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CHRISTIAN KREUZER AND EMMANUIL H. GEORGOULIS

ABSTRACT. We develop a general convergence theory for adaptive discontinu-
ous Galerkin methods for elliptic PDEs covering the popular SIPG, NIPG and
LDG schemes as well as all practically relevant marking strategies. Another
key feature of the presented result is, that it holds for penalty parameters only
necessary for the standard analysis of the respective scheme. The analysis
is based on a quasi interpolation into a newly developed limit space of the
adaptively created non-conforming discrete spaces, which enables to generalise
the basic convergence result for conforming adaptive finite element methods by
Morin, Siebert, and Veeser [A basic convergence result for conforming adaptive
finite elements, Math. Models Methods Appl. Sci., 2008, 18(5), 707-737].

1. INTRODUCTION

Discontinuous Galerkin finite element methods (DGFEM) have enjoyed consid-
erable attention during the last two decades, especially in the context of adaptive
algorithms (ADGMs): the absence of any conformity requirements across element
interfaces characterizing DGFEM approximations allows for extremely general adap-
tive meshes and/or an easy implementation of variable local polynomial degrees in
the finite element spaces. There has been a substantial activity in recent years for
the derivation of a posteriori bounds for discontinuous Galerkin methods for elliptic
problems [KP03, BHL03, Ain07, HSW07, CGJ09, EV09, ESV10, ZGHS11, DPE12].
Such a posteriori estimates are an essential building block in the context of adaptive
algorithms, which typically consist of a loop

(1.1) SOLVE — ESTIMATE — MARK — REFINE.

The convergence theory, however, for the ‘extreme’ non-conformity case of ADGMs
had been a particularly challenging problem due to the presence of a negative power
of the mesh-size h stemming from the discontinuity-penalization term. As a conse-
quence, the error is not necessarily monotone under refinement. Indeed, consulting
the unprecedented developments of convergence and optimality theory of conform-
ing adaptive finite element methods (AFEMs) during the last two decades, the strict
reduction of some error quantity appears to be fundamental for most of the results.
In fact, Doérfler’s marking strategy typically ensures that the error is uniformly re-
duced in each iteration [Dér96, MNS00, MNS02] and leads to optimal convergence
rates [Ste07, CKNS08, KS11, DK08, BDK12]; compare also with the monographs
[NSV09, CFP14] and the references therein. Showing that the error reduction is
proportional to the estimator on the refined elements, instance optimality of an
adaptive finite element method was shown recently for an AFEM with modified
marking strategy in [DKS16, KS16]. A different approach was, however, taken in
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2 CH. KREUZER AND E.H. GEORGOULIS

[MSVO08, Siell], where convergence of the AFEM is proved, exploiting that the ap-
proximations converge to a solution in the closure of the adaptively created finite
element spaces in the trial space together with standard properties of the a posteri-
ori bounds. The result covers a large class of inf-sup stable PDEs and all practically
relevant marking strategies without yielding convergence rates though.

Karakashian and Pascal [KP07] gave the first proof of convergence for an adaptive
DGFEM based on a symmetric interior penalty scheme (SIPG) with Dorfler marking
for Poisson’s problem. Their proof addresses the challenge of negative power of h in
the estimator, by showing that the discontinuity-penalization term can be controlled
by the element and jump residuals only, provided that the DGFEM discontinuity-
penalisation parameter, henceforth denoted by o, is chosen to be sufficiently large;
the element and jump residuals involve only positive powers of h and, therefore, can
be controlled similarly as for conforming methods. The optimality of the adaptive
SIPG was shown in [BN10]; see also [HKW09].

The standard error analysis of the SIPG requires that o is sufficiently large for
the respective bilinear from to be coercive with respect to an energy-like norm. It
is not known in general, however, whether the choice of o required for coercivity
of the interior penalty DGFEM bilinear form is large enough to ensure that the
discontinuity-penalization term can be controlled by the element and jump residuals
only. Therefore, the convergence of SIPG is still open for values of ¢ large enough
for coercivity but, perhaps, not large enough for the crucial result from [KPO07] to
hold. To the best of our knowledge, the only result in this direction is the proof of
convergence of a weakly overpenalized ADGM for linear elements [GG14], utilizing
the intimate relation between this method and the lowest order Crouzeix-Raviart
elements.

This work is concerned with proving that the ADGM converges for all values of o
for which the method is coercive, thereby settling the above discrepancy between the
magnitude of ¢ required for coercivity and the, typically much larger, values required
for proof of convergence of ADGM. Apart from settling this open problem theoret-
ically, this new result has some important consequences in practical computations:
it is well known that as o grows, the condition number of the respective stiffness
matrix also grows. Therefore, the magnitude of the discontinuity-penalization pa-
rameter o affects the performance of iterative linear solvers, whose complexity is
also typically included in algorithmic optimality discussions of adaptive finite ele-
ments. In addition, the theory presented here includes a large class of practically
relevant marking strategies and covers popular discontinuous Galerkin methods like
the local discontinuous Galerkin method (LDG) and even the nonsymmetric inte-
rior penalty method (NIPG), which are coercive for any o > 0. Moreover, we expect
that it can be generalised to non-conforming discretisations for a number of other
problems like the Stokes equations or fourth order elliptic problems. However, as
for the conforming counterpart [MSV08], no convergence rates are guaranteed.

The proof of convergence of the ADGM, discussed below, is motivated by the
basic convergence for the conforming adaptive finite element framework of Morin,
Siebert and Veeser [MSV08]. More specifically, we extend considerably the ideas
from [MSV08] and [Gud10] to be able to address the crucial challenge that the limits
of DGFEM solutions, constructed by the adaptive algorithm, do not necessarily
belong to the energy space of the boundary value problem as well as to conclude
convergence from a perturbed best approximation result.

To highlight the key theoretical developments without the need to resort to com-
plicated notation, we prefer to focus on the simple setting of the Poisson problem
with essential homogeneous boundary conditions and conforming shape regular tri-
angulations. We believe, however, that the results presented below are valid for
general elliptic PDEs including convection and reaction phenomena as well as for
some classes of non conforming meshes; compare with [BN10].
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The remainder of this work is structured as follows. In Section 2 we shall in-
troduce the ADGM framework for Poisson’s equation and state the main result,
which is then proved in Section 5 after some auxiliary results, needed to generalise
[MSV08], are provided in Sections 3 and 4. In particular, in Section 3 a space is
presented, which is generated from limits of discrete discontinuous functions in the
sequence of discontinuous Galerkin spaces constructed by ADGM. Section 4 is then
concerned with proving that the sequence of discontinuous Galerkin solutions pro-
duced by ADGM converges indeed to a generalised Galerkin solution in this limit
space. This follows from an (almost) best-approximation property, generalising the
ideas in [Gud10].

2. THE ADGM AND THE MAIN RESULT

Let a measurable set w and a m € N. We consider the Lebesgue space L?(w; R™)
of square integrable functions over w with values in R™, with inner product (-, -)_
and associated norm ||| . We also set L?(w) := L?(w;R). The Sobolev space H*(w)
is the space of all functions in L?(w) whose weak gradient is in L?(w;R?), for d € N.
Thanks to the Poincaré-Friedrichs’ inequality, the closure H} (w) of Ci°(w) in H*(w)
is a Hilbert space with inner product (V-, V-) ~and norm |V-[| . Also, we denote
the dual space H~!(w) of HE(w), with the norm 12l 7-1(0) == SUPwer (w) %,
ve H !} (w), with dual brackets defined by (v, w) := v(w), for w € Hg(w).

