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Abstract 

Scattering methods like small-angle X-ray scattering and X-ray reflectivity enable to 

perform in situ studies on biomolecules under various conditions of temperature and 

pressure. These methods are employed in this work to shed light on the changes of 

size and shape as well as on the interactions between biomolecules under extreme 

conditions. Most of these aim to simulate conditions of temperature and pressures 

encountered in hydrothermal vents in the deep sea, where life might have evolved. 

This work includes many examples from all classes of biomolecules, lipids, nucleic 

acids as well as peptides and proteins, ranging from fairly simple to very complex 

systems.  

The first class investigated was lipids. In an aqueous mixture of prebiotic lipids, 

temperature and pressure were found to foster the formation of vesicles from 

micelles, which might have served as envelopes for protocells. Further, the effect of 

pressure on a disordered bicontinuous microemulsion forming a lamellar phase in 

proximity to an interface was investigated. The experiments suggest that with rising 

pressure the bicontinuous and the lamellar phase become more compressed and 

ordered, but even pressures of 400 MPa were not able to induce a phase transition 

between the two phases.  

The investigations proceeded with nucleotides and nucleic acids, starting with the 

self-assembly of single nucleotides. It was found that the self-assembly of guanosine 

monophosphate sodium salt under pressure can be drastically altered by the addition 

of stabilizing and destabilizing cosolutes, such as divalent ions. Next, a small RNA 

hairpin was explored; it was found that attached fluorophores can interact with the 

bases at elevated temperatures. Further studies on RNA molecules, like phenylalanyl 

transfer RNA, showed that these molecules are surprisingly stable even at very high 

pressures.  

Finally, the effect of temperature and pressure on peptides and proteins was 

explored, covering a short peptide, a protein and a complex network of proteins. First, 

the effect of cosolutes on the inverse temperature transition of an elastin-like peptide 

was investigated. This peptide showed an elongation with rising temperature. In 

addition, three different variants of the phosphoprotein 32 were analyzed in 

dependence of temperature and pressure. The measurements revealed that 

mutations in the capping-motives drastically change the stability and cooperativity of 
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pressure-induced unfolding of its leucine-rich repeat motif. For the network, 

measurements showed that actin bundles cross-linked by the fascin establish 

significantly higher pressure, but lower temperature stability than actin bundles cross-

linked by divalent ions. Thus, this native binding protein might suit better the needs of 

organism living in the deep sea. Taken together, this work provides many new and 

interesting insights on how life might have evolved under extreme conditions of 

temperature and pressure and how organisms adapted to the latter. 
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Kurzfassung 

Streumethoden wie Röntgenkleinwinkelstreuung und Röntgenreflektometrie 

ermöglichen es, in situ-Studien an Biomolekülen bei verschiedenen Temperaturen 

und Drücken durchzuführen. Diese Methoden wurden in dieser Arbeit verwendet, um 

tiefere Einblicke in die Veränderung der Form und Größe sowie der 

Wechselwirkungen zwischen Biomoleküle unter extremen Bedingungen zu 

gewinnen. Die meisten Untersuchungsbedingungen haben zum Ziel, die 

Bedingungen von Temperatur und Druck in heißen Quellen in der Tiefsee 

nachzuahmen, wo das Leben entstanden sein könnte. Diese Arbeit beinhaltet viele 

Beispiele aus allen Klassen von Biomolekülen, Lipide, Nukleinsäuren sowie Peptide 

und Proteine, die von relativ einfachen zu sehr komplexen Systemen reichen. 

Die erste Klasse von Biomolekülen, die untersucht wurde, sind die Lipide. Es wurde 

herausgefunden, dass hohe Temperaturen und Drücke in einer wässrigen Mischung 

aus präbiotischen Lipiden die Bildung von Vesikeln aus Mizellen fördern, die als Hülle 

für Protozellen gedient haben könnten. Ferner wurde die Wirkung von Druck auf eine 

ungeordnet bikontinuierliche Mikroemulsion untersucht, die in der Nähe von 

Grenzflächen eine lamellare Phase bildet. Die Experimente zeigen, dass die 

bikontinuierliche und die lamellare Phase mit steigendem Druck komprimiert und 

geordnet werden, aber selbst Drücke von 400 MPa nicht ausreichen, um einen 

Übergang zwischen den zwei Phasen zu induzieren.  

Die Untersuchungen gingen mit Nukleotiden und Nukleinsäuren weiter, beginnend 

mit der Selbstorganisation einzelner Nukleotide. Wie gezeigt wurde, haben 

Kosolventien einen starken Einfluss auf die Selbstorganisation von 

Guanosinmonophosphat-Natriumsalz unter Druck. Als nächstes wurde eine kleine 

Haarnadel-RNA untersucht; es wurde herausgefunden, dass angebrachte 

Fluorophore bei erhöhten Temperaturen mit den Nucleobasen in Wechselwirkung 

treten können, was die Temperatur- und Druckstabilität des Moleküls stark 

beeinflusst. Weitere Studien an größeren RNA-Molekülen, wie der tRNA von 

Phenylalanin, zeigten eine überraschend hohe Stabilität dieser Moleküle, selbst bei 

sehr hohen Drücken.  

Schließlich wurden die Auswirkungen von Temperatur und Druck auf Peptide und 

Proteine erforscht; die Untersuchungen umfassen ein kurzes Peptid, ein Protein und 

ein komplexes Netzwerk von Proteinen. Zuerst wurde die Wirkung von 

stabilisierenden und destabilisierenden Kosolventien auf den inversen 
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Temperaturübergang eines Elastin-ähnliches Peptids untersucht. In diesen 

Untersuchungen zeigte das Peptid eine Verlängerung seiner Form mit steigender 

Temperatur. Darüber hinaus wurden drei unterschiedliche Varianten des 

Phosphoprotein 32 in Abhängigkeit von Temperatur und Druck untersucht. Die 

Messungen ergaben, dass Mutationen in den Capping-Motiven drastisch die 

Stabilität und Kooperativität bei der Druck-induzierten Entfaltung seines Leucine-rich-

repeat Motivs verändern. Schließlich zeigten Messungen, dass Fascin-vernetzte 

Aktinbündel eine deutlich höhere Druckstabilität, aber geringere Temperaturstabilität 

haben als Aktinbündel, die durch zweiwertige Magnesium-Ionen vernetzt wurden. 

Somit erfüllt dieses native Bindungsprotein besser die Anforderungen von 

Organismen, die in der Tiefsee leben. Zusammengenommen bietet diese Arbeit viele 

neue und interessante Einblicke, wie das Leben unter extremen Bedingungen von 

Temperatur und Druck entstanden sein könnte und wie Organismen sich daran 

angepasst haben. 
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1 Introduction 

Modern scattering methods allow for in situ structural investigations of various 

biomolecules. Two of these methods are small-angle X-ray scattering (SAXS), for 

measurements in solution, and X-ray reflectivity (XRR) to study the behavior of 

systems in close proximity to an interface. These scattering methods are the 

fundamental basis of the work presented here and will be introduced in Chapter 2. 

Both methods are basically non-destructive and do not require crystallization or 

labeling of the molecules of interest. In addition, these measurements can be 

performed at various temperatures and, using Synchrotron radiation, at pressures up 

to 400 MPa. Stabilizing and destabilizing cosolutes can be added to mimic a cellular 

environment and investigate their effect on the temperature and pressure stability of 

the biomolecules. 

The motivation to perform such studies and the importance of high pressure habitats, 

as well as how modern cells adapted to these conditions will be highlighted in 

Chapter 3. After a general introduction in Subchapter 3.1, the effect of pressure on 

the three main classes of biomolecules, lipids (Subchapter 3.2), nucleic acids 

(Subchapter 3.3) and proteins (Subchapter 3.4), will be discussed and the molecules 

under investigation in this work will be introduced.  

Deep sea habitats with extreme conditions of temperature and pressure are also 

proposed to be the cradle of life.1 In the evolution of the first protocells, the 

compartmentalization by lipid envelopes was an important step. Lipids are the most 

pressure sensitive class of biomolecules.2 In Chapter 4 of this thesis, the 

investigations on two different lipid systems are presented. In the first Subchapter 

4.1, the effect of temperature and pressure on the micelle-vesicle equilibrium of 

prebiotic lipids (decanoic acid and decanol) is analyzed. Such vesicles might have 

been precursors to modern cell membranes. SAXS was applied to estimate the size 

distribution of the species present in the solution. Besides gaining information about a 

size distribution within a system, scattering methods can also be used to analyze the 

different lyotropic phases occurring in aqueous lipid systems by diffraction. 

Contemporary cell membranes are composed of a high variety of different lipids. 

Thus, they form disordered lyotropic phases, whose parameters can be tuned by 

temperature and pressure. Interfaces present within cells might have an effect on the 

transitions between these phases. To gain a better understanding of this effect, a 
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microemulsion forming a disordered bicontinuous bulk phase and a lamellar phase in 

proximity to an interface was chosen as a model system. The influence of pressure 

on the two coexisting lyotropic phases of the microemulsion was analyzed using 

SAXS and XRR, respectively (Subchapter 4.2). 

Besides the first prebiotic lipids, nucleotides and subsequently nucleic acids might 

have been present in the primordial soup. This class of biomolecules is investigated 

in Chapter 5. First, the self assembly of a single nucleotide, guanosine mono 

phosphate, under pressure in the absence and presence of various cosolutes is 

investigated using SAXS (Subchapter 5.1). In Subchapter 5.2, a short ribonucleic 

acid forming a common hairpin motif, the small RNA hairpin, is investigated. The 

RNA world hypothesis3 states, that RNA might have fulfilled two functions, genetic 

storage as well as enzymatic reactions. The discovery of ribozymes greatly 

supported this hypothesis. The behavior of such a ribozyme under high hydrostatic 

pressures is investigated in Subhapter 5.3. Ribozymes are regarded as precursors to 

modern enzymes. Thus, they link the RNA and the protein world in evolution. In 

contemporary cells, the link between RNA and proteins is transfer RNA (tRNA). The 

effect of pressure on phenylalanine tRNA, as an example of a modern RNA 

molecule, is analyzed in Subhapter 5.4. 

Peptides and proteins are possibly the youngest class of biomolecules. The last 

chapter of this work, Chapter 6, shows how SAXS can be applied to learn more about 

their behavior under extreme conditions. The chapter starts with investigations of a 

short peptide, the so-called elastin-like peptide. The influence of different cosolutes 

on its temperature stability is analyzed (Subchapter 6.1). In the second part 

(Subchapter 6.2), pressure is used as a trigger in order to understand how flanking 

motives of modern leucine-rich repeat proteins influence their stability. SAXS 

measurements were performed on the wildtype phosphoprotein 32 as well as on two 

variants with destabilizing mutations in the flanking motives. Finally, the effect of 

temperature and pressure on a complex network of proteins is investigated using X-

ray diffraction. The stability of two different types of actin-bundels was investigated. 

Bundling was induced by divalent ions and proteins as crosslinkers between the 

filaments (Subchapter 6.3). 
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2 Scattering methods 

The scope of this chapter is to introduce the theory of the scattering methods relevant 

to this thesis. It is supposed to provide enough background information to understand 

the experiments of this thesis and their evaluation without further reading. More 

detailed reviews of the scattering methods can be found elsewhere.4–15 After 

illustrating the theory of these methods, the details of the experimental setups and 

the X-ray sources where the measurements were performed are described. 

  

2.1 Small-angle X-ray scattering 

2.1.1 Introduction 

Small-angle X-ray scattering is an increasingly used method which allows to analyze 

the structure and interactions of (biological) macromolecules in solution. The typical 

size range is 1-100 nm. One of the greatest advantages of this method is that 

biomolecules can be studied in their natural environment, even those which cannot 

be crystallized. At the same time, it also allows to study their response to different 

stimuli, like the addition of cosolvents or the application of different temperatures and 

pressures. Modifications of the biomolecules, like labeling, are not required.  

Despite the lack of atomic resolution, modern computational methods for shape 

reconstruction allow to gain detailed information of the size and shape of proteins and 

nucleic acids under different conditions.16 In contrast to NMR, SAXS is not restricted 

to molecules with a weight of a few kDa.10,17 However, the combination of these two 

methods can be very fruitful, since SAXS can provide the overall changes in the 

conformation of a biomolecule, while NMR can resolve their underlying origin in 

atomic detail. 18 In a SAXS experiment, the scattered intensity, 𝐼 , is recorded in 

dependence of the scattering angle  2𝜃 . The geometry of such an experiment is 

displayed in Figure 2-1. 
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Figure 2-1. Geometry of a scattering experiment.4 

 

An incident beam with the wave vector 𝑘⃗ 0 and the energy 𝐸0 hits the sample. Upon 

this, the scattered beam with the wave vector 𝑘⃗ 1 and the energy 𝐸1 is detected in 

dependence of the scattering angle  2𝜃 . Thereby, the length of a wave vector 𝑘⃗  

depends on its wavelength 𝜆 with |𝑘⃗ | = 2𝜋 𝜆⁄ . Using the length of the wave vector 

transfer, 𝑞, instead of the scattering angle 2𝜃 allows easy comparability of intensity 

curves recorded using different wavelengths. Under the assumption that the 

scattering process is elastic, i.e. Δ𝐸 = 0 and |𝑘⃗ 0| = |𝑘⃗ 1|, the length of the wave vector 

transfer can be described as  

𝑞 = |𝑞 | = 2 |𝑘⃗ 0| sin 𝜃 =
4𝜋

𝜆
sin 𝜃. (2.1) 

In ordered samples it can be more convenient to use 𝑠 = 𝑞/2𝜋 instead of 𝑞, because 

its reciprocal value directly provides the distance between lattice planes.4 

The following parameters can be derived directly from the scattering curve: The 

radius of gyration, 𝑅g , the maximum dimension, 𝐷max , the overall compactness 

(Kratky-plots), the volume and surface structure. Indirect Fourier transformation (IFT) 

allows to gain more detailed information about the shape of a molecule by calculating 

pair distance distribution functions, 𝑃(𝑟). Modern computational methods allow to 

model 3D envelopes of the macromolecules to resolve their size and shape in more 

detail. 

X-rays are scattered on the electronic shells of atoms. The electric component of the 

incident wave (photon) accelerates the negatively charged electrons to oscillate. 

Thus, a dipole is induced for each electron in the scattering object, emitting radiation 

of the same frequency as the incident radiation (Thomson-Scattering). The partial 
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waves of all electrons are summed up in order to calculate the scattering amplitude of 

a particle, 𝐴(𝑞 ):  

𝐴(𝑞 ) = ∫ 𝜌(𝑟 )

𝑉

ei𝑞⃗ 𝑟 d𝑟  
(2.2) 

Due to the high number of electrons and the fact that they cannot be exactly 

localized, the concept of electron density, 𝜌(𝑟 ), which is the number of electrons 

given in the volume element d𝑟 , is introduced.4,6 The intensity, 𝐼(𝑞), which is detected 

in the scattering experiment, is then given as the mean square of the amplitude 

averaged over all orientations of the particle: 

 

𝐼(𝑞 ) = 〈|𝐴(𝑞 )|2〉=⟨|∫ 𝜌(𝑟 )

𝑉

ei𝑞⃗ 𝑟 d𝑟 |

2

⟩ (2.3) 

 

2.1.2 Scattering from diluted solutions 

In highly diluted solutions of monodisperse macromolecular particles, the latter can 

be regarded as isolated. Therefore, no interference between the partial waves 

originating from different particles can be observed. Furthermore, the particles are 

oriented in all directions due to the Brownian motion. Hence, the observed scattering 

pattern is representative for a single particle. 4 Since the distance between atoms 

within a particle is much smaller than the distance between particles, the electron 

density can be regarded as homogenously distributed within a particle. This is true for 

most of the biomolecules.17  

Using this assumption that the electron density is independent of the location 𝑟  within 

the particle, its electron density can be written as 𝜌𝑠 . Including the surrounding 

solvent with the electron density 𝜌0, the scattering of 𝑁𝑝 particles in a solution can be 

calculated as following4: 

𝐼(𝑞) = 𝑁𝑝(𝜌𝑠 − 𝜌0)
2 ⟨|∫ ei𝑞⃗ 𝑟 d𝑟 

𝑉𝑝

|

2

⟩ . (2.4) 
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Defining the contrast 𝐾 = 𝑉𝑝 (𝜌𝑠 − 𝜌0), in which 𝑉𝑝 is the volume of the particle, the 

form factor 𝐹(𝑞 ), 

𝐹(𝑞 ) =
1

𝑉𝑝
∫e𝑖𝑄⃗ 𝑟 d𝑟  (2.5) 

only depends on the geometry of the particle, and the observed intensity becomes 

𝐼(𝑞) = 𝑁𝑃𝐾
2〈|𝐹(𝑞 )|2〉 = 𝑁𝑃𝐾

2〈𝑃(𝑞 )〉 = 𝑁𝑃𝐾
2𝑃(𝑞). (2.6) 

𝑃(𝑞) is referred to as intraparticular structure factor and is equal to the form factor 

averaged over all orientations of the particle, i.e.  𝑃(𝑞 ) = |𝐹(𝑞 )|2. This averaging is 

performed by using the following relation introduced by Debye,19  

〈ei𝑞⃗ 𝑟 〉 =
sin(𝑞𝑟)

𝑞𝑟
 . (2.7) 

This averaging over all orientations allows calculating the form factors and thus the 

intraparticular structure factors of particles with different geometries, for example of a 

sphere or a cylinder. 

 

Porod’s law 

For homogenous, smooth particles of any shape, the scattering intensity decays at 

large scattering angles in an asymptotic way proportional to 𝑞−4 . According to 

Porod,20 the scattering factor 𝑃(𝑞) can in this case be approximated as 

𝑃(𝑞) =
2π𝐴p

𝑉p
2 𝑞−4  (2.8) 

with 𝐴𝑝 as the surface of the particle and 𝑉p its volume. Extrapolation to 𝑞 → 0 allows 

the calculation of the Porod volume  

𝑉p =
2𝜋2𝐼2(0)

∫ 𝐼(𝑞)𝑞2d𝑞
∞

0

 . (2.9) 

In this equation, 𝐼(0) is the intensity at 𝑞 = 0. 

 

The Guinier approximation 

The Guinier approximation9,21 allows to calculate the radius of gyration, 𝑅g , a 

measure for the overall size of the scattering macromolecule. 𝑅g is defined as the 

average of square center-of-mass distances in the molecule: 
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𝑅g =
∫ 𝑟2𝜌(𝑟 )d𝑟 

∫𝜌(𝑟 )d𝑟 
≈

1

𝑉𝑝
∫ 𝑟2d𝑟   (2.10) 

If a protein denatures, the overall size usually increases. Plotting 𝑅g as a function of 

temperature or pressure usually results in a sigmoidal curve, whose turning point 

gives the denaturation point of the protein. The approximation relies on a small 

section of the scattering curve at low angles, only. If the molecules are monodisperse 

and there are no interactions between them, this section can be approached as 

𝐼(𝑞) = 𝐼(0) [1 −
1

3
𝑞2𝑅g

2] ≈ 𝐼(0)e−𝑞
2𝑅g

2/3  

⇒ ln 𝐼(𝑞) = ln 𝐼(0) − 𝑞2 𝑅g
2/3 

(2.11) 

For such a system, plotting the natural logarithm of the scattering intensity against 𝑞2, 

the so-called Guinier-plot, yields a linear curve with the slope −𝑅g
2/3 . Thus, the 

linearity of the Guinier-Plot is a good indication for the monodispersity and the 

absence of interactions between the macromolecules. In this case, the radius of 

gyration can be derived from the slope in the linear Guinier region. 

Another method to determine the radius of gyration is from distance distribution 

functions, 𝑃(𝑟), which will be discussed later in this chapter. The 𝑅g values derived 

from these functions are usually more reliable, since this analysis is based on the 

whole scattering curve and less affected by heterodispersity and interactions 

between the molecules, and can also be applied if low angles cannot be resolved 

with sufficient accuracy. However, the Guinier approximation is an important and 

easy to apply method to determine the radius of gyration. In addition, it provides 

starting parameters for the calculation of 𝑃(𝑟).  

 

The Kratky plot 

Another plot, which can be calculated directly from the scattering curve, is the so-

called Kratky plot.6,10 It is obtained by plotting 𝐼(𝑞) ∗ 𝑞2as a function of 𝑞 and provides 

an excellent tool for evaluating the folding of proteins and RNA. For folded domains, 

the Kratky plot has a bell-shaped peak, because the scattering curve follows Porod’s 

law ( 𝐼(𝑞) ∝ 𝑞−4, equation (2.8)).The position of the peak provides some information 

about the overall size.10 If the protein unfolds and becomes a random-coil, the 

scattering curve decays with 𝐼(𝑞) ∝ 𝑞−2  at high 𝑞 -values. Thus, the Kratky plot 

reveals a plateau instead of a peak. The transformation from a peak to a plateau 
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allows to follow the changes in the folding or compactness of a polymeric molecule 

as a function of temperature, pressure or cosolutes concentration. 

 

The autocorrelation and the pair distance distribution function 

The autocorrelation function, 𝛾(𝑟),  of the electron density, 𝜌(𝑟 ) , was defined by 

Debye and Bueche22 and is the direct representation of the spatial information 

obtained from the scattered intensity in real space. It gives the probability of finding 

an electron in the distance between 𝑟 and 𝑟 + d𝑟 from a reference electron inside the 

volume 𝑉p of a homogenous particle. 

 

The pair distance distribution function, 𝑃(𝑟) , is the spherically averaged auto-

correlation function and gives a histogram of the distances 𝑟 between every pair of 

electrons within a particle: 

𝑃(𝑟) =  𝑟2𝛾(𝑟) =
𝑟2

(2𝜋)3
 ∫ 𝐼(𝑞)

 sin (𝑞𝑟)

𝑞𝑟

𝑟2

(2𝜋)3
 4𝜋𝑞2d𝑞

∞

0
 (2.12) 

This function provides information about the shape of a particle. The intercept of the 

curve 𝑃(𝑟)  with the 𝑟 -axis is the maximum distance within the particle, 𝐷max . As 

already mentioned, this distance distribution function provides another method to 

calculate the radius of gyration,  𝑅g : 

𝑅g
2 = 

∫ 𝑟2𝑃(𝑟) d𝑟
∞

0

2∫ 𝑃(𝑟) d𝑟
∞

0

  (2.13) 

Practically, the intensity 𝐼(𝑞) can not be recorded from 𝑞 = 0 until 𝑞 = ∞. Therefore, 

the distance distribution function is parameterized by a linear combination of 

orthogonal functions. The scattering intensity is then calculated as  

𝐼theo(𝑞) = ∫ 𝑃theo(𝑟)
sin(𝑞𝑟)

𝑞𝑟

𝐷max
0

 4𝜋 d𝑟  (2.14) 

𝑃theo(𝑟) is varied until 𝐼theo(𝑞) matches the experimentally determined data. In this 

work, the software GNOM by Svergun23 is used to calculate the distance distribution 

functions via indirect Fourier transformation.  
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Shape-reconstruction by modeling 

Besides the distance distribution function, which gives only a rough idea of the 

molecule’s shape, modern computational methods allow to generate a low-resolution 

three-dimensional envelope of the molecule from a scattering curve. Since the 1990s, 

the most common method used is bead-modeling.24 Models presented in this thesis 

were calculated by the bead-modeling program DAMMIN25 or GASBOR26, which is 

an optimized version from the same author for proteins. The algorithm of DAMMIN 

involves the simulated annealing of numerous small beads (dummy atoms). They can 

be regarded as point scatterers and thus be used to fit the experimentally determined 

scattering curve.27 This reduces the problem of finding the according structure to a 

multidimensional minimization problem, which can be solved using Monte Carlo 

methods. Physical constrains like a homogenous distribution of the beads in the inner 

of the molecule and a compactness criterion further decrease the amount of possible 

solutions. GASBOR uses a similar algorithm, but uses a chain-like ensemble of 

dummy residues representing the amino-acid chain with the peptide backbone of a 

protein.  

 

Due to the loss of the information about the orientation in the observed scattering 

pattern, the reconstruction of a 3-D envelope from a 1-D scattering profile is not 

unique. This loss of information is also referred to as phase problem. Two different 

shapes can still result in the same observed scattering intensity. To deal with this 

problem, one normally performs several runs and superimposes the resulting 

structures. Further, previously known information about the symmetry or a known 3D 

structure from NMR experiments or crystallography can significantly improve the 

solution. 

 

2.1.3 Scattering from concentrated solutions 

The interparticular structure factor 

If scattering macromolecules or particles are present at higher concentrations, they 

can no longer be regarded as isolated from each other and their interactions have to 

be taken into consideration. As long as the interaction does not introduce a certain 

orientation of the particles, the scattering intensity can be calculated as  

𝐼(𝑞) = 𝑁𝑃𝐾
2𝑃(𝑞) 𝑆(𝑞). (2.15) 
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𝑆(𝑞) is the interparticular structure factor defined as 

𝑆(𝑞) =  
1

𝑁𝑃
 ⟨∑∑𝑒𝑖𝑞⃗ (𝑟 𝑚−𝑟 𝑛)

𝑁𝑃

𝑚

𝑁𝑃

𝑛

 ⟩ (2.16) 

Application of suitable models allows to calculate the interaction potential, 𝑉(𝑟) , 

between the particles, since the distance 𝑟 𝑚𝑛 = 𝑟 𝑚 − 𝑟 𝑛 depends on their interaction. 

For this, the intraparticlular structure factor, 𝑃(𝑞) , needs to be known from 

measurements in diluted solutions. In analogy to the already discussed distance 

distribution function, 𝑃(𝑟) , derived from 𝑃(𝑞) , a realspace distribution of the 

interacting particles can be derived from 𝑆(𝑞)  via Fourier transformation. This 

interparticular distribution function, 𝑔(𝑟), gives the probability of finding two particles 

with the distance 𝑟 between each other: 

𝑔(𝑟) =  1 +
1

(𝑁𝑃 𝑉⁄ )(2𝜋)3
∫ [𝑆(𝑞) − 1]

sin(𝑞𝑟)

𝑞𝑟

∞

0

4𝜋𝑞²d𝑞 (2.17) 

 

The Teubner Strey model 

For the special case of bicontinuous microemulsions (Subchapter 4.2 ), the structure 

factor can be analyzed using the Teubner Strey model.28 The scattering profiles of 

such systems display a characteristic correlation peak. The scattered intensity can be 

calculated according to this model as  

𝐼(𝑞) =  
8𝜋〈𝜂2〉/𝜉

𝑎2−2𝑏𝑞2+𝑞4
   , (2.18) 

in which 𝜂  is the scattering length density contrast, 𝑎2 =  (𝑘2 +  1 𝜉2⁄ )2 is always 

positive, and 𝑏 = 𝑘2 +  1/𝜉² can be either positive or negative in dependence of the 

relative magnitude of the domain size 𝑑 and the correlation length 𝜉. Per definition, 𝑘 

is 2𝜋/𝑑. If 𝑏 is positive, which means that the correlation length is larger than 𝑑/2𝜋, a 

characteristic peak occurs with a maximum intensity at the position 𝑞max = √𝑏. If 𝑏 is 

negative and 𝜉 < 𝑑/2𝜋, such a peak is not observed. The correlation length 𝑑 is the 

quasi-periodic repeat distance between water and oil regions within the 

microemulsion. The correlation length, 𝜉 , refers to the positional correlation. The 

autocorrelation function of this system in real space, 𝛾 (𝑟) , incorporates the 

alternating regions of water and oil and is given by  

𝛾(𝑟) =
sin(𝑘𝑟)

𝑘𝑟
e
−𝑟

𝜉 . 
(2.19) 
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2.1.4 Scattering from partially ordered systems  

Similar to the highly ordered structures found in crystals, also partially ordered 

systems can give rise to characteristic reflections in scattering patterns. Examples of 

such systems discussed in this thesis are a microemulsion employing an ordered 

lamellar phase in the proximity of a surface (Subchapter 4.2), and the hexagonal 

structure of bundled actin filaments (Subchapter 6.3). Such systems can be 

evaluated using Bragg’s equation:  

𝑛𝜆 = 2𝑑 sin𝜃 . (2.20) 

Combining this equation with the definition of 𝑞  (equation (2.1)) is a direct method to 

calculate the lattice distance 𝑑 of a lamellar, quasi-one-dimensional lattice in which 𝑛 

is the integer numeric order of the reflection:  

𝑞𝑛 =
4𝜋

𝜆
sin 𝜃𝑛 = 𝑛

2𝜋

𝑑
 

(2.21) 

 

For hexagonal phases, like observed in actin bundles, the lattice constant, 𝑑hex, i.e. 

the distance between the centers of two rods or filaments, can be calculated as  

𝑠 =
𝑞

2𝜋
= 𝑛

2

√3𝑑hex
√ℎ2 + 𝑘2 + ℎ𝑘 (2.22) 

in which ℎ and 𝑘 are Miller indices. 
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2.2 X-ray reflectivity 

2.2.1 Introduction 

In contrast to SAXS focusing on the bulk solution, X-ray reflectivity is a method to 

study structures in direct proximity to an interface. This method is applied in 

Subchapter 4.2, where the near-surface behavior of a microemulsion under pressure 

is investigated. The geometry of an XRR experiment is illustrated in Figure 2-2. 

