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Introduction

The environmental Kuznets curve (EKC) hypothesis postulates an inverted U-shaped re-

lationship between measures of economic development, typically the logarithm of gross

domestic product (GDP) per capita, and the logarithm of measures of pollution or emis-

sions per capita, such as carbon dioxide (CO2) or sulfur dioxide (SO2). By analogy, the

term refers to the inverted U-shaped relationship between the level of economic devel-

opment and the degree of income inequality, postulated by Kuznets (1955) in his 1954

presidential address to the American Economic Association (Bradford et al., 2005). From

its inception with the pioneering work of Grossman and Krueger (1991, 1993, 1995) hun-

dreds of refereed publications, both theoretical as well as empirical, have contributed to

the still steadily growing EKC literature, see, e. g., Stern (2017) for a recent literature

review. The EKC hypothesis is most commonly analyzed in a regression of log emissions

per capita on log GDP per capita and its square, or even higher order powers. From

an econometric perspective, this approach has been criticized, e. g., with respect to the

use of appropriate unit root and cointegration methods. For instance, the logarithm of

GDP per capita is often found to be integrated of order one. A large part of the EKC

literature ignores the fact that powers of integrated processes are not integrated them-

selves (Wagner, 2012) and uses standard, i. e., linear, cointegration techniques. In fact,

a regression including log GDP per capita and its powers as regressors is a cointegrating

polynomial regression (CPR), a term coined by Wagner and Hong (2016). CPRs include

deterministic variables and polynomially transformed integrated variables as explanatory

variables and stationary errors. In this thesis, we address problems related to the use of

standard cointegration techniques applied to CPRs for the empirical analysis of EKC-type

relationships from an analytical point of view. Furthermore, we provide suitable estima-

tion and inference as well as cointegration testing techniques for CPRs in single equations

and also perform multi-country analysis of the EKC including cross-sectional dependencies

and parameter heterogeneity.

Alternative approaches to analyze EKC-type cointegrating relationships have been put

forward recently in, e. g., Chan and Wang (2015) or Liang et al. (2016), who consider

nonlinear least squares estimation in a parametric cointegrating regression model involving

a known nonlinear regression function. These papers provide limit theory for a wide class
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of nonlinear regression functions including polynomials, but are restricted to univariate

regressors. This may be sufficient for analyzing the EKC hypothesis, but is a limitation for

the analysis of related problems involving multiple integrated regressors. Another virtue of

considering nonlinear cointegrating relationships in a CPR framework is the preservation

of linearity in parameters, which allows for closed form least squares based estimation

methods. In presence of endogeneity the limiting distribution of the OLS estimator is

contaminated by so-called second order bias terms rendering OLS based inference difficult.

To overcome this limitation, several modified OLS estimators have been proposed in the

literature, such as the fully modified OLS (FM-OLS) estimator (Phillips and Hansen,

1990), the dynamic OLS (D-OLS) estimator (Saikkonen, 1991; Stock and Watson, 1993),

and the integrated modified OLS (IM-OLS) estimator (Vogelsang and Wagner, 2014a).

Chapter 1 analyzes the asymptotics of the standard FM-OLS estimator of Phillips and

Hansen (1990) for cointegrating polynomial regressions, i.e., treating not only the stochas-

tic regressor, but also its powers incorrectly as integrated regressors, as is common practice

in the EKC literature. The analysis of linear cointegrating relationships dominates a large

part of the literature due to its conceptual simplicity and convenience in use. The deploy-

ment of these tools in several software packages makes the standard methods tempting to

use for the EKC analysis. The empirical analysis in Wagner (2015) illustrates different

conclusions with respect to identifying countries in which a cointegrating EKC relation-

ship is present. In this chapter, we show that the asymptotic distribution of the standard

FM-OLS estimator turns out to coincide for CPRs with the tailor-made CPR extension of

the FM-OLS estimator introduced in Wagner and Hong (2016). In addition, some inter-

mediate results of independent interest are derived. In particular, we show the asymptotic

behavior of nonparametric covariance-type estimators involving (scaled) first differences

of polynomially transformed integrated processes. The use of linear cointegration tests in

CPRs, e. g., Shin (1994)-type cointegration tests based on standard FM-OLS residuals, in

conjunction with the Shin (1994) critical values is invalid even asymptotically. In CPRs

the limiting distribution of Shin (1994)-type cointegration test statistics depends, apart

from the deterministic component and the number of integrated regressors, also on the

powers of the integrated regressors included. This is neglected when conducting cointegra-

tion tests in CPRs in conjunction with the Shin (1994) critical values. A simulation study

is conducted to assess the estimator performance in finite samples. The results illustrate

that both, the standard FM-OLS as well as the CPR extension of the FM-OLS estimator,

perform similar in CPR models in terms of bias and root mean squared error (RMSE).

However, tests based upon the latter show a better performance in terms of lower over-

rejections under the null and larger (size-corrected) power for hypothesis testing as well

as cointegration testing.
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Chapter 2 provides an extension of the integrated modified OLS (IM-OLS) estimator for

cointegrating polynomial regressions recently developed in Vogelsang and Wagner (2014a)

for the linear cointegration case and extended for a RESET-type test for the null hypoth-

esis of linearity of a cointegrating relationship in Vogelsang and Wagner (2014b). This

estimator is based on a partial sum transformation and an augmentation by including all

integrated regressors. Unlike other common OLS modifications, such as the FM-OLS esti-

mator or the D-OLS estimator, no tuning parameter is required for estimation. However,

for inference a scalar long-run covariance has to be estimated based on suitable choice of

kernel and bandwidth. It is shown that the IM-OLS estimator adjusted to CPRs has a zero

mean Gaussian mixture limiting distribution that forms the basis for asymptotic standard

inference. Since asymptotic standard inference does not capture the impact of kernel and

bandwidth choices on the sampling distributions, fixed-b asymptotic theory has been de-

veloped in the stationary framework in Kiefer and Vogelsang (2005). We provide fixed-b

asymptotic theory for the IM-OLS estimator in the CPR framework, which is asymptot-

ically nuisance parameter free under suitable conditions on the design of the regression

equation, referred to as full design. In this case, critical values can be tabulated, which de-

pend upon the kernel function, the bandwidth choice, the specification of the deterministic

components, the number of integrated regressors and the powers included. Furthermore,

an IM-OLS residual based Kwiatkowski et al. (1992)-type (KPSS-type) cointegration test

is provided with a nuisance parameter free limiting distribution of the test statistic in the

full design case. A simulation study suggest that tests based on the IM-OLS estimator in

CPRs, both standard asymptotic as well as fixed-b tests, can lead to substantially smaller

size distortions for hypothesis testing at the cost of some minor losses in (size-corrected)

power compared to FM-OLS and D-OLS based tests, especially for larger extents of se-

rial correlation and endogeneity. The IM-OLS residual based cointegration test performs

similar to the FM-OLS residual based test and has good power properties against the

variety of alternatives considered in this simulation study. We also apply the established

estimation and testing techniques to the EKC hypothesis based on a data set containing

CO2 emissions and GDP for 19 early industrialized countries over the time period 1870–

2013. We find evidence for the existence of a quadratic EKC relationship for six countries

and in one additional country for a cubic EKC relationship. The results of the FM-OLS

and IM-OLS based cointegration tests are well in line with each other. The findings in

this chapter indicate that the extension of the IM-OLS estimator to CPRs adds another

concept into the toolkit for analyzing CPR relationships, which in particular is robust to

serial correlation and endogeneity.

Finally, Chapter 3 analyzes the EKC hypothesis in a multi-country system of equations

approach. In addition to the above-mentioned problems of linear cointegration methods

for the analysis of EKC-type relationships, a large part of the EKC literature uses panel

3
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data cointegration techniques, which are plagued by the restrictive assumptions of cross-

sectional independence and parameter homogeneity. The EKC analysis based on multi-

country data involves GDP series for countries of geographic contiguity, e.g., Belgium and

the Netherlands, which are not expected to be independent. On the other hand, going

through different stages of development as well as the absence of coordinated policies

against CO2 or SO2 emissions in the past may imply different trajectories of country-

individual EKCs and in turn cross-sectional parameter heterogeneity (see, e.g., Dijkgraaf

and Vollebergh, 2005). Therefore, building upon Hong and Wagner (2014) we consider

fully modified OLS estimation for systems of seemingly unrelated cointegrating polynomial

regressions (SUCPRs). In addition to single-equation cointegrating polynomial regression

analysis, this setting allows for the consideration of cross-sectional dependence of the

regressors as well as the errors and does not impose parameter homogeneity. Instead, we

provide Wald-type tests for poolability, i.e. equality of parameters, for subsets of coefficients

over potentially different subsets of cross-sections. Non-rejection of the null hypothesis for

these tests allows for fully flexible estimation of the system of equations, which turns

out to be very useful in the EKC application. We refer to this as group-wise pooled

settings and consider group-wise pooled estimation of the EKC for CO2 emissions for

six early industrialized countries over the period 1870–2013. The estimation results are

similar to those obtained in unrestricted individual CPRs despite the reduction of the

number of estimated parameters by about one third. Conversely, we show that estimation

in a classical panel approach including cross-sectional parameter homogeneity – except

for the intercepts – is rejected by poolability testing and performs severely worse in this

application. In case that the cross-sectional dimension is small compared to the time series

dimension, a problem-specific approach to pooling that the SUCPR methodology provides

is a helpful tool for analyzing multi-country EKC-type relationships.

All simulations and computations for empirical applications have been performed in MATLAB.

The code containing the respective procedures can be obtained from the author upon re-

quest.
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1. “Standard” Fully Modified OLS

Estimation of Cointegrating Polynomial

Regressions

1.1. Introduction

The development of asymptotic estimation and inference theory for unit root and cointe-

gration analysis has experienced rapid progress over the past few decades. Most models

employed in empirical research are linear in variables and convenient in use for applied

work as several software packages give access to these tools of econometric analysis to many

fields of empirical research. Given the particular application at hand, linear models may

be too restrictive to capture the features of long-run relationships adequately. Extensions

to nonlinear cointegrating relationships have been put forward recently. However, the

nonlinear cutting-edge techniques are still in its infancy relative to the linear counterparts

– especially with respect to applied work. From this point of view, it is worth investi-

gating the impact of applying linear cointegration estimation and inference techniques in

nonlinear cointegration models.

The present chapter analyzes analytically the asymptotics of the fully modified OLS (FM-

OLS) estimator of Phillips and Hansen (1990) for cointegrating polynomial regressions

(CPRs), i. e., regressions including deterministic variables, integrated processes as well as

integer powers of integrated processes as explanatory variables and stationary errors. The

CPR framework allows to develop linear least squares based estimation methods and is

applicable in the contexts of, e. g., purchasing power parity (PPP) or the environmental

Kuznets curve (EKC) hypothesis.1 The former is considered in Hong and Phillips (2010),

who present a specification test for more general nonlinear cointegration regressions based

1The term EKC, coined by Grossman and Krueger (1995), refers by analogy to the inverted U-shaped
relationship between the level of economic development and the degree of income inequality postulated
by Simon Kuznets (1955) in his 1954 presidential address to the American Economic Association.
Already early survey papers like Stern (2004) or Yandle et al. (2004) find more than 100 refereed
publications; with many more written since then. See also the discussions in Wagner (2015) and
Wagner and Grabarczyk (2017) for additional references and some background.
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1. “Standard” Fully Modified OLS Estimation of Cointegrating Polynomial Regressions

on approximations by polynomial basis functions. On the other hand, the EKC hypothesis,

which postulates an inverted U-shaped relationship between GDP and emissions, is the

original motivation for considering CPRs in Wagner and Hong (2016). The hypothesized

inverted U-shape suggests the inclusion of GDP and at least its square as explanatory

variables. It is known that integer powers of an integrated process are not integrated

processes (see, e. g., Wagner, 2012). Nevertheless, the empirical EKC literature that uses

unit root and cointegration techniques employs standard estimation methods for linear

cointegrating relationships, with few exceptions, e. g., Chan and Wang (2015) and Wagner

(2015). This means that, e. g., the FM-OLS estimator is applied treating not only the

stochastic regressor, but also its integer powers incorrectly as integrated regressors. This

approach is referred to as FM-LIN in this chapter (defined in (1.10) in Section 1.2). Wagner

and Hong (2016) adapt the FM-OLS estimator to the CPR case (defined in (1.6) in

Section 1.2), labeled FM-CPR hereafter. The main result of this chapter shows that the

asymptotic distributions of the FM-LIN and the FM-CPR estimators coincide for CPRs,

thereby developing some intermediate results related to nonparametric long-run covariance

estimation that are of independent interest.

An immediate implication of the main result is that the asymptotic distributions of the

Shin (1994)-type cointegration test statistic, as discussed in Wagner and Hong (2016) for

CPRs, coincide for both the FM-LIN and the FM-CPR residuals. The critical values for

this test depend upon the specification of the equation (Wagner, 2013), i. e., upon the de-

terministic component as well as the number and powers of integrated regressors included.

Consequently, testing for cointegration using the FM-LIN residuals in conjunction with the

Shin (1994) critical values, is invalid even asymptotically. Thus, in contrast to estimation

for cointegration testing, no surprising asymptotic result rescues the “linear approach”.

The discussion in Section 1.2 is for the CPR case with only one integrated process and

powers thereof as regressors, which is also the most relevant case for the applications we

are aware of. The result, however, extends, with only additional notational complexity,

to the more general situation considered in Wagner and Hong (2016).2 Details for the

general case are given in Appendix A.2.

The scatter plot shown in Figure 1.1 displays the relationship between log GDP per capita

and log CO2 emissions per capita for Belgium over the period 1870–2009. In addition to

the scatter plot, the figure displays estimates obtained by FM-LIN (dashed) and FM-

CPR (solid). If log GDP per capita is an integrated process, the results in the figure are

derived from a regression involving a unit root process and its square, an intercept and a

linear trend as regressors and log CO2 emissions per capita as dependent variable. Details

including definitions and precise assumptions are given in Section 1.2. The results are

2The detailed discussion in Section 1.2 shows that the asymptotic equivalence result requires stricter
assumptions than used in, e. g., Wagner and Hong (2016).
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Figure 1.1.: EKC estimation results. The dots show the pairs of observations of log GDP
and log CO2 in per capita terms for Belgium for the years 1870–2009. The curves result
from inserting 140 equidistantly spaced points based on the sample range of log GDP
per capita and the corresponding values of the trend given in the estimated relationship
ln(CO2)t = c + δt + β1 ln(GDP)t + β2 ln(GDP)2

t . Thereby, the coefficient estimates are
obtained by FM-LIN (dashed) and FM-CPR (solid).

very similar, despite the fact that the FM-LIN estimator is used in a setting for which it

has not been designed.

The theoretical analysis is complemented by a simulation study, that confirms the main

result of this chapter and assesses the performance of the FM-LIN estimator for CPRs

in small samples. The FM-LIN estimator performs qualitatively similar to the FM-CPR

estimator in terms of bias and root mean squared error, but the simulation study indicates

a better hypothesis test as well as cointegration test performance for the latter.

The chapter is organized as follows: In Section 1.2 we present the model and assumptions

as well as the theoretical results. Section 1.3 is devoted to a brief simulation study and Sec-

tion 1.4 summarizes and concludes. Two appendices follow the main text: Appendix A.1

contains some auxiliary lemmata and proofs of the main results. Appendix A.2 illustrates

the main arguments of the proofs for the case with more than one integrated regressor.

Available additional material contains more detailed simulation results.

We use the following notation: Definitional equality is signified by :=, equality in dis-

tribution by
d
= and weak convergence by ⇒. We use OP(·) to denote boundedness in

probability, whereas oP(·) and oa.s.(·) denote convergence in probability and almost sure

convergence. The integer part of x ∈ R is given by bxc and a diagonal matrix by diag(·)
with entries specified throughout. For a vector x = (xi)i=1,...,n we consider the Euclidean

9



1. “Standard” Fully Modified OLS Estimation of Cointegrating Polynomial Regressions

norm ‖x‖2 :=
∑n

i=1 x
2
i and for a matrix A the j-th column is labeled by A(·,j). We denote

with 0m×n an (m × n)-matrix with all entries equal to zero and ekl defines the l-th unit

vector in Rk. The expectation operator and the first difference operator are labeled by

E and ∆, respectively. Brownian motions are denoted by B(r), with covariance matrix

specified in the context and standard Brownian motions by W (r).

1.2. Theory

1.2.1. Model and Assumptions

As mentioned in the introduction, to understand the arguments leading to the results it

suffices to consider a cointegrating polynomial regression with one integrated regressor

and its powers3, i. e.,

yt = D′tδ +Xt
′β + ut, for t = 1, . . . , T, (1.1)

xt = xt−1 + vt,

where yt is a scalar process, Dt ∈ Rq is a deterministic component, xt is a scalar I(1)

process and Xt := [xt, x
2
t , . . . , x

p
t ]
′ ∈ Rp. Denoting with Zt := [D′t, X

′
t]
′ ∈ Rq+p the stacked

regressor matrix and with θ := [δ′, β′]′ ∈ R(q+p) the parameter vector, equation (1.1) can

be rewritten more compactly as:

yt = Z ′tθ + ut, for t = 1, . . . , T.

Assumption 1. For the deterministic components it suffices to assume that there exists

a sequence of q × q scaling matrices GD = GD(T ) and a q-dimensional vector of càdlàg

functions D(s), with 0 <
∫ s

0 D(z)D(z)′dz < ∞ for 0 < s ≤ 1, such that for 0 ≤ s ≤ 1 it

holds that:

lim
T→∞

T 1/2GDD[sT ] = D(s).

For the leading case of polynomial time trends4, the deterministic component has the form

Dt = [1, t, t2, . . . , tq−1]′ with GD = diag(T−1/2, T−3/2, T−5/2, . . . , T−(q−1/2)) and D(s) =

[1, s, s2, . . . , sq−1]′.

3Note that, of course, not all consecutive powers of xt need to be included and in case of more than one
integrated regressor the included powers can differ across integrated regressors. These changes lead to
notational complications only. The initial value x0 can be any well-defined OP(1) random variable.

4In the EKC literature the deterministic component typically consists of an intercept and a linear trend
with the latter supposed to capture autonomous energy efficiency increases.
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1.2. Theory

The precise assumptions concerning the error process and the regressor are as follows:

Assumption 2. The processes {ut}t∈Z and {∆xt}t∈Z = {vt}t∈Z are generated as:

ut = Cu(L)ζt =
∞∑
j=0

cujζt−j ,

∆xt = vt = Cv(L)εt =
∞∑
j=0

cvjεt−j ,

with
∑∞

j=0 j|cuj | < ∞,
∑∞

j=0 j|cvj | < ∞ and Cv(1) 6= 0. Furthermore, we assume that

the process {ξ0
t }t∈Z := {[ζt, εt]′}t∈Z is independently and identically distributed with

E(‖ξ0
t ‖l) <∞ for some l > max(8, 4/(1− 2b)) with 0 < b < 1/3.

The above Assumption 2 is stronger than the corresponding assumption used in Wagner

and Hong (2016). To be able to draw upon some of the results of Kasparis (2008) we

replace the martingale difference sequence assumptions used in Wagner and Hong (2016)

with a linear process assumption and the moment assumption of Kasparis (2008).5 For

univariate {xt}t∈Z the assumption Cv(1) 6= 0 excludes stationary {xt}t∈Z, and has to be

modified in the multivariate case to det(Cv(1)) 6= 0, i. e., in the multivariate case the

vector process {xt}t∈Z is assumed to be non-cointegrated.

For long-run covariance estimation we impose the following assumptions with respect to

kernel and bandwidth choices, which are closely related to the corresponding assumptions

of Jansson (2002):

Assumption 3. For the kernel function k(·) we assume that:

1. k(0) = 1, k(·) is continuous at 0 and k̄(0) := supx≥0 |k(x)| <∞

2.
∫∞

0 k̄(x)dx <∞, where k̄(x) = supy≥x |k(y)|

Assumption 4. For the bandwidth parameter MT we assume that MT ⊆ (0,∞) and

MT = O(T b), with the same parameter b as in Assumption 2.

5Note that in Kasparis (2008, Assumption 1(b), p. 1376) a condition of the form l > min(8, 4/(1 − 2b))
is posited. In the proof of his Lemma A1, however, at different places moments of order 4/(1 − 2b)
(p. 1391) and order 8 (p. 1395) are needed. Thus, we believe that the minimum should be replaced
by the maximum. Since we use similar arguments in the proofs of our Lemmata 3 and 4 we require
moments of order max(8, 4/(1 − 2b)). As discussed in Wagner and Hong (2016) similar results could
also be established under alternative assumptions in the spirit of, e. g., Ibragimov and Phillips (2008)
or de Jong (2002), augmented correspondingly to accommodate the powers of the integrated regressor.
A key difference to, e. g., Chang et al. (2001) is that {ut}t∈Z is allowed to be serially correlated, in an
MDS setting in Wagner and Hong (2016) and in a linear process setting here.

11



1. “Standard” Fully Modified OLS Estimation of Cointegrating Polynomial Regressions

Our Assumption 4 on the bandwidth implies limT→∞(M−1
T + T−1/3MT ) = 0, whereas

Jansson (2002) assumes limT→∞(M−1
T + T−1/2MT ) = 0, which corresponds to MT =

O(T b), with 0 < b < 1/2. Clearly, our assumption here is stronger. This tightening of

the upper bound stems from the fact that for the asymptotic analysis of the FM-LIN

estimator defined in (1.10) we need to consider “long-run covariance” estimators involving

nonstationary processes. Establishing weak convergence of these terms requires smaller

bandwidths. In order to have uniform notation we formally define:

Definition 1. For two sequences {at} and {bt} with sample t = 1, . . . , T we define:

∆̂ab :=

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

atb
′
t+h, (1.2)

neglecting the dependence on k(·), MT and the sample range 1, . . . , T for brevity. Further-

more,

Ω̂ab := ∆̂ab + ∆̂′ab − Σ̂ab, (1.3)

with Σ̂ab := T−1
∑T

t=1 atb
′
t.

Clearly, in case that {at}t∈Z and {bt}t∈Z are jointly stationary processes with finite half

long-run covariance ∆ab =
∑∞

h=0 E(a0b
′
h), then under appropriate assumptions ∆̂ab is

– as usual – a consistent estimator of ∆ab, with similar results holding a fortiori for

Ωab :=
∑∞

h=−∞ E(a0b
′
h) and Σab := E(a0b

′
0).

Remark 1. Note also that in our definition of ∆̂ab we use (like, e. g., Phillips, 1995) the

bandwidth MT rather than T − 1 as upper bound of the summation over the index h

(like, e. g., Jansson, 2002). For truncated kernels with k(x) = 0 for |x| > 1 this is of

course inconsequential. It can also be shown (see, e. g., Phillips, 1995) that for standard

long-run covariance estimation problems, consistency is not affected by either summation

index choice also for untruncated kernels like the Quadratic Spectral kernel. In our set-

ting, where the asymptotic behavior of ∆̂-quantities is analyzed for a (properly scaled

but) nonstationary process (see Theorem 1 and Corollary 1), the summation bound is

important. The key result in Theorem 1 below hinges upon summation only up to MT .

The tighter summation bounds are related to the smaller bandwidths needed postulated

in Assumption 4. More specifically, we need this in the proof of Lemma 5. This lemma

is related to Kasparis (2008, Lemma A1, p. 1394–1396), where this summation bound is

also used (in a slightly different context).
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1.2. Theory

Assumption 2 implies that the process {ξt}t∈Z := {[ut, vt]′}t∈Z fulfills a functional central

limit theorem of the form:

1

T 1/2

[rT ]∑
t=1

ξt ⇒ B(r) =

[
Bu(r)

Bv(r)

]
= Ω

1/2
ξξ W (r), r ∈ [0, 1], (1.4)

with the covariance matrix Ωξξ of B(r) given by the long-run covariance matrix of {ξt}t∈Z,

i. e.,

Ωξξ :=

[
Ωuu Ωuv

Ωvu Ωvv

]
=

∞∑
h=−∞

E(ξ0ξ
′
h).

The half (or one-sided) long-run covariance matrix ∆ξξ :=
∑∞

h=0 E(ξ0ξ
′
h) is also needed

below and partitioned similarly as Ωξξ. For FM-type estimation, estimates of the above

long-run covariance matrices are required. Below we focus on the estimation of ∆ξξ,

from which an estimator of Ωξξ follows using (1.3) and an estimator of Σξξ, since the

asymptotic behavior of estimators of ∆-type quantities is one of the key elements for the

result in Theorem 1.

Unless otherwise stated, in long-run covariance estimation the unobserved errors ut are

replaced by the OLS residuals from (1.1), ût. This defines ξ̂t := [ût, vt]
′ and the effects of

this replacement are analyzed below.

1.2.2. Fully Modified OLS Estimation

A fully modified OLS (FM-OLS) type estimator for the parameters in (1.1) is presented in

Wagner and Hong (2016) by extending the FM-OLS estimation principle from the linear

cointegration case considered in Phillips and Hansen (1990) to the CPR setting.6 We

briefly describe the two-part transformation required for FM-CPR estimation. First, the

dependent variable yt is replaced by:

y+
t := yt −∆xtΩ̂

−1
vv Ω̂vû,

6Note again that related work has also been undertaken by other authors, including – as already mentioned
– Chang et al. (2001), de Jong (2002), Ibragimov and Phillips (2008) or Liang et al. (2016).
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1. “Standard” Fully Modified OLS Estimation of Cointegrating Polynomial Regressions

with the long-run covariances estimated from ξ̂t. The second transformation consists of a

bias-correction term that is for specification (1.1) given by:

A∗ := ∆̂+
vû



0q×1

T

2
∑T

t=1 xt
...

p
∑T

t=1 x
p−1
t


, (1.5)

with ∆̂+
vû := ∆̂vû−∆̂vvΩ̂

−1
vv Ω̂vû. Finally, defining y+ := [y+

1 , . . . , y
+
T ]′ and Z := [Z1, . . . , ZT ]′,

the FM-CPR estimator of θ is defined as:

θ̂+ := (Z ′Z)−1(Z ′y+ −A∗). (1.6)

Define

G = G(T ) := diag(GD(T ), GX(T )), (1.7)

withGX(T ) := diag(T−1, T−3/2, . . . , T−(p+1)/2) and J(r) := [D(r)′,Bv(r)
′]′, where Bv(r) :=

[Bv(r), B
2
v(r), . . . , Bp

v(r)]′. Wagner and Hong (2016, Proposition 1) show under slightly

weaker assumptions that:

G−1(θ̂+ − θ)⇒
(∫ 1

0
J(r)J(r)′dr

)−1 ∫ 1

0
J(r)dBu·v(r), (1.8)

with Bu·v(r) := Bu(r) − Bv(r)Ω
−1
vv Ωvu. The zero-mean Gaussian mixture limiting dis-

tribution given in (1.8) forms the basis for asymptotically valid standard (chi-squared)

inference.

1.2.3. “Standard” Fully Modified OLS Estimation

We now consider the “wrong” approach outlined in the introduction and show that it is

asymptotically equivalent to the FM-CPR estimator discussed in the previous subsection,

i. e., it is in fact not “wrong” asymptotically. We refer to this estimator, defined formally

in (1.10), for brevity as FM-LIN estimator.

Considering the CPR “formally” as a standard linear cointegrating regression problem we

rewrite the model as follows:

yt = D′tδ +X ′tβ + ut

Xt = Xt−1 + wt,

14



1.2. Theory

with

wt :=


∆xt

∆x2
t

...

∆xpt

 =


vt

2xtvt − v2
t

...

−
∑p

k=1

(
p
k

)
xp−kt (−vt)k

 , (1.9)

i. e., the j-th component of the vector wt is given by −
∑j

k=1

(
j
k

)
xj−kt (−vt)k. The modified

dependent variable is given by:

y++
t := yt − w′tΩ̂−1

wwΩ̂wû,

with Ω̂ww and Ω̂wû to be interpreted in the sense of Definition 1. The correction term for

FM-LIN is given by:

A∗∗ :=

[
0q×1

T (∆̂wû − ∆̂wwΩ̂−1
wwΩ̂wû)

]
=

[
0q×1

T ∆̂+
wû

]

with ∆̂ww and ∆̂wû also to be interpreted in the sense of Definition 1. This allows to

define the FM-LIN estimator as:

θ̂++ := (Z ′Z)−1(Z ′y++ −A∗∗), (1.10)

with y++ := [y++
1 , . . . , y++

T ]′. Denoting with û++ := [û++
1 , . . . , û++

T ]′, where û++
t :=

ut − w′tΩ̂−1
wwΩ̂wû, the centered and scaled estimator can be written as:

G−1(θ̂++ − θ) =
(
GZ ′ZG

)−1 (
GZ ′u++ −GA∗∗

)
, (1.11)

with the first term, obviously, unchanged compared to the FM-CPR estimator. Thus,

consider the two parts of the second expression in (1.11) in more detail using W :=

[w′1, . . . , w
′
T ]′ and GW := GW (T ) = diag(1, T−1/2, . . . , T−(p−1)/2):

GZ ′u++ = GZ ′(u−W Ω̂−1
wwΩ̂wû)

= GZ ′u−GZ ′W Ω̂−1
wwΩ̂wû

= GZ ′u−GZ ′WGWG
−1
W Ω̂−1

wwG
−1
W GW Ω̂wû

= GZ ′u−GZ ′W̃ Ω̂−1
w̃w̃Ω̂w̃û,

15



1. “Standard” Fully Modified OLS Estimation of Cointegrating Polynomial Regressions

with W̃ := WGW a “properly scaled” version of W such that the three terms GZ ′W̃ , Ω̂w̃w̃

and Ω̂w̃û, have well-defined limits established below. Next consider:

GA∗∗ =

[
GD 0

0 GX

][
0q×1

T ∆̂+
wu

]
=

[
0q×1

GW ∆̂+
wu

]
=

[
0q×1

∆̂+
w̃u

]
,

where TGX = GW . Combining the above expressions we can rewrite the centered and

scaled FM-LIN estimator as:

G−1(θ̂++ − θ) =
(
GZ ′ZG

)−1
(
GZ ′u−GZ ′W̃ Ω̂−1

w̃w̃Ω̂w̃u −GA∗∗
)
. (1.12)

Clearly, the asymptotic behavior of the “formal” long-run and half long-run covariance

estimators is of key importance and is thus investigated next in two steps. We first consider

the process {ηt} := {[ut, w̃′t]′} and then show in the second step that the same asymptotic

behavior prevails also for {η̃t} := {[ût, w̃′t]′}, when using the OLS residuals ût for actual

calculations.

