ = 1
2 (∇u +∇uT ) is the shear rate. Then,

the NS equation reads as:

ρ
Du

Dt
= −∇p+∇ · (2ηγ̇), ∇ · u = 0 in Ω .

6.2.1 Governing Parameters

In our model, η is expressed as:

η =

√
2

2
τ0

 α

|γ̇|
+

βd

δ
√

P
ρ + |γ̇|d

P . (6.15)

Additionally, we introduce a regularization parameter (here: ε = 0.01) in the denominator as√
|γ̇|2 + ε2. Now we set:

α = 0.15, β = 0.27, δ = 0.06,

P = 1487Nm−2, d = 0.001m, ρ = 1500kgm−3,

r1 = 0.019m, r2 = 0.024m .

We put τ0 =
√

2 to make the initial factor as unity. Moreover, the velocity of the inner couette

is prescribed as 10 rpm, which is changed to the SI unit by the following convertion:

|u| = 10rpm =
1

6
rps =

2πr1

6
m/s =

2π0.019

6
m/s = 0.019886667m/s .

6.2.2 Non-dimensionalization

Next, we convert the parameters into dimensionless quantities. One way to reach the non-

dimensionalization is to set the given ρ as unity. So, we change our mass unit in such a way

that the effective ρ becomes unity. Among the other parameters, only P contains the mass
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unit and so it is also changed to 1487/1500 = 0.99133. Finally, the new modified parameters

are:

α = 0.15, β = 0.27, δ = 0.06,

P = 0.99133, d = 0.001, ρ = 1,

r1 = 0.019, r2 = 0.024 .

6.2.3 Final model

After putting all the numerical values of the parameters described in the previous section, we

can write our final model of the NS equation and the corresponding viscosity formulation as:

Du

Dt
= −∇p+∇.(2ηγ̇), ∇ · u = 0 in Ω

where η =

(
0.1487√
|γ̇|2 + ε2

+
0.26766

59.7394 +
√
|γ̇|2 + ε2

)
,

γ̇ =
1

2
(∇u+∇uT ), |γ̇| =

√
γ̇ : γ̇ =

√
tr(γ̇2) and ε = 0.01 .

As (Dirichlet) boundary conditions the tangential velocity components are prescribed with

|u| = 0.019886667 on the perimeter of the inner circle and |u| = 0 (no slip) on the perimeter

of the outer circle.

6.3 Results

We use the above discussed model in our Finite element software Featflow [32] and in the

Finite volume software Openfoam in Freiberg. While solving the problem in Featflow, we take

a different characteristic function f(Qn) in contrast to the one mentioned in [27]. We express

the new function as:

f(Qn) = 0.2 +
17.694

8.83 + exp(2.608Qn)
.

The reason of choosing this particular f(Qn) can be found in section 8 and next we present

the comparisons between the Dortmund and Freiberg results.
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6.3.1 Dortmund results with Umfpack and MG

Level NEL NVT NMT Unknowns NL CPU/UMF NL/MG CPU/MG NL/MG CPU/MG

ε = 1E − 2 ε = 1E − 2 ε = 1E − 3

L1 32 48 80 415

L2 128 160 288 1535 20 1 21/1 1.5 37/1 2.85

L3 512 576 1088 5887 21 11 22/3 15 32/2 42

L4 2048 2176 4224 23039 17 102 15/1 25 22/1 65

L5 8192 8448 16640 91135 15 2958 16/2 154 24/1 319

L6 32768 33280 66048 362495 20 67163 21/2 1012 21/1 1425

L7 131072 132096 263168 1445887 13 545700 25/2 5483 23/2 7866

Table 14: Statistics for the Dortmund results

As the number of nonlinear iterations are mostly around 20-25, we can say that the solver

shows a stable behavior. When we solve the problem with Umfpack, we can see a steady

increase in the CPU time for each level. However when we use the multigrid solver, there

is a significant improvement for CPU time for the finer meshes. So we can conclude that

the multigrid method takes more time in the coarser mesh. However when we want to solve

the problem more accurately, multigrid method seem superior compared to Umfpack method

starting from level 4.