Let Q < R, d = 2,3, be a bounded polygonal (d = 2) or polyhedral (d = 3)
Lipschitz domain. We consider the Poisson problem

(2.1) —Au=f in u=0 on 05,
with f € L?(Q). The weak formulation of (2.1) reads: find u € H{(2), such that
(2.2) (Vu, Vuyg = {f, v)q for all v e Hy(Q).

From the Riesz representation theorem, it follows that the solution u exists and is
unique.

2.1. Discontinuous Galerkin method. Let G be a conforming (that is, not con-
taining any hanging nodes) subdivision of €2 into disjoint closed simplicial elements
E so that Q = (J{F : E € G} and set hg := |E|Y?. Let S = S(G) be the set
of (d — 1)-dimensional element faces S associated with the subdivision G including
o9, and let S = S(G) S by the subset of interior faces only. We also introduce
the mesh size function hg : © — R, defined by hg(x) := hp, if x € E\OF and
hg(z) = hg := |S|Y@ D ifze SeSandset I =I(G) = [ J{S: SeS}and I =
I'(G) = J{S : S € S}. We assume that G is derived by iterative or recursive newest
vertex bisection of an initial conforming mesh Gy; see [Ban91, Kos94, Mau95, Tra97].
We denote by G the family of shape regular triangulations consisting of such sub-
divisions of Gg.

Let P,.(F) denote the the space of all polynomials on E of degree at most r € N,
we define the discontinuous finite element space

(2.3) V(@)= [[Pr(B) c [[WhP(E) = WP(G), 1<p<ow,
Eeg Eeg

and H(G) := W2(G). Let N = N(G) be the set of Lagrange nodes of V(G) and
define the neighbourhood of a node z € N(G) by Ng(z) := {E' € G : z € E'},
and the union of its elements by wg(z) = (J{E' € G : z € E'}. We also define
the corresponding neighbourhoods for all elements F € G by Ng(F) := {F' € G :
EnE # @} andwg(E) = {E'€G: E' nE # &} = J{wg(z) : ze N(E) n E},
respectively, and set wg(S) := |J{F € G : S < E}; compare with Figure 1. The
numbers of neighbours #Ng(z) and #Ng(FE) are uniformly bounded for all z € NV,
respectively E € G, depending on the shape regularity of G and, thus, on Gy.
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FIGURE 1. The neighbourhood Ng(F) of some E € G.

Let ET, E~ be two generic elements sharing a face S := ET n E~ € S and let
n and n~ the outward normal vectors of ET respectively E~ on S. Forg: Q - R
and ¢ : Q — R, let ¢F := q|gnop+ and ¢ := @|gom+, and set

1 _ 1 _
{a}]s == §(q+ +4q), {o}s = §(¢+ +¢7),
lallls :==¢'n" +qn™,  [¢]ls:=0¢" n"+¢ -n7;
if S < 0F n 09, we set {¢}|s := ¢ and [¢] |s := ¢ n™.
In order to define the discontinuous Galerkin schemes, we introduce the following

local lifting operators. For S € S, we define RG : L*(S)? — []geqPe(E)? and
Lg : L*(S) = []geg Pe(E)* by

5 crdx = Arlds T d
(2.42) | r5@)ras= [ ¢-(ryas v JIe
and

5(q) - Tdx = 7] ds T d
(2.4b) LLd” a Lqﬂﬂd we [[7o

with ¢ € {r,r + 1}. Note that L3(q) and RZ(¢) vanish outside wg(S). Moreover,
using the local definition and the boundedness of the lifting operators in a reference
situation together with standard scaling arguments, we have for ¢ € P.(S)¢ and
q € P.(S) that

Qa) I8, < 15|, 1B@I, < [n5 ],

compare with [ABCMO02]. Also, here and below we write a < b when a < Cb for a
constant C' not depending on the local mesh size of G or other essential quantities
for the arguments presented below. Observing that the sets wg(S), S € S do overlap
at most d + 1 times, we have for the global lifting operators Rg : L2(T")? — V(G)?
and Lg : L2(I) — V(G)? defined by

Rg(¢):= D R§(#)  and  Lg(q):= ), R3(q),

SeS Ses

that
[Bs (oDl < [hg*2e  and  |Lo(8- [v])lq < 18] |hg"*]

for all v € V(G) and B € RY.
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We define the bilinear form Bg[-, -] : V(G) x V(G) — R by
B [w, v] = /gw Vods - /S ((Vw} - [o]) + 04V} - [w] ) ds
+ [ (8wl 1901 + [Vul 8 [o]) as
+ [ 1 (Ro(lwl) + Lo(8- [w]) - (Ro([+]) + Le(8 - [o]) da
+ [l 1] as

for € {£1}, v € {0,1}, B € R? and o > 0. Here we have used the short-hand

notation
-dz = Z/dx and /-ds:=2/~ds.
A" EBeG’E S Ses” S

We consider the choices § = 1, 8 = 0, and v = 0 yielding the symmetric interior
penalty method (SIPG) [DD76], § = —1, 8 = 0, and v = 0 which gives the nonsym-
metric interior penalty methods (NIPG) [RWG99], and = 1, B € R?, and v = 1
which yields the local discontinuous Galerkin method (LDG) [CS98]; compare also
with [ABCMO02] and [JNS16].

In all three cases, the corresponding discontinuous Galerkin finite element method
(DGFEM) then reads: find ug € V(G) such that

(2.5)

(2.6) Bglug, vg] = /vag dz =:1l(vg), for all vg e V(G).

Upon denoting by Vy,v the piecewise gradient Vi,v|p = Vou|g for all E € G, the
corresponding energy norm ||-[|; is defined by

= e el T

for w|p € HY(E), E € G. Here & := max{1,0}. Also, for some subset M < G with
w=|J{F | E € M}, we define

il = (1Whwel] + o g o[ )

If for SIPG we have o := C,r? for some constant C, > 0 sufficiently large, o > 0
for NIPG and for LDG o > 0 when £ = r and o = 0 when £ = r + 1 ([JNS16]), then
there exists @ = a(o) > 0, such that

(2.7) allwlf < Bglw, w]  Ywe HY(G),

i.e. all three DGFEMs are coercive in V(G); see, e.g., [Arn82, ABCM02, JNS16] for
details. Note that the choice & = max{1, o} accounts for the fact that we can have
o = 0 for the LDG in [JNS16].

From standard scaling arguments, we conclude the following local Poincaré-
Friedrichs inequality from [Bre03, BO09].

Proposition 1 (Poincaré-V(G)). Let G be a triangulation of Q and G, some re-
finement of G. Then, for v e V(G,), E € G and vg := |wg(E)|~* fwg(E)vdx, we
have

o= vell iy < [ WP+ [ hghg! o] ds,
u}g(E) SES*,SCWQ(E)

where S, = S(Gx) and the hidden constant depends on d and on the shape reqularity
Of Ng (E) .
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The next important result from [KP03, Theorem 2.2] (compare also with [BN10,
Lemma 6.9] and [BO09, Theorem 3.1]) quantifies the local distance of a discrete
non-conforming function to the conforming subspace with the help of the of the
scaled jump terms.

Proposition 2. For G € G, there exists an interpolation operator Ig : H*(G) —
V(G) n HY(Q), such that we have

Hhéﬂ(v—fgv) . IV (0 = Zg)Pagm) < /aE ho Lol ds,

2
L2(E
for all E€ G and v e V(G).

From this, we can easily deduce the following broken Friedrichs type inequality;
compare also with [BO09, (4.5)].

Corollary 3 (Friedrichs-V(G)). Let G € G, then
ol oy < lollg for all v e V(G).

Let BV (£2) denote the Banach space of functions with bounded variation equiped
with the norm

[olBy () = [0]L1) + [DvI(),

where Dwv is the measure representing the distributional derivative of v with total
variation

|Dv|(Q) = sup /vdivq’)dx.
$eCs (D)9l Lo ()<t /O

Here the supremum is taken over the space C¢ (£2)? of all vector valued continuously
differentiable functions with compact support in €.

