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Zusammenfassung

Das ,,three dimensional reference interaction site model* (3D-RISM), hier insbesondere
die Solvat-Solvat-Gleichung (##), bietet Zugang zu atomweisen Beitrdgen zum ,,potential of
mean force® (PMF). Das PMF setzt sich wiederum aus der direkten Wechselwirkung zwischen
zwei Partnern und den durch die Solvatation vermittelten Beitrigen zusammen. Das PMF bietet
zusatzlich Zugang zur freien Bindungsenthalpie, welche eine Schliisselgro3e fiir das Design

neuer Molektle in der Pharmazie ist.

Diese Arbeit beschiftigt sich hauptsachlich mit der Berechnung freier Bindungsenthalpien
mit dem 3D-RISM-Ansatz und Methoden des maschinellen Lernens. Die abgedeckten
Themengebiete reichen somit von den grundlegenden Prinzipien der Thermodynamik,
reprasentiert durch den 3D-RISM-##-Ansatz, bis hin zu empirischen Modellen basierend auf
modernen Verfahren des maschinellen Lernens. Diese werden vertreten durch ,,deep neural

networks® und ,,boosted regression trees®.

Der erste Teil dieser Arbeit konzentriert sich auf die Vorstellung einer neuartigen Methode
zur Bestimmung der Designrichtung im molekularen Raum. Dieses Werkzeug bezieht seine

Information aus sogenannten ,free energy derivatives®, welche relativ elegant und effizient

innethalb des 3D-RISM-## Ansatzes definiert und berechnet werden koénnen. Die daftr
notwendigen theoretischen Grundlagen werden in dieser Arbeit gelegt und gleichzeitig wird eine
Machbarkeitsstudie an dem gut charakterisierten 18-Krone-6-Ether-System durchgefiihrt. Diese
Studie zeigt, dass sowohl experimentelle als auch theoretische Trends durch von 3D-RISM-#x

berechnete PMFs und FEDs reproduziert werden kénnen.

Diese aussichtsreichen Ergebnisse wurden zum Anlass genommen, diese Methode auf zwei
Protein-Ligand-Systeme anzuwenden. Hierfir werden die entsprechenden Ligandenatome
nacheinander entweder in die apo-Bindetasche oder die partiell belegte Bindetasche platziert.
Beide Berechnungsmoéglichkeiten liefern Zugang zu atomweisen PMFs und FEDs in Bezug auf
typische Kraftfeldparameter. Zusitzlich wird auf die Stirken und Schwichen der gezeigten

Methode eingegangen.

Im letzten Teil dieser Arbeit verlagert sich der Fokus darauf, eine neuartige ,,Scoring®-
Funktion, welche auf struktureller Ligandeninformation beruht oder mit zusitzlichen
atomweisen PMF-Werten berechnet durch 3D-RISM-## zu trainieren®. Fir diesen
,» Trainingsprozess* werden atomweise PMF-Werte mittels 3D-RISM-## fir eine Untermenge
des , refined set” und ,,core set* der PDBbind-Datenbank berechnet. Dies kulminiert in einer
»ocoring““-Funktion, die vergleichbare Ergebnisse zu anderen modernen ,,Scoring~-Funktionen

liefert und bessere Ergebnisse in Bezug auf , klassische® Scoring-Funktionen.



Abstract

The three dimensional reference interaction site model (3D RISM) in the form of the
solute-solute (##) equation allows one to calculate the atomwise contribution to the potential of
mean force (PMF), which is composed of the direct interaction between two partners and
solvation based contributions. The PMF is related to the binding free energy, which in turn is a

key quantity for the design process of new molecular entities in pharmaceutical sciences.

This work revolves around the estimation of binding free energies with the 3D RISM and
machine learning based methods. The range thus spans from fundamental thermodynamic
principles represented by the 3D RISM-## framework to empirical models based on modern

machine learning, notably deep neural networks and boosted regression trees.

The first part of this work introduces a tool that could help to drive the design process in
chemical space, which is highly desirable. This tool is based on free energy derivatives (FED),
which can be easily defined and efficiently computed within the 3D RISM-## framework, and
which can provide a design direction that could ultimately lead to a better binder. The necessary
theoretical basis is laid out in this work and tested in a proof of principle study on the well
characterised 18-crown-6 ether system. In this study experimental and theoretical trends could

be reproduced by PMFs and free energy derivatives calculated by 3D RISM-#.

The promising results achieved in the aforementioned study were then applied to two
protein ligand systems. For the protein ligand systems the respective ligand atoms are
subsequently placed, either in the @po binding site or into the “partial so/o” binding site that is
made up of the supermolecule consisting of the protein and the partial ligand (ligand minus the
atom in question). Both calculation schemes ultimately lead to atomwise information about the
PMF and the respective FEDs with respect to typical non-bonded force field parameters. This

study shows the possibilities and limitations of the aforementioned method.

For the last part of this work the focus shifts and it is demonstrated that it is possible to
train a truly novel scoring function based on structural ligand information in the form of
molecular fingerprints alone or in conjunction with atomwise PMF values calculated by 3D
RISM-#u. For the training process atomwise PMF values were calculated for a subset of the
PDBbind refined and core set. This culminated in scoring functions that are competitive with
other modern machine learning based scoring functions and that outperform classical scoring

functions significantly.
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INTRODUCTION

1 Introduction

1.1 Motivation

Designing new molecular entities and bringing them to the market is one of the grand
challenges in chemistry and pharmaceutical sciences. The number of approved new molecular
entities is stagnant in the last decade on a low level which was not seen in the flourishing years
of drug development in the mid to late 20" century. This is despite the growing efforts made by
the pharmaceutical industry by pouring more money into research and development."™ This
led to the incorporation of new approaches in the late 20" century, which were fuelled by
advances in high-throughput screening and combinatorial chemistry."* Nowadays, these are
augmented by structure-based drug design, which has the premise that the activity of a ligand is
encoded into the three dimensional structurel “* and lead to the development of a plethora of

docking and scoring functions.*"!

One of the hot topics, which garners the attention of the pharmaceutical industry is the
role that weakly bound water plays in regard to binding thermodynamics."*" This trend started
in the 1990s and culminated into tools like SZMAP,” WaterFlap,”! WaterRank,”
WaterMap'® > and others, which are used today and try to predict water binding sites. Although
all these methods and tools help the medicinal chemist in the process from hit-to-lead design
until to date rational design often boils down to a question of experience and so-called “chemical

intuition.”

Besides, the very important role that water plays in the binding process, the prediction of
binding affinities is crucial during the first stages of the drug design process. So most of the

questions that are asked during these stages boil down to the following two:
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INTRODUCTION

e Which molecule binds best to the target?

e  Why does molecule X bind better to the target than molecule Y?

In order to answer the first question, theoretical chemistry and cheminformatics offer a
plethora of methods that range from quantum mechanical calculations and molecular mechanics
to the evaluation of empirical scoring functions. What the former two classes of methods offer
in terms of accuracy they lack in terms of speed and vice versa for empirical scoring functions.
Why do empirical scoring functions often do not offer a satisfactory amount of accuracy? And
what is the missing piece of information for many of the aforementioned methods? A possible
answer could be that a disruptive leap in either the translation of the underlying physics into a
computationally tractable problem (better force fields) or the standardization and accurate
measurement of the experimental database all empirical methods are relying on is needed.
Because these breakthroughs are not in sight and clearly out of the scope of this work, another
approach is to combine the best of both worlds. This means to design a model that is based on
a relatively accurate description of the binding thermodynamics, including the crucial solvation
contributions paired with relatively high computational efficiency (in the form of 3D RISM-
™) and then leverage the predictive capabilities of modern machine learning methods to

design a novel scoring function, thus compensating for noise and uncertainty.

Scoring functions are often categorized into four groups: force field-based, empirical,
knowledge-based, and machine learning-based.” * Force field-based scoring functions
basically rely on the calculation of the non-covalent interaction energy of the protein and the
ligand in question and are augmented by the addition of solvation energy terms in form of
continuum models like Poisson-BoltzmannP"* (PB) or Generalized Born™ (GB).” Scoring
functions of this category benefit directly from advancements in the underlying force fields and
representatives are for example AutoDockP ' and GOLDP. Empirical scoring functions
calculate the quality of a protein-ligand interaction through the weighted sum over rather
arbitrary contributions. Frequent used descriptors are the number of rotatable bonds, the
number of hydrogen bonds or the internal strain energies. The weights are determined by
multivariate linear regression. The individual components can have a positive or negative effect
on the resulting score.” ! Unlike the aforementioned force field-based scoring functions, the
functional form does not necessarily have a physical foundation.”” Notable members of this

[38]

class are X-Scorel¥ and ChemScore.” Knowledge-based scoring functions are based on

the assumption that the protein ligand binding affinity can be described by the sum of all
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INTRODUCTION

pairwise interactions. These pairwise interactions are modelled as statistical potentials.
DrugScorel” and IT-Score!** are knowledge-based scoring functions. The fourth class
of scoring functions combine a series of descriptors, which are fed into a machine learning
method to derive binding affinity scores and are called machine learning-based scoring
functions. These descriptors, or often called features, can consist of specific interactions:

geometrical descriptors or ligand-based descriptors.””!

One significant difference of this type of
scoring function from empirical scoring functions is the type of regression method, which is
non-linear for machine learning-based scoring functions and linear for empirical scoring

29, 37

functions.” " In analogy, the two types of scoring functions share the need for a training set

with experimentally determined binding affinities.”” NNScore! *l and RF-Score!® ¥

are
representatives of this type of scoring function. According to Qurrat Ul Ain e# o/, one of the
advantages of machine learning-based scoring functions is that they are not restricted to
(multivariate) linear regression and a fixed functional form which is the case for “classical”
scoring functions. This assumption is supported by studies where the performance of scoring
functions could be improved by the substitution of linear regression through non-linear
regression models.””* I Neural networks and deep neural networks are also used as non-linear
regression models. One example is NNScorel a shallow neural network with one hidden layer
and 10 hidden neurons trained with the docking terms of Vinal 1.1.2 and features calculated
by BINANAPY on a handcrafted dataset based on the binding MOAD" and PDBbind.”” More
recently, Ashtawy ez a/P" combined either “bootstrap aggregation” (often called bagging) or
“boosting”®> >l with a shallow neural network to enhance the predictive capabilities of their
model. “Bagging” in the sense of machine learning means to combine an ensemble of trained
models in an averaging manner. Boosting is a similar approach where the ensemble of models
is combined through a weighted sum. The network architecture for both approaches consists
of 20 hidden units for the hidden layer and as an input Ashtawy e# 2/"" used a diverse set of
descriptors that were extracted from vatious of-the-shelf scoring programs.P They trained their
models on the refined set of the PDBbind™ and reached Pearson correlation coefficients of
R = 0.80 for the “bagging” and R = 0.82 for the boosting approach on their test set (core set
of PDBbind). Thereby, they outperformed all other tested methods (including other non-linear
regression models).” Wallach e¢f a/P" from Atomwise Inc. published an interesting paper on
the “arXiv.org” server where they took a different route by using convolutional neural networks
to classify active from inactive compounds. Their network architecture consisted of four 3D

convolutional layers of varying filter sizes, followed by two fully connected hidden layers with
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INTRODUCTION

1024 hidden units in each layer.”” More interesting than the network architecture is the design
of the input representation: the input consisted of a cubic grid with 20 points in all directions
and a spacing of 1 A. Fach grid cell contained structural information e.g. atom types. This 3D
grid was unfolded into a 1D vector, which was then used to train the network. As input
databases, mainly DUD-EFY and a subset of the ChEMBLP database were used.”” In the
results they note that they achieve a “level of accuracy useful for drug discovery”.”” Deep neural
networks can also be used for target prediction, which was done by Unterthiner e# a1 for a
subset of the ChREMBLFP" database. As input for their vatious tested methods and network
architectures they used extended-connectivity fingerprints (ECFP).!! The use of deep neural
networks is not limited to the academic world. In 2012, Merck hosted a competition on

°700.6% 91 (an online platform for data-science competitions) with the goal of testing the

kaggle!
performance of modern machine learning methods on QSAR problems. The winning team
made heavy use of a multi task deep neural network and was able to achieve a relative

improvement of 15 % over the in-house baseline models of Merck.[> 3!

As far as the author knows, no scoring function, so far, was trained on thermodynamic
data calculated by 3D RISM-##. Nonetheless, a little synopsis of the role RISM has in molecular
modelling is given here. For example Genheden e# 4/ approximated the binding free energy
of protein ligand complexes through sampling of the conformational degrees of freedom with
MD simulation coupled with 3D RISM-#» calculations (called MM-3D-RISM-KH*) of
simulation snapshots in a MM/PBSA(GBSA) manner." Imai ez /" took a different route:
they used mixtures of water and a drug fragment as a solvent and calculate the respective pair
distribution functions of all components and the protein. With these solvent site distributions
they tried to detect potential binding sites on the protein surface and also to deduce possible
binding modes of the fragment in the active site."! Nikoli¢ ez a/" picked up this idea and
implemented a new docking approach based on the PMF calculated by 3D RISM-u» into
AutoDock,” * which they call 3D-RISM-DOCK. The only application of 3D RISM-## so
far in the field of molecular modelling or structure based drug design is a proof of principle

[68]

study by Kiyota® ¢f a/ where the aim was to reproduce the binding mode of a model system
consisting of aspirin and phospholipase A2.! But applications of 3D RISM and in particular
the solute-solute equations (##) to the prediction of binding affinities or molecular modelling in

general is rather limited./** % %!
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INTRODUCTION

Returning to the second question which is even more complex and somewhat of a holy
grail in the medicinal chemistry community. Subtle changes in the ligand chemistry can have a
huge impact on the measured or calculated binding affinity. Most often the decision, where and
which derivatisation to make, is driven by chemical intuition or empirical rules like the rule of

ﬁVC.WO’ 71]

As laid out in Ref. [72], designing functional molecular systems essentially means the
process of translating desired properties of a material or a biologically active substance into
chemical structure. Since there does not exist a one-to-one mapping between a desired
(continuous) property, such as a specific band gap, elastic constant, or protein-ligand binding
affinity, and chemical structure space, molecular design can be rational only to a limited extent.
These limits are defined, on one hand, by the discreteness of chemical structure space (not every
conceivable or desirable value of a property can be realized chemically) and, on the other hand
directly related to the first issue, by knowledge accumulated in the past, namely the measured
or theoretically predicted properties of given chemical compounds. Moreover, the space of
potentially useful structures is huge (for pharmacologically relevant compounds, number
estimates range from 10* to 10® ") giving rise to the opportunity that several, even completely
dissimilar chemistries can have properties close to the desired value. Designing molecules is
therefore characterized by an underdetermined, inverse problem subject to additional
constraints such as synthetic accessibility, minimization of unwanted side effects, as well as
economic and legal factors like minimizing production costs or maximizing likelihood of

patentability and premarket approval.

Focusing now on pharmacological problems, as already mentioned above, the
pharmaceutical industry is facing a dire problem related to the fundamental design issue. Despite
about $50 billion spent annually on research and development only 20 new drugs are released
per year."! One of the reasons for the ever growing gap between costs and return is the fact
that only about 3% of the initiated drug discovery projects make it to a marketable drug."” One
reason for the failure of this daunting procedure is related to a very early stage of development,
the so-called lead-optimization phase, where the problem is to decide where and how to modify
a ligand molecule in order to get a more favourable binding to a target protein. The property or
key thermodynamic quantity defining the design goal in this case is the (standard) free energy
of binding (AGuing, omitting the “standard” superscript for simplicity). The broad spectrum of

methods for calculating these free energies range from docking algorithms based on empirical
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INTRODUCTION

scoring functions (as described in detail above), which can be evaluated comparatively fast, to
explicit-solvent fully atomic molecular dynamics (MD) simulations, see Refs. [76-78] for recent
overviews. The latter, presently representing the method with highest level of physical detail
achievable, requires orders of magnitude more computing time than the former simpler, though

far less accurate techniques.'

