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Zusammenfassung 

Das „three dimensional reference interaction site model“ (3D-RISM), hier insbesondere 

die Solvat-Solvat-Gleichung (uu), bietet Zugang zu atomweisen Beiträgen zum „potential of 

mean force“ (PMF). Das PMF setzt sich wiederum aus der direkten Wechselwirkung zwischen 

zwei Partnern und den durch die Solvatation vermittelten Beiträgen zusammen. Das PMF bietet 

zusätzlich Zugang zur freien Bindungsenthalpie, welche eine Schlüsselgröße für das Design 

neuer Moleküle in der Pharmazie ist. 

Diese Arbeit beschäftigt sich hauptsächlich mit der Berechnung freier Bindungsenthalpien 

mit dem 3D-RISM-Ansatz und Methoden des maschinellen Lernens. Die abgedeckten 

Themengebiete reichen somit von den grundlegenden Prinzipien der Thermodynamik, 

repräsentiert durch den 3D-RISM-uu-Ansatz, bis hin zu empirischen Modellen basierend auf 

modernen Verfahren des maschinellen Lernens. Diese werden vertreten durch „deep neural 

networks“ und „boosted regression trees“. 

Der erste Teil dieser Arbeit konzentriert sich auf die Vorstellung einer neuartigen Methode 

zur Bestimmung der Designrichtung im molekularen Raum. Dieses Werkzeug bezieht seine 

Information aus sogenannten „free energy derivatives“, welche relativ elegant und effizient  

innerhalb des 3D-RISM-uu Ansatzes definiert und berechnet werden können. Die dafür 

notwendigen theoretischen Grundlagen werden in dieser Arbeit gelegt und gleichzeitig wird eine 

Machbarkeitsstudie an dem gut charakterisierten 18-Krone-6-Ether-System durchgeführt. Diese 

Studie zeigt, dass sowohl experimentelle als auch theoretische Trends durch von 3D-RISM-uu 

berechnete PMFs und FEDs reproduziert werden können. 

Diese aussichtsreichen Ergebnisse wurden zum Anlass genommen, diese Methode auf zwei 

Protein-Ligand-Systeme anzuwenden. Hierfür werden die entsprechenden Ligandenatome 

nacheinander entweder in die apo-Bindetasche oder die partiell belegte Bindetasche platziert. 

Beide Berechnungsmöglichkeiten liefern Zugang zu atomweisen PMFs und FEDs in Bezug auf 

typische Kraftfeldparameter. Zusätzlich wird auf die Stärken und Schwächen der gezeigten 

Methode eingegangen. 

Im letzten Teil dieser Arbeit verlagert sich der Fokus darauf, eine neuartige „Scoring“-

Funktion, welche auf struktureller Ligandeninformation beruht oder mit zusätzlichen 

atomweisen PMF-Werten berechnet durch 3D-RISM-uu zu „trainieren“. Für diesen 

„Trainingsprozess“ werden atomweise PMF-Werte mittels 3D-RISM-uu für eine Untermenge 

des „refined set“ und „core set“ der PDBbind-Datenbank berechnet. Dies kulminiert in einer 

„Scoring“-Funktion, die vergleichbare Ergebnisse zu anderen modernen „Scoring“-Funktionen 

liefert und bessere Ergebnisse in Bezug auf „klassische“ Scoring-Funktionen. 
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Abstract 

The three dimensional reference interaction site model (3D RISM) in the form of the 

solute-solute (uu) equation allows one to calculate the atomwise contribution to the potential of 

mean force (PMF), which is composed of the direct interaction between two partners and 

solvation based contributions. The PMF is related to the binding free energy, which in turn is a 

key quantity for the design process of new molecular entities in pharmaceutical sciences. 

This work revolves around the estimation of binding free energies with the 3D RISM and 

machine learning based methods. The range thus spans from fundamental thermodynamic 

principles represented by the 3D RISM-uu framework to empirical models based on modern 

machine learning, notably deep neural networks and boosted regression trees.  

The first part of this work introduces a tool that could help to drive the design process in 

chemical space, which is highly desirable. This tool is based on free energy derivatives (FED), 

which can be easily defined and efficiently computed within the 3D RISM-uu framework, and 

which can provide a design direction that could ultimately lead to a better binder. The necessary 

theoretical basis is laid out in this work and tested in a proof of principle study on the well 

characterised 18-crown-6 ether system. In this study experimental and theoretical trends could 

be reproduced by PMFs and free energy derivatives calculated by 3D RISM-uu.  

The promising results achieved in the aforementioned study were then applied to two 

protein ligand systems. For the protein ligand systems the respective ligand atoms are 

subsequently placed, either in the apo binding site or into the “partial holo” binding site that is 

made up of the supermolecule consisting of the protein and the partial ligand (ligand minus the 

atom in question). Both calculation schemes ultimately lead to atomwise information about the 

PMF and the respective FEDs with respect to typical non-bonded force field parameters. This 

study shows the possibilities and limitations of the aforementioned method. 

For the last part of this work the focus shifts and it is demonstrated that it is possible to 

train a truly novel scoring function based on structural ligand information in the form of 

molecular fingerprints alone or in conjunction with atomwise PMF values calculated by 3D 

RISM-uu. For the training process atomwise PMF values were calculated for a subset of the 

PDBbind refined and core set. This culminated in scoring functions that are competitive with 

other modern machine learning based scoring functions and that outperform classical scoring 

functions significantly.  
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1.1  Motivation 

Designing new molecular entities and bringing them to the market is one of the grand 

challenges in chemistry and pharmaceutical sciences. The number of approved new molecular 

entities is stagnant in the last decade on a low level which was not seen in the flourishing years 

of drug development in the mid to late 20th century. This is despite the growing efforts made by 

the pharmaceutical industry by pouring more money into research and development.[1–3]  This 

led to the incorporation of new approaches in the late 20th century, which were fuelled by 

advances in high-throughput screening and combinatorial chemistry.[4, 5] Nowadays, these are 

augmented by structure-based drug design, which has the premise that the activity of a ligand is 

encoded into the three dimensional structure[4, 6–8] and lead to the development of a plethora of 

docking and scoring functions.[8–13]  

One of the hot topics, which garners the attention of the pharmaceutical industry is the 

role that weakly bound water plays in regard to binding thermodynamics.[14–19] This trend started 

in the 1990s and culminated into tools like SZMAP,[20] WaterFlap,[21] WaterRank,[22] 

WaterMap[23, 24] and others, which are used today and try to predict water binding sites. Although 

all these methods and tools help the medicinal chemist in the process from hit-to-lead design 

until to date rational design often boils down to a question of experience and so-called “chemical 

intuition.” 

Besides, the very important role that water plays in the binding process, the prediction of 

binding affinities is crucial during the first stages of the drug design process. So most of the 

questions that are asked during these stages boil down to the following two: 

1 Introduction 
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 Which molecule binds best to the target? 

 Why does molecule X bind better to the target than molecule Y? 

In order to answer the first question, theoretical chemistry and cheminformatics offer a 

plethora of methods that range from quantum mechanical calculations and molecular mechanics 

to the evaluation of empirical scoring functions. What the former two classes of methods offer 

in terms of accuracy they lack in terms of speed and vice versa for empirical scoring functions. 

Why do empirical scoring functions often do not offer a satisfactory amount of accuracy? And 

what is the missing piece of information for many of the aforementioned methods? A possible 

answer could be that a disruptive leap in either the translation of the underlying physics into a 

computationally tractable problem (better force fields) or the standardization and accurate 

measurement of the experimental database all empirical methods are relying on is needed. 

Because these breakthroughs are not in sight and clearly out of the scope of this work, another 

approach is to combine the best of both worlds. This means to design a model that is based on 

a relatively accurate description of the binding thermodynamics, including the crucial solvation 

contributions paired with relatively high computational efficiency (in the form of 3D RISM-

uu[25–28]) and then leverage the predictive capabilities of modern machine learning methods to 

design a novel scoring function, thus compensating for noise and uncertainty. 

Scoring functions are often categorized into four groups: force field-based, empirical, 

knowledge-based, and machine learning-based.[29, 30] Force field-based scoring functions 

basically rely on the calculation of the non-covalent interaction energy of the protein and the 

ligand in question and are augmented by the addition of solvation energy terms in form of 

continuum models like Poisson-Boltzmann[31, 32] (PB) or Generalized Born[33] (GB).[29] Scoring 

functions of this category benefit directly from advancements in the underlying force fields and 

representatives are for example AutoDock[34, 35] and GOLD[36]. Empirical scoring functions 

calculate the quality of a protein-ligand interaction through the weighted sum over rather 

arbitrary contributions. Frequent used descriptors are the number of rotatable bonds, the 

number of hydrogen bonds or the internal strain energies. The weights are determined by 

multivariate linear regression. The individual components can have a positive or negative effect 

on the resulting score.[29, 37] Unlike the aforementioned force field-based scoring functions, the 

functional form does not necessarily have a physical foundation.[29] Notable members of this 

class are X-Score[38] and ChemScore.[39] Knowledge-based scoring functions are based on 

the assumption that the protein ligand binding affinity can be described by the sum of all 
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pairwise interactions. These pairwise interactions are modelled as statistical potentials. 

DrugScore[40] and IT-Score[41, 42] are knowledge-based scoring functions. The fourth class 

of scoring functions combine a series of descriptors, which are fed into a machine learning 

method to derive binding affinity scores and are called machine learning-based scoring 

functions. These descriptors, or often called features, can consist of specific interactions: 

geometrical descriptors or ligand-based descriptors.[29] One significant difference of this type of 

scoring function from empirical scoring functions is the type of regression method, which is 

non-linear for machine learning-based scoring functions and linear for empirical scoring 

functions.[29, 37] In analogy, the two types of scoring functions share the need for a training set 

with experimentally determined binding affinities.[29] NNScore[43, 44] and RF-Score[45, 46] are 

representatives of this type of scoring function. According to Qurrat Ul Ain et al.,[37] one of the 

advantages of machine learning-based scoring functions is that they are not restricted to 

(multivariate) linear regression and a fixed functional form which is the case for “classical” 

scoring functions. This assumption is supported by studies where the performance of scoring 

functions could be improved by the substitution of linear regression through non-linear 

regression models.[37, 47–49] Neural networks and deep neural networks are also used as non-linear 

regression models. One example is NNScore[44] a shallow neural network with one hidden layer 

and 10 hidden neurons trained with the docking terms of Vina[50] 1.1.2 and features calculated 

by BINANA[51] on a handcrafted dataset based on the binding MOAD[52] and PDBbind.[53] More 

recently, Ashtawy et al.[54] combined either “bootstrap aggregation” (often called bagging) or 

“boosting”[55, 56] with a shallow neural network to enhance the predictive capabilities of their 

model. “Bagging” in the sense of machine learning means to combine an ensemble of trained 

models in an averaging manner. Boosting is a similar approach where the ensemble of models 

is combined through a weighted sum. The network architecture for both approaches consists 

of 20 hidden units for the hidden layer and as an input Ashtawy et al.[54] used a diverse set of 

descriptors that were extracted from various of-the-shelf scoring programs.[54] They trained their 

models on the refined set of the PDBbind[53] and reached Pearson correlation coefficients of 

R = 0.80 for the “bagging” and R = 0.82 for the boosting approach on their test set (core set 

of PDBbind). Thereby, they outperformed all other tested methods (including other non-linear 

regression models).[54] Wallach et al.[57] from Atomwise Inc. published an interesting paper on 

the “arXiv.org” server where they took a different route by using convolutional neural networks 

to classify active from inactive compounds. Their network architecture consisted of four 3D 

convolutional layers of varying filter sizes, followed by two fully connected hidden layers with 
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1024 hidden units in each layer.[57] More interesting than the network architecture is the design 

of the input representation: the input consisted of a cubic grid with 20 points in all directions 

and a spacing of 1 Å. Each grid cell contained structural information e.g. atom types. This 3D 

grid was unfolded into a 1D vector, which was then used to train the network. As input 

databases, mainly DUD-E[58] and a subset of the ChEMBL[59] database were used.[57] In the 

results they note that they achieve a “level of accuracy useful for drug discovery”.[57] Deep neural 

networks can also be used for target prediction, which was done by Unterthiner et al.[60] for a 

subset of the ChEMBL[59] database. As input for their various tested methods and network 

architectures they used extended-connectivity fingerprints (ECFP).[61] The use of deep neural 

networks is not limited to the academic world. In 2012, Merck hosted a competition on 

kaggle[57, 60, 62, 63] (an online platform for data-science competitions) with the goal of testing the 

performance of modern machine learning methods on QSAR problems. The winning team 

made heavy use of a multi task deep neural network and was able to achieve a relative 

improvement of 15 % over the in-house baseline models of Merck.[62, 63]  

As far as the author knows, no scoring function, so far, was trained on thermodynamic 

data calculated by 3D RISM-uu. Nonetheless, a little synopsis of the role RISM has in molecular 

modelling is given here. For example Genheden et al.[64] approximated the binding free energy 

of protein ligand complexes through sampling of the conformational degrees of freedom with 

MD simulation coupled with 3D RISM-uv calculations (called MM-3D-RISM-KH[65]) of 

simulation snapshots in a MM/PBSA(GBSA) manner.[64] Imai et al.[66] took a different route: 

they used mixtures of water and a drug fragment as a solvent and calculate the respective pair 

distribution functions of all components and the protein. With these solvent site distributions 

they tried to detect potential binding sites on the protein surface and also to deduce possible 

binding modes of the fragment in the active site.[66] Nikolić et al.[67] picked up this idea and 

implemented a new docking approach based on the PMF calculated by 3D RISM-uv into 

AutoDock,[34, 35] which they call 3D-RISM-DOCK. The only application of 3D RISM-uu so 

far in the field of molecular modelling or structure based drug design is a proof of principle 

study by Kiyota[68] et al. where the aim was to reproduce the binding mode of a model system 

consisting of aspirin and phospholipase A2.[68] But applications of 3D RISM and in particular 

the solute-solute equations (uu) to the prediction of binding affinities or molecular modelling in 

general is rather limited.[64, 66, 68, 69] 



INTRODUCTION

 

11 | P a g e  

Returning to the second question which is even more complex and somewhat of a holy 

grail in the medicinal chemistry community. Subtle changes in the ligand chemistry can have a 

huge impact on the measured or calculated binding affinity. Most often the decision, where and 

which derivatisation to make, is driven by chemical intuition or empirical rules like the rule of 

five.[70, 71]  

As laid out in Ref. [72], designing functional molecular systems essentially means the 

process of translating desired properties of a material or a biologically active substance into 

chemical structure. Since there does not exist a one-to-one mapping between a desired 

(continuous) property, such as a specific band gap, elastic constant, or protein-ligand binding 

affinity, and chemical structure space, molecular design can be rational only to a limited extent. 

These limits are defined, on one hand, by the discreteness of chemical structure space (not every 

conceivable or desirable value of a property can be realized chemically) and, on the other hand 

directly related to the first issue, by knowledge accumulated in the past, namely the measured 

or theoretically predicted properties of given chemical compounds. Moreover, the space of 

potentially useful structures is huge (for pharmacologically relevant compounds, number 

estimates range from 1023 to 1060 [73]), giving rise to the opportunity that several, even completely 

dissimilar chemistries can have properties close to the desired value. Designing molecules is 

therefore characterized by an underdetermined, inverse problem subject to additional 

constraints such as synthetic accessibility, minimization of unwanted side effects, as well as 

economic and legal factors like minimizing production costs or maximizing likelihood of 

patentability and premarket approval. 

Focusing now on pharmacological problems, as already mentioned above, the 

pharmaceutical industry is facing a dire problem related to the fundamental design issue. Despite 

about $50 billion spent annually on research and development only 20 new drugs are released 

per year.[74] One of the reasons for the ever growing gap between costs and return is the fact 

that only about 3% of the initiated drug discovery projects make it to a marketable drug.[75] One 

reason for the failure of this daunting procedure is related to a very early stage of development, 

the so-called lead-optimization phase, where the problem is to decide where and how to modify 

a ligand molecule in order to get a more favourable binding to a target protein. The property or 

key thermodynamic quantity defining the design goal in this case is the (standard) free energy 

of binding (ΔGbind, omitting the “standard” superscript for simplicity). The broad spectrum of 

methods for calculating these free energies range from docking algorithms based on empirical 
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scoring functions (as described in detail above), which can be evaluated comparatively fast, to 

explicit-solvent fully atomic molecular dynamics (MD) simulations, see Refs. [76-78] for recent 

overviews. The latter, presently representing the method with highest level of physical detail 

achievable, requires orders of magnitude more computing time than the former simpler, though 

far less accurate techniques.1 

Yet, even though substantial advances have been and are currently being made in the field 

of predicting protein-ligand thermodynamics, such methods, frequently combined with virtual 

screening techniques to reduce the chemical search space,[76] do not directly address the primary 

design goal but provide posteriori data only to be fed back into an iterative design cycle. Clearly, 

progress can be made by defining a search direction in property space, which in this case would 

be equivalent to define a (binding) free energy derivative (FED) with respect to certain 

parameters that define variations of chemical space. The simplest way to this end is to vary 

protein-ligand (and therefore simultaneously ligand-solvent) interaction parameters taken from 

model potentials. For instance, locally changing a site charge and/or apolar atomic 

size/interaction strength parameters can be viewed as virtual substitutions on otherwise 

unchanged scaffolds, for which a derivative can be mathematically defined. Such a concept of 

deriving a FED based on free energy MD simulations was proposed more than two decades 

ago by several authors[77–79] and has been further explored with more or less promising 

results.[82-84] In a related approach, van Gunsteren and co-workers have devised methods to 

compute free energy changes simultaneously for several target states (representing different 

chemistries) from simulation of only a single reference system.[83, 84] The drawback of these 

techniques which led to limited acceptance in practical applications is certainly the high 

computational demand involved with such MD simulations. As an alternative, much faster to 

evaluate yet more approximate models for “charge optimization” have been proposed based on 

a minimization of electrostatic energy within dielectric continuum solvation theory.[85–87] This 

method turned out to be rather insensitive to changes in the ligand conformation and provides 

reasonable results with rigid ligands.[88, 89] 

To make further progress, it is desirable to combine the level of physical detail of explicit 

MD methods with the computational efficiency of implicit methods such as continuum models. 

In this work an alternative route to binding FEDs is introduced on the basis of liquid state 

                                                 
1 Reused in part with permissions from F. Mrugalla, S. M. Kast, J. Phys.: Cond. Matter 2016, 28, 344004.  
2016 IOP Publishing Ltd. 
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theory in the form of the 3D RISM[90–93] which, as a primary result, yields approximate solute-

solvent (uv) molecule-solvent site distribution functions on a 3D grid from which 

thermodynamic quantities, including the solvation free energy, can be derived analytically within 

certain approximations. Unlike continuum solvation models 3D RISM-uv theory is capable of 

retaining the directionality of solute(u)-solvent(v) interactions based on the same interaction 

potential that could be used in MD simulations, thereby retaining the atomic level of detail. 

While the uv formulation needs properties of the pure solvent as input (the solvent site-site 

susceptibility χ derived from solution to a simpler 1D RISM-vv equation or taken from MD 

simulations), it is also possible to extend the hierarchy toward an integral equation between two 

infinitely diluted solute species, the solute-solute (uu) equation.[25, 26, 28, 94] The particular appeal of 

the uu theory is related to the fact that it yields the so-called potential of mean force (PMF), i.e. 

the free energy surface governing complex formation analytically and non-iteratively starting 

from precomputed uv solutions for the individual partners only. Derivatives of this quantity 

with respect to interaction potential parameters therefore serve the goal to define a possible 

design direction on the basis of a physically detailed yet compared to MD orders of magnitude 

more efficiently computable theory. 

1.2  Aims of this work 

The aim of this work is, to establish the use of the 3D reference interaction site 

model,[94, 95, 97, 98] specifically the solute-solute equation (3D RISM-uu),[25–28] for drug design 

purposes. This aim is pursued by two different means: First the theoretical groundwork has to 

be established and transferred into a working numerical implementation. This is followed by 

the proposition of several new ideas regarding the use of 3D RISM-uu within the drug design 

process. These ideas culminate into several proof of principle studies in which the weaknesses 

and strengths of each of the approaches are investigated. 

In detail this means that after introducing the necessary theoretical basics, which is done in 

the next chapter, the focus of this work shifts to the introduction of a novel approach to 

generate design directions for a given molecular system, namely the combination of 3D RISM-

uu and free energy derivatives in the spirit of the work done by others on molecular dynamics 

simulation.[77–79] This study is done on the extensively described 18-crown-6 ether system and 
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shows that the PMF topography calculated by 3D RISM-uu is in qualitatively good agreement 

compared to topography calculated by 3D RISM-uv or thermodynamic integration. The 

sufficient agreement of the PMF topography permits to calculate free energy derivatives, which 

yield meaningful results regarding the optimal binding partner for the mentioned crown ether 

system.  

This successful application of free energy derivatives sparked further interest into the 

application on protein ligand systems. To apply free energy derivatives in this setting, two 

different calculation schemes were devised (later called apo and partial holo scheme), 

implemented and tested. The concrete protein ligand system under scrutiny is: tRNA guanine 

transglycosylase (TGT) bound to two different aminoquinazolin derivates, that have the 

interesting property of being matched molecular pairs.[97] They also show a rather distinct 

difference in their binding affinity with only subtle changes in the binding mode, making them 

an almost optimal example to test the design tool proposed earlier. Free energy derivatives are 

calculated on an atomwise basis with respect to the non-bonded force field parameters and 

analysed to elucidate the most likely cause for the difference in binding affinity and also show 

the limitations of the approach. 

The last chapter of this work aims towards the generation of a new type of scoring function 

based on the aforementioned PMFs calculated by 3D RISM-uu and modern machine learning 

techniques. A workflow for automated parametrisation and calculation of 3D RISM-uu PMFs 

is devised and applied to a subset of the PDBbind.[53] After that different compositions of feature 

sets and the underlying experimental data are used to train several scoring functions with either 

deep neural networks or boosted regression trees.[98, 99] 



THEORETICAL BACKGROUND

 

15 | P a g e  

2.1  Host-Guest binding 

In the most general sense, a binding process between a host system and a guest (here often 

interchangeably used as protein-ligand) can be described through the binding constant 

(interchangeably used as association constant) which can be defined as: 

 
 
  PL

LP
b K . (1) 

Here [LP], [L], and [P] are the respective equilibrium concentrations of the bound and unbound 

state. Following this equation the standard binding free energy can be defined as: 

   GKCTkG  bBP sol, Lsol, LPsol,b ln   , (2) 

where kb is the Boltzmann constant, T is the temperature, C is the standard concentration of 

1 mol/l, and 
sol is the chemical potential of the respective species in solution. Calculating 

standard binding free energies is an arduous procedure.[100–103] Therefore often only the relative 

free energy change between to species is calculated which can be written as: 

 PLb,PLb,PLPL 1221
GGG   , (3) 

which is a computationally better tractable problem. If the binding constants of two complexes 

L1P and L2P are known the relative free energy change is given as:[103] 
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2 Theoretical background 
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Relative free energy changes are computationally accessible through various methods, for 

example thermodynamic integration coupled to molecular dynamics, which is described in 

chapter 2.4.1  

Experimentally binding affinities can also be measured as dissociation constants which 

are defined as 

 
b

d

1

K
K  . (5) 

Often the half maximal inhibition constant, called IC50 or the inhibition constant Ki is measured. 

The interconversion between IC50 values and Ki is possible with the Cheng-Prusoff equation, 

which states for reactions where one ligand is involved: 

 
 











m

i50

S
1IC

K
K , (6) 

where Km is the Michaelis constant, which is a kinetic constant, and [S] is the substrate 

concentration.[104] Another possible way to the determination of Ki values is through the 

following relationship: 

 
i,2

i,1

2,50

1,50

IC

IC

K

K
 , (7) 

where only the IC50 values of all involved species (1 and 2 in this case) and the Ki value for one 

species, either 1 or 2 are necessary. 

On a molecular level the direct interactions that most commonly occur are hydrogen 

bonds, halogen bonds, interactions between halogens and aromatic rings, hydrophobic 

interactions, and --interactions of aromatic ring systems.[105–108] The energetic contributions 

of each of these interactions can vary. The indirect interactions on the other hand are governed 

by the solvent e.g. water and can have a greater effect on the resulting binding free energy than 

the direct interactions.[16, 109–113] Indirect interactions can be traced back to both enthalpic and 

entropic contributions, which can arise through a direct water network bridging the ligand to 

the protein, or through entropic contributions because of wetting/dewetting events upon 

binding.[16, 17, 111, 114, 115] 
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2.2  Reference interaction site model (RISM) 

Classical density functional theory facilitates the connection between particle densities to 

the free energy of a fluid system in thermodynamic equilibrium[116, 117]. The local particle densities 

)(γ r  of particle type  are connected to the pair distribution function )(rg between particles  

and α through: 

 )()( γγγ rgr   . (8) 

Here γ  represents the bulk site density of the system. The pair distribution function )(γ rg

(see Figure 1) describes the interaction between two particles and is normalised to the bulk 

density of the system in question. The pair distribution function is also one of the key quantities 

in this work and relates to the total correlation function )(γ rh in the following way:[116] 

 1)()(  rgrh . (9) 

Through ground breaking work done by Leonard Ornstein and Frederik Zernike in the early 

20th century that culminated in the Ornstein-Zernike equation, which has the form:[118]  

 rrhrcrcrh d)()()()(   , (10) 

Figure 1: Idealised illustration of a radial pair distribution function g(r). Areas of favourable interaction have g > 1 and areas of 
unfavourable interaction have g < 1. 
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where h stands for the total correlation function, c for the direct correlation and  for the particle 

density. The total correlation function )(rh , which oneself is interested in, describes all solvent 

interactions between the particles. The direct correlation function, the first term on the right 

hand side of equation (10), accounts for the direct solvent mediated interaction between the 

particles. The second term of equation (10) in the form of the integral describes all the indirect 

interactions solvent mediated interactions (see Figure 2 for a sketch). It is easy to see that 

equation (10) cannot be solved analytically, and a second equation is needed to close the system 

of equations. This equation is known as closure and takes the general form of: 

   1d)()()(exp)(   BrrhrcrUrh  . (11) 

In the closure expression )(ru  represents a pairwise additive potential and   1/kb is the 

inverse thermodynamic temperature. The so called bridge function B describes higher than 

second order correlations and is not analytically accessible. Numerically, the bridge function can 

be approximated, but a closed form does not exist.[116, 119–121]  

So far only the pure atomic case was considered, which clearly has limited applicability in 

real world scenarios. Consequently, the molecular Ornstein-Zernike equation was derived, 

which is applicable to molecular problems and has the form:[116, 122] 

   ΩrΩΩrΩΩrΩΩrΩΩr dd),,(),,(
π8

),,(),,( 23323131221122112 hcch


. (12) 

In contrast to the Ornstein Zernike equation, the relative orientation between two molecules is 

added in the form of Euler angles 1Ω  and 2Ω . While analytically exact, finding numerical 

solutions to the six dimensional molecular Ornstein Zernike equation is cumbersome.[123, 124] 

This limits the applicability and is rooted in the high dimensionality and integration with regard 

to the Euler angles.  