6.3.2 Detailed results for multigrid solver

Here we represent the detailed results of the Multigrid solver with the regularization parameter

ε = 1E−2 and 1E−3. The number of smoothing steps is 15 and maximum number of iterations

for a multigrid cycle is taken as 10. In this context we would like to mention that it is also

possible to solve the problem with 7 smoothing steps for ε = 1E − 2. However as ε = 1E − 3

makes the problem harder, it needs 15 smoothing steps for this case and so the number of

smoothing steps is taken as 15 to have a relevant comparison between two regularization

parameters.
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MG gain 1E-1 MG gain 1E-2

ε = 1E − 2 ε = 1E − 3 ε = 1E − 2 ε = 1E − 3

Level NL/MG CPU/MG NL/MG CPU/MG NL/MG CPU/MG NL/MG CPU/MG

L1 10 0.2 10 0.2

L2 20/1 2 34/1 3.5 20/1 2 33/1 3.5

L3 21/1 12 32/2.5 43 21/1.5 14 32/3 43

L4 15/1 40 22/1 69 16/1 44 29/2 115

L5 16/1 215 24/1 323 16/2 244 27/1.5 426

L6 21/1.5 1476 21/1.5 1363 20/2 1481 21/2 2029

L7 24/1.5 7671 23/1.5 8176 23/1.5 6353 28/2 11534

Table 15: Convergence statistics for multigrid gain 1E − 1 and 1E − 2

MG gain 1E-3 MG gain 1E-4

ε = 1E − 2 ε = 1E − 3 ε = 1E − 2 ε = 1E − 3

Level NL/MG CPU/MG NL/MG CPU/MG NL/MG CPU/MG NL/MG CPU/MG

L1 10 0.2

L2 20/1.5 4 33/1 3.8 20/1.5 4.3 33/2 4.7

L3 21/2 27 32/3.5 48 21/2.5 38 32/4 56

L4 17/2 133 20/2 100 17/3 163 55/3.5 387

L5 15/2 440 26/2.5 686 15/3 923 26/4 922

L6 20/2 3612 21/3 2904 20/3.5 5348 21/5 3841

L7 23/2 14411 28/3 12692 23/3 26817 28/4 17881

Table 16: Convergence statistics for multigrid gain 1E − 3 and 1E − 4

Overall it shows a good convergence behavior in Table 15 and 16, as the number of nonlinear

iterations are not too high. If we fix ε and vary the multigrid gain, the number of nonlinear

iterations remains same and the average number of linear iterations increases as expected. On

the other hand, we can see that the number of nonlinear iterations for a fixed multigrid gain

and different ε remains similar, especially for the finer meshes. However if we consider the CPU

time, then we can see that keeping a low multigrid gain is preferable as it takes less time to

complete the simulation and counter-intuitively it takes less time for a smaller ε with a small

multigrid gain (1E − 3 and 1E − 4) on the refined levels (level 6 and 7).
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6.3.3 Freiberg statistics

relative mesh size cells Unknowns CPU time

2 900 2700 5.6

1 3600 10800 53

0.5 14400 43200 1195

0.25 57600 172800 16252

0.125 230400 691200 213700

Table 17: Statistics for the Freiberg results

The convergence behavior of the Freiberg results shows a similar steady increase in the CPU

time for different meshes compared to the Umfpack results of Featflow. However as the multi-

grid method shows much superior behavior for CPU time on the finer meshes, we conclude

that use of multigrid method is preferable, when we want to have more accurate results.

6.4 Visual Comparison

After the comparison between the CPU time of the Dortmund and Freiberg results, next we

present the respective profiles of the different physical quantities, namely the velocity magni-

tude |u|, the modulus of the shear rate |γ̇| and the viscosity η. Due to the geometrical set up

and the induced boundary conditions the results show the radial symmetry as expected. Hence

instead of studying the whole domain, we make a cutline of length 0.005 between the points

(0.019, 0) and (0.024, 0) and plot 3 different physical quantities on the cutline on Fig. 18-21.