Yet, even though substantial advances have been and are currently being made in the field
of predicting protein-ligand thermodynamics, such methods, frequently combined with virtual
screening techniques to reduce the chemical search space,"” do not directly address the primary
design goal but provide posteriori data only to be fed back into an iterative design cycle. Clearly,
progress can be made by defining a search direction in property space, which in this case would
be equivalent to define a (binding) free energy derivative (FED) with respect to certain
parameters that define variations of chemical space. The simplest way to this end is to vary
protein-ligand (and therefore simultaneously ligand-solvent) interaction parameters taken from
model potentials. For instance, locally changing a site charge and/or apolar atomic
size/interaction strength parameters can be viewed as virtual substitutions on otherwise
unchanged scaffolds, for which a derivative can be mathematically defined. Such a concept of
deriving a FED based on free energy MD simulations was proposed more than two decades
ago by several authors/”™ and has been further explored with more or less promising
results.*”™ In a related approach, van Gunsteren and co-workers have devised methods to
compute free energy changes simultaneously for several target states (representing different
chemistries) from simulation of only a single reference system.™ *! The drawback of these
techniques which led to limited acceptance in practical applications is certainly the high
computational demand involved with such MD simulations. As an alternative, much faster to
evaluate yet more approximate models for “charge optimization” have been proposed based on
a minimization of electrostatic energy within dielectric continuum solvation theory.*>*" This
method turned out to be rather insensitive to changes in the ligand conformation and provides

reasonable results with rigid ligands.*>*"

To make further progress, it is desirable to combine the level of physical detail of explicit
MD methods with the computational efficiency of implicit methods such as continuum models.

In this work an alternative route to binding FEDs is introduced on the basis of liquid state

! Reused in part with permissions from F. Mrugalla, S. M. Kast, J. Phys.: Cond. Matter 2016, 28, 344004. ©
2016 IOP Publishing Ltd.
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INTRODUCTION

theory in the form of the 3D RISM™ ) which, as a primary result, yields approximate solute-
solvent (#v) molecule-solvent site distribution functions on a 3D grid from which
thermodynamic quantities, including the solvation free energy, can be derived analytically within
certain approximations. Unlike continuum solvation models 3D RISM-#» theory is capable of
retaining the directionality of solute(#)-solvent() interactions based on the same interaction
potential that could be used in MD simulations, thereby retaining the atomic level of detail.
While the #» formulation needs properties of the pure solvent as input (the solvent site-site
susceptibility y derived from solution to a simpler 1D RISM-»v equation or taken from MD
simulations), it is also possible to extend the hierarchy toward an integral equation between two

infinitely diluted solute species, the solute-solute (##) equation.?>?%* "4

The particular appeal of
the #u theory is related to the fact that it yields the so-called potential of mean force (PMF), Z.e.
the free energy surface governing complex formation analytically and non-iteratively starting
from precomputed #v solutions for the individual partners only. Derivatives of this quantity
with respect to interaction potential parameters therefore serve the goal to define a possible

design direction on the basis of a physically detailed yet compared to MD orders of magnitude

more efficiently computable theory.

1.2 Aims of this work

The aim of this work is, to establish the use of the 3D reference interaction site
model,”*”>?" % gpecifically the solute-solute equation (3D RISM-u#),”* for drug design
purposes. This aim is pursued by two different means: First the theoretical groundwork has to
be established and transferred into a working numerical implementation. This is followed by
the proposition of several new ideas regarding the use of 3D RISM-## within the drug design
process. These ideas culminate into several proof of principle studies in which the weaknesses

and strengths of each of the approaches are investigated.

In detail this means that after introducing the necessary theoretical basics, which is done in
the next chapter, the focus of this work shifts to the introduction of a novel approach to
generate design directions for a given molecular system, namely the combination of 3D RISM-
un and free energy derivatives in the spirit of the work done by others on molecular dynamics

simulation.””! This study is done on the extensively described 18-crown-6 ether system and

13| Page



INTRODUCTION

shows that the PMF topography calculated by 3D RISM-#x is in qualitatively good agreement
compared to topography calculated by 3D RISM-#r or thermodynamic integration. The
sufficient agreement of the PMF topography permits to calculate free energy derivatives, which
yield meaningful results regarding the optimal binding partner for the mentioned crown ether

system.

This successful application of free energy derivatives sparked further interest into the
application on protein ligand systems. To apply free energy derivatives in this setting, two
different calculation schemes were devised (later called apo and partial bolo scheme),
implemented and tested. The concrete protein ligand system under scrutiny is: tRNA guanine
transglycosylase (T'GT) bound to two different aminoquinazolin derivates, that have the
interesting property of being matched molecular pairs.”” They also show a rather distinct
difference in their binding affinity with only subtle changes in the binding mode, making them
an almost optimal example to test the design tool proposed eatrlier. Free energy derivatives are
calculated on an atomwise basis with respect to the non-bonded force field parameters and
analysed to elucidate the most likely cause for the difference in binding affinity and also show

the limitations of the approach.

The last chapter of this work aims towards the generation of a new type of scoring function
based on the aforementioned PMFs calculated by 3D RISM-## and modern machine learning
techniques. A workflow for automated parametrisation and calculation of 3D RISM-## PMFs
is devised and applied to a subset of the PDBbind.”” After that different compositions of feature
sets and the underlying experimental data are used to train several scoring functions with either

deep neural networks or boosted regression trees.” "
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THEORETICAL BACKGROUND

2 Theoretical background

2.1 Host-Guest binding

In the most general sense, a binding process between a host system and a guest (here often
interchangeably used as protein-ligand) can be described through the binding constant

(interchangeably used as association constant) which can be defined as:
Ky =191 ©)

Here [LP], [L], and [P] are the respective equilibrium concentrations of the bound and unbound

state. Following this equation the standard binding free energy can be defined as:
AG, = /u:ol,J.P - lu:ol,L - :U:ol,P =—ky T ln(COKb )E AG, @

where £, is the Boltzmann constant, T is the temperature, C’ is the standard concentration of

o

1 mol/l, and g is the chemical potential of the respective species in solution. Calculating

sol

standard binding free energies is an arduous procedure."”"" Therefore often only the relative

free energy change between to species is calculated which can be written as:
AAGLlP—>L2P = AGb,LzP - AGb,LlP > 3

which is a computationally better tractable problem. If the binding constants of two complexes

LiP and 1,P are known the relative free energy change is given as:'”

K
MG, oy = /éBTln[ blaP J )
b,L,P
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THEORETICAL BACKGROUND

Relative free energy changes are computationally accessible through various methods, for
example thermodynamic integration coupled to molecular dynamics, which is described in

chapter 2.4.1

Experimentally binding affinities can also be measured as dissociation constants which

are defined as
Ky=—. ©

Often the half maximal inhibition constant, called ICs, or the inhibition constant K; is measured.
The interconversion between 1Csy values and K; is possible with the Cheng-Prusoff equation,

which states for reactions where one ligand is involved:

[s]

IC50 =Ki 1+K— 5 (6)
m
where K, is the Michaelis constant, which is a kinetic constant, and [S] is the substrate
concentration."™ Another possible way to the determination of Ki values is through the

following relationship:

IC50,1 Ki,l

=2 7
Icso,z Ki,Z ’ 0

where only the ICs values of all involved species (1 and 2 in this case) and the K; value for one

species, either 1 or 2 are necessary.

On a molecular level the direct interactions that most commonly occur are hydrogen
bonds, halogen bonds, interactions between halogens and aromatic rings, hydrophobic
interactions, and m-T-interactions of aromatic ring systems.!"”"'® The energetic contributions
of each of these interactions can vary. The indirect interactions on the other hand are governed
by the solvent e.g. water and can have a greater effect on the resulting binding free energy than
the direct interactions.!"™ """ Indirect interactions can be traced back to both enthalpic and
entropic contributions, which can arise through a direct water network bridging the ligand to
the protein, or through entropic contributions because of wetting/dewetting events upon

16,17, 111, 114, 115]

binding.!
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THEORETICAL BACKGROUND

2.2 Reference interaction site model (RISM)

Classical density functional theory facilitates the connection between particle densities to

117 The local particle densities

the free energy of a fluid system in thermodynamic equilibrium!
p,(r) of particle type y are connected to the pair distribution function g(r)between particles y

and a through:
p\{ (7‘) = p\[gY (7") * (8)

Here p, represents the bulk site density of the system. The pair distribution function g, (7)

(see Figure 1) describes the interaction between two particles and is normalised to the bulk

£

0

Figure 1: Idealised illustration of a radial pair distribution function g(r). Areas of favourable interaction have ¢ > 1 and areas of
unfavourable interaction have ¢ < 1.

density of the system in question. The pair distribution function is also one of the key quantities

in this work and relates to the total correlation function 4, (r)in the following way:!"""

h(r)=g(r)—1. ©)

Through ground breaking work done by Leonard Ornstein and Frederik Zernike in the early

20™ century that culminated in the Ornstein-Zernike equation, which has the form:!"®

h(ry=c(r)+ pj c(rb(r)dr, (10)
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where 4 stands for the total correlation function, cfor the direct correlation and p for the particle
density. The total correlation function A(r), which oneself is interested in, desctibes all solvent
interactions between the particles. The direct correlation function, the first term on the right
hand side of equation (10), accounts for the direct solvent mediated interaction between the
particles. The second term of equation (10) in the form of the integral describes all the indirect
interactions solvent mediated interactions (see Figure 2 for a sketch). It is easy to see that
equation (10) cannot be solved analytically, and a second equation is needed to close the system

of equations. This equation is known as closure and takes the general form of:

() = exp[ﬂU(r) + o c(rp(rdr + B]— 1. (11)

In the closure expression #(7r) represents a pairwise additive potential and = 1/4; is the
inverse thermodynamic temperature. The so called bridge function B describes higher than
second order correlations and is not analytically accessible. Numerically, the bridge function can

be approximated, but a closed form does not exist.!"'® 1*~"!

So far only the pure atomic case was considered, which clearly has limited applicability in
real world scenarios. Consequently, the molecular Ornstein-Zernike equation was derived,
which is applicable to molecular problems and has the form:!"'*'*

Q, Q. )(r,, ., Q,)drd€ . (12)

13>

P
ot 82, 82,) = f(ruag‘pgz)"'yjj‘[(r

In contrast to the Ornstein Zernike equation, the relative orientation between two molecules is
added in the form of Euler angles £, and £,. While analytically exact, finding numerical
solutions to the six dimensional molecular Ornstein Zernike equation is cumbersome.!'* 4

This limits the applicability and is rooted in the high dimensionality and integration with regard

to the Euler angles.

To avoid these problems, Chandler and Anderson went back several levels of dimensionality
and derived the one dimensional reference interaction site model (1D RISM), often also called

n.”" !l Conceptually a molecule is broken down into its

the site-site Ornstein Zernike equatio
interaction sites, for example water is broken down into the three sites O, H and H, which can
reduced into O and H through symmetrical considerations. The 1D RISM equation can be

written in “matrix form:”
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h=w*c*w+w*c*ph. (13)

In equation (13) the matrices for the already mentioned total and direct correlation functions (h
and c) and the density matrix p (for the infinite dilution case) are constructed in the following
way:
h™ h"™ c” " p 0
e R e N ¥ U 14

Here h™ equals (bw (r,, ))uV which means that the total correlation function consists of all sites o
of the solute u and all sites y of the solvent v. The matrix ¢* is constructed in the same way as
h™ . In principle o and v can consist of an arbitrary number of atoms which are represented by
their position in relation to the respective nuclei or (in 3D RISM) only solvent sites are
decomposed. Based on the water example from above this means that a 1D RISM solution of
one water molecule (u) in water (v) actually consists of three total correlation functions: h° ,
57" and A™ . The reduction to a site-site model would lead to a loss of all information about

the intramolecular structure of the molecule in question due to the rotational average

()= DD 0 () (15)

To circumvent this loss of information a new function in the form of,

(

o = L)

o
w(rw): 4r/ ?
oty

: (16)

is introduced. The intramolecular distances are encoded in /av and 5(X) is the Dirac delta
function. As can be easily seen by some linear algebra,”™ the expansion of equation (13) leads
to three distinct equations, namely the solvent-solvent (vv), solute-solvent (#2) and solute-solute

(ur) equations:

Figure 2: Schematic illustration of the interactions that are governed by the total (4) or direct (¢) correlation functions.
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hVV — wV * CVV * wV + wV * CVV * pVhVV (1 7)
h" =" *c" *0" +w"*c” *p'h"™, (18)
h" =" *c™ *w" +w" *c™ *p'h™. (19)

These three equations have to be solved in consecutive order starting with the iterative solution
of the 1D RISM-#» equation; this solution is then needed to calculate an iterative solution of the
1D RISM-uv equation. As a matter of fact, the solution to equation (19) can be calculated non-
iteratively, which is a huge advantage of the 1D RISM-## equation and will play a crucial role in

the following work.

In the 1990s an expansion of the 1D RISM equation to three dimensions was derived by several

92,93, 95,

groups! *I'and yields, for the solute-solvent case,

b (£) = z [ e (e =1y, x, )i, (20)

To solve equation (20) two requirements have to be met: (1) the so called solvent-susceptibility,
which is encoded in the ¥, function, has to be precalculated with 1D RISM-. (2) In the same
manner as in equation (11) a closure relation is needed. Commonly, the hypernetted-chain-

closure (HNC) is used:"* '

B2 () = explr™ R ()] -1 1)

where the bridge function B from equation (11) is set equal to zero and the new function z‘;“"R

is introduced, which is defined as
) = 1 )= BUL () = B (1) = e ()= U (6 @2)

and can be interpreted as a “renormalized” indirect cortelation function and U, (1) is the
pairwise additive potential between all interaction sites of the solute and the solvent site y. The

pairwise potential is usually comprised of

909y
yCoulomb( ) z dre |1' —r | (23)
- 12 o 6
_ ay _ ay
Uy,Dispersior;Rep (r) - ;4‘9(1;/ (|t . ra|J (|r —1, |] (24)
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where the electrostatic interaction is modelled by the Coulomb potential with ¢ being the partial
charge of particle type o or v, & as the dielectric permittivity of the vacuum and the distance
|r—ra| between the solute sites a and solvent sites y. The dispersion interaction is represented
in the form of the Lennard-Jones potential where &,y corresponds to the “well depth” of the
potential and G,y can be interpreted as the contact distance. Both parameters ¢ and o are
commonly taken from molecular mechanics force fields. One drawback of the hypernetted
chain closure is the fact that numerical convergence of the equation system cannot be
guaranteed and getting the equation system to convergence can sometimes be called a “black
art,” or is impossible, respectively. In light of this, another set of closures developed in the group
of Kast ez a/I"*" based on the partial series expansion of order £ (PSE-£) of the HNC closure is

often used and have the form:

C 5 R ‘. R
= g;@ (r) [i—1 o 1m>0 o5
exp[z‘;“”R(r)]— 1 < z‘;‘v’R(r) <0

These PSE-£ closures approximate the HNC closure and show a good-tempered convergence

behaviour and are therefore often preferred over the HNC closure.® 21 In the literature the

PSE closure of order one is often called the Kovalenko-Hirata (KH) closure.””* For these
closures a closed form of the chemical excess potential exists and can be defined as
n+l
, 1 1. . )]
ex _ _ -1 A _ o w uv _ W _ uv Y
i == Lol fo-o8 @ o-w-elroSrEi-| e

where @ is the Heaviside step function which vanishes in the case of the HNC closure. Equation

(2) and equation (26) show the connection between 3D RISM and the free energy.