 

Figure 2-2. Geometry of an XRR experiment. 4 

 

An X-ray beam is reflected on the interface between two media with the refractive 

indices 𝑛0 and 𝑛1. The reflectivity 𝑅 = 𝐼/𝐼0 is analyzed as a function of the incident 

angle 𝜃0, which is equal to the reflected angle under specular reflection conditions. 

Typically, the wave vector transfer, 𝑞 (equation (2.1)), is used, which allows easier 

comparison of reflectivity curves recorded at different wave length, 𝜆. Further, the 

observed intensity 𝐼 is normalized to the intensity of the incoming beam to give the 

reflectivity 𝑅 = 𝐼/𝐼0. The refractive index, 𝑛, for X-rays correlates with the electron 

density of the media4: 

𝑛 = 1 −
𝜆2

2π
𝑟e𝜌 + i

𝜆

4π
𝜇 = 1 − 𝛿 + i𝛽 

(2.23) 

Here, 𝑟e  is the classical electron radius, 𝜌  the electron density and 𝜇  is the X-ray 

absorbtion coefficient of the medium. The dispersion 𝛿 contributes to the real pace 

while the absorption 𝛽 contributes to the imaginary part. Below the critical angle, 𝜃c, 

the X-ray beam is totally reflected, i.e. 𝐼 = 𝐼0  and thus 𝑅 = 1 . The critical angle 

depends on the electron densities of the two media. 4 If the electron density of one 

medium is known, one can calculate the other by applying Snell’s law: 
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𝑛1 cos 𝜃1 = 𝑛2 cos 𝜃2 
(2.24) 

At higher angles, the beam is partially reflected and partially refracted. The reflection 

coefficient is defined as the ratio of the amplitudes between the incident and the 

reflected beam. The reflection coefficient 𝑟01 between two media with the refractive 

indices 𝑛0 and 𝑛1 is defined as 

𝑟01 =
𝑞0−𝑞1

𝑞0+𝑞1
e−

1

2
𝑞0𝑞1𝜎01

2

 . (2.25) 

Under specular conditions, the wave vector transfers 𝑞0 and 𝑞1 solely depend on the 

𝑧-component of the wave vector, which is normal towards the 𝑥𝑦-plane of the sample. 

The factor 𝜎01 takes justice of a possible roughness of the interface and can also be 

used to describe a continuous change of the electron density between the two media. 

The wave vector transfer 𝑞1 can be calculated from 𝑞0 and 𝑞0c, which is the wave 

vector transfer at the critical angle 𝜃c, by 

𝑞1 = √𝑞0
2 − 𝑞0c

2 ≈ √𝑞0
2 − 16π𝑟𝑒𝜌   . 

(2.26) 

The reflectivity can then be calculated as the mean square of the reflection 

coefficient, 𝑅 = |𝑟01|
2. For a single layer on the interface of a medium, for example a 

protein adsorbed on an Si-wafer, one has to consider the reflection at two different 

interfaces. As a consequence, there are two reflection coefficients to be considered, 

𝑟01and 𝑟12. Due to the interference of the two reflected beams after leaving the layer, 

a combined reflection coefficient can be calculated by 

𝑟01
′ =

𝑟01 + 𝑟12 e
i𝑞1𝑑1

1 + 𝑟01𝑟12 e
𝑖𝑞1𝑑1

 
(2.27) 

with 𝑞1 as the wave vector transfer within the layer and 𝑑1 as the thickness of the first 

layer. For a multilayer system, there are many parameters to vary in order to 

calculate a theoretical reflectivity curve.  

 

2.2.2 The Parrat algorithm 

Using the recursion algorithm developed by Parrat29 allows to calculate the reflectivity 

curve of a multilayer system. Firstly, the combined reflection coefficient of the two 

lowest layers is calculated using equation (2.27). Then the next combined reflection 

coefficient is calculated using the combined reflection coefficient of the two lowest 
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layers and the layer above them. This algorithm is carried out until the top layer is 

reached. Applying this algorithm and thus determination of the electron densities, 𝜌𝑗 

and the thicknesses, 𝑑𝑗, of the layers allows to obtain an electron density profile of 

the sample normal to the sample plane. However, it has to be mentioned that the 

large number of variable parameters can lead to ambiguous results.  

 

2.2.3 The effective density model 

The Parrat algorithm is only applicable if the roughnesses of all interfaces, 𝜎𝑖  are 

much smaller in comparison to the thickness 𝑑𝑗  of a layer, i.e. if 𝜎𝑗 ≪ 𝑑𝑗. If the layer 

thickness is in the same order of magnitude as the fluctuations within the layers, i.e. 

𝜎𝑗 ≈ 𝑑𝑗, the effective density model30 can be included in the calculation to take the 

roughness of the layers into account.  

In the effective density model, it is assumed that the profiles at the interfaces are 

essentially determined by functions 𝑌𝑗(𝑧) with the limits 𝑌𝑗(𝑧) → ±1 for 𝑧 → ±∞, e.g. 

𝑌𝑗(𝑧) = tanh[𝑧𝜋/2√3𝜎𝑗]  or 𝑌𝑗(𝑧) = erf[𝑧/√2𝜎𝑗] . The fraction 𝑊𝑗  of the material 𝑗  at 

position 𝑧𝑗 is than determined as 

𝑊𝑗(𝑧) =

{
 
 

 
 
1

2
[1 + 𝑌𝑗(𝑧 − 𝑧𝑗)]       ,    𝑧 ≤ 𝜁

𝑗

1

2
[1 + 𝑌𝑗(𝑧 − 𝑧𝑗−1)]    ,    𝑧 > 𝜁

𝑗

 (2.28) 

with the coordinate 

𝜁
𝑗
=
𝜎𝑗𝑧𝑗−1 + 𝜎𝑗−1𝑧𝑗

𝜎𝑗 + 𝜎𝑗−1
 (2.29) 

denoting the depth at which the profiles of the upper and lower layer of interface 𝑗 are 

connected continuously. In this model, the parameters 𝜎𝑗, 𝜁𝑗, and 𝑑𝑗 = 𝑧𝑗−1 − 𝑧𝑗 need 

to be refined by fitting to the experimental data. From the dispersion 𝛿𝑗  (𝑧) , the 

electron density 𝜌𝑗 can be derived according to equation (2.23).30 

The difference in theoretical reflectivity profiles derived by the Parrat algorithm and 

effective density model will be most pronounced at large angles and thus large 𝑞𝑧-

values, since the effective density model is of special importance for thin layers.30 For 

example in Subchapter 4.2 of this work, the large 𝑞𝑧-range the application of this 
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model revealed the presence of a very thin water layer of about 0.8 nm thickness 

(~two water molecules) at the interface between the microemulsion and the silicon 

wafer.31 

 

2.3 Experimental setups 

2.3.1 High pressure cells 

The high pressure cell for SAXS used in most of the experiments was developed by 

Dr. Christina Krywka (Tolan-Group, Experimental Physics I, TU-Dortmund 

University). The cell is made of high tensile strength alloy Inconel 718. It has a cubic 

body measuring 9 × 9 × 8 cm³.32 It is suitable for pressures up to 400 MPa (4 kbar) 

and temperatures up to 60°C. The volume of the sample holder was reduced using 

PTFE-rings with an outer diameter of 7 mm and an inner diameter of 3 mm. Kapton-

foil was mounted on the front and back side of the PTFE-rings using double-sided 

tape (Figure 2-3). This modification allowed to reduce the sample volume required 

from 55 µL to less than 10 µL. The reduction of the sample volume was especially 

useful for measurements of precious RNA and protein samples. The main advantage 

of this high pressure cell is that it has an additional opening for the sample holder, so 

that the diamond windows do not have to be removed when the sample is changed. 

 

Figure 2-3. Reduction of the sample volume in the sample holder for the high pressure cell 
using PTFE-rings. 

The high pressure cell used for the XRR measurements had a very similar setup. The 

outer dimensions of this cell are 98 mm × 90 mm × 80 mm and it is made out of 

high-strength steel (type 2.4668, NiCr19Fe19Nb5Mo3). The main difference to the 

previously described SAXS cell are the sample holders. These allow to mount a 

silicon wafer measuring 8 × 8 m on the bottom for reflectivity measurements.33 

The second high pressure cell used for SAXS was built by Dr. Jürgen Woenckhaus 

(Winter-Group, Physical Chemistry I, TU-Dortmund University). It has a cylindrical 
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body and is made out of steel NIMONIC 90 Ni Cr 20 Co 18 Ti (No. 2.4969).34,35 It is 

suitable for pressures up to 400 MPa (4 kbar) and temperatures up to 80°C. The 

sample holders were PTFE-rings with Kapton-foil. 

In all three cells, flat diamonds (Type IIa, 6 mm in diameter, 1 mm thickness) served 

as windows. Since the transmission of X-rays through these diamonds is only 30 %, 

pressure dependent measurements could only be performed at Synchrotron sources. 

The temperature of the cells was controlled by an external water bath with an 

accuracy of ± 0.1°C. The commercially available high pressure spindle pumps used 

were either built by SITEC-Sieber Engineering AG (Maur (Zurich), Switzerland) or 

NovaSwiss (Effretikon, Switzerland) 

 

2.3.2 X-ray sources 

Kratky-Camera SAXSess mc² 

Most of the temperature dependent measurements were performed in-house on the 

Kratky-Camera SAXSess mc² by Anton Paas (Graz, Austria). It contains an X-ray 

tube copper anode. The emitted Kα radiation (𝜆= 0.154 nm) is monochromatized by a 

Bragg-lattice. Samples were filled in to a capillary with 1 mm diameter and a sample 

volume of 10 µL (µ-cell). Measurements were performed in line-collimation with a 

beam of 1 mm high and a broadness of 10 mm. Temperature was maintained using 

the TSC 120 temperature control unit (Anton Paar, Graz, Austria). Imaging plates 

were used as detector. The exposure time was 30 min. The intensity was detected 

over a 𝑞-range between 0.1 and 4 nm-1. The software 2D-SAXSquant was used to 

integrate the intensity in the 2D images in order to obtain scattering curves in 

dependence of the wave vector transfer, 𝑞. The raw data was normalized to the 

primary beam intensity and background corrected using a scattering curve of the 

respective solvent. 

 

Beamline ID02 of the European Synchrotron Radiation Facility (ESRF) 

Many high pressure SAXS experiments were carried out at the high brilliance 

beamline ID02 at the European Synchrotron Radiation Facility in Grenoble, France. 

At this recently upgraded beamline, three undulators provide a high photon flux with a 

maximum of 1014 photons/s/100 mA at 12.4 keV. Thus, the exposure time was 

always less than a second, typically between 0.1 and 0.5 seconds. In our 
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experiments, a beam energy of 16 keV (𝜆 = 0.075 nm) was used. The beam size was 

200 µm × 400 µm. The sample-to-detector distance can be varied between 1 and 

10 m; for our experiments we usually used 2 m to cover a 𝑞-range between 0.05 and 

4 nm-1. The detector used was a FReLoN CCD detector with an active field of 100 

mm x 100 mm and 2048 x 2048 pixels at a frame rate of 3 frames/s. 

 

Beamline SWING of the Synchrotron SOLEIL 

The French national synchrotron SOLEIL is located on the Plateau de Saclay in Saint 

Aubin, Essonne. At the SAXS beamline “SWING”, the in-vacuum U20 undulator 

provides an electron flux of 8 × 1011 photons per second at 16 keV (with 400 mA 

ring). Our Experiments were carried out at 15 keV. The scattered intensity was 

detected using the SAXS-detector PCCD170170 (AVIEX). The beam had a size of 

450 × 20 μm2 FWHM in the experimental hutch. The sample to detector distance was 

2 m. The exposure time was 1 s. The software FOXTROT programmed and provided 

by the beamline staff was used to convert the 2D images to 1D scattering curves. 

 

Beamline BL9 of the Dortmunder Elektronen-Speicherring-Anlage (DELTA) 

The pressure dependent XRR-measurements (Subchapter 4.2) were performed on 

the beamline BL9 at the electron storage ring DELTA. This Synchrotron facility is 

located on the campus of TU-Dortmund University, Dortmund, Germany. It is 

operated with an energy of 1.5 GeV and can reach a maximum ring current of 130 

mA. One wiggler, two undulators, and various bending magnets provide Synchrotron 

radiation for several beamlines. The beamline is designed as a multi-purpose 

beamline, different setups for X-ray diffraction (XRD), gracing incident diffraction 

(GID), X-ray reflectivity (XRR), and SAXS are available.32,36,37 The beam size is 

typically 1 mm in horizontal and 2 mm in vertical direction. The energy used for the 

XRR experiments was 27 keV to ensure proper transmission trough the sample. A 

PILATUS 100k detector was used for photon detection. 
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3 Biomolecules under extreme conditions 

In this chapter, the relevance of studies under extreme conditions of temperature and 

pressure will be highlighted. Afterwards follow three short reviews on the effect of 

pressure on lipids, nucleic acids and proteins, respectively. Within these three 

subchapters, the corresponding systems investigated in this thesis will be introduced. 

 

3.1 Extreme conditions of temperature and pressure 

3.1.1 High pressure conditions and the origin of life 

High hydrostatic pressure (HHP) is omnipresent in the environment. 88 % of the 

volume of the oceans is high pressure water. The average depth of the oceans is 

3800 m, thereby establishing an average HHP of 38 MPa. The highest hydrostatic 

pressures in the ocean can be found in the Mariana Trench with a depth of 11000 m, 

where pressures of 110 MPa prevail. Such habitats are generally cold (~3°C), since 

they lack the presence of sunlight. Exceptions are hydrothermal vents. In these, the 

water can reach temperatures of up to 400°C. If this hot water mixes with the 3°C 

cold seawater, zones with a wide range of temperatures are produced.38 

Very harsh conditions on the surface of the Hadean Earth including high radiation 

and a reducing atmosphere make deep sea waters a highly plausible habitat for the 

development of life.1 The shielding effect of the water might have given way to 

prebiotic synthesis of nucleic acids, fatty acids and amino acids.39,40 Upon this, an 

RNA world3 and the first vesicles as well as subsequent protocells might have 

originated from the self-assembly of these molecules.41,42 

 

3.1.2 Homeoviscous adaptation to high pressure habitats 

The biological relevance of HHP is not limited to the origin of life. It is interesting to 

study how organisms adapted to these conditions, i.e. which strategies they 

developed to cope with such high pressures, involving modifications in their proteins, 

their membrane lipids and the synthesis of stabilizing cosolutes. The latter have a 

great influence on the temperature and pressure stability of proteins. The cytoplasm 

of cells contains many different organic and inorganic osmolytes as well as a large 

number of other macromolecules (crowding effect).  
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The chaotropic agent urea, for example, can denature proteins. Destabilizers like this 

compound form hydrogen bonds with the backbone of proteins. Thus, they favor 

unfolding of proteins, upon which further parts of the backbone become exposed and 

provide additional binding sites.  

In contrast, cosmotropic osmolytes like trimethylamine oxide (TMAO) and sugars, 

stabilize proteins and are accumulated in the cells with rising pressure.43 These 

osmolytes are excluded from the surface of proteins. This effect is referred to as 

preferential exclusion or, since the binding of water is preferred over the binding of 

the osmolyte, as preferential hydration.44 These osmolytes stabilize the hydrogen 

bonding between water molecules and thus enhance the water structure in the 

hydration shell of a protein. Unfolding of a protein would provide further solvent 

accessible surface area and is avoided to prevent further loss in entropy by 

increasing the hydration shell surrounding the protein.45 

Unlike in diluted solutions commonly used in in vitro studies, the volume of biological 

cells is occupied by a large number of different macromolecules. They reduce the 

volume of solvent available for other macromolecules. Thereby, the effective 

concentration as well as the chemical activity of the macromolecule increases. This 

so called excluded volume effect can alter the rates and equilibrium constants of 

reactions performed by these molecules. Especially the association of proteins or 

nucleic acids is favored if the available volume is limited. Enzymatic reactions can 

also be affected, if the reaction requires a large conformational change of the shape 

of the enzyme.46 To mimic these crowding conditions in vitro, high concentrations of 

branched polymers may be added to the samples. For example, 15 wt% 

poly(ethylene glycol) with a molecular mass of 20 kDa is used as a crowder in this 

work to investigate the effect of crowding on the self-assembly of disodium guanosine 

monophosphate in aqueous solutions (Subchapter 5.1). 

 

3.1.3 Technological relevance of high hydrostatic pressure conditions 

Beside the biological relevance, pressure is also an interesting physical parameter. In 

contrast to temperature, which always involves concomitant changes of the energy 

and volume, pressure allows to study the volume changes only, leaving the energy in 

a system constant. Further, it provides a controlled way of modulating inter- and 
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intramolecular interactions. Non-covalent interactions are very sensitive to pressure, 

while covalent interactions are hardly influenced by pressures below 2 GPa.38 

Since non-covalent interactions are vital for many biomolecules and thus organisms, 

high pressure can be used in food processing to inactivate viruses and bacteria.47 In 

contrast to high temperature processes like pasteurization, the nutrients and flavors 

do not change markedly when high pressure is applied for preservation of foods. It 

affects all levels of cellular physiology, like metabolism, transport, transcription 

translation and membrane physiology. Cellular membranes are especially sensitive to 

changes in pressure.2  

A more detailed review on the effect of pressure on the different classes of 

biomolecules will be given in the following subchapters. 

 

3.2 The effect of temperature and pressure on lipids 

Biological membranes establish a high complexity, including various proteins and 

many different kinds of lipids involving different chain length, saturated and 

unsaturated chains and different head groups. Lipids are an essential component of 

cell membranes forming a selectively permeable barrier between the interior of a cell 

and the outer environment. 48 This compartmentalization is also crucial to build up a 

concentration or pH-gradient, like used for energy storage in mitochondria. In 

contemporary cells, this barrier is mainly formed by a bilayer of phospholipids with 

integrated proteins controlling transport processes.48 However, it was a long process 

until these modern lipids evolved. The first precursors to modern lipids were probably 

simple fatty acids, since they are found as a main product of Fisher-Tropsch-type 

reactions.49–54 

Lipids self-associate in aqueous environment due to the hydrophobic effect. They 

consist of a hydrophilic head group and a hydrophobic tail and can form micelles, 

vesicles and bilayers when present in a sufficient concentration.4 For example, fatty 

acids with a small hydrophilic head group and a single hydrophobic chain can form 

small, spherical micelles in which all chains associate in the center due to the 

hydrophobic effect and the hydrophilic head groups face the solvent. However, 

phospholipids like 1,2-dipalmitoylphosphatidylcholine (DPPC) with two aliphatic 

chains and a more bulky and charged head group forms bilayers. Whether a lipid 

forms micelles or bilayers depends on the critical packaging parameter (CCP)4,55: 
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CCP =
𝑉

𝐴 𝑙
    , (3.1) 

where 𝑉 is the volume of the hydrophobic chains, 𝐴 the area required for the head 

group and 𝑙  the length of the chains. If the CCP is lower than 1/3, micelles are 

formed. If it is between 1/2 and 1, bilayers are preferred. With a higher water content, 

these bilayers can be observed as multilamellar vesicles. Unilamellar vesicles are 

only stable at very low lipid concentrations in water.4 The size of micelles and 

unilamellar vesicles can be analyzed by small-angle X-ray scattering when in the 

right order of magnitude, i.e. between 1 and 100 nm in diameter. 

Due to the complexity of biological cell membranes, most studies on the phase 

behavior of lipid membranes were performed on model membranes consisting of one 

or very few components only. Even such a model system can show a very complex 

phase behavior. It can establish several lyotropic mesophases. This lyotropic 

polymorphism is influenced by many parameters, such as the characteristics of the 

lipid itself, the pH, the ionic strength, temperature, and pressure.2,56–61 

In phospholipids, lamellar mesophases are the most common. Saturated 

phospholipids, as common in modern membranes, undergo two main temperature-

dependent phase transitions: One pretransition from the Lβ′ gel-phase to the Pβ′ gel-

phase and a main transition from the Pβ′  gel-phase to the liquid-crystalline and 

biologically relevant Lα  phase at a higher temperature, 𝑇m . In the gel-phases, the 

chains are extended and ordered, while in the liquid phase they are conformationally 

disordered.60,61 

However, the lyotropic phases are not limited to lamellar structures. Bicontinuous 

cubic phases can be found in different lipids, like ethanolamines and 

monoacylglycerides occurring during fat digestion. Such phases also occur in the 

fusion process of two vesicles or cells and in cell division.2,62–64 They involve a 

rearrangement of biological membranes to form non-lamellar highly curved lipid 

structures. Membranes in their cubic phase consist of a mostly bicontinuous 

unilamellar lipid bilayer in a periodic three-dimensional order.2 Certain 

microemulsions can form disordered bicontinuous cubic phases. A third class of 

lyotropic mesophases are inverse hexagonal structures, which form when the CCP is 

larger than 1.  
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X-ray diffraction on stacked lipid layers allows to analyze these lyotropic mesophases 

by deriving the lattice constant from the position of the resulting Bragg peaks in 

dependence of temperature or pressure. In this work, this technique is applied in 

Subchapter 4.2, where the dimensions of the oil and water domains in a 

microemulsion are explored.  

Lipids are the class of biomolecules which is most sensitive to changes in pressure. 

The lipids adapt to the compression by changing their ordering and packing to reduce 

their volume.2 Thus, pressure has an ordering effect on these structures and can 

significantly increase the melting temperature necessary to reach the liquid phase 

essential for living organisms.38 Further, the chain ordering is unfavorable to micelles 

establishing a high surface curvature making the accommodation of cylindrically 

shaped molecules unfavorable. The formation of vesicles with a lower surface 

curvature then leads to a relaxation of the system.65 Further compression may lead to 

a deformation of the vesicles from a spherical to a prolate shape further reducing the 

surface.2,56,57 

Organisms developed a variety of strategies in order to keep their membranes in the 

fluid phase at cold temperatures or high pressures. The inclusion of unsaturated 

lipids as well as lipids with shorter chain length in biological membranes lowers the 

transition temperature  𝑇m .66–68 Further, cholesterol plays an important role in 

biological membranes and can reach up to 50% of the lipid content of animal cell 

membranes. On the liquid-crystalline phase, it has a condensing effect, thereby 

increasing the packing density of the chains and increasing the thickness of the 

membrane. On the other hand, it inhibits the condensation of the highly ordered 

chains in the gel phases present at low temperatures. By these two effects, it 

drastically decreases the transition enthalpy of the melting, ∆ 𝐻𝑚, until at cholesterol 

contents of more than 30 wt% the transition vanishes completely. These strategies 

are referred to as homeoviscous adaptation.2 

 

3.2.1 Prebiotic lipids 

Simple fatty acids and alkanols can be abiotically synthesized by Fisher-Tropsch-type 

reactions simulating geochemical conditions, like hydrothermal systems. These 

molecules have also been detected in carbonaceous meteorites.49–54 It was 

documented by Deamer and others, that these are able to form membrane-like 
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structures in aqueous solution.69–72 The stability of these membranes strongly 

depends on the pH, the concentration, ionic strength, and the specific head–group of 

the amphiphiles.65 In Subchapter 4.1, the self-assembly and phase behavior of a 

mixture of decanoic acid and decanol, which can be synthesized in Fisher-Tropsch-

type reactions, will be investigated. 

Decanoic acid, also referred to as capric acid, is a saturated fatty acid with a 

carboxylic head group (Figure 3-1). This fatty acid occurs naturally in coconut oil 

(about 10%) and palm kernel oil (about 4%), otherwise it is uncommon in typical seed 

oils.73 The head group is rather small compared to phospholipids. The lipid has a C10 

chain, which is the average length obtained for fatty acids in the Fisher-Tropsch-

reaction. This chain length is rather short in comparison to modern phospholipids, 

whose chains contain usually between 14 and 24 carbon atoms 48 and have at least 

one cis-double bond. 

At elevated pH values, like those used in our study, the decanoic acid becomes 

deprotonated. Thus, it is negatively charged, making the self assembly of decanoic 

acid molecules energetically unfavorable. A partial substitution of the fatty acid by its 

corresponding alcohol allows the formation of micelles and vesicles. Decanol (Figure 

3-1) is also a main product in Fisher-Tropsch-reactions. The effect of temperature, 

pressure and the preparation method on the morphology of the aggregates is 

investigated using SAXS in Subchapter 4.1. 

 

Figure 3-1. Chemical structures of decanoic acid and decanol. 

 

3.2.2 Bicontinuous microemulsions 

Lamellar-to-non-lamellar phase transitions in lipid model systems gained much 

attention during recent years as they are significant in a variety of dynamic 
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membrane-associated biological processes.74–76 For example, the transition from a 

fluid lamellar phase to an inverse bicontinuous cubic phase has been studied to 

reveal mechanistic information about the final step in vesicle fusion. During this 

process, transient contacts between lipid bilayer membranes are formed, which 

widen and break to form interlamellar attachments or fusion pores.74 Most of these 

studies were performed on highly ordered lipid systems. However, cellular 

membranes incorporate a high variety of lipids and can therefore be expected to form 

disordered phases. Disordered bicontinuous phases can, for example, be found in 

bicontinuous microemulsions (BME). 

Microemulsions are ternary systems that consist of water, oil, and a surfactant lining 

the interface between the two. Their composition is characterized by the ratio of 

water and oil as volume fraction, 𝜙, and by the mass fraction of surfactant in the 

emulsion, 𝛾77: 

𝜙 =
𝑉oil

𝑉water + 𝑉oil
 (3.2) 

𝛾 =
𝑚surfactant

𝑚surfactant +𝑚water +𝑚oil
 

(3.3) 

A microemulsion is referred to as bicontinuous if the oil and the water networks span 

the whole system. The bicontinuous phase is only obtained for certain compositions 

and at specific temperatures, as shown in the phase diagram in Figure 3-2 A. Beside 

the exclusively bicontinuous phase (1ϕ) , oil droplets in water with coexisting oil 

phase ( 2ϕ ) and water droplets in oil with coexisting water phase ( 2̅ϕ ), and 

bicontinuous phase in coexistence with pure water and oil phases (3ϕ), are further 

prominent phases. 

Interestingly, some BMEs show a transition from their bicontinuous structure in the 

bulk to a lamellar phase when approaching a surface (Figure 3-2), as revealed by 

neutron reflectometry and theory, recently.78,79 Further, grazing incidence neutron 

spin echo spectroscopy (GINSES) revealed that the dynamics within such a system 

is significantly faster in the proximity of a hydrophilic solid interface.80,81  

In the work presented in Subchapter 4.2, a mixture consisting of equal volumes of 

water and n-octane as an oil (𝜙 = 0.5), and 16 wt% of the surfactant tetraethylene 

glycol decanoyl ether (C10E4, 𝛾 = 0.16) was used to create a BME featuring such 
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phase behavior. As the name C10E4 suggests, this nonionic surfactant consists of four 

ethylene glycol repeat units (hydrophilic) and a C10 carbon chain (hydrophobic). The 

high amount of surfactant causes a very low interfacial tension between water and oil 

domains. Hence, curvature effects play an important role in BMEs. They are 

everywhere curved into saddle-like shapes to multiply interconnect throughout the 

sample in the three dimensions of space. 

