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§ 1 Preface

§ 1 Preface

Space-time block codes can be used for wireless communication in settings where
multiple transmit and receive antennas are available. In these situations they allow
for a significant improvement of communication. However, there are two main cases
that have to be distinguished. Signals which are transmitted across the communi-
cation channel degrade before they are received at the decoder. If the decoder has
precise information about this degradation it can predict how a transmitted signal
is affected. In this case, the communication is referred to as coherent. This case has
been extensively studied and many constructions are available in order to obtain
corresponding codebooks. If no such information is available at the receiver, the
communication is referred to as noncoherent. This case has received far less attention
than the coherent one. In practice it corresponds to situations in which the commu-
nications channel changes too quickly for the receiver to obtain information on the
degrading of transmitted signals. This mainly occurs when one of the communica-
tion parties is moving quickly, for example aboard a car, train or airplane. Another
example where noncoherent communication is used is when large numbers of an-
tennas are employed such that many signals are transmitted simultaneously. As a
result, obtaining information about the degradation of each transmitted signal be-
comes increasingly complex and hence unfeasible from a certain point on.

There is no general theory available on how to obtain good, or even optimal nonco-
herent space-time block codes. These code were first systematically investigated in
1999 by Hochwald an Marzetta and they quickly restricted themselves to a special
case which they referred to as unitary codes. Since then, unitary codes have been
the focus of work on noncoherent space-time block codes. The problem of finding
good unitary codebooks remains complicated and several suboptimal constructions
have been proposed.

The first aim of this work is to establish a theory which allows the study and con-
struction of noncoherent space-time block codes as generally as possible. In partic-
ular, the considered codebooks shall not be restricted to the case of unitary codes.
Secondly, the developed theory is to be applied to introduce new classes of nonco-
herent space-time block codes which generalize unitary codes. For these new classes,
concrete example codes will be constructed and compared to optimal unitary code-
books in simulations.

Part of the motivation for this work stems from Lie algebras and particularly from
the exponential map, which provides the connection between Lie groups and Lie
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§ 1 Preface

algebras. The first chapter starts with the introduction of some nonstandard facts
from linear algebra and goes on to briefly explain this motivation as Lie algebras
and Lie groups are introduced. Subsequently, the exponential map is introduced
and important properties are discussed.

The second chapter provides an introduction to wireless communication in general
and space-time block codes in particular. Also, the most important examples of
known space-time block codes are briefly discussed.

Building on the preceding introduction, the third chapter summarizes the known re-
sults on noncoherent space-time block codes. Particularly, unitary codes are studied
as they constitute the best known noncoherent codes so far. In this context, a connec-
tion between unitary codes and a packing problem on the Grassmann manifold is
discussed and a numerical optimization algorithm based on this connection is pre-
sented. This algorithm can be used to obtain optimal unitary codebooks, which will
be used in simulations in later chapters. Close attention is payed to the stochastic
analysis of the noncoherent communications channel, which provides the basis of
the study of unitary codes. For the development of a more general theory of non-
coherent space-time block codes, these stochastic considerations also have to be the
starting point.

In the fourth chapter, a new approach to noncoherent space-time block codes is de-
veloped. Starting with an analysis of the error probability, new criteria for designing
good noncoherent space-time block codes are formulated as generally as possible.
Based on these criteria, notions of reduced and equivalent codebooks are introduced
and analyzed. It turns out that the problem of designing good noncoherent code-
books remains difficult. Therefore, in order to be able to systematically construct
well performing codes, special cases are of interest for which the design problem
can be simplified. To aid the systematic study of special cases, the notion of a dis-
tance function is introduced and it is clarified in which cases such functions are
equivalent.

The fifth chapter introduces a specific class of codes which can be decoded by the
same criterion that is commonly used to decode unitary space-time block codes, re-
ferred to as the GLRT criterion. The introduced class contains unitary codes as a
special case. General codebooks arising from it are analyzed by means of the the-
ory developed earlier and example constructions of corresponding codes are carried
out. In simulations, these are compared to unitary codes that were obtained by the
numerical algorithm presented at the end of the third chapter. To conclude, opti-
mal codebooks within the considered class are characterized and their connection to
unitary codes is discussed.
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§ 1 Preface

The appendix provides a description of the simulations which were run to compare
example codes constructed in the course of this work.

I would like to express my gratitude towards my advisor Prof. Dr. Detlev Hoffmann
for his guidance and support in the making of this thesis. In addition, I would like to
thank Professor Frédérique Oggier for sharing her insights into the various branches
of space-time block codes and her knowledge of simulations. Finally, I thank my
family and my friends for supporting me throughout the writing process.
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§ 2 Basics from linear algebra and Lie theory

§ 2 Basics from linear algebra and Lie theory

A list of standard nomenclature being used can be found at the end of this work.

2.1 Some facts from linear algebra

This section introduces some non-standard but elementary facts from linear algebra
which will be used frequently in the later chapters. To start with, some notation is
fixed.

(2.1) Notation
(i) The n× n identity matrix is denoted by In.

(ii) Extending this notation, the n×m matrix In×m is defined by

(In×m)ij =

{
1 , if i = j

0 , otherwise
for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

(iii) The n×m zero matrix is denoted by 0n×m.

(iv) A diagonal n× n diagonal matrix with diagonal entries d1, . . . , dn is denoted by

diag(d1, . . . , dn) =

d1
. . .

d2

 .

(v) The space of n× n Hermitian matrices is denoted by

H(n) = {X ∈ Cn×n | X = X>}.

(vi) The group of n× n unitary matrices is denoted by

U(n) = {X ∈ Cn×n | XX> = X>X = In}.

�

Eigenvalues will play an important role throughout this work, hence a notion of the
spectrum of a matrix is introduced.
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§ 2 Basics from linear algebra and Lie theory

(2.2) Definition
Consider a matrix A ∈ Cn×n, n ∈ N with eigenvalues λ1, . . . , λm ∈ C of respective
algebraic multiplicities µ1, . . . , µm ∈N. The spectrum of A is defined as:

spec(A) := {(λ1, µ1), . . . , (λm, µm)}.

A spectrum S = {(λ1, µ1), . . . , (λm, µm)} is called

(i) real, if all eigenvalues λ1, . . . , λm are real.

(ii) positive definite, if all eigenvalues λ1, . . . , λm are positive real numbers.

(iii) positive semidefinite, if all eigenvalues λ1, . . . , λm are nonnegative real numbers.

�

In the study of space-time block codes the matrix norm induced by the standard
Hermitian inner product (A, B) 7→ Tr(AB>), commonly referred to as Frobenius
norm, is of importance. It is also defined in [BO13]. A more detailed introduction in
the context of matrix norms can be found in [SK09].

(2.3) Definition and Lemma (Frobenius norm)
The Frobenius norm of A ∈ Cn×m, n, m ∈N is defined by

‖A‖F :=

√√√√ n

∑
i=1

m

∑
j=1

∣∣Aij
∣∣2.

It may also be conveniently expressed by means of the matrix trace:

‖A‖2
F = Tr(AA>) = Tr(A>A).

The Frobenius norm is submultiplicative. That is, for B ∈ Cm×k, k ∈ N the following
inequality holds:

‖AB‖F ≤ ‖A‖F ‖B‖F .

�

Proof. The first equation is obtained by elementary computations:

Tr(AA>) =
n

∑
i=1

(AA>)ii =
n

∑
i=1

n

∑
j=1

Aij Aij = ‖A‖2
F .
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§ 2 Basics from linear algebra and Lie theory

Also Tr(A>A) = Tr(AA>) holds since Tr(AB) = Tr(BA) is true for any matrices
A, B for which the products AB and BA are defined.

Concerning submultiplicativity, denote the columns of A> by a1, . . . , an ∈ Cm and
the columns of B by b1, . . . , bk ∈ Cm. The Cauchy–Schwarz inequality applied with

respect to the canonical Hermitian inner product on Cm implies
∣∣∣ai
>bj

∣∣∣2 ≤ ‖ai‖2‖bj‖2

for 1 ≤ i ≤ n, 1 ≤ j ≤ k and the norm ‖ · ‖ induced by the canonical Hermitian inner
product. Writing out the Frobenius norm of AB then yields the assertion:

‖AB‖F =
m

∑
i=1

k

∑
j=1

∣∣∣ai
>bj

∣∣∣2 ≤ m

∑
i=1

k

∑
j=1
‖ai‖2‖bj‖2 =

∥∥∥A>
∥∥∥2

F
‖B‖2

F = ‖A‖2
F ‖B‖

2
F .

In the following the notion of a diagonal matrix will be needed for matrices which
are not necessarily square.

(2.4) Notation
A matrix D ∈ Cn×m, n, m ∈N is called a diagonal matrix if and only if it has nonzero
entries only on its main diagonal. That is, for 1 ≤ i ≤ n and 1 ≤ j ≤ m the
implication i 6= j =⇒ Dij = 0 holds. �

Using this notation, an important matrix decomposition which will be used through-
out this work can be introduced.

(2.5) Definition and Lemma (Singular-Value-Decomposition (SVD))
Let A ∈ Cn×m, n, m ∈ N be any matrix over the complex numbers. There exist
unitary matrices U ∈ U(n), V ∈ U(m) and a diagonal matrix D ∈ Cn×m such that
A = UDV holds. The diagonal elements Dii for 1 ≤ i ≤ min(n, m) are nonnegative
real numbers and called the singular values of A.

Additionally, for any singular value σ of A, there are vectors u ∈ Cn and v ∈ Cm

with ‖u‖F = ‖v‖F = 1 which satisfy Av = σu and A>u = σv. A vector u satisfying
this condition is called a left singular vector of A, a respective vector v is called a right
singular vector of A. �

The definition of the singular value decomposition along with some basic properties
can be found in standard texts on numerical mathematics or matrix analysis, see for
example [Bha96]. There is a connection between singular values and eigenvalues
that will also be of importance.
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§ 2 Basics from linear algebra and Lie theory

(2.6) Proposition
Consider a matrix A ∈ Cn×m, n, m ∈ N with the nonzero singular values given by
σ1, . . . , σr ∈ R≥0 for r ∈N.

The nonzero eigenvalues of AA> and of A>A, respectively, are given by σ2
1 , . . . , σ2

r .

Furthermore, the eigenvectors of AA> are exactly the left singular vectors of A and
the eigenvectors of A>A are exactly the right singular vectors of A. �

Some particular consequences of that connection which will be used later on are
listed in the following lemma.

(2.7) Lemma
Consider a matrix A ∈ Cn×m for n ≤ m.

Suppose the singular values of A are given by σ1, . . . , σn and a singular value decom-
position is given by A = UDV for U ∈ U(n), V ∈ U(m) and a real diagonal matrix
D ∈ Rn×m. The following is true:

1) The eigenvalues of AA> are given by λi = σ2
i for i = 1, . . . , n.

2) The matrix AA> is diagonalized by U, that is AA> = U(DD>)U>.

Conversely, suppose the eigenvalues of AA> are given by λ1, . . . , λn ∈ R≥0 and
U ∈ U(n) is such that AA> = UDU> for D = diag(λ1, . . . , λn) ∈ Rn×n. The
following is true:

1) The singular values of A are given by σi =
√

λi for i = 1, . . . , n.

2) A singular value decomposition of A is given by A = UD′V for some V ∈ U(m)

and a real diagonal matrix D′ ∈ Rn×m satisfying D′D′> = D. �

By the definition of the Frobenius norm of a matrix it is clear that it can be easily
computed in terms of its singular values.

(2.8) Lemma
The Frobenius norm of A ∈ Cn×m, n, m ∈ N with singular values σ1, . . . , σl for
l = min(n, m) is given by

‖A‖F =

√√√√ l

∑
i=1

σ2
i .

Now, an important class of matrices which have a particularly simple singular value
decomposition is introduced.
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§ 2 Basics from linear algebra and Lie theory

(2.9) Definition (normal matrices)
A matrix A is said to be normal if it commutes with its conjugate transpose, that is

AA> = A>A. �

Normal matrices may be classified easily by means of their eigenvalue decomposi-
tion.
(2.10) Lemma
Let A ∈ Cn×n be a normal matrix. Then A may be diagonalized by a unitary matrix,

that is: there exists U ∈ U(n) such that UAU> = D, where D ∈ Cn×n is a diagonal
matrix.

The singular values of A are given by the absolute values of its eigenvalues. �

Important classes of normal matrices are listed in the following examples.

(2.11) Example (normal matrices)
1) Let A ∈ H(n) be a Hermitian matrix.

Then A is normal: AA> = A2 = A>A.

Hermitian matrices are exactly the normal matrices with only real eigenvalues.

2) Let A ∈ U(n) be a unitary matrix.
Then A is normal: AA> = In = A>A.

Unitary matrices are exactly the normal matrices with only roots of unity as eigen-
values.

3) Let A ∈ Cn×n be a skew-Hermitian matrix, that is A = −A>.
Then A is normal: AA> = −A2 = A>A.

Skew Hermitian matrices are exactly the normal matrices with only purely imag-
inary eigenvalues. �

By lemma 2.8 the Frobenius norm of a matrix can be expressed by means of its
singular values. Since for normal matrices these are given by the absolute values of
the eigenvalues, the following result is obtained.

(2.12) Corollary
The Frobenius norm of a normal matrix A ∈ Cn×n with eigenvalues λ1, . . . , λn is
given by

‖A‖F =

√
n

∑
i=1
|λi|2.

�
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§ 2 Basics from linear algebra and Lie theory

The trace of the product of two positive semidefinite Hermitian matrices will be an
important value later on. It can be seen to be a nonnegative real number.

(2.13) Lemma
Let A, B ∈ Cn×n, n ∈N be two positive semidefinite Hermitian matrices.

Then Tr(AB) ∈ R≥0 holds. �

Proof. Any positive semidefinite Hermitian matrix X ∈ Cn×n can be decomposed as
X = UDU> for U ∈ U(n) and D = diag(d1, . . . , dn) for d1, . . . , dn ∈ R≥0. Therefore,
X may be written as X = X̂2 where X̂ = UD̂U> for D̂ = diag(

√
d1, . . . ,

√
dn). In

particular, X̂ is also positive semidefinite Hermitian.

Consequently, there are positive semidefinite Hermitian matrices Â, B̂ ∈ Cn×n such
that A = Â2 and B = B̂2 hold. Hence, one obtains

Tr(AB) = Tr(Â2B̂2) = Tr(ÂB̂B̂Â) = Tr(B̂Â
>

B̂Â) =
∥∥B̂Â

∥∥2
F ∈ R≥0.

2.2 Lie groups and Lie algebras

Some problems that are considered later require the minimization of ‖XY‖F or the
maximization of

∥∥X−1Y
∥∥

F for matrices X, Y. The Lie algebra g of a matrix Lie group
G also consists of matrices and the two structures are connected by a map exp :
g → G. By means of this map, the multiplicative structure of G is connected to the
additive structure of g. Part of the motivation for this work stems from the idea to
make use of the geometric structure of a Lie algebra and, by means of the map exp,
translate it to a multiplicative structure which helps to solve the problems described
above. In the following, Lie groups, Lie algebras and the map exp are introduced.
This section mainly follows [Kir08].

(2.14) Definition (complex Lie group)
A complex Lie group G is a group which is also a complex analytic manifold over
C. The group structure agrees with the manifold structure in the sense that the
multiplication map G×G → G, (g, h) 7→ gh and the inversion map G → G, g 7→ g−1

are analytic maps.

A morphism of complex Lie groups G1, G2 is an analytic map f : G1 → G2 which is
also a group homomorphism. �
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§ 2 Basics from linear algebra and Lie theory

(2.15) Example
A simple example of a complex Lie group is the additive group of C itself.

Moreover, many subgroups of GLn(C), such as SLn(C) or GLn(C) itself can be re-
garded as complex Lie groups. �

Lie algebras were originally obtained from Lie groups and due to that, their structure
was completely determined by the corresponding Lie group. It is, however, possible
to define Lie algebras independently.

(2.16) Definition (Lie algebra)
A Lie algebra L over a field K is a vector space together with a K-bilinear operation

L× L→ L, (x, y) 7→ [x, y]

satisfying the following identities:

(1) [x, y] = −[y, x] for all x, y ∈ L,

(2) [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 for all x, y, z ∈ L.

The expression [x, y] for x, y ∈ L is commonly referred to as the Lie bracket of x, y. �

(2.17) Example
For any field K and any n ∈N, the ring of matrices Kn×n can be given the structure
of a Lie algebra by defining the Lie bracket to be the ring theoretic commutator
[X, Y] := XY−YX for X, Y ∈ Kn×n. �

In the following, the connection between Lie groups and Lie algebras will be devel-
oped. To this end, a certain tangent space of a Lie group is essential.

(2.18) Lemma
Let G be a complex Lie group and g := T1G the corresponding tangent space at the
identity 1 ∈ G.

For any x ∈ g, there exists a unique morphism of Lie groups γx : C → G such that
γ′x(0) = x holds, where γ′x denotes the derivative of γx. The map γx is called the
one-parameter subgroup with respect to x. �

This lemma allows to give the following definition.
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(2.19) Definition (exponential map)
Let G be a complex Lie group and g = T1G the corresponding tangent space at the
identity 1 ∈ G.

The exponential map exp : g→ G is defined by

exp(x) = γx(1).

The exponential map is analytic and locally invertible. �

The local invertibility of the exponential map allows to describe the multiplication
of two elements of the Lie group in terms of their two corresponding elements of
the tangent space.

(2.20) Corollary
There is an analytic map µ : g× g → g, defined in a neighborhood of (0, 0), which
satisfies exp(µ(x, y)) = exp(x) exp(y).

Analytic maps may be presented by their Taylor expansion. For µ, one obtains

µ(x, y) = x + y + λ(x, y) + · · · ,

where the dots represent terms of order larger than two and λ : g × g → g is a
bilinear map satisfying λ(x, y) = −λ(y, x). �

By means of the map λ, the space T1G may now be endowed with the structure of a
Lie algebra.

(2.21) Lemma
Consider a complex Lie group G. The tangent space g := T1G at the identity 1 ∈ G
is a Lie Algebra with Lie bracket defined as [x, y] := λ(x, y) for x, y ∈ g. �

For the applications that will be studied later matrices over the complex numbers
will be of central interest. Therefore, in particular matrix groups will be consid-
ered.

(2.22) Definition
Closed subgroups of GLn(C) are complex Lie groups in their own right and are
called linear Lie groups. �

(2.23) Example
Examples of linear Lie groups include SLn(C) or again, GLn(C) itself. In particular,
the Lie algebra of GLn(C) is given by Cn×n, as introduced in example 2.17. �
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§ 2 Basics from linear algebra and Lie theory

2.3 The exponential map for linear Lie algebras

As discussed above, the exponential map will be employed to parametrize matrices
in later chapters. Therefore, some important properties of the exponential map for
linear Lie algebras are introduced. This section also follows [Kir08].

(2.24) Proposition
For linear Lie-groups G, the exponential map is given by the well known series

exp : T1G → G, X 7→
∞

∑
i=0

1
i!

Xi.

�

As a consequence of the above proposition, the exponential map for linear Lie groups
may be regarded as a generalization of the well known real or complex exponential
map. In particular, it acts on the diagonal entries of diagonal matrices by exp : C→
C.
(2.25) Corollary
Consider a complex diagonal matrix D ∈ Cn×n with diagonal entries d1, . . . , dn ∈ C.
The value exp(D) is given by

exp

d1
. . .

dn

 =

exp(d1)
. . .

exp(dn)

 .

�

Some further important properties are listed in the following lemma.