Another crucial result [BO09, Lemma 2] states then that the total variation of the
distributional derivative of broken Sobolev functions is bounded by the discontiuous
Galerkin norm.

Proposition 4. For G € G we have that
IDuI(@) 5 [Vl + [ I ds < [olg for allve HY(G).

2.2. A posteriori error bound. We recall the a posteriori results from [KP03,
BN10, BGC05, BHLO3]; compare also with [CGJ09].
For v € V(G), we define the local error indicators for E € G by

1/2
Eg(v, E) = (/Ehaf + Av*dx +/ hg [Vo]? ds + U/ﬁE hg' [v]? ds) ;

0ENQ
when v = ug, we shall write £g(F) := Eg(ug, E). Also, for M < G, we set

golw. M) = (Y 5(v,E)2)1/2.

EeM

Proposition 5. Let u € HE () be the solution of (2.2) and ug € V(G) its respective
DGFEM approzimation (2.6) on the grid G € G. Then,

2
allu—ugllg < Bglu—ug, u—ugl s Y, E(E)?,
Eeg

The efficiency of the estimator follows with the standard bubble function tech-
nique of Verfiirth [Ver96, Ver13]; compare also with [KP03, Theorem 3.2], [Gud10,
Lemma 4.1] and Proposition 22 below.
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Proposition 6. Let u € H}(Q) be the solution of (2.2) and let G € G. Then, for
allveV(G) and E € G, we have

/ hE|f + Avl* da +/ hg [Vo]? ds
E O0ENQ
2
< Hu - 'U”ig(E) + vaw(u - U)ng(E) + OSC(NQ(E)a f)Qa

with data-oscillation defined by
N\ 1/2 )
osc(M, f) := ( Z osc(E, f) ) ,  where osc(E,f):= fEle%,f.,l lhg(f = fE)E

E'e M

for all M < G. In particular, this implies
E6(v,E) 5 lo = ully, () + 0sc(Ng(E), f).

Remark 7. Note that the presented theory obviously applies to all locally equivalent
estimators as well; compare e.g. with [KP03, BN10, BGC05, BHL03, CGJ09]. For
the sake of a unified presentation, we restrict ourselves to the above representation.

2.3. Adaptive discontinuous Galerin finite element method (ADGM). The
adaptive algorithm, whose convergence will be shown below, reads as follows.

Algorithm 8 (ADGM). Starting from an initial triangulation Gy, the adaptive
algorithm is an iteration of the following form

(1) ux = SOLVE(V(Gr));

(2) {gk(E>}Eegk = ESTII\/IATE(uk,Qk);

(3) My, = MARK ({&,(E)} geg, » G );

(4) Gr+1 = REFINE(Gy, My,); increment k.

Here we have used the notation & (E) := &g, (F), for brevity.
SOLVE. We assume that the output

ug = SOLVE(V(G))

is the DGFEM approximation (2.6) of u with respect to V(G).
ESTIMATE. We suppose that

{5Q(E>}Eeg = EST|MATE(UQ, g)

computes the error indicators from Section 2.2.
MARK. We assume that the output

M := MARK({&g(E)} peg, 9)
of marked elements satisfies
(2.8) Eg(E) < g(Eg(M)),  forall E e G\M.

Here g : RS — Ry is a fixed function, which is continuous in 0 with g(0) = 0, i.e.
lim. g g(e) = 0.
REFINE. We assume for M c G € G, that for the refined grid

G := REFINE(G, M)
we have
(2.9) EeM = EecG\G,

i.e., each marked element is refined at least once.
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FIGURE 2. Selection of a sequence of triangulations of = (0, 1)2,
where in each iteration the elements in Q= = [0,0.5] x [0,0.5] are
marked for refinement. The elements G+ in the remaining domain
O\Q~ are, after some iteration, not refined anymore. Moreover,
after some iteration, their whole neighbourhood is not refined any-
more.

2.4. The main result. The main result of this work states that the sequence of
discontinuous Galerkin approxiations, produced by ADGM, converges to the exact
solution of (2.1).

Theorem 9. We have that
é’k(gk) —0 ask— .
In particular, this implies that

lu —ugll, =0 ask— oo.

3. A LIMIT SPACE AND QUASI-INTERPOLATION

In this section we shall first introduce a new limit space V4 of the sequence
of adaptively constructed discontinuous finite element spaces {V(Gi)}ken. A new
quasi-interpolation operator is then introduced in Section 3.3 in order to to prove
that there exists a unique Galerkin solution wu. of a generalised discontinuous
Galerkin problem in V.

3.1. Sequence of partitions. The ADGM produces a sequence {Gy}ren, of nested
admissible partitions of 2. Following [MSVO08], we define

gt=J[()G, amd QF:=0(G")

k>0j=k

to be the set and domain of all elements, respectively, which eventually will not be
refined any more; here Q(X) := interior (| J{E£ : E € X}) for a collection of elements
X. We also define the complementary domain Q7 := interior(Q2\Q*). For the ease
of presentation, in what follows, we shall replace subscripts G by k to indicate the
underlying triangulation, e.g. we write N (F) instead of Ng, (E).

The following result states that neighbours of elements in G' are eventually also
elements of G*; cf., [MSV08, Lemma 4.1].

Lemma 10. For E € G" there exists a constant K = K(FE) € Ny, such that
Ni(E) = Ng(E) forallk > K,

i.e., we have Np(E) < G for allk > K.
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Next, for a fixed k € Ny, we set

G, ={EeGr:wi(E)c Q-1 Q= QG ),
G =Grn g™, Qf = Q(G),
Git = (B e Gy Ne(B) < 0¥}, 9 = 0(GL),
G == G\(G " v Gy), Qf, = Q(G1);

compare also with Figure 2. This notation is also adopted for the corresponding
faces, e.g., we denote S := S(G;") and S,j = S(g,’:) and correspondingly for all
other above sub-triangulations of G.

The next lemma is related to [MSVO08, (4.15) and Corollary 4.1]. However, the
definitions of Q} and §, differ from the corresponding ones in [MSVO08], which
requires some modifications in the proof.

Lemma 11. We have that limy_, [Q}] = 0 and limy_,o HthQ; [y = 0, with

Xar denoting the characteristic function of Q.

Proof. In order to prove the first claim, we begin by observing that || < [Q7\Q, |+
|QT\Q; | and consider the two terms on the right-hand side separately.

Since #g,j < o0, we have thanks to Lemma 10 that for all & € N there exists
K = K (k) = k, such that G+ > G;f. Consequently, we have

QN < 10N = ) B0,
EeGH\G;

as k — oo. This holds because the right-hand side is a tail of the series 5 g+ |E|,
which is convergent, as |E| > 0 and all partial sums are bounded by |©|. Since
|27\, 7| is monotonically decreasing, we conclude that [Q27\Q*| — 0 as k — oo.

We observe that the sequence {2 }ren is nested, i.e. Qy € Qy < Q, ... -
Therefore, we have that the sequence {|Q27\Q, |}ren is converging, because it is
monotonically decreasing. Assume that limy_,o [Q27\Q, | # 0, then we have by the
continuity of the Lebesgue measure that

0# lim |07\ | = |07\ | |-
k=0

Consequently, there exists a ball B, with some radius p > 0 such that B, <
O \Uizo Y, - For k € N let gfp :={E € Gx: En B, # &}, then there exists

E e g,f ? with |E| 2 p independent of k. This follows from the fact that, since
B, < Q7\Q,, there exists no E € G with Q(Ny(E)) < B,, together with the local
quasi uniformity of Gi. Thanks to the fact that the size of an element is reduced
under refinement by a factor 2-/¢ and that the grids G, are nested, we have that
there is some K > 0, such that there exists F € g,fp with ¥ € Gg for all k = K,
i.e. E e Gt. This is the contradiction since @ # EnB? c En Q™.