In order to maintain the clearity and to be able to read data easily, we plot only the 3 finest

levels on a particular picture.

The physical quantities for both simulations are shown on the normal scales (Fig. 18 and 20)

respectively. Firstly we can see that the cutlines converge to their finest simulation respec-

tively for both the simulations, which assures that the solution on each level has the correct

convergence trend. As both |u| and |γ̇| are very close to 0 on the right half of the domain, we

also present the respective quantities in the log scales (Fig. 19 and 21). Since the leftmost

point of the cutline is set to have a non-zero speed and the rightmost point is kept at rest, we

can see a monotonically decreasing profile for |u| as expected and |γ̇| shows the same tendency

too. Moreover as the viscosity is inversely proportional to |γ̇|, it shows an increasing profile

as anticipated. Hence we conclude that both Dortmund and Freiberg simulations are able to

capture the correct tendencies of the physical quantities for the 2D Couette flow simulation.
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6.4.1 Dortmund results
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Figure 18: Normal scale
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Figure 19: Log scale
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6.4.2 Freiberg results
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Figure 20: Normal scale
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Figure 21: Log scale
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6.5 Level Comparison

6.5.1 Statistical Analysis

We define the error functional ξ as:

ξij =

√√√√∫ 0.005

0
(Li − Lj)2dx∫ 0.005

0
L2
i dx

× 100,

where Li and Lj are two different lineplots. We measure the difference between 3 sets of re-

spective physical parameters - namely velocity, shear rate and viscosity and present the error

functional ξ in a percentage form in a table format with i and j corresponding to the rows and

columns respectively.

Do-l2 Do-l3 Do-l4 Do-l5 Do-l6 Do-l7 Fr-2 Fr-1 Fr-0.5 Fr-0.25 Fr-0.125

Do-l2

|u| - 6.28 7.16 7.31 7.35 7.35 10.28 9.13 8.12 7.61 7.41

|γ̇| - 9.13 10.69 11.05 11.14 11.16 6.08 8.75 10.27 10.85 11.06

η - 20.25 24.27 26.13 26.69 26.87 16.22 17.38 23.17 25.69 26.58

Do-l3

|u| 6.56 - 1.59 1.79 1.83 1.84 5.31 3.92 2.68 2.11 1.9

|γ̇| 9.6 - 3.55 4.26 4.41 4.45 5.34 4.36 4.13 4.27 4.39

η 17.24 - 5.85 8.27 8.92 9.1 25.69 8.17 4.82 7.5 8.65

Do-l4

|u| 7.55 1.61 - 0.36 0.4 0.41 4.5 2.89 1.44 0.73 0.48

|γ̇| 11.36 3.58 - 1.31 1.56 1.62 6.26 3.62 2.07 1.62 1.6

η 20.08 5.68 - 3.13 4.04 4.28 29.21 12.49 3.53 2.01 3.49

Do-l5

|u| 7.73 1.81 0.36 - 0.083 0.093 4.4 2.72 1.24 0.48 0.19

|γ̇| 11.77 4.31 1.31 - 0.45 0.54 6.56 3.68 1.77 0.88 0.61

η 21.38 7.94 3.1 - 1 1.27 30.87 14.91 6.26 2.04 0.67

Do-l6

|u| 7.77 1.85 0.4 0.083 - 0.02 4.37 2.69 1.2 0.44 0.14

|γ̇| 11.87 4.47 1.56 0.45 - 0.16 6.64 3.71 1.76 0.76 0.34

η 21.76 8.54 3.98 1 - 0.3 31.31 15.55 7.06 2.9 0.99

Do-l7

|u| 7.78 1.86 0.41 0.093 0.02 - 4.37 2.68 1.19 0.43 0.13

|γ̇| 11.9 4.51 1.62 0.54 0.16 - 6.66 3.72 1.76 0.75 0.29

η 21.88 8.71 4.22 1.26 0.3 - 31.43 15.72 7.27 3.13 1.22

Table 18: Level comparison in %

We fix one Dortmund plot on a particular level Li and calculate the error functional compared

to Freiberg plots Lj . Then we find the minimum among those comparisons and deduce that

the Lj with the least ξ is the closest with Li.
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For Do-L2, the minimum calculation gives (Fr-0.125, Fr-2, Fr-2).