(2.26) Lemma (Properties of the exponential map)
Consider a linear Lie group G with corresponding Lie algebra g = T1G. The follow-
ing are true:

(i) xy = yx =⇒ exp(x) exp(y) = exp(x + y) for x, y ∈ g.

(ii) exp((t + s)x) = exp(tx) exp(sx) for s, t ∈ K and x ∈ g.

(iii) X exp(y)X−1 = exp(XyX−1) for X ∈ G and y ∈ g. �

Part (iii) of this lemma, combined with the observation how the exponential map acts
on diagonal matrices in the corollary before, yields the following result concerning
eigenvalues.
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§ 2 Basics from linear algebra and Lie theory

(2.27) Corollary
Consider a matrix Y ∈ Cn×n, n ∈N.

1) Suppose Y is diagonalizable with eigenvalues λ1, . . . , λn. Then exp(Y) is diago-
nalizable with eigenvalues exp(λ1), . . . , exp(λn).

2) The matrix Y is Hermitian ⇐⇒ exp(Y) is positive definite Hermitian. �

For the special case of normal matrices further consequences are immediate.

(2.28) Corollary
Let A ∈ Cn×n, n ∈ N be a normal matrix with A = U>DU for U ∈ U(n) and a
diagonal matrix D ∈ Cn×n.

Then exp(A) is normal and satisfies exp(A) = U> exp(D)U. �

2.4 Matrix series

In a later chapter, some explicit calculations involving the exponential map for ma-
trices have to be performed. In order to do so, some basic properties of series of
matrices have to be established. The space Cn×n is a Banach space with respect to
the Frobenius norm ‖·‖F. Therefore, series of matrices are a special case of series in
Banach spaces. An introduction to Banach spaces and the following basic properties
of corresponding series can be found in [Meg98].

(2.29) Proposition
Consider two Banach spaces V1, V2 over a field K and two families of elements
(xi)i∈N, (yi)i∈N for xi, yi ∈ V1 for all i ∈N.

(i) If ∑∞
i=1 xi and ∑∞

i=1 yi are convergent, then so is ∑∞
i=1(xi + yi)

and ∑∞
i=1 xi + ∑∞

i=1 yi = ∑∞
i=1(xi + yi) holds.

(ii) If ∑∞
i=1 xi is convergent and α ∈ K is a scalar, then ∑∞

i=1 αxi is convergent and
satisfies ∑∞

i=1 αxi = α ∑∞
i=1 xi.

(iii) If ∑∞
i=1 xi is convergent and T : V1 → V2 as a continuous linear operator, then

∑∞
i=1 T(xi) is convergent in V2 and ∑∞

i=1 T(xi) = T (∑∞
i=1 xi) holds.

(iv) Denote the norm of V1 by ‖ · ‖. Then ‖∑∞
i=1 xi‖ ≤ ∑∞

i=1 ‖xi‖ holds.

(v) If ∑∞
i=1 ‖xi‖ is convergent, the series ∑∞

i=1 xi is said to be absolutely convergent.
In particular, this implies that ∑∞

i=1 xi is convergent and so is ∑∞
i=1 xπ(i) for any

permutation π of N. �
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§ 2 Basics from linear algebra and Lie theory

Multiplication by a matrix C ∈ Cn×n yields a linear continuous operator. Thus, the
following corollary is obtained.

(2.30) Corollary
Consider families of matrices (A(i))i∈N, (B(i))i∈N for A(i), B(i) ∈ Cn×n for all i ∈ N

and some C ∈ Cn×n.

If ∑∞
i=1 A(i) is convergent and C ∈ Cn×n, then ∑∞

i=1 CA(i) is convergent and satisfies

∞

∑
i=1

CA(i) = C
∞

∑
i=1

A(i).

Consequently, if ∑∞
i=1 A(i) and ∑∞

j=1 B(j) are convergent, one obtains

∞

∑
i=1

A(i)
∞

∑
j=1

B(j) =
∞

∑
i=1

∞

∑
j=1

A(i)B(j).

�

When introducing the series expansion of the exponential map for matrices, it was
implicitly claimed that it is convergent and hence well defined. This can now be
shown formally. It is easiest to show that it even converges absolutely.

(2.31) Lemma
The series ∑∞

i=0
Ai

i! converges absolutely for any A ∈ Cn×n. �

Proof. The submultiplicativity of the Frobenius norm yields
∥∥Ai

∥∥
F ≤ ‖A‖i

F for all
i ∈N. Hence, the assertion of the lemma can be obtained as follows:

∞

∑
i=0

∥∥∥∥Ai

i!

∥∥∥∥
F
≤

∞

∑
i=0

‖A‖i
F

i!
= exp(‖A‖F).

The trace of a matrix series will be of importance later. It can be shown to be the
series of the traces of the summands.

(2.32) Corollary
Suppose ∑∞

i=0 A(i) converges, then Tr
(

∑∞
i=0 A(i)

)
= ∑∞

i=0 Tr(A(i)) holds and the se-
ries on the right hand side is also convergent. �

16



§ 2 Basics from linear algebra and Lie theory

Proof. Clearly, if ∑∞
i=0 A(i) converges, for any k, l ∈ {1, . . . , n} the series ∑∞

i=0 A(i)
kl also

converges. Additionally making use of proposition 2.29 part (i) yields

Tr

(
∞

∑
i=0

A(i)

)
=

n

∑
j=1

(
∞

∑
i=0

A(i)

)
jj

=
n

∑
j=1

∞

∑
i=0

A(i)
jj =

∞

∑
i=0

n

∑
j=1

A(i)
jj =

∞

∑
i=0

Tr(A(i)).

This is the assertion of the corollary.
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§ 3 Introduction to space-time block coding

This chapter begins by explaining how data are transferred over a wireless channel
in general. After the basic setting has been described, space-time block codes are
introduced and the challenges in designing such codes are discussed.

3.1 Modeling wireless communication

In general, information can be transmitted over a wireless channel by modulating
an electromagnetic wave transmitted by one antenna and then demodulating it ac-
cordingly at a receive antenna. An electromagnetic wave has three properties which
can be modulated and hence used to encode information. These properties are its
frequency, its amplitude and its phase. In order for the receiver to be able to iden-
tify a signal sent by the corresponding transmitter, at least one of these properties
has to be fixed. A commonly used setup is fixing a frequency and then encoding
information using a finite amount of different states of the phase and the amplitude.
Denoting the phase of the signal by ϕ and the amplitude by R, a piece of information
transmitted over the channel can then be regarded as a complex number Reiϕ.

An important difference between wireless communication and the wire based case
is that the signal will spread out from the transmitting antenna in any direction. It
may then be blocked by objects in the way or be reflected towards different directions
multiple times. This causes multiple possibly degraded copies of the original signal
to reach the receive antenna via several different paths. The resulting effect is called
fading of the signal and is commonly modeled by multiplying the sent signal by a
complex number called the fading-coefficient. This coefficient depends on the actual
physical environment between the transmitter and the receiver at the time the signal
is sent.

To get a complete model of the wireless communication channel, also the presence of
background-noise at the receiving antenna needs to be included. This part is simply
modeled by adding another complex number to the faded signal.

Altogether the following setting is obtained:

x• h // •y = hx + v

A signal x ∈ C is sent from the antenna on the left, it undergoes the fading process
modeled by the fading-coefficient h ∈ C along the way and at the receive antenna
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§ 3 Introduction to space-time block coding

on the right side a message y = hx + v is received, thereby v ∈ C represents the
additive background-noise.

It is worth noting at this point that the transmission could always be made more
reliable by transmitting a scaled signal ρx for a large real factor ρ > 1 as this would
reduce the relative influence of the additive noise on the received signal. However,
scaling up the signal which is sent across the channel corresponds to using more
energy for that transmission in practice. Therefore the absolute values of signals
that are sent across the channel are bound by the amount of energy available at the

transmitter. Consequently, the ratio |hx|2

|v|2
is an important factor in wireless commu-

nication. It is referred to as the signal-to-noise ratio, commonly abbreviated as SNR.

In many applications the signal strength will be significantly higher than the strength
of the background noise and therefore the SNR is commonly measured by the loga-
rithmic decibel (dB) scale. The SNR ρ in dB is given by

ρ = 10 · log10

(
|hx|2

|v|2

)
dB.

3.2 Space-time block codes

In order to improve the reliability of the communication described above systems
using multiple transmit and receive antennas have been introduced. For instance
when using two antennas at both ends the setting is as follows:

x1•
h11 //

h21

))

• y1 = h11x1 + h12x2 + v1

x2•
h22

//
h12

55

• y2 = h21x1 + h22x2 + v2

There are two signals x1, x2 ∈ C now which are sent from the two respective transmit
antennas at the same time. These two signals are reaching the two receive antennas
via different paths. Consequently there are now four different fading coefficients
hij for i, j ∈ {1, 2} in total. The coefficient hij models the fading process which the
signal xi, that was sent at the i-th transmit antenna, undergoes while traveling to the
j-th receive antenna. Also there are two values v1, v2 ∈ C representing the respective
background noise at each receive antenna. The signal yj which is received at the j-th
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§ 3 Introduction to space-time block coding

receive antenna is then a superimposition of the two faded signals that have been
transmitted plus the additive noise present at this antenna: yj = h1jx1 + h2jx2 + vj.

This setting can be further generalized to employ M transmit and N receive antennas
for any M, N ∈ N. Signals x1, . . . , xM ∈ C are transmitted simultaneously at the
transmit antennas and travel along N ·M different paths toward the receive antennas.
Let hij ∈ C again denote the coefficient which models the fading that the signal xi,
which was sent at the i-th transmit antenna, undergoes while traveling to the j-th
receive antenna. The signal yj received at the j-th receive antenna is then given
by yj = ∑N

i=1 hijxi + vj, where vj again denotes the additive noise present at this
antenna.

The vector of the received received signals can hence be expressed by the vector
equation  y1

...
yN

 =

 h11 · · · h1M
... . . . ...

hN1 · · · hNM


 x1

...
xM

+

 v1
...

vN

 .

The matrix H := (hij)1≤i≤N,1≤j≤M ∈ CN×M is called the fading-matrix or the channel-
matrix.

So far, the spatial dimension has been exploited by spreading out multiple antennas
to different spatial locations and by combining the information symbols sent and
received in vectors.

Moreover, it is reasonable to assume that the physical environment of the commu-
nication channel does not change for short periods of time. Therefore the fading-
matrix may be assumed to be constant for several consecutive transmissions. The
corresponding time period is called a coherence interval. In the following it will be
assumed that T information symbols can be transmitted per antenna during this in-
terval. Let the symbol that is transmitted from the i-th transmit antenna during the
j-th time step be denoted by xij ∈ C. This yields T vectors x11

...
xM1

 , . . . ,

 x1T
...

xMT

 ∈ CM

which can be transmitted while the fading matrix H remains constant. These vectors
can be combined into a matrix X ∈ CM×T such that the ij-th entry of X contains the
information symbol sent from the i-th transmit antenna during the j-th time step.
Furthermore, set vij to be the background-noise at the i-th receive antenna during
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the j-th time step for 1 ≤ i ≤ N, 1 ≤ j ≤ T and yij to be the received signal at the
i-th receive antenna during the j-th time step for 1 ≤ i ≤ N, 1 ≤ j ≤ T. The channel
equation becomes y11 · · · y1T

... . . . ...
yN1 · · · yNT

 =

 h11 · · · h1M
... . . . ...

hN1 · · · hNM


 x11 · · · x1T

... . . . ...
xM1 · · · xMT

+

 v11 · · · v1T
... . . . ...

vN1 · · · vNT

 .

Information that shall be sent across the wireless channel can now be encoded into
the matrix X. A finite collection C of such codewords is referred to as a space-time
block code (STBC). Such a set C is commonly also referred to as a code or a codebook.

An important parameter of an STBC is the amount of codewords it contains, as that
controls the amount of information that is essentially conveyed by one codeword. In
information theory, the quantity of information is commonly measured in bit. If a
codebook C ⊆ CM×T contains |C| = n codewords, it holds log2(n) bit of information.
Therefore, log2(|C|) bit of information can be transmitted across the channel over
one coherence interval of T time steps. This motivates the definition of the rate of an
STBC. The rate of a STBC C is defined as

rate(C) :=
log2(|C|)

T
.

It corresponds to the amount of information, measured in bits, which can be trans-
mitted across the channel during one time step using the codebook C.

In the situation introduced in this section, a message is received at several antennas
over several time steps. Therefore it is necessary to extend the notion of the signal-
to-noise ratio. In case a codeword X ∈ CM×T has been sent over a channel with the
corresponding channel matrix H ∈ CN×M and the background noise at the receive
antennas represented by the matrix V ∈ CN×T, the SNR ρ at the receiver is defined
as

ρ = ρ(X, H, V) =
‖HX‖2

F

‖V‖2
F

.

3.3 The stochastic model

Now that the notion of a space-time-block code is established, the focus is placed on
the problem of finding codes which will perform well in practice.
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There are two main challenges which have to be met in order to create well-perform-
ing STBC. At first there needs to be a preferably efficient algorithm that decodes a
received signal correctly to the codeword that was transmitted with high probability.
In addition it has to be investigated how a codebook should be designed in order
for the decoding algorithm to make as few mistakes as possible.

These problems depend on the channel matrices H and the noise matrices V that
occur in the channel equation. As it cannot be assumed that these matrices are
known when designing a codebook, they need to be modeled as random variables.

The coefficients vij representing the background noise at the i-th receive antenna
during the j-th time step can be assumed to be statistically independent and are
commonly assumed to be complex Gaussian distributed. This will also be assumed
throughout this work.

The probability distributions of the fading coefficients does depend more strongly on
the specific setting in which the codes are to be used. Therefore different models do
exist, providing different random distributions for the entries of the channel matrix.
However, in most cases a model known as Rayleigh-fading can be applied and it has
therefore received by far the most attention. In this case, the fading-coefficients are
all supposed to be independent and complex Gaussian distributed with variance 1.
In the following only this case will be considered.

When the channel and noise coefficients are considered as random variables, it is
possible to introduce the notion of signal-to-noise ratio for the channel as opposed
to defining it for one particular transmission. The signal-to-noise ratio ρ of a channel
at the receiver is defined as

ρ =
E[‖HX‖2

F]

E[‖V‖2
F]

,

where E denotes the expected value of the respective expressions.

3.4 Types of STBC

When it comes to the decoding of STBC, a distinction has to be made whether or not
the channel matrix H is known to the receiver. In practice, this knowledge can be
obtained by sending some predefined training signals over the channel, allowing the
receiver to estimate the channel matrix. If the channel matrix is known at the receiv-
ing end, the transmission is referred to as a coherent transmission. Otherwise it is
called a noncoherent transmission. Extending this notion, codes specifically designed
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for one of these cases are also referred to as respectively coherent or noncoherent
codes.

Employing the process of learning the channel coefficients does only make sense
if the channel matrix stays invariant for a sufficiently long period of time. If the
physical channel between the sender and the receiver changes too quickly, it may
not be worthwhile to learn the channel coefficients at the receiver. The most obvious
case when this does happen is when at least one of the communication partners is
inside of a vehicle moving above a certain speed. The particular speed at which
it is no longer beneficial to estimate the channel coefficients depends on several
properties of the channel. Besides the frequency used for transmitting the signal
and the statistical distribution of the occurring coefficients, the number of antennas
plays a limiting role. The more antennas used to transmit and receive the signals,
the more channel coefficients have to be estimated and therefore a larger amount of
time steps has to be allocated as a training period.

In [HM00] the authors briefly discuss an example which gives an idea in which cases
it is not feasible to use coherent coding any more.

(3.1) Example (Wireless communication involving a moving party)
For a transmitter aboard a vehicle moving at 60 miles per hour (about 100 kilometers
per hour) transmitting at a frequency of 1.9 Gigahertz the channel stays invariant for
about 3 milliseconds. In this setting a reasonable assumption is that about 30000
symbols can be transmitted per second. This allows for about 50− 100 symbols to
be transmitted during the period over which the channel remains invariant.

This severely limits the amount of antennas for which it makes sense to use training
based coherent coding.

The authors further argue that at a speed of 500 kilometers per hour it would not
even be feasible to learn the single coefficient of a channel using only one transmit
and one receive antenna. �

The focus of this work is on studying the noncoherent case. However, an overview
about the most important topics concerning space-time block codes in general will
be presented in the following. In particular, besides the noncoherent case, a short
overview of the coherent case as well as a special case of noncoherent coding, known
as differential coding, will be given. The challenges which arise with each of these
cases will be discussed briefly.
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3.4.1 The coherent case

For many practical applications it is reasonable to assume that the channel matrix is
known at the receiving end. The problem of designing codes for this case has there-
fore received the greatest attention and very many constructions of corresponding
codes have been proposed.

The first question that has to be answered when considering a class of codebooks is
how decoding can be done. To that end, assume the codewords of a space-time block
code C ⊆ CM×T are transmitted over the channel using coherent transmission. For
a received matrix Y, the decoding problem is to find the codeword X̃ which satisfies
the equation ∥∥HX̃−Y

∥∥
F = min

X∈C
‖HX−Y‖F .

Since in the coherent case the fading-matrix H is known to the decoder, the set of
all faded codewords {HX | X ∈ C} can be computed and the minimal solution to
‖HX−Y‖F can be found. In general, this leads to an exhaustive search in a set with
|C| elements. However, if the codewords are additionally assumed to be linear in the
information symbols, they may be embedded into a lattice Λ. The decoding problem
then translates into a closest lattice point problem in the distorted lattice HΛ which
can be solved efficiently, for example using the sphere-decoder. (See [VB99, HV05].)

The problem of designing good codes, however, turns out to be harder. By examin-
ing the pairwise error probability it was found that in order to design good codes,
the absolute value of the determinant of the difference of two codewords needs to
be maximized. This, in particular, forces the difference of any two codewords to be
invertible, which may be achieved by constructing codebooks based on division al-
gebras. Many good codes have been found using this approach. Several exemplary
constructions can be found in [BO13] along with an extensive introduction to central
simple algebras and an explanation how they can be used to find suitable division
algebras.

3.4.2 Differential coding

If the channel matrix is not known to the receiver, the decoding and the design prob-
lem differ a lot from the ones described in the previous section. However, there is a
technique called differential coding that can be used for noncoherent communication
and for which the design criteria are similar to the ones obtained for the coherent
case. As this also allows to use interesting algebraic constructions to obtain good
codebooks, this special case shall also be introduced here.
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In order to use differential coding, the codebook is required to consist only of square
unitary matrices. In addition, it is necessary that the channel stays invariant for
(T + 1) ·M time steps. This allows T + 1 matrices of dimension M×M to be trans-
mitted during that time frame. Thus, codebooks are finite subsets C ⊆ U(M). The
transmitted T + 1 matrices allow to communicate T codewords S1, . . . , ST ∈ C to the
receiver. In particular, the matrices

X0 := S0 := IM, X1 := S1, X2 := S1S2, . . . , XT := S1 · · · ST

are consecutively transmitted over the channel. Therefore, for j > 0 after the j-th
transmission, the matrix

Yj = HXj + Vj = HS0 · · · Sj + Vj = Yj−1Sj −Vj−1Sj + Vj

is received. In this formula, the right hand side for none of the j = 1, . . . , T depends
on the channel matrix H. Since the signal Yj−1 has been received in the time step
before, it is known to the decoder, and therefore the message received in the j-t time
step may be decoded to the codeword S̃j satisfying∥∥Yj −Yj−1S̃j

∥∥
F = min

S∈C

∥∥Yj −Yj−1S
∥∥

F .