Such bicontinuous microemulsions can, for example, serve as a model system for 

cellular compartmentalization. They also serve as reaction media for biocatalysis, 

polymer synthesis, the dispersion of drugs, the extraction of contaminated material, 

and oil recovery35,82–84.  
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Figure 3-2. (A) Phase diagram of a microemulsion consisting of n-octane/D2O/C10E4.79 The 
blue circle indicates the conditions used in this study (bicontinuous phase). (B) Illustration of 
the phase behavior of the same microemulsion near a hydrophilic interface. The surfactant is 
distributed at the interface between water and oil.  
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3.3 The effect of temperature and pressure on nucleic acids 

Nucleic acids fulfill various functions in living organisms. The genetic information is 

stored in the double-stranded desoxyribonucleic acid (DNA). During transcription, the 

RNA polymerase transcribes this DNA sequence to RNA sequences fulfilling different 

functions. The messenger RNA is used as a template during translation. In this 

process, a ribosome containing ribosomal RNA (rRNA) translates the messenger 

RNA (mRNA) to an amino acid sequence using transfer RNA (tRNA) coding specific 

amino acids. Moreover, RNAs are also involved in the regulation of gene 

expression.48  

 

Similar to proteins, RNAs can form complex tertiary structures. The scaffold for this 

structure is given by secondary structural elements that are determined by canonical 

and non-canonical intramolecular base pairing. This leads to several recognizable 

"domains" of secondary structure like hairpin loops, bulges, and internal loops.85 Due 

to the phosphate groups at the ribose-backbone, RNA is highly negatively charged. 

Therefore, metal ions such as Mg2+ are required to form secondary and tertiary 

structures, which are vital for their activity.86 These ions also influence the stability of 

RNA structures against temperature and pressure. Electrostatic interactions are 

weakened by pressure due to the electrostrictive effect.87–89 The dipolar water 

molecules can be packed more densely on exposed charged surfaces than in bulk 

water, leading to an increased hydration of the molecule. This is the driving force 

leading to unfolding. In contrast, pressure stabilizes stacking interactions and 

hydrogen bonds.90,91 

 

Since RNA can form these complex secondary and tertiary structures, RNA can also 

act as a catalyst. An RNA molecule with an enzymatic activity is referred to as 

ribozyme.92 The discovery or catalytically active RNA supported the RNA world 

hypothesis, which proposes that RNA played a key role as a first self-replicating 

system, since it can store information as well as catalyze reactions.3,93 

 

A possible scenario for the development of an RNA world is the deep sea close to 

hydrothermal vents. Temperatures can lead to the loss of the secondary structure of 

nucleic acids. The denaturation temperature, 𝑇m, of this transition is determined by 

the base sequence. In RNA, there are three hydrogen bonds involved in the pairing 
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between adenine and uracil and only two in the pairing between cytosine and 

guanine. Further, there are stacking interactions between the bases further stabilizing 

intramolecular base pairing. All these interactions can be disrupted by temperature 

and lead to denaturation (melting) of the nucleic acid’s secondary structure. 

Whereas the effects of pressure on lipid membranes and protein systems have been 

studied extensively, the knowledge about the effect of temperature and pressure on 

the conformation and stability of nucleic acids is still very limited. The intramolecular 

interactions within nucleic acids, i.e., base pairing and base stacking, are rather 

strong. These interactions are ultimately responsible for driving the native folding of 

DNA and RNA molecules. The effect of pressure on nucleic acids is rather complex. 

Generally, pressure stabilizes stacking interactions and hydrogen bonds and 

therefore increases 𝑇m.90,91  

 

Figure 3-3. Putative phase diagram for the helix-to-coil transition of double stranded nucleic 
acid polymers. The denaturation pressure, 𝑝m, is plotted as a function of temperature, 𝑇, for 

several values of the helix-to-coil transition temperature, 𝑇m, at atmospheric pressure: 10°C 
(solid line); 20°C (dashed line); 30°C (dotted line); 40°C (dash-dot); 60°C (dash-dot-dot); 
80°C (short dash); 100°C (short dot). In the figure, SS denotes the single stranded 
conformation and DS denotes the double stranded conformation.94 

 

Dubins et al. present a pressure-versus-temperature diagram which shows that the 

effect of pressure on double stranded nucleic acids strongly depends on 𝑇m  at 

ambient pressure conditions (Figure 3-3).94 If 𝑇m  is below 50°C at atmospheric 

pressure, pressures below 200 MPa have a destabilizing effect and pressures above 

200 MPa have a stabilizing effect. If 𝑇m is about 50°C at ambient pressure, elevated 
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pressures hardly affect the melting temperature. If 𝑇m is above 50°C at atmospheric 

pressure, pressures below 200 MPa have a stabilizing effect and pressures above 

200 MPa destabilizing effect, i.e. the effect of pressure is reversed.  

 

Canonical DNA duplex structures are usually based on Watson Crick base pairs. 

These structures were found to have a negative partial molar volume, i.e. the volume 

change upon unfolding (melting), ∆𝑉, of DNA is positive. This indicates that applying 

pressure will causes the duplex to be more stable.94–97 In comparison to proteins for 

which a ∆𝑉 of unfolding is typically -30 to -100 mL mol-1, the ∆𝑉 for DNA duplexes 

unfolding is rather small (about 1 to 5 mL mol-1).98,99 A negative volume change of 

nucleic acids upon melting only occurs in very special cases, such as in poly[d(A-T)]. 

Only in these cases, pressurization leads to the melting of the nucleic acid structures. 

Also structural investigations using high pressure NMR revealed that the 

conformation and configuration of the DNA duplex are not significantly perturbed 

under high pressure.96,100 While pressure is generally not able to affect duplex 

structures, it was found to have a pronounced effect on non-canonical DNA 

structures, like G-quadruplexes.95 In this case, the magnitude of ∆𝑉 can reach similar 

magnitudes as ∆𝑉 measured for proteins.  

Though of high biological relevance for organisms living in the deep sea and also 

considering this habitat as a plausible cradle of life, there is still a lack of 

investigations on the effect of pressure on RNAs. In comparison to DNA, RNA 

structures were found to be more labile towards pressure.95,101–106 For example, an 

RNA duplex with AU base pairs was found to be slightly destabilized by pressure,104 

and pressure was also found to destabilize tetraloop−receptor docking.105 

Furthermore, a previous study showed that HHP decreases the cleavage rate of the 

hairpin ribozyme, which was interpreted as pressure destabilizing formation of a 

catalytically critical loop−loop tertiary interaction in the ribozyme.106,107 

 

3.3.1 The self-assembly of guanosine monophosphate sodium salt 

The structural complexity of RNA molecules is not limited to base-paired regions and 

loops. Guanine quadruplex structures, in which four guanine bases form a tetramer 

via Hoogsteen base pairing, have achieved great attention during the last 

decades.108–111 They are found in human telomeres and in some promoter regions 
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and are thus associated with aging and cancer.112,113 Though most of the studies so 

far were performed on oligomers, G-tetramers can also be formed by the self-

assembly of single guanosine monophosphate molecules (GMP), see Figure 3-4 A 

and B.114–117 The disk-like G-tetramers stabilized by Hoogsteen base pairing can 

stack to form four stranded helical structures (Figure 3-4 C). These are stabilized by 

𝜋 − 𝜋  interactions. In these structures, each G-tetramer is rotated 30° against its 

neighbor and the stacking distance is 0.33 nm, which is very close to the distance 

between bases in an RNA helix.115,118 

The formation of the tetramers as well as the formation of helical structures are 

promoted by monovalent cations ( K+, Na+, NH4
+), which can be sandwiched between 

two tetramers and thereby be complexed by eight carbonyl oxygens of the 

nucleobases. Moreover, cations are also located at the centers of the tetramers 

themselves, being coordinated by 4 oxygen atoms. In addition to the central channel 

of the helical structures, the cations can neutralize the negative surface charge of the 

phosphate backbone. 115,118  

With a sufficient amount of monovalent cations, the helices can associate to form a 

cholesteric and a hexagonal phase (Figure 3-4 D). The center-to-center distance 

between helices in the hexagonal phase is about 3.2 nm, i.e., there is a distance of 

about 0.7 nm between the helix surfaces.114 This distance reflects the balance 

between the attractive forces leading to self-assembly and the repulsive forces 

preventing contact between the helices. The repulsion is probably of hydrational and 

not electrostatic nature, as Mariani et al. showed that this repulsion persists even at 

very high salt concentrations.114 

In the work presented in Subchapter 5.1, the effect of temperature and pressure as 

well as of different cosolutes (monovalent cations, TMAO, PEG 20 kDa) on the self-

assembly of guanosine monophsosphate sodium salt at various pressure conditions 

is explored. Depending on the conditions, the size of the aggregates is analyzed or 

the changes in the lyotropic hexagonal phase with pressure is investigated. 
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.  

Figure 3-4. Self-assembly of GMP. (A) Structure of a GMP molecule. (B) Assembly of four 
GMP molecules to form a tetramer via Hoogsteen base pairing. (C) Stacking of tetramers to 
form a helical structure. (D) Assembly of the helices to form a lyotropic hexagonal phase. 
Parts of the figure were adapted from literature.118 

 

3.3.2 The small RNA hairpin 

The hairpin is a common secondary structure element in RNA. Hairpin motives can 

serve as nucleation sites for RNA folding, ligand binding and tertiary folding 

initiation,119–125 for example in ribozymes and riboswitches. The small RNA hairpin 

(sRNAh) structure is formed when a polynucleotide single strand folds back on itself. 

The formation of Watson-Crick base pairs results in a helical stem capped by a loop 

(Figure 3-5). The amount of nucleotide residues at the loop varies, depending on the 

RNA molecule. For example, tRNA hairpin loops contain seven nucleotides while 

ribosomal hairpin loops contain only four nucleotides.119  

It has been found in various studies that 70% of all tetraloops in ribosomal RNA are 

either UNCG or GNRA (N = nucleotide, R = purine), and they vary between 

organisms, from UUCG to GCAA for the same hairpin in closely related organisms.126 

Due to the presence of several non-canonical interactions,127,128 these RNA hairpins 

have a significant thermodynamic stability.  

Beside their pronounced thermostability, hairpin structures are of high biological 

importance, since they occur in many RNA structures. Their features as common 
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simple and small structural elements make them ideal models for folding studies. 

Therefore, they serve as prototype for folding dynamics and structural stability 

studies of polynucleotides, also in theoretical studies 104,128–133.  

These theoretical studies predicted a rather complex energy landscape, even for 

such small tetraloop hairpins like UUCG and GCAA hairpin loops.128 Their folding 

mechanism cannot be depicted by a simple two-state kinetic profile. They are 

predicted to be highly thermostable, even at simulation temperatures of 1000 K, 

extended-chain confirmations are hardly populated. 

The folding free energy landscape of the RNA tetraloop gcGCAAgc recently 

investigated by a molecular dynamic study revealed that the stem of the loop 

preferably adapts a right-handed A-RNA confirmation, while the loop can adapt 

various configurations. But also a stem in the left-handed Z-RNA conformation and a 

compact purine triplet have been found. All of these confirmations establish different 

stabilities against temperature and pressure.133 High hydrostatic pressure can lead to 

a shift in the equilibrium from the Z-RNA to the A-RNA confirmation, since the first is 

destabilized and the latter is stabilized upon compression. Beside directly influencing 

the folding of the RNA, high pressure can also alter the interaction of the RNA with 

solvent molecules and ions. 

The small hairpin under investigation in this work (Subchapter 5.2) is a short strand of 

eight nucleotides with the sequence gcUUCGgc (Figure 3-5). The bases in lower 

case refer to the helical stem, i.e. form base pairs, while those in the upper case are 

in the loop region. The folding/unfolding equilibrium thermodynamics of this RNA 

tetraloop has been studied theoretically by Gracia and Paschek. Their work resulted 

in a temperature-pressure stability phase diagram of the small RNA hairpin, which 

shows the population of multiple conformational states.104 

The construct used in the work presented here is labeled with two fluorophores, since 

the measurements were performed to complement FRET studies. The donor 

fluorophores Cy3 and the acceptor fluorophore Cy5 are attached to the 5’ and 3’ 

ends of the hairpin, respectively.  
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Figure 3-5. Schematic representation (A) and 3D-structure 129 (B) of the stem-loop structure 
of the sRNAh with the sequence gcUUCGgc. The bases written in upper case are the 
unpaired bases found in the loop region, and those written in lower case comprise the stem. 
Protein Data Bank (PDB): 1F7Y. In the labeled sRNAh, the donor fluorophore Cy3 and the 
acceptor fluorophore Cy5 are attached to the 5’ and 3’ ends of the hairpin, respectively. 

 

3.3.3 The hairpin ribozyme  

The RNA world hypothesis proposes that early life forms were based on RNA 

molecules. These molecules combined two important functions: Storage of genetic 

information and catalytic activity.3 RNA with these two functions is referred to as 

ribozyme. The discovery of ribozymes greatly supported the RNA world hypothesis. 

Today it is known that there are thousands of ribozymes in each living cell. For 

example, the 28S-rRNA catalyzes the formation of peptide bonds in the eukaryotic 

ribosome during translation.134 

The cleavage or ligation of RNA and DNA and peptide bond formation are the most 

common activities of natural or in vitro-evolved ribozymes.135 Thus, RNA can splice 

itself to its functional form (self-cleavage). In former times, it was assumed that the 

catalytic activity of ribozymes would be limited to phosphate chemistry. This 

assumption has been overcome and it is established now that the catalytic range is 

much broader.  

However, it is still largely unknown how the catalysis works mechanistically and 

which conformational changes need to be involved, in particular upon changes in 

temperature and pressure. Although pressure effects on protein-catalyzed reactions 

have been extensively studied in the last years,136–143 there are only a few studies 

investigating the pressure effects on catalytic reactions of ribozymes.106,144,145 In 

particular, very little is known about pressure-induced effects on the self-cleavage 

reaction catalyzed by ribozymes. 
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The hairpin ribozyme (HpRz) studied in this work (Subchapter 5.3) is a small 

nucleolytic ribozyme found in tobacco ringspot virus satellites. It catalyzes a 

reversible self-cleavage reaction by transesterification, which is sequence-

specific.146–149 The cleavage and ligation process the products of rolling circle virus 

replication into linear and circular satellite RNA molecules.149 The hairpin ribozyme 

consists of two independently folding domains, A and B. Each of them consists of an 

internal loop and two helices (Figure 3-6 A). Its tertiary structure (Figure 3-6 B) is 

similar to a paperclip, hence it is also referred to as ‘paperclip ribozyme’.  

 

 

Figure 3-6. (A) Secondary structure 150 and (B) tertiary structure (PDB ID: 2OUE) of the self-
cleaving wild-type hairpin ribozyme (HpRz) from tobacco ringspot virus satellite. The arrow in 
(A) marks the self-cleavage site. (C) Schematic representation of the entire multistep self-
cleavage process of HpRz involving non-covalent steps before and after the covalent self-
cleavage reaction from (2) to (3). Scheme based on a publication by Walter et al.151 
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The overall reaction process contains at least three major steps. The first step is the 

docking of the loops. After this follows the chemical cleavage step itself and finally 

undocking and the dissociation of the cleaved product (Figure 3-6 C).152–160 The 

docked state, also referred to as pre-catalytic state, is essential for the cleavage 

reaction. It is formed by a rearrangement of loops A and B (Figure 3-6 C) by coming 

into close proximity.150,161,162 It has been found that the adjacent nucleobases A38 

and G8 in the reaction site play an important role in the stabilization of the transition 

state via distinct hydrogen bonding interactions.163–170 

 

3.3.4 Phenylalanine transfer RNA  

In contemporary cells, aminoacylated transfer RNA connects the RNA and the 

protein world and plays a central role in protein biosynthesis.93 They translate the 

codons in the mRNA to the according amino acid. The translation from RNA to an 

amino acid sequence is not only undertaken frequently in each living cell, but was 

also a key step in the development of proteins and the establishment of the genetic 

code. De Farias et al. even proposed very recently that these molecules were the 

core in the transition from an RNA to a modern ribonucleoprotein world.171Typically, 

tRNA molecules have a length of 76-95 nucleotides. In general, tRNAs establish a 

cloverleaf-like secondary structure. Their anticodon, consisting of three bases 

complementary to the codon in the mRNA, is in the middle of their lower loop. They 

fold into complex three-dimensional structures, which are usually L-shaped. Detailed 

molecular mechanisms that drive formation of RNA tertiary interactions and how they 

are affected by temperature, pressure, and ionic strength, are not yet well 

understood.  

The molecule under investigation in this work (Subchapter 5.4) is the 76-residue 

yeast phenylalanine transfer RNA, tRNAPhe, of Saccharomyces cerevisiae. This 

molecule has a particularly well known structure which includes many structural 

motifs common in tRNA such as turns and hairpins. Like many tRNAs, tRNAPhe has a 

cloverleaf-like secondary structure that turns into a L-shape tertiary structure upon 

folding (Figure 3-7). In addition, it has a modified nucleobase in the anticodon loop, 

the wybutine or Y-base, which was used as intrinsic fluorophor in complementary 

fluorescence spectroscopic studies. As observed frequently in RNAs, divalent ions, 

such as Mg2+, are required for the conformational stability of the tertiary structure.172–

174 The latter contains various cation binding sites. The complex tertiary structure is 
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further stabilized by extensive stacking interactions and base pairing within and 

between its helical stems. Interestingly, the majority of these tertiary base interactions 

are non-Watson-Crick pairs.  

 

Figure 3-7. Cloverleaf-like secondary structure (A) and L-shaped tertiary structure (B) of 
tRNAPhe.175,176 The Y-base is indicated by a red arrow. 

 

3.4 The effect of temperature and pressure on proteins and peptides 

Proteins fulfill various functions inside the cell. They catalyze metabolic reactions, are 

involved in DNA replication and the response to stimuli as well as in the 

transportation of molecules and in maintaining the cellular skeleton. The primary 

structure of a protein is determined by its amino acid sequence, which is dictated by 

the nucleotide sequence of their genes. Depending on this sequence, the amino acid 

chain folds to α -helices, 𝛽 -sheets and loop regions. These structural motifs are 

referred to as secondary structure of a protein. They are based on intramolecular 

hydrogen bonds within the peptide backbone of the protein. Finally, hydrophobic 

interactions between the amino acid residues lead to the complex, three-dimensional 

tertiary structure required for the function of the protein.48 This complex folding can 

be influenced by parameters like temperature, pressure and cosolutes, which might 

lead to the denaturation of a protein.  

While heat generally results in the loss of hydrogen bonds resulting in extended 

unfolded states, pressure favors hydrogen bonding but disturbs hydrophobic 
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interactions. Thus, in proteins the pressure-induced unfolded state can be 

substantially different from the heat-induced unfolded state. The unfolded state 

induced by pressure is more compact and often resembles “molten-globe”-type 

structures, since mainly the tertiary structure is influenced and the secondary 

structure can even be stabilized. Next to the decrease of void volume, the penetration 

of water between the hydrophobic residues in the protein interior is discussed as a 

plausible mechanism for pressure denaturation. While monomeric proteins usually 

unfold at pressures above 200 MPa, oligomeric or two different, interacting proteins 

might be disrupted already at much lower pressures of 100-200 MPa only.38,177–179 

Noteworthy, proteins can also unfold upon cooling, even though it is difficult to 

access this process experimentally. Only moderate pressure allows to cool aqueous 

solutions to temperatures of about -15°C in order to study the cold denaturation of 

proteins. Like pressure, cold temperature does not lead to a complete disruption of all 

hydrogen bonds, many structural motives within the protein remain intact.38  

T 𝑝, 𝑇-stability diagram of a protein has an elliptical shape. Several methods can be 

used to determine this diagram. Thermodynamic methods like differential scanning 

calorimetry (DSC) can be applied to investigate the changes in energy upon 

denaturation. Spectroscopic methods like Fourier transform infrared spectroscopy 

(FTIR) and NMR allow to explore the changes in secondary structure. Finally, 

scattering methods, as mainly used in this work, allow to study changes in size and 

shape upon denaturation. As an example, the 𝑝, 𝑇-diagram of SNase is shown in 

Figure 3-8.180 
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Figure 3-8. Temperature versus pressure stability diagram of SNase at pH 5.5 as 
obtained by SAXS, FTIR and DSC measurements.180 

 

3.4.1 Elastin-like peptide 

The elastic properties of connective tissues like skin, lungs, heart and vascular walls 

are maintained by the protein elastin. It is responsible for the tissue resuming its 

shape after being stretched or contracted. The elastic properties of elastin are 

determined by its molecular structure. It is composed of cross-linked units of its 

soluble precursor, tropoelastin. These molecules are cross-linked via hydrophilic 

domains, which are rich in the amino acid lysine. 181 Tropoelastin consists of a large 

number of hydrophobic domains containing repetitive units of amino acids like 

VPGVG, GGVP or GVGVAP, which are also responsible for the elasticity of the 

monomeric precursor of elastin.182 

Due to the many hydrophobic residues, tropoelastin performs a so-called ‘inverse 

temperature transition’ (ITT) upon heating. In particular, temperature induces a 

transition from a disordered to an ordered state in this protein, which is contradictory 

to the usual effect of temperature on proteins. This process is still not well 

understood, however, it is assumed that the gain in entropy of the water molecules 

released upon hydrophobic interactions is its driving force. Details of the molecular 

origin of this process are still subject of controversial debate. The different 
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approaches of explaining this unusual behavior involve classical rubber 

elasticity,183,184 librational entropy mechanisms,184–186 the hydrophobic collapse, 

multiphase models187,188 or iceberg/clathrate formation. 

Interestingly, even a single VPGVG pentapeptide shows a transition to a Type II 

𝛽-turn with increasing temperature.189 Thus, such short peptides can be used as a 

model system. The studies presented here (Subchapter 6.1) were performed on the 

elastin-like peptide (ELP) with the sequence GVG(VPGVG)3 in order to investigate 

the influence of cosolvents and confinement on the inverse temperature transition of 

ELPs. The ITT of this peptide has previously been studied by NMR190 and theoretical 

investigations191. The work presented in this thesis focuses on the overall changes in 

shape with temperature under the influence of different cosolvents like TMAO, urea 

and trifluoroethanol (TFE).192  

 

Figure 3-9. The 𝛽-turn in the pentapeptide repeat unit (A)193 and illustration of the three 
dimensional, left-handed 𝛽 -helix structure occurring in the peptide GVG(VPGVG)3 (B).190 

Hydrogen bonds are indicated as dashed lines in (A).  

 

3.4.2 Phosphoprotein 32 

Phosphoprotein 32 (PP32), also known as Anp32A, is a member of an evolutionarily 

conserved acidic nuclear phosphoprotein family. Proteins of the PP32 type are 

involved in many cellular functions, such as modulation of cellular signaling and gene 

expression. They fulfill important functions, such as regulation of the morphology and 

dynamics of the cytoskeleton, cell adhesion, neuronal development, or cerebellar 

morphogenesis.194 Furthermore, PP32 can act as a tumor suppressor.195 PP32 

proteins establish leucine-rich repeats (LRR), a structural motif occurring in many 

functionally different proteins. The leucine-rich repeats form β-strands with the 
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hydrophobic leucines pointing towards the core of the protein.196 These repeats are 

very well suited to investigate the energetic contribution of single structural motives, 

since their unfolding is very cooperative.197  

 

Figure 3-10. Ribbon diagram of the crystal structure of the repeat protein PP32 (PDB: 2JE0), 
created with PyMOL.198 The N-terminal capping motif is shown in yellow. Repeats 1−5 are in 
red, green, blue, purple, and orange, respectively, and the C-terminal capping motif is 
colored cyan. The grey spheres represent the solvent excluded voids in the structure, which 
are calculated by HOLLOW199 with a grid of 0.025 nm and a probe radius of 0.12 nm. The 
hydrogen-bonded Y131 and D146 are shown as black sticks.  

 

In many proteins, capping motifs are attached to the LRR motif. They shield the 

hydrophobic core from the solvent, thereby preventing aggregation.200 Further, they 

guide folding of the LRR region and can bind to other proteins. PP32 has five LRRs 

in its LRR domain, which is flanked by an N-terminal (NCap) and a C-terminal (CCap) 

capping motif, which are both highly conserved. In the CCap, Y131 and D146 form a 

structural hydrogen bond. Removal of the CCap unfolds PP32 completely. 201 If these 

residues are mutated (Y131F/D146L) to interrupt this hydrogen bond, the overall fold 

is still very similar to the wildtype PP32. This indicates that this H-bond is not vital for 

maintaining the structure. In contrast to the CCap, removal of the NCap does not lead 

to complete unfolding of the protein. Even though the LRR region is destabilized, it 

still retains significant secondary structure content.201  

 

3.4.3 Actin bundles 

The maintenance of the cytoskeleton is vital for every cell. It provides the cell shape 

and integrity and permits movement. One of the most important proteins in this 

skeleton is actin; it is the most abundant intracellular protein in many eukaryotic cells. 
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It is highly conserved, none of its 375 amino acids differs between chicken and 

humans in its skeletal muscle isoform.202 

The monomeric form of actin is referred to as G-actin (G for globular). It is folded into 

two domains, which are stabilized by an adenine nucleotide incorporated between 

them. In cells, G-actin is usually saturated with ATP, because it occurs in higher 

concentrations therein. However, actin has also a high affinity for ADP and, due to 

many carboxylic side chains of its amino acids, to Mg2+ ions. The G-actin proteins 

can self-assemble to form filamentous actin (F-actin), which is responsible for the 

mechanical stability of cells (Figure 3-11). This self-assembly proceeds in three 

steps. The first and rate-determining step is the nucleation, in which three G-actin 

proteins form a nucleus. After this follows the elongation step, in which 

polymerization is much faster than depolymerization and the filament grows. 

Depolymerization occurs, when the bound ATP becomes hydrolyzed to ADP. Finally, 

the process reaches a steady-state, in which polymerization and depolymerization 

are in equilibrium, so the length of the filament remains constant.48  

At physiological pH-values, F-actin is a polyanion and has similar features as other 

well-characterized polyelectrolytes, such as double-stranded DNA.203 Thus, repulsive 

interactions between actin filaments would be expected in aqueous solution 

according to mean-field theories such as the Poisson-Boltzmann formalism.204 In 

vitro, like-charge attractions between the polyanionic actin filaments can be induced 

by adding a high amount of divalent cations. In this case, F-actin can be bundeled to 

form B-actin (Figure 3-11).  

In vivo, actin binding proteins, such as fascin, are used to bundle these filaments. 

Fascin is a key bundling protein in filopodia.205–208 These thin, finger-like membrane 

protrusions can sense the mechanical and chemical environment of a cell.209 

Filopodia establish various functions, they are employed in cell migration, play an 

important role in the adhesion of cells to the extracellular matrix within tissues, in the 

formation of neurite outgrowth, and in wound healing.210 Interestingly, fascin is also a 

biomarker in cancer diagnosis and prognosis because its elevated expression 

correlates with increased tumor metastasis and invasiveness.211 Fascin has a 

molecular weight of 55 kDa and establishes four β-trefoil domains arranged in a two-

lobed structure with pseudo-2-fold symmetry.206,207  
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The molecular mechanism of F-actin bundling by fascin is not fully understood yet. 