To avoid these problems, Chandler and Anderson went back several levels of dimensionality 

and derived the one dimensional reference interaction site model (1D RISM), often also called 

the site-site Ornstein Zernike equation.[90, 91] Conceptually a molecule is broken down into its 

interaction sites, for example water is broken down into the three sites O, H and H, which can 

reduced into O and H through symmetrical considerations. The 1D RISM equation can be 

written in “matrix form:” 
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 hcωωcωh  . (13) 

In equation (13) the matrices for the already mentioned total and direct correlation functions (h 

and c) and the density matrix  (for the infinite dilution case) are constructed in the following 

way: 
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Here uvh equals  uv

αγαγ )(rh  which means that the total correlation function consists of all sites α 

of the solute u and all sites  of the solvent v. The matrix uvc  is constructed in the same way as 

uvh . In principle α and  can consist of an arbitrary number of atoms which are represented by 

their position in relation to the respective nuclei or (in 3D RISM) only solvent sites are 

decomposed. Based on the water example from above this means that a 1D RISM solution of 

one water molecule (u) in water (v) actually consists of three total correlation functions: 
OOh , 

OHh  and 
HHh . The reduction to a site-site model would lead to a loss of all information about 

the intramolecular structure of the molecule in question due to the rotational average 

 
 

 )()( rcrc . (15) 

To circumvent this loss of information a new function in the form of, 

 
2

αγ

αγαγ

αγ
π4

)(
)(

l

lr
r





 , (16) 

is introduced. The intramolecular distances are encoded in αγl  and )(x  is the Dirac delta 

function. As can be easily seen by some linear algebra,[25] the expansion of equation (13) leads 

to three distinct equations, namely the solvent-solvent (vv), solute-solvent (uv) and solute-solute 

(uu) equations: 

Figure 2: Schematic illustration of the interactions that are governed by the total (h) or direct (c) correlation functions. 
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 vvvvvvvvvvvv hcωωcωh  , (17) 

 vvvuvuvuvuuv hcωωcωh  , (18) 

 vuvuvuuuuuuu hcωωcωh  . (19) 

These three equations have to be solved in consecutive order starting with the iterative solution 

of the 1D RISM-vv equation; this solution is then needed to calculate an iterative solution of the 

1D RISM-uv equation. As a matter of fact, the solution to equation (19) can be calculated non-

iteratively, which is a huge advantage of the 1D RISM-uu equation and will play a crucial role in 

the following work. 

In the 1990s an expansion of the 1D RISM equation to three dimensions was derived by several 

groups[92, 93, 95, 96] and yields, for the solute-solvent case, 

   
γ'

γ'γγ'γγ'

uv

γ'

-1

γ'

uv

γ d)()'()( rrrrr  ch . (20) 

To solve equation (20) two requirements have to be met: (1) the so called solvent-susceptibility, 

which is encoded in the γγ' function, has to be precalculated with 1D RISM-vv. (2) In the same 

manner as in equation (11) a closure relation is needed. Commonly, the hypernetted-chain-

closure (HNC) is used:[125, 126] 

   1)(exp)( Ruv,

γ

uv

γ  rr th  (21) 

where the bridge function B from equation (11) is set equal to zero and the new function Ruv,

γt  

is introduced, which is defined as 

 )()()()()()( γ

uv

γ

uv

γγ

Ruv,

γ

Ruv,

γ rrrrrr UchUtt    (22) 

and can be interpreted as a “renormalized” indirect correlation function and )(γ rU  is the 

pairwise additive potential between all interaction sites of the solute and the solvent site . The 

pairwise potential is usually comprised of 

 



 
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U , (23) 
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where the electrostatic interaction is modelled by the Coulomb potential with q being the partial 

charge of particle type α or , ε0 as the dielectric permittivity of the vacuum and the distance 

rr   between the solute sites α and solvent sites . The dispersion interaction is represented 

in the form of the Lennard-Jones potential where εα corresponds to the “well depth” of the 

potential and α can be interpreted as the contact distance. Both parameters ε and  are 

commonly taken from molecular mechanics force fields. One drawback of the hypernetted 

chain closure is the fact that numerical convergence of the equation system cannot be 

guaranteed and getting the equation system to convergence can sometimes be called a “black 

art,” or is impossible, respectively. In light of this, another set of closures developed in the group 

of Kast et al.[127] based on the partial series expansion of order k (PSE-k) of the HNC closure is 

often used and have the form: 
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These PSE-k closures approximate the HNC closure and show a good-tempered convergence 

behaviour and are therefore often preferred over the HNC closure.[28, 127] In the literature the 

PSE closure of order one is often called the Kovalenko-Hirata (KH) closure.[27, 94] For these 

closures a closed form of the chemical excess potential exists and can be defined as 

    
 
  






















γ

1Ruv,

γuv

γ

uv

γ

uv

γ

uv

γ

2uv

γγ

1ex

!1

)(
)()()()(

2

1
)(

2

1

n

t
hcchh

n
r

rrrrr  (26) 

where is the Heaviside step function which vanishes in the case of the HNC closure. Equation 

(2) and equation (26) show the connection between 3D RISM and the free energy.  

The generalisation of the 3D RISM equation for the solute-solute (uu) case[25–28] can be written 

as 
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 (27) 

where the indices 1 and 2 represent two different solute species in question. For 3D RISM-uu 

calculations the uv results of the two partners 1 and 2 are needed. Because the uv results are 

calculated for fixed orientations, the 3D RISM-uu equation formally depends not only on the 

coordinates of the two solutes but additionally on the relative orientation of the two partners. 
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The HNC closure in the 3D RISM-uu case can be written in the same form as for 3D RISM-uv, 

which is shown in equation (21).  

2.2.1  The potential of mean force and derived quantities in the 

case of 3D RISM 

The potential of mean force is a fundamental quantity in chemistry and describes the free 

energy change along a reaction pathway[128] in solution. It can be defined as 

 exsolv )()()()(  rrrr UGUw  (28) 

where )(rU is the direct potential of the molecule in question and )(solv rG is the free energy 

contribution of the solvation process, which equals ex  in the case of unpolarisable and rigid 

molecules (see Figure 3 for visualisation). The PMF can be also linked to the pair distribution 

function with the reversible work theorem[116] which states that: 

 )(ln)( 1 rr gw   . (29) 

In the specific case of a complex consisting of two solute molecules (uu) the PMF in the 3D 

RISM-uu case can be derived by restructuring equation (27) and equation (29) and the uu 

analogue of the HNC closure into,[27, 28, 129] 

 ),(),(),( 1212

1

1212121212 ΩRΩRΩR  Uw uu
 (30) 

which is directly solvable. The vacuum interaction potential ),( 121212 ΩRU  is the sum of all 

pairwise contributions as seen in equations (23) and (24), the function ),( 1212 ΩR  can be 

interpreted as the solvent mediated influence on the resulting PMF (in this work this quantity is 

often abbreviated as wv after multiplication with -1). If one solute species u is spherically 

symmetric, the orientational dependence can be dropped without loss of generality. This leads 

to direct access to the PMF, which is only dependent on the coordinates of both solute species. 

Because the interaction potential 12U  as well as  are long ranged functions, a renormalisation 

procedure is necessary (see below).[28] In principle it is also possible to calculate ΔGbind from 

uuw , due to the PMF being a difference of state function, by integration of the bound region, 

which has to be defined beforehand.[103] 
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It is also possible to gain access to the explicit PMF of two rigid solute species with subsequent 

3D RISM-uv calculations by 

 ),(),(),( 121212

ex

2

ex

11212

ex

complex1212

expl ΩRΩRΩR Uw   . (31) 

Here 
ex as defined in equation (26) has to be calculated for the complex consisting of the two 

solute species in question and the separate solute species (to account for the reference state). 

After that the PMF is obtained by adding the vacuum interaction potential. 

Because the PMF can be computed directly and with high computational efficiency with 3D 

RISM-uu, it is possible to derive so called “free energy derivatives” on their basis. Free energy 

derivatives (FEDs) were first described by Pearlmen in the 1990s[79] and, following their 

narrative, they can be defined for 3D RISM-uu as 

 
i

uuw
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 ),( 1212 ΩR
 (32) 

where i  acts as a substitute for one of the parameters (, , q) in the interaction potential 

between the two solutes. This interaction potential can have the following form: 
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where 12 is a parameter of the Lennard-Jones potential that describes the well depth, 12 is the 

point of the zero-crossing and q1/q2 are the partial charges of molecules 1 and 2. 

Figure 3: Schematic graph of the direct vacuum potential (blue) and the PMF (green). Here energy is either the direct interaction  
energy between two species (blue) or the interaction energy in solution (green). 
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2.3  Methodology of the renormalisation of long-
range interactions 

This chapter deals with the technical side of the necessary renormalisation procedure that 

is formaly laid out in Ref. [28]. As shown in equations (27) and (30) the PMF for the 3D RISM-

uu case can be formulated in the following way: 

 ),(),(),( 1212

1

1212121212 ΩRΩRΩR  Uw uu . (34) 

A renormalized potential )(12 r
S

U  for dielectric solvents, to which this work is restricted, can be 

derived from:[28] 

 )(
1

~)()( 121212  rUU LL 


 rr , (35) 

where )(12 rLU is the long range potential, whose computation has to be avoided, and  is the 

dielectric constant. This leads to:[28] 

 )(
1

)()( 121212 rrr LSS
UUU


  (36) 

where )(12 rSU corresponds to the full real-space intermolecular potential (Lennard-Jones and 

Coulomb) and )(1 12 rLU  is the weighted long range part.[28] A second partitioning of the 

potential is also needed, which leads to 

 )(
1

)( 1212 rr LL
UU



 
 . (37) 

Equations (36) and (37) are computed in a straightforward way in the case of a dielectric solvent 

and in the case of an electrolyte they are replaced with their unweighted counterparts.[28] 

The renormalized )(12 rs function as defined in Ref. [28] has the form 
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Here )(
)0(

12 r
L

U  is the monopole potential which can be written as 
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To ensure correct treatment the four terms of equation (38) have to be evaluated in a distinct 

order and manner.  

The first term, )()(
)0(

1212 rr
LL

UU  , is evaluated on a 3D grid to acquire 
L

U 12  and 
)0(

12

L
U . 

The second term is evaluated on 3D grids which implies that 
)0(

1

L

U  is calculated in k-space 

and added to uvc 1 , subsequently the k(0) element of the 1D uvh 2
function is extrapolated, as 

described in Ref. [130], and the result is interpolated onto a 3D grid. At last the convolution 

product of the second term is calculated. Term 2 is subtracted from Term 1 and the resulting 

k-space function is transformed with the reverse 3D FFT.[131, 132] 

The third term, )(
)0(

12 rU
L

, is evaluated analytically on the 1D grid. The monopole 

potential 
)0(

1

L

U   of the fourth term is evaluated in 1D-k-space analytically,[28] which is then 

followed by the convolution product. After that term three and four are added in 1D-k-space, 

followed by reverse 1D FFT[131, 132] and interpolation onto the real space 3D grid. 

In the last step the two resulting 3D real space grids are added and yield s

12 . Pseudocode 

for the calculation of the renormalized  -function can be found in the appendix of this work. 

2.4  Molecular dynamics (MD) simulation 

MD simulations have come a long way from the 3 ps long trajectories (864 argon atoms)[133] 

of the early 1960s to millisecond long calculations (~17000 atoms)[134] done on modern super 

computers and special purpose hardware. In this time frame they evolved from a niche to the 

scientific mainstream.  

Regardless of this evolution the basic objective of MD simulations stayed the same, namely to 

propagate a given molecular system through time to obtain a fine grained trajectory of the 

dynamics. The length of today’s trajectories is only obtainable by treating the molecular system 

classically (as an ensemble of balls connected by springs) and disregarding all quantum-

mechanical effects. This in turn leads to the necessity of parametrisation of otherwise non-

tractable interactions, these parameters are commonly bundled into a so called force-field which, 

in the case of the AMBER gaff force field, has the form[135] 
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where bK , K  and n are the force constants for the bond, angle and dihedral terms respectively; 

0b , 0  and  are equilibrium bond, angle and dihedral parameters; and n is the multiplicity. For 

the nonbonded part of the potential the A, B, and q parameters have to be determined and rij is 

the distance between particle i and j. Parametrisation and refinement of these force field 

parameters is still a branch of active research, with newer trends being the inclusion of 

polarisable terms into the electrostatic interactions, allowing bond breaking to occur and so 

on.[136–138] After a force field is established the next step is to calculate the forces that are acting 

on the system as 

  ii U rF  , (41) 

where here the force on particle i is defined as the negative gradient (  ) of the potential. 

When the forces are known Newton’s second law of motion, 

 iii m aF  , (42) 

can be used to link the potential to the dynamic property of acceleration, where the force F 

acting on a particle i being written as the product of the mass m and acceleration a. To propagate 

the system in time an integrator is used, with the most common one being the Verlet 

algorithm.[139] The Verlet algorithm is derived from a Taylor series expansion to the second order 

term around the current positions of the particles in positive direction (+ t ): 
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and negative direction (- t ): 
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Combining and restructuring equations (43) and (44) results in the final Verlet algorithm, 

 )()()(2)( 2 ttttttt iiii  rarr , (45) 
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where the velocities of equation (43) and (44) cancel out. Modern molecular dynamics codes 

mostly implement the Verlet algorithm in one of the algebraically identical forms known as 

velocity Verlet[140] or leap frog.[141] 

The relative straightforwardness of MD simulations is a double-edged sword because it gives 

people a false sense of safety in regard to the usage of this technique. That is why particular 

consideration regarding the used water model is warranted, but too often neglected. The most 

commonly used water models are TIP3P[142] and SPC/E,[143] which are described by three 

interaction sites and were parametrised to reproduce specific physical observables. The 

“performance” especially of the TIP3P model is one of the worst,[144] in contrast to one of the 

best-performing water models to date, the TIP4P/2005[144] water model, which has a fourth off-

centre point charge. The general recommendation would be to use the TIP4P/2005[145, 146] water 

model: This can unfortunately lead to inconsistencies, because almost all modern protein force 

fields were parametrised with either TIP3P or SPC/E. Therefore it is often advisable to use 

these instead, to circumvent inconsistencies within the simulation, or for that matter the 3D 

RISM calculation. For 3D RISM calculations, another problem is that a four site water model is 

intractable, which is likely due to numerical issues.[147] 

2.4.1  Free energy calculations and error estimation 

There are plenty of free energy estimation methods available ranging from scoring 

algorithms to fully atomistic molecular dynamics simulations, where the user has to do the trade-

off between speed (scoring algorithms based on empirical functions) and accuracy (fully 

atomistic MD simulations). The main property of free energies, which is exploited in MD 

simulations, is that they are state functions, and thus their calculation or measurement is path 

independent and can be done through artificial, or alchemical routes. One of the widely used 

methods to estimate relative association free energies with MD simulations is thermodynamic 

integration (TI), derived by Kirkwood in 1935.[148] The first step is to link the potential energy 

of the system to a coupling parameter  in the form 

        rrr BA1, UUU   , (46) 

where A corresponds to the end state of the system and B to the starting state of the system. 

Following this, the Helmholtz free energy A can be written as 
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here  QZ  is the partition function and NV  is the volume of the system to the power of N, 

the particle number. The derivative of equation (47) with respect to  yields, after some simple 

algebra: 
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Through integration of the ensemble average over , the Helmholtz free energy can be 

computed or numerically approximated by the sum over incremental  values: 
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Here it is worth noting that the Helmholtz free energy is equivalent to the Gibbs free energy, if 

the volume of the system (NVT) is equal to the corresponding pressure in the NpT ensemble. 

The conceptually similar and as important technique of free energy perturbation shall be 

mentioned here for the sake of completeness.[149] For some modern applications and reviews 

regarding free energy calculations the reader is referred to Ref. [150–152]. 

A priori it is not possible to make sure that every frame in a MD simulation is statistically 

independent, but it is possible to estimate the correlation time between MD frames after the 

simulation has been run by several means. Amongst others blocking analysis is a viable option, 

which additionally allows to correct the calculated error of the estimated observable. In blocking 

analysis the statistical inefficiency s is written as  
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where  b is the block length,  
b

2 T  is the variance of block T and   T2  is the variance 

of the whole dataset.[153] First the block averages have to be calculated by 
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where the trajectory is split into blocks of length b  and the number of blocks ballb n , 

with all  being all time steps in the trajectory.[153] With the computed block averages calculated, 

the block variance can be estimated through:[153] 

    



b

1b

2

allb
b

b

2 1 n

TT
n

T . (52) 

For practical purposes it can be helpful to estimate the statistical inefficiency not with classical 

limit value consideration, but to take the maximum obtained value of s. 

2.5  Machine learning techniques 

2.5.1  Deep feedforward networks 

The area of machine learning can be generally divided into supervised and unsupervised 

learning. Among those two a zoo of methods exists which have advantages and disadvantages. 

In unsupervised learning, the chosen method has to be able to extract a function from unlabelled 

data, which means that for a given distribution the y-value is unknown but has to be inferred 

from the data itself. An example for that would be principal component analysis.[98, 154] 

Supervised learning on the other hand works with labelled data, which means that it works on 

pairs of x- and y-values, and tries to find a function which allows to map new examples to the 

correct classes (classification tasks) or numerical values (regression tasks).[98, 155] As of this writing 

neural networks and in particular deep neural networks are one of the most hyped machine 

learning techniques,[155, 156] and are already used in the field of chemistry.[157–161]  

Although the success of neural networks and deep learning (as it is called today) kicked off 

in the late 20th until the early 21st century, these techniques have already got a long history.[156] 

The first models, which were inspired by the structure of the brain and the way learning in a 
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biological setting could work, were derived by McCulloch and Pitts in 1943[98, 162, 163] where the 

weights of the model were not learned but had to be assigned by a human operator. After that, 

the first trainable single neuron model was devised by Rosenblatt in 1953.[98, 163, 164] These models 

were then enhanced in the so-called second wave of neural networks around 1980 – 1995 where 

the training of models with one or two hidden layers became possible by the means of “back 

propagation” (details see below).[98, 156, 163, 165, 166] At the moment we are right in the middle of the 

so-called third wave of neural networks, which is now often called “deep learning,” and began 

around 2006 with the work of Hinton et al. on “Deep belief networks”.[98, 156, 167] The third wave 

was also sparked and supported on the hardware side by the exploitation of “General-purpose 

computing on graphics processing units” (GPGPU).[98] This can also be seen in the high rate of 

GPGPU capabilities, baked into every major deep learning library on the market, e.g. 

TensorFlow,[168] Theano,[169–171] Caffe[172] and many more. 

In a nutshell, a neural network is composed of so-called neurons and the connections between 

these neurons (see Figure 4) which are arranged in a layer-wise fashion,[98, 155, 156] starting with the 

input layer that is followed by one or more hidden layers and an output layer. Mathematically 

speaking, a neural network can be described as a chain of functions: )))((()( )1()2()3( xfffxf   

where )1(f  represents the first layer, )2(f the second layer, and so on.[98] The training process 

aims to drive )(xf  to approximate )(* xf (which is the underlying function describing the true 

distribution of x as good as possible.[98, 155] The flow of information through the network can 

thus be described through: 

Figure 4: Basic representation of a deep neural network with one input layer consisting of three input neurons (purple circles), two 
hidden layers, consisting of four hidden neurons each (green circles) and one output layer consisting of two output neurons (blue 
circles). The arrows represent the weights and the neurons are connected in a dense fashion, which means every neuron is connected 
to all neurons of the next layer.  
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 yhx  . (53) 

The feature matrix (or vector depending on the problem at hand) x enters the network than the 

aforementioned transformations described in equation (57) and (58) are applied in the hidden 

units of the network and at last the predicted y values leave the network. 

The training data consists of pairs of (possibly noisy) x corresponding to )(** xfy  .[98] In 

detail, a hidden neuron takes the incoming input vector x and applies the following 

transformation in the form 

 xWu T . (54) 

Here, u is the resulting vector WT is the “weight” matrix (which is adjusted during the training 

process). After that, the “activation” function a(u) is applied elementwise to the u vector: 

[100, 159, 167] 

 )( TxWh a . (55) 

The choice of the activation function a can have a significant impact on the learning process 

and the achievable performance of the neural network[173]. One of the default choices today is 

the “rectified linear unit”[174, 175] defined as  a(u)=max(0,x). Other possible activation functions 

are the hyperbolic tangent or “sigmoid” function. 

The functional form of the output units of a neural network are often depending on the 

problem at hand. For binary classification tasks a “sigmoid unit” can be a good choice for 

instance.[98] For multi-class classification tasks, the “softmax unit” is often used. For regression 

tasks a linear output unit is often a sensible choice. These functions are chosen because they 

output values between zero and one, which is preferable for classification tasks. 

In supervised learning the cost, which is a measure of the difference between the calculated 

y (f(x)) values and the “true” y* (f *(x)) values, is calculated by the loss function. For classification 

tasks, one of the possible loss functions (and often a very sensible choice) is the cross entropy, 

or frequently called the log-loss, which is defined as:[98] 

 
i

ii yyL log),( ** yy . (56) 
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For regression tasks typical loss functions include, but are not restricted to, the mean absolute 

error or the mean squared error.[98] During the training process the cost is minimized to reflect 

)(* xf  as well as possible. This is often done using an optimization technique called stochastic 

gradient descent (see equation (61)), or variants thereof. The actual training process of a neural 

network can be split into three parts: The first step is the forward propagation of the data 

through the network 

 )1()()(  lll hWt , (57) 

 )( )()( ll a th  . (58) 

Here l is an index that runs from the first layer to the last layer. The matrix h stores the values 

for every node, h equals x in the input layer and y in the output layer.[98] Then the loss ),( * yyL

has to be computed. In the second step the gradient of the loss has to be computed with regard 

to the weights. In the rather simple case, as described here, where the weights are the only 

parameters that can be varied, makes it clear that a neural network can be interpreted as a chain 

of functions. Therefore, the calculation of the gradient relies heavily on the chain rule of 

calculus. The algorithm of choice is called back propagation[98, 163, 165, 166] and can be written as 

),( *)out( yyg yL , (59) 

 )´(1T)()(
1

llll aLl hgWg
h

  . (60) 

First, the gradient of the loss in the output layer has to be computed, this is shown in equation 

(59), which is done by calculating the Jacobian with regard to the output values y. In the next 

step the gradient for every layer can be derived by following equation (60). Here g(l) is the 

gradient in layer l, g(l-1) is the gradient in layer l -1, )´( la h is the derivative of the activation 

function with regard to the weights and “” is the Hadamard product. The last training step 

now consists of the update of the weight matrices W and in the case of stochastic gradient 

descent, it can be written as: 

)(old,new, lll gWW   (61) 

where  is the “learning rate” which can be fixed or variable. The term stochastic in this case 

can be attributed to the fact that the gradient is not computed over the whole dataset, but 

randomly drawn small “mini” batches. Therefore stochastic gradient descent is often described 
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as (mini-) batch gradient descent. Often the Adam[176] optimizer is used, which is a variant of 

the gradient descent method. 

2.5.2  Gradient boosted trees 

Gradient boosted trees and variants thereof are one of the top performing machine 

learning techniques.[99] They are also successfully used in molecular modelling.[37, 177] In a 

comparison Ashtawy[177] et al. did among machine-learning-based and classical scoring functions 

boosted regression trees were also one of the top performers.[37, 177] In 2016, Chen et al. published 

a paper (initial release of the software was in 2014) about their boosting algorithm, named 

XGBoost (abbr. for extreme gradient boosting) which is based on the gradient boosting model 

of Friedman.[178] XGBoost is widely recognized in the data science community which is shown 

by the adoption in many challenges and cups. For example, in the 2015th KDDCup, every 

winning team in the top 10 used XGBoost.[99] Furthermore, on the data science competition 

website “kaggle” 17 of the 29 winning solutions during the 2015 timeframe used XGBoost.[99] 

Of these 17 solutions, 8 solely used XGBoost with the rest using a combination of XGBoost 

and neural networks.[99] As far as the author knows XGBoost was never used in a molecular 

modelling context specifically. 

XGBoost is a combination of several well proven techniques in machine learning and to 

approach it in a more accessible manner the key components are first described alone and at 

the end of the chapter the actual XGBoost method is introduced.  

At first “boosting” as a technique, which can be seen independently of the used regression 

or classification method, is introduced and can be described in the following manner.[158, 167, 184, 185] 

The boosting algorithm uses an ensemble of independent regression models and starts by 

assigning weights to each individual training sample xi: 

iiwi xwx , . (62) 

Here, the weights wi are initialised with 1/N, where N is the number of samples and i = 1,2,…,N. 

Then a model is fitted (which is described below) using the weighted training examples xi,w which 

yields an estimated y value.[154, 163, 179, 180] This is followed by the computation of the error rate for 

the regression model k, 
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where  ii yyL ,*  is the loss (a measure for the difference) between the prediction and the true 

*

iy  value, the error rate thus scales with the loss.[154, 163, 179, 180] This is followed by the computation 

of the parameter αk, which is defined as: 

  
kkk err/err1log  . (64) 

Then the weights wi are adjusted with 

  
iikii yyLww ,exp * , (65) 

which then allows to calculate the final “boosted” prediction as: 

)()(
1

xfxf k

K

k

k


  . (66) 

Here fm(x) is the prediction of the individual regression models that are part of the ensemble 

and M is the number of regression models used.[154, 163, 179, 180] The benefit of the “boosting” 

technique lies in the fact that the weights for samples that are misclassified or have a high loss 

are growing exponentially. The consequence is that after every round of “boosting” the 

algorithm pays more and more “attention” to samples that are misclassified or have a high loss.  