The generalisation of the 3D RISM equation for the solute-solute (#4) case” > can be written
as
h (R, Q) =" (R, Q)+ 25;1; * p\/b;:; R,,€)
Y

27)
=" (R, Q)+ 1R, Q)

where the indices 1 and 2 represent two different solute species in question. For 3D RISM-#x
calculations the #v results of the two partners 1 and 2 are needed. Because the #» results are
calculated for fixed orientations, the 3D RISM-## equation formally depends not only on the

coordinates of the two solutes but additionally on the relative orientation of the two partners.
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The HNC closure in the 3D RISM-## case can be written in the same form as for 3D RISM-u»,

which is shown in equation (21).

2.2.1 The potential of mean force and derived quantities in the
case of 3D RISM

The potential of mean force is a fundamental quantity in chemistry and describes the free

energy change along a reaction pathway!"* in solution. It can be defined as
w(t) =U(r)+ G (£) = U(t) + Au™ (28)

where U(r)is the direct potential of the molecule in question and G"(1)is the free energy
contribution of the solvation process, which equals Ax™ in the case of unpolarisable and rigid
molecules (see Figure 3 for visualisation). The PMF can be also linked to the pair distribution

function with the reversible work theorem!'® which states that:
w(t)=—B"1ng(r). (29)

In the specific case of a complex consisting of two solute molecules (##) the PMF in the 3D
RISM-un case can be derived by restructuring equation (27) and equation (29) and the #x

analogue of the HNC closure into,?"*% %

" (R, Q,)=U,[R,,,)- ﬂ_ln(Ru ,82)) 30)

which is directly solvable. The vacuum interaction potential U, (R,,€,,) is the sum of all

12>
pairwise contributions as seen in equations (23) and (24), the function 7(R,,,L,,) can be
interpreted as the solvent mediated influence on the resulting PMF (in this work this quantity is
often abbreviated as »' after multiplication with £'). If one solute species # is spherically
symmetric, the orientational dependence can be dropped without loss of generality. This leads
to direct access to the PMF, which is only dependent on the coordinates of both solute species.
Because the interaction potential U,, as well as 77 are long ranged functions, a renormalisation
procedure is necessary (see below).” In principle it is also possible to calculate AGyina from

w"™ | due to the PMF being a difference of state function, by integration of the bound region,

which has to be defined beforehand.'”
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It is also possible to gain access to the explicit PMF of two rigid solute species with subsequent
3D RISM-#» calculations by

Weypl(RuwQ’u) = :Uex (R]Z,le)—ﬂfx _/U;X +U12 (Rlza'le)' (31)

complex

Here ¢ as defined in equation (26) has to be calculated for the complex consisting of the two
solute species in question and the separate solute species (to account for the reference state).

After that the PMF is obtained by adding the vacuum interaction potential.

Because the PMF can be computed directly and with high computational efficiency with 3D
RISM-uu, it is possible to derive so called “free energy derivatives” on their basis. Free energy
derivatives (FEDs) were first described by Peatlmen in the 1990s™ and, following their

narrative, they can be defined for 3D RISM-#x as

o™ (R,, L)

20, (32)

where @, acts as a substitute for one of the parameters (& 0, ¢) in the interaction potential

between the two solutes. This interaction potential can have the following form:

(o

12 6
U12 (l I —ft, D = U12 (7’12) = 4812 (JJ - (&J + M (33)

iy 4V 47 17,

where &1, is a parameter of the Lennard-Jones potential that describes the well depth, oi» is the

point of the zero-crossing and ¢1/ ¢z are the partial charges of molecules 1 and 2.

Energy/(RT)

rA

Figure 3: Schematic graph of the direct vacuum potential (blue) and the PMF (green). Here energy is cither the direct interaction
energy between two species (blue) or the interaction energy in solution (green).

23| Page



THEORETICAL BACKGROUND

2.3 Methodology of the renormalisation of long-
range interactions

This chapter deals with the technical side of the necessary renormalisation procedure that
is formaly laid out in Ref. [28]. As shown in equations (27) and (30) the PMF for the 3D RISM-

un case can be formulated in the following way:
"Ry, Q,)=U,R,, Q)= 1R, L,). (34)

A renormalized potential Uy, (r) for dielectric solvents, to which this work is restricted, can be

derived from:?¥
1
ﬂUéarﬂh@»~;ﬁU§W%»wx (35)

where Ule (r)is the long range potential, whose computation has to be avoided, and ¢ is the

dielectric constant. This leads to:"*®!

Un(r)=US (1) + 1 UL(r) (36)
&

where U, () corresponds to the full real-space intermolecular potential (Lennard-Jones and
Coulomb) and 1/eUj;(r) is the weighted long range part.”! A second partitioning of the

potential is also needed, which leads to
—L e—=1__,
Un()=5"—Uk). 37
&

Equations (36) and (37) are computed in a straightforward way in the case of a dielectric solvent

and in the case of an electrolyte they are replaced with their unweighted counterparts.”

The renormalized 77, (r) function as defined in Ref. [28] has the form
_. — L —L(0)
Taw) =0 0-0:" ()
n 7L u
+ Z(;ly + AUy, )* P, by (x)
/4

5 L(0)

—Ux (7‘)
—1.(0) w
=Y. BUy *p by (r)
V4

(38)

—L(0) . . . .
Here Uiz (r) is the monopole potential which can be written as
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U (r) = erf(Hr - R, |)qlz—2q2 . (39)
r—R,
To ensure correct treatment the four terms of equation (38) have to be evaluated in a distinct

order and mannet.

The first term, U (r) —Up" (r), is evaluated on a 3D grid to acquire Up and Uss .
The second term is evaluated on 3D grids which implies that ﬂL_LLy(O) is calculated in £-space
and added to ¢y, subsequently the £(0) element of the 1D 4}’ function is extrapolated, as
described in Ref. [130], and the result is interpolated onto a 3D grid. At last the convolution
product of the second term is calculated. Term 2 is subtracted from Term 1 and the resulting

k-space function is transformed with the reverse 3D FFT.I"" 1%

The third term, Us (r), is evaluated analytically on the 1D grid. The monopole

28 which is then

potential ﬂﬁfjo) of the fourth term is evaluated in 1D-£-space analytically,
followed by the convolution product. After that term three and four are added in 1D-£-space,

followed by reverse 1D FFTI3L 152 and interpolation onto the real space 3D grid.

In the last step the two resulting 3D real space grids are added and yield 77,5 . Pseudocode

for the calculation of the renormalized 77 -function can be found in the appendix of this work.

2.4 Molecular dynamics (MD) simulation

MD simulations have come a long way from the 3 ps long trajectories (864 argon atoms)!"*

of the early 1960s to millisecond long calculations (~17000 atoms)!"* done on modern super
computers and special purpose hardware. In this time frame they evolved from a niche to the

scientific mainstream.

Regardless of this evolution the basic objective of MD simulations stayed the same, namely to
propagate a given molecular system through time to obtain a fine grained trajectory of the
dynamics. The length of today’s trajectories is only obtainable by treating the molecular system
classically (as an ensemble of balls connected by springs) and disregarding all quantum-
mechanical effects. This in turn leads to the necessity of parametrisation of otherwise non-

tractable interactions, these parameters are commonly bundled into a so called force-field which,

in the case of the AMBER gaff force field, has the form!"”!
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U= SK,(—b,) + 3 K 0-0,+ > 21+ cos(ngp— )]
bonds angles dihedrals
4 B (40)
L% % &

where K, ,K, and v, are the force constants for the bond, angle and dihedral terms respectively;
b,,0, and y are equilibrium bond, angle and dihedral parameters; and 7 is the multiplicity. For
the nonbonded part of the potential the .4, B, and ¢ parameters have to be determined and 7; is
the distance between particle 7 and j. Parametrisation and refinement of these force field
parameters is still a branch of active research, with newer trends being the inclusion of
polarisable terms into the electrostatic interactions, allowing bond breaking to occur and so

[136-138]

on. After a force field is established the next step is to calculate the forces that are acting

on the system as
F =-VU(r.), (41)

where here the force on particle 7 is defined as the negative gradient (— V) of the potential.

When the forces are known Newton’s second law of motion,
(42)

can be used to link the potential to the dynamic property of acceleration, where the force F
acting on a particle 7 being written as the product of the mass 7 and acceleration a. To propagate
the system in time an integrator is used, with the most common one being the Verlet
algorithm.!"” The Verlet algorithm is detived from a Taylor series expansion to the second order

term around the current positions of the particles in positive direction (+ Az ):

dr(z d’t(2) AF
r(t+At)=1(t)+ ()Az‘+ r(z) ’ +... (43)
d ds
and negative direction (- A¢):
dr(z) d’e(#) A2
r(t—Ar)=x(t)— At + —... 44
(= A =e()) == Ar+ 2 (44)

Combining and restructuring equations (43) and (44) results in the final Verlet algorithm,
(1 + A8 =2r,(1) +a, ()AL —rt.(1— A1), (45)
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where the velocities of equation (43) and (44) cancel out. Modern molecular dynamics codes
mostly implement the Verlet algorithm in one of the algebraically identical forms known as

velocity Vetlet' or leap frog.!"*!

The relative straightforwardness of MD simulations is a double-edged sword because it gives
people a false sense of safety in regard to the usage of this technique. That is why particular
consideration regarding the used water model is warranted, but too often neglected. The most
commonly used water models are TIP3P!'"*? and SPC/E,"* which are described by three
interaction sites and were parametrised to reproduce specific physical observables. The

[144]

“performance” especially of the TIP3P model is one of the worst,""" in contrast to one of the

best-performing water models to date, the TIP4P/2005"* water model, which has a fourth off-

centre point charge. The general recommendation would be to use the TIP4P/ 2005145 1441

water
model: This can unfortunately lead to inconsistencies, because almost all modern protein force
fields were parametrised with either TIP3P or SPC/E. Therefore it is often advisable to use
these instead, to citcumvent inconsistencies within the simulation, or for that matter the 3D

RISM calculation. For 3D RISM calculations, another problem is that a four site water model is

intractable, which is likely due to numerical issues."*’

2.4.1 Free energy calculations and error estimation

There are plenty of free energy estimation methods available ranging from scoring
algorithms to fully atomistic molecular dynamics simulations, where the user has to do the trade-
off between speed (scoring algorithms based on empirical functions) and accuracy (fully
atomistic MD simulations). The main property of free energies, which is exploited in MD
simulations, is that they are state functions, and thus their calculation or measurement is path
independent and can be done through artificial, or alchemical routes. One of the widely used
methods to estimate relative association free energies with MD simulations is thermodynamic
integration (TT), derived by Kirkwood in 1935.1"*" The first step is to link the potential energy

of the system to a coupling parameter A in the form
Ulr,2)=(1-2A)U () + AU, (r), (46)

where A corresponds to the end state of the system and B to the starting state of the system.

Following this, the Helmholtz free energy .4 can be written as
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)
A1) = —/eTW , 47)

here Z, (1) is the partition function and 7" is the volume of the system to the power of N,

the particle number. The derivative of equation (47) with respect to A yields, after some simple

algebra:
oAR) __ 1 07,()
or 7,a) oz
—ir s el putea) - |2 )
=<8U(r,/1)>
or |/,

Through integration of the ensemble average over A, the Helmholtz free energy can be

computed or numerically approximated by the sum over incremental A values:

N L L ®

0 i

Here it is worth noting that the Helmholtz free energy is equivalent to the Gibbs free energy, if
the volume of the system (IN1”T) is equal to the corresponding pressure in the NpT ensemble.
The conceptually similar and as important technique of free energy perturbation shall be

[149

mentioned here for the sake of completeness.'"” For some modern applications and reviews

regarding free energy calculations the reader is referred to Ref. [150-152].

A priori it is not possible to make sure that every frame in a MD simulation is statistically
independent, but it is possible to estimate the correlation time between MD frames after the
simulation has been run by several means. Amongst others blocking analysis is a viable option,
which additionally allows to correct the calculated error of the estimated observable. In blocking
analysis the statistical inefficiency s is written as

o= lim Tb62(<T>b)

T 0

where 7, is the block length, o (<T>b) is the variance of block Tand &”(T) is the variance

of the whole dataset."” First the block averages have to be calculated by

(1), =L 37(r), (51)

z-b =1
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where the trajectory is split into blocks of length 7, and the number of blocks », =7,,/7, ,
with 7, being all time steps in the trajectory.!” With the computed block averages calculated,

the block vatiance can be estimated through:!"”

(1), )= =31, (1), . 62

7y b=t

For practical purposes it can be helpful to estimate the statistical inefficiency not with classical

limit value consideration, but to take the maximum obtained value of .

2.5 Machine learning techniques

2.5.1 Deep feedforward networks

The area of machine learning can be generally divided into supervised and unsupervised
learning. Among those two a zoo of methods exists which have advantages and disadvantages.
In unsupervised learning, the chosen method has to be able to extract a function from unlabelled
data, which means that for a given distribution the y-value is unknown but has to be inferred
from the data itself. An example for that would be principal component analysis.” "
Supervised learning on the other hand works with labelled data, which means that it works on
pairs of x- and y-values, and tries to find a function which allows to map new examples to the
correct classes (classification tasks) or numerical values (regression tasks).” "> As of this writing
neural networks and in particular deep neural networks are one of the most hyped machine

learning techniques,™ *” and are already used in the field of chemistry.!"”"~%!

Although the success of neural networks and deep learning (as it is called today) kicked off
in the late 20" until the early 21" century, these techniques have already got a long history.*l

The first models, which were inspired by the structure of the brain and the way learning in a
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input hidden hidden output
layer layer layer layer

Figure 4: Basic representation of a deep neural network with one input layer consisting of three input neurons (purple circles), two
hidden layers, consisting of four hidden neurons each (green circles) and one output layer consisting of two output neurons (blue
circles). The arrows represent the weights and the neurons are connected in a dense fashion, which means every neuron is connected
to all neurons of the next layer.

biological setting could work, were derived by McCulloch and Pitts in 1943 %1% where the
weights of the model were not learned but had to be assigned by a human operator. After that,
the first trainable single neuron model was devised by Rosenblatt in 1953.% 11 These models
were then enhanced in the so-called second wave of neural networks around 1980 — 1995 where
the training of models with one or two hidden layers became possible by the means of “back
propagation” (details see below)." 12116160 At the moment we are right in the middle of the
so-called third wave of neural networks, which is now often called “deep learning,” and began
around 2006 with the work of Hinton e# a/. on “Deep belief networks”.”> *> ') The third wave
was also sparked and supported on the hardware side by the exploitation of “General-purpose
computing on graphics processing units” (GPGPU)."” This can also be seen in the high rate of
GPGPU capabilities, baked into every major deep learning library on the market, e.g.

TensorFlow,"*¥ Theano,'”"'" Caffel™ and many more.

In a nutshell, a neural network is composed of so-called neurons and the connections between

these neurons (see Figure 4) which are arranged in a layer-wise fashion,” *> '

starting with the
input layer that is followed by one or more hidden layers and an output layer. Mathematically
speaking, a neural network can be described as a chain of functions: f(x)= f(f@(fV(x)))
where [ represents the first layer, f® the second layer, and so on.” The training process
aims to drive f(x) to approximate / (x) (which is the underlying function describing the true

98, 155

distribution of x as good as possible.” > The flow of information through the network can

thus be described through:
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x—>h-ovy. (53)

The feature matrix (or vector depending on the problem at hand) x enters the network than the
aforementioned transformations described in equation (57) and (58) are applied in the hidden

units of the network and at last the predicted y values leave the network.