For Do-L3, the minimum calculation gives (Fr-0.125, Fr-0.5, Fr-0.5).

For Do-L4, the minimum calculation gives (Fr-0.125, Fr-0.25/0.125, Fr-0.25).

For Do-L5, the minimum calculation gives (Fr-0.125, Fr-0.125, Fr-0.125).

If we see the physical parameters shear rate and viscosity in particular, we can say that the

comparsion indeed changes (almost) diagonally in the right block of Table 18 from Do-L2 to

Do-L5, which is a strong sign of correlation. If it continues to show similar behavior, we expect

that the minimum calculation with Do-L6 should give Fr-0.0625 and with Do-L7 should give

Fr-0.03125. However due to the unavailability of the data, the minimum calculation with both

Do-L6 and Do-L7 shows Fr-0.125.

Dortmund Freiburg

ξ level CPU ξ level CPU

7.78 2.68

11.9 Do-l2 1.5 3.72 Fr-1 53

21.88 15.72

1.86 1.19

4.51 Do-l3 15 1.76 Fr-0.5 1195

8.71 7.27

0.41 0.43

1.62 Do-l4 25 0.75 Fr-0.25 16252

4.22 3.13

0.093 0.13

0.54 Do-l5 154 0.29 Fr-0.125 213700

1.26 1.22

0.02

0.16 Do-l6 1012

0.3

Table 19: Level comparison

Additionally if we look closely the

Dortmund lineplots on different level,

we can see that they converge on

more refinement and practically the

difference between level 6 and level

7 is very negligible. On the other

hand, the Freiberg lineplots also show

the behavior of getting closer to the

result of Dortmund level 7. So

we can safely assume that Dort-

mund level 7 result is the most ac-

curate result available and therefore

we take it as the reference solu-

tion.

Now if we look at the sixth block row

of Table 3, we can see a striking similar-

ity between the ξ of Do-L5 and Fr-0.125,

when they are compared with Do-L7. We also represent this particular block in Table 19 and

append the respective corresponding CPU time.
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6.5.2 Dortmund-Freiberg comparison - Part I
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Figure 22: Normal scale
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Figure 23: Log scale
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6.5.3 Dortmund-Freiberg comparison - Part II
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Figure 24: Normal scale
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Figure 25: Log scale
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We show the variation of the Dortmund level 4 and Freiberg 0.25 compared to Dortmund level

7 in Section 6.5.2 and the variation of the Dortmund level 4 and Freiberg 0.125 compared to

Dortmund level 7 in Section 6.5.3. As the corresponding ξ values for |u| is minimum among the

three physical quantities (Table 19), we can also visually see that the |u| profiles almost coincide

with each other and similarly the variations of |γ̇| profiles are also negligible. Additionally the

profiles have been also presented in log scales to capture the small values on the right half of

the domain. However as the ξ values for η is moderately high, we can see the corresponding

variations. Moreover as the variations are of similar order, we conclude that Dortmund level 4

results have similar accuracy with respect to Freiberg 0.25 or 0.125 results.

