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Introduction

General Topic. With this work, we wish to contribute to the problem of

classifying discrete groups of motions generated by reflections. These groups, cer-

tainly interesting in their own right, appear in various branches of mathematics:

in Riemannian geometry as discrete groups of isometries of smooth manifolds of

constant curvature, in Algebra in connection with the theory of Coxeter groups,

invariant theory and representation theory, in number theory as Weyl groups of

integral quadratic forms, in algebraic geometry in the study of K3 surfaces and

complex hyperbolic spaces, and in low-dimensional topology.

Due to the fact that there are three classes of simply-connected complete Rie-

mannian manifolds of constant sectional curvature (two of those are standard mod-

els for non-Euclidean geometries), the theory of these groups can be divided into

three areas: spherical, Euclidean and hyperbolic reflection groups. According to

Bourbaki’s historical notes (cf. [Bou08]), the modern theory of spherical and Eu-

clidean reflection groups originates from geometrical investigations of Möbius and

Schläfli in the mid 19th century, which then were extended and applied to Lie the-

ory by Killing and Cartan around 1900. It culminates in the groundbreaking work

of Coxeter who gave a complete classification of spherical and Euclidean reflection

groups in [Cox34]. Qualitatively, his result can be summarized as follows: there

are infinite series of such groups contained in each other with increasing dimension,

but only a few groups in any fixed dimension. Furthermore, the combinatorial

structure of a fundamental polyhedron is simple in the sense that it is always a

Figure 1. Reflection hyperplane (black curve) in the spherical
and hyperbolic space of dimension 2.
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2 INTRODUCTION

Figure 2. A tessellation of (a domain of) the hyperbolic plane
by the fundamental polyhedron of the W (2,3,7) reflection group
(see example 3.4 for the definition of W (2,3,7); image taken from
[Kle79]).

product of simplices. A classification of similar generality is not known for hyper-

bolic reflection groups and is probably not within reach of current research. The

behavior of these groups is fundamentally different. In large dimensions there are

no groups at all; there are no infinite series in particular. On the other hand, a lot

of groups appear in small dimensions which then have a fundamental polyhedron

with a complicated combinatorial structure.

In the following we will recap what is established so far. The classification of

hyperbolic reflection groups of finite covolume is known in principle for dimension

2 (cf. [Poi82]) and 3 (cf. [And71a], [And71b]). The groups in [Poi82] play an

important role in the work of Klein on discrete groups of isometries of the hyperbolic

plane (cf. [Kle79]). It was shown by Vinberg and Prokhorov (cf. [Vin81], [Vin84],

[Pro86]) that groups with finite covolume do not exist in dimension ≥ 996. If

one sharpens the condition to the fundamental domain and considers groups with

a compact polyhedron, then reflection groups only exist in dimension < 30 (cf.

[Vin81], [Vin84]). There is no reason to expect these bounds to be sharp.

The most interesting subclass are the so-called arithmetic hyperbolic reflection

groups. These groups always have a fundamental domain of finite volume, which

can be compact or non-compact. To sketch the notion of arithmeticity, consider a

totally real number field F and its ring of integers oF . Let E be a oF -lattice of

signature (n,1) such that for every non-identity embedding σ ∶ F Ð→ R the lattice
σE is positive-definite. The isometry group O+(E) can be considered as a discrete
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subgroup of the full isometry group of the hyperbolic space of dimension n. Results

of Borel & Harish-Chandra (cf. [BH62]) imply that O+(E) has finite covolume.

Finite-index subgroups of groups obtained in this manner are called arithmetic. By

definition, the group O+(E) is always arithmetic. If it is generated up to finite

index by reflections, then the lattice E is said to be reflective.

Let us first consider the non-cocompact case. From [BH62] it follows that

an arithmetic group has a non-compact fundamental domain if and only if F = Q
and E is isotropic. By the theorem of Hasse-Minkowski, the latter condition is

automatically fulfilled if F = Q and n ≥ 4. Thus, for n ≥ 4, an arithmetic group is

non-cocompact iff the field of definition is F = Q. Vinberg showed in [Vin81] that

non-cocompact arithmetic reflection groups only appear in n < 30. The coincidence

of the dimensions in this and the previously mentioned bound for not necessarily

arithmetic reflection groups with compact fundamental domain is accidental. A

sharp result was proven by Esselmann (cf. [Ess96]) who showed that the dimensions

of non-cocompact arithmetic reflection groups satisfy n ≤ 21, n ≠ 20. His theorem

is sharp due to the well-known example of Borcherds (cf. [Bor87]). Examples for

n ≤ 19 were found earlier by Vinberg (cf. [Vin72a]) and Vinberg & Kaplinskaya (cf.

[VK78]). Full classifications have been carried out by Scharlau and Walhorn, who

have listed all maximal arithmetic reflection groups with non-compact fundamental

domain in dimension 3 (cf. [Sch89]) and 4 (cf. [Wal93]).

Regarding arithmetic reflection groups with compact fundamental domain, it

was established through a series of paper by Nikulin ([Nik82], [Nik09], [Nik11])

in combination with [Mac11] and [BL14] that the degree of the field of definition

F is at most 25. Examples for n ≤ 5 are given in [Mak70], [Kap74] and for n ≤ 8

in [Bug84], [Bug90], [Bug92].

The most recent classification projects were approached in terms of reflective

lattices. It was known earlier that there is only a finite number of reflective lattices if

the dimension of the hyperbolic space and the degree of the definition field is fixed

(cf. [Nik81]). Interested in their close relation to K3 surfaces and Kac-Moody

algebras, Nikulin classified in [Nik00] all strongly square-free reflective Z-lattices

of rank 3. This work was continued by Allcock, who listed all (not only strongly

square-free) lattices of above type (cf. [All12]). The transition to number fields

was studied in [Mar15] where rank 3 reflective lattices over Z[
√

2] were classified.

Results and Strategies. The last-mentioned authors have in common that

their approach is geometrical; by studying the shape of the fundamental polyhedron

they reduce the number of candidates for reflective lattices to a manageable size. In

contrast, we choose the approach of Scharlau and Walhorn (cf. [SW92]), which is

heavily based on the arithmetic theory of quadratic forms and their connection to
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root systems. This method seems to be more efficient in higher dimensions (n ≥ 4).

Using local theory we analyze the structure of reflective lattices and arithmetic

reflection groups and prove the following statement.

Theorem.

a) Let E be a strongly square-free reflective lattice of signature (5,1). Then

E is of the form E = αH ⊥ L with L a square-free totally-reflective lattice

of dimension 4 and α ∈ {1,2}. The scaling factor α = 2 only occurs if the

2-adic symbol of E is of the form I5,1 (1ε0,42ε1,2II ).

b) Let W be a maximal arithmetic reflection group on the hyperbolic 5-space.

Then W is of the form W = W (αH ⊥ L) with L a square-free totally-

reflective lattice of dimension 4 and α ∈ {1,2}.

Here, a positive-definite lattice is called totally-reflective if every lattice in its

genus has a root system of full rank and αH is the Z-lattice with Gram matrix ( 0 α
α 0 ).

With this structure theorem and additional techniques from the general theory of

hyperbolic reflection groups, we reduce the classification of reflective lattices and

arithmetic groups to those of totally-reflective lattices of smaller dimension. We

should mention that we are also interested in totally-reflective lattices as objects in

their own right; thus the following result is more general than the requirements of

the structure theorem. The strategy leading to the classification is as follows:

Step 1: Let L be a strongly square-free totally-reflective lattice with dimL = 4

(resp. dim = 3). Hence detL is of the form detL = p2
1⋯p

2
r ⋅ q1⋯qs (resp.

r = 0). Using the mass formula and the combinatorial description of

lattices with full-rank root system by Scharlau & Blaschke (cf. [SB96]),

we prove that r ≤ 9 and s ≤ 8 − r (resp. s ≤ 10).

Step 2: Then, we show that there are bounds ci and dj (one for every prime factor)

depending only on the number of prime factors such that pi ≤ ci and

qj ≤ dj . Thus the number of local invariants that need to be taken into

account is effectively bounded and the enumeration is computationally

feasible.

Step 3: After finishing the strongly square-free classification, we obtain all square-

free, primitive totally-reflective genera by partial dualization.

Step 4: The last step consists in dropping the assumption “square-free” by deter-

mining the pre-images of square-free genera under the Watson transfor-

mation.

After carrying out all the steps, we obtain the following result.
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Theorem.

a) In dimension 3, there are 1234 primitive totally-reflective genera of which

289 are square-free and 52 strongly square-free.

b) In dimension 4, there are 930 primitive totally-reflective genera of which

230 are square-free and 88 strongly square-free.

Up to here, the procedure gives us a list of candidates for reflective lattices of

signature (5,1) and allow a subsequent application of an algorithm due to Vinberg.

This algorithm can prove reflectivity, but unfortunately, not non-reflectivity. In

practice we bypassed this problem in two ways. If one manages to embed a non-

reflective lattice of smaller dimension, then results of Bugaenko (cf. [Bug92]) imply

the non-reflectivity of the lager one. Alternatively, non-reflectivity can be rigorously

checked by group theoretical methods in each particular case, for example, by

detecting an infinite order symmetry of the fundamental polyhedron. At the end,

we prove:

Theorem. There are, up to isometry, 80 strongly square-free reflective Z-

lattices of signature (5,1).

Additionally, we gave various geometric invariants of the corresponding funda-

mental polyhedron, such as the number of faces, the number of cusps and other.

Structure of the Thesis. In chapter 1 we recall some facts about the theory

of integral quadratic forms. While Section 1 deals with the local theory and the

invariants introduced by Conway & Sloane (cf. [CS99]), section 2 emphasizes the

analytic theory by introducing the mass of a lattice, ways to calculate it and some

results concerning L-series. Section 3 deals with positive-definite lattices with a full-

rank root system and their combinatorial properties. We recap the combinatorial

classification from [SB96], and show that the isometry group of these lattices only

depends on the combinatorial class of their root system.

Chapter 2 is dedicated to the classification of totally-reflective genera in dimen-

sion 3 and 4 and the four steps outlined in the general strategy. We give bounds

on the prime factors of the determinant of strongly square-free totally-reflective

lattices and show how the general case is reduced to this one.

The following chapter 3 is meant as an introduction to the theory of arith-

metic hyperbolic reflection groups and reflective lattices. We give descriptions of

hyperbolic reflection groups in terms of Coxeter diagrams and normalized Gram

matrices and show how arithmeticity is connected to the theory of root systems.

After discussing Vinberg’s algorithm, we introduce two methods to bypass its major

weaknesses.
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The last chapter clarifies the connections between arithmetic reflection groups

and totally-reflective genera and presents the classification result regarding reflec-

tive lattices of signature (5,1).
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CHAPTER 1

Integral Lattices

1.1. Fundamentals on Integral Lattices

The goal of this first section is to introduce the basic definitions and concepts

related to the theory of integral lattices. As the global and local theory go hand in

hand, the basic terminology is developed over principal ideal domains. This allows

us to cover the situation over Z and Zp simultaneously.

Let R be a principal ideal domain and K ∶= Quot(R) its quotient field. A lattice

over R is a pair (L, b), where L is a free R-module of finite rank and b ∶ L×LÐ→K

a symmetric bilinear form. We write L instead of (L, b) if the bilinear form is

clear from the context. As usual, V ∶= L ⊗R K means the enveloping K-space of

L. By O(L) we denote the isometry group of (L, b). The determinant of L is the

determinant of any Gram matrix of (L, b) which is well defined modulo squares of

units in R.

We say that L is integral if b(L,L) ⊆ R. An R-lattice is called even if b(x,x) ∈

2R for all x ∈ L, and odd otherwise. By αL we mean the lattice (L,αb) obtained

by scaling the bilinear form (α ∈ K). An integral lattice L is said to be primitive

if L = αK, with K an integral lattice, implies α ∈ R∗. We denote by L# the dual

lattice of L which is defined as L# ∶= {v ∈ V ∣ ∀x ∈ L ∶ b(x, v) ∈ R} . Clearly, L is

integral iff L ⊆ L#. For an integral Z-lattice, the group L#/L has order detL and

is called the discriminant group of L. A lattice is unimodular if L = L#. More

generally, for α ∈ K, we say L is α-modular if L = αL#. It is easy to see that any

α-modular lattice K can be written as K = αL where L is unimodular (cf. [Kit93],

Proposition 5.2.1.).

We say a lattice is indecomposable if it is not the orthogonal sum of two non-zero

sublattices. A non-zero Z-lattice can be decomposed as

L =K1 ⊥ ⋅ ⋅ ⋅ ⊥Kr,

with every Ki being indecomposable. If L is positive-definite, then such a decom-

position is unique up to the order of the Ki (cf. [Kne02], Satz (27.2)).

Lattices over Zp can be decomposed in a different manner and some effort is

required to understand the gap between local and global (because the analog of the

Hasse-Minkowski theorem over Z is false). We start with some basic definitions. Let

7



8 1. INTEGRAL LATTICES

P be the set of all prime numbers. The localization of L at a prime spot p ∈ P∪{∞}

is abbreviated as Lp ∶= L⊗Z Zp (with Z∞ = R).

Definition 1.1. Two Z-lattices L and K are in the same genus if Lp ≅Kp for

all p ∈ P ∪ {∞}.

It is well known that any genus consists of finitely many isometry classes (cf.

[Kne02], Satz (21.3)). We write G(L) for the set of all isometry classes in the

genus of L and define h(L) ∶= #G(L) to be the class number of L. A complete

system of invariants for local isometry can be extracted from a decomposition of

Lp in modular sublattices.

Theorem 1.2. Every integral Z-lattice L possesses a decomposition

Lp = L0 ⊥
pL1 ⊥ ⋅ ⋅ ⋅ ⊥

prLr,

where all Li are unimodular (possibly zero-dimensional).

Proof. See [O’M00], §91C. �

In the literature, a splitting of the above form is called Jordan decomposition.

We refer to L as square-free if the Jordan decomposition of L is of the form L0 ⊥
pL1

at every prime p, and as strongly square-free if additionally dimL0 ≥ dimL1 holds.

For p ≠ 2 the Jordan decomposition is unique up to isometry. At the prime spot p = 2

this is not true in general and only the following data remains invariant: dimLi,

2i and the parity of every Li. To address this problem, Conway and Sloane have

introduced the notion of the so-called canonical Jordan decomposition. Among all

splittings they have marked out one of a particular easy shape and have showed that

it is uniquely determined for every Z2-lattice (cf. [CS99], Chapter 15, 7.6). Before

stating the main result of this section, we want to exemplify a somewhat technical

detail. An interval of a Jordan decomposition is a finite sequence of (possibly

zero-dimensional) consecutive modular components (p
i

Li,
pi+1Li+1, . . . ,

pi+kLi+k). A

compartment is a maximal interval in which all components are odd. Assume

that the elements of a compartment are diagonalized over Q2 as Li+j ⊗Z2 Q2 ≅

⟨ai+j,1, . . . , ai+j,n⟩. Then the oddity of a compartment is defined to be the sum of

all traces modulo 8, that is (∑
n
l=1 ai,l +∑

n
l=1 ai+1,l + . . . +∑

n
l=1 ai+k,l) mod 8. A very

useful application is the following characterization of local isometry.

Theorem 1.3 (cf. [CS99], Chapter 15, Theorem 9 & 7.6). Let L and K be

Z-lattices and ( ⋅

p
) the Jacobi symbol.

a) Let p ≠ 2 and assume L and K are decomposed over Zp as shown in

theorem 1.2. Then Lp ≅Kp if and only if (detLi
p

) = (detKi
p

) and dimLi =

dimKi for all 1 ≤ i ≤ r.
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b) Let L and K be decomposed canonically over Z2. Then L2 ≅ K2 if and

only if (detLi
2

) = (detKi
2

) ,dimLi = dimKi, the parity of Li is equal to the

parity of Ki for all 1 ≤ i ≤ r and the oddities of L are equal to the oddities

of K.

The invariants given by the Jordan decomposition are encoded in the genus

symbol. A detailed introduction to this handy notation, in particular the quite

technical realization for p = 2, can be found in [CS99], Chapter 15 and in [Ber93].

In the latter reference, all the missing proofs from [CS99] are carried out in detail.

Here, we only mention that this symbol is a list of local symbols for each prime p

dividing 2 detL. Assuming a Jordan decomposition as above, the local symbol at

the prime p ≠ 2 is the formal product

r

∏
i=0

(pi)εi,ni , where εi ∶= (
detLi
p

) and ni ∶= dimLi.

In chapter 2 (resp. chapter 4), we will be using this notation for the enumeration of

all primitive totally-reflective lattices in dimension 3 and 4 (resp. reflective lattices

of signature (5,1)).

1.2. The Mass Formula

An indispensable tool for our investigation is the Minkowski-Siegel mass for-

mula which relates the mass of a lattice to local quantities, which can be derived

from the Jordan-decomposition and the invariants introduced in the previous sec-

tion. Originally the mass formula is stated in terms of p-adic densities, cf. [Sie35]

for further details. However, for computational reasons, we find the approach of

Conway and Sloane more suitable (cf. [CS88]). Below we establish the main

aspects.

Throughout this section we assume L to be a positive-definite Z-lattice. Hence

O(L) is a finite group and the following definition makes sense.

Definition 1.4. The mass of L is defined as

m(L) ∶= ∑
M∈G(L)

1

∣O(M)∣
.

It is a deep result from the analytic theory of quadratic forms that the mass

of a lattice can be calculated with the local invariants introduced in the previous

section (cf. theorem 1.3). In particular, the knowledge of the whole genus is not

required. To amplify this, let Γ denote the gamma function, ζ the Riemann zeta

function and ζD the L-function

ζD(s) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∏p∈P (1 − (D
p
) 1
ps

)
−1
, n even,

1, n odd,
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where n,D ∈ N and s ∶= ⌈n
2
⌉. The fraction of the mass related to the odd prime

numbers that do not divide the determinant is stored in the following quantity.

Definition 1.5. Let n,D ∈ N and s ∶= ⌈n
2
⌉. We refer to

std(n,D) ∶= 2π−n(n+1)/4 ⋅
n

∏
j=1

Γ( j
2
) ⋅ ζ(2)ζ(4)⋯ζ(2s − 2)ζD(s).

as the standard mass (with respect to n and D).

As an example, we mention the dimensions we will be working with:

n std(n,D)

2 2ζD(1)
π

3 1
6

4 ζD(2)
6π2

Table 1. The standard mass in low dimensions.

Calculating ζD(s) in general requires numerous of techniques from analytic

number theory (cf. [CS88], section 8). It turns out that the behavior of ζD(s) as

a function of D is very erratic. The following lemma helps us to attain control.

Lemma 1.6. Let D,s ∈ N and s ≥ 2. Then

a) ζ−D(1) ≤ 1 + 1
2

ln(D).

b) ζD(s) ≥ ζ(2s)
ζ(s)

.

Proof. Part a) goes back to Watson and can be found in [Wat79], (5.10).

To prove part b) the main idea is to use the Liouville function λ(n) ∶= (−1)Ω(n),

where Ω(n) is the number of prime factors of n counted with multiplicity, as a link

between ζ(s) and ζD(s). We have

ζD(s) =∏
p∈P

(1 − (
D

p
)

1

ps
)
−1

≥∏
p∈P

(1 +
1

ps
)
−1

=
∞

∑
n=1

λ(n)

ns
,

and the well-known identity ζ(2s)
ζ(s)

= ∑
∞
n=1

λ(n)
ns

implies the assertion (cf. [Leh60]).

�

The actual mass of L is gained from the standard mass by multiplying with cer-

tain correction factors, one for every prime p dividing 2 detL. Unlike the standard

mass, these correction factors depend on the local structure of L.
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Theorem 1.7. Let L be an integral Z-lattice with (canonized) Jordan decom-

positions Lp = L0 ⊥
pL1 ⊥ ⋅ ⋅ ⋅ ⊥

prLr for every p ∈ P. Let n ∶= dimL, s ∶= ⌈n
2
⌉, si ∶=

⌈dimLi
2

⌉ and D ∶= (−1)s detL. Then

m(L) = std(n,D) ⋅ ∏
p∣2 detL

⎛

⎝
mp(L) ⋅ 2

s

∏
j=2

(1 − p2−2j)
⎞

⎠
,

where

mp(L) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∏
i∈Z

Mp(Li) ⋅ ∏
t,k∈Z,
k<t

p
1
2
(t−k)dimLt dimLk , p ≠ 2,

∏
i∈Z

Mp(Li) ⋅ ∏
t,k∈Z,
k<t

p
1
2
(t−k)dimLt dimLk ⋅ 2n(I,I)−n(II), p = 2,

with n(I, I) being the total number of pairs of adjacent Jordan components Li, Li+1

that are both odd, n(II) the sum of the dimensions of all Jordan components that

are even and

Mp(Li) ∶=
1
2
(1 + εp−si)

−1
⋅
si

∏
i=2

(1 − p2−2i)
−1
.

The exact value of ε ∈ {0,1,−1} depends on the species of the orthogonal group

OdimLi(Fp) associated with Li and can be found in [CS88], table 1 & table 2.

Proof. See [CS88]. �

Remark 1.8. Apart from a normalizing power of p, the quantity Mp(Li)
−1 is

the order of the orthogonal group of a quadratic space over Fp associated with Li.

Which quadratic space has to be considered depends on the local structure of L.

If p is odd all that matters is (detLi
p

) and dimLi and in the case p = 2 only the

oddity and parity must be taken into account additionally (cf. [CS88], table 1 &

table 2). These are exactly the local invariants mentioned in theorem 1.3.

With lemma 1.6 and the mass formula as stated in theorem 1.7, one can control

the growth of the mass in the following sense.

Lemma 1.9. Let L be an integral Z-lattice.

a) If dimL = 2 and L strongly square-free, then

m(L) ≤
2

π
(1 +

1

2
ln(detL)) ⋅

1

2
⋅ ∏
p∣detL,
p≠2

1

2

√
p.

b) If dimL = 2 and L square-free, then

m(L) ≤
2

π
(1 +

1

2
ln(detL)) ⋅

1

2
⋅ ∏

p∣detL,
vp(detL)=2

p≠2

p

p − 1
∏

p∣detL,
vp(detL)=1

p≠2

1

2

√
p.
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c) If dimL = 3 and L strongly square-free, then

1

6
⋅
1

8
⋅ ∏
p∣detL,
p≠2

p − 1

2
≤ m(L).

d) If dimL = 4 and L strongly square-free, then

1

90
⋅

1

24
⋅ ∏

p∣detL,
vp(detL)=2

p≠2

p2 (p − 1)

2p + 2
∏

p∣detL,
vp(detL)=1

p≠2

1

2
p

3
2 ≤ m(L).

Proof. This follows directly from the mass formula 1.7 and lemma 1.6. �

1.3. Positive-Definite Reflective Lattices

Essential to the theory of hyperbolic reflection groups are reflective lattices.

These are lattices that can be described very well by root systems (well-known

objects of Lie theory). We recall the classification of positive-definite reflective

lattices in low dimensions by Scharlau & Blaschke (cf. [SB96]) and show that

in these cases the root system already determines the whole isometry group of

the lattice. This will be used in chapter 2 for bounding the prime factors of the

determinant of totally-reflective genera.

Throughout this section we assume (L, b) to be a positive-definite Z-lattice.

Each non-zero vector v ∈ L gives rise to an Euclidean reflection of the enveloping

vector space,

sv ∶ V Ð→ V, xz→ x −
2b(x, v)

b(v, v)
v.

Each sv is an isometry of V . Reflective lattices are, from the geometrical point

of view, those that possesses a high symmetry under such reflections. In order to

measure the level of symmetry, we need a notion of root systems which is more

general than the one usually used in the literature on Lie algebra theory.

Definition 1.10. Let L be a positive-definite Z-lattice.

a) A vector v ∈ L is called root of L if v is primitive, that is v/m ∉ L for all

integers m > 0, and sv(L) = L.

b) The set R(L) ∶= {v ∈ L ∣ v is a root of L} is called the root system of L.

c) The subgroup W (L) ⩽ O(L) generated by all reflections sv, with v ∈ R(L),

is called Weyl group of L.

It is easy to see that R(L) is indeed a crystallographic root system (cf. [SB96],

proposition 1.2). The root system of a lattice inherits the quadratic form, thus R(L)

decomposes into scaled irreducible components

αAn,
αBn,

αCn,
αDn,

αE6,
αE7,

αE8,
αF4,

αG2.
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Weyl groups are not affected by the scaling since a reflection sv does not depend

on the length of v. The Dynkin diagram of such a “scaled” root system is the usual

Dynkin diagram of the “unscaled” root system with the addition that every vertex

is weighted with the scaling factor of the corresponding root. For example, the

Dynkin diagram of 5A2
7E5 is

5 5 7 7 7 7

7

Unlike Weyl groups, the automorphism groups of Dynkin diagrams are affected by

the scaling. Consider, for example, the root systems A2A2 and 3A2
5A2 with the

corresponding diagrams

and

3 3 5 5

The automorphism group of the first one is the dihedral group Di4 of order 8, and

Z/2Z ×Z/2Z in the second case.

Let R(L) be the root system of a lattice L and U ∶= KR(L) the subspace of

V generated by R(L). The symmetry group of R(L) is the stabilizer of R(L) in

O(U) and will be denoted by O(R(L)). Every graph automorphism of the Dynkin

diagram induces an element of the symmetry group of the root system, simply by

permuting the roots in the same way the corresponding vertices are permuted in

the diagram. One has O(R(L)) ≅ W (R(L)) ⋊D(R(L)) with D(R(L)) being the

automorphism group of the Dynkin diagram of R(L).

A positive-definite lattice is called reflective if, roughly spoken, its root system

is large (and thus the level of symmetry under reflections high). More precisely:

Definition 1.11. A positive-definite lattice L is called reflective if R(L) gen-

erates a sublattice of the same rank.

As we will see in chapter 4, there is also a notion of reflectivity for indefinite

lattices of signature (n,1). A useful characterization of reflectivity for positive-

definite lattices is given by the action of W (L) on V .

Proposition 1.12. The lattice L is reflective if and only if W (L) has no non-

zero fixed vectors.
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Proof. We write Fix(W (L)) (resp. Fix(sv)) for the fixed vectors of W (L)

(resp. sv ∈W (L)). As we will see, both directions follow from the observation

Fix(W (L)) = ⋂
v∈R(L)

Fix(sv) = ⋂
v∈R(L)

v� =
⎛

⎝
∑

v∈R(L)

Qv
⎞

⎠

�

.