The training data consists of pairs of (possibly noisy) x corresponding to y" = £ (x)." In
detail, a hidden neuron takes the incoming input vector x and applies the following

transformation in the form
u=W'x. (54)

Here, u is the resulting vector W' is the “weight” matrix (which is adjusted during the training

process). After that, the “activation” function «(u) is applied elementwise to the u vector:

[100, 159, 167]
h=a(W'x). (55)

The choice of the activation function & can have a significant impact on the learning process
and the achievable performance of the neural network!"””. One of the default choices today is
the “rectified linear unit”!'™ '™ defined as a(u)=max(0,x). Other possible activation functions

are the hyperbolic tangent or “sigmoid” function.

The functional form of the output units of a neural network are often depending on the
problem at hand. For binary classification tasks a “sigmoid unit” can be a good choice for
instance.”™ For multi-class classification tasks, the “softmax unit” is often used. For regression
tasks a linear output unit is often a sensible choice. These functions are chosen because they

output values between zero and one, which is preferable for classification tasks.

In supervised learning the cost, which is a measure of the difference between the calculated
y (fx) values and the “true” y* (f'(x)) values, is calculated by the loss function. For classification
tasks, one of the possible loss functions (and often a very sensible choice) is the cross entropy,

or frequently called the log-loss, which is defined as:"

L(y",y)==2.7/log ;. (56)
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For regression tasks typical loss functions include, but are not restricted to, the mean absolute
error or the mean squared error.” During the training process the cost is minimized to reflect
f (x) as well as possible. This is often done using an optimization technique called stochastic
gradient descent (see equation (61)), or variants thereof. The actual training process of a neural
network can be split into three parts: The first step is the forward propagation of the data

through the network

t(/> — W(/)h<H) (57)
h" =4(t"). (58)

Here /is an index that runs from the first layer to the last layer. The matrix h stores the values
for every node, h equals x in the input layer and y in the output layer.” Then the loss I.(y ,y)
has to be computed. In the second step the gradient of the loss has to be computed with regard
to the weights. In the rather simple case, as described here, where the weights are the only
parameters that can be varied, makes it clear that a neural network can be interpreted as a chain
of functions. Therefore, the calculation of the gradient relies heavily on the chain rule of

[98, 163, 165, 166

calculus. The algorithm of choice is called back propagation I and can be written as

g(out) — VyL(y* , y) , (59)
g =V  L=W"Tg" oz m’). (60)

h/71
First, the gradient of the loss in the output layer has to be computed, this is shown in equation
(59), which is done by calculating the Jacobian with regard to the output values y. In the next
step the gradient for every layer can be derived by following equation (60). Here g is the

¢V is the gradient in layer /-1, ’(h’)is the derivative of the activation

gradient in layer /, g
function with regard to the weights and “o” is the Hadamard product. The last training step
now consists of the update of the weight matrices W and in the case of stochastic gradient

descent, it can be written as:
W/,new — Wl,old _ /1g<l> (61)

where A is the “learning rate” which can be fixed or variable. The term stochastic in this case
can be attributed to the fact that the gradient is not computed over the whole dataset, but

randomly drawn small “mini” batches. Therefore stochastic gradient descent is often described
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as (mini-) batch gradient descent. Often the Adam!"™ optimizer is used, which is a variant of

the gradient descent method.

2.5.2 Gradient boosted trees

Gradient boosted trees and variants thereof are one of the top performing machine

37, 177

learning techniques.” They are also successfully used in molecular modelling.”” ' In a

compatison Ashtawy!'"”

¢t al. did among machine-learning-based and classical scoring functions
boosted regression trees were also one of the top performers.”” """ In 2016, Chen e¢# a/. published
a paper (initial release of the software was in 2014) about their boosting algorithm, named
XGBoost (abbr. for extreme gradient boosting) which is based on the gradient boosting model
of Friedman."™ XGBoost is widely recognized in the data science community which is shown
by the adoption in many challenges and cups. For example, in the 2015" KDDCup, every
winning team in the top 10 used XGBoost.”” Furthermore, on the data science competition
website “kaggle” 17 of the 29 winning solutions during the 2015 timeframe used XGBoost."”
Of these 17 solutions, 8 solely used XGBoost with the rest using a combination of XGBoost

and neural networks.” As far as the author knows XGBoost was never used in a molecular

modelling context specifically.

XGBoost is a combination of several well proven techniques in machine learning and to
approach it in a more accessible manner the key components are first described alone and at

the end of the chapter the actual XGBoost method is introduced.

At first “boosting” as a technique, which can be seen independently of the used regression
g que, P y g

or classification method, is introduced and can be described in the following manner.!'* 17154 15

The boosting algorithm uses an ensemble of independent regression models and starts b
g alg p g y

assigning weights to each individual training sample x;:
X, = WX (62)

Here, the weights »; are initialised with 1/ N, where Nis the number of samples and 7=1,2,...,N.
Then a model is fitted (which is described below) using the weighted training examples x;, which

e, [154,163,179,180]

yields an estimated y valu This is followed by the computation of the error rate for

the regression model £,
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Figure 5: Left side shows the partition of a two-dimensional feature space obtained through recursive binary splitting. The
right side shows the corresponding tree structure. Graphic adapted from “The Elements of Statistical Learning”[180]

N
Z”’;‘L(J;’ J’z‘)
=1

i”’z‘

i=1

where L(jj, yi) is the loss (a measure for the difference) between the prediction and the true

err, =

, (63)

g [154,163,179, 180]

y; value, the error rate thus scales with the los This is followed by the computation

of the parameter o, which is defined as:
a, =log((1—err,)/err, ). (64)
Then the weights »; are adjusted with

w,=wexpla, L0, ), (65)

which then allows to calculate the final “boosted” prediction as:

J)= 2.0 fu(). (66)

Here /,(x) is the prediction of the individual regression models that are part of the ensemble
and M is the number of regression models used.!>* %> ¥ The benefit of the “boosting”
technique lies in the fact that the weights for samples that are misclassified or have a high loss
are growing exponentially. The consequence is that after every round of “boosting” the

algorithm pays more and more “attention” to samples that are misclassified or have a high loss.
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Tree models can be described graphically as seen in Figure 5. Under the premise that
the problem at hand is a regression problem with continuous y values and the two features (data
that describes the y values) x1 and x» one can split the feature space by #, #, and %, which yields

the respective regions Ri, Rs, Rs, and R.."™ Then the function f{x) (the predicted j) would be:

Fey=>c, I{(x,,x,)eR, }, (67)

m=1

with the function I being one if the pair (x1, x2) belongs to region 7 and zero in all other cases."®

It can be shown that the best ¢, is given by
¢, =ave(y,|x, €R,), (68)

which is the average of y;in region R,,.I""

The training algorithm now has to decide how big the “trees” are allowed to get, which
it controls through “pruning” (finding a minimal effective tree), and has to optimize the tree
structure in a way that represents the function f{x) in an optimal way. Regression trees alone are

often called “weak’ or “base” learnets.

The XGBoost algorithm which combines gradient boosting with regression trees tries
g g g g

to combine an ensemble of “weak” or “base” learners (e.g. separate decision trees) into a

“strong” learner, which means a model with good predictive capabilities and can be described

in the following way.”* > 81l A tree ensemble model can be written as

Ji =Zf,€(xi)’ (69)

where y, is the predicted value and f, is the number of K additive functions (“trees”) (“weak”

ot “base” learner) that are used to predict the output.”™* It should be noted that every

f/e(x):”/q(x)» (70)

resembles an independent tree structure ¢ with leaf weights . For the learning process the

following regularized objective can be defined:”

L= /(572 0.)+ 2 /) @
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where /is a convex loss function and the second term € is a regularization term, which is
typically the weighted I1.2-norm, that penalizes the complexity of the model.”” For the

optimization process equation (71) is rewritten into
1= 1055, + ) (72)

here the index # represents the current iteration and 7 the current instance.” Equation (72) is
the optimization target and is trained “greedily” by adding the function f; that improves the

model best.”

36| Page



DESIGNING MOLECULAR COMPLEXES USING FREE-ENERGY DERIVATIVES FROM RISM-uuU

3 Desighing molecular complexes
using free-energy derivatives
from RISM-uu?

3.1 Introduction

While RISM-## theoty has been used for PMF calculations in the past,® ™ its related
derivatives have not been tested for design purposes thus far to the best of the authors
knowledge. Therefore, first several fundamental questions concerning the accuracy in
comparison with related approaches in this proof-of-principle study have to be addressed. The
focus therefore lies on the well-studied 18-crown-6 ether complexed with the alkali ions sodium,
potassium and caesium in water with various potential parameter sets for the ions. Before
computing FEDs based on the ## PMF, the quality in comparison with explicit free energy MD
simulations using thermodynamic integration (TT) for given fixed relative complex geometries
defining a reaction path has to be addressed, which has not been done before. The ## and MD
data are compared with the PMF computed from #» calculations with explicitly placed ions along
the pathway in order to draw conclusions about the influence of approximations on the PMF
topography. Finally, ##based FEDs for varying ion size parameters are computed and

demonstrated to yield consistent and physically reasonable results compared to literature data.

2 Reused in part with permissions from F. Mrugalla, S. M. Kast, J. Phys.: Cond. Matter 2016, 28, 344004. ©
2016 IOP Publishing Ltd.
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3.2 Computational details

Throughout all calculations the identical, rigid 18-crown-6 ether structure was used in its
D3d symmetry as obtained by geometry optimization with Gaussian 03 (Rev. D.02) in the
gas phase with B3LYP/6-31G*.I"" The interaction parameters of the crown ether were selected
from the “optimized potential for liquid simulation” (OPLS) force field (see Table 1)I"* "4
employing Lorentz-Berthelot mixing rules throughout, similar to our earlier 1D RISM work on
18-crown-6 in nonaqueous solvents." For alkali ions, four different K parameter sets for

18191 TT MD reference simulations

FED calculations were tested, all summarized in Table 1.!
and explicit 3D RISM-#» calculations were performed also with other ions, using exclusively the
MacKerell ef al. set."® Water was described by the TIP3P model, using for reference MD
calculations, the original form!"* and a variant with nonzero Lennard-Jones parameters on
hydrogen (6 = 0.4 A, e = 0.0459 kcal mol™). This modification is necessary to avoid singularities

implied with 1D RISM iterations and was used for all integral equation calculations including

those with susceptibilities taken from MD.

Table 1: Force field parameters of 18-crown-6 and ions.

Atom g/ e o/ A ¢ / kcal mol
C(18-crown-0) 0.14 3.5000 0.0660
O(18-crown-6) -0.40 2.9000 0.1400
H(18-crown-6) 0.03 2.5000 0.0300
Na**® 1.00 2.4299 0.0469
K 1.00 3.1426 0.0870
K'P 1.00 3.0380 0.1937
K*e 1.00 4.7360 0.0003
K+ 1.00 3.5600 0.1304
Cs'® 1.00 3.7418 0.1900

"MacKerell ¢f al,"* *Joung and Cheatham,""” CAqVist,USSJ Wipff et al ')

1D RISM calculations with the dielectrically consistent (DRISM/HNC) theory!™ !l for
pure water (modified TIP3P) were performed on a logarithmic grid with 512 grid points ranging
from 5.98-10” A to 164.02 A. The solvent density was set to 0.0333 A~, the temperature to
298.15 K, and the dielectric constant to 78.4. For the MD extraction of the susceptibility
function with the same water model, a simulation of a water box with 4033 molecules was set
up using tleap!” and equilibrated over 10 ns NpT simulation (pressure was 1 bar controlled

by the Langevin piston, temperature was 298.15 K via the Langevin method using default
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193 Short range potentials were truncated at 12.0 A and

settings) with a 2 fs time step in NAMD.
the particle mesh Ewald (PME) method was employed for treating Coulomb interactions. A
frame with minimal deviation from the target density was selected and a NI production run
over 20 ns was performed with identical simulation parameters, also for original TIP3P. Pair
distribution functions for susceptibility extraction were determined with the Gromacs tools

94-196

applying a histogram bin size of 0.02 A on the basis of 20000 frames"*~"*! and smoothed up to

a maximum distance of 23.88 A, beyond which susceptibilities were extrapolated by

99

DRISM/HNC, following closely the procedures employed earlier.”” ! Convergence criteria
for 1D RISM calculations were a maximum residual norm of the direct correlation functions of

107 and 0.00023 for HNC and MD extraction, respectively.

3D RISM-u#v/PSE-(n = 1-3) calculations at 298.15 K were performed on cubic grids of
200° points with a spacing of 0.2 A. The convergence criterion for the 3D RISM-#» calculations
was set to 10™ for the maximum residual norm of direct correlation functions. For the PMF
calculations one of the ion species (KK, Na*, Cs") was placed along a 1D path defining the z-axis
of the 18-crown-6 (see Figure 6 together with an illustration of direct interaction energies). The
path was symmetrically constructed with a sampling rate of 0.2 A and a maximum distance to
the center of the crown ether of 10.0 A, implying 101 points. In the 3D RISM-u# case the 3D
RISM-#v calculations of the crown ether were reused while for the ions 1D RISM-# calculations
were performed using modified TIP3P susceptibilities (convergence threshold 107) and
interpolated to the 3D grid by cubic splines. FEDs from ## calculations were obtained by

numerical differentiation with a 5-point stencil (Ag = 0.02 A).

The simulation system for the TI calculations was a cubic box with the rigid 18-crown-6
ether, a bound ion at the centre and 4036 water molecules. First a NpT simulation over 1 ns
with a 2 fs time step at 0.5 bar was performed, followed by a NpT run at 1 bar over 10 ns. TI
simulations in the NT”T ensemble were initiated from the frame with minimal deviation from
the target density. For the same ion positions as in integral equation calculations the coupling
parameter A was scaled in AL = 0.1 steps, decoupling ion-solvent and ion-host interactions. For
each value of A the system was simulated for 150000 steps of which 25000 were discarded for
equilibration. Appropriate numbers of statistically uncorrelated frames were determined by
blocking analysis"®? before calculating the PMF by numerical integration of cubic spline
interpolants. A similar protocol was used for decoupling the ion in the absence of the crown

ether for defining the reference state, whereby artifacts attributed to the presence of a net charge
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in TI simulations effectively cancel. After the TI calculations of all 101 points the symmetric
setup was exploited and the average PMF of the corresponding points from both sides of the
path computed. For K the relevance of incomplete sampling (hysteresis effect) by repeating
the TT simulations in the reverse direction was checked, ze. by recoupling interactions starting

from the final decoupled states.

The crown ether picture in Figure 6 has been generated using the PyMOL software.”™ All
other plots have been created using the software Gnuplot.” Integral equation calculations
have been performed with software developed in our laboratory. Data analysis was done using

Mathematica.”™

0 T T T
¢ <
T -20 — Na* 7
© K*
E Cs' —
w —40 r .
£
S —60 s
_80 | 1 |
-10 -5 0 5 10

z/ A

Figure 6: Schematic representation of 18-crown-6 and the chosen ion translocation path, with direct interaction energies between
crown ether and the various ion species using the MacKerell et al. model[#¢] along the z axis. In this case, the space of relative
distances and orientations (Ri2, Q12) is reduced to three dimensions and one component (z) of the distance vector has been
singled out.