It has been found that, as in the coherent case, the most important design criterion
is to maximize |det(S1 − S2)| for S1 6= S2, S1, S2 ∈ C. Therefore, the design problem
becomes the same as in the coherent case with the additional restriction that all
codewords have to be unitary matrices. A way to construct suitable codebooks from
division algebras is also described in [BO13].

To conclude, it shall be noted that while technically differential coding does not re-
quire the knowledge of the channel matrix at the receiver, it may also be regarded
as a special case of coherent coding. To see that, recall that coherent coding re-
quires a training period at the beginning of every coherence interval before actual
information can be transmitted. During this period an estimation of the channel co-
efficients is obtained. In the case of differential coding, transmitting the initial signal
X0 = IM may be regarded as such a training period. For all later transmissions, the
knowledge of the channel coefficients is implicitly handed over from the preceding
transmission. Also, differential coding requires the channel to remain invariant for
at least 2M time steps in order to transmit one codeword. In that case, it would also
be possible to reserve the first few time steps to estimate the channel coefficients and
to use coherent coding to transmit information afterwards.
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3.4.3 The noncoherent case

The most general case is the one where the channel information is not known at the
receiver and no additional restrictions are imposed upon the codewords. As less
information is available to the receiver, naturally the rate which can be achieved by
noncoherent coding is less than what may be achieved if the channel coefficients are
known. Noncoherent coding is therefore only used in cases in which the channel
does in fact change too quickly to make an estimation of the channel coefficients
feasible. For these reasons noncoherent codes have received less attention than their
coherent counterparts so far.

So far the best known STBCs for the noncoherent channel only make use of bT
2 c

transmit antennas. These codes are constructed by means of a coding scheme known
as unitary coding.

For such codes the maximum likelihood decoding problem of finding the codeword
X∗ for a received message Y becomes

X∗ = argmaxX∈C

(∥∥∥X>Y
∥∥∥

F

)
.

The corresponding decoder is referred to as the GLRT-decoder, and for the decoding
problem efficient means of decoding are available, see for instance [RCC07].

Concerning the problem of designing good unitary codebooks, several criteria have
been proposed. These criteria are usually based on the matrix products X1X2

>

for codewords X1, X2 ∈ C ⊆ CM×T. For instance, the GLRT-criterion requires to
minimize

∥∥∥X1X2
>
∥∥∥

F
for distinct codewords X1, X2. Good unitary codes have been

constructed with respect to this criterion. It will also be discussed later on and it
will be investigated to what extent it can be generalized to noncoherent STBC if one
does not require the codewords to be unitary.
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§ 4 Known results and constructions of noncoherent
STBC

In this chapter the known results on noncoherent STBC will be summarized and the
best known constructions will be presented.

The systematic work on noncoherent STBC started in 1999 with an analysis of the
capacity of the corresponding channel by B. Hochwald and T. Marzetta ([MH99]).
The capacity of a transmission channel is an information theoretic measure of the
maximal amount of information which can be transmitted over this channel in a
given amount of time without any data loss. It therefore provides an upper bound on
the performance which may be achieved by any code used to transmit information
over the channel.

The main results concern the structure which codewords need to have in order for
a corresponding code to achieve the channel capacity. Furthermore the dependence
of the capacity on channel parameters such as the number of transmit antennas
M, the length of the time period over which the channel stays invariant T and the
signal-to-noise ratio are investigated.

The paper was followed in 2000 by a second one ([HM00]) which introduced a coding
scheme referred to as unitary space-time modulation. This scheme restricts codewords
to matrices X ∈ CM×T for T > M which satisfy XX> = ρIM for a positive real factor
ρ depending on the signal-to-noise ratio. In doing so, the design- and decoding
problem could be significantly simplified and some bounds on the capacity could be
given for certain specific choices of M and T.

Unitary space-time modulation has also been referred to as unitary coding. Following
its introduction, a connection to a packing problem on the Grassmann manifold has
been investigated and the best known noncoherent STBC that have been constructed
make use of this connection. The problem of finding optimal noncoherent STBC,
in the sense that they yield a transmission error rate which is as low as possible,
is, however, still very challenging. Since optimal codes are only known in some
special cases, numerical algorithms to find near optimal codebooks are of interest.
At the end of this chapter one algorithm is presented, outlining the complexity of
the corresponding optimization problem.
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4.1 General results on noncoherent STBC

This section introduces and elaborates on the known results on general noncoherent
STBC with no further restrictions. It mainly follows the initial paper by Hochwald
and Merzetta [MH99]. However, many details have been added to the stochastic
computations in order to provide a good foundation for the generalizations which
will be made in later chapters.

As introduced in section 3.3, the channels which are going to be considered through-
out this work will be assumed to be subject to Rayleigh fading. To start with, the
necessary notation is fixed. During a period over which the channel stays invariant
a codeword X ∈ CM×T is transmitted. It undergoes some fading by the channel-
matrix H ∈ CN×M and is further degraded by some additive noise V ∈ CN×T at the
receiving antennas. The received codeword is then given by Y = HX +V ∈ CN×T.

In the case of Rayleigh fading, the entries of the channel matrix are complex Gaus-
sian distributed with expected value 0 and variance 1. The channel equation will be
assumed to be normalized in the sense that the Gaussian distributed additive noise
also has variance 1 at any antenna and in any time step. If the variance of the entries
of V is given by σ2, this can be achieved by accordingly scaling the channel equality
to

1
σ

Y = H
(

1
σ

X
)
+

1
σ

V.

While investigating the performance of a code with respect to a certain channel a
few basic stochastic principles will have to be used. These are briefly introduced in
the following remark.

(4.1) Remark
(i) The expected value is a linear operator. That is, for two random variables

X, Y and a deterministic value α the equalities E[X + Y] = E[X] + E[Y] and
E[αX] = αE[X] are satisfied.

(ii) The variance of a complex random variable X is defined as Var(X) = E[XX].

(iii) The expected value is not multiplicative. The covariance of two complex random
variables X and Y, denoted by Cov(X, Y), may be defined as

Cov(X, Y) = E[XY]− E[X]E[Y].

In the special case where X and Y are independently distributed the covariance
is zero and hence the expected value is multiplicative in X and Y.
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(iv) If X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) are two multivariate random vari-
ables, their covariance matrix Λ is defined by Λij = Cov(Xi, Yj) for 1 ≤ i ≤ n
and 1 ≤ j ≤ m. �

Using the respective assumptions that have been made on the random distributions
of the channel matrix and the noise matrix, the signal-to noise ratio of the considered
channel can be simplified. This is very helpful for investigating the performance of
codebooks. In particular, two distinct codebooks may only be compared in a fair
manner if they yield the same signal-to-noise ratio.
(4.2) Lemma
Assume that the entries of H and V are complex Gaussian distributed with variance
1 and expected value 0. Then, the signal-to-noise ration of the channel is given by

E[‖HX‖2
F]

E[‖V‖2
F]

=
E[‖X‖2

F]

T
.

Proof. The expected values in the numerator and the denominator will be evaluated
separately.

To start with, the numerator can be written out as

E[‖HX‖2
F] =

N

∑
i=1

T

∑
j=1

E[(HX)ij(HX)ij] =
N

∑
i=1

T

∑
j=1

M

∑
k=1

M

∑
l=1

E[HikXkjHilXl j].

The entries of X and H are stochastically independent and hence the equality

E[HikXkjHikXkj] = E[HikHil] · E[XkjXl j]

holds for all suitable i, j, k, l. Furthermore the entries of H have variance 1 and are
pairwise stochastically independent. Therefore, they satisfy

E[HikHil] =

{
1 if k = l

0 otherwise.

Altogether, one obtains

E[‖HX‖2
F] =

N

∑
i=1

T

∑
j=1

M

∑
k=1

E[XkjXkj] = N · E[‖X‖2
F].

Using analogous arguments, the value of the denominator can be computed as

E[‖V‖2
F] =

N

∑
i=1

T

∑
j=1

E[VijVij] = N · T.
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The lemma implies that the SNR of the channel depends only on the signal strength
‖X‖F. Therefore, two codebooks for which the codewords have the same Frobenius
norms yield the same SNR. This is important, as it only makes sense to compare two
codebooks which yield the same SNR.

As a next step the probability of transmission errors shall be determined. To that
end, suppose X ∈ CM×T has been sent over the channel and consider the channel
equation Y = HX + V. The entries of H and V are all independently distributed
and the rows of Y only depend on disjoint subsets of these variables, hence they
are independent as well. Denote the covariance matrix of Yi by Λ(i)

X . It will later
be shown to be invertible for any X ∈ CM×T and i ∈ {1, . . . , N}. The probability
of a row Yi ∈ C1×T being received at the i-th receive antenna if a codeword X
has been sent can be computed by means of the probability density function of the
multivariate complex normal distribution. It is given by

P(Yi|X) =
1

πT det
(

Λ(i)
X

) exp
(
−Yi(Λ

(i)
X )−1Yi

>)
.

The authors of [MH99] quickly skip over the derivation of the error probability and
do not explicitly use this density function. A detailed introduction of the multivari-
ate normal distribution including its density function can be found in [Gut95].

The matrices Λ(i)
X can be calculated directly.

(4.3) Lemma
Suppose a codeword X has been sent across the channel. For any i ∈ {1, . . . , N} the
covariance matrix of the i-th row of Y is given by:

Λ(i)
X = IT + X>X.

This matrix does not depend on the choice of the row i. Therefore is is not necessary
to index the matrix by i and in the following the notation

ΛX := Λ(i)
X = IT + X>X for i ∈ {1, . . . , N}

will be used. �

Proof. The formula can be deduced by directly computing the covariance matrix of
the i-th row of Y. By definition, its (j, k)-th entry is given by(

Λ(i)
X

)
jk
= Cov(Yij, Yik) = E[YijYik]− E[Yij]E[Yik] for 1 ≤ j, k ≤ T.
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Considering the second summand first, on the one hand

E[Yij] = E[
M

∑
m=1

HimXmj + Vij] =
M

∑
m=1

E[Him]Xmj + E[Vij] = 0

holds and hence also E[Yij]E[Yik] = 0.

On the other hand one obtains:

E[YijYik] = E

[(
Vij +

M

∑
s=1

HisXsj

)(
Vik +

M

∑
t=1

HitXtk

)]

= E[VijVik] +
M

∑
s=1

E[His]E[Vik]Xsj +
M

∑
t=1

E[Vij]E[Hit]Xtk +
M

∑
s=1

M

∑
t=1

E[HisHit]XsjXtk

= E[VijVik] +
M

∑
s=1

M

∑
t=1

E[HisHit]XsjXtk

=

{
∑M

s=1 XsjXsk , if j 6= k

1 + ∑M
s=1 XsjXsk , if j = k.

For the last equation, the equalities

E[VijVik] =

{
1 if k = l

0 otherwise
and E[HisHit] =

{
1 if s = t

0 otherwise

were used, as in the proof of lemma 4.2. This yields the assertion of the lemma.

By this explicit presentation, the matrices ΛX can also be seen to be invertible.

(4.4) Lemma
The matrix ΛX = IT + X>X is positive definite Hermitian and hence invertible for
any X ∈ CM×T. �

Proof. Suppose a singular value decomposition of X ∈ CM×T is given by X = UDV
for U ∈ U(M), V ∈ U(T) and a real diagonal matrix D ∈ RM×T with nonnegative
diagonal entries.

Then X>X = V>(D>D)V is positive semidefinite Hermitian. Consequently, the
matrix ΛX = IT + X>X is positive definite Hermitian and hence invertible.

Since the rows of the matrix Y are stochastically independent, the conditional prob-
ability that Y is received equals the product of the probabilities for each of its rows
to be received. Thus, one obtains the following result. Note that Tr(AB) = Tr(BA)

holds for any matrices A, B for which the products AB and BA are defined.
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(4.5) Proposition
The probability that a message Y is received if a codeword X has been sent is given
by

P(Y|X) =
exp(−Tr(Λ−1

X Y>Y))

πTN detN(ΛX)
.

�

The error-probability depends mainly on the covariance matrix ΛX. For this reason,
it plays a central role in the performance of noncoherent STBC.

Two more important results which were obtained by Hochwald and Marzetta in
their initial paper concern the capacity of the noncoherent channel. In particular,
they derive necessary criteria which codewords have to satisfy in order to achieve
the channel capacity. This does essentially mean that it is not worthwhile to study
codewords which do not satisfy these criteria.

Later in this work analogous results will be obtained using a different approach
Therefore, the two respective theorems are cited here without going into too much
detail regarding the used terminology. Nonetheless, their ramifications are elabo-
rated upon afterwards.

(4.6) Theorem ([MH99] Theorem 1)
The capacity that can be obtained with M > T transmitter antennas is the same as
the capacity obtained with M = T antennas. �

This result provides the fact that it is not possible to enhance the communication by
making the number of transmitter antennas larger than the number T of time steps
over which the channel remains invariant. Therefore, only codewords X ∈ CM×T for
M ≤ T need to be considered.

Recall that an isotropically distributed unitary matrix has a probability distribution that
remains unchanged when that matrix is multiplied by any deterministic unitary
matrix.

(4.7) Theorem ([MH99] Theorem 2)
The signal matrix that achieves capacity can be written as X = DU, where U is
a T × T isotropically distributed unitary matrix, and D is an independent T × M
real, nonnegative, diagonal matrix. Furthermore the joint density of the diagonal
elements of V can be chosen such that it is unchanged by rearrangements of its
arguments. �
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The main implication of this theorem is that the capacity does not change when a
codeword is multiplied by a unitary matrix from the left.

Using these results the authors aimed at finding bounds on the capacity of the
communications channel. These are hard to obtain in general and therefore, they
restricted themselves to the case of codewords of the form X = DU with a real di-
agonal matrix D = ρIM×T ∈ CM×T for M < T, some ρ ∈ R>0 and a unitary matrix
U ∈ U(T). These codewords satisfy XX> = ρ · IM.

This restriction lead to the suggestion of unitary space-time modulation in their
subsequent work ([HM00]).

4.2 Unitary codes

In the following, unitary codes will be formally defined, it will be studied how they
may be decoded and how good unitary codes can be constructed. The reasoning
mainly follows the consideration of the noncoherent channel in [HM00].

(4.8) Definition
Suppose M < T holds and consider ρ ∈ R>0. A unitary noncoherent STBC is a finite
subset

C ⊆ {X ∈ CM×T | XX> = ρIM}.

�

This definition implies ‖X‖F =

√
Tr(XX>) =

√
ρM for any codeword X of a uni-

tary code. Thus, by means of lemma 4.2, the signal-to-noise ratio can be explicitly
computed.

(4.9) Lemma
Consider a unitary codebook C ⊆ {X ∈ CM×T | XX> = ρIM} for ρ ∈ R>0. If this
codebook is used to transmit information, the signal-to noise ratio of the channel is
given by

E[‖HX‖2
F]

E[‖V‖2
F]

=
E[‖X‖2

F]

T
= ρ

M
T

.

�

Furthermore, the restriction to unitary codes yields a significant simplification to
the error probability. In order to obtain this simplification, the following lemma is
needed.
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(4.10) Lemma
Suppose XX> = ρIM for ρ ∈ R>0, X ∈ CM×T and consider ΛX = IT + X>X.

Then, the inverse of ΛX is given by

Λ−1
X = IT −

1
1 + ρ

X>X.

Furthermore, its determinant is given by det(ΛX) = (1 + ρ)M. �

Proof. The statement on the inverse of ΛX is easily checked by direct calculations:

(IT + X>X)(IT −
1

1 + ρ
X>X) = IT + X>X− 1

1 + ρ
X>X− ρ

1 + ρ
X>X

= IT.

Concerning the determinant, note that ΛX is Hermitian and hence diagonalizable.
Therefore, its determinant is given by the product of its eigenvalues. By lemma 2.7
the eigenvalues of X>X are the same as the ones of XX> = ρ · IM plus additional
T −M times the eigenvalue 0. Therefore, ΛX = IT + X>X has the eigenvalues 1 + ρ

of multiplicity M and 1 of multiplicity T −M, which yields the assertion.

Using the formulas for Λ−1
X and det(ΛX) from the lemma, the error-probability from

proposition 4.5 can be reformulated.

(4.11) Proposition
Consider a unitary codebook C ⊆ CM×T and suppose X ∈ C is sent across the
noncoherent channel. The probability that a message Y ∈ CN×T is received at the
decoder is given by

P(Y|X) =
exp(−Tr(Y>Y))
πTN(1 + ρ)MN exp

(
1

1 + ρ
Tr(X>XY>Y)

)
.

�

With this simplified probability, the problem of decoding a received codeword will
now be addressed. To that end, suppose a unitary codebook C ⊆ CM×T is used
to transmit a codeword across the channel and a message Y ∈ CN×T is received.
With the information available at the decoder, the codeword that was most likely
sent is the one X ∈ C for which P(Y|X) is maximal. By the preceding proposi-
tion, P(Y|X) does depend on the specific codeword X only through the expression

Tr(X>XY>Y) =
∥∥∥XY>

∥∥∥2

F
. This yields the following simple corollary.
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(4.12) Corollary (GLRT criterion)
Suppose that a unitary code C ⊆ CM×T is used to transmit over the channel and a
message Y ∈ CN×T is received. The maximum likelihood decoding problem is to
find the codeword

argmaxX∈C

(∥∥∥XY>
∥∥∥

F

)
.

This decoding criterion is commonly referred to as the GLRT criterion and a decoder
which applies this criterion is referred to as a GLRT decoder. �

The abbreviation GLRT stands for generalized likelihood ratio test. This is a common
statistical test, the details of which are not important in this context.

Now that the maximum likelihood decoding rule has been established, it will be
investigated how a codebook has to be constructed in order to minimize the proba-
bility of decoding errors. To this end, consider the case that a codeword X2 has been
sent and a message Y is received at the decoder. In order for a codebook to perform
well, the probability of Y being decoded erroneously to X1 6= X2 should be as small
as possible. Hence, the probability P(X1 | X2), of a codeword X1 being decoded if
X2 was sent, has to be investigated.

Using elaborate computations, in [HM00] Hochwald and Marzetta gave an exact
formula for the probability P(X1 | X2) for codewords X1, X2 of a unitary code.
This formula involves residues of functions depending on the singular values of the
matrix X1X2

>. It is not easy to evaluate, but they were able to give its Chernoff
upper bound, yielding the assertion of the following proposition.

(4.13) Proposition
Suppose that a unitary code C ⊆ CM×T is used to transmit over the channel and
that at the receiving end, a decoder applying maximum likelihood decoding is used.
The probability that the received message is decoded to the codeword X1 ∈ C if the
codeword X2 ∈ C was sent is bounded by

P(X1 | X2) ≤
1
2

M

∏
i=1

(1 + (ϑ(1− σ2
i ))
−N.

Here, σ1, . . . , σM denote the singular values of X1X2
> and ϑ is some positive real

number depending on the signal-to-noise ratio of the channel. �

In order to find unitary codebooks which guarantee a small probability of decoding
errors, the given bound should be minimized for distinct codewords X1, X2. Con-
structions which build on this approach usually use even simpler estimates for that
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bound. These are obtained by multiplying out ∏M
i=1(1 + (ϑ(1 − σ2

i )) and consid-
ering it as polynomial in ϑ. The square roots of the coefficients of ϑ and ϑM are
respectively given by

1)
√

∑M
i=1(1− σ2

i ), this term is commonly referred to as the diversity sum and

2)
√

∏M
i=1(1− σ2

i ), which is commonly referred to as the diversity product.