Mutagenesis studies revealed at least two positively charged actin binding sites 

which are conformationally connected, allowing cooperative binding of F-actin.207 

When approximately every fourth actin is bound to fascin, saturation of bundling 

occurs.205,208 Fascin induces a maximal overtwist of 0.9° per monomer in the native 

F-actin helix by bundling (13/6 monomers/turn). This induced turn is concentration 

dependent.212 

The question why nature actively produces proteins to bundle F-actin when it can 

also be bundled by divalent ions present in high abundance within the cell is 

addressed in Subchapter 6.3. The hexagonal arrangement of the actin filaments 

within the B-actin allows to explore the temperature and pressure stability of 

magnesium- and fascin-induced bundles using X-ray diffraction.213 

 

Figure 3-11. Structural forms of actin. Monomeric G-actin (PDB-ID:1J6Z) polymerizes to 
filaments (F-actin, PDB-ID: 3G37). Condensation agents, such as fascin (PDB-ID: 3P53) or 
magnesium, can induce bundling of actin filaments (B-actin) with a hexagonal structure. 
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4 Investigations of lipids 

The following subchapters describe the structural investigations on two different lipid 

systems by scattering methods. In the first subchapter, the effect of temperature and 

pressure on a prebiotic lipid mixture is explored. Thereby, SAXS is applied to monitor 

the changes in the equilibrium between micelles and vesicles with these parameters. 

In the second subchapter, the effect of pressure on the lyotropic phases of a 

microemulsion is analyzed in direct proximity to a Si-wafer and in the bulk solution 

using X-ray reflectivity and SAXS, respectively.  

 

4.1 Prebiotic lipids 

4.1.1 Introduction 

In this subchapter, the structural properties of a prebiotic lipid system consisting of an 

aqueous solution containing decanoic acid (DA) and decanol (DOH) are investigated 

using scattering techniques. Small-angle x-ray scattering is an excellent method of 

choice for structural elucidation of systems of colloidal size, typically up to 100 nm, 

and was used to obtain further insights into the pressure- and temperature-induced 

structural changes of the prebiotic lipid mixture, especially on the equilibrium between 

micelles and vesicles. Dr. Shobhna Kapoor and made complementary investigations 

on the same system using FTIR, electron microscopy, and dynamic light scattering. 

Dr. Sebastian Grobelny is acknowledged for recording the pressure-dependent 

scattering data, which was evaluated in the course of this work and is presented here 

together with the data recorded using our in-house instrument. The results of these 

investigations have been published in the journal Angewandte Chemie65 and are 

partially reproduced here with permission, Copyright © 2014 by John Wiley & Sons.  

 

4.1.2 Materials and methods 

Sample preparation 

Decanoic acid, decanol and 1-decanoyl-rac-glycerol and all other chemicals and 

solvents were purchased from Sigma-Aldrich. The vesicles were prepared by mixing 

the fatty acid and the other components as neat oils to obtain the desired 

composition, following dispersion in aqueous 0.2 M bicine buffer solution titrated with 

NaOH to pH 8.5. This was followed by vigorous vortexing and tumbling overnight at 
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room temperature. The final total amphiphile concentration (i.e. decanoic acid + 

decanol) in the preparation was 80 mM, unless noted otherwise. 

 

For some samples, vesicles were extruded 11 times through 100 nm pore-sized 

polycarbonate membrane using an extruder (Avanti Polar lipids, Alabaster, USA). To 

prevent excessive polycarbonate membrane fouling and concomitant loss of fatty 

acid material, the hydrated fatty acid mixtures were disrupted by five freeze-and-thaw 

cycles prior to extrusion. In addition, the extrusion was performed at a temperature 

above the melting temperature of the amphiphillic mixture (i.e. at room temperature, 

25°C). These steps help prevent significant loss of material during extrusion, and 

improves the homogeneity of the size distribution of the final suspension.214 

 

Small-angle X-ray scattering  

The pressure-dependent SAXS experiments performed by Dr. Sebastian Grobelny 

were carried out at the high brilliance beamline ID02 at the European Synchrotron 

Radiation Facility in Grenoble, France. The X-ray energy was 12.4 keV, which 

corresponds to a wavelength 𝜆  of 0.1 nm, with a flux of 4∙1013 photons/s. The 

pressure-dependent scattering curves were recorded with a CCD-detector with a 

sample to detector distance of 1 m, covering a range of momentum transfers from 0.2 

to 3.30 nm−1. The exposure time was between 0.05 and 0.5 s. The measurements 

were carried out in the high-pressure cell constructed by Woenckhaus34. High 

hydrostatic pressures up to 250 MPa in steps of 10 MPa were applied at 25°C using 

water as pressurizing medium. Temperature control (with an accuracy of ± 0.2°C) 

was achieved by a computer-controlled water circulation system from a thermostat 

through the temperature-controlled jacket of the pressure cell. The time for thermal 

equilibration before each measurement was set to 15 min. For the measurements, a 

total of 1 mL of the sample was filled into the pressure cell, yielding a concentration 

of 3 % (w/w). The scattering intensity curves were corrected by background 

subtraction using the scattering intensity of the pure solvent, taking into account the 

different absorption factors, and plotted against the magnitude of the wave vector 

transfer, 𝑞 , by a MATLAB based software, provided by the ESRF215. The pressure-

dependent SAXS measurements only employed the non-extruded fatty acid mixture 

comprising decanoic acid: decanol (2:1 molar ratio, pH 8.5). 
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In-house measurements were carried out in the SAXSess mc2 small-angle X-ray 

scattering instrument from Anton Paar GmbH (Graz, Austria). The sample was 

measured in the slit configuration using a 1 mm quartz capillary provided with the 

TCS 120 temperature-controlled sample holder unit from Anton Paar (Graz, Austria). 

The exposure time of the sample to the X-rays was 30 min per measurement. While 

recording the temperature-dependent scattering data, temperature was adjusted 

using a Julado F25 heating circulator (Seelbach, Germany) and the actual cell 

temperature was monitored by the TCS control unit for TCS sample stages from 

Anton Paar (Graz, Austria). The 2D images obtained were transformed to an intensity 

profile, 𝐼(𝑞), using the software 2D-SAXSquant. The data were collected for 𝑞-values 

between 0.12 and 4.00 nm−1.  

The raw data obtained were normalized to the primary beam intensity and corrected 

by background subtraction using the scattering intensity of the pure solvent (0.2 M 

bicine buffer) in SAXSquant 3.1 software provided with the SAXSess mc2 system. 

Further, the data were desmeared to compensate for instrumental broadening effects 

("slit-smearing") using the GNOM software216. The latter was also used to calculate 

the according pair distance distribution functions, 𝑃(𝑟), using the indirect Fourier 

transformation. SAXS measurements were carried out for several mixtures including 

the decanoic acid: decanol, 1:1 and 1:2 molar ratio, with different preparation 

protocols as well as at different temperatures.  

 

4.1.3 Results and discussion 

Effect of decanol:decanoic acid ratio 

Figure 4-1 displays two scattering profiles of solutions with a total lipid content of 

3 wt% (80 mM) in bicine buffer, pH 8.5, at 25°C. To investigate the effect of the ratio 

of decanoic acid to decanol (DA:DOH), the latter was once chosen to be 2:1 and 

once 1:1. The scattering profile of the solution with the 2:1 ratio exhibits a plateau at 

small 𝑞 -values. This indicates that the species present in the mixture are small 

enough to be analyzed by SAXS. Contrary, the curve with a higher amount of alcohol 

(1:1, DA:DOH) shows a higher intensity in this region and an increase towards low 𝑞-

values. Hence, aggregates lager than suitable for this method are present in the 

mixture.  
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Such behavior can be expected, since DA is negatively charged at the pH selected 

for this study (pH 8.5). Increasing the amount of DA in the mixture is thus expected to 

hinder self assembly of the lipid molecules, while a higher amount of DOH favors it by 

screening the negative charges. Therefore, the following temperature- and pressure-

dependent measurements were performed on mixtures comprising the 2:1 DA:DOH 

ratio. 

 

Figure 4-1. Effect of the ratio between decanoic acid and decanol on the scattering profile of 
the mixture. 

Beside the DA:DOH ratio, the effect of extrusion on the system was investigated. 

Extrusion is a method to homogenize the size distribution of vesicles within a 

solution. It was found that extrusion hardly had an effect on the scattering curves 

(Figure A1). This can be explained by the high dynamics of the system, which 

immediately relaxes to the original micelle-vesicle equilibrium present before 

extrusion. Extrusion was therefore omitted for the temperature- and pressure-

dependent scattering experiments to prevent the loss of lipids.  
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Effect of pressure 

In this section, the changes in the scattering profile of the prebiotic lipid mixture upon 

compression are analyzed. Figure 4-2 displays patterns of the decanoic acid:decanol 

system upon compression at 25°C. The absence of Bragg reflections indicates, in 

agreement with TEM data65 that the vesicles present in the mixture are unilamellar. 

At ambient pressure, the distance-distribution function 𝑃(𝑟) (Figure 4-3), derived from 

the scattering intensity data, depicts not only spherical particles with radii of 20 nm 

and more, but also a significant population of small-sized particles (i.e., micelles), 

confirming the co-existence of vesicles and micelles in the prebiotic lipid mixture 

observed in the TEM images.65 

Upon pressurization, the scattering intensities at small angles increase, indicating 

formation of more and larger vesicles at the expense of small-sized micelles (Figure 

4-2). This behavior is clearly evident by the pressure-dependent changes in the 𝑃(𝑟) 

functions, which show a strong decrease in the micellar population under pressure 

(Figure 4-3, inset); some selected fits used for the calculation of 𝑃(𝑟) are depicted in 

Figure A2. Hence, we can conclude that pressurization leads to a redistribution of the 

population of micelles and vesicles, favoring vesicular particles under pressure.  

 

Figure 4-2. Pressure dependent SAXS profiles for the prebiotic lipid mixture comprising 
decanoic acid : decanol (2:1 molar ratio, pH 8.5) in the range from 0.1 MPa to 250 MPa (step 
size 10 MPa) at 25°C. 
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Figure 4-3. The corresponding pair distance distribution functions, 𝑃(𝑟), to the scattering 
profiles displayed in Figure 4-2. Inset: Zoom-in of the changes within the micellar sub 
population upon compression. Pressure increases the amount of vesicular structures of 
about 40-100 nm size. 

 

Effect of temperature 

Temperature-dependent SAXS profiles of the same system at ambient pressure also 

show an increase in the scattering intensity at small angles with rising temperature, 

indicating an increase in larger particles (Figure 4-4). Due to the large size and 

polydispersity of the vesicles and the limitation in the smaller 𝑞 − range on the 

SAXSess instrument, a more quantitative analysis employing the calculation of 𝑃(𝑟) 

functions was omitted. Owing to the size limitation of the SAXS technique, 

complementary dynamic light scattering studies were carried out as well. They 

confirmed the presence of vesicles and their increase in size and polydispersity with 

increasing temperature.65  
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Figure 4-4. Temperature dependent SAXS profiles in the range from 5°C to 75°C (step size 
5°C) at ambient pressure (0.1 MPa).  

 

Conclusions 

The results show that an increase of the neutral DOH in relation to the negatively 

charged DA results in lager species, which are too large to be analyzed by SAXS in 

more detail. The system is so dynamic that extrusion does not have a lasting effect 

on the size distribution of the species present in it. 

 

In the prebiotic mixture containing 2:1 DA to DOH, SAXS confirmed the coexistence 

of micelles and unilamelar vesicles. High hydrostatic pressure increases the amount 

of vesicular structures of short-length fatty-acid-membranes, which can serve as 

prebiotic membrane envelopes. Complementary laurdan fluorescence, DSC and IR 

measurements were performed in order to evaluate the fluidity and permeability of 

such membranes.65 They showed that even without the complex, highly evolved 

protein machinery of modern biomembranes, the dynamic nature of fluid fatty-acid-

membranes seems particularly well suited for growth, division, and nutrient uptake.65  

 

Together with the other methods, the SAXS results permitted the construction of a 

temperature-pressure stability diagram of the prebiotic lipid mixture.65 According to 
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this, fatty-acid-based vesicles are not only highly temperature resistant, but also 

pressure-stable up to the high pressures reached in the deep sea and sub-seafloor 

crust. From the view of membrane biophysical chemistry, our results propose that 

high hydrostatic pressure conditions are highly plausible as planetary environments 

for the origin of life on Earth.  

Our studies also show that pressures in the range encountered in the deep sea could 

serve as a multifunctional toggle: it limits the flexibility and permeability and therefore 

reduces the leakage rate of solutes. At the same time, pressure keeps the membrane 

in a fluid-like state, which is required for its function. Our observations extend the 

range of tolerable environments for early cell membranes and may add another layer 

of complexity to developing laboratory models of primitive cell membranes. Such 

approach to explore laboratory models of primitive cell membranes under extreme 

environmental conditions aids in better understanding of the evolutionary pathway 

that led to the first forms of boundary membrane that might potentially isolate a 

primitive catalytic replicating system from the nutrients required for growth. 217 

 

4.2 Microemulsions 

4.2.1 Introduction 

The pressure effects on lyotropic mesophases have been studied mainly on ordered 

lipid structures in recent years. 2,74,218,219 The effect of conformational disorder and 

the presence of interfaces (hard and soft matter) on such kind of mesophase 

transitions is much less explored, though also of high biological and technical 

relevance. To investigate the effects of disorder and the presence of interfaces, the 

pressure-response on the structure of a disordered bicontinuous microemulsion at a 

solid interface was studied by X-ray reflectivity measurements. For comparison, 

small-angle X-ray scattering was used to analyze the behavior of the bulk solution. 

Relevant applications range from studies of non-lamellar lipid architectures in cellulo 

at high pressures to strategies aiming at enhancing oil recovery using 

microemulsions in boreholes.  

 

An important parameter in these studies is the persistent length of the 

microemulsion,𝜉p , obtained using the Teubner Strey model (Subchapter 2.1.4). It 
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describes the length over which the film is locally flat, and is given by 𝜉p =

𝑙 exp (2π𝜅/(𝑘B 𝑇)) where 𝑙  is the molecular length of the surfactant. 220,221 High 𝜉p -

values indicate flat surfaces, whereas low values are found with highly curved 

interfaces, which is the case if the bending elastic constant,  , of the film is as low 

as of the order of 𝑘B𝑇. The results presented here were published in the Journal of 

Physical Chemistry B31 and are partially reproduced in this chapter with permission 

from the American Chemical Society, 2016.  

 

4.2.2 Materials and methods 

Sample preparation 

The distilled water used was of MilliQ purity. N-octane was purchased from Fluka 

(Taufkirchen Germany), the surfactant tetraethylene glycol decanoyl ether, C10E4, 

was purchased from Bachem (Bubendorf, Switzerland). Equal volumes of water and 

n-octane were combined and a sufficient amount of C10E4 was added to obtain a final 

concentration of 16 wt% surfactant. All compounds were mixed by vigorous agitation.  

 

The undoped and polished silicon wafers used for the reflectivity measurements with 

a roughness of 0.3 nm were provided by Wacker Siltronic (Burghausen, Germany). 

They were cut into pieces of 8×8 mm, rinsed and hydrophilized in a solution of 

NH4OH and H2O2 (RCA cleaning222), and stored in deionized water until usage. 

 

X-ray reflectivity measurements 

In the X-ray reflectivity experiment, the specular reflected intensity is measured as a 

function of the wave vector transfer 𝑞𝑧 =  (4/)sin() perpendicular to the sample's 

surface. Thus, only information on the laterally averaged electron density profile is 

obtained from the XRR data. Depending on the maximum accessible wave vector 

transfer 𝑞𝑧 , the spatial resolution in the 𝑧-direction can reach sub-angstroems. The 

X-ray reflectivities were recorded at beamline BL9 of the Synchrotron radiation 

source DELTA, Dortmund, Germany, using the 27 keV reflectivity setup.37 All 

measurements were performed at a constant temperature of 20°C. A high hydrostatic 

pressure cell was used, which allows the application of pressures up to 500 MPa.33 

After preparation of the sample, the liquid was filled into the cell and the pressure 

was raised to 5 MPa, in order to supplant air in the cell. Subsequently, reflectivities 

were measured at different pressures using a PILATUS 100k detector for photon 
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detection. In order to characterize the solid substrate, the reflectivity curve with pure 

water above the silicon wafer was measured. The detected signal was normalized to 

the incoming photon flux and analyzed using the Parratt algorithm29 in combination 

with the effective density model.30 This evaluation was performed by Dr. Michael 

Paulus. 

 

Small-angle X-ray scattering measurements 

Pressure-dependent SAXS measurements were performed in a home-built high 

hydrostatic pressure cell with diamond windows33 at Beamline ID02 at the European 

Synchrotron Radiation Facility (ESRF) in Grenoble, France. The energy used was 

16 keV and the sample to detector distance was 2 m. The samples were exposed to 

the beam for 0.2 s for each measurement. All measurements were performed at a 

constant temperature of 20°C. Data were background corrected using the 

SAXSutilities Package provided by ESRF.215 The experimental data were fitted 

according to the Teubner-Strey model28 using the software SASfit.223 Pair-distance 

distribution functions were calculated using the software GNOM of the Atsas software 

package.216 

 

4.2.3 Results and discussion 

Near-surface behavior investigated by X-ray reflectivity 

XRR was used to investigate the near-surface behavior of the microemulsion. All 

reflectivity curves show a correlation peak, which shifts to higher 𝑞𝑧 -values upon 

pressurization, as shown in Figure 4-5. This correlation peak can be attributed to a 

(disordered) lamellar phase whose domain size of alternating lamellar 

arrangements,78,79 𝑑surface =  2π/𝑞0 , can be derived from the position of the 

correlation peak, 𝑞0 . The size of the domains within the lamellar phase is 

compressed from about 15 nm at near-ambient pressure (5 MPa) to 12 nm at 

400 MPa. The corresponding compressibility of the lamellar lattice, d𝑑𝑠𝑢𝑟𝑓𝑎𝑐𝑒/d𝑝 , 

amounts to 0.01 nm MPa-1. 
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Figure 4-5. (A) Correlation peaks extracted from X-ray reflectivity measurements of the 
microemulsion consisting of equal volumes of water and n-octane and 16 wt% C10E4 near the 
surface of a hydrophilic Si-wafer at different pressure conditions. The position of the 
correlation peak associated with the lamellar phase, 𝑞0, shifts towards higher 𝑞𝑧-values upon 
pressurization. (B) Decrease of the corresponding size of the alternating arrangements of 
water and oil, 𝑑𝑠𝑢𝑟𝑓𝑎𝑐𝑒  =  2/𝑞0, with pressure. Error bars were derived from Gaussian fits to 

determine the position of the peak maximum, 𝑞0. 

 

Corresponding real-space electron density profiles (EDP) were calculated using the 

Parratt algorithm29 to fit the reflectivity curves at selected pressures (50, 200 and 

400 MPa), as can be seen in Figure 4-6. In order to determine the electron density 

profiles, we fitted the entire 𝑞𝑧-range from 0.2 nm-1 to 6 nm-1. Such wide 𝑞-range is 

needed to obtain the EDP with sufficient accuracy. The location of the Si wafer with 

the highest electron density is defined as z = 0 nm. A thin layer with the electron 

density of water ( 0.8 nm, 2-3 layers of H2O) is visible in direct proximity to the 

hydrophilic Si-surface. A similar water layer was also found previously at the liquid-air 
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interface of a comparable system.79 In contrast, in direct proximity to a hydrophobic 

interface, an oil layer was observed.224 Thicker layers of alternating water and oil 

domains close to the surface of the Si wafer are visible as oscillations in the electron 

density profile (corresponding to about three layers), which approach the electron 

density of the bulk solution at a distance of about 45 nm away from the surface for 

the EDP at 5 MPa. This distance, which can be regarded as the correlation length of 

the lamellar interface, surface, decreases slightly with pressure, which is in good 

agreement with the compression of the layers discussed above. Neutron reflectivity 

studies found that surface of the lamellar phase is about 30 nm at atmospheric 

pressure,78 which is in a similar range as the correlation length of the hydrophilic 

surface-induced lamellar interface found in our experiments. 

 

The overall electron density close to the surface is significantly lower than in the bulk 

solution about 50 nm away from the surface. This is probably due to a laterally 

extended surfactant/oil layer close to the interface, and is a consequence of the 

ordering effect the hydrophilic interface imposes on the arrangement of the surfactant 

molecules, which are supposed to bind to the wet hydrophilic solid interface by their 

hydrophilic headgroups. With increase distance, 𝑧, from the surface, lamellar ordering 

is reduced, finally vanishing after about 2-3 water-oil layers. The increased disorder is 

most likely due to the fact that the lamellae get increasingly perforated, leading to an 

increase of the electron density, which approaches the bulk value of the 

microemulsion beyond about 45 nm. 

 

With increasing pressure, the maxima of the oscillations in the EDP shift toward the 

surface, indicating marked compression of the lamellar layers, which is probably due 

to the about 3-fold larger compressibility of n-octane compared to water (isothermal 

compressibility 𝑇(water)  = 0.459 GPa-1, 𝑇 (n-octane) = 1.282 GPa-1 at room 

temperature and ambient pressure225–227). The density increase of the system upon 

compression is also reflected in the overall increase of the electron densities 

observed in the EDPs. Interestingly, we did not find an increase in the number of 

near-surface layers at high pressures. 
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Figure 4-6. (A) Fits according to the Parratt algorithm29 to the experimental X-ray reflectivity 
data of water at 5 MPa and of the microemulsion near the surface of a Si-wafer at 5 MPa, 
200 MPa and 400 MPa to determine electron density profiles. Curves were shifted for clarity. 
(B) Corresponding real-space electron density profiles. The oscillations in the electron 
density reflect the alternating water/oil domains, which are compressed by applying pressure. 
(C) Illustration of the water (white) and oil (black) domains based on the electron density 
profile of the emulsion at 5 MPa. 

 

Bulk-behavior investigated by SAXS 

Within the bulk phase, the pressure-dependent structure of the bicontinuous 

microemulsion was determined by small-angle X-ray scattering (Figure 4-7). All 

scattering intensity profiles show a broad correlation peak at scattering vector 𝑞0, 

which shifts to higher scattering angles upon pressurization, indicating a decrease of 

the domain size of the bicontinuous phase. No phase transition to a different 

mesophase structure is observed up to 400 MPa. The data were further analyzed by 
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fitting the results to the Teubner-Strey model.28 The overall quality of the fits 

decreases with increasing pressure. However, in the region of the correlation peak, 

the fits are of sufficient accuracy that the parameters for the average domain spacing 

in the bulk, 𝑑m,bulk  2/𝑞0, and the correlation length, 𝜉m,bulk, which characterizes 

the decay of local order, can be derived. The suffix " m " characterizes the 

bicontinuous microemulsion structure. As expected, at large 𝑞 , the Porod law 

𝐼(𝑞)  𝑞-4 indicates a sharp water-oil interface. 

 

Figure 4-7. (A) Bulk scattering intensity profiles, 𝐼(𝑞), of the bicontinuous microemulsion at 
different pressures in double-logarithmic representation. Red solid lines indicate fits 
according to the Teubner-Strey model.28 Second-order peaks arising under pressurization 
are indicated by an asterisk. Curves were shifted for clarity. (B) Pressure-dependent changes 
in the domain size, 𝑑m,bulk,and correlation length, 𝜉m,bulk, of the bicontinuous microemulsion 

derived from fits using the Teubner-Strey model. The decrease of 𝑑m,bulk, reveals a high 

compressibility of the domains, while the correlation length 𝜉m,bulk, i.e. the coherent length of 

the local periodic domain structure, does not change markedly. Error bars are standard 
deviations from the evaluation of three independent measurements. 
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Figure 4-8. Pressure-dependent changes in the real-space pair distance distribution 
functions, 𝑃(𝑟), of the bulk phase of the microemulsion derived from the SAXS data by 
indirect Fourier transformation. (A) Experimental data (open Symbols) with according fits 
(solid lines). (B) 𝑃(𝑟) functions obtained by indirect Fourier transformation. 

 

The domain size decreases from about 24 to 14 nm upon pressurization, which is in 

good agreement with the domain size derived directly from the position of the 

correlation peak (2/𝑞0) and the pair distance distribution function, 𝑃(𝑟), calculated 

by indirect Fourier transformation (Figure 4-8). Most of the compression takes place 

in the pressure regime between 50 and 200 MPa, in which the 𝑑𝑚,𝑏𝑢𝑙𝑘  value 

decreases from 24 to 16 nm, its compressibility, d𝑑𝑚,𝑏𝑢𝑙𝑘/d𝑝 , amounting to 

0.04 nm MPa-1. At higher pressures, the domain size of the bicontinuous phase gets 

only slightly more compressed, about 1 nm between 200 and 400 MPa, 
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corresponding to a d𝑑m,bulk/d𝑝 value of 0.01 nm MPa-1. The overall decrease of the 

compressibility of the domain structure upon compression is reminiscent to that of 

single component bulk liquids.228 In comparison to the domain size, the change in the 

correlation length, 𝜉m,bulk, with pressure is relatively small. The value for  𝜉m,bulk is 

about 11 nm throughout the whole pressure range covered. At 5 MPa, this value is 

about 𝑑m,bulk/2, indicating correlations only between nearest neighbor domains. The 

compression of the domain size in combination with the essentially constant 

correlation length leads to a marked change in the ratio between 𝑑m,bulk and 𝜉m,bulk 

with increasing pressure.  

 

Figure 4-9. Decrease in the disorder parameter 𝐷m of the bulk phase of the microemulsion 

with pressure. Error bars are standard deviations from three independent measurements. 

 

The parameter 𝐷𝑚 =  𝑑m,bulk/(2π 𝜉m,bulk), which is a measure of the disorder in the 

system (disorder parameter),77,228 experiences a significant decrease up to 200 MPa 

(Figure 4-9), from 0.33 to 0.22, i.e., the structural order of the system increases with 

pressurization. The appearance of a slight second order correlation peak at 2𝑞0 in the 

scattering curves (Figure 4-7) supports this observation. The overall bicontinuous 

structure remains preserved, however. These findings are in agreement with the 

observation that the surfactant monolayers become more rigid with increasing 

pressure as revealed by neutron spin echo (NSE) experiments for a similar 

system.229 This can be attributed to a decreased flexibility in the hydrophobic part of 
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the surfactant molecules. At much higher pressures, the increase in bending modulus 

of the interface and a marked decrease of the packing parameter - the ratio of the 

volume of the surfactant molecule and the product of the area of the polar head 

group and the tail length - might still lead to a phase change to a lamellar phase, 

however. 

 

Thermal undulations of the soft elastic sheets of the BME exhibit an increase of their 

amplitude with rising temperature. Concomitantly, such undulation forces should 

decrease when the bending modulus increase and the packing parameter of the 

surfactant is reduced. Therefore, it can be expected that an increase of pressure  can 

induce the transition from a bicontinuous to a lamellar structure, also of near-surface 

lamellar ordering. However, a freezing-in of the thermally excited long-wavelength 

modes due to an increased bending modulus upon compression of the system would 

reduce the entropy associated with these thermal excitations and lead to an increase 

in free energy. Therefore, the entropy term seems to outweight the increase in 

bending energy also at high pressures, which prevents the system from undergoing a 

phase transition to a more ordered lamellar phase - at least in the pressure range 

covered in these experiments. 

 

Conclusions 

To summarize, our results show that bicontinuous microemulsions form a thin 

lamellar phase close to hydrophilic interfaces, and this layer persists upon 

compression. Due to the wide 𝑞𝑧-range covered in the XRR measurements, we could 

analyze the electron density profile in the proximity to the hydrophilic solid-liquid 

interface in detail. About 2-3 lamellar layers could be resolved, displaying increasing 

disorder with increasing distance from the solid interface. We found that the lamellar 

domains are compressed with increasing pressure and that the correlation length of 

lamellar order does not change markedly with pressure.  