3.3 Results and discussion

First the accuracy of both integral equation approaches to the PMF has to examined,
explicit super-molecule calculations by 3D RISM-#» and the most efficient 3D RISM-#x
estimate, in comparison with TI reference results, which is shown in Figure 7 for 18-crown-6

5. n the top left panel, only # and #x results for

with K" using the MacKerell ¢# a/. parameter
various PSE orders (also applied to the underlying #» calculations in the ## case) on the basis of

DRISM/HNC () water susceptibilities are depicted. While the overall topography of the free
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energy surfaces along the chosen path appears to be similar, the absolute heights of barriers and
the depth of minima are considerably different. Notably, the location of the global minimum is
identical for all methods whereas the precise locations of the barriers differ slightly. More
problematic for quantitative applications is the lack of significant free energy barriers in the #x
case in general, while apparently explicit #» and #x results tend to converge toward better
agreement with increasing PSE order. For the barriers the difference between the explicit #» and
uu data is the largest for the PSE-1 (Aw = 6.8 kcal mol™) and the smallest for PSE-3 (Aw =~ 4.1
kcal mol™). For the minima the differences between the two calculation methods are generally
smaller, and, similar to the barriers, they decrease with increasing PSE order (Aw = 3.7 kcal mol”
for PSE-1 to Aw = 0.9 kcal mol™ for PSE-3. Yet, the PSE order has more significant impact on

minima than on barriers.

The bottom left panel now shows #v (PSE-2) and ## data also with the MD-extracted water

susceptibility, and in comparison with reference (forward) TI simulations. Using MD-generated
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8 -
6 r i
e 4 b 4 T
o =]
£ 2r S
s 0 w
31 3]
% -2 r - ~
— ~
z 4r 7 =
-6 +
-8 r (i
-10 1 i 1
-10 -5 0 5 10
HNG HNG ANG(w)
oplpsE iy —  OXPIRSESm —  UURSEB T, == Ty, —
HNG NG HNG
eprFSE—(;{?VJ — “L']SSE—(mv) - U“PSEVESV(‘?M Tlowg,

w/ keal mol™!
Aw/ Kcal mol'1

z/A z/A
WD Dy MD MD
eXpIRSE Sy — USRSy - Torg. TPap ® USRS Tl = expIBSE Sl Tlavg —
HNG| NG NG HING
exP'PSE-%?:v) — UJSSE-%V) s L U‘);SE-(ZV(ﬁvy Tlayg, explPSE-(E(MW)- Tlayg, —

Figure 7: Comparison of the K*18 PMFs with 18-crown-6 in water for various calculation setups. Top left: explicitly (“expl”)
placed ion within 3D RISM-#» calculations and ## results with underlying # PSE order given as subscript, DRISM/HNC(2) pure
solvent susceptibility. Bottom left: #» and #x results with DRISM/HNC(22) and MD-extracted (“MD (22)”) pure solvent susceptibility
in comparison with reference TT simulation data employing the original and modified TIP3P water models. Top right: forward and
backward TI data with statistical error bars from blocking analysis, averaged over left and right half, along with average TI PMEF
(modified TIP3P model), indicating a hysteresis effect. Bottom right: deviation of PMFs from various #» and #x approaches from
average T1 data.
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Figure 8: PMF (left column) and desolvation penalty (right column) for Na* (yellow, top), K* (purple, middle), and Cs* (grey,
bottom); explicit uv and underlying uv calculations for uu with PSE-2 and DRISM/HNC or MD-extracted susceptibilities, all
including T reference with the modified TIP3P water model and the MacKerell et al. parameter set!*86l,

y functions generally has opposing effect on barriers and on minima. While barriers benefit
somewhat from using MD input in comparison with TI, the effect on minima is less
pronounced, yet visibly tending in the more strongly deviating direction. However, in absolute
numbers the agreement between best ## and u» setups with reference TI data is reasonable, A"
< 1 kcal mol™ and Aw” = 4 kcal mol” for HNC(2) in comparison with TI using the modified
TIP3P model as in integral equation calculations. For barriers, the discrepancies are Ay = 5
kcal mol™ and A" = 1 kcal mol" for MD(22). Note that the precise location of the bartiers in
the TT case is shifted to slightly larger distances to the crown center, and that the difference
between original and modified TIP3P models is negligible such that only TT data with the latter

model was chosen as reference for following analyses.

The top right panel of Figure 7 reveals substantial TT artifacts arising from strong hysteresis
effect upon repeating the simulation in the reverse coupling parameter direction. These amount

to around 2-3 kcal mol” around the barrier regions, much larger than the statistical sampling
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Figure 9: FEDs (blue, right ordinate) and PMF curves (red, left ordinate) for various parameter sets for K*, placed at the
crown center, on the basis of uu calculations (PSE-2 basis for underlying uv data). The original K* value for the respective
parameter set is indicated by the dashed line. From top to bottom: MacKerell et al.[8¢], Joung and Cheathaml87], Aqvist[8e],
Wipff et al.l®l parameter sets; left/right columns show data with MD-extracted and DRISM/HNC susceptibilities,
respectively.

error. The origin is related to the special simulation setup that was employed, namely the choice
of fixed ion positions relative to the crown ether. Visual inspection of trajectories shows for ion
distances slightly above or below the ring center that water molecules cannot sufficiently sample
the narrow regions between host and guest. The true TT barrier height is likely closer to the #»
data than estimated from the forward direction only. This also becomes clear from the
differences between explicit #» or ## PMFs and the hysteresis-averaged T1 curve shown in the
bottom right panel of Figure 7, which corresponds to the difference of desolvation penalties

(see also below for a more detailed description) since the host-guest interaction energies ate
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identical for all approaches. This demonstrates more clearly that #x deviates topographically
similarly but systematically underestimates the desolvation work compared to #, while #» mostly
overestimates the penalty compared to TI. Near the center, ze. in the region of largest error, the
integral equation artifacts have therefore fortuitously less negative impact on absolute numbers.
This coincidental cancellation of errors near PMF minima is, however, a general pattern found

for all ions examined, as shown below in Figure 8.

A compatison of 3D RISM-## with #v and TI calculations for Na*, K, Cs™ sheds more
light on the origin of the apparent discrepancies. Besides the PMF the desolvation also show
penalties for the three ions which are simply the differences between PMF and underlying direct
interaction energies. This penalty is a measure for the free energy impact of stripping water
molecules from the ions when entering the crown ether. In general the desolvation penalty
calculated by ## and v yields a mixed picture in regard to the TI reference, with ## calculations
based on DRISM/HNC ()" """ performing systematically best near the PMF minima. All 3D
RISM flavors are capable of reproducing the overall topography of the TI PMF curves. Explicit
uv calculations tend to be better at reproducing the shape and height of the barriers, while we
find, consistently for all ions, ## from DRISM/HNC (22)!"* " is better suited for the prediction
of the depth of the minima. The most efficient approach is therefore an interesting candidate
for replacing MD-based binding free energy predictions by an integral equation model. While
the PMF topographies for Na" and K" are similar, the situation differs strongly for Cs’.
Indicated by a local maximum at the center, Cs* does not fit into the crown ether cavity and
mostly sits on top of it. This result agrees with quantum-chemical calculations and experimental
data for this system™”?" and is nicely reproduced by all RISM-based methods as found from

TI.

The analysis presented here indicates the reason why liquid state theories can have
difficulties with respect to quantitative predictions. Overall, the agreement between integral
equation and TI penalty curves is good, while the precise locations of the onset of the
desolvation process differ only slightly. However, the large slope of the desolvation penalty is
compensated by a similarly large, opposite slope in the direct interaction energy in this region.
This means that two steep, opposing trends can have very large impact on the absolute numbers
when added, giving rise to stronger discrepancies in total PMFs as would be expected from
separate components. Any improved liquid state theory therefore has to account for an

improved description of ion-water distribution functions at close contact, which represents a
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considerable challenge for future developments. Such attempts are certainly worthwhile since
the computational demand varies widely, by several orders of magnitude, among the methods
presented here. For a single state-of-the art processor core and a given relative configuration
roughly 16.000 min for TT/MD is needed, 100 min for explicit #» calculations, while a ux

calculation with precomputed #» data for separate partners requires only 0.01 min

Turning finally to the FEDs from ## calculations, various ion parameter sets for K* were
tested with respect to the robustness and plausibility of the predictions. Since the PMF
topographies between T and integral equation results differ only slightly and, in particular, the
location and depth of the minimum is well described by »# theory, good correspondence is
expected with results obtained by others who required much higher computational cost. Figure
9 shows FED results with respect to the ion size parameter for various setups. Notably, absolute
numbers are strongly influenced by switching between DRISM/HNC and MD-extracted water
susceptibilities but not to the same extent the location of the zero-crossing of the FED or the

t,"™ see further discussion

minimum of the PMF, respectively (with the exception of Aqvist se
below). In this sense, ##-based FEDs represent indeed a robust quantity for optimizing chemical

parameters by providing direction information to the molecular designer.

The two bottom panels show positive free energy derivatives for the calculations with the

189]

Aqvist™ (for MD-extracted susceptibilities only) and Wipff ez a/"™! parameter sets at the
original ¢ value of the potassium ion. These results are in agreement with the study of Cieplak
et al™ where a molecular dynamics study in conjunction with free energy derivatives and the
same parameter set (Aqvist!'™) yielded also positive free energy derivatives for the respective &
value. This indicates that the optimal binding partner of the 18-crown-6 ether is an ion with a
slightly smaller radius than the original K* parameter. At first sight, the data for the other two
parameter sets (top panels, MacKerell ¢z a/,"* Joung and Cheatham!"™") seem to contradict this
conclusion since they suggest increasing the size parameter. However, for absolute numbers the
trends agree with the Wipff e /"™ tendency to yield an optimal ¢ parameter of around 3.4 A.
Only the Aqvist"® set appears to deviate in terms of absolute numbers, which is not unexpected
since the absolute values for this set are mere fit parameters to represent solvation free energies
reasonably, sacrificing any physical meaning. For the other three sets, the overall prediction of
an optimal K" size appears to be robust and practically independent of the accompanying well

depth parameter defining the Lennard-Jones potential.

45 | Page



DESIGNING MOLECULAR COMPLEXES USING FREE-ENERGY DERIVATIVES FROM RISM-uU

3.4 Concluding remarks

In this proof-of-principle study it was shown that it is indeed straightforward and physically
reasonable to employ 3D RISM-## theory for the purpose of predicting design directions for
certain interaction parameters defining variations in chemistry. This investigation was footed on
a thorough comparison of the relative strengths and deficits of various integral equation
formulations and their inherent dependence on input parameters such as pure solvent data and
closure approximations. The benchmark data for this purpose was provided by explicit free
energy molecular dynamics simulations based on the same interaction potential and structural
model as used in integral equation calculations. Such an analysis rigorously revealed the deficits
of a 3D RISM treatment with currently available approximations. In particular, the subtle
interplay of opposing quantities, interaction energy and (de)solvation contribution to the total
PMF, strongly depends on the physical level of accuracy that defines a liquid state theory.
Therefore, much work has to be done to improve those theories to reach quantitative agreement
with explicit simulations consistently over PMF landscapes. However, the results also showed
that PMF topographies, which are most relevant properties for employing free energy
derivatives in practical design work, are reasonably robust and less influenced by the inherent
approximations. Hence, even a computationally very efficient theory such as 3D RISM-##, that
does not account for higher-order correlations between two solute partners and the solvent as
compared to 3D RISM-#» on super-molecules, can be envisioned to be developed into a
practically useful design model for more complex problems such as protein-ligand binding,

which is the topic of the next chapter of this work.

Building on these results the next chapter will apply FEDs calculated with 3D RISM-## to

two protein-ligand system. The model will also be extended and verified further.
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4 Free energy derivative guided-
drug design with RISM-uu

4.1 Introduction

In order to apply free energy derivatives to protein ligand complexes in a meaningful
manner it is desirable that per atom information can be obtained to drive the decision process.
The general idea would be to calculate the free energy derivative of every ligand atom at its
respective position in three dimensional space and map this information back to the ligand
structure to obtain a picture as in Figure 21. Here, the following central questions arise: (1) is
placing the ligand atoms at their original three dimensional position into the apo structure of the
protein binding site enough (calculations done in this way are denoted by “apo” as superscript)?
(2) Should the ligand atoms be placed in a one-to-one manner so that the binding site is partially
filled with the remaining part of the ligand (calculations done in this way are denoted by “part
holo” as superscript)? (3) Which 3D RISM parameters should be used to obtain fast and reliable
results? All of these question are addressed in this chapter. (4) Are the computed FEDs and
derived quantities in accordance to the experimental results, despite all the approximations that

are made?

The molecular systems under scrutiny are the kinase domains of “rearranged during
transfection” (RET) in complex with AD80 and tRNA guanine transglycosylase (TGT) in

complex with an aminoquinazolin derivate.
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4.2 Computational details

4.2.1 Structure preparation

All used structures were equilibrated with MD simulation, if not explicitly stated otherwise.
In the case of “rearranged during transfection” RET, a homology model was generated by
Justina Stark. The modelling and equilibration process being described in detail in Ref. [206] in
the following only a brief summary is given: The RET DFG-out model was generated with
Modeller™ using VEGFR (pdb: 20H4) as template. After that, the system was
parametrized using the ff99SB force field from Amber12™ for the protein and GAFF
1.5P12 25 for the ligand called AD8O0 (see Figure 10 A, C). Partial charges for the ligand were
calculated using the AM1-BCC method.”""*""l Then solvated in TIP3P!"* water and neutralized
with chloride ions. This process was followed by three successive fully atomistic MD simulations
with NAMD:!" starting with a 4 ns long simulation with restraints (only C* atoms) in the NI/ T

ensemble followed by a 4 ns long simulation with restraints (only C* atoms) in the NpT ensemble

Figure 10: (A) The binding motif of AD80 in RET after MD refinement and minimization. These coordinates are used for all
following calculations. (B) The RET protein after MD refinement and minimization shows a typical kinase structure. (C)
Chemical structure of AD80
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after which a unrestrained equilibration run of 20 ns in the NpT ensemble was done.” The last
frame of this simulation was energy minimized with SANDER!"" and the analytically linearized
Poisson Boltzmann (ALPB)*? model as implicit solvent (see Figure 10 B). The obtained
structure was then used for all further 1D/3D RISM-#» and 3D RISM-## calculations and

contained 4752 atoms of the protein and 53 atoms of the ligand.

The “tRNA guanine transglycosylase” (TGT) complex was modelled in a similar manner.
Therefore, the structure was acquired from the pdb (pdb: 1S38) and the first processing step
included the modelling of missing residues with the Modeller™" software. After that the
complex was parametrized with ff14SB force field from Amber14P" for the protein and GAFF
1.5%% 2 for the ligand 2-amino-8-methylquinazolin-4(3h)-one (see Figure 11 D). The zinc
cofactor present in the protein was parametrized with the values” deposited in the ff14SB
force field. Partial charges for the ligand (aminoquinazolin derivative) were calculated using the
sgm tool in Amber 12" and the AM1-BCC*'**!!l charge model. The system was then solvated
in 26394 TIP3P!"* water molecules in a cubic box of the dimensions 96 A - 94 A - 109 A. Then
the system was subjected to local minimization, which was followed by a restrained simulation
of 5 ns length with a force constant of 4 kcal/(mol - A) applied to the C* atoms of the protein
in the NI'T ensemble. Afterwards, a 5 ns long simulation with the same restraints in the NpT

ensemble was employed. Subsequently, an unrestraint simulation of 30 ns length was done to

equilibrate the system. All simulations were run at a temperature of 298.15 K via the Langevin

Figure 11: (A) Binding site of TGTMP with bound ligand amgMP. €H3, (B) Protein structure after MD refinement and minimization.
(C) Chemical structure of 2-aminoquinazolin-4(3H)-one (amgH). (D) Chemical structure of 2-amino-8-methylquinazolin-4(3h)-
one (amqMD. CH3 amqCH3),

49 | Page



FREE ENERGY DERIVATIVE GUIDED-DRUG DESIGN WITH RISM-uuU

method, a pressure of 1 bar controlled by the Langevin-piston method, and used the particle
mesh Ewald”>*'% (default settings) method for the treatment of long range electrostatics. The
Settle algorithm was used to constrain the hydrogen atoms, and the simulations were run
with a 2 fs time step in NAMD.I"” The last frame of the unrestraint trajectory was subjected to
energy minimization with SANDER!"? and the ALPBP'? implicit solvent model (see Figure 11
A, B). The resulting structures for the protein and the ligand were used for further 1D RISM-
uy and 3D RISM-uv/ uu calculations. The structures ate abbreviated in the following as TGTMP

for the protein and amq"™ “* for the ligand.