The second claim follows from [MSV08, Corollary 4.1] noting that O~ < Q9 with
QY as in [MSV08]. O

3.2. The limit space. In this section, we shall investigate the limit of the finite
element spaces Vi := V(Gy), k € N. To this end, we define
Vo = {ve BV(Q) :v|g- € Hig 00-(Q7) and v|p e P, VE € GT
such that 3{vk }ren, vx € Vi with klim flv—vill, =0
—00

and limsup [Jog ], < o0};
k—o0

here H}, .- (Q7) denotes the space of functions from Hg(f2) restricted to Q.

Note that for v € BV () there exists the L'-trace of v on I'y = [J{S : S € Si};
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compare e.g. with the trace theorem [BO09, Theorem 4.2]. In other words, v is
measurable with respect to the (d — 1)-dimensional Hausdorff measure on Sy, and,
therefore, the term |Jv||,, v € Vo, makes sense. Obviously, we have Vi, nC(Q2) < Vo,
for all k € N and, thus, V4, is not empty.

Setting hy := hg+ and ST := §(G"), we define

(v, w)y, = /Qi Vv - Vwdr + Vv-dem-l—&/SJr R o] [w] ds,

gt

and ||v], = (v, v>¥2, for all v,w € V,,. For brevity, we shall frequently use the
notation

/ V¥ - Vpgw do = Vv -Vwdx + Vv -Vwdz.
Q Q- G+

We shall next list some basic properties of the space V.
Proposition 12. For v € V,, we have
Ilolly, /vl <0 as k — co.

In particular, for fired £ € N, let E € Gy; then, we have

/ hy ! [v]* ds 7 / hit [v]? ds, as k — 0.
{SeSk:ScE} {SeS+:ScE}

Proof. Since v € V,, there exists {vy}ren, vk € Vi with limg_o [Jv — vg |, = 0 and
lim supy,_, o, vkl < 0. We first observe that

lolly, < llo = oklly + loxlly, <o

uniformly in k. Thanks to the mesh-size reduction, i.e. h,, < hy for all m > k, we
conclude that

/ h;l [[v]]2 ds < / ht [[v]]2 ds < / ht [[v]]2 ds,

m

thanks to the inclusion | Jgcs, S © Uses,, - Therefore, we have [|v], < [v|,,
for all m > k and, thus, {||v],}ren converges. Consequently, for e > 0 there exists
K = K(¢), such that for all k > K and m > k large enough, we have

2 2 — — 2 _ — 2
> 1ol ~ Il = | el ds—o [ h ) ds
Sm\(srnmsk) Sk\(snlﬁsk)

> (20D _q) 5/ ht [v]? ds
Sk\(SmmSk)

> (211 _ 1)5/ ht [v]? ds.
Si\S;F

This follows from the fact that h,,|s < 27V Dh,|g for all S € Sp\(Sp N Sk)
together with S = S,,, N S, for sufficiently large m > k.

Therefore, we have fSk\S+ h;l [[v]]2 ds — 0 as k — oo and, thus,
k

2 _ — 2 — — 2 2
[0 = [ Vol doo [ wp Dol ds o [ wp Dl ds ol 40,
k

kA9
This proves the first claim. The second claim is a localised version and follows
completely analogously. O

Lemma 13 (Poincaré-Vy,). Fiz k € N and let E € G. Then for v € Vo, and

vE = m fwk(E) vdz, we have

2 - 2
H’U—UEHZ < bk Vipuv +/ hiht [v]” ds.
oo S sty + [ R
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Proof. By the definition of V,, there exists v, € Vy, £ € No, with limy_, o ||v — v¢||, =
0 and limsup,_,, |Jv¢||, < . Therefore, we have

2 — 2
Vou +/ ht d
|V ’UZHwk(E) (SeSpScwn(E)) ¢ lvell” ds
2

- 2
wn(B) T R[] ds  as £ — oo;

= ¥l gy + [
{SeS*:Scw,(F)}

see Proposition 12. Moreover, we have

o5 = ve.5l 5y < 10— Vel gy < o — velly =0 a5 £ o,
where vy g = W%E)I fwk(E) vedz. We conclude with Proposition 1 that
lo =gl () < lve—veel?
U= VElu(E) Ve = Ve,Ellw, (B)
2 _
< [Vl ) + / h2hyt [[ve]” ds
{SeS;:Scwi(E)}
2 _
o BVt 2, ) + / B2h=L o] ds,
(SeS+:Scwi (E)}
as £ — oo. O

In order to extend the dG bilinear form (2.5) to V,, we need to define appropriate
lifting operators. For each S € ST, there exists £ = ¢(5) € N, such that S € S/ *. We
define the local lifting operators RS : L?(S)% — L2(Q)% and LS : L%(S) — L?(Q)?
by
(3.1) R =R} :=R3, and L5 =0L7:=L§,.

From (2.4) it is easy to see, that R7 and L7 depend only on S and the at most
two adjacent elements F, E’ € G with S ¢ E n E’. Therefore, and thanks to the

fact that the G; are nested, we have that R? = Ry for all k > ¢ and, thus, the
definition is unique. We formally define the global lifting operators by

Ry := Z RS, and Loy = Z LS,
Sest Ses+

here St := {Se St : 5 ¢ aQ}.
Moreover, from the local estimates (2.4¢), it is easy to see that for v € V, and
B € R4, we have that Yisest R5 ([v]) and Yisest L5 (B-[[v]) are Cauchy sequences

in L2(Q)4. Consequently, Ry ([v]), Lo (8- [v]) € L?(Q2) are well posed and we have
62 IRaeDl = 1570, and 128 DDl < 161 12

where Tt = | J{S: Se St} and I't = | J{S: S € ST}. This enables us to generalise
the discontinuous Galerkin bilinear form to V, setting

B [w, v] :=/vaww-vavdz—/s+ ({Vw} - [o]] + 0{Vv} - [w] ) ds
+ /S (8- [w] [Vel + [Vwl 8- [v]) ds
# [ (Rl + Lo (B [u]) - (Reo(oD) + Lon (8- [o]) o
+ [ Lol ds

P+

for v,w € V.

Lemma 14. The space (Voo,<', ~>OO) is a Hilbert space.
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Corollary 15. There exists a unique uy, € Vo, such that

(3.3) Boo U, V / fodx for all v e Vg,

In order to prove the last two statements, we introduce a new quasi-interpolation,
which is designed in due consideration of the future refinements. The proofs of
Lemma 14 and Corollary 15 are postponed to the end of Section 3.3.

3.3. Quasi-interpolation. We shall now define a quasi-interpolation operator Iy,
which maps into Vo, n Vy; this will be a key technical tool in the analysis. On the
one hand, membership in Vo, n V. suggests to use some Clément type interpolation
since the mapped functions need to be continuous in Q7. On the other hand,
the fact that the ADGM may leave some elements (namely G;" > G ") unrefined,
suggests to define II; to be the identity on these elements. Note that the quasi-
interpolation operator from [CGS13] is motivated by a similar idea in order to map
from one Crouzeix-Raviart space into its intersection with a finer one.

For fixed k € N, let {®F : E € Gy, z € Ni(E)} be the Lagrange basis of
Vi := V(Gg), i.e., ¥ is a piecewise polynomial of degree r with supp(®£) = E and

DL (y) = 6.y for all z,y € Ng.