Theorem 1. Under Assumptions 2 to 4 it holds that

∆̂ηη :=

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

ηtη
′
t+h ⇒ ∆ηη :=

 ∆uu ∆uv ∆uvB′

∆vu ∆vv ∆vvB′

∆vuB ∆vvB ∆vvB̃

 , (1.13)

as T →∞, with

B :=

[
2

∫ 1

0
Bv(r)dr, . . . , p

∫ 1

0
Bp−1
v (r)dr

]′
(1.14)

and for i, j = 1, . . . , p− 1,

B̃(i,j) := (1 + i)(1 + j)

∫ 1

0
Bi+j
v (r)dr. (1.15)

Furthermore, as T →∞, it holds that

Σ̂ηη :=
1

T

T∑
t=1

ηtη
′
t ⇒ Σηη :=

 Σuu Σuv ΣuvB′

Σvu Σvv ΣvvB′

ΣvuB ΣvvB ΣvvB̃

 .
The above two results lead to:

Ω̂ηη := ∆̂ηη + ∆̂
′
ηη − Σ̂ηη ⇒ ∆ηη + ∆′ηη − Σηη =: Ωηη.
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1.2. Theory

Remark 2. By construction the upper 2 × 2-blocks in the above results coincides with

the long-run and half long-run covariances of the process {ξt}t∈Z. For all other terms

involving an integrated process or some powers of an integrated process we observe weak

convergence to functionals of Brownian motions. This is not unexpected, since these terms

are the limits of continuous functions (continuous kernel weighted sums) of scaled powers

of integrated processes. In particular these terms are not long-run covariances of some

underlying stationary processes, but we continue to use the “symbolic notation” ∆ηη, Σηη

and Ωηη, compare Remark 1. Note again, only the upper left 2× 2 blocks are (long-run)

covariances.

As indicated above, replacing ut by the OLS residuals ût does not change the asymptotic

behavior.

Corollary 1. Under Assumptions 1 to 4 the same results as above also hold for {η̃t}, i. e.

as T →∞:

∆̂η̃η̃ :=

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

η̃tη̃
′
t+h ⇒ ∆ηη

Σ̂η̃η̃ :=
1

T

T∑
t=1

η̃tη̃
′
t ⇒ Σηη

Ω̂η̃η̃ := ∆̂η̃η̃ + ∆̂′η̃η̃ − Σ̂η̃η̃ ⇒ Ωηη

It remains to characterize the asymptotic behavior of the remaining component on the

right hand side of (1.12).

Lemma 1. With the data given by (1.1) under Assumptions 1 and 2 it holds for

GZ ′W̃ =

(
GDD

′W̃

GXX
′W̃

)

as T →∞ that: (
GD

T∑
t=1

Dtw
′
tGw

)
(·,1)

⇒
∫ 1

0
D(r)dBv(r),

and(
GD

T∑
t=1

Dtw
′
tGw

)
(·,j)

⇒ j

∫ 1

0
D(r)Bj−1

v (r)dBv(r) + j(j − 1)∆vv

∫ 1

0
D(r)Bj−2

v (r)dr

−
(
j

2

)
Σvv

∫ 1

0
D(r)Bj−2

v (r)dr, (1.16)
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1. “Standard” Fully Modified OLS Estimation of Cointegrating Polynomial Regressions

for j = 2, . . . , p and(
GX

T∑
t=1

Xtw
′
tGw

)
(i,j)

⇒ j

∫ 1

0
Bi+j−1
v (r)dBv(r) + j(i+ j − 1)∆vv

∫ 1

0
Bi+j−2
v (r)dr

−
(
j

2

)
Σvv

∫ 1

0
Bi+j−2
v (r)dr,

for i, j = 1, . . . , p.

Combining the results of Theorem 1, Corollary 1 and Lemma 1 allows to establish the

main result of this chapter.

Theorem 2. Let the data be given by (1.1) with Assumptions 1 and 2 in place. Further-

more, let long-run covariance estimation be performed with Assumptions 3 and 4 in place.

Then it holds for T →∞ that:

G−1(θ̂++ − θ)⇒
(∫ 1

0
J(r)J(r)′dr

)−1 ∫ 1

0
J(r)dBu·v(r). (1.17)

Thus, the FM-LIN and the FM-CPR estimator have the same limiting distribution.

1.2.4. Testing for Cointegration

The asymptotic equivalence result established in Theorem 2 also implies that the Shin

(1994) type test of Wagner and Hong (2016, Proposition 5) for cointegration in the CPR

setting can be based on the residuals of both FM-CPR and FM-LIN estimation. Both test

statistics have the same asymptotic null distribution as shown in the following corollary.

Corollary 2. Consider again the cointegrating polynomial regression given in (1.1), As-

sumptions 2 to 4 in place and denote as before with û+
t the FM-CPR and by û++

t the

FM-LIN residuals. Then it holds that both

CT+ :=
1

T ω̂û·v

T∑
t=1

 1

T 1/2

t∑
j=1

û+
j

2

(1.18)

and

CT++ :=
1

T ω̂û·w

T∑
t=1

 1

T 1/2

t∑
j=1

û++
j

2

(1.19)
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1.3. Finite Sample Performance

with ω̂û·v := Ω̂ûû − Ω̂ûvΩ̂
−1
vv Ω̂vû and ω̂û·w := Ω̂ûû − Ω̂ûwΩ̂−1

wwΩ̂wû converge under the null

hypothesis as T →∞ to ∫ 1

0

(
W JW
u·v (r)

)2
dr, (1.20)

with

W JW
u·v (r) := Wu·v(r)−

∫ r

0
JW (s)′ds

(∫ 1

0
JW (s)JW (s)′ds

)−1 ∫ 1

0
JW (s)dWu·v(s),

where JW (r) := [D(r)′,Wv(r),W
2
v (r), . . . ,W p

v (r)]′. Under the stated assumptions both

ω̂û·v and ω̂û·w are consistent estimators of ωu·v := Ωuu − ΩuvΩ
−1
vv Ωvu, the variance of

Bu·v(r).

Remark 3. Note that in more general CPR models the above test statistic does not

necessarily have a nuisance parameter free limiting distribution. The key requirement for

this is, using the terminology of Vogelsang and Wagner (2014b), full design. In case of

only one integrated regressor full design automatically prevails.

The result of Corollary 2 is in line with the cointegration test findings alluded to in the

introduction. Using the FM-LIN residuals to calculate the CT++ test statistic, but the

Shin (1994) critical values is not mutually consistent. Instead of the Shin (1994) critical

values the critical values corresponding to the above limiting distribution need to be used

(given in Wagner, 2013). Therefore, using “linear” methods does have an asymptotic

effect, not for parameter estimation but for cointegration testing.

1.3. Finite Sample Performance

We assess the performance of the FM-LIN and FM-CPR estimators and hypothesis tests

based upon them, benchmarked against results obtained with OLS, as well as FM-LIN

and FM-CPR based cointegration tests.

We consider the following data generating process:

yt = c+ δt+ β1xt + β2x
2
t + ut, (1.21)

where the error processes {ut}t∈Z and {∆xt}t∈Z = {vt}t∈Z are generated as:

ut = ρ1ut−1 + εt + ρ2et,

vt = et + 0.5et−1,
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1. “Standard” Fully Modified OLS Estimation of Cointegrating Polynomial Regressions

ρ1, ρ2 OLS FM-LIN FM-CPR

And NW NWT And NW NWT

Panel A: Bias

0.0 0.0003 0.0005 0.0001 0.0005 0.0004 0.0003 0.0005
0.3 0.0191 0.0079 0.0071 0.0074 0.0076 0.0064 0.0071
0.6 0.0785 0.0417 0.0416 0.0403 0.0412 0.0391 0.0382
0.8 0.2020 0.1445 0.1464 0.1447 0.1451 0.1378 0.1397

Panel B: RMSE

0.0 0.0668 0.0734 0.0728 0.0735 0.0714 0.0712 0.0714
0.3 0.0938 0.1033 0.1020 0.1035 0.0973 0.0965 0.0971
0.6 0.1721 0.1780 0.1748 0.1775 0.1635 0.1592 0.1597
0.8 0.3284 0.3377 0.3290 0.3337 0.3092 0.2982 0.2981

Table 1.1.: Bias and RMSE for coefficient β1, QS kernel, T = 100.

with {εt}t∈Z and {et}t∈Z i.i.d. standard normally distributed. The parameter values chosen

are c = δ = 1, β1 = 5 and β2 = −0.3, motivated by the empirical results for EKC

estimation in Wagner (2015). The parameter ρ1 controls the level of serial correlation

in the regression error and the parameter ρ2 controls the level of endogeneity. Both

parameters are chosen equally from the set {0, 0.3, 0.6, 0.8}. We consider the sample sizes

T ∈ {50, 100, 200, 500, 1000} and all test decisions are carried out at the nominal 5%

significance level. The number of replications is 10, 000 throughout.

For long-run covariance estimation we use the Quadratic Spectral (QS) kernel7 and band-

widths chosen according to the following rules: the data dependent bandwidth rules of

Andrews (1991) (labeled And) and Newey and West (1994) (labeled NW), as well as a

simplified sample size dependent version of the latter, i. e., MT = b4(T/100)2/9c (labeled

NWT).

1.3.1. Bias and Root Mean Squared Error

We start the analysis by considering the performance of the estimators in terms of bias and

root mean squared error (RMSE). Given that the results for the coefficients β1 and β2 are

qualitatively similar throughout, we focus on the results for β1, displayed in Table 1.1 for

sample size T = 100. Results for different sample sizes as well as for the coefficient β2 are

available upon request. The FM-LIN and FM-CPR estimators of β1 are less biased than

the OLS estimator in case of serial correlation and endogeneity. Comparable effects also

emerge for the RMSE of the estimators. However, the RMSE indicates a slightly better

performance of the FM-CPR estimator compared to the FM-LIN estimator. The results

7Simulations have also been performed using the Bartlett kernel with results given in additional material.
Regarding the kernel choice the estimators and tests based upon them perform similar in case of low
level of serial correlation and endogeneity, while the performance is slightly better using the QS kernel
in case of high level of correlation.
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ρ1, ρ2 OLS FM-LIN FM-CPR

And NW NWT And NW NWT

Panel A: T = 50

0.0 0.0757 0.2599 0.2798 0.2146 0.2385 0.2308 0.1854
0.3 0.2184 0.2993 0.3096 0.2544 0.2508 0.2558 0.2082
0.6 0.5141 0.4129 0.4253 0.3890 0.3417 0.3428 0.3178
0.8 0.7853 0.6263 0.6363 0.6235 0.5615 0.5541 0.5563

Panel B: T = 100

0.0 0.0597 0.1645 0.1509 0.1493 0.1431 0.1233 0.1285
0.3 0.2066 0.1883 0.1874 0.1738 0.1528 0.1494 0.1415
0.6 0.5352 0.2901 0.3072 0.2813 0.2307 0.2440 0.2253
0.8 0.8164 0.5033 0.5484 0.5196 0.4192 0.4374 0.4564

Panel C: T = 200

0.0 0.0572 0.1184 0.1201 0.1021 0.1027 0.0998 0.0868
0.3 0.2045 0.1338 0.1411 0.1210 0.1101 0.1159 0.1033
0.6 0.5449 0.2011 0.2237 0.2117 0.1574 0.1738 0.1754
0.8 0.8279 0.3885 0.4336 0.4531 0.2776 0.3060 0.4093

Panel D: T = 500

0.0 0.0517 0.0844 0.0785 0.0758 0.0730 0.0672 0.0681
0.3 0.2022 0.0945 0.0977 0.0879 0.0794 0.0851 0.0781
0.6 0.5498 0.1322 0.1650 0.1428 0.0999 0.1136 0.1250
0.8 0.8380 0.2800 0.3583 0.3375 0.1542 0.1964 0.3098

Panel E: T = 1000

0.0 0.0520 0.0691 0.0627 0.0665 0.0648 0.0597 0.0626
0.3 0.2046 0.0748 0.0804 0.0731 0.0684 0.0751 0.0684
0.6 0.5560 0.1026 0.1421 0.1107 0.0792 0.0888 0.0989
0.8 0.8439 0.2185 0.3363 0.2643 0.1078 0.1549 0.2465

Table 1.2.: Empirical null rejection probabilities, Wald test for H0 : β1 = 5, β2 = −0.3,
QS kernel, 0.05 level.

for different sample sizes are qualitatively similar. Bias and RMSE become substantially

smaller with increasing sample size reflecting (super-) consistency of all estimators.

1.3.2. Finite Sample Performance of Hypothesis Test Statistics

Next, we analyze the performance of the estimators in terms of empirical null rejection

probabilities by considering Wald tests8 for the joint hypothesis H0 : β1 = 5, β2 = −0.3.

Following Wagner and Hong (2016, Proposition 2), rejections for all tests are carried out

using the chi-squared distribution. Additionally, we consider size-corrected power for a

sequence of alternatives on a grid of 21 steps. The values for β1 are chosen from the

set [5, 5.2] on an equidistant grid with mesh 0.01 and for β2 from [−0.3,−0.28] on an

equidistant grid with mesh 0.001.

The simulation results concerning the empirical null rejection probabilities are given in

Table 1.2. In case of no serial correlation and endogeneity tests based upon the OLS esti-

mator show only minor size distortions already for small sample sizes. For increasing level

8Empirical null rejection probabilities for t-tests for the simple hypotheses H0 : β1 = 5 as well as H0 :
β2 = −0.3 are similar to the results for the Wald tests, but substantially closer to the nominal size.
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Figure 1.2.: Empirical null rejection probabilities for H0 : β1 = 5, β2 = −0.3, QS kernel.

of serial correlation and endogeneity tests based on the FM-LIN and FM-CPR estimator

increasingly outperform OLS based tests. Hong and Phillips (2010, Theorem 2) show that

Wald test statistics based on the OLS estimator converge to a noncentral chi-squared dis-

tribution with a random noncentrality parameter depending on the extent of correlation.

Consequently, we observe increasing empirical null rejection probabilities with increasing

sample size in case of positive correlation. Furthermore, the results confirm the theoreti-

cal findings from Section 1.2 that not only the tailor-made FM-CPR estimator, but also

the FM-LIN estimator corrects for the second-order bias suitably. However, tests based

on the FM-CPR estimator exhibit lower size distortions than tests based on the FM-LIN

estimator throughout, illustrated in Figure 1.2.

In contrast to the kernel choice, the bandwidth choice has bigger impact on the empirical

null rejection probabilities. In particular, the Andrews (1991) data dependent bandwidth

choice leads to the smallest size distortions, whereas the data dependent rule of Newey

and West (1994) shows poor performance in case of high correlation for FM-LIN based

tests. Note that the data dependent bandwidth rules (And and NW) lead to different

bandwidths for the FM-LIN and FM-CPR estimators as different inputs enter the proce-

dures. More precisely, for the FM-LIN estimator data dependent bandwidth computation

(and consequently long-run covariance estimation) is based on [ût, w
′
t]
′, whereas for the

FM-CPR estimator it is based on [ût, vt]
′. Although the empirical null rejection prob-

abilities decrease for both estimators as the sample size increases, FM-CPR based tests

approach the 0.05 level faster in case of high correlation.

Conversely, only the simplified sample size dependent rule NWT leads to identical band-

widths, for which the difference between FM-LIN and FM-CPR based tests in terms
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1.3. Finite Sample Performance
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Figure 1.3.: Size-corrected power, Wald test for H0 : β1 = 5, β2 = −0.3, T = 100, QS
kernel. Left: ρ1 = ρ2 = 0.3, right: ρ1 = ρ2 = 0.6.

of empirical null rejection probabilities is smaller and decreasing with increasing sample

size.

In terms of size-corrected power, tests based upon the FM-LIN and FM-CPR estimators

perform similar irrespective of the bandwidth choice, illustrated in Figure 1.3 for T = 100

and moderately large level of correlation. In fact, tests based on the OLS estimator exhibit

slightly larger size-corrected power, but suffer from severe size distortions in case of serial

correlation and/or endogeneity. In sum, FM-CPR based tests outperform FM-LIN based

tests, as substantially lower size distortions are accompanied by no loss in size-corrected

power.

1.3.3. Finite Sample Performance of Cointegration Tests

We now consider the performance of the different cointegration tests described below Re-

mark 3. Wagner (2015) highlights empirically the different conclusions from cointegration

testing in the EKC analysis. We investigate empirical null rejection probabilities and size-

corrected power of the classical cointegration test of Shin (1994) together with the FM-LIN

and FM-CPR residual based CT tests given in Corollary 2. The classical Shin (1994) test

and the cointegration test based on the FM-LIN residuals share the same test statistic

given in (1.19). However, test decisions are based on different limiting distributions and,

consequently, on different critical values9. We label tests based on the critical values given

9Note that the Shin (1994) test is designed for linear cointegrating relationships without polynomial
transformations of integrated regressors. Thus, critical values are obtained from a limiting distribution,
which does not consist of powers of standard Brownian motions.
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1. “Standard” Fully Modified OLS Estimation of Cointegrating Polynomial Regressions

ρ1, ρ2 CT(Shin) CT(FM-LIN) CT(FM-CPR)

And NW NWT And NW NWT And NW NWT

Panel A: T = 50

0.0 0.0872 0.1404 0.0454 0.0834 0.1372 0.0436 0.0770 0.1086 0.0529
0.3 0.0701 0.1264 0.0475 0.0679 0.1236 0.0448 0.0587 0.0980 0.0578
0.6 0.0870 0.1493 0.0900 0.0836 0.1458 0.0860 0.0533 0.1212 0.1072
0.8 0.1304 0.2265 0.2047 0.1267 0.2222 0.1992 0.1189 0.1967 0.2519

Panel B: T = 100

0.0 0.0480 0.0548 0.0491 0.0430 0.0492 0.0426 0.0498 0.0515 0.0507
0.3 0.0541 0.0701 0.0530 0.0482 0.0636 0.0472 0.0518 0.0721 0.0559
0.6 0.0869 0.1475 0.0933 0.0800 0.1342 0.0847 0.0523 0.1232 0.0954
0.8 0.1706 0.3453 0.2616 0.1520 0.3252 0.2446 0.0634 0.2086 0.2777

Panel C: T = 200

0.0 0.0526 0.0536 0.0554 0.0451 0.0467 0.0479 0.0498 0.0516 0.0518
0.3 0.0596 0.0679 0.0689 0.0521 0.0593 0.0589 0.0554 0.0694 0.0633
0.6 0.0979 0.1331 0.1340 0.0852 0.1196 0.1184 0.0560 0.1082 0.1267
0.8 0.2157 0.3262 0.3797 0.1920 0.3052 0.3526 0.0454 0.1576 0.3724

Panel D: T = 500

0.0 0.0571 0.0559 0.0580 0.0489 0.0488 0.0491 0.0517 0.0511 0.0507
0.3 0.0634 0.0731 0.0684 0.0543 0.0634 0.0580 0.0567 0.0722 0.0604
0.6 0.0903 0.1499 0.1139 0.0795 0.1322 0.1014 0.0571 0.0824 0.1013
0.8 0.2154 0.3797 0.3291 0.1924 0.3527 0.2998 0.0466 0.1342 0.3054

Panel E: T = 1000

0.0 0.0612 0.0605 0.0611 0.0507 0.0521 0.0514 0.0534 0.0527 0.0532
0.3 0.0656 0.0821 0.0683 0.0561 0.0700 0.0586 0.0579 0.0695 0.0592
0.6 0.0899 0.1629 0.1063 0.0769 0.1458 0.0920 0.0584 0.0761 0.0937
0.8 0.2004 0.4000 0.2755 0.1758 0.3717 0.2465 0.0499 0.1222 0.2501

Table 1.3.: Empirical null rejection probabilities of cointegration tests, QS kernel, 0.05
level.

in Shin (1994) by CT(Shin) and tests based on the limiting distribution (1.20) by CT(FM-

LIN). Cointegration tests based on the FM-CPR residuals are labeled CT(FM-CPR). We

use the data generating process (1.21) under the null. Following Wagner and Hong (2016),

we consider three alternative DGPs:

(I) : yt = 1 + t+ 5xt − 0.3x2
t + 0.01x3

t + ut

(II) : yt = 1 + t+ 5xt − 0.3x2
t + zt, where zt ∼ I(1) independent of xt

(III) : yt, xt are two independent I(1) variables

These DGPs cover the main alternatives of interest, i. e., (I) missing higher order poly-

nomials of the integrated regressor, (II) no cointegration because of a missing integrated

regressor, and (III) spurious regression.

Let us briefly summarize the simulation results concerning the empirical null rejection

probabilities. The results displayed in Table 1.3 reveal larger size distortions of the

CT(Shin) and CT(FM-LIN) tests compared to the CT(FM-CPR) tests. The CT(FM-LIN)

tests show slightly lower size distortions than the CT(Shin) tests throughout. However, the
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1.4. Summary and Conclusions

differences between both tests are not severe since the critical values of the corresponding

limiting distributions are virtually indistinguishable in the quadratic specification.10 With

respect to the bandwidth choice, the data dependent bandwidth rules, And and NW, lead

to empirical sizes of the CT(FM-CPR) tests close to the nominal size. In particular, the

former rule leads to almost no size distortions already in small samples. Conversely, the

data dependent bandwidth rules lead to substantial size distortions for the CT(Shin) and

CT(FM-LIN) tests in case of high correlation also in large samples. The simplified sample

size dependent bandwidth rule NWT, however, leads to size distortions for all three tests

considered. The similar empirical null rejection probabilities of the three tests in con-

junction with the NWT bandwidth rule reflect the empirical findings in Wagner (2015),

who shows almost identical cointegration test results in the EKC analysis based on the

CT(Shin) and CT(FM-CPR) tests using this particular bandwidth choice.

We complete this section by considering size-corrected power of the cointegration tests

against the alternatives (I)–(III). Note that the CT(Shin) and the CT(FM-LIN) tests

are based on the same test statistic given in (1.19) and consequently have identical size-

corrected power.11 Therefore, we consider size-corrected power of the CT(Shin) tests

and the CT(FM-CPR) tests in Table 1.4. The results indicate that the And bandwidth

rule, which leads to the smallest over-rejections under the null, leads to substantially

lower size-corrected power than the NW and NWT bandwidth rules against alternatives

(II) and (III), even for fairly large sample sizes. Against the cubic alternatives (I) size-

corrected power is smaller and decreasing for increasing correlation parameters ρ1, ρ2.

However, the CT(FM-CPR) tests are less sensitive to increasing ρ1, ρ2. To summarize, the

CT(FM-CPR) tests have more power than the CT(Shin) tests against the three considered

alternatives, especially when the NW bandwidth rule is used.

1.4. Summary and Conclusions

The present chapter shows that the asymptotic distribution of the FM-OLS estimator

of Phillips and Hansen (1990) when – seemingly unjustified – applied to CPRs coincides

with the asymptotic distribution established for the FM-CPR estimator of Wagner and

Hong (2016), an estimator tailor-made for CPRs. This result is in turn driven by some

results of independent interest for long-run covariance estimation, in the sense of Defini-

tion 1, collected in Theorem 1. In contrast to hypothesis testing, FM-LIN residual based

10We also consider data generating processes including the third (and fourth) power of the integrated
regressor xt in (1.21). The results, available upon request, indicate that the CT(Shin) tests have more
pronounced size distortions in case that higher order powers of integrated regressors are included.

11Raw power, reported in additional material, shows similar results for both tests with slight advantages
for the CT(Shin) tests.
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1. “Standard” Fully Modified OLS Estimation of Cointegrating Polynomial Regressions

ρ1, ρ2 CT(Shin) CT(FM-CPR)

And NW NWT And NW NWT

Panel A: T = 50

(I) 0.0 0.1719 0.0182 0.0852 0.1351 0.0431 0.0985
0.3 0.1867 0.0221 0.0834 0.1602 0.0520 0.0908
0.6 0.1713 0.0251 0.0364 0.1670 0.0408 0.0391
0.8 0.1339 0.0156 0.0048 0.0943 0.0249 0.0040

(II) - 0.1444 0.0916 0.3747 0.2351 0.1567 0.4249
(III) - 0.2473 0.0929 0.3965 0.2404 0.1548 0.4508

Panel B: T = 100

(I) 0.0 0.2712 0.1215 0.2114 0.2127 0.1496 0.2282
0.3 0.2546 0.0892 0.2000 0.2060 0.1045 0.2147
0.6 0.1972 0.0189 0.1221 0.2048 0.0416 0.1296
0.8 0.1531 0.0006 0.0254 0.1842 0.0154 0.0254

(II) - 0.3127 0.6478 0.6305 0.3514 0.5235 0.6696
(III) - 0.3617 0.6195 0.6306 0.3181 0.5169 0.6705

Panel C: T = 200

(I) 0.0 0.2847 0.2282 0.5372 0.2186 0.2571 0.5444
0.3 0.2612 0.1939 0.4977 0.2038 0.2057 0.5098
0.6 0.1960 0.0748 0.3505 0.2014 0.1288 0.3679
0.8 0.1300 0.0013 0.1246 0.2304 0.0854 0.1288

(II) - 0.3614 0.8277 0.9142 0.3604 0.6840 0.9217
(III) - 0.3683 0.8129 0.9148 0.3380 0.6926 0.9241

Panel D: T = 500

(I) 0.0 0.2674 0.5594 0.8446 0.2144 0.5658 0.8471
0.3 0.2567 0.4940 0.8245 0.2012 0.4947 0.8241
0.6 0.2036 0.3226 0.7416 0.2016 0.4642 0.7421
0.8 0.1351 0.0659 0.4942 0.2354 0.3773 0.5008

(II) - 0.3636 0.9850 0.9935 0.3738 0.9294 0.9939
(III) - 0.3823 0.9837 0.9941 0.3229 0.9298 0.9940

Panel E: T = 1000

(I) 0.0 0.2775 0.7950 0.9550 0.2128 0.8035 0.9552
0.3 0.2665 0.7438 0.9494 0.2039 0.7555 0.9502
0.6 0.2246 0.5843 0.9214 0.2023 0.7455 0.9216
0.8 0.1477 0.2430 0.7968 0.2230 0.6604 0.7991

(II) - 0.3799 0.9997 0.9998 0.3680 0.9921 0.9998
(III) - 0.3854 0.9986 0.9997 0.3138 0.9881 0.9997

Table 1.4.: Size-corrected power of cointegration tests, QS kernel, 0.05 level.

cointegration tests are valid only in conjunction with critical values depending upon the

correct model specification, particularly the number and powers of integrated regressors

included. The results of a simulation study indicate that both estimators perform simi-

larly in terms of bias and RMSE in finite samples, an observation in line with empirical

findings in Wagner (2015). However, the tailor-made FM-CPR estimator has finite sample

performance advantages compared to FM-LIN with respect to hypothesis and cointegra-

tion testing. Therefore, this chapter justifies ex post the usage of standard cointegration

methods in the EKC literature, at least for estimation and hypothesis testing. In par-

ticular, higher convenience, constituted by ready-to-use software packages, may outweigh

the performance loss. The results of this chapter, obviously, raise the question whether
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1.4. Summary and Conclusions

such an asymptotic equivalence result between FM-LIN and extensions of the FM-OLS

estimator can also be established in more general nonlinear cointegration settings. This

intriguing question will be explored in detail in future research.
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2. Integrated Modified OLS Estimation for

Cointegrating Polynomial Regressions

2.1. Introduction

Cointegration methods are commonly used for modeling empirical financial and macroe-

conomic relationships. While the largest part of the literature deals with linear cointe-

grating relationships, which may be sufficient or serve as an adequate approximation in

many applications, nonlinear cointegrating relationships have become much more promi-

nent in the last decade. Recent examples are given by empirical analyses in the contexts

of purchasing power parity (Hong and Phillips, 2010), money demand functions (Choi and

Saikkonen, 2010) or the environmental Kuznets curve hypothesis (Wagner, 2015).

The ordinary least squares (OLS) estimator is super-consistent in cointegrating regression

models. In presence of endogeneity and serial correlation its limiting distribution is con-

taminated by second order bias terms, which renders inference difficult. To overcome this

limitation, several modifications of the OLS estimator have been proposed in the linear

case, such as the fully modified OLS (FM-OLS) estimator (Phillips and Hansen, 1990), the

dynamic OLS (D-OLS) estimator (Saikkonen, 1991) and the integrated modified OLS (IM-

OLS) estimator (Vogelsang and Wagner, 2014a). FM-OLS and D-OLS both require the

choice of tuning parameters for estimation. FM-OLS is based on a two-step transformation

to remove the second order bias terms. These transformations necessitate choices of kernel

and bandwidth for long-run covariance estimation. In D-OLS estimation the number of

leads and lags included in an augmented regression have to be selected prior to estima-

tion. This augmented regression asymptotically corrects for endogeneity. In contrast to

these two OLS modifications, the IM-OLS estimator does not require the choice of tuning

parameters. However, for inference a scalar long-run covariance has to be estimated.

This chapter considers the IM-OLS estimator introduced by Vogelsang and Wagner (2014a,

2014b) for cointegrating polynomial regressions (CPRs). Cointegrating polynomial regres-

sions include deterministic variables, integrated processes and integer powers of integrated
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2. Integrated Modified OLS Estimation for Cointegrating Polynomial Regressions

processes as explanatory variables and stationary errors. Furthermore, the stochastic re-

gressors are allowed to be endogenous and the errors are allowed to be serially correlated.

In the CPR framework the IM-OLS estimator is, exactly as in the linear case, based on

a partial sum transformation and an augmentation by including all integrated regressors.

It is shown that the IM-OLS estimator adjusted to CPRs has a zero mean Gaussian mix-

ture limiting distribution that forms the basis for asymptotic standard inference using

a consistent estimator for a long-run covariance parameter. Since asymptotic standard

inference does not capture the impact of kernel and bandwidth choices on the sampling

distributions, fixed-b asymptotic theory has been developed in the stationary framework

in Kiefer and Vogelsang (2005), for the linear cointegration case in Vogelsang and Wagner

(2014a) and for a RESET-type test for the null hypothesis of linearity of a cointegrating

relationship in Vogelsang and Wagner (2014b). Given full design, defined in the following

section, it is shown that the fixed-b limiting distribution of the IM-OLS estimator in the

CPR framework is asymptotically nuisance parameter free when using suitably adjusted

IM-OLS residuals for long-run covariance estimation. These adjusted IM-OLS residuals

are obtained in exactly the same way as in the linear case and lead to fixed-b test statis-

tics with pivotal asymptotic distributions. Thus, critical values can be tabulated in the

full design case. They depend upon the kernel function, the bandwidth choice, the spec-

ification of the deterministic components, the number of integrated regressors and the

powers included. Additionally, an IM-OLS residual based Kwiatkowski et al. (1992)-type

(KPSS-type) test for cointegration is provided. Again, the limiting distribution is nuisance

parameter free in the full design case and can therefore be tabulated.

Extensions of the other mentioned modified OLS estimators to the CPR framework have

also been put forward in two recent publications in the literature: Wagner and Hong

(2016) develop the FM-OLS estimator for CPRs. They show that this estimator has a zero

mean Gaussian mixture limiting distribution and derive Wald- and LM-type specification

tests with asymptotic chi-square limiting distributions as well as KPSS-type cointegration

tests. Saikkonen and Choi (2004) consider an extension of the D-OLS estimator to more

general nonlinear cointegrating regressions, including CPRs.