[218]

The crystal structure of 1838 in complex with 2-amino-8-methylquinazolin-4(3h)-one

213

was also parametrized with the ff14SB force field of Amber14P" for the protein and GAFF

1.52%2%) for the ligand as deposited in the PDB with no further refinement or modelling steps.
These structures are called TGT" for the protein and amq™"” for the ligand. Furthermore the
crystal structure of 139" was also downloaded from the PDB and parametrized with ff14SB
from Amber1 4" for the protein and GAFF 1.5"*"! for the ligand 2-aminoquinazolin-4(3H)-
one (see Figure 11 C). In the following text these structures for the protein are called TGT" and

amq' for the ligand. All structures used in this chapter can be found in the electronic appendix

of this work.

4.2.2 RISM-uv calculations

As basis for all following RISM calculations, the y-function (result of 1D RISM-»v) was
calculated with the dielectrically consistent (DRISM/HNC) theory"™” " for pure water
(modified TIP3P, see chapter 3). This calculation was performed on a logarithmic grid with 512
grid points ranging from 5.98-10° A to 164.02 A. The solvent density was set to 0.0333295 A~
the temperature to 298.15 K, and the dielectric constant to 78.4. As convergence criterion, the
residual norm of the direct correlation functions was set to 107. For all necessary 1D RISM-u»
calculations the same parameters as in the 1D RISM-us» case were chosen except for the
convergence criterion, which was set to 10” for the maximum residual in the direct correlation
functions and the number of “direct inversion of iterative subspace” (DIIS) vectors which was

set to 5.

For the comparison of the closure effect on the calculated PMF and FED values, the

needed 1D RISM-#» calculations were performed with the PSE closures of order 1-4. The 3D
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RISM-uv calculations of the RET/AD80 complex were either done with a cuboid grid of size
120 - 110 - 130 and a grid spacing of 0.6 A or a cuboid grid of size 260 - 240 - 280 and a grid

[215, 216

spacing of 0.3 A. Long range electrostatics were treated with the PME I with order 8 and

and short range interactions were cut at 14 A. For all calculations monopole renormalization

28, 130]

was used.| The convergence criterion was set to 10 for the maximum residual norm of the

direct correlation functions and in order to accelerate convergence 10 DIIS vectors were used.

For the calculations of the TGT complex system the same 1D RISM-#» parameters as
described above were chosen. The corresponding 3D RISM-#» calculations were done with a
cuboid grid of the size 250 - 230 - 290 and a grid spacing of 0.3 A. The other 3D RISM-u»
specific parameters were set to the same values as in the comparison of the closure effect. For
all 3D RISM-#v calculations concerning the TGT complex system, the PSE2 closure was used.
In case of the TGT complex system, all calculations were done for four different sets of
structures: (1) the MD relaxed and minimised structures based on the PDB entry 1838, which
is called TGT™?/amq"™ “'"; (2) the crystal structure of TGT as it is deposited in the PDB called

TGT/ arnqcH3 ; (3) the crystal structure of the aminoquinazolin variant of the ligand deposited as

Adpy ., G
P-L-X . P-L-Y

-w,,(P-L-X) w,,(P-L*-Y)

P-L + X » P-L"+Y
s AE(P-L»P-L7)
T T 3D RISM-uv T ‘
|

1D RISM-uv

AAL)(—>LYG "
P + L-X > P+ L*-Y

'Wuu(l—'x) Wuu(L*'Y)

L + X » L +Y

Figure 12: Exemplary thermodynamic cycle for the 3D RISM-## calculations and FEDs with respect to the partial charge
g. For all apo calculations only the purple circle has to be evaluated, P-L gets then substituted by P and there is no P-L".
All other contributions vanish or cancel themselves out. For the partial /ol calculations the whole circle has to be evaluated.
Note that the contribution of the protein alone vanishes in the case of the partial so/ calculations. The green arrows only
show the theory that used to calculate the given process.
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found in 1839 in the PDB, which is called TGT/amq"; and (4) the crystal structure of TGT as
it is deposited in the PDB, where the methyl group of the ligand is replaced by a united atom
approximation called TGT/amq"". For the united atom variant o was set to 3.905 A, &to 0.175
kcal mol”, and the partial charges were calculated by summing the partial charges of the original

methyl atoms yielding 0.0993 e.

4.2.3 RISM-uu calculations

All RISM-#u calculations were done using the aforementioned 1D/3D RISM-w»
calculations as input and using the same thermodynamic variables. The derivatives were
calculated for the three force field parameters o, &, and the partial charge ¢. The stepsize for
numerical evaluation of the derivative with a 5-point stencil was set to A = 0.05 {A, kcal mol”,
e} around the original parameter for the atom in question throughout all calculations. Two
calculation schemes were employed to derive atomwise values for either the PMF or the FED.
The first scheme, is called apo from this point on, places every ligand atom in the “empty”
binding site of the protein at the coordinates of the original protein ligand complex, which is
done in a successive manner. In practical terms this means that one 3D RISM-#» calculation for
the protein and 7 - 5 1D RISM-#» calculations, if # is the number of ligand atoms, were done.
In the apo case the change from P-X to P-Y can be computed directly and in a straightforward

way (see Figure 12).

The second, more elaborate, scheme, called partial Jol, places every ligand atom into a
supermolecule, either consisting of the protein with the remaining ligand atoms or the remaining
ligand. The partial holo calculations also required that 1-3 non-bonded interactions had to be
excluded and 1-4 non-bonded interactions had to be scaled by 0.5, all according to the definition
of the Amber!™ force field. This ansatz also introduced the problem of charge neutrality for
the respective ligand, and was accounted for by distributing the remaining charges onto the
neighbouring atoms, as defined by the connectivity, of the ligand atom in question and
calculating the electrostatic potential difference generated by introduction of this artificial
charge. Practically this means that for every sampling point done for the numerical derivative
two 3D RISM-u», one for the partial holo complex and one for the partial ligand, and one 1D

RISM-uv calculation is needed. This sums up to 5 - (27 + ) calculations for 7 ligand atoms. In
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the partial /oo case one PMF point for the protein ligand complex is thus calculated in the

following way:

AAG —w, (P-L-X)+w, (P-L. =Y)+AU*“(P-L—>P-1), (73)

PXPY

where AAG is the free energy change obtained from changing atom X into Y,

PX—>PY
w, (P-L-X)and w, (P-1.—Y) is the PMF of the respective system. The last term
AUY(P—L — P—1) is only necessary for calculations that involve a change in the charges

and guarantees that charge neutrality is maintained by:
AU =UP-L,X)-U"P-L"Y), (74)

where U®“(P—1,X) is the Coulomb potential between atom X and the partial solo complex
and U“(P—1.",Y)is the Coulomb potential between the varied atom X and the varied partial
holo complex. It is easily seen that AUis zero if the partial charges are not varied. In addition

to that the following term has also be evaluated:

AAG =—w, (L-X)+w, (L =Y)+AU"(L—>L"). (75)

LX—>LY un

In summary this leads to the following expression for one PMF point:

AG,, , —AG,,  =AAG AAG

ILX—>LY * (76)

PX—PY

4.3 Results and discussion

4.3.1 Effect of grid sizes and PSE closure order

To evaluate the effect of the grid spacing on the PMF values, that are calculated by 3D
RISM-## a comparison of a high resolution grid (with a grid spacing of 0.3 A) and a low
resolution grid (with a grid spacing of 0.6 A) are compared. In Figure 13, the differences of the

atomwise PMF values between the high and low resolution grid for the RET*"/AD80 system
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Figure 14: Differences of the PMF for the RETrart 224/ AD80 system calculated on a higher resolution grid (#/Grid spacing of 0.3

A) and lower resolution grid (»<Grd, spacing of 0.6 A). Data is shown for the three closures PSE1 to PSE3. The ligand atoms
were placed consecutively in the partial ho/o binding site.

are shown. The range of the differences is roughly 1 kcal mol”, which shows that for this
particular system the low resolution grid would be sufficient for most tasks. The oxygen atom
(see Figure 10 C) shows the biggest difference between the low and high resolution grid. This
could be due to a grid artifact which can arise when the center of an atom is in the direct vicinity

of a grid point. All other differences are in the range of -0.2 kcal mol™ to +0.4 kcal mol! which

can be solely attributed to the different grid resolutions.
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Figure 13: Differences of the PMF for the RET#7/ AD80 system calculated on a higher resolution grid (#67d spacing of 0.3 A)

and lower resolution grid (#<Grid, spacing of 0.6 A). Data is shown for the three closures PSE1 to PSE3. The ligand atoms were
placed consecutively in the apo binding site.
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]

SE closure order.

When the ligand atoms are placed in the partial solo binding site the picture changes a little
bit, as seen in Figure 14. All but two of the differences are in the range of -1 kcal mol™ to +1
kcal mol ™ and therefore in an acceptable range. The differences of the nitrogen (N in Figure 14)
are between ~(4 — 10) kcal mol”, depending on the closure relation which watrants further
investigation. The working theory would be that the difference between both grid sizes is
governed by the desolvation penalty which is based on the 3D RISM-#» calculations, where the

nitrogen is shielded from the solvent environment, which could explain the significant
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Figure 16: PMF values calculated on the »/G1id for the RET#7/AD80 complex and ascending PSE closure

order.
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difference. This implies that for the partial 4o/ calculations the fine grid resolution of 0.3 seems

to be better suited to yield consistent results.

The next step involves the comparison of the influence of the closure order. For this
comparison only #“* are described here. In Figure 16 the »*°* values for the apo binding site
are shown for ascending PSE closure order. In general the PSE1 closure shows significant
deviations from the other closures and in particular the PSE3 closure. Taking into consideration
the working hypothesis that the PMF values calculated with a higher order PSE are superior to
those that are calculated with a lower order PSE, which is not completely unwarranted (see
Ref. [219]). Following this line of argument the calculations with the PSE3 order were flagged
as the “gold standard” and the deviation between either PSE1 or PSE2 was calculated. If PSE1
and PSE3 are compared, the standard deviation of the differences is o= 3.12 kcal mol” and the
Pearson correlation coefficient (used here to reveal possible anti-correlation) is R = 0.96. The
same comparison done for PSE2 and PSE3 shows a standard deviation of the differences of
only ¢ = 0.73 kcal mol™ with a correlation coefficient of R = 0.99. It seems to be the case that
for the calculations in the apo binding site the PSE2 closure delivers the best compromise

between speed, convergence behaviour, and accuracy.

In the case of the partial holo complex the picture is comparable to the apo case as seen in
Figure 15. The standard deviation of the differences between the calculations with PSE1/PSE3
is 0 = 8.8 kcal mol” and for PSE2/PSE3 o = 0.93 kcal mol" respectively. The Pearson
correlation coefficients for both PSE1/PSE3 and PSE2/PSE3 is R = 0.99. This suggests that
the closure has a more pronounced effect on partial holo complex calculations than on apo
complex calculations. The conclusion would be to use, as in the apo case PSE2 as a standard

because of same reasons.

A i—||7 ﬁ10 B TB ﬁ1
H1\ _C12 ,CQ\ _H6 H9\ //CS ,CT\ _H7
c1” “C11 N8 C6 ~C4 N1

| || I | || |
C2. _C4_ -C6_ _H5 _C1. _C3_ -C8_ _H6
~C3 N5 N7 H1 ~C2 N3 N2

| | | |
H3/CU H4 H2—C9—HS H5
H4

Figure 17: (A) Atom assighment for the amq" ligand. For further investigation of geometric effects on the partial hoko
calculations. (B) Atom assignment for the amq®"3 and amgMP-CH3 ligand.

H2~~
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4.3.2 A tool for rational drug design: a case study

In this subchapter the usefulness of free energy derivatives with regard to the drug design
process will be addressed. Therefore, the atomwise FEDs and PMFs for the four corresponding
complex pairs TGTY™ “°/amq™™, TGT™"/amq“®, TGT"/amq"", and TGT"/amq" were
calculated for either the gpo or the partial holo case. The FEDs were calculated with regard to the

force field parameters o, €and 4.

Table 2: Sum of the atomwise PMF () values for all calculation modes and complexes. For the two aminoquinazolin
derivatives the experimental K values are also shown. All calculations were done on the finer grid (Ax = 0.3 A) for the
respective structures in their native environment.

complex cale. mode  »in' (keal/mol) exp. K
TGTMPP JamgMP e partial holo -111.10 -
TGT" /amq™” partial holo -115.40 7 pM*
TGT"/amq" partial holo -100.30 20 nM - 50 nM*
TGTMD,CH?)/aqu\'ID,CH?y ﬂpO _1 514 _
TGT"/amq“" apo -14.90 -
TGT /amq™" apo -15.75 -
TGT"/amq" apo -14.67 -

"Meyer e al.,”'™ AAGE?, | =-3.47 kcal - mol” — -2.93 kcal - mol’!

Firstly, it is checked if the summation of the atomwise PMF values correlates with the
experimental trend and if significant changes arise between the MD relaxed and crystal
structures. In Table 2, the results are summarised. In case of the partial o/o calculations the
PMF sum for the MD relaxed structure (superscript MD, CH3) and the crystal structure
(superscript CH3) are -111.10 kcal mol™ and -115.40 kcal mol™ respectively and therefore in the
same range. The same result can be observed for the apo calculations in which the difference

between the MD relaxed structure and crystal structure shrinks to -0.24 kcal mol”, which

b

indicates that the MD simulation is not imperative in this particular case.

These results demonstrate that the PMF sum alone is not enough to distinguish between a
good and mediocre binder. Therefore they are crucial for the next chapter which investigates if
apo PMF calculations can be used to define a novel scoring function. Additionally, the partial
holo calculations seem to suffer from a conceptional shortcoming in the form of the fixed ligand
geometry. To investigate this in detail the separate contributions to the PMF for the partial Aol

(only the complex part) and apo calculations are shown in Table 3. In the partial ol case the
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desolvation penalty values are generally higher than those in the apo case and the average
difference between the potential part and the desolvation penalty is 9.91 kcal mol”, in contrast
to only 2.25 kcal mol” in the @po calculations. For the partial holo calculations none of the
desolvation penalties has a negative sign instead of the apo calculations where the solvation

process seems to be beneficial in some cases.