Its dual basis is then the set {UF : E € Gy, 2 € Ni(E)} of piecewise polynomials of
degree r, such that supp(¥Z) = E and

(wy, <I>ZE>Q = 0,y for all z,y € Ni(E).
For all £ > k, we define II;, : L'(Q) — L'(Q) by
(3.4) Meo:= > > (yw)|e(z) @F,

EeGy zeN, (E)

where for z € Nj(E) we have that

Jpv¥?dz, if Ne(2) "Gt # &
(3:5)  (xv)[p(2) =40, else if z € 00
E’ /
ZE'GNk (2) m fE‘l U\IJZE dx, else.

Lemma 16 (Properties of I1;,). The operator Iy, : L*(Q)) — LY(2) defined in (3.4)
has the following properties:
(1) Ty : LP(Q2) — LP(Q) is a linear and bounded projection for all 1 < p < o0.
In particular, we have that
HHkUHLp(E) S HUHLP(wk(E))5
where the constant solely depends on p, r, d, and the shape reqularity of Go.
(2) v e Vy, for all v e LY(Q);
(3) Mxv|p = v|p, if E € Gy and vy, (g € Pr(wi(E));
(4) gv|g = v|p, if E € Gt and v|p € P,.(E); if moreover v € Vy,, then also
[v—T1Lwv]|s =0 for all S S .
(5) HkU|Q\Qz e C(ANQ) and [Txv] = 0 on A(Q\Q));
(6) v = v, for all v e Vi with U|Q\QZY+ e C(NQ™);
(7) Tyv € Vo, and we have |y, = ||, -

Proof. Claims (1)—(3) follow by standard estimates for the Scott-Zhang opera-
tor [SZ90, DG12].

Assertion (4) ib a conbequence of the definition (3.5) of IIj, since E € G;"* implies
that Ny (E) NG = Ni(E). Note that v € V(G) implies v|g € P,.(E) for all E € Gy,
and thus (Hkv)|E( ) = v|g(z) for all E € Ni(2) if Ng(z) n G+ # . This is in
particular the case when z € S N A}, with S e S;F.
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For F € gk\g,j, we have that N (z)n g,j+ = (¢ since otherwise there exists E’ €
Ni(E) NG and thus E € Ni(E’), which implies E € G;", thanks to the definition
of G *. Therefore, (3.5) implies that II;v is continuous on Q\€2;. Moreover, for
z € Ni(E)nQ\Q;, definition (3.5) is independent of E and thus II;v does not jump
across the boundary Q\Q;". This completes the proof of (5).

On the one hand, if v € Vi with U|Q\Q; e C(O\Q ) then we have clearly
vl g+ = vlg\qr- On the other hand, we can conclude Izvlg+ = v]g++ from (4).
This yields (6).

The claim (7) is an immediate consequence of (5). O

Lemma 17 (Stability). Letv € V, for some k < £ € Ngu{w}. Then for all E € Gy,
we have

/ |VIIo|* da +/ ! [0]? ds
E OB

s/ Vpuo|” da + > / hyt [v]? ds,
wi () oE’

E’eG,E'cwi(E)
setting Ge :== G* and hg := hy., when £ = co. In particular, we have |[v], < |Jv],-
Proof. We begin by noting that, summing over all elements in G; and accounting
for the finite overlap of the domains wy(F), E € Gk, the global stability estimate is
an immediate consequence of the corresponding local one.

We first assume ¢ < 0. Let E € Gt < G/ . Then, thanks to Lemma 16(4), we
have IIyv|g = v|g. Moreover, let E’ € Gy, such that E n E’ € Si; then Ni(z) 3 E €
Gt and thus (IIyv)| g/ (2) = v|p(2), for all z € Nj(E) n N (E'). Consequently, we
have [[IIxv]] = [[v]] on JF, in other words

(3.6) /|VHkv|2 dx—i—/ Bt (] ds=/ Wk dx—i—/ Bt [o]? ds.
E oFE E oE

Let now E € Gi be arbitrary. Then, an inverse estimate and the local stability
(Lemma 16 (1) and (3)) for vg := W%E)I fwk(E) vdz € R, imply

/ IVIw|? dz < / Ry % (v — vp)]? dz < / hi % v — vg|? d
E E wk(E)

< 2 / Vol da +/ hy! [v]? ds;
B OB

E'cwy (E),E'Egg

(3.7)

here the last estimate follows from the broken Poincaré inequality, Proposition 1.

If now for all E' € G, with B/ < wi(E), we have E' ¢ G} ", which implies
E € G,\G; . Then, thanks to Lemma 16(5), we have that II,v is continuous across
OE, ie., [IIzv]l|og = 0. On the contrary, assuming that there exists E' € G,
with E' € Ni(FE), we conclude that F € Ni(E') and thus E € G*. From the local
quasi uniformity, we thus have for all E” € G, with E” n E # & that |E"| = |E]|.
Let z € N (E); then, according to (3.5), we have that

o] |or(2) = {gv]] lor(2), i 3E € Nio(z) n G

, else.
Using standard scaling arguments, this implies

/aE[[Hkv]]zds:wm S (Mol loe()* = 10B] Y ([v]lo(2)”

2zeNLNOE 2eNLNOE
2
<loEl Y ([o]lon(2)* = / [v]? ds.
2eNynOE oE
Combining this with (3.7) proves the local bound in the case ¢ < o0.
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For £ = o, we observe that a bound similar to (3.7) can be obtained with
Lemma 13 instead of Proposition 1. The local bound follows then by arguing as in
the case ¢ < 0. 0

Corollary 18 (Interpolation estimate). Forv e Vy, k < £ e Nu {00}, we have that
/ Vot — Vipullpv|* dz + / by 2 v — Mol + / bt o — 0]°
E E o)

s/ Vpuv|? dz + D /h;l[[v]]Q,
Wk(E) )S

Se8,Scwi (E

where we set Gy := G and hy := hy, when £ = c0. The constant depends only on
d, v and the shape regularity of Gg.

Proof. The claim follows from Lemma 16(3), together with the stability Lemma 17
and the local Poincaré inequality from Proposition 1, respectively, Lemma 13. O

The next result concerns the convergence of the quasi-interpolation.
Lemma 19. Let v e V; then,
lo—Txoll, =0 and  flo—1Ilkvf,, —0
as k — oo.

Proof. For brevity, set vy := IIyv € Vi. Thanks to Lemma 13 and Lemma 16(4)
and (5), we have that

flv — vk|||i < /g . | Vot — prvkﬁ dz + / . h;l [[v — vk]]|2 ds
k\Yy K\

< / | Vow¥ — prvk|2 dx + / | Vpw¥ — prvk|2 dx
9 g

+/ h;1|[[v7vk]]|2 ds+/ h,:1|[[v7vk]]|2 ds
" Si

=1, + I+ 11 +1I.

We first observe that I1,” = 0 since v, v, € H*(Q;) (note that [[v] = [vg] = 0 even
on the boundary 0€2 since 2, < 7). We conclude from Lemma 17 that

*

k

Z (/wk(E) |Vpwv|* da + Z /GE' hit [[v]]2 ds)

Eegy E'eGt ,E'cwy(E)

2 / |prv|2dx+/
Eeg; @k (E) SH\S)

The first term on the right-hand side vanishes in the limit k& — oo, from Lemma 11.
The second term is the tail of a convergent series, since it is bounded thanks to
llv]l, < o0 and all of its summands are positive. Therefore, I} + I} — 0 as k — .
Thus, it remains to prove that I, — 0 as k¥ — 0. To this end, recall that
H), »-(Q7) is the space of restrictions of Hj(Q)-functions to Q. Since HF ()
is dense in Hg(€2), for € > 0, there exists ve € H§(2) such that v — ve| g1(o-) <
[v — ve| 1) < e Combining Lemma 16(3) and (1) with the Bramble-Hilbert

[,: +[I,: = /g* |prv —prvkﬁdx—i-/ h;l |[[q} _Uk]]\2 ds
k

A

A

h o] ds.
N
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Lemma (see, e.g., [BS02]), we obtain with standard arguments that

J

Vv - Vupl*de < + /7 |Vve — VIgve|? dz

<éd+ / h3 |D%v|? dz
Nk (G,) Z

|| =2

<@+ lhoxg o [ 3 1070 de,

|a|=2

where we have used that HthLw(Q(Nk(g;))) < HthQ;HLOO(Q), thanks to the local
quasi-uniformity of G. Thus, we have ||thQ; [y — 0as k — oo from Lemma 11

and, therefore, we can conclude that limy_, I, < €. This completes the proof of
the first claim, since € > 0 is arbitrary.