Figure 5: Left side shows the partition of a two-dimensional feature space obtained through recursive binary splitting. The 
right side shows the corresponding tree structure. Graphic adapted from “The Elements of Statistical Learning”[180] 
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Tree models can be described graphically as seen in Figure 5. Under the premise that 

the problem at hand is a regression problem with continuous y values and the two features (data 

that describes the y values) x1 and x2 one can split the feature space by t1, t2, and t3, which yields 

the respective regions R1, R2, R3, and R4.
[180] Then the function f(x) (the predicted y) would be: 

  



4

1

21 ,)(
m

mm RxxIcxf , (67) 

with the function I being one if the pair (x1, x2) belongs to region m and zero in all other cases.[180] 

It can be shown that the best cm is given by 

 
miim Rxyc  |ave , (68) 

which is the average of yi in region Rm.[180]  

The training algorithm now has to decide how big the “trees” are allowed to get, which 

it controls through “pruning” (finding a minimal effective tree), and has to optimize the tree 

structure in a way that represents the function f(x) in an optimal way. Regression trees alone are 

often called “weak” or “base” learners. 

The XGBoost algorithm which combines gradient boosting with regression trees tries 

to combine an ensemble of “weak” or “base” learners (e.g. separate decision trees) into a 

“strong” learner, which means a model with good predictive capabilities and can be described 

in the following way.[56, 163, 179, 181] A tree ensemble model can be written as 





K

k

iki xfy
1

)( , (69) 

where iy  is the predicted value and kf  is the number of K additive functions (“trees”) (“weak” 

or “base” learner) that are used to predict the output.[55, 99] It should be noted that every  

)()( xqk wxf  , (70) 

resembles an independent tree structure q with leaf weights w.[99] For the learning process the 

following regularized objective can be defined:[99] 

 
k

k

i

ii fyylL )(),( *  (71) 
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where l is a convex loss function and the second term  is a regularization term, which is 

typically the weighted L2-norm, that penalizes the complexity of the model.[99] For the 

optimization process equation (71) is rewritten into 

)())(,(
)1(*)(

t

n

i

it
t

ii
t fxfyylL    (72) 

here the index t represents the current iteration and i the current instance.[99] Equation (72) is 

the optimization target and is trained “greedily” by adding the function ft  that improves the 

model best.[99] 
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3.1  Introduction 

While RISM-uu theory has been used for PMF calculations in the past,[68, 94] its related 

derivatives have not been tested for design purposes thus far to the best of the authors 

knowledge. Therefore, first several fundamental questions concerning the accuracy in 

comparison with related approaches in this proof-of-principle study have to be addressed. The 

focus therefore lies on the well-studied 18-crown-6 ether complexed with the alkali ions sodium, 

potassium and caesium in water with various potential parameter sets for the ions. Before 

computing FEDs based on the uu PMF, the quality in comparison with explicit free energy MD 

simulations using thermodynamic integration (TI) for given fixed relative complex geometries 

defining a reaction path has to be addressed, which has not been done before. The uu and MD 

data are compared with the PMF computed from uv calculations with explicitly placed ions along 

the pathway in order to draw conclusions about the influence of approximations on the PMF 

topography. Finally, uu-based FEDs for varying ion size parameters are computed and 

demonstrated to yield consistent and physically reasonable results compared to literature data. 

                                                 
2 Reused in part with permissions from F. Mrugalla, S. M. Kast, J. Phys.: Cond. Matter 2016, 28, 344004.  
2016 IOP Publishing Ltd. 

3 Designing molecular complexes 
using free-energy derivatives 
from RISM-uu2 
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3.2  Computational details 

Throughout all calculations the identical, rigid 18-crown-6 ether structure was used in its 

D3d symmetry as obtained by geometry optimization with Gaussian 03 (Rev. D.02) in the 

gas phase with B3LYP/6-31G*.[182] The interaction parameters of the crown ether were selected 

from the “optimized potential for liquid simulation” (OPLS) force field (see Table 1)[183, 184] 

employing Lorentz-Berthelot mixing rules throughout, similar to our earlier 1D RISM work on 

18-crown-6 in nonaqueous solvents.[185] For alkali ions, four different K+ parameter sets for 

FED calculations were tested, all summarized in Table 1.[186–189] TI MD reference simulations 

and explicit 3D RISM-uv calculations were performed also with other ions, using exclusively the 

MacKerell et al. set.[186] Water was described by the TIP3P model, using for reference MD 

calculations, the original form[142] and a variant with nonzero Lennard-Jones parameters on 

hydrogen (σ = 0.4 Å, ε = 0.0459 kcal mol-1). This modification is necessary to avoid singularities 

implied with 1D RISM iterations and was used for all integral equation calculations including 

those with susceptibilities taken from MD. 

 

Table 1: Force field parameters of 18-crown-6 and ions. 

Atom q / e σ / Å ε / kcal mol-1 

C(18-crown-6) 0.14 3.5000 0.0660 

O(18-crown-6) -0.40 2.9000 0.1400 

H(18-crown-6) 0.03 2.5000 0.0300 

Na+ a 1.00 2.4299 0.0469 

K+ a 1.00 3.1426 0.0870 

K+ b 1.00 3.0380 0.1937 

K+ c 1.00 4.7360 0.0003 

K+ d 1.00 3.5600 0.1304 

Cs+ a 1.00 3.7418 0.1900 

aMacKerell et al.,[186] bJoung and Cheatham,[187] cÅqvist,[188] dWipff et al..[189] 

1D RISM calculations with the dielectrically consistent (DRISM/HNC) theory[190, 191] for 

pure water (modified TIP3P) were performed on a logarithmic grid with 512 grid points ranging 

from 5.9810-3 Å to 164.02 Å. The solvent density was set to 0.0333 Å-3, the temperature to 

298.15 K, and the dielectric constant to 78.4. For the MD extraction of the susceptibility 

function with the same water model, a simulation of a water box with 4033 molecules was set 

up using tleap[192] and equilibrated over 10 ns NpT simulation (pressure was 1 bar controlled 

by the Langevin piston, temperature was 298.15 K via the Langevin method using default 
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settings) with a 2 fs time step in NAMD.[193] Short range potentials were truncated at 12.0 Å and 

the particle mesh Ewald (PME) method was employed for treating Coulomb interactions. A 

frame with minimal deviation from the target density was selected and a NVT production run 

over 20 ns was performed with identical simulation parameters, also for original TIP3P. Pair 

distribution functions for susceptibility extraction were determined with the Gromacs tools 

applying a histogram bin size of 0.02 Å on the basis of 20000 frames[194–196] and smoothed up to 

a maximum distance of 23.88 Å, beyond which susceptibilities were extrapolated by 

DRISM/HNC, following closely the procedures employed earlier.[197–199] Convergence criteria 

for 1D RISM calculations were a maximum residual norm of the direct correlation functions of 

10-7 and 0.00023 for HNC and MD extraction, respectively. 

3D RISM-uv/PSE-(n = 1-3) calculations at 298.15 K were performed on cubic grids of 

2003 points with a spacing of 0.2 Å. The convergence criterion for the 3D RISM-uv calculations 

was set to 10-4 for the maximum residual norm of direct correlation functions. For the PMF 

calculations one of the ion species (K+, Na+, Cs+) was placed along a 1D path defining the z-axis 

of the 18-crown-6 (see Figure 6 together with an illustration of direct interaction energies). The 

path was symmetrically constructed with a sampling rate of 0.2 Å and a maximum distance to 

the center of the crown ether of 10.0 Å, implying 101 points. In the 3D RISM-uu case the 3D 

RISM-uv calculations of the crown ether were reused while for the ions 1D RISM-uv calculations 

were performed using modified TIP3P susceptibilities (convergence threshold 10-5) and 

interpolated to the 3D grid by cubic splines. FEDs from uu calculations were obtained by 

numerical differentiation with a 5-point stencil (Δσ = 0.02 Å). 

The simulation system for the TI calculations was a cubic box with the rigid 18-crown-6 

ether, a bound ion at the centre and 4036 water molecules. First a NpT simulation over 1 ns 

with a 2 fs time step at 0.5 bar was performed, followed by a NpT run at 1 bar over 10 ns. TI 

simulations in the NVT ensemble were initiated from the frame with minimal deviation from 

the target density. For the same ion positions as in integral equation calculations the coupling 

parameter λ was scaled in Δλ = 0.1 steps, decoupling ion-solvent and ion-host interactions. For 

each value of λ the system was simulated for 150000 steps of which 25000 were discarded for 

equilibration. Appropriate numbers of statistically uncorrelated frames were determined by 

blocking analysis[153] before calculating the PMF by numerical integration of cubic spline 

interpolants. A similar protocol was used for decoupling the ion in the absence of the crown 

ether for defining the reference state, whereby artifacts attributed to the presence of a net charge 
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in TI simulations effectively cancel. After the TI calculations of all 101 points the symmetric 

setup was exploited and the average PMF of the corresponding points from both sides of the 

path computed. For K+ the relevance of incomplete sampling (hysteresis effect) by repeating 

the TI simulations in the reverse direction was checked, i.e. by recoupling interactions starting 

from the final decoupled states. 

The crown ether picture in Figure 6 has been generated using the PyMOL software.[200] All 

other plots have been created using the software Gnuplot.[201] Integral equation calculations 

have been performed with software developed in our laboratory. Data analysis was done using 

Mathematica.[202] 

3.3  Results and discussion 

First the accuracy of both integral equation approaches to the PMF has to examined, 

explicit super-molecule calculations by 3D RISM-uv and the most efficient 3D RISM-uu 

estimate, in comparison with TI reference results, which is shown in Figure 7 for 18-crown-6 

with K+ using the MacKerell et al. parameters.[186] In the top left panel, only uv and uu results for 

various PSE orders (also applied to the underlying uv calculations in the uu case) on the basis of 

DRISM/HNC(vv) water susceptibilities are depicted. While the overall topography of the free 

Figure 6: Schematic representation of 18-crown-6 and the chosen ion translocation path, with direct interaction energies between 

crown ether and the various ion species using the MacKerell et al. model[186] along the z axis. In this case, the space of relative 

distances and orientations (R12, Ω12) is reduced to three dimensions and one component (z) of the distance vector has been 

singled out. 
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energy surfaces along the chosen path appears to be similar, the absolute heights of barriers and 

the depth of minima are considerably different. Notably, the location of the global minimum is 

identical for all methods whereas the precise locations of the barriers differ slightly. More 

problematic for quantitative applications is the lack of significant free energy barriers in the uu 

case in general, while apparently explicit uv and uu results tend to converge toward better 

agreement with increasing PSE order. For the barriers the difference between the explicit uv and 

uu data is the largest for the PSE-1 (Δw ≈ 6.8 kcal mol-1) and the smallest for PSE-3 (Δw ≈ 4.1 

kcal mol-1). For the minima the differences between the two calculation methods are generally 

smaller, and, similar to the barriers, they decrease with increasing PSE order (Δw ≈ 3.7 kcal mol-1 

for PSE-1 to Δw ≈ 0.9 kcal mol-1 for PSE-3. Yet, the PSE order has more significant impact on 

minima than on barriers.  

The bottom left panel now shows uv (PSE-2) and uu data also with the MD-extracted water 

susceptibility, and in comparison with reference (forward) TI simulations. Using MD-generated 

Figure 7: Comparison of the K+[186] PMFs with 18-crown-6 in water for various calculation setups. Top left: explicitly (“expl”) 
placed ion within 3D RISM-uv calculations and uu results with underlying uv PSE order given as subscript, DRISM/HNC(vv) pure 
solvent susceptibility. Bottom left: uv and uu results with DRISM/HNC(vv) and MD-extracted (“MD(vv)”) pure solvent susceptibility 
in comparison with reference TI simulation data employing the original and modified TIP3P water models. Top right: forward and 
backward TI data with statistical error bars from blocking analysis, averaged over left and right half, along with average TI PMF 
(modified TIP3P model), indicating a hysteresis effect. Bottom right: deviation of PMFs from various uv and uu approaches from 
average TI data. 



DESIGNING MOLECULAR COMPLEXES USING FREE-ENERGY DERIVATIVES FROM RISM-UU

 

42 | P a g e  

χ functions generally has opposing effect on barriers and on minima. While barriers benefit 

somewhat from using MD input in comparison with TI, the effect on minima is less 

pronounced, yet visibly tending in the more strongly deviating direction. However, in absolute 

numbers the agreement between best uu and uv setups with reference TI data is reasonable, Δwuu 

< 1 kcal mol-1 and Δwuv ≈ 4 kcal mol-1 for HNC(vv) in comparison with TI using the modified 

TIP3P model as in integral equation calculations. For barriers, the discrepancies are Δwuu ≈ 5 

kcal mol-1 and Δwuv ≈ 1 kcal mol-1 for MD(vv). Note that the precise location of the barriers in 

the TI case is shifted to slightly larger distances to the crown center, and that the difference 

between original and modified TIP3P models is negligible such that only TI data with the latter 

model was chosen as reference for following analyses.  

The top right panel of Figure 7 reveals substantial TI artifacts arising from strong hysteresis 

effect upon repeating the simulation in the reverse coupling parameter direction. These amount 

to around 2-3 kcal mol-1 around the barrier regions, much larger than the statistical sampling 

Figure 8: PMF (left column) and desolvation penalty (right column) for Na+ (yellow, top), K+ (purple, middle), and Cs+ (grey, 

bottom); explicit uv and underlying uv calculations for uu with PSE-2 and DRISM/HNC or MD-extracted susceptibilities, all 

including TI reference with the modified TIP3P water model and the MacKerell et al. parameter set[186]. 
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error. The origin is related to the special simulation setup that was employed, namely the choice 

of fixed ion positions relative to the crown ether. Visual inspection of trajectories shows for ion 

distances slightly above or below the ring center that water molecules cannot sufficiently sample 

the narrow regions between host and guest. The true TI barrier height is likely closer to the uv 

data than estimated from the forward direction only. This also becomes clear from the 

differences between explicit uv or uu PMFs and the hysteresis-averaged TI curve shown in the 

bottom right panel of Figure 7, which corresponds to the difference of desolvation penalties 

(see also below for a more detailed description) since the host-guest interaction energies are 

Figure 9: FEDs (blue, right ordinate) and PMF curves (red, left ordinate) for various parameter sets for K+, placed at the 

crown center, on the basis of uu calculations (PSE-2 basis for underlying uv data). The original K+ value for the respective 

parameter set is indicated by the dashed line. From top to bottom: MacKerell et al.[186], Joung and Cheatham[187], Åqvist[188], 

Wipff et al.[189] parameter sets; left/right columns show data with MD-extracted and DRISM/HNC susceptibilities, 

respectively. 
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identical for all approaches. This demonstrates more clearly that uu deviates topographically 

similarly but systematically underestimates the desolvation work compared to uv, while uv mostly 

overestimates the penalty compared to TI. Near the center, i.e. in the region of largest error, the 

integral equation artifacts have therefore fortuitously less negative impact on absolute numbers. 

This coincidental cancellation of errors near PMF minima is, however, a general pattern found 

for all ions examined, as shown below in Figure 8. 

A comparison of 3D RISM-uu with uv and TI calculations for Na+, K+, Cs+ sheds more 

light on the origin of the apparent discrepancies. Besides the PMF the desolvation also show 

penalties for the three ions which are simply the differences between PMF and underlying direct 

interaction energies. This penalty is a measure for the free energy impact of stripping water 

molecules from the ions when entering the crown ether. In general the desolvation penalty 

calculated by uu and uv yields a mixed picture in regard to the TI reference, with uu calculations 

based on DRISM/HNC(vv)[190, 191] performing systematically best near the PMF minima. All 3D 

RISM flavors are capable of reproducing the overall topography of the TI PMF curves. Explicit 

uv calculations tend to be better at reproducing the shape and height of the barriers, while we 

find, consistently for all ions, uu from DRISM/HNC(vv)[190, 191] is better suited for the prediction 

of the depth of the minima. The most efficient approach is therefore an interesting candidate 

for replacing MD-based binding free energy predictions by an integral equation model. While 

the PMF topographies for Na+ and K+ are similar, the situation differs strongly for Cs+. 

Indicated by a local maximum at the center, Cs+ does not fit into the crown ether cavity and 

mostly sits on top of it. This result agrees with quantum-chemical calculations and experimental 

data for this system[203–205] and is nicely reproduced by all RISM-based methods as found from 

TI. 

The analysis presented here indicates the reason why liquid state theories can have 

difficulties with respect to quantitative predictions. Overall, the agreement between integral 

equation and TI penalty curves is good, while the precise locations of the onset of the 

desolvation process differ only slightly. However, the large slope of the desolvation penalty is 

compensated by a similarly large, opposite slope in the direct interaction energy in this region. 

This means that two steep, opposing trends can have very large impact on the absolute numbers 

when added, giving rise to stronger discrepancies in total PMFs as would be expected from 

separate components. Any improved liquid state theory therefore has to account for an 

improved description of ion-water distribution functions at close contact, which represents a 
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considerable challenge for future developments. Such attempts are certainly worthwhile since 

the computational demand varies widely, by several orders of magnitude, among the methods 

presented here. For a single state-of-the art processor core and a given relative configuration 

roughly 16.000 min for TI/MD is needed, 100 min for explicit uv calculations, while a uu 

calculation with precomputed uv data for separate partners requires only 0.01 min 

Turning finally to the FEDs from uu calculations, various ion parameter sets for K+ were 

tested with respect to the robustness and plausibility of the predictions. Since the PMF 

topographies between TI and integral equation results differ only slightly and, in particular, the 

location and depth of the minimum is well described by uu theory, good correspondence is 

expected with results obtained by others who required much higher computational cost. Figure 

9 shows FED results with respect to the ion size parameter for various setups. Notably, absolute 

numbers are strongly influenced by switching between DRISM/HNC and MD-extracted water 

susceptibilities but not to the same extent the location of the zero-crossing of the FED or the 

minimum of the PMF, respectively (with the exception of Åqvist set,[188] see further discussion 

below). In this sense, uu-based FEDs represent indeed a robust quantity for optimizing chemical 

parameters by providing direction information to the molecular designer.  

The two bottom panels show positive free energy derivatives for the calculations with the 

Åqvist[188] (for MD-extracted susceptibilities only) and Wipff et al.[189] parameter sets at the 

original σ value of the potassium ion. These results are in agreement with the study of Cieplak 

et al.[80] where a molecular dynamics study in conjunction with free energy derivatives and the 

same parameter set (Åqvist[188]) yielded also positive free energy derivatives for the respective σ 

value. This indicates that the optimal binding partner of the 18-crown-6 ether is an ion with a 

slightly smaller radius than the original K+ parameter. At first sight, the data for the other two 

parameter sets (top panels, MacKerell et al.,[186] Joung and Cheatham[187]) seem to contradict this 

conclusion since they suggest increasing the size parameter. However, for absolute numbers the 

trends agree with the Wipff et al.[189] tendency to yield an optimal σ parameter of around 3.4 Å. 

Only the Åqvist[188] set appears to deviate in terms of absolute numbers, which is not unexpected 

since the absolute values for this set are mere fit parameters to represent solvation free energies 

reasonably, sacrificing any physical meaning. For the other three sets, the overall prediction of 

an optimal K+ size appears to be robust and practically independent of the accompanying well 

depth parameter defining the Lennard-Jones potential. 
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3.4  Concluding remarks 

In this proof-of-principle study it was shown that it is indeed straightforward and physically 

reasonable to employ 3D RISM-uu theory for the purpose of predicting design directions for 

certain interaction parameters defining variations in chemistry. This investigation was footed on 

a thorough comparison of the relative strengths and deficits of various integral equation 

formulations and their inherent dependence on input parameters such as pure solvent data and 

closure approximations. The benchmark data for this purpose was provided by explicit free 

energy molecular dynamics simulations based on the same interaction potential and structural 

model as used in integral equation calculations. Such an analysis rigorously revealed the deficits 

of a 3D RISM treatment with currently available approximations. In particular, the subtle 

interplay of opposing quantities, interaction energy and (de)solvation contribution to the total 

PMF, strongly depends on the physical level of accuracy that defines a liquid state theory. 

Therefore, much work has to be done to improve those theories to reach quantitative agreement 

with explicit simulations consistently over PMF landscapes. However, the results also showed 

that PMF topographies, which are most relevant properties for employing free energy 

derivatives in practical design work, are reasonably robust and less influenced by the inherent 

approximations. Hence, even a computationally very efficient theory such as 3D RISM-uu, that 

does not account for higher-order correlations between two solute partners and the solvent as 

compared to 3D RISM-uv on super-molecules, can be envisioned to be developed into a 

practically useful design model for more complex problems such as protein-ligand binding, 

which is the topic of the next chapter of this work.  

Building on these results the next chapter will apply FEDs calculated with 3D RISM-uu to 

two protein-ligand system. The model will also be extended and verified further. 
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4.1  Introduction 

In order to apply free energy derivatives to protein ligand complexes in a meaningful 

manner it is desirable that per atom information can be obtained to drive the decision process. 

The general idea would be to calculate the free energy derivative of every ligand atom at its 

respective position in three dimensional space and map this information back to the ligand 

structure to obtain a picture as in Figure 21. Here, the following central questions arise: (1) is 

placing the ligand atoms at their original three dimensional position into the apo structure of the 

protein binding site enough (calculations done in this way are denoted by “apo” as superscript)? 

(2) Should the ligand atoms be placed in a one-to-one manner so that the binding site is partially 

filled with the remaining part of the ligand (calculations done in this way are denoted by “part 

holo” as superscript)? (3) Which 3D RISM parameters should be used to obtain fast and reliable 

results? All of these question are addressed in this chapter. (4) Are the computed FEDs and 

derived quantities in accordance to the experimental results, despite all the approximations that 

are made?  

The molecular systems under scrutiny are the kinase domains of “rearranged during 

transfection” (RET) in complex with AD80 and tRNA guanine transglycosylase (TGT) in 

complex with an aminoquinazolin derivate. 

4 Free energy derivative guided-
drug design with RISM-uu  
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4.2  Computational details 

4.2.1  Structure preparation 

All used structures were equilibrated with MD simulation, if not explicitly stated otherwise. 

In the case of “rearranged during transfection” RET, a homology model was generated by 

Justina Stark. The modelling and equilibration process being described in detail in Ref. [206] in 

the following only a brief summary is given: The RET DFG-out model was generated with 

Modeller[207] using VEGFR (pdb: 2OH4) as template. After that, the system was 

parametrized using the ff99SB force field from Amber12[192] for the protein and GAFF 

1.5[212, 213] for the ligand called AD80 (see Figure 10 A, C). Partial charges for the ligand were 

calculated using the AM1-BCC method.[210, 211] Then solvated in TIP3P[142] water and neutralized 

with chloride ions. This process was followed by three successive fully atomistic MD simulations 

with NAMD:[193] starting with a 4 ns long simulation with restraints (only Cα atoms) in the NVT 

ensemble followed by a 4 ns long simulation with restraints (only Cα atoms) in the NpT ensemble 

Figure 10: (A) The binding motif of AD80 in RET after MD refinement and minimization. These coordinates are used for all 
following calculations. (B) The RET protein after MD refinement and minimization shows a typical kinase structure. (C) 
Chemical structure of AD80 
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after which a unrestrained equilibration run of 20 ns in the NpT ensemble was done.[206] The last 

frame of this simulation was energy minimized with SANDER[192] and the analytically linearized 

Poisson Boltzmann (ALPB)[212] model as implicit solvent (see Figure 10 B). The obtained 

structure was then used for all further 1D/3D RISM-uv and 3D RISM-uu calculations and 

contained 4752 atoms of the protein and 53 atoms of the ligand. 

The “tRNA guanine transglycosylase” (TGT) complex was modelled in a similar manner. 

Therefore, the structure was acquired from the pdb (pdb: 1S38) and the first processing step 

included the modelling of missing residues with the Modeller[207] software. After that the 

complex was parametrized with ff14SB force field from Amber14[213] for the protein and GAFF 

1.5[208, 209] for the ligand 2-amino-8-methylquinazolin-4(3h)-one (see Figure 11 D). The zinc 

cofactor present in the protein was parametrized with the values[214] deposited in the ff14SB 

force field. Partial charges for the ligand (aminoquinazolin derivative) were calculated using the 

sqm tool in Amber12[192] and the AM1-BCC[210, 211] charge model. The system was then solvated 

in 26394 TIP3P[142] water molecules in a cubic box of the dimensions 96 Å  94 Å  109 Å. Then 

the system was subjected to local minimization, which was followed by a restrained simulation 

of 5 ns length with a force constant of 4 kcal/(mol  Å) applied to the Cα atoms of the protein 

in the NVT ensemble. Afterwards, a 5 ns long simulation with the same restraints in the NpT 

ensemble was employed. Subsequently, an unrestraint simulation of 30 ns length was done to 

equilibrate the system. All simulations were run at a temperature of 298.15 K via the Langevin 

Figure 11: (A) Binding site of TGTMD with bound ligand amqMD, CH3. (B) Protein structure after MD refinement and minimization. 
(C) Chemical structure of 2-aminoquinazolin-4(3H)-one (amqH). (D) Chemical structure of 2-amino-8-methylquinazolin-4(3h)-
one (amqMD, CH3, amqCH3). 
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method, a pressure of 1 bar controlled by the Langevin-piston method, and used the particle 

mesh Ewald[215, 216] (default settings) method for the treatment of long range electrostatics. The 

Settle[217] algorithm was used to constrain the hydrogen atoms, and the simulations were run 

with a 2 fs time step in NAMD.[193] The last frame of the unrestraint trajectory was subjected to 

energy minimization with SANDER[192] and the ALPB[212] implicit solvent model (see Figure 11 

A, B). The resulting structures for the protein and the ligand were used for further 1D RISM-

uv and 3D RISM-uv/uu calculations. The structures are abbreviated in the following as TGTMD 

for the protein and amqMD, CH3 for the ligand.  

The crystal structure of 1S38[218] in complex with 2-amino-8-methylquinazolin-4(3h)-one 

was also parametrized with the ff14SB force field of Amber14[213] for the protein and GAFF 

1.5[208, 209] for the ligand as deposited in the PDB with no further refinement or modelling steps. 