Table 3: Contributions to the complex PMF for amq! ligand atoms (in the crystal structure) in the partial s/ and apo case.
The PMF is split into the potential () and desolvation penalties ().

partial holo apo
atom # (kcal mol™) " (kcal mol™) # (kcal mol™) " (kcal mol™)
C1 -1.75 14.79 -2.26 -0.06
c2 -1.22 11.80 -1.93 -0.23
C3 -1.43 14.13 -1.98 -1.23
C4 -0.65 24.47 -2.35 -0.98
N5 -0.68 70.03 0.14 2.41
Co6 -2.64 95.41 -2.85 -3.03
N7 0.01 118.77 0.97 5.54
N8 -2.04 77.44 -2.27 -0.73
C9 -2.72 78.33 -2.83 -4.23
010 -1.81 80.08 -1.27 2.25
C11 -0.70 24.39 -2.20 -1.84
C12 -1.40 10.99 -2.41 -1.39
H1 1.29 7.53 1.32 0.91
H2 0.48 6.29 0.51 0.29
H3 -0.51 6.12 -0.49 -1.03
H4 -1.34 19.04 -0.98 2.18
H5 -1.33 19.56 -1.08 0.94
H6 -1.33 8.43 -0.78 0.49
H7 -0.35 5.09 -0.42 -1.20

From this it is obvious that one has to be cautious with the results of the partial bolo
calculations, because they seem to be dominated by the contributions of the desolvation penalty.
A closer look reveals that the biggest differences, 28.85 kcal mol” for N7, can be seen for atoms
that are surrounded by neighbouring ligand atoms (see Figure 17). This seems to be the correct
physical description because placing an atom in such a confined space will naturally be penalized.

To further investigate this theory isosurfaces of the g-function of a 3D RISM-# calculation are
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Figure 19: Binding modes of the three complex structures with all residues of the protein residues in a 5 A radius in orange. (A)
shows the binding mode of the TGTMP /am@MP.CH3 complex: distance of H3 (blue) to the closest protein atom (yellow, HD2 of
Tyr 106) is 2.35 A and of H2 (red) to the same atom is 3.14 A. (B) shows the binding mode of the TGT/amq®H3 complex:
distance of H3 (blue) to the HD2 atom of Tyr 106 (left side) is 2.30 A and to the OD1 atom of Asp 102 (buried in the binding
site) is 2.52 A. For H4 (green) the distance to the OD1 atom of Asp 102 (buried in the binding site) is 2.81 A and 2.46 A to the
HE3 atom of Met 260 (right side). (C) shows the binding mode of the complex TGT/amq!: the distance of the H3 atom (blue)
to the CD2 atom of Tyr 106 is 3.76 A and 3.14 to the OD1 atom of Asp 102.

shown in Figure 18. At the position of atom N7 Figure 18 shows no water density found for an

isovalue of 2. This naturally leads to a strong penalisation in the resulting PMF.

Now the focus changes to the atomwise calculation of the free energy derivatives for the
four TGT complexes and in particular the TGT“/amq“Y (CU being an abbreviation for the

united atom variant) and the TGT"/amq" complex. For all other complexes the corresponding

Figure 18: A) Shows the partial amq!! ligand (N7 is missing) in a top view inside the binding site. The white circle highlights the
part of interest, where no water density is found. B) Shows the partial amq! ligand (N7 is missing) in a front view inside the
binding site. The white circle highlights the part of the molecule where no water density is found. The oxygen densities are shown
in red and the hydrogen densities in blue. Isosurfaces are shown for a isovalue of 2.
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partial holo apo

Figure 20: Atomwise FEDs for the TGTCV/amqCU system. The upper row shows the FEDs with respect to the o value for
the partial ho/o (A) and apo (B) calculations. In the middle row the FEDs with respect to the Lennard-Jones Parameter & are
shown for the partial so/o (C) and apo (D) are shown. The last row shows the FEDs in regard to the partial charge ¢ for the
partial bolo (E) and apo (F) calculations. The atoms are colour coded from red to white up to blue with red associated with a
negative FED value (means that the parameter has to get smaller to approach an optimum) and blue with a positive FED value
(means that the parameter has to get bigger to approach an optimum). The atom group of particular interest is encircled in red.

FEDs are shown in the appendix. Starting with the derivative with respect to the partial charge
for which the resulting FEDs are shown in Figure 20, Figure 21, and the corresponding binding
modes of the ligands in Figure 19. The FEDs are shown in a colour scale from red to white up
to blue which represents negative, optimal and positive FED values respectively. The atom
group of interest, consisting of CU (united atom methyl group) or H3, the partial solo FEDs
with respect to the charge (Figure 20 (E, F) are positive (Table 4 upper part). This means that a
less negatively charged group would lead to a better binder. The apo calculations show that the
derivative is negative for TGT"/amq"" and slightly positive for TGT"/amq". To further assess

these results a look at the actual charges for the amq" and amq“" ligand is helpful. Both ligands
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have a positive partial charge, but the amq' ligand is less negatively charged with a partial charge
of 0.15 e, that leads to a charge difference of Ag = -0.06 e (g(amq") — g(amq"")). With this
information it is now possible to get a measure of how large the influence of the actual change
of the charges from CH3 to H could be by calculating 0w/0g - Ag, which is a linear
approximation. This leads to a change of 1.93 kcal mol™ for the partial jolo calculation directly
at the hotspot, and interestingly to a change of -8.08 kcal mol™ at the neighbouring C3 atom,
which is a member of the ring system. To account for a possible hysteresis effect the linear
approximation for —0w/0g - Ag was also calculated and shows the opposite trends. Despite
this being the desired outcome (the trend gets inverted) it also shows that there exists a hysteresis
effect, in part caused by the rigid structures used for the calculations, because the effects do not

cancel out completely (4.29 kcal mol™).

For the apo calculation the charge difference leads to a change of -0.19 kcal mol™ directly
at the position of H3 but to a change of 0.08 kcal mol at the neighbouring ring position. The
control calculation of — 511// 0q - Ag shows that directly at the hot spot the free energy change
upon introduction of CH3 group would be slightly negative (-0.01 kcal mol"). At the
neighbouring C3 position the same calculation shows that the effect would be more or less
cancelled out. This shows that for the @po calculations the hysteresis effect is larger than for the
partial holo calculations. All other atoms have rather minor contributions compared to that and

cancel each other more or less out.

What is interesting about this is that both calculation methods would lead to a total free
energy change, by summing all contributions, from amq“¥ to amq" of -5.75 kcal mol™ for the
partial holo calculation and -0.12 kcal mol" for the apo calculation. This means that both
calculation methods give the same general trend but show different signs at the hotspot position.
This interesting effect should be further investigated. It is also of note that both methods seem
to be able, although with opposing trends at the same site, to account for the change in the
partial charges of the whole molecule, and it is reassuring to see that the FEDs are able to resolve

that local changes can have a notable effects at another position.

So far, the change introduced by the replacement of the methyl group by a hydrogen points,
according to the calculated FEDs, in the right direction. But amq'' is probably not the ideal
ligand and maybe it is possible to get a better binding ligand by the introduction of a nitrogen
at the position of C3, which would introduce an even less negative charge at the position

H3/CU.
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Table 4: FEDs with respect to ¢, 0, and ¢ for TGTV/amq“V (denoted with superscript 1) and 'TGTH/amq!" (denoted with
superscript 0). The differences A{ ¢, 0, &} are always calculated by A{ ¢, 0, &} = A{ ¢, 0, 10 - A{ ¢, T, &} D).

apo partial Aol

atoms q© g»  AgO-Of ow/ qu ow] 5q<0> ol 64(1) -Ag —anf 6q<0) Ag | omf 6q(1> Ow| 6q(0) onf 5q<1) -Ag —5u//5q<0) -Ag
C1 <0165  -0.159  -0.006 007 -0.89 0.00 -0.01 138.88 53.61 -0.83 0.32
c2 <0.087  -0.092  0.005 -1.58  -0.40 -0.01 0.00 136.67 50.67 0.68 -0.25
c3 -0.136  -0.076  -0.060 141 -1.05 EEEENO0S -0.06 135.26 48.15 -8.08 T
c4 0213 0210  0.003 0.22 0.38 0.00 0.00 137.32 50.33 0.41 -0.15
N5 <0.681  -0.680  -0.001 -1.23 1.90 0.00 0.00 100.20 35.94 -0.09 0.03
C6 0.667  0.665  0.002 2.84 3.78 0.01 -0.01 136.55 49.75 0.26 -0.09
N7 0.888  -0.887  -0.001 -0.70 171 0.00 0.00 149.17 67.99 -0.13 0.06
N8 <0.507  -0.506  -0.001 2.09 1.60 0.00 0.00 155.73 66.19 -0.16 0.07
C9 0719 0719  0.000 6.12 4.06 0.00 0.00 140.41 53.03 -0.01 0.01
010 <0624 -0.624  0.000 045 058 0.00 0.00 96.67 70.53 0.00 0.00
cn 0210 -0204  -0.006 0.85  -0.68 0.01 0.00 141.80 53.32 -0.85 0.32
c12 <0052 -0.058  0.006 242 148 -0.01 0.01 138.64 51.66 0.83 -0.31
H1 0.139 0139  0.000 -1.29 2.29 0.00 0.00 46.80 16.54 0.00 0.00
H2 0.136 0136 0.000 232 233 0.00 0.00 40.95 14.01 0.00 0.00
H3/CU 0.151  0.099  0.052 -3.70 0.24 -0.19 -0.01 37.35 22.21 S 115
H4 0415 0413 0.002 0.68  -3.30 0.00 0.00 92.57 87.52 0.14 013
H5 0415 0413 0.002 283 -0.59 0.00 0.00 93.95 87.90 0.14 -0.13
H6 0336 0336 0.000 396 -1.72 0.00 0.00 94.33 63.08 0.00 0.00
H7 0.156 0156  0.000 -1.97 5.23 0.00 0.00 43.68 14.95 0.00 0.00
net effect 0.12 -0.07 -5.75 1.46
hysteresis avg. -0.02 -3.60

o0 o Ac®| awfoc) ewjoc?)  ewjocD.Ac  —owjoc D Ao | wjoc® awjoc®  ewjocD.Ac  —aw/ocD) - Ac
Cl 3400 3.400 - 071 238 - - -0.61 -1.15 - -
c2 3400 3.400 - 130 -1.39 - - -0.63 -0.62 - -
c3 3400 3.400 - 045  -151 - - 0.08 117 - -
C4 3400 3.400 - 124 -1.54 - - 0.73 0.99 - -
N5 3250 3.250 - -3.26 3.11 - - -1.26 441 - -
C6 3400 3.400 - 119 148 - - -0.03 -0.60 - -
N7 3250 3.250 - 331 1.93 - - 0.81 7.41 - -
N8 3250  3.250 - 035 094 - - -0.27 113 - -
c9 3400 3.400 - 133 1.22 - - 2.89 1.93 - -
010 2960 2.960 - 428 257 - - 2.53 277 - -
cn 3400 3.400 - 20.65  -091 - - -1.85 -1.64 - -
c12 3400 3.400 - 194 193 - - -1.81 -0.84 - -
H1 2,600  2.600 - -2.26 341 - - -2.00 3.49 - -
H2 2.600  2.600 - 2.13 1.86 - - 2.19 225 - -
H3/CU 2.600  3.905 -1.305 -2.38 o.0; | -1.09 0.2 S -0.16
H4 1069  1.069 - 217 257 - - -0.64 2.29 - -
H5 1069 1.069 - 186 -2.27 - - -0.80 2.52 - -
H6 1069 1.069 - 030  -1.99 - - -0.46 2,76 - -
H7 2.600  2.600 - 0.62 0.44 - - -0.86 0.24 - -
net effect 311 0.07 143 -0.16
hysteresis avg. 1.52 0.79

£0 &0 Ag00| owfosV owfoe®  owfosV.Ae  —owjos D As | owjos) awfos”)  owfosV.Ae —onjos® - Ae
Cl 0.598  0.598 - 0.86  -1.48 - - -0.78 117 - -
c2 0598  0.598 - 096  -1.10 - - -0.68 -0.91 - -
C3 0598  0.598 - 058 -1.00 - - -0.40 -0.98 - -
C4 0598  0.598 - 099  -115 - - -0.80 0.98 - -
N5 1181 1.181 - 102 -0.02 - - -0.84 0.09 - -
C6 0598  0.598 - 12 129 - - -0.73 -1.04 - -
N7 1181 1.181 - 112 032 - - -0.83 0.17 - -
N8 1181 1.181 - 053 -0.58 - - -0.67 0.78 E -
C9 0598  0.598 - 007 -0.01 - - 0.51 0.24 - -
010 1459 1.459 - 077 -0.48 - - -0.30 0.14 - -
ci 0598  0.598 - 0.63 079 - - 112 114 - -
c12 0598  0.598 - 112 116 - - -1.07 -0.86 - -
H1 0.104  0.104 - -1.31 5.57 - - -1.13 5.63 - -
H2 0.104  0.104 - 2.92 2.49 - - 3.07 3.09 - -
H3/CU 0.104 1216 -1.112 356 -0.42 GRS -0.47 -0.77 -0.73 s -0.62
H4 0.109  0.109 - 313 372 - - -1.20 -3.37 - -
H5 0.109  0.109 - 278 -3.27 - - -0.48 -3.48 - -
H6 0.109  0.109 - L6l 2,94 - - 0.76 -3.79 - -
H7 0.104  0.104 - 205 -0.11 - - 0.08 0.39 - -
net effect 3.96 -0.47 0.85 -0.62
hysteresis avg. 2.21 0.73
sum net effect 6.95 -3.47
sum hysteresis 3.71 -2.08

q: ¢; & A; & keal mol; anjoq * kealmol! - e Ow/do : keal mol - Ay onjolg,ce ) Alg,o,s ) keal moly AAG(CZ)SL]%%H =-3.47 kcal mol”!

— -2.93 keal mol 52181 AAGEGPIHY = 2,08 keal mol'l; AAGES DS, =3.71 keal mol!
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A look into the middle part of Table 4 reveals that the derivatives with respect to o for the
systems TGT/amq"” and TGT"/amq", which are also visualised in Figure 20 and Figure 21,
have both a negative sign. The effect is not that strong for the TGT"/amq" system where the
derivative is only -0.12 kcal mol™ -A™" and therefore is in the vicinity of minimum or maximum.
This could only be decided by the calculation of the second order derivative. The apo calculations
show a similar trend with the derivative for the TGTY/amq“¥ system being negative and for
the TGT"/amq" complex slightly positive. The linear approximation of the free energy change
show for both calculation schemes a positive effect, with 3.11 kcal mol” and 1.43 kcal mol”
respectively. Both calculation schemes show a hysteresis effect in regard to the free energy
change, which is stronger for the apo calculation than for the partial so/o calculation. Nonetheless
both calculations schemes show that for the design choice the results of the FEDs with respect
to o could be interpreted to point into the same direction. Finding a group that shows a more

positive partial charge and at the same time is bulkier than a methyl group is not easy.

Three possibilities arise: one could keep the proposed change at position C3 that resulted
from the FED with respect to the charge, which showed to have a rather significant effect on
the resulting energies, disregarding the information about the derivative with respect to the o=
value. Another possibility is to do the exact opposite thing and disregard the FED information
with respect to the charge, which then leads to the proposition to introduce an amine or thiol
group. The third possibility is to do the described change for C3 to N and at the same time keep

the methyl group or exchange it by an ethyl group, to make it even more “bulky.”

At last a look at the FEDs with respect to the &value for both systems and calculation
schemes is warranted. Figure 20 and Figure 21 show the visualisation of the FEDs for both
systems and the lower part of Table 4 the accompanying data. All FEDs for H3/CU ate negative
for both systems and calculation schemes. The calculations for the TGT"/amq" system show
smaller derivatives than the derivatives for the TGT"/amq“" system. This implies that a group
with a bigger &parameter could have a positive effect on the binding characteristics. For both
calculation methods this leads to the same trend of a positive free energy change resulting from
the derivatisation of the methyl group with the hydrogen. The calculation schemes also show a
hysteresis effect, with the apo calculations showing a stronger effect than the partial ok
calculations. These results are in accordance to the aforementioned trends for the design

direction and keep the three described changes as viable possibilities.
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partial holo apo

Figure 21: Atomwise FEDs for the TGT/amqH system. The upper row shows the FEDs with respect to the o value for the
partial bolo (A) and apo (B) calculations. In the middle row the FEDs with respect to the Lennard-Jones Parameter £are shown
for the partial so/o (C) and apo (D) are shown. The last row shows the FEDs in regard to the partial charge ¢ for the partial
holo (E) and apo (F) calculations. The atoms are colour coded from red to white up to blue with red associated with a negative
FED value (means that the parameter has to get smaller to approach an optimum) and blue with a positive FED value (means
that the parameter has to get bigger to approach an optimum). The atom group of particular interest is encircled in red.