6.6 Choice of the Regularization parameter

6.6.1 Initial Study

We calculate ξ consecutive pairwise from the set of ε = 1E − 1, 1E − 2, 1E − 3 and 1E − 4 on

the same level, where Li and Lj are the the line plots on the same level with different ε = 1E−i
and 1E − j. As ε of one order of magnitude has an effect of the same order in the viscosity,

we can not do a comparative study on it and so we present the results only for the shear rate

and velocity magnitude in the following table.

l2 l3 l4 l5 l6

ξ21

|u| 5.96 6.17 6.44 6.49 6.49

|γ̇| 4.56 4.09 4.33 4.39 4.4

ξ32

|u| 0.64 0.58 0.67 0.69 0.69

|γ̇| 0.46 0.31 0.45 0.5 0.52

ξ43

|u| 0.0405 0.0542 0.0659 0.0687 0.0697

|γ̇| 0.0235 0.0342 0.0418 0.0502 0.0527

Table 20: ξ comparison in %

We can see in Table 20 that the values for ξ21 are between 4− 7% and hence we say that the

choice of ε = 1E−1 is not good enough compared to ε = 1E−2. Consequently as ξ32 are even

less than 1% and the values for ξ43 is almost negligible, we claim that the choice of ε = 1E− 2

is already good enough compared to ε = 1E − 3 keeping in mind the extra computation cost

for the lower ε.
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6.6.2 Detailed Study

ε1 = 1E − 1 ε2 = 1E − 2 ε3 = 1E − 3

Do-l2 Do-l3 Do-l4 Do-l5 Do-l2 Do-l3 Do-l4 Do-l5 Do-l2 Do-l3 Do-l4 Do-l5

L6,ε1
|u| 7.56 1.65 0.36 0.07 6.61 5.42 6.13 6.31 6.83 5.97 6.79 6.98

|γ̇| 11.02 4.31 1.52 0.45 13.94 6.58 4.87 4.57 14.32 6.78 5.31 5.07

L6,ε2
|u| 12.49 7.52 6.69 6.53 7.77 1.85 0.4 0.08 7.39 1.57 0.55 0.65

|γ̇| 10.49 5.66 4.5 4.39 11.87 4.47 1.56 0.45 12.16 4.57 1.66 0.68

L6,ε3
|u| 13.1 8.22 7.4 7.24 8.18 2.34 0.98 0.74 7.77 1.93 0.42 0.08

|γ̇| 10.58 6 4.96 4.87 11.78 4.51 1.64 0.68 12.06 4.59 1.6 0.47

Table 21: Choice of ε

Here we take the result on Level 6 with different ε as the reference solution and compare the

ξ with the other sets of level and ε. We fix ε to be 3 different values, namely ε1 = 1E − 1,

ε2 = 1E − 2 and ε3 = 1E − 3. If we take ε1, we can see in the first numerical column block

that there is not much difference on Level 2 and the error is around 10% for the shear rate.

Whereas the same error is around 5%, when we refine the mesh for one level and so we can say

that if the tolerence limit is set to be 5− 10%, the simulation can be done with ε1 = 1E− 1 on

the level 2 or 3. Subsequently if the tolerence limit is lowered to be 1% for more accuracy, then

one can reduce the ε to be ε2 = 1E − 2 or ε3 = 1E − 3 and simultaneously the mesh should be

refined at least to the level 4. In addition we would like to point out that the combination of

coarse mesh and small regularization parameter and the combination of refined mesh and large

regularization parameter both result into considerably large error and therefore we conclude

that the regularization parameter ε should be chosen in accordance with the choice of the level.

6.6.3 Visual Analysis

Next we represent the visualization with different ε on the coarsest (L2) and the finest (L6)

levels and the representation is done in normal scale and additinally in log scale to demonstrate

also the small scale variations.
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Figure 26: Normal scale on L2
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Figure 27: Log scale on L2
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Figure 28: Log scale on L2
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Figure 29: Normal scale on L6
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Figure 30: Log scale on L6

We can see in Fig. 26-28 that the level 2 cutlines are discrete, while the level 6 cutlines in Fig.

29-30 are more continuous. Moreover the small ε cutlines tend to cluster among themselves on

the normal scale showing the saturation level of the solution. Now if we look closely on the log

scale figures (Fig. 27 and 30), we can see that there is hardly any difference between ε1 plots

for |u| between level 2 and level 6 and so we can say that level 2 has enough resolution for ε1.