 

The SAXS measurements on the bulk microemulsion phase revealed an increased 

order of the bicontinuous phase upon pressurization. However, no phase transition is 

observed up to 400 MPa. While pressure has been shown to cause the formation of 

highly ordered lamellar phases from ordered bicontinuous cubic lipid phases, such 

scenario is not observed for the disordered BME system studied here. High pressure 
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leads to an increase of the stiffness and hence the bending modulus of the interfacial 

layer, but this is not sufficient to overcome the loss in conformational entropy that 

would result from a phase transition to a more ordered lamellar phase. Our 

observations might have several implications, ranging from pressure effects on 

emulsions in deep subsurface oil recovery, up to biologically relevant problems 

dealing with lamellar-to-non-lamellar phase transitions in organisms thriving in the 

deep sea, where pressures up to the 100 MPa pressure level and beyond are 

encountered. 
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5 Investigations of nucleic acids 

This chapter is divided in four subchapters. It starts with the exploration of single 

nucleotides (guanosine monophosphate sodium salt) with a very complex self-

assembly behavior. After this, a small RNA hairpin representing a very common 

structural motive in RNA, is analyzed. In the following, the investigations focus on the 

step from RNA towards proteins. Structural investigations on the phenylalanine 

transfer RNA, connecting the RNA and the protein world within contemporary cells, 

were performed. Finally, the hairpin ribozyme, RNA with enzymatic activity, is 

analyzed. These molecules are regarded as precursors of modern enzymes. 

 

5.1 Self-assembly of guanosine monophosphate sodium salt 

5.1.1 Introduction 

Guanosine monophosphate (GMP) molecules can self-assemble in water to form 

tetramers, which can stack to form four-stranded helical structures. This structurally 

complex system consisting of relatively simple molecules was exploited as a model 

system in order to gain a deeper understanding on the self-assembly of nucleotides 

under extreme conditions of temperature and pressure like in the primordial soup. We 

explored the effect of osmotic pressure, temperature and cosolutes, such as salts 

and trimethylamine N-oxide (TMAO), on the pressure-dependent dissociation of GMP 

tetramer stacks. Synchrotron small-angle X-ray scattering was employed to 

determine the dimensions of the species present in the GMP solutions.  

In the presence of high salt concentrations, the cylindrical GMP tetramer stacks self-

associate to form a hexagonal lyotropic phase. The pressure-dependent changes in 

the hexagonal lattice constant of this phase in the absence and presence of 

cosolutes and at different temperatures was analyzed using Synchrotron X-ray 

diffraction in a home-built high pressure cell with diamond windows. The project was 

performed in collaboration with Mimi Gao and Rana Seymen (TU-Dortmund, 

Germany), who helped to prepare the samples and performed FTIR and DLS 

measurements on the system. The group around Catherine Royer (Troy, NY, USA) 

performed corresponding high-pressure NMR measurements.  
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A manuscript for publication containing the SAXS measurements on the self-

assembly of GMP-Na2 in pure water at different temperatures and pressures has 

been submitted.230 

 

5.1.2 Materials and methods 

Guanosine 5'-monophosphate disodium salt hydrate (>99% purity), potassium 

chloride (KCl), trimethylamine N-oxide (TMAO) and poly(ethylene glycol) with an 

average molecular weight of 20 kDa (PEG 20 kDa) were all purchased from Sigma 

Aldrich (Munich, Germany). GMP was allowed to dissolve in H2O overnight at room 

temperature in order to give a stock solution with a concentration of 35 wt%. The 

stock solution was filtered using a 0.2 µm filter. The exact concentration was then 

determined by UV absorption at a wavelength of 260 nm using an extinction 

coefficient of 10674 M cm-1 231. Cosolute stock solutions were 3 M for KCl, 4 M for 

TMAO and 30 wt% of PEG 20 kDa. Appropriate volumes of the GMP stock solutions 

and the cosolute stock solutions were then mixed in order to obtain the final 

concentrations given in Table 5-1. 

 

Table 5-1. Compositions of the GMP-samples investigated and according temperatures. 

c(GMP) 

/ M 

c(KCl) 

/ M 

c(TMAO)  

/ M 

c(PEG 20 kDa)  

/ wt% 

T  

/°C 

0.48 - - - 7, 25, 35 

0.48 1   7, 25, 35 

0.48 - 2   25 

0.48 1 2  25 

0.48 - - 15 25 

0.48 1 - 15 25 

 

All measurements were performed at the ESRF beamline ID 02 (Grenoble, France) in 

a home-built high pressure cell with diamond windows.32 The sample volume was 

10 µL. The energy used was 16 keV and the sample to detector distance was 2.4 m. 

The samples were exposed to the beam for 0.25 s for each measurement. No 

radiation damages were detected within the total exposure time of a complete 

pressure series. The diffraction data was background corrected and analyzed using 
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the SAXSutilities215 software package provided by the ESRF. For the samples where 

the hexagonal phase gave origin to Bragg-peaks, the peak maxima were obtained 

from Gaussian fits using the software Origin and were used to derive the hexagonal 

lattice constant, 𝑑ℎ𝑒𝑥. For the measurements at 7°C, the accessible pressure range 

was limited to 400 MPa due to an increased rigidity of the O-ring seals at these cold 

temperatures causing leakage of the high pressure cell. 

 

5.1.3  Results and discussion 

Pressure-dependent changes at different temperatures in pure water 

The pressure dependent self-assembly of Na2GMP was investigated at three 

different temperatures (7°C, 25°C and 35°C) in the absence and presence of 1 M KCl 

(Figure 5-1). In the absence of further stabilizing cations, there is an intrinsically high 

polydispersity within the system, since monomers, dimers, quartets and helical stacks 

are present in an equilibrium. The evaluation of these data is thus only performed in a 

qualitative manner.  

 

In pure water, low temperatures (7°C) favor the self-assembly of Na2GMP to form 

helical stacks as can be seen in Figure 5-1A. These are reflected in the scattering 

profiles as overall high intensities associated with larger species, probably helical 

stacks. As can be seen from a slight decrease in intensity with pressure, the latter 

seems to foster the dissociation of larger to smaller species. At an elevated 

temperature of 25°C and atmospheric pressure, the intensities observed in the 

scattering profiles are slightly lower, indicating a shift towards smaller species within 

the equilibrium of the mixture, probably caused by dissociation of the helical stacks 

with rising temperature. With increasing pressure, the loss in overall intensity is much 

more pronounced than at 7°C. Thus, an increase in temperature seems to lower the 

pressure stability of the helical stacks. At 35°C, the overall low intensity of the 

scattering profile suggests the presence of smaller species, only. The corresponding 

FTIR and NMR measurements230 revealed that the base pairing is interrupted, while 

the stacking interactions remain intact. Taken together with this information about the 

effect of pressure on the interactions operative in the helical stacks, the observed 

effect might lead to the conclusion that the helical stack consisting of quartets 

dissociates to become four thin strands of stacked monomers, explaining the 
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lowering of intensity observed in the SAXS measurements. This can be expected, 

since stacking interactions are generally stabilized by pressure. 90,91 

Pressure-dependent changes at different temperatures in 1 M KCl 

In the presence of 1 M KCl, the stabilizing effect of monovalent cations induces a 

hexagonal phase, giving rise to Bragg-reflections (Figure 5-1 B,C). At the coldest 

temperature investigated, i.e. 7°C, one peak is observed at a 𝑞-position of 2.25 nm-1. 

This peak can be attributed to the 𝑞10 hexagonal phase.115 In contrast to the work by 

Ausili et al., further peaks of the hexagonal phase are not observed here, which might 

be explained by the relatively low Na2GMP concentration of the sample (0.48 M, 

~20 wt%).  

 

With increasing pressure, the peak shifts from 2.25 nm-1 to 2.10 nm-1, but persists 

even at pressures as high as 400 MPa. Thus, the dimension of the hexagonal unit 

cell, 𝑑ℎ𝑒𝑥 , increases from about 3.2 nm at 0.1 MPa to 3.5 nm at 400 MPa. No 

dissociation is observed at these high pressures, which would be indicated by a 

broadening and decrease in intensity of the peak. Further, there is a linear correlation 

between the lattice constant and the applied pressure. These results are in good 

agreement with those found by Ausili et al. 115 Interestingly, this group also found that 

the tetramer repeat distance decreases concomitantly with pressure with up to 

0.3 nm GPa-1. However, the limited 𝑞-range of the high pressure cell used did not 

permit to analyze the changes in this tetramer repeat distance with pressure. 

 

At 25°C, the dimension of the hexagonal unit cell increases and cylinders start to 

dissociate at high pressures (> 400 MPa), as can be seen from a slight decrease in 

intensity of the peak at higher pressures. Until there, 𝑑ℎ𝑒𝑥 behaves very similar as 

observed for 7°C. In contrast, at 35°C the dimension of the hexagonal unit cell 

increases more drastically with pressure. In addition to that, the strong decrease in 

the peak intensity indicates a dissociation of the hexagonal phase until no peak is 

observed anymore. Like for all measurements, two independent experiments were 

performed. In the first series, the diffraction peak disappeared at 250 MPa (Figure 5-1 

B) and in the second series at 450 MPa (open symbols in Figure 5-1 C), respectively. 

The difference between these two apparent critical pressures might be explained by 

a slightly higher concentration of the hexagonal phase present within the second 

sample, increasing the overall intensity and stability of the hexagonal phase. As can 
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be seen from Figure 5-1 C, for the second sample, the correlation between 𝑑ℎ𝑒𝑥 and 

pressure is not completely linear between 250 MPa and 450 MPa, but a divergence 

is observed. Such a divergence of the 𝑑ℎ𝑒𝑥 -values upon approaching a critical 

pressure value, 𝑝c, can be interpreted as an unbinding transition, which has been 

observed in other soft elastic manifolds, including stacks of lipid bilayer 

membranes232–234 and actin bundles213 (Subchapter 6.3). The origin of such a 

transition could be the competition of attractive molecular interactions and an 

effective repulsion between the helical stacks within the hexagonal phase. 

 

All in all, in 1 M KCl an increase of temperature and also of pressure has a 

destabilizing effect on the hexagonal assembly of the cylindrical stacks. The 

interactions between the cylindrical stacks within the hexagonal phase are dominated 

by electrostatic interactions between the negatively charged phosphate groups of the 

nucleotides with the positively charged monovalent cations. This type of interaction is 

weakened by increasing temperature due to entropic reasons as well as by pressure 

due to the electrostrictive effect.87–89 
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Figure 5-1. SAXS intensity profiles of 0.48 M GMP in H2O as a function of pressure in the 
absence (A) and presence (B) of 1 M KCl and the hexagonal unit cell dimensions (C) derived 
from the peaks observed in (B). Error bars are derived from two independent measurements. 
For the open symbols, the peak was only present in one of the series, thus no error bar is 
given.  
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Pressure-dependent changes in the presence of 2 M TMAO 

Interestingly, 2 M TMAO is able to induce the hexagonal phase even in the absence 

of salt, as can be seen in Figure 5-2 A, E. This phase has an about 0.1 nm lower 𝑑ℎ𝑒𝑥 

than the hexagonal phase induced by 1 M KCl. This phase is very labile to pressure, 

so that at 𝑝 > 200 MPa the peak is not observed anymore, i.e. the helical stacks are 

no longer hexagonally packed. The ability of TMAO to induce a hexagonal phase in 

the absence of salt can be explained by the preferential hydration effect induced by 

TMAO.44 Unfavorable interactions of TMAO with all GMP surface types (nucleobase, 

phosphate, sugar), but especially with the phosphate induce greater hydration of the 

GMP stacks. At atmospheric pressure, self assembly is favored in order to minimize 

surface from which TMAO is excluded. Rising pressure induces dissociation of the 

hexagonal phase due to the electrostrictive effect.87–89 The dissociation increases the 

surface area exposing the negatively charged phosphate backbone at which the 

water molecules can be packed more densely than in the bulk. 

In the presence of 2 M TMAO and 1 M KCl (Figure 5-2 B, E), the dimension of the 

hexagonal unit cell is smaller and increases less with pressure than in pure 1 M KCl 

at 25°C. No dissociation is observed in the pressure range up to 500 MPa. This 

further underlines the stabilizing effect of the TMAO on the hexagonal phase. 

 

Pressure-dependent changes in the presence of 15 wt% PEG (20 kDa) 

The presence of 15 wt% PEG (20 kDa) has a stabilizing effect on the cylindrical 

stacks, which, in contrast to pure water, do not dissociate completely under pressure 

at 25°C. Even at the highest pressure investigated, i.e. 500 MPa, the intensity of the 

scattering curves still indicates the presence of lager species, as can be seen from 

Figure 5-2 C. The pronounced correlation peak at about 1.5 nm-1 indicates an 

increase in repulsion between the cylinders, which can be attributed to the excluded 

volume effect.235 The negatively charged surface of the stacks is the origin of this 

repulsion, whereby the bulky PEG molecules limit the volume available to cylindrical 

stacks limiting the distance between them. Thus, the stacks are stabilized and 

arrange in a regular distance giving rise to a correlation peak in the scattering profile. 

Dissociation of the stacks is prevented by the crowding effect, since smaller 

fragments would occupy a larger volume than the cylindrical stacks. 
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Figure 5-2. SAXS intensity profiles of 0.48 M GMP in an aqueous solution of 2 M TMAO 
(A,B) or 15 wt% PEG 20 kDa (C,D) as a function of pressure. Samples were analyzed in the 
absence (A,C) and presence (B,D) of 1 M KCl. From the peaks observed in (A, B, D), the 
hexagonal unit cell dimensions were derived and plotted as a function of pressure. All 
measurements were performed at 25°C. For comparison, the hexagonal unit cell dimensions 
in 1 M KCl at 25°C (Figure 5-1 C) are also displayed.  
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In contrast, the hexagonal phase formed in the presence of 1 M KCl is destabilized 

by the presence of 15 wt% PEG (20 kDa). It is more labile to pressure in comparison 

to the pure salt solution. The increase in the lattice constant with pressure is more 

pronounced. The broadening of the Bragg-peak with pressure indicates a disordering 

of the hexagonal phase. This might be explained by the increased repulsion of the 

stacks due to the excluded volume effect, which is reflected in the correlation peak in 

the absence of salt. Since pressure is weakening electrostatic interactions,87–89 the 

attractive interactions are weakened with increasing pressure. The correlation peak 

observed in the absence of salt (Figure 5-2 C) supports this hypothesis. Since 

pressure is weakening electrostatic interactions,87–89 the attractive interactions are 

weakened with increasing pressure. This leads to repulsion and a concomitant 

increase in the distance between the stacks and finally to the onset of dissociation of 

the hexagonal phase. 

 

Conclusions 

At low temperatures, as present in the deep sea, GMP can form cylindrical stacks, 

which are stable up to the pressures found in these habitats. In the presence of 

excess cations, the negatively charged cylindrical stacks assemble to a hexagonal 

phase. Pressure weakens electrostatic interactions and thus can lead to dissociation 

of this hexagonal lyotropic phase.  

Certain cosolutes, such as TMAO and PEG (20 kDa), can favor the assembly of 

quartets to cylindrical stacks and stabilize them against pressure, even at higher 

temperatures. TMAO has been shown to induce the assembly to a hexagonal phase 

even in the absence of excess cations, which might be explained by the stronger 

hydration of GMP and the reduced accessible surface area of this phase. PEG has 

been shown to increase the repulsive interaction between the cylindrical stacks. Due 

to the reduced volume, the cylindrical stacks are forced to be in closer proximity to 

each other, leading to an increase in repulsive interactions, visible as correlation 

peak.  

At ambient pressure, 1 M KCl is able to compensate this repulsion by additional 

attractive electrostatic interactions. However, the electostrictive effect of pressure 

leads to a decrease in the pressure stability of the hexagonal phase and finally to 

dissociation of the cylinders. Thus, we showed that at cold temperatures cylindrical 
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GMP-stacks exist up to pressures as high as 400 MPa and can be further stabilized 

by the presence of cosolutes. Self-assembled Na2GMP could be stable at conditions 

found in the primodal soup and thus could have served as precursors for the first 

linked RNA structures. 

 

5.2 Small RNA hairpin 

5.2.1 Introduction 

After the self-assembly of small nucleotides was investigated in the previous chapter, 

this chapter deals with the influence of temperature and pressure on a small common 

RNA motif, the small RNA hairpin. It is highly important to understand the thermal 

and pressure stability of fundamental RNA structures in thermophilic and piezophilic 

organisms because the adaptation mechanisms of these organisms living under 

particular harsh conditions are still largely unanswered. This can be achieved by 

revealing the free energy and conformational landscape of these structures, and 

exploring the forces controlling their stability.  

The aim of the study presented here is to analyze conformational changes of the 

labeled RNA tetraloop gcUUCGgc over a wide range of temperatures and pressures 

using small-angle X-ray scattering experiments as well as FRET, UV-Vis and FTIR 

spectroscopy, and to compare the results with theoretical predictions. To ensure 

comparability with the fluorescence measurements, SAXS measurements were also 

preformed on the small RNA hairpin labeled with two fluorophores. Their chemical 

nature is built from two indole rings that are connected by a polymethine chain. Cy3 

serves as the donor fluorophore and Cy5 as the acceptor in the FRET assay. These 

measurements under various conditions of temperature and pressure should also 

help to answer the question to what regard the fluorophores influence the stability of 

the small hairpin. The results of these investigations were published in the journal 

Biophysical Chemistry.236 

 

5.2.2 Materials and methods 

The small RNA hairpin (sRNAh) molecule used in this study has a 5’-gcUUCGgc-3’ 

sequence. Since this study had the aim to complement FRET experiments, the RNAh 

has two fluorescent dyes attached, Cyanine 3 phosphoramidite (Cy3) and Cyanine 5 

phosphoramidite (Cy5) to the 5’ and 3’ ends of the sequence, respectively. The small 
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RNA was synthesized by IBA Life Solutions for Life Science GmbH (Goettingen, 

Germany), and was received as lyophilized powder. The sRNAh was suspended in 

nuclease-free water to obtain a 0.1 mmol µL-1 solution and stored at -80 oC. The 

samples were lyophilized to remove H2O, and then suspended in pure 50 mM TRIS-

HCl buffer + 0.1 mM ethylenediaminetetraacetic acid (EDTA), pH 7.5. Nuclease-free 

water, pipette tips, microfuge tubes, conical tubes and RNase AWAY® reagent were 

obtained from Ambion® (Life Technologies) and were used for all experiments. 

All measurements were performed at the European Synchrotron Radiation Facility 

(ESRF), beamline ID 02 using a home-built high-pressure cell with diamond 

windows33. Samples of the labeled sRNAh were prepared at a concentration of 20 

mg mL-1 in 50 mM Tris-HCl-buffer+ 0.1 mM EDTA, pH 7.5. The data was processed 

and background corrected using the software SAXSutilities215 provided by the 

beamline. Pair-distance distribution functions, 𝑃(𝑟) , were calculated using the 

software GNOM, modelling using the software GASBOR of the Atsas software 

package. 216 

 

5.2.3 Results and discussion 

The structural changes of the sRNAh with the fluorophores were investigated for 

various conditions of temperature and pressure. Figure 5-3 shows the changes in the 

radius of gyration of the small molecule as derived from the Guinier approximation. At 

20°C and 0.1 MPa, the eight nucleotide construct with the fluorophores has a radius 

of gyration of about 1.45 nm, which is at the lower end of the size range accessible 

by SAXS. However, this very small size gives rise to a large linear section in the 

Guinier plots, so that the slope of this section, from which the radius of gyration is 

derived, can be determined with sufficient accuracy. The scattering profiles from 

which this data was derived can be found in Figure A5 to Figure A7 in the Appendix. 

With increasing temperature, the radius of gyration decreases slightly from about 

1.43 nm to 1.27 nm. In contrast to this, rising pressure leads to an increase of this 

value. This increase becomes more pronounced with rising temperature. At about 

400 MPa, all curves converge against a radius of gyration of about 1.45 nm.  
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Figure 5-3. Influence of temperature and pressure on the radius of gyration derived by the 
Guinier approximation of the small RNA hairpin labeled with the two fluorophores. 

 

To investigate these findings in more detail, temperature-dependent 𝑃(𝑟) functions 

were calculated, which are displayed in Figure 5-4 A. They show an increase in the 

occurrence of distances, 𝑟 , of about 1.5 nm and a concomitant decrease of the 

occurrence of distances of about 3 nm within the molecule with increasing 

temperature. However, the maximal dimension, 𝑟𝑚𝑎𝑥 , does not change markedly, 

indicating a rearrangement within the molecule. The pressure-dependent curves 

show an opposite trend, as can be seen in Figure 5-4 B. Pressure leads to an 

increase in the occurrence of distances with longer dimensions, while the maximal 

dimension also does not alter much with pressure. 

In order to gain a better understanding of the observed changes in the 𝑃(𝑟) functions, 

we generated models of the labeled sRNAh for selected conditions. These conditions 

were ambient condition (20°C, 0.1 MPa), a high temperature at atmospheric pressure 

(60°C, 0.1 MPa) and ambient temperature at high pressure (20°C, 400 MPa). These 

models reveal a dumbbell-shape of the labeled sRNAh with one handle larger than 

the other for 20°C at 0.1 MPa (see Figure 5-4 C). The size of the larger handle of this 

dumbbell is in good agreement with the shape and size of the folded gcUUCGgc 



Small RNA hairpin 

 

73 
 

sequence. For illustration, the PDB structure of this hairpin is superimposed on the 

model in Figure 5-4 C. 

The smaller handle probably reflects the fluorophores linked to the latter. Upon 

temperature increase, the smaller handle becomes smaller while the larger handle 

becomes lager. This could be interpreted by one fluorophore swapping to the 

sequence region and forming a stacking interaction with the bases, explaining the 

change in the stability towards temperature upon labeling observed by other 

means.236 With pressure, both handles become lager, suggesting partial unfolding of 

the labeled sRNAh with pressure.  

 

 

Figure 5-4. Influence of temperature and pressure on the overall shape of the labeled 
sRNAh. Pair distance distribution functions in dependence of temperature (A) and pressure 
(B) and models derived from the same data illustrating these changes (C). For comparison, 
the PDB structure (extracted from PDB-ID 1F7Y) of the sRNAh is laid over the larger handle 
of the model at ambient conditions. Temperature most likely promotes the interaction of a 
fluorophore with the bases of the sRNAh. 
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Conclusions 

The conformational changes of the sRNAh of sequence gcUUCGgc were 

experimentally analyzed over a wide range of temperatures and pressures. SAXS 

measurements showed that increasing temperature leads to a rearrangement within 

the labeled RNA construct, which is in good agreement with one of the fluorophores 

interacting with the loop region. Also a significant effect of pressure on the radius of 

gyration was revealed, especially at high temperatures, also in corresponding FRET 

experiments.236  

Being too small for analysis with small-angle X-ray scattering (<1 nm), the sRNAh 

without fluorophores was not investigated with this method. Instead FTIR and UV/Vis 

spectroscopy were used. The findings were substantially different from the labeled 

sRNAh. The unlabeled sRNAh shows a broad melting profile with continuous 

increase of unpaired conformations up to about 60°C. However, the sRNAh structure 

might not be fully unfolded at temperatures as high as 90°C and still comprise 

various partially unfolded compact conformations. Pressure up to 400 MPa were 

found to have a small effect on the base pairing and base stacking interactions of the 

sRNAh, indicating small conformational perturbations, only. The latter might originate 

from minor changes in packing and hydration of the RNA molecule upon 

compression. Pressurization at 70°C, i.e. above the melting transition, does not 

promote formation of new native stem connections after thermal denaturation.236  

Finally, we noticed that Cy3/Cy5 labeling of the sRNAh changes, probably via 

stacking interactions between the fluorescent dyes and the nucleotide rings, the 

stability of the sRNAh, thereby rendering FRET analysis of the conformational 

dynamics of such small RNA structure inappropriate. The SAXS measurements 

presented in this chapter essentially contributed to the understanding how the 

attachment of fluorophores can influence the temperature- and pressure-dependent 

structure and stability of the small RNA constructs. 
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5.3 Ribozymes  

5.3.1 Introduction 

Ribozymes are RNA molecules with catalytic activity, which are regarded as 

precursors of modern enzymes. The conformational changes, which are also highly 

relevant for performing catalysis, are still not well understood. This is especially the 

case for the conformations they adopt under extreme conditions where ribozymes 

might have evolved. We conducted temperature, pressure and time dependent 

experiments on the hairpin ribozyme, including the influence of divalent ions (Mg2+), 

which are required for its self-cleavage activity. The experiments were performed in 

order to evaluate the conformational stability of these RNA molecules under 

environmental conditions where ribozymes and protocells might have evolved, such 

as hydrothermal vent environments in the deep sea.  

 

5.3.2 Materials and methods 

The wild-type hairpin ribozyme wt-HpRz with the sequence 5'-AAACAGAGAA-

GUCAACCAGAGAAACACACGUUGUGGUAUAUUACCUGGUACCCCCUGACAGU-

CCUGUUU-3' was synthesized by IBA Life Solutions GmbH (Goettingen, Germany) 

and was received as lyophilized powder. This RNA sequence is a simple model 

system of the original four-way junction tobacco ringspot virus satellite RNA. The 

ribozyme was suspended in a 0.1 nmol μL-1 nuclease free water solution, and stored 

at - 80°C until usage. Solutions of 1 wt% wt-HpRz were prepared by resuspension in 

pure 50 mM TRIS-HCl buffer + 0.1 mM EDTA, pH 7.5. The cleavage reaction was 

initiated by adding the same volume of a double concentrated buffer solution of 50 

mM TRIS- HCl + 0.1 mM EDTA + 2 mM or 4 mM MgCl2. Final salt concentrations in 

the reaction were 1 mM or 2 mM MgCl2, respectively.  

All measurements were performed at the ESRF beamline ID 02 (Grenoble, France) in 

a home-built high pressure cell with diamond windows.32 The sample volume was 

10 µL. The energy used was 16 keV and the sample to detector distance was 2.4 m. 

The samples were exposed to the beam for 0.25 s for each measurement. No 

radiation damages were detected within the total exposure time of a complete 

pressure series. The time-dependent measurements at atmospheric pressure were 

performed in a temperate quarz-capillary provided by the beamline. 
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All data was background corrected using scattering profiles of the pure buffer and 

analyzed using the SAXSutilities215 software package provided by ESRF. Pair-

distance distribution functions, 𝑃(𝑟), were calculated using the software GNOM of the 

Atsas software package 216. 

 

5.3.3 Results and discussion 

First, the pressure-dependent structural changes of the hairpin ribozyme (0.5 wt%) in 

buffer without magnesium were investigated (Figure 5-5). At these conditions, a very 

low rate of self-cleavage can be expected. The radius of gyration, 𝑅g , decreases 

already at relatively low pressures such as 50 MPa and 100 MPa. In the regime 

between 150 and 250 MPa, the 𝑅g remains constant and then decreases further at 

pressures above 250 MPa. The Kratky plots reflect this behavior. The maximum 

shifts towards higher 𝑞 -values until 150 MPa, and remains almost constant until 

250 MPa. Above this pressure, the logarithmic shape of the scattering curves reflects 

unfolding of the ribozyme. These findings are in agreement with our FRET and PAGE 

studies237 revealing that low pressures favor the active docked-state of the ribozyme, 

which is more compact, and thus favor the self-cleavage reaction, though the overall 

ribozymatic reaction is retarded. Thus, pressures of up to 100 MPa, as can be found 

in the deep sea, would favor the docking of the ribozyme. 

Next, the time-dependent measurements at 0.1 MPa employing different magnesium 

concentrations (Figure 5-6) were performed. Time-dependent studies show only very 

slight changes in the scattering profiles for all conditions displayed here. The minor 

changes observed might be explained by observing an ensemble of docked and 

undocked states being in equilibrium with each other and partial product dissociation 

only owing to the cleavage reaction.  

The chosen magnesium concentrations (1 and 2 mM MgCl2) were relatively low. 

Thus, only a low rate of self-cleavage can be expected, therefore the measurements 

were performed over a long time span for about 2 hours. Higher magnesium 

concentrations might speed up the cleavage reaction, but concomitantly favor the 

oligomer formation of the ribozyme. This is especially the case for the relatively high 

concentration of 0.5 wt% ribozyme needed for sufficient resolution in the high 

hydrostatic pressure cell used for the SAXS experiments. This effect makes an 
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unbiased interpretation of the data at higher magnesium concentrations difficult 

(Figure A3).  