To close the examination of the hotspot FEDs up, the key conclusions and results are
presented in the next paragraph. First: the calculations implicate that the biggest effect on the
binding affinity, only from the standpoint of the influence the non-bonded force field
parameters have, has the change in the partial charges of amq™ to amq". This effect
overcompensates, only for the partial sol calculations, the negative change from the methyl
group to the hydrogen that is seen for the changes of the o= or ¢ -values. If all effects of the
linear approximation are summed up and the hysteresis effect is accounted for, the change from
the methyl group to the hydrogen leads to a cumulative effect of 3.71 kcal mol” for the apo

calculations and -2.08 kcal mol™ for the partial /oo calculations. Experimentally, the change in

64 | Page



FREE ENERGY DERIVATIVE GUIDED-DRUG DESIGN WITH RISM-uuU

the binding free energy amounts to -3.47 kcal mol" — -2.93 kcal mol. It should also be noted
that the gpo calculations are not able to reproduce the right trends with regard to the hysteresis

effect for the partial charge and the o value.

For the decision, which design direction to choose, this could mean that the change of C3
to a N could have a greater effect on the binding free energy than the proposed changes that
would account for the derivatives with regard to o and & For the apo calculations the picture
inverts. Here the effect that is seen for the changes for o and & outweigh the binding affinity
that is gained through the change of the partial charges. Because it is known that amq" binds
better to TGT one could argue that the effect that is achieved through the changed partial
charges outweighs the effects seen for oand & But this remains to be shown by further analysis
of the system at hand. Furthermore, at first glance these results seem to be counter intuitive,
because the inspection of the binding site reveals that the amq“'" ligand is tightly wrapped in

the binding site and could probably benefit from a smaller ligand footprint.

Second: the optimal derivatisation for this position could be far from a hydrogen atom, if
all contemplable derivatives are considered. The most promising design direction would point
into the direction of a change of C3 to a N or the introduction of a ethyl group. It should be
noted that a lot of effects play a role for the binding process and actual binding affinity and the

results presented here should not be over-interpreted.

Third: the focus in this study was laid on the H3/CU position because experimental data
for that derivatisation was already published and this rather subtle change has a quite
pronounced effect on the measured binding affinities. This makes it a good test system, but
there are other interesting sites in the molecule that could have an even greater effect on the
binding affinity. For example: position H6 shows a rather strong derivative with respect to the
partial charge, although a derivatisation at this site could be synthetically hard, introduction of
a more negatively charged atom or group could have a strong effect. This shows, that a posteriori
“prediction” with the help of FEDs is indeed possible and seems to lead to plausible results.
The results of the fully molecular TGT™"”/amq“™" in the crystal structure and MD relaxed

variant are also supporting the conclusions drawn from the united atom variant.
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Concluding remarks

In the quest for designing optimal ligands a step in the right direction was shown in this
study. This was grounded on an in-depth analysis of the technical and numerical subtleties of
such calculations (assessment of grid sizes and closure relations on the RET/ADS0 system).
After these challenges could be tackled, a workflow was established and directly applied to a
model system consisting of the TGT/amq complex, this allowed the revelation of interesting
and counter intuitive design directions. On the one hand, this led to several @ priori design ideas
for the concrete derivatisation of the amg-ligand (exchange C3 with N and/or exchange of
methyl with ethyl or the introduction of thiol/amine group) that could lead to optimised binding
characteristics for the TGT/amq complex system. On the other hand, an explanation for the
better binding affinity of the the amq' ligand could be given. The findings of this study should
be further backed up by other means, like TI or the 3D RISM-#» based method that was used
in Ref. [220] and ultimately experimental confirmation is of paramount importance to assess the

true potential this methods has.

The field of ligand optimisation is rife with opportunities and 3D RISM-## can play a
significant role, if some of the weaknesses described in this work can be addressed. For example:
To overcome the systematic shortcomings, overestimation of the desolvation penalty, of the
partial holo calculations it would be a good idea to not only place the atom at the original ligand
position, but to probe its surroundings. This would also solve another inherent problem: placing
and calculating FEDs only at the positions of the original atom disregarding the changes in bond

lengths upon introduction of another atom or group.

Something which is evident from the presented data, is that FEDs with regard to the
different force field parameters can lead to contrasting suggestions for the actual design
direction, which in turn leaves room for decisions. It was also shown that the partial bolo
calculations seem to be able to discriminate between the two binders and after accounting for

the hysteresis effect the experimental trend could be reproduced.
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5 Novel scoring function based on
3D RISM-uu and machine
learning

5.1 Introduction

In this chapter a new scoring function based on 3D RISM-## and deep neural networks or

gradient boosted trees is proposed and evaluated.

The study is designed to show that the addition of atomwise PMFs as an input to a scoring
function improves the resulting model with regard to a model that was solely trained on
molecular fingerprints. As training data a subset of the PDBbind (“refined set” as defined in
Ref. [53]) and as test data, the respective “core® set” will be used. The input data for the
different models will be either comprised of structural information only, in the form of circular
Morgan Fingerprints,®" calculated by RDkit! (version 2016.09.4) or the same fingerprints

with added atomwise PMF values, calculated by 3D RISM-zu.

5.2 Computational details

5.2.1 Structure preparation

The PDBbind® 2015 refined set contains 3706 structures, which were stripped of the
remaining crystal water. If more than one conformation of the protein was deposited, the most

populous conformation was chosen, which is included in the PDB-file. For the parametrisation
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the ff14SB”* force field of the AMBER1 4P package was used for the proteins, GAFF 1.5%
*”I for the ligands, and parameters of Li et. al.”*! were used for divalent ions. Partial charges of

d.?'"*" The same procedure was done

the ligands were calculated using the AM1-BCC metho
for the 2014 core set of the PDBbind, which contains 195 complexes. All structures and

parameter files generated can be found in the electronic appendix.

5.2.2 Workflow for RISM-uv/uu calculations

As a basis for all following RISM calculations, the y-function (result of 1D RISM-22) was
calculated with the dielectrically consistent (DRISM/HNC) theory!"™” " for pure water
(modified TIP3P, see chapter 3). For further details about the generation of the y-function the
reader is referred to page 50. The sole difference between the 1D RISM-»» calculations and the
1D RISM-uv of the ligand atoms is the maximum residual norm for the DIIS convergence
criterion which was set to 107 for the former calculations and to 10~ for the latter. Throughout

all 1D RISM-#» calculations the PSE2 closure was used.

For the necessary 3D RISM-#v calculations of the proteins, the grid size was automatically
chosen to encompass the full complex with a margin of 20 A in all directions and the grid

215216 o f order

spacing was set to 0.3 A. Long range electrostatics were evaluated using the PME
8 and short range interactions were cut at 14 A. Additionally monopole renormalization was
used® M for every calculation. As the convergence criterion the maximum residual norm of

the direct correlation functions was set to 10 and 12 DIIS vectors were used to accelerate the

convergence. For all 3D RISM-#» calculations, the PSE2 closure relation was used.

All RISM-#u calculations were done using the aforementioned 1D/3D RISM-#» calculations as

a basis and thermodynamic variables were held constant. The atomwise PMFs were calculated

1D RISM-uv
of every ligand
atom

[

1D RISM-wv

of water

4 ™
atomwise PMFs . generate train scoring
) histogram out of )
with 3D RISM-uu . function
atomwise PMFs

J

3D RISM-uv

of the protein 1024 bit wide

fingerprints of
ligands

Figure 22: Simplified workflow for the generation of scoring functions based on 3D RISM-zx.
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according to the so-called @po scheme of the previous chapter. To recapitulate: all ligand atoms
are placed (at the original coordinated of the bo/o form) in the empty binding site and the PMF

is calculated as described in chapter 2.3 The workflow used in this work is shown in Figure 22.

5.2.3 Scoring function generation

Due to problems regarding the automated parametrisation, convergence problems for the
1D RISM-#v calculations and technical issues, the final dataset for training and validation
purposes consisted of 1321 complexes of the refined set and 54 complexes of the core set. In
the refined set, the experimental data was comprised of either K; (705 complexes) or Ky (616
complexes) values. The core set consisted of 34 Ki values and 20 Ky values. The input of the
scoring function generation was either structural ligand information in the form of circular
Morgan Fingerprints alone or circular Morgan Fingerprints in conjunction with PMFs calculated

by 3D RISM-#x.

Now, some closing words about the dataset composition and the distribution of binding
affinities: it would be desirable for the used methods if the experimental binding data would be
distributed uniformly, which is clearly not the case (see Figure 23). Complexes with really high

and really low affinities are underrepresented.

# complexes

0 2 4 6 8 1012

K™, PKG’

Figure 23: Shows the distribution of binding affinities in the training data set. Complexes with high and low affinities are
undertrepresented.

69 | Page



NOVEL SCORING FUNCTION BASED ON 3D RISM-uUuU AND MACHINE LEARNING

Table 5: Hyperparameters of the deep neural networks used for the scoring functions. The parameters are the result of
extensive optimisation by the hyperbandl??4 algorithm.

hyperparameter DNNI1 DNN2
number of layers 3 4
activation function tanh tanh
number of hidden units per layer 250 150
weight initialisation uniform uniform
L2-regularisation? 0.1 0.1
dropoutb 0.5 0.6
learning ratec 0.002 0.002
batch size 60 60
training epochs 2500 2500

‘additive term that reduces overfitting; "Srivastava ez al”* reduces overfitting; ‘step size

for the gradient descent

The Morgan Fingerprints were calculated by RDkit*" (version 2016.09.4) with a radius of
4 and a bit length of 1024. Because the size of the feature vector has to be constant, for the
machine learning methods used in this work. The PMFs for the scoring function were
represented in a histogram. This was done in the following manner: the overall range of the
histogram was chosen to be symmetric from -200 kcal mol " to +200 kcal mol™ with all values
smaller or bigger than that bundled into one bin. Afterwards, 500 linearly spaced bins were
created (see Figure 24). The machine learning libraries that were used are Keras™" with the

Theano[169—l7l

I backend for the neural networks based scoting functions and for the
XGBoost”™ models, the libraty of the same name. All predictions can be found in the electronic

appendix for chapter 5.

40
35 -
30 .
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0 ] ] 1 ]
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bin

Figure 24: Example for a PMF histogram generated for the scoring functions.

# occurrence
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Table 6: Hyperparameters for the XGBoost model used in this work.

hyperparameter

number of estimators? 1000
maximum depthP 15
L1-Regularisation 0.01
L2-Regularisation 0.01
ye 0.3
subsampled 0.3
minimum child weighte 4

*‘number of boosted trees; "maximum depth of each tree; ‘minimum loss reduction required
for further partitioning of leaf node; “fraction of observations that are randomly sampled for
each tree; ‘controls overfitting

Hyperparameters for the machine learning methods were chosen after extensive

24 algorithm and a random 90/10 split into

optimisation either with the hyperband
training/validation set for the neural networks or an exhaustive grid search in conjunction with
5-fold cross-validation for XGBoost. The resulting parameter sets that were used for all further
binding affinity predictions are shown in Table 5 for the deep neural networks and in Table 6
for the XGBoost model. For the final model generation the respective training set was randomly
split into a training set consisting of 90% of the data and validation set that consisted of 10%
of the data, which was used during training as a “early stopping” criterion. “Early stopping” can
be understood as a convergence criterion and helps to reduce overfitting. The assignment to
the respective set (training or validation) was done randomly. The core set was solely used as a
test set and for comparison of the predictive capabilities of the different models. In a last

approach, the best three models were combined in a so-called bagging approach by averaging

over their predictions.

5.3 Results and discussion

This chapter can be split into three parts: First, the results for the scoring function
generated with the deep neural networks are shown. This is followed by the results of the
XGBoost model. At last the results of the bagging approach are presented. To further assess
the quality of the models, it was calculated if the models are able to distinguish between relatively

better binders by calculating:
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ApK_ = (pK,,—pK, V(s j) € complexesiexp., calc.}

(77)

where ApK_ is the pairwise differences between the experimental pK values or the computed

pK values. By an elementwise comparison of the sign of ApK, for the experimental data and

calculated data it could be determined how well the scoring functions are able to predict relative

changes between two molecules.

Table 7: Performance metrics for the different scoring functions trained with the neural networks, XGBoost or the “bagged”

approach on the test dataset (core set PDBbind). The best value for every column is emphasized in bold.

model sug;;?)iel; feature composition R p-value RMSE slope intercept v tr:iztlllst
DNN1 whole  fingerprint + PMF 0.66 4.9-108 1.56  0.41 3.59 74.6
DNNI1 only Ki  fingerprint + PMF 0.56 6.5-10+4 1.78  0.44 3.43 68.6
DNNI1 only Ky  fingerprint + PMF 0.44 52-102 191 0.30 4.11 05.6
DNNI1 whole fingerprint 0.48 2.1-104 1.87  0.33 3.90 00.1
DNNI1 only K; fingerprint 0.54 9.9-104 1.75 0.37 3.88 66.7
DNNI1 only Ky fingerprint 0.38 9.5-102 1.97  0.25 4.43 64.2
DNN2 whole  fingerprint + PMF 0.68 1.8-108 154 041 3.60 74.3
DNN2 half  fingerprint + PMF 0.53 2.8-10> 175 0.29 4.09 -
DNN2 only Ki  fingerprint + PMF 0.56 6.1-10+ 1.73  0.39 3.71 69.2
DNN2 only Ky  fingerprint + PMF 0.46 4.1-102 1.83  0.29 4.08 60.3
DNN2 whole fingerprint 0.52° 6.5-105 1.80  0.32 4.16 60.5
DNN2 half fingerprint 0.49  1.4-104 1.81  0.28 4.38 -
DNN2 only K; fingerprint 0.54 1.0-10-3 177 0.38 3.79 60.7
DNN2 only Ky fingerprint 0.37 1.1-10- 1.94 022 4.41 61.0
XGBoost whole  fingerprint + PMF 0.70 4.2-10° 1.60  0.30 4.03 75.8
XGBoost half  fingerprint + PMF 0.66 3.3-108 1.64 027 4.22 -
XGBoost only Ki fingerprint + PMF 0.75 2.8-107 1.53 0.33 3.91 77.9
XGBoost only Ky fingerprint + PMF 0.71 4.6-104 1.51 0.33 3.52 75.3
XGBoost whole fingerprint 0.66  5.3-10-8 1.68 0.24 4.35 74.1
XGBoost half fingerprint 0.62  3.6-107 1.69  0.24 4.42 -
XGBoost only K; fingerprint 0.81 8.7-109 1.50 0.32 3.93 77.0
XGBoost only Ky fingerprint 0.59  6.5-10-3 1.69 0.22 4.11 66.8
“bagged” whole  fingerprint + PMF 0.71 2.5-109 1.52 037 3.74 76.1
“bagged” only Ki  fingerprint + PMF 0.63 5.7-10° 1.59  0.38 3.68 724
“bagged” only Ky  fingerprint + PMF 0.54 1.4-102 170 0.30 3.90 67.9
“bagged” whole fingerprint 0.5