The theoretical analysis is complemented by a simulation study to assess the finite sample

performance of the estimators in terms of bias and root mean squared error (RMSE) as well

as the test performance in terms of empirical null rejection probabilities and size-corrected

power. For the IM-OLS estimator we consider both, standard asymptotic inference as well

as fixed-b inference. Apart from the above mentioned extensions of the FM-OLS and D-

OLS estimator, we also benchmark the results against the standard OLS estimator with

an in general nuisance parameter dependent limiting distribution. We find that the D-

OLS and IM-OLS estimator show slightly lower bias relative to FM-OLS, but the IM-OLS
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2.1. Introduction

estimator shows weaker performance in terms of finite sample RMSE than D-OLS and FM-

OLS. For the hypothesis tests, we observe partly substantially smaller size distortions for

tests based on the IM-OLS estimator especially for a larger extent of serial correlation and

endogeneity. This holds for both versions of IM-OLS based inference, standard asymptotic

inference and fixed-b inference. Comparing both versions directly, the fixed-b version shows

overall the smallest size distortions. However, these smaller size distortions come at the

cost of some minor losses in (size-adjusted) power. Compared to the FM-OLS residual

based cointegration test the introduced IM-OLS residual based cointegration test shows

slightly higher over-rejections under the null of cointegration, but has higher size-corrected

power against the variety of alternatives considered.

Finally, we use our theoretical findings to estimate the environmental Kuznets curve

(EKC)1, our prime motivation for developing estimation and inference techniques for

CPRs. The EKC hypothesis postulates an inverted U-shaped relationship between eco-

nomic development (measured here by GDP per capita) and pollution (measured here

by CO2 emissions per capita). In order to estimate an inverted U-shape, in addition to

GDP per capita also the square and maybe higher integer powers have to be included as

explanatory variables in a regression. Starting with the seminal work of Grossman and

Krueger (1995), a large part of the empirical EKC literature does not use unit root and

cointegration techniques at all. The part of the empirical EKC literature that uses such

techniques, however, neglects the fact that powers of integrated regressors are not inte-

grated themselves and applies linear cointegration estimation techniques for the empirical

EKC analysis. Wagner (2015) illustrates the different implications of linear versus CPR

based cointegration techniques. Thus, building upon the empirical analysis in Wagner

(2015), we use the IM-OLS based methods from Section 2.2 to estimate the EKC based on

a data set containing CO2 emissions and GDP for 19 early industrialized countries over the

time period 1870–2013 and compare the findings with those obtained by the CPR based

extensions of the D-OLS and FM-OLS estimator. We find evidence for the existence of

a quadratic EKC relationship for six countries and in one additional country for a cubic

EKC relationship. The coefficient estimates are quite similar across the different methods

for most of the countries.

The chapter is organized as follows: In Section 2.2 we present the extension of the IM-OLS

estimator to the CPR framework and derive its limiting distribution. With respect to in-

ference, we discuss both standard and fixed-b asymptotics for hypothesis tests. We also

suggest a KPSS-type test for cointegration based on the IM-OLS residuals. Section 2.3

contains a small simulation study to evaluate the finite sample performance of the proposed

1The term refers by analogy to the inverted U-shaped relationship between the level of economic develop-
ment and the degree of income inequality postulated by Simon Kuznets (1955) in his 1954 presidential
address to the American Economic Association.
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methods. In Section 2.4 we apply these methods to analyze the EKC hypothesis. Sec-

tion 2.5 briefly summarizes and concludes. All proofs are given in Appendix B.1, whereas

Appendix B.2 contains results of the empirical EKC analysis. Appendix B.3 contains the

critical values for the IM-OLS residual based cointegration test and additional simulation

results are given in Appendix B.4.

We use the following notation: bxc denotes the integer part of x ∈ R and diag(·) denotes a

diagonal matrix with entries specified throughout. We denote the m-dimensional identity

matrix by Im and E(·) denotes the expected value. Definitional equality is signified by :=

and ⇒ denotes weak convergence. Brownian motions are denoted B(r) or short-hand by

B, with covariance matrices specified in the context. For integrals of the form
∫ 1

0 B(s)ds

or
∫ 1

0 B(s)dB(s), we often use the short-hand notation
∫
B or

∫
BdB.

2.2. Theory

2.2.1. Setup and Assumptions

We consider the following cointegrating polynomial regression (CPR) model

yt = D′tδ +

m∑
j=1

X ′jtβXj + ut, (2.1)

xt = xt−1 + vt, (2.2)

where yt is a scalar time series, Dt ∈ Rd a deterministic component, xt := [x1t, . . . , xmt]
′ a

non-cointegrating vector of I(1) processes and Xjt := [xjt, x
2
jt, . . . , x

pj
jt ]
′ a vector including

the j-th integrated regressor together with its powers up to power pj with corresponding

parameter vector βXj := [β1,j , . . . , βpj ,j ]
′. Furthermore, Xt := [X ′1t, . . . , X

′
mt]
′ and p :=∑m

j=1 pj .

Assumption 5. For the deterministic component Dt we assume that there exists a d-

dimensional vector of càdlàg functions D(r) with 0 <
∫ r

0 D(z)D(z)′ dz <∞ for r ∈ (0, 1],

such that

lim
T→∞

√
TGDD[rT ] = D(r), r ∈ [0, 1], (2.3)

where GD = GD(T ) ∈ Rd×d.

For the leading case of polynomial time trends of the form Dt = [1, t, t2, . . . , td−1]′, we

have GD := diag
(
T−1/2, T−3/2, . . . , T−(d−1/2)

)
and D(r) := [1, r, r2, . . . , rd−1]′.
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Remark 4. Using consecutive sets of powers for all integrated regressors is merely for

ease of notation and any selection of powers can be included in equation (2.1).

Remark 5. CPR models are additively separable, i. e. each nonlinear transformation

involves only one integrated regressor, and therefore cross-product terms of integrated

regressors are excluded. Vogelsang and Wagner (2014b) consider an integrated modified

OLS RESET specification test with an augmented regression including cross-products

of powers of the integrated regressors. Such a model is referred to as multivariate CPR

model and CPR models of the form (2.1) are a special case thereof. However, CPR models

cover the most relevant case for applications we are aware of, but exclude, e.g., translog

production functions (Christensen et al., 1971), where simple cross-products of integrated

regressors are included.

Assumption 6. Define {ηt}t∈Z := {[ut, v′t]′}t∈Z by stacking the error processes and assume

that this is a vector of I(0) processes, which satisfies a functional central limit theorem

(FCLT) of the form

T−1/2

brT c∑
t=1

ηt ⇒ B(r) = Ω1/2W (r), r ∈ [0, 1], (2.4)

where W (r) is a (1 +m)−dimensional vector of independent standard Brownian motions

and

Ω :=

∞∑
j=−∞

E(ηt−jη
′
t) =

(
Ωuu Ωuv

Ωvu Ωvv

)
> 0 (2.5)

is the long-run covariance matrix of the vector error process. Since we want to exclude

cointegration in the I(1) vector process {xt}t∈Z, we assume Ωvv > 0.

We partition the Brownian motion processes according to

B(r) =

(
Bu(r)

Bv(r)

)
, W (r) =

(
wu·v(r)

Wv(r)

)
,

and write the limit process in (2.4) by means of the Cholesky decomposition of Ω1/2 as

B(r) =

(
Bu(r)

Bv(r)

)
=

(
ω

1/2
u·v Ωuv(Ω

−1/2
vv )′

0 Ω
1/2
vv

)(
wu·v(r)

Wv(r)

)
, (2.6)

33
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where ωu·v := Ωuu − ΩuvΩ
−1
vv Ωvu.

Unless otherwise stated we denote the OLS residuals from (2.1) by ût such that a non-

parametric kernel estimator of Ω is given by

Ω̂ := T−1
T∑
i=1

T∑
j=1

k

(
|i− j|
M

)
η̂iη̂
′
j , (2.7)

where η̂t := [ût, v
′
t]
′, k(·) is the kernel weighting function and M is the bandwidth. Under

standard assumptions on kernel and bandwidth (see e.g. Jansson, 2002, Phillips, 1995)

estimators of the form (2.7) provide consistent estimates of the long-run covariance.

For the asymptotics of the powers of the integrated regressors define the weighting matrix

GX(T ) := diag(GX1(T ), . . . , GXm(T )) with GXj (T ) := diag(T−1, T−3/2, . . . , T−
pj+1

2 ), for

notational brevity we often drop the argument and simply write GX = GX(T ). Under

the assumptions stated, for t such that lim
T→∞

t/T = r the following result holds (compare

Chang et al., 2001)

lim
T→∞

√
TGXjXjt = lim

T→∞


T−1/2

. . .

T−pj/2



xjt
...

x
pj
jt

 =


Bvj

...

B
pj
vj

 =: Bvj (r), (2.8)

with vt := [v1t, . . . , vmt]
′ and denote the stacked vector of powers of Brownian motions as

Bv(r) := [Bv1(r)′, . . . ,Bvm(r)′]′.

2.2.2. IM-OLS Estimation in the CPR Framework

In order to establish the IM-OLS estimator compute the partial sums in model (2.1) as

Syt = SDt
′δ +

m∑
j=1

S
Xj
t
′βXj + Sut , (2.9)

Syt = SDt
′δ + SXt

′β + Sut ,

where Syt :=
∑t

i=1 yi and SDt , S
Xj
t , SXt and Sut defined analogously. The parameter vector

βXj belongs to the j-th integrated regressors and its powers, thus β := [β′X1
, . . . , β′Xm ]′.

We stack the vectors in the following form SXt := [SX1
t
′, . . . , SXmt

′]′ and SX̃t := [SDt
′, SXt

′],

such that equation (2.9) is given in compact form as

Sy = SX̃θ + Su, (2.10)
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with θ := [δ′, β′]′. To correct for endogeneity the partial summed regression is augmented

by the vector of integrated regressors xt, which leads to

Syt = SDt
′δ + SXt

′β + x′tγ + Sut . (2.11)

Setting Sξt := [SDt
′, SXt

′, x′t] and redefining θ := [δ′, β′, γ′]′ gives the more compact form

Syt = Sξt θ + Sut . (2.12)

The IM-OLS estimator is defined as the OLS estimator of the model (2.12). Estimating

equation (2.12) via OLS leads to residuals, which we denote by

S̃ut = Syt − SDt ′δ̃ − SXt ′β̃ − x′tγ̃, (2.13)

where θ̃ = [δ̃′, β̃′, γ̃′]′ denotes the IM-OLS estimator.

The following proposition gives the asymptotic distribution of the IM-OLS estimator and

is a special case of Proposition 1 in Vogelsang and Wagner (2014b) for CPR models, for

which we define the scaling matrix

AIM :=

GD 0 0

0 GX 0

0 0 Im

 .

Proposition 1. Assume that the data generating process is given by (2.1) and (2.2), the

deterministic components satisfy (2.3) and the error process satisfies a FCLT of the form

(2.4). With θ := [δ′, β′, (Ω−1
vv Ωvu)′]′ and Sξ the stacked matrix of Sξt across time, it holds

for T →∞ that

A−1
IM (θ̃ − θ) =


GD(δ̃ − δ)
GX

(
β̃ − β

)
(γ̃ − Ω−1

vv Ωvu)

 =
(
T−2AIMS

ξ ′SξAIM

)−1 (
T−2AIMS

ξ ′Su
)
−

 0

0

Ω−1
vv Ωvu


(2.14)

⇒ ω
1/2
u·v

(∫
f(s)f(s)′ds

)−1 ∫
f(s)wu·v(s)ds

= ω
1/2
u·v

(∫
f(s)f(s)′ds

)−1 ∫
[F (1)− F (s)]dwu·v(s), (2.15)
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where

f(r) :=


∫ r

0 D(s)ds∫ r
0 Bv(s)ds

Bv(r)

 , F (r) :=

∫ r

0
f(s)ds.

The expression (2.15) is, conditional on Wv(r), normally distributed with zero mean and

covariance matrix

VIM := ωu·v

(∫
f(s)f(s)′ds

)−1(∫
[F (1)− F (s)][F (1)− F (s)]′ds

)(∫
f(s)f(s)′ds

)−1

.

(2.16)

Full Design

In order to perform fixed-b inference in CPR models based on the IM-OLS estimator a

necessary condition on the design of the regression equation needs to be ensured, which

we refer to as full design. In this case the limiting distribution given in Proposition 1

involves only powers of standard Brownian motions and is thus nuisance parameter free

up to the scalar long-run covariance ωu·v. Full design prevails when only one of the

integrated regressors enters with powers larger than one, which is the most relevant case

for empirical applications. In more general cases, full design can always be achieved by

including additional regressors appropriately into the model. However, this is costly in

terms of more parameters to be estimated.

Consider for simplicity the following data generating process

yt = β1x1t + β2x
2
1t + β3x2t + β4x

2
2t + ut, (2.17)

where under Assumption 6 we have

T−1/2

[rT ]∑
t=1

vt ⇒
(
Bv1(r)

Bv2(r)

)
= Ω1/2

vv Wv(r) =

(
λ11 λ12

0 λ22

)(
Wv1(r)

Wv2(r)

)
. (2.18)

The asymptotic distribution of the IM-OLS estimator in this setup involves the vector

Bv(r) := [Bv1(r), B2
v1

(r), Bv2(r), B2
v2

(r)]′. It follows from (2.18) that

B2
v1

(r) = (λ11Wv1(r) + λ12Wv2(r))2 = λ2
11W

2
v1

(r) + λ2
12W

2
v2

(r) + 2λ11λ12Wv1(r)Wv2(r)

B2
v2

(r) = λ2
22W

2
v2

(r).
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Therefore, we have


Bv1(r)

B2
v1

(r)

Bv2(r)

B2
v2

(r)

 =


λ11 0 λ12 0 0

0 λ2
11 0 λ2

12 2λ11λ12

0 0 λ22 0 0

0 0 0 λ2
22 0


︸ ︷︷ ︸

=:F (Ωvv)


Wv1(r)

W 2
v1

(r)

Wv2(r)

W 2
v2

(r)

Wv1(r)Wv2(r)


︸ ︷︷ ︸

=:Wv(r)

. (2.19)

If λ12 is not equal to zero, the transformation matrix F (Ωvv) does not define a bijective

mapping. Consequently, there is no bijective relation between Bv(r) and Wv(r). In-

cluding the cross-product x1tx2t as an additional regressor in equation (2.17) leads to a

transformation matrix F (Ωvv) which is symmetric and of full rank, p∗ say, resulting in

a bijection between Wv(r) and Bv(r), which is now augmented by Bv1(r)Bv2(r).2 We

refer to situations with such a bijection between Wv(r) and Bv(r) as full design. Given

full design, the limiting distribution of the IM-OLS estimator in (2.15) is a function of

standard Brownian motions W (r). This allows for asymptotically pivotal fixed-b inference,

which we discuss in the next subsection in more detail. Beforehand, we state the limiting

distribution of the IM-OLS estimator in the full design case, which is a special case of

Corollary 1 in Vogelsang and Wagner (2014b) for CPR models.

Corollary 3. Suppose that full design prevails and the assumptions of Proposition 1 hold,

then for T →∞

A−1
IM (θ̃ − θ) ⇒ ω

1/2
u·v

(
Π

∫
g(s)g(s)′dsΠ′

)−1

Π

∫
g(s)wu·v(s)ds

= ω
1/2
u·v (Π′)−1

(
g(s)g(s)′ds

)−1
∫

[G(1)−G(s)]dwu·v(s), (2.20)

where

Π :=

Id 0 0

0 F (Ωvv) 0

0 0 Ω
1/2
vv

 , g(r) :=


∫ r

0 D(s)ds∫ r
0 Wv(s)ds

Wv(r)

 , G(r) :=

∫ r

0
g(s)ds.

2Clearly, in this case F (Ωvv) is of full rank as long as λ11 and λ22 in (2.18) are not equal to zero, which
is excluded by the assumption Ωvv > 0.
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2.2.3. IM-OLS Based Inference in the CPR Framework

We discuss Wald tests for q linear hypotheses of the form H0 : Rθ = r, where we assume

the existence of a nonsingular q × q scaling matrix AR such that

lim
T→∞

A−1
R RAIM = R∗, (2.21)

where R∗ has rank q. The condition on the matrix R given in equation (2.21) is sufficient

for the Wald statistics to have chi-squared limiting distributions. Recall the definition

Sξt = [SDt
′, SXt

′, x′t] from equation (2.12) and Sξ as the stacked matrix across time. The

covariance matrix VIM of this asymptotic distribution immediately suggests estimators of

the form

V̌IM := ω̌u·vA
−1
IM

(
Sξ ′Sξ

)−1 (
C ′C

) (
Sξ ′Sξ

)−1
A−1
IM ,

= ω̌u·v

(
T−2AIMS

ξ ′SξAIM

)−1 (
T−4AIMC

′CAIM
) (
T−2AIMS

ξ ′SξAIM

)−1
(2.22)

where ω̌u·v denotes an estimator for ωu·v = Ωuu − ΩuvΩ
−1
vv Ωvu, C := [c1, . . . , cT ]′ with

ct := SS
ξ

T − SS
ξ

t−1 and SS
ξ

t :=
∑t

j=1 S
ξ
j . There are several different candidates for an

estimator ω̌u·v: First, ω̂u·v based on the OLS residuals from model (2.1), i.e. the estimator

for Ω given in equation (2.7). Second, use the first differences of the OLS residuals of the

regression in equation (2.12) to estimate ωu·v as

ω̃u·v := T−1
T∑
i=2

T∑
j=2

k

(
|i− j|
M

)
∆S̃ui ∆S̃uj .

Tests using this estimator are shown to be asymptotically conservative under standard

asymptotics, because this estimator is inconsistent under traditional bandwidth assump-

tions. Therefore, we abstain to consider the asymptotics for tests based on this estimator.

Following the discussion in Vogelsang and Wagner (2014a) Section 5, correlation between

these residuals and the OLS estimator of equation (2.12) causes problems for fixed-b in-

ference for θ. Consequently, residuals need to be adjusted in a similar way. Define the

vector zt as

zt := t
T∑
j=1

ξj −
t−1∑
j=1

j∑
s=1

ξs, ξt := [SDt
′, SXt

′, x′t]
′ (2.23)

and let z⊥t denote the vector of residuals from individually regressing each element of zt

on the regressors SDt , S
X
t , xt. The adjusted residuals obtained as the OLS residuals from

the regression of S̃ut on z⊥t are

S̃u∗t := S̃ut − z⊥t ′π̂, (2.24)
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where π̂ :=
(∑T

t=1 z
⊥
t z
⊥
t
′
)−1∑T

t=1 z
⊥
t S̃

u
t . As a third option for estimating ωu.v, we use the

first differences of the adjusted residuals given in equation (2.24):

ω̃∗u·v := T−1
T∑
i=2

T∑
j=2

k

(
|i− j|
M

)
∆S̃u∗i ∆S̃u∗j .

This estimator of the long-run covariance ωu·v has the required properties to deliver a

pivotal fixed-b limit for the Wald statistics, see Proposition 2 below. Beforehand, we

present the asymptotic behavior of the partial sum process ∆S̃u∗t .

Lemma 2. (i) Consider the OLS estimator from the regression

Syt = SDt
′δ∗ + SXt

′β∗ + x′tγ
∗ + z′tκ

∗ + Sut , (2.25)

denoted by θ̃∗ with θ∗ := [δ′, β′, (Ω−1
vv Ωvu)′, 0]′. Under full design it holds that(

AIM 0

0 T−2AIM

)−1 (
θ̃∗ − θ∗

)
⇒ ω1/2

u·v

(
(Π′)−1 0

0 (Π′)−1

)(∫
h(s)h(s)′ds

)−1 ∫
[H(1)−H(s)] dwu·v(s),

with

h(r) :=

(
g(r)∫ r

0 [G(1)−G(s)]ds

)
, H(r) =:

∫ r

0
h(s)ds.

(ii) The limiting distribution of the scaled partial sum process of the adjusted residuals

is given by

T−1/2
[rT ]∑
t=2

∆S̃u∗
t ⇒ ω

1/2
u·v

(∫ r

0

dwu·v(s)− h(r)′
(∫ 1

0

h(s)h(s)′ds

)−1 ∫ 1

0

[H(1)−H(s)]dwu·v(s)

)
=: ω

1/2
u·v P̃

∗(r), (2.26)

where, conditional on Wv(r), P̃
∗(r) is uncorrelated with the scaled and centered

limit of θ̃ given in equation (2.15) of Proposition 1. Given that both quantities are

conditionally Gaussian implies independence.

The Wald statistic is defined as

W̌ :=
(
Rθ̃ − r

)′ (
RAIM V̌IMAIMR

′)−1
(
Rθ̃ − r

)
,

where the superscript of W and VIM indicates which estimator is used for ωu·v. The

asymptotic behavior of the partial sum process of the first differences ∆S̃u∗t given in

Lemma 2 provides the basis for pivotal fixed-b limit for Wald statistics. The following

proposition is a special case of Proposition 3 in Vogelsang and Wagner (2014b) for CPR

models.
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Proposition 2. If M := bT with b ∈ [0, 1] is held fixed as T →∞, then

W̃ ∗ ⇒
χ2
q

Qb(P̃ ∗, P̃ ∗)
, (2.27)

where Qb(P̃ ∗, P̃ ∗) is independent of χ2
q.

Standard asymptotic results are given for Ŵ based on conditions on M and k(·) that lead

to consistency of ω̂u·v, as T →∞
Ŵ ⇒ χ2

q . (2.28)

The expression Qb(P̃ ∗, P̃ ∗) is the fixed-b limit of the long-run covariance estimator of the

form (2.7) using ∆S̃u∗t instead of η̂t. Therefore, t- as well as Wald-type tests can be

performed based on long-run covariance estimation with ∆S̃u∗t . Critical values can be

tabulated depending on the specification of the deterministic components, the number

of integrated regressors and its powers included, the kernel function and the bandwidth

choice.3

2.2.4. An IM-OLS Residual Based Cointegration Test for CPRs

Lemma 2 provides the asymptotic limiting distribution of the scaled partial sum process

of the adjusted IM-OLS residuals S̃u∗t . The following result for the scaled partial sum

process of the (non-adjusted) IM-OLS residuals follows straightforwardly replacing h(r)

by g(r).

Corollary 4. Suppose that full design prevails and the assumptions of Proposition 1 hold,

then for T →∞

T−1/2
[rT ]∑
t=2

∆S̃u
t ⇒ ω

1/2
u·v

(∫ r

0

dwu·v(s)− g(r)′
(∫ 1

0

g(s)g(s)′ds

)−1 ∫ 1

0

[G(1)−G(s)]dwu·v(s)

)
=: ω

1/2
u·v P̃ (r). (2.29)

Note that P̃ (r) consists of independent standard Brownian motions in case of full design.

The result given in Corollary 4 immediately suggests a Kwiatkowski et al. (1992)-type

(KPSS-type) test with the null hypothesis of cointegration. Shin (1994) extends the

KPSS test from a stationarity to a linear cointegration test and here we consider the

corresponding extension to the CPR framework based on the IM-OLS residuals.

3Tables with fixed-b critical values for IM-OLS based tests in the CPR case for different specifications
of deterministics (intercept, intercept and linear trend), up to four integrated regressors and the last
integrated regressor entering with integer powers up to power four as well as for different kernel functions
are available upon request.
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Proposition 3. Suppose that full design prevails and the assumptions of Proposition 1

hold. Then the limit of the IM-OLS residual based KPSS-type test statistic under the null

hypothesis for T →∞ is given by

CTIM :=
1

T 2ω̂u·v

T∑
t=2

(
t∑
i=2

∆S̃ui

)2

⇒
∫ 1

0

(
P̃ (r)

)2
dr, (2.30)

where ω̂u·v denotes a consistent estimator of ωu·v.

Since P̃ (r) consists of independent standard Brownian motions, critical values for the

CTIM test statistic can be tabulated which depend upon the specification of the deter-

ministic components, the number of integrated regressors and its powers included. Critical

values are given in Table B.5 for up to four regressors, the integrated regressor entering

with powers up to power four and three specifications of the deterministic components:

(i) no deterministics, (ii) intercept only, and (iii) intercept and linear trend.

Remark 6. Following the discussion before Lemma 2 the estimator ω̃u·v based on the

IM-OLS residuals S̃ut is inconsistent for ωu·v. Therefore, we use the OLS residuals from

model (2.1) in order to obtain a consistent estimator ω̂u·v.

2.3. Simulation Study

In this section we assess the performance of the CPR extensions of the D-OLS estimator by

Saikkonen and Choi (2004), the FM-OLS estimator by Wagner and Hong (2016) and the

IM-OLS estimator introduced in Section 2.2 by means of a simulation study benchmarked

against the OLS estimator. The estimators are labeled D-CPR, FM-CPR and IM-CPR,

respectively. We evaluate the performance in terms of bias and root mean squared error

(RMSE) as well as in terms of empirical null rejection probabilities and size-corrected

power of tests based on these estimators. Data is generated according to

yt = δ1 + δ2t+ β1xt + β2x
2
t + ut (2.31)

xt = xt−1 + vt, (2.32)

with

ut = ρ1ut−1 + e1,t + ρ2e2,t, (2.33)

vt = e2,t + 0.5e2,t−1, (2.34)
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ρ1 = ρ2 OLS D-CPR FM-CPR IM-CPR
And91 NW NWT

Bias

T=100

0.0 -0.001 -0.004 -0.002 -0.002 -0.002 -0.001
0.3 0.017 -0.005 0.004 0.002 0.003 -0.001
0.6 0.074 -0.003 0.038 0.036 0.035 0.013
0.9 0.362 0.164 0.305 0.302 0.308 0.243

T=200

0.0 -0.000 0.000 -0.001 -0.001 -0.001 -0.000
0.3 0.009 0.001 0.001 0.001 0.001 0.000
0.6 0.040 0.001 0.015 0.015 0.016 0.004
0.9 0.227 0.073 0.166 0.168 0.188 0.107

RMSE

T=100

0.0 0.067 0.216 0.071 0.071 0.071 0.100
0.3 0.094 0.283 0.097 0.096 0.097 0.142
0.6 0.173 0.423 0.162 0.159 0.159 0.239
0.9 0.521 0.888 0.501 0.494 0.495 0.748

T=200

0.0 0.033 0.060 0.034 0.034 0.033 0.049
0.3 0.047 0.083 0.047 0.047 0.047 0.070
0.6 0.092 0.133 0.081 0.080 0.080 0.121
0.9 0.340 0.370 0.302 0.300 0.311 0.451

Table 2.1.: Finite sample bias and RMSE for coefficient β1, Bartlett kernel.

where e1,t, e2,t are independent identically distributed standard normal random variables.

The parameter values chosen are δ1 = δ2 = 1, β1 = 5, β2 = −0.3 motivated by estimation

results for the environmental Kuznets curve (EKC) hypothesis with FM-CPR and D-

CPR in Wagner (2015). The parameter ρ1 controls serial correlation in the regression

error ut and the parameter ρ2 controls the level of endogeneity of the regressor xt. The

values for the correlation parameters are chosen from the set {0.0, 0.3, 0.6, 0.9}, where we

focus on the case ρ1 = ρ2. For long-run covariance estimation we choose the Bartlett

and Qaudratic Spectral (QS) kernels with bandwidths being chosen according to the data

dependent rules of Andrews (1991) and Newey and West (1994) as well as the sample size

dependent Newey-West bandwidth, i.e., b4(T/100)2/9c, labeled NWT . Furthermore, for

the D-CPR estimator we use the Akaike information criterion (AIC) based lead and lag

length choice of Choi and Kurozumi (2012). We consider 5,000 replications for the sample

sizes T ∈ {100, 200, 500, 1000}.

Bias and RMSE

Let us briefly summarize the simulation results for bias and RMSE given in Table 2.1.

We only report the results for the Bartlett kernel and the bandwidth according to the

data dependent rule of Andrews (1991), since the results for the different kernels and
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bandwidths are quite similar. In case of no correlation none of the estimators for β1 shows

much bias. With increasing ρ1 = ρ2 the bias increases for all estimators, where D-CPR

and IM-CPR estimators appear to be less sensitive to increasing level of correlation than

FM-CPR and especially OLS. For increasing sample size T all estimators have reduced

bias. With respect to RMSE, OLS and FM-CPR have the smallest root mean squared

errors for small sample sizes. As already pointed out in Vogelsang and Wagner (2014a) for

the linear cointegration case, the larger RMSE for IM-CPR is not surprising, because IM-

CPR uses a regression with an I(1) error Sut , whereas OLS and FM-CPR use an I(0) error

ut. However, for larger sample sizes the difference between the estimators is decreasing.

Empirical Null Rejection Probabilities

We turn to the finite sample results for the hypothesis tests introduced in Section 2.2. We

consider t-tests for the hypotheses H0 : β1 = 5 and H0 : β2 = −0.3 as well as Wald tests

for the joint hypothesis H0 : β1 = 5, β2 = −0.3. For standard asymptotic tests based on

traditional bandwidth and kernel assumptions we provide results corresponding to the test

statistic Ŵ and the chi-squared limiting distribution in (2.28). Rejections for these test

statistics are carried out using N(0, 1) critical values for the t-tests and χ2
2 critical values

for the Wald test, respectively. The fixed-b tests for the IM-CPR estimator introduced in

Proposition 2 are implemented in two ways: (i) consider a grid b ∈ {0.02, 0.04, . . . , 1.00}
and choose bandwidth according to M = bT , (ii) compute a bandwidth M∗ according to

one of the data dependent rules and subsequently determine the largest multiple of 0.02

smaller or equal to b∗ := M∗/T . The latter method is labeled Data-Dep below. Simulated

critical values for fixed-b inference depend particularly on both kernel and bandwidth.

The nominal level is 0.05 throughout.

Table 2.2 shows empirical null rejection probabilities for the t-tests for β1 and Table 2.3

reports the results for the Wald tests. Furthermore, results for the t-tests for β2, which

are qualitatively similar, are given in Table B.7 in the appendix. The tables contain the

following columns: OLS, D-CPR, FM-CPR and the test statistic using ω̂u·v for standard

asymptotic inference based on the IM-CPR estimator, labeled IM-CPR(O). The last three

columns show the results for fixed-b inference using one of the data dependent bandwidth

rules as well as using fixed values b ∈ {0.1, 0.2}. As expected OLS based tests show the best

performance in case of no correlation, but have severe size distortions in case of positive

correlation. D-CPR based tests are very size distorted even in the non-correlation case for

T = 100, but improve with increasing sample size. The FM-CPR and IM-CPR(O) tests

show a similar performance, where the latter has slightly lower over-rejections in case of

increased level of correlation especially for the Wald-type test with multiple hypotheses.

The IM-CPR based fixed-b tests behave properly compared to the standard asymptotic
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ρ1 = ρ2 OLS D-CPR FM-CPR IM-CPR(O) IM-CPR(Fb)

Data-Dep b=0.1 b=0.2

T=100

0.0 0.059 0.164 0.077 0.100 0.049 0.053 0.069

0.3 0.154 0.206 0.110 0.109 0.068 0.060 0.077

0.6 0.371 0.270 0.170 0.137 0.127 0.077 0.092

0.9 0.725 0.425 0.411 0.356 0.452 0.300 0.249

T=200

0.0 0.048 0.089 0.059 0.071 0.045 0.048 0.055

0.3 0.147 0.118 0.079 0.077 0.060 0.051 0.055

0.6 0.374 0.145 0.126 0.089 0.097 0.056 0.064

0.9 0.746 0.269 0.314 0.242 0.438 0.161 0.136

T=500

0.0 0.054 0.067 0.057 0.066 0.054 0.050 0.057

0.3 0.156 0.082 0.070 0.070 0.055 0.050 0.057

0.6 0.375 0.091 0.086 0.079 0.064 0.050 0.058

0.9 0.762 0.142 0.223 0.117 0.191 0.067 0.068

T=1000

0.0 0.053 0.062 0.055 0.061 0.055 0.052 0.054

0.3 0.163 0.072 0.064 0.066 0.055 0.051 0.055

0.6 0.400 0.079 0.081 0.070 0.057 0.052 0.055

0.9 0.787 0.114 0.176 0.087 0.097 0.055 0.063

Table 2.2.: Empirical null rejection probabilities for H0 : β1 = 5, Andrews (1991) band-
width, QS kernel, 0.05 level.

tests. The empirical null rejection probabilities are close to the nominal size and large

over-rejections occur only in high-correlation cases in conjunction with small sample sizes.