These structures are called TGTCH3 for the protein and amqCH3 for the ligand. Furthermore the 

crystal structure of 1S39[218] was also downloaded from the PDB and parametrized with ff14SB 

from Amber14[213] for the protein and GAFF 1.5[208, 209] for the ligand 2-aminoquinazolin-4(3H)-

one (see Figure 11 C). In the following text these structures for the protein are called TGTH and 

amqH for the ligand. All structures used in this chapter can be found in the electronic appendix 

of this work. 

4.2.2  RISM-uv calculations 

As basis for all following RISM calculations, the χ-function (result of 1D RISM-vv) was 

calculated with the dielectrically consistent (DRISM/HNC) theory[190, 191] for pure water 

(modified TIP3P, see chapter 3). This calculation was performed on a logarithmic grid with 512 

grid points ranging from 5.9810-3 Å to 164.02 Å. The solvent density was set to 0.0333295 Å-3, 

the temperature to 298.15 K, and the dielectric constant to 78.4. As convergence criterion, the 

residual norm of the direct correlation functions was set to 10-7. For all necessary 1D RISM-uv 

calculations the same parameters as in the 1D RISM-vv case were chosen except for the 

convergence criterion, which was set to 10-5 for the maximum residual in the direct correlation 

functions and the number of “direct inversion of iterative subspace” (DIIS) vectors which was 

set to 5. 

For the comparison of the closure effect on the calculated PMF and FED values, the 

needed 1D RISM-uv calculations were performed with the PSE closures of order 1-4. The 3D 
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RISM-uv calculations of the RET/AD80 complex were either done with a cuboid grid of size 

120  110  130 and a grid spacing of 0.6 Å or a cuboid grid of size 260  240  280 and a grid 

spacing of 0.3 Å. Long range electrostatics were treated with the PME[215, 216] with order 8 and 

and short range interactions were cut at 14 Å. For all calculations monopole renormalization 

was used.[28, 130] The convergence criterion was set to 10-4 for the maximum residual norm of the 

direct correlation functions and in order to accelerate convergence 10 DIIS vectors were used. 

For the calculations of the TGT complex system the same 1D RISM-uv parameters as 

described above were chosen. The corresponding 3D RISM-uv calculations were done with a 

cuboid grid of the size 250  230  290 and a grid spacing of 0.3 Å. The other 3D RISM-uv 

specific parameters were set to the same values as in the comparison of the closure effect. For 

all 3D RISM-uv calculations concerning the TGT complex system, the PSE2 closure was used. 

In case of the TGT complex system, all calculations were done for four different sets of 

structures: (1) the MD relaxed and minimised structures based on the PDB entry 1S38, which 

is called TGTMD/amqMD, CH3; (2) the crystal structure of TGT as it is deposited in the PDB called 

TGT/amqCH3; (3) the crystal structure of the aminoquinazolin variant of the ligand deposited as 

Figure 12: Exemplary thermodynamic cycle for the 3D RISM-uu calculations and FEDs with respect to the partial charge 
q. For all apo calculations only the purple circle has to be evaluated, P-L gets then substituted by P and there is no P-L*. 
All other contributions vanish or cancel themselves out. For the partial holo calculations the whole circle has to be evaluated. 
Note that the contribution of the protein alone vanishes in the case of the partial holo calculations. The green arrows only 
show the theory that used to calculate the given process.  
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found in 1S39 in the PDB, which is called TGT/amqH; and (4) the crystal structure of TGT as 

it is deposited in the PDB, where the methyl group of the ligand is replaced by a united atom 

approximation called TGT/amqCU. For the united atom variant  was set to 3.905 Å,  to 0.175 

kcal mol-1, and the partial charges were calculated by summing the partial charges of the original 

methyl atoms yielding 0.0993 e.  

4.2.3  RISM-uu calculations 

All RISM-uu calculations were done using the aforementioned 1D/3D RISM-uv 

calculations as input and using the same thermodynamic variables. The derivatives were 

calculated for the three force field parameters , , and the partial charge q. The stepsize for 

numerical evaluation of the derivative with a 5-point stencil was set to Δ = 0.05 {Å, kcal mol-1, 

e} around the original parameter for the atom in question throughout all calculations. Two 

calculation schemes were employed to derive atomwise values for either the PMF or the FED. 

The first scheme, is called apo from this point on, places every ligand atom in the “empty” 

binding site of the protein at the coordinates of the original protein ligand complex, which is 

done in a successive manner. In practical terms this means that one 3D RISM-uv calculation for 

the protein and n  5 1D RISM-uv calculations, if n is the number of ligand atoms, were done. 

In the apo case the change from P-X to P-Y can be computed directly and in a straightforward 

way (see Figure 12).  

The second, more elaborate, scheme, called partial holo, places every ligand atom into a 

supermolecule, either consisting of the protein with the remaining ligand atoms or the remaining 

ligand. The partial holo calculations also required that 1-3 non-bonded interactions had to be 

excluded and 1-4 non-bonded interactions had to be scaled by 0.5, all according to the definition 

of the Amber[192] force field. This ansatz also introduced the problem of charge neutrality for 

the respective ligand, and was accounted for by distributing the remaining charges onto the 

neighbouring atoms, as defined by the connectivity, of the ligand atom in question and 

calculating the electrostatic potential difference generated by introduction of this artificial 

charge. Practically this means that for every sampling point done for the numerical derivative 

two 3D RISM-uv, one for the partial holo complex and one for the partial ligand, and one 1D 

RISM-uv calculation is needed. This sums up to 5  (2n + n) calculations for n ligand atoms. In 
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the partial holo case one PMF point for the protein ligand complex is thus calculated in the 

following way:  

)LPLP()L-(P)X-L-P( *elec*

PYPX   UYwwG uuuu , (73) 

where PYPXG  is the free energy change obtained from changing atom X into Y, 

)X-L-P(uuw and )L-(P * Ywuu   is the PMF of the respective system. The last term 

L)PLP(elec U  is only necessary for calculations that involve a change in the charges 

and guarantees that charge neutrality is maintained by:  

)Y,LP()X,LP( *elecelecelec  UUU , (74) 

where )X,LP(elec U  is the Coulomb potential between atom X and the partial holo complex 

and )Y,LP( *elec U is the Coulomb potential between the varied atom X and the varied partial 

holo complex. It is easily seen that elecU is zero if the partial charges are not varied. In addition 

to that the following term has also be evaluated: 

)LL()(L)X-L( *elec*

LYLX   UYwwG uuuu . (75) 

In summary this leads to the following expression for one PMF point: 

LYLXPYPXXL-PYL-P   GGGG . (76) 

4.3  Results and discussion 

4.3.1  Effect of grid sizes and PSE closure order 

To evaluate the effect of the grid spacing on the PMF values, that are calculated by 3D 

RISM-uu a comparison of a high resolution grid (with a grid spacing of 0.3 Å) and a low 

resolution grid (with a grid spacing of 0.6 Å) are compared. In Figure 13, the differences of the 

atomwise PMF values between the high and low resolution grid for the RETapo/AD80 system 
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are shown. The range of the differences is roughly 1 kcal mol-1, which shows that for this 

particular system the low resolution grid would be sufficient for most tasks. The oxygen atom 

(see Figure 10 C) shows the biggest difference between the low and high resolution grid. This 

could be due to a grid artifact which can arise when the center of an atom is in the direct vicinity 

of a grid point. All other differences are in the range of -0.2 kcal mol-1 to +0.4 kcal mol-1 which 

can be solely attributed to the different grid resolutions.  

Figure 13: Differences of the PMF for the RETapo/AD80 system calculated on a higher resolution grid (wfGrid
, spacing of 0.3 Å) 

and lower resolution grid (wcGrid, spacing of 0.6 Å). Data is shown for the three closures PSE1 to PSE3. The ligand atoms were 
placed consecutively in the apo binding site. 

Figure 14: Differences of the PMF for the RETpart holo/AD80 system calculated on a higher resolution grid (wfGrid
, spacing of 0.3 

Å) and lower resolution grid (wcGrid, spacing of 0.6 Å). Data is shown for the three closures PSE1 to PSE3. The ligand atoms 
were placed consecutively in the partial holo binding site. 
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When the ligand atoms are placed in the partial holo binding site the picture changes a little 

bit, as seen in Figure 14. All but two of the differences are in the range of -1 kcal mol-1 to +1 

kcal mol-1 and therefore in an acceptable range. The differences of the nitrogen (N in Figure 14) 

are between ~(4 – 10) kcal mol-1, depending on the closure relation which warrants further 

investigation. The working theory would be that the difference between both grid sizes is 

governed by the desolvation penalty which is based on the 3D RISM-uv calculations, where the 

nitrogen is shielded from the solvent environment, which could explain the significant 

Figure 15: PMF values calculated on the wfGrid for the RETpart holo/AD80 system and ascending PSE closure order. 

Figure 16: PMF values calculated on the wfGrid for the RETapo/AD80 complex and ascending PSE closure 
order. 
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difference. This implies that for the partial holo calculations the fine grid resolution of 0.3 seems 

to be better suited to yield consistent results.  

The next step involves the comparison of the influence of the closure order. For this 

comparison only wfGrid are described here. In Figure 16 the wfGrid values for the apo binding site 

are shown for ascending PSE closure order. In general the PSE1 closure shows significant 

deviations from the other closures and in particular the PSE3 closure. Taking into consideration 

the working hypothesis that the PMF values calculated with a higher order PSE are superior to 

those that are calculated with a lower order PSE, which is not completely unwarranted (see 

Ref. [219]). Following this line of argument the calculations with the PSE3 order were flagged 

as the “gold standard” and the deviation between either PSE1 or PSE2 was calculated. If PSE1 

and PSE3 are compared, the standard deviation of the differences is  = 3.12 kcal mol-1 and the 

Pearson correlation coefficient (used here to reveal possible anti-correlation) is R = 0.96. The 

same comparison done for PSE2 and PSE3 shows a standard deviation of the differences of 

only  = 0.73 kcal mol-1 with a correlation coefficient of R = 0.99. It seems to be the case that 

for the calculations in the apo binding site the PSE2 closure delivers the best compromise 

between speed, convergence behaviour, and accuracy. 

In the case of the partial holo complex the picture is comparable to the apo case as seen in 

Figure 15. The standard deviation of the differences between the calculations with PSE1/PSE3 

is  = 8.8 kcal mol-1 and for PSE2/PSE3  = 0.93 kcal mol-1 respectively. The Pearson 

correlation coefficients for both PSE1/PSE3 and PSE2/PSE3 is R = 0.99. This suggests that 

the closure has a more pronounced effect on partial holo complex calculations than on apo 

complex calculations. The conclusion would be to use, as in the apo case PSE2 as a standard 

because of same reasons. 

Figure 17: (A) Atom assignment for the amqH ligand. For further investigation of geometric effects on the partial holo 
calculations. (B) Atom assignment for the amqCH3 and amqMD,CH3 ligand. 
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4.3.2  A tool for rational drug design: a case study 

 In this subchapter the usefulness of free energy derivatives with regard to the drug design 

process will be addressed. Therefore, the atomwise FEDs and PMFs for the four corresponding 

complex pairs TGTMD, CH3/amqCH3, TGTCH3/amqCH3, TGTCH3/amqCU, and TGTH/amqH were 

calculated for either the apo or the partial holo case. The FEDs were calculated with regard to the 

force field parameters ,  and q.  

 

Table 2: Sum of the atomwise PMF (w) values for all calculation modes and complexes. For the two aminoquinazolin 
derivatives the experimental Ki values are also shown. All calculations were done on the finer grid (Δx = 0.3 Å) for the 
respective structures in their native environment. 

complex calc. mode 
fGrid

sumw  (kcal/mol) exp. Ki 

TGTMD,CH3/amqMD,CH3 partial holo -111.10 - 

TGTCH3/amqCH3 partial holo -115.40 7 Ma 

TGTH/amqH partial holo -100.30 20 nM - 50 nMa 

TGTMD,CH3/amqMD,CH3 apo -15.14 - 
TGTCH3/amqCH3 apo -14.90 - 
TGTCU/amqCU apo -15.75 - 
TGTH/amqH apo -14.67 - 

aMeyer et al.,[218] exp

HCH3G =-3.47 kcal  mol-1 − -2.93 kcal  mol-1 

 

Firstly, it is checked if the summation of the atomwise PMF values correlates with the 

experimental trend and if significant changes arise between the MD relaxed and crystal 

structures. In Table 2, the results are summarised. In case of the partial holo calculations the 

PMF sum for the MD relaxed structure (superscript MD, CH3) and the crystal structure 

(superscript CH3) are -111.10 kcal mol-1 and -115.40 kcal mol-1 respectively and therefore in the 

same range. The same result can be observed for the apo calculations in which the difference 

between the MD relaxed structure and crystal structure shrinks to -0.24 kcal mol-1, which 

indicates that the MD simulation is not imperative in this particular case.  

These results demonstrate that the PMF sum alone is not enough to distinguish between a 

good and mediocre binder. Therefore they are crucial for the next chapter which investigates if 

apo PMF calculations can be used to define a novel scoring function. Additionally, the partial 

holo calculations seem to suffer from a conceptional shortcoming in the form of the fixed ligand 

geometry. To investigate this in detail the separate contributions to the PMF for the partial holo 

(only the complex part) and apo calculations are shown in Table 3. In the partial holo case the 
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desolvation penalty values are generally higher than those in the apo case and the average 

difference between the potential part and the desolvation penalty is 9.91 kcal mol-1, in contrast 

to only 2.25 kcal mol-1 in the apo calculations. For the partial holo calculations none of the 

desolvation penalties has a negative sign instead of the apo calculations where the solvation 

process seems to be beneficial in some cases.  

 

Table 3: Contributions to the complex PMF for amqH ligand atoms (in the crystal structure) in the partial holo and apo case. 
The PMF is split into the potential (u) and desolvation penalties (wv). 

 partial holo apo 

atom u (kcal mol-1)  wv (kcal mol-1) u (kcal mol-1) wv (kcal mol-1) 

C1 -1.75 14.79 -2.26 -0.06 

C2 -1.22 11.80 -1.93 -0.23 

C3 -1.43 14.13 -1.98 -1.23 

C4 -0.65 24.47 -2.35 -0.98 

N5 -0.68 70.03 0.14 2.41 

C6 -2.64 95.41 -2.85 -3.03 

N7 0.01 118.77 0.97 5.54 

N8 -2.04 77.44 -2.27 -0.73 

C9 -2.72 78.33 -2.83 -4.23 

O10 -1.81 80.08 -1.27 2.25 

C11 -0.70 24.39 -2.20 -1.84 

C12 -1.40 10.99 -2.41 -1.39 

H1 1.29 7.53 1.32 0.91 

H2 0.48 6.29 0.51 0.29 

H3 -0.51 6.12 -0.49 -1.03 

H4 -1.34 19.04 -0.98 2.18 

H5 -1.33 19.56 -1.08 0.94 

H6 -1.33 8.43 -0.78 0.49 

H7 -0.35 5.09 -0.42 -1.20 

 

From this it is obvious that one has to be cautious with the results of the partial holo 

calculations, because they seem to be dominated by the contributions of the desolvation penalty. 

A closer look reveals that the biggest differences, 28.85 kcal mol-1 for N7, can be seen for atoms 

that are surrounded by neighbouring ligand atoms (see Figure 17). This seems to be the correct 

physical description because placing an atom in such a confined space will naturally be penalized. 

To further investigate this theory isosurfaces of the g-function of a 3D RISM-uv calculation are 
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shown in Figure 18. At the position of atom N7 Figure 18 shows no water density found for an 

isovalue of 2. This naturally leads to a strong penalisation in the resulting PMF. 

Now the focus changes to the atomwise calculation of the free energy derivatives for the 

four TGT complexes and in particular the TGTCU/amqCU (CU being an abbreviation for the 

united atom variant) and the TGTH/amqH complex. For all other complexes the corresponding 

Figure 19: Binding modes of the three complex structures with all residues of the protein residues in a 5 Å radius in orange. (A) 
shows the binding mode of the TGTMD/amqMD,CH3 complex: distance of H3 (blue) to the closest protein atom (yellow, HD2 of 
Tyr 106) is 2.35 Å and of H2 (red) to the same atom is 3.14 Å. (B) shows the binding mode of the TGT/amqCH3 complex: 
distance of H3 (blue) to the HD2 atom of Tyr 106 (left side) is 2.30 Å and to the OD1 atom of Asp 102 (buried in the binding 
site) is 2.52 Å. For H4 (green) the distance to the OD1 atom of Asp 102 (buried in the binding site) is 2.81 Å and 2.46 Å to the 
HE3 atom of Met 260 (right side). (C) shows the binding mode of the complex TGT/amqH: the distance of the H3 atom (blue) 
to the CD2 atom of Tyr 106 is 3.76 Å and 3.14 to the OD1 atom of Asp 102. 

Figure 18: A) Shows the partial amqH ligand (N7 is missing) in a top view inside the binding site. The white circle highlights the 
part of interest, where no water density is found. B) Shows the partial amqH ligand (N7 is missing) in a front view inside the 
binding site. The white circle highlights the part of the molecule where no water density is found. The oxygen densities are shown 
in red and the hydrogen densities in blue. Isosurfaces are shown for a isovalue of 2. 
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FEDs are shown in the appendix. Starting with the derivative with respect to the partial charge 

for which the resulting FEDs are shown in Figure 20, Figure 21, and the corresponding binding 

modes of the ligands in Figure 19. The FEDs are shown in a colour scale from red to white up 

to blue which represents negative, optimal and positive FED values respectively. The atom 

group of interest, consisting of CU (united atom methyl group) or H3, the partial holo FEDs 

with respect to the charge (Figure 20 (E, F) are positive (Table 4 upper part). This means that a 

less negatively charged group would lead to a better binder. The apo calculations show that the 

derivative is negative for TGTCU/amqCU and slightly positive for TGTH/amqH. To further assess 

these results a look at the actual charges for the amqH and amqCU ligand is helpful. Both ligands 

Figure 20: Atomwise FEDs for the TGTCU/amqCU system. The upper row shows the FEDs with respect to the  value for 

the partial holo (A) and apo (B) calculations. In the middle row the FEDs with respect to the Lennard-Jones Parameter  are 
shown for the partial holo (C) and apo (D) are shown. The last row shows the FEDs in regard to the partial charge q for the 
partial holo (E) and apo (F) calculations. The atoms are colour coded from red to white up to blue with red associated with a 
negative FED value (means that the parameter has to get smaller to approach an optimum) and blue with a positive FED value 
(means that the parameter has to get bigger to approach an optimum). The atom group of particular interest is encircled in red. 
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have a positive partial charge, but the amqH ligand is less negatively charged with a partial charge 

of 0.15 e, that leads to a charge difference of Δq = -0.06 e (q(amqH) – q(amqCU)). With this 

information it is now possible to get a measure of how large the influence of the actual change 

of the charges from CH3 to H could be by calculating qw    Δq, which is a linear 

approximation. This leads to a change of 1.93 kcal mol-1 for the partial holo calculation directly 

at the hotspot, and interestingly to a change of -8.08 kcal mol-1 at the neighbouring C3 atom, 

which is a member of the ring system. To account for a possible hysteresis effect the linear 

approximation for qw    Δq was also calculated and shows the opposite trends. Despite 

this being the desired outcome (the trend gets inverted) it also shows that there exists a hysteresis 

effect, in part caused by the rigid structures used for the calculations, because the effects do not 

cancel out completely (4.29 kcal mol-1). 

For the apo calculation the charge difference leads to a change of -0.19 kcal mol-1 directly 

at the position of H3 but to a change of 0.08 kcal mol-1 at the neighbouring ring position. The 

control calculation of  qw    Δq shows that directly at the hot spot the free energy change 

upon introduction of CH3 group would be slightly negative (-0.01 kcal mol-1). At the 

neighbouring C3 position the same calculation shows that the effect would be more or less 

cancelled out. This shows that for the apo calculations the hysteresis effect is larger than for the 

partial holo calculations.  All other atoms have rather minor contributions compared to that and 

cancel each other more or less out.  

What is interesting about this is that both calculation methods would lead to a total free 

energy change, by summing all contributions, from amqCU to amqH of -5.75 kcal mol-1 for the 

partial holo calculation and -0.12 kcal mol-1 for the apo calculation. This means that both 

calculation methods give the same general trend but show different signs at the hotspot position. 

This interesting effect should be further investigated. It is also of note that both methods seem 

to be able, although with opposing trends at the same site, to account for the change in the 

partial charges of the whole molecule, and it is reassuring to see that the FEDs are able to resolve 

that local changes can have a notable effects at another position. 

So far, the change introduced by the replacement of the methyl group by a hydrogen points, 

according to the calculated FEDs, in the right direction. But amqH is probably not the ideal 

ligand and maybe it is possible to get a better binding ligand by the introduction of a nitrogen 

at the position of C3, which would introduce an even less negative charge at the position 

H3/CU. 
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Table 4: FEDs with respect to q, , and  for TGTCU/amqCU (denoted with superscript 1) and  TGTH/amqH (denoted with 

superscript 0). The differences Δ{ q, , } are always calculated by Δ{ q, , } = Δ{ q, , }(0) - Δ{ q, , }(1). 

q: e; : Å; : kcal mol-1; qw  : kcal mol-1  e-1; w : kcal mol-1  Å-1;     ,,, qqw  : kcal mol-1; exp
HCH3G =-3.47 kcal mol-1 

− -2.93 kcal mol-1;[218] Holo
G

p calc,
HCH3 =-2.08 kcal mol-1; po calc,

HCH3
a

G  =3.71 kcal mol-1 

 

    apo partial holo 

atoms q(0) q(1) Δq(0)-(1)             

C1 -0.165 -0.159 -0.006 -0.07 -0.89 0.00 -0.01 138.88 53.61 -0.83 0.32 
C2 -0.087 -0.092 0.005 -1.58 -0.40 -0.01 0.00 136.67 50.67 0.68 -0.25 
C3 -0.136 -0.076 -0.060 -1.41 -1.05 0.08 -0.06 135.26 48.15 -8.08 2.87 
C4 0.213 0.210 0.003 -0.22 0.38 0.00 0.00 137.32 50.33 0.41 -0.15 
N5 -0.681 -0.680 -0.001 -1.23 1.90 0.00 0.00 100.20 35.94 -0.09 0.03 
C6 0.667 0.665 0.002 2.84 3.78 0.01 -0.01 136.55 49.75 0.26 -0.09 
N7 -0.888 -0.887 -0.001 -0.70 1.71 0.00 0.00 149.17 67.99 -0.13 0.06 
N8 -0.507 -0.506 -0.001 2.09 1.60 0.00 0.00 155.73 66.19 -0.16 0.07 
C9 0.719 0.719 0.000 6.12 4.06 0.00 0.00 140.41 53.03 -0.01 0.01 
O10 -0.624 -0.624 0.000 -0.45 -0.58 0.00 0.00 96.67 70.53 0.00 0.00 
C11 -0.210 -0.204 -0.006 -0.85 -0.68 0.01 0.00 141.80 53.32 -0.85 0.32 
C12 -0.052 -0.058 0.006 -2.42 -1.48 -0.01 0.01 138.64 51.66 0.83 -0.31 
H1 0.139 0.139 0.000 -1.29 2.29 0.00 0.00 46.80 16.54 0.00 0.00 
H2 0.136 0.136 0.000 2.32 2.33 0.00 0.00 40.95 14.01 0.00 0.00 
H3/CU 0.151 0.099 0.052 -3.70 0.24 -0.19 -0.01 37.35 22.21 1.93 -1.15 
H4 0.415 0.413 0.002 -0.68 -3.30 0.00 0.00 92.57 87.52 0.14 -0.13 
H5 0.415 0.413 0.002 -2.83 -0.59 0.00 0.00 93.95 87.90 0.14 -0.13 
H6 0.336 0.336 0.000 3.96 -1.72 0.00 0.00 94.33 63.08 0.00 0.00 
H7 0.156 0.156 0.000 -1.97 5.23 0.00 0.00 43.68 14.95 0.00 0.00 
net effect      -0.12 -0.07   -5.75 1.46 
hysteresis avg.      -0.02    -3.60  

 (0) (1) Δ(0)-(1)           

C1 3.400 3.400 - -0.71 -2.38 - - -0.61 -1.15 - - 
C2 3.400 3.400 - -1.30 -1.39 - - -0.63 -0.62 - - 
C3 3.400 3.400 - -0.45 -1.51 - - 0.08 -1.17 - - 
C4 3.400 3.400 - -1.24 -1.54 - - -0.73 -0.99 - - 
N5 3.250 3.250 - -3.26 3.11 - - -1.26 4.41 - - 
C6 3.400 3.400 - -1.19 -1.48 - - -0.03 -0.60 - - 
N7 3.250 3.250 - -3.31 1.93 - - 0.81 7.41 - - 
N8 3.250 3.250 - -0.35 -0.94 - - -0.27 -1.13 - - 
C9 3.400 3.400 - 1.33 1.22 - - 2.89 1.93 - - 
O10 2.960 2.960 - -4.28 -2.57 - - 2.53 2.77 - - 
C11 3.400 3.400 - -0.65 -0.91 - - -1.85 -1.64 - - 
C12 3.400 3.400 - -1.94 -1.93 - - -1.81 -0.84 - - 
H1 2.600 2.600 - -2.26 3.41 - - -2.00 3.49 - - 
H2 2.600 2.600 - 2.13 1.86 - - 2.19 2.25 - - 
H3/CU 2.600 3.905 -1.305 -2.38 0.05 3.11 0.07 -1.09 -0.12 1.43 -0.16 
H4 1.069 1.069 - -2.17 -2.57 - - -0.64 -2.29 - - 
H5 1.069 1.069 - -1.86 -2.27 - - -0.80 -2.52 - - 
H6 1.069 1.069 - -0.30 -1.99 - - -0.46 -2.76 - - 
H7 2.600 2.600 - -0.62 0.44 - - -0.86 0.24 - - 
net effect      3.11 0.07   1.43 -0.16 
hysteresis  avg.      1.52    0.79  

 (0) (1) Δ(0)-(1)          

C1 0.598 0.598 - -0.86 -1.48 - - -0.78 -1.17 - - 
C2 0.598 0.598 - -0.96 -1.10 - - -0.68 -0.91 - - 
C3 0.598 0.598 - -0.58 -1.00 - - -0.40 -0.98 - - 
C4 0.598 0.598 - -0.99 -1.15 - - -0.80 -0.98 - - 
N5 1.181 1.181 - -1.02 -0.02 - - -0.84 0.09 - - 
C6 0.598 0.598 - -1.12 -1.29 - - -0.73 -1.04 - - 
N7 1.181 1.181 - -1.12 -0.32 - - -0.83 0.17 - - 
N8 1.181 1.181 - -0.53 -0.58 - - -0.67 -0.78 - - 
C9 0.598 0.598 - -0.07 -0.01 - - 0.51 0.24 - - 
O10 1.459 1.459 - -0.77 -0.48 - - -0.30 -0.14 - - 
C11 0.598 0.598 - -0.63 -0.79 - - -1.12 -1.14 - - 
C12 0.598 0.598 - -1.12 -1.16 - - -1.07 -0.86 - - 
H1 0.104 0.104 - -1.31 5.57 - - -1.13 5.63 - - 
H2 0.104 0.104 - 2.92 2.49 - - 3.07 3.09 - - 
H3/CU 0.104 1.216 -1.112 -3.56 -0.42 3.96 -0.47 -0.77 -0.73 0.85 -0.62 
H4 0.109 0.109 - -3.13 -3.72 - - -1.20 -3.37 - - 
H5 0.109 0.109 - -2.78 -3.27 - - -0.48 -3.48 - - 
H6 0.109 0.109 - -1.61 -2.94 - - 0.76 -3.79 - - 
H7 0.104 0.104 - -2.05 -0.11 - - 0.08 -0.39 - - 
net effect      3.96 -0.47   0.85 -0.62 
hysteresis  avg.      2.21    0.73  

sum net effect      6.95    -3.47  
sum hysteresis      3.71    -2.08  

)1(qw  )0(qw  qqw  )1( qqw  )0( )1(qw  )0(qw  qqw  )1( qqw  )0(

)1(w )0(w   )1(w   )0(w )1(w )0(w   )1(w   )0(w

)1(w )0(w   )1(w   )0(w )1(w )0(w   )1(w   )0(w
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A look into the middle part of Table 4 reveals that the derivatives with respect to  for the 

systems TGTCU/amqCU and TGTH/amqH, which are also visualised in Figure 20 and Figure 21, 

have both a negative sign. The effect is not that strong for the TGTH/amqH system where the 

derivative is only -0.12 kcal mol-1 Å-1 and therefore is in the vicinity of minimum or maximum. 