Minimizing the bound for the error probability can now be approximated by mini-
mizing the diversity sum and/or the diversity product. If the signal-to-noise ratio is
very high, so is ϑM and therefore the diversity product has the larger influence on
the bound. For the most common signal-to-noise ratio ranges, the diversity sum is
used as the main criterion to optimize codebooks.

(4.14) Remark
By lemma 2.12 the equation

∥∥∥X1X2
>
∥∥∥2

F
= ∑M

i=1 σ2
i holds for the singular values

σ1, . . . , σM of X1X2
>. Therefore, the diversity sum may be written as√√√√ M

∑
i=1

(1− σ2
i ) =

√
M−

∥∥∥X1X2
>
∥∥∥2

F
.

This only depends on
∥∥∥X1X2

>
∥∥∥

F
and hence maximizing the diversity sum is equiv-

alent to minimizing
∥∥∥X1X2

>
∥∥∥

F
for distinct codewords X1, X2. Due to the connection

with the GLRT-criterion, the value
∥∥∥X1X2

>
∥∥∥

F
is often referred to as the GLRT distance

of X1 and X2. �

As the diversity sum and the diversity product depend on codewords X1 and X2 only
through the singular values of X1X2

>, they agree with the assertion from theorem
4.7: If a codeword X1 or X2 is multiplied by a square unitary matrix from the left, the
singular values of X1X2

> do not change and hence a codebook cannot be enhanced
by doing that. On the other hand, suppose two codewords X1, X2 only differ by left
multiplication from a unitary matrix, say X1 = UX2 for U ∈ U(M). The GLRT-
decoder cannot distinguish these codewords:∥∥∥X1Y>

∥∥∥
F
=
∥∥∥UX2Y>

∥∥∥
F
=
∥∥∥X2Y>

∥∥∥
F

.

Therefore, it makes sense to further restrict the set from which the codewords are
taken from rectangular unitary matrices to equivalence classes of such with respect
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to left multiplication by a square unitary matrix. In the following section, it will
be shown that any of these equivalence classes may be identified with the vector
space which is spanned by the rows of any representative of such a class. In doing
so, codewords are identified with M-dimensional subspaces of CT. The set of M-
dimensional subspaces of CT can be given the structure of a manifold and as such it
is known as the Grassmann manifold.

4.3 A connection to packing problems on the Grassmann
manifold

In the following, the problem of finding good unitary codebooks will be formulated
as a packing problem on the Grassmann manifold. The connection between unitary
codes and the Grassmann manifold has been described by Zeng and Tse in [ZT02].
Many constructions of unitary codes have been proposed using this connection.

(4.15) Definition (Grassmann manifold)
For X ∈ CM×T denote by 〈X〉 the span of the rows of X.

The complex Grassmann manifold GC
M,T is defined as the set of M-dimensional sub-

spaces of CT. It may be written as

GC
M,T = {〈X〉 | X ∈ CM×T, XX> = ρIM}

for any ρ ∈ R>0. �

Take k ∈N and consider a set of k distinct subspaces C ′ = {〈X1〉, . . . , 〈Xk〉} ⊆ GC
M,T.

Additionally suppose that the representatives X1, . . . , Xk are chosen such that they
satisfy XiXi

>
= ρIM for i = 1, . . . , k and some ρ ∈ R>0. A corresponding unitary

code may then be defined as

C := {X1, . . . , Xk}.

The definition guarantees that for X ∈ C the matrix UX cannot be in C for any
unitary matrix U ∈ U(M) \ {IM}. This becomes obvious by the following remark
which is easily checked by standard linear algebra methods.

(4.16) Remark
Two matrices X1, X2 ∈ CM×T satisfying X1X1

>
= X2X2

>
= IM have the same row

span if and only if there is a unitary matrix U ∈ U(M) such that X1 = UX2 holds. �
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Therefore, the problem that the GLRT-decoder may not be able to distinguish be-
tween two codewords, as discussed at the end of the previous section, is avoided.

For general unitary codes, it was found that the GLRT-distance
∥∥∥X1X2

>
∥∥∥

F
of two

distinct codewords X1, X2 has to be maximized in order for the codebook to perform
well. It will now be investigated what this condition translates into for codebooks
built from the Grassmann manifold. To that end the following definition is given.

(4.17) Definition and Lemma
Consider X1, X2 ∈ CM×T satisfying X1X1

>
= X2X2

>
= IM and denote by σ1, . . . , σM

the singular values of X1X2
>.

The values θi := arccos(σi) for i = 1, . . . , M are called the principle angles between
〈X1〉 and 〈X2〉.

By the preceding remark, this definition is independent of the choice of representa-
tives of the equivalence classes. It may also be checked that for i = 1, . . . , M all σi
satisfy 0 ≤ σi ≤ 1. Therefore, the expression arccos(σi) is well defined. �

This enables the definition of two notions of distance on the Grassmann manifold.

(4.18) Definition
Consider 〈X1〉, 〈X2〉 ∈ GC

M,T and denote by θ1, . . . , θM the principle angles between X1
and X2.

(i) The chordal distance between 〈X1〉 and 〈X2〉 is defined as:

dc(〈X1〉, 〈X2〉) =

√√√√ M

∑
i=1

sin(θi)2.

(ii) The geodesic distance between 〈X1〉 and 〈X2〉 is defined as:

dg(〈X1〉, 〈X2〉) =

√√√√ M

∑
i=1

θ2
i

�

The chordal distance between 〈X1〉 and 〈X2〉 can now be put in relation with the
GLRT-distance of X1 and X2.
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(4.19) Proposition
Consider a unitary codebook C ⊆ {X ∈ CM×T | XX> = ρIM} for some positive
ρ ∈ R.

The GLRT-distance
∥∥∥X1X2

>
∥∥∥

F
for distinct X1, X2 ∈ C is minimized if and only if the

chordal distance dc(〈X1〉, 〈X2〉) is maximized. �

Proof. Consider two distinct codewords X1, X2 ∈ C. In terms of the singular values
σ1, . . . , σM of X1X2

>, their GLRT-distance is given by

∥∥∥X1X2
>
∥∥∥

F
=

√√√√ M

∑
i=1

σ2
i .

Note that 〈Xi〉 = 〈 1√
ρ Xi〉 and ( 1√

ρ Xi)(
1√
ρ Xi)

>
= IM hold for i = 1, 2. Therefore, the

singular values of ( 1√
ρ X1)(

1√
ρ X2)

>
are given by σ1

ρ , . . . , σM
ρ and hence, the principal

angles between 〈X1〉 and 〈X2〉 are given by arccos(σ1
ρ ), . . . , arccos(σM

ρ ). The chordal
distance between 〈X1〉 and 〈X2〉 may now be computed explicitly:

dc(〈X1〉, 〈X2〉) =

√√√√ M

∑
i=1

sin(θi)2 =

√√√√ M

∑
i=1

1− cos(θi)2

=

√√√√ M

∑
i=1

(1−
σ2

i
ρ2 ) =

√
M− 1

ρ2

∥∥∥X1X2
>
∥∥∥2

F
.

The right hand side of the equation is maximized if and only if
∥∥∥X1X2

>
∥∥∥

F
is mini-

mized. This yields the assertion of the proposition.

By the preceding proposition, good unitary codes can be obtained by finding pack-
ings on the Grassmann manifold that possess a large minimal distance with respect
to the chordal distance. This section will now be concluded by a brief summary of
selected results on finding such packings.

In [Cre07], Creignou was able to find a class of optimal packings for this case, using
representations of finite groups. However, the applied method only yields packings
for certain tuples (|C| , M, T) which limits its practical relevance.

In order to find good but suboptimal packings, Henkel showed in [Hen05] that
the chordal distance is locally equivalent to the geodesic distance on the Grass-
mann manifold. Building on this, in [UCL08] Utkovski, Chen and Lindner present
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a method to obtain good packings on the Grassmann manifold with respect to the
geodesic distance.

Altogether it remains a hard problem to find good packings on the Grassmann man-
ifold. Therefore, numerical methods are an important tool and worth discussing.

4.4 A numerical algorithm for Grassmannian packings

Since the problem of finding optimal packings on the Grassmann manifold with
respect to the chordal distance turns out to be hard, it is of interest to compute
good packings by numerical means. This section elaborates on one approach to
this end. It is included mainly because the resulting algorithm was implemented
to obtain approximately optimal unitary codes which could be compared to newly
constructed codes in simulations. However, the apparent complexity of the opti-
mization algorithm also underlines the difficulty of the problem of finding optimal
unitary codes.

Analogously to the complex Grassmann manifold defined in the previous section,
one may define a real Grassmann manifold GR

M,T as the set of M-dimensional sub-
spaces of RT. The problem of finding optimal packings on the real Grassmann man-
ifold has originally been investigated by Conway, Hardin and Sloane in [CHS96].
Their methods were extended to the complex Grassmann manifold by Agrawal,
Richardson and Urbanke in [ARU01]. They propose using a relaxation technique
combined with a gradient search algorithm which will be described in this subsec-
tion.

Formally, in order to obtain an optimal unitary codebook of cardinality n, the map(
GC

M,T

)n
→ R, (〈X1〉, . . . , 〈Xn〉) 7→ min

1≤i<j≤n
dc(〈Xi〉, 〈Xj〉)

has to be maximized. In practice a unitary codebook C ⊆ CM×T is considered and
its codewords are identified with the corresponding elements in GC

M,T. According
to proposition 4.19 minimizing the above map is then equivalent to maximizing the
value

σ∗(C) := max
X1 6=X2∈C

(∥∥∥X1X2
>
∥∥∥

F

)
.

This defines a continuous function on a compact differentiable manifold and hence
possesses a global minimum. Unfortunately the function σ∗ is not differentiable
everywhere and therefore standard gradient descent algorithms are not directly ap-
plicable to obtain that minimum. In order to overcome this obstacle it is possible to
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approximate σ∗ closely by a smooth map. It then turns out, however, that in general
σ∗ has a large number of local minima which may be far from the global minimum.
Therefore standard gradient descent algorithms applied to a close approximation of
σ∗ will get caught in these local minima and yield highly suboptimal results.

The authors propose to overcome this obstacle by relaxing the original problem with
the help of a family of surrogate functionals ( fα)α∈R which satisfy the following
properties:

1) For all α ∈ R the map fα is smooth.

2) For small values of α the map fα has few local minima.

3) The maps fα mimic σ∗, that is for large values of α, the fα closely track σ∗ and in
particular satisfy limα→∞ fα = σ∗.

As an example of such a family they propose

fα(C) =
1
α

log

(
∑

X1 6=X2∈C
exp

(
α
∥∥∥X1X2

>
∥∥∥2

F

))
.

With these prerequisites a starting set C may be chosen and optimized by a gradient
search algorithm with respect to fα for gradually growing values of α.

Using this method it is guaranteed to obtain a local minimum of σ∗ and the chances
are increased that it may be in fact the global minimum. However, it may still be far
from it. In practice it is possible to find good packings by randomly choosing many
different input sets, running them through the optimization process and choosing
the best result in the end.

The described method is not very satisfactory from a theoretical point of view as
there is no guarantee that the optimal result will be obtained and no estimation on
how close the result is to the optimum can be given. Furthermore the relaxation
process requires the repeated application of a gradient descend algorithm and that
process itself has also to be repeated multiple times with various random input sets
until a satisfying result is found. In conclusion it is computationally very expensive
to use this technique.

However, the authors achieved close approximations of the optimal value for σ∗(C)
in instances where that value is known. For cases where the optimum is not known
they could enhance on the best previously known results. For this reason unitary
codes obtained by this method will be used for comparison with other codes later
on.
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§ 5 A new approach to noncoherent STBC

All known constructions of noncoherent STBC focus on the case where all code-
words are (rectangular) unitary matrices. This assumption will not be made in the
following. Instead, the objective will be to develop a theory that allows studying
noncoherent STBC as generally as possible.

The starting point for developing such a theory has to be the communication model
of the noncoherent channel. For this model some basic assertions on the probability
distribution of received codewords have been introduced in section 4. These proba-
bilities will be used to formulate the maximum likelihood decoding rule as generally
as possible. This rule in turn will be closely examined in order to find design criteria
which allow the construction of codebooks that guarantee a small error rate.

Particularly finding useful design criteria turns out to be a challenging problem.
Therefore, at some points, additional assumptions will be made. These will, how-
ever, still generalize the case of unitary coding.

5.1 Decoding and the design criterion

It was seen in Proposition (4.5) that the probability of a message Y ∈ CN×T being
received if the codeword X ∈ CM×T was sent is given by

P(Y|X) =
exp(−Tr(Λ−1

X Y>Y))
πTN det(ΛX)N .

In this formula ΛX denotes the covariance matrix of any row of the received message
Y. It was shown in lemma 4.3 that it is given by ΛX = IT + X>X. For a given
codebook C ⊆ CM×T the values M and T are fixed. Therefore the value πTN is a
scalar independent of the codeword X and the received message Y. Hence it can
be dropped in order to find the largest probability throughout the codebook and
the following result for the the maximum likelihood decoding problem is obtained
immediately.

(5.1) Proposition
For a codebook C ⊆ CM×T and a received message Y ∈ CN×T the maximum likeli-
hood decoding problem is to find the codeword

argmaxX∈C P(Y|X) = argmaxX∈C
exp(−Tr(Λ−1

X Y>Y))
det(ΛX)N .
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Since the values det(ΛX)
N and the elements Λ−1

X can be precomputed for all code-
words C, maximum likelihood decoding by exhaustive search may be implemented
efficiently using this criterion. However, decoding by exhaustive search is not satis-
factory for most practical applications and therefore a simpler decoding criterion for
which lower complexity algorithms are available is desirable.

An even larger issue is that the decoding rule does not provide us with a useful
criterion for the design of noncoherent codebooks which ensures that the probability
of decoding errors is small. To overcome this issue restrictions will be imposed
on the codewords that allow the decoding rule to be simplified. This simplified
decoding rule will then be used to deduce a useful design criterion.

In particular, suppose det(ΛX) takes a fixed value for all codewords X in a codebook
C. Under that assumption the decoding rule from the above proposition can be
equivalently reformulated as follows.

(5.2) Corollary
Let C ⊆ CM×T be a codebook such that det(ΛX) takes a constant value for all X ∈ C.
Then the maximum likelihood decoding problem is to find

argmaxX∈C P(Y|X) = argminX∈C Tr(Λ−1
X Y>Y).

Proof. At first note that according to lemma 4.3 the matrix ΛX is a positive definite
Hermitian matrix and therefore det(ΛX) is a positive real number for any X ∈ C.
Hence if det(ΛX) is constant for all X ∈ C, the equality

argmaxX∈C
exp(−Tr(Λ−1

X Y>Y))
det(ΛX)N = argmaxX∈C exp(−Tr(Λ−1

X Y>Y))

is obvious.

Furthermore note that with ΛX also Λ−1
X is positive definite Hermitian and Y>Y

is positive semidefinite Hermitian. By lemma 2.13 this implies that the trace of
Λ−1

X Y>Y is a real number. Since the exponential map exp : R → R is strictly

monotonously growing, the value exp(−Tr(Λ−1
X Y>Y)) is maximized if and only if

Tr(Λ−1
X Y>Y) is minimized. This yields the assertion of the corollary.

After having established this simplified decoding rule the next aim is to find a cri-
terion which allows the systematical design of good codebooks. In the process, a
codebook is considered to be good if it yields a low pairwise error probability. That
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means, if a codeword X1 from a codebook C was sent across the channel and a
message Y is received, the values P(X2|Y) are desired to be as small as possible for
X2 ∈ C \ {X1}. By the previous corollary this is equivalent to the values Tr(Λ−1

X2
Y>Y)

being as large as possible for X2 6= X1. These values depend on the matrix Y which
may be regarded as a random variable depending on the codeword X1 that has been
sent across the channel. Therefore, the values in question need to be investigated
depending on the probability distribution of Y.

One possible approach to do that would be to find a lower bound on Tr(Λ−1
X2

Y>Y)
depending on X1 and to look for codebooks which are optimal with respect to that
bound. This has essentially been done to obtain a design criterion for unitary codes
as described in section 4.2.

Another approach, and the one that will be pursued here, is to evaluate the expected
value of Tr(Λ−1

X2
Y>Y). It will be used to deduce the main criterion for designing good

codebooks in the following. Contrary to a lower bound that expected value is easy
to calculate.

(5.3) Lemma
Suppose that the codeword X1 ∈ CM×T is sent across the channel and that a message
Y ∈ CN×T is received. Furthermore consider another codeword X2 ∈ CM×T. The
expected value of Tr(Λ−1

X2
Y>Y) is given by

E(Tr(Λ−1
X2

Y>Y))) = N · Tr(Λ−1
X2

ΛX1).

Proof. In the proof of lemma 4.3 it was seen that for any i ∈ {1, . . . , N} and j, k ∈
{1, . . . , T} the equality (ΛX)jk = E[YijYik] holds. This implies

E[(Y>Y)kj] =
N

∑
i=1

E[YijYik] = N · (ΛX)kj.

That is E[Y>Y] = N · ΛX. Considering this as well as the linearity of the expected
value and the fact that the entries of ΛX2 are deterministic, the following equations
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are seen to be true:

E
[
Tr(Λ−1

X2
Y>Y)

)
= E

(
T

∑
i=1

T

∑
j=1

(Λ−1
X2
)ij(Y

>Y)ji

]

=
T

∑
i=1

T

∑
j=1

(Λ−1
X2
)ijE

[
(Y>Y)ji

]
= Tr(Λ−1

X2
E[Y>Y])

= Tr(Λ−1
X2
(N ·ΛX1))

= N · Tr(Λ−1
X2

ΛX1).

With the help of this lemma the problem of designing good codebooks can be re-
garded as a packing problem with respect to the expression that was computed for
the expected value. In other words, the respective expression yields a measure of
distance between codewords and will therefore play an important role. This notion
is formalized in the following definition.

(5.4) Definition
The following map serves as a distance function between codewords:

∆ : CM×T ×CM×T → R, (X1, X2) 7→ Tr((ΛX2)
−1ΛX1).

Utilizing this notation the problem of designing good noncoherent codebooks that
has been derived up to this point can be formally summarized.

(5.5) Design Criteria for noncoherent STBC (1)
Let C ⊆ CM×T be a finite set of complex matrices. For C to be used as a codebook
for communicating over a channel with a SNR of ρ the following conditions have to
be satisfied:

1) 1
|C| ∑X∈C ‖X‖F = ρ,

2) det(ΛX) is constant for all X ∈ C,

3) minX1,X2∈C, X1 6=X2 ∆(X1, X2) is maximized. �

Part 1) can be satisfied for any finite set of codewords by rescaling them appropri-
ately. It mainly influences the design problem as a constraint to the optimization
problem given by part 3). Part 2) may be achieved in several ways by restricting
codewords to suitable subsets of CM×T. Some approaches will be discussed later on.
This does however leave part 3) as a difficult optimization problem.
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5.2 Reduced codebooks

In a first effort to simplify the design problem, note that the map

∆ : CM×T ×CM×T → R, (X1, X2) 7→ Tr((ΛX2)
−1ΛX1)

depends on its arguments X1, X2 only through the matrices ΛX1 and ΛX2 . In par-
ticular, for any codewords X1, X2 with ΛX1 = ΛX2 their “distance” is given by
∆(X1, X2) = T which is equal to the “distance” of any codeword X to itself. Further-
more when decoding a message Y ∈ CN×T with the decoding rule

argminX∈C Tr(Λ−1
X Y>Y),

the two codewords X1 and X2 yield the same value and can therefore not be distin-
guished by the receiver.

For these reasons it makes sense to prevent codebooks from containing two code-
words X1, X2 that yield the same matrix ΛX1 = ΛX2 . A property which makes sure
this cannot be the case is introduced in the following definition.