Fixed-b tests outperform standard asymptotic tests throughout and are only moderately

size distorted especially for b ∈ {0.1, 0.2}. The data dependent bandwidth rules for the

fixed-b tests in the fifth column typically lead to b equal to 0.02 or 0.04. In order to

illustrate the impact of the choice of b on the test performance, we plot empirical size

rejections for different sample sizes and different correlation parameters as a function of b.

The results are given in Figure 2.1, which shows that the tests for b smaller or equal to 0.04

have the highest rejection probabilities. Regarding bandwidth and kernel choice, typically

the Andrews (1991) bandwidth choice leads to lower size distortions than the Newey and

West (1994) bandwidth choice and the QS kernel dominates the Bartlett kernel in terms

of empirical null rejection probabilities. The results for different kernel and bandwidth

choice are available upon request.

Size-Corrected Power Analysis

We close this section on hypothesis testing considering size-corrected power properties of

the tests. Although size-corrections are not feasible in practice, they are a useful tool for
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ρ1 = ρ2 OLS D-CPR FM-CPR IM-CPR(O) IM-CPR(Fb)

Data-Dep b=0.1 b=0.2

T=100

0.0 0.057 0.212 0.086 0.117 0.047 0.058 0.069

0.3 0.200 0.282 0.143 0.133 0.071 0.061 0.082

0.6 0.526 0.382 0.242 0.180 0.164 0.082 0.099

0.9 0.922 0.612 0.601 0.554 0.626 0.419 0.311

T=200

0.0 0.053 0.099 0.066 0.079 0.047 0.053 0.053

0.3 0.192 0.145 0.105 0.087 0.063 0.056 0.056

0.6 0.529 0.187 0.166 0.119 0.124 0.060 0.064

0.9 0.932 0.391 0.471 0.351 0.623 0.204 0.156

T=500

0.0 0.046 0.065 0.054 0.060 0.047 0.052 0.059

0.3 0.195 0.089 0.075 0.069 0.051 0.051 0.056

0.6 0.558 0.108 0.104 0.082 0.063 0.054 0.059

0.9 0.940 0.208 0.338 0.167 0.283 0.075 0.076

T=1000

0.0 0.053 0.065 0.057 0.063 0.058 0.052 0.053

0.3 0.214 0.076 0.073 0.067 0.059 0.053 0.057

0.6 0.563 0.090 0.091 0.076 0.063 0.054 0.056

0.9 0.949 0.149 0.250 0.107 0.120 0.059 0.066

Table 2.3.: Empirical null rejection probabilities for H0 : β1 = 5, β2 = −0.3, An-
drews (1991) bandwidth, QS kernel, 0.05 level.
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Figure 2.1.: Empirical null rejections, IM-CPR(Fb) inference: t-test for β1, QS kernel,
Andrews (1991) bandwidth, ρ1 = ρ2 = 0.3 (left panel), ρ1 = ρ2 = 0.9 (right panel).

theoretical comparisons since they overcome potential over-rejection problems under the

null hypothesis. Therefore, we use empirical critical values in order to hold the empirical

null rejection probabilities constant at 0.05 under the null. Starting from the true values

of β1 and β2 we consider under the alternative β1 ∈ (5, 6] and β2 ∈ (−0.3, 0.2] with a total
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Figure 2.2.: Size-corrected Power, Wald-test, T=100, ρ1 = ρ2 = 0.6, QS kernel.

of 20 values generated on a grid with mesh 0.05 for β1 and 0.005 for β2. The figures for the

t-tests and the Wald tests are qualitatively similar, thus we focus on the latter. The left

panel in Figure 2.2 shows that increasing value of b leads to some power loss. However,

this power loss is minor in most cases, whereas Figure 2.1 shows that empirical null-

rejection tend to be lower with increasing b. The minimal power losses in size-corrected

power seems to be the price to be paid for less size distortions. Comparing both kernels,

we observe that the QS kernel is much more sensitive to the bandwidth choice than the

Bartlett kernel. For increasing value of b size-corrected power becomes much lower using

the QS kernel than the Bartlett kernel. Results for size-corrected power using the Bartlett

kernel are given in Appendix B.4. As described above, tests using the QS kernel exhibit

much fewer over-rejection problems under the null especially for larger bandwidths. This

size-power trade-off for kernel and bandwidth choice has already been observed by Kiefer

and Vogelsang (2005) as well as by Vogelsang and Wagner (2014a). The right panel in

Figure 2.2 shows power comparisons for different tests, namely OLS, D-CPR, FM-CPR,

IM-CPR(O) and IM-CPR(Fb) using the Andrews (1991) data dependent bandwidth rule.

The D-CPR based test has the lowest power when the true parameter values are close

to those under the null, but slightly higher power than the IM-CPR(Fb) tests when the

difference between true parameter values and the values under null increases. Throughout

OLS and FM-CPR based tests have the highest size-corrected power, whereas both IM-

CPR based tests show small but non-trivial reduction in power.

Cointegration Testing

We also assess the performance of the IM-CPR residual based cointegration test CTIM in

terms of empirical null rejections probabilities and size-corrected power. We use the data
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ρ CTShin CTFM CTIM CTShin CTFM CTIM

And NW

T=100

0.0 0.052 0.050 0.089 0.057 0.053 0.083
0.3 0.058 0.056 0.079 0.073 0.074 0.107
0.6 0.094 0.056 0.071 0.149 0.126 0.159
0.8 0.174 0.070 0.107 0.352 0.214 0.215

T=200

0.0 0.049 0.047 0.061 0.051 0.051 0.065
0.3 0.056 0.051 0.063 0.062 0.067 0.083
0.6 0.094 0.053 0.065 0.128 0.103 0.117
0.8 0.212 0.042 0.055 0.326 0.152 0.146

T=500

0.0 0.062 0.056 0.058 0.059 0.054 0.055
0.3 0.068 0.060 0.062 0.077 0.074 0.080
0.6 0.095 0.061 0.063 0.155 0.085 0.095
0.8 0.218 0.048 0.049 0.387 0.138 0.127

T=1000

0.0 0.061 0.051 0.055 0.060 0.051 0.053
0.3 0.064 0.056 0.060 0.081 0.069 0.077
0.6 0.088 0.057 0.062 0.161 0.075 0.082
0.8 0.204 0.051 0.056 0.400 0.122 0.116

Table 2.4.: Empirical null rejection probabilities of cointegration tests, QS kernel, 0.05
level.

generating process (2.31) under the null and similar to Wagner and Hong (2016) three

alternative DGPs:

(A) : yt = 1 + t+ 5xt − 0.3x2
t + 0.01x3

t + ut

(B) : yt = 1 + t+ 5xt − 0.3x2
t + zt, where zt ∼ I(1) independent of xt

(C) : yt, xt are two independent I(1) variables

These DGPs cover the main alternatives of interest, i.e., (A) missing higher order poly-

nomials of the integrated regressor, (B) no cointegration because of a missing integrated

regressor, and (C) spurious regression. We compare the performance of the IM-CPR resid-

ual based CTIM test and the FM-CPR residual based cointegration test for CPRs proposed

by Wagner and Hong (2015), labeled CTFM . The results are benchmarked against the

Shin (1994) cointegration test (CTShin) for linear cointegrating relationships, because lin-

ear cointegration techniques instead of CPR techniques are commonly used in, e.g., the

EKC literature. Results for a D-CPR residual based cointegrationg test, which has the

same limiting distribution under the null as the CTFM test, are available upon request.

Comparable to the observations made in hypothesis testing section the D-CPR residual

based cointegration test performs worse in small samples, but similar to the CTFM test

for moderately large sample sizes.
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Table 2.4 presents the simulation results for the empirical null rejection probabilities for

the CTShin, CTFM and CTIM test, respectively. The CTShin test is based on the standard

FM-OLS residuals, i.e., residuals obtained from cointegrating regression estimation tech-

niques treating xt and its powers as separate integrated regressors. Stypka et al. (2017)

show that standard FM-OLS techniques applied to CPRs do not have an asymptotic effect

for parameter estimation but for cointegration testing. Consequently, the test shows poor

performance in case of high level of correlation. The CTFM and CTIM tests show good

performance in the lower correlation case already for small sample sizes. The CTIM test

exhibits some over-rejections for T = 100, but for increasing sample size both tests are

close to the nominal level also in high correlation cases. Throughout the CTFM test has

slightly lower over-rejections compared to the CTIM test. The impact of the bandwidth

choice on the cointegration tests’ performance is more pronounced than it is the case for

parameter tests. The data dependent bandwidth rule according to Andrews (1991) out-

performs the Newey and West (1994) bandwidth rule for all considered tests, which has

already been observed in Wagner and Hong (2016) for the CTFM test. Result tables for

the other specifications are available upon request. We observe that the performance of the

considered tests is poorer when the number of integrated regressors and/or the number of

powers included increases reflecting computational difficulties associated with estimating

models with more parameters.

Table 2.5 reports size-corrected power of the cointegration tests against the three alterna-

tives. The CTShin test has low power against the cubic CPR alternatives (A) especially

in conjunction with the Newey and West (1994) bandwidth. The CTIM test has higher

size-corrected power compared to the CTFM test, which has slightly lower over-rejections

under the null. Against the cubic alternatives (A) size-corrected power decreases with

increasing level of correlation. All considered tests show good performance in terms of

size-corrected power against alternatives (B) and (C). As already pointed out in Wagner

and Hong (2016) and Stypka et al. (2017), using the Andrews (1991) bandwidth rule leads

to substantially smaller size distortions for cointegration testing under the null, but this

comes at the cost of substantially reduced size-corrected power. In sum, the CTFM and

CTIM tests perform fairly similar. The CTFM test exhibits slightly lower over-rejections

under the null compared to the CTIM test, while the latter performs better in terms of

size-corrected power against the three alternatives considered in this section. Both tests

outperform the CTShin test for linear cointegrating relationship in this CPR setting.
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ρ CTShin CTFM CTIM CTShin CTFM CTIM

And NW

T=100

(A) 0.0 0.311 0.237 0.278 0.148 0.151 0.130
0.3 0.294 0.223 0.292 0.105 0.110 0.094
0.6 0.237 0.225 0.302 0.027 0.043 0.045
0.8 0.187 0.209 0.238 0.001 0.014 0.030

(B) - 0.325 0.372 0.359 0.653 0.522 0.405
(C) - 0.387 0.323 0.310 0.616 0.513 0.396

T=200

(A) 0.0 0.332 0.253 0.314 0.290 0.267 0.242
0.3 0.313 0.239 0.301 0.242 0.214 0.193
0.6 0.240 0.234 0.311 0.106 0.148 0.120
0.8 0.161 0.263 0.335 0.006 0.095 0.109

(B) - 0.390 0.377 0.381 0.836 0.685 0.575
(C) - 0.406 0.364 0.356 0.822 0.693 0.594

T=500

(A) 0.0 0.310 0.234 0.324 0.599 0.576 0.597
0.3 0.293 0.218 0.302 0.539 0.497 0.527
0.6 0.244 0.219 0.302 0.367 0.466 0.500
0.8 0.163 0.255 0.351 0.085 0.389 0.427

(B) - 0.403 0.387 0.425 0.984 0.933 0.919
(C) - 0.423 0.326 0.369 0.984 0.932 0.922

T=1000

(A) 0.0 0.317 0.241 0.331 0.828 0.820 0.848
0.3 0.306 0.228 0.308 0.782 0.772 0.804
0.6 0.263 0.225 0.293 0.619 0.760 0.793
0.8 0.177 0.241 0.325 0.270 0.677 0.736

(B) - 0.421 0.388 0.425 1.000 0.994 0.993
(C) - 0.432 0.340 0.373 0.999 0.990 0.992

Table 2.5.: Size-corrected power of cointegration tests, QS kernel, 0.05 level.
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2.4. Application: EKC Analysis

For the empirical analysis of the environmental Kuznets curve (EKC) hypothesis we con-

sider annual data for 19 early industrialized countries over the time period 1870-2013 for

carbon dioxide (CO2) emissions and real GDP. All of these quantities are used in per

capita terms and transformed to logarithms.

Australia Austria Belgium Canada Denmark

Finland France Germany Italy Japan

Netherlands New Zealand Norway Portugal Spain

Sweden Switzerland United Kingdom United States

Table 2.6.: The sample range is 1870-2013 for GDP and CO2 with the exception of New
Zealand which has 1878 as its starting point.

The CO2 emissions data is from the homepage of the Carbon Dioxide Information Anal-

ysis Center of the US Department of Energy4, the GDP data was downloaded from the

homepage of the Maddison Project5 and from The Conference Board Total Economy

Database6. The required long-run covariance estimates for the EKC estimation are based

on the Bartlett kernel and the data dependent bandwidth rule of Newey and West (1994)

similar to the analysis in Wagner (2015) and in Wagner and Grabarczyk (2017). We

consider the quadratic formulation

et = c+ δt+ β1yt + β2y
2
t + ut, (2.35)

yt = yt−1 + vt,

as well as the cubic formulation

et = c+ δt+ β1yt + β2y
2
t + β3y

3
t + ut, (2.36)

yt = yt−1 + vt,

where et denotes log per capita CO2 emissions and yt denotes log per capita GDP.

Prior to estimation, we test the unit root hypothesis for the variable on the right-hand

side, i.e. log per capita GDP, investigating the Phillips and Perron (1988) t-test and the

fixed-b Phillips-Perron unit root test introduced by Vogelsang and Wagner (2013) for the

specification with an intercept and a linear trend. The results are reported in Table B.1.

4http://cdiac.ornl.gov
5http://www.ggdc.net/maddison/maddison-project/home.htm
6http://www.conference-board.org/data/economydatabase
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The unit root null hypothesis based on the standard Phillips-Perron test is rejected for

none of the countries. The PP(fb) unit root test rejects the null hypothesis for log GDP

per capita for Canada and the USA only at the 10% level.

We also carry out CPR based (non-)cointegration tests for the specifications (2.35) and

(2.36). In addition to the IM-OLS residual based cointegration test CTIM from Section 2.2,

we employ the CPR extension of the FM-OLS residual based Shin (1994) cointegration

test (CTFM ) and the OLS residual based extension of the Phillips and Ouliaris (1990)

non-cointegration test (Pû) introduced in Wagner (2013). The Pû test is based on the

assumption that the dependent variable, i.e. et, is an integrated process under the null.

Thus, the null corresponds to the spurious regression alternative (C) in Section 2.3. Since

the simulation study has revealed that the CT tests do not have impressive power against

the alternative of missing higher order polynomials, it appears prudent to only take those

countries into account for the EKC analysis, where the results between the Pû test and

the CT tests are not contradictory, i.e. rejection of the former and non-rejection of the

latter. We briefly summarize the results given in Table B.2. Based on the Pû test the

null hypothesis of non-cointegration for both specifications is rejected for Austria, Belgium,

Finland, Germany, the Netherlands, Switzerland and the UK. Considering these countries,

the results for the CTIM and the CTFM tests are well in line with rejection at the 0.05

level only occurring for Germany in the quadratic specification. Conflicting results between

both cointegration tests only appear for the UK in the cubic specification, where the null of

cointegration is rejected for the CTIM , but not rejected for the CTFM test. Summarizing

the results of the cointegration tests, we consider the following countries for the CPR

based estimation of the EKC relationship: Austria, Belgium, Finland, the Netherlands,

Switzerland and the UK. Furthermore, for Germany we consider the cubic specification

only.

We briefly turn to the estimation results for the specifications (2.35) and (2.36), where

we include the estimators considered in Section 2.3, i.e. OLS, D-CPR, FM-CPR and IM-

CPR. For significance tests based on the IM-CPR estimator we include standard t-values

as well as t-values obtained from fixed-b inference. The results for the quadratic specifi-

cation in Table B.3 show that the coefficient to squared GDP is significant and has the

expected negative sign indicating an inverted U-shape for all countries. Wagner (2015)

analyzes the EKC hypothesis for a similar data set including D-CPR and FM-CPR among

others and finds relatively small differences across the results of both estimation methods.

Consequently, it is expected that the CPR based estimators in this analysis also lead to

similar results. Strongly different coefficient estimates, and consequently different turning

points, across the methods occur only for Austria and Switzerland. The results for the

cubic specification in Table B.4 indicate that the coefficient β3 is not significantly different
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from zero at the 0.05 level for Austria, the Netherlands, Switzerland and the UK. For Bel-

gium and Finland, all coefficients are not significant based on the D-CPR estimator, where

entirely different estimation results are obtained compared to FM-CPR and IM-CPR. The

simulation study in Section 2.3 reveals that D-CPR can perform poorly for such sample

sizes considered in this empirical analysis. Figures B.1-B.4 show actual and fitted values

as well as estimated EKCs using the coefficients estimated by IM-CPR from models (2.35)

and (2.36). The fits are very good for all considered countries especially after the Second

World War. With the exception of some time periods for Austria and the UK, the fits are

also good for the time before and between the two world wars. Comparing the fits for the

quadratic and cubic specifications directly, we find minor differences for the majority of

the countries. Merely for the most recent decades for Austria the fitted values obtained

for the cubic specification are closer to the actual values than those from the quadratic

specification. In order to estimate the EKCs we use for the explanatory variable T = 144

equidistant values ranging from the minimal value of log per capita GDP up to the max-

imal value. For the linear time trend t we use values 1, . . . , 144 and insert these values

together with the coefficient estimates. Focusing on the estimated EKCs of Belgium and

Finland, where the coefficients to the third power of GDP are significantly different from

zero, we find an inverted U-shaped EKC for the former in both specifications. In case

of Finland the estimated EKC does not seem to describe the income-emissions relation-

ship adequately for the cubic specification, see Figure B.4. For Germany a cointegrating

polynomial relationship is supported only for the cubic specification. However, the esti-

mated EKC has also an inverted U-shape rather than an N-shape. Here we observe huge

difference between the FM-CPR and IM-CPR estimates, where the coefficients are not sig-

nificant throughout based on the FM-CPR estimator. In sum, we find that the quadratic

specification appears to be sufficient in describing the income-emissions relationship espe-

cially for Belgium, Finland, the Netherlands and the UK, where we find inverted U-shaped

EKCs. As expected, the estimation results do not differ strongly for the FM-CPR and

IM-CPR estimators for most of the countries. Furthermore, the results of the FM-CPR

and IM-CPR based cointegration tests are well in line. With the exception of the UK

in the cubic specification, both tests identify the same countries in which a cointegrating

polynomial relationship between income and emissions is present.

2.5. Summary and Conclusions

This chapter considers the extension of the integrated modified OLS estimator from linear

cointegrating regressions to cointegrating polynomial regressions. The zero mean Gaussian

mixture distribution of the obtained estimator forms the basis for standard asymptotic
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inference. For the case of full design, we additionally perform fixed-b asymptotic inference.

Full design prevails, e.g., when only one integrated regressor enters the regression equation

with powers larger than one. This is the case in, e.g., the EKC analysis. The chapter also

presents an IM-OLS residual based cointegration test, which has a nuisance parameter

free limiting distribution in case of full design.

The theoretical results are complemented by a small simulation study to compare the

IM-CPR estimator with OLS, FM-CPR and D-CPR. We find that the IM-CPR estimator

has a slightly lower bias relative to FM-CPR and D-CPR, but marginally larger RMSE.

In terms of empirical null rejection probabilities, hypothesis tests based on the IM-CPR

estimator outperform FM-CPR and D-CPR based tests, especially the fixed-b version for

small sample sizes and a high level of correlation. This comes at the cost of minor loss in

size-corrected power.

We apply the developed methods for the estimation of the EKC using a data set of GDP

and CO2 emissions for 19 early industrialized countries over the period 1870–2013. We

find evidence for the existence of a quadratic EKC for six countries and one additional

country for a cubic EKC. The results of the FM-CPR and IM-CPR based cointegration

tests are well in line with each other. The coefficient estimates are similar across the

considered methods for most of the countries.

Future research will move in the following directions: First, in respect of the EKC analysis

also integrated modified OLS estimators for multi-equation systems of CPRs are worth

considering. This includes CPR extensions of seemingly unrelated regression (SUR) mod-

els (Zellner, 1962) or panel data models. Second, the choice of an optimal b value is an

interesting but non-trivial problem. In this chapter the fixed-b values are chosen according

to one of the data dependent bandwidth rules designed for long-run covariance estimation

or set to a specific value. Third, the developed methods can also be applied to other eco-

nomic questions such as the intensity-of-use debate, which postulates an inverted U-shaped

relationship between GDP and intensity of metal use (Labson and Crompton, 1993).
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3. The EKC for CO2 Emissions: A

Seemingly Unrelated Cointegrating

Polynomial Regressions Approach

3.1. Introduction

The environmental Kuznets curve (EKC) hypothesis postulates an inverted U-shaped

relationship between measures of economic development, typically GDP per capita, and

measures of per capita pollution or emissions. The term EKC refers by analogy to the

inverted U-shaped relationship between the level of economic development and the degree

of income inequality, postulated by Kuznets (1955) in his 1954 presidential address to the

American Economic Association.

Starting with the pioneering work of Grossman and Krueger (1991, 1993, 1995) and Shafik

and Bandyopadhyay (1992) a large and still growing body of research, both theoretical and

empirical, is devoted to the EKC hypothesis. Theoretical contributions include Andreoni

and Levinson (2001), Arrow et al. (1995), Brock and Taylor (2005, 2010), Cropper and

Griffiths (1994), Dinda (2005), Jones and Manuelli (2001), Selden and Song (1995) or

Stokey (1998).1 Müller-Fürstenberger and Wagner (2007) discuss problems that arise

at the intersection of theoretical and empirical EKC analysis. Additional early empirical

contributions on top of the mentioned seminal papers include Agras and Chapman (1999),

Antweiler et al. (2001), Hilton and Levinson (1998), Holtz-Eakin and Selden (1995),2 Kahn

(1998), List and Gallet (1999) or Torras and Boyce (1998).

Criticism of the EKC is as old as the EKC itself, both on theoretical as well as on econo-

metric grounds. In this chapter we focus on discussing two problems related to (i) using

1A relatively recent survey of economic models for analyzing the EKC is given by Kijima et al. (2010).
Uchiyama (2016, Chapter 2) contains a detailed discussion of the model of Stokey (1998) as well as an
overview discussion of empirical work on the EKC. Already early survey papers like Stern (2004) or
Yandle et al. (2004) find more than 100 refereed publications; and many more have been written since
then.

2The quadratic formulation, i.e., the functional form that can literally lead to an inverted U-shape has
first been used in this paper, whereas Grossman and Krueger used a third order polynomial.
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unit root and cointegration methods for (ii) multi-country (or multi-regional) data in

a parametric approach to the EKC. The problems addressed also impact – if unit root

nonstationary behavior of explanatory variables is indeed present – the validity of other es-

timation approaches to the EKC, including nonparametric approaches (see, e.g., Millimet

et al., 2003), semiparametric approaches (see, e.g., Bertinelli and Strobl, 2005) or specifi-

cations based on spline interpolations (see, e.g., Schmalensee et al., 1998).

Given that a significant part of the empirical literature uses unit root and cointegration

techniques, understanding the implications of (i) and (ii) is important for empirical prac-

tice. Papers that use time series unit root and cointegration methods for EKC analysis

include Esteve and Tamarit (2012), Fosten et al. (2012), Friedl and Getzner (2003), He

and Richard (2010), Jalil and Mahmud (2009) and Lindmark (2002). Panel data EKC

studies using unit root and cointegration techniques include Apergis (2016), Auffhammer

and Carson (2008), Baek (2015), Bernard et al. (2015), Dijkgraaf and Vollebergh (2005),

Dinda and Coondoo (2006), Galeotti et al. (2006), Perman and Stern (2003) or Romero-

Avila (2008). As pointed out by Wagner (2015), based on Wagner and Hong (2016), these

papers ignore the fact that powers of integrated processes are not themselves integrated

processes (see also Wagner, 2012). Therefore, a regression of (the logarithm of) emis-

sions per capita on (the logarithm of) GDP per capita and its powers is not a standard

cointegrating regression, but in the terminology of Wagner and Hong (2016, Eq. (1)) a

cointegrating polynomial regression (CPR); if this specific form of nonlinear cointegration

prevails and the regression is not spurious.3

In the presence of powers of integrated regressors in cointegrating regressions, estimators

like the fully modified OLS (FM-OLS) estimator (introduced for the linear cointegration

case in Phillips and Hansen, 1990) can be adapted by using appropriately constructed

additive correction terms. The precise form of these correction terms depends upon the

specification of the relationship. They differ from the correction terms in the linear case,

see Wagner and Hong (2016).4 The implications of this difference for EKC analysis for

time series data are illustrated in Wagner (2015). The asymptotic behavior of using

standard FM-OLS treating unit root processes and their powers all as unit root processes

is discussed in Stypka et al. (2017).5

3Prior to the estimation of these relationships, testing for nonlinear cointegration in EKC-type relation-
ships need to be performed, see, e.g., Choi and Saikkonen (2010), Wagner (2013) or Wagner and Hong
(2016).

4Important earlier work in this respect has been undertaken by Park and Phillips (1999, 2001), Chang
et al. (2001) or Ibragimov and Phillips (2008). The difference between the work of Wagner and Hong
(2016) and, e.g., Chang et al. (2001) is that the latter assume that the regressors are pre-determined and
the errors serially uncorrelated. Wagner and Hong (2016) remove these two assumptions and consider
the “standard” setting in cointegration analysis with endogenous regressors and serially correlated
errors.

5In the example of a quadratic EKC this means that log GDP per capita and its square are treated as two
integrated regressors and standard FM-OLS is performed in the two regressor case. The above-listed
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The part of the empirical EKC literature that uses panel unit root and cointegration tech-

niques relies entirely upon methods for linear cointegration developed for cross-sectionally

independent panels. Thus, a fortiori the above-mentioned problems continue to be present.

Importantly, additionally the assumption of cross-sectional independence that is employed

in these studies, utilizing standard panel cointegration techniques like Kao and Chiang

(2000), Phillips and Moon (1999) or Pedroni (2000), is clearly often unrealistic.6 Also, the

tacit assumption of these studies that all coefficients (except for, usually, the intercepts)

are indeed identical, i.e., can be pooled, for all cross-section members may be too restrictive

in many applications. In case that the cross-sectional dimension is small (compared to the

time series dimension) a seemingly unrelated regressions (SUR) approach allows to relax

both the cross-sectional independence as well as the poolability assumption. Based on

Hong and Wagner (2014) we present in Section 3.2 fully modified OLS SUR estimators for

systems of seemingly unrelated cointegrating polynomial regressions (SUCPR) formulated

here for the quadratic EKC specification as used in the application.7 In the SUCPR setting

we allow for cross-sectional dependence of both the regressors and the errors and do not

impose any poolability assumptions on the coefficients. Instead of having to impose poola-

bility of the coefficients, we can test for any form of pooling and then, if the corresponding

restrictions are not rejected, estimate the parameters pooled correspondingly. Some basic

forms of pooling related to panel analysis are reviewed and stated in Appendix C.1: (P)

all coefficients but the intercepts are pooled, (S) only the coefficients corresponding to log

GDP per capita and its square are pooled, and (T) only the coefficient corresponding to

the linear time trend is pooled. More generally, however, it may be the case that only

some coefficients can be pooled over (potentially) different subsets of cross-section mem-

bers. This turns out to be the case in the application in Section 3.3. Therefore we discuss

estimation in group-wise pooled settings of a form relevant for our application in detail in

Section 3.2.2.

The application of our methodology to study the EKC for CO2 emissions for six early

industrialized countries over the period 1870–2013 highlights the usefulness of the SUCPR

approach. Group-wise pooled estimation of the EKC leads to almost the same results (es-

timated parameters, turning points, and fitted values) as those obtained with unrestricted

individual or SUCPR estimation. This happens despite the reduction of the number of

papers employing cointegration methods all use cointegration techniques this way, as also discussed in
Wagner (2015).

6Apergis (2016) and Romero-Avila (2008) acknowledge the potential of cross-sectional dependencies in
time series panels by considering some form of cross-sectional dependence testing. That alone, however,
does not solve the associated problems.

7In terms of econometric methodology Hong and Wagner (2014) discuss an extension of SUR cointegration
analysis from the linear cointegration SUR case (see, e.g., Park and Ogaki, 1991; Mark et al., 2005;
Moon, 1999; Moon and Perron, 2005) to the SUCPR case. This is similar in scope – now for the SUR
case – to the extension of FM-OLS from the linear cointegration to the CPR case presented in Wagner
and Hong (2016).
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parameters to be estimated by about one third. Fully pooled estimation, rejected by

poolability testing, on the other hand, performs drastically worse. This shows that a

situation- or problem-specific approach to pooling that our methodology provides is a

helpful addition to the EKC analysis toolkit. The flexibility of the approach will allow

for fruitful applicability also when modeling other relationships for data sets with a small

cross-sectional dimension compared to a large time series dimension.

The chapter is organized as follows: In Section 3.2 we present the econometric method-

ology, i.e., two fully modified least squares estimators for systems of seemingly unrelated

cointegrating polynomial regressions including a discussion of group-wise pooling – both

with respect to testing for poolability as well estimation imposing the corresponding pool-

ing restrictions – of a form relevant for our application. Section 3.3 presents and discusses

the empirical findings and Section 3.4 briefly summarizes and concludes. Appendix C.1 is

divided in two subsections. The first contains some additional material and results con-

cerning the three variants (P), (S) and (T) of pooled estimation and the second provides the

derivation of the limiting distributions of the group-wise pooled estimators. Appendix C.2

contains additional empirical results.

We use the following notation: bxc denotes the integer part of x ∈ R and diag(·) denotes

a diagonal matrix with entries specified throughout. For a vector x = (xi)i=1,...,n we

denote by ‖x‖2 =
∑n

i=1 x
2
i and for a matrix M we denote by ‖M‖ = supx

‖Mx‖
‖x‖ . For

a square matrix A we denote its determinant by |A|. We denote the m-dimensional

identity matrix by Im, with 0m×n a (m × n)-matrix with all entries equal to zero, with

1s = [1, . . . , 1]′ ∈ Rs and with ei,n the i-th unit vector in Rn. For (block-)matrices M

we denote the (i,j)-(block-)element with M i,j , the i-th (block-)row with M i,. and the j-

th (block-)column with M .,j . With 1{·} we denote the indicator function. Furthermore,

⊗ denotes the Kronecker product, E(·) denotes the expected value and L denotes the

backward-shift operator, i.e., L{zt}t∈Z = {zt−1}t∈Z. Definitional equality is signified by

:= and ⇒ denotes weak convergence. Brownian motions are denoted B(r) or short-hand

by B, with covariance matrices specified in the context. For integrals of the form
∫ 1

0 B(s)ds

or
∫ 1

0 B(s)dB(s), we often use the short-hand notation
∫
B or

∫
BdB and drop function

arguments and integration bounds for notational simplicity.