However the level 2 cutline for ε4 plots has 3 different steady interval (where the derivate is

close zero or the cutline is almost parallel to the horizontal axis) and transitions between them

is somewhat abrupt. Whereas the level 6 cutline for ε4 plots has 2 different steady interval and

transition between them is also smoother. Since a level 6 solution is obviously more accurate

than a level 2 solution, we infer that level 2 lacks enough resolution to capture the detailed

aspect of ε4. This similar feature is also present on the log scale plots for |γ̇| (Fig. 28 and 30).

Hence we can say in the similar way of Section 6.6.2 that a coarse mesh is good enough for

large ε and on the other hand a refined mesh is needed for a small ε and so the regularization

parameter ε should be chosen in accordance with the choice of the level.
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7 Summary and Outlook

1. Spatial discretization and solver aspects:

The conforming Stokes element Q2/P1 is our candidate for the discretization method

due to the involved biquadratic polynomials to a higher order of accuracy. A standard

Umfpack method as typical iterative single grid solver with General Vanka precondition-

ing is applied, where the preconditioner is taken from the library developed in [28]. For

this highly nonlinear problem coupling the pressure and velocity even in the viscous term

we are applying the continuous Newton method to derive the corresponding continuous

Jacobian operators which leads to a rate of convergence independent of mesh refinement.

So we avoid the delicate task of choosing the step-length required for a divided difference

approach. Then we propose an initial strategy based on the convergence radius, where

we apply fixed point for the first few nonlinear iterations and switching to full Newton

as soon as we reach some given tolerance. This approach shows that the strategy can be

robust with respect to the starting guess. Next we implement a very primitive version of

the Adaptive Newton solver, where the weighing parameter δn is multiplied with a fixed

value more (or less) than 1, depending on the value of improvement Qn of the residual

being less (or more) than 1. Then we work with a piecewise (almost) continuous function,

where the incremental factor f(Qn) takes varying values over the interval Qn ∈ (0,∞).

Finally we come up with the final version of our Adaptive Newton method, where f(Qn)

is smooth and continuous.

2. Multigrid aspect and improvement: Initially the Adaptive Newton solver is im-

plemented for the direct solver Umfpack. However the results show that our adaptive

strategy also fits in with the multigrid solver and consequently it helps us improving the

CPU time for the simulation on the finer meshes. Also as we have mentioned earlier that

the choice of f(Qn) is experimental, some choices might not be suited for a particular set

of problems and hence the characteristic function f(x) should be modified or improved

in certain cases. A couple of examples for such cases will be discussed in section 8.

3. Other aspects of f(Qn): Currently our characteristic function f(Qn) is used predomi-

nantly for nonlinear iterations and in the similar way, a similar set of f(Qn) can also be

constructed for linear iterations. Moreover the same strategy can be applied for each of

the compressible and non-stationary version of the Navier Stokes equation.
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4. Inclusion of temperature in the viscosity function: There are some kind of fluids,

whose viscosity is a function of the temperature θ, i.e, η = η(θ). Our strategy can also

be applied to such non-Newtonian fluid. Some example of such fluids are:

η(θ) = η0 exp
E

Rθ
, for Arrhenius model

= η0 exp
−C1(θ − θr)
C2 + θ − θr

, for Williams-Landel-Ferry model,

where E is the activation energy, R is the universal gas constant in the first model and

η0, C1, C2 and Tr are empiric parameters.

5. Conclusion:

We conclude that our finite element methods together with special material laws can be

useful tools for the numerical simulation of incompressible granular powder. Although

our computer simulation is only two-dimensional, still it is able to capture the complete

structure of the flow, i.e. the velocity, the shear rate as well as the viscosity.