(5.6) Definition
A codebook C ⊆ C is called Λ-reduced if |C| = |{ΛX | X ∈ C}| holds. �

This property is characterized in more detail in the next proposition which also
makes clear that the problem described above cannot arise for Λ-reduced codes.

(5.7) Proposition
Consider a codebook C ⊆ CM×T. The following are equivalent:

(i) C is Λ-reduced.

(ii) For distinct X1, X2 ∈ C there is no U ∈ U(M) such that X1 = UX2 holds.

(iii) The map ϕ : C → {ΛX | X ∈ C}, X 7→ ΛX is a bijection. �

Proof. The map ϕ in (iii) is surjective by definition. Since C and hence {ΛX | X ∈ C}
are finite the equivalence (i)⇐⇒ (iii) follows.

Now suppose there are X1, X2 ∈ C and U ∈ U(M) such that X1 = UX2 holds. This
implies

ΛX1 = IT + X1
>X1 = IT + X1

>U>UX1 = IT + X2
>X2 = ΛX2 ,
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therefore the map ϕ is not injective. That shows (iii) =⇒ (ii).

Finally suppose ϕ is not bijective. As it is always surjective by definition, this implies
that ϕ is not injective. In this case there are distinct codewords X1, X2 ∈ C such
that ΛX1 = IT + X1

>X1 = IT + X2
>X2 = ΛX2 holds. This implies the equality

X1
>X1 = X2

>X2.

Particularly X1
>X1 and X2

>X2 have the same eigenvalues and corresponding eigen-
vectors. By lemma 2.7 the matrices X1 and X2 therefore have the same singular
values and they have singular value decompositions X1 = U1DV and X2 = U2DV
for U1, U2 ∈ U(M) and a real diagonal matrix D and V ∈ U(T).

In conclusion, X1 = (U1U−1
2 )X2 holds with U1U−1

2 ∈ U(M) and therefore the impli-
cation (ii) =⇒ (iii) holds.

In order to formalize the process of finding Λ-reduced codes, property (ii) of the
proposition can be reformulated in a group theoretic manner. To that end, a brief
description of the left group action of U(M) on CM×T is given.

(5.8) Remark
The group U(M) acts from the left on CM×T by the usual matrix multiplication. The
orbits under this action are given by U(M) · X = {UX | U ∈ U(M)} for X ∈ CM×T.
CM×T can be decomposed into a disjoint union of these orbits. �

These group theoretic terms allow for the following characterization of Λ-reduced
codebooks.

(5.9) Corollary
Consider CM×T endowed with the canonical left group action of U(M).

C is Λ-reduced if and only if each group orbit contains at most one element of C. �

This characterization can be used to connect Λ-reduced codebooks to certain unitary
codes which have been introduced earlier. In particular, in section 4.3 it was con-
cluded that it is sufficient to take unitary codewords from the Grassmann manifold.
This can now be justified as a strategy which guarantees for the resulting codebooks
to be Λ-reduced.

(5.10) Example (Λ-reduced unitary codes)
By remark 4.16, for M ≤ T two matrices X1, X2 ∈ CM×T satisfying an equation

X1X1
>

= X2X2
>

= ρIM for some ρ ∈ R>0 have the same row span if and only if
there is a unitary matrix U ∈ U(M) satisfying X1 = UX2. Therefore, in light of the
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previous corollary, a unitary code is Λ-reduced if and only if the row spans of all
its elements are distinct. That is, all elements of the code correspond to different
elements of the Grassmann manifold and consequently, unitary codes constructed
from the Grassmann manifold as described in section 4.3 are Λ-reduced. �

5.3 Equivalent codebooks

In order to further simplify the design problem, the aim of this section is to charac-
terize codes which perform equally well.

(5.11) Definition
Two codebooks C ⊆ CM×T and C ′ ⊆ CM′×T are called Λ-equivalent if

{ΛX | X ∈ C} = {ΛX′ | X′ ∈ C ′}

holds. �

This notion does obviously define an equivalence relation. The following proposition
elaborates to what extent it guarantees for two Λ-reduced codebooks, which are Λ-
equivalent, to perform equally well.

(5.12) Proposition
Consider two Λ-reduced codebooks C ⊆ CM×T and C ′ ⊆ CM′×T.

If C and C ′ are Λ-equivalent, there is a bijective map ϕ : C → C ′ which satisfies

‖X‖F = ‖ϕ(X)‖F and ∆(X1, X2) = ∆(ϕ(X1), ϕ(X2))

for X, X1, X2 ∈ C. �

Proof. If C and C ′ are Λ-reduced, by proposition 5.7 the maps

ϕ1 : C → {ΛX | X ∈ C}, X 7→ ΛX and ϕ2 : C ′ → {ΛX′ | X′ ∈ C ′}, X′ 7→ ΛX′

are bijections. If C and C ′ are furthermore Λ-equivalent, the map

ϕ := ϕ−1
2 ◦ ϕ1 : C → C ′

is well defined and hence a bijection that satisfies ΛX = Λϕ(X) for X ∈ C.

Using the latter equation to evaluate the map ∆ for two codewords X1, X2 ∈ C yields

∆(X1, X2) = Tr(Λ−1
X2

ΛX1) = Tr(Λ−1
ϕ(X2)

Λϕ(X1)
) = ∆(ϕ(X1), ϕ(X2)).
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For any codeword X ∈ C the value

‖X‖2
F = Tr(X>X) = Tr(IT + X>X− IT) = Tr(ΛX)− T

is uniquely determined by ΛX. Therefore ‖X‖F = ‖ϕ(X)‖F.

The previous proposition implies that Λ-reduced codebooks which are Λ-equivalent
yield the same rate, as the codebooks clearly need to be of the same size. Further-
more, if one codebook is replaced by the other via the map ϕ, the communication
will work at the same signal-to-noise-ratio since codewords identified via ϕ have
the same Frobenius norm. Finally, since that identification also preserves the value
of the map ∆, the expected probability of error is the same as well. Altogether, Λ-
equivalent codebooks exchanged via the map ϕ can be used in the same situation
and will perform equally well.

It is sufficient to make this observation for Λ-reduced codebooks as it was estab-
lished earlier that codebooks which are not Λ-reduced will perform strictly worse.
Furthermore it is easily seen that any codebook is Λ-equivalent to a Λ-reduced code-
book.
(5.13) Lemma
Consider a codebook C ⊆ CM×T. There is a Λ-reduced codebook C ′ which is Λ-
equivalent to C. �

Proof. Define C ′ ⊆ C to be a codebook such that for every Λ ∈ {ΛX | X ∈ C} exactly
one X ∈ C is contained in C ′ satisfying ΛX = Λ. Then the codebook C ′ is Λ-reduced
and Λ-equivalent to C.

The previous section on Λ-reduced codebooks lead to the conclusion that at most
one codeword from an orbit of the left action of U(T) on CM×T should be used in a
codebook. Using the notion of Λ-equivalence, it can be seen that it does not matter
which element from an orbit is chosen.
(5.14) Lemma
Consider a codebook C ⊆ CM×T. For some X ∈ C choose any X′ ∈ U(M) · X.

The codebook C ′ := (C \ {X}) ∪ {X′} is Λ-equivalent to C. �

Proof. For X ∈ C consider X′ = UX ∈ U(M) · X for U ∈ U(M). The matrix ΛX is
the same as ΛX′ :

ΛX′ = IT + UX>UX = IT + X>U>UX = IT + X>X = ΛX.

Therefore the assertion of the lemma follows.

49



§ 5 A new approach to noncoherent STBC

Combining this with the earlier results on Λ-reduced codebooks yields the following
important corollary.

(5.15) Corollary
Consider a codebook C ⊆ CM×T and a system of representatives R ⊆ CM×T for the
orbits of CM×T under the left group action of U(M).

There is a code C ′ ⊂ R which is Λ-equivalent to C. �

Proof. By lemma 5.13 the codebook C is Λ-equivalent to a Λ-reduced codebook C ′′.
Iteratively applying lemma 5.14 to replace any element of C ′′ by one from R yields a
codebook C ′ ⊆ R which is Λ-equivalent to C ′′ and hence also to C.

This result allows the space from which the codewords are drawn to be restricted
significantly and so simplifies the design problem.

More simplifications can be made regarding the amount of transmit antennas used.
By using information-theoretic arguments, it was already argued in [MH99] that it
does not make sense to make the number of transmit antennas M larger than the
number of timesteps T over which the channel remains invariant. This result can
also be explained in terms of Λ-equivalence. In particular it will be shown that
any codebook C ⊆ CM×T for M > T is Λ-equivalent to a code consisting of square
codewords. In fact it will even be shown that a codebook employing any arbitrary
amount of transmit antennas is Λ-equivalent to such a code.

(5.16) Proposition
Let C ⊆ CM×T be a codebook. There is a codebook C ′ ⊆ CT×T which is Λ-equivalent
to C. �

Proof. The two cases M > T and M < T are distinguished. If M = T holds, the
assertion is obviously satisfied by choosing C ′ = C.

1) M > T:

Consider a codeword X ∈ C with singular value decomposition X = UDV for

U ∈ U(M), V ∈ U(T) and D =


σ1

. . .
σM

0M−T×T

 where σ1, . . . , σM denote the

singular values of X.
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Now define D′ :=

σ1
. . .

σM

 and note that D′
>

D′ = D>D holds. Finally,

setting X′ := D′V one obtains

ΛX′ = IT + V>D′
>

D′V = IT + V>D>DV = IT + V>D>U>UDV = ΛX.

With that notation C ′ := {X′ | X ∈ C} ⊆ CT×T is Λ-equivalent to C.

2) M < T:

As in the first case consider a codeword X = UDV for U ∈ U(M), V ∈ U(T) and

D =

σ1
. . . 0M×T−M

σM

 where σ1, . . . , σM denote the singular values of X.

The diagonal matrix D′ :=


σ1

. . .
σM

0T−M×T−M

 satisfies D′
>

D′ = D>D.

Analogously to the first case set X′ := D′V and C ′ = {X′ | X ∈ C} to obtain the
assertion.

Due to this proposition it is sufficient to study square codes, that is codebooks con-
taining square codewords. It may, of course, be the case that an optimally perform-
ing square code is Λ-equivalent to a codebook C ⊆ CM×T for M < T. In that case
the latter code would be preferable since it offers the same performance using fewer
transmit antennas. This code may, however, be constructed from the square code
that it is Λ-equivalent to. Case 2) of the proof of the above proposition yields a
concrete way of doing that construction.

Summarizing the two simplifications found in this section, it is sufficient to study
square codebooks C ⊆ R, where R denotes a system of representatives of the orbits
of CT×T under the left action of U(M). It is therefore of interest to identify such a
system of representatives.

(5.17) Lemma
A system of representatives for the orbits of the left group operation of U(T) on
CT×T is given by the set of positive semidefinite Hermitian T × T matrices

H+
0 (T) = {X ∈ CT×T | X = X>, v>Xv ≥ 0 for all v ∈ CT}.
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Proof. The positive semidefinite Hermitian T × T matrices are exactly the matrices
of the form UDU> for U ∈ U(T) and a real diagonal matrix D with nonnegative
diagonal entries.

Consider any X ∈ CT×T. It has a singular value decomposition X = UDV for
U, V ∈ U(T) and a real diagonal matrix D ∈ RT×T with nonnegative diagonal

entries, hence the positive semidefinite Hermitian matrix V>DV = (UV)
>

X is in
the orbit of X.

It remains to be shown that there cannot be two distinct positive semidefinite Her-
mitian matrices in one orbit.

To that end, consider X ∈ H+
0 (T) and U ∈ U(T). It was seen in example 2.11 that all

eigenvalues of unitary matrices are roots of unity. Two cases will be distinguished
depending on the eigenvectors of U>.

1) There is an eigenvector v ∈ CT of U> with respect to an eigenvalue ξ 6= 1 and
v /∈ ker(X).

Since X is positive semidefinite Hermitian and v /∈ ker(X), the value v>Xv is real
and strictly larger than zero. In addition ξ is a root of unity not equal to 1. In
particular ξ is not a nonnegative real number. Therefore, the value

v>UXv = U>v
>

Xv = ξ · v>Xv

is not a nonnegative real number and hence UX is not positive semidefinite Her-
mitian.

2) All eigenvectors v ∈ CT of U> with v /∈ ker(X) satisfy U>v = 1 · v.

Suppose v ∈ CT is an eigenvector of U> with respect to the eigenvalue ξ. If
ξ = 1, then obviously v>UX = v>X follows. If on the other hand ξ 6= 1, then
v ∈ ker(X) and hence v>UX = ξ · v>X = 0 = v>X is obtained.

In conclusion, v>UX = v>X holds for all eigenvectors v of U>. Since there is a
basis of CT consisting of eigenvectors of U> the equality UX = X follows.

Altogether either UX = X holds or UX is not positive semidefinite Hermitian.
Therefore there cannot be two distinct positive semidefinite hermititan matrices in
one orbit.
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The results of this section can now be combined and allow to conclude the following
theorem.

(5.18) Theorem
Let C ⊆ CM×T be a noncoherent STBC. There is a Λ-reduced code C∗ ⊆ H+

0 (T)
which is Λ-equivalent to C. �

Proof. By proposition 5.16 there is a square codebook C ′ ∈ CT×T such that C is Λ-
equivalent to C ′.

Furthermore, the preceding lemma 5.17 states that H+
0 (T) is a system of represen-

tatives of the orbits of CT×T under the left action of U(T). Due to proposition 5.15
there is another codebook C ′′ ⊆ H+

0 (T) which is Λ-equivalent to C ′ and hence also
to C.

It remains to be seen that C ′ is Λ-reduced. This follows directly from corollary 5.9.

In conclusion, the problem of designing arbitrary noncoherent codebooks can be
reduced to designing square codebooks containing only positive semidefinite matri-
ces.

5.4 Distance functions for codewords

So far, efforts have been made to simplify the design problem by restricting the space
from which codewords are drawn. The problem of finding good codebooks in such
restricted spaces with respect to the distance function ∆, however, remains difficult.
Therefore, the map ∆ will be studied in the following and it will be investigated how
it may be simplified.

To start with, a closer look is taken at two problematic properties of ∆.

1) The “distance” of a codeword X to itself is given by

∆(X, X) = Tr(Λ−1
X ΛX) = Tr(IT) = T.

But for example

∆(IT, 0) = Tr
(

1
2

IT · IT

)
=

1
2

T

is strictly smaller than that.

More generally speaking this means that in a badly designed codebook there may
be a codeword X1 and a different codeword X2 satisfying ∆(X1, X2) < ∆(X1, X1).
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As the distance function ∆ was derived from the expected value of the decoding
rule, that means that on average the codeword X1 is more likely to be decoded
erroneously as the codeword X2 than to be decoded correctly. This is obviously
not desirable.

2) The value of the map ∆ does not scale with its arguments. Therefore, if a good
codebook is designed with respect to a certain SNR, it will in general not perform
well at a different SNR. This is, however, a property that is desirable in practice,
since the SNR is not known beforehand in many cases or is even changing over
the course of several transmissions.

For example, unitary codes do have this property. If two unitary codewords
X1, X2 are scaled to guarantee a certain SNR, the GLRT-distance does scale with
them: ∥∥∥ρX1ρX2

>
∥∥∥

F
= ρ2

∥∥∥X1X2
>
∥∥∥

F
.

However, for arbitrary codewords X1, X2 and the distance function ∆ this does
not work in general:

∆(ρX1, ρX2) = Tr((ρ2X2
>X2 + IT)

−1(ρ2X1
>X1 + IT)).

These drawbacks of the distance function ∆ make it reasonable to look for simpli-
fications. In order to present a systematic way of doing so, a formal notion of a
distance function is introduced. Building on this, the aim will be to find other dis-
tance functions which are, in a reasonable sense, equivalent to ∆. However, it will
not be possible to simplify ∆ on the whole set CM×T. Therefore, subsets C ⊆ CM×T

will be considered. Such a subset C ⊆ CM×T from which the codewords are drawn
is commonly referred to as the coding space.

(5.19) Definition
Let C ⊆ CM×T be a set of complex matrices. A distance function on C is an arbitrary
map d : C× C → R. �

Note that this definition of a distance function is very general. Axioms like nonnega-
tivity, symmetry, the identity of indiscernibles and the triangle inequality as they are
required for distances on metric spaces do not have to be satisfied here. There have
been examples of distance functions which have been studied in earlier sections that
will now illustrate the definition.
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(5.20) Example (Distance functions)
1) One example of a distance function is given by the map ∆. It may be restricted

from CM×T to any subset C:

∆ : C× C → R, (X1, X2) 7→ Tr((ΛX2)
−1ΛX1).

2) Another example was encountered when discussing unitary codes in section 4.2.

Consider the set of scaled unitary matrices C = {X ∈ CM×T | XX> = ρ · IM}
for some ρ ∈ R>0 and a unitary codebook C ⊆ C. It was argued that for distinct
codewords X1, X2 ∈ C the GLRT-distance

∥∥∥X1X2
>
∥∥∥

F
needs to be minimized in

order to minimize the probability of decoding errors.

Putting this in terms of the notation which was introduced here, a corresponding
distance function on C can be defined as

dGLRT : C → C, (X1, X2) 7→ −
∥∥∥X1X2

>
∥∥∥

F
.

The negative sign in the definition of the map dGLRT was chosen such that the
value of the distance function for two distinct codewords has to be as large as
possible in order for the corresponding codebook to perform well. This makes
the design of codebooks with respect to this distance function a more natural
packing problem and is analogous to the distance function ∆. �

The aim now is to find suitable subsets C ⊆ CM×T on which a simpler distance
function can be used which is equivalent to the original one. Hereby “equivalent” is
supposed to mean that optimizing a codebook on that subset with respect to the one
distance function yields the same result as optimizing it with respect to the other
one. In particular, for two distance functions d1, d2 : C × C → R the following is
required to hold for any X1, X2, X3, X4 ∈ C:

d1(X1, X2) > d1(X3, X4) ⇐⇒ d2(X1, X2) > d2(X3, X4).

That is, d1 and d2 differ by a strictly monotonous transformation. This will be used
to formalize the notion of equivalent distance functions. To that end, the notion of
a strictly monotonously growing map on an arbitrary subset of R is clarified and
necessary basic properties are stated.
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(5.21) Definition and Lemma
Consider two nonempty subsets D1, D2 ⊆ R and a map ϕ : D1 → D2.

The map ϕ is called strictly monotonously growing if for x, y ∈ D1 the implication
x > y =⇒ ϕ(x) > ϕ(y) holds.

If ϕ is strictly monotonously growing the following assertions are true:

(i) ϕ is injective.

(ii) If ϕ is bijective, for x, y ∈ D1 the equivalence x > y ⇐⇒ ϕ(x) > ϕ(y) holds.

(iii) If ϕ is bijective, ϕ−1 is also strictly monotonously growing.

(iv) If D3 ⊂ R is another subset and ψ : D2 → D3 is strictly monotonously growing,
then ψ ◦ ϕ is strictly monotonously growing.

(v) For any nonempty subset D ⊆ R, IdD : D → D, x 7→ x is strictly monotonously
growing. �

Proof. Statement (i) is obvious. Regarding (ii), consider x, y ∈ D1 with ϕ(x) > ϕ(y).
Then clearly x 6= y. If x < y, then ϕ(x) < ϕ(y) contradicting ϕ(x) > ϕ(y). Therefore
x > y holds and hence the equivalence. Statement (iii) may be shown by using the
implication “⇐= ” in case (ii) by setting x = ϕ−1(x′) and y = ϕ−1(y′) for x′, y′ ∈ D2
with x′ > y′. Statement (iv) is easily checked by successively applying the definition
of a strictly monotonously growing map for ϕ and then for ψ. Lastly, (v) is easily
checked by means of the definition.