 

In the absence of stabilizing cations, higher concentrations of the ribozyme in order to 

increase the signal-to-noise ratio of the SAXS measurements lead to the occurrence 

of a correlation peak in the scattering profile (Figure A3), which can be explained by 

repulsion between the negatively charged RNA molecules in the absence of 

neutralizing cations.238 The addition of magnesium at these even higher 

concentrations leads to an aggregation of the ribozyme. For the experiments 

presented here, the lowest concentrations of ribozyme leading to a sufficient 

resolution in the high pressure cell, but not to repulsion between the molecules, was 

chosen. 

 

 

Figure 5-5. Pressure-dependent changes in the radius of gyration (left) and the Kratky plots 

(right) of the 0.5 wt% hairpin ribozyme in 50 mM Tris-HCl buffer without magnesium. 
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Figure 5-6. Time-dependent scattering profiles of 0.5 wt% hairpin ribozyme in 50 mM Tris-
HCl with different magnesium concentrations. 

 

Conclusions 

The SAXS and FRET measurements on the hairpin ribozyme under high hydrostatic 

pressure conditions indicate increased population of the docked state at pressures up 

to 100 MPa, like found in the deep sea. However, at pressures above 250 MPa, the 

radius of gyration further decreases and the Kratky plots indicate unfolding. 

In the time dependent measurements, no significant changes in the scattering profile 

pointing towards the known self-cleavage reaction of the hairpin ribozyme could be 

observed. Many factors could contribute to that. On the one hand, the nature of RNA 

as a polyelectrolyte strongly limits the concentration conditions and ionic strengths at 

which the form factor can be determined with sufficient accuracy. A too high 

concentration of the RNA in combination with low ionic strength leads to repulsion 

between the RNA molecules, while a too high ionic strength leads to oligomerization 

and aggregation. This might also be a reason why only very few SAXS studies on 

RNA are available so far.239  

On the other hand, there is an equilibrium between many different states of the 

hairpin ribozyme and between cleavage and ligation. The different docked and 

undocked states were addressed by FRET studies, while the cleavage was 

investigated in PAGE analysis under denaturating conditions. The latter revealed an 

increase of the cleaved fractions from 30 % to 60 % in the presence of 6 mM Mg2+.237 
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The reaction reached equilibrium after about 120 minutes. For the SAXS 

experiments, an even lower rate of self-cleavage can be expected, with a maximum 

of 2 mM Mg2+ present. In addition, the SAXS measurements were performed under 

non-denaturating conditions. Thus, it might be possible that the cleaved fragment 

remained on the ribozyme. Taken together, these factors might explain why the 

SAXS measurements were not able to resolve the self-cleaving reaction of the 

hairpin ribozyme. 

 

5.4 Phenylalanyl transfer RNA 

5.4.1 Introduction 

In contemporary cells, aminoacylated transfer RNA (tRNA) connects the RNA and 

the protein world and plays a central role in protein biosynthesis.93 The translation 

from RNA to an amino acid sequence is not only undertaken frequently in each living 

cell, but was also a key step in the development of proteins and the establishment of 

the genetic code. Even though many 3D crystal structures of tRNA molecules are 

available, their stability and conformational changes upon changes in temperature 

and pressure are still largely unknown, also under environmental conditions where 

the step from prebiotic catalytic RNA to proteins might have proceeded, such as 

hydrothermal vent environments encountered in the deep sea, where pressures up to 

110 MPa are encountered. Fundamental research on the behavior of these 

molecules under extreme environmental conditions is required to help answer the 

question how the pathway from an ancient RNA world towards a modern protein 

world was initiated.  

Next to the small-angle X-ray scattering study presented in this subchapter, which 

allows elucidation of changes in shape and size, complementary Fourier-transform 

infrared and fluorescence spectroscopic studies were carried out in our lab to reveal 

complementary changes in tertiary and secondary structure of the chosen model 

tRNA molecule, tRNAPhe. The aim of this project was to evaluate the possibility of 

deep-sea-like conditions for the step from an RNA world towards a protein world via 

tRNA by measuring the conformational stability of tRNAPhe under extreme conditions 

of temperature and pressure including stabilizing and destabilizing additives, such as 

Mg2+. The temperature-dependent SAXS results presented in the following 
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subchapters were published in the journal ChemPhysChem176 and are partially 

reproduced here with permission, copyright © John Wiley & Sons, 2015. 

5.4.2 Materials and methods 

Yeast phenylalanine transfer RNA (tRNAPhe) was obtained from Sigma Aldrich (St. 

Louis, MO) and used without further purification. Nuclease-free water, pipette tips, 

microfuge tubes, conical tubes and RNase AWAY® reagent were obtained from 

Ambion® (Life Technologies). All experiments were carried out in D2O or 50 mM Tris- 

HCl buffer + 0.1 mM EDTA, pH 7.5, in the presence or absence of 15 mM MgCl2. All 

samples were lyophilized from solutions in D2O and resuspended to the different 

conditions needed. All items related to sample handling were nuclease-free proofed 

or cleaned with RNase AWAY® reagent (Invitrogen®).240 

Temperature-dependent SAXS data were obtained with a SAXSess mc2 small-angle 

X-ray scattering instrument from Anton Paar GmbH (Graz, Austria), equipped with a 

sealed tube X-ray generator Iso-Debyeflex 3003 from GE Inspection Technologies 

(Ahrensburg, Germany). Cu-Kα radiation was used ( 𝜆  = 0.154 nm) and the 

instrument was operated with 40 kV and 50 mA. Solutions of 0.5 wt% (or 3 wt%) 

tRNAPhe in the absence and presence of 15 mM MgCl2 were prepared in D2O as well 

as in 50 mM Tris-HCl buffer, 0.1 mM EDTA, pH 7.5. The exposure time of the sample 

to the X-rays was 30 min per measurement. The data were collected for 𝑞-values 

between 0.12 and 4.00 nm−1. The measurements covered a temperature range from 

5 to 90°C in steps of 5°C. 

The sample was measured in the slit configuration using a 1 mm quartz capillary (µ-

cell) suitable for the TCS 120 temperature-controlled sample holder unit from Anton 

Paar (Graz, Austria). While recording the temperature-dependent scattering data, 

temperature was adjusted by the TCS control unit for TCS sample stages from Anton 

Paar (Graz, Austria). Detection was performed via 2D-imaging plates, which were 

read out using the Storage Phosphor System Cyclone Plus by Perkin Elmer 

(Waltham, Massachusetts). The latter was operated by the software Optiquant. The 

2D images obtained were transformed to an intensity profile, 𝐼(𝑞), using the software 

2D-SAXSquant. The raw data obtained were normalized to the primary beam 

intensity and corrected for the background using the pure solvent in SAXSquant 3.1 

software provided with the SAXSess mc2 system. Further, the data were desmeared 

to compensate for instrumental broadening effects ("slit-smearing") using the GNOM 



Phenylalanyl transfer RNA 

 

81 
 

software.216 The latter was also used to calculate the pair-distance distribution 

functions, 𝑃(𝑟), using the indirect Fourier transformation method.  

Pressure-dependent measurements were performed at the ESRF beamline ID 02 

(Grenoble, France) in a home-built high pressure cell with diamond windows.32 The 

sample volume was 10 µL. The energy used was 16 keV and the sample to detector 

distance was 2.4 m. The samples were exposed to the beam for 0.25 s for each 

measurement. No radiation damages were detected within the total exposure time of 

a complete pressure series. 

 

5.4.3 Results and discussion 

Temperature-dependent measurements on tRNAPhe 

To reveal corresponding changes in the overall shape of the tRNAPhe upon 

temperature change, small-angle X-ray scattering measurements were carried out. 

As an example, Figure 5-7 shows the temperature dependent intensity profiles of 0.5 

wt% tRNAPhe in pure solvent (D2O) in the absence and 3 wt% tRNAPhe in the 

presence of 15 mM Mg2+. Like discussed in the previous subchapter, in the absence 

of stabilizing ions the sample had to be diluted to 0.5 wt% in order to eliminate the 

correlation peak arising from repulsion between the negatively charged molecules 

and to exclusively access the form factor.  

 

In order to gain information about changes in compactness and unfolding of the 

molecule, the data are plotted also in the Kratky representation (insets of Figure 5-7 

A and B). In both cases, with and without Mg2+, a highly compact form of tRNAPhe is 

observed at low temperatures, as can be seen from the Gaussian shape of the 

Kratky plots. With increasing temperature, we observed a gradual loss of compact-

ness in the range between 45 and 65°C for tRNAPhe in the absence of Mg2+. In the 

presence of Mg2+, the loss of compactness takes place at significantly higher 

temperatures and within a much smaller temperature range (75-85°C), in good 

agreement with the thermodynamic data for tRNAPhe unfolding.241  

 

Clearly, no complete unfolding is seen here as observed in the presence of urea.242 

Measurements were also carried out in the Tris-HCl buffer, which does not lead to 

significant changes in the temperature dependent SAXS profiles compared to the 
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data in pure solvent, however (Figure A8). The transition range in Tris-HCl buffer 

takes place between 50 and 60°C without Mg2+, and between 80 and 90°C with Mg2+.  

Further analysis of the scattering data (Guinier analysis, evaluation of the pair-

distance distribution function 𝑃(𝑟), Figure A9) indicate that the radius of gyration, 

which is about 2.2 nm in the native state, does not change markedly for all solution 

conditions upon rising the temperature, i.e. the structural changes taking place seem 

to involve more internal structural rearrangements of the L-shaped RNA molecule 

rather than a complete unfolding to a random-coil kind of conformation as often 

observed for temperature-induced unfolding of proteins.243  
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Figure 5-7. Temperature dependent SAXS data and analysis of tRNAPhe in D2O in the 
absence (a) and presence of 15 mM Mg2+ (b). Intensity profiles were recorded in a 
temperature range starting from 5°C (purple) in steps of 5°C up to 90°C (dark red). Solid 
lines represent fits obtained using the indirect Fourier-transformation method. Concentrations 
were 0.5 wt% in pure D2O and 3 wt% with 15 mM Mg2+. Inserts: Kratky plots of the respective 
data. 
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Pressure-dependent measurements on tRNAPhe 

Further small-angle X-ray scattering SAXS measurements aimed at elucidating 

changes in shape and size of tRNAPhe under extreme conditions of pressure, 

including the influence of Mg2+. Fourier-transform infrared and fluorescence 

spectroscopic studies were carried out in our lab to reveal complementary changes in 

tertiary and secondary structure.176 The overall goal of the project was to evaluate the 

conformational stability of RNA at harsh deep-sea-like conditions, where prebiotic 

catalytic RNA reactions might have evolved.  

Our pressure-dependent measurements revealed a surprisingly high stability of the 

tRNAPhe at pressures up to 400 MPa. Pressure-dependent SAXS data of tRNAPhe at 

20°C in the absence (Figure 5-8 A and B) and presence (Figure 5-8 C and D) of Mg2+ 

ions are displayed. Even in the absence of stabilizing Mg2+ ions, no complete 

unfolding of the tRNAPhe, as monitored in the presence of urea and at elevated 

temperatures, is observed. According to the calculated 𝑃(𝑟) functions, the changes of 

the shape and size upon compression are very small. This is in good agreement with 

our FTIR and fluorescence data, which reveal a maximum of only 15 % of unpaired 

bases up to a pressure of 1000 MPa, indicating only small changes in the secondary 

and tertiary structure.176 The biological implications of the high stability of tRNA under 

high hydrostatic pressure conditions could be that it is possible that the step from an 

RNA world via tRNA to a protein world proceeded in the deep sea, where pressures 

up to the 100 MPa level are encountered. 
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Figure 5-8. Pressure-dependent SAXS data of tRNAPhe at 20°C (3 wt% in 50 mM Tris-HCl 
buffer, pH 7.5, with 0.1 mM EDTA in the absence of MgCl2 (A, B) and presence of 15 mM 
MgCl2 (C, D.) Intensity profiles at different pressures (A,C) with Kratky representation of the 
respective data (inserts). Solid lines represent fits obtained by using the indirect Fourier-
transformation method to calculate the pair-distance distribution functions (B,C). 

 

Conclusions 

In combination with FTIR and fluorescence measurements,176 the SAXS results show 

that the native structure of tRNAPhe is disrupted upon removal of Mg2+, which leads to 

a markedly different temperature and pressure stability of the RNA. Addition of Mg2+ 

stabilizes the compact structure of the RNA against temperature, which thus 

increases the melting temperature of the RNA by about 30°C. Concomitantly, 

cooperativity of the melting transition increases. Mg2+ ions stabilize the tertiary 

structure in such a way that the entire structure melts essentially by a two-state 

transition, in accordance with literature data.244 

The increase in the temperature stability can be attributed to an effective screening of 

the negative charges along the phosphate–sugar backbone of the tRNA. According 

to the SAXS data, the structural changes that take place upon melting seem to 
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involve essentially internal structural rearrangements of the tRNA molecule, rather 

than a complete disruption of the tertiary structure. 

The pressure-dependent data indicates that the tertiary structure of tRNAPhe is highly 

stable up to 400 MPa in both cases, with and without Mg2+. Our observations are in 

good agreement with the FTIR measurements revealing only small changes in the 

secondary structure upon pressurization. However, minor changes in the tertiary 

structure, which could not be resolved so far by our measurements, cannot be 

excluded. The high stability of tRNAPhe upon pressure may be expected, since HHP 

is known to stabilize helical forms and support supercoiling of nucleic acids.245 
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6 Investigations of peptides and proteins 

This chapter is divided in three subchapters with rising complexity of the protein 

system under investigation. Starting from the elastin-like peptide (ELP), a small 

peptide consisting of 18 amino acids only and close to the size limit of SAXS, the 

much larger phosphoprotein 32 will be explored. Finally, the effect of temperature 

and pressure on actin bundles, a very important network of proteins providing cellular 

integrity, is explored taking advantage of the diffraction of the hexagonal arrangement 

of the filaments within the bundles. 

 

6.1 Elastin-like peptide 

6.1.1 Introduction 

In this study, the inverse temperature transition of the elastin-like peptide establishing 

the sequence GVG(VPGVG)3 was analyzed in the absence and presence of different 

cosolutes. Among those there were cosmotropic cosolutes such as TMAO and 

chaotropic cosolutes such as urea and a mixture of TMAO and urea. Besides these 

two naturally occurring cosolutes, the effect of 2,2,2-trifluoroethanol (TFE) was 

examined. TFE is a nonpolar solvent, which can have two opposed effects. On the 

one hand it can initiate structure, since it favors hydrophobic interactions.246 On the 

other hand, it can also act disruptive on hydrophobic interactions within the core of 

globular proteins. TFE can form clusters in size of 0.5 to 1 nm at concentrations 

between 10 to 80% (v/v).192 In this study, 2 M TFE were used, which corresponds to 

a concentration of 12% (v/v). This concentration is on the lower end of the range 

where cluster formation was observed. Thus, some TFE-clusters might form, but are 

not expected to be very pronounced and stable under these conditions. TFE-clusters 

could interact with the hydration shell of the peptide by stripping water molecules 

from the peptide surface and thus promote the intermolecular interaction of valine 

side chains. Furthermore, the distance between two valine side chains in type II 

𝛽-turns of the ELPs ranges from about 0.4 nm in the contracted and up to about 

0.6 nm in the expanded state.247 Consequently, one TFE-cluster of the appropriate 

size could fit between two valine side chains. In this case, TFE would clearly favor 

hydrophobic interactions.  

The following SAXS measurements were performed to complement FTIR (Dr. Marie 

Kahse) and NMR studies (Dr. Kerstin Kämpf, Susann Weißheit) within the DFG 
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Forschergruppe FOR 1583. Measurements were carried out in deuterated solvents 

and a relatively high concentration of 10 wt% of the peptide in order to ensure 

comparability.  

Preliminary small-angle neutron scattering measurements presented on the meeting 

of the DFG-Forschergruppe 1583 on the 14th of March 2017 by Alexander Matt248 

showed an increase in the radius of gyration in dependence of the peptide 

concentration up to 2.3 wt%, upon which 𝑅g approaches a plateau value of about 

1 nm, which is the lower limit of the size range accessible by SAXS and SANS. At 

35°C, the determined values for 𝑅g range from 0.6 nm at a concentration of 0.3 wt% 

and 1 nm at 2.3 and 6.7 wt%, respectively. Regarding the small size of the peptide 

containing only 18 amino acids, a concentration above 2.3 wt%, e.g. 10 wt% like 

used in the experiments presented here, might in fact be necessary to obtain 

scattering data in sufficient quality.  

 

6.1.2 Materials and methods 

The purified elastin-like peptide was kindly provided by the group of Prof. Dr. 

Christina Thiele, TU Darmstadt, and was used as received. SAXS measurements 

were performed at a concentration of 10 mg/mL in 50 mM phosphate buffer in D2O, 

pD 7.0, to ensure comparability with FTIR and NMR measurements. Deuteriumoxide 

and TFE were purchased from Fluka, sodium phosphate monobasic dehydrate 

(NaH2PO4 ∙ 2 H2O), disodium hydrogen phosphate dihydrate (Na2HPO4 ∙ 2 H2O) and 

13C-urea from Sigma-Aldrich, and trimethylamine-N-oxide (TMAO) from Merck. The 

conditions chosen for the SAXS measurements are reported in Table 6-1. 

 

Table 6-1. Compositions and conditions for the SAXS measurements on the ELP. 

c (ELP) 

/ wt% 

c (TMAO) 

/ M 

c (urea) 

/ M 

c (TFE) 

/ M 

T 

/°C 

10 - - - 10, 20, 30, 40, 50, 60, 70, 80 

10 1 - - 10, 80 

10 - 2 - 10, 20, 30, 40, 50, 60, 70, 80 

10 1 2 - 10, 80 

10 - - 1 10, 20, 30, 40, 50, 60, 70, 80 
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Temperature dependent measurements were performed on a SAXSess mc² 

instrument (Anton Paar, Graz, Austria) using a monochromatic X-ray beam 

(𝜆 = 0.154 nm) with line focus and an imaging plate detector (Cyclone, Perkin Elmer, 

USA). The 2D scattering pattern was integrated into the one-dimensional scattered 

intensities 𝐼(𝑞) as a function of scattering vector,  , using the software SAXSquant 

3.1 (Anton Paar, provided with the instrument), where 2θ is the total scattering angle. 

The same software was used for background correction of the data with the 

scattering profiles of the pure solvent. Scattering patterns were collected with an 

exposure time of 30 min per image. Desmearing of the data and calculation of the 

pair-distance distribution functions, 𝑃(𝑟) , were performed using the software 

GNOM249. For the shape reconstructions, the software DAMMIN Version 5.325 was 

used (keep-mode).  

 

6.1.3 Results and discussion 

We performed temperature-dependent SAXS measurements on the ELP in the 

presence of different cosolutes in order to investigate its size and shape changes in 

order to complement our FTIR data. The changes in 𝑅g  with temperature are 

displayed in Figure 6-1. 𝑅g  slightly increases from about 1 nm at 10°C to about 

1.2 nm at 80°C in pure buffer, 1 M TMAO, 2 M urea as well as for the mixture 

containing 1M TMAO and 2 M urea. The only exception to this behavior is found in 

the presence of TFE, in which the value found for 𝑅g was about 1.2 nm at 10°C and 

increases to about 1.45 nm at 80°C. For pure buffer and all other cosolutes, the 

radius of gyration of about 1 nm at 10°C is in good agreement with MD simulations191 

and the preliminary SANS measurements performed in pure buffer. However, the 

increase of this value is contradictory to the theoretical investigations predicting a 

decrease of the 𝑅g  at elevated temperatures. In agreement to the data presented 

here, the preliminary SANS measurements by Alexander Matt248 also showed a slight 

increase of 𝑅g with rising temperature.  
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Figure 6-1. Temperature dependent changes in the radius of gyration of the ELP in the 
absence and presence of different cosolutes. 

 

The scattering intensity profiles and pair distance distribution function, 𝑃(𝑟), in pure 

buffer (Figure 6-2 A), indicate that the changes with increasing temperature are very 

small. These observations are in good agreement to the slight changes observed by 

FTIR.250 The Kratky-plots (Figure 6-2 A, inset) show a bell shape, indicating a 

compact and folded state at both temperatures, 10°C and 80°C, respectively.  

The same was also observed in the presence of 1 M TMAO and a mixture of 

1 M TMAO and 2 M urea (Figure A10, A-D). In presence of 2 M urea, the Kratky-Plot 

reveals slightly more disorder and lower compactness, since, contrary to the Kratky-

plots in buffer and in the presence of TMAO, 𝐼 (𝑞) 𝑞² approaches a plateau value, as 

can be expected in the presence of a destabilizing agent like urea (Figure A10, E and 

F).  

𝑃(𝑟) -functions and shape reconstructions in pure buffer indicate a slightly ellipsoidal 

shape at 10°C (Figure 6-2 C). An increase in temperature leads to a slight elongation 

explaining the increase in 𝑅g. Though contrary to MD simulations191, the formation of 

a 𝛽-helix from a random-coil might in fact be consistent with an elongation of the 
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peptide’s shape. Further, they reveal the formation of a slight bend at elevated 

temperatures in buffer (Figure 6-2 C). 

In case of the 2 M TFE, temperature-dependent changes are much more 

pronounced, as can already be seen from the drastic increase in intensity at low 

angles after heating to 80°C (Figure 6-2 A). 𝑃(𝑟) -functions as well as shape 

reconstruction reveal a significant elongation to a maximum length of about 6.5 nm at 

80°C (Figure 6-2 D). However, the bell shape of the corresponding Kratky-plot 

(Figure 6-2 D) still persists at this temperature suggesting a rather compact state. 

Thus, the effect of TFE differs significantly from the effect of the other cosolutes, in 

accordance with the observations in the FTIR study.250 

 

 

Figure 6-2. Temperature-dependent changes in the structure of the elastin-like peptide in the 
presence and absence of TFE. (A) Small-angle X-ray scattering profiles in double logarithmic 
and in Kratky-plot representation (B) in the absence (circles) and presence of TFE (squares) 
at 10°C and 80°C, (C) pair distance distribution functions, 𝑃(𝑟), and (D) corresponding shape 
reconstructions in the absence and presence of TFE.  
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Conclusions 

The results suggest a direct interaction of the TFE with the peptide explaining the 

increase in size observed already at cold temperatures. According to our results, the 

cosolutes TMAO and urea and the mixture of both do not affect the shape and size 

changes of the ELP with increasing temperature markedly.  

With rising temperature, an increase in the radius of gyration is observed under all 

conditions studied. Though contrary to the predictions of theoretical studies191, this 

might be in accordance with the formation of 𝛽-helical structures from a random-coil. 

Indeed, FTIR results performed under identical conditions show that with increasing 

temperature there is an increase in the absorbance characteristic of type II 𝛽-turns 

and other loop structures, whereas a concomitant decrease of the disordered 

structures can be observed. This trend is characteristic for the inverse temperature 

transition of ELPs and continues in the entire measured temperature range up to the 

highest temperature of about 88°C without reversal.250 

 

6.2 Phosphoprotein 32 

6.2.1 Introduction 

In the study presented here, we focussed on the folding landscape of the tumor 

suppressor phosphoprotein 32 (PP32). It belongs to a family of proteins establishing 

leucine-rich repeats (LRR), a structural motif occurring in many functionally different 

proteins, whose detailed folding/unfolding mechanism needs still to be explored. 

Because pressure acts locally on protein folded states to eliminate void volume, it 

provides a unique and powerful means for revealing folding intermediates and 

dissecting cooperative interaction networks within protein structures. The results of 

the pressure dependent SAXS studies performed here should complement site 

specific NMR data in order to explore and map the folding landscape of PP32 in great 

detail. Investigations performed here involve the wildtype (WT) PP32 as well as two 

mutants. These mutants were PP32-∆ -NCap, on which the N-Terminal capping 

motive has been deleted, and PP32-Y131F/D146L, being unable to form the 

stabilizing structural hydrogen bond. Depending on the stability of the variants, a 

sufficient amount of urea was added to each sample to make the proteins unfold in 

the pressure range accessible by high pressure NMR, i.e. below 300 MPa. A 

manuscript reporting the results is in preparation.251 
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6.2.2 Materials and methods 

Sample preparation 

The WT-PP32 protein and its mutants PP32-Y131F/D146L and PP32-∆-Ncap were 

provided by the group of Prof. Catherine Royer (Troy, NY, USA). The proteins were 

synthesized as reported by Dao et al.201 Besides the protein sequence, they 

contained an additional His-tag (-RDDKEWLEHHHHHHH) for purification. They were 

received as solutions with concentrations between 2.5 and 7.5 mg mL-1 in 20 mM 

Bis-Tris buffer, pH 6.8, with 5 mM DTT (Sigma Aldrich, Munich, Germany). Amicon® 

Ultra 15 mL Centrifugal Filters (Merck, Darmstadt, Germany) were used to increase 

the protein concentration to 20 mg mL-1. The required amounts of an 8 M urea 

(Sigma Aldrich) stock solution in Bis-Tris buffer and the according Bis-Tris buffer 

were added to the concentrated protein solutions in order to reach the desired 

concentrations given in Table 6-2. Before filling the samples into the sample 

container for the SAXS measurements, they were centrifuged for 1 min at 5000 rpm 

to remove any aggregates which might have formed during the concentrating process 

or due to the addition of urea. 

Table 6-2. Concentrations and conditions of the PP32 samples investigated. 

 c (PP32) 

/ wt% 

c (Urea)  

/ M 

T  

/°C 

WT-PP32 1 1.5 20, 30 40 

PP32-YFDL 1 0.5 20 

PP32-∆-NCap 1 0 20 

 

Pressure-dependent SAXS measurements at different temperatures 

Pressure dependent SAXS measurements on the wild-type protein, PP32WT, were 

performed at the Storage Ring SOLEIL, beamline SWING (Saint-Aubin, France). The 

intensity is recorded as a function of the wave vector transfer, 𝑞. The photon energy 

used was 15 keV (𝜆  = 0.0827 nm). The sample-to-detector distance was 2 m, 

covering a 𝑞-range between 0.2 and 3 nm-1. The samples were exposed to the beam 

for 1 s per measurement. Pressure was increased in steps of 40 MPa. Integration of 

the images and normalization to the primary beam intensity were performed with the 

software Foxtrot 3.3.0 provided by the SWING beamline. 
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The measurements on the two PP32 mutants PP32-Y131F/D146L and PP32-∆-NCap 

were performed at the European Synchrotron Radiation Facility, beamline ID02 

(Grenoble, France). The energy used was 16 keV (λ = 0.0775 nm) and the sample to 

detector distance was 2.4 m covering a 𝑞 -range between 0.2 and 3 nm-1. The 

samples were exposed to the beam for 0.25 s for each measurement. Pressure was 

increased in steps of 20 MPa. 

All measurements were performed in a home-built high pressure cell with two flat 

diamond windows.32 Pressure was applied with a manual hydraulic spindle pump 

(SITEC-Sieber Engineering AG, Maur (Zurich), Switzerland) using water as 

pressurizing medium. The temperature was maintained using a water bath with an 

accuracy of ± 0.1°C. The sample volume was 10 µL. No radiation damages were 

detected within the total exposure time of a complete pressure series. The scattering 

profiles were background corrected using measurements of the corresponding buffer 

with the software package SAXSutilities215 provided by the ESRF. Pair-distance 

distribution functions, 𝑃(𝑟), were calculated using the software GNOM of the ATSAS 

software package.249 Ab initio models of the folded and pressure-denatured states 

were reconstructed using the GASBOR web interface237 by fitting the reciprocal data. 

 

6.2.3 Results and discussion 

Pressure-dependent measurements of WT-PP32 at different temperatures 

The aim of this section is to investigate the pressure-dependent unfolding behaviour 

of the WT-PP32 at different temperatures by small-angle X-ray scattering. Analysis of 

the recorded intensity profiles and radius of gyration, 𝑅g, (Figure A11, Figure 6-3), 

respectively, enabled quantitative evaluation of the changes in the size of WT-PP32 

with increasing pressure. The 𝑅g-value at 0.1 MPa, which was determined from the 

Guinier region, was found to be 1.84 nm at 15°C, 1.69 nm at 20°C and 1.57 nm at 

30°C. Thus, the overall size shows a slight decrease with increasing temperature. 