The second claim follows similarly by replacing S, by S* and noting that || IL,v||, =
x|, since v is continuous in Q\Q. O

Proof of Lemma 14. The positivity of |||, on V¢, follows from Lemma 19 together
with |w] gy () < [lwl|, for all w € Vy; see Corollary 3 and Proposition 4.

In order to prove that Vo, is complete with respect to ||-||,, let 0 # v € Vkmw,
i.e. there exists a sequence {ve}geN c Vo, such that |||v —f |Hoo — 0 as / — o0. Note
that v’|p € P, for all E € G* and thus it follows from the definition of ||-[|, that
also v|g € P, for all E € G+.

For each ¢,m € N, we define v%, := II,,v* € V,, and since v, € C(Q\Q*)
(see Lemma 16(5)), we have that [|vf, |, = ||vf,], for all ¢ > m € N. Thanks to

Lemma 19, for each £ € N, there exists a monotone sequence {my}, € N, such that

sz — vfm MOO < % and thus
o = v, < Mo = v e < o=l + 10" = v, [l, >0 as €0,
Consequently, we have that
v, = o, = oll, <0 as € — oo,

Thanks to Corollary 3 and Proposition 4, we can extract another subsequence of
{vf,, }een which is weakly-# converging in BV (). Therefore, v € BV(f), and we
have in the distributional sense, that

Dv(¢):/Qprv-gbdx+/s+ [v] - ¢ds Vo e CP Q)4

Note that Vi, < V; for j > k and thus wy, :=
Consequently, we have [lv — wi[, < [lv— will,, = |Jv —v5, |||oo — 0 as k — 0.

It remains to verify that v|g- € H), .- (€27), i.e., that v is a restriction of a
function from H}(Q) to Q7. To this end, we consider the conforming interpolation

Irwk € Vi 0 Hy(Q) from Proposition 2, which also implies that |VZywg| o) <

4
me € Vi, k€ {me,...,mpp1 — 1},

llwell,, < oo uniformly in k, i.e., there exists a weak limit & € H{ () of a subsequence
of {Zpwy }ken. On the other hand, it follows from Lemma 16(5) that [[wg] |og = 0
for all E € G (recall that Q}, < Qf for k > my). Consequently, the local estimate
in Proposition 2 implies Zywy, = wy, in @~ < (Q\Q;). Therefore, we have

va - VIkwk”L%Q*) = va - prwkHLz(Q—) < H|’U — Wk |||oo —0

as k — o0 and thus v|g- = 9]g-.
Concluding, we have proved v € V4, which implies Lemma 14. O



16 CH. KREUZER AND E.H. GEORGOULIS

Proof of Corollary 15. The assertion follows from Lemma 14 and the observation
that

o, < Bclv, 0] and  Beo[v, w] < ol ol

for all v, w € V. Indeed, the continuity follows with standard techniques using (3.2)
and the coercivity is a consequence of

ML), = ]l < B[k, M) = Boo [, o]

and Lemma 19. O

4. (ALMOST) BEST APPROXIMATION PROPERTY

In this section we shall prove that the solution us, € Vo, of (3.3) is indeed the limit
of the discontinuous Galerkin solutions produced by ADGM. This is a consequence of
the density of spaces {Vi}ken, in Vo, and the (almost) best approximation property
of discontinuous Galerkin solutions; the latter generalises [Gud10].

Lemma 20. Let uy, € Vo be the solution of (3.3) and uy € Vi be the DGFEM
approzimation from (2.6) on Gy for some k € N and uy the unique solution of the
limit problem from Corollary 15. Then, we have

fy e — Mpug g, — B [Mptes, up — Mpug]
llur — Myue ”|k

lluce = wrlly, S fluce — Mpues|ly, +

Proof. Assume that uy # Hpue € Vi "V and set ¥ = ug — [gug. Then, we have
from (2.7) that

aflur — Myu |l < Belur — Wi, ¢] = {f, Vg — Br[Mtics, V]
= (f, Wpppg +{f, ¥ — ) — B [Hruc, Y]
= (%oo[uom Htp] — By [Mguco, de}])
+ (¥ = ) — B[y, ¥ — Miy]) = (1) + (11),
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using that gy € Vi N Vg from Lemma 16(7). For (I), we have, respectively,

(1) = /vawuw - VoIl dar — /S+ ({Vuoo} - [Ix9]) + 04V} - [ucc])) ds
+ [ (8- [l [VTe0] + [V 8- [l ) s
# [ ARl + LB el - (Reo([TtD) + Lep (8- [v) da
+ /S+ i Tus] - [Ixe] ds
— /Q Veullktoo - ViuIlgth da + /S k ({VIjux} - [Hp] + 0{VIL} - [Mius] ) ds
- [ (8- [ [9T10] + [V ] B - (] ) s
— [ A + L8 M) - (Ru(Ieb]) + LB [e0])) do
- [ ] - ] s
= /QVPW(uOO — Hiug) - Vpullpyp do
- [ (7 o)) [ s — /S AT} s — T ] s

+ / (B [ue — Wpue | [VILy]] + [V — VIzus] 8- [ ] ) ds

S
+ /Q“Y(Roo([uao — Mytoe]]) + Loo(B - [uee — Myuss )
(Reo ([Tt ]) + Loo (B - [Ta]))) da
+ /S+ hik [vow — Hyueo ]| - [Txep]] ds

< Nueo = Miuco |l oo Mktdll oy = oo — Mirioo[lo, [Tkl
< fluce — Myug ”|oo flus. — Hkuoomk )

here we used that Iiue, Iz € Vi N Vo, he = hg on S,j and that ITyu, and
II%) are continuous on O\, i.e., [Ixue] = [[gy]] = 0 on ST\S;', which follows
from Lemma 16. Note that this and [[zux,] = [Ixy] = 0 on J(Q\Q}) from
Lemma 16 also implies that Ly (IIxt)) = Lo (Ixtp) and Ly (Hgue) = Lo (Mrug)
as well as the corresponding relations between Ry and Re; compare with (3.1).
Thus, the above estimate follows from the Cauchy-Schwarz inequality, application
of inverse inequalities in conjunction with the stability of the lifting operators (3.2),
and Lemma 17.
Consequently, triangle inequality and the above imply

lluce = welly, < lluw — Wpus |y, + flur — ruslly,
< lluee — Miussly, + fluce — Myus |,
N fs =Tk — B [Hpue, P — )]
llur — Mol

Thanks to [Juew — Hpuw, < ||tw — Hiuw],,, this proves the assertion. O

The properties of the quasi-interpolation (3.4) allow for the consistency term in
Lemma 20 to be bounded by the a posteriori indicators of essentially the elements,
which will experience further refinements.
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Lemma 21. Let uy € Vo be the solution of (3.3) and uy € Vi be the DGFEM
approximation from (2.6) on Gy for some k € N. Then, we have
fy up — Mpug) o — Br[Mpte, ur — iy
llur — Meuico [,

<( X Ek(Hkuoo,E)Q)l/z,

Eegk\g,’i+
where Gi" == {E € Gy : Ne(E) < G *}.