Having established this notion, the formal definition of equivalent distance functions
can be given.

(5.22) Definition (Equivalent distance functions)
Let C ⊆ CM×T be a set of complex matrices.

Denote by d1 : C× C → R and d2 : C× C → R two distance functions.

These functions d1 and d2 are called equivalent if and only if a strictly monotonously
growing map ϕ : d2(C, C)→ d1(C, C) exists such that d1 = ϕ ◦ d2 holds. �

Using the elementary statements that have been made in lemma 5.21 about strictly
monotonously growing maps, it can be verified that it is in fact appropriate to use
the term equivalence.
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(5.23) Lemma
Equivalence of distance functions defines an equivalence relation on the set of all
distance functions. �

Proof. By means of lemma 5.21, the axioms of an equivalence relation can be verified
quickly.

To start with, reflexivity becomes obvious by setting ϕ = Idd(C,C).

Concerning symmetry, note that any ϕ meeting the conditions from the definition
has to be bijective: Injectivity is clear by lemma 5.21 part (i), whereas surjectivity
follows from the fact that any element d1(X1, X2) ∈ d1(C, C) does have the preimage
d2(X1, X2) under ϕ. Therefore, by lemma 5.21 part (iii), the map ϕ−1 is strictly
monotonously growing and it also satisfies ϕ−1 ◦ d1 = d2

In order to prove transitivity one needs to consider the composition of two strictly
monotonously growing maps. This is strictly monotonously growing as well by
lemma 5.21 part (iv).

It has been described in section 4.3 that the construction of good unitary codes can
be regarded as packing elements on the Grassmann manifold with respect to the
chordal distance. We can now motivate this differently by interpreting the chordal
distance as a distance function on the set of rectangular unitary matrices and by then
putting it in relation with the design criterion 5.5.

(5.24) Example (Equivalent distance functions for unitary codes)
Consider the set of scaled M× T unitary matrices

Cu := {X ∈ CM×T | XX> = ρIM}

for ρ ∈ R>0 representing the SNR of a unitary codebook drawn from this set. Fur-
thermore, consider the distance function

∆ : Cu × Cu → R, (X1, X2) 7→ Tr(Λ−1
X2

ΛX1)

as well as the the distance function induced by the chordal distance on the Grass-
mann manifold

dc(X1, X2) =

√
M−

∥∥∥X1X2
>
∥∥∥2

F
.

In section 4.2 the chordal distance was derived as an important measure for design-
ing unitary codes. It will now be put in relation to the distance function ∆ which was
directly derived from the general maximum likelihood decoding rule. Particularly
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it will be shown that these two distance functions are equivalent on Cu by explic-
itly computing the strictly monotonic transformation required in the definition of
equivalency.

By lemma 4.10 the equation Λ−1
X = IT− 1

1+ρ X>X holds for X ∈ Cu and the definition
of the chordal distance between two codewords X1, X2 ∈ Cu may be rearranged as∥∥∥X1X2

>
∥∥∥2

F
= M− dc(X1, X2)

2. Utilizing these equations for X1, X2 ∈ Cu yields

∆(X1, X2) = Tr
(
(IT −

1
1 + ρ

X2
>X2)(IT + X1

>X1)

)
= Tr

(
IT −

1
1 + ρ

X2
>X2 + X1

>X1 −
1

1 + ρ
X2
>X2X1

>X1

)
= T − 1

1 + ρ
‖X2‖2

F + ‖X1‖2
F −

1
1 + ρ

∥∥∥X1X2
>
∥∥∥2

F

= T − 1
1 + ρ

ρM + ρM− 1
1 + ρ

∥∥∥X1X2
>
∥∥∥2

F

= T − 1
1 + ρ

ρM + ρM− 1
1 + ρ

(M− dc(X1, X2)
2)

= T + (ρ− 1)M +
1

1 + ρ
dc(X1, X2)

2.

Note that dc(Cu, Cu) ⊆ R≥0 to conclude that the map

ϕ : dc(Cu, Cu)→ ∆(Cu, Cu), x 7→ T + (ρ− 1)M +
1

1 + ρ
x2

is a monotonously growing map satisfying ∆ = ϕ ◦ dc.

It also becomes clear that the distance function

dGLRT : Cu × Cu → R, (X1, X2) 7→ −
∥∥∥X1

>X2

∥∥∥
F

is equivalent to both the distance functions above. In particular, the map

ψ : dc(Cu, Cu)→ dGLRT(Cu, Cu), x 7→ −
√

M− x2

is strictly monotonously growing and satisfies dGLRT = ψ ◦ dc. �

This example shows how the distance function ∆ may be simplified on the coding
space Cu = {X ∈ CM×T | XX> = ρIM} ⊆ CM×T. Similar courses of action will be
taken later on to find suitable distance functions on different coding spaces.
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5.5 Conclusions about the general design problem

This section concludes the simplifications of the original design criteria. These were
stated in proposition 5.5 and deduced directly from the expected value of the prob-
ability of error. In the following, the notions of Λ-reduced and Λ-equivalent codes
were introduced. By their means it was possible to significantly restrict the set of
potential codewords which should be used to construct noncoherent STBC. Particu-
larly, in theorem 5.18 it was shown that it is sufficient to consider (square) positive
semidefinite hermitian matrices as codewords. Thereafter, the notion of a distance
function was formally introduced and it was studied how such distance functions
can be simplified.

These results will be used to construct noncoherent STBC in the following sections.
In order to guide this process, the design criteria are reformulated accordingly.

(5.25) Design Criteria for noncoherent STBC (2)
Consider a coding space C ⊆ H+

0 (T), the restricted distance function
∆ : C× C → R and a distance function d : C× C → R which is equivalent to ∆.

Let C ⊆ C be a finite set of complex matrices. For C to be used as a codebook
for communicating over a channel with an SNR of ρ ∈ R>0 we stipulate that the
following conditions shall be satisfied:

1) 1
|C| ∑X∈C ‖X‖F = ρ,

2) det(ΛX) is constant for all X ∈ C,

3) minX1,X2∈C, X1 6=X2 d(X1, X2) is maximized. �

In general, the optimization problem resulting from these criteria is still hard to
solve and there is no apparent algebraic structure to exploit in order to obtain good
codes. The solution used in the upcoming section to systematically construct good
codebooks will be to restrict the coding space C to a specific subset C ⊆ H+

0 (T). This
subset will specifically be chosen such that there is a sufficiently simple distance
function d on C which satisfies the above criteria. Namely, a suitable set C will be
defined such that d can be chosen to be the GLRT-distance which was first introduced
in section 4.1 and formally defined in example 5.20.
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§ 6 Noncoherent STBC for the GLRT-receiver

In this chapter a new class of noncoherent STBC will be introduced and studied.
This will be done by using the theory developed in the preceding part of this work.
Particularly, a class of codes will be derived for which it is optimal to use the GLRT
criterion (4.12) as the design criterion and for which maximum likelihood decoding
is performed by the GLRT decoder. Within the class of these codes, optimal code-
books will be characterized and some example constructions will be presented.

To begin with, the aim is to find a set of complex matrices C for which it can be
shown that the GLRT distance is Λ-equivalent to the distance function ∆. This is,
for example, true for unitary codes, shown in example 5.24. The key to the proof
of the equivalence of dGLRT and ∆ for unitary codes was the linear dependence of
Λ−1

X on ΛX. In the following section, a class of codewords which also yield such a
dependence is presented.

It was shown in the previous chapter and included in the design criteria 5.25 that
it suffices to consider positive semidefinite Hermitian matrices as codewords. In
the first section of this chapter, the codewords will, however, not be required to be
positive semidefinite Hermitian. In fact, even nonsquare matrices will be considered.
In doing so, the results of this section will hold for a greater class of codewords
without complicating the required arguments.

6.1 A class of codebooks for the GLRT-receiver

This section introduces a class of codebooks C ⊆ CM×T for M ≤ T for which the
matrices ΛX for all codewords X ∈ C have exactly two fixed eigenvalues with fixed
multiplicities. Formally, throughout this section the coding space

CS := {X ∈ CM×T | spec(ΛX) = S}

will be considered, where S := {(λ1, µ1), (λ2, µ2)} denotes a fixed spectrum which
contains two distinct positive real eigenvalues λ1, λ2 ∈ R of respective multiplicities
µ1, µ2 ∈ N. Note that all matrices ΛX = IT + X>X are positive definite Hermitian
and hence only possess positive eigenvalues.

Restricting to codebooks C ⊆ CS yields the following simple assertion which makes
sure that part 2) of the design criteria 5.25 will always be satisfied for these code-
books.

60



§ 6 Noncoherent STBC for the GLRT-receiver

(6.1) Remark
For X ∈ CS the equation det(ΛX) = λ

µ1
1 · λ

µ2
2 holds.

In particular the determinant of ΛX is fixed for all X ∈ CS . �

As a first step in the analysis of codes that are built from elements of CS , it shall be
clarified what kind of codewords can actually occur. The following simple connec-
tion between the singular values of the matrices X ∈ CM×T and the eigenvalues of
the respective matrices ΛX provides a first step toward this end.

(6.2) Lemma
For M ≤ T consider X ∈ CM×T with singular values σ1, . . . , σM. The eigenvalues of
ΛX are given by 1 + σ2

1 , . . . , 1 + σ2
M and by additional (T −M)-times the value 1. �

Proof. Suppose the singular value decomposition of X ∈ CM×T is given by X = UDV
for U ∈ U(M), V ∈ U(T) and a diagonal matrix D ∈ RM×T. In these terms, the
matrix ΛX may be written as

ΛX = IT + X>X = V>(IT + D>D)V.

In order to further evaluate the right hand side of that equation, denote the singular
values of X by σ1, . . . , σM to obtain

IT + D>D =


1 + σ2

1
. . .

1 + σ2
M

IT−M

 .

This yields the assertion of the lemma.

By means of this lemma, the singular values of any X ∈ CS can be explicitly de-
scribed dependent on the eigenvalues of the respective matrices ΛX.

(6.3) Corollary
Consider X ∈ CS . In order to describe the singular values of X three cases are
distinguished:

(i) If M < T and µ1 = M, then one of the eigenvalues of ΛX must be 1. Sup-
pose without loss of generality λ2 = 1. The single singular value of X is of
multiplicity M and given by σ1 =

√
λ1 − 1.
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(ii) If M < T and µ1 < M, then again λ2 = 1 can be assumed. The two sin-
gular values of X are then given by σ1 =

√
λ1 − 1 of multiplicity µ1 and

σ2 =
√

λ2 − 1 = 0 of multiplicity M− µ1.

(iii) If M = T, then the two singular values of X are given by σ1 =
√

λ1 − 1 and
σ2 =

√
λ2 − 1 of respective multiplicities µ1 and µ2. �

As a direct result of the preceding corollary it can be concluded that the Frobenius
norm of all potential codewords drawn from the set CS will be equal.

(6.4) Corollary
All X ∈ CS satisfy

‖X‖F =
√

µ1(λ1 − 1) + (M− µ1)(λ2 − 1).

In particular the Frobenius norm is fixed for all X ∈ CS . �

Proof. Consider X ∈ CS . By lemma 2.12 the Frobenius norm of the matrix X is given

by ‖X‖F =
√

∑M
i=1 σ2

i for the singular values σ1, . . . , σM of X.

Therefore, the assertion may be checked by going through the three cases for the
singular values of X from the preceding corollary.

Note that in the case (iii) the equality µ2 = M− µ1 holds. Hence, for this case the
result is obtained by simply plugging in the determined singular values into the
equation for the Frobenius norm given above.

For cases (i) and (ii) note that λ2 = 1 holds and hence the assertion of this corollary
reduces to ‖X‖F =

√
µ1(λ1 − 1). This is again apparent by plugging in the singular

values into the above equation.

Corollary 6.3 completely characterizes the singular values of the elements of CS
for all possible cases. Conversely, the singular values of a codeword X uniquely
determine the eigenvalues of ΛX = IT + X>X and so all matrices X ∈ CM×T with
these singular values lie in CS . Making use of this observation, the coding space CS
can now be described in more detail.

(6.5) Corollary
The coding space CS is described by one of the following three cases:
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1) M < T and µ1 = M.

The codewords have exactly one singular value σ :=
√

λ1 − 1 of multiplicity M.
Therefore, any element X ∈ CS has a singular value decomposition

X = U(σ · IM,T)V for U ∈ U(M), V ∈ U(T).

This is equivalent to XX> = σ2 IM and hence the set CS may be described as

CS = {X ∈ CM×T | XX> = σ2 IM}.

This does exactly correspond to the case of unitary codes. It has been studied in
section 4.2 and again in example 5.24.

2) M < T and µ1 < M.

The codewords have exactly two distinct singular values σ1 =
√

λ1 − 1 of multi-
plicity µ1 and σ2 = 0 of multiplicity M− µ1.

By means of lemma 6.2 it is easy to check that such a code is always Λ-equivalent
to a code C ′ ⊆ Cµ1×T which corresponds to the first case. The code C ′ uses strictly
fewer transmit antennas than C and this case will therefore not be of importance.

3) M = T.

The codewords have two distinct singular values σ1 =
√

λ1 − 1 and σ2 =
√

λ2 − 1
of respective multiplicities µ1 and µ2. The set CS may hence be given as

CS =

{
X ∈ CT×T

∣∣∣∣X = U
(

σ1 Iµ1

σ2 Iµ2

)
V for U, V ∈ U(T)

}
.

�

It was shown earlier that it suffices to study codebooks which contain only square
matrices. Therefore, the upcoming sections will focus on the third case. However,
for the course of this section no further restrictions will be imposed on the elements
of C and hence all three cases are treated simultaneously. Keeping that in mind, the
next aim is to find a distance function which is equivalent to ∆ on the coding space
CS . To that end, some technical lemmas are required.

It is easily checked by means of linear algebra that diagonalizable matrices with
exactly two distinct eigenvalues have a minimal polynomial of degree two:
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(6.6) Lemma
Let A ∈ Cn×n for n ∈ N be diagonalizable with exactly two eigenvalues λ1, λ2 ∈ C.
The following equality holds:

(A− λ1 In)(A− λ2 In) = A2 − (λ1 + λ2)A + λ1λ2 In = 0.

�

This fact will be very helpful to deduce distance functions which are equivalent to
∆ on CS . To begin with, it is helpful for proving the following lemma.

(6.7) Lemma
Let A ∈ Cn×n for n ∈ N be a diagonalizable matrix with exactly two eigenvalues
λ1, λ2 ∈ C \ {−1}.

Then A + In is invertible with (A + In)−1 = −1
(λ1+1)(λ2+1)(A− (λ1 + λ2 + 1)In). �

Proof. With the notation as in the lemma the following equations hold:

(A + In)(A− (λ1 + λ2 + 1)In) = A2 − (λ1 + λ2 + 1)A + A− (λ1 + λ2 + 1)In

= A2 − (λ1 + λ2)A− (λ1 + λ2 + 1)In

(6.6)
= −λ1λ2 In − (λ1 + λ2 + 1)In

= −(λ1λ2 + λ1 + λ2 + 1)In

= −(λ1 + 1)(λ2 + 1)In.

In order to apply these facts to matrices of the form ΛX = (IT + X>X), it is sufficient
to restrict the matrix A from the above lemma to be positive semidefinite Hermitian.
This implies λ1, λ2 ∈ R≥0 and hence the following simple corollary is obtained for
this case:

(6.8) Corollary
Let A be a positive definite Hermitian matrix with exactly two different eigenvalues.

Then (A + In)−1 = −aA + bIn holds for some real a, b > 0 that depend only on the
eigenvalues of A. �

This result can now be used to find simpler distance functions on C which are equiv-
alent to ∆.

(6.9) Proposition
The following distance functions are equivalent on CS :
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(1) ∆ : CS × CS → R, (X1, X2) 7→ ∆(X1, X2),

(2) ∆′ : CS × CS → R, (X1, X2) 7→ ∆(X2, X1),

(3) dGLRT : CS × CS → R, (X1, X2) 7→ −
∥∥∥X1X2

>
∥∥∥

F
,

(4) d′GLRT : CS × CS → R, (X1, X2) 7→ −
∥∥∥X2X1

>
∥∥∥

F
.

If the elements of CS are additionally assumed to be square and invertible, that is
M = T and λ1, λ2 > 0, the following distance functions are also equivalent to the
above:

(5) d5 : CS × CS → R, (X1, X2) 7→
∥∥∥X2X−1

1

∥∥∥
F
,

(6) d6 : CS × CS → R, (X1, X2) 7→
∥∥∥X1X−1

2

∥∥∥
F
. �

Proof. For any X1, X2 ∈ CM×T it is easily seen that

∥∥∥X1X2
>
∥∥∥

F
=

∥∥∥∥∥X1X2
>>
∥∥∥∥∥

F

=
∥∥∥X2X1

>
∥∥∥

F
,

hence d′GLRT = dGLRT holds and in particular dGLRT and d′GLRT are equivalent. Due to
the similarities of the given maps it is now sufficient to prove ∆ ∼ dGLRT ∼ d5. The
remaining equivalences ∆′ ∼ d′GLRT ∼ d6 may be shown analogously by renaming
the variables.

To start with, the equivalence ∆ ∼ dGLRT is proven. First, note that for any X ∈ CS
the matrix ΛX = IT + X>X is Hermitian and positive definite and by definition
of C possesses exactly two eigenvalues. Therefore, for X2 ∈ CS corollary (6.8) can
be applied to ΛX2 which yields Λ−1

X2
= (IT + X2

>X2)
−1 = −aX2

>X2 + bIT for real
numbers a, b > 0. This may be applied to the definition of ∆ for X1, X2 ∈ CS :

∆(X1, X2) = Tr((ΛX2)
−1ΛX1)

= Tr((bIT − aX2
>X2)(IT + X1

>X1))

= Tr(bIT + bX1
>X1 − aX2

>X2 − aX2
>X2X1

>X1)

= b · T + b ‖X1‖2
F − a ‖X2‖2

F − a
∥∥∥X1X2

>
∥∥∥2

F
.

By the corollaries 6.4 and 6.8 the values a, b and ‖X1‖F , ‖X2‖F are fixed via the eigen-
values of ΛX1 and ΛX2 and hence are identical for all possible choices of X1, X2 ∈ CS .
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Therefore, the last expression is only dependent on
∥∥∥X1X2

>
∥∥∥

F
. Denote c := ‖X‖F

for X ∈ CS . Because of the above computation, of dGLRT(CS , CS) ⊆ R<0 and of
a > 0, the map

ϕ : dGLRT(CS , CS)→ ∆(CS , CS), x 7→ bT + bc2 − ac2 − ax2

is well defined, strictly monotonously growing and it also satisfies ∆ = ϕ ◦ dGLRT.
So, the equivalence of ∆ and dGLRT follows.

Now suppose all elements of CS are square and invertible. Under this assumption
any X ∈ CS has exactly two distinct strictly positive singular values and hence the
matrix X>X is positive definite Hermitian. Its eigenvalues are uniquely determined
by the singular values of X and hence by the eigenvalues of ΛX. In particular, the
eigenvalues of X>X are the same for all X ∈ CS .