For all temperatures, the folded state at these conditions is of elliptical shape with a 

maximum length of about 5 nm, as can be derived from the corresponding 𝑃(𝑟)-

functions (Figure 6-4 A-C).  

 

The overall change in the radius of gyration (Figure 6-3) with pressure is similar for all 

three temperatures investigated. By applying pressure, we found a duplication in the 
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radius of gyration, reaching values of about 3.5 nm at 250 MPa at all temperatures. 

For higher pressures, the calculation of the 𝑅g  was omitted, since the pressure-

unfolded state was already reached at 250 MPa. The 𝑅g determined at a pressure of 

210 MPa of the 20°C-series (open red circle) was considered to be an outlier and has 

not been included when fitting the sigmoidal curve to the data points. 

  

The midpoint of the unfolding curves is ~125 MPa for 15°C, 140 MPa for 20°C and 

160 MPa for 30°C, respectively. This indicates a slight pressure stabilization with 

increasing temperature. This may be expected, since it is a typical feature of the 

elliptical 𝑝, 𝑇 -stability diagram of proteins.180 While SAXS reveals a sigmoidal 

unfolding curve pointing towards a two-state unfolding behavior, complementary 

NMR data reveal intermediate structures (conformational substates) at 30°C251, not 

being distinguishable by SAXS. Thus, the formation of these intermediate structures 

probably does not involve significant changes in size and shape. 

 

Figure 6-3. Pressure- and temperature-dependent changes in the radius of gyration, 𝑅g, of 

1 wt% WT-PP32 in 20 mM Bis-Tris, pH 6.8, +1.5 M urea and 5 mM DTT. 

 

The pressure-unfolded state looks very similar to the urea-unfolded state which was 

analysed previously using a laboratory instrument.251 Both, the pressure and the urea 

unfolded state, represent an elongated shape with a maximum length of about 15 nm 

as shown by the calculated 𝑃(𝑟) functions (Figure 6-4, A-C). In this state, the protein 

seems to be completely unfolded, which is also confirmed by analysing 

corresponding Kratky-plots (Figure 6-4, D-F). Additional ab initio reconstruction of the 
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pressure-unfolded WT-PP32 also suggested a fully extended structure at 400 MPa 

and 20°C (Figure A13). 

 

Figure 6-4. High pressure SAXS profiles of the LRR protein WT-PP32. The three panels on 
the top are the Pair-distance-distribution functions 𝑃(𝑟) of WT-PP32 at 15°C (A), 20°C (B), 
and 30°C (C). Panels D, E, and F represent the Kratky plots of WT-PP32 at 15°C, 20°C and 
30°C, respectively. 

 

WT-PT32, PP32-∆N-Cap and PP32 Y131F/D146L at 20°C 

While in the previous section the focus was to compare the pressure-induced 

unfolding of the WT-PP32 at different temperatures, in this section the pressure 

unfolding of the WT-PP32 will be compared with that of the two mutants, PP32-∆N-

Cap and PP32 Y131F/D146L. All measurements were performed at 20°C with 

varying amounts of urea. As described in the previous sections, the pressure 

dependence of the WT-PP32 at 20°C and a concentration of 1.5 M urea showed a 

sigmoidal unfolding profile, and a 𝑅g -value at high pressure as well as 𝑃(𝑟)  and 

Kratky plots that were consistent with complete unfolding (Figure 6-3, Figure 6-4 

A,D). 
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The SAXS profiles and 𝑅g -values for the double mutant, PP32-Y131F/D146L, at 

atmospheric pressure were nearly identical to those of WT-PP32 (Figure A12, Figure 

6-5 A, C and E). Likewise, the intensity profiles of the pressure-unfolded state of 

PP32-Y131F/D146L at 250 MPa are similar to those obtained for WT-PP32 (Figure 

6-4). 

 

Figure 6-5. High pressure SAXS profiles of the PP32 mutants at 20°C. 𝑃(𝑟) of PP32-ΔN-cap 
(A), and PP32-Y131F/D146L (B). (C) and (D) represent the Kratky plots of PP32-ΔN-cap and 
PP32-Y131F/D146L, respectively. (E) Changes in the radius of gyration of the two PP32 
mutants and, for comparison, of the WT-PP32 at 20°C (same data as in Figure 6-3).  
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In contrast, the unfolding curve of the PP32-ΔN-cap variant shows a completely 

different behavior (Figure A12, Figure 6-5 E). The 𝑅g-value of this variant reaches a 

plateau of 2.48 nm at pressures above 250 MPa. The midpoint of the unfolding curve 

is at about 175 MPa, at a slightly higher pressure than found for the other variants. 

This value is much lower than that expected for a random coil. Ab initio 

reconstructions (Figure A13) indicate that the PP32-ΔN-cap remained partially folded 

even at the highest pressures investigated. Assuming a partially pressure unfolded 

state of PP32-ΔN-cap with an 𝑅g(𝑈HP) of 2.48 nm, and following an apparent two-

state equation, 

𝑅g
2(𝑝) = 𝐹(𝑝) × 𝑅g

2(𝐹) + 𝑈(𝑝) × 𝑅g
2(𝑈HP) (6.1) 

𝐹(𝑝) + 𝑈(𝑝) = 1 (6.2) 

an unfolded fraction, 𝑈(𝑝), of 73% was determined at 250 MPa. This is consistent 

with the stable C-terminal subdomain remaining partially folded (25% remaining 

signal for residues in repeat-5 and 30% for C-Cap) as deduced from HP-NMR.251  

Conclusions  

The pressure-dependent SAXS measurements of the WT-PP32 in the presence of 

1.5 M urea showed a complete unfolding of the wildtype protein with pressure for all 

three temperatures studied. This unfolding was accompanied by a dublication in the 

radius of gyration. The derived unfolding curves showed a slight pressure-

stabilization with rising temperature, as may be expected for a protein exhibiting an 

elliptical 𝑝, 𝑇-stability diagram. By combining high pressure SAXS with 2D NMR, we 

have shown that mutations in the capping motifs of a leucine-rich repeat protein 

strongly effect the folding cooperativity of the PP32. These effects depend on the 

structural and energetic context of the mutations within the protein. If the N-terminal 

capping motif is deleted, the folding/unfolding behaviour becomes highly non-

cooperative. NMR measurements showed a bimodal manner of the unfolding of the 

protein, i.e., the N-terminal half unfolds at much lower pressure than the C-terminal 

half. Indeed, HP SAXS showed that the stable C-terminal half of the protein did not 

completely unfold at the highest pressures attained. Deletion of the N-cap further 

destabilizes the N-terminal half of the protein, leading to a larger difference in stability 

between the stable C-terminal half of the protein and the less stable N-terminal half. 

As a consequence, a highly non-cooperative un/folding behavior is observed.  
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6.3 Actin bundles 

6.3.1 Introduction 

While the last subchapters focused on the form factor of single peptides and proteins, 

respectively, this subchapter focuses on the diffraction originating from a complex 

network of proteins. Actin filaments are bundled to form B-actin using two different 

condensation agents. The first one are divalent magnesium cations found to bundle 

F-actin in vitro, the second one is fascin, a protein cross-linking actin filaments in 

vivo. The temperature and pressure stability of these two types of bundles is 

investigated. This project was performed in close collaboration with Mimi Gao (TU-

Dortmund), who performed corresponding SDS-PAGE and TEM analyses. The 

results were published in Angewandte Chemie213 and are partially reproduced in this 

subchapter with permission, Copyright © 2015 by John Wiley & Sons.  

6.3.2 Materials and methods 

G-actin and fascin were purchased from Hypermol (Bielefeld, Germany). G-actin 

dissolved in 2 mM Tris-Cl pH 8.2, 0.4 mM ATP, 0.1 mM DTT, 0.08 mM CaCl2 was 

polymerized by adding F-buffer (10 mM imidazole pH 7.4, 100 mM KCl, 1 mM ATP) 

to the solution. After 30 min of incubation at RT, F-actin was further bundled either by 

adding appropriate amount of fascin (molar ratio of 1:4 fascin to actin) or 50 mM 

MgCl2 to the solution. The bundles were analyzed within one week after preparation. 

Meanwhile they were stored a 0°C. For all SAXS experiments performed, the actin 

concentration was 10 mg/mL. 

 

Temperature-dependent measurements were performed on a SAXSess mc² 

instrument (Anton Paar, Graz, Austria) using a monochromatic X-ray beam 

(𝜆 = 0.154 nm) with line focus and an imaging plate detector (Cyclone, Perkin Elmer, 

USA). 2D scattering patterns were integrated to obtain one-dimensional scattering 

intensities 𝐼(𝑞) as a function of the scattering vector, 𝑞, using SAXSquant 3.1 (Anton 

Paar, provided with the instrument). The same software was used for background 

correction of the data using the scattering profiles of the pure solvent. Scattering 

patterns were collected over 30 min per image. Desmearing of the data and 

calculation of the pair-distance distribution functions, 𝑃(𝑟), were performed using the 

software GNOM249.  
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Pressure-dependent measurements were performed using a home-built high 

pressure cell with diamond windows252 at Beamline ID02 at the European 

Synchrotron Radiation Facility in Grenoble, France. The sample volume was 10 µL. 

The energy used was 16 keV and the sample to detector distance was 1.5 m. The 

samples were exposed to the beam for 0.2 s for each measurement. No radiation 

damages were detected within the total exposure time of a complete pressure series. 

The diffraction data was background corrected and analyzed using the 

SAXSutilities215 software package provided by ESRF and the peak maxima were 

obtained from Gaussian fits using the software Origin (OriginLab, Northampton, MA). 

 

6.3.3 Results and discussion 

Temperature-dependent SAXS measurements 

Small-angle X-ray intensity profiles were recorded for different temperatures at 

atmospheric pressure (Figure 6-6). At the temperature of 20°C, for both types of 

bundles peaks indicating a hexagonal packing of the filaments are visible.208 For the 

fascin-induced bundles these are the first one at the position 𝑞10 = 0.585 nm-1 

associated with a hexagonal lattice constant 𝑑 = 4𝜋/√3𝑞10 of 12.4 nm (Figure 6-6 A) 

and second peak at the position 𝑞20 = 1.20 nm-1. The ratio of the peak positions (1:2) 

indicates a perfect hexagonal packing of the fascin-connected bundles, in 

accordance to literature data.208 

 

The peak intensity decreases drastically between 52.5°C and 55°C, indicating a 

melting/degradation temperature, 𝑇M, of the bundles of about 54°C. With increasing 

temperature, the peak position and thus the lattice constant, 𝑑, does not change 

markedly. A small (0.3 nm) decrease is observed from 20 to 40°C, only, and the 𝑑-

value starts to increase again above 50°C when dissociation of the bundles sets in 

(Figure A14). From 55 to 70°C, the SAXS intensity profiles resemble the scattering 

pattern of F-actin,208 in agreement with the scattering pattern of randomly orientated 

F-actin as displayed in Figure A15. Both SAXS profiles show a slight increase of the 

intensity in the 𝑞-range where broad diffraction peaks associated with the helical 

structure of F-actin were found in ordered F-actin bundles (at 1.14 and 1.25 nm-1).208 

However, our data indicate that the thermal degradation of bundles proceeds via the 

dissociation of the filaments.  
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From 70°C to 80°C, a further change of the SAXS profile can be observed (Figure 

6-6 A, Figure A15 A), which is similar to the change in the scattering curve of 

filamentous actin upon thermal denaturation with a 𝑇𝑀  of 75°C.253 These changes 

include a drastic increase of scattering at low 𝑞-values, which is indicative of protein 

aggregation. The according pair-distance distribution function, 𝑃(𝑟) , suggest a 

transition from a cylindrical, elongated species to slightly elongated aggregates with a 

radius of gyration of about 10 nm (Figure A15 B).  

The SAXS profile of Mg2+-induced bundles at 20°C reveals a first-order peak at 𝑞10 at 

0.85 nm-1 and a weak higher-order peak at 1.36 nm-1 (Figure 6-6 B). The ratio of the 

two peaks (1:1.6) differs slightly from the 1:√3 ratio expected for a perfect hexagonal 

packing. The first-order peak is associated with a hexagonal lattice constant of 

8.5 nm, which reflects closest packing of the filaments.254  

No significant shift of the diffraction peaks and hence the 𝑑-value is observed with 

increasing temperature up to 40°C (Figure A14). The peak intensity drastically 

decreases between 65°C and 67.5°C, indicating a melting temperature of the Mg2+-

induced actin bundles of about 66°C, which is in good agreement with FTIR 

spectroscopic measurements.253  

In contrast to the fascin-induced bundles, a scattering profile reflecting the 

characteristics of filamentous actin cannot be observed at any temperature. Instead, 

the scattering profiles of the Mg2+-induced bundles above 65°C suggests direct 

formation of amorphous actin aggregates from the bundles. This behavior was 

confirmed by TEM analysis.213  
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Figure 6-6. Temperature-dependent SAXS intensity profiles of B-actin. Bundling of F-actin 
was induced with fascin (A) or Mg2+ ions (B). Black solid lines indicate the position of the 
peak maxima related to hexagonal packing of filaments at 20°C (A and B). Curves were 
shifted for clarity. 

Pressure-dependent SAXS measurements 

Studying the response of fascin- and Mg2+-induced actin bundles to high hydrostatic 

pressure with SAXS reveals that these actin bundles are present up to a pressure of 

about 250 and 160 MPa, respectively (Figure 6-7). For fascin-induced bundles, the 

peak position does not change significantly from 0.1 up to a pressure of 125 MPa, 

while between 125 and 250 MPa a marked shift towards lower 𝑞-values is observed 

(Figure 6-7 A). The calculated lattice constant, 𝑑(𝑝), shows a total increase of the 

intermolecular distance between the filaments of ~0.6 nm between 125 and 250 MPa 

(Figure 6-7 C). After dissociation, from about 250 MPa up to the maximum pressure 

of 400 MPa, the observed intensity profile monitored is characteristic for F-actin 

filaments. 
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Figure 6-7. Pressure-dependent Synchrotron small-angle X-ray scattering data of B-actin at 
20°C. Bundling of the F-actin was induced with fascin (A and C) or Mg2+ ions (B and D). (A 
and B) Intensity profiles are shown with black solid lines indicating the position of the peak 
maxima related to a hexagonal packing of the filaments at 0.1 MPa. Curves were shifted for 
clarity. (C and D) Pressure-dependent changes of the lattice constant. 

 

In contrast, the scattering intensity profiles of the Mg2+-induced actin bundles (Figure 

6-7 B) and the pressure-dependent changes of the lattice constant (Figure 6-7 D) 

show a continuous shift of the 𝑞10-peak towards lower 𝑞-values up to the dissociation 

pressure. The lattice constant, 𝑑, experiences a total increase of about 0.6 nm. The 

scattering intensity profile at 150 MPa is characteristic of F-actin. Upon further 



Investigations of peptides and proteins  

 

104 
 

compression, the overall intensity of the scattering curve decreases, indicating 

formation of smaller filamentous species. An increase in temperature to 30°C (Figure 

A16) leads to a drastic decrease in pressure stability of the fascin-induced bundles. 

In this case, the peaks characteristic for bundles can be monitored up to a pressure 

of 125-160 MPa, only. For the Mg2+-induced bundles, the effect of temperature on the 

pressure stability is much weaker. The observed denaturation pressure is around 

160 MPa for all temperatures between 20 and 45°C (Figure A16 B and C). 

The 𝑑-values seem to diverge upon approaching a critical pressure value (Figure 6-7 

C and D). This behavior resembles an unbinding transition, which was also reported 

for other soft elastic manifolds, for example for stacks of lipid bilayer membranes.232–

234 The origin of such a transition is the competition of attractive molecular 

interactions and an effective repulsion between the filaments reflecting the loss of 

configurational entropy the filaments experience in the bound state. Lipowski and 

Leibler reported the existence of a certain threshold. Below this threshold, the 

entropically driven undulations are stronger than the attractive forces, resulting in a 

complete unbinding. Here, the apparent divergence of the 𝑑-value approaching a 

critical pressure value points towards a similar unbinding scenario, that is 〈𝑑〉 ∝

(𝑝c − 𝑝)
−𝛼 with an exponent 𝛼. 

 

Fascin or Mg2+ induce an interplay of steric / electrostatic repulsion and attractions, 

which determines whether the filaments stay in the bundled state or unbind. Pressure 

induces destabilization of the bridging fascin molecules and weakens the electrostatic 

interactions in the Mg2+-induced bundles, respectively. If this scaling behavior 

applies, this leads to a critical exponent, 𝛼, of about 0.06 and to critical unbinding 

pressures, 𝑝𝑐, of about 310 MPa for the fascin- and 160 MPa for the Mg2+-induced 

actin bundles, respectively. These values agree with our experimental data. 

Interestingly, theoretical studies predicted such an unbinding scenario for bundles of 

semiflexible polymers such as actin filaments. The formation of bundles of parallel 

filaments needs a threshold concentration of cross-linkers and the bundles unbind in 

a single, discontinuous transition, as shown by Kierfeld et al..255,256 In this work, 

pressure modulates the critical concentration of active linker molecules. Theoretical 

studies predicted the criticality observed here.255,256 
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Interestingly, in situ HP-SAXS measurements show the presence of highly ordered 

Mg2+-induced bundles up to a pressure of ~125 MPa, only. In contrast, ex situ TEM 

images show no morphological changes up to 150 MPa. This observation might be 

explained by a reversible pressure dissociation and therefore reassembly of the 

filaments when the pressure is released.213 Pressure effects on electrostatic 

interactions might be responsible for this observation. The disruption of internal salt 

bridges reduces the overall volume of the bundles. When pressure is increased, 

water molecules form a dense hydration shell around the solvent-exposed ions 

(electrostrictive effect).87–89Thus, the attenuation of electrostatic interactions leads to 

an increase of the distance between the filaments as observed in SAXS. 

Conclusions 

All in all, the results show that fascin- and Mg2+-induced bundles of F-actin establish 

different temperature and pressure stabilities. The two types of bundle structures are 

stabilized by different intermolecular interactions. Below 𝑇M, neither the fascin-actin 

interaction nor counterion organization are very sensitive to thermal fluctuations. 

However, electrostatic interactions are weakened by high hydrostatic pressures.87–89 

For Mg2+-induced bundles, the lateral condensation of F-actin is dominated by 

electrostatic interactions, which are weakened by pressure, resulting in the 

dissociation of the bundle structure. Thereby, packing defects are likely to be a minor 

factor, due to closest packing of the filaments in the Mg2+-bundles and a small 

pressure-induced volume change upon disintegration.253 

 

However, the distance between the filaments of the fascin-induced bundles is not 

affected upon pressurization up to ~100 MPa. Only above ~250 MPa, dissociation of 

the bundles is observed, indicating that additional, non-electrostatic interactions 

occur between the fascin and actin. It was shown that F-actin is stable up to the 

pressure range of 350 MPa.253 Therefore, destabilization of the tertiary structure of 

fascin and its local interaction site with F-actin is likely to be responsible for the 

dissociation of the fascin-stabilized bundles occurring at a pressure much lower than 

350 MPa. In comparison with the divalent Mg2+-stabilized bundles, the pressure 

stability fascin-induced bundles is drastically higher. Both proteins, actin and fascin, 

are evolutionary highly conserved.257,258 Thus, bundles formed by them might fit 

better the requirements inside cells of organisms living under extreme environmental 

conditions, as found in the deep sea, where pressures up to ~110 MPa are 
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encountered.38 The evolutionary evolved actin-binding proteins, such as fascin, are 

required to ensure sufficient stability and mechanical resistance of the cytoskeleton 

under such harsh environmental conditions. 
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Summary 

The measurements presented in this thesis provided many new insights and 

contributed significantly to various projects. Scattering methods were applied to study 

various systems of biomolecules. These measurements do not require any labeling 

or modification of the molecules and can be performed in a wide range of 

temperatures and pressures. Thus, they are ideal tools to gain interesting insights 

into the structural changes of the molecules under investigation at various conditions 

of temperature and pressure. Many of these conditions aimed to mimicking deep sea 

habitats, which might have been the place where life emerged. These scattering 

methods also enabled to study the influence of cosolutes like TMAO, urea and 

divalent ions on the temperature and pressure stability of the systems, which might 

have been present in the primordial soup. 

The first class of biomolecules under investigation was lipids. SAXS measurements 

on a mixture containing different prebiotic lipids provided insights on how the first 

membrane envelopes of protocells might have evolved. They enabled to investigate 

the micelle-vesicle equilibrium of this system. It showed that the vesicular structures 

are not only highly temperature stable, but also that pressure fosters the formation of 

vesicles from micelles. XRR and SAXS measurements on a bicontinuous 

microemulsion showed that this emulsion forms a lamellar layer in proximity to a Si-

wafer. Right on the surface, 2-3 layers of water molecules were found. These 

measurements further showed that pressure compresses the lamellar phase. In the 

bicontinuous phase, pressure increases the order, but this ordering is not sufficient to 

induce a transition to a lamellar phase up to 400 MPa, which would be associated 

with a high loss in entropy. 

Next, the behavior of nucleic acids was explored. Measurements on guanosine 

monophosphate sodium salt showed that even single nucleotides can have a very 

complex phase behavior, which strongly depends on temperature, pressure and the 

presence of cosolutes. Interestingly, the stabilizing cosolute TMAO was found to 

induce hexagonal association of the stacks even in the absence of stabilizing cations. 

Measurements on a labeled small RNA hairpin motive showed how drastically 

fluorophores can impact the temperature and pressure stability of small molecules. 

The SAXS measurements were able to resolve the stacking interaction between the 

fluorophore and the nucleobases. SAXS measurements also showed that the radius 
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of gyration of the hairpin ribozyme decreases with pressure, which indicates an 

increased population of the docked state. This shows that pressure could be 

favorable for enzymatic reaction involving ribozymes, which might have been 

precursors to modern enzymes. The time-dependent cleavage could not be resolved 

due to problems with aggregation at the relatively high concentrations required for 

this small-angle X-ray scattering measurements. SAXS measurements on the 

phenylalanine transfer RNA showed that magnesium ions enhance the cooperativity 

in temperature induced unfolding. Further, these measurements revealed high 

pressure stability of tRNAPhe, both, in the absence and presence of magnesium. 

Finally, SAXS measurements on peptides and proteins were conducted. For the 

elastin-like peptide, the experiments showed that the cosolute TFE seems to bind to 

the surface of the ELP. The measurements on WT-PP32 and its mutants showed that 

mutations in the capping motives decrease the cooperativity of the unfolding in the 

whole protein. They showed that the C-terminal of the PP32-ΔN-cap remains at least 

partially folded even at the highest pressure investigated. Diffraction measurements 

on the hexagonally arranged filaments within actin bundles showed that using fascin 

as a crosslinker instead of divalent ions significantly enhances the pressure stability 

of the bundles. Further, the analysis of the hexagonal lattice constant in dependence 

of pressure showed that the filaments undergo an unbinding transition. 
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34. Woenckhaus, J., Köhling, R., Winter, R., Thiyagarajan, P. & Finet, S. High 
pressure-jump apparatus for kinetic studies of protein folding reactions using 
the small-angle synchrotron x-ray scattering technique. Rev. Sci. Instrum. 71, 
3895–3899 (2000). 

35. Kraineva, J., Narayanan, R. A., Kondrashkina, E., Thiyagarajan, P. & Winter, 
R. Kinetics of lamellar-to-cubic and intercubic phase transitions of pure and 



References 

 

111 
 

cytochrome c containing monoolein dispersions monitored by time-resolved 
small-angle X-ray diffraction. Langmuir 21, 3559–3571 (2005). 

36. Krywka, C. et al. The new diffractometer for surface X-ray diffraction at 
beamline BL9 of DELTA. J. Synchrotron Radiat. 13, 8–13 (2006). 

37. Paulus, M. et al. An access to buried interfaces: the X-ray reflectivity set-up of 
BL9 at DELTA. J. Synchrotron Radiat. 15, 600–605 (2008). 

38. Daniel, I., Oger, P. & Winter, R. Origins of life and biochemistry under high-
pressure conditions. Chem. Soc. Rev. 35, 858–875 (2006). 

39. Simoneit, B. R. T. Prebiotic organic synthesis under hydrothermal conditions: 
an overview. Adv. Sp. Res. 33, 88–94 (2004). 

40. Leslie E., O. Prebiotic Chemistry and the Origin of the RNA World. Crit. Rev. 
Biochem. Mol. Biol. 39, 99–123 (2004). 

41. Deamer, D., Dworkin, J. P., Sandford, S. a, Bernstein, M. P. & Allamandola, L. 
J. The First Cell Membranes. Astrobiology 2, 371–381 (2002). 

42. Schrum, J. P., Zhu, T. F. & Szostak, J. W. The Origins of Cellular Life. Cold 
Spring Harb. Perspect. Biol. 2, a002212–a002212 (2010). 

43. Yancey, P. H., Blake, W. R. & Conley, J. Unusual organic osmolytes in deep-
sea animals: adaptations to hydrostatic pressure and other perturbants. Comp. 
Biochem. Physiol. Part A Mol. Integr. Physiol. 133, 667–676 (2002). 

44. Timasheff, S. N. Protein-solvent preferential interactions, protein hydration, and 
the modulation of biochemical reactions by solvent components. Proc. Natl. 
Acad. Sci. 99, 9721–9726 (2002). 

45. Yancey, P. H. Organic osmolytes as compatible, metabolic and counteracting 
cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208, 2819–
2830 (2005). 

46. Minton, A. P. The Influence of Macromolecular Crowding and Macromolecular 
Confinement on Biochemical Reactions in Physiological Media. J. Biol. Chem. 
276, 10577–10580 (2001). 

47. Kadam, P. S., Jadhav, B. A., Salve, R. V & Machewad, G. M. Review on the 
High Pressure Technology (HPT) for Food Preservation. Food Process. 
Technol. 3, 1–5 (2012). 

48. Alberts, B. et al. Molecular Biology of the Cell. (Garland Science, 2002). 

49. McCollom, T. M., Ritter, G. & Simoneit, B. R. Lipid synthesis under 
hydrothermal conditions by Fischer-Tropsch-type reactions. Orig. Life Evol. 
Biosph. 29, 153–166 (1999). 

50. Hanczyc, M. M., Fujikawa, S. M. & Szostak, J. W. Experimental models of 
primitive cellular compartments: encapsulation, growth, and division. Science 
(80-. ). 302, 618–622 (2003). 

51. Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. Nature 409, 387–
390 (2001). 

52. Yuen, G. U. & Kvenhold, K. A. Monocarboxylic Acids in Murray and Murchison 



References  

 

112 
 

Carbonaceous Meteorites. Nature 246, 301–303 (1973). 

53. Deamer, D. W. Boundary structures are formed by organic components of the 
Murchison carbonaceous chondrite. Nature 317, 792–794 (1985). 

54. Budin, I., Debnath, A. & Szostak, J. W. Concentration-Driven Growth of Model 
Protocell Membranes. J. Am. Chem. Soc. 134, 20812–20819 (2012). 

55. Kulkarni, C. V, Wachter, W., Iglesias-Salto, G., Engelskirchen, S. & Ahualli, S. 
Monoolein: a magic lipid? Phys. Chem. Chem. Phys. 13, 3004–3021 (2011). 

56. Winter, R. & Köhling, R. Static and time-resolved synchrotron small-angle x-ray 
scattering studies of lyotropic lipid mesophases, model biomembranes and 
proteins in solution. J. Phys. Condens. Matter 16, S327–S352 (2004). 

57. Winter, R. & Czeslik, C. Pressure effects on the structure of lyotropic lipid 
mesophases and model biomembrane systems. Zeitschrift für Krist. - Cryst. 
Mater. 215, 454–474 (2000). 