Proof. Let vy := Hpue and ¢ := up — Mpur = ugp — Mg — g (ug — it ). Then,
using integration by parts, we have

{fy d)g — Brlvk, @]
_ / (f + Avg)dz — /S (Vo] {6} ds + /S 0{V 6} [ve] ds

Gk

- /S (B[] [V 6] + [Vorl 8- [4]) ds
- / V(Ri([oe]) + La(B - [on]D) - (Re([8]) + La(B - [4])) dz
—a/ Bt [onl [6] ds.

Sk

Thanks to properties of ITj, (see Lemma 16), we have that [Jug]| |s = 0 for S € Sk\S,j,
Tvel \Q\Q; =0, ¢lg=0for E€Gl™", and [[¢]|s =0 for S € S;*. Therefore, we
have

{fy &q — Brlvk, 9]
= / (f + Avg)pdx — / [Vor] {¢}ds
GG A

£\Sp,
+ 0/S+ {V} ] ds
(4.1) '
-/ B[l 1991 45 - / PRLATROE
- /QV(RM[[W]]) + L(B - [vel) - (Br([e]) + Le(B - [4])) dz

The last term on the right-hand side of (4.1) can be estimated using Cauchy-
Schwarz’ inequality; for the first two terms we use the interpolation estimates from
Corollary 18 for ¢ = ¢ — Iy with ¥ = ug — Hpue € Vi as to obtain

/ (f + Avp)éda — / [Voe] {6} ds
Gi\GF T Sp\SFt

) o\ 12 5, N\ 12
< ( hi| f+Avg| dx) +( hi [Vue]l ds) Nl — ko ||, -
G\Gi Se\SET

Moreover, from ¢|g = 0, E € G, we have that ¢|,, (s) = 0 and thus {V¢}|g = 0 for
all S e S,‘:’+ =S (g,§+). Therefore, by standard trace inequalities, inverse estimates
and Corollary 18, we have that

_ 2 1/2
Lmomdas= [ atubass ([t T as) ol
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A similar argument yields

.8 ldivelds= [ B-[ullve] ds
S} $hs

k k
1/2
—1 2
<181 ([, 0 Tl as)
Finally we have with (2.4¢) and the local support of the local liftings, that
/Q Ru([ox]) - Bu([6]) dz = / (S RS- (Y RE(4D) da

Ses;t SeSK\S; Tt

_ / . Bi([o]) - Be([[6]) da
G\
—1 2 1/2
< (/3};*'\32‘*' hy ™ el ds) ol -

Similar bounds hold for the remaining terms in (4.1). Combining the above obser-
vations proves the desired assertion. O

In order to conclude convergence of the sequence of discrete discontinuous Galerkin
approximations from Lemma 21, we need to control the error estimator. To this
end, we shall use Verfiirth’s bubble function technique.

Proposition 22. Let uy be the solution of (3.3). Then, for every E € G, and
v € Vg, keN, we have

/ hi\f+Av|2dx+/ hie [Vpu]) ds
E OENSQ

< | Vil — )|

wk(E) +

+ osc(Nk(E), f)%;

/ W uw — o] ds
{SeS+:Scw,(F)}

in particular, we also have

3 /hz|f+Av|2dz+/ hie [Vpu])” ds
E OENSQ

EeGy, o
2
Sluo —vlg+ 35 D) ose(E ).
Eeg, E'ewr(E)

Note that since v e Vi, & Vo, in general, the above terms may be equal to infinity.

Proof. The proof follows from standard techniques; compare e.g. [KP03, BN10].
However, in order to keep the presentation self-contained, we provide a sketch of
the proof. For E € G, let ¢p € Hj(E) be Verfiirth’s element bubble function with

(4.2) W5 Vel 7w sy < IVadln < b’ lal  for all g € Pr_y(E).
Note that extending ¢ g by zero to the whole domain €2, we have that ¢ € V,, since

E c Q. Let fg € P._1(E) an arbitrary polynomial. Observing that (fg+Av)¢g €
C(92) and thus does not jump across faces, we have by equivalence of norms on finite
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dimensional spaces and a scaled trace inequality, that

/ |fe + Av)? dz
B
< [ e+ B0 + Av)spds
E
= Byluw — v, (fg + Av)ogr] — /E(f — fe)(fe + Av)¢ppdx

S Vo (uw = 0)| 5 IV (fE + Av)¢p| 5 — /S+ [uw —v{V(fE + Av)¢r}ds
+f = felpI(fE + Av)dE|g -

From (4.2) and standard inverse estimates, we conclude that

‘/3+ [uw —v[{V(fe + Av)pr}ds

< ¥ /S [1or — o1 ds [V (F5 + A)os] Lo

SeS+t,ScFE

/2 _q_a
s (/ B o = o] ds) ' e + Al
S+

1/2
< ([ T =l as) e + Aol
S+

since hy < hg on E. Therefore, we arrive at

/hi‘f“ﬁv\zdxﬁHpr<uOo—v>|\2+ > /hf[[uoo—v]]zds
) e s

(4.3 SeS+,5cE

+ 0%\ f = fal’.

Thanks to the definition of G, , the same bound applies for all E' € Nj(E).

We now turn to investigate the jump terms. To this end, we fix one S € Sok,
S < E and let E' € Ni(E) with S = En E'. Let ¢5 € H}(wi(S)) be Verfiirth’s
face bubble function. Note that extending ¢g by zero to €2, we have ¢g € Vo, since
wr(S) € Q. For each ¢ € P,._1(S), there exists some extension ¢ € P,_1(wx(S))
such that

(4.4) W 19365 e o 5y < 180512, (s) < b /S gl ds.

Noting that [Vv]| € P,_1(S), we have, by the equivalence of norms on finite dimen-
sional spaces, that

/S [Vo]]” ds < /S [Vo]” ¢s ds
= SBOO[UOO -0, m¢5] - / (f + Av)m¢s dx

wi (S)

$ ”pr(uoo — U)Hwk(S) HV[[VU]](bS

wi (S)
¥ /S e — o (VIVeT0s} ds

+ (If + Avl + | f + Av|E )2

m¢s‘)wk(3) '
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Similarly, as for the element residual, we have that
[ e = o (V1 T65) ds
S+
< hilu—vgi/hEVUQdSEa
(X0 e —ol) ([ helvel ds)

S7eS+,5' cwi(S)

using (4.4). Again with (4.4), we obtain

/ShE [Vl ds < [Vl )|, g+ . /Shf [ — o] ds
(S)

5'eS+,5'cwy,
+ 0G| f + Al + B | f + A
Finally applying the bound (4.3) to E, E’ € N(E), we have proved the first asser-
tion.