To show the equivalence ∆ ∼ d5, lemma (6.6) is applied to X1
>X1 for X1 ∈ CS which

yields the existence of real numbers d, e > 0 such that (X1
>X1)

2 = dX1
>X1 − eIT

holds. These numbers depend only on the eigenvalues of X1
>X1 and, by the com-

ment above, they are therefore independent of the element X1 ∈ CS . The equation

is multiplied by X−1
1 X−1

1

>
to obtain X1

>X1 = dIT − eX−1
1 X−1

1

>
. Analogously to the

above computation for X1, X2 ∈ CS , this yields

∆(X1, X2) = Tr(bIT + bX1
>X1 − aX2

>X2 − aX2
>X2X1

>X1)

= Tr(bIT + bX1
>X1 − aX2

>X2 − aX2
>X2(dIT − eX−1

1 X−1
1

>
))

= b · T + b ‖X1‖2
F − a(1 + d) ‖X2‖2

F + ae
∥∥∥X2X−1

1

∥∥∥2

F
.

Again, in the last formula all the values but
∥∥∥X2X−1

1

∥∥∥
F

are independent of the choices
of X1 and X2. Since the inequality ae > 0 holds, the well defined map

ψ : d5(CS , CS)→ ∆(CS , CS), x 7→ b · T + bc− a(1 + d)c + aex2

is strictly monotonously growing and it satisfies ∆ = ψ ◦ d5.

An analogous argument can also be applied to simplify the maximum likelihood
decoding problem.

(6.10) Proposition
The maximum likelihood decoding problem for codebooks C ⊆ CS and a received
signal Y ∈ CN×T is to find the element

argmaxX∈C

∥∥∥XY>
∥∥∥

F
.
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Proof. As in the proof of the previous proposition, for X ∈ CS , real numbers a, b > 0
independent of X are obtained such that Λ−1

X = bIT− aX>X holds. So, for a received
message Y the following equation holds:

Tr(Λ−1
X Y>Y) = Tr((bIT − aX>X)Y>Y) = b ‖Y‖2

F − a
∥∥∥XY>

∥∥∥2

F
.

For a given received message Y the right hand side depends only on −
∥∥∥XY>

∥∥∥2

F
and

in conclusion the maximum likelihood decoder decision from corollary 5.2 can be
rewritten as

argmaxX∈C P(Y|X) = argminX∈C Tr(Λ−1
X Y>Y) = argmaxX∈C

∥∥∥XY>
∥∥∥

F
.

Altogether the results of this section extend the class of codes which may be opti-
mized with respect to the GLRT-distance and decoded by the GLRT-criterion from
unitary codes to codebooks built from the set CS .

In particular this includes sets of square matrices which opens the possibility to
design square noncoherent STBC that may be decoded by the GLRT decoder. The
construction and performance of such codes will be discussed in the following.

That process will be guided by the design criterion 5.5 which can be further simpli-
fied for this specific case.

(6.11) Design Criteria for noncoherent STBC (3)
Let C ⊆ CS be a finite set of complex matrices. For C to be used as a codebook for
communicating over a channel with an SNR of ρ ∈ R>0 the following conditions
shall be satisfied:

1) ‖X‖F = ρ for X ∈ CS .

2) minX1,X2∈CS , X1 6=X2 d(X1, X2) is maximized, where d is either the GLRT-distance
dGLRT or one of the other equivalent distance functions from proposition 6.9. �

6.2 Parametrization of codewords via the exponential map

The previous section dealt with distance functions on a coding space CS for a spec-
trum S containing exactly two eigenvalues. In particular, it was found that on these
coding spaces the distance function ∆ is equivalent to the GLRT-distance. By theo-
rem 5.18 any codebook is Λ-equivalent to a codebook consisting of square positive
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semidefinite Hermitian matrices. Therefore, the coding spaces that will be consid-
ered from here on will consist of positive semidefinite Hermitian matrices which
possess a fixed spectrum of exactly two distinct eigenvalues. The aim of this sec-
tion is to give a parametrization of these coding spaces and to determine how that
parametrization can be used to construct codebooks with large minimal distances.
At the end of the section an example codebook is constructed by means of this
parametrization and corresponding simulation results are presented.

To begin with, a notation for the set of Hermitian matrices with a fixed spectrum is
introduced.

(6.12) Definition
For a spectrum S and T ∈ N such that HS ⊆ H(T), we define the set of Hermitian
matrices with that spectrum:

HS := {X ∈ CT×T | X = X>, spec(X) = S}.

�

The requirement that a codeword with two eigenvalues is positive semidefinite im-
plies that both eigenvalues are nonnegative. In the following, only the slightly more
special case of positive definite matrices will be considered. This excludes the case
that one of the eigenvalues of the codewords is zero, which will be revisited later.
Making this restriction allows for the parametrization of codewords via the expo-
nential map introduced in section 2.3.

(6.13) Lemma
Consider the spectra S0 = {(λ1, µ1), (λ2, µ2)} and S = {(exp(λ1), µ1), (exp(λ2), µ2)}
for λ1, λ2 ∈ R and µ1, µ2 ∈N.

The restricted exponential map exp : HS0 → HS is bijective. �

Proof. Any X ∈ HS0 can be written as UDU> for U ∈ U(T) and a real diagonal

matrix D. By lemma 2.26 the equality exp(UDU>) = U exp(D)U> holds. Note that
the exponential map acts on the diagonal entries of D as the real exponential map.
Therefore, an inverse map is given by UDU> 7→ U ln(D)U> where ln acts on the
diagonal entries of D as the real natural logarithm.

Using this parametrization, the design criteria can be reformulated in terms of Her-
mitian matrices from HS0 .
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(6.14) Design Criteria for noncoherent STBC (4)
Consider a spectrum S0 = {(λ1, µ1), (λ2, µ2)} for two distinct eigenvalues λ1, λ2 ∈ R

and µ1, µ2 ∈N and let C0 ⊆ HS0 be a finite set of complex matrices.

For C := {exp(X) | X ∈ C0} to be used as a codebook for communicating over a
channel with an SNR of ρ ∈ R>0 the following conditions shall be satisfied:

1) ‖exp(X)‖F = ρ for X ∈ C0.

2) maxX1,X2∈C0, X1 6=X2 ‖exp(X1) exp(X2)‖F is minimized. �

This point of view will yield a helpful connection between the GLRT-distance of
two codewords and the euclidean distance in a certain real vector space. Before this
connection is developed, the following technical lemma is required.

(6.15) Lemma
Consider a diagonalizable matrix A ∈ CT×T with spec(A) = {(λ1, µ1), (λ2, µ2)} for
two distinct eigenvalues λ1, λ2 ∈ C and µ1, µ2 ∈ N. For any n ∈ N0 the following
equation holds:

An =
λn

1 − λn
2

λ1 − λ2
A +

λ1λn
2 − λ2λn

1
λ1 − λ2

IT.

Proof. Since A is diagonalizable, there is a basis of CT consisting of eigenvectors of
A. Therefore, it suffices to show that left multiplying both sides of the equation with
an eigenvector of A yields the same result.

Now suppose that v ∈ CT is an eigenvector of A with respect to the eigenvalue
λ ∈ {λ1, λ2}. Concerning the left hand side, it is easily seen that Anv = λnv holds
for any n ∈N0.

Evaluating the right hand side for n ∈N0 yields

λn
1 − λn

2
λ1 − λ2

Av +
λ1λn

2 − λ2λn
1

λ1 − λ2
ITv =

λn
1 − λn

2
λ1 − λ2

λv +
λ1λn

2 − λ2λn
1

λ1 − λ2
v

=
λλn

1 − λλn
2

λ1 − λ2
v +

λ1λn
2 − λ2λn

1
λ1 − λ2

v

=
(λ− λ2)λ

n
1 + (λ1 − λ)λn

2
λ1 − λ2

v

= λnv.

The last equality is easily verified by distinguishing the two possible cases λ = λ1
and λ = λ2.
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The lemma above may be used to connect the GLRT-distance of two codewords
parametrized by the exponential map to another map, which can be identified with
an inner product on a Euclidean vector space.

(6.16) Lemma
Consider a spectrum S0 = {(λ1, µ1), (λ2, µ2)} for two distinct eigenvalues λ1, λ2 ∈ R

and µ1, µ2 ∈N.

There is a strictly monotonously growing map ϕ : R→ R, x 7→ A2x + 2ABC + B2T
satisfying

‖exp(X1) exp(X2))‖F = ϕ(Tr(X1X2))

for all X1, X2 ∈ HS0 and A, B, C ∈ R given by

A =
e2λ1 − e2λ2

λ1 − λ2
,

B =
λ1e2λ2 − λ2e2λ1

λ1 − λ2
,

C = µ1λ1 + µ2λ2. �

Proof. Consider two matrices X1, X2 ∈ HS0 . Corollary 2.27 implies that the matrices
exp(X1) and exp(X2) are also Hermitian. Using this fact and basic properties of the
exponential map (lemma 2.26), the following equation is obtained:

‖exp(X1) exp(X2))‖F = Tr
(

exp(X1) exp(X2)
>

exp(X1) exp(X2)
)

= Tr(exp(X1)
2 exp(X2)

2)

= Tr(exp(2X1) exp(2X2)).

The right hand side of this equation can be further simplified by means of corollary
2.30, which yields

exp(2X1) exp(2X2) =
∞

∑
i=0

∞

∑
j=0

1
i!j!

(2X1)
i(2X2)

j.

All series on the right hand side are convergent and therefore corollary 2.32 may be
applied to obtain

Tr(exp(2X1) exp(2X2)) =
∞

∑
i=0

∞

∑
j=0

1
i!j!

Tr((2X1)
i(2X2)

j).
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To simplify this further, the preceding lemma 6.15 may be applied to the matrices X1

and X2. Multiplying the equation in the lemma by 2i yields coefficients ai = 2i λi
1−λi

2
λ1−λ2

and bi = 2i λ1λi
2−λ2λi

1
λ1−λ2

, such that (2X1)
i = aiX1 + bi IT and (2X2)

i = aiX2 + bi IT hold
for all i ∈N0. Therefore, for any i, j ∈N0 one obtains

Tr((2X1)
i(2X2)

j) = Tr(aiajX1X2 + aibjX1 + biajX2 + bibj IT)

= aiaj Tr(X1X2) + aibj Tr(X1) + biaj Tr(X2) + bibjT.

Combining all these simplifications yields the equation

‖exp(X1) exp(X2)‖F =
∞

∑
i=0

∞

∑
j=0

1
i!j!
(
aiaj Tr(X1X2) + aibj Tr(X1) + biaj Tr(X2) + bibjT

)
.

The assertion of the lemma can now be shown by splitting the infinite series into a
sum of products of several convergent series. In order to do this, the corresponding
series are defined and it is checked that they are in fact convergent.

To start with, the series ∑∞
i=0

(2λ1)
i

i! = exp(2λ1) and ∑∞
i=0

(2λ2)
i

i! = exp(2λ2) both
correspond to the series expansion of the real exponential map and are consequently
convergent. Therefore, the equation

∞

∑
i=0

ai

i!
=

∞

∑
i=0

2i

i!
λi

1 − λi
2

λ1 − λ2
=

1
λ1 − λ2

(
∞

∑
i=0

(2λ1)
i

i!
−

∞

∑
i=0

(2λ2)
i

i!

)

holds and the series on the left hand side of the equation is also convergent. By the
same argument also the following equation holds and the series on its left hand side
is convergent as well:

∞

∑
i=0

bi

i!
=

∞

∑
i=0

2i

i!
λ1λi

2 − λ2λi
1

λ1 − λ2
=

1
λ1 − λ2

(
λ1

∞

∑
i=0

(2λ2)
i

i!
− λ2

∞

∑
i=0

(2λ1)
i

i!

)
.

Now define A := ∑∞
i=0

ai
i! and B := ∑∞

i=0
bi
i! . Furthermore, set C := λ1µ1 + λ2µ2 ∈ R.

This is chosen so that for any X ∈ HS0 the equality C = Tr(X) holds. Finally, one
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obtains

A2 Tr(X1X2) + 2ABC + B2T

= A2 Tr(X1X2) + AB Tr(X1) + AB Tr(X2) + B2T

=
∞

∑
i=0

∞

∑
j=0

aiaj

i!j!
Tr(X1X2) +

∞

∑
i=0

∞

∑
j=0

aibj

i!j!
Tr(X1) +

∞

∑
i=0

∞

∑
j=0

biaj

i!j!
Tr(X2) +

∞

∑
i=0

∞

∑
j=0

bibj

i!j!
Tr(IT)

=
∞

∑
i=0

∞

∑
j=0

aiaj

i!j!
Tr(X1X2) +

aibj

i!j!
Tr(X1) +

biaj

i!j!
Tr(X2) +

bibj

i!j!
Tr(IT)

= ‖exp(X1) exp(X2)‖F .

Therefore, the map ϕ : R → R, x 7→ A2x + 2ABC + B2T satisfies the equality
‖exp(X1) exp(X2))‖F = ϕ(Tr(X1X2)) for any X1, X2 ∈ HS0 . The values for A, B, C
given in the lemma are apparent from the definitions of A, B and C in this proof and
since λ1 6= λ2 also A > 0 holds. In particular, A is not zero and hence ϕ is strictly
monotonously growing.

The map (X1, X2) 7→ Tr(X1
>X2) is an inner product on CT×T which induces the

Frobenius norm. Therefore, the GLRT distance can be connected with the distance
induced by the Frobenius norm as follows:

(6.17) Theorem
Consider a spectrum S0 = {(λ1, µ1), (λ2, µ2)} for two distinct eigenvalues λ1, λ2 ∈ R

and µ1, µ2 ∈N.

The following two optimization problems are equivalent for C0 ⊆ HS0 :

1) maxX1,X2∈C0, X1 6=X2 ‖exp(X1) exp(X2)‖F is minimized.

2) minX1,X2∈C0, X1 6=X2 ‖X1 − X2‖F is maximized. �

Proof. It is sufficient to show that there is a strictly monotonously decreasing func-
tion ψ : R>0 → R>0 satisfying ‖exp(X1) exp(X2)‖F = ψ(‖X1 − X2‖F) for any matri-
ces X1, X2 ∈ HS0 .

By the previous lemma there is a strictly monotonously growing map ϕ : R→ R for
which ‖exp(X1) exp(X2))‖F = ϕ(Tr(X1X2)) holds for any X1, X2 ∈ HS0 .

‖X1 − X2‖2
F = Tr((X1 − X2)

>
(X1 − X2))

= Tr(X1
>X1 − X1X2 − X2X1 + X2

>X2)

= ‖X1‖2
F + ‖X2‖2

F − 2 Tr(X1X2)
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The norm of any X1, X2 ∈ HS0 is given by C := ‖X1‖2
F = ‖X2‖2

F = µ1λ2
1 + µ2λ2

2.
Therefore, ψ(x) := ϕ(C− 1

2 x2) defines a strictly monotonously decreasing map sat-
isfying the desired equation.

This optimization problem may even be transferred to Euclidean space. More pre-
cisely, there is an isometry from n2 dimensional Euclidean space to the space of
Hermitian n× n matrices with the distance induced by the Frobenius norm.

(6.18) Remark
There are isometries of the Euclidean space Rn2

to the following inner product
spaces:

1) The real n× n matrices Rn×n with inner product (X1, X2) 7→ Tr(X1X>2 ).

2) The Hermitian n× n matrices H(n) with inner product (X1, X2) 7→ Tr(X1X2
>
).

An isometry Rn2 → Rn×n may be obtained by arranging the entries of a vector into
a matrix.

A simple isometry Rn×n → H(n) is given by X 7→ 1
2((X + X>) + i(X− X>)). �

Consequently, Hermitian matrices can be isometrically parametrized by elements
of Euclidean space. Note that the Hermitian matrices with a specified fixed spec-
trum S0 = {(λ1, µ1), (λ2, µ2)} are exactly the Hermitian matrices of which the char-
acteristic polynomial is exactly the polynomial of which the zeros are exactly the
eigenvalues of given multiplicities. Therefore, good codebooks may be obtained by
regarding the elements of HS0 as elements of Euclidean space which additionally
satisfy a given polynomial equation.

(6.19) Corollary
Consider a real spectrum S0 = {(λ1, µ1), (λ2, µ2)} for λ1 6= λ2, the corresponding
polynomial P = (x− λ1)

µ1(x− λ2)
µ2 ∈ R[x] and an isometry ϕ : RT2 → H(T) from

Euclidean T2-dimensional space into the Hermitian T× T matrices with inner prod-
uct given by (X1, X2) 7→ Tr(X1X2

>
). Moreover, denote the characteristic polynomial

of X ∈ H(T) by PX ∈ R[x].

If D ⊆ {v ∈ RT2 | Pϕ(v) = P} is a finite set such that the minimal euclidean distance
minv1,v2∈D,v1 6=v2 ‖v1 − v2‖F is maximized, C0 := ϕ(D) ⊆ HS0 is a finite set such that
maxX1,X2∈C0, X1 6=X2 Tr(exp(X1) exp(X2)) is minimized. �

For 2× 2 matrices this problem turns out to be particularly simple. As a result the
optimal 2× 2 codes for a given spectrum S can be found.
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(6.20) Example (Noncoherent 2 × 2 STBC for the GLRT-Receiver)
Consider the spectrum S0 = {(1, 1), (−1, 1)}. In the following, a noncoherent STBC
C ⊆ H(2) will be constructed by means of the map exp : HS0 → H(2). To that end, a
good packing C0 ⊆ HS0 has to be found. According to theorem 6.17 a good codebook
with respect to the GLRT distance may then be chosen as C = {exp(X) | X ∈ C0}.

To start with, a connection ofHS0 to Euclidean space is developed. An isometry from
4-dimensional Euclidean space into H(2) with inner product as in the preceding
corollary is given by

R4 → H(2),


a
b
c
d

 7→
(

a 1√
2
(b + ci)

1√
2
(b− ci) d

)
.

The characteristic polynomial of all elements of HS0 is given by x2 − 1 ∈ R[x].

Equivalently all matrices X =

(
a b + ci

b− ci d

)
∈ HS0 satisfy Tr(X) = a + d = 0 and

det(X) = ad− b2 − c2 = −1 and hence d = −a and a2 + b2 + c2 = 1.

That yields HS0 =


(

a b + ci
b− ci −a

) ∣∣∣∣∣∣
a

b
c

 ∈ S3 ⊆ R3

, where S3 denotes the unit

sphere in R3. It can also be seen that R3 → H(2),

a
b
c

 7→ 1√
2

(
a b + ci

b− ci −a

)
is

an isometrical embedding. Therefore, packing a finite set C0 ⊆ HS0 with respect to
the canonical Hermitian distance is equivalent to packing a finite set D ⊆ S3 with
respect to the euclidean distance and writing

C0 =


(

a b + ci
b− ci −a

) ∣∣∣∣∣∣
a

b
c

 ∈ D
 .

Finding good euclidean packings on the n-dimensional unit sphere is a well known
problem and corresponding sets are known as spherical codes. Spherical codes are
a well investigated subject. For example, they are extensively treated in the book
of Conway and Sloane [CS98]. Good spherical codes in high dimensions may be
obtained from lattices and for lower dimensions optimal codes can be computed by
optimization algorithms. A list of putatively optimal spherical codes in R3, R4 and
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R5 for codebooks consisting of m = 4, . . . , 130 points can be found on the web page
of Neil Sloane [Slo].

Consider a spherical code D ⊆ S3 and a finite subset C0 ⊂ HS0 .

C0 :=


(

a b + ci
b− ci −a

) ∣∣∣∣∣∣
a

b
c

 ∈ D
 .

Following the design criteria, a square noncoherent STBC may now be constructed
as

C = {exp(X) | X ∈ C0}.