58. Seddon, J. M. Structure of the inverted hexagonal (HII) phase, and non-
lamellar phase transitions of lipids. Biochim. Biophys. Acta - Rev. Biomembr. 
1031, 1–69 (1990). 

59. Gruner, S. M., Cullis, P. R., Hope, M. J. & Tilcock, C. P. Lipid polymorphism: 
the molecular basis of nonbilayer phases. Annu. Rev. Biophys. Biophys. Chem. 
14, 211–238 (1985). 

60. Lipowsky, R. & Sackmann, E. Structure and Dynamics of Membranes. 
(Elsevier Science, 1995). 

61. Czeslik, C., Reis, O., Winter, R. & Rapp, G. Effect of high pressure on the 
structure of dipalmitoylphosphatidylcholine bilayer membranes: a synchrotron-
X-ray diffraction and FT-IR spectroscopy study using the diamond anvil 
technique. Chem. Phys. Lipids 91, 135–144 (1998). 

62. Hyde, S. et al. The Language of Shape. (Elsevier, 1997). 

63. Almsherqi, Z. a, Kohlwein, S. D. & Deng, Y. Cubic membranes: a legend 
beyond the Flatland of cell membrane organization. J. Cell Biol. 173, 839–844 
(2006). 

64. Tenchov, B. & Koynova, R. Cubic phases in membrane lipids. Eur. Biophys. J. 
41, 841–850 (2012). 

65. Kapoor, S. et al. Prebiotic cell membranes that survive extreme environmental 
pressure conditions. Angew. Chem. Int. Ed. Engl. 53, 8397–8401 (2014). 

66. Cossins, A. R. & Macdonald, A. G. The adaptation of biological membranes to 
temperature and pressure: Fish from the deep and cold. J. Bioenerg. 
Biomembr. 21, 115–135 (1989). 

67. Yayanos, A. A. Evolutional and ecological implications of the properties of 
deep-sea barophilic bacteria. Proc. Natl. Acad. Sci. 83, 9542–9546 (1986). 

68. Behan, M. K., Macdonald, A. G., Jones, G. R. & Cossins, A. R. Homeoviscous 
adaptation under pressure: the pressure dependence of membrane order in 
brain myelin membranes of deep-sea fish. Biochim. Biophys. Acta 1103, 317–
323 (1992). 



References 

 

113 
 

69. Monnard, P.-A. & Deamer, D. W. Preparation of Vesicles from Nonphospholipid 
Amphiphiles. Methods in enzymology (Elsevier, 2003). 

70. Monnard, P.-A., Apel, C. L., Kanavarioti, A. & Deamer, D. W. Influence of Ionic 
Inorganic Solutes on Self-Assembly and Polymerization Processes Related to 
Early Forms of Life: Implications for a Prebiotic Aqueous Medium. Astrobiology 
2, 139–152 (2002). 

71. Apel, C. L., Deamer, D. W. & Mautner, M. N. Self-assembled vesicles of 
monocarboxylic acids and alcohols: conditions for stability and for the 
encapsulation of biopolymers. Biochim. Biophys. Acta - Biomembr. 1559, 1–9 
(2002). 

72. Hargreaves, W. R. & Deamer, D. W. Liposomes from ionic, single-chain 
amphiphiles. Biochemistry 17, 3759–3768 (1978). 

73. Anneken, D. J. et al. Fatty Acids. Ullmann’s Encyclopedia of Industrial 
Chemistry (Wiley, 2006). 

74. Conn, C. E. et al. Dynamics of Structural Transformations between Lamellar 
and Inverse Bicontinuous Cubic Lyotropic Phases. Phys. Rev. Lett. 96, 
108102–108104 (2006). 

75. Cherezov, V., Siegel, D. P., Shaw, W., Burgess, S. W. & Caffrey, M. The 
Kinetics of Non-Lamellar Phase Formation in DOPE-Me: Relevance to 
Biomembrane Fusion. J. Membr. Biol. 195, 165–182 (2003). 

76. Lendermann, J. & Winter, R. Interaction of cytochrome c with cubic monoolein 
mesophases at limited hydration conditions: The effects of concentration, 
temperature and pressure. Phys. Chem. Chem. Phys. 5, 1440–1450 (2003). 

77. Chen, S. H., Chang, S. L., Strey, R., Samseth, J. & Mortensen, K. Structural 
evolution of bicontinuous microemulsions. J. Phys. Chem. 95, 7427–7432 
(1991). 

78. Kerscher, M. et al. Near-surface structure of a bicontinuous microemulsion with 
a transition region. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 83, 30401 
(2011). 

79. Zhou, X.-L., Lee, L.-T., Chen, S.-H. & Strey, R. Observation of surface-induced 
layering in bicontinuous microemulsions. Phys. Rev. A 46, 6479–6489 (1992). 

80. Frielinghaus, H. et al. Scattering depth correction of evanescent waves in 
inelastic neutron scattering using a neutron prism. Nucl. Instruments Methods 
Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 686, 71–74 
(2012). 

81. Frielinghaus, H., Kerscher, M., Holderer, O., Monkenbusch, M. & Richter, D. 
Acceleration of membrane dynamics adjacent to a wall. Phys. Rev. E - Stat. 
Nonlinear, Soft Matter Phys. 85, 1–7 (2012). 

82. Köhling, R., Woenckhaus, J., Klyachko, N. L. & Winter, R. Small-Angle Neutron 
Scattering Study of the Effect of Pressure on AOT− n -Octane−Water 
Mesophases and the Effect of α-Chymotrypsin Incorporation. Langmuir 18, 
8626–8632 (2002). 

83. Swami, A. et al. Confinement of DNA in water-in-oil microemulsions. Langmuir 



References  

 

114 
 

24, 11828–11833 (2008). 

84. Lawrence, M. J. & Rees, G. D. Microemulsion-based media as novel drug 
delivery systems. Adv. Drug Deliv. Rev. 45, 89–121 (2000). 

85. Mathews, D. H. et al. Incorporating chemical modification constraints into a 
dynamic programming algorithm for prediction of RNA secondary structure. 
Proc. Natl. Acad. Sci. 101, 7287–7292 (2004). 

86. Tan, Z.-J. & Chen, S.-J. Salt dependence of nucleic acid hairpin stability. 
Biophys. J. 95, 738–752 (2008). 

87. Silva, J. L., Foguel, D. & Royer, C. a. Pressure provides new insights into 
protein folding, dynamics and structure. Trends Biochem. Sci. 26, 612–618 
(2001). 

88. Mishra, R. & Winter, R. Cold- and Pressure-Induced Dissociation of Protein 
Aggregates and Amyloid Fibrils. Angew. Chemie Int. Ed. 47, 6518–6521 
(2008). 

89. Akasaka, K. Probing Conformational Fluctuation of Proteins by Pressure 
Perturbation. Chem. Rev. 106, 1814–1835 (2006). 

90. Chong, P. L.-G., Ravindra, R., Khurana, M., English, V. & Winter, R. Pressure 
perturbation and differential scanning calorimetric studies of bipolar tetraether 
liposomes derived from the thermoacidophilic archaeon Sulfolobus 
acidocaldarius. Biophys. J. 89, 1841–1849 (2005). 

91. Chong, P. L.-G., Zein, M., Khan, T. K. & Winter, R. Structure and Conformation 
of Bipolar Tetraether Lipid Membranes Derived from Thermoacidophilic 
Archaeon Sulfolobus acidocaldarius as Revealed by Small-Angle X-ray 
Scattering and High-Pressure FT-IR Spectroscopy. J. Phys. Chem. B 107, 
8694–8700 (2003). 

92. Kruger, K. et al. Self-splicing RNA: autoexcision and autocyclization of the 
ribosomal RNA intervening sequence of Tetrahymena. Cell 31, 147–57 (1982). 

93. Schimmel, P. & Kelley, S. O. Exiting an RNA world. Nat. Struct. Biol. 7, 5–7 
(2000). 

94. Dubins, D. N., Lee, A., Macgregor, R. B. & Chalikian, T. V. On the Stability of 
Double Stranded Nucleic Acids. J. Am. Chem. Soc. 123, 9254–9259 (2001). 

95. Takahashi, S. & Sugimoto, N. Effect of Pressure on Thermal Stability of G-
Quadruplex DNA and Double-Stranded DNA Structures. Molecules 18, 13297–
13319 (2013). 

96. Girard, E. et al. Adaptation of the base-paired double-helix molecular 
architecture to extreme pressure. Nucleic Acids Res. 35, 4800–4808 (2007). 

97. Lin, M.-C., Eid, P., Wong, P. T. T. & Macgregor, R. B. High pressure fourier 
transform infrared spectroscopy of poly(dA)poly(dT), poly(dA) and poly(dT). 
Biophys. Chem. 76, 87–94 (1999). 

98. Roche, J. et al. Cavities determine the pressure unfolding of proteins. Proc. 
Natl. Acad. Sci. 109, 6945–6950 (2012). 

99. Takahashi, S. & Sugimoto, N. Effect of Pressure on the Stability of G-



References 

 

115 
 

Quadruplex DNA: Thermodynamics under Crowding Conditions. Angew. 
Chemie 125, 14019–14023 (2013). 

100. Wilton, D. J., Ghosh, M., Chary, K. V. A., Akasaka, K. & Williamson, M. P. 
Structural change in a B-DNA helix with hydrostatic pressure. Nucleic Acids 
Res. 36, 4032–4037 (2008). 

101. Giel-Pietraszuk, M. & Barciszewski, J. A nature of conformational changes of 
yeast tRNAPhe. Int. J. Biol. Macromol. 37, 109–114 (2005). 

102. Giel-Pietraszuk, M. & Barciszewski, J. Hydrostatic and osmotic pressure study 
of the RNA hydration. Mol. Biol. Rep. 39, 6309–6318 (2012). 

103. Hughes, F. & Steiner, R. F. Effects of pressure on the helix-coil transitions of 
the poly A-poly U system. Biopolymers 4, 1081–1090 (1966). 

104. Garcia, A. E. & Paschek, D. Simulation of the Pressure and Temperature 
Folding/Unfolding Equilibrium of a Small RNA Hairpin. J. Am. Chem. Soc. 130, 
815–817 (2008). 

105. Downey, C. D., Crisman, R. L., Randolph, T. W. & Pardi, A. Influence of 
Hydrostatic Pressure and Cosolutes on RNA Tertiary Structure. J. Am. Chem. 
Soc. 129, 9290–9291 (2007). 

106. Hervé, G., Tobé, S., Heams, T., Vergne, J. & Maurel, M.-C. Hydrostatic and 
osmotic pressure study of the hairpin ribozyme. Biochim. Biophys. Acta - 
Proteins Proteomics 1764, 573–577 (2006). 

107. Kaddour, H., Vergne, J., Hervé, G. & Maurel, M.-C. High-pressure analysis of a 
hammerhead ribozyme from Chrysanthemum chlorotic mottle viroid reveals two 
different populations of self-cleaving molecule. FEBS J. 278, 3739–3747 
(2011). 

108. Lane, A. N., Chaires, J. B., Gray, R. D. & Trent, J. O. Stability and kinetics of 
G-quadruplex structures. Nucleic acids research 36, 5482–5515 (2008). 

109. Chan, S. R. W. L. & Blackburn, E. H. Telomeres and telomerase. Philos. Trans. 
R. Soc. B Biol. Sci. 359, 109–122 (2004). 

110. Cech, T. R. Beginning to understand the end of the chromosome. Cell 116, 
273–279 (2004). 

111. Lipps, H. J. & Rhodes, D. G-quadruplex structures: in vivo evidence and 
function. Trends Cell Biol. 19, 414–422 (2009). 

112. Simonsson, T. G-Quadruplex DNA Structures Variations on a Theme. Biol. 
Chem. 382, 621–628 (2001). 

113. Mergny, J. L. et al. The development of telomerase inhibitors: the G-quartet 
approach. Anticancer. Drug Des. 14, 327–339 (1999). 

114. Mariani, P., Ciuchi, F. & Saturni, L. Helix-Specific Interactions Induce 
Condensation of Guanosine Four-Stranded Helices in Concentrated Salt 
Solutions. Biophys. J. 74, 430–435 (1998). 

115. Ausili, P. et al. Pressure Effects on Columnar Lyotropics: Anisotropic 
Compressibilities in Guanosine Monophosphate Four-Stranded Helices. J. 
Phys. Chem. B 108, 1783–1789 (2004). 



References  

 

116 
 

116. Mariani, P. et al. Guanosine Quadruplexes in Solution: A Small-Angle X-Ray 
Scattering Analysis of Temperature Effects on Self-Assembling of 
Deoxyguanosine Monophosphate. J. Nucleic Acids 2010, 1–10 (2010). 

117. Mariani, P. & Saturni, L. Measurement of intercolumnar forces between parallel 
guanosine four-stranded helices. Biophys. J. 70, 2867–2874 (1996). 

118. Wong, A. & Wu, G. Selective Binding of Monovalent Cations to the Stacking G-
Quartet Structure Formed by Guanosine 5‘-Monophosphate: A Solid-State 
NMR Study. J. Am. Chem. Soc. 125, 13895–13905 (2003). 

119. Tuerk, C. et al. CUUCGG hairpins: extraordinarily stable RNA secondary 
structures associated with various biochemical processes. Proc. Natl. Acad. 
Sci. 85, 1364–1368 (1988). 

120. Uhlenbeck, O. C. Tetraloops and RNA folding. Nature 346, 613–614 (1990). 

121. Woese, C. R., Winker, S. & Gutell, R. R. Architecture of ribosomal RNA: 
constraints on the sequence of ‘tetra-loops’. Proc. Natl. Acad. Sci. 87, 8467–
8471 (1990). 

122. Wolters, J. The nature of preferred hairpin structures in 16S-like rRNA variable 
regions. Nucleic Acids Res. 20, 1843–1850 (1992). 

123. Varani, G. Exceptionally Stable Nucleic Acid Hairpins. Annu. Rev. Biophys. 
Biomol. Struct. 24, 379–404 (1995). 

124. Tinoco, I. & Bustamante, C. How RNA folds. J. Mol. Biol. 293, 271–281 (1999). 

125. Molinaro, M. & Tinoco, I. Use of ultra stable UNCG tetraloop hairpins to fold 
RNA structures: thermodynamic and spectroscopic applications. Nucleic Acids 
Res. 23, 3056–3063 (1995). 

126. Woese, C. R., Gutell, R., Gupta, R. & Noller, H. F. Detailed analysis of the 
higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol. Rev. 
47, 621–669 (1983). 

127. Sheehy, J. P., Davis, A. R. & Znosko, B. M. Thermodynamic characterization of 
naturally occurring RNA tetraloops. RNA 16, 417–429 (2010). 

128. Chakraborty, D., Collepardo-Guevara, R. & Wales, D. J. Energy Landscapes, 
Folding Mechanisms, and Kinetics of RNA Tetraloop Hairpins. J. Am. Chem. 
Soc. 136, 18052–18061 (2014). 

129. Ma, H. et al. Exploring the Energy Landscape of a Small RNA Hairpin. J. Am. 
Chem. Soc. 128, 1523–1530 (2006). 

130. Ma, H., Wan, C., Wu, A. & Zewail, A. H. DNA folding and melting observed in 
real time redefine the energy landscape. Proc. Natl. Acad. Sci. U. S. A. 104, 
712–716 (2007). 

131. Jung, J. & Van Orden, A. Folding and Unfolding Kinetics of DNA Hairpins in 
Flowing Solution by Multiparameter Fluorescence Correlation Spectroscopy. J. 
Phys. Chem. B 109, 3648–3657 (2005). 

132. Chen, A. A. & Garcia, A. E. High-resolution reversible folding of hyperstable 
RNA tetraloops using molecular dynamics simulations. Proc. Natl. Acad. Sci. 
110, 16820–16825 (2013). 



References 

 

117 
 

133. Miner, J. C., Chen, A. A. & García, A. E. Free-energy landscape of a 
hyperstable RNA tetraloop. Proc. Natl. Acad. Sci. 113, 6665–6670 (2016). 

134. Cech, T. R. The Ribosome Is a Ribozyme. Science 289, 878–879 (2000). 

135. Fedor, M. J. & Williamson, J. R. The catalytic diversity of RNAs. Nat. Rev. Mol. 
Cell Biol. 6, 399–412 (2005). 

136. Kapoor, S. et al. Revealing conformational substates of lipidated N-Ras protein 
by pressure modulation. Proc. Natl. Acad. Sci. 109, 460–465 (2012). 

137. Silva, J. L. et al. High-Pressure Chemical Biology and Biotechnology. Chem. 
Rev. 114, 7239–7267 (2014). 

138. Eisenmenger, M. J. & Reyes-De-Corcuera, J. I. High pressure enhancement of 
enzymes: A review. Enzyme Microb. Technol. 45, 331–347 (2009). 

139. Akasaka, K., Nagahata, H., Maeno, A. & Sasaki, K. Pressure acceleration of 
proteolysis: A general mechanism. Biophysics (Oxf). 4, 29–32 (2008). 

140. Decaneto, E. et al. Pressure and Temperature Effects on the Activity and 
Structure of the Catalytic Domain of Human MT1-MMP. Biophys. J. 109, 2371–
2381 (2015). 

141. Luong, T. Q., Kapoor, S. & Winter, R. Pressure-A Gateway to Fundamental 
Insights into Protein Solvation, Dynamics, and Function. ChemPhysChem 16, 
3555–3571 (2015). 

142. Chinnusamy, V., Jagendorf, A. & Zhu, J.-K. Understanding and Improving Salt 
Tolerance in Plants. Crop Sci. 45, 437–448 (2005). 

143. Suladze, S., Cinar, S., Sperlich, B. & Winter, R. Pressure Modulation of the 
Enzymatic Activity of Phospholipase A2, A Putative Membrane-Associated 
Pressure Sensor. J. Am. Chem. Soc. 137, 12588–12596 (2015). 

144. Tobe, S. The catalytic mechanism of hairpin ribozyme studied by hydrostatic 
pressure. Nucleic Acids Res. 33, 2557–2564 (2005). 

145. Ztouti, M. et al. Adenine, a hairpin ribozyme cofactor - high-pressure and 
competition studies. FEBS J. 276, 2574–2588 (2009). 

146. Buzayan, J. M., Gerlach, W. L. & Bruening, G. Satellite tobacco ringspot virus 
RNA: A subset of the RNA sequence is sufficient for autolytic processing. Proc. 
Natl. Acad. Sci. 83, 8859–8862 (1986). 

147. Feldstein, P. A., Buzayan, J. M. & Bruening, G. Two sequences participating in 
the autolytic processing of satellite tobacco ringspot virus comple- mentary 
RNA. Gene 82, 53–61 (1989). 

148. Hampel, A. & Tritz, R. RNA catalytic properties of the minimum (-)sTRSV 
sequence. Biochemistry 28, 4929–4933 (1989). 

149. Symons, R. Plant pathogenic RNAs and RNA catalysis. Nucleic Acids Res. 25, 
2683–2689 (1997). 

150. Meli, M. In Vitro Selection of Adenine-dependent Hairpin Ribozymes. J. Biol. 
Chem. 278, 9835–9842 (2003). 



References  

 

118 
 

151. Walter, N. G. Tertiary structure formation in the hairpin ribozyme monitored by 
fluorescence resonance energy transfer. EMBO J. 17, 2378–2391 (1998). 

152. Hegg, L. A. & Fedor, M. J. Kinetics and thermodynamics of intermolecular 
catalysis by hairpin ribozymes. Biochemistry 34, 15813–15828 (1995). 

153. Walter, N. G. & Burke, J. M. Real-time monitoring of hairpin ribozyme kinetics 
through base-specific quenching of fluorescein-labeled substrates. RNA 3, 
392–404 (1997). 

154. DeYoung, M. B., Siwkowski, A. & Hampel, A. in Ribozyme Protocols (ed. 
Turner, P. C.) 209–220 (Humana Press, 1997). 

155. Fedor, M. J. Tertiary Structure Stabilization Promotes Hairpin Ribozyme 
Ligation. Biochemistry 38, 11040–11050 (1999). 

156. Muth, G. W., Ortoleva-Donnelly, L. & Strobel, S. A. A single adenosine with a 
neutral pKa in the ribosomal peptidyl transferase center. Science 289, 947–950 
(2000). 

157. Donahue, C. P., Yadava, R. S., Nesbitt, S. M. & Fedor, M. J. The kinetic 
mechanism of the hairpin ribozyme in vivo: influence of RNA helix stability on 
intracellular cleavage kinetics. J. Mol. Biol. 295, 693–707 (2000). 

158. Nissen, P., Hansen, J., Ban, N., Moore, P. B. & Steitz, T. A. The structural 
basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 
(2000). 

159. Zhuang, X. Correlating Structural Dynamics and Function in Single Ribozyme 
Molecules. Science (80-. ). 296, 1473–1476 (2002). 

160. Bokinsky, G. et al. Single-molecule transition-state analysis of RNA folding. 
Proc. Natl. Acad. Sci. 100, 9302–9307 (2003). 

161. Millar, D. P., Walter, N. G. & Burke, J. M. No Title. Nat. Struct. Biol. 6, 544–549 
(1999). 

162. Lilley, D. M. The ribosome functions as a ribozyme. Chembiochem 2, 31–35 
(2001). 

163. Rupert, P. B., Ferré-D’Amaré, A. R. & Ferre-D’Amare, A. R. Crystal structure of 
a hairpin ribozyme-inhibitor complex with implications for catalysis. Nature 410, 
780–786 (2001). 

164. Kuzmin, Y. I., Da Costa, C. P. & Fedor, M. J. Role of an Active Site Guanine in 
Hairpin Ribozyme Catalysis Probed by Exogenous Nucleobase Rescue. J. Mol. 
Biol. 340, 233–251 (2004). 

165. Kuzmin, Y. I., Da Costa, C. P., Cottrell, J. W. & Fedor, M. J. Role of an active 
site adenine in hairpin ribozyme catalysis. J. Mol. Biol. 349, 989–1010 (2005). 

166. Salter, J., Krucinska, J., Alam, S., Grum-Tokars, V. & Wedekind, J. E. Water in 
the Active Site of an All-RNA Hairpin Ribozyme and Effects of Gua8 Base 
Variants on the Geometry of Phosphoryl Transfer. Biochemistry 45, 686–700 
(2006). 

 



References 

 

119 
 

167. Nam, K., Gao, J. & York, D. M. Quantum Mechanical/Molecular Mechanical 
Simulation Study of the Mechanism of Hairpin Ribozyme Catalysis. J. Am. 
Chem. Soc. 130, 4680–4691 (2008). 

168. Liu, L., Cottrell, J. W., Scott, L. G. & Fedor, M. J. Direct measurement of the 
ionization state of an essential guanine in the hairpin ribozyme. Nat. Chem. 
Biol. 5, 351–357 (2009). 

169. Guo, M. et al. Direct Raman Measurement of an Elevated Base p K a in the 
Active Site of a Small Ribozyme in a Precatalytic Conformation. J. Am. Chem. 
Soc. 131, 12908–12909 (2009). 
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Additional figures 

 

Figure A1. Effect of extrusion on the prebiotic lipid mixture comprising decanoic acid : 

decanol (2:1 molar ratio, pH 8.5). 
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Figure A2. Structural characteristics of the prebiotic lipid mixture upon compression. 
Selected pressure dependent SAXS profiles (open circles) for the prebiotic lipid mixture 
comprising decanoic acid : decanol (2:1 molar ratio, pH 8.5) and corresponding fits for the 
calculation of the 𝑃(𝑟)-functions (solid lines) at 25°C. The curves are vertically shifted for 
clarity. 
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Figure A3. Scattering profiles of 10 mg/mL hairpin ribozyme at different pressures in the 
absence (A,B) and presence of 15 mM Mg2+ (C,D). Plots are represented in linear (A,C) and 
Kratky-plot representation (B,D). The correlation peak in (A) indicates repulsion between the 
RNA molecules at a concentration of 10 mg/mL. The high intensity at very low 𝑞-values in the 
presence of 15 mM Mg2+ (B) points towards aggregations of the ribozyme. The persistent 
bell-shape of the Kratky-plots indicates a compact form of the ribozyme at all conditions of 
pressure investigated. 
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Figure A4. Pressure-dependent SAXS data of tRNAPhe at 40°C (3 wt% in 50 mM Tris-HCl 
buffer, pH 7.5, with 0.1 mM EDTA in the absence of MgCl2 (A, B) and presence of 15 mM 
MgCl2 (C, D) Intensity profiles at different pressures (A,C) with Kratky representation of the 
respective data (inserts). Solid lines represent fits obtained by using the indirect Fourier-
transformation method to calculate the pair-distance distribution functions (B,C). 
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Figure A5. Scattering data of the sRNAh 20°C. Scattering data is represented as linear plot 
(A), double logarithmic plot (B) and Kratky-plot (C). Corresponding 𝑃(𝑟)  functions are 
represented in (E). Pressures are color coded according to the legend. 

 

Figure A6. Scattering data of the sRNAh 40°C. Scattering data is represented as linear plot 
(A), double logarithmic plot (B) and Kratky-plot (C). Corresponding 𝑃(𝑟)  functions are 
represented in (E). Pressures are color coded according to the legend. 



Appendix  

 

136 
 

 

Figure A7. Scattering data of the sRNAh 60°C. Scattering data is represented as linear plot 
(A), double logarithmic plot (B) and Kratky-plot (C). Corresponding 𝑃(𝑟)  functions are 

represented in (E). Pressures are color coded according to the legend. 



Appendix 

 

137 
 

 

Figure A8. Temperature dependent SAXS analysis of tRNAPhe in Tris-HCl Buffer in the 
absence (A) and presence of Mg2+ (B). Intensity profiles were recorded in a temperature 
range starting from 5°C (purple) in steps of 5°C up to 90°C (dark red). Open circles represent 
the corrected original data, the solid lines represent fits obtained using the indirect Fourier 
transformation method. Concentrations were 0.5 wt% tRNAPhe.. Inserts: Kratky plots of the 
respective data.  
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Figure A9. Temperature dependent radius of gyration (A) and 𝑃(𝑟) functions (B) of 0.5 wt% 
tRNAPhe in Tris-HCl Buffer in the absence of Mg2+. 
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Figure A10. Scattering data of the ELP in 1 M TMAO (A,B), a mixture containing 1 M TMAO 
and 2 M urea (C,D) and 2 M urea (E,F). Scattering curves were recorded at 10°C (black 
open squares) and 80°C (red open circles) and are represented as linear scattering curves 
(A,C,E) and Kratky plots (B, D,F). 
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Figure A11. Scattering profiles in double logarithmic representations of 1wt% WT-PP32 in 
20 mM Bis-Tris, pH 6.8, 5 mM DTT, 1.5 M urea, at 15°C (A) 20°C(B) and 30°C (C). 
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Figure A12. Scattering profiles in double logarithmic representations of PP32-∆-NCap with 0 
M urea (A) and PP32-Y131F/D146L with 0.5 M urea (B) at 20°C. 

 

 

Figure A13. Ab initio reconstruction of the folded (top) and pressure-unfolded (bottom) PP32 
variants. 
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Figure A14. Temperature-dependent  changes in the lattice constant, 𝑑, of B-actin.  
Bundling of F-actin was induced with fascin (A) or Mg2+ ions (B). Error bars are derived  
from the error in determining the peak maximum by Gaussian fits. 

 

Figure A15. Comparison of the scattering intensity profiles (A) and pair-distance distribution 
functions, 𝑃(𝑟), (B) of fascin-induced F-actin bundles (solid line) and F-actin (dashed line) at 

70°C (black curves) and 80°C (red curves). 
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Figure A16. Pressure-dependent Synchrotron small angle x-ray scattering intensity profiles 
of B-actin at different temperatures. Bundling of F-actin was induced with fascin (A) or Mg2+ 
ions (B,C). The profiles were recorded at temperatures of 30°C (A,B) and 45°C (C). Black 
solid lines indicate the position of the peak maxima related to hexagonal packing of filaments 
at 0.1 MPa. Curves were shifted for clarity. 
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