The idea of a continuum model for granular materials is of great importance in the food, soil

mechanics, and packaging industries. Within these models, some of the characteristics of the

flow was successfully captured. Since the simulations of processes, for instance Couette flow,

are of extreme importance for these materials, it is indispensable to incorporate the various

surrounding boundaries to derive equations of motion for multi-phase flows. The instability

for incompressible powder flow could be regularized by allowing for the changes in density

of the media ([18], [12]) with an extra coupling of the scalar reaction-convection-diffusion

equation for the density. The Schaeffer model was proposed for the static state of the dry

granular materials, whereas Tardos and Poliquen models refer to the intermediate regime and

subsequently the study can be further extended to the wet granular materials. Moreover the

Adaptive Newton strategy can also be used for compressible granular and powder flow models.

The derived techniques in this thesis can successfully be adapted to such coupled problems

including further physical models, namely viscoelastic, hypoplastic and multiphase flow since

at least with respect to an algorithmic view the general structure of this coupling is similar.
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8 Appendix

8.1 Improvement of f(Qn)

As we have mentioned earlier that the choice of the characteristic function f(Qn) is experi-

mental, here we will discuss this aspect in details. We present the limitation of a particular

choice of f(Qn) and discuss the improvements can be made for that. Currently we take the 2D

Couette flow as the geometry, use the mathematical formulation prescribed in section 6.2 and

present 3 different versions of the characterisric function f(Qn) for the adaptivity of δn as:

f1(Qn) = 0.2 +
4

0.7 + exp(1.5Qn)
, (8.16)

f2(Qn) = 0.2 +
19.1957

4.0515 + exp(3.008Qn)
, (8.17)

f3(Qn) = 0.2 +
17.694

8.83 + exp(2.608Qn)
. (8.18)

8.1.1 Stagnation

Theoretically speaking, f(x) should be greater than 1 for x < 1 and less than 1 for x > 1

and intuitively an interpolating polynomial can be intial guess. However as a polynomial goes

to ∞ or −∞ for a large value of x, it makes a polynomial (e.g. f(x) = 2 − x) a bad choice

and we have to work with some adjustment. So we take f1(x) as the working function for the

2D Couette flow geometry and the mathematical formulation prescribed in section 6.2 with

the modification of ε = 0.001. We try to solve the problem on Level 2 and the convergence

statistics shows that f1(Qn = 0.987) = 0.985 for few iterations, which means that δn is being

decreased even if the solver is going in the right direction. As mentioned earlier, this particular

misbehavior can happen due to the imperfect construction of the characteristic function f(x),

which does not behave exactly like a linear and monotonically decreasing function f(x) = 2−x
around x = 1.

Addressing this particular aspect into more details, the improvement Qn for this particular

problem remains in the interval (0.973, 0.995) from the 25th iteration, which results in the

confinement of the incremental factor f(Qn) in the interval (0.99, 0.977) for the rest of the

iterations (Fig. 31). Hence the solver never reaches the Full Newton state and it takes 918

steps to satisfy the convergence criteria (Fig. 32). We conclude that The choice of f1(x) is not

well suited for the problem and the solver stagnates.
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8.1.2 Infinite Loop

Next we change our characteristic function to f2(x). In order to decide the parameter values,

we use the restrictions f(0) = 4, f(0.9) = 1.2, f(1) = 0.99 and f(∞) = 0.2 and express the

function as stated in Eq. 8.17. Now we try to solve the same 2D Couette flow geometry with

the mathematical formulation prescribed in section 6.2 on Level 3.

However we face a different situation with this setting. It does not show any stagnation, but

the set of residual Resn, the improvement Qn and the incremental factor f(Qn) happen in a

rhythemic order of 3 steps (Fig. 33). It means that at a certain step, there is a particular

residual having a particular improvement from the previous step resulting in a particular incre-

mental factor. Because of this incremental factor, the residual changes to a new value resulting

in a new improvement and subsequently a new incremental factor. We can see that the set of

Resn, Qn and f(Qn) are related to their previous values and for this particular problem, the

residual takes the identical same value at every third step initiating a cycle. Subsequently it

results in an infinite loop and the solver is unable to converge (Fig. 34).
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8.1.3 Conclusion