3.2. Seemingly Unrelated Cointegrating Polynomial Regressions

For the discussion in this chapter it suffices to consider the special case of a system of

seemingly unrelated quadratic polynomial regressions, where in the application in the
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following section yi,t denotes log CO2 emissions per capita and xi,t log GDP per capita in

country i in year t:

yi,t = ci + δit+ β1,ixi,t + β2,ix
2
i,t + ui,t, i = 1, . . . , N, t = 1, . . . , T, (3.1)

= [D′i,t, X
′
i,t]θi + ui,t,

= Z ′i,tθi + ui,t,

xi,t = xi,t−1 + vi,t,

with Zi,t := [D′i,t, X
′
i,t]
′, whereDi,t := [1, t]′ andXi,t := [xi,t, x

2
i,t]
′, and θi := [ci, δi, β1,i, β2,i]

′.

Denoting with xt := [x1,t, . . . , xN,t]
′, with ut := [u1,t, . . . , uN,t]

′ and with vt := [v1,t, . . . , vN,t]
′,

we assume for ξt := [u′t, v
′
t]
′ that

ut := Ψ(L)ζt =

∞∑
j=0

Ψjζt−j , (3.2)

∆xt = vt := Φ(L)εt =
∞∑
j=0

Φjεt−j ,

with
∞∑
j=0

j‖Φj‖ < ∞ and
∞∑
j=0

j‖Ψj‖ < ∞. Furthermore, we assume |Φ(1)| 6= 0, which

excludes cointegration in the I(1) vector process {xt}, and |Ψ(1)| 6= 0, since we need reg-

ularity of this matrix for the construction of the modified SUR estimator, a term coined

by Park and Ogaki (1991) in the linear SUR cointegration setting. The stacked process

{ξ0
t }t∈Z := {[ζ ′t, ε′t]′}t∈Z is assumed to be a strictly stationary and ergodic martingale

difference sequence with respect to the natural filtration Ft with positive definite condi-

tional variance matrix Σ := E
(
ξ0
t (ξ0

t )′|Ft−1

)
and supt≥1 E(‖ξ0

t ‖r|Ft−1) <∞ a.s. for some

r > 4.

Remark 7. The above setting in (3.1) can be generalized in several ways: First, several

integrated regressors and their powers can be included, with the specifications allowed

to be equation specific. In the above example this means that different powers can be

included in the different equations. Second, more general (equation-specific) deterministic

components can be included. Third, pre-determined (or even more easily strictly exoge-

nous) stationary regressors can be included as well. Fourth, common non-cointegrated

nonstationary regressors can also be included in the equation system, which may be of

particular relevance in, e.g., regional applications where country-wide variables may be

important determinants for all regions. For more details in these respects see Hong and

Wagner (2014).
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The above assumptions are sufficient for a functional central limit theorem to hold, i.e.

1√
T

brT c∑
t=1

ξt =
1√
T

brT c∑
t=1

[
ut

vt

]
⇒ B(r) =

[
Bu(r)

Bv(r)

]
:= Ω1/2W (r), 0 ≤ r ≤ 1, (3.3)

with W (r) a 2N -dimensional standard Wiener process and Ω :=
∑∞

h=−∞ E(ξ0ξ
′
h) the so-

called long run variance of {ξt}t∈Z. For later usage we define also the one-sided long run

variance given by ∆ :=
∑∞

h=0 E(ξ0ξ
′
h) and both matrices are partitioned according to the

partitioning of ξt:

Ω :=

[
Ωuu Ωuv

Ωvu Ωvv

]
, ∆ :=

[
∆uu ∆uv

∆vu ∆vv

]
. (3.4)

The above set of N equations (3.1) can be jointly written as

yt = Z ′tθ + ut, t = 1, . . . , T (3.5)

with

yt :=


y1,t

...

yN,t

 ∈ RN , Zt :=


Z1,t

. . .

ZN,t

 ∈ R4N×N , ut :=


u1,t

...

uN,t

 ∈ RN ,

and with θ := [θ′1, . . . , θ
′
N ]′. Stacking all T observations for the above equation (3.5) we

arrive at

y = Zθ + u, (3.6)

with

y :=


y1

...

yT

 ∈ RNT , Z :=


Z ′1
...

Z ′T

 ∈ RNT×4N .

A few basic observations concerning parameter estimation in (3.6) can already be made:

First, it is straightforward to show that the OLS estimator of θ in (3.6) is consistent

with a limiting distribution contaminated by second order bias terms, just as in the linear

seemingly unrelated cointegration case studied in Park and Ogaki (1991) or Moon (1999).

Alternatively, the results for the OLS estimator given in Wagner and Hong (2016) for the

single equation case, of course, generalize to the SUCPR case. Second, in the classical SUR
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approach of Zellner (1962) the errors are typically assumed to be serially uncorrelated (and

the regressors nonstochastic). Correspondingly, the weighting matrix used in “classical”

SUR estimation, i.e., in GLS estimation, is an estimate of the contemporaneous error

variance matrix. In the cointegration setting we allow for both error serial correlation

and endogenous regressors. To take these two generalizations into account, Park and

Ogaki (1991) define a modified SUR (MSUR) estimator using an estimate of the long run

variance matrix of the errors as weighting matrix. The asymptotic behavior of the OLS and

MSUR estimators is derived in Hong and Wagner (2014, Proposition 1) for the SUCPR

case. The nuisance parameter dependent limiting distributions of these two estimators

provide guidance for the construction of appropriate two-part FM-type corrections.8 One

of the corrections is as in the linear case, i.e., the dependent variable yt is replaced by

y+
t := yt − Ω̂uvΩ̂

−1
vv vt, with consistent estimators of the long run variances.9 The second

transformation consists of subtracting an appropriately constructed correction term. In

the SUR setting we need two sets of correction terms, depending upon estimator considered

as starting point (OLS or MSUR). For our specification (3.1) these are given by A∗ :=

[A∗1
′, . . . , A∗N

′]′ and Ã∗ := [Ã∗1
′, . . . , Ã∗N

′]′, with

A∗i := (∆̂+
vu)i,i


02×1

T

2
T∑
t=1

xi,t

 , Ã∗i := (∆̂+
vu)i,.(Ω̂−1

u.v)
.,i


02×1

T

2
T∑
t=1

xi,t

 , (3.7)

where (∆̂+
vu)i,i is a consistent estimator of (∆+

vu)i,i := ∆i,i
vu − ∆i,.

vvΩ−1
vv Ω.,i

vu and Ω̂u.v is a

consistent estimator of Ωu.v := Ωuu − ΩuvΩ
−1
vv Ωvu.

In order to finally define the two fully modified estimators and to state their asymptotic

distributions we still need some additional quantities. We define, again for our special case,

the weighting matrixG = G(T ) := IN⊗G•(T ), withG•(T ) := diag(T−1/2, T−3/2, T−1, T−3/2)

and a stochastic process J(r) := diag (J1(r), . . . , JN (r)) with Ji(r) := [1, r, Bvi(r), B
2
vi(r)]

′,

where Bvi(r) denotes the i-th coordinate of Bv(r).

Proposition 4 (Hong and Wagner 2014, Proposition 2). Let yt be generated by (3.1) with

the assumptions given in place. Assume furthermore that, based on the OLS residuals,

all required long run variances are estimated consistently. Using the correction factors

8For completeness, the OLS estimator is (as always) given by θ̂OLS := (Z′Z)
−1
Z′y and the MSUR

estimator is defined as θ̃MSUR :=
(
Z′
(
IT ⊗ Ω̂−1

uu

)
Z
)−1 (

Z′
(
IT ⊗ Ω̂−1

uu

)
y
)

. A more detailed discussion

concerning possibilities to construct FM-type estimators in the SUR case is given in Hong and Wagner
(2014) and Moon (1999).

9The results of, e.g., Jansson (2002) apply in our setting and provide conditions on kernels and bandwidths
that allow for consistent long run variance estimation. Throughout the chapter we assume these
conditions on bandwidth and kernel to be in place.
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defined in (3.7) the fully modified systems OLS (FM-SOLS) and the fully modified SUR

(FM-SUR) estimators are given by:

θ̂ :=
(
Z ′Z

)−1 (
Z ′y+ −A∗

)
, (3.8)

θ̃ :=
(
Z ′
(
IT ⊗ Ω̂−1

u.v

)
Z
)−1 (

Z ′
(
IT ⊗ Ω̂−1

u.v

)
y+ − Ã∗

)
, (3.9)

with y+ := [y+′
1 , . . . , y+′

T ]′. As T →∞ it holds that:

G−1
(
θ̂ − θ

)
⇒

(∫
JJ ′
)−1 ∫

JdBu.v, (3.10)

G−1
(
θ̃ − θ

)
⇒

(∫
JΩ−1

u.vJ
′
)−1 ∫

JΩ−1
u.vdBu.v, (3.11)

where Bu.v(r) := Bu(r)− ΩuvΩ
−1
vv Bv(r) is a Brownian motion with variance matrix Ωu.v.

By construction Bu.v(r) is independent of Bv(r) and consequently the above zero mean

Gaussian mixture limiting distributions given in (3.10) and (3.11) form the basis for asymp-

totic chi-squared inference using, e.g., Wald-type tests. Because the vectors θ̂ and θ̃ contain

elements that converge at different rates, obtaining formal results for the Wald-type test

statistics requires a condition on the restriction matrix (in case of linear hypotheses) that

is unnecessary when all estimated coefficients converge at the same rate (see, e.g., Park

and Phillips, 1988, 1989). We posit in the following proposition a sufficient (asymptotic)

rank condition that ensures that the Wald-type test statistics have asymptotic chi-squared

null distributions. Note that if none of the hypotheses mixes coefficients with different

convergence rates no additional complications compared to a standard situation with all

estimated coefficients converging at the same rate arise.

Proposition 5 (Hong and Wagner 2014, Proposition 3). Let yt be generated by (3.1) with

the given assumptions in place. Consider s linearly independent restrictions collected in

H0 : Rθ = r with R ∈ Rs×4N of full row rank s, r ∈ Rs and suppose that there exists a

(matrix sequence) GR = GR(T ) such that limT→∞GRRG = R∗ with R∗ ∈ Rs×4N of full

row rank s.

Then it holds under H0 that the Wald-type statistics:

Ŵ :=
(
Rθ̂ − r

)′ [
R
(
Z ′Z

)−1
Z ′
(
IT ⊗ Ω̂u.v

)
Z
(
Z ′Z

)−1
R′
]−1 (

Rθ̂ − r
)
,

(3.12)

W̃ :=
(
Rθ̃ − r

)′ [
R
(
Z ′
(
IT ⊗ Ω̂−1

u.v

)
Z
)−1

R′
]−1 (

Rθ̃ − r
)

(3.13)

are asymptotically chi-squared distributed with s degrees of freedom.
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3.2.1. Testing for Poolability and Pooled Estimation

As outlined in the introduction a key advantage of the SUR setting is that it allows to

test for in principle arbitrary forms of poolability rather than assuming poolability from

the outset as in panel analysis. Clearly, the results from Propositions 4 and 5 allow to test

for poolability of the coefficients. In Appendix C.1 we briefly present the test statistics

and the correspondingly pooled estimators for three “standard” pooling tests involving all

cross-section members. These are labelled as: (P), where all coefficients except for the

intercepts are pooled; (S), where only the coefficients to xi,t and x2
i,t are pooled and (T),

where only the linear trend coefficient is pooled.

The first variant of pooling corresponds closely to a fixed-effects panel model, with indi-

vidual specific fixed effects. Note, however, that the literature does not yet provide the

theory for panel estimation methods (with N →∞) for cross-sectionally dependent panels

of cointegrating polynomial regressions. de Jong and Wagner (2016), based on the seminal

work of Phillips and Moon (1999), provide theory for the cross-sectionally independent

case for the cubic formulation with one- and two-way fixed effects.10

If the considered null hypothesis is not rejected, then pooled estimation, as described for

these three cases in Appendix C.1, of a smaller number of parameters allows to lift some

efficiency gains in estimation. For our data, the above-given three “global” hypotheses

(P), (S) and (T) are rejected.11 A more detailed analysis, see Section 3.3, of the FM-SUR

results reveals that the coefficient corresponding to the linear time trend can be pooled in

three subgroups (of sizes three, two and one). For the coefficients to GDP and its square,

the stochastic regressors, group-wise pooling analysis identifies one group of size three for

which pooling is not rejected.

Exploiting the possibilities of group-wise pooling just indicated necessitates formulating

the corresponding Wald-type statistics as well as the corresponding group-wise pooled

estimators. This is discussed in the following subsection for the setting relevant in our

application. Along similar lines any form of group-wise pooling can be considered in more

general SUCPR settings.

10Note again that the part of the empirical EKC literature that uses panel cointegration methods, estimates
a system of equations like (3.1) with methods for linear cointegration developed for panels of cross-
sectionally independent units. The SUCPR approach overcomes these two limitations, allowing for
cross-sectional dependence and taking into account the specific form of nonlinear cointegration.

11As will be seen in Section 3.3, for the 19 countries considered, (non-)cointegration tests lead to evidence
for a CPR relationship in six countries. The CPR and SUCPR analysis is consequently performed with
the data for these six countries.
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3.2.2. Group-Wise Pooling

In this subsection we consider testing the null hypothesis that the coefficients for the linear

time trend are group-wise pooled over a partition of k subsets Inj , j = 1, . . . , k with I :=

{1, . . . , N} =
⋃k
j=1 Inj . Similarly, we consider a partition over l subsets Imj , j = 1, . . . , l

for the regressors [xi,t, x
2
i,t]
′, i.e., I =

⋃l
j=1 Imj . Without loss of generality we order the

subsets according to decreasing cardinality, i.e., |In1 | ≥ . . . ≥ |Ink | and |Im1 | ≥ . . . ≥ |Iml |,
denoting with |S| here the number of elements of a set S.

The null hypothesis corresponding to group-wise poolability of the coefficients correspond-

ing to the above partitioning is given by:

HGW
0 : δi = δj ∀ i, j ∈ Ind ∀ d ∈ {{1, . . . , k} : |Ind | > 1} (3.14)(

β1,i

β2,i

)
=

(
β1,j

β2,j

)
∀ i, j ∈ Imp ∀ p ∈ {{1, . . . , l} : |Imp | > 1}.

To construct the Wald-type test statistics discussed in Proposition 5 for this specific

situation it is convenient to define a few more quantities. First, denote with Nj =

|Inj |, j = 1, . . . , k and Mj = |Imj |, j = 1, . . . , l. Furthermore, the elements of the

index set Inj , aj,nj say, are considered sorted, i.e., Inj = (a1,nj , a2,nj , . . . , aNj ,nj ) with

1 ≤ a1,nj < a2,nj < · · · < aNj ,nj ≤ N for j = 1, . . . , k and similarly for the sets

Imj , j = 1, . . . , l. Using this notation and setting the restriction matrix to test for (the

considered form of) group-wise poolability can be written as:

RGW := [R′n1
, . . . , R′nk , R

′
m1
, . . . , R′ml ]

′ ∈ Rs×4N (3.15)

with

Rnj :=

(1(Nj−1) ⊗ e′a1,nj
,N

)
−


e′a2,nj

,N

...

e′aNj,nj ,N


⊗ e′2,4 ∈ R(Nj−1)×4N (3.16)

for j such that Nj > 1 and Rnj = ∅ otherwise; and

Rmj :=

(1(Mj−1) ⊗ e′a1,mj
,N

)
−


e′a2,mj

,N

...

e′aMj,mj ,N


⊗

(
e′3,4

e′4,4

)
∈ R2(Mj−1)×4N (3.17)
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for j such that Mj > 1 and Rmj = ∅ otherwise. The total number of restrictions is

s =

k∑
j=1

(Nj − 1) + 2

l∑
j=1

(Mj − 1) (3.18)

and, clearly, r = 0 (in Rθ = r) here. Using either the FM-SOLS estimates or the FM-SUR

estimates, the two test statistics (3.12) and (3.13) can be calculated to test the considered

null hypothesis HGW
0 .

Remark 8. In the above definition of the blocks of the restriction matrix, setting, e.g.,

Rnj = ∅ for Nj = 1, merely states that for groups of size one, of course, no poolability

hypothesis testing is performed. Equivalently, including only the subsets of size larger

than one in the restrictions matrix RGW would require to define another index, n∗k say,

until which the groups – ordered according to non-increasing size – comprise more than

one element.

In case that the null hypothesis discussed above is not rejected, the corresponding group-

wise pooled estimators can be (defined and) employed. To this end consider:

Ďt := [Ď′1,t, . . . , Ď
′
k,t]
′ ∈ Rk×N , (3.19)

where

Ďj,t :=

N∑
i=1

1{i∈Inj } · t · e
′
i,N , j = 1, . . . , k. (3.20)

For the stochastic regressors we similarly have

X̌t := [X̌ ′1,t, . . . , X̌
′
l,t]
′ ∈ R2l×N , (3.21)

with

X̌j,t :=
N∑
i=1

1{i∈Imj } ·
(
e′i,N ⊗Xi,t

)
, j = 1, . . . , l. (3.22)

With these quantities the group-wise pooled model can be compactly written as

yt = Ž ′tθ
GW + ut, (3.23)
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with yt := [y1,t, . . . , yN,t]
′, ut := [u1,t, . . . , uN,t]

′, Žt := [IN , Ď
′
t, X̌

′
t]
′ ∈ R(N+k+2l)×N and

the parameter vector θGW := [c1, . . . , cN , δ1, . . . , δk, β
′
1, . . . , β

′
l]
′ ∈ RN+k+2l, where βj =

[β1,j , β2,j ]
′ for j = 1, . . . , l. Finally, stacking the quantities over time gives

y = ŽθGW + u, (3.24)

with y = [y1, . . . , yT ]′, Ž = [Ž1, . . . , ŽT ]′ and u = [u1, . . . , uT ]′.

The correction terms for the group-wise pooled FM-SOLS and FM-SUR estimators are de-

fined as AGW∗ := [01×(N+nk), A
GW∗
1

′, . . . , AGW∗
l

′]′, ÃGW∗ := [01×(N+nk), Ã
GW∗
1

′, . . . , ÃGW∗
l

′]′,

with

AGW∗
j :=

N∑
i=1

1{i∈Imj } ·
(

∆̂+
vu

)i,i
·

(
T

2
∑T

t=1 xi,t

)
, j = 1, . . . , l, (3.25)

ÃGW∗
j :=

N∑
i=1

1{i∈Imj } ·
(

∆̂+
vu

)i,· (
Ω̂−1
u·v

)·,i
·

(
T

2
∑T

t=1 xi,t

)
, j = 1, . . . , l. (3.26)

For group-wise pooled estimation the weighting matrix is given by Ǧ := diag(Ǧc, ǦD, ǦX) =

diag(T−1/2 ·IN , T−3/2 ·Ik, Il⊗diag(T−1, T−3/2)). The limit stochastic process is now given

by J̌(r) := [IN , J̌
′
D, J̌

′
X ]′, with J̌D(r) := [J̌D1(r)′, . . . , J̌Dk(r)′]′ and J̌Dj (r) :=

N∑
i=1

1{i∈Inj } ·

r · e′i,N for j = 1, . . . , k. The process J̌X(r) := [J̌X1(r)′, . . . , J̌Xl(r)
′]′ is composed of

J̌Xj (r) :=
N∑
i=1

1{i∈Imj } ·

(
e′i,N ⊗

(
Bvi(r)

B2
vi(r)

))
for j = 1, . . . , l.

Proposition 6. Let yt be generated by (3.24), the discussed restricted version of (3.1) with

group-wise pooled parameters, with the assumptions given in place. Assume again that,

based on the OLS residuals, all required long run variances are estimated consistently.

Using the correction factors defined in (3.25) and (3.26), the group-wise FM-SOLS and

FM-SUR estimators are given by:

θ̂GW :=
(
Ž ′Ž

)−1 (
Ž ′y+ −AGW∗) , (3.27)

θ̃GW :=
(
Ž ′
(
IT ⊗ Ω̂−1

u.v

)
Ž
)−1 (

Ž ′
(
IT ⊗ Ω̂−1

u.v

)
y+ − ÃGW∗

)
. (3.28)

As T →∞ it holds that:

Ǧ−1
(
θ̂GW − θGW

)
⇒
(∫

J̌ J̌ ′
)−1 ∫

J̌dBu·v, (3.29)

Ǧ−1
(
θ̃GW − θGW

)
⇒
(∫

J̌Ω−1
u·vJ̌

′
)−1 ∫

J̌Ω−1
u·vdBu·v. (3.30)
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In the following empirical analysis we discuss and compare unrestricted, pooled and group-

wise pooled estimation results.

3.3. Empirical Analysis

The empirical analysis builds upon Wagner (2015), who performs individual country FM-

CPR analysis of the EKC for CO2 emissions for 19 early industrialized countries. The first

step, prior to the SUR analysis performed here, is to reassess the findings of the earlier

paper, since we now have data ranging from 1870–2013 rather than only until 2000. The

CO2 emissions data are from the Carbon Dioxide Information Analysis Center of the US

Department of Energy and comprise total CO2 emissions from fossil fuel usage.12 The

GDP data, measured in 1990 Geary-Khamis Dollars, are from the Maddison project at

the University of Groningen and from The Conference Board Total Economy Database.13

The data are used in logarithms of per capita quantities. Throughout, for all estimators

and all tests we use the Bartlett kernel and the bandwidth chosen according to Newey and

West (1994).

For all 19 early industrialized countries investigated, the unit root null hypothesis is not

rejected for log GDP per capita using the unit root tests of Phillips and Perron (1988)

as well as the fixed-b versions of this test developed by Vogelsang and Wagner (2013).14

Using the tests for cointegration in CPRs of Wagner (2013) and Wagner and Hong (2016)

leads to evidence for a quadratic cointegrating EKC for CO2 emissions for the following six

countries: Austria (AT), Belgium (BE), Finland (FI), the Netherlands (NL), Switzerland

(CH) and the UK.15

Table 3.1 shows the results of estimating the quadratic EKC (3.1) using both individual

country FM-CPR (as used in Wagner, 2015) and the two SUR estimators discussed in

Section 3.2, FM-SOLS and FM-SUR, for the six countries listed above. In addition,

the lower left block of the table contains the results when estimating the EKC “fully”

pooled, allowing only for country specific intercepts (the form of pooling referred to as (P)

in Section 3.2.1).16 The following messages emerge from the table: First, the estimated

12See Boden et al. (2016) and http://cdiac.ornl.gov.
13See Bolt and van Zanden (2014), http://www.ggdc.net/maddison/maddison-project/home.htm and

http://www.conference-board.org/data/economydatabase.
14The results are given in Table C.1 in Appendix C.2.
15This is slightly different from Wagner (2015) who finds evidence for a quadratic EKC for CO2 emissions

for only four out of the six countries above: Austria, Belgium, Finland and the UK. These differences
may stem from the different sample range and/or the fact that the CO2 emissions data have been
updated.

16In formal terms, estimation of (3.1) is performed under the restrictions δi = δ, β1,i = β1 and β2,1 = β2

for i = 1, . . . , 6. Note also that we obtain very similar results for the cubic specification, both with
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coefficients (all significant with “correct” signs) and a fortiori the estimated turning points

do usually not differ strongly across the three methods for each country. The exception here

is Austria where the FM-CPR turning point is more than twice as large as the FM-SOLS

and FM-SUR turning points. For Switzerland, the turning point is estimated far outside

the sample range, with values ranging from 1.3 to 3.1 millions, by all three estimators. This

finding is related to the fact that, see Figure 3.2, per capita CO2 emissions are essentially

constant in Switzerland since about 1980. Second, with respect to the two SUR estimators

the differences are mostly very minor, with the one exception being Finland. For this

reason we focus on the FM-SUR estimator in the discussion from now on.17 Third, the

estimated coefficients and consequently the estimated turning points differ substantially

across countries and this heterogeneity can – by construction – not be captured by the

pooled, i.e., almost panel-type, estimation results in the lower left block. This finding

highlights that commonly used panel methods need to be considered very carefully, or

maybe not used at all for situations as considered here.18

The results from Table 3.1 are displayed graphically in Figures 3.1 and 3.2. The first figure

displays the estimated EKCs, given by using 144 equidistant values for the explanatory

variable from the range of log GDP per capita associated with values of the time trend

ranging from 1,. . . ,144 and inserting these values in Equation (3.1) using the coefficient

estimates obtained from both FM-CPR (solid with x-marks) and FM-SUR (solid). Ad-

ditionally the graphs include the scatter plots between log GDP per capita and log CO2

emissions per capita. The similar coefficient estimates translate, as expected or in fact

necessary, into very similar estimated EKCs. Figure 3.2 displays the actual values of log

per capita CO2 emissions with the fitted values obtained from both FM-CPR and FM-SUR

estimation. Clearly, the two fitted value lines corresponding to FM-CPR and FM-SUR

are very close to each other for all countries, with the still small but relatively largest

differences for Austria (for which also the estimated turning point differs most between

the two methods). In general the fit is very good, especially for the period since the second

world war.

Performing the poolability tests (P), (S) and (T) described in Section 3.2.1 and in more

detail in Appendix C.1 for the six considered countries leads throughout to rejections

of the respective null hypotheses for both tests, i.e., the tests based on the FM-SOLS

respect to cointegration testing and estimation results. The coefficient to the third power of GDP is
not significant throughout and it thus suffices to consider the quadratic specification.

17The similarity of the findings with both the FM-SOLS and the FM-SUR estimators is made clearly
visible in Figures C.1 and C.2 in Appendix C.2.

18As already mentioned, de Jong and Wagner (2016) consider a panel version of FM-type estimators for
panels of cointegrating polynomial regressions under the assumption of cross-sectional independence.
Under appropriate assumptions it may be the case that the pooled estimates converge to “average
coefficients”, see Phillips and Moon (1999) for details. These issues remain to be studied for the
cointegrating polynomial regression case.
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Figure 3.1.: EKC estimation results for Equation (3.1): scatter plot and EKC. The dots
show the pairs of observations of ln(GDP) per capita and ln(CO2) emissions per capita.
The lines show results based on inserting 144 equidistant points from the sample range of
ln(GDP) per capita, with corresponding values of the linear trend given by t = 1, . . . , 144
in the estimated relationship (3.1). The solid lines with x-marks correspond to the FM-
CPR estimates and the solid lines to the FM-SUR estimates.
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Figure 3.2.: EKC estimation results for Equation (3.1): actual and fitted values. The
dashed lines show the actual values of ln(CO2) per capita emissions, the solid lines with
x-marks the FM-CPR fitted values and the solid lines the FM-SUR fitted values.
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estimator (3.12) and the FM-SUR estimator (3.13). For the hypothesis (P) this is already

expected, given the cross-country heterogeneity of the unrestricted estimates, compare

again the results in Table 3.1. The prize to be paid when applying pooled estimation,

allowing only for country specific intercepts, despite this restriction being rejected, is

clearly visible when looking at Figures 3.3 and 3.4, which are similar in structure to

Figures 3.1 and 3.2. For all six countries the differences are quite huge, both with respect

to slope and shape. These differences translate directly into partly drastic reductions of

fit, when considering the fitted value graphs in Figure 3.4. Thus, testing for group-wise

poolability and potentially group-wise pooled estimation, as outlined in Section 3.2.2, are

the logical next steps.
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Figure 3.3.: EKC estimation results for Equation (3.1): scatter plot and EKC. The solid
lines correspond to the FM-SUR estimates and the solid lines with o-marks to the pooled
FM-SUR estimates. For further explanations see notes to Figure 3.1.

In many applications the researcher may have some prior knowledge concerning candidates

for group-wise pooling. To a certain extent this is also the case here, as one expects that

very similar countries, e.g., Belgium and the Netherlands, may have very similar EKCs.

Here, however, we pursue a more exploratory approach. We start by testing for the

discussed three forms of pooling – (P), (S) and (T) – in all possible sub-groups. This means

that we test for these forms of poolability in all 15 possible country-pairs, 20 country-

triples and so on.19 The results are given in Table 3.2 and Table C.3 in Appendix C.2.

19Note that we test for the three forms of poolability using only data for the subset of countries under
investigation. We do not perform all possible tests of group-wise poolability in all possible partitions
into multiple subgroups using the data for all six countries. Doing that would entail a rather large
number of tests to be performed. Let us stress also that the approach is to be understood exploratory,

70



3.3. Empirical Analysis

1860 1880 1900 1920 1940 1960 1980 2000 2020
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
ln

(C
O

2)
Austria

1860 1880 1900 1920 1940 1960 1980 2000 2020
0.5

1

1.5

2

2.5

3

ln
(C

O
2)

Belgium

1860 1880 1900 1920 1940 1960 1980 2000 2020
−4

−3

−2

−1

0

1

2

3

ln
(C

O
2)

Finland

1860 1880 1900 1920 1940 1960 1980 2000 2020
−0.5

0

0.5

1

1.5

2

2.5

3

ln
(C

O
2)

Netherlands

1860 1880 1900 1920 1940 1960 1980 2000 2020
−1.5

−1

−0.5

0

0.5

1

1.5

2

ln
(C

O
2)

Switzerland

1860 1880 1900 1920 1940 1960 1980 2000 2020
1.6

1.8

2

2.2

2.4

2.6

2.8

3

ln
(C

O
2)

UK

Figure 3.4.: EKC estimation results for Equation (3.1): actual and fitted values. The
dashed lines show the actual values, the solid lines the FM-SUR fitted values and the solid
lines with o-marks the pooled FM-SUR fitted values.

Table 3.2 contains the numbers of groups of the respective sizes for which the corresponding

poolability hypothesis cannot be rejected, with the group members displayed in Table C.3.

As for the coefficients, also for the tests the differences are minor between the FM-SOLS

and FM-SUR results and thus we focus again on the results obtained with FM-SUR. The

full pooling hypothesis (P) is rejected throughout, even for all pairs. With FM-SUR,

the slope parameters β1 and β2 can be pooled for (i.e., the pooling hypothesis (S) is not

rejected for) four country-pairs, two country-triples and one group of size four (containing

AT, BE, NL and UK). With respect to the trend parameters there are three country

groups of size three, for which the trend slope can be pooled. Austria, Finland and the

UK are each present in two of the three groups.

We take the above results as starting point to estimate the EKC for the six countries

in a group-wise pooled fashion. In particular we consider: the trend slope pooled in

three groups, comprising Austria, Finland and Switzerland; Belgium and the UK; and

the Netherlands (as group of size one) respectively. The slope parameters are pooled in

four groups, given by Belgium, the Netherlands and the UK; and the three single member

since neither of the complications resulting from multiple testing is even addressed, let alone solved.
Note that there is a recent literature to identify (coefficient) structure in panel data, see Ke et al. (2016)
or Su et al. (2016). However, our problem does not fit that literature either, since we have small (to
medium) N and cointegration in the SUCPR setting, whereas this literature is to date concerned with
standard stationary settings.
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groups Austria; Finland; and Switzerland.20 Table 3.3 displays the estimation results. As

observed up to now, the estimates are also very similar for the now group-wise pooled

FM-SOLS and FM-SUR estimates. Looking at the coefficients in the individual groups

clearly shows that the group-wise pooled estimates are – almost by construction when

using group-wise pooled least squares estimation – close to the averages of the country

specific estimates given in Table 3.1. Of course, group-wise pooled estimation is not

simply mean-group estimation, and thus the group-wise pooled coefficients estimates do

not simply coincide with the averages. The same observations as for the coefficients hold,

of course again by implication, for the estimated turning points.
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Figure 3.5.: EKC estimation results for Equation (3.1): scatter plot and EKC. The solid
lines correspond to the FM-SUR estimates and the solid lines with the square symbols to
the group-wise pooled FM-SUR estimates. For further explanations see notes to Figure 3.1.