This could only be decided by the calculation of the second order derivative. The apo calculations 

show a similar trend with the derivative for the TGTCU/amqCU system being negative and for 

the TGTH/amqH complex slightly positive. The linear approximation of the free energy change 

show for both calculation schemes a positive effect, with 3.11 kcal mol-1 and 1.43 kcal mol-1 

respectively. Both calculation schemes show a hysteresis effect in regard to the free energy 

change, which is stronger for the apo calculation than for the partial holo calculation. Nonetheless 

both calculations schemes show that for the design choice the results of the FEDs with respect 

to  could be interpreted to point into the same direction. Finding a group that shows a more 

positive partial charge and at the same time is bulkier than a methyl group is not easy. 

Three possibilities arise: one could keep the proposed change at position C3 that resulted 

from the FED with respect to the charge, which showed to have a rather significant effect on 

the resulting energies, disregarding the information about the derivative with respect to the -

value. Another possibility is to do the exact opposite thing and disregard the FED information 

with respect to the charge, which then leads to the proposition to introduce an amine or thiol 

group. The third possibility is to do the described change for C3 to N and at the same time keep 

the methyl group or exchange it by an ethyl group, to make it even more “bulky.” 

At last a look at the FEDs with respect to the -value for both systems and calculation 

schemes is warranted. Figure 20 and Figure 21 show the visualisation of the FEDs for both 

systems and the lower part of Table 4 the accompanying data. All FEDs for H3/CU are negative 

for both systems and calculation schemes. The calculations for the TGTH/amqH system show 

smaller derivatives than the derivatives for the TGTCU/amqCU system. This implies that a group 

with a bigger -parameter could have a positive effect on the binding characteristics. For both 

calculation methods this leads to the same trend of a positive free energy change resulting from 

the derivatisation of the methyl group with the hydrogen. The calculation schemes also show a 

hysteresis effect, with the apo calculations showing a stronger effect than the partial holo 

calculations. These results are in accordance to the aforementioned trends for the design 

direction and keep the three described changes as viable possibilities.  
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To close the examination of the hotspot FEDs up, the key conclusions and results are 

presented in the next paragraph. First: the calculations implicate that the biggest effect on the 

binding affinity, only from the standpoint of the influence the non-bonded force field 

parameters have, has the change in the partial charges of amqCU to amqH. This effect 

overcompensates, only for the partial holo calculations, the negative change from the methyl 

group to the hydrogen that is seen for the changes of the - or  -values. If all effects of the 

linear approximation are summed up and the hysteresis effect is accounted for, the change from 

the methyl group to the hydrogen leads to a cumulative effect of 3.71 kcal mol-1 for the apo 

calculations and -2.08 kcal mol-1 for the partial holo calculations. Experimentally, the change in 

Figure 21: Atomwise FEDs for the TGT/amqH system. The upper row shows the FEDs with respect to the  value for the 

partial holo (A) and apo (B) calculations. In the middle row the FEDs with respect to the Lennard-Jones Parameter  are shown 
for the partial holo (C) and apo (D) are shown. The last row shows the FEDs in regard to the partial charge q for the partial 
holo (E) and apo (F) calculations. The atoms are colour coded from red to white up to blue with red associated with a negative 
FED value (means that the parameter has to get smaller to approach an optimum) and blue with a positive FED value (means 
that the parameter has to get bigger to approach an optimum). The atom group of particular interest is encircled in red. 
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the binding free energy amounts to -3.47 kcal mol-1 − -2.93 kcal mol-1. It should also be noted 

that the apo calculations are not able to reproduce the right trends with regard to the hysteresis 

effect for the partial charge and the  value. 

For the decision, which design direction to choose, this could mean that the change of C3 

to a N could have a greater effect on the binding free energy than the proposed changes that 

would account for the derivatives with regard to  and . For the apo calculations the picture 

inverts. Here the effect that is seen for the changes for  and  outweigh the binding affinity 

that is gained through the change of the partial charges. Because it is known that amqH binds 

better to TGT one could argue that the effect that is achieved through the changed partial 

charges outweighs the effects seen for  and . But this remains to be shown by further analysis 

of the system at hand. Furthermore, at first glance these results seem to be counter intuitive, 

because the inspection of the binding site reveals that the amqCH3 ligand is tightly wrapped in 

the binding site and could probably benefit from a smaller ligand footprint.  

Second: the optimal derivatisation for this position could be far from a hydrogen atom, if 

all contemplable derivatives are considered. The most promising design direction would point 

into the direction of a change of C3 to a N or the introduction of a ethyl group. It should be 

noted that a lot of effects play a role for the binding process and actual binding affinity and the 

results presented here should not be over-interpreted. 

Third: the focus in this study was laid on the H3/CU position because experimental data 

for that derivatisation was already published and this rather subtle change has a quite 

pronounced effect on the measured binding affinities. This makes it a good test system, but 

there are other interesting sites in the molecule that could have an even greater effect on the 

binding affinity. For example: position H6 shows a rather strong derivative with respect to the 

partial charge, although a derivatisation at this site could be synthetically hard, introduction of 

a more negatively charged atom or group could have a strong effect. This shows, that a posteriori 

“prediction” with the help of FEDs is indeed possible and seems to lead to plausible results. 

The results of the fully molecular TGTCH3/amqCH3 in the crystal structure and MD relaxed 

variant are also supporting the conclusions drawn from the united atom variant. 
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 Concluding remarks 

In the quest for designing optimal ligands a step in the right direction was shown in this 

study. This was grounded on an in-depth analysis of the technical and numerical subtleties of 

such calculations (assessment of grid sizes and closure relations on the RET/AD80 system). 

After these challenges could be tackled, a workflow was established and directly applied to a 

model system consisting of the TGT/amq complex, this allowed the revelation of interesting 

and counter intuitive design directions. On the one hand, this led to several a priori design ideas 

for the concrete derivatisation of the amq-ligand (exchange C3 with N and/or exchange of 

methyl with ethyl or the introduction of thiol/amine group) that could lead to optimised binding 

characteristics for the TGT/amq complex system. On the other hand, an explanation for the 

better binding affinity of the the amqH ligand could be given. The findings of this study should 

be further backed up by other means, like TI or the 3D RISM-uv based method that was used 

in Ref. [220] and ultimately experimental confirmation is of paramount importance to assess the 

true potential this methods has. 

The field of ligand optimisation is rife with opportunities and 3D RISM-uu can play a 

significant role, if some of the weaknesses described in this work can be addressed. For example: 

To overcome the systematic shortcomings, overestimation of the desolvation penalty, of the 

partial holo calculations it would be a good idea to not only place the atom at the original ligand 

position, but to probe its surroundings. This would also solve another inherent problem: placing 

and calculating FEDs only at the positions of the original atom disregarding the changes in bond 

lengths upon introduction of another atom or group. 

Something which is evident from the presented data, is that FEDs with regard to the 

different force field parameters can lead to contrasting suggestions for the actual design 

direction, which in turn leaves room for decisions. It was also shown that the partial holo 

calculations seem to be able to discriminate between the two binders and after accounting for 

the hysteresis effect the experimental trend could be reproduced. 
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5.1  Introduction 

In this chapter a new scoring function based on 3D RISM-uu and deep neural networks or 

gradient boosted trees is proposed and evaluated. 

The study is designed to show that the addition of atomwise PMFs as an input to a scoring 

function improves the resulting model with regard to a model that was solely trained on 

molecular fingerprints. As training data a subset of the PDBbind (“refined set” as defined in 

Ref. [53]) and as test data, the respective “core[53] set” will be used. The input data for the 

different models will be either comprised of structural information only, in the form of circular 

Morgan Fingerprints,[61] calculated by RDkit[221] (version 2016.09.4) or the same fingerprints 

with added atomwise PMF values, calculated by 3D RISM-uu. 

5.2  Computational details 

5.2.1  Structure preparation 

The PDBbind[53] 2015 refined set contains 3706 structures, which were stripped of the 

remaining crystal water. If more than one conformation of the protein was deposited, the most 

populous conformation was chosen, which is included in the PDB-file. For the parametrisation 

5 Novel scoring function based on 
3D RISM-uu and machine 
learning 
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the ff14SB[222] force field of the AMBER14[213] package was used for the proteins, GAFF 1.5[208, 

209] for the ligands, and parameters of Li et. al.[223] were used for divalent ions. Partial charges of 

the ligands were calculated using the AM1-BCC method.[210, 211] The same procedure was done 

for the 2014 core set of the PDBbind, which contains 195 complexes. All structures and 

parameter files generated can be found in the electronic appendix. 

5.2.2  Workflow for RISM-uv/uu calculations 

As a basis for all following RISM calculations, the χ-function (result of 1D RISM-vv) was 

calculated with the dielectrically consistent (DRISM/HNC) theory[190, 191] for pure water 

(modified TIP3P, see chapter 3). For further details about the generation of the χ-function the 

reader is referred to page 50. The sole difference between the 1D RISM-vv calculations and the 

1D RISM-uv of the ligand atoms is the maximum residual norm for the DIIS convergence 

criterion which was set to 10-7 for the former calculations and to 10-5 for the latter. Throughout 

all 1D RISM-uv calculations the PSE2 closure was used.  

For the necessary 3D RISM-uv calculations of the proteins, the grid size was automatically 

chosen to encompass the full complex with a margin of 20 Å in all directions and the grid 

spacing was set to 0.3 Å. Long range electrostatics were evaluated using the PME[215, 216] of order 

8 and short range interactions were cut at 14 Å. Additionally monopole renormalization was 

used[28, 130] for every calculation. As the convergence criterion the maximum residual norm of 

the direct correlation functions was set to 10-4 and 12 DIIS vectors were used to accelerate the 

convergence. For all 3D RISM-uv calculations, the PSE2 closure relation was used.  

All RISM-uu calculations were done using the aforementioned 1D/3D RISM-uv calculations as 

a basis and thermodynamic variables were held constant. The atomwise PMFs were calculated 

Figure 22: Simplified workflow for the generation of scoring functions based on 3D RISM-uu. 
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according to the so-called apo scheme of the previous chapter. To recapitulate: all ligand atoms 

are placed (at the original coordinated of the holo form) in the empty binding site and the PMF 

is calculated as described in chapter 2.3  The workflow used in this work is shown in Figure 22. 

5.2.3  Scoring function generation 

Due to problems regarding the automated parametrisation, convergence problems for the 

1D RISM-uv calculations and technical issues, the final dataset for training and validation 

purposes consisted of 1321 complexes of the refined set and 54 complexes of the core set. In 

the refined set, the experimental data was comprised of either Ki (705 complexes) or Kd
 (616 

complexes) values. The core set consisted of 34 Ki values and 20 Kd values. The input of the 

scoring function generation was either structural ligand information in the form of circular 

Morgan Fingerprints alone or circular Morgan Fingerprints in conjunction with PMFs calculated 

by 3D RISM-uu. 

Now, some closing words about the dataset composition and the distribution of binding 

affinities: it would be desirable for the used methods if the experimental binding data would be 

distributed uniformly, which is clearly not the case (see Figure 23). Complexes with really high 

and really low affinities are underrepresented. 

 

Figure 23: Shows the distribution of binding affinities in the training data set. Complexes with high and low affinities are 
underrepresented. 



NOVEL SCORING FUNCTION BASED ON 3D RISM-UU AND MACHINE LEARNING

 

70 | P a g e  

Table 5: Hyperparameters of the deep neural networks used for the scoring functions. The parameters are the result of 
extensive optimisation by the hyperband[224] algorithm. 

hyperparameter DNN1 DNN2 

number of layers 3 4 

activation function tanh tanh 

number of hidden units per layer 250 150 

weight initialisation uniform uniform 

L2-regularisationa 0.1 0.1 

dropoutb 0.5 0.6 

learning ratec 0.002 0.002 

batch size 60 60 

training epochs 2500 2500 
aadditive term that reduces overfitting; bSrivastava et al.[225] reduces overfitting; cstep size 

for the gradient descent 

The Morgan Fingerprints were calculated by RDkit[221] (version 2016.09.4) with a radius of 

4 and a bit length of 1024. Because the size of the feature vector has to be constant, for the 

machine learning methods used in this work. The PMFs for the scoring function were 

represented in a histogram. This was done in the following manner: the overall range of the 

histogram was chosen to be symmetric from -200 kcal mol-1 to +200 kcal mol-1 with all values 

smaller or bigger than that bundled into one bin. Afterwards, 500 linearly spaced bins were 

created (see Figure 24). The machine learning libraries that were used are Keras[226] with the 

Theano[169–171] backend for the neural networks based scoring functions and for the 

XGBoost[99] models, the library of the same name. All predictions can be found in the electronic 

appendix for chapter 5. 

Figure 24: Example for a PMF histogram generated for the scoring functions. 
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Table 6: Hyperparameters for the XGBoost model used in this work. 

hyperparameter  

number of estimatorsa 1000 

maximum depthb 15 

L1-Regularisation 0.01 

L2-Regularisation 0.01 

c 0.3 

subsampled 0.3 

minimum child weighte 4 
anumber of boosted trees; bmaximum depth of each tree; cminimum loss reduction required 
for further partitioning of leaf node; dfraction of observations that are randomly sampled for 
each tree; econtrols overfitting 

 

Hyperparameters for the machine learning methods were chosen after extensive 

optimisation either with the hyperband[224] algorithm and a random 90/10 split into 

training/validation set for the neural networks or an exhaustive grid search in conjunction with 

5-fold cross-validation for XGBoost. The resulting parameter sets that were used for all further 

binding affinity predictions are shown in Table 5 for the deep neural networks and in Table 6 

for the XGBoost model. For the final model generation the respective training set was randomly 

split into a training set consisting of 90% of the data and validation set that consisted of 10% 

of the data, which was used during training as a “early stopping” criterion. “Early stopping” can 

be understood as a convergence criterion and helps to reduce overfitting. The assignment to 

the respective set (training or validation) was done randomly. The core set was solely used as a 

test set and for comparison of the predictive capabilities of the different models. In a last 

approach, the best three models were combined in a so-called bagging approach by averaging 

over their predictions.  

5.3  Results and discussion 

This chapter can be split into three parts: First, the results for the scoring function 

generated with the deep neural networks are shown. This is followed by the results of the 

XGBoost model. At last the results of the bagging approach are presented. To further assess 

the quality of the models, it was calculated if the models are able to distinguish between relatively 

better binders by calculating: 
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  calc. exp.,complexes),()pp(p ,,  jiKKK jxixx  (77) 

where 
xKp  is the pairwise differences between the experimental pK values or the computed 

pK values. By an elementwise comparison of the sign of xKp  for the experimental data and 

calculated data it could be determined how well the scoring functions are able to predict relative 

changes between two molecules.  

 

Table 7: Performance metrics for the different scoring functions trained with the neural networks, XGBoost or the “bagged” 
approach on the test dataset (core set PDBbind). The best value for every column is emphasized in bold. 

model 
dataset 

subgroup 
feature composition R p-value RMSE slope intercept 

% trends 
right 

DNN1 whole fingerprint + PMF 0.66 4.910-8 1.56 0.41 3.59 74.6 

DNN1 only Ki fingerprint + PMF 0.56 6.510-4 1.78 0.44 3.43 68.6 

DNN1 only Kd fingerprint + PMF 0.44 5.210-2 1.91 0.30 4.11 65.6 

DNN1 whole fingerprint 0.48 2.110-4 1.87 0.33 3.90 66.1 

DNN1 only Ki fingerprint 0.54 9.910-4 1.75 0.37 3.88 66.7 

DNN1 only Kd fingerprint 0.38 9.510-2 1.97 0.25 4.43 64.2 

DNN2 whole fingerprint + PMF 0.68 1.810-8 1.54 0.41 3.60 74.3 

DNN2 half fingerprint + PMF 0.53 2.810-5 1.75 0.29 4.09 - 

DNN2 only Ki fingerprint + PMF 0.56 6.110-4 1.73 0.39 3.71 69.2 

DNN2 only Kd fingerprint + PMF 0.46 4.110-2 1.83 0.29 4.08 66.3 

DNN2 whole fingerprint 0.52 6.510-5 1.80 0.32 4.16 66.5 

DNN2 half fingerprint 0.49 1.410-4 1.81 0.28 4.38 - 

DNN2 only Ki fingerprint 0.54 1.010-3 1.77 0.38 3.79 66.7 

DNN2 only Kd fingerprint 0.37 1.110-1 1.94 0.22 4.41 61.0 

XGBoost whole fingerprint + PMF 0.70 4.210-9 1.60 0.30 4.03 75.8 

XGBoost half fingerprint + PMF 0.66 3.310-8 1.64 0.27 4.22 - 

XGBoost only Ki fingerprint + PMF 0.75 2.810-7 1.53 0.33 3.91 77.9 

XGBoost only Kd fingerprint + PMF 0.71 4.610-4 1.51 0.33 3.52 75.3 

XGBoost whole fingerprint 0.66 5.310-8 1.68 0.24 4.35 74.1 

XGBoost half fingerprint 0.62 3.610-7 1.69 0.24 4.42 - 

XGBoost only Ki fingerprint 0.81 8.710-9 1.50 0.32 3.93 77.0 

XGBoost only Kd fingerprint 0.59 6.510-3 1.69 0.22 4.11 66.8 

“bagged” whole fingerprint + PMF 0.71 2.510-9 1.52 0.37 3.74 76.1 

“bagged” only Ki fingerprint + PMF 0.63 5.710-5 1.59 0.38 3.68 72.4 

“bagged” only Kd fingerprint + PMF 0.54 1.410-2 1.70 0.30 3.90 67.9 

“bagged” whole fingerprint 0.57 5.710-6 1.70 0.30 4.13 69.5 

“bagged” only Ki fingerprint 0.63 7.110-5 1.61 0.35 3.90 69.9 

“bagged” only Kd fingerprint 0.45 4.810-2 1.82 0.23 4.32 67.4 

 

In Table 7, the results for the scoring functions trained on the core set with the two different 

networks are shown. From the data it is evident that the neural network results scale rather 
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strong with the dataset size. This is expected because it is known that neural networks and in 

particular deep neural networks can scale to huge datasets of several million entries very well.[227] 

This was further investigated by cutting the training dataset into halves and retraining one model 

for both feature sets. For the best model trained on the fingerprint + PMF information, the 

performance measured by the Pearson correlation coefficient R fell from 0.68 to 0.53 and for 

the model trained on the fingerprint information alone from 0.52 to 0.49. The two best models 

were trained on the whole dataset, with the fingerprints and added PMF information calculated 

by 3D RISM-uu, and have a R of 0.66 for DNN1 and 0.68 for DNN2. The model (DNN2) also 

has the best RMSE with 1.54. All models have trouble predicting (see Figure 26) really low and 

high binding affinities, which becomes evident from their respective slopes and intercepts.  

 

Table 8: Performance metrics for the different scoring functions trained with the neural networks, XGBoost or the “bagged” 
approach on the training dataset (refined set PDBbind). The best value for every column is emphasized in bold. 

model 
dataset 

subgroup 
feature composition R p-value RMSE slope intercept 

DNN1 whole fingerprint + PMF 0.88 0.0 0.86 0.74 1.69 

DNN1 only Ki fingerprint + PMF 0.93 0.0 0.67 0.85 1.04 

DNN1 only Kd fingerprint + PMF 0.91 0.0 0.73 0.78 1.37 
DNN1 whole fingerprint 0.83 0.0 1.02 0.70 1.68 

DNN1 only Ki fingerprint 0.92 0.0 0.71 0.79 1.38 

DNN1 only Kd fingerprint 0.90 0.0 0.79 0.76 1.52 
DNN2 whole fingerprint + PMF 0.88 0.0 0.88 0.69 1.91 

DNN2 only Ki fingerprint + PMF 0.93 0.0 0.68 0.81 1.27 

DNN2 only Kd fingerprint + PMF 0.91 0.0 0.76 0.73 1.53 
DNN2 whole fingerprint 0.85 0.0 0.94 0.70 1.90 

DNN2 only Ki fingerprint 0.92 0.0 0.71 0.79 1.36 

DNN2 only Kd fingerprint 0.90 0.0 0.78 0.76 1.42 

XGBoost whole fingerprint + PMF 0.90 0.0 0.96 0.58 2.37 

XGBoost only Ki fingerprint + PMF 0.90 0.0 0.94 0.60 2.30 

XGBoost only Kd fingerprint + PMF 0.89 0.0 0.95 0.57 2.32 
XGBoost whole fingerprint 0.87 0.0 1.03 0.54 2.58 

XGBoost only Ki fingerprint 0.87 0.0 1.02 0.56 2.59 

XGBoost only Kd fingerprint 0.86 0.0 1.04 0.52 2.60 

“bagged” whole fingerprint + PMF 0.90 0.0 0.85 0.67 1.99 

“bagged” only Ki fingerprint + PMF 0.93 0.0 0.69 0.75 1.54 

“bagged” only Kd fingerprint + PMF 0.92 0.0 0.76 0.70 1.74 

“bagged” whole fingerprint 0.88 0.0 0.90 0.65 2.05 

“bagged” only Ki fingerprint 0.92 0.0 0.76 0.71 1.78 

“bagged” only Kd fingerprint 0.90 0.0 0.80 0.68 1.85 
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Figure 25: Calculated and experimental data for the training set (refined set) plotted against each other for the neural network models 
trained in this work. The top row and second row is comprised of models that were trained on fingerprint + PMF information, the 
bottom rows show models that were trained only on the fingerprint data. From left to right the models were trained on the whole dataset, 
Ki dataset or Kd dataset. 
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Figure 26: Calculated and experimental data for the test set (core set) plotted against each other for the neural network models trained 
in this work. The top row and second row is comprised of models that were trained on fingerprint + PMF information, the bottom row 
shows models that were trained only on the fingerprint data. From left to right the models were trained on the whole dataset, Ki dataset 
or Kd dataset. 
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The deep neural network models really benefit from the added PMF data. The best 

model that was trained solely on the fingerprint information reaches an R of 0.54 and an RMSE 

of 1.77 (core set). From the models trained on the pure datasets, that only incorporated either 

Ki or Kd data, the models trained on the former show the better performance. The models 

trained with the added PMF data slightly outperform the models trained only on the fingerprint 

data. The worst performing models were trained on the Kd data only, in particular the model 

trained on the fingerprint information alone that only reached an R of 0.37 and RMSE of 1.94. 

One possible explanation lies within the slightly bigger dataset for the Ki data (705 datapoints 

for Ki and 616 datapoints for Kd). It is interesting that the best DNN models are able to predict 

the low and high affinity complexes rather well, although these complexes are underrepresented 

in the training set (see Figure 23). This hints probably at an underlying generalisation capability, 

which means a good transferability of the model to unseen data that would be much desired. 

All models are able to predict 61.0 % to 74.6 % of the relative trend changes within their 

respective datasets (core set). The best models in this respect are DNN1 and DNN2 trained on 

Figure 27: Calculated and experimental data for the training data (refined set) plotted against each other for the XGBoost 
models trained. The top row shows models that were trained on fingerprint + PMF information, the bottom row shows models 
that were trained only on the fingerprint data. From left to right the models were trained on the whole dataset, Ki dataset or Kd 
dataset. 
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the whole dataset and fingerprint + PMF information which can predict 74.6 % or 74.3 % of 

the correct trends, respectively. 

Next a look at the outliers is warranted, for which the corresponding prediction data is 

shown in Table 13, Table 14, and Table 15 of the appendix. For the whole data set the DNN 

models overestimate the binding affinity of the complexes with the pdbcode 1UTO and 3G2Z 

the most, with the experimental pKi being 2.27 and 2.36 respectively. The calculated pKi lie in 

the range of 4.73 – 4.89 for 1UTO and 5.71 – 5.78 for 3G2Z.  Both complexes have small 

ligands in the range 122 g/mol to 179 g/mol. The proteins that form the aforementioned 

complexes both belong to the hydrolase family. The complexes where the binding affinity is 

underestimated the most are 1HFS and 1MQ6, where the experimental pKi is 8.70 and 11.15 

respectively. The calculated pKi
 range between 3.37 – 4.59 for 1HFS and 7.16 – 7.19 for 1MQ6. 