Finally we use the restrictions f(0) = 2, f(0.6) = 1.5, f(1) = 0.99 and f(∞) = 0.2 to construct

f3(Qn) as shown in Eq. 8.18. Till now we are successful to get convergent results for all the

combinations for the levels and ε for the (modified) Poliquen model in the 2D Couette flow

geometry using f3(Qn) and hence we would like to conclude that f3(Qn) is the best choice

among the used characteristic functions.
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8.2 Boundary conditions

The boundary conditions in any incompressible fluid simulation are expressed either in terms

of the fluid velocity or the pressure at the boundary, but generally both of them cannot be

used at the same boundary since the velocities are influenced by the pressure gradient [25].

For the Navier-Stokes equations with Dirichlet velocity data, the pressure is unique up to a

constant which however can be chosen arbitrarily. In contrast, for the flow of the generalized

Navier-Stokes equations with pressure dependent viscosity, the choice of fixing the pressure

cannot be done by random choice.

8.2.1 Wall boundary conditions

The fundamental assumption in fluid mechanics for flow past solids is a ’no-slip’ boundary

condition, which means that the tangential component of the fluid velocity equals of the solid

at the surface. This well-accepted ’no-slip’ boundary condition may not be suitable for highly

sheared flow, but the error due to the ’no-slip’ assumption is relatively small in big systems or

if we are more interested in the flow far away from the wall. An alternative and more suitable

condition is to apply slip with friction parameter β:

u · t+ β−1n · (2η(|γ̇|, p)D(u)− pI) · t = 0 on Γwall,

where n and t are the normal and tangential unit vectors. Moreover, the closing of the equations

is required, because the related Dirichlet problem of Navier-Stokes equations is well known to

possess no unique pressure solution due to the constraint div u = 0. The uniqueness of the

solution is assured by fixing the pressure with the choice of mean pressure to be zero which

however cannot be taken for the flow with pressure dependent viscosity, namely the Poliquen

model, since it leads to negative values of the pressure in some parts of the computational

domain. The first remedy is to make the choice of mean pressure positive to assure a positive

pressure in all regions of the computational domain. However, the question arises of the

physical meaning of any choice for the mean pressure to get the closure of the equations with

Dirichlet boundary condition since the mean pressure is part of the viscosity and therefore it

significantly influences the global flow behavior.

8.2.2 Outflow boundary conditions

Numerical simulations of flow problems usually require the flow out of one or more boundary

parts of the computational domain. At such ’outflow’ boundaries, there arises the question of

what constitutes a good boundary condition. The simplest and most commonly used outflow
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condition is that of a ’natural’ boundary, see [25] for an overview:

2η(|γ̇|, p)n ·D(u)− pn = 0 on Γout .

This boundary condition represents a smooth continuation of the flow through the boundary

and occurs in the variational formulation of problem if one does not prescribe any boundary

condition for the velocity at the outlet, known in the literature by the name ’natural’ or ’do

nothing’ boundary condition as for the Flow around cylinder benchmark Fig. 15. It must be

stressed that the ’do nothing’ outflow boundary condition has no physical basis, rather it is a

mathematical statement that may or may not provide the desired flow behavior. Particularly

’do nothing’ boundary conditions have proven to lead to very satisfactory results in modeling

parallel flows [26], but they must always be viewed with suspicion since they contain the

hidden condition that the mean pressure is zero across the outflow boundary. In particular,

the condition of mean pressure to be zero across the outflow leads to negative values of the

pressure, which causes problems for the numerical simulation of flow with pressure dependent

viscosity, namely the Poliquen model. As a natural remedy for this situation, one may consider

a condition in which the mean pressure across the outflow coincides with the atmospheric

pressure, that means patm > 0:

2η(|γ̇|, p)n ·D(u)− pn = patmn on Γout .

The above examples suggest that the ability to specify a pressure condition at one or more parts

of the computational domain is an important aspect. This can be done in terms of prescribed

pressure drops with corresponding variational formulations of very general type [25].
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