The benefit of group-wise pooling becomes clearly visible when considering the results

graphically in Figures 3.5 and 3.6. These two figures, again similar in structure to Fig-

ures 3.1 and 3.2, show clearly that imposing group-wise poolability restrictions supported

by hypothesis testing in group-wise pooled FM-SUR estimation (solid lines with square

symbols) leads to very similar estimates of the EKCs compared to non-pooled FM-SUR

estimation (solid lines). Importantly, also the (unavoidable) reduction in fit is negligible

(see Figure 3.6), with the exception of the UK to some extent. Recall for comparison

the drastic reduction in fit when pooling all slope and trend coefficients over all countries

20We take this group of three countries for pooling the trend slope, since for this group the poolability
hypothesis is not rejected also for all subgroups of two of these three countries. The choice is made using
similar arguments also for the slope parameters: Poolability of the slope parameters is not rejected for
the three pairs of countries of the triple Belgium, the Netherlands and the UK.
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Figure 3.6.: EKC estimation results for Equation (3.1): actual and fitted values. The
dashed lines show the actual values, the solid lines the FM-SUR fitted values and the solid
lines with square symbols the group-wise pooled FM-SUR fitted values.

displayed in Figures 3.3 and 3.4.21 Group-wise pooling of a form adapted to the situation

leads to a sizeable reduction of the number of parameters to be estimated, in our case

from 28 to 18, without any clearly visible losses in terms of approximation quality. Un-

thoughtful global pooling, i.e., panel-type estimation, leads to drastically worse results.

These findings illustrate that a seemingly unrelated CPR approach is indeed very useful

for the analysis of the EKC and similar relationships in situations with multi-country or

multi-regional data where the cross-sectional dimension is small.

3.4. Summary and Conclusions

We provide tools for multi-country (or multi-regional) cointegration analysis of the environ-

mental Kuznets curve (EKC) by pursuing a seemingly unrelated cointegrating polynomial

regressions (SUCPR) approach advocated by Hong and Wagner (2014). The approach

can also be applied in other contexts in which inverted U-shaped relationships are stud-

ied, such as the intensity of use (IOU) relationship between GDP and energy or material

intensity (see, e.g., Guzmán et al., 2005; Labson and Crompton, 1993).

21Figures C.3 and Figure C.4 in Appendix C.2 compare the group-wise pooled and pooled FM-SUR results.
These two figures clearly make the same point as the figures in the main text, but contrasting group-wise
pooled and pooled estimation results in the same figure highlights the benefits of group-wise pooling
compared to pooling nicely.

73



3. The EKC for CO2 Emissions: A Seemingly Unrelated Cointegrating Polynomial Regressions Approach

The SUCPR approach addresses three of the main challenges of the existing literature:

First, it takes into account that powers of integrated processes are themselves not inte-

grated processes and that consequently cointegration analysis of the EKC needs to resort

to methods designed for this specific form of nonlinear relationship, labelled cointegrat-

ing polynomial regression by Wagner and Hong (2016). The implications of this fact for

single country EKC analysis have been pointed out earlier in Wagner (2015); the present

chapter translates and extends this discussion to the multi-country data case. Second, it

is not necessarily the case that, e.g., emissions and GDP data for different countries are

independent of each other, an assumption typically made in the panel EKC literature.

Third, furthermore the EKC relationship, if present, need not be identical (potentially up

to country specific individual effects) across countries. This, however, is the the key as-

sumption underlying pooling which panel data analysis rests upon. Our SUCPR approach

addresses these three issues and provides new tools for group-wise poolability testing and,

in case the restrictions are not rejected, corresponding group-wise pooled estimation.

Developing poolability tests and correspondingly pooled estimators for general sets of

restrictions is shown to be extremely useful in our application to CO2 emissions data for

six early industrialized countries over the period 1870–2013. It turns out that the trend

respectively slope parameters can be pooled over different country sub-groups, a situation

that we label group-wise pooling. The results show that group-wise pooled estimation

provides fits that are close to the fits from either individual country or unrestricted SUCPR

estimation, whilst the number of parameters to be estimated is substantially reduced.

Altogether, the simple reduced form SUCPR EKC analysis leads to very good fit, especially

since the second world war, and meaningful estimates of the turning points. Performing

SUCPR estimation in a fully pooled fashion with only country specific intercepts, by

comparison leads to substantial losses in terms of fit. A major limitation of any SUR

approach is the limitation to situations with a relatively small cross-sectional dimension.

For data sets with large cross-sectional dimension panel data approaches will need to be

pursued, with all advantages and disadvantages. For a first step in this direction see de

Jong and Wagner (2016).

The empirical results of this chapter illustrate the usefulness of SUCPR analysis of the

EKC, but the reduced form character of the analysis presented here dictates the necessary

next steps of the research agenda: First, for certain applications it may be necessary

to extend the methodology to allow for the inclusion of stationary regressors.22 This

is a pertinent issue in, e.g., IOU analysis. In case of substitution possibilities between

22Pre-determined stationary regressors can be accommodated more easily than endogenous stationary
regressors. Endogenous stationary regressors will require to construct an instrumental variables-type
extension of the estimators discussed here. Even if an IV-type estimator is developed, the availability
of valid and relevant instruments will, as always, be a challenge in actual applications.
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different metals (see, e.g., Stuermer, 2016) or energetic resources, the inclusion of relative

prices is of key importance to capture substitution elasticities. Note in this respect that

the SUR approach also can be used to study EKC or IOU relationships for a set of

different emissions variables or resource intensities for a given country or a small number

of countries. This allows to study the interrelationships in a system of cointegrating

polynomial regressions. Second, in particular for regional data it may be important to

allow for the inclusion of common aggregate variables, i.e., technically speaking for the

inclusion of common (nonstationary) regressors.23 Third, it is always important to strive

for extending the discussed methods to allow for a more structural analysis of EKC- or

IOU-type relationships by considering more general specifications. Extensions along all

three dimensions are or will be investigated in ongoing and planned research.

23This may on a bigger scheme also be relevant for multi-country data, e.g., EU data with common
EU-wide variables to be included. These could be related to common policies or regulations.
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δ̂ β̂1 β̂2 TP δ̂ β̂1 β̂2 TP

Austria Belgium

FM-CPR -0.017 6.247 -0.277 78,059 -0.004 11.358 -0.599 13,142

(t-values) (-3.713) (2.510) (-2.019) (-2.727) (10.121) (-10.159)

FM-SOLS -0.018 10.033 -0.486 30,515 -0.005 12.313 -0.649 13,230

(t-values) (-4.750) (4.634) (-4.073) (-3.629) (13.325) (-13.384)

FM-SUR -0.013 8.278 -0.403 28,699 -0.004 10.687 -0.562 13,556

(t-values) (-4.095) (4.891) (-4.182) (-3.935) (14.073) (-13.856)

Finland Netherlands

FM-CPR -0.029 15.610 -0.737 39,523 0.001 9.437 -0.481 18,280

(t-values) (-3.260) (9.356) (-8.796) (0.614) (8.438) (-8.076)

FM-SOLS -0.039 16.162 -0.746 50,845 0.001 9.823 -0.502 17,783

(t-values) (-4.974) (10.600) (-9.721) (0.585) (9.334) (-8.970)

FM-SUR -0.029 15.892 -0.752 38,892 0.002 10.185 -0.524 16,524

(t-values) (-5.863) (14.140) (-12.276) (1.053) (11.511) (-10.878)

Switzerland UK

FM-CPR -0.024 7.755 -0.273 1.5×106 -0.008 8.657 -0.446 16,287

(t-values) (-6.421) (6.312) (-4.031) (-3.406) (6.532) (-6.794)

FM-SOLS -0.024 6.933 -0.232 3.1×106 -0.007 9.887 -0.516 14,496

(t-values) (-7.981) (7.399) (-4.463) (-3.448) (8.539) (-9.001)

FM-SUR -0.022 7.441 -0.265 1.3×106 -0.007 8.402 -0.437 15,068

(t-values) (-7.743) (7.665) (-4.941) (-4.035) (8.667) (-9.001)

Pooled

FM-SOLS -0.015 13.572 -0.667 26,053

(t-values) (-8.344) (20.474) (-18.326)

FM-SUR -0.013 13.594 -0.677 23,002

(t-values) (-15.293) (35.246) (-32.226)

Table 3.1.: FM-CPR, FM-SOLS, FM-SUR and pooled FM-SOLS and FM-SUR esti-
mation results for Equation (3.1). The estimated turning points TP are computed as

exp
(
− β̂1

2β̂2

)
.
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Group size k 2 3 4 5 6 2 3 4 5 6

Total nr. of groups of size k 15 20 15 6 1 15 20 15 6 1

FM-SOLS FM-SUR

Linear Trend & Stochastic Regressors (P)

Stochastic Regressors (S) 3 2 4 2 1

Linear Trend (T) 6 2 7 3

Table 3.2.: Testing for group-wise poolability of subsets of coefficients. The numbers
indicate the number of groups of size k for which the indicated null hypothesis of group-
wise poolability is not rejected. The members of the groups for which the respective null
hypotheses are not rejected are given in Table C.3 in Appendix C.2. Empty entries corre-
spond to zeros. The left column displays the results for the FM-SOLS test statistic (3.12)
and the right column displays the results for the FM-SUR test statistic (3.13). Individual
test decisions are performed at the 1% significance level.

δ̂n1 δ̂n2 δ̂n3

Countries AT-FI-CH BE-UK NL

FM-SOLS -0.022 -0.009 0.001

(t-values) (-6.825) (-7.827) (0.883)

FM-SUR -0.019 -0.009 0.002

(t-values) (-9.443) (-11.122) (2.017)

β̂1,m1 β̂2,m1 β̂1,m2 β̂2,m2 β̂1,m3 β̂2,m3 β̂1,m4 β̂2,m4

Countries BE-NL-UK AT FI CH

FM-SOLS 11.580 -0.600 11.054 -0.534 13.907 -0.654 6.991 -0.242

(t-values) (16.445) (-16.355) (5.372) (-4.691) (12.850) (-10.435) (6.980) (-4.310)

TP 15,514 31,304 41,480 1.9×106

FM-SUR 10.852 -0.562 10.656 -0.521 14.649 -0.704 8.261 -0.319

(t-values) (21.370) (-20.896) (6.370) (-5.524) (15.528) (-12.645) (8.781) (-6.109)

TP 15,677 27,646 32,942 4.2×105

Table 3.3.: Group-wise pooled estimation results for Equation (3.1) using FM-SOLS and
FM-SUR. The trend parameter δ is pooled in three groups (of sizes three, two and one)
and the slope parameters β1, β2 are pooled in four groups (of sizes three and thrice one).

The estimated turning points TP are computed as exp
(
− β̂1

2β̂2

)
.
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A. Appendix to Chapter 1

A.1. Auxiliary Lemmata and Proofs

Auxiliary Lemmata

This subsection contains some auxiliary lemmata which are required to prove the main

results of Chapter 1. The following lemma is proven in Kasparis (2008, Lemma A1(i))).

Lemma 3. Under Assumption 2 it holds for 0 ≤ b < 1/3 that

sup
r∈[0,1]

T−1/2
T b∑
h=0

|vbrT c+h| = oa.s.(1).

Lemma 4. Under Assumptions 2 to 4 it holds for all integers 0 ≤ p and 1 ≤ q that:∣∣∣∣∣
MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)p [(xt+h
T 1/2

)q
−
( xt

T 1/2

)q]
vtvt+h

∣∣∣∣∣ = oP(1).

Proof. Consider f(x) := xq, x ∈ R. From the mean value theorem it follows that f(y) −
f(x) = f ′(ζ)(y − x), i. e., yq − xq = qζq−1(y − x), with x < y and ζ ∈ (x, y). Therefore, it

holds

(xt+h
T 1/2

)q
−
( xt

T 1/2

)q
= q

(
xht
T 1/2

)q−1
xt+h − xt
T 1/2

=
q

T 1/2

(
xht
T 1/2

)q−1 h∑
m=1

vt+m,

with xht = xt + γt
∑h

m=1 vt+m, γt ∈ (0, 1). Using this representation it follows that:

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)p [(xt+h
T 1/2

)q
−
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T 1/2

)q]
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=
q
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MT∑
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(
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)
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T
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T 1/2

)p( xht
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vtvt+mvt+h.
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The assertion is hence equivalent to showing that:

1

T 1/2

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)p( xht
T 1/2

)q−1 h∑
m=1

vtvt+mvt+h = oP(1).

In the course of the proof it is helpful to resort to strong approximations, which we get from

the Skorohod representation theorem, see Pollard (1984, p. 71–72) or Csörgo and Horváth

(1993, p.4). For a discussion of this issue in a nonlinear cointegration context see, e. g., Park

and Phillips (1999, Lemma 2.3) and Park and Phillips (2001). Since we are concerned with

weak convergence results in this chapter, we can w.l.o.g. use a distributionally equivalent

version of T−1/2xbrT c, X
∗
T (r) say, that fulfills supr∈[0,1] |(X∗T (r)) − Bv(r)| = oa.s.(1), with

Bv(r) the Brownian motion given in (1.4). Setting C̃ := supr∈[0,1] |Bv(r)| + 1/2, it holds

that

sup
r∈[0,1]

T−1/2|xbrT c| ≤ C̃ + oa.s.(1). (A.1)

Furthermore, it holds that

sup
r∈[0,1]

sup
0≤h≤MT

T−1/2|xbrT c+h − xbrT c|

= sup
r∈[0,1]

sup
0≤h≤MT

T−1/2|
h∑

m=1

vbrT c+m| ≤ sup
r∈[0,1]

T−1/2
MT∑
m=1

|vbrT c+m|

and thus it follows from Lemma 3 that

sup
r∈[0,1]

sup
0≤h≤MT

T−1/2|xbrT c+h − xbrT c| = oa.s.(1). (A.2)

This implies

sup
r∈[0,1]

sup
0≤h≤MT

T−1/2|xbrT c+h|

≤ sup
r∈[0,1]

sup
0≤h≤MT

T−1/2|xbrT c+h − xbrT c|+ sup
r∈[0,1]

T−1/2|xbrT c| ≤ C + oa.s.(1),

with C := supr∈[0,1] |Bv(r)|+ 1 and also

sup
r∈[0,1]

sup
0≤h≤MT

T−1/2|xhbrT c| ≤ C + oa.s.(1). (A.3)
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Using the triangular inequality and the bounds given in (A.1)–(A.3) the following inequal-

ities hold:∣∣∣∣∣ 1
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with k(0) = supx≥0 |k(x)| as defined in Assumption 3. By similar arguments as given

above it holds due to strict stationarity of {vt} that

sup
s∈[0,1]
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M
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bsMT c∑
m=1

vt+m

∣∣∣∣∣∣ ≤ C∗ + oa.s.(1),

where C∗
d
= C̃. Consequently,∣∣∣∣∣ 1
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Assumption 2 implies that:

E
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MT
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|vtvt+h|

)
≤ 1

MT

MT∑
h=0
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T

T−h∑
t=1

(
E[v2

t ]E[v2
t+h]

)1/2 ≤ 2Σvv <∞.

From the Markov inequality, see e. g., Billingsley (2012, p.294), it follows that:

1

MT

MT∑
h=0

1

T

T−h∑
t=1

|vtvt+h| = OP(1). (A.5)

Finally, the assertion is an immediate consequence of M3
T /T → 0 by Assumption 4, and

the remaining terms in (A.4) being OP(1). �

Lemma 5. With assumptions 2 to 4 in place, it holds for all integers 0 ≤ p that:∣∣∣∣∣
MT∑
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Proof. In the proof of Lemma A1 in Kasparis (2008) it is shown that∣∣∣∣∣ 1
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The left-hand side of (A.6) can be written as∣∣∣∣∣ 1
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Using a similar argument as used by Kasparis (2008, p. 1394–1396) to show (A.7), corre-

sponding to his Equation (A.7), it can be shown that
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which shows the claim of this lemma, since∣∣∣∣∣ 1

MT

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)p
MT (vtvt+h − E[vtvt+h])

∣∣∣∣∣
≤ k̃

∣∣∣∣∣ 1

T

T−h∑
t=1

( xt

T 1/2

)p
MT (vtvt+h − E[vtvt+h])

∣∣∣∣∣ ,
with k̃ := k(0) + 1. It is the fact that our proof of this lemma uses some of the arguments

of Kasparis (2008) that the same moment and bandwidth assumptions are required. These

are consequently contained in our Assumptions 2 to 4. �

Proofs of Chapter 1

Proof of Theorem 1. First, the (1, 1)-element of ∆̂ηη is given by
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)
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which is already well known, cf. Remark 2. For i ∈ {1, . . . , p} it holds that
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i. e., for the first and second columns (and rows) exactly the same arguments apply due

to the similar assumptions on {ut} and {vt}. Therefore, it is sufficient in the subsequent

discussion to consider the (i+ 1, j + 1)-element for i, j ∈ {1, . . . , p} of the estimator ∆̂ηη,

which is given by
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From Lemma 3 we know that T−1/2vt = oa.s.(1) for t = 1, . . . , T . Additionally, it holds

that T−1/2|xt| ≤ C + oa.s.(1) for t = 1, . . . , T . From E[T−1/2v2
brT c] = T−1/2Σvv → 0 for all

r ∈ [0, 1], we conclude that
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vt +OP(T−1/2).

The kernel is bounded and MT = o(T 1/3) by assumption, hence it follows
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In the linear case, i. e. i = j = 1, the above term converges in probability to ∆vv, cf.

Remark 2 again. Next, consider i > 1 and j = 1, i. e.,

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)(i−1)
vtvt+h.
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From Lemma 5 it follows that

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)(i−1)
vtvt+h

=

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)(i−1)
E[vtvt+h] + oP(1).

Now, we show that∣∣∣∣∣
MT∑
h=0

k

(
h

MT

)
E[v0vh]

1

T

T−h∑
t=1

( xt

T 1/2

)i−1
−

MT∑
h=0

k

(
h

MT

)
E[v0vh]

1

T

T∑
t=1

( xt

T 1/2

)i−1
∣∣∣∣∣

=

∣∣∣∣∣
MT∑
h=0

k

(
h

MT

)
E[v0vh]

1

T

T∑
t=T−h+1

( xt

T 1/2

)i−1
∣∣∣∣∣ (A.8)

is oP(1). By Assumption 2, we get∣∣∣∣∣
MT∑
h=0

k

(
h

MT

)
E[v0vh]

1

T

T∑
t=T−h+1

( xt

T 1/2

)i−1
∣∣∣∣∣

≤ Ci−1 1

T

MT∑
h=0

∣∣∣∣k( h

MT

)∣∣∣∣ |E[v0vh]|h+ oP(1)

≤ k(0)|Σεε|Ci−1 1

T

MT∑
h=0

h
∞∑
j=0

|cv,jcv,j+h|+ oP(1)

≤ k(0)|Σεε|Ci−1 1

T

∞∑
j=0

|cv,j |
∞∑
h=0

h|cv,h|+ oP(1).

Moreover, it holds that

k(0)|Σεε|Ci−1 1

T

∞∑
j=0

|cv,j |
∞∑
h=0

h|cv,h| = oP(1)

and thus ∣∣∣∣∣
MT∑
h=0

k

(
h

MT

)
E[v0vh]

1

T

T∑
t=T−h+1

( xt

T 1/2

)i−1
∣∣∣∣∣ = oP(1),

which implies that

MT∑
h=0

k

(
h

MT

)
E[v0vh]

1

T

T∑
t=T−h+1

( xt

T 1/2

)i−1
= oP(1).
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Therefore, we obtain

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

∆xit
T (i−1)/2

vt+h

= i

(
MT∑
h=0

k

(
h

MT

)
E[v0vh]

)(
1

T

T∑
t=1

( xt

T 1/2

)i−1
)

+ oP(1).

For the first term it holds that

MT∑
h=0

k

(
h

MT

)
E[v0vh]→ ∆vv.

Hence, by Slutsky’s Theorem, cf. e. g., Davidson (1994, Theorem 18.10, p. 286),

i

MT∑
h=0

k

(
h

MT

)
E[v0vh]

1

T

T∑
t=1

( xt

T 1/2

)i−1
⇒ i∆vv

∫ 1

0
Bi−1
v (r)dr.

We turn to the case i > 1 and j > 1, i. e.

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)(i−1) (xt+h
T 1/2

)(j−1)
vtvt+h.

Using Lemma 4 we obtain

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)(i−1) (xt+h
T 1/2

)(j−1)
vtvt+h

=

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

( xt

T 1/2

)(i+j−2)
vtvt+h + oP(1).

Now we are in the same setting as for j = 1, such that we can immediately conclude

MT∑
h=0

k

(
h

MT

)
∆xit

T
i−1

2

∆xjt+h

T
j−1

2

= ij

MT∑
h=0

k

(
h

MT

)
E[v0vh]

1

T

T∑
t=1

( xt

T 1/2

)i+j−2
+ oP(1)

⇒ ij∆vv

∫ 1

0
Bi+j−2
v (r)dr.

Joint convergence of the elements in ∆̂ηη, follows by the continuous mapping theorem. �
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Proof of Corollary 1. The OLS residuals are given by ût = ut − Z ′t(θ̂ − θ). Similar to the

proof of Theorem 1 consider for j ∈ {1, . . . , p} the term

(
∆̂η̂η̂

)
(1,j+1)

=

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

ût
∆xjt+h

T
j−1

2

=

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

ut
∆xjt+h

T
j−1

2

−
MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

Z ′t(θ̂ − θ)
∆xjt+h

T
j−1

2

.

The first term converges in distribution to (∆ηη)(1,j+1) by Theorem 1. Therefore, it remains

to show that the second term is oP(1). It follows that

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

Z ′t(θ̂ − θ)
∆xjt+h

T
j−1

2

= j

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

Z ′tGG
−1(θ̂ − θ)

(xt+h
T 1/2

)j−1
vt+h + oP(1) (A.9)

by similar arguments as in the proof of Theorem 1 withG defined in (1.7). Expression (A.9)

can be further rewritten as

MT∑
h=0

k

(
h

MT

)
j

1

T 3/2

T−h∑
t=1

(
T 1/2Z ′tG

)((xt+h
T 1/2

)j−1
vt+h

)(
G−1(θ̂ − θ)

)
+ oP(1).

Finally, we show that∥∥∥∥∥
MT∑
h=0

k

(
h

MT

)
j

1

T 3/2

T−h∑
t=1

(
T 1/2Z ′tG

)((xt+h
T 1/2

)j−1
vt+h

)∥∥∥∥∥ = oP(1).

Using the notation from Lemma 4 it holds that∥∥∥∥∥
MT∑
h=0

k

(
h

MT

)
j

1

T 3/2

T−h∑
t=1

(
T 1/2Z ′tG

)((xt+h
T 1/2

)j−1
vt+h

)∥∥∥∥∥
≤ jk(0)

MT∑
h=0

1

T 3/2

T−h∑
t=1

∥∥∥∥(T 1/2Z ′tG
)((xt+h

T 1/2

)j−1
vt+h

)∥∥∥∥
≤ jk(0)Cj−1

MT∑
h=0

1

T 3/2

T−h∑
t=1

∥∥∥T 1/2Z ′tG
∥∥∥ |vt+h|+ oP(1).
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Observe that
∥∥(T 1/2D′tGD

)∥∥2 ≤ CD + o(1) for a finite constant CD by Assumption 1 and

thus

∥∥∥(T 1/2Z ′tG
)∥∥∥2

=
∥∥∥(T 1/2D′tGD

)∥∥∥2
+

p∑
l=1

( xt

T 1/2

)2l
≤ K + oa.s.(1),

with K := CD +
∑p

l=1C
2l, such that∥∥∥∥∥

MT∑
h=0

k

(
h

MT

)
j

1

T 3/2

T−h∑
t=1

(
T 1/2Z ′tG

)((xt+h
T 1/2

)j−1
vt+h

)∥∥∥∥∥
≤ jk(0)Cj−1K1/2 1

T 1/2

MT∑
h=0

1

T

T−h∑
t=1

|vt+h|+ oP(1) (A.10)

follows. Similar to the discussion of (A.5) one can show

1

T 1/2

MT∑
h=0

1

T

T−h∑
t=1

|vt+h| = oP(1).

Hence, the expressions (A.10) and, consequently, (A.9) are oP(1) such that

(
∆̂η̂η̂

)
(1,j+1)

=

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

ut
∆xjt+h

T
j−1

2

+ oP(1)

and the claim follows. �

Proof of Lemma 1. We start with considering the first column of GX
T∑
t=1

Xtw
′
tGw. Ac-

cording to Wagner and Hong (2016, Proposition 1) the limit of this term for i = 1, . . . , p

and j = 1 is given by:(
GX

T∑
t=1

Xtw
′
tGw

)
(i,1)

=
1

T 1/2

T∑
t=1

( xt

T 1/2

)i
vt

⇒
∫ 1

0
Bi
v(r)dBv(r) + i∆vv

∫ 1

0
Bi−1
v (r)dr. (A.11)
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Consider now again i = 1, . . . , p, but j > 1:(
GX

T∑
t=1

Xtw
′
tGw

)
(i,j)

=
1

T 1/2

T∑
t=1

( xt

T 1/2

)i(
−

j∑
k=1

(
j

k

)
xj−kt (−vt)k

T (j−1)/2

)

=
1

T 1/2

T∑
t=1

j
( xt

T 1/2

)i+j−1
vt

− 1

T 1/2

T∑
t=1

(
j

2

)( xt

T 1/2

)i+j−2 v2
t

T 1/2

− 1

T 1/2

T∑
t=1

j∑
k=3

(
j

k

)( xt

T 1/2

)i+j−k (−vt)k

T (k−1)/2
. (A.12)

The first term on the right-hand side converges similarly to (A.11) to

j

∫ 1

0
Bi+j−1
v (r)dBv(r) + j(i+ j − 1)∆vv

∫ 1

0
Bi+j−2
v (r)dr.

For the second term in (A.12) we write v2
t = Σvv + (v2

t − Σvv) and consider both terms

separately. First,

(
j

2

)
Σvv

T

T∑
t=1

( xt

T 1/2

)i+j−2
⇒
(
j

2

)
Σvv

∫ 1

0
Bi+j−2
v (r)dr.

Second, using Lemma 5 it holds for the remaining term that

(
j

2

)
1

T

T∑
t=1

( xt

T 1/2

)i+j−2 (
v2
t − Σvv

)
= oP(1).

All additional terms in (A.12) converge to zero being OP(T−(k−2)/2). The result for

GD
T∑
t=1

Dtw
′
tGw follows analogously. �

Proof of Theorem 2. Beforehand, note that we can use the decomposition Ωw̃w̃ = ΩvvΠv

with

Πv :=

[
1 B′

B B̃

]
,

B and B̃ defined in (1.14) and (1.15), respectively. From Theorem 1 we know, that

Ω̂w̃w̃ ⇒ ΩvvΠv and Ω̂w̃u ⇒ ΩvuΠve
p
1. Therefore, it follows Ω̂−1

w̃w̃Ω̂w̃u
P→ Ω−1

vv Ωvue
p
1. In (1.12)

we have noted that

G−1(θ̂++ − θ) =
(
GZ ′ZG

)−1
(
GZ ′u−GZ ′W̃ Ω̂−1

w̃w̃Ω̂w̃u −GA∗∗
)
.
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Using the same arguments as in Wagner and Hong (2016) it holds that:

GZ ′u⇒
∫ 1

0
J(r)dBu(r) + ∆vu

(
0q×1

M

)
,

with M = [1,B′]′. From Theorem 1 it follows immediately that A∗ and A∗∗ have the same

limiting distribution, i. e.,

A∗ ⇒ ∆+
vu

(
0q×1

M

)
and A∗∗ ⇒ ∆+

vu

(
0q×1

M

)
.

Lemma 1 provides the limiting distribution of GZ ′W̃ , of which we only need the first

column due to the structure of the limit of Ω̂−1
w̃w̃Ω̂w̃u given by GZ ′v and it holds that:

GZ ′v ⇒
∫ 1

0
J(r)dBv(r) + ∆vv

(
0q×1

M

)
.

Therefore, we arrive at:

GZ ′u−GZ ′W̃ Ω̂−1
w̃w̃Ω̂w̃u − ∆̂+

w̃u ⇒
∫ 1

0
J(r)dBu(r)−

∫ 1

0
J(r)dBv(r)Ω

−1
vv Ωvu.

Noting that Bu·v(r) := Bu(r)−Bv(r)Ω−1
vv Ωvu completes the proof. �

Proof of Corollary 2. The result for CT+ is given in Wagner and Hong (2016, Proposi-

tion 5) and for the CT++ test statistic the proof for the numerator of the test statis-

tic, i. e., for T−1
∑T

t=1

(
T−1/2

∑t
j=1 û

++
j

)
follows analogously from considering û++

t =

u++
t − Z ′t(θ̂++ − θ) with u++

t = ut − w′tΩ̂−1
wwΩ̂wû. From the proof of Theorem 1 we know

that T−1/2
∑[rT ]

t=1 u
++
t ⇒ Bu·v(r) for 0 ≤ r ≤ 1. The result for the second part immediately

follows as in Wagner and Hong (2016) from the asymptotic equivalence of the FM-CPR

and FM-LIN estimators established in Theorem 2.

It thus remains to consider the asymptotic behavior of ω̂û·w, which follows from the asymp-

totic behavior of the “long-run” covariance estimators established in Theorem 1:

ω̂û·v = Ω̂uu − Ω̂uwΩ̂−1
wwΩ̂wu

⇒ Ωuu − ΩuvΩ
−1
vv Ωvue

p
1
′ΠvΠ

−1
v Πve

p
1

= Ωuu − ΩuvΩ
−1
vv Ωvu = ωu·v,

with convergence in probability, i. e., consistency, following from the fact that the limit is

non-stochastic. �
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A.2. A Brief Discussion of the Main Arguments in Case of More

Than One Integrated Regressor

In this section we present the main changes for the multiple integrated regressors case,

i. e., we consider a cointegrating polynomial regression including integer powers of I(1)

regressors xjt, j = 1, . . . ,m, up to degree p:

yt = D′tδ + x′tβ +

m∑
j=1

X ′jtβXj + ut, for t = 1, . . . , T, (A.13)

xt = xt−1 + vt,

where yt is a scalar process, Dt ∈ Rq, xt := [x1t, . . . , xmt]
′, Xjt := [x2

jt, . . . , x
p
jt]
′ and

θ := [δ′, β′, β′X1
, . . . , β′Xm ]′ ∈ R(q+mp).