The second assertion follows, then, by summing over all E € G, together with
an observation from [MSVO08|, which we sketch here in order to keep this work
self-contained. Let M := max{#Ny(F) : E € G, } be the maximal number of
neighbours, then G, can be split into M? + 1 subsets Gk.0v- - -+ Yy pre sSuch that for
each j, we have that E', E' € G, ; with £/ # E’ implies that Ny (E) n Ny(E') = .
Consequently, we have

M2
Z HVPW(UOO - U)Hik(E) < Z Z HVP“(UOO - U)Hik(E)

Eeg;; 7=0 Eeg, ;
< (M + 1) | Vpu (oo = v) g -

Together with similar estimates for the jump terms and the oscillations the second
assertion follows from the first one. ]

Theorem 23. Let uy the solution of (3.3) and uy € Vi be the DGFEM approxi-
mation from (2.6) on Gy for some k € N. Then,

luw — ugll, =0 as k — oo.
Proof. Thanks to Lemma 20, Lemma 19 and Lemma 21, we have that

. 2 . 2 2
dimn fluoe — wlly < Hm Juoe —woell’y + 3 Ex(or, B)
EEgk\Qng

= 1 2
kl—r};o Z 6’(} ('Uk ) E) )
EeGi\Gy T

where vy, := IIyus. Using Lemma 11, we have

[O\(Q; Q)| < [OQ v Q)| + 19N\
|

B+ 19N =0,
as k — o0. Indeed, for k € N, it follows from Lemma 10 and #g,j < o0, that there
exists K = K (k), such that G < G, ie. |[QN\QY| < |QN\QF| — 0 as k — 0.
Thanks to monotonicity we conclude that |[2F\Q;"| — 0 as k — c0. We next show
that this implies

<
<

2 Ek(vk, E)2 — 0.
EeGi\(G;, vGit)

Lemma 19 implies that [[ue — vg|l,, — 0 and, thus, the interior residual and the
gradient jumps part of the estimator vanish due to uniform integrability. Moreover,
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it follows from Proposition 12 that

B o] ds < / B Tuse]? ds + s — vell?
S(9:\G2T)

< / B sl ds + fluss — v -
S(GH\Gh)

/S@k\@;uggﬂ)

The last term on the right-hand side of the above estimate vanishes thanks to
Lemma 19. Again, letting K = K (k), such that G = G3F, we have

/ ht [uwe]? ds < / hit [ue]? ds — 0, as k — oo.
S(GH\Gi ) S(GH\G;)
Thanks to monotonicity, we thus conclude IS(g+\g3+) h;l [[uoo]]2 ds — 0, as k — o0.
k
On the remaining elements G, , it follows from Proposition 22 that
5 Ex(vn ) 5 fluoo —vill5, + 35 osc(N(E), f)*.
EegG,; EegG,;

The first term on the right-hand side vanishes due to Lemma 19. For the second term
we observe that || J{wi(E) : E € G, }| < ||, depending on the shape regularity of
Go and, therefore, it vanishes since

45 Hh .
(4.5) KXoy L= (Q)
thanks to Lemma 11. O

— 0 ask — o0,

5. PROOF OF THE MAIN RESULT

We are now in the position to prove that the error estimator vanishes, following
the ideas of [MSVO08]. This in turn implies that the sequence of discontinuous
Galerkin approximations produced by ADGM indeed converges to the exact solution
of (2.1).

Lemma 24. We have that
(G, ) — 0, ask— .
Proof. Thanks to Proposition 22, we have

2 /h%|f+AUkl2dx+/ hie [Vur]* ds
E

Beg; O0ENQ
< lluse — wnlls, + )5 osc(Ni(E), f)*.
EegG,;
The right-hand side vanishes thanks to Theorem 23 and (4.5).
It remains to prove that

/ it [ue]® ds — 0, as k — oo.
S9;)

By definition, Q; < Q\Q; and, thanks to Lemma 16(5), we have that ITyu, €
C(Q\Q). Therefore, we conclude

/ hit [us]® ds = / Bt uk — Mpug ]| ds < Jlug — Myuo ||, — 0
S(Gy) S(9:)
as k — o0; see Lemma 19 and Theorem 23. O
Lemma 25. We have that

lim & (Gf) = 0.

k—o0
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Proof. We conclude from the lower bound (Proposition 6) that

> /hi|f+Auk|2dx+/ i, [Vug]? ds
E oFE

Eeg;,
< 2 lu—wlZ, () + [V = Vowun ] ) + 05c(Nk(E), f)?

EeG}

2 2 2
< 2 { Tl o) + oo — el ) + ol )
Eeg;,

+ |Vl () + [ Vowtior = Vowtik 2 i) + [Vostioo|2,
+ osc(Ng(E), f)2}

This vanishes as k — oo thanks to Theorem 23 and Lemma 11, together with the
uniform integrability of the terms involving v and u.. Note that | J{wi(E) : E €
Q;}| < €|, with the constant depending on the shape regularity of Gy.

It remains to prove

/ it [ur]? ds — 0, as k — oo.
S(95)
To this end, we observe that
/ hit Tus]® ds = / hit uk — Myug ] ds +/ hot [Muss | ds
S(9%) S(9%) S(9%)

1 _
< L g = o2 + / B [y ]? ds.

k

As in the proof of Lemma 24, we have that the first term vanishes as k& — oo.
Thanks to Lemma 10, there exists ((k) > K(k) > k such that G;” < g;((*k) and

Q;g(k) c QZEZ) Consequently, we have that [[l,us]|s = 0 for all S € Gy; see
Lemma 16(5). Therefore, we conclude from Lemma 19 that

a/ h,;l [Hkuw]f ds = 0/ h;l Meue — ngoc]]2 ds
S(G7) S(9%)
< Mkuce — ue |||Z + fluce — Héuoom; -0,

as k — oo. O

Lemma 26. We have

E(GET) >0 ask— oo

Proof. Step 1: By definition, elements in G;"* will not be subdivided, i.e. we have
that My, = G,\G, *; compare with (2.9). As a consequence of Lemmas 24 and 25,
we conclude from (2.8) for all E € G,"* that

(5.1) E(E) < Jim g(E(My)) = lim g(Ex(G; v G7)) — 0,

as k — 0. We shall reformulate the above element-wise convergence in an integral
framework, in order to conclude & (G;*) — 0 as k — o0 via a generalised version of
the dominated convergence theorem. To this end, we shall consider some properties
of the error indicators.

Step 2: Thanks to the definition of G;" ¥, we have for all E € G;*, that wy(E) =
we(F) =: w(F) and Ni(E) = Ny(E) = N(FE) for all £ = k. Therefore, we obtain by
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the lower bound, Proposition 6, that
Ex(E)? % lluk — ully gy + 0se(N(E), f)?
(5.2) < fluk — ue "ﬁV(E) + HuOOH?\/'(E) + HUH?'Jl(w(E)) + Hin(E)
=1 fluk — Uoom?V(E) +CE.

Arguing as in the proof of Proposition 22, we can conclude from the local estimate
that

2 2
(5.3) Y Ok s luslly, + el + 1F172) < %
EBegi ™
independently of k.

Step 3: We shall now reformulate £ (G, ") in integral form. Note that thanks to
Lemma 10, we have that G+ = UkeN0 g,j = UkeNU Q,’:J”, and also that the sequence
{Q;J’}keNo is nested. For z € Q% let

¢ ={(z) :=min{k € Ny : there exists E € G " such that = € E}.
Then, we define

ex(z) == Mi(z) :=0 for k < ¥,

and

1 1
en(r) = ——EX(E), My := E(muk —unlymy + cg) for k > /.

NE

Consequently, for any k € Ny, we have

E(GFT)? = / () da.
ot

Moreover, thanks to the fact that the sequence {g,j *}ken, is nested, we conclude
from (5.1) that

Jim ex(@) = lim e & (E) = 0.

It follows from (5.2) and (5.3) that M}, is an integrable majorant for €.
Step 4: We shall show that the majorants { My }ren, converge in L'(QF) to
1
M(z) = EC%, forzre E and EegG™.
Then the assertion follows from a generalised majorised convergence theorem; see
[Z€190, Appendix (19a)]. In fact, by the definition of M}, we have that

IMi = Ml pgey= D0 IMy— Mg+ D,
Begi+ EeGH\G}*

‘MHLl(E)'

The latter term vanishes since it is the tail of a converging series (compare with (5.3))
and for the former term, we have, thanks to Theorem 23, that

2
2 My — MHLl(E) = 2 llue — UoomN(E) < lluk — uxlly — 0
Eegt EBegi™t

as k — 0. O
Proof of Theorem 9. We have
Gt ugru gy =G

Therefore, the claim follows from Lemmas 24, 25, and 26 together with Proposi-
tion 5. O
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