The performance of a code C constructed in the manner that was described above
shall now be compared to the performance of an optimal unitary code. In particular,
C will be designed to yield a rate of rate(C) =

log2(|C|)
T = 2 information symbols

per time step. Since 2 × 2 matrices are considered, T = 2 holds, which implies
|C| = 24 = 16.

Consequently, a spherical code in R3 with 16 elements has to be used to construct C.
For the following comparison, a putatively optimal spherical code D listed in [Slo]
with |D| = 16 and a minimal angle between the points of D of 52.2444 degrees is
used.

The code will be compared with a unitary codebook Cu ⊆ C1×2 obtained by the
optimization algorithm presented in section 4.4. The unitary codebook also satisfies
|Cu| = 16 and, therefore, yields a rate of 2 bit per time step. Moreover, it realizes a
minimal distance of minX1 6=X2,X1,X2∈Cu −

∥∥∥X1
>X2

∥∥∥
F
= −0.9059, when all codewords

X ∈ Cu are normalized to satisfy ‖X‖F = 1.

All simulations were run under the assumption that two receive antennas are em-
ployed. The error rate that was obtained for each code at different signal-to-noise
ratios is plotted below.
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It can be seen that the unitary code clearly outperforms the newly constructed 2× 2
code. However, the spectrum S0 used to construct the 2× 2 code was chosen solely
for simplicity. Therefore, it has to be investigated how the spectrum should be
chosen in order to obtain a better codebook. This will be done in the following
section. �

6.3 Optimal spectra for the parametrization

In this section, the question how the eigenvalues λ1 and λ2 are chosen optimally
will be investigated. The most important tool to answer this question is an improved
parametrization of the codewords. It is introduced in the following definition.

(6.21) Definition
For α, β ∈ R, β > 0 and n ∈N define the map

expα,β : H(n)→ H+(n), X 7→ β exp(αX).

�
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The map expα,β yields a useful parametrization of positive definite Hermitian ma-
trices. It will ultimately allow the comparison of different codebooks C ⊆ HS and
C ′ ⊆ HS ′ for S = {(λ1, µ1), (λ2, µ2)} and S ′ = {(λ′1, µ1), (λ′2, µ2)} with real numbers
λ1, λ2, λ′1, λ′2 > 0 and µ1, µ2 ∈ N. The following lemmata prepare this comparison.
As a first step it will be shown that any such codebook can be parametrized by the
map expα,β for some α, β ∈ R.

(6.22) Lemma
For two given spectra S0 = {(λ1, µ1), (λ2, µ2)} and S = {(λ′1, µ1), (λ′2, µ2)} with
λ1, λ2, λ′1, λ′2 ∈ R, λ1 6= λ2, λ′1 6= λ′2, λ′1, λ′2 > 0 and µ1, µ2 ∈ N, there are α, β ∈ R,
α 6= 0, β > 0 such that the restricted map expα,β : HS0 → HS is well defined and
bijective. �

Proof. First suppose that α, β ∈ R with α 6= 0 and β > 0 are given and define the
spectra

S1 = {(αλ1, µ1) , (αλ2, µ2)} ,

S2 = {(exp(αλ1), µ1) , (exp(αλ2), µ2)} and

S3 = {(β exp(αλ1), µ1) , (β exp(αλ2), µ2)} .

According to lemma 6.13 the restricted map exp : HS1 → HS2 is bijective. Also, the
maps lα : HS0 → HS1 , X 7→ αX and lβ : HS2 → HS3 , X 7→ βX are bijective and
hence expα,β = lβ ◦ exp ◦lα : HS0 → HS3 is a bijection.

By that observation it is sufficient to find suitable parameters α, β such that S3 = S
holds in order to obtain the assertion of the lemma. In particular, it remains to be
shown that there are α, β ∈ R with α 6= 0 and β > 0 such that λ′1 = β exp(αλ1) and
λ′2 = β exp(αλ2) hold.

To that end, set α := ln(λ′1)−ln(λ′2)
λ1−λ2

and β := λ′1
exp(αλ1)

. This implies

λ′1
λ′2

= exp(α(λ1 − λ2)) and λ′1 = β exp(αλ1).

By plugging the second equation into the first one, one also obtains

λ′2 =
λ′2
λ′1

λ′1 = exp(α(λ2 − λ1)) · β exp(αλ1) = β exp(αλ2).

So, the defined α and β satisfy the required condition and hence the assertion fol-
lows.
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This lemma simplifies the study of codebooks made up of codewords with one
fixed spectrum. It implies that for given multiplicities µ1 and µ2 it is sufficient
to study codes obtained from the sets expα,β(HS0) for α, β ∈ R, α 6= 0, β > 0
and any suitable spectrum S0. Therefore, it will be investigated how the values
α and β influence the performance of resulting codes. In order to compare the
performance of two codes in a reasonable manner, they have to provide the same
signal-to-noise ratio when transmitting information across the same channel. For
the class of codewords considered here this is equivalent to restricting the Frobenius
norm of every codeword of both codebooks in question to an identical value ρ ∈ R.

Suppose that such a value ρ is fixed. It will now be shown that all corresponding
codebooks can be parametrized by the map expα,β for some α ∈ R and an element
β ∈ R completely determined by α and ρ.

(6.23) Lemma
Consider two given spectra S0 = {(λ1, µ1), (λ2, µ2)} and S = {(λ′1, µ1), (λ′2, µ2)}
with λ1, λ2, λ′1, λ′2 ∈ R, λ1 6= λ2, λ′1 6= λ′2, λ′1, λ′2 > 0, µ1, µ2 ∈ N and ρ ∈ R>0, such
that ‖X‖F = ρ holds for all X ∈ HS .

Moreover, define the map β : R→ R, α 7→ ρ
‖exp(αX)‖F

for an arbitrary X ∈ HS .

There is α ∈ R such that the restricted map expα,β(α) : HS0 → HS is well defined
and bijective. �

Proof. By lemma 6.22 there are α, β̂ ∈ R, α 6= 0, β̂ > 0 such that expα,β̂ : HS0 → HS
is well defined and bijective. This α satisfies the assertion of the lemma. In order to
see that, it needs to be shown that β̂ = β(α) holds, where β is the map defined in
the lemma.

As the map is well defined, expα,β̂(X) ∈ HS holds for any X ∈ HS0 . By the assump-

tion on S in the lemma this implies
∥∥∥expα,β̂(X)

∥∥∥
F
=
∥∥β̂ exp(αX)

∥∥
F = ρ and hence

β̂ = ρ
‖exp(αX)‖F

.

So far the code C = {exp(X) | X ∈ C0} has been considered for a finite subset
C0 ⊆ HS0 . Using the newly introduced parametrization, a new class of codes can be
constructed from C0.

(6.24) Definition
Consider a real spectrum S0, a finite subset C0 ⊆ HS0 and the signal-to-noise ratio
ρ ∈ R>0.

For α ∈ R define Cα
0 :=

{
ρ

‖exp(αX)‖F
exp(αX)

∣∣∣X ∈ C0

}
. �
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(6.25) Remark
The significance of the previous definition is that for any positive definite spectrum
S = {(λ′1, µ1), (λ′2, µ2)} an arbitrary codebook C ⊆ HS that yields the signal-to-noise
ratio ρ can be described using this definition.

In particular, for any spectrum S0 = {(λ1, µ1), (λ2, µ2)}, there is a finite set C0 ⊆ HS0

and α ∈ R such that C = Cα
0 . �

It will now be studied how α may be chosen for a given set C0, in order for the
code Cα

0 to perform as good as possible. Before precise results are presented, some
example codes are constructed and compared in simulations.

(6.26) Example (Noncoherent 2 × 2 STBC for the GLRT-Receiver)
Consider the spectrum S0 = {(1, 1), (−1, 1)}. In the following, the noncoherent
codebooks Cα

0 ⊆ H(2) will be constructed for a packing C0 ⊆ HS0 and several α ∈ R.
Analogously to example 6.20, one obtains

HS0 =


(

a b + ci
b− ci −a

) ∣∣∣∣∣∣
a

b
c

 ∈ S3 ⊆ R3

 .

Moreover, finding a good packing C0 ⊆ HS0 is, again, equivalent to finding a good
spherical code D ⊆ S3 ⊆ R3 and setting

C0 :=


(

a b + ci
b− ci −a

) ∣∣∣∣∣∣
a

b
c

 ∈ D
 .

Also as in example 6.20, a spherical code D with |D| = 16 and minimal angle of
52.2444 degrees is used to obtain S0. Therefore, the codebooks

Cα
0 :=

{
ρ

‖exp(αX)‖F
exp(αX)

∣∣∣∣X ∈ C0

}
yield a rate of 2 bit per time step. The codes will be compared with a unitary
codebook Cu ⊆ C1×2 obtained by the optimization algorithm presented in section
4.4. The unitary codebook also satisfies |Cu| = 16 and, therefore, yields a rate of 2 bit
per time step. Moreover, assuming all codewords X ∈ Cu are normalized to satisfy
‖X‖F = 1, its minimal distance with respect to dGLRT is given by

min
X1 6=X2,X1,X2∈Cu

dGLRT(X1, X2) = min
X1 6=X2,X1,X2∈Cu

−
∥∥∥X1

>X2

∥∥∥
F
= −0.9059.
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All simulations were run under the assumption that two receive antennas are em-
ployed. The error rate that was obtained for each code at different signal-to-noise
ratios is plotted below.

The error rate of the codebooks Cα
0 improves for larger values of α. However, for all

values of α it is larger than the error rate of the unitary code. In fact, the performance
of the codebooks Cα

0 appears to approach the performance of Cu for growing α.
Already for α = 2 it can hardly be distinguished from the performance of the unitary
codebook. Simulations have also been run for larger values of α, reinforcing the
conjecture that the error rate of Cα

0 converges to the error rate of Cu for α→ ∞. �

The example suggests a specific behavior of the performance of codebooks of the
form Cα

0 depending on the parameter α. Consequently, the performance of such
codebooks and its dependence on α will be studied in the following.

One should bear in mind that the performance of two codebooks Cα1 and Cα2 for
α1 6= α2 cannot be compared by means of the distance functions dGLRT or d5 from
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proposition 6.9. These codebooks are subsets of distinct coding spaces HS1 and
HS2 for distinct Spectra S1 and S2, and the mentioned distance functions have only
been shown to be equivalent within one such coding space. Therefore, in order to
compare the two codebooks, the distance function ∆ which was derived directly
from the decoding probability has to be considered. As a first step, the value of the
distance function between codewords X1, X2 ∈ Cα

0 for C0 ⊆ HS0 built from a specific
spectrum S0, can be shown to be monotonously increasing in α.

(6.27) Proposition
Consider the real spectrum S = {(1, µ1), (0, µ2)} for µ1, µ2 ∈ N, the signal-to-noise
ratio ρ ∈ R>0 and X1, X2 ∈ HS .

Moreover, define β : R→ R, α 7→ ρ
‖exp(αX)‖F

for an arbitrary X ∈ HS .

Then, the map R>0 → R, α 7→ ∆
(

expα,β(α)(X1), expα,β(α)(X2)
)

is continuous and
strictly monotonously increasing. �

Proof. The assertion will be shown by computing the derivative of the map in ques-
tion and by showing that it is strictly positive. In particular, the map is differentiable
and therefore continuous, as claimed.

To start with, abbreviate X(α) := expα,β(α)(X) for any X ∈ HS . It will be shown

how ∆
(

expα,β(α)(X1), expα,β(α)(X2)
)

can be completely parametrized by elementary
functions in α.

The eigenvalues of exp(αX) for X ∈ HS are given by eα of multiplicity µ1 and
1 = e0 of multiplicity µ2. Therefore, ‖exp(αX)‖2

F = µ1e2α + µ2. Consequently, the
eigenvalues of X(α) = β(α) exp(αX) for X ∈ HS are given by

λ
(α)
1 :=

ρeα√
µ1e2α + µ2

of multiplicity µ1 and

λ
(α)
2 :=

ρ√
µ1e2α + µ2

of multiplicity µ2.

Now, denote

f : R→ R, α 7→ −1(
1 +

(
λ
(α)
1

)2
)(

1 +
(

λ
(α)
2

)2
)

and
g : R→ R, α 7→ 1 +

(
λ
(α)
1

)2
+
(

λ
(α)
2

)2
.
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Lemma 6.7 implies the following:

∆
(

X(α)
1 , X(α)

2

)
= Tr

(
Λ−1

X(α)
1

Λ
X(α)

2

)
= Tr

(
f (α)

((
X(α)

1

)2
− g(α)IT

)((
X(α)

2

)2
+ IT

))
= f (α)Tr

((
X(α)

1

)2 (
X(α)

2

)2
+
(

X(α)
1

)2
− g(α)

((
X(α)

2

)2
+ IT

))
= f (α)

(∥∥∥X(α)
1 X(α)

2

∥∥∥2

F
+
∥∥∥X(α)

1

∥∥∥2

F
− g(α)

(∥∥∥X(α)
2

∥∥∥2

F
+ T

))
= f (α)

(∥∥∥X(α)
1 X(α)

2

∥∥∥2

F
+ ρ2 − g(α)(ρ2 + T)

)
.

Concerning the last equality, note that by definition of the map β all X ∈ HS satisfy∥∥∥X(α)
∥∥∥

F
= ‖β(α) exp(αX)‖F = ρ.

In order to compute the derivative of the obtained expression with respect to α, it

remains to find an explicit expression of
∥∥∥X(α)

1 X(α)
2

∥∥∥2

F
in terms of α.

To that end, note that by lemma 6.16 we have the following:

‖exp(αX1) exp(αX2)‖2
F = A2 Tr(αX1αX2) + 2ABC + B2T,

where A, B, C are real numbers given by

A =
e2α − e0

α− 0
=

e2α − 1
α

,

B =
αe0 + 0e2α

α− 0
= 1,

C = Tr(αX1) = Tr(αX2) = αµ1.

Multiplying both sides of this equation by β(α)4 yields∥∥∥X(α)
1 X(α)

2

∥∥∥2

F
= β(α)4 ‖exp(αX1) exp(αX2)‖2

F

=
ρ4

(µ1e2α + µ2)2

((
e2α − 1

α

)2

Tr(αX1αX2) + 2
e2α − 1

α
µ1α + T

)

=
ρ4

(µ1e2α + µ2)2

(
(e2α − 1)2 Tr(X1X2) + 2µ1(e2α − 1) + T

)
.
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Putting all the above calculations together, ∆
(

X(α)
1 , X(α)

2

)
can be expressed as a ra-

tional function in eα. The computation of its derivative is elementary, but lengthy
when carried out by hand. It was checked in matlab that it is given by

d
d α

∆
(

X(α)
1 , X(α)

2

)
=

2ρ2e2α(e2α − 1)(µ1 − Tr(X1X2))(ρ
2 + µ1 + µ2)((ρ

2 + 2µ1)e2α + ρ2 + 2µ2)(
(µ2

1 + ρ2µ1)e4α + (ρ4 + 2µ1µ2 + ρ2(µ1 + µ2))e2α + ρ2µ2 + µ2
2
)2 .

In order to show that this is strictly positive, all factors involved have to be con-
sidered. Note first that ρ, µ1, µ2 and all values of the exponential map are strictly
positive. This leaves two remaining factors. For one, (e2α − 1) is easily seen to be
strictly positive for α > 0. Lastly, (µ1 − Tr(X1X2)) has to be considered. As X1 6= X2
and ‖X1‖2

F = ‖X2‖2
F = µ1 hold, the desired inequality is obtained as follows:

0 <
1
2
‖X1 − X2‖2

F =
1
2

(
‖X1‖2

F + ‖X1‖2
F − 2 Tr(X1X2)

)
= µ1 − Tr(X1X2).

Therefore, d
d α ∆

(
X(α)

1 , X(α)
2

)
is strictly positive for α > 0 and the assertion follows.

The assertion of the proposition describes the dependence of the value ∆
(

X(α)
1 , X(α)

2

)
on α for two fixed codewords X1, X2 possessing one specific spectrum. This can be
generalized to the minimal distance of a codebook with respect to ∆. To this end,
two technical lemmas are required.

(6.28) Lemma
Consider a real spectrum S0 = {(λ1, µ1), (λ2, µ2)}, λ1 6= λ2, a finite set C0 ⊆ HS0 ,
ρ ∈ R>0 and denote β : R→ R, α 7→ ρ

‖exp(αX)‖F
for an arbitrary X ∈ HS0 .

There are X∗1 , X∗2 ∈ C0 such that for any α ∈ R the minimal distance in Cα
0 with

respect to ∆ is attained by

(X∗1)
(α) := β(α) exp(αX∗1) and (X∗2)

(α) := β(α) exp(αX∗2).

That is
∆
(
(X∗1)

(α), (X∗2)
(α)
)
= min

X1,X2∈Cα
0 ,X1 6=X2

∆(X1, X2).

�
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Proof. Choose X∗1 , X∗2 ∈ C0 which satisfy Tr(X∗1 X∗2) = maxX1,X2∈C0,X1 6=X2 Tr(X1X2).
Equivalently, Tr(αX∗1 αX∗2) = maxX1,X2∈C0,X1 6=X2 Tr(αX1αX2) holds, which by lemma
6.16 is equivalent to

‖exp(αX∗1) exp(αX∗2)‖F = max
X1,X2∈C0,X1 6=X2

‖exp(αX1) exp(αX2)‖F .

By definition of the distance function dGLRT : (X1, X2) 7→ −
∥∥∥X1

>X2

∥∥∥
F
, this is equiv-

alent to

dGLRT(exp(αX∗1), exp(αX∗2)) = min
X1,X2∈C0,X1 6=X2

dGLRT(exp(αX1), exp(αX2)).

Multiplying both sides of this equation by β(α)2 yields

dGLRT((X∗1)
(α), (X∗2)

(α)) = min
X1,X2∈C0,X1 6=X2

dGLRT(β(α) exp(αX1), β(α) exp(αX2))

= min
X′1,X′2∈Cα

0 ,X′1 6=X′2
dGLRT(X′1, X′2).

For any spectrum S which contains exactly two distinct eigenvalues the distance
functions ∆ and dGLRT are equivalent on HS by proposition 6.9. Because Cα

0 ⊆ HS
holds for S = {(β(α) exp(αλ1), µ1), (β(α) exp(αλ2), µ2)}, also the following equality
is satisfied:

∆
(
(X∗1)

(α), (X∗2)
(α)
)
= min

X1,X2∈Cα
0 ,X1 6=X2

∆(X1, X2).

This is the assertion of the lemma.

(6.29) Lemma
Consider two real spectra S0 = {(λ1, µ1), (λ2, µ2)},S ′0 = {(λ′1, µ1), (λ′2, µ2)} satisfy-
ing λ1 6= λ2 as well as λ′1 6= λ′2 and consider X ∈ HS0 .

There are X′ ∈ HS ′0 and α′ ∈ R>0 such that for any α, ρ ∈ R the following is true

ρ

‖exp(αX)‖F
exp(αX) =

ρ

‖exp((αα′)X′)‖F
exp((αα′)X′).

Proof. Without loss of generality, assume λ1 > λ2 and λ′1 > λ′2. Otherwise, the
variables can be renamed accordingly throughout this proof.

Suppose X is given by X = UDU> for U ∈ U(T) and

D = diag(λ1, . . . , λ1︸ ︷︷ ︸
µ1 times

, λ2, . . . , λ2︸ ︷︷ ︸
µ2 times

).
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Then, by lemma 2.26, exp(αX) is given by U exp(αD)U>.

Define α′ := λ1−λ2
λ′1−λ′2

> 0 and X′ := UD′U> ∈ HS ′0 for

D′ = diag(λ