Remark 9. The theory allows for more general setups concerning the integrated regres-

sors, i. e.:

1. The highest powers included need not be equal for each integrated regressor.

2. Not all consecutive powers of integrated regressors need to be included.

The assumptions concerning the error process and the regressors are similar to Assump-

tion 2 given by:

Assumption 7. The processes {ut}t∈Z and {∆xt}t∈Z = {vt}t∈Z are generated as:

ut = Cu(L)ζt =
∞∑
j=0

cujζt−j ,

∆xt = vt = Cv(L)εt =

∞∑
j=0

Cvjεt−j ,

with
∑∞

j=0 j|cuj | < ∞,
∑∞

j=0 j‖Cvj‖ < ∞ and det(Cv(1)) 6= 0. Furthermore, we assume

that the process {ξ0
t }t∈Z := {[ζt, ε′t]′}t∈Z is independent and identically distributed with

E(‖ξ0
t ‖l) <∞ for some l > max(8, 4/(1− 2b)) with 0 < b < 1/3.

As already mentioned in the main text, the condition det(Cv(1)) 6= 0 excludes cointegra-

tion among the components of the vector process {xt}t∈Z in the multivariate case. Given

the similar assumptions between the processes {ut}t∈Z and {vt}t∈Z compared to Assump-

tion 2 as well as between the different components of the vector process {vt}t∈Z, the results

presented in Section 1.2 also hold for the case of m > 1 integrated regressors. While the
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extension of Theorem 1 becomes more complicated only from a notational point of view,

there are some technical changes in the proof of the multivariate extension of Theorem 2

discussed below.

We define the multiple integrated regressors version of wt given in (1.9):

wt =
[
v1t, . . . , vmt,∆x

2
1t, . . . ,∆x

p
1t, . . . ,∆x

2
mt, . . . ,∆x

p
mt

]
and the “properly scaled” version w̃t = GWwt with

GW := GW (T ) = diag
(
Im, Im ⊗ diag

(
T−1/2, . . . , T−(p−1)/2

))
.

With the assumptions listed in place it is straightforward to state the multiple integrated

regressors extension of Theorem 1.

Corollary 5. Let the data be generated by (A.13). Under Assumptions 3, 4 and 7 it holds

for {ηt}t∈Z = {[ut, w̃′t]′}t∈Z ∈ R(1+mp) that

∆̂ηη :=

MT∑
h=0

k

(
h

MT

)
1

T

T−h∑
t=1

ηtη
′
t+h ⇒ ∆ηη,

where

∆ηη :=



∆uu ∆uv1 . . . ∆uvm ∆uv1B′1 . . . ∆uvmB′m
∆v1u ∆v1v1 . . . ∆v1vm ∆v1v1B′1 . . . ∆v1vmB′m

...
...

. . .
...

...
. . .

...

∆vmu ∆vmv1 . . . ∆vmvm ∆vmv1B′1 . . . ∆vmvmB′m
∆v1uB1 ∆v1v1B1 . . . ∆v1vmB1 ∆v1v1B̃11 . . . ∆v1vmB̃1m

...
...

. . .
...

...
. . .

...

∆vmuBm ∆vmv1Bm . . . ∆vmvmBm ∆vmv1B̃m1 . . . ∆vmvmB̃mm


, (A.14)

with

Bi :=

[
2

∫ 1

0
Bvi(r)dr, . . . , p

∫ 1

0
Bp−1
vi (r)dr

]′
, i = 1, . . . ,m,(

B̃ij
)
k,l

:= (1 + k)(1 + l)

∫ 1

0
Bk
vi(r)B

l
vj (r)dr, i, j = 1, . . . ,m, k, l = 1, . . . , p− 1.

Furthermore, it holds that

Σ̂ηη :=
1

T

T∑
t=1

ηtη
′
t ⇒ Σηη,
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where Σηη has similar structure as ∆ηη given in (A.14), which leads to:

Ω̂ηη := ∆̂ηη + ∆̂
′
ηη − Σ̂ηη ⇒ ∆ηη + ∆′ηη − Σηη =: Ωηη.

For the extension of Theorem 2 slightly more complications appear due to the fact that the

long-run covariance Ωvv is not scalar in the multiple integrated regressors case. Therefore,

it requires a more general approach in order to show that the fully modified transformations

are asymptotically equivalent.

Corollary 6. Let the data be generated by (A.13) with Assumptions 1 and 7 in place.

Furthermore, let long-run covariance estimation be performed with Assumptions 3 and 4

in place. Then it holds for T →∞ that:

G−1(θ̂++ − θ)⇒
(∫ 1

0
J(r)J(r)′dr

)−1 ∫ 1

0
J(r)dBu·v(r).

Thus, the FM-LIN and the FM-CPR estimator have the same limiting distribution. Here,

G, J(r) and θ̂++ denote the multivariate extensions of the corresponding quantities defined

in the main text.

Proof of Corollary 6. Similar to the beginning of the proof of Theorem 2 the key is to show

that Ω−1
w̃w̃Ωw̃u = ep1 ⊗ Ω−1

vv Ωvu. Given that the term on the right-hand side, i. e. Ω−1
vv Ωvu,

is not a scalar term in the multiple integrated regressors case, but an (m × 1)-vector,

modified arguments are required. Therefore, we partition the matrix of interest into the

following blocks

Ωw̃w̃ :=



Ωv1v1 . . . Ωv1vm Ωv1v1B′1 . . . Ωv1vmB′m
...

. . .
...

...
. . .

...
Ωvmv1 . . . Ωvmvm Ωvmv1B′1 . . . ΩvmvmB′m

Ωv1v1B1 . . . Ωv1vmB1 Ωv1v1B̃11 . . . Ωv1vmB̃1m
...

. . .
...

...
. . .

...
Ωvmv1Bm . . . ΩvmvmBm Ωvmv1B̃m1 . . . ΩvmvmB̃mm


=

[
Ωvv Ω′B
ΩB ΩB̃

]
.

Using this representation we show that the term

Ωw̃u :=
[
Ω′vu,Ωv1uB′1, . . . ,ΩvmuB′m

]′
can be written as Ωw̃u = Ωw̃w̃

(
ep1 ⊗ Ω−1

vv Ωvu

)
. Considering the first m rows of Ωw̃u we

have [
Ωvv Ω′B

] Ω−1
vv Ωvu

0m(p−1)×1

 = Ωvu.
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Since for j = 1, . . . ,m (
(emj

′Ωvv)⊗ Bj
)

Ω−1
vv Ωvu = ΩvjuB′j ,

we get for the remaining m(p− 1) rows

[
ΩB ΩB̃

] Ω−1
vv Ωvu

0m(p−1)×1

 =
[
Ωv1uB′1, . . . ,ΩvmuB′m

]′
.

Thus, we have shown that Ω−1
w̃w̃Ωw̃u = ep1 ⊗ Ω−1

vv Ωvu, which implies

w̃′tΩ
−1
w̃w̃Ωw̃u = v′tΩ

−1
vv Ωvu,

i. e., the first-step transformations are asymptotically identical.

For the second-step transformations we obtain by exactly the same arguments

∆+
w̃u = ∆w̃u −∆w̃w̃Ω−1

w̃w̃Ωw̃u

= ∆w̃u −∆w̃vΩ
−1
vv Ωvu

=


∆vu

∆v1uB1

...

∆vmuBm

−


∆vuΩ−1
vv Ωvu

∆v1uΩ−1
vv ΩvuB1

...

∆vmuΩ−1
vv ΩvuBm

 ,

which coincides with the corresponding expression M for the FM-CPR estimator given in

the proof of Proposition 1 in Wagner and Hong (2016). �
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B.1. Proofs

Proof of Proposition 1. We examine the asymptotic behavior of the elements of the last

term in (2.14). We begin with the term T−1/2AIMS
ξ
[rT ] for T →∞,


T−1

∑[rT ]
t=1

√
TGDDt

T−1
∑[rT ]

t=1

√
TGXXt

T−1/2x[rT ]

⇒

∫ r

0 D(s)ds∫ r
0 Bvm(s)ds

Bv(r)

 = f(r),

here the convergence in the second row holds because of (2.8). This result leads to

(
T−2AIMS

ξ ′SξAIM

)−1
=

(
1

T

(
T−1/2AIMS

ξ ′
)(

T−1/2AIMS
ξ
))−1

⇒
(∫

f(s)f(s)′ds

)−1

.

(B.1)

For the second factor in (2.14) we use

T−1/2AIMS
ξ′

[rT ]T
−1/2Su[rT ] ⇒ f(r)Bu(r)

such that

T−2AIMS
ξ ′Su ⇒

∫
f(s)Bu(s)ds = ω

1/2
u·v

∫
f(s)wu·vds+

∫
f(s)Wv(s)

′Ω−1/2
vv Ωvuds,

(B.2)
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using Bu(r) = ω
1/2
u·vwu·v + Ωuv(Ω

−1/2
vv )′Wv(r). Multiplying (B.1) and the second term of

(B.2) leads to (∫
f(s)f(s)′ds

)−1 ∫
f(s)Wv(s)

′dsΩ−1/2
vv Ωvu

=

(∫
f(s)f(s)′ds

)−1 ∫
f(s)Bv(s)

′dsΩ−1
vv Ωvu

=


0

0

Ω−1
vv Ωvu

 ,

note that
(∫
f(s)f(s)′ds

)−1 ∫
f(s)Bv(s)

′ds = [0, 0, Im]′, since Bv(r) is the last block-

component in f(r). Similarly equation (2.15) follows using integration by parts. The

expression for the (conditional) covariance matrix (2.16) holds, because the quadratic

variation process of a standard Brownian motion wu·v is given by [wu·v, wu·v]s = s. �

Proof of Corollary 3. In case of full design simply rewrite f(r) as

f(r) =


∫ r

0 D(s)ds∫ r
0 Bv(s)ds

Bv(r)

 =


∫ r

0 D(s)ds

F (Ωvv)
∫ r

0 Wv(s)ds

Ω
1/2
vv Wv(r)

 = Πg(r).

�

Proof of Lemma 2. For part (i) we can use the results already established in Propo-

sition 1 and Corollary 3, so that we only have to focus on the additional regressors

zt = [zDt
′, zS

X

t
′, zxt

′]′. For the limit of zDt , z
x
t and the regressors of zS

X

t
′, which do not contain

powers, we can one-to-one follow the arguments of Vogelsang and Wagner (2014a) given

in the proof of Lemma 1. For the limit of the non-linear parts we define S
xkj
t :=

∑t
i=1 x

k
ji

for k = 1, . . . , p and zS
xkj

t as the corresponding part in zt, then scaled by T−1/2AIM we get

T−5/2T−(k+1)/2zS
xkj

[rT ] = T−5/2T−(k+1)/2[rT ]

T∑
t=1

S
xkj
t − T−5/2T−(k+1)/2

[rT ]∑
t=1

t∑
l=1

S
xkj
l

=
[rT ]

T

1

T

T∑
t=1

T−(k+2)/2S
xkj
t −

1

T

[rT ]∑
t=1

1

T

t∑
l=1

S
xkj
l

⇒ r

∫ 1

0

(∫ m

0
Bk
vj (s)ds

)
dm−

∫ r

0

(∫ m

0

(∫ n

0
Bk
vj (s)ds

)
dn

)
dm.
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Combining the single parts leads to the asymptotic behavior in (i). Note that the adjusted

residuals S̃u∗t defined in (2.24) coincide with the OLS residuals from the regression

Syt = SDt
′δ∗ + SXt

′β∗ + x′tγ
∗ + z′tκ

∗ + Sut , (B.3)

which follows immediately using standard projection arguments.

For part (ii) we consider the OLS residuals from (B.3),

S̃u∗t = Syt − S
ξ∗
t
′θ̃∗ = Sut − x′tΩ−1

vv Ωvu − Sξ∗t ′
(
θ̃∗ − θ∗

)
,

with Sξ∗t := [Sξt
′, z′t]

′. Defining ξ∗t := [ξ′t, z
′
t]
′ we get for the scaled partial sum of the first

differences

T−1/2
[rT ]∑
t=2

∆S̃u∗
t

= T−1/2
[rT ]∑
t=2

ut −∆x′[rT ]Ω
−1
vv Ωvu − T−1/2

[rT ]∑
t=2

ξ∗t
′

(
AIM 0

0 T−2AIM

)(
AIM 0

0 T−2AIM

)−1 (
θ̃∗ − θ∗

)
⇒ ω

1/2
u·v

(∫ r

0

dwu·v(s)− h(r)′
(∫ 1

0

h(s)h(s)′ds

)−1 ∫ 1

0

[H(1)−H(s)]dwu·v(s)

)
= ω

1/2
u·v P̃

∗(r)

Finally, we have to show independence of P̃ ∗(r) and the limiting distribution in (2.15)

conditional on Wv(r) and since both processes are Gaussian, it suffices to show condi-

tional uncorrelation between P̃ ∗(r) and the relevant quantity in (2.15), namely
∫

[G(1)−
G(s)]dwu·v(s).

First note that integration by parts leads to∫ 1

0
[H(1)−H(s)][G(1)−G(s)]′ds = [H(1)−H(s)]h2(s)′|1

0︸ ︷︷ ︸
=0

+

∫ 1

0
h(s)h2(s)′ds,

where h2(·) is the second block of h(·). Now it follows that

(∫ 1

0
h(s)h(s)′ds

)−1 ∫ 1

0
[H(1)−H(s)][G(1)−G(s)]′ds =

(
0

I

)
.
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Using the previous two results and again the fact that [wu·v, wu·v]s = s, leads to

Cov

(
P̃ ∗(r),

∫
[G(1)−G(s)]dwu·v(s)

)
=

∫ r

0
[G(1)−G(s)]′ds− h(r)′

(∫ 1

0
h(s)h(s)′ds

)−1 ∫ 1

0
[H(1)−H(s)][G(1)−G(s)]′ds

=

∫ r

0
[G(1)−G(s)]′ds−

∫ r

0
[G(1)−G(s)]′ds

= 0.

�

Proof of Proposition 2. First, we have to make sure using standard calculations that the

expression given in (2.22) (up to ω̌u·v) converges to (2.16) (up to ωu·v).

The assumption given in (2.21) and the result from Proposition 1 imply that under the

null hypothesis

W̃ ∗ ⇒ (R∗Φ(VIM )′
(
Qb(P̃ ∗, P̃ ∗)R

∗VIMR
∗′
)−1

(R∗Φ(VIM )) ∼
χ2
q

Qb(P̃ ∗, P̃ ∗)
,

where it follows from Vogelsang and Wagner (2014a) Theorem 1 that the fixed-b limit

of ω̃∗u·v is given by Qb(P̃ ∗, P̃ ∗) and therefore Ṽ ∗ ⇒ Qb(P̃ ∗, P̃ ∗)VIM . Independence of χ2
q

and Qb(P̃ ∗, P̃ ∗) conditional on Wv(r) follows from Lemma 2. Given the fact that the

numerator is χ2
q-distributed and independent of Wv(r), this implies also unconditional

independence. �

Proof of Proposition 3. Using the result from Corollary 4 we obtain under the null hy-

pothesis

CTIM =
1

T 2ω̂u·v

T∑
t=2

(
t∑
i=2

∆S̃ui

)2

=
1

T ω̂u·v

T∑
t=2

(
1√
T

t∑
i=2

∆S̃ui

)2

⇒ 1

ωu·v

∫ 1

0

(
ω

1/2
u·v P̃ (r)

)2
dr

=

∫ 1

0

(
P̃ (r)

)2
dr.

�
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B.2. EKC Analysis: Estimation Results and Figures

PP PP(fb)–One Step PP(fb)–Two Step

Australia -1.280 -1.304 -1.378

Austria -1.908 -1.813 -1.878

Belgium -1.419 -1.554 -1.587

Canada -2.496 -3.057 -3.056

Denmark -2.293 -2.270 -2.273

Finland -2.321 -2.422 -2.412

France -1.958 -2.204 -2.214

Germany -2.356 -2.582 -2.598

Italy -1.665 -1.825 -1.835

Japan -1.719 -1.880 -1.893

Netherlands -2.724 -2.310 -2.334

New Zealand -2.606 -2.686 -2.688

Norway -2.142 -2.117 -2.179

Portugal -1.872 -1.879 -1.869

Spain -1.005 -1.192 -1.235

Sweden -2.339 -2.401 -2.407

Switzerland -2.807 -2.449 -2.481

United Kingdom -1.567 -1.418 -1.625

United States -2.981 -2.911 -2.915

Table B.1.: Standard Phillips-Perron unit-root test (PP) and fixed-b Phillips-Perron
unit-root test (PP(fb)) of Vogelsang and Wagner (2013) results with one-step and two-
step detrending. Intercept and linear trend for per capita GDP, Bartlett kernel, bandwidth
choice according to Newey and West (1994). Per capita GDP is measured in (international)
GK-$. All variables are transformed to logarithms. Italic entries denote rejection of the
null hypothesis at the 10% level and bold entries indicate rejection at the 5% level.
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Quadratic Cubic

CTIM CTFM Pû CTIM CTFM Pû

Australia 0.061 0.108 11.330 0.052 0.107 11.404

Austria 0.035 0.056 55.997 0.024 0.042 56.830

Belgium 0.037 0.062 50.269 0.036 0.066 54.423

Canada 0.059 0.145 12.420 0.029 0.057 26.109

Denmark 0.022 0.052 40.613 0.022 0.051 40.619

Finland 0.029 0.050 75.016 0.026 0.035 83.088

France 0.038 0.066 28.847 0.032 0.061 28.916

Germany 0.056 0.111 68.343 0.039 0.090 68.549

Italy 0.055 0.146 34.141 0.033 0.095 51.661

Japan 0.042 0.152 8.127 0.022 0.066 12.222

Netherlands 0.040 0.074 96.172 0.040 0.075 96.183

New Zealand 0.043 0.115 13.337 0.029 0.100 14.071

Norway 0.059 0.095 20.644 0.052 0.093 20.967

Portugal 0.032 0.111 19.959 0.034 0.113 20.357

Spain 0.047 0.086 42.578 0.047 0.082 42.790

Sweden 0.044 0.085 28.679 0.035 0.085 29.661

Switzerland 0.026 0.084 85.979 0.032 0.057 105.175

UK 0.051 0.073 97.169 0.049 0.070 98.034

US 0.089 0.156 13.920 0.052 0.079 27.017

Critical values (α = 10%) 0.045 0.086 45.237 0.039 0.081 47.925

Critical values (α = 5%) 0.054 0.106 52.952 0.046 0.101 55.926

Table B.2.: Results for the cointegration tests using both the IM-CPR and FM-CPR
residuals as well as the OLS residual based Pû non-cointegration test for the quadratic
and cubic specification in conjunction with the Newey and West (1994) data dependent
bandwidth rule and the Bartlett kernel. Italic numbers denote rejection of the null hy-
pothesis at the 10% level and bold numbers indicate rejection at the 5% level.
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δ̂ β̂1 β̂2 TP δ̂ β̂1 β̂2 TP

Austria Belgium

OLS -0.014 6.112 -0.277 61982.813 -0.005 11.772 -0.619 13460.033

(t-values) -2.461 2.344 -1.990 -3.815 12.121 -12.194

D-CPR -0.015 6.263 -0.284 61786.430 0.000 8.787 -0.471 11161.979

(t-values) -3.050 2.203 -1.821 0.197 6.597 -6.757

FM-CPR -0.017 6.247 -0.277 78058.655 -0.004 11.358 -0.599 13142.216

(t-values) -3.681 2.488 -2.001 -2.694 10.000 -10.038

IM-CPR -0.022 9.316 -0.440 39752.329 -0.002 9.380 -0.499 12161.303

(t-values) -3.922 2.714 -2.355 -0.766 6.242 -6.352

(fixed-b t-values) -4.692 3.247 -2.818 -1.497 12.200 -12.415

Finland Netherlands

OLS -0.033 16.502 -0.780 39286.848 0.002 8.970 -0.456 18503.069

(t-values) -2.896 10.638 -11.218 0.981 8.726 -8.257

D-CPR -0.021 13.779 -0.654 37831.903 -0.003 10.277 -0.515 21471.698

(t-values) -1.646 4.611 -4.375 -1.288 7.367 -7.113

FM-CPR -0.029 15.610 -0.737 39523.015 0.001 9.437 -0.481 18280.060

(t-values) -3.231 9.271 -8.717 0.605 8.305 -7.949

IM-CPR -0.021 14.004 -0.662 39213.221 -0.001 9.156 -0.459 21560.316

(t-values) -1.758 6.320 -6.099 -0.468 5.886 -5.653

(fixed-b t-values) -2.631 9.459 -9.127 -0.705 8.860 -8.509

Switzerland UK

OLS -0.020 7.685 -0.283 7.9×105 -0.008 8.419 -0.436 15656.196

(t-values) -2.978 5.401 -3.321 -3.744 6.235 -6.389

D-CPR -0.022 7.676 -0.276 1.1×106 -0.007 7.655 -0.397 15492.766

(t-values) -5.570 6.152 -4.041 -2.282 4.754 -5.005

FM-CPR -0.024 7.755 -0.273 1.5×106 -0.008 8.657 -0.446 16286.963

(t-values) -6.229 6.122 -3.910 -3.454 6.624 -6.889

IM-CPR -0.025 10.108 -0.393 3.8×105 -0.012 10.288 -0.522 19188.954

(t-values) -5.562 6.483 -4.706 -3.347 5.076 -5.246

(fixed-b t-values) -7.279 8.484 -6.159 -4.847 7.351 -7.597

Table B.3.: Estimation results for equation (2.35) with Bartlett kernel and data de-
pendent bandwidth rule according to Newey and West (1994). The turning points are
computed as exp(−β̂1/(2β̂2)). Bold t-values indicate significance at the 5% level and
italic t-values significance at the 10% level.
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δ̂ β̂1 β̂2 β̂3 Turning Points δ̂ β̂1 β̂2 β̂3 Turning Points

Austria Belgium

OLS -0.015 39.500 -4.087 0.144 -0.007 55.533 -5.454 0.178 15389.624 48471.738

(t-values) -2.292 0.915 -0.856 0.821 -3.864 2.620 -2.350 2.099

D-CPR -0.015 42.643 -4.412 0.156 -0.001 21.116 -1.823 0.049 11446.615 4.1×106

(t-values) -3.259 0.966 -0.882 0.825 -0.223 0.762 -0.600 0.445

FM-CPR -0.018 69.209 -7.450 0.271 -0.007 59.293 -5.873 0.194 15693.314 39002.980

(t-values) -4.114 1.684 -1.591 1.531 -4.619 3.257 -2.925 2.620

IM-CPR -0.027 119.121 -12.757 0.460 -0.006 74.792 -7.623 0.259 16119.171 20691.362

(t-values) -4.525 2.043 -1.937 1.857 -2.578 2.705 -2.516 2.337

(fixed-b t-values) -6.108 2.758 -2.615 2.507 -3.111 3.264 -3.036 2.820

Finland Germany

OLS -0.051 71.950 -7.144 0.245 0.001 18.965 -1.575 0.039 10044.038 3.5×107

(t-values) -5.386 4.238 -3.692 3.314 0.302 0.955 -0.701 0.468

D-CPR -0.031 33.232 -2.848 0.084 -0.010 87.088 -9.289 0.332

(t-values) -1.193 0.762 -0.580 0.447 -1.797 2.383 -2.232 2.097

FM-CPR -0.057 83.931 -8.513 0.298 -0.002 40.166 -3.986 0.131 11939.460 52774.774

(t-values) -5.795 4.034 -3.571 3.247 -0.794 1.571 -1.365 1.181

IM-CPR -0.067 104.755 -10.884 0.389 -0.013 74.502 -7.692 0.266

(t-values) -4.470 3.834 -3.507 3.273 -2.838 2.225 -2.023 1.848

(fixed-b t-values) -5.789 4.965 -4.541 4.238 -5.347 4.192 -3.812 3.480

Netherlands Switzerland

OLS 0.002 7.422 -0.285 -0.006 0.000 18325.835 -0.022 -87.695 10.309 -0.390 1320.349 33655.189

(t-values) 1.084 0.353 -0.122 -0.074 -3.566 -4.448 4.754 -4.949

D-CPR -0.002 -8.030 1.490 -0.073 40.653 19335.092 -0.024 -95.129 11.136 -0.420 1389.356 33605.692

(t-values) -0.822 -0.342 0.579 -0.780 -7.215 -3.825 4.036 -4.137

FM-CPR 0.001 7.504 -0.267 -0.008 0.000 18065.136 -0.026 -93.449 10.957 -0.414 1337.358 34951.823

(t-values) 0.621 0.330 -0.106 -0.085 -7.925 -3.750 3.965 -4.066

IM-CPR -0.002 23.099 -1.982 0.056 26774.200 8.0×105 -0.026 -23.636 3.328 -0.136 187.548 62624.781

(t-values) -0.742 0.674 -0.525 0.401 -6.892 -0.682 0.870 -0.971

(fixed-b t-values) -1.500 1.362 -1.061 0.810 -8.538 -0.845 1.077 -1.203

UK

OLS -0.008 21.422 -1.851 0.051 16869.623 1.6×106

(t-values) -3.135 1.091 -0.882 0.685

D-CPR -0.008 17.580 -1.470 0.039 16607.226 5.6×106

(t-values) -2.154 0.736 -0.570 0.416

FM-CPR -0.010 27.825 -2.521 0.075 19026.062 2.8×105

(t-values) -3.617 1.308 -1.091 0.894

IM-CPR -0.015 34.271 -3.077 0.091 25969.237 2.2×105

(t-values) -3.632 1.305 -1.086 0.892

(fixed-b t-values) -5.378 1.932 -1.608 1.320

Table B.4.: Estimation results for equation (2.36) with Bartlett kernel and data de-
pendent bandwidth rule according to Newey and West (1994). The turning points are

computed as exp

(
− β̂2

3β̂3
±
√

β̂2
2−3β̂1β̂3

9β̂2
3

)
in case that

β̂2
2−3β̂1β̂3

9β̂2
3

≥ 0. Bold t-values indicate

significance at the 5% level and italic t-values significance at the 10% level.
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Figure B.1.: Actual values (solid) and fitted values (dashed) of log per capita CO2

emissions estimating the quadratic EKC regression equation with IM-CPR.
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Figure B.2.: EKC estimation for CO2 using coefficient estimates obtained by IM-CPR
in the quadratic EKC regression equation.
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Figure B.3.: Actual values (solid) and fitted values (dashed) of log per capita CO2

emissions estimating the cubic EKC regression equation with IM-CPR.
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Figure B.4.: EKC estimation for CO2 using coefficient estimates obtained by IM-CPR
in the cubic EKC regression equation.
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B.3. Critical Values for the CTIM Test

0.005 0.010 0.025 0.050 0.100 0.500 0.900 0.950 0.975 0.990 0.995

m = 1, p = 1
0.0167 0.0187 0.0221 0.0259 0.0316 0.0726 0.2435 0.3767 0.5472 0.8365 1.0940

c 0.0128 0.0141 0.0164 0.0187 0.0219 0.0410 0.0871 0.1102 0.1371 0.1784 0.2156
c,t 0.0108 0.0118 0.0135 0.0151 0.0174 0.0300 0.0563 0.0684 0.0814 0.0988 0.1135

m = 1, p = 2
0.0136 0.0150 0.0175 0.0200 0.0238 0.0482 0.1202 0.1642 0.2185 0.3108 0.3989

c 0.0112 0.0122 0.0140 0.0158 0.0182 0.0327 0.0662 0.0828 0.1016 0.1314 0.1569
c,t 0.0096 0.0104 0.0118 0.0132 0.0150 0.0249 0.0450 0.0540 0.0635 0.0766 0.0875

m = 1, p = 3
0.0118 0.0129 0.0149 0.0168 0.0197 0.0370 0.0819 0.1071 0.1360 0.1840 0.2250

c 0.0101 0.0110 0.0125 0.0140 0.0161 0.0280 0.0550 0.0684 0.0834 0.1064 0.1269
c,t 0.0088 0.0095 0.0107 0.0119 0.0134 0.0218 0.0386 0.0460 0.0538 0.0654 0.0741

m = 1, p = 4
0.0106 0.0115 0.0131 0.0148 0.0171 0.0306 0.0632 0.0800 0.0992 0.1312 0.1570

c 0.0093 0.0101 0.0114 0.0127 0.0145 0.0248 0.0477 0.0589 0.0708 0.0889 0.1059
c,t 0.0082 0.0088 0.0099 0.0109 0.0123 0.0197 0.0343 0.0409 0.0475 0.0574 0.0650

m = 2, p = 1
0.0122 0.0133 0.0154 0.0175 0.0204 0.0386 0.0897 0.1217 0.1645 0.2381 0.3085

c 0.0102 0.0112 0.0126 0.0141 0.0162 0.0275 0.0516 0.0627 0.0747 0.0926 0.1088
c,t 0.0091 0.0098 0.0109 0.0121 0.0137 0.0223 0.0390 0.0467 0.0545 0.0650 0.0742

m = 2, p = 2
0.0105 0.0115 0.0131 0.0148 0.0172 0.0306 0.0637 0.0814 0.1028 0.1396 0.1724

c 0.0092 0.0099 0.0112 0.0124 0.0141 0.0233 0.0419 0.0505 0.0597 0.0729 0.0846
c,t 0.0082 0.0088 0.0098 0.0108 0.0122 0.0193 0.0328 0.0387 0.0449 0.0530 0.0596

m = 2, p = 3
0.0094 0.0103 0.0116 0.0130 0.0149 0.0255 0.0493 0.0612 0.0749 0.0966 0.1167

c 0.0084 0.0090 0.0101 0.0112 0.0127 0.0206 0.0362 0.0433 0.0510 0.0612 0.0706
c,t 0.0076 0.0081 0.0090 0.0099 0.0111 0.0173 0.0288 0.0337 0.0390 0.0461 0.0515

m = 2, p = 4
0.0086 0.0093 0.0105 0.0117 0.0134 0.0222 0.0411 0.0502 0.0603 0.0757 0.0900

c 0.0078 0.0084 0.0094 0.0104 0.0117 0.0186 0.0323 0.0384 0.0451 0.0546 0.0620
c,t 0.0071 0.0076 0.0084 0.0092 0.0103 0.0158 0.0260 0.0303 0.0348 0.0413 0.0464

m = 3, p = 1
0.0097 0.0106 0.0120 0.0135 0.0154 0.0263 0.0513 0.0644 0.0791 0.1048 0.1291

c 0.0085 0.0092 0.0103 0.0115 0.0129 0.0208 0.0359 0.0426 0.0498 0.0599 0.0685
c,t 0.0077 0.0083 0.0092 0.0102 0.0114 0.0177 0.0291 0.0341 0.0393 0.0467 0.0526

m = 3, p = 2
0.0089 0.0095 0.0107 0.0119 0.0135 0.0222 0.0409 0.0501 0.0608 0.0768 0.0926

c 0.0078 0.0084 0.0094 0.0103 0.0116 0.0181 0.0303 0.0358 0.0414 0.0499 0.0565
c,t 0.0071 0.0076 0.0085 0.0093 0.0103 0.0157 0.0252 0.0292 0.0335 0.0395 0.0444

m = 3, p = 3
0.0081 0.0087 0.0097 0.0107 0.0121 0.0194 0.0343 0.0412 0.0491 0.0603 0.0711

c 0.0073 0.0078 0.0086 0.0095 0.0106 0.0163 0.0269 0.0316 0.0363 0.0433 0.0491
c,t 0.0067 0.0071 0.0079 0.0086 0.0095 0.0142 0.0226 0.0261 0.0298 0.0348 0.0390

m = 3, p = 4
0.0075 0.0080 0.0090 0.0099 0.0111 0.0174 0.0299 0.0355 0.0415 0.0502 0.0579

c 0.0069 0.0073 0.0081 0.0089 0.0099 0.0150 0.0244 0.0286 0.0328 0.0389 0.0438
c,t 0.0063 0.0067 0.0074 0.0081 0.0089 0.0132 0.0207 0.0238 0.0271 0.0317 0.0352

m = 4, p = 1
0.0082 0.0089 0.0100 0.0110 0.0125 0.0200 0.0353 0.0424 0.0503 0.0627 0.0742

c 0.0074 0.0080 0.0088 0.0097 0.0108 0.0166 0.0270 0.0315 0.0362 0.0429 0.0480
c,t 0.0068 0.0073 0.0081 0.0088 0.0098 0.0146 0.0230 0.0265 0.0301 0.0353 0.0394

m = 4, p = 2
0.0076 0.0081 0.0091 0.0100 0.0112 0.0175 0.0297 0.0352 0.0411 0.0506 0.0587

c 0.0069 0.0074 0.0081 0.0089 0.0099 0.0148 0.0236 0.0273 0.0310 0.0366 0.0409
c,t 0.0064 0.0068 0.0075 0.0081 0.0090 0.0132 0.0204 0.0233 0.0264 0.0305 0.0338

m = 4, p = 3
0.0070 0.0075 0.0084 0.0092 0.0102 0.0156 0.0259 0.0304 0.0353 0.0424 0.0486

c 0.0065 0.0069 0.0076 0.0083 0.0092 0.0135 0.0212 0.0245 0.0278 0.0325 0.0363
c,t 0.0060 0.0064 0.0070 0.0076 0.0084 0.0121 0.0185 0.0211 0.0238 0.0276 0.0303

m = 4, p = 4
0.0066 0.0071 0.0078 0.0085 0.0095 0.0143 0.0231 0.0270 0.0310 0.0366 0.0417

c 0.0061 0.0065 0.0072 0.0078 0.0086 0.0126 0.0195 0.0223 0.0254 0.0295 0.0328
c,t 0.0057 0.0060 0.0066 0.0072 0.0079 0.0113 0.0171 0.0194 0.0219 0.0252 0.0277