Both ligands have higher molecular weights between 586 g/mol and 705 g/mol. The proteins 

that form the complexes are a hydrolase in the case of 1HFS and Factor Xa in the case of 1MQ6. 

Figure 28: Calculated and experimental data for the test data (core set) plotted against each other for the XGBoost models trained. 
The top row shows models that were trained on fingerprint + PMF information, the bottom row shows models that were trained 
only on the fingerprint data. From left to right the models were trained on the whole dataset, Ki dataset or Kd dataset. 



NOVEL SCORING FUNCTION BASED ON 3D RISM-UU AND MACHINE LEARNING

 

78 | P a g e  

One common denominator between all these ligands is that they all have more or less extended 

π-systems. This could point into the direction of a systematic problem because the ansatz chosen 

for this work relies heavily on atomwise PMFs calculated in the apo binding site, where every 

information about aromaticity is lost. Thus the only information the models have about the 

aromaticity of the ligands is provided by the fingerprints which could be not sufficient for a 

more accurate prediction. 

To investigate the possibility of overfitting the models were also applied to their 

respective training data set (refined set). All DNN models perform significantly better, with 

regard to all performance metrics, on their respective training data set. Interestingly the best 

performance is achieved on the Ki dataset with the added PMF data, where DNN1 and DNN2 

reach an R of 0.93 and RMSEs of 0.67 and 0.68 respectively. Is this a sign that the underlying 

experimental data is more reliable for the Ki data? The better performance on the training data 

is also a hint that overfitting could be a problem for the DNN models. 

Figure 29: Calculated and experimental data for the training set (refined set) plotted against each other for the “bagged” 
models. The top row results from the bagging of the models that were trained on fingerprint + PMF information, the bottom 
row shows models that were bagged on models that were trained on fingerprint data alone. From left to right the models are 
shown for the whole dataset, Ki dataset or Kd dataset. 
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Now coming to the results for the trained XGBoost model, which are summarized in Table 

7 and Figure 28. The XGBoost model also seems to benefit from a larger dataset, which is seen 

by comparison of the performance metrics for the whole and the half dataset with their 

respective feature sets. In detail, this means that the R of the model that was trained on half of 

the dataset and the fingerprint + PMF data falls from 0.70 to 0.66 and the RMSE rises from 

1.60 to 1.64. If the model is trained only on the fingerprint data the R falls from 0.66 to 0.62 

and the RMSE rises slightly from 1.68 to 1.69 (on core set). Interestingly, the overall best result 

for the trained XGBoost models was achieved on the dataset containing only the Ki data and 

fingerprints: this model reaches an R of 0.81, an RMSE of 1.50 and predicts 77.0 % of the 

correct trends (core set).  

The best model that was trained on the fingerprint + PMF data was also trained on the Ki 

data alone. It has an R of 0.75, an RMSE of 1.53 and predicts 77.9 % of the trends. The worst 

Figure 30: Calculated and experimental data for the test set (core set) plotted against each other for the “bagged” models. The top 
row results from the bagging of the models that were trained on fingerprint + PMF information, the bottom row shows models 
that were bagged on models that were trained on fingerprint data alone. From left to right the models are shown for the whole 
dataset, Ki dataset or Kd dataset. 
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models trained on both feature sets were trained on the Kd data alone and achieve for the 

fingerprint feature set an R of 0.59, an RMSE of 1.69 and predict 66.8 %. For the “fingerprint 

+ PMF” feature set, the worst model has an R of 0.71, an RMSE of 1.51 and predicts 75.3 % 

of the correct trends. Apart from the Ki, dataset the performance metrics for the models trained 

on the whole and on the Kd data benefit from the added PMF data. For example, for the whole 

dataset added PMF data leads to a better R by 0.04, a better RMSE by 0.08 and a change in the 

slope and intercept that are also favourable. For the Kd dataset these trends are even bigger. 

Comparing the XGBoost models with their respective DNN models, shows that the 

XGBoost models produce a tighter distribution with a higher correlation coefficient. For the 

RMSEs the picture changes only in respect to the best DNN (DNN2/whole dataset/ 

fingerprint + PMF) model which achieves a similar or even better RMSE than the XGBoost 

models. A look at the slopes of the linear regression reveals that the DNN models seem to 

perform better with slopes that are slightly better than the XGBoost models. The consequence 

of the weak slopes of the XGBoost models is that they are not very sensitive in regard to really 

strong and weak binder, but are able to discriminate between binders and non-binders rather 

well. 

Regarding the outliers the same trend is seen for the DNN models holds true for the 

XGBoost models. They too have problems with molecules that have extended π-systems which 

could be a problem with the representation of the PMFs in an atomwise manner. 

In Table 8 and Figure 27, the data for the XGBoost models on their respective training 

data set is shown. The XGBoost models also show a higher performance on the training set 

than on the test, but overall the differences are not as high as for the DNN models. Interestingly, 

the slopes of the XGBoost models on the training data do not benefit as much as the DNN 

models, which is in accordance to the performance on the test data were the XGBoost models 

showed problematic behaviour regarding the slopes. Thus, this could be an inherent weakness 

of the XGBoost model regarding the non-uniform binding affinity distribution. Overall the 

XGBoost model seems to be unlikely to suffer from significant overfitting. 

To enhance the predictive capabilities of the trained models they were combined in a 

“bagging” approach similar to Ashtawy et al.[54] This was done by computing the arithmetic mean 

of the predictions for both DNN and the XGBoost models. The results for this are shown in 

Table 7 and Figure 30. 
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The dataset and feature combination that benefits most from the bagging approach is the 

whole dataset in combination with fingerprint + PMF information where an R of 0.71, RMSE 

of 1.52, and a slope of 0.37 is achieved, which is better compared to all other models trained on 

this dataset. Compared to the DNN models, the “bagged” models show only slightly better 

results for the R and RMSEs. The slopes and intercepts are generally better for the DNN models 

alone, except for the model that was trained on the whole dataset and fingerprint information 

here the bagged approach shows the slightly better slope. In case of the XGBoost models, the 

result of the comparison is mostly inverted: apart from the model that was trained on the whole 

dataset and fingerprint + PMF information all other XGBoost models show better R values 

than their “bagged” counterparts. The slopes and intercepts of the XGBoost models trained on 

the Ki data and fingerprint +PMF information are better than the respective bagged model, 

which is also the case for the intercept of the model that was solely trained on the fingerprint 

and the Kd data.  

Now, the question arises how the presented results compare to other work that was done 

in this field. In Table 9, a comparison between other machine learning based scoring functions, 

classical scoring functions and the models presented in this work is shown. The best performing 

models are either based on neural networks, combined through a “boosting” (BsN-Score) or 

“bagging” (BgN-Score) approach or based on a random forest (RF). As feature set all these 

models used a “meta” set comprised of descriptors taken from X-Score[38] (X), AffiScore[228] (A), 

Gold[36] (G), and RF-Score[45] (R). 

Table 9: Comparison of other scoring functions to the best models trained in this work. All scoring functions were tested on 
the core set or a subset of the PDBbind. The models calculated in this work are underlined. 

Machine learning 
based R RMSE 

BsN-Score::XARG 0.82
a
 1.38 

BgN-Score::XARG 0.80
a
 1.45 

RF::XARG 0.79
a
 1.50 

Bagc 0.71
a
 1.52 

XGBoostc 0.70
a
 1.60 

DNN2c 0.68
a
 1.54 

SNN-Score::X 0.68
a
 1.76 

Classical   

X-Score::HMScore 0.64
a
/0.61

b 
1.87 

DrugScoreCSD 0.57
a
/0.53

b
 - 

SYBL::ChemScore 0.55
a
/0.59

b
 - 

aAshtawy et. al.[54], bLi et. al.[13] test set based on PDBbind core set, cthis work 
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The models presented in this work are competitive with the top performing scoring 

functions and outperform classical scoring functions significantly. It has to be noted that the 

models in this work could only be applied to a subset of the core set of the PDBbind (see 

computational details). The benefit of the features chosen in this work is that, in case of the 

PMF data, they retain a degree of chemical and physical interpretability. For the top performing 

machine learning models (BsN-Score, BgN-Score, RF) this is not the case, because they use 

such a wide set of (overlapping) features. Thus the ansatz chosen in this work seems to be 

promising and leaves much room for improvement.  

5.4  Concluding remarks 

This chapter showed that it is not only possible to derive a scoring function, based on 

fingerprints and PMFs calculated by 3D RISM-uu, but that the models presented in this work 

are competitive with other scoring functions, that are based on machine learning techniques and 

even outperform classical scoring functions. This conclusion was gained after training several 

models with varying compositions of the underlying dataset and two different feature sets that 

either contained only structural information, based on fingerprints or fingerprints + PMF 

information calculated by 3D RISM-uu. The training dataset itself was composed of a subset of 

the PDBbind refined set (1321 complexes). The external test set was a subset of the 

corresponding core set (54 complexes). The scoring functions were either trained with deep 

neural networks or with a boosted regression tree method, called XGBoost. The best result that 

was achieved with the whole dataset was gained by a bagging approach, which is simply the 

arithmetic mean of all models trained and reached a Pearson correlation coefficient of 0.71 and 

an RMSE of 1.52.  

Nonetheless, there is a lot of work to be done. First, the distribution of binding affinities 

is far from uniform, which would be desirable for the methods being used in this work. A more 

uniform distribution could be enforced by taking all complexes with very low/high binding 

affinities and taking an appropriate amount of complexes with medium binding affinities in a 

way that the subset of the data resembles a uniform distribution. Then this process needs to be 

repeated until all complexes with medium binding affinities are allotted to a subset. This would 

generate several subsets which could then be used for further training purposes. The second 



NOVEL SCORING FUNCTION BASED ON 3D RISM-UU AND MACHINE LEARNING

 

83 | P a g e  

problem is the overall size of the dataset. It would be really beneficial if more data was available, 

which would probably be the single most important factor for the generation of better models.  

On the architectural front of the machine learning methods employed several ideas come 

to mind: For example, convolutional neural networks could be used for the prediction, which 

are generally able to extract features of interest and were already applied in the field of binding 

affinity predictions (see Ref . [57]).  

On the physics side of the equation, the 3D RISM-uu framework needs to be advanced to 

the fully molecular equation, which would then allow oneself to feed the calculated molecular 

PMF information, which is already on a grid directly into a convolutional deep neural network. 

Further, the results indicate that aromaticity is a problem for the models trained in this work. 

This could be due to the atomwise PMFs that are based on calculations in the apo binding site. 

It would thus be possible to use the partial holo that was presented in chapter 4, which would be 

able to account for effects based on the aromaticity of the ligand. This would lead to a 

significantly higher computational demand in respect to the apo calculations, but would still be 

faster than TI-MD calculations. The scoring function generation could also be coupled with the 

FED information, which could possibly lead to better results. 

With the ability to distinguish between the quality of two binders in 76 % of the cases, one 

could envision a in silico automated molecule optimizer that couples a decent scoring function 

with an algorithm, which optimizes the binding affinity. One possible optimisation algorithm 

could be a “reinforcement learner.” Reinforcement learning recently achieved fame with the Go 

playing program AlphaGo[229] by DeepMind, which was the first program to defeat a top human 

Go player. AlphaGo relied heavily on reinforcement learning and in particular on “Deep Q-

learning” and variants thereof.[230–233] In simple terms, a reinforcement learning algorithm tries 

to find a policy that maximizes a future reward signal. This is done in the following way: The 

algorithm starts by taking a more or less random action. For the in silico automated molecule 

optimizer this would mean to change an atom or group in the molecule to optimize. This change 

is evaluated by the “environment.” Here comes the scoring function into play, which ranks both 

molecules against each other. If the change leads to a better binder, relatively to the old one, the 

algorithm gets a reward which gets fed back into a deep neural network, which tries to maximize 

future rewards. This is done iteratively and the random steps are downregulated, but never 

completely (balance between “exploration” and “exploitation”) replaced by the learned policy 
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that hopefully maximizes rewards and therefore maximizes the binding affinity of a molecule to 

its target.  

Another possible route would be to use “generative adversarial networks” (GANs) which 

were invented by Goodfellow[234]. They are gaining popularity[235, 236] within the machine learning 

community and are often used to create realistic looking images.[237] The principle behind GANs 

is that two networks compete with each other. One network, the generator, tries to deceive the 

other network, in this case a scoring function, to misclassify his generated molecules as good 

binders, thereby generating new and hopefully better binders. A further advantage could be that 

the model potentially generates molecules which are easy to synthesise because they are heavily 

influenced by the molecules that are already known. 
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The aims of this work were to develop and implement novel tools to predict and use PMF 

data calculated by 3D RISM-uu. First, free energy derivatives (FED) were defined within the 3D 

RISM-uu framework and then applied to a model system comprised of the 18-crown-6-ether 

and a potassium ion. The results from this study were then translated and refined for the usage 

with two protein ligand systems, namely RET/AD80 and TGT/amq. In the last part of this 

work a novel scoring function, based on structural fingerprint data and PMFs calculated by 3D 

RISM-uu, was implemented and evaluated.  

It was shown that PMF and FED data calculated for the crown ether model system were 

in reasonable agreement with already published experimental and theoretical data. It was also 

shown that 3D RISM-uu is able to compute the correct topography of the PMF hypersurface 

compared to explicit TI-MD simulations. A big advantage of the 3D RISM-uu ansatz is on one 

hand the orders of magnitude greater computational efficiency compared to MD based methods 

and on the other hand the better description of the solvent distribution compared to typical 

implicit solvent models. A typical calculation with the apo scheme takes one to two hours 

(including the uv calculation), one to two days in the partial holo scheme and a typical TI-MD 

would take one to two weeks. 

These promising results were then translated to two protein ligand systems (RET/AD80 

and TGT/amq). Where it could be shown that calculations with PSE order 2 and a grid spacing 

of 0.3 Å seem to give the best compromise between the convergence behaviour of the 3D 

RISM-uv calculations and correct (within the method) description of the PMF data. For the 

TGT/amq system it could be shown that the difference in binding affinity between the amqH 

and amqCU ligand can be best explained by the change of the partial charges within the molecule 

(this effect was strongest for the neighbouring atoms). The strong effect of the changed partial 

charges could mean that the polarizability plays a crucial role in this system. Even after 

accounting for the hysteresis effect the experimental trend could be reproduced using FEDs, 

calculated by 3D RISM-uu, and a linear approximation scheme. Furthermore, a new design 

6 Summary and Conclusion 
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direction, based on the FEDs calculated with respect to the typical non-bonded force field 

parameters, could be proposed. This new design direction could possibly lead to an even better 

binder, which has to be verified by other theoretical methods (e.g. TI-MD) and ultimately by 

experimental verification. 

In the last part of this work a novel type of scoring function based on structural data, in 

the form of molecular fingerprints, and PMF data calculated by 3D RISM-uu was trained using 

modern machine learning methods. The trained scoring functions showed comparable 

performance in comparison to other machine learning based scoring function and 

outperformed classical scoring functions. 

In the immediate future the proposed models for the computation of the FEDs should be 

enhanced by alleviating the problem of the fixed ligand geometry in a practical and 

computationally feasible way. One idea would be to probe the surrounding of the original ligand 

atom position and generate the PMF value by integrating over this small volume.  

To advance the proposed scoring functions further it would be desirable to have access to 

the fully molecular 3D RISM-uu PMF, which could then be used directly with a convolutional 

neural network. It would also be desirable to use PMF values calculated with the partial holo, 

which seem to be superior to the apo scheme. 

For the future one could envision a “virtual molecule design machine” that would be able 

to predict novel binders. This “virtual designer” would be based on a closed loop: FEDs are 

calculated for a given molecule and lead to a design direction that is translated into the 

appropriate chemistry. This new molecule is than scored and gets fed back into the cycle. 

 

 

 



REFERENCES

 

87 | P a g e  

 

1.  J. Woodcock, R. Woosley, The FDA Critical Path Initiative and Its Influence on New 
Drug Development*. Annu. Rev. Med. 59, 1–12 (2008). 

2.  J. Polanski, J. Bogocz, A. Tkocz, The analysis of the market success of FDA approvals 
by probing top 100 bestselling drugs. J. Comput. Aided. Mol. Des. 30, 381–389 (2016). 

3.  M. S. Kinch, D. Hoyer, A history of drug development in four acts. Drug Discov. Today. 
20, 1163–1168 (2015). 

4.  A. Ganesan, M. L. Coote, K. Barakat, Molecular dynamics-driven drug discovery: leaping 
forward with confidence. Drug Discov. Today. 0 (2016), doi:10.1016/j.drudis.2016.11.001. 

5.  E. Kim, B. S. Moore, Y. J. Yoon, Reinvigorating natural product combinatorial 
biosynthesis with synthetic biology. Nat. Chem. Biol. 11, 649–659 (2015). 

6.  V. Lounnas et al., Current Progress in Structure-Based Rational Drug Design Marks a 
New Mindset in Drug Discovery. Comput. Struct. Biotechnol. J. 5, 1–14 (2013). 

7.  L. Ferreira, R. dos Santos, G. Oliva, A. Andricopulo, Molecular Docking and Structure-
Based Drug Design Strategies. Molecules. 20, 13384–13421 (2015). 

8.  S. Grinter, X. Zou, Challenges, Applications, and Recent Advances of Protein-Ligand 
Docking in Structure-Based Drug Design. Molecules. 19, 10150–10176 (2014). 

9.  R. D. Taylor, P. J. Jewsbury, J. W. Essex, A review of protein-smallmolecule docking 
methods 151. J. Comput. Aided. Mol. Des. 16, 151–166 (2002). 

10.  I. A. Guedes, C. S. de Magalhães, L. E. Dardenne, Receptor–ligand molecular docking. 
Biophys. Rev. 6, 75–87 (2014). 

11.  E. Yuriev, M. Agostino, P. A. Ramsland, Challenges and advances in computational 
docking: 2009 in review. J. Mol. Recognit. 24, 149–164 (2011). 

12.  E. Yuriev, J. Holien, P. A. Ramsland, Improvements, trends, and new ideas in molecular 
docking: 2012-2013 in review. J. Mol. Recognit. 28, 581–604 (2015). 

13.  Y. Li, L. Han, Z. Liu, R. Wang, Comparative assessment of scoring functions on an 
updated benchmark: 2. evaluation methods and general results. J. Chem. Inf. Model. 54, 
1717–1736 (2014). 

14.  A. Biela, M. Betz, A. Heine, G. Klebe, Water makes the difference: rearrangement of 
water solvation layer triggers non-additivity of functional group contributions in protein-
ligand binding. ChemMedChem. 7, 1423–34 (2012). 

15.  G. Lemmon, J. Meiler, Towards ligand docking including explicit interface water 
molecules. PLoS One. 8, e67536 (2013). 

7 References 



REFERENCES

 

88 | P a g e  

16.  B. Breiten et al., Water Networks Contribute to Enthalpy / Entropy Compensation in 
Protein-Ligand Binding. J. Am. Chem. Soc. 135, 15579–15584 (2013). 

17.  R. Baron, P. Setny, J. Andrew McCammon, Water in Cavity−Ligand Recognition. J. Am. 
Chem. Soc. 132, 12091–12097 (2010). 

18.  J. E. Ladbury, Just add water! The effect of water on the specificity of protein-ligand 
binding sites and its potential application to drug design. Chem. Biol. 3, 973–980 (1996). 

19.  M. S. Bodnarchuk, Water, water, everywhere… It’s time to stop and think. Drug Discov. 
Today. 21, 1139–1146 (2016). 

20.  SZMAP (OpenEye Scientific Software, Inc., Santa Fe, NM, USA, 2015; 
www.eyesopen.com). 

21.  WaterFLAP (Molecular Discovery, Hertfordshire, UK, 2016; www.moldiscovery.com). 

22.  A. Amadasi et al., Robust Classification of “Relevant” Water Molecules in Putative 
Protein Binding Sites. J. Med. Chem. 51, 1063–1067 (2008). 

23.  T. Young, R. Abel, B. Kim, B. J. Berne, R. A. Friesner, Motifs for molecular recognition 
exploiting hydrophobic enclosure in protein–ligand binding. Proc. Natl. Acad. Sci. 104, 
808–813 (2007). 

24.  R. Abel, T. Young, R. Farid, B. J. Berne, R. A. Friesner, Role of the Active-Site Solvent 
in the Thermodynamics of Factor Xa Ligand Binding. J. Am. Chem. Soc. 130, 2817–2831 
(2008). 

25.  F. Hirata, P. J. Rossky, B. M. Pettitt, The interionic potential of mean force in a molecular 
polar solvent from an extended RISM equation. J. Chem. Phys. 78, 4133 (1983). 

26.  B. M. Pettitt, M. Karplus, The potential of mean force between polyatomic molecules in 
polar molecular solvents. J. Chem. Phys. 83, 781 (1985). 

27.  A. Kovalenko, F. Hirata, Potential of Mean Force between Two Molecular Ions in a 
Polar Molecular Solvent: A Study by the Three-Dimensional Reference Interaction Site 
Model. J. Phys. Chem. B. 103, 7942–7957 (1999). 

28.  T. Kloss, S. M. Kast, Treatment of charged solutes in three-dimensional integral equation 
theory. J. Chem. Phys. 128, 134505 (2008). 

29.  J. Liu, R. Wang, Classification of current scoring functions. J. Chem. Inf. Model. 55, 475–
482 (2015). 

30.  S. Huang, S. Z. Grinter, X. Zou, Scoring functions and their evaluation methods for 
protein–ligand docking: recent advances and future directions. Phys. Chem. Chem. Phys., 
12899–12908 (2010). 

31.  I. Klapper, R. Hagstrom, R. Fine, K. Sharp, B. Honig, Focusing of electric fields in the 
active site of Cu-Zn superoxide dismutase: Effects of ionic strength and amino-acid 
modification. Proteins Struct. Funct. Genet. 1, 47–59 (1986). 

32.  W. Im, D. Beglov, B. Roux, Continuum solvation model: Computation of electrostatic 
forces from numerical solutions to the Poisson-Boltzmann equation. Comput. Phys. 
Commun. 111, 59–75 (1998). 

33.  W. C. Still, A. Tempczyk, R. C. Hawley, T. Hendrickson, Semianalytical treatment of 
solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 112, 6127–6129 
(1990). 

34.  R. Huey, G. M. Morris, A. J. Olson, D. S. Goodsell, A semiempirical free energy force 



REFERENCES

 

89 | P a g e  

field with charge-based desolvation. J. Comput. Chem. 28, 1145–1152 (2007). 

35.  G. M. Morris et al., Automated docking using a Lamarckian genetic algorithm and an 
empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998). 

36.  G. Jones, P. Willett, R. C. Glen, A. R. Leach, R. Taylor, Development and validation of 
a genetic algorithm for flexible docking. J. Mol. Biol. 267, 727–748 (1997). 

37.  Q. U. Ain, A. Aleksandrova, F. D. Roessler, P. J. Ballester, Machine-learning scoring 
functions to improve structure-based binding affinity prediction and virtual screening. 
Wiley Interdiscip. Rev. Comput. Mol. Sci. 5, 405–424 (2015). 

38.  R. Wang, L. Lai, S. Wang, Further development and validation of empirical scoring 
functions for structure-based binding affinity prediction. J. Comput. Aided. Mol. Des. 16, 
11–26 (2002). 

39.  M. D. Eldridge, C. W. Murray, T. R. Auton, G. V Paolini, R. P. Mee, Empirical scoring 
functions: I. The development of a fast empirical scoring function to estimate the binding 
affinity of ligands in receptor complexes. J. Comput. Aided. Mol. Des. 11, 425–445 (1997). 

40.  H. Gohlke, M. Hendlich, G. Klebe, Knowledge-based scoring function to predict 
protein-ligand interactions. J. Mol. Biol. 295, 337–356 (2000). 

41.  S.-Y. Huang, X. Zou, An iterative knowledge-based scoring function to predict protein–
ligand interactions: I. Derivation of interaction potentials. J. Comput. Chem. 27, 1866–1875 
(2006). 

42.  S.-Y. Huang, X. Zou, An iterative knowledge-based scoring function to predict protein–
ligand interactions: II. Validation of the scoring function. J. Comput. Chem. 27, 1876–1882 
(2006). 

43.  J. D. Durrant, J. A. McCammon, NNScore: A Neural-Network-Based Scoring Function 
for the Characterization of Protein−Ligand Complexes. J. Chem. Inf. Model. 50, 1865–
1871 (2010). 

44.  J. D. Durrant, J. A. McCammon, NNScore 2.0: A Neural-Network Receptor–Ligand 
Scoring Function. J. Chem. Inf. Model. 51, 2897–2903 (2011). 

45.  P. J. Ballester, J. B. O. Mitchell, A machine learning approach to predicting protein-ligand 
binding affinity with applications to molecular docking. Bioinformatics. 26, 1169–1175 
(2010). 

46.  P. J. Ballester, A. Schreyer, T. L. Blundell, Does a More Precise Chemical Description of 
Protein–Ligand Complexes Lead to More Accurate Prediction of Binding Affinity? J. 
Chem. Inf. Model. 54, 944–955 (2014). 

47.  D. Zilian, C. A. Sotriffer, SFCscore RF : A Random Forest-Based Scoring Function for 
Improved Affinity Prediction of Protein–Ligand Complexes. J. Chem. Inf. Model. 53, 
1923–1933 (2013). 

48.  H. Li, K.-S. Leung, M.-H. Wong, P. J. Ballester, Substituting random forest for multiple 
linear regression improves binding affinity prediction of scoring functions: Cyscore as a 
case study. BMC Bioinformatics. 15, 291 (2014). 

49.  H. Li, K.-S. Leung, M.-H. Wong, P. J. Ballester, Improving AutoDock Vina Using 
Random Forest: The Growing Accuracy of Binding Affinity Prediction by the Effective 
Exploitation of Larger Data Sets. Mol. Inform. 34, 115–126 (2015). 

50.  O. Trott, A. J. Olson, AutoDock Vina: Improving the speed and accuracy of docking 
with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 



REFERENCES

 

90 | P a g e  

31, 455–461 (2009). 

51.  J. D. Durrant, J. A. McCammon, BINANA: A novel algorithm for ligand-binding 
characterization. J. Mol. Graph. Model. 29, 888–893 (2011). 

52.  L. Hu, M. L. Benson, R. D. Smith, M. G. Lerner, H. A. Carlson, Binding MOAD (Mother 
Of All Databases). Proteins Struct. Funct. Bioinforma. 60, 333–340 (2005). 

53.  Z. Liu et al., PDB-wide collection of binding data: current status of the PDBbind 
database. Bioinformatics. 31, 405–412 (2015). 

54.  H. M. Ashtawy, N. R. Mahapatra, BgN-Score and BsN-Score: Bagging and boosting 
based ensemble neural networks scoring functions for accurate binding affinity 
prediction of protein-ligand complexes. BMC Bioinformatics. 16, 12 (2015). 

55.  J. H. Friedman, Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 367–378 (2002). 

56.  D.-S. Cao, Q.-S. Xu, Y.-Z. Liang, L.-X. Zhang, H.-D. Li, The boosting: A new idea of 
building models. Chemom. Intell. Lab. Syst. 100, 1–11 (2010). 

57.  I. Wallach, M. Dzamba, A. Heifets, AtomNet: A Deep Convolutional Neural Network 
for Bioactivity Prediction in Structure-based Drug Discovery. arXiv:1510.02855v1 
[cs.LG] (2015). 

58.  M. M. Mysinger, M. Carchia, J. J. Irwin, B. K. Shoichet, Directory of Useful Decoys, 
Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking. J. Med. Chem. 
55, 6582–6594 (2012). 

59.  A. P. Bento et al., The ChEMBL bioactivity database: an update. Nucleic Acids Res. 42, 
D1083–D1090 (2014). 

60.  T. Unterthiner et al., Deep Learning as an Opportunity in Virtual Screening. Deep Learn. 
Represent. Learn. Work. NIPS 2014, 1–9 (2014). 

61.  D. Rogers, M. Hahn, Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742–754 
(2010). 

62.  G. Dahl, N. Jaitly, R. Salakhutdinov, Multi-task Neural Networks for QSAR Predictions. 
arXiv Prepr. arXiv1406.1231, 1–21 (2014). 

63.  J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, V. Svetnik, Deep Neural Nets as a Method 
for Quantitative Structure–Activity Relationships. J. Chem. Inf. Model. 55, 263–274 (2015). 

64.  S. Genheden, T. Luchko, S. Gusarov, A. Kovalenko, U. Ryde, An MM/3D-RISM 
Approach for Ligand Binding Affinities. J. Phys. Chem. B. 114, 8505–8516 (2010). 

65.  N. Blinov, L. Dorosh, D. Wishart, A. Kovalenko, Association Thermodynamics and 
Conformational Stability of β-Sheet Amyloid β(17-42) Oligomers: Effects of E22Q 
(Dutch) Mutation and Charge Neutralization. Biophys. J. 98, 282–296 (2010). 

66.  T. Imai, K. Oda, A. Kovalenko, F. Hirata, A. Kidera, Ligand Mapping on Protein 
Surfaces by the 3D-RISM Theory: Toward Computational Fragment-Based Drug 
Design. J. Am. Chem. Soc. 131, 12430–12440 (2009). 

67.  D. Nikolić, N. Blinov, D. Wishart, A. Kovalenko, 3D-RISM-Dock: A New Fragment-
Based Drug Design Protocol. J. Chem. Theory Comput. 8, 3356–3372 (2012). 

68.  Y. Kiyota, N. Yoshida, F. Hirata, A New Approach for Investigating the Molecular 
Recognition of Protein: Toward Structure-Based Drug Design Based on the 3D-RISM 
Theory. J. Chem. Theory Comput. 7, 3803–3815 (2011). 

69.  D. Nikolić, N. Blinov, D. Wishart, A. Kovalenko, 3D-RISM-Dock: A New Fragment-



REFERENCES

 

91 | P a g e  

Based Drug Design Protocol. J. Chem. Theory Comput. 8, 3356–3372 (2012). 

70.  C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, Experimental and 
computational approaches to estimate solubility and permeability in drug discovery and 
development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997). 

71.  C. A. Lipinski, Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. 
Today Technol. 1, 337–341 (2004). 

72.  F. Mrugalla, S. M. Kast, Designing molecular complexes using free-energy derivatives 
from liquid-state integral equation theory. J. Phys. Condens. Matter. 28, 344004 (2016). 

73.  P. G. Polishchuk, T. I. Madzhidov, A. Varnek, Estimation of the size of drug-like 
chemical space based on GDB-17 data. J. Comput. Aided. Mol. Des. 27, 675–679 (2013). 

74.  B. Munos, Lessons from 60 years of pharmaceutical innovation. Nat. Rev. Drug Discov. 8, 
959–968 (2009). 

75.  D. W. Borhani, D. E. Shaw, The future of molecular dynamics simulations in drug 
discovery. J. Comput. Aided. Mol. Des. 26, 15–26 (2012). 

76.  G. Sliwoski, S. Kothiwale, J. Meiler, E. W. Lowe, Computational methods in drug 
discovery. Pharmacol. Rev. 66, 334–95 (2014). 

77.  C. F. Wong, Systematic sensitivity analyses in free energy perturbation calculations. J. 
Am. Chem. Soc. 113, 3208–3209 (1991). 

78.  P. R. Gerber, A. E. Mark, W. F. van Gunsteren, An approximate but efficient method to 
calculate free energy trends by computer simulation. Application to dihydrofolate 
reductase inhibitor complexes. J. Camd. 7, 305–323 (1993). 

79.  D. Pearlman, Free energy derivatives: A new method for probing the convergence 
problem in free energy calculations. J. Comput. Chem. 15, 105–123 (1994). 

80.  P. Cieplak, D. a. Pearlman, P. a. Kollman, Walking on the free energy hypersurface of 
the 18-crown-6 ion system using free energy derivatives. J. Chem. Phys. 101, 627 (1994). 

81.  P. Cieplak, P. Kollman, A technique to study molecular recognition in drug design: 
preliminary application of free energy derivatives to inhibition of a malarial cysteine 
protease. J. Mol. Recognit. 9, 103–112 (1996). 

82.  S. Francisco, P. A. Kollman, Y.-P. Pang, Applications of free energy derivatives to analog 
design. Perspect. Drug Discov. Des. 3, 106–122 (1995). 

83.  P. E. Smith, W. F. Van Gunsteren, Predictions of free energy differences from a single 
simulation of the initial state. J. Chem. Phys. 100, 577 (1994). 

84.  H. Liu, A. E. Mark, W. F. van Gunsteren, Estimating the Relative Free Energy of 
Different Molecular States with Respect to a Single Reference State. J. Phys. Chem. 100, 
9485–9494 (1996). 

85.  L.-P. Lee, B. Tidor, Optimization of electrostatic binding free energy. J. Chem. Phys. 106, 
8681 (1997). 

86.  E. Kangas, B. Tidor, Charge optimization leads to favorable electrostatic binding free 
energy. Phys. Rev. E. 59, 5958–5961 (1999). 

87.  P. a Sims, C. F. Wong, J. A. McCammon, Charge optimization of the interface between 
protein kinases and their ligands. J. Comput. Chem. 25, 1416–29 (2004). 

88.  M. K. Gilson, Sensitivity Analysis and Charge-Optimization for Flexible 
Ligands:  Applicability to Lead Optimization. J. Chem. Theory Comput. 2, 259–270 (2006). 



REFERENCES

 

92 | P a g e  

89.  Y. Shen, M. K. Gilson, B. Tidor, Charge Optimization Theory for Induced-Fit Ligands. 
J. Chem. Theory Comput. 8, 4580–4592 (2012). 

90.  H. C. Andersen, D. Chandler, Optimized Cluster Expansions for Classical Fluids. I. 
General Theory and Variational Formulation of the Mean Spherical Model and Hard 
Sphere Percus-Yevick Equations. J. Chem. Phys. 57, 1918 (1972). 

91.  D. Chandler, H. C. Andersen, Optimized Cluster Expansions for Classical Fluids. II. 
Theory of Molecular Liquids. J. Chem. Phys. 57, 1930 (1972). 

92.  D. Beglov, B. Roux, An integral equation to describe the solvation of polar molecules in 
liquid water. J. Phys. Chem. B. 101, 7821–7826 (1997). 

93.  A. Kovalenko, F. Hirata, Three-dimensional density profiles of water in contact with a 
solute of arbitrary shape: a RISM approach. Chem. Phys. Lett. 290, 237–244 (1998). 

94.  A. Kovalenko, F. Hirata, Self-consistent description of a metal--water interface by the 
Kohn--Sham density functional theory and the three-dimensional reference interaction 
site model. J. Chem. Phys. 110, 10095–10112 (1999). 

95.  M. Ikeguchi, J. Doi, Direct numerical solution of the Ornstein–Zernike integral equation 
and spatial distribution of water around hydrophobic molecules. J. Chem. Phys. 103, 5011 
(1995). 

96.  D. Beglov, B. Roux, Numerical solution of the hypernetted chain equation for a solute 
of arbitrary geometry in three dimensions. J. Chem. Phys. 103, 360 (1995). 

97.  A. G. Leach et al., Matched Molecular Pairs as a Guide in the Optimization of 
Pharmaceutical Properties; a Study of Aqueous Solubility, Plasma Protein Binding and 
Oral Exposure. J. Med. Chem. 49, 6672–6682 (2006). 

98.  I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, 2016). 

99.  T. Chen, C. Guestrin, XGBoost. Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data 
Min. - KDD ’16, 785–794 (2016). 

100.  J. C. Gumbart, B. Roux, C. Chipot, Standard binding free energies from computer 
simulations: What is the best strategy? J. Chem. Theory Comput. 9, 794–802 (2013). 

101.  Y. Deng, B. Roux, Calculation of Standard Binding Free Energies:  Aromatic Molecules 
in the T4 Lysozyme L99A Mutant. J. Chem. Theory Comput. 2, 1255–1273 (2006). 

102.  J. Wang, Y. Deng, B. Roux, Absolute binding free energy calculations using molecular 
dynamics simulations with restraining potentials. Biophys. J. 91, 2798–814 (2006). 

103.  M. K. Gilson, J. A. Given, B. L. Bush, J. A. McCammon, The statistical-thermodynamic 
basis for computation of binding affinities: a critical review. Biophys. J. 72, 1047–1069 
(1997). 

104.  C. Yung-Chi, W. H. Prusoff, Relationship between the inhibition constant (KI) and the 
concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic 
reaction. Biochem. Pharmacol. 22, 3099–3108 (1973). 

105.  C. Bissantz, B. Kuhn, M. Stahl, A medicinal chemist’s guide to molecular interactions. J. 
Med. Chem. 53, 5061–5084 (2010). 

106.  A. S. Mahadevi, G. N. Sastry, Cooperativity in Noncovalent Interactions. Chem. Rev. 116, 
2775–2825 (2016). 

107.  E. Persch, O. Dumele, F. Diederich, Molecular Recognition in Chemical and Biological 
Systems. Angew. Chemie - Int. Ed., 3290–3327 (2015). 



REFERENCES

 

93 | P a g e  

108.  A. Bauzá, T. J. Mooibroek, A. Frontera, The Bright Future of Unconventional σ/π-Hole 
Interactions. ChemPhysChem. 16, 2496–2517 (2015). 

109.  P. Setny, Hydrophobic interactions between methane and a nanoscopic pocket: Three 
dimensional distribution of potential of mean force revealed by computer simulations. J. 
Chem. Phys. 128, 125105 (2008). 

110.  P. Setny, Water properties and potential of mean force for hydrophobic interactions of 
methane and nanoscopic pockets studied by computer simulations. J. Chem. Phys. 127, 
54505 (2007). 

111.  G. Hummer, Molecular binding: Under water’s influence. Nat. Chem. 2, 906–907 (2010). 

112.  P. Setny, R. Baron, J. A. McCammon, How Can Hydrophobic Association Be Enthalpy 
Driven? J Chem Theory Comput. 6, 2866–2871 (2010). 

113.  Á. Tarcsay, G. M. Keseru, Is there a link between selectivity and binding thermodynamics 
profiles? Drug Discov. Today. 20, 86–94 (2015). 

114.  T. Young et al., Dewetting transitions in protein cavities. Proteins Struct. Funct. Bioinforma. 
78, 1856–1869 (2010). 

115.  K. E. Rogers et al., On the Role of Dewetting Transitions in Host–Guest Binding Free 
Energy Calculations. J. Chem. Theory Comput. 9, 46–53 (2013). 

116.  J.-P. Hansen, I. R. I. . McDonald, Theory of simple liquids (1990). 

117.  T. Morita, K. Hiroike, A New Approach to the Theory of Classical Fluids. IIIa. Prog. 
Theor. Phys. 25, 537–578 (1961). 

118.  L. S. Ornstein, F. Zernike, Integral equation in liquid state theory. Proc. Acad. Sci. 
Amsterdam. 17 (1914). 

119.  M. Llano-Restrepo, W. G. Chapman, Bridge function and cavity correlation function 
from simulation: Implications on closure relations. Int. J. Thermophys. 16, 319–326 (1995). 

120.  I. Vyalov, G. Chuev, N. Georgi, Solute-solvent cavity and bridge functions. I. Varying 
size of the solute. J. Chem. Phys. 141, 74505 (2014). 

121.  G. N. Chuev, I. Vyalov, N. Georgi, Extraction of atom–atom bridge and direct 
correlation functions from molecular simulations: A test for ambient water. Chem. Phys. 
Lett. 561–562, 175–178 (2013). 

122.  L. Blum, A. J. Torrula, Invariant Expansion for Two-Body Correlations: Thermodynamic 
Functions, Scattering, and the Ornstein—Zernike Equation. J. Chem. Phys. 56, 303–310 
(1972). 

123.  J. Richardi, C. Millot, P. H. Fries, A molecular Ornstein–Zernike study of popular models 
for water and methanol. J. Chem. Phys. 110, 1138–1147 (1999). 

124.  P. Jedlovszky, J. Richardi, Comparison of different water models from ambient to 
supercritical conditions: A Monte Carlo simulation and molecular Ornstein–Zernike 
study. J. Chem. Phys. 110, 8019–8031 (1999). 

125.  K. Hiroike, On the theory of fluids. J. Phys. Soc. Japan. 13, 1497–1503 (1958). 

126.  E. Meeron, Theory of Potentials of Average Force and Radial Distribution Functions in 
Ionic Solutions. J. Chem. Phys. 28, 630–643 (1958). 

127.  S. M. Kast, T. Kloss, Closed-form expressions of the chemical potential for integral 
equation closures with certain bridge functions. J. Chem. Phys. 129, 236101 (2008). 



REFERENCES

 

94 | P a g e  

128.  S. Bernèche, B. Roux, Molecular dynamics of the KcsA K(+) channel in a bilayer 
membrane. Biophys. J. 78, 2900–17 (2000). 

129.  F. Hirata, The interionic potential of mean force in a molecular polar solvent from an 
extended RISM equation. J. Chem. Phys. 78, 4133 (1983). 

130.  J. Heil, S. M. Kast, 3D RISM theory with fast reciprocal-space electrostatics. J. Chem. 
Phys. 142, 114107 (2015). 

131.  E. O. Brigham, R. E. Morrow, The fast Fourier transform. IEEE Spectr. 4, 63–70 (1967). 

132.  P. Duhamel, M. Vetterli, Fast fourier transforms: A tutorial review and a state of the art. 
Signal Processing. 19, 259–299 (1990). 

133.  A. Rahman, Correlations in the Motion of Atoms in Liquid Argon. Phys. Rev. 136, A405–
A411 (1964). 

134.  K. Lindorff-Larsen, P. Maragakis, S. Piana, D. E. Shaw, J. Phys. Chem. B, in press, 
doi:10.1021/acs.jpcb.6b02024. 

135.  K. G. Sprenger, V. W. Jaeger, J. Pfaendtner, The general AMBER force field (GAFF) 
can accurately predict thermodynamic and transport properties of many ionic liquids. J. 
Phys. Chem. B. 119, 5882–5895 (2015). 

136.  J. W. Ponder et al., Current Status of the AMOEBA Polarizable Force Field. J. Phys. Chem. 
B. 114, 2549–2564 (2010). 

137.  K. Chenoweth, A. C. T. van Duin, W. A. Goddard, ReaxFF Reactive Force Field for 
Molecular Dynamics Simulations of Hydrocarbon Oxidation. J. Phys. Chem. A. 112, 1040–
1053 (2008). 

138.  A. C. T. van Duin, S. Dasgupta, F. Lorant, W. A. Goddard, ReaxFF: A Reactive Force 
Field for Hydrocarbons. J. Phys. Chem. A. 105, 9396–9409 (2001). 

139.  V. Loup, L. Verlet, Computer experiments on classical fluids. Phys. Rev. i, 98–103 (1967). 

140.  W. C. Swope, A computer simulation method for the calculation of equilibrium constants 
for the formation of physical clusters of molecules: Application to small water clusters. 
J. Chem. Phys. 76, 637 (1982). 

141.  R. W. Hockney, in Methods in Computational Physics, Vol. 9 (1970), pp. 135–211. 

142.  W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, Comparison 
of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926 (1983). 

143.  H. J. C. Berendsen, J. R. Grigera, T. P. Straatsma, The Missing Term in Effective Pair 
Potentials. J. Phys. Chem. 91, 6269–6271 (1987). 

144.  J. L. Abascal, C. Vega, A general purpose model for the condensed phases of water: 
TIP4P/2005. J. Chem. Phys. 123, 234505 (2005). 

145.  C. Vega, J. L. F. Abascal, M. M. Conde, J. L. Aragones, What ice can teach us about water 
interactions: a critical comparison of the performance of different water models. Faraday 
Discuss. 141, 251–276 (2009). 

146.  C. Vega, J. L. F. Abascal, Simulating water with rigid non-polarizable models: a general 
perspective. Phys. Chem. Chem. Phys. 13, 19663 (2011). 

147.  S. M. Kast, personnel communication (2016). 

148.  J. G. Kirkwood, Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 3, 300 (1935). 

149.  J. Hermans, S. Shankar, The Free Energy of Xenon Binding to Myoglobin from 



REFERENCES

 

95 | P a g e  

Molecular Dynamics Simulation. Isr. J. Chem. 27, 225–227 (1986). 

150.  N. Hansen, W. F. Van Gunsteren, Practical aspects of free-energy calculations: A review. 
J. Chem. Theory Comput. 10, 2632–2647 (2014). 

151.  B. Kuhn et al., Prospective Evaluation of Free Energy Calculations for the Prioritization 
of Cathepsin L Inhibitors. J. Med. Chem. 60, 2485–2497 (2017). 

152.  Y. Miao, J. A. McCammon, Unconstrained enhanced sampling for free energy 
calculations of biomolecules: a review. Mol. Simul. 42, 1046–1055 (2016). 

153.  M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids (1989). 

154.  S. Shalev-Shwartz, S. Ben-David, Understanding Machine Learning (Cambridge University 
Press, Cambridge, 2014). 

155.  Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature. 521, 436–444 (2015). 

156.  J. Schmidhuber, Deep learning in neural networks: An overview. Neural Networks. 61, 85–
117 (2015). 

157.  J. Behler, Neural network potential-energy surfaces in chemistry: a tool for large-scale 
simulations. Phys. Chem. Chem. Phys. 13, 17930–17955 (2011). 

158.  J. Behler, M. Parrinello, Generalized neural-network representation of high-dimensional 
potential-energy surfaces. Phys. Rev. Lett. 98, 1–4 (2007). 

159.  J. Behler, Atom-centered symmetry functions for constructing high-dimensional neural 
network potentials. J. Chem. Phys. 134, 74106 (2011). 

160.  N. Artrith, T. Morawietz, J. Behler, High-dimensional neural-network potentials for 
multicomponent systems: Applications to zinc oxide. Phys. Rev. B. 83, 153101 (2011). 

161.  R. M. Balabin, E. I. Lomakina, Neural network approach to quantum-chemistry data: 
Accurate prediction of density functional theory energies. J. Chem. Phys. 131, 74104 
(2009). 

162.  W. S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. 
Bull. Math. Biophys. 5, 115–133 (1943). 

163.  K. Murphy, Machine Learning: a Probabilistic Perspective (2012). 

164.  F. Rosenblatt, The perceptron: a probabilistic model for information storage and 
organization in the brain. Psychol. Rev. 65, 386–408 (1958). 

165.  D. E. Rumelhart, P. Smolensky, J. L. McClelland, G. E. Hinton, in Readings in Cognitive 
Science (Elsevier, 1988), pp. 224–249. 

166.  C. M. Bishop, Pattern Recognition and Machine Learning (2006), vol. 4. 

167.  G. E. Hinton, S. Osindero, Y.-W. Teh, A Fast Learning Algorithm for Deep Belief Nets. 
Neural Comput. 18, 1527–1554 (2006). 

168.  M. Abadi et al., in 12th USENIX Symposium on Operating Systems (2016; 
http://arxiv.org/abs/1605.08695). 

169.  J. Bergstra et al., Theano: a CPU and GPU math compiler in Python. Proc. Python Sci. 
Comput. Conf., 1–7 (2010). 

170.  F. Bastien et al., Theano: new features and speed improvements. arXiv:1211.5590, 1–10 
(2012). 

171.  The Theano Development Team et al., Theano: A Python framework for fast 
computation of mathematical expressions. arXiv e-prints. abs/1605.0, 19 (2016). 



REFERENCES

 

96 | P a g e  

172.  Y. Jia et al., Caffe: Convolutional Architecture for Fast Feature Embedding. arXiv Prepr. 
arXiv1408.5093 (2014). 

173.  X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural 
networks. Proc. 13th Int. Conf. Artif. Intell. Stat. 9, 249–256 (2010). 

174.  V. Nair, G. E. Hinton, Rectified Linear Units Improve Restricted Boltzmann Machines. 
Proc. 27th Int. Conf. Mach. Learn., 807–814 (2010). 

175.  K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, Y. LeCun, What is the best multi-stage 
architecture for object recognition? 2009 IEEE 12th Int. Conf. Comput. Vis., 2146–2153 
(2009). 

176.  D. P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization. Int. Conf. Learn. 
Represent. 2015, 1–15 (2014). 

177.  H. M. Ashtawy, N. R. Mahapatra, A Comparative Assessment of Ranking Accuracies of 
Conventional and Machine-Learning-Based Scoring Functions for Protein-Ligand 
Binding Affinity Prediction. IEEE/ACM Trans. Comput. Biol. Bioinforma. 9, 1301–1313 
(2012). 

178.  J. H. Friedman, Greedy Function Approximation: A Gradient Boosting Machine. Ann. 
Stat. 29, 1189–1232 (2001). 

179.  R. E. Schapire, in Nonlinear Estimation and Classification, D. D. Denison, M. H. Hansen, C. 
C. Holmes, B. Mallick, B. Yu, Eds. (Springer New York, New York, NY, 2003; 
http://dx.doi.org/10.1007/978-0-387-21579-2_9), pp. 149–171. 

180.  T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning. Springer 2001. 
18, 746 (2009). 

181.  J. Elith, J. R. Leathwick, T. Hastie, A working guide to boosted regression trees. J. Anim. 
Ecol. 77, 802–813 (2008). 

182.  M. J. Frisch et al., Gaussian 03 (Gaussian, Inc., Wallingford, CT, 2003). 

183.  W. L. Jorgensen, J. Tirado-Rives, The OPLS [optimized potentials for liquid simulations] 
potential functions for proteins, energy minimizations for crystals of cyclic peptides and 
crambin. J. Am. Chem. Soc. 110, 1657–1666 (1988). 

184.  W. L. Jorgensen, D. S. Maxwell, J. Tirado-Rives, Development and Testing of the OPLS 
All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. 
J. Am. Chem. Soc. 118, 11225–11236 (1996). 

185.  K. F. Schmidt, S. M. Kast, Hybrid Integral Equation/Monte Carlo Approach to 
Complexation Thermodynamics. J. Phys. Chem. B. 106, 6289–6297 (2002). 

186.  A. D. MacKerell, N. Banavali, N. Foloppe, Development and current status of the 
CHARMM force field for nucleic acids. Biopolymers. 56, 257–65 (2001). 

187.  I. S. Joung, T. E. Cheatham, Determination of alkali and halide monovalent ion 
parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 112, 
9020–9041 (2008). 

188.  J. Aqvist, Ion-Water Interaction Potentials Derived from Free Energy Perturbation 
Simulations. J. Phys. Chem. 94, 8021–8024 (1990). 

189.  G. Wipff, P. Weiner, P. Kollman, A molecular-mechanics study of 18-crown-6 and its 
alkali complexes: an analysis of structural flexibility, ligand specificity, and the 
macrocyclic effect. J. Am. Chem. Soc. 104, 3249–3258 (1982). 



REFERENCES

 

97 | P a g e  

190.  J. Perkyns, B. M. Pettitt, A site–site theory for finite concentration saline solutions. J. 
Chem. Phys. 97, 7656 (1992). 

191.  J. S. Perkyns, B. M. Pettitt, A dielectrically consistent interaction site theory for solvent—
electrolyte mixtures. Chem. Phys. Lett. 190, 626–630 (1992). 

192.  D. A. Case et al., AMBER12 (University of California, San Francisco, 2012). 

193.  J. C. Phillips et al., Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–
1802 (2005). 

194.  H. J. C. Berendsen, D. van der Spoel, R. van Drunen, GROMACS: A message-passing 
parallel molecular dynamics implementation. Comput. Phys. Commun. 91, 43–56 (1995). 

195.  B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, GROMACS 4: Algorithms for Highly 
Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 4, 
435–447 (2008). 

196.  S. Pronk et al., GROMACS 4.5: a high-throughput and highly parallel open source 
molecular simulation toolkit. Bioinformatics. 29, 845–854 (2013). 

197.  Q. Du, D. Beglov, B. Roux, Solvation Free Energy of Polar and Nonpolar Molecules in 
Water: An Extended Interaction Site Integral Equation Theory in Three Dimensions. J. 
Phys. Chem. B. 104, 796–805 (2000). 

198.  S. M. Kast, K. Friedemann Schmidt, B. Schilling, Integral equation theory for correcting 
truncation errors in molecular simulations. Chem. Phys. Lett. 367, 398–404 (2003). 

199.  C. Hölzl et al., Design principles for high–pressure force fields: Aqueous TMAO 
solutions from ambient to kilobar pressures. J. Chem. Phys. 144, 144104 (2016). 

200.  The PyMOL Molecular Graphics System (Schrödinger, LLC, http://pymol.org, 2014). 

201.  T. Williams, C. Kelley, Gnuplot 4.5: an interactive plotting program (http://gnuplot.info, 2011). 

202.  Mathematica 9.0 (Wolfram Research, Inc., 2012). 

203.  E. Glendening, An ab initio investigation of the structure and alkali metal cation 
selectivity of 18-crown-6. J. Am. …. 116, 10657–10669 (1994). 

204.  D. Feller, Ab initio study of M+: 18-crown-6 microsolvation. J. Phys. Chem. A. 5639, 
2723–2731 (1997). 

205.  J. Rodriguez, T. Vaden, J. Lisy, Infrared spectroscopy of ionophore-model systems: 
hydrated alkali metal ion 18-crown-6 ether complexes. J. Am. Chem. Soc. 131, 17277–
17285 (2009). 

206.  J. Stark, Modellierung und Simulation von RET-Kinase-Komplexen, Technische 
Universität Dortmund (2015). 

207.  A. Šali, T. Blundell, Comparative protein modelling by satisfaction of spatial restraints. J. 
Mol. Biol. 234, 779–815 (1993). 

208.  J. M. Wang, R. M. Wolf, J. W. Caldwell, P. a Kollman, D. a Case, Development and 
testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004). 

209.  J. Wang, W. Wang, P. A. Kollman, D. A. Case, Automatic atom type and bond type 
perception in molecular mechanical calculations. J. Mol. Graph. Model. 25, 247–260 (2006). 

210.  A. Jakalian, D. B. Jack, C. I. Bayly, Fast, efficient generation of high-quality atomic 
charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 23, 
1623–1641 (2002). 



REFERENCES

 

98 | P a g e  

211.  A. Jakalian, B. L. Bush, D. B. Jack, C. I. Bayly, Fast, efficient generation of high-quality 
atomic charges. AM1-BCC model: I. Method. J. Comput. Chem. 21, 132–146 (2000). 

212.  G. Sigalov, A. Fenley, A. Onufriev, Analytical electrostatics for biomolecules: Beyond 
the generalized Born approximation. J. Chem. Phys. 124, 1–14 (2006). 

213.  D. A. Case et al., AMBER14 (University of California, San Francisco, 2014). 

214.  S. C. Hoops, K. W. Anderson, K. M. Merz, Force field design for metalloproteins. J. Am. 
Chem. Soc. 113, 8262–8270 (1991). 

215.  T. Darden, D. York, L. Pedersen, Particle mesh Ewald: An N ⋅log( N ) method for Ewald 
sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993). 

216.  U. Essmann et al., A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577 (1995). 

217.  S. Miyamoto, P. A. Kollman, Settle: An analytical version of the SHAKE and RATTLE 
algorithm for rigid water models. J. Comput. Chem. 13, 952–962 (1992). 

218.  E. A. Meyer, M. Furler, F. Diederich, R. Brenk, G. Klebe, Synthesis and In Vitro 
Evaluation of 2-Aminoquinazolin-4(3H)-one-Based Inhibitors for tRNA-Guanine 
Transglycosylase (TGT). Helv. Chim. Acta. 87, 1333–1356 (2004). 

219.  R. Frach, S. Kast, Solvation Effects on Chemical Shifts by Embedded Cluster Integral 
Equation Theory. J. Phys. Chem. A (2014). 

220.  Y. Alber, Fluor-Substitutionseffekt auf Protein-Ligand-Bindungsaffinitäten, Technische 
Universität Dortmund (2016). 

221.  RDKit: Open-source cheminformatics (http://www.rdkit.org, 2016; http://www.rdkit.org). 

222.  J. A. Maier et al., ff14SB: Improving the Accuracy of Protein Side Chain and Backbone 
Parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015). 

223.  P. Li, B. P. Roberts, D. K. Chakravorty, K. M. Merz, Rational design of particle mesh 
ewald compatible lennard-jones parameters for +2 metal cations in explicit solvent. J. 
Chem. Theory Comput. 9, 2733–2748 (2013). 

224.  L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Talwalkar, Hyperband: A Novel 
Bandit-Based Approach to Hyperparameter Optimization. arXiv Prepr. (2016). 

225.  N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: A 
Simple Way to Prevent Neural Networks from Overfittin. J. Mach. Learn. Res. 15, 1929–
1958 (2014). 

226.  F. Chollet, Keras (GitHub, https://github.com/fchollet/keras, 2015). 

227.  O. Russakovsky et al., ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. 
Vis. 115, 211–252 (2015). 

228.  V. Schnecke, L. A. Kuhn, Virtual screening with solvation and ligand-induced 
complementarity. Perspect. Drug Discov. Des. 20, 171–190 (2000). 

229.  DeepMind, AlphaGo (2017), (available at https://deepmind.com/research/alphago/). 

230.  V. Mnih et al., Playing Atari with Deep Reinforcement Learning. arXiv Prepr., 1–9 (2013). 

231.  V. Mnih et al., Human-level control through deep reinforcement learning. Nature. 518, 
529–533 (2015). 

232.  H. van Hasselt, A. Guez, D. Silver, Deep Reinforcement Learning with Double Q-
learning. Artif. Intell. 230, 173–191 (2015). 

233.  Z. Wang et al., Dueling Network Architectures for Deep Reinforcement Learning. IEEE 



REFERENCES

 

99 | P a g e  

Commun. Mag. 54, 48–57 (2015). 

234.  I. J. Goodfellow, On distinguishability criteria for estimating generative models. 5th Int. 
Conf. Learn. Represent. (2015), doi:10.1109/CVPR.2005.287. 

235.  M. Arjovsky, S. Chintala, L. Bottou, Wasserstein GAN. arXiv (2017). 

236.  I. Durugkar, I. Gemp, S. Mahadevan, Generative Multi-Adversarial Networks. arXiv, 1–
14 (2016). 

237.  E. Denton, S. Chintala, A. Szlam, R. Fergus, Deep Generative Image Models using a 
Laplacian Pyramid of Adversarial Networks. arXiv, 1–10 (2015). 

 

 

 



APPENDIX

 

100 | P a g e  

8.1  Pseudocode for the evaluation of the 
renormalized -function 

#calculation of the analytical 1D k-space monopol potentials 

Do i=1, dimension second partner 

 quu = qtotal1*qu2(i) 

 monoUU1D = uqk_pot() 

 monoUU1D = monoUU1D * expk *-kT1*renormFactor 

end do 

Do i=1, dimension solvent 

 quvv = qtotal1*qu2(i) 

 monoUV1D = uqk_pot() 

 monoUV1D = monopolUV * expk *-kT1*renormFactor 

end do 

#calculation of the monopol potentials in 3D k-space 

monoUV3D = ewaldsummation(dim1=1, dim2=nv, qTot1, qvv) 

monoUU3D = ewaldsummation(dim1=1, dim2=1, qTot1, qu2) 

monoUU3D = kT1 * monoUU3D * renormFactor 

#calculation of the last term (4) 

Do j = 1, dimension solvent 

 Do i = 1, dimension partner 2 

  monoHK = monoHK + (-kT1 * monoUV1D)*rho*hk1d 

 end do 

end do 

#calculation of the third and fourth term in 1D k-space 

monoHK = monoHK + monoUU1D 

8 Appendix 
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do j = 1, dimension partner 2 

 monoHR = revfft1D(monoHK) 

 monoHR3D = interpolation(monoHR) 

end do 

#first part of the second term 

ck3d = ck3d + (kT1 * monoUV3D) 

hk0k1d = extrapolate(hk1D) 

do i = 1, dimension partner 2 

 do j = 1, dimension solvent 

  hk3D = interpolation(hk01D) 

  etak = etak + ck3d * (rho * hk3D) 

 end do 

end do 

#ewald summation for partner 1 and 2 followed by calculation  

#the last steps in the calculation of Term 12 

ulkUU = ewaldsummation(dim1=dimension partner 1, dim2=dimension partner 2, qu1, qu2) 

ulkUU = ulkUU * kT1 * renormFactor – monoUU3D 

etak = etak – ulkUU 

etar = revfft3D(etak) 

#subtract Term 34 of Term12 

etar = etar - monoHR3D 
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8.2  FEDs and PMFs for TGT/amq 

Table 10: Atomwise FEDs and PMF values for the TGTCH3,MD/amqCH3,MD system.  

atom 

w
(p. 

holo) 


w
(apo) 



w
(p. holo) 



w
(apo) 

q

w




(p. holo) 

q

w




(apo) w (p. holo) w (apo) 

C1 -1.25 -1.25 -0.89 -0.91 167.17 -1.21 -1.51 -1.00 

C2 -0.69 -1.17 -0.62 -0.82 164.09 -1.54 -0.73 -0.73 

C9 -0.07 -0.52 -0.23 -0.37 164.13 -1.12 -0.21 0.01 

C3 -0.62 -1.22 -0.66 -0.92 164.81 -0.18 -0.83 -1.03 

N3 -1.74 -1.76 -0.65 -0.64 16.84 -1.40 -9.41 -0.55 

C8 -0.17 -1.31 -0.63 -1.04 163.84 0.88 -2.01 -0.81 

N2 4.00 -0.32 -0.10 -0.48 178.21 -0.27 -15.71 -1.37 

N1 0.06 0.49 -0.55 -0.39 178.76 0.78 -11.34 -0.90 

C7 2.49 1.41 0.29 -0.10 167.53 6.15 -0.02 2.36 

O1 5.01 -4.31 -0.17 -0.83 144.58 1.19 -54.94 -5.19 

C4 -1.57 -1.07 -1.02 -0.80 170.61 -0.82 -3.24 0.29 

C5 -1.50 -1.51 -0.94 -0.94 166.66 -2.90 -1.17 -0.28 

C6 -1.24 -1.50 -0.89 -0.94 166.67 -1.50 -2.00 0.07 

H1 -0.19 -0.34 -0.91 -1.17 56.18 0.51 -0.35 -0.39 

H2 0.00 -0.14 -0.19 -0.46 52.45 -1.52 0.05 0.16 

H3 -0.43 0.05 -1.17 -0.45 55.02 0.90 -0.44 -0.46 

H4 -0.03 0.36 -0.29 0.34 51.89 -1.32 0.43 0.66 

H5 -0.40 0.51 -0.50 0.61 101.49 -2.65 -1.76 -0.84 

H6 -2.36 -1.77 -3.35 -2.72 99.60 -4.15 -2.91 -2.57 

H7 -2.16 -1.64 -3.11 -2.51 88.14 -4.66 -1.83 -2.08 

H8 -0.82 0.04 -2.04 -0.70 60.18 0.07 -0.78 -0.41 

H9 -0.69 -0.47 -1.87 -1.61 62.06 -0.73 -0.39 -0.08 



w
: kcal mol-1  Å-1 

q

w




: kcal mol-1  e-1 

w: kcal mol-1 
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Table 11: Atomwise FEDs and PMF values for the TGTH/amqH system. 

atom 

w
(p. 

holo) 


w
(apo) 



w
(p. holo) 



w
(apo) 

q

w




(p. holo) 

q

w




(apo) w (p. holo) w (apo) 

C1 -1.15 -2.38 -1.17 -1.48 53.61 -0.89 -2.94 -1.73 

C2 -0.62 -1.39 -0.91 -1.10 50.67 -0.40 -1.51 -1.32 

C3 -1.17 -1.51 -0.98 -1.00 48.15 -1.05 -1.67 -0.40 

C4 -0.99 -1.54 -0.98 -1.15 50.33 0.38 -0.86 -1.10 

N5 4.41 3.11 0.09 -0.02 35.94 1.90 -12.02 -1.70 

C6 -0.60 -1.48 -1.04 -1.29 49.75 3.78 -0.93 0.48 

N7 7.41 1.93 0.17 -0.32 67.99 1.71 -21.87 -3.66 

N8 -1.13 -0.94 -0.78 -0.58 66.19 1.60 -14.51 -1.00 

C9 1.93 1.22 0.24 -0.01 53.03 4.06 0.54 1.58 

O10 2.77 -2.57 -0.14 -0.48 70.53 -0.58 -36.25 -2.32 

C11 -1.64 -0.91 -1.14 -0.79 53.32 -0.68 -3.60 0.03 

C12 -0.89 -1.93 -0.86 -1.16 51.66 -1.48 -1.29 -0.63 

H1 3.49 3.41 5.63 5.57 16.54 2.29 1.01 0.60 

H2 2.25 1.86 3.09 2.49 14.01 2.33 0.62 0.34 

H3 -0.12 0.05 -0.73 -0.42 22.21 0.24 0.08 0.62 

H4 -2.29 -2.57 -3.37 -3.72 87.52 -3.30 -2.38 -2.70 

H5 -2.52 -2.27 -3.48 -3.27 87.90 -0.59 -2.64 -1.67 

H6 -2.76 -1.99 -3.79 -2.94 63.08 -1.72 -0.74 -1.03 

H7 0.24 0.44 -0.39 -0.11 14.95 5.23 0.66 0.92 



w
: kcal mol-1  Å-1 

q

w




: kcal mol-1  e-1 

w: kcal mol-1 
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Table 12: Atomwise FEDs and PMF values for the TGTCH3/amqCH3 system. 

atom 

w
(p. 

holo) 


w
(apo) 



w
(p. holo) 



w
(apo) 

q

w




(p. holo) 

q

w




(apo) w (p. holo) w (apo) 

C1 -1.08 -0.71 -0.96 -0.86 139.02 -0.07 -1.81 -1.06 

C2 -0.94 -1.30 -0.82 -0.96 136.93 -1.58 -1.16 -0.74 

C9 -0.33 -1.49 -0.47 -0.81 136.64 -1.02 -0.64 -0.13 

C3 -0.75 -1.24 -0.82 -0.99 137.55 -0.22 -0.54 -1.06 

N3 -1.18 -3.26 -0.85 -1.02 14.47 -1.23 -2.41 -1.66 

C8 0.04 -1.19 -0.71 -1.12 136.68 2.84 -0.48 0.45 

N2 0.78 -3.31 -0.83 -1.12 149.84 -0.70 -19.65 -2.65 

N1 -0.29 -0.35 -0.68 -0.53 157.63 2.09 -16.83 -1.57 

C7 2.89 1.33 0.52 -0.07 139.26 6.12 1.46 2.48 

O1 2.53 -4.28 -0.30 -0.77 111.02 -0.45 -43.88 -3.89 

C4 -1.86 -0.65 -1.12 -0.63 143.71 -0.85 -3.94 0.55 

C5 -1.80 -1.94 -1.07 -1.12 139.78 -2.42 -1.34 -0.15 

C6 -1.70 -2.26 -1.14 -1.31 136.59 -1.29 -2.15 -0.10 

H1 2.19 2.13 3.08 2.92 42.85 2.32 0.73 0.44 

H2 -0.26 0.25 -0.72 0.07 49.45 -2.23 0.14 0.95 

H3 -0.09 0.14 -1.15 -0.91 49.17 1.06 -0.84 -0.97 

H4 -1.21 -0.71 -2.72 -1.99 48.72 -0.55 -0.66 -0.01 

H5 -2.48 -2.38 -3.50 -3.56 98.36 -3.70 -2.78 -2.37 

H6 -2.50 -2.17 -3.44 -3.13 99.65 -0.68 -2.42 -1.35 

H7 -2.53 -1.86 -3.56 -2.78 77.04 -2.83 -0.67 -1.64 

H8 -1.11 -0.30 -2.78 -1.61 50.97 3.96 -0.05 0.01 

H9 -1.19 -0.62 -2.91 -2.05 50.02 -1.97 -1.16 -0.44 



w
: kcal mol-1  Å-1 

q

w




: kcal mol-1  e-1 

w: kcal mol-1 
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8.3  FED visualisation for the TGT CH3/amqCH3 
system 

 

 

 

 

Figure 31: Atomwise FEDs for the TGT/amqCH3 system. The upper row shows the FEDs 

with respect to the  value for the partial holo (A) and apo (B) calculations. In the middle row 

the FEDs with respect to the Lennard-Jones Parameter  are shown for the partial holo (C) 
and apo (D) are shown. The last row shows the FEDs in regard to the partial charge q for 
the partial holo (E) and apo (F) calculations. The atoms are colour coded from red to white 
up to blue with red associated with a negative FED value and blue with a positive FED 
value. The atom group of particular interest is encircled in red. 
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8.4  Prediction data for the scoring functions 

Table 13: Prediction data for the whole core dataset. F: fingerprint data only. F + P: fingerprint + PMF data. Predictions with 
the highest difference (negative red, positive green) to the experimental data are highlighted in bold. 

  DNN1 DNN2 XGBoost 
PDB exp. data F F + P F F + P F F + P 

1r5y 6.46 5.60 6.18 4.95 5.87 5.40 4.80 
1sln 6.64 5.32 5.38 5.40 4.92 6.06 5.72 
2x8z 7.96 4.20 5.98 4.82 6.26 5.41 5.49 
2yki 9.46 9.79 9.42 8.60 9.17 6.54 6.74 
3k5v 6.30 5.68 5.95 5.69 6.41 5.91 6.18 
3ivg 4.30 6.04 6.11 6.65 6.36 5.93 5.94 
1o5b 5.77 5.62 5.98 6.12 5.93 5.45 5.18 
3ao4 2.07 2.16 3.33 3.12 3.63 4.79 4.59 
3pxf 4.43 5.03 5.11 5.36 5.29 4.99 5.25 
1hfs 8.70 3.37 5.85 4.59 6.06 6.32 6.79 
1mq6 11.15 7.53 7.19 7.87 7.16 6.69 7.06 
1gpk 5.37 6.00 5.85 6.11 6.15 6.00 5.93 
4djv 6.72 7.37 6.42 6.44 5.98 5.87 6.60 
3uex 6.92 6.32 6.67 6.44 6.44 5.83 6.21 
2y5h 5.79 6.55 7.60 7.77 7.03 6.78 7.08 
3b3w 4.19 4.35 4.45 4.95 4.57 5.09 4.98 
1bcu 3.28 6.28 5.66 5.93 5.52 5.33 4.78 
1hnn 6.24 5.77 5.14 5.28 5.32 6.45 6.00 
3zso 5.12 4.39 5.04 3.93 4.69 4.81 5.23 
2qbp 8.40 8.47 6.70 8.14 6.93 6.50 6.49 
3su2 7.35 6.32 6.92 7.31 7.00 6.62 6.65 
3gcs 7.25 8.80 9.32 9.01 9.14 7.65 7.88 
1oyt 7.24 5.41 6.95 6.85 6.52 6.96 6.54 
3gy4 5.10 3.86 4.06 3.96 3.99 4.26 4.09 
3b3s 2.55 4.35 4.75 4.95 4.72 5.09 5.07 
3zsx 3.28 3.61 3.96 3.63 3.51 4.41 4.75 
3imc 2.96 5.22 4.48 4.94 4.46 4.52 3.96 
4de2 4.12 4.86 5.25 5.08 5.43 5.91 6.26 
3f3c 6.02 3.89 4.34 4.47 4.40 5.63 5.69 
2fvd 8.52 6.97 8.07 7.21 7.97 6.80 6.86 
3ehy 5.85 5.57 5.29 5.39 5.48 5.38 4.94 
2xnb 6.83 8.35 8.72 8.29 8.32 7.37 7.24 
3mss 4.66 4.40 5.22 4.81 5.55 5.57 5.84 
3huc 5.99 4.59 5.18 4.73 5.26 5.84 5.93 
2gss 4.94 6.78 5.68 7.23 5.27 5.47 5.56 
2p4y 9.00 6.27 7.75 6.32 7.91 6.90 7.17 
3kgp 2.57 4.50 4.03 4.84 4.32 4.31 4.04 
3su3 9.13 6.45 6.42 6.27 7.45 6.38 6.38 
1p1q 4.89 7.12 6.37 6.64 6.40 6.50 6.13 
1a30 4.30 5.71 5.89 6.74 5.38 5.37 5.72 
3bfu 6.27 7.23 6.79 6.93 6.63 6.11 5.84 
2qbr 6.33 8.18 7.29 7.81 7.51 5.86 6.23 
4g8m 7.89 6.70 7.09 6.67 6.78 5.41 5.37 
3gbb 6.90 4.56 5.46 5.02 5.53 5.64 5.42 
3u9q 4.38 6.34 6.54 6.48 6.32 5.83 5.63 
1uto 2.27 5.34 4.73 5.04 4.89 4.73 4.07 
1sqa 9.21 6.68 7.37 7.30 7.19 6.65 6.69 
3su5 5.58 6.45 6.58 6.27 7.58 6.38 6.35 
3f17 8.63 6.52 5.41 6.36 5.49 5.63 5.33 
3kwa 4.08 5.35 6.53 5.85 6.37 5.38 5.49 
2hb1 3.80 6.57 5.73 6.60 5.71 4.88 4.88 
3uo4 6.52 5.88 5.53 6.20 5.55 5.05 5.65 
3g2z 2.36 5.78 4.47 5.71 4.68 5.71 4.99 
2weg 6.50 6.94 7.12 6.78 7.05 6.24 6.42 
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Table 14: Prediction data for the Kd core dataset. F: fingerprint data only. F + P: fingerprint + PMF data. Predictions with the 
highest difference (negative red, positive green) to the experimental data are highlighted in bold. 

  DNN1 DNN2 XGBoost 
PDB exp. data F F + P F F + P F F + P 

2yki 9.46 6.07 6.34 5.68 6.21 5.55 6.35 
3k5v 6.30 6.01 6.87 5.72 6.57 5.38 5.84 
3ivg 4.30 8.20 8.03 7.73 7.64 5.77 5.96 
3ao4 2.07 3.02 3.73 3.43 3.87 4.39 4.53 
3pxf 4.43 4.99 4.71 4.87 4.82 5.19 5.14 
3uex 6.92 6.42 6.67 6.21 6.22 5.90 6.27 
1bcu 3.28 6.46 6.39 6.38 6.05 5.35 4.32 
3zso 5.12 4.91 4.75 4.45 4.71 4.22 4.51 
3gcs 7.25 6.55 6.83 6.17 6.49 5.96 6.08 
3gy4 5.10 4.07 4.26 4.09 4.22 4.57 4.35 
3zsx 3.28 4.88 4.31 4.92 4.11 3.88 3.97 
3imc 2.96 4.13 3.42 3.95 3.71 3.88 3.26 
3mss 4.66 5.37 5.12 4.85 5.01 5.69 5.64 
3huc 5.99 5.62 5.98 5.43 5.74 6.02 6.13 
1p1q 4.89 7.78 7.54 7.42 7.32 6.56 6.19 
4g8m 7.89 7.16 7.51 7.00 7.24 5.60 5.72 
1uto 2.27 5.05 4.60 4.92 4.52 4.61 3.95 
3f17 8.63 4.61 4.07 4.71 4.23 5.71 5.22 
3uo4 6.52 7.39 6.54 7.24 6.86 6.08 6.03 
2weg 6.50 6.56 6.82 6.58 6.92 6.07 6.21 
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Table 15: Prediction data for the Ki core dataset. F: fingerprint data only. F + P: fingerprint + PMF data. Predictions with the 
highest difference (negative red, positive green) to the experimental data are highlighted in bold. 

  DNN1 DNN2 XGBoost 
PDB exp. data F F + P F F + P F F + P 

1r5y 6.46 5.89 6.09 5.89 6.04 5.55 4.90 
1sln 6.64 4.96 3.69 5.11 3.98 5.69 5.79 
2x8z 7.96 6.42 6.63 6.26 6.83 6.89 5.78 
1o5b 5.77 5.80 6.13 5.77 6.19 5.70 5.48 
1hfs 8.70 6.52 8.19 6.58 7.70 6.45 6.97 
1mq6 11.15 8.10 7.47 8.41 7.48 6.97 7.37 
1gpk 5.37 7.21 6.47 7.11 6.23 6.16 5.89 
4djv 6.72 6.18 6.86 6.16 6.41 6.60 6.56 
2y5h 5.79 6.96 6.98 6.71 7.21 6.85 7.16 
3b3w 4.19 4.33 4.05 4.29 4.21 4.49 4.78 
1hnn 6.24 6.43 5.90 6.41 5.59 6.14 6.27 
2qbp 8.40 7.40 6.33 7.32 6.12 6.88 6.35 
3su2 7.35 6.77 6.83 6.58 6.74 6.73 6.67 
1oyt 7.24 6.67 6.00 6.23 6.31 6.89 6.32 
3b3s 2.55 4.33 4.31 4.29 4.38 4.49 4.70 
4de2 4.12 4.07 4.17 3.90 4.21 6.12 5.90 
3f3c 6.02 5.07 4.57 5.03 4.71 5.23 5.20 
2fvd 8.52 6.40 6.42 6.30 6.34 6.98 7.40 
3ehy 5.85 5.34 4.81 5.39 4.78 5.57 5.43 
2xnb 6.83 8.72 9.01 8.77 8.77 7.15 7.24 
2gss 4.94 5.69 4.58 5.62 4.68 5.44 5.19 
2p4y 9.00 10.93 12.07 11.03 10.80 6.76 7.35 
3kgp 2.57 3.81 3.35 3.74 3.50 4.03 3.71 
3su3 9.13 6.12 7.31 6.05 7.07 6.66 6.24 
1a30 4.30 6.43 7.32 6.40 7.16 5.50 6.16 
3bfu 6.27 6.18 6.10 6.19 5.97 4.89 5.30 
2qbr 6.33 7.69 7.01 7.80 6.80 6.32 6.30 
3gbb 6.90 5.37 6.53 5.38 6.52 5.84 5.54 
3u9q 4.38 5.89 6.40 6.03 6.49 4.78 5.31 
1sqa 9.21 5.13 5.45 5.09 5.48 6.21 6.80 
3su5 5.58 6.12 7.11 6.05 6.84 6.66 6.34 
3kwa 4.08 3.91 4.69 3.75 4.93 4.65 5.28 
2hb1 3.80 6.01 5.45 5.92 5.24 5.09 4.78 
3g2z 2.36 6.62 5.81 6.80 6.13 5.60 5.10 
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9 Electronic appendix 