Thus, if L is reflective then Fix(W (L)) = (∑v∈R(L)Qv)
�
= V � = {0}. Conversely,

the assumption {0} = Fix(W (L)) implies (∑v∈R(L)Qv)
�
= {0} = V �, which is

equivalent to ∑v∈R(L)Qv = V , meaning L is reflective. �

The procedure in the next chapter is heavily based on the work of Scharlau &

Blaschke (cf. [SB96]). They classified all indecomposable reflective lattices in low

dimensions by pairs (R,L), where R is a scaled root system and L the so-called

glue code (a subgroup of the discriminant group of ⟨R⟩). Given a pair (R,L), the

associated lattice L is constructed by L = ⟨R⟩+ ⟨x ∣ x ∈ L⟩. The symmetries of L are

exactly the symmetries of R which preserve the glue code: O(L) = {ϕ ∈ O(R) ∣ ∀x̄ ∈

L ∶ ϕ(x̄) ∈ L}

Theorem 1.13. Let L be a reflective lattice.

a) If dimL = 2, then L is isometric to one of the following:

R L restrictions determinant

(a) αA1
βA1 L2,1 α < β αβ

α + β ≡ 0(2)

(b) αG2 0 no 3α2

(c) αB1
βB1 0 α < β αβ

(d) αB2 0 no

b) If dimL = 3 and L is indecomposable, then L is isometric to one of the

following:

R L restrictions determinant

(a) αA1
βA1

γA1 L3,1 α < β < γ 2αβγ
α + β + γ ≡ 0(2)

(b) αA1
βA1

γA1 L3,2 α < β < γ αβγ/2
α ≡ β ≡ γ ≡ 0(2)

(c) αA1
βC2 L2,1 α ≠ β,2β 2αβ2

α ≡ 0(2)

(d) αB3 ≠ 0 α ≡ 0(4) α3/4

(e) αC3 0 no 4α3



1.3. POSITIVE-DEFINITE REFLECTIVE LATTICES 15

c) If dimL = 4 and L is indecomposable, then L is isometric to one of the

following:

R L restrictions determinant

(a) αA1
βA1

γA1
δA1 L4,1 α < β < γ < δ 4αβγδ

α + β + γ + δ ≡ 0(2)

(b) αA1
βA1

γA1
δA1 L4,2 α < β, γ < δ αβγδ

α + β ≡ 0(2), γ ≡ δ ≡ 0(2)

(c) αA1
βA1

γA1
δA1 L4,3 α < β < γ < δ αβγδ/4

α ≡ β ≡ γ ≡ δ ≡ 0(2)

(d) αA1
βA1

γC2 L3,1 α < β, α ≠ γ ≠ β 4αβγ2

(e) αA1
βA1

γC2 L3,2 α < β, α ≠ 2γ ≠ β αβγ2

α ≡ β ≡ 0(2)

(f) αA1
βB3 L2,1 2α ≠ β, β ≡ 0(2) αβ3/2

(g) αA1
βC3 L2,1 α ≠ 2β, α ≡ 0(2) 4αβ3

(h) αA2
βA2 L2,1 α < β, 2α ≠ β α2β2

α + β ≡ 0(3)

(i) αC2
βC2 L2,1 α < β 4α2β2

(j) αA4 0 no 5α4

(k) αA4 ≠ 0 α ≡ 0(5) α4/5

(l) αF4 0 α ≡ 0(2). 4α4

Proof. See [SB96], proposition 4.4, theorem 4.5, theorem 4.7. �

Of course, every lattice listed above is reflective. We refer to [SB96] for the

precise definitions of the glue codes Li,j . As the first important application we will

determine the isometry groups of reflective lattices in small dimensions. It turns

out that O(L) only depends on the combinatorial class of the root system of L.

Lemma 1.14. Let L be a reflective lattice with dimL ∈ {2,3,4}. Assume fur-

ther that L is indecomposable if dimL ∈ {3,4}. Then O(L) only depends on the

combinatorial class of R(L). In particular, O(L) depends on neither the glue code

nor the scaling. Referring to theorem 1.13 we have

a) in dimension 2 ∶

(a) (b) (c) (d)

∣O(L)∣ 4 12 4 8
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b) in dimension 3 ∶

(a) (b) (c) (d) (e)

∣O(L)∣ 8 8 16 48 48

c) in dimension 4 ∶

(a), (b), (c) (d), (e) (f), (g), (i) (h) (j), (k) (l)

∣O(L)∣ 16 32 96 72 240 1152

Proof. Let R(L) be decomposed as R(L) = α1R1⋯
αkRk with Ri irreducible.

The structure of the symmetry group O(R(L)) ≅ W (R(L)) ⋊ D(R(L)), where

D(R(L)) is the automorphism group of the Dynkin diagram of R(L), and the

reflectivity of L imply the relation W (R(L)) ⊆ O(L) ⊆W (R(L)) ⋊D(R(L)).

All Dynkin diagrams that appear in dimension 2 and 3 (cf. theorem 1.13) have a

trivial automorphism group, thus O(L) =W (R(L)). Furthermore, W (R(L)) does

not depend on the scaling since W (α1R1 . . .
αkRk) ≅ W (α1R1) × ⋯ ×W (αkRk) ≅

W (R1) ×⋯ ×W (Rk).

In dimension 4, one can use the same argument, except in the cases (j), (k)

and (h), where D(R(L)) ≠ {id}. There we have

D(R(L)) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Z/2Z, in (j) and (k),

Z/2Z ×Z/2Z, in (h).

In both cases one easily checks the following: for (j), (k), the non-trivial automor-

phism of the Dynkin diagram preserves both, the glue code of (j) and (k), thus

O(L) = W (R(L)) ⋊ Z/2Z depends on neither the gluce code nor the scaling. For

(h), only one of the three non-trivial automorphisms of the Dynkin diagram pre-

serves the corresponding glue code, thus O(L) =W (R(L)) ⋊ Z/2Z (cf. [SB96] for

more details on the glue codes). Weyl groups of unscaled irreducible root systems,

particularly their orders, are well known and can be found in [Bou08]. �

Definition 1.15. Let L be an integral lattice and G its genus.

a) We call G totally-reflective if each lattice in G is reflective.

b) The integral lattice L is called totally-reflective if its genus G is totally-

reflective.

We will see in chapter 4 that totally-reflective lattices play a major role in the

understanding of hyperbolic reflection groups. Nevertheless, they are interesting

objects of study in their own right. One can deduce from the work of Biermann

[Bie81] that there are only finitely many primitive totally-reflective genera in any

dimension > 3 (cf. [SW92], Theorem 1.4). Furthermore, Esselmann proved in
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[Ess96] that 20 is the largest dimension of totally-reflective genera, thus a classi-

fication is possible (at least) in principle. With the present work we contribute to

this problem by classifying the dimensions 3 and 4.





CHAPTER 2

Classification of Totally-Reflective Lattices

2.1. Bounds for the Determinant

In this section we prove the results concerning step 1 and 2 of the general

strategy described in the introduction. The primary goal is to find bounds for the

prime factors of the determinant of totally-reflective lattices in dimension 3 and 4.

This will bring the number of local invariants, that need to be taken into account,

to a manageable size and make the classification accessible for a computational

approach. We will show that each prime factor of the determinant of a strongly

square-free totally-reflective lattice in dimension 3 and 4 is bounded by a constant

which only depends on the number of prime factors of the determinant. Further-

more, the number of prime factors is bounded by a constant which does not depend

on the lattice at all. Bearing in mind that we are considering strongly square-free

lattices, each prime factor can only appear with multiplicity 1 or 2, thus the number

of possible determinants (and hence the number of possible lattices) is finite.

In order to achieve these bounds, the basic idea is to compare the whole mass

of a lattice L with the part coming from the reflective lattices within G(L). Since

the latter quantity is crucial, we make the following

Definition 2.1. Let L be an integral lattice. We refer to

mref(L) ∶= ∑
M∈G(L),

M is reflective

1

∣O(M)∣

as the reflective part of the mass.

An important (though trivial) observation is that mref(L) ≤ m(L) and L is

totally-reflective iff mref(L) = m(L). We obtain our bounds by showing that the

reflective part of the mass grows more slowly than the whole mass (with increasing

determinant). The growth of m(L) will be regulated by the mass formula which

was introduced in the last chapter (cf. lemma 1.9). The behavior of mref(L) is

controlled using the combinatorial classification of reflective lattices from [SB96]

(cf. theorem 1.13).

For this, it will be helpful to distinguish the lattices in G(L) by the type of

the decomposition in indecomposable sublattices. For a 4-dimensional lattice L we

19
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write

G4(L) = {M ∈ G(L) ∣M indecomposable},

G3(L) = {M ∈ G(L) ∣M =M1 ⊥M2, dimM1 = 3 and M1 indecomposable},

G2(L) = {M ∈ G(L) ∣M =M1 ⊥M2, dimM1 = 2}.

Analogously, if dimL = 3 we define

G3(L) = {M ∈ G(L) ∣M indecomposable},

G2(L) = {M ∈ G(L) ∣M =M1 ⊥M2, dimM1 = 2}.

The reflective part of the mass can now be written as mref(L) = mref 4(L)+mref 3(L)+

mref 2(L), with

mref i(L) ∶= ∑
M∈Gi(L),
M reflective

1

∣O(M)∣
,

i = 2,3,4. Obviously, mref 4 is omitted when dimL = 3. Because we do not want

to overload the notation, the dimension of the lattice we are dealing with is not

included in the notation and will always be clear from the context. We write ω(d)

(resp. Ω(d)) for the number of (not necessarily) distinct prime factors of d. The

divisor set of d ∈ N is D(d) ∶= {x ∈ N ∣ x divides d} and a(d) ∶= #D(d) is the number

of distinct divisors of d.

Lemma 2.2. Let L be an integral Z-lattice with determinant d.

a) For dimL = 3 we have

1) mref 3(L) ≤
17
48
⋅ 3Ω(d),

2) mref 2(L) ≤
17
48 ∑x∣d 2Ω(x).

b) For dimL = 4 we have

1) mref 4(L) ≤
611
1920

⋅ 4Ω(d),

2) mref 3(L) ≤
17
96 ∑x∣d 3Ω(x),

3) mref 2(L) ≤
17
24
⋅ a(d) ⋅ 2Ω(d).

Proof. We prove b) in detail to illustrate the basic idea. Part a) is proven

analogously.

Estimating mref 4(L): First we give an upper bound for the number of possible

isometry classes for every type (with type we mean the cases (a) − (l) in theo-

rem 1.13 c)) of 4-dimensional, indecomposable reflective lattices. To this end, it is

sufficient to estimate how many scalings of R lead to the determinant d. According

to theorem 1.13 c), the determinant d of a lattice L = ⟨R⟩ + ⟨x ∣ x ∈ L⟩ is a product

d = c ⋅ α1α2α3α4, where αi is a scaling factor of R and c ∈ {1, 1
2
, 1

4
, 1

5
,4,5}. The

prime factors of d can be distributed among the αi in, at most, 4Ω(d) different ways

(for simplicity, the restrictions for the scaling factors described in theorem 1.13 are
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ignored). Thus an upper bound for the number of isometry classes of reflective

lattices of determinant d which arise from (R,L) by changing the scaling of R, is

4Ω(d). Combining this with lemma 1.14, we get

mref 4(L) ≤ 4Ω(d) (
3

16
+

2

32
+

2

72
+

3

96
+

2

240
+

1

1152
) =

611

1920
⋅ 4Ω(d).

Estimating mref 2(L): We use theorem 1.13 a) and the fact that ∣O(M2)∣ ≥ 4 for

binary reflective lattices (cf. lemma 1.14): The same argumentation as in the case

mref 4(L) shows that an upper bound for the number of isometry classes of binary

reflective lattices of determinant x is 4 ⋅ 2Ω(x); there are 4 types of (R,L) and 2Ω(x)

possibilities to change the scale of R in (R,L). Assuming a 4-dimensional reflective

lattice decomposed as M =M1 ⊥M2, with dimM1 = 2 and d = detM , x = detM1,

each of the 4 ⋅2Ω(x) isometry classes of M1 can be combined with 4 ⋅2Ω(d/x) isometry

classes of M2, leading to

mref 2(L) = ∑
M∈G2(L),
M reflective

1

∣O(M)∣

≤
1

4
∑
x∣d

2Ω(x) (
1

4
+

1

12
+

1

4
+

1

8
) ⋅ 4 ⋅ 2Ω(d/x)

=
17

24
∑
x∣d

2Ω(d)

=
17

24
⋅ a(d) ⋅ 2Ω(d).

Estimating mref 3(L): Assume a 4-dimensional reflective lattice decomposed as

M = M1 ⊥ M2 with dimM1 = 3, M1 indecomposable and d = detM , x = detM1.

Unlike in the mref 2 case, the 4 ⋅ 3Ω(x) isometry classes of M1 can be combined with

only one isometry class of M2. This follows from the fact that M1 ⊥M2 ≅M1 ⊥M
′
2

implies detM2 = detM ′
2 and thus M2 ≅M

′
2, because of dimM2 = 1 = dimM ′

2. Hence

mref 3(L) = ∑
M∈G3(L),
M reflective

1

∣O(M)∣

≤
1

2
∑
x∣d

2Ω(x) (
1

4
+

1

12
+

1

4
+

1

8
)

=
17

48
∑
x∣d

2Ω(d).

�

For strongly square-free lattices the upper bound for mref 3 can be significantly

sharpened (this was already known by Berger, cf. [Ber93], Bemerkung 3.5.1).

Lemma 2.3. Let L be a strongly square-free lattice of determinant d. Then, in

both dimensions, we have mref 3(L) = 0.
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Proof. Dimension 3: From theorem 1.13 it follows that 4 divides the determi-

nant of a 3-dimensional, indecomposable reflective lattice, which is never the case

for strongly square-free lattices.

Dimension 4: We show that a 4-dimensional reflective lattice cannot have a

3-dimensional, indecomposable orthogonal summand. Assume a reflective

L = L′ ⊥ L′′,

with dimL′ = 3, dimL′′ = 1 and L′ indecomposable. theorem 1.13 b) implies

4 ∣ detL′, and L being strongly square-free implies 8 ∤ detL′. Notice that a lat-

tice is even iff the unimodular component of the 2-adic Jordan decomposition is

even (trivial), and that unimodular Z2-lattices only exist in even dimensions (cf.

[O’M00], 93:15). So if L′ is even, then the 2-adic Jordan decomposition of L′ is of

the form L′⊗Z2 = L
′
0 ⊥

4L′2 with dimL′0 = 2 and dimL′2 = 1. This is a contradiction

to L being strongly square-free. If L′ is odd, then theorem 1.13 implies that L′ can

only be of the shape 1.13 b), (a), which over Z always possesses a Gram matrix of

the form (
2α 0 α
0 2β β
α β δ

), with δ = α+β+γ
2

, in some basis v1, v2, v3 ∈ L. Given that L′ is

odd, either α or β is odd, so we may assume without loss of generality that 2 ∤ β.

Over Z2, the two vectors v2 −
β
δ
v3, v3 (δ is odd, thus a 2-adic unit) generate an

unimodular sublattice of L′⊗Z2 with Gram matrix ( 2β− β
2

δ 0

0 δ
); unimodular because

β is odd. As a unimodular sublattice, it is an orthogonal summand of L′ ⊗ Z2

(cf. [O’M00], 82:15), thus L′ ⊗ Z2 must have a 1-dimensional 4-modular Jordan

component. Again, this forms a contradiction to L being strongly square-free. It

follows mref 3(L) = 0. �

Let us make the following abbreviation for strongly square-free lattices L. If

the dimension is 4, we write

Mref 4(L) =
611
1920

⋅ 4Ω(d), Mref 2(L) =
17
24
⋅ a(d) ⋅ 2Ω(d),

and

Mref(L) = Mref 4(L) +Mref 2(L)

is an upper bound for mref(L). The lower bound for the full mass from lemma 1.9

will be abbreviated as

M(L) =
1

90
⋅

1

24
⋅ ∏

p∣detL,
vp(detL)=2

p≠2

p2 (p − 1)

2p + 2
∏

p∣detL,
vp(detL)=1

p≠2

1

2
p

3
2 .

If the dimension is 3, we write

Mref(L) = Mref 2(L) =
17

48
∑
x∣d

2Ω(x)
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for the upper bound for mref(L) and

M(L) =
1

6
⋅
1

8
⋅ ∏
p∣detL,
p≠2

p − 1

2

for the lower bound of m(L).

By combining lemma 1.9 and lemma 2.2 we see that a strongly square-free

totally-reflective lattice satisfies the condition Mref(L)/M(L) ≥ 1. Actually, the

estimates on mref(L) and m(L) depend only on the determinant of L, so we may

write M(L) = M(detL) and Mref(L) = Mref(detL).

We now want to investigate how the ratio of Mref and M behaves when prime

factors are appended to the determinant. Notice that both Mref and M tend to ∞

when the number of prime factors increases.

Lemma 2.4. Let d ∈ N and q ∈ P.

a) In dimension 3: For q ≥ 7 and q ∤ d we have Mref(d)
M(d)

≥ Mref(dq)
M(dq)

.

b) In dimension 4: For q ≥ 7 and q ∤ d we have Mref(d)
M(d)

≥ Mref(dq
2
)

M(dq2)
. For q ≥ 5

and q ∤ d we have Mref(d)
M(d)

≥ Mref(dq)
M(dq)

.

Proof. We prove the first part of b) in detail so that the general idea is clear.

The rest is proven analogously. From the mass formula it follows that

M(dq2) =
q2(q − 1)

2(q + 1)
⋅M(d),

thus the mass grows basically like a quadratic polynomial if the determinant is

extended by a quadratic prime factor. The growth of Mref is much slower; there

are constants c1 and c2 independent from q (rather than a quadratic polynomial)

such that

Mref 4(dq
2) = c1 ⋅Mref 4(d), Mref 2(dq

2) = c2 ⋅Mref 2(d).

The first statement follows immediately from the definition with c1 ∶= 42. For the

second statement, if taking into account that the divisors of dq2 are the divisors of

d multiplied by 1, q and q2, we get a(dq2) = 3 ⋅ a(d) and thus

Mref 2(dq
2) =

17

24
⋅ a(dq2) ⋅ 2Ω(dq2) =

17

24
⋅ 3 ⋅ a(d) ⋅ 22 ⋅ 2Ω(d)

= 12 ⋅Mref 2(d).

To prove the lemma, it is now sufficient to show that

Mref 4(d)

M(d)
≥

42 ⋅Mref 4(d)

M(dq2)
,(2.1)

Mref 2(d)

M(d)
≥

12 ⋅Mref 2(d)

M(dq2)
.(2.2)
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Statement (2.1) is equivalent to q2(q−1)
2(q+1)

≥ 42, and statement (2.2) is equivalent to

q2(q−1)
2(q+1)

≥ 12. Both are true for q ≥ 7. �

The second lemma of this section clarifies the behavior of Mref /M if the number

of prime factors is fixed while the prime numbers increase. Again, a priori that is

not clear since Mref and M tend to ∞ when the primes increase.

Lemma 2.5. In both dimensions Mref(d)
M(d)

is monotonically decreasing in each

prime factor of d.

Proof. The enumerator Mref(d) only depends on the number of prime factors

of d and, as can be seen on the last two pages, the denominator M(d) is monoton-

ically increasing in each prime factor. �

The main theorem of this subsection is now a direct consequence of lemma 2.4

and lemma 2.5.

Theorem 2.6. Let L be a strongly square-free totally-reflective lattice.

a) Let dimL = 3 and detL = q1⋯qs. Then s ≤ 9.

b) Let dimL = 4 and detL = p2
1⋯p

2
rq1⋯qs. Then r ≤ 8 and s ≤ 8 − r.

Proof. We have to decide when the necessary condition Mref

M
≥ 1 is violated.

a) Let L be a strongly square-free totally-reflective lattice with detL = q1⋯qs

and s ≥ 10. Assume the prime factors are ordered such that q1 < ⋅ ⋅ ⋅ < qs. We start

with the observation

Mref(2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 13 ⋅ 17 ⋅ 19 ⋅ 23 ⋅ 29)

M(2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 13 ⋅ 17 ⋅ 19 ⋅ 23 ⋅ 29)
< 1.

Using the monotony statement of lemma 2.5, we get

Mref(q1 ⋅ q2 ⋅ q3 ⋅ q4 ⋅ q5 ⋅ q6 ⋅ q7 ⋅ q8 ⋅ q9 ⋅ q10)

M(q1 ⋅ q2 ⋅ q3 ⋅ q4 ⋅ q5 ⋅ q6 ⋅ q7 ⋅ q8 ⋅ q9 ⋅ q10)
< 1.

Now we apply lemma 2.4 a) and see that

Mref(q1⋯q10 ⋅ q11⋯qs)

M(q1⋯q10 ⋅ q11⋯qs)
=

Mref(detL)

M(detL)
< 1.

Thus L is not totally-reflective.

b) Let L be a strongly square-free totally-reflective lattice of determinant

detL = p2
1⋯p

2
rq1⋯qs with r ≥ 9. First we prove the statement regarding r. As-

sume p1 < ⋅ ⋅ ⋅ < pr and q1 < ⋅ ⋅ ⋅ < qs. We have

Mref(2
2 ⋅ 32 ⋅ 52 ⋅ 72 ⋅ 112 ⋅ 132 ⋅ 172 ⋅ 192 ⋅ 232)

M(22 ⋅ 32 ⋅ 52 ⋅ 72 ⋅ 112 ⋅ 132 ⋅ 172 ⋅ 192 ⋅ 232)
< 1,
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and with lemma 2.5

Mref(p
2
1 ⋅ p

2
2 ⋅ p

2
3 ⋅ p

2
4 ⋅ p

2
5 ⋅ p

2
6 ⋅ p

2
7 ⋅ p

2
8 ⋅ p

2
9)

M(p2
1 ⋅ p

2
2 ⋅ p

2
3 ⋅ p

2
4 ⋅ p

2
5 ⋅ p

2
6 ⋅ p

2
7 ⋅ p

2
8 ⋅ p

2
9)

< 1.

Applying lemma 2.4 b), we get

Mref(p
2
1⋯p

2
9 ⋅ p

2
10⋯p

2
r ⋅ q1⋯qs)

M(p2
1⋯p

2
9 ⋅ p

2
10⋯p

2
r ⋅ q1⋯qs)

=
Mref(detL)

M(detL)
< 1.

Thus L is not totally-reflective.

To prove the statement concerning s, we fix the number of quadratic prime

factors r ≤ 8. Let detL = p2
1⋯p

2
rq1⋯qs with s ≥ 9− r. Define P(r+ s) to be the finite

set consisting of the first r+s primes. For each combination (p̃1, . . . , p̃r, q̃1, . . . , q̃s) ∈

P(r + s)r+s with p̃1 < ⋅ ⋅ ⋅ < p̃r and q̃1 < ⋅ ⋅ ⋅ < q̃s we have

Mref(p̃
2
1⋯p̃

2
r q̃1⋯p̃s)

M(p̃2
1⋯p̃

2
r q̃1⋯p̃s)

< 1.

Then lemma 2.4 and lemma 2.5 imply

Mref(p
2
1⋯p

2
rq1⋯qs)

M(p2
1⋯p

2
rq1⋯qs)

< 1.

�

In the next theorem we give upper bounds for the prime factors of the determi-

nant. The tables below should be read as follows: p1 ≤ c1 means that the smallest

prime factor of the determinant of a totally-reflective lattice is at most c1, p2 ≤ c2

means that if the determinant has at least two prime factors then the second small-

est is at most c2, and so on. Thus, in dimension 4, for example, p7 is at most 449

regardless of whether there are 7,8 or 9 linear prime factors (and regardless how

many quadratic prime factors there are).

Theorem 2.7. Let L be a strongly square-free totally-reflective lattice.

a) Let dimL = 3 and detL = q1⋯qs with s ≤ 9. Assume q1 < ⋅ ⋅ ⋅ < qs. Then

q1 q2 q3 q4 q5 q6 q7 q8 q9

≤ 103 307 919 1373 1373 827 409 151 47

b) Let dimL = 4 and detL = p2
1⋯p

2
rq1⋯qs with r ≤ 9 and s ≤ 8 − r. Assume

p1 < ⋅ ⋅ ⋅ < pr and q1 < ⋅ ⋅ ⋅ < qs. Then

p1 p2 p3 p4 p5 p6 p7 p8 p9

≤ 191 661 1601 2069 1831 997 449 157 47
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q1 q2 q3 q4 q5 q6 q7 q8

≤ 11287 6427 3613 1597 653 229 67 19

Proof. By using lemma 2.5 we can repeatedly increase a prime factor (and

thus decrease the function Mref /M) until the necessary condition

Mref(detL)/M(detL) ≥ 1

is violated. �

Remark 2.8.

a) With the help of theorem 2.6 and theorem 2.7, the enumeration of all

strongly square-free totally-reflective genera can be carried out computa-

tionally. All calculations were performed using MAGMA, cf. [BCP97].

First, we construct all genus symbols of strongly square-free lattices up to

the given bounds. Avoiding redundant calculations by considering all the

restrictions for genus symbols described in [CS99], Chapter 15, this can be

carried out in around 48 hours on the author’s laptop computer. Then, to

decide if a genus is totally-reflective, we enumerate all lattices within the

genus, calculated their root system and checked whether it is of full rank.

The non-trivial part here is the enumeration of the whole genus. Calculat-

ing the root system and its rank is a matter of milliseconds. The theory

behind the enumeration of a genus is given by Kneser’s neighborhood

method, cf. [Kne57]. This method is implemented in MAGMA. There

is also an implementation in C called TwoNeighbours (because the prime

p = 2 is used) going back to Scharlau & Hemkemeier, cf. [SH98]. The

algorithm generates the whole genus if only one lattice from the genus is

known. This one lattice that is required to start the neighborhood method

(for a given genus symbol) is constructed according to [LK13], section 5.2.

Even in low dimension such as 3 and 4, enumerating a whole genus can be

very time consuming if the determinant has large prime factors. There-

fore, the neighborhood method has sometimes been interrupted after a

couple of genus representatives have been found to check whether a non-

reflective lattice has already occured. At the end a calculating time of 96

hours was necessary.

b) It turns out that the largest occuring value for the number of prime factors

is

(r, s) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(3,3), in dimension 4,

(0,4), in dimension 3.



2.2. REDUCTION TO THE STRONGLY SQUARE-FREE CASE 27

The largest prime factor p occuring in dimension 4 is

p =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

13, if vp(det) = 2,

17, if vp(det) = 1.

and p = 23 in dimension 3.

2.2. Reduction to the Strongly Square-Free Case

Now, after we have found all strongly square-free totally-reflective genera our

next goal is to gradually weaken the restriction “strongly square-free”. This is

done in two steps. First, we drop the assumption “strong” by applying the partial

dualization operator. In a second step we drop the assumption “square-free” by

considering pre-images under the Watson transformation.

Definition 2.9. Let L be a square-free lattice and p ∈ P. The partial dual of

L at p is defined as Dp(L) ∶=
p( 1
p
L ∩L#).

In contrast to the usual dual operator, the partial dual operator only dualizes

the lattice at the prime spot p. That means

Dp(L)⊗Z Zq =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

p(L#
q ), if q = p,

pLq, if q ≠ p.

This has the following effect on the Jordan decomposition of a square-free lattice

L⊗Z Zp = L0 ⊥
pL1:

Dp(L)⊗Z Zp ≅ L1 ⊥
pL0.

Thus, starting with a strongly square-free lattice, one can construct a (not nec-

essarily strongly) square-free primitive lattice by applying Dp for p ∣ detL (and

vice versa). For a set of primes I ∶= {p1,⋯, pk} ⊆ P we use the abbreviation

DI ∶= Dp1 ○⋯ ○ Dpk (where D∅ ∶= id), which is well-defined since two partial dual

operators with respect to different primes commute. Clearly, Dp extends to a well-

defined bijective function G(L)Ð→ Dp(G(L)) = G(Dp(L)). The next lemma shows

that the partial dual behaves “well” relative to the property “totally-reflective”.

Lemma 2.10. Let L be an integral lattice. Then L is totally-reflective if and

only if Dp(L) is totally-reflective.

Proof. Recall that the property “reflective” can be characterized by the action

of W (L) on V . Since W (L) = W (Dp(L)), it is clear that L is reflective iff Dp(L)

is reflective. Thus, the assertion follows from the bijectivity of Dp ∶ G(L) Ð→

Dp(G(L)). �
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Theorem 2.11. Let Tn be the set of all strongly square-free totally-reflective

genera in dimension n ∈ {3,4}. Let P(d) be the power set of the set of all prime

factors of d ∶= detG. Then

⋃
G∈Tn

⋃
I∈P(d)

{DI(G)}

is the set of all square-free, primitive totally-reflective genera in dimension n.

Proof. This is a consequence of lemma 2.10, the bijectivity of G(L) Ð→

Dp(G(L)) and the above discussion. �

The techniques we will use now are based on the following definition going back

to Watson, cf. [Wat62], [Wat73].

Definition 2.12. Let L be an integral lattice and p ∈ P. The Watson trans-

formation of L at p is defined as Ep(L) ∶= L + ( 1
p
L ∩ pL#).

The usefulness of Ep becomes clear when we consider its effect on the Jordan

decomposition. Let L be an integral lattice with Lp = L0 ⊥
pL1 ⊥ ⋅ ⋅ ⋅ ⊥

prLr. Then

Ep(L)⊗Z Zq =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(L0 ⊥ L2) ⊥
p(L1 ⊥ L3) ⊥

p2L4 ⊥ ⋅ ⋅ ⋅ ⊥
pr−2Lr, if q = p,

L⊗Z Zq, if q ≠ p.

Hence, after repeatedly applying the Watson transformation, a primitive lattice

transforms into a square-free primitive lattice. Similar to the partial dual, Ep

extends to a well-defined surjective function G(L)Ð→ Ep(G(L)) = G(Ep(L)).

Lemma 2.13. If L is totally-reflective lattice, then so is Ep(L).

Proof. The assertion implies that W (L) has no non-zero fixed vectors, thus

neither has W (Ep(L)) since W (L) ⊆W (Ep(L)). Hence the assertion follows from

the surjectivity of Ep. �

It may happen that prime factors disappear from the determinant after applying

the Watson transformation. Thus, when calculating pre-images under Ep, one has

to decide which primes p to consider (besides the prime factors of the determinant).

An answer to this question is given by the following two lemmata.

Lemma 2.14. Let L be an integral lattice, p an odd prime with p ∤ detL and

K ∈ Ep(L)
−1.

a) If dimL = 3 then,

m(K) ≥ ((
1

1 + p−1
)

2

p2 (1 − p−2)) ⋅m(L).
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b) If dimL = 4 then,

m(K) ≥ (
ζ(4)

2ζ(2)2
(

1

1 + p−1
)

2

p3 (1 − p−2)) ⋅m(L).

Proof. This follows from the mass formula and lemma 1.6. �

Lemma 2.15. Let L be an integral lattice, p an odd prime with p ∤ detL and

K ∈ Ep(L)
−1.

a) If dimL = 3, then

Mref(K) ≤ 81 ⋅Mref(L).

b) If dimL = 4, then

Mref(K) ≤ 4096 ⋅Mref(L).

Proof. b) Since L is not necessarily strongly square-free, we need to consider

the upper bound for mref 3 as well. Let d ∶= detL. The assumption implies K⊗ZZp =
K0 ⊥

p2K2, in particular detK = detL ⋅ p2n2 where n2 ∶= dimK2 ∈ {0,1,2,3}. Thus

Mref 4(K) =
611

1920
⋅ 4Ω(dp2n2) = 42n2 ⋅Mref 4(L).

For the other two cases we consider the decomposition of the divisor set

D(detK) =
2n2

⊍
i=0

piD(d).

Hence

Mref 3(K) =
2n2

∑
i=0

∑
x∣D(d)

17
96
⋅ 3Ω(x) ⋅ 3i = ( 1−32n2+1

1−3
) ⋅Mref 3(L)

and

Mref 2(K) = 17
24
⋅ a(dp2n2) ⋅ 2Ω(dp2n2) = (2n2 + 1) ⋅ 2n2 ⋅Mref 2(L).

Finally note that max{42n2 , ( 1−32n2+1

1−3
) , (2n2 + 1) ⋅ 2n2} ≤ 4096 for n2 ∈ {1,2,3}.

Part a) of this lemma is proven analogously. �

Corollary 2.16. Let L be an integral lattice, p an odd prime with p ∤ detL

and K ∈ Ep(L)
−1.

a) If K is totally-reflective and dimL = 3, then

81 ⋅
Mref(L)

m(L)
⋅ ((

1

1 + p−1
)

2

p2 (1 − p−2))

−1

≥ 1.

b) If K is totally-reflective and dimL = 4, then

4096 ⋅
Mref(L)

m(L)
⋅ (

ζ(4)

2ζ(2)2
(

1

1 + p−1
)

2

p3 (1 − p−2))

−1

≥ 1.
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Proof. Combine lemma 2.14 and lemma 2.15. �

Since the p-term in the above inequalities depends monotonically decreasingly

on p (for p ∤ 2 detL) and Mref(L)/m(L) does not depend on p at all, it is straight-

forward to decide when the statement of corollary 2.16 is satisfied.

2.3. Classification Result

Given the set of all square-free, primitive totally-reflective genera, one can pro-

duce all totally-reflective primitive genera by using corollary 2.16 and lemma 2.13.

First, corollary 2.16 tells us which (finitely many) primes one has to concider when

calculating pre-images under Ep. Then, during the process of repeatedly generat-

ing lattices K ∈ Ep(L)
−1, lemma 2.13 tells us that we can stop and proceed with

the next lattice when a not totally-reflective lattice occurs. Eventually this process

will terminate since the number of totally-reflective genera is finite. Furthermore,

lemma 2.13 also implies that every totally-reflective genus will be produced this

way. We have implemented this procedure in MAGMA and it takes around 24

hours to find all totally-reflective genera.

Theorem 2.17.

a) In dimension 3, there are 1234 primitive totally-reflective genera of which

289 are square-free and 52 strongly square-free.

b) In dimension 4, there are 930 primitive totally-reflective genera of which

230 are square-free and 88 strongly square-free.

To give some examples, we have listed below all totally-reflective genera which

are strongly square-free. The complete list of all totally-reflective genera in dimen-

sion 3 and 4 is contained in the appendix.

det Genus h det Genus h det Genus h

1 I(1+3
3 ) 1 2 I(2+1

1 ) 1 3 I(3−1) 1

3 I(3+1) 1 5 I(5−1) 1 5 I(5+1) 1

6 II(2+1
1 3−1) 1 6 I(2+1

1 3−1) 1 6 I(2+1
1 3+1) 1

7 I(7+1) 2 10 I(2+1
1 5−1) 2 10 I(2+1

1 5+1) 1

11 I(11−1) 1 14 II(2+1
1 7+1) 1 14 I(2+1

1 7+1) 2

15 I(3+15+1) 2 15 I(3−15−1) 2 15 I(3+15−1) 1

15 I(3−15+1) 1 17 I(17+1) 2 21 I(3+17+1) 2

21 I(3−17+1) 2 21 I(3+17−1) 1 30 II(2+1
1 3−15−1) 2

30 II(2+1
1 3+15+1) 1 30 I(2+1

1 3−15−1) 2 30 I(2+1
1 3+15+1) 2

30 I(2+1
1 3+15−1) 1 33 I(3+111−1) 2 33 I(3−111+1) 2

35 I(5+17−1) 1 35 I(5−17+1) 2 39 I(3+113−1) 1
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42 II(2+1
7 3−17+1) 2 42 I(2+1

1 3−17−1) 2 42 I(2+1
1 3−17+1) 2

51 I(3−117+1) 2 57 I(3+119−1) 2 65 I(5+113+1) 2

66 I(2+1
1 3+111−1) 3 69 I(3−123+1) 3 77 I(7+111−1) 3

78 II(2+1
1 3−113−1) 3 105 I(3+15−17+1) 2 105 I(3−15−17−1) 2

105 I(3−15+17+1) 2 105 I(3−15−17+1) 3 165 I(3+15+111−1) 2

195 I(3−15−113−1) 3 210 II(2+1
7 3+15+17+1) 2 210 I(2+1

1 3+15+17+1) 3

330 II(2+1
7 3−15−111−1) 4

Table 1. Strongly square-free totally-reflective genera in dimension 3.

det Genus h det Genus h det Genus h

1 I(1+4
4 ) 1 2 I(2+1

1 ) 1 3 I(3−1) 1

3 I(3+1) 1 4 II(2−2
II ) 1 4 I(2+2

2 ) 1

5 II(5+1) 1 5 I(5+1) 1 5 I(5−1) 1

6 I(2+1
1 3−1) 2 6 I(2+1

1 3+1) 1 7 I(7+1) 2

9 II(3+2) 1 9 I(3+2) 1 9 I(3−2) 1

10 I(2+1
1 5−1) 2 12 II(2+2

2 3−1) 1 12 II(2+2
6 3+1) 1

12 I(2+2
2 3−1) 1 12 I(2+2

2 3+1) 1 14 I(2+1
1 7+1) 3

15 I(3+15+1) 2 15 I(3−15−1) 3 15 I(3+15−1) 1

18 I(2+1
1 3−2) 2 18 I(2+1

1 3+2) 2 20 II(2+2
II 5+1) 1

20 I(2+2
2 5−1) 2 20 I(2+2

2 5+1) 2 20 II(2−2
II 5−1) 1

21 II(3−17+1) 1 21 I(3−17+1) 2 25 II(5−2) 1

25 I(5−2) 1 25 I(5+2) 2 28 II(2+2
2 7+1) 2

30 I(2+1
1 3−15−1) 4 33 I(3+111−1) 2 36 II(2−2

II 3−2) 1

36 II(2+2
II 3+2) 1 36 II(2+2

0 3+2) 1 36 I(2+2
2 3−2) 2

36 I(2+2
2 3+2) 2 45 II(3+25−1) 1 45 II(3−25+1) 1

45 I(3+25−1) 2 45 I(3−25+1) 2 49 II(7+2) 1

60 II(2+2
2 3+15+1) 2 60 II(2+2

2 3−15−1) 3 60 II(2+2
6 3+15−1) 1

63 I(3+27−1) 3 63 I(3+27+1) 3 68 II(2−2
II 17+1) 2

75 I(3−15+2) 3 75 I(3+15−2) 3 84 II(2+2
II 3−17+1) 2

84 II(2−2
II 3+17+1) 2 90 I(2+1

1 3+25+1) 4 90 I(2+1
1 3+25−1) 4

98 I(2+1
1 7+2) 4 100 II(2−2

II 5+2) 1 100 II(2+2
II 5−2) 1

100 I(2+2
2 5−2) 2 117 II(3+213−1) 2 132 II(2−2

II 3+111−1) 2

132 II(2−2
II 3−111+1) 2 180 II(2+2

II 3+25−1) 2 180 II(2+2
II 3−25+1) 2

180 II(2−2
II 3+25+1) 2 180 II(2−2

II 3−25−1) 2 196 II(2−2
II 7−2) 2

225 II(3+25+2) 2 225 I(3+25−2) 2 252 II(2+2
2 3+27−1) 3

252 II(2+2
6 3+27+1) 3 300 II(2+2

2 3−15+2) 3 300 II(2+2
2 3+15−2) 3



32 2. CLASSIFICATION OF TOTALLY-REFLECTIVE LATTICES

420 II(2−2
II 3+15−17+1) 3 420 II(2−2

II 3−15+17+1) 3 441 I(3+27+2) 4

484 II(2−2
II 11−2) 1 900 II(2−2

II 3−25+2) 2 900 II(2−2
II 3+25−2) 2

900 I(2+2
2 3+25−2) 4 1764 II(2−2

II 3+27+2) 2 4900 II(2−2
II 5−27+2) 2

6084 II(2−2
II 3+213−2) 2

Table 2. Strongly square-free totally-reflective genera in dimension 4.



CHAPTER 3

Hyperbolic Reflection Groups

3.1. Fundamentals on Hyperbolic Reflection Groups

Throughout this chapter let (V, ( , )) be a Lorentzian space of signature (n,1).

The set

Fn ∶= {v ∈ V ∣ (v, v) = −1}

falls into two connected components (see figure 1). We pick an arbitrary component

Hn and stick with it from now on. For two points x, y ∈Hn there is a unique non-

negative real number ρ(x, y) such that

(x, y) = ∥x∥∥y∥ coshρ(x, y),

cf. [Rat06], 3.1.7. This number is called the hyperbolic distance between x and y.

The mapping

ρ ∶Hn ×Hn Ð→ R, (x, y)z→ ρ(x, y)

is a metric and the metric space (Hn, ρ) is a model for the hyperbolic n-space, cf.

[Rat06], 3.2.2.

The geometry of Hn is closely related to the linear structure of V . Every

isometry of Hn (i.e. map preserving the metric ρ) can be written as the restriction

Figure 1. The two-sheeted hyperboloid Fn inside the light
cone consisting of all negative-norm vectors (image taken from
[Rat06]).

33
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Figure 2. The stereographic projection ζ of B2 onto H2 (image
taken from [Rat06]).

of a linear isometry of V to Hn. Conversely, every linear isometry of V that maps

Hn onto itself induces (by restriction) an isometry of (Hn, ρ), cf. [Rat06], 3.2.3.

In this sense, the full isometry group of Hn can be found within O(V ): it is the

subgroup O+(V ) of index 2 consisting of those isometries of V mapping each of the

connected components onto itself.

A hyperplane hv of Hn is by definition the intersection of Hn with an indefinite

linear hyperplane of V ,

hv ∶=H
n ∩ v⊥ with v ∈ V, (v, v) > 0.

Let hv be a hyperplane with the corresponding linear subspace v⊥. The linear

reflection in v⊥

sv ∶ V Ð→ V, xz→ x −
2(x, v)

(v, v)
v

is an isometry of V and the corresponding isometry σv ∶= sv ∣H
n of (Hn, ρ) is called

the hyperbolic reflection in hv.

Definition 3.1. A discrete subgroup of O+(V ) generated by reflections is

called a hyperbolic reflection group.

When working in the hyperbolic 2-space it is very convenient to use the confor-

mal ball model B2 of the hyperbolic plane. We do not give a detailed description

and only mention that this model is constructed by identifying each point in H2

with a point in the open unit circle via the stereographic projection (cf. figure 2).

A hyperbolic reflection group acts naturally on Hn and it is helpful to consider

the fundamental domain of this action.
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Definition 3.2.

a) Let hv be a hyperbolic hyperplane. The set h+v ∶= {x ∈ Hn ∣ (x, v) ≥ 0} is

called the closed half-space bounded by hv.

b) A polyhedron P is the intersection of a locally finite system of closed half-

spaces containing a non-empty open set,

P ∶=⋂
i∈I

h+vi .

c) Let P be a polyhedron. We say P is a Coxeter polyhedron if all dihedral

angles of P are of the form π
m

with m ∈ {2,3, . . .}.

For the definition of the dihedral angle and further notions (such as faces, cusps)

related to geometry of polyhedra we refer to [Rat06], §6.3, §6.4.

Proposition 3.3.

a) The fundamental domain of a hyperbolic reflection group acting on Hn is

a Coxeter polyhedron.

b) Every Coxeter polyhedron is the fundamental domain of a hyperbolic re-

flection group.

Proof. Part a) can be found in [Rat06], Theorem 7.1.2. To prove part b),

consider the group generated by the reflections with respect to the faces of the given

Coxeter polyhedron. A detailed proof can be found in [Rat06], Theorem 7.13. �

Example 3.4. Let ∆ be a simplex in the hyperbolic 2-space, i.e. a compact

polyhedron with exactly 3 vertices. Assume further that ∆ is a Coxeter polyhedron.

Thus there are integers a, b, c ∈ Z with 2 ≤ a ≤ b ≤ c such that ∆ = T (a, b, c) is the

triangle whose angles are π
a
, π
b
, π
c
. The hyperbolic reflection group generated by the

reflections in the sides of T (a, b, c) is denoted by W (a, b, c). In hyperbolic geometry

the sum of the angles of a triangle is less than π (cf. [Rat06], Theorem 3.5.1),

π

a
+
π

b
+
π

c
< π,

thus the integers a, b, c satisfy the inequality

1

a
+

1

b
+

1

c
< 1,

which has an infinite number of solutions. Each solution induces a triangle T (a, b, c)

and a corresponding hyperbolic reflection group W (a, b, c). The action of the group

W (2,4,6) on B2 is visualized in figure 3. A classification for these types of reflection

groups is known and accessible by relatively elementary methods.

Theorem (cf. [Rat06], Theorem 7.2.1). Let a, b, c, a′, b′, c′, be integers such

that 2 ≤ a ≤ b ≤ c and 2 ≤ a′ ≤ b′ ≤ c′. Then W (a, b, c) is isomorphic to W (a′, b′, c′)

iff (a, b, c) = (a′, b′, c′).
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Figure 3. A tessellation of B2 by the fundamental polyhedron
T (2,4,6) of W (2,4,6) (image taken from [Rat06]).

The fact that a hyperbolic reflection group can be completely reconstructed

from the faces of its fundamental polyhedron can be used to obtain a handy de-

scription of the group in terms of the normal vectors (with respect to the faces). In

formulating the next definitions and results, we allow any system of vectors (vi)i∈I
that satisfies the conditions (vi, vi) > 0 and (vi, vj) ≤ 0 for i, j ∈ I (which is auto-

matically fulfilled by the normal vectors). This allows the following concepts to be

applied later in some proofs of non-reflectivity.

Definition 3.5. Let (vi)i∈I be a system of vectors in V with the property

(vi, vi) > 0 and (vi, vj) ≤ 0 for i, j ∈ I. The matrix

G ∶= (gij)i,j∈I , with gij ∶=
(vi, vj)

√
(vi, vi)(vj , vj)

is called the (normalized) Gram matrix of the system (vi)i∈I . For a subset J ⊆ I,

we write GJ ∶= (gij)i,j∈J .

All relevant geometric properties of the hyperplanes hvi are stored in the nor-

malized Gram matrix and can be extracted form G in the following way.

Proposition 3.6. Let (vi)i∈I be a system of vectors in V with the property

(vi, vi) > 0 and (vi, vj) ≤ 0 for i, j ∈ I and let G = (gij)i,j∈I be the associated Gram

matrix. Then

a) gij < −1Ô⇒ hvi and hvj diverge,

b) gij = −1Ô⇒ hvi and hvj are parallel,
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c) gij > −1Ô⇒ hvi and hvj intersect. Furthermore, if we write ∢(vi, vj) for

the dihedral angle between hvi and hvj , then

cos∢(vi, vj) = −gij .

Proof. See [Rat06], §3.2. �

Apart from the normalized Gram matrix, there is another common way to

describe reflection groups and their fundamental domain. The so-called Coxeter

diagram contains less information than G but enough to determine the combinato-

rial structure of the fundamental polyhedron and the presentation of the associated

hyperbolic reflection group in terms of generators and relations.

Definition 3.7. The Coxeter diagram of the vector system (vi)i∈I is a graph

Γ with vertices vi, i ∈ I, and edges defined as follows:

vi vj , if gij > −1 and the dihedral angle is of the form π
2

,

vi vj , if gij > −1 and the dihedral angle is of the form π
3

,

vi vj , if gij > −1 and the dihedral angle is of the form π
m
,m ≥ 4,

m

vi vj , if gij = −1,
∞

vi vj , if gij < −1.

For a subset J ⊆ I, we write ΓJ for the subgraph containing the vertices vj , j ∈ J ,

and the corresponding edges.

Example 3.8. If we look back at example 3.4, we see that the Coxeter diagram

of a group W (a, b, c) is either

v1 v2 v3
b c

or

v1 v2

v3

b

ca

according as a = 2 or a > 2, where v1, v2, v3 correspond to the normal vectors

perpendicular to the edges of T (a, b, c).

We can now formulate a very useful criterion, which characterizes the com-

binatorial structure of a fundamental polyhedron by elementary properties of the

normalized Gram matrix and the Coxeter diagram.
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Theorem 3.9. Let (vi)i∈I be a system of vectors in V with the property (vi, vi) >

0 and (vi, vj) ≤ 0 for i, j ∈ I. Let P ∶= ⋂i∈I h
+
vi be the corresponding polyhedron, G

be the associated Gram matrix and Γ the corresponding Coxeter diagram. For a

subset J ⊆ I we have:

a) P ∩ (⋂j∈J h
+
vj
) is a face of codimension ∣J ∣ iff GJ is positive-definite.

b) Let ΓJ = ⊍k ΓJk , Jk ⊆ J , be the decomposition of Γ into connected com-

ponents. Then P ∩ (⋂j∈J h
+
vj
) is a cusp (vertex at infinity) iff GJ is of

rank n − 1 and GJk is positive-semidefinite with one-dimensional radical

for every connected component k.

Proof. See [Vin72a]. �

3.2. Arithmetic Reflection Groups and Reflective Lorentzian Lattices

Arithmetic groups are arguably the most interesting subclass of hyperbolic re-

flection groups. Their theoretical background is not restricted (but closely related)

to hyperbolic reflections and much deeper than the one presented here. We only

mention that arithmetic groups in general are subgroups of semisimple Lie groups

defined using algebraic groups. The classification of semisimple algebraic groups

(cf. [Tit66]) divides the possible types of arithmetic groups into three classes.

As Vinberg showed in [Vin67], if an arithmetic group is generated by hyperbolic

reflections, then it is automatically from the simplest type, meaning that it is com-

mensurable to the isometry group of an indefinite lattice of signature (n,1) over

some algebraic number field. An arithmetic group (of the simplest type) has a non-

compact fundamental domain if and only if it is defined over Q and the indefinite

lattice is isotropic (this was shown in [BH62]). Since we are only interested in

non-cocompact groups on the hyperbolic 5-space, the theorem of Hasse-Minkowski

implies that we only need to consider the number field Q.

Definition 3.10. An integral Z-lattice of signature (n,1) is called a Lorentzian

lattice.

Definition 3.11. A hyperbolic reflection group W is called arithmetic if there

exists a Lorentzian lattice E such that W is of finite index in O+(E).

In order to investigate the connections between arithmetic reflection groups and

Lorentzian lattices, we need to adapt the notion of root systems to the indefinite

case (keep in mind that in chapter 1 root systems were only defined for positive-

definite lattices).

Definition 3.12. Let (E, b) be a Lorentzian lattice.

a) A primitive vector v ∈ E is called root of E if sv(E) = E and (v, v) > 0.
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b) The set R(E) ∶= {v ∈ E ∣ v is a root of E} is called root system of E.

c) The subgroup W (E) ⩽ O(E) generated by all reflections sv, with v ∈

R(E), is called Weyl group of E.

Abbreviatory, we write O+(E) ∶= O(E) ∩O+(V ).

Proposition 3.13. Let E be a Lorentzian lattice. The Weyl group W (E) is a

hyperbolic reflection group.

Proof. Only the discreteness of W (E) in O+(V ) remains to be shown. This

follows from the fact that E is a lattice on V . �

Obviously, the condition (v, v) > 0 is redundant in the positive-definite case but

here it is made for the following reason: (v, v) > 0 iff sv ∈ O
+(V ). In contrast to

the positive-definite case, R(E) is not a root system in the sense of Lie algebra;

in general R(E) is not a finite set. Nevertheless, the major concept of fundamen-

tal roots can be transfered to the Lorentzian case. A set of fundamental roots for

R(E) is by definition obtained as follows. The set of all reflecting hyperplanes

hv ∶= {x ∈Hn ∣ (x, v) = 0}, v ∈ R(E), is locally finite and divides Hn into connected

components. Actually, the group W (E) acts transitively on the connected compo-

nents of Hn ∖ ⋃hv (the so-called open chambers). Pick an open chamber P (E)○

and let P (E) be its closure. The set P (E) is of the form

P (E) = ⋂
v∈R̃(E)

h+v

for a unique minimal subset R̃(E) ⊂ R(E) (consider the roots belonging to the

supporting hyperplanes of P (E), cf. [Rat06], Theorem 6.3.2).

Definition 3.14. Let E be a Lorentzian lattice. The elements of R̃(E) con-

structed as above are called fundamental roots of E (depending on the choice of

P (E)).

Recall that a hyperbolic reflection group W is called maximal if there is no

other hyperbolic reflecting group W ′ such that W ⫋ W ′ ⊆ O+(V ). As it will turn

out, Lorentzian lattices with a finite set of fundamental roots are precisely those

which can be used to describe maximal arithmetic reflection groups. For now, we

make the following

Definition 3.15. A Lorentzian lattice E is called reflective if W (E) is of

finite index in O+(E).

Proposition 3.16.

a) If E is a reflective Lorentzian lattice, then the Weyl group W (E) is an

arithmetic hyperbolic reflection group.
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b) If W is a maximal arithmetic reflection group, then there is a Lorentzian

lattice E with W =W +(E).

Proof. Both a) and b) follow directly from the definition. �

Similar to positive-definite lattices, the reflectivity of a Lorentzian lattice is

characterized by a finiteness condition regarding its root system.

Lemma 3.17. Let E be a Lorentzian lattice with root system R(E) and funda-

mental polyhedron P (E). Let Sym(P (E)) ∶= {ϕ ∈ O+(V ) ∣ ϕ(P (E)) = P (E)} be

the symmetry group of P (E). Then

O+(E) =W (E) ⋊H,

with H ∶= Sym(P (E)) ∩O+(E).

Proof. See [Vin72b], Proposition 3. �

Theorem 3.18. Let E be a Lorentzian lattice with root system R(E). Then E

is reflective iff the set of fundamental roots R̃(E) is finite.

Proof. This follows from lemma 3.17. �

Given a Lorentzian lattice E, we wish to calculate all fundamental roots in order

to decide whether the set R̃(E) is finite, or equivalently, whether the arithmetic

group O+(E) is generated up to finite index by reflections. The main tool for this

is Vinberg’s algorithm which we have implemented in MAGMA (cf. [BCP97]) and

we review now (cf. [Vin72a]).

The algorithm starts by picking an arbitrary point p0 ∈ H
n, the so-called con-

trolling vector . Consider all roots of E the reflecting hyperplanes of which pass

through p0,

R′ ∶= {v ∈ R(E) ∣ (v, p0) = 0}.

The set R′ is contained in the root system of the positive-definite lattice p⊥0 ∩E. In

fact, R′ is itself a crystallographic root system (in the usual sense of Lie algebra).

Thus we can pick a root basis v1, . . . , vn′ (n′ ≤ n) of R′. The group generated

by the hyperbolic reflections σv1 , . . . , σv′n is the stabilizer of p0 in W (E) and its

fundamental polyhedron is of the form

P0 ∶=
n′

⋂
i=1

h+vi .

There is a fundamental polyhedron P (E) of W (E) which is located in P0 and con-

tains p0 (one can choose p0 to be a vertex of this polyhedron). The hyperplanes

hvi (i = 1, . . . , n) bounding P0 are bounding P (E) as well, but additional hyper-

planes are needed. These required hyperplanes are exactly those perpendicular to
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the fundamental roots of E and are found in the following way. If v1, . . . , vm, with

m ≥ n, are already chosen, a root v ∈ R(E) can then be picked such that (v, p0) < 0,

(v, vi) ≤ 0 for all i = 1, . . . ,m, and the distance between p0 and hv is the smallest

possible, i.e. the quantity

sinh2(dist(p0, hv)) = −
(v, p0)

2

(v, v)(p0, p0)

is minimized (cf. [Rat06], Theorem 3.2.12 for some facts about the hyperbolic

distance between hyperplanes and points). This way, Vinberg’s algorithm will

produce a (possibly infinite) sequence (v1, v2, v3, . . .) of fundamental roots, which is

well-definied up to permutation of the vi with equal dist(p0, hv). Obviously, if the

lattice is not reflective, then the algorithm will not terminate. In the next section,

we will see how to recognize this situation. We will also give criteria which decide

whether a set of finitely many roots produced by the algorithm already make up

the whole set R̃(E).

3.3. Methods to Prove Reflectivity and Non-Reflectivity

Given a Lorentzian lattice E, a controlling vector p0 ∈ Hn and a root basis

for the root system {v ∈ R(E) ∣ (v, p0) = 0}, there is a unique extension of these

roots to a set of fundamental roots for R(E). As mentioned in the previous section,

Vinberg’s algorithm will find this extension by iteratively adjoining new fundamen-

tal roots. If E is reflective, then the set of fundamental roots is finite and after

some number of iterations the algorithm will have found them all. The next two

lemmata show that one can diagnose this situation by inspecting the volume of the

polyhedron defined by the so-far-found fundamental roots.

Lemma 3.19. Let E be a Lorentzian lattice with fundamental polyhedron P (E).

Then E is reflective iff P (E) has finite volume.

Proof. This follows from [Vin72a], Proposition 3 and the fact that the arith-

metic group O+(E) always has a fundamental polyhedron of finite volume. This is

a well-known general fact, which follows from reduction theory. �

Lemma 3.20. Let E be a Lorentzian lattice and {v1, . . . , vm} ⊆ R̃(E) a finite set

of fundamental roots of R(E) generated by Vinberg’s algorithm. If Pm ∶= ⋂mi=1 h
+
vi

has finite volume then P (E) = Pm.

Proof. See [Vin72a], Proposition 5. �

As the next proposition shows, the finiteness of the volume can be characterized

by certain combinatorial properties.
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Proposition 3.21. Let P be a Coxeter polyhedron. Then P has finite volume

iff on every edge of P there lie two (different) vertices or cusps.

Proof. See [Vin85], Proposition 4.2. �

Recall theorem 3.9 where the combinatorial structure of the fundamental poly-

hedron is characterized by elemental properties of the normalized Gram matrix and

the Coxeter diagram. In combination with above proposition, this gives us a very

effective tool to check a Lorentzian lattice for reflectivity. We have implemented

this procedure in MAGMA (cf. [BCP97]).

If our MAGMA implementation of Vinberg’s algorithm produces, say, more

than 103 fundamental roots then we can expect the lattice to be non-reflective. We

will now present two methods to prove this rigorously. The first one consists of

realizing non-reflective lattices of smaller dimension as orthogonal summands.

Theorem 3.22. Let E be a reflective Lorentzian lattice. Then every Lorentzian

orthogonal summand of E is reflective.

Proof. See [Bug92], §2. �

The major assistance to this method is the classification of reflective Lorentzian

lattices in the hyperbolic dimension 3 by Scharlau (cf. [Sch89]) and the hyperbolic

dimension 4 by Walhorn (cf. [Wal93]). The question whether a non-reflective

lattice of smaller dimension is embeddable into a larger one can be answered in a

simple manner by our structure theorem 4.3.

The second method consists in finding symmetries of infinite order of the poly-

hedron defined by some so-far-found fundamental roots. This is done by inspecting

the automorphism group of the Coxeter diagram.

Lemma 3.23. Let H ⩽ O+(V ) be a discrete subgroup. Let

Fix(H) ∶= {v ∈ V ∣ ∀ϕ ∈H ∶ ϕ(v) = v}

be a set of fixed vectors of H and C ∶= {v ∈ V ∣ (v, v) < 0}. The group H is infinite

iff Fix(H) ∩C = ∅.

Proof. See [Bug92], Lemma 3.1. �

According to lemma 3.17 we can apply the above lemma to H ∶= Sym(P (E))∩

O+(E). Elements of H can be found with the following theorem.

Theorem 3.24. Let E be a Lorentzian lattice and {v1, . . . , vm} ⊆ R̃(E) a finite

set of fundamental roots of R(E) generated by Vinberg’s algorithm. Let Γm be the

corresponding subgraph of the Coxeter diagram. If the following conditions hold

1) the vectors v1, . . . , vm generate E,
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2) there is a subset J ⊆ {1, . . . ,m} such that ⋂j∈J h
+
vj is a vertex or a cusp,

then every non-trivial graph automorphism of Γm induces an non-trivial element of

Sym(P (E)) ∩O+(E).

Proof. See [Bug92], Lemma 3.3. �

We have automated and implemented the calculation of the automorphism

group of a Coxeter diagram and the search for suitable automorphisms in MAGMA.





CHAPTER 4

Classification of Reflective Lorentzian Lattices

4.1. Connections between Reflective Lorentzian Lattices and

Totally-Reflective Genera

In this section we want to describe how to use the classification of totally-

reflective genera from the first part of this work to obtain insights on the structure

of reflective Lorentzian lattices and arithmetic reflection groups. We show that

a reflective Lorentzian lattice possesses a decomposition into an indefinite and a

positive-definite part. The indefinite part is simply a scaled hyperbolic plane (in the

sense of the theory of quadratic forms, not to be confused with the hyperbolic plane

from the previous chapter) and the positive part turns out to be totally-reflective.

We start with Vinberg’s lemma, which relates the two notions of reflectivity of

lattices to each other.

Lemma 4.1 (cf. [Vin72b]). Let E be a reflective Lorentzian lattice. Then, for

every isotropic vector v ∈ E, the positive-definite lattice v⊥/Zv is reflective.

In the following, we will write H for the hyperbolic plane, that is the integral

Z-lattice with Gram matrix ( 0 1
1 0 ).

Corollary 4.2. Let E be a reflective Lorentzian lattice of the form

E = αH ⊥ L,

with L being a positive-definite Z-lattice and α ∈ Q. Then L is totally-reflective.

Proof. Notice that E = αH ⊥ L only depends on the genus of L. By this we

mean that

αH ⊥ L ≅ αH ⊥ L′,

for every L′ ∈ G(L). This follows from

(αH ⊥ L)⊗Zp ≅ (αH ⊥ L′)⊗Zp,

for all p ∈ P ∪ {∞}, and the fact that lattices of the form H ⊥ L (with dimL ≥ 1)

are always of class number one (cf. [Kne56]). The assertion follows then from

Vinberg’s lemma with v chosen to be an isotropic basis vector of H. �

45
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Theorem 4.3.

a) Let E be a strongly square-free reflective Lorentzian lattice of signature

(5,1). Then E is of the form E = αH ⊥ L with L a square-free totally-

reflective lattice of dimension 4 and α ∈ {1,2}. The scaling factor α = 2

only occurs if the 2-adic symbol of E is of the form I5,1 (1ε0,42ε1,2II ).

b) Let W be a maximal arithmetic reflection group on the hyperbolic 5-space.

Then W is of the form W = W (αH ⊥ L) with L a square-free totally-

reflective lattice of dimension 4 and α ∈ {1,2}.

Proof. a) Let E be a strongly square-free Lorentzian lattice of signature (5,1).

We want so show that αH splits off in E. Because the class number of E is one, it is

sufficient to show that αH splits off at every prime p ∈ P. The Jordan decomposition

of E is of the form E ⊗ Zp = E0 ⊥
pE1, with dimE0 ∈ {3,4,5,6} and dimE1 =

6 − dimE0. If p ≠ 2 then [O’M00], 92 ∶ 1, implies that H and 2H split of in E0 and

thus in E ⊗ Zp. Now let p = 2. Dimensionwise, the following 2-adic symbols are

possible:

(dimE0,dimE1)

(6,0) (a1) II5,1 (1ε0,6) (a2) I5,1 (1ε0,6)

(5,1) (b) II5,1 (1ε0,52ε1,1I )

(4,2) (c1) II5,1 (1ε0,42ε1,2II ) (c2) I5,1 (1ε0,42ε1,2II )

(c3) II5,1 (1ε0,42ε1,2I ) (c4) I5,1 (1ε0,42ε1,2I )

(3,3) (d) I5,1 (1ε0,32ε1,3I )

In the following, A2 is the binary even lattice with Gram matrix ( 2 1
1 2 ).

“(a1), (a2), (b), (c1), (c3)”: [Kit93], Theorem 5.2.5 and Proposition 5.2.3

imply that H splits off in E0.

“(c2)”: We want to show that 2H splits off. The unimodular Jordan component

is of the form E0 = H ⊥ ⟨a, b⟩ or E0 = A2 ⊥ ⟨a, b⟩ with a, b ∈ Z2 odd. The 2-modular

component is of the form E1 = H or E1 = A2. If E1 = H then 2H splits off in E⊗Z2.

If E1 = A2 then the following isometries show that, again, 2H splits off in E ⊗Z2:

E ⊗Z2 =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

A2 ⊥ ⟨a, b⟩ ⊥ 2A2 ≅ A2 ⊥ ⟨a + 4, b⟩ ⊥ 2H,

H ⊥ ⟨a, b⟩ ⊥ 2A2 ≅ H ⊥ ⟨a + 4, b⟩ ⊥ 2H.

“(c4)”: We want to show that H splits off. The lattice E ⊗ Z2 is of the form

E ⊗ Z2 = H ⊥ ⟨a, b⟩ ⊥ 2⟨x, y⟩ or E ⊗ Z2 = A2 ⊥ ⟨a, b⟩ ⊥ 2⟨x, y⟩ with a, b, x, y ∈ Z2 odd.

In the first case the assertion is clear. In the second case the assertion follows from

A2 ⊥ ⟨a, b⟩ ⊥ 2⟨x, y⟩ ≅ H ⊥ ⟨a, b⟩ ⊥ 2⟨x + 4, y⟩.
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“(d)”: We want to show that H splits off. The unimodular Jordan component

is of the form E0 = H ⊥ ⟨a⟩ or E0 = A2 ⊥ ⟨a⟩ with a ∈ Z2 odd. In the first case

the assertion is clear. In the second case, let E1 be either H ⊥ ⟨b⟩ or A2 ⊥ ⟨b⟩ with

b ∈ Z2 odd. Then the following isometries imply the assertion:

E ⊗Z2 =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

A2 ⊥ ⟨a⟩ ⊥ 2(H ⊥ ⟨b⟩) ≅ H ⊥ ⟨a + 4⟩ ⊥ 2(A2 ⊥ ⟨b + 4⟩),

A2 ⊥ ⟨a⟩ ⊥ 2(A2 ⊥ ⟨b⟩) ≅ H ⊥ ⟨a + 4⟩ ⊥ 2(H ⊥ ⟨b + 4⟩).

All isometries above are defined over Z2 and, thus, can be checked by calculating

the 2-adic symbol. In every case, E can be written as E = αH ⊥ L with α ∈ {1,2}.

Corollary 4.2 implies that L is totally-reflective.

b) Since W is maximal and arithmetic one can find a Lorentzian lattice E with

W =W (E). After repeated use of Dp and Ep the lattice E can be transformed into

a strongly square-free lattice without changing W . The assertion then follows from

a). �

A similar structure theorem appears for the first time in [Sch89] and later in

[Wal93] (for Lorentzian lattices in dimension 4 and 5).

4.2. Classification Result for Reflective Lorentzian Lattices

With the methods developed above, the classification of strongly square-free,

reflective Lorentzian lattice could be carried out computationally in MAGMA. We

have picked a lattice L from every square-free totally-reflective genus and have ap-

plied Vinberg’s algorithm to E = αH ⊥ L. As shown in lemma 3.19 and lemma 3.20,

if the algorithm terminates, then E is proven to be reflective. If the algorithm does

not terminate (we waited for around 103 roots to be found), then non-reflectivity

is proven with the methods discussed in section 3.3.

Theorem 4.4. The Lorentzian lattices of signature (5,1) in the table 1 below

are reflective. Every strongly square-free, reflective Lorentzian lattice of signature

(5,1) is isometric to one in that table.

Corollary 4.5. Every maximal arithmetic reflection group W on H5 is of the

form W =W (E) with E being a Lorentzian lattice from the table below.

Proof. This follows from the structure theorem 4.3 and above classification.

�

The notation αH ⊥ Genus means that L can be chosen arbitraryly within the

given 4-dimensional genus. The combinatorial structure of the fundamental poly-

hedron is given as follows:

r = Number of fundamental roots = Number of 4-dimensional faces,

f3 = Number of 3-dimensional faces,
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f2 = Number of 2-dimensional faces,

e = Number of edges,

v = Number of vertices,

c = Number of cusps (vertices at infinity).

The lattices are ordered by the parities of the 2-adic Jordan components of L.

No. −det Lattice r f3 f2 e v c

1 5 H ⊥ II(5+1) 6 15 20 15 5 1

2 9 H ⊥ II(3+2) 7 21 33 27 9 1

3 21 H ⊥ II(3−17+1) 9 32 57 51 18 1

4 25 H ⊥ II(5−2) 9 33 61 57 21 1

5 45 H ⊥ II(3−25+1) 12 50 98 92 30 4

6 49 H ⊥ II(7+2) 16 80 176 176 64 2

7 125 H ⊥ II(5+3) 10 40 80 80 30 2

8 1 H ⊥ I(1+4
4 ) 6 15 20 15 5 1

9 3 H ⊥ I(3−1) 7 21 33 27 9 1

10 3 H ⊥ I(3+1) 8 25 40 34 12 1

11 5 H ⊥ I(5+1) 8 25 40 34 11 2

12 5 H ⊥ I(5−1) 9 32 57 51 18 1

13 7 H ⊥ I(7+1) 11 42 77 70 24 2

14 9 H ⊥ I(3+2) 8 28 50 44 14 2

15 9 H ⊥ I(3−2) 9 32 57 51 16 3

16 15 H ⊥ I(3+15+1) 16 74 153 148 52 3

17 15 H ⊥ I(3−15−1) 15 66 131 122 40 4

18 15 H ⊥ I(3+15−1) 12 54 114 113 42 1

19 25 H ⊥ I(5−2) 21 120 282 288 102 5

20 25 H ⊥ I(5+2) 14 67 144 142 46 7

21 27 H ⊥ I(3+3) 9 34 64 58 18 3

22 27 H ⊥ I(3−3) 9 34 64 58 18 3

23 75 H ⊥ I(3+15−2) 86 672 1788 1902 660 42

24 125 H ⊥ I(5+3) 20 115 280 295 100 12

25 2 H ⊥ I(2+1
1 ) 7 20 30 24 8 1

26 6 H ⊥ I(2+1
1 3+1) 9 32 57 51 18 1

27 6 H ⊥ I(2+1
1 3−1) 9 31 53 45 14 2

28 10 H ⊥ I(2+1
1 5−1) 12 49 94 86 28 3
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29 14 H ⊥ I(2+1
1 7+1) 15 67 135 127 42 4

30 18 H ⊥ I(2+1
1 3−2) 14 62 125 116 36 5

31 18 H ⊥ I(2+1
1 3+2) 12 51 101 93 30 3

32 54 H ⊥ I(2+1
1 3+3) 16 75 156 145 42 8

33 54 H ⊥ I(2+1
1 3−3) 18 99 230 231 78 6

34 4 H ⊥ II(2−2
II ) 6 15 20 15 5 1

35 20 H ⊥ II(2+2
II 5+1) 8 25 40 34 11 2

36 20 H ⊥ II(2−2
II 5−1) 8 25 40 34 12 1

37 36 H ⊥ II(2−2
II 3−2) 7 21 33 27 8 2

38 36 H ⊥ II(2+2
II 3+2) 8 28 50 44 14 2

39 84 H ⊥ II(2−2
II 3+17+1) 16 74 153 148 52 3

40 100 H ⊥ II(2−2
II 5+2) 9 33 61 57 19 3

41 100 H ⊥ II(2+2
II 5−2) 21 120 282 288 102 5

42 180 H ⊥ II(2−2
II 3+25+1) 16 80 177 178 64 3

43 196 H ⊥ II(2−2
II 7−2) 15 72 156 159 54 8

44 500 H ⊥ II(2+2
II 5+3) 20 115 280 295 100 12

45 500 H ⊥ II(2−2
II 5−3) 12 56 124 126 44 4

46 12 H ⊥ II(2+2
2 3−1) 7 21 33 27 9 1

47 12 H ⊥ II(2+2
6 3+1) 8 25 40 34 12 1

48 28 H ⊥ II(2+2
2 7+1) 11 42 77 70 24 2

49 36 H ⊥ II(2+2
0 3+2) 10 38 69 59 17 3

50 60 H ⊥ II(2+2
2 3+15+1) 16 74 153 148 52 3

51 60 H ⊥ II(2+2
2 3−15−1) 15 66 131 122 40 4

52 60 H ⊥ II(2+2
6 3+15−1) 12 54 114 113 42 1

53 108 H ⊥ II(2+2
6 3−3) 9 34 64 58 18 3

54 108 H ⊥ II(2+2
2 3+3) 9 34 64 58 18 3

55 300 H ⊥ II(2+2
2 3+15−2) 86 672 1788 1902 660 42

56 22 ⋅ 1 2H ⊥ I(1+4
4 ) 6 15 20 15 4 2

57 22 ⋅ 3 2H ⊥ I(3−1) 8 26 43 36 11 2

58 22 ⋅ 3 2H ⊥ I(3+1) 8 26 43 36 11 2

59 22 ⋅ 5 2H ⊥ I(5+1) 11 40 70 62 20 3

60 22 ⋅ 7 2H ⊥ I(7+1) 16 70 138 128 40 6

61 22 ⋅ 9 2H ⊥ I(3+2) 11 47 94 87 27 4

62 22 ⋅ 9 2H ⊥ I(3−2) 9 33 60 53 15 4

63 22 ⋅ 25 2H ⊥ I(5+2) 29 176 420 432 132 29
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64 22 ⋅ 27 2H ⊥ I(3+3) 10 41 82 77 24 4

65 22 ⋅ 27 2H ⊥ I(3−3) 10 41 82 77 24 4

66 4 H ⊥ I(2+2
2 ) 7 21 33 27 8 2

67 12 H ⊥ I(2+2
2 3−1) 9 33 59 50 14 3

68 12 H ⊥ I(2+2
2 3+1) 11 42 77 68 20 4

69 20 H ⊥ I(2+2
2 5−1) 16 74 151 140 44 5

70 36 H ⊥ I(2+2
2 3−2) 16 83 184 177 54 8

71 36 H ⊥ I(2+2
2 3+2) 11 47 94 87 27 4

72 108 H ⊥ I(2+2
2 3+3) 16 85 193 188 56 10

73 108 H ⊥ I(2+2
2 3−3) 16 85 193 188 56 10

74 8 H ⊥ I(2+3
3 ) 8 25 40 33 10 2

75 24 H ⊥ I(2+3
3 3+1) 11 43 80 71 22 3

76 24 H ⊥ I(2+3
3 3−1) 11 43 80 71 22 3

77 72 H ⊥ I(2+3
3 3−2) 24 128 284 274 84 12

78 72 H ⊥ I(2+3
3 3+2) 14 66 140 134 44 4

79 216 H ⊥ I(2+3
3 3+3) 24 138 324 324 104 12

80 216 H ⊥ I(2+3
3 3−3) 24 138 324 324 104 12

Table 1. Strongly square-free reflective lattices of signature (5,1)

4.3. Examples

Consider the 4-dimensional strongly square-free genus I(3−15−1). It contains

three lattices, namely

L1 ≅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 15

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, L2 ≅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 4 1

0 0 1 4

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, L3 ≅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −1 0 0

−1 2 0 0

0 0 2 −1

0 0 −1 3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

All three lattices are reflective with the full-rank root systems

R(L1) =
15B1B3,

R(L2) =
3A1

5A1B2,

R(L3) = A1
5A1G2.
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Thus I(3−15−1) is totally-reflective and according to our structure theorem 4.3 the

Lorentzian lattice E ∶= H ⊥ L1 is a candidate for a reflective lattice of signature

(5,1). Vinberg’s algorithm has produced the following roots:

v1 = (0,0,−1,0,0,0), v2 = (−1,−1,0,0,0,0),

v3 = (0,0,1,1,0,0), v4 = (0,0,0,0,−1,1),

v5 = (0,0,0,0,1,1), v6 = (0,1,1,−1,0,0),

v7 = (−1,1,0,0,0,−1), v8 = (0,3,0,0,1,−1),

v9 = (−2,2,0,−2,1,−1), v10 = (0,5,0,0,−1,−1),

v11 = (−2,3,0,−2,−1,−1), v12 = (−10,10,5,−5,−4,−4),

v13 = (−10,10,5,−5,4,−6), v14 = (−15,15,0,−15,2,−8),

v15 = (−15,15,0,−15,−2,−7).

The polyhedron

P15 ∶=
15

⋂
i=1

h+vi

has finite volume, which can easily be checked with lemma 3.21. Then lemma 3.20

implies that P15 is the fundamental domain of the hyperbolic reflection group

W (E),

P (E) = P15.

Finally, lemma 3.19 shows that E is reflective, or equivalently, that W (E) has finite

index in O+(E).

For the next example consider the genus II(2+2
6 3−35−3). It also contains three

lattices,

L1 ≅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 1 0 0

1 4 0 0

0 0 30 0

0 0 0 30

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, L2 ≅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

10 −5 0 0

−5 10 0 0

0 0 6 0

0 0 0 30

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, L3 ≅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 2 −2 −2

2 16 −1 −1

−2 −1 16 1

−2 −1 1 16

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

with the full-rank root systems

R(L1) =
3A1

5A1
30B2,

R(L2) =
3A1

15A1
15G2,

R(L3) = 2A1
15C3.

Again, this genus is totally-reflective and E ∶= H ⊥ L1 is a candidate for a reflective

lattice of signature (5,1). In this case Vinberg’s algorithm produces over 1300

fundamental roots in a short amount of time, thus one can expect this lattice to

be non-reflective. The latter property can be proven rigorously with theorem 3.22
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if we can find a non-reflective orthogonal summand of E. Considering the Gram

matrix of L1, the 5-dimensional lattice

Ẽ ∶= H ⊥ L̃1

with L̃1 ≅

⎛
⎜
⎜
⎜
⎝

4 1 0

1 4 0

0 0 30

⎞
⎟
⎟
⎟
⎠

is easily recognizable as a orthogonal summand of E. The

classification result in [Wal93] implies that Ẽ is not a reflective Lorentzian lattice,

thus neither is E.

For the last example consider the totally-reflective genus II(2−2
II 17+1). It consists

of two lattices

L1 ≅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 1 1 −1

1 2 1 −1

1 1 2 0

−1 −1 0 18

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, L2 ≅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 0 0 −1

0 2 0 −1

0 0 2 −1

−1 −1 −1 10

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

which have the root systems

R(L1) =
34A1C3,

R(L2) =
17A1

2B3.

Vinberg’s algorithm, applied to E ∶= H ⊥ L1, did not terminate after 100 hours of

runtime, hence we expected E to be non-reflective. Notice that both lattices are

indecomposable, thus embedding smaller lattices does not seem to be promising.

We will show that E is not reflective by constructing an symmetry of infinit order

of P (E) using theorem 3.24. It then follows from

O+(E) =W (E) ⋊H

with H ∶= Sym(P (E)) ∩ O+(E) that W (E) is not of finite index in O+(E) (cf.

lemma 3.17). The following set of fundamental roots of E satisfies the condition of

theorem 3.24:

v1 = (0,0,−1,0,1,0), v2 = (0,0,1,−1,1,0),

v3 = (0,0,0,1,−1,0), v4 = (−1,0,0,−1,0,0),

v5 = (−4,2,0,0,−1,−1), v6 = (−8,1,1,0,−1,−1),

v7 = (−11,3,1,1,−1,−2).

The first condition requires the roots to generate E, which can be checked with

standard routines in MAGMA. Regarding the second condition, we recognize

h+v1 ∩ h
+
v2 ∩ h

+
v3 ∩ h

+
v6 ∩ h

+
v7
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as a vertex since the normalized Gram matrix of the system (v1, v2, v3, v6, v7),

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 − cos(π
3
) − cos(π

3
) 0

0 1 − cos(π
4
) 0 0

− cos(π
3
) − cos(π

4
) 1 0 0

− cos(π
3
) 0 0 1 − cos(π

3
)

0 0 0 − cos(π
3
) 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

is positive-definite (this is sufficient according to theorem 3.9). Let Γ7 be the Cox-

eter diagram of the vector system (v1, v2, v3, v4, v5, v6, v7),

v3 v2 v5 v6

v1

v4 v7

4 4

Theorem 3.24 implies that every non-trivial graph automorphism induces an non-

trivial symmetry from Sym(P (E))∩O+(E). As can be seen above, the permutation

(2,5)(3,6)(4,7)

is a graph automorphism of Γ7 and the symmetry ϕ that permutes the corre-

sponding vi has infinite order. The latter statement follows from lemma 3.23; the

set of fixed vectors of ϕ is the one-dimensional subspace of E ⊗ Q generated by

(1,− 1
2
,− 1

4
, 1

4
,0, 1

4
). Since this generator is of length 1

4
, the subspace has an empty

intersection with the light cone (the set of all negative-norm vectors) and thus the

subgroup of Sym(P ) generated by ϕ has infinite cardinality.
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APPENDIX A

Description of Some MAGMA Functions

● DpGen(g) : SeqEnum -> SeqEnum

Calculates the partial dual Dpi1 ...pik
(g) of the genus symbol g for every

square-free divisor of det g.

● FindLatticeWithGenusSymbol(g) : SeqEnum -> Lat

Calculates a representative lattice for the genus g. This function was

implemented by Lorch & Kirschmer (cf. [LK13], section 5.2).

● FindTotallyReflectiveHelp(L,p) : Lat, RngIntElt -> FldReElt

Calculates the quantity of corollary 2.16 needed in the process of finding

all totally-reflective genera.

● FindTotallyReflective(T) : SeqEnum -> SetEnum

Starting with the list T of all square-free totally-reflective genera in dimen-

sion 4, this function calculates all totally-reflective genera in dimension 4.

This function uses WatsonPreImages (see below) with respect to primes

given by FindTotallyReflectiveHelp to search for totally-reflective lattices in

the pre-images (of lattices which are already known to be totally-reflective)

under the Watson transformation.

● FundamentalRoots(G) : AlgMatElt -> SeqEnum

Let L be a lattice with Gram matrix G. If G is positive-definite, then this

function calculates a root basis of the root system R(L). If G has signa-

ture (n,1), then this function calculates a root basis of the root system

{v ∈ R(L) ∣ (v, p0) = 0}, where p0 is the controlling vector of Vinberg’s

algorithm.

● FundamentalRootsHyp(G) : AlgMatElt -> SeqEnum

This is our MAGMA implementation of Vinberg’s algorithm. Let E =
αH ⊥ L be a Lorentzian lattice with L positive-definite, dimL = 4 and

Gram-Matrix G. Using the controlling vector p0 = (1,−1,0,0,0,0), this

function will calculates all fundamental roots of E.

● GenusSymbols(G) : AlgMatElt -> SeqEnum

Calculates the genus symbol of the lattice with Gram matrix G. This

function was implemented by Lorch (cf. [LK13]).
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● HasFiniteVolume5(G,FR) : AlgMatElt, SeqEnum -> List

Let E be the Lorentzian lattice of signature (5,1) with Gram matrix G.

This function checks if the polyhedron spanned by the fundamental roots

of E that are contained in FR is finite and calculates its combinatorial

structure.

● InfiniteOrderSymmetry(G,FR) : AlgMatElt, SeqEnum -> BoolElt

This function searches for subgraphs of the Coxeter diagram belonging to

the roots in FR such that the requirements of theorem 3.24 are satisfied.

If such subgraph is found, then the non-trivial graph automorphism is

transformed into a symmetry of the fundamental polyhedron of the lattice

with Gram matrix G and it is checked, whether its fixed vectors have

empty intersection with the light cone.

● IsGenusSymbol(g) : SeqEnum -> BoolElt

Checks if there exists a lattice L with the genus symbol g.

● IsPositiveDefiniteHyp(G) : AlgMatElt -> BoolElt

Checks if the matrix G is positive-definite. The entries of G has to be

given in floating-point arithmetic.

● IsPositiveSemiDefiniteHyp(G) : AlgMatElt -> BoolElt

Checks if the matrix G is positive-semidefinite. The entries of G has to

be given in floating-point arithmetic.

● IsTotallyReflective(L,k) : Lat, RngIntElt -> BoolElt

Checks if the lattice L is totally-reflective. The parameter k ∈ {1,2,3,4}

decides how much of the genus of L will be calculated during the process. If

k = 1, then only L is checked for reflectivity. If k = 2, then all neighbours of

L with respect to (legitimate) primes 2 ≤ p ≤ 19 are checked for reflectivity.

The process of calculating all isometry classes in the neighbourhood of L

with respect to p can be very time consuming. This is when the following

two parameters come into play. If k = 3, then single neighbours of L with

respect to a (legitimate) neighbour-vector vp and a (legitimate) primes

2 ≤ p ≤ 499 are checked for reflectivity. Here, the neighbour-vectors are

considered in the order given by MAGMA’s routine ShortVectors. If k = 4,

then the same is done as for k = 3 with the only exception that the

neighbour-vector is chosen randomly in ShortVectors.

● MassRational(L) : Lat -> FldRatElt

Calculates the mass of the lattice L.

● MassVgl(G) : AlgMatElt -> FldReElt

Calculates the ratio Mref /M for a 4-dimensional lattice L with Gram

matrix G.
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● PartialRootSystemHyp(G,a,i) : AlgMatElt, RngIntElt, RngIntElt -> SeqEnum

Calculates all roots v of the Lorentzian lattice with Gram matrix G such

that (v, v) = a and (v, p0) = i, where p0 is the controlling vector of Vin-

berg’s algorithm.

● RootSystemPos(G) : AlgMatElt -> BoolElt

Checks if the positive-definite lattice L with Gram matrix G is reflective.

It can also be used to calculate all roots of L, the root basis of R(L) and

the combinatorial class of R(L).

● WatsonPreImages(G,p) : AlgMatElt, RngIntElt -> SeqEnum

Calculates the pre-images of the genus of L, where L is a 4-dimensional

lattice with Gram matrix G, under the Watson transformation with re-

spect to the prime p.





APPENDIX B

Primitive Totally-Reflective Genera of Dimension

3

det Genus h det Genus h det Genus h

1 I(1+3
3 ) 1 2 I(2+1

1 ) 1 3 I(3−1) 1

3 I(3+1) 1 4 I(2+2
2 ) 1 4 II(4−1

3 ) 1

4 I(4+1
1 ) 1 5 I(5−1) 1 5 I(5+1) 1

6 II(2+1
1 3−1) 1 6 I(2+1

1 3−1) 1 6 I(2+1
1 3+1) 1

7 I(7+1) 2 8 I(2+1
1 4+1

1 ) 1 9 I(3−2) 1

9 I(9−1) 1 9 I(9+1) 1 9 I(3+2) 1

10 I(2+1
1 5−1) 2 10 I(2+1

1 5+1) 1 11 I(11−1) 1

12 I(2+2
2 3+1) 1 12 I(2+2

II 3+1) 1 12 I(2+2
2 3−1) 1

12 II(4+1
1 3−1) 1 12 I(4+1

7 3−1) 1 12 I(4+1
1 3+1) 1

12 I(4+1
7 3+1) 1 12 II(4−1

5 3+1) 1 14 II(2+1
1 7+1) 1

14 I(2+1
1 7+1) 2 15 I(3+15+1) 2 15 I(3−15−1) 2

15 I(3+15−1) 1 15 I(3−15+1) 1 16 I(4−2
II ) 1

16 I(4+2
2 ) 1 16 I(16−1

5 ) 1 16 I(16+1
1 ) 2

17 I(17+1) 2 18 II(2+1
7 3+2) 1 18 I(2+1

1 3−2) 1

18 I(2+1
1 9−1) 2 18 I(2+1

1 3+2) 1 20 I(2+2
2 5−1) 1

20 I(2+2
2 5+1) 2 20 II(4+1

7 5+1) 1 20 I(4+1
1 5−1) 1

20 I(4+1
1 5+1) 2 20 II(4−1

3 5−1) 1 21 I(3+17+1) 2

21 I(3−17+1) 2 21 I(3+17−1) 1 24 I(2+1
1 4+1

1 3+1) 2

24 I(2+1
1 4+1

1 3−1) 1 25 I(5+2) 1 25 I(5−2) 1

27 I(3−19+1) 1 27 I(3−19−1) 1 27 I(3+19−1) 1

27 I(3+19+1) 1 28 I(2+2
II 7+1) 1 28 I(2+2

2 7+1) 2

28 II(4+1
1 7+1) 2 28 I(4+1

7 7+1) 2 30 II(2+1
1 3−15−1) 2

30 II(2+1
1 3+15+1) 1 30 I(2+1

1 3−15−1) 2 30 I(2+1
1 3+15+1) 2

30 I(2+1
1 3+15−1) 1 32 I(2+1

1 16−1
5 ) 1 32 I(2+1

1 16−1
3 ) 1

32 I(2+1
1 16+1

1 ) 1 32 I(2+1
1 16+1

7 ) 1 33 I(3+111−1) 2

33 I(3−111+1) 2 35 I(5+17−1) 1 35 I(5−17+1) 2

36 I(2+2
2 3−2) 1 36 I(2+2

2 9+1) 2 36 I(2+2
2 3+2) 1

65
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36 I(2+2
II 3+2) 1 36 II(4−1

3 3−2) 1 36 II(4−1
3 9−1) 1

36 II(4−1
3 9+1) 1 36 II(4+1

7 3+2) 1 36 I(4+1
7 3+2) 1

36 I(4+1
1 3−2) 1 36 I(4+1

1 9+1) 2 36 I(4+1
1 3+2) 1

39 I(3+113−1) 1 40 I(2+1
1 4+1

1 5+1) 2 42 II(2+1
7 3−17+1) 2

42 I(2+1
1 3−17−1) 2 42 I(2+1

1 3−17+1) 2 44 II(4+1
1 11−1) 1

45 I(3+25+1) 2 45 I(3−25−1) 2 45 I(3+25−1) 1

45 I(3−25+1) 1 45 I(9−15+1) 2 48 I(4+2
2 3+1) 1

48 I(4+2
6 3−1) 1 48 I(4+2

II 3+1) 1 48 I(4+2
0 3+1) 1

48 I(4−2
II 3−1) 1 48 II(16+1

1 3−1) 2 48 I(16+1
1 3+1) 2

48 I(16+1
7 3+1) 1 48 I(16−1

5 3+1) 2 48 I(16−1
3 3+1) 2

49 I(7+2) 2 50 I(2+1
1 5+2) 2 50 I(2+1

1 5−2) 1

51 I(3−117+1) 2 54 II(2+1
1 3−19−1) 2 54 I(2+1

1 3−19−1) 1

54 I(2+1
1 3−19+1) 1 54 I(2+1

1 3+19+1) 1 54 I(2+1
1 3+19−1) 1

56 I(2+1
1 4+1

1 7+1) 3 57 I(3+119−1) 2 60 I(2+2
II 3+15+1) 2

60 I(2+2
II 3−15−1) 1 60 I(2+2

2 3−15+1) 1 60 I(2+2
2 3+15+1) 2

60 I(2+2
2 3−15−1) 2 60 II(4−1

5 3+15−1) 1 60 II(4−1
5 3−15+1) 1

60 II(4+1
1 3+15+1) 2 60 II(4+1

1 3−15−1) 2 60 I(4+1
7 3+15+1) 2

60 I(4+1
7 3−15−1) 2 60 I(4+1

7 3−15+1) 1 63 I(3+27−1) 2

63 I(3−27−1) 2 63 I(3+27+1) 1 64 I(4+1
1 16+1

1 ) 2

65 I(5+113+1) 2 66 I(2+1
1 3+111−1) 3 68 II(4−1

3 17+1) 2

69 I(3−123+1) 3 72 I(2+1
1 4+1

1 3−2) 2 72 I(2+1
1 4+1

1 3+2) 1

75 I(3−15+2) 1 75 I(3+15−2) 1 75 I(3−15−2) 2

75 I(3+15+2) 2 77 I(7+111−1) 3 78 II(2+1
1 3−113−1) 3

80 I(4+2
II 5−1) 1 80 I(4+2

2 5+1) 2 80 I(4+2
6 5−1) 1

80 I(4−2
II 5+1) 1 80 I(16+1

1 5−1) 2 80 I(16+1
1 5+1) 3

80 I(16−1
5 5+1) 4 81 I(3+127−1) 1 81 I(9−2) 1

81 I(9+2) 1 84 I(2+2
2 3+17+1) 2 84 I(2+2

II 3+17+1) 2

84 I(2+2
2 3+17−1) 2 84 II(4+1

7 3−17+1) 2 84 II(4+1
7 3+17−1) 1

84 I(4+1
1 3+17+1) 2 84 I(4+1

1 3+17−1) 2 84 II(4−1
3 3+17+1) 2

90 II(2+1
7 3−25+1) 2 90 II(2+1

7 3+25−1) 1 90 I(2+1
1 3+25+1) 1

90 I(2+1
1 3−25+1) 2 90 I(2+1

1 3+25−1) 2 96 I(2+1
1 16+1

7 3−1) 1

96 I(2+1
1 16+1

1 3+1) 2 96 I(2+1
1 16+1

7 3+1) 2 96 I(2+1
1 16+1

1 3−1) 1

96 I(2+1
1 16−1

3 3+1) 2 96 I(2+1
1 16−1

5 3−1) 1 96 I(2+1
1 16−1

3 3−1) 1

96 I(2+1
1 16−1

5 3+1) 2 98 II(2+1
7 7+2) 1 98 I(2+1

1 7+2) 2

99 I(3+211+1) 2 99 I(3−211−1) 2 100 I(2+2
2 5+2) 2

100 I(2+2
2 5−2) 1 100 II(4−1

3 5+2) 1 100 II(4+1
7 5−2) 1

100 I(4+1
1 5+2) 2 100 I(4+1

1 5−2) 1 105 I(3+15−17+1) 2

105 I(3−15−17−1) 2 105 I(3−15+17+1) 2 105 I(3−15−17+1) 3

108 I(2+2
2 3+19−1) 1 108 I(2+2

2 3+19+1) 1 108 I(2+2
II 3+19+1) 2
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108 I(2+2
2 3−19+1) 1 108 I(2+2

2 3−19−1) 1 108 II(4+1
1 3−19+1) 1

108 II(4+1
1 3−19−1) 1 108 I(4+1

7 3−19+1) 1 108 I(4+1
7 3−19−1) 1

108 I(4+1
1 3+19+1) 2 108 I(4+1

7 3+19−1) 1 108 I(4+1
7 3+19+1) 1

108 II(4−1
5 3+19−1) 1 108 II(4−1

5 3+19+1) 1 112 I(4+2
II 7+1) 2

112 I(4+2
2 7+1) 2 117 I(3+213−1) 1 120 I(2+1

1 4+1
1 3+15−1) 2

120 I(2+1
1 4+1

1 3+15+1) 3 121 I(11−2) 1 125 I(5+125−1) 1

125 I(5+125+1) 1 126 II(2+1
1 3+27−1) 2 126 II(2+1

1 9−17+1) 3

126 I(2+1
1 3+27−1) 2 126 I(2+1

1 3+27+1) 2 128 I(2+1
1 64+1

1 ) 4

132 I(2+2
2 3−111+1) 3 132 II(4−1

3 3+111−1) 2 132 II(4−1
3 3−111+1) 2

132 I(4+1
1 3−111+1) 3 135 I(3+19+15+1) 2 135 I(3−19+15−1) 3

135 I(3+19−15+1) 2 135 I(3−19−15+1) 2 135 I(3+19+15−1) 1

135 I(3+19−15−1) 1 140 II(4+1
1 5+17−1) 1 140 II(4+1

1 5−17+1) 2

144 I(4−2
II 3−2) 1 144 I(4−2

II 9−1) 1 144 I(4−2
II 9+1) 1

144 I(4+2
2 3−2) 1 144 I(4+2

2 9+1) 2 144 I(4+2
6 3+2) 1

144 I(4+2
II 3+2) 1 144 I(4+2

0 3+2) 1 144 II(16−1
3 3−2) 2

144 I(16−1
5 3+2) 1 144 I(16−1

3 3+2) 2 144 I(16−1
5 9+1) 3

144 I(16+1
7 3+2) 2 144 I(16+1

1 9+1) 4 144 I(16+1
1 3+2) 2

147 I(3−17−2) 2 147 I(3+17+2) 1 147 I(3+17−2) 2

150 II(2+1
1 3+15−2) 2 150 II(2+1

1 3−15+2) 1 150 I(2+1
1 3+15−2) 2

150 I(2+1
1 3−15+2) 2 150 I(2+1

1 3−15−2) 1 153 I(3+217−1) 2

156 I(2+2
II 3+113+1) 3 156 II(4−1

5 3+113−1) 1 160 I(2+1
1 16+1

1 5+1) 2

160 I(2+1
1 16+1

7 5+1) 2 160 I(2+1
1 16−1

5 5+1) 2 160 I(2+1
1 16−1

3 5+1) 2

162 I(2+1
1 9+2) 2 165 I(3+15+111−1) 2 171 I(3+219+1) 2

175 I(5+27−1) 2 175 I(5−27+1) 1 176 I(4−2
II 11−1) 1

180 I(2+2
2 3+25+1) 2 180 I(2+2

2 3−25−1) 2 180 I(2+2
II 3+25+1) 1

180 I(2+2
II 3−25−1) 2 180 I(2+2

2 3+25−1) 1 180 II(4+1
7 3+25−1) 1

180 II(4+1
7 3−25+1) 1 180 II(4+1

7 9−15+1) 2 180 I(4+1
1 3+25+1) 2

180 I(4+1
1 3−25−1) 2 180 I(4+1

1 3+25−1) 1 180 II(4−1
3 3+25+1) 2

180 II(4−1
3 3−25−1) 2 189 I(3−19+17+1) 2 189 I(3+19−17−1) 1

189 I(3−19−17+1) 2 189 I(3+19+17−1) 1 192 I(4+1
1 16+1

1 3+1) 2

192 I(4+1
1 16+1

7 3+1) 2 192 I(4+1
7 16+1

1 3+1) 2 195 I(3−15−113−1) 3

196 I(2+2
2 7+2) 2 196 I(2+2

II 7+2) 1 196 II(4+1
7 7+2) 2

196 I(4+1
1 7+2) 2 198 I(2+1

1 3+211−1) 3 200 I(2+1
1 4+1

1 5−2) 2

204 II(4+1
1 3−117+1) 2 207 I(3+223+1) 3 210 II(2+1

7 3+15+17+1) 2

210 I(2+1
1 3+15+17+1) 3 216 I(2+1

1 4+1
1 3+19+1) 2 216 I(2+1

1 4+1
1 3+19−1) 2

216 I(2+1
1 4+1

1 3−19+1) 2 224 I(2+1
1 16−1

5 7+1) 3 224 I(2+1
1 16−1

3 7+1) 3

224 I(2+1
1 16+1

7 7+1) 3 224 I(2+1
1 16+1

1 7+1) 3 225 I(3−25+2) 1

225 I(3+25−2) 1 225 I(9+15+2) 2 225 I(3−25−2) 2

225 I(3+25+2) 2 228 II(4−1
3 3+119−1) 2 234 II(2+1

7 3+213−1) 3
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240 I(4−2
II 3+15−1) 1 240 I(4−2

II 3−15+1) 1 240 I(4+2
II 3+15+1) 2

240 I(4+2
II 3−15−1) 2 240 I(4+2

2 3+15+1) 2 240 I(4+2
2 3−15−1) 2

240 I(4+2
6 3−15+1) 1 240 II(16−1

5 3−15+1) 2 245 I(5−17+2) 1

245 I(5+17−2) 2 250 I(2+1
1 5−125−1) 3 252 I(2+2

II 3+27−1) 2

252 I(2+2
II 9+17+1) 3 252 I(2+2

2 3+27+1) 2 252 I(2+2
2 3+27−1) 2

252 II(4−1
5 3−27−1) 2 252 II(4−1

5 3+27+1) 1 252 II(4+1
1 3+27−1) 2

252 I(4+1
7 3+27−1) 2 252 I(4+1

7 3+27+1) 2 256 I(16−2
6 ) 1

256 I(16+2
2 ) 2 260 II(4−1

3 5+113+1) 2 270 II(2+1
1 3−19+15−1) 2

270 II(2+1
1 3+19−15+1) 2 270 II(2+1

1 3−19−15−1) 2 270 I(2+1
1 3−19+15−1) 2

270 I(2+1
1 3+19−15+1) 3 270 I(2+1

1 3−19−15−1) 2 270 I(2+1
1 3+19+15−1) 2

272 I(4−2
II 17+1) 2 276 II(4+1

7 3−123+1) 3 288 I(2+1
1 16−1

5 3+2) 1

288 I(2+1
1 16−1

3 3+2) 1 288 I(2+1
1 16−1

5 3−2) 2 288 I(2+1
1 16−1

3 3−2) 2

288 I(2+1
1 16+1

1 3−2) 2 288 I(2+1
1 16+1

7 3−2) 2 288 I(2+1
1 16+1

1 3+2) 1

288 I(2+1
1 16+1

7 3+2) 1 289 I(17+2) 2 294 II(2+1
1 3−17−2) 2

294 I(2+1
1 3−17−2) 2 294 I(2+1

1 3−17+2) 2 297 I(3−19−111+1) 3

297 I(3+19+111−1) 2 297 I(3+19−111−1) 2 300 I(2+2
2 3−15−2) 2

300 I(2+2
2 3+15+2) 2 300 I(2+2

II 3−15−2) 2 300 I(2+2
II 3+15+2) 1

300 I(2+2
2 3+15−2) 1 300 II(4+1

1 3−15+2) 1 300 II(4+1
1 3+15−2) 1

300 I(4+1
7 3+15−2) 1 300 I(4+1

7 3−15−2) 2 300 I(4+1
7 3+15+2) 2

300 II(4−1
5 3−15−2) 2 300 II(4−1

5 3+15+2) 2 308 II(4+1
7 7+111−1) 3

315 I(3+25+17+1) 2 315 I(3+25−17−1) 2 315 I(3−25+17−1) 2

315 I(3+25+17−1) 3 320 I(4+1
1 16+1

1 5+1) 6 324 I(2+2
2 9+2) 2

324 II(4−1
3 3+127−1) 1 324 II(4−1

3 9−2) 1 324 II(4−1
3 9+2) 1

324 I(4+1
1 9+2) 2 325 I(5−213−1) 2 330 II(2+1

7 3−15−111−1) 4

336 I(4+2
II 3+17+1) 2 336 I(4+2

2 3+17−1) 2 336 I(4+2
6 3+17+1) 2

336 I(4−2
II 3−17+1) 2 336 I(4−2

II 3+17−1) 1 336 I(16+1
1 3+17−1) 3

336 I(16−1
5 3+17−1) 4 351 I(3+19−113−1) 2 360 I(2+1

1 4+1
1 3+25+1) 2

360 I(2+1
1 4+1

1 3+25−1) 3 363 I(3−111−2) 2 363 I(3+111+2) 2

375 I(3−15−125+1) 3 375 I(3+15−125−1) 2 375 I(3−15+125+1) 1

375 I(3−15+125−1) 1 378 II(2+1
7 3−19−17+1) 4 378 I(2+1

1 3−19−17−1) 3

384 I(2+1
1 64+1

1 3−1) 4 392 I(2+1
1 4+1

1 7+2) 3 396 I(2+2
2 3+211+1) 3

396 II(4+1
1 3+211+1) 2 396 II(4+1

1 3−211−1) 2 396 I(4+1
7 3+211+1) 3

400 I(4−2
II 5+2) 1 400 I(4+2

2 5+2) 2 400 I(4+2
6 5−2) 1

400 I(4+2
II 5−2) 1 400 I(16−1

5 5−2) 2 400 I(16−1
5 5+2) 3

400 I(16+1
1 5+2) 4 405 I(9+25+1) 2 420 I(2+2

2 3−15−17+1) 3

420 I(2+2
II 3−15−17+1) 2 420 II(4−1

3 3+15−17+1) 2 420 II(4−1
3 3−15−17−1) 2

420 II(4−1
3 3−15+17+1) 2 420 II(4+1

7 3−15−17+1) 3 420 I(4+1
1 3−15−17+1) 3

432 I(4+2
2 3+19−1) 1 432 I(4+2

2 3+19+1) 1 432 I(4+2
6 3−19+1) 1

432 I(4+2
6 3−19−1) 1 432 I(4+2

II 3+19−1) 1 432 I(4+2
II 3+19+1) 1
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432 I(4+2
0 3+19+1) 2 432 I(4−2

II 3−19+1) 1 432 I(4−2
II 3−19−1) 1

432 II(16+1
1 3−19+1) 2 432 II(16+1

1 3−19−1) 2 432 I(16+1
1 3+19+1) 4

432 I(16+1
7 3+19+1) 2 432 I(16−1

5 3+19+1) 4 432 I(16−1
3 3+19−1) 2

432 I(16−1
3 3+19+1) 2 441 I(3−27−2) 2 441 I(3+27+2) 1

441 I(3+27−2) 2 450 II(2+1
7 3+25+2) 1 450 II(2+1

7 3−25−2) 2

450 I(2+1
1 3+25−2) 1 450 I(2+1

1 3+25+2) 2 450 I(2+1
1 3−25−2) 2

468 I(2+2
II 3+213+1) 3 468 II(4+1

7 3+213−1) 1 480 I(2+1
1 16−1

3 3+15−1) 2

480 I(2+1
1 16−1

5 3+15+1) 3 480 I(2+1
1 16−1

3 3+15+1) 3 480 I(2+1
1 16−1

5 3+15−1) 2

480 I(2+1
1 16+1

7 3+15+1) 3 480 I(2+1
1 16+1

1 3+15−1) 2 480 I(2+1
1 16+1

7 3+15−1) 2

480 I(2+1
1 16+1

1 3+15+1) 3 484 II(4−1
3 11−2) 1 495 I(3+25−111−1) 2

500 I(2+2
2 5+125+1) 3 500 II(4+1

7 5+125−1) 1 500 II(4+1
7 5+125+1) 1

500 I(4+1
1 5+125+1) 3 507 I(3+113−2) 1 513 I(3+19−119−1) 3

525 I(3+15−27−1) 3 525 I(3−15−27−1) 2 525 I(3+15−27+1) 2

525 I(3+15+27−1) 2 528 I(4−2
II 3+111−1) 2 528 I(4−2

II 3−111+1) 2

528 I(4+2
2 3−111+1) 3 539 I(7+211+1) 3 540 I(2+2

II 3+19+15+1) 2

540 I(2+2
II 3−19+15−1) 2 540 I(2+2

II 3+19−15+1) 2 540 I(2+2
2 3−19−15+1) 2

540 I(2+2
2 3+19+15+1) 2 540 I(2+2

2 3−19+15−1) 3 540 I(2+2
2 3+19−15+1) 2

540 II(4−1
5 3−19−15+1) 2 540 II(4−1

5 3+19+15−1) 1 540 II(4−1
5 3+19−15−1) 1

540 II(4+1
1 3+19+15+1) 2 540 II(4+1

1 3−19+15−1) 3 540 II(4+1
1 3+19−15+1) 2

540 I(4+1
7 3+19+15+1) 2 540 I(4+1

7 3−19+15−1) 3 540 I(4+1
7 3+19−15+1) 2

540 I(4+1
7 3−19−15+1) 2 560 I(4−2

II 5+17−1) 1 560 I(4−2
II 5−17+1) 2

576 I(4+1
1 16+1

1 9+1) 6 576 I(4+1
7 16+1

7 3+2) 2 576 I(4+1
1 16+1

7 3+2) 2

576 I(4+1
7 16+1

1 3+2) 2 585 I(3+25+113−1) 3 588 I(2+2
2 3+17−2) 2

588 I(2+2
II 3+17−2) 2 588 I(2+2

2 3+17+2) 2 588 II(4+1
1 3−17−2) 2

588 II(4+1
1 3+17+2) 1 588 I(4+1

7 3+17+2) 2 588 I(4+1
7 3+17−2) 2

588 II(4−1
5 3+17−2) 2 600 I(2+1

1 4+1
1 3−15−2) 2 600 I(2+1

1 4+1
1 3−15+2) 3

612 II(4−1
3 3+217−1) 2 624 I(4−2

II 3+113−1) 1 630 II(2+1
1 3+25−17−1) 2

630 I(2+1
1 3+25−17−1) 3 660 I(2+2

II 3+15+111+1) 4 660 II(4+1
7 3+15+111−1) 2

675 I(3−19+15+2) 1 675 I(3−19−15+2) 1 675 I(3+19+15−2) 2

675 I(3−19+15−2) 2 675 I(3+19−15+2) 3 675 I(3−19−15−2) 2

684 II(4+1
1 3+219+1) 2 700 II(4−1

5 5+27−1) 2 700 II(4−1
5 5−27+1) 1

702 II(2+1
1 3−19−113−1) 6 720 I(4+2

II 3+25+1) 2 720 I(4+2
II 3−25−1) 2

720 I(4+2
2 3+25−1) 1 720 I(4+2

6 3+25+1) 2 720 I(4+2
6 3−25−1) 2

720 I(4−2
II 3+25−1) 1 720 I(4−2

II 3−25+1) 1 720 I(4−2
II 9−15+1) 2

720 II(16+1
7 3+25−1) 2 726 I(2+1

1 3−111+2) 3 735 I(3−15+17+2) 3

735 I(3+15+17+2) 2 735 I(3−15+17−2) 2 735 I(3−15−17+2) 2

750 II(2+1
1 3+15+125−1) 2 750 I(2+1

1 3+15+125−1) 3 756 I(2+2
II 3+19+17+1) 4

756 I(2+2
2 3+19+17−1) 3 756 II(4+1

7 3−19+17+1) 2 756 II(4+1
7 3+19−17−1) 1

756 II(4+1
7 3−19−17+1) 2 756 II(4+1

7 3+19+17−1) 1 756 I(4+1
1 3+19+17−1) 3
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768 I(16+2
2 3+1) 2 768 I(16+2

0 3+1) 2 768 I(16−2
II 3−1) 2

768 I(16−2
4 3+1) 2 768 I(16−2

6 3+1) 1 780 II(4+1
1 3−15−113−1) 3

784 I(4+2
6 7+2) 2 784 I(4+2

II 7+2) 2 800 I(2+1
1 16−1

5 5−2) 2

800 I(2+1
1 16−1

3 5−2) 2 800 I(2+1
1 16+1

1 5−2) 2 800 I(2+1
1 16+1

7 5−2) 2

816 I(4−2
II 3−117+1) 2 825 I(3−15−211−1) 2 828 II(4−1

5 3+223+1) 3

845 I(5−113−2) 2 847 I(7+111+2) 3 864 I(2+1
1 16+1

7 3−19+1) 2

864 I(2+1
1 16+1

1 3+19+1) 2 864 I(2+1
1 16+1

1 3+19−1) 2 864 I(2+1
1 16+1

7 3+19+1) 2

864 I(2+1
1 16+1

7 3+19−1) 2 864 I(2+1
1 16+1

1 3−19+1) 2 864 I(2+1
1 16−1

3 3+19+1) 2

864 I(2+1
1 16−1

3 3+19−1) 2 864 I(2+1
1 16−1

5 3−19+1) 2 864 I(2+1
1 16−1

3 3−19+1) 2

864 I(2+1
1 16−1

5 3+19+1) 2 864 I(2+1
1 16−1

5 3+19−1) 2 867 I(3+117−2) 2

882 II(2+1
7 3+27−2) 2 882 II(2+1

7 9−17+2) 3 882 I(2+1
1 3+27+2) 2

882 I(2+1
1 3+27−2) 2 900 I(2+2

2 3+25−2) 1 900 I(2+2
2 3−25−2) 2

900 I(2+2
2 3+25+2) 2 900 I(2+2

II 3−25−2) 2 900 I(2+2
II 3+25+2) 1

900 II(4−1
3 3−25+2) 1 900 II(4−1

3 3+25−2) 1 900 II(4−1
3 9+15+2) 2

900 II(4+1
7 3−25−2) 2 900 II(4+1

7 3+25+2) 2 900 I(4+1
1 3+25−2) 1

900 I(4+1
1 3−25−2) 2 900 I(4+1

1 3+25+2) 2 912 I(4−2
II 3+119−1) 2

945 I(3−19−15+17+1) 3 945 I(3+19+15−17+1) 2 945 I(3+19−15−17+1) 2

975 I(3+15−213+1) 3 980 II(4+1
7 5−17+2) 1 980 II(4+1

7 5+17−2) 2

990 II(2+1
1 3+25+111−1) 4 1008 I(4−2

II 3−27−1) 2 1008 I(4−2
II 3+27+1) 1

1008 I(4+2
II 3+27−1) 2 1008 I(4+2

2 3+27−1) 2 1008 I(4+2
6 3+27+1) 2

1008 I(16−1
3 3+27+1) 3 1008 I(16+1

7 3+27+1) 4 1014 II(2+1
1 3−113+2) 3

1029 I(3+17−149+1) 2 1040 I(4−2
II 5+113+1) 2 1050 II(2+1

7 3−15−27−1) 2

1050 I(2+1
1 3−15−27−1) 3 1080 I(2+1

1 4+1
1 3+19+15−1) 4 1083 I(3+119+2) 2

1089 I(3−211−2) 2 1089 I(3+211+2) 2 1104 I(4−2
II 3−123+1) 3

1125 I(3+25+125−1) 3 1125 I(3+25−125+1) 1 1125 I(3+25−125−1) 1

1125 I(3−25+125+1) 2 1125 I(9−15+125−1) 3 1134 II(2+1
1 9+27+1) 3

1152 I(2+1
1 64−1

3 3+2) 4 1156 II(4−1
3 17+2) 2 1188 II(4−1

3 3−19−111+1) 3

1188 II(4−1
3 3+19+111−1) 2 1188 II(4−1

3 3+19−111−1) 2 1200 I(4+2
2 3−15−2) 2

1200 I(4+2
2 3+15+2) 2 1200 I(4+2

6 3+15−2) 1 1200 I(4+2
II 3−15−2) 2

1200 I(4+2
II 3+15+2) 2 1200 I(4−2

II 3−15+2) 1 1200 I(4−2
II 3+15−2) 1

1200 II(16+1
1 3+15−2) 2 1225 I(5−27+2) 1 1225 I(5+27−2) 2

1232 I(4−2
II 7+111−1) 3 1260 I(2+2

2 3+25+17−1) 3 1260 I(2+2
II 3+25+17−1) 2

1260 II(4+1
1 3+25+17+1) 2 1260 II(4+1

1 3+25−17−1) 2 1260 II(4+1
1 3−25+17−1) 2

1260 I(4+1
7 3+25+17−1) 3 1260 II(4−1

5 3+25+17−1) 3 1280 I(16+2
2 5+1) 4

1280 I(16−2
2 5−1) 2 1280 I(16−2

6 5+1) 3 1296 I(4−2
II 3+127−1) 1

1296 I(4−2
II 9−2) 1 1296 I(4−2

II 9+2) 1 1296 I(4+2
2 9+2) 2

1296 I(16−1
5 9+2) 3 1296 I(16+1

1 9+2) 4 1300 II(4+1
7 5−213−1) 2

1323 I(3−19+17−2) 2 1323 I(3+19−17+2) 1 1323 I(3−19−17−2) 2

1323 I(3+19+17+2) 1 1344 I(4+1
1 16+1

1 3+17−1) 6 1350 II(2+1
1 3+19+15−2) 2
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1350 II(2+1
1 3−19+15+2) 2 1350 II(2+1

1 3+19−15−2) 2 1350 I(2+1
1 3+19+15−2) 2

1350 I(2+1
1 3−19+15+2) 3 1350 I(2+1

1 3+19−15−2) 2 1350 I(2+1
1 3−19−15−2) 2

1404 I(2+2
II 3+19+113+1) 6 1404 II(4−1

5 3+19−113−1) 2 1440 I(2+1
1 16+1

1 3+25+1) 2

1440 I(2+1
1 16+1

7 3+25+1) 2 1440 I(2+1
1 16+1

1 3+25−1) 3 1440 I(2+1
1 16+1

7 3+25−1) 3

1440 I(2+1
1 16−1

5 3+25−1) 3 1440 I(2+1
1 16−1

3 3+25−1) 3 1440 I(2+1
1 16−1

5 3+25+1) 2

1440 I(2+1
1 16−1

3 3+25+1) 2 1452 I(2+2
2 3+111+2) 3 1452 II(4+1

1 3−111−2) 2

1452 II(4+1
1 3+111+2) 2 1452 I(4+1

7 3+111+2) 3 1470 II(2+1
1 3+15−17+2) 2

1470 I(2+1
1 3+15−17+2) 3 1500 I(2+2

II 3−15−125+1) 2 1500 I(2+2
2 3−15−125+1) 3

1500 II(4−1
5 3+15−125−1) 2 1500 II(4−1

5 3−15+125+1) 1 1500 II(4−1
5 3−15+125−1) 1

1500 II(4+1
1 3−15−125+1) 3 1500 I(4+1

7 3−15−125+1) 3 1521 I(3+213−2) 1

1568 I(2+1
1 16−1

5 7+2) 3 1568 I(2+1
1 16−1

3 7+2) 3 1568 I(2+1
1 16+1

1 7+2) 3

1568 I(2+1
1 16+1

7 7+2) 3 1575 I(3+25−27+1) 3 1575 I(3−25−27+1) 2

1575 I(3+25+27+1) 2 1575 I(3+25−27−1) 2 1584 I(4+2
6 3+211+1) 3

1584 I(4−2
II 3+211+1) 2 1584 I(4−2

II 3−211−1) 2 1587 I(3+123+2) 3

1600 I(4+1
1 16+1

1 5+2) 6 1620 II(4+1
7 9+25+1) 2 1650 II(2+1

7 3+15−211−1) 4

1680 I(4−2
II 3+15−17+1) 2 1680 I(4−2

II 3−15−17−1) 2 1680 I(4−2
II 3−15+17+1) 2

1680 I(4+2
6 3−15−17+1) 3 1680 I(4+2

II 3−15−17+1) 3 1728 I(4+1
1 16+1

1 3+19+1) 4

1728 I(4+1
1 16+1

7 3+19+1) 4 1728 I(4+1
7 16+1

1 3+19+1) 4 1764 I(2+2
2 3+27+2) 2

1764 I(2+2
2 3+27−2) 2 1764 I(2+2

II 3+27−2) 2 1764 I(2+2
II 9+17+2) 3

1764 II(4−1
3 3−27−2) 2 1764 II(4−1

3 3+27+2) 1 1764 II(4+1
7 3+27−2) 2

1764 I(4+1
1 3+27+2) 2 1764 I(4+1

1 3+27−2) 2 1800 I(2+1
1 4+1

1 3+25−2) 2

1800 I(2+1
1 4+1

1 3+25+2) 3 1815 I(3−15+111−2) 2 1872 I(4−2
II 3+213−1) 1

1890 II(2+1
7 3+19−15+17+1) 4 1936 I(4−2

II 11−2) 1 1980 I(2+2
II 3+25−111+1) 4

1980 II(4−1
5 3+25−111−1) 2 2000 I(4+2

2 5+125+1) 3 2000 I(4−2
II 5+125−1) 1

2000 I(4−2
II 5+125+1) 1 2000 I(16+1

1 5+125+1) 6 2000 I(16−1
5 5+125+1) 6

2025 I(9+25+2) 2 2028 I(2+2
II 3+113+2) 3 2028 II(4+1

1 3+113−2) 1

2052 II(4−1
3 3+19−119−1) 3 2100 I(2+2

2 3+15−27−1) 3 2100 I(2+2
II 3+15−27−1) 2

2100 II(4+1
7 3−15−27−1) 2 2100 II(4+1

7 3+15−27+1) 2 2100 II(4+1
7 3+15+27−1) 2

2100 I(4+1
1 3+15−27−1) 3 2100 II(4−1

3 3+15−27−1) 3 2156 II(4+1
1 7+211+1) 3

2160 I(4−2
II 3−19−15+1) 2 2160 I(4−2

II 3+19+15−1) 1 2160 I(4−2
II 3+19−15−1) 1

2160 I(4+2
II 3+19+15+1) 2 2160 I(4+2

II 3−19+15−1) 3 2160 I(4+2
II 3+19−15+1) 2

2160 I(4+2
2 3+19+15+1) 2 2160 I(4+2

2 3−19+15−1) 3 2160 I(4+2
2 3+19−15+1) 2

2160 I(4+2
6 3−19−15+1) 2 2160 II(16−1

5 3−19−15+1) 4 2178 I(2+1
1 3+211+2) 3

2205 I(3+25−17+2) 3 2205 I(3+25−17−2) 2 2205 I(3+25+17+2) 2

2205 I(3−25−17+2) 2 2250 II(2+1
7 3+25−125+1) 2 2250 I(2+1

1 3+25−125+1) 3

2268 I(2+2
II 9+27+1) 3 2304 I(16−2

II 3−2) 2 2304 I(16−2
4 3+2) 2

2304 I(16−2
2 3+2) 1 2304 I(16−2

6 9+1) 3 2304 I(16+2
2 9+1) 4

2304 I(16+2
6 3+2) 2 2304 I(16+2

0 3+2) 2 2340 II(4−1
3 3+25+113−1) 3

2352 I(4+2
2 3+17−2) 2 2352 I(4+2

6 3+17+2) 2 2352 I(4+2
II 3+17−2) 2
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2352 I(4−2
II 3−17−2) 2 2352 I(4−2

II 3+17+2) 1 2352 I(16+1
7 3+17+2) 3

2352 I(16−1
3 3+17+2) 4 2400 I(2+1

1 16+1
7 3−15+2) 3 2400 I(2+1

1 16+1
1 3−15−2) 2

2400 I(2+1
1 16+1

7 3−15−2) 2 2400 I(2+1
1 16+1

1 3−15+2) 3 2400 I(2+1
1 16−1

3 3−15−2) 2

2400 I(2+1
1 16−1

5 3−15+2) 3 2400 I(2+1
1 16−1

3 3−15+2) 3 2400 I(2+1
1 16−1

5 3−15−2) 2

2448 I(4−2
II 3+217−1) 2 2475 I(3+25−211−1) 2 2535 I(3−15+113+2) 3

2601 I(3+217−2) 2 2625 I(3−15+125+17+1) 3 2640 I(4−2
II 3+15+111−1) 2

2646 II(2+1
1 3−19−17−2) 4 2646 I(2+1

1 3−19−17+2) 3 2700 I(2+2
2 3−19+15−2) 2

2700 I(2+2
2 3+19−15+2) 3 2700 I(2+2

2 3−19−15−2) 2 2700 I(2+2
II 3−19+15−2) 2

2700 I(2+2
II 3+19−15+2) 2 2700 I(2+2

II 3−19−15−2) 2 2700 I(2+2
2 3+19+15−2) 2

2700 II(4+1
1 3−19+15+2) 1 2700 II(4+1

1 3−19−15+2) 1 2700 II(4+1
1 3+19+15−2) 2

2700 I(4+1
7 3+19+15−2) 2 2700 I(4+1

7 3−19+15−2) 2 2700 I(4+1
7 3+19−15+2) 3

2700 I(4+1
7 3−19−15−2) 2 2700 II(4−1

5 3−19+15−2) 2 2700 II(4−1
5 3+19−15+2) 3

2700 II(4−1
5 3−19−15−2) 2 2736 I(4−2

II 3+219+1) 2 2800 I(4−2
II 5+27−1) 2

2800 I(4−2
II 5−27+1) 1 2925 I(3+25−213+1) 3 2940 I(2+2

II 3−15+17+2) 2

2940 I(2+2
2 3−15+17+2) 3 2940 II(4−1

5 3+15+17+2) 2 2940 II(4−1
5 3−15+17−2) 2

2940 II(4−1
5 3−15−17+2) 2 2940 II(4+1

1 3−15+17+2) 3 2940 I(4+1
7 3−15+17+2) 3

3024 I(4+2
2 3+19+17−1) 3 3024 I(4−2

II 3−19+17+1) 2 3024 I(4−2
II 3+19−17−1) 1

3024 I(4−2
II 3−19−17+1) 2 3024 I(4−2

II 3+19+17−1) 1 3024 I(16+1
1 3+19+17−1) 6

3024 I(16−1
5 3+19+17−1) 6 3042 II(2+1

7 3+213+2) 3 3087 I(3+27+149−1) 2

3120 I(4−2
II 3−15−113−1) 3 3150 II(2+1

1 3+25−27+1) 2 3150 I(2+1
1 3+25−27+1) 3

3249 I(3+219+2) 2 3267 I(3−19+111−2) 2 3267 I(3−19−111−2) 2

3267 I(3+19+111+2) 3 3300 I(2+2
II 3−15−211+1) 4 3300 II(4−1

3 3−15−211−1) 2

3312 I(4−2
II 3+223+1) 3 3375 I(3−19+15−125+1) 6 3375 I(3−19−15+125+1) 2

3375 I(3−19−15+125−1) 2 3375 I(3+19+15−125−1) 2 3375 I(3+19−15−125−1) 2

3380 II(4+1
7 5−113−2) 2 3388 II(4−1

5 7+111+2) 3 3456 I(2+1
1 64+1

1 3−19+1) 8

3468 II(4+1
1 3+117−2) 2 3600 I(4−2

II 3−25+2) 1 3600 I(4−2
II 3+25−2) 1

3600 I(4−2
II 9+15+2) 2 3600 I(4+2

2 3+25−2) 1 3600 I(4+2
6 3−25−2) 2

3600 I(4+2
6 3+25+2) 2 3600 I(4+2

II 3−25−2) 2 3600 I(4+2
II 3+25+2) 2

3600 II(16−1
3 3+25−2) 2 3630 II(2+1

1 3+15−111+2) 4 3675 I(3−15−27+2) 2

3675 I(3+15+27+2) 2 3675 I(3+15−27−2) 2 3675 I(3+15−27+2) 3

3780 I(2+2
II 3−19+15−17+1) 4 3780 II(4−1

3 3−19−15+17+1) 3 3780 II(4−1
3 3+19+15−17+1) 2

3780 II(4−1
3 3+19−15−17+1) 2 3840 I(16−2

II 3−15+1) 2 3900 II(4−1
5 3+15−213+1) 3

3920 I(4−2
II 5−17+2) 1 3920 I(4−2

II 5+17−2) 2 4032 I(4+1
7 16+1

7 3+27+1) 6

4116 II(4+1
7 3+17−149+1) 2 4225 I(5−213−2) 2 4320 I(2+1

1 16−1
3 3+19+15−1) 4

4320 I(2+1
1 16−1

5 3+19+15−1) 4 4320 I(2+1
1 16+1

1 3+19+15−1) 4 4320 I(2+1
1 16+1

7 3+19+15−1) 4

4332 II(4+1
1 3+119+2) 2 4356 I(2+2

2 3+211+2) 3 4356 II(4−1
3 3−211−2) 2

4356 II(4−1
3 3+211+2) 2 4356 I(4+1

1 3+211+2) 3 4410 II(2+1
7 3+25+17+2) 2

4410 I(2+1
1 3+25+17+2) 3 4500 I(2+2

2 3+25+125−1) 3 4500 I(2+2
II 3+25+125−1) 2

4500 II(4+1
7 3+25−125+1) 1 4500 II(4+1

7 3+25−125−1) 1 4500 II(4+1
7 3−25+125+1) 2
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4500 II(4+1
7 9−15+125−1) 3 4500 I(4+1

1 3+25+125−1) 3 4500 II(4−1
3 3+25+125−1) 3

4563 I(3+19−113−2) 2 4624 I(4−2
II 17+2) 2 4725 I(3−19+15−27−1) 2

4725 I(3−19−15−27−1) 2 4725 I(3+19+15+27−1) 3 4752 I(4−2
II 3−19−111+1) 3

4752 I(4−2
II 3+19+111−1) 2 4752 I(4−2

II 3+19−111−1) 2 4761 I(3+223+2) 3

4900 II(4−1
3 5−27+2) 1 4900 II(4−1

3 5+27−2) 2 4950 II(2+1
1 3+25−211−1) 4

5040 I(4+2
2 3+25+17−1) 3 5040 I(4+2

II 3+25+17−1) 3 5040 I(4−2
II 3+25+17+1) 2

5040 I(4−2
II 3+25−17−1) 2 5040 I(4−2

II 3−25+17−1) 2 5184 I(4+1
1 16+1

1 9+2) 6

5200 I(4−2
II 5−213−1) 2 5292 I(2+2

II 3+19+17−2) 4 5292 I(2+2
2 3+19+17+2) 3

5292 II(4+1
1 3−19+17−2) 2 5292 II(4+1

1 3+19−17+2) 1 5292 II(4+1
1 3−19−17−2) 2

5292 II(4+1
1 3+19+17+2) 1 5292 I(4+1

7 3+19+17+2) 3 5376 I(16+2
2 3+17−1) 4

5376 I(16−2
6 3+17−1) 3 5400 I(2+1

1 4+1
1 3−19−15−2) 4 5445 I(3+25−111−2) 2

5616 I(4−2
II 3+19−113−1) 2 5808 I(4+2

6 3+111+2) 3 5808 I(4−2
II 3−111−2) 2

5808 I(4−2
II 3+111+2) 2 5929 I(7+211+2) 3 6000 I(4−2

II 3+15−125−1) 2

6000 I(4−2
II 3−15+125+1) 1 6000 I(4−2

II 3−15+125−1) 1 6000 I(4+2
II 3−15−125+1) 3

6000 I(4+2
2 3−15−125+1) 3 6084 I(2+2

II 3+213+2) 3 6084 II(4−1
3 3+213−2) 1

6300 I(2+2
II 3+25−27+1) 2 6300 I(2+2

2 3+25−27+1) 3 6300 II(4−1
5 3−25−27+1) 2

6300 II(4−1
5 3+25+27+1) 2 6300 II(4−1

5 3+25−27−1) 2 6300 II(4+1
1 3+25−27+1) 3

6300 I(4+1
7 3+25−27+1) 3 6348 II(4+1

1 3+123+2) 3 6400 I(16−2
2 5−2) 2

6400 I(16−2
6 5+2) 3 6400 I(16+2

2 5+2) 4 6480 I(4−2
II 9+25+1) 2

6615 I(3−19−15−17+2) 3 6615 I(3+19+15+17+2) 2 6615 I(3+19−15+17+2) 2

6750 II(2+1
1 3+19−15+125−1) 4 6750 I(2+1

1 3+19−15+125−1) 6 6912 I(16+2
2 3+19−1) 2

6912 I(16+2
2 3+19+1) 2 6912 I(16+2

0 3+19+1) 4 6912 I(16−2
II 3−19+1) 2

6912 I(16−2
II 3−19−1) 2 6912 I(16−2

4 3+19+1) 4 6912 I(16−2
6 3+19+1) 2

7056 I(4−2
II 3−27−2) 2 7056 I(4−2

II 3+27+2) 1 7056 I(4+2
2 3+27+2) 2

7056 I(4+2
6 3+27−2) 2 7056 I(4+2

II 3+27−2) 2 7056 I(16−1
5 3+27+2) 3

7056 I(16+1
1 3+27+2) 4 7200 I(2+1

1 16−1
5 3+25+2) 3 7200 I(2+1

1 16−1
3 3+25+2) 3

7200 I(2+1
1 16−1

5 3+25−2) 2 7200 I(2+1
1 16−1

3 3+25−2) 2 7200 I(2+1
1 16+1

1 3+25−2) 2

7200 I(2+1
1 16+1

7 3+25−2) 2 7200 I(2+1
1 16+1

1 3+25+2) 3 7200 I(2+1
1 16+1

7 3+25+2) 3

7260 I(2+2
II 3−15+111+2) 4 7260 II(4−1

5 3−15+111−2) 2 7350 II(2+1
1 3−15−27+2) 2

7350 I(2+1
1 3−15−27+2) 3 7605 I(3+25−113+2) 3 7875 I(3+25−125−17−1) 3

7920 I(4−2
II 3+25−111−1) 2 7938 II(2+1

7 9+27+2) 3 8000 I(4+1
1 16+1

1 5+125+1) 12

8100 II(4−1
3 9+25+2) 2 8112 I(4−2

II 3+113−2) 1 8208 I(4−2
II 3+19−119−1) 3

8400 I(4+2
II 3+15−27−1) 3 8400 I(4+2

6 3+15−27−1) 3 8400 I(4−2
II 3−15−27−1) 2

8400 I(4−2
II 3+15−27+1) 2 8400 I(4−2

II 3+15+27−1) 2 8624 I(4−2
II 7+211+1) 3

8820 I(2+2
2 3+25−17+2) 3 8820 I(2+2

II 3+25−17+2) 2 8820 II(4+1
7 3+25−17−2) 2

8820 II(4+1
7 3+25+17+2) 2 8820 II(4+1

7 3−25−17+2) 2 8820 I(4+1
1 3+25−17+2) 3

8820 II(4−1
3 3+25−17+2) 3 9075 I(3+15−211−2) 2 9126 II(2+1

1 3−19−113+2) 6

9360 I(4−2
II 3+25+113−1) 3 9408 I(4+1

7 16+1
7 3+17+2) 6 9450 II(2+1

7 3−19+15−27−1) 4

9747 I(3+19−119+2) 3 9900 I(2+2
II 3+25−211+1) 4 9900 II(4+1

1 3+25−211−1) 2
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10125 I(9+25+125−1) 3 10140 II(4−1
5 3−15+113+2) 3 10404 II(4−1

3 3+217−2) 2

10500 II(4−1
3 3−15+125+17+1) 3 10800 I(4+2

2 3−19+15−2) 2 10800 I(4+2
2 3+19−15+2) 3

10800 I(4+2
2 3−19−15−2) 2 10800 I(4+2

6 3+19+15−2) 2 10800 I(4+2
II 3−19+15−2) 2

10800 I(4+2
II 3+19−15+2) 3 10800 I(4+2

II 3−19−15−2) 2 10800 I(4−2
II 3−19+15+2) 1

10800 I(4−2
II 3−19−15+2) 1 10800 I(4−2

II 3+19+15−2) 2 10800 II(16+1
1 3+19+15−2) 4

10890 II(2+1
7 3+25+111+2) 4 11025 I(3−25−27+2) 2 11025 I(3+25−27−2) 2

11025 I(3+25+27+2) 2 11025 I(3+25−27+2) 3 11520 I(16−2
II 3+25−1) 2

11700 II(4+1
7 3+25−213+1) 3 11760 I(4−2

II 3+15+17+2) 2 11760 I(4−2
II 3−15+17−2) 2

11760 I(4−2
II 3−15−17+2) 2 11760 I(4+2

II 3−15+17+2) 3 11760 I(4+2
2 3−15+17+2) 3

12096 I(4+1
1 16+1

1 3+19+17−1) 12 12348 II(4−1
5 3+27+149−1) 2 12675 I(3+15−213+2) 3

12996 II(4−1
3 3+219+2) 2 13068 II(4+1

1 3−19+111−2) 2 13068 II(4+1
1 3−19−111−2) 2

13068 II(4+1
1 3+19+111+2) 3 13200 I(4−2

II 3−15−211−1) 2 13230 II(2+1
1 3+19−15−17+2) 4

13500 I(2+2
II 3−19+15−125+1) 4 13500 I(2+2

2 3−19+15−125+1) 6 13500 II(4−1
5 3−19−15+125+1) 2

13500 II(4−1
5 3−19−15+125−1) 2 13500 II(4−1

5 3+19+15−125−1) 2 13500 II(4−1
5 3+19−15−125−1) 2

13500 II(4+1
1 3−19+15−125+1) 6 13500 I(4+1

7 3−19+15−125+1) 6 13520 I(4−2
II 5−113−2) 2

13552 I(4−2
II 7+111+2) 3 13872 I(4−2

II 3+117−2) 2 14700 I(2+2
2 3+15−27+2) 3

14700 I(2+2
II 3+15−27+2) 2 14700 II(4+1

1 3−15−27+2) 2 14700 II(4+1
1 3+15+27+2) 2

14700 II(4+1
1 3+15−27−2) 2 14700 I(4+1

7 3+15−27+2) 3 14700 II(4−1
5 3+15−27+2) 3

15120 I(4−2
II 3−19−15+17+1) 3 15120 I(4−2

II 3+19+15−17+1) 2 15120 I(4−2
II 3+19−15−17+1) 2

15600 I(4−2
II 3+15−213+1) 3 15876 I(2+2

II 9+27+2) 3 16128 I(16−2
2 3+27+1) 3

16128 I(16+2
6 3+27+1) 4 16464 I(4−2

II 3+17−149+1) 2 16900 II(4−1
3 5−213−2) 2

17328 I(4−2
II 3+119+2) 2 17424 I(4−2

II 3−211−2) 2 17424 I(4−2
II 3+211+2) 2

17424 I(4+2
2 3+211+2) 3 18000 I(4+2

II 3+25+125−1) 3 18000 I(4+2
6 3+25+125−1) 3

18000 I(4−2
II 3+25−125+1) 1 18000 I(4−2

II 3+25−125−1) 1 18000 I(4−2
II 3−25+125+1) 2

18000 I(4−2
II 9−15+125−1) 3 18150 II(2+1

1 3−15−211+2) 4 18252 I(2+2
II 3+19+113+2) 6

18252 II(4+1
1 3+19−113−2) 2 18375 I(3−15−125−17+2) 3 18900 I(2+2

II 3+19−15−27−1) 4

18900 II(4+1
7 3−19+15−27−1) 2 18900 II(4+1

7 3−19−15−27−1) 2 18900 II(4+1
7 3+19+15+27−1) 3

19044 II(4−1
3 3+223+2) 3 19200 I(16−2

II 3+15−2) 2 19600 I(4−2
II 5−27+2) 1

19600 I(4−2
II 5+27−2) 2 20736 I(16−2

6 9+2) 3 20736 I(16+2
2 9+2) 4

21168 I(4+2
6 3+19+17+2) 3 21168 I(4−2

II 3−19+17−2) 2 21168 I(4−2
II 3+19−17+2) 1

21168 I(4−2
II 3−19−17−2) 2 21168 I(4−2

II 3+19+17+2) 1 21168 I(16+1
7 3+19+17+2) 6

21168 I(16−1
3 3+19+17+2) 6 21600 I(2+1

1 16+1
1 3−19−15−2) 4 21600 I(2+1

1 16+1
7 3−19−15−2) 4

21600 I(2+1
1 16−1

3 3−19−15−2) 4 21600 I(2+1
1 16−1

5 3−19−15−2) 4 21780 I(2+2
II 3+25−111+2) 4

21780 II(4+1
7 3+25−111−2) 2 22050 II(2+1

7 3+25−27+2) 2 22050 I(2+1
1 3+25−27+2) 3

23716 II(4−1
3 7+211+2) 3 24336 I(4−2

II 3+213−2) 1 25200 I(4−2
II 3−25−27+1) 2

25200 I(4−2
II 3+25+27+1) 2 25200 I(4−2

II 3+25−27−1) 2 25200 I(4+2
II 3+25−27+1) 3

25200 I(4+2
2 3+25−27+1) 3 25392 I(4−2

II 3+123+2) 3 26460 I(2+2
II 3−19+15+17+2) 4

26460 II(4−1
5 3−19−15−17+2) 3 26460 II(4−1

5 3+19+15+17+2) 2 26460 II(4−1
5 3+19−15+17+2) 2

27225 I(3+25−211−2) 2 28224 I(4+1
1 16+1

1 3+27+2) 6 29040 I(4−2
II 3−15+111−2) 2
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30420 II(4+1
7 3+25−113+2) 3 31500 II(4+1

1 3+25−125−17−1) 3 32000 I(16+2
2 5+125+1) 6

32000 I(16−2
6 5+125+1) 6 32400 I(4−2

II 9+25+2) 2 33075 I(3−19+15−27+2) 2

33075 I(3−19−15−27+2) 2 33075 I(3+19+15+27+2) 3 34560 I(16−2
II 3−19−15+1) 4

35280 I(4+2
II 3+25−17+2) 3 35280 I(4+2

6 3+25−17+2) 3 35280 I(4−2
II 3+25−17−2) 2

35280 I(4−2
II 3+25+17+2) 2 35280 I(4−2

II 3−25−17+2) 2 36300 I(2+2
II 3+15−211+2) 4

36300 II(4+1
1 3+15−211−2) 2 37632 I(16+2

6 3+17+2) 4 37632 I(16−2
2 3+17+2) 3

38025 I(3+25−213+2) 3 38988 II(4+1
1 3+19−119+2) 3 39600 I(4−2

II 3+25−211−1) 2

40500 II(4+1
7 9+25+125−1) 3 40560 I(4−2

II 3−15+113+2) 3 41616 I(4−2
II 3+217−2) 2

42000 I(4−2
II 3−15+125+17+1) 3 44100 I(2+2

2 3+25−27+2) 3 44100 I(2+2
II 3+25−27+2) 2

44100 II(4−1
3 3−25−27+2) 2 44100 II(4−1

3 3+25−27−2) 2 44100 II(4−1
3 3+25+27+2) 2

44100 II(4+1
7 3+25−27+2) 3 44100 I(4+1

1 3+25−27+2) 3 46800 I(4−2
II 3+25−213+1) 3

48384 I(16+2
2 3+19+17−1) 6 48384 I(16−2

6 3+19+17−1) 6 49392 I(4−2
II 3+27+149−1) 2

50700 II(4+1
1 3+15−213+2) 3 51984 I(4−2

II 3+219+2) 2 52272 I(4−2
II 3−19+111−2) 2

52272 I(4−2
II 3−19−111−2) 2 52272 I(4−2

II 3+19+111+2) 3 54000 I(4−2
II 3−19−15+125+1) 2

54000 I(4−2
II 3−19−15+125−1) 2 54000 I(4−2

II 3+19+15−125−1) 2 54000 I(4−2
II 3+19−15−125−1) 2

54000 I(4+2
II 3−19+15−125+1) 6 54000 I(4+2

2 3−19+15−125+1) 6 54450 II(2+1
7 3+25−211+2) 4

55125 I(3+25+125+17+2) 3 57600 I(16−2
II 3+25−2) 2 58800 I(4+2

2 3+15−27+2) 3

58800 I(4+2
II 3+15−27+2) 3 58800 I(4−2

II 3−15−27+2) 2 58800 I(4−2
II 3+15+27+2) 2

58800 I(4−2
II 3+15−27−2) 2 66150 II(2+1

1 3−19+15−27+2) 4 67600 I(4−2
II 5−213−2) 2

73008 I(4−2
II 3+19−113−2) 2 73500 II(4−1

5 3−15−125−17+2) 3 75600 I(4−2
II 3−19+15−27−1) 2

75600 I(4−2
II 3−19−15−27−1) 2 75600 I(4−2

II 3+19+15+27−1) 3 76176 I(4−2
II 3+223+2) 3

84672 I(4+1
7 16+1

7 3+19+17+2) 12 87120 I(4−2
II 3+25−111−2) 2 94864 I(4−2

II 7+211+2) 3

105840 I(4−2
II 3−19−15−17+2) 3 105840 I(4−2

II 3+19+15+17+2) 2 105840 I(4−2
II 3+19−15+17+2) 2

108900 I(2+2
II 3+25−211+2) 4 108900 II(4−1

3 3+25−211−2) 2 112896 I(16−2
6 3+27+2) 3

112896 I(16+2
2 3+27+2) 4 121680 I(4−2

II 3+25−113+2) 3 126000 I(4−2
II 3+25−125−17−1) 3

132300 I(2+2
II 3+19−15−27+2) 4 132300 II(4+1

1 3−19+15−27+2) 2 132300 II(4+1
1 3−19−15−27+2) 2

132300 II(4+1
1 3+19+15+27+2) 3 145200 I(4−2

II 3+15−211−2) 2 152100 II(4−1
3 3+25−213+2) 3

155952 I(4−2
II 3+19−119+2) 3 162000 I(4−2

II 9+25+125−1) 3 172800 I(16−2
II 3+19+15−2) 4

176400 I(4−2
II 3−25−27+2) 2 176400 I(4−2

II 3+25−27−2) 2 176400 I(4−2
II 3+25+27+2) 2

176400 I(4+2
6 3+25−27+2) 3 176400 I(4+2

II 3+25−27+2) 3 202800 I(4−2
II 3+15−213+2) 3

220500 II(4+1
7 3+25+125+17+2) 3 294000 I(4−2

II 3−15−125−17+2) 3 338688 I(16+2
6 3+19+17+2) 6

338688 I(16−2
2 3+19+17+2) 6 435600 I(4−2

II 3+25−211−2) 2 529200 I(4−2
II 3−19+15−27+2) 2

529200 I(4−2
II 3−19−15−27+2) 2 529200 I(4−2

II 3+19+15+27+2) 3 608400 I(4−2
II 3+25−213+2) 3

882000 I(4−2
II 3+25+125+17+2) 3

Table 1. Totally-reflective genera in dimension 3.





APPENDIX C

Primitive Totally-Reflective Genera of Dimension

4

det Genus h det Genus h det Genus h

1 I(1+4
4 ) 1 2 I(2+1

1 ) 1 3 I(3−1) 1

3 I(3+1) 1 4 II(2−2
II ) 1 4 I(2+2

2 ) 1

4 I(4+1
1 ) 1 4 I(4+1

7 ) 1 5 II(5+1) 1

5 I(5+1) 1 5 I(5−1) 1 6 I(2+1
1 3−1) 2

6 I(2+1
1 3+1) 1 7 I(7+1) 2 8 I(2+3

3 ) 1

8 II(2+1
3 4+1

1 ) 1 8 I(2+1
1 4+1

1 ) 1 9 II(3+2) 1

9 I(3+2) 1 9 I(3−2) 1 9 I(9−1) 1

10 I(2+1
1 5−1) 2 12 II(2+2

2 3−1) 1 12 II(2+2
6 3+1) 1

12 I(2+2
2 3−1) 1 12 I(2+2

II 3−1) 1 12 I(2+2
2 3+1) 1

12 I(2+2
II 3+1) 1 12 I(4+1

1 3−1) 1 12 I(4+1
7 3−1) 1

12 I(4+1
1 3+1) 2 12 I(4+1

7 3+1) 2 14 I(2+1
1 7+1) 3

15 I(3+15+1) 2 15 I(3−15−1) 3 15 I(3+15−1) 1

16 I(2+2
2 4+1

1 ) 1 16 II(4−2
4 ) 1 16 I(4−2

II ) 1

16 I(4+2
2 ) 1 16 I(4+2

6 ) 1 16 I(16−1
5 ) 2

16 I(16+1
1 ) 2 18 I(2+1

1 3−2) 2 18 I(2+1
1 3+2) 2

20 II(2+2
II 5+1) 1 20 I(2+2

2 5−1) 2 20 I(2+2
2 5+1) 2

20 II(2−2
II 5−1) 1 20 I(4+1

7 5+1) 2 20 I(4+1
1 5+1) 2

21 II(3−17+1) 1 21 I(3−17+1) 2 24 I(2+3
3 3+1) 2

24 I(2+3
3 3−1) 1 24 II(2+1

1 4+1
1 3−1) 2 24 II(2+1

5 4+1
1 3+1) 1

24 I(2+1
1 4+1

1 3−1) 2 24 I(2+1
1 4+1

1 3+1) 2 25 II(5−2) 1

25 I(5−2) 1 25 I(5+2) 2 27 I(3+3) 1

27 I(3−19−1) 2 27 I(3−3) 1 27 I(3+19−1) 1

27 I(3+19+1) 1 28 II(2+2
2 7+1) 2 28 I(2+2

II 7+1) 2

28 I(4+1
7 7+1) 3 30 I(2+1

1 3−15−1) 4 32 I(2+1
1 4+2

2 ) 1

32 I(2+1
1 4+2

II ) 1 32 I(2+1
1 16−1

3 ) 2 32 I(2+1
1 16−1

5 ) 1

32 I(2+1
1 16+1

1 ) 2 32 I(2+1
1 16+1

7 ) 1 33 I(3+111−1) 2

36 II(2−2
II 3−2) 1 36 II(2−2

II 9−1) 1 36 II(2−2
II 9+1) 1

77
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36 II(2+2
II 3+2) 1 36 II(2+2

0 3+2) 1 36 I(2+2
II 3+2) 1

36 I(2+2
2 3−2) 2 36 I(2+2

2 3+2) 2 36 I(4+1
7 3+2) 2

36 I(4+1
1 3−2) 2 36 I(4+1

7 3−2) 2 36 I(4+1
1 3+2) 2

40 I(2+3
3 5+1) 2 40 II(2+1

3 4+1
1 5−1) 2 45 II(3+25−1) 1

45 II(3−25+1) 1 45 I(3+25−1) 2 45 I(3−25+1) 2

48 I(2+2
2 4+1

1 3+1) 2 48 I(2+2
II 4+1

1 3+1) 1 48 I(2+2
2 4+1

1 3−1) 1

48 II(4+2
2 3−1) 1 48 II(4+2

6 3+1) 1 48 I(4+2
II 3−1) 1

48 I(4+2
0 3−1) 1 48 I(4+2

2 3+1) 2 48 I(4+2
6 3−1) 1

48 I(4+2
II 3+1) 1 48 I(4+2

0 3+1) 2 48 II(4−2
2 3−1) 1

48 II(4−2
6 3+1) 1 48 I(4−2

II 3−1) 1 48 I(4−2
II 3+1) 1

48 I(16+1
1 3−1) 2 48 I(16−1

5 3−1) 2 49 II(7+2) 1

54 I(2+1
1 3+3) 2 54 I(2+1

1 3−3) 1 54 I(2+1
1 3+19−1) 2

56 I(2+3
3 7+1) 3 56 II(2+1

1 4+1
1 7+1) 3 60 II(2+2

2 3+15+1) 2

60 II(2+2
2 3−15−1) 3 60 II(2+2

6 3+15−1) 1 60 I(2+2
II 3+15+1) 3

60 I(2+2
II 3−15−1) 2 60 I(2+2

II 3−15+1) 1 60 I(4+1
7 3+15+1) 3

60 I(4+1
1 3+15−1) 2 63 I(3+27−1) 3 63 I(3+27+1) 3

64 I(2+2
2 16−1

5 ) 2 64 I(2+2
2 16−1

3 ) 1 64 I(2+2
2 16+1

1 ) 2

64 I(4+3
3 ) 1 64 I(2+2

2 16+1
7 ) 1 64 I(4+3

5 ) 1

64 II(4−1
3 16+1

1 ) 2 64 I(4+1
1 16+1

1 ) 3 68 II(2−2
II 17+1) 2

72 I(2+3
3 3−2) 2 72 I(2+3

3 3+2) 2 72 II(2+1
3 4+1

1 3−2) 2

72 II(2+1
7 4+1

1 3+2) 2 72 I(2+1
1 4+1

1 3−2) 3 72 I(2+1
1 4+1

1 3+2) 3

75 I(3−15+2) 3 75 I(3+15−2) 3 80 I(2+2
2 4+1

1 5+1) 3

80 II(4+2
0 5+1) 2 80 I(4+2

2 5−1) 2 80 I(4+2
6 5+1) 2

80 I(4+2
2 5+1) 2 80 I(4+2

6 5−1) 2 80 I(4−2
II 5+1) 2

80 I(16+1
1 5+1) 5 80 I(16−1

5 5+1) 5 81 II(3+29−1) 1

81 II(3+29+1) 1 81 I(3+29−1) 1 81 I(3+29+1) 1

81 I(3−29+1) 1 81 I(3−29−1) 1 81 I(9+2) 2

84 II(2+2
II 3−17+1) 2 84 II(2−2

II 3+17+1) 2 90 I(2+1
1 3+25+1) 4

90 I(2+1
1 3+25−1) 4 96 I(2+1

1 4+2
II 3−1) 2 96 I(2+1

1 4+2
2 3+1) 2

96 I(2+1
1 4+2

II 3+1) 1 96 I(2+1
1 4+2

2 3−1) 2 96 I(2+1
1 16+1

1 3+1) 3

96 I(2+1
1 16+1

7 3+1) 3 96 I(2+1
1 16−1

5 3+1) 4 96 I(2+1
1 16−1

3 3+1) 4

98 I(2+1
1 7+2) 4 100 II(2−2

II 5+2) 1 100 II(2+2
II 5−2) 1

100 I(2+2
2 5−2) 2 108 II(2+2

2 3+3) 1 108 II(2+2
2 3−19−1) 2

108 II(2+2
6 3−3) 1 108 II(2+2

6 3+19−1) 1 108 II(2+2
6 3+19+1) 1

108 I(2+2
2 3+3) 1 108 I(2+2

2 3−19−1) 2 108 I(2+2
II 3+3) 1

108 I(2+2
II 3−19+1) 1 108 I(2+2

II 3−19−1) 1 108 I(2+2
2 3−3) 1

108 I(2+2
2 3+19+1) 2 108 I(2+2

II 3−3) 1 108 I(2+2
II 3+19+1) 2

108 I(4+1
1 3+3) 2 108 I(4+1

7 3+3) 2 108 I(4+1
1 3−3) 1

108 I(4+1
1 3+19+1) 4 108 I(4+1

7 3−3) 1 108 I(4+1
7 3+19−1) 2
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108 I(4+1
7 3+19+1) 2 112 II(4−2

2 7+1) 2 112 I(4−2
II 7+1) 2

117 II(3+213−1) 2 120 I(2+3
3 3+15+1) 4 120 II(2+1

1 4+1
1 3−15−1) 4

125 II(5+3) 1 125 I(5+3) 1 125 I(5−3) 1

128 I(2+1
1 4+1

1 16+1
1 ) 2 128 I(2+1

1 4+1
1 16+1

7 ) 2 132 II(2−2
II 3+111−1) 2

132 II(2−2
II 3−111+1) 2 135 I(3−35+1) 1 135 I(3+19−15+1) 4

135 I(3+35+1) 3 135 I(3−35−1) 2 144 I(2+2
II 4+1

7 3+2) 1

144 I(2+2
2 4+1

1 3+2) 2 144 I(2+2
II 4+1

1 3+2) 1 144 II(4−2
II 3+2) 1

144 II(4−2
4 3−2) 2 144 I(4−2

II 3−2) 2 144 II(4+2
II 3+2) 1

144 II(4+2
0 3+2) 2 144 I(4+2

II 3+2) 2 144 I(4+2
0 3+2) 2

144 I(4+2
2 3−2) 2 144 I(4+2

6 3+2) 2 144 I(4+2
2 3+2) 2

144 I(4+2
6 3−2) 2 160 I(2+1

1 4+2
II 5−1) 2 162 I(2+1

1 3−29−1) 3

162 I(2+1
1 3+29+1) 2 162 I(2+1

1 3+29−1) 2 180 II(2+2
II 3+25−1) 2

180 II(2+2
II 3−25+1) 2 180 II(2−2

II 3+25+1) 2 180 II(2−2
II 3−25−1) 2

189 II(3−37−1) 1 189 II(3−19−17+1) 3 189 I(3−37−1) 2

192 I(2+2
2 16+1

7 3−1) 2 192 I(2+2
2 16+1

1 3+1) 3 192 I(4+3
3 3+1) 2

192 I(4+3
7 3−1) 1 192 I(2+2

II 16+1
1 3+1) 2 192 I(2+2

2 16+1
7 3+1) 3

192 I(4+3
1 3+1) 2 192 I(4+3

5 3−1) 1 192 I(2+2
2 16+1

1 3−1) 2

192 I(2+2
II 16−1

5 3+1) 2 192 I(2+2
2 16−1

3 3+1) 3 192 I(2+2
2 16−1

5 3−1) 2

192 I(2+2
2 16−1

3 3−1) 2 192 I(2+2
2 16−1

5 3+1) 3 192 II(4+1
1 16+1

1 3−1) 2

196 II(2−2
II 7−2) 2 216 I(2+3

3 3−3) 2 216 I(2+3
3 3+3) 1

216 I(2+3
3 3−19+1) 2 216 II(2+1

1 4+1
1 3+3) 2 216 II(2+1

5 4+1
1 3−3) 1

216 II(2+1
5 4+1

1 3+19−1) 2 216 I(2+1
1 4+1

1 3+3) 2 216 I(2+1
1 4+1

1 3−3) 2

224 I(2+1
1 4+2

II 7+1) 3 225 II(3+25+2) 2 225 I(3+25−2) 2

240 II(4−2
2 3+15+1) 2 240 II(4−2

2 3−15−1) 3 240 II(4−2
6 3+15−1) 1

240 I(4−2
II 3+15+1) 2 240 I(4−2

II 3−15−1) 3 240 I(4−2
II 3+15−1) 1

243 I(3−19+2) 2 243 I(3+19−2) 1 243 I(3+19+2) 1

250 I(2+1
1 5+3) 2 252 II(2+2

2 3+27−1) 3 252 II(2+2
6 3+27+1) 3

252 I(2+2
II 3+27−1) 3 252 I(2+2

II 3+27+1) 3 256 I(4−2
II 16+1

1 ) 1

256 I(4−2
II 16+1

7 ) 1 256 I(4−2
II 16−1

3 ) 1 256 I(4+2
2 16+1

1 ) 2

256 I(4−2
II 16−1

5 ) 1 256 I(4+2
6 16+1

7 ) 1 256 I(16−2
6 ) 2

256 I(16+2
2 ) 5 270 I(2+1

1 3−35+1) 4 288 I(2+1
1 4+2

2 3−2) 3

288 I(2+1
1 4+2

II 3−2) 2 288 I(2+1
1 4+2

2 3+2) 3 288 I(2+1
1 4+2

II 3+2) 2

297 I(3−311−1) 2 300 II(2+2
2 3−15+2) 3 300 II(2+2

2 3+15−2) 3

300 I(2+2
II 3−15−2) 3 300 I(2+2

II 3+15+2) 3 320 I(4+3
5 5+1) 2

320 I(2+2
2 16+1

1 5+1) 6 320 I(4+3
3 5+1) 2 320 I(2+2

2 16−1
5 5+1) 6

320 II(4+1
7 16+1

1 5+1) 5 320 I(4+1
1 16+1

1 5+1) 10 324 II(2−2
II 3−29+1) 1

324 II(2−2
II 3−29−1) 1 324 II(2−2

II 9−2) 1 324 II(2−2
II 9+2) 1

324 II(2+2
II 3+29−1) 1 324 II(2+2

II 3+29+1) 1 324 II(2+2
0 3+29−1) 2

324 I(2+2
II 3+29+1) 2 324 I(2+2

2 3−29+1) 2 324 I(2+2
2 3−29−1) 2
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324 I(2+2
2 3+29−1) 2 324 I(2+2

2 3+29+1) 2 324 I(4+1
7 3+29+1) 3

324 I(4+1
1 3−29+1) 2 324 I(4+1

1 3−29−1) 2 324 I(4+1
7 3−29+1) 2

324 I(4+1
7 3−29−1) 2 324 I(4+1

1 3+29+1) 3 343 I(7+3) 2

360 I(2+3
3 3+25+1) 4 360 I(2+3

3 3+25−1) 4 360 II(2+1
3 4+1

1 3+25+1) 4

360 II(2+1
7 4+1

1 3+25−1) 4 375 I(3+15+3) 3 375 I(3−15−3) 2

375 I(3−15+3) 1 384 I(2+1
1 4+1

1 16+1
1 3+1) 6 384 I(2+1

1 4+1
1 16+1

7 3+1) 6

392 I(2+3
3 7+2) 4 392 II(2+1

7 4+1
1 7+2) 4 400 II(4−2

II 5−2) 2

400 I(4+2
6 5−2) 2 400 I(4+2

2 5−2) 2 405 II(3−29−15+1) 2

405 II(3+29+15−1) 1 405 II(3+29−15−1) 1 405 I(3−29−15+1) 3

405 I(3+29+15−1) 2 405 I(3+29−15−1) 2 420 II(2−2
II 3+15−17+1) 3

420 II(2−2
II 3−15+17+1) 3 432 I(2+2

II 4+1
7 3+3) 1 432 I(2+2

2 4+1
1 3−3) 1

432 I(2+2
2 4+1

1 3+19+1) 4 432 I(2+2
II 4+1

1 3+19+1) 3 432 I(2+2
2 4+1

1 3+3) 2

432 II(4+2
2 3+3) 1 432 II(4+2

2 3−19−1) 2 432 II(4+2
6 3−3) 1

432 II(4+2
6 3+19−1) 1 432 II(4+2

6 3+19+1) 1 432 I(4+2
II 3+3) 1

432 I(4+2
II 3−19−1) 2 432 I(4+2

0 3+3) 2 432 I(4+2
2 3−3) 1

432 I(4+2
2 3+19+1) 4 432 I(4+2

6 3+3) 2 432 I(4+2
II 3−3) 1

432 I(4+2
II 3+19+1) 2 432 I(4+2

0 3−3) 1 432 I(4+2
0 3+19+1) 4

432 II(4−2
2 3+3) 1 432 II(4−2

2 3−19−1) 2 432 II(4−2
6 3−3) 1

432 II(4−2
6 3+19+1) 2 432 I(4−2

II 3+3) 1 432 I(4−2
II 3−19−1) 2

432 I(4−2
II 3−3) 1 432 I(4−2

II 3+19−1) 1 432 I(4−2
II 3+19+1) 1

432 I(16+1
7 3−3) 2 432 I(16−1

3 3−3) 2 441 I(3+27+2) 4

448 I(4+3
3 7+1) 3 480 I(2+1

1 4+2
II 3−15−1) 4 484 II(2−2

II 11−2) 1

486 I(2+1
1 3+19+2) 2 500 II(2+2

II 5+3) 1 500 I(2+2
2 5−3) 2

500 I(2+2
2 5+3) 2 500 II(2−2

II 5−3) 1 500 I(4+1
7 5+3) 2

500 I(4+1
1 5+3) 2 512 I(2+1

1 16−2
2 ) 2 512 I(2+1

1 16−2
6 ) 1

512 I(2+1
1 16−2

4 ) 2 512 I(2+1
1 16+2

2 ) 2 512 I(2+1
1 16+2

0 ) 2

512 I(2+1
1 16+2

6 ) 1 540 II(2+2
2 3−35+1) 1 540 II(2+2

2 3+19−15+1) 4

540 II(2+2
6 3+35+1) 3 540 II(2+2

6 3−35−1) 2 540 I(2+2
II 3+35−1) 1

540 I(2+2
II 3−19+15−1) 4 540 I(2+2

II 3+35+1) 2 540 I(2+2
II 3−35−1) 3

540 I(4+1
7 3−35+1) 2 540 I(4+1

1 3−35−1) 3 567 I(3+29−17−1) 4

576 I(2+2
2 16−1

5 3+2) 3 576 I(2+2
II 16−1

5 3+2) 2 576 I(2+2
2 16−1

3 3+2) 3

576 I(2+2
II 16−1

3 3+2) 2 576 I(2+2
II 16+1

7 3+2) 2 576 I(4+3
3 3−2) 2

576 I(4+3
7 3+2) 2 576 I(2+2

2 16+1
1 3+2) 3 576 I(2+2

II 16+1
1 3+2) 2

576 I(2+2
2 16+1

7 3+2) 3 576 I(4+3
1 3+2) 2 576 I(4+3

5 3−2) 2

625 I(5+225−1) 2 648 I(2+3
3 3−29+1) 3 648 I(2+3

3 3+29+1) 2

648 I(2+3
3 3+29−1) 2 648 II(2+1

3 4+1
1 3−29−1) 3 648 II(2+1

7 4+1
1 3+29+1) 2

648 II(2+1
7 4+1

1 3+29−1) 2 648 I(2+1
1 4+1

1 3+29+1) 3 648 I(2+1
1 4+1

1 3+29−1) 3

675 I(3−35+2) 3 675 I(3+35−2) 3 686 I(2+1
1 7+3) 3

729 II(3−19−127−1) 3 729 I(3+19+127−1) 1 729 I(9−3) 1
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750 I(2+1
1 3+15−3) 4 756 II(2+2

II 3−37−1) 2 756 II(2−2
II 3+37−1) 2

768 I(4−2
II 16−1

3 3+1) 2 768 I(4+2
II 16+1

7 3−1) 1 768 I(4+2
2 16+1

1 3+1) 3

768 I(4+2
6 16+1

1 3−1) 2 768 I(4−2
II 16−1

5 3−1) 1 768 I(4+2
II 16+1

1 3+1) 2

768 I(4+2
2 16+1

7 3+1) 3 768 I(4+2
6 16+1

7 3−1) 2 768 I(4−2
II 16+1

1 3−1) 1

768 I(4+2
II 16−1

5 3+1) 2 768 I(4−2
II 16+1

7 3+1) 2 768 I(4+2
II 16−1

3 3−1) 1

784 II(4−2
II 7+2) 1 810 I(2+1

1 3+29−15+1) 7 864 I(2+1
1 4+2

II 3+3) 2

864 I(2+1
1 4+2

2 3−3) 2 864 I(2+1
1 4+2

II 3−3) 1 864 I(2+1
1 4+2

II 3+19−1) 2

864 I(2+1
1 4+2

2 3+3) 2 864 I(2+1
1 16+1

1 3−3) 4 864 I(2+1
1 16+1

7 3−3) 4

864 I(2+1
1 16−1

5 3−3) 3 864 I(2+1
1 16−1

3 3−3) 3 900 II(2−2
II 3−25+2) 2

900 II(2−2
II 3+25−2) 2 900 I(2+2

2 3+25−2) 4 900 I(4+1
1 3+25−2) 4

900 I(4+1
7 3+25−2) 4 960 I(4+3

5 3+15−1) 2 960 I(4+3
3 3+15+1) 3

972 II(2+2
2 3−19+2) 2 972 II(2+2

6 3+19−2) 1 972 II(2+2
6 3+19+2) 1

972 I(2+2
2 3−19+2) 2 972 I(2+2

II 3−19+2) 1 972 I(2+2
II 3−19−2) 1

972 I(2+2
2 3+19+2) 2 972 I(2+2

II 3+19+2) 2 972 I(4+1
1 3+19+2) 4

972 I(4+1
7 3+19−2) 2 972 I(4+1

7 3+19+2) 2 1000 I(2+3
3 5−3) 2

1000 II(2+1
7 4+1

1 5+3) 2 1008 II(4−2
2 3+27−1) 3 1008 II(4−2

6 3+27+1) 3

1008 I(4−2
II 3+27−1) 3 1008 I(4−2

II 3+27+1) 3 1024 I(4−2
II 64+1

1 ) 3

1024 I(4+1
7 16−2

II ) 2 1024 I(4+1
1 16+2

2 ) 3 1029 II(3−17−3) 1

1029 I(3−17−3) 2 1053 II(3+29−113−1) 4 1080 I(2+3
3 3+35−1) 4

1080 II(2+1
1 4+1

1 3−35+1) 4 1125 II(3+25−3) 1 1125 II(3−25+3) 1

1125 I(3+25−3) 2 1125 I(3−25+3) 2 1188 II(2−2
II 3+311+1) 2

1188 II(2−2
II 3−311−1) 2 1200 II(4+2

2 3−15+2) 3 1200 II(4+2
2 3+15−2) 3

1200 I(4−2
II 3−15+2) 3 1200 I(4−2

II 3+15−2) 3 1215 I(3+19+25+1) 4

1280 I(4−2
II 16−1

5 5+1) 2 1280 I(4−2
II 16−1

3 5+1) 2 1280 I(4+2
2 16+1

1 5+1) 6

1280 I(4−2
II 16+1

7 5+1) 2 1280 I(4−2
II 16+1

1 5+1) 2 1280 I(16+2
2 5+1) 10

1280 I(16−2
6 5+1) 10 1296 I(2+2

II 4+1
7 3+29+1) 2 1296 I(2+2

2 4+1
1 3+29+1) 3

1296 I(2+2
II 4+1

1 3+29+1) 2 1296 II(4−2
II 3+29−1) 2 1296 II(4−2

II 3+29+1) 1

1296 II(4−2
4 3−29+1) 2 1296 II(4−2

4 3−29−1) 2 1296 I(4−2
II 3−29+1) 2

1296 I(4−2
II 3−29−1) 2 1296 II(4+2

II 3+29−1) 2 1296 II(4+2
0 3+29+1) 3

1296 I(4+2
II 3+29+1) 3 1296 I(4+2

0 3+29+1) 4 1296 I(4+2
2 3−29+1) 2

1296 I(4+2
2 3−29−1) 2 1296 I(4+2

6 3+29−1) 2 1296 I(4+2
6 3+29+1) 2

1296 I(4+2
2 3+29−1) 2 1296 I(4+2

2 3+29+1) 2 1296 I(4+2
6 3−29+1) 2

1296 I(4+2
6 3−29−1) 2 1372 II(2+2

6 7+3) 2 1372 I(2+2
II 7+3) 2

1372 I(4+1
1 7+3) 3 1440 I(2+1

1 4+2
II 3+25+1) 4 1440 I(2+1

1 4+2
II 3+25−1) 4

1500 II(2+2
2 3+15+3) 3 1500 II(2+2

2 3−15−3) 2 1500 II(2+2
6 3−15+3) 1

1500 I(2+2
II 3+15+3) 2 1500 I(2+2

II 3−15−3) 3 1500 I(2+2
II 3+15−3) 1

1500 I(4+1
7 3−15−3) 3 1500 I(4+1

1 3−15+3) 2 1536 I(2+1
1 16+2

2 3+1) 4

1536 I(2+1
1 16+2

0 3+1) 6 1536 I(2+1
1 16+2

6 3+1) 3 1536 I(2+1
1 16−2

4 3+1) 6

1536 I(2+1
1 16−2

2 3+1) 4 1536 I(2+1
1 16−2

6 3+1) 3 1568 I(2+1
1 4+2

II 7+2) 4
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1620 II(2+2
II 3−29−15+1) 3 1620 II(2+2

II 3+29+15−1) 2 1620 II(2+2
II 3+29−15−1) 2

1620 II(2−2
II 3+29+15+1) 2 1620 II(2−2

II 3−29+15−1) 3 1620 II(2−2
II 3+29−15+1) 2

1701 II(3−19+27+1) 3 1728 I(2+2
2 16+1

7 3+3) 3 1728 I(2+2
II 16+1

7 3+3) 2

1728 I(2+2
2 16+1

1 3−3) 2 1728 I(4+3
3 3−3) 1 1728 I(4+3

3 3+19−1) 2

1728 I(4+3
3 3+19+1) 2 1728 I(4+3

7 3+3) 2 1728 I(2+2
II 16+1

1 3+19+1) 6

1728 I(2+2
2 16+1

7 3−3) 2 1728 I(4+3
1 3−3) 1 1728 I(4+3

1 3+19+1) 4

1728 I(4+3
5 3+3) 2 1728 I(2+2

2 16+1
1 3+3) 3 1728 I(2+2

II 16−1
5 3+19+1) 6

1728 I(2+2
2 16−1

3 3−3) 2 1728 I(2+2
2 16−1

5 3+3) 3 1728 I(2+2
2 16−1

3 3+3) 3

1728 I(2+2
II 16−1

3 3+3) 2 1728 I(2+2
2 16−1

5 3−3) 2 1728 II(4+1
7 16+1

7 3−3) 2

1764 II(2−2
II 3+27+2) 2 1792 I(4−2

II 16+1
7 7+1) 3 1792 I(4−2

II 16−1
3 7+1) 3

1875 I(3+15−225−1) 5 1944 I(2+3
3 3−19+2) 2 1944 II(2+1

5 4+1
1 3+19+2) 2

2000 I(2+2
2 4+1

1 5+3) 3 2000 II(4+2
0 5+3) 2 2000 I(4+2

2 5−3) 2

2000 I(4+2
6 5+3) 2 2000 I(4+2

2 5+3) 2 2000 I(4+2
6 5−3) 2

2000 I(4−2
II 5+3) 2 2000 I(16+1

1 5+3) 5 2000 I(16−1
5 5+3) 5

2160 II(4−2
2 3−35+1) 1 2160 II(4−2

2 3+19−15+1) 4 2160 II(4−2
6 3+35+1) 3

2160 II(4−2
6 3−35−1) 2 2160 I(4−2

II 3−35+1) 1 2160 I(4−2
II 3+19−15+1) 4

2160 I(4−2
II 3+35+1) 3 2160 I(4−2

II 3−35−1) 2 2250 I(2+1
1 3+25+3) 4

2250 I(2+1
1 3+25−3) 4 2268 II(2+2

2 3+29−17−1) 4 2268 I(2+2
II 3+29+17−1) 4

2304 I(4−2
II 16+1

1 3−2) 2 2304 I(4+2
II 16−1

5 3+2) 2 2304 I(4−2
II 16+1

7 3−2) 2

2304 I(4+2
II 16−1

3 3+2) 2 2304 I(4−2
II 16−1

3 3−2) 2 2304 I(4+2
II 16+1

7 3+2) 2

2304 I(4+2
6 16+1

1 3+2) 3 2304 I(4−2
II 16−1

5 3−2) 2 2304 I(4+2
II 16+1

1 3+2) 2

2304 I(4+2
2 16+1

7 3+2) 3 2500 II(2−2
II 5+225−1) 1 2500 II(2−2

II 5+225+1) 1

2592 I(2+1
1 4+2

II 3−29−1) 3 2592 I(2+1
1 4+2

2 3+29+1) 3 2592 I(2+1
1 4+2

2 3+29−1) 3

2592 I(2+1
1 4+2

II 3+29+1) 2 2592 I(2+1
1 4+2

II 3+29−1) 2 2700 II(2+2
6 3−35+2) 3

2700 II(2+2
6 3+35−2) 3 2700 I(2+2

II 3−35−2) 3 2700 I(2+2
II 3+35+2) 3

2744 I(2+3
3 7+3) 3 2744 II(2+1

5 4+1
1 7+3) 3 2916 II(2−2

II 3−19+127+1) 2

2916 II(2−2
II 3+19+127−1) 1 2916 II(2−2

II 9−3) 1 2916 II(2−2
II 3−19−127+1) 1

2916 II(2−2
II 3+19−127−1) 2 2916 II(2−2

II 9+3) 1 3000 I(2+3
3 3−15+3) 4

3000 II(2+1
5 4+1

1 3+15−3) 4 3072 I(4+1
1 16−2

II 3−1) 2 3072 I(4−2
II 64+1

1 3−1) 4

3087 I(3+27+3) 3 3087 I(3+27−3) 3 3240 I(2+3
3 3+29+15−1) 7

3240 II(2+1
3 4+1

1 3+29−15+1) 7 3375 I(3+35−3) 1 3375 I(3−19+15−3) 4

3375 I(3+35+3) 2 3375 I(3−35−3) 3 3456 I(2+1
1 4+1

1 16+1
1 3−3) 6

3456 I(2+1
1 4+1

1 16+1
7 3−3) 6 3600 II(4−2

II 3+25+2) 2 3600 II(4−2
4 3+25−2) 4

3600 I(4−2
II 3+25−2) 4 3600 I(4+2

2 3+25−2) 4 3600 I(4+2
6 3+25−2) 4

3780 II(2−2
II 3+35−17−1) 3 3780 II(2−2

II 3−35+17−1) 3 3840 I(4−2
II 16+1

7 3+15+1) 3

3840 I(4−2
II 16+1

1 3+15−1) 2 3840 I(4−2
II 16−1

5 3+15−1) 2 3840 I(4−2
II 16−1

3 3+15+1) 3

3888 I(2+2
2 4+1

1 3+19+2) 4 3888 I(2+2
II 4+1

1 3+19+2) 3 3888 II(4+2
2 3−19+2) 2

3888 II(4+2
6 3+19−2) 1 3888 II(4+2

6 3+19+2) 1 3888 I(4+2
II 3−19+2) 2

3888 I(4+2
2 3+19+2) 4 3888 I(4+2

II 3+19+2) 2 3888 I(4+2
0 3+19+2) 4
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3888 II(4−2
2 3−19+2) 2 3888 II(4−2

6 3+19+2) 2 3888 I(4−2
II 3−19+2) 2

3888 I(4−2
II 3+19−2) 1 3888 I(4−2

II 3+19+2) 1 3969 I(3+29−17+2) 4

3993 I(3−111−3) 2 4000 I(2+1
1 4+2

II 5+3) 2 4096 I(16−3
7 ) 2

4096 I(16+3
3 ) 2 4116 II(2+2

II 3−17−3) 2 4116 II(2−2
II 3+17−3) 2

4320 I(2+1
1 4+2

II 3−35+1) 4 4500 II(2+2
II 3+25−3) 2 4500 II(2+2

II 3−25+3) 2

4500 II(2−2
II 3+25+3) 2 4500 II(2−2

II 3−25−3) 2 4860 II(2+2
2 3+19+25+1) 4

4860 I(2+2
II 3−19+25−1) 4 4900 II(2−2

II 5−27+2) 2 5120 I(4+1
1 16+2

2 5+1) 10

5120 I(4+1
7 16−2

II 5+1) 5 5184 I(2+2
II 16−1

5 3+29+1) 4 5184 I(2+2
2 16−1

3 3+29+1) 4

5184 I(2+2
II 16−1

3 3+29+1) 4 5184 I(2+2
II 16+1

7 3+29+1) 4 5184 I(4+3
3 3−29+1) 2

5184 I(4+3
3 3−29−1) 2 5184 I(4+3

7 3+29+1) 3 5184 I(2+2
II 16+1

1 3+29+1) 4

5184 I(2+2
2 16+1

7 3+29+1) 4 5184 I(4+3
1 3+29+1) 3 5184 I(4+3

5 3−29+1) 2

5184 I(4+3
5 3−29−1) 2 5488 II(4−2

6 7+3) 2 5488 I(4−2
II 7+3) 2

6000 II(4−2
2 3+15+3) 3 6000 II(4−2

2 3−15−3) 2 6000 II(4−2
6 3−15+3) 1

6000 I(4−2
II 3+15+3) 3 6000 I(4−2

II 3−15−3) 2 6000 I(4−2
II 3−15+3) 1

6084 II(2−2
II 3+213−2) 2 6750 I(2+1

1 3+35+3) 4 6912 I(4−2
II 16−1

3 3−3) 1

6912 I(4−2
II 16−1

3 3+19−1) 2 6912 I(4−2
II 16−1

3 3+19+1) 2 6912 I(4+2
II 16+1

7 3+3) 2

6912 I(4+2
2 16+1

1 3−3) 2 6912 I(4+2
6 16+1

1 3+3) 3 6912 I(4−2
II 16−1

5 3+3) 2

6912 I(4+2
II 16+1

1 3−3) 1 6912 I(4+2
II 16+1

1 3+19+1) 4 6912 I(4+2
2 16+1

7 3−3) 2

6912 I(4+2
6 16+1

7 3+3) 3 6912 I(4−2
II 16+1

1 3+3) 2 6912 I(4+2
II 16−1

5 3−3) 1

6912 I(4+2
II 16−1

5 3+19+1) 4 6912 I(4−2
II 16+1

7 3−3) 1 6912 I(4−2
II 16+1

7 3+19−1) 2

6912 I(4−2
II 16+1

7 3+19+1) 2 6912 I(4+2
II 16−1

3 3+3) 2 7500 II(2+2
2 3+15−225−1) 5

7500 I(2+2
II 3−15−225+1) 5 7776 I(2+1

1 4+2
II 3+19+2) 2 8000 I(4+3

5 5+3) 2

8000 I(2+2
2 16+1

1 5+3) 6 8000 I(4+3
3 5+3) 2 8000 I(2+2

2 16−1
5 5+3) 6

8000 II(4+1
7 16+1

1 5+3) 5 8000 I(4+1
1 16+1

1 5+3) 10 8100 II(2−2
II 3−29+15+2) 2

8100 II(2−2
II 3+29−15−2) 3 8100 II(2−2

II 3−29−15+2) 2 8100 II(2−2
II 3+29+15−2) 3

8640 I(4+3
5 3−35−1) 3 8640 I(4+3

3 3−35+1) 2 9000 I(2+3
3 3+25+3) 4

9000 I(2+3
3 3+25−3) 4 9000 II(2+1

3 4+1
1 3+25+3) 4 9000 II(2+1

7 4+1
1 3+25−3) 4

9072 II(4−2
2 3+29−17−1) 4 9072 I(4−2

II 3+29−17−1) 4 9261 II(3−37+3) 1

9261 II(3−19−17−3) 3 9261 I(3−37+3) 2 10125 II(3+29+15−3) 1

10125 II(3−29+15+3) 2 10125 II(3+29−15−3) 1 10125 I(3+29+15−3) 2

10125 I(3−29+15+3) 3 10125 I(3+29−15−3) 2 10500 II(2−2
II 3+15+37−1) 3

10500 II(2−2
II 3−15−37−1) 3 10800 II(4+2

6 3−35+2) 3 10800 II(4+2
6 3+35−2) 3

10800 I(4−2
II 3−35+2) 3 10800 I(4−2

II 3+35−2) 3 10976 I(2+1
1 4+2

II 7+3) 3

11664 II(4−2
II 3−19−127−1) 6 12000 I(2+1

1 4+2
II 3+15−3) 4 12288 I(16+3

5 3−1) 2

12288 I(16−3
1 3−1) 2 12348 II(2+2

2 3+27+3) 3 12348 II(2+2
6 3+27−3) 3

12348 I(2+2
II 3+27+3) 3 12348 I(2+2

II 3+27−3) 3 12960 I(2+1
1 4+2

II 3+29−15+1) 7

13500 II(2+2
2 3+35−3) 1 13500 II(2+2

2 3−19+15−3) 4 13500 II(2+2
6 3+35+3) 2

13500 II(2+2
6 3−35−3) 3 13500 I(2+2

II 3−35+3) 1 13500 I(2+2
II 3+19−15+3) 4

13500 I(2+2
II 3+35+3) 3 13500 I(2+2

II 3−35−3) 2 13500 I(4+1
7 3+35−3) 2
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13500 I(4+1
1 3+35+3) 3 13824 I(2+1

1 16+2
2 3−3) 3 13824 I(2+1

1 16+2
0 3−3) 6

13824 I(2+1
1 16+2

6 3−3) 4 13824 I(2+1
1 16−2

4 3−3) 6 13824 I(2+1
1 16−2

2 3−3) 3

13824 I(2+1
1 16−2

6 3−3) 4 14400 I(4+3
3 3+25−2) 4 14400 I(4+3

5 3+25−2) 4

15552 I(4+3
3 3+19−2) 2 15552 I(4+3

3 3+19+2) 2 15552 I(2+2
II 16+1

1 3+19+2) 6

15552 I(4+3
1 3+19+2) 4 15552 I(2+2

II 16−1
5 3+19+2) 6 15876 II(2−2

II 3+29−17+2) 2

15876 II(2−2
II 3+29+17+2) 2 15972 II(2−2

II 3+111+3) 2 15972 II(2−2
II 3−111−3) 2

16384 I(16−2
II 64−1

3 ) 3 16875 I(3+35−225+1) 5 19440 II(4−2
2 3+19+25+1) 4

19440 I(4−2
II 3+19+25+1) 4 19652 II(2−2

II 17+3) 2 19773 II(3+213−3) 2

20250 I(2+1
1 3+29+15−3) 7 20480 I(16+3

3 5+1) 5 20480 I(16−3
7 5+1) 5

20580 II(2−2
II 3+15+17+3) 3 20580 II(2−2

II 3−15−17+3) 3 20736 I(4−2
II 16+1

1 3−29+1) 2

20736 I(4−2
II 16+1

1 3−29−1) 2 20736 I(4+2
II 16−1

5 3+29+1) 3 20736 I(4−2
II 16+1

7 3−29+1) 2

20736 I(4−2
II 16+1

7 3−29−1) 2 20736 I(4+2
II 16−1

3 3+29+1) 3 20736 I(4−2
II 16−1

3 3−29+1) 2

20736 I(4−2
II 16−1

3 3−29−1) 2 20736 I(4+2
II 16+1

7 3+29+1) 3 20736 I(4−2
II 16−1

5 3−29+1) 2

20736 I(4−2
II 16−1

5 3−29−1) 2 20736 I(4+2
II 16+1

1 3+29+1) 3 20736 I(4+2
2 16+1

7 3+29+1) 4

21952 I(4+3
5 7+3) 3 22500 II(2−2

II 3+25−225+1) 2 22500 II(2−2
II 3+25−225−1) 2

24000 I(4+3
5 3−15+3) 2 24000 I(4+3

3 3−15−3) 3 27000 I(2+3
3 3−35−3) 4

27000 II(2+1
5 4+1

1 3+35+3) 4 27648 I(4−2
II 64−1

3 3−3) 4 27648 I(4+1
7 16−2

II 3−3) 2

27783 I(3+29−17−3) 4 30000 II(4+2
2 3+15−225−1) 5 30000 I(4−2

II 3+15−225−1) 5

30375 I(3−19+25−3) 4 32000 I(4−2
II 16−1

5 5+3) 2 32000 I(4−2
II 16−1

3 5+3) 2

32000 I(4+2
2 16+1

1 5+3) 6 32000 I(4−2
II 16+1

7 5+3) 2 32000 I(4−2
II 16+1

1 5+3) 2

32000 I(16+2
2 5+3) 10 32000 I(16−2

6 5+3) 10 34560 I(4−2
II 16+1

7 3−35+1) 2

34560 I(4−2
II 16+1

1 3−35−1) 3 34560 I(4−2
II 16−1

5 3−35−1) 3 34560 I(4−2
II 16−1

3 3−35+1) 2

35937 I(3+311−3) 2 36000 I(2+1
1 4+2

II 3+25+3) 4 36000 I(2+1
1 4+2

II 3+25−3) 4

37044 II(2+2
II 3−37+3) 2 37044 II(2−2

II 3+37+3) 2 40500 II(2+2
II 3+29+15−3) 2

40500 II(2+2
II 3−29+15+3) 3 40500 II(2+2

II 3+29−15−3) 2 40500 II(2−2
II 3−29−15−3) 3

40500 II(2−2
II 3+29+15+3) 2 40500 II(2−2

II 3+29−15+3) 2 49152 I(16−2
II 64+1

1 3−1) 4

49392 II(4−2
2 3+27+3) 3 49392 II(4−2

6 3+27−3) 3 49392 I(4−2
II 3+27+3) 3

49392 I(4−2
II 3+27−3) 3 54000 II(4−2

2 3+35−3) 1 54000 II(4−2
2 3−19+15−3) 4

54000 II(4−2
6 3+35+3) 2 54000 II(4−2

6 3−35−3) 3 54000 I(4−2
II 3+35−3) 1

54000 I(4−2
II 3−19+15−3) 4 54000 I(4−2

II 3+35+3) 2 54000 I(4−2
II 3−35−3) 3

57600 I(4−2
II 16+1

1 3+25−2) 4 57600 I(4−2
II 16+1

7 3+25−2) 4 57600 I(4−2
II 16−1

3 3+25−2) 4

57600 I(4−2
II 16−1

5 3+25−2) 4 62208 I(4−2
II 16−1

3 3+19−2) 2 62208 I(4−2
II 16−1

3 3+19+2) 2

62208 I(4+2
II 16+1

1 3+19+2) 4 62208 I(4+2
II 16−1

5 3+19+2) 4 62208 I(4−2
II 16+1

7 3+19−2) 2

62208 I(4−2
II 16+1

7 3+19+2) 2 67500 II(2+2
6 3+35−225+1) 5 67500 I(2+2

II 3−35−225−1) 5

81000 I(2+3
3 3+29−15+3) 7 81000 II(2+1

7 4+1
1 3+29+15−3) 7 83349 II(3−19+27−3) 3

87808 I(4−2
II 16+1

1 7+3) 3 87808 I(4−2
II 16−1

5 7+3) 3 94500 II(2−2
II 3+35+37+1) 3

94500 II(2−2
II 3−35−37+1) 3 96000 I(4−2

II 16+1
7 3−15−3) 3 96000 I(4−2

II 16+1
1 3−15+3) 2

96000 I(4−2
II 16−1

5 3−15+3) 2 96000 I(4−2
II 16−1

3 3−15−3) 3 108000 I(2+1
1 4+2

II 3+35+3) 4

110592 I(16+3
3 3−3) 2 110592 I(16−3

7 3−3) 2 111132 II(2+2
6 3+29−17−3) 4
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111132 I(2+2
II 3+29+17−3) 4 121500 II(2+2

2 3−19+25−3) 4 121500 I(2+2
II 3+19+25+3) 4

128000 I(4+1
1 16+2

2 5+3) 10 128000 I(4+1
7 16−2

II 5+3) 5 143748 II(2−2
II 3+311−3) 2

143748 II(2−2
II 3−311+3) 2 177957 II(3+29−113−3) 4 185220 II(2−2

II 3+35+17−3) 3

185220 II(2−2
II 3−35−17−3) 3 216000 I(4+3

5 3+35+3) 3 216000 I(4+3
3 3+35−3) 2

270000 II(4+2
6 3+35−225+1) 5 270000 I(4−2

II 3+35−225+1) 5 324000 I(2+1
1 4+2

II 3+29+15−3) 7

442368 I(16−2
II 64−1

3 3−3) 4 444528 II(4−2
6 3+29−17−3) 4 444528 I(4−2

II 3+29−17−3) 4

486000 II(4−2
2 3−19+25−3) 4 486000 I(4−2

II 3−19+25−3) 4 512000 I(16+3
3 5+3) 5

512000 I(16−3
7 5+3) 5 514500 II(2−2

II 3+15−37−3) 3 514500 II(2−2
II 3−15+37−3) 3

864000 I(4−2
II 16+1

7 3+35−3) 2 864000 I(4−2
II 16+1

1 3+35+3) 3 864000 I(4−2
II 16−1

5 3+35+3) 3

864000 I(4−2
II 16−1

3 3+35−3) 2 4630500 II(2−2
II 3+35−37+3) 3 4630500 II(2−2

II 3−35+37+3) 3

Table 1. Totally-reflective genera in dimension 4.
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