Table B.5.: Critical values for the IM-OLS residual based CT test for the case of only
one regressor entering the CPR with powers. The symbols in the first column indicate the
deterministic component: none (empty), intercept only (c) and intercept and linear trend
(c, t), m indicates the number of integrated regressors and p indicates the highest power
included of the regressor entering with powers.
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B.4. Additional Simulation Results

ρ1 = ρ2 OLS D-CPR FM-CPR IM-CPR
And91 NW NWT

Bias (×1000)

T=100

0.0 0.084 0.845 0.098 0.096 0.097 0.022
0.3 0.087 0.983 0.129 0.113 0.128 0.044
0.6 0.097 1.294 0.207 0.188 0.180 0.110
0.9 0.269 1.894 0.474 0.424 0.368 0.346

T=200

0.0 -0.002 -0.008 0.000 -0.000 -0.000 0.072
0.3 0.004 -0.010 0.004 0.003 0.003 0.102
0.6 0.035 0.000 0.027 0.028 0.032 0.178
0.9 0.272 0.222 0.269 0.282 0.281 0.626

T=500

0.0 0.004 0.001 0.005 0.005 0.005 0.001
0.3 0.004 -0.001 0.006 0.006 0.006 0.001
0.6 0.006 -0.002 0.010 0.010 0.010 0.001
0.9 0.016 0.008 0.031 0.030 0.024 -0.001

T=1000

0.0 -0.004 -0.004 -0.004 -0.004 -0.004 -0.002
0.3 -0.006 -0.005 -0.005 -0.005 -0.005 -0.002
0.6 -0.011 -0.009 -0.009 -0.009 -0.009 -0.004
0.9 -0.039 -0.030 -0.030 -0.031 -0.034 -0.010

RMSE

T=100

0.0 0.006 0.012 0.006 0.006 0.006 0.010
0.3 0.007 0.015 0.008 0.008 0.008 0.014
0.6 0.012 0.021 0.012 0.012 0.012 0.023
0.9 0.027 0.037 0.027 0.026 0.026 0.069

T=200

0.0 0.002 0.003 0.002 0.002 0.002 0.003
0.3 0.003 0.004 0.003 0.003 0.003 0.005
0.6 0.004 0.006 0.004 0.004 0.004 0.008
0.9 0.013 0.014 0.012 0.012 0.012 0.028

T=500

0.0 0.000 0.001 0.000 0.000 0.000 0.001
0.3 0.001 0.001 0.001 0.001 0.001 0.001
0.6 0.001 0.001 0.001 0.001 0.001 0.002
0.9 0.005 0.004 0.004 0.004 0.004 0.009

T=1000

0.0 0.000 0.000 0.000 0.000 0.000 0.000
0.3 0.000 0.000 0.000 0.000 0.000 0.000
0.6 0.000 0.000 0.000 0.000 0.000 0.001
0.9 0.002 0.002 0.002 0.002 0.002 0.003

Table B.6.: Finite sample bias (×1000) and RMSE for coefficient β2, Bartlett kernel.
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ρ1 = ρ2 OLS D-CPR FM-CPR IM-CPR(O) IM-CPR(Fb)

Data-Dep b=0.1 b=0.2

T=100

0.0 0.057 0.152 0.071 0.093 0.049 0.054 0.069

0.3 0.142 0.190 0.101 0.103 0.066 0.058 0.083

0.6 0.278 0.237 0.134 0.131 0.130 0.075 0.096

0.9 0.505 0.325 0.194 0.301 0.390 0.242 0.214

T=200

0.0 0.053 0.087 0.060 0.069 0.048 0.050 0.054

0.3 0.137 0.114 0.079 0.077 0.060 0.051 0.055

0.6 0.268 0.132 0.097 0.092 0.099 0.055 0.063

0.9 0.547 0.195 0.153 0.191 0.411 0.138 0.124

T=500

0.0 0.048 0.061 0.052 0.063 0.055 0.054 0.057

0.3 0.139 0.075 0.064 0.067 0.057 0.052 0.057

0.6 0.303 0.084 0.077 0.080 0.068 0.054 0.055

0.9 0.602 0.124 0.132 0.113 0.188 0.067 0.070

T=1000

0.0 0.054 0.064 0.057 0.062 0.054 0.054 0.054

0.3 0.143 0.073 0.066 0.067 0.054 0.054 0.054

0.6 0.314 0.082 0.077 0.072 0.057 0.055 0.054

0.9 0.632 0.103 0.118 0.085 0.100 0.055 0.062

Table B.7.: Empirical null rejection probabilities for H0 : β2 = −0.3, Andrews (1991)
bandwidth, QS kernel, 0.05 level.
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Figure B.5.: Empirical null rejections, IM-CPR(Fb) inference: t-test for β2, An-
drews (1991) bandwidth, QS kernel, ρ1 = ρ2 = 0.3 (left panel), ρ1 = ρ2 = 0.9 (right
panel).
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Figure B.6.: Empirical null rejections, IM-CPR(Fb) inference: Wald-test for β1 and β2,
Andrews (1991) bandwidth, QS kernel, ρ1 = ρ2 = 0.3 (left panel), ρ1 = ρ2 = 0.9 (right
panel).
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Figure B.7.: Size-corrected Power, t-test for β1, T=100, ρ1 = ρ2 = 0.6, Bartlett kernel,
ρ1 = ρ2 = 0.6 (left panel), ρ1 = ρ2 = 0.9 (right panel).
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Figure B.8.: Size-corrected Power, t-test for β2, ρ1 = ρ2 = 0.6, Bartlett kernel, T = 100
(left panel), T = 200 (right panel).
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Figure B.9.: Size-corrected Power, Wald-test, ρ1 = ρ2 = 0.6, Bartlett kernel, T = 100
(left panel), T = 200 (right panel).
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Figure B.10.: Size-corrected Power, Wald-test, ρ1 = ρ2 = 0.6, Andrews (1991) band-
width, Bartlett kernel, T = 100 (left panel), T = 200 (right panel).
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C. Appendix to Chapter 3

C.1. More Details on Pooling

Details for Pooling Cases (P), (S) and (T)

We consider the three cases of pooling mentioned in the main text and start with defining

the quantities corresponding to the three cases. First, we define the three restriction

matrices and then we present the correspondingly pooled estimators and their asymptotic

distributions.

The Restriction Matrices

H (P)

0 :


δ1

β1,1

β2,1

 =


δ2

β1,2

β2,2

 = · · · =


δN

β1,N

β2,N

 (C.1)

H (S)

0 :

[
β1,1

β2,1

]
=

[
β1,2

β2,2

]
= · · · =

[
β1,N

β2,N

]
(C.2)

H (T)

0 : δ1 = δ2 = · · · = δN . (C.3)
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The corresponding restriction matrices for the Wald-type test are given by:

R(P) =


(03×1, I3) (03×1,−I3) 03×4 . . . 03×4

... 03×4 (03×1,−I3)
. . .

...
...

...
. . .

. . . 03×4

(03×1, I3) 03×4 . . . 03×4 (03×1,−I3)

 ∈ R3(N−1)×4N , r = 03(N−1)×1

R(S) =


(02×2, I2) (02×2,−I2) 02×4 . . . 02×4

... 02×4 (02×2,−I2)
. . .

...
...

...
. . . 02×4

(02×2, I2) 02×4 . . . 02×4 (02×2,−I2)

 ∈ R2(N−1)×4N , r = 02(N−1)×1

R(T) =


(0, 1, 01×2) (0,−1, 01×2) 01×4 . . . 01×4

... 01×4 (0,−1, 01×2)
. . .

...
...

...
. . . 01×4

(0, 1, 01×2) 01×4 . . . 01×4 (0,−1, 01×2)

 ∈ R(N−1)×4N , r = 0(N−1)×1

Pooled Estimation

In case the respective null hypotheses are not rejected, correspondingly pooled estimation

is the next step to reap the possible efficiency gains from reducing the number of param-

eters to be estimated. This basically entails a corresponding redefinition of the regressor

matrices, the parameter vectors; and for the asymptotic analysis the weighting matrices

and limit processes. We discuss the three given cases in turn and start by defining the

necessary adapted quantities:
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(P) :

Z(P) :=


Z(P) ′

1

Z(P) ′
2
...

Z(P) ′
T

 , Z(P)

t :=

[
IN

X(P)

t

]
θ(P) :=



c1

...

cN

δ

β1

β2


,

X(P)

t :=


t t . . . t

x1,t x2,t . . . xN,t

x2
1,t x2

2,t . . . x2
N,t


G(P) := diag

(
T−1/2 · IN , T−3/2, T−1, T−3/2

)

J (P)(r) :=

[
IN

B(P)

N (r)

]
, B(P)

N (r) :=


r . . . r

Bv1(r) . . . BvN (r)

B2
v1

(r) . . . B2
vN

(r)



(S) :

Z(S) :=


Z(S) ′

1

Z(S) ′
2
...

Z(S) ′
T

 , Z(S)

t :=



D1,t 02×1 . . . 02×1

02×1 D2,t
. . .

...
...

. . .
. . . 02×1

02×1 . . . 02×1 DN,t

x1,t x2,t . . . xN,t

x2
1,t x2

2,t . . . x2
N,t


, θ(S) :=



c1

δ1

...

cN

δN

β1

β2


,

A(S)∗
i :=

(
∆̂+
vu

)i,i  T

2
T∑
t=1

xi,t

 , Ã(S)∗
i :=

(
∆̂+
vu

)i,. (
Ω̂−1
u.v

).,i  T

2
T∑
t=1

xi,t


G(S) := diag

(
IN ⊗G(S)

D , G(S)

X

)
, G(S)

D := diag
(
T−1/2, T−3/2

)
, G(S)

X := diag
(
T−1, T−3/2

)
J (S)(r) :=

[
D(S)

N (r)

B(S)

N (r)

]
, D(S)

N (r) := IN ⊗

[
1

r

]
, B(S)

N (r) :=

[
Bv1(r) . . . BvN (r)

B2
v1

(r) . . . B2
vN

(r)

]
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(T) :

Z(T) :=


Z(T) ′

1

Z(T) ′
2
...

Z(T) ′
T

 , Z(T)

t :=



X(T)

1,t 04×1 . . . 04×1

04×1 X(T)

2,t

. . .
...

...
. . .

. . . 04×1

04×1 . . . 04×1 X(T)

N,t

t t . . . t


, θ(T) :=



c1

β1,1

β2,1

...

cN

β1,N

β2,N

δ


,

X(T)

i,t :=


1

xi,t

x2
i,t

 , A(T)∗ :=


A(T)∗

1

A(T)∗
2
...

A(T)∗
N

 , Ã(T)∗ :=


Ã(T)∗

1

Ã(T)∗
2
...

Ã(T)∗
N

 ,

A(T)∗
i :=

(
∆̂+
vu

)i,i


0

T

2
T∑
t=1

xi,t

 , Ã(T)∗
i :=

(
∆̂+
vu

)i,. (
Ω̂−1
u.v

).,i


0

T

2
T∑
t=1

xi,t


G(T) := diag

(
IN ⊗G(T)

1 , T−3/2
)
, G(T)

1 := diag
(
T−1/2, T−1, T−3/2

)

J (T)(r) :=


B(T)
v1 (r)

. . .

B(T)
vN (r)

r . . . r

 , B(T)
vi (r) :=


1

Bvi(r)

B2
vi(r)
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Corollary 7 (Based on Hong and Wagner 2014, Corollaries 1 and 2). Let yt be generated

by (3.1) with the assumptions listed in place and where the pooling restrictions considered

in either (P ), (S) or (T ) are valid. Furthermore, assume again that long run variance

estimation is performed consistently. Then, for the three considered cases, the correspond-

ingly pooled FM-SOLS and FM-SUR estimators are, using the quantities defined above,

given by:

θ̂(P) :=
(
Z(P) ′Z(P)

)−1

Z(P) ′y+ −

 0N×1

N∑
i=1

A∗i


 , (C.4)

θ̃(P) :=
(
Z(P) ′

(
IT ⊗ Ω̂−1

u.v

)
Z(P)

)−1

Z(P) ′
(
IT ⊗ Ω̂−1

u.v

)
y+ −

 0N×1

N∑
i=1

Ã∗i


 , (C.5)

θ̂(S) :=
(
Z(S) ′Z(S)

)−1

Z(S) ′y+ −

 02N×1

N∑
i=1

A(S)∗
i


 , (C.6)

θ̃(S) :=
(
Z(S) ′

(
IT ⊗ Ω̂−1

u.v

)
Z(S)

)−1

Z(S) ′
(
IT ⊗ Ω̂−1

u.v

)
y+ −

 02N×1

N∑
i=1

Ã(S)∗
i


 , (C.7)

θ̂(T) :=
(
Z(T) ′Z(T)

)−1

(
Z(T) ′y+ −

[
A(T)∗

0

])
, (C.8)

θ̃(T) :=
(
Z(T) ′

(
IT ⊗ Ω̂−1

u.v

)
Z(T)

)−1
(
Z(T) ′

(
IT ⊗ Ω̂−1

u.v

)
y+ −

[
Ã(T)∗

0

])
. (C.9)

For T →∞ the estimators are consistent with the following limiting distributions:

(
G(P)

)−1
(
θ̂(P) − θ(P)

)
⇒

(∫
J (P)J (P) ′

)−1 ∫
J (P)dBu.v, (C.10)

(
G(P)

)−1
(
θ̃(P) − θ(P)

)
⇒

(∫
J (P)Ω−1

u.vJ
(P) ′
)−1 ∫

J (P)Ω−1
u.vdBu.v, (C.11)

(
G(S)

)−1
(
θ̂(S) − θ(S)

)
⇒

(∫
J (S)J (S) ′

)−1 ∫
J (S)dBu.v, (C.12)

(
G(S)

)−1
(
θ̃(S) − θ(S)

)
⇒

(∫
J (S)Ω−1

u.vJ
(S) ′
)−1 ∫

J (S)Ω−1
u.vdBu.v, (C.13)

(
G(T)

)−1
(
θ̂(T) − θ(T)

)
⇒

(∫
J (T)J (T) ′

)−1 ∫
J (T)dBu.v, (C.14)

(
G(T)

)−1
(
θ̃(T) − θ(T)

)
⇒

(∫
J (T)Ω−1

u.vJ
(T) ′
)−1 ∫

J (T)Ω−1
u.vdBu.v. (C.15)
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Group-Wise Pooling (Pooling the Trend Coefficient and the Coefficients of

the Stochastic Regressors Over Different Subsets)

Proof of Proposition 6. Deriving the limiting distribution of FM-type estimators com-

mences from the limiting distribution of the underlying OLS and – in the SUR case

additionally – the MSUR estimator. We start with the group-wise pooled OLS estimator,

which is defined as:

θ̂GW
OLS :=

(
Ž ′Ž

)−1
Ž ′y, (C.16)

After centering around the true value θGW and pre-multiplying with the scaling matrix Ǧ

defined in the main text we arrive at:

Ǧ−1
(
θ̂GW

OLS − θGW

)
=

(
ǦŽ ′ŽǦ

)−1 (
ǦŽ ′u

)
(C.17)

=

(
T∑
t=1

ǦŽtŽ
′
tǦ

)−1( T∑
t=1

ǦŽtut

)

It follows that
∑T

t=1 ǦŽtŽ
′
tǦ = 1

T

∑T
t=1

√
TǦŽtŽ

′
tǦ
√
T ⇒

∫
J̌ J̌ ′, using limT→∞

√
TǦŽbrT c =

J̌(r) for 0 ≤ r ≤ 1 and the continuous mapping theorem. For the second term similar

arguments as in Hong and Wagner (2014, Propositions 1 and 4) – without group-wise

pooling in that paper – can be used to establish:

T∑
t=1

ǦŽtut =
1√
T

T∑
t=1

√
TǦŽtut =

1√
T

T∑
t=1


√
TǦcut√

TǦDĎtut√
TǦXX̌tut

⇒ ∫
J̌dBu + FGW

u ,(C.18)

with FGW
u := [01×(N+nk), F

GW ′
u,1 , . . . , FGW ′

u,l ]′, where

FGW
u,j :=

N∑
i=1

1{i∈Imj } ·∆
i,i
vu ·

(
1

2
∫
Bvi

)
, j = 1, . . . , l. (C.19)

Altogether this implies that

Ǧ−1
(
θ̂GW

OLS − θGW

)
⇒
(
J̌ J̌ ′
)−1

(∫
J̌dBu + FGW

u

)
(C.20)

=
(
J̌ J̌ ′
)−1

(∫
J̌dBu·v +

∫
J̌ΩuvΩ

−1
vv dBv + FGW

u

)
.

We now turn to the group-wise pooled MSUR estimator:

θ̃GW
MSUR :=

(
Ž ′
(
IT ⊗ Ω̂−1

uu

)
Ž
)−1

Ž ′
(
IT ⊗ Ω̂−1

uu

)
u, (C.21)
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which after centering and scaling can be written as:

Ǧ−1
(
θ̃GW

MSUR − θGW

)
=

(
T∑
t=1

ǦŽtΩ̂
−1
uu Ž

′
tǦ

)−1( T∑
t=1

ǦŽtΩ̂
−1
uuut

)
. (C.22)

Since Ω̂uu → Ωuu by assumption, it immediately follows that
∑T

t=1 ǦŽtΩ̂
−1
uu ŽtǦ

′ ⇒∫
J̌Ω−1

uu J̌
′ and for the second term we now obtain using again similar arguments as in

Hong and Wagner (2014, Propositions 1 and 4):

T∑
t=1

ǦŽtΩ̂
−1
uuut ⇒

∫
J̌Ω−1

uudBu + F̃GW
u , (C.23)

with F̃GW
u := [01×(N+nk), F̃

GW ′
u,1 , . . . , F̃GW ′

u,l ]′, where

F̃GW
u,j :=

N∑
i=1

1{i∈Imj } ·∆
i,·
vu ·

(
Ω−1
uu

)·,i ·( 1

2
∫
Bvi

)
, j = 1, . . . , l. (C.24)

Combining the two terms gives the asymptotic distribution of the MSUR estimator:

Ǧ−1
(
θ̃GW

MSUR − θGW

)
⇒
(∫

J̌Ω−1
uu J̌

′
)−1(∫

J̌Ω−1
uudBu + F̃GW

u

)
(C.25)

=

(∫
J̌Ω−1

uu J̌
′
)−1(∫

J̌Ω−1
uudBu·v +

∫
J̌Ω−1

uuΩuvΩ
−1
vv dBv + F̃GW

u

)

Having the asymptotic distributions of the OLS and MSUR estimators at hand allows to

next derive the asymptotic distribution of the FM-OLS and FM-SUR estimators for the

group-wise pooled case.

We start with FM-SOLS. From the definition of the estimator in (3.27) and the definition

of y+ it is clear that the essential term to be understood, after centering and scaling, is

T∑
t=1

ǦŽtΩ̂uvΩ̂
−1
vv vt ⇒

∫
J̌ΩuvΩ

−1
vv dBv + FGW

v , (C.26)

with FGW
v := [01×(N+nk), F

GW ′
v,1 , . . . , FGW ′

v,l ]′, where

FGW
v,j :=

N∑
i=1

1{i∈Imj } · Ω
i,·
uv · Ω−1

vv ·∆·,ivv ·

(
1

2
∫
Bvi

)
, j = 1, . . . , l. (C.27)
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The above result together with (C.20) implies that

T∑
t=1

ǦŽtu
+
t =

T∑
t=1

ǦŽtut −
T∑
t=1

ǦŽtΩ̂uvΩ̂
−1
vv vt (C.28)

⇒
∫
J̌dBu·v +

∫
J̌ΩuvΩ

−1
vv dBv + FGW

u −
∫
J̌ΩuvΩ

−1
vv dBv − FGW

v

=

∫
J̌dBu·v + FGW

u − FGW
v =

∫
J̌dBu·v +AGW.

Observing now that the non-zero blocks of AGW are given by

AGW
j =

N∑
i=1

1{i∈Imj } ·
(
∆i,i
vu − Ωi,·

uv · Ω−1
vv ·∆·,ivv

)
·

(
1

2
∫
Bvi

)
, j = 1, . . . , l, (C.29)

=

N∑
i=1

1{i∈Imj } ·
(
∆+
vu

)i,i ·( 1

2
∫
Bvi

)
, j = 1, . . . , l,

shows that ǦAGW∗ ⇒ AGW, which establishes the result (3.29) for the group-wise FM-

SOLS estimator.

A similar reasoning also applies to the group-wise pooled FM-SUR estimator defined

in (3.28). Here the relevant term to consider is

T∑
t=1

ǦŽtΩ̂
−1
u·vΩ̂uvΩ̂

−1
vv vt ⇒

∫
J̌Ω−1

u·vΩuvΩ
−1
vv dBv + F̃GW

v , (C.30)

with F̃GW
v := [01×(N+nk), F̃

GW ′
v,1 , . . . , F̃GW ′

v,l ]′, where

F̃GW
v,j :=

N∑
i=1

1{i∈Imj } ·
(
Ω−1
u·v
)i,· · Ωuv · Ω−1

vv ·∆·,ivv ·

(
1

2
∫
Bvi

)
, j = 1, . . . , l. (C.31)

The above result together with (C.25) implies that

T∑
t=1

ǦŽtΩ̂
−1
u·vu

+
t =

T∑
t=1

ǦŽtΩ
−1
u·vut −

T∑
t=1

ǦŽtΩ
−1
u·vΩ̂uvΩ̂

−1
vv vt (C.32)

⇒
∫
J̌Ω−1

u·vdBu·v +

∫
J̌Ω−1

u·vΩuvΩ
−1
vv dBv + F̃GW

u −
∫
J̌Ω−1

u·vΩuvΩ
−1
vv dBv − F̃GW

v

=

∫
J̌dBu·v + F̃GW

u − F̃GW
v =

∫
J̌Ω−1

u·vdBu·v + ÃGW.
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The non-zero blocks of ÃGW are given by

ÃGW
j =

N∑
i=1

1{i∈Imj } ·
(

∆i,·
vu ·

(
Ω−1
u·v
)·,i − (Ω−1

u·v
)i,· · Ωuv · Ω−1

vv ·∆·,ivv
)
·

(
1

2
∫
Bvi

)
, j = 1, . . . , l,

(C.33)

=
N∑
i=1

1{i∈Imj } ·
(
∆+
vu

)i,· · (Ω−1
u·v
)·,i ·( 1

2
∫
Bvi

)
, j = 1, . . . , l,

which implies that ǦÃGW∗ ⇒ ÃGW. �
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C.2. Additional Empirical Results

Intercept Intercept and Linear Trend

PP PP(fb)1 PP(fb)2 PP PP(fb)1 PP(fb)2

Australia 0.945 0.951 0.380 -1.280 -1.304 -1.378

Austria 0.004 0.098 -0.115 -1.908 -1.813 -1.878

Belgium 0.795 0.620 0.225 -1.419 -1.554 -1.587

Canada -0.255 -0.348 -0.458 -2.496 -3.057 -3.056

Denmark 0.038 0.062 -0.270 -2.293 -2.270 -2.273

Finland 0.727 0.586 0.169 -2.321 -2.422 -2.412

France -0.044 -0.159 -0.286 -1.958 -2.204 -2.214

Germany -0.256 -0.338 -0.317 -2.356 -2.582 -2.598

Italy 0.524 0.234 0.004 -1.665 -1.825 -1.835

Japan 0.222 0.105 -0.134 -1.719 -1.880 -1.893

Netherlands 0.163 0.092 -0.007 -2.184 -2.310 -2.334

New Zealand -0.100 -0.101 -0.139 -2.606 -2.686 -2.688

Norway 0.909 0.838 0.116 -2.142 -2.177 -2.179

Portugal 1.271 0.997 0.352 -1.872 -1.879 -1.869

Spain 0.704 0.428 0.050 -1.005 -1.192 -1.235

Sweden 0.137 0.131 -0.276 -2.339 -2.401 -2.407

Switzerland -1.004 -1.053 -1.001 -2.807 -2.449 -2.481

UK 1.118 1.383 0.425 -1.567 -1.418 -1.625

USA -0.336 -0.308 -0.447 -2.981 -2.911 -2.915

Table C.1.: Unit root test results for log GDP per capita. The tests employed are
the Phillips-Perron (1988) test, PP, as well as the one- and two-step detrended fixed-b
versions, PP(fb)1 and PP(fb)2, of this test developed in Vogelsang and Wagner (2013).
The specifications of the deterministic components are intercept only and intercept and
linear trend. The results are based on the Bartlett kernel with bandwidth chosen according
to Newey and West (1994). Italic entries denote rejection of the null hypothesis at the
10% level and bold entries indicate rejection at the 5% level.
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POt Shin Pû CT

Australia -2.727 0.129 11.330 0.108

Austria -3.785 0.077 55.997 0.056

Belgium -5.586 0.054 50.269 0.062

Canada -3.349 0.189 12.420 0.145

Denmark -4.937 0.053 40.613 0.052

Finland -5.656 0.045 75.016 0.050

France -4.948 0.060 28.847 0.066

Germany -7.895 0.411 68.343 0.111

Italy -4.163 0.182 34.141 0.146

Japan -5.829 0.155 8.127 0.152

Netherlands -5.688 0.108 96.172 0.074

New Zealand -5.375 0.132 13.337 0.115

Norway -3.530 0.097 20.644 0.095

Portugal -9.111 0.101 19.959 0.111

Spain -3.343 0.091 42.578 0.086

Sweden -4.268 0.085 28.679 0.085

Switzerland -6.282 0.065 85.979 0.084

UK -7.673 0.085 97.169 0.073

USA -2.448 0.576 13.920 0.156

Critical Values (α = 0.1) -4.1567 0.081 45.237 0.086

Critical Values (α = 0.05) -3.8429 0.101 52.952 0.106

Table C.2.: Cointegration and non-cointegration test results for (3.1). The left block-
column presents the results for the “linear” non-cointegration test POt of Phillips and
Ouliaris (1990) and the “linear” cointegration test of Shin (1994). Linear here refers to
an application of these tests treating log GDP per capita and its square as two integrated
processes. The right block-column presents the results for the modifications of these two
tests to the CPR setting discussed in Wagner (2013, 2015). These are labelled Pû (non-
cointegration test) and CT (cointegration test). Italic entries denote rejection of the null
hypothesis at the 10% level and bold entries indicate rejection at the 5% level.
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Figure C.1.: EKC estimation results for Equation (3.1): scatter plot and EKC. The
solid lines correspond to the FM-SUR estimates and the solid lines with +-marks to the
FM-SOLS estimates. For further explanations see notes to Figure 3.1.
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Figure C.2.: EKC estimation results for Equation (3.1): actual and fitted values. The
dashed lines show the actual values, the solid lines the FM-SUR fitted values and the solid
lines with +-marks the FM-SOLS fitted values.
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FM-SOLS

Linear Trend &

Stochastic Regressors (P)

Stochastic Regressors (S) 2 AT-NL, BE-UK, NL-UK,

3 AT-NL-UK, BE-NL-UK

Linear Trend (T) 2 AT-FI, AT-CH, AT-UK, BE-NL, BE-UK, FI-CH,

3 AT-BE-UK, AT-FI-CH

FM-SUR

Linear Trend &

Stochastic Regressors (P)

Stochastic Regressors (S) 2 AT-NL, BE-NL, BE-UK, NL-UK,

3 AT-NL-UK, BE-NL-UK,

4 AT-BE-NL-UK

Linear Trend (T) 2 AT-FI, AT-CH, AT-UK, BE-NL, BE-UK, FI-CH, FI-UK,

3 AT-BE-UK, AT-FI-CH, AT-FI-UK,

Table C.3.: List of group members corresponding to the tests described in Table 3.2. For
more details see notes to Table 3.2.

125



C. Appendix to Chapter 3

7.5 8 8.5 9 9.5 10 10.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

ln(GDP)

ln
(C

O
2)

Austria

7.5 8 8.5 9 9.5 10 10.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

ln(GDP)

ln
(C

O
2)

Belgium

7.5 8 8.5 9 9.5 10 10.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

ln(GDP)

ln
(C

O
2)

Finland

7.5 8 8.5 9 9.5 10 10.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

ln(GDP)

ln
(C

O
2)

Netherlands

7.5 8 8.5 9 9.5 10 10.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

ln(GDP)

ln
(C

O
2)

Switzerland

7.5 8 8.5 9 9.5 10 10.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

ln(GDP)

ln
(C

O
2)

UK

Figure C.3.: EKC estimation results for Equation (3.1): scatter plot and EKC. The solid
lines with square symbols correspond to the group-wise pooled FM-SUR estimates and
the solid lines with o-marks to the pooled FM-SUR estimates. For further explanations
see notes to Figure 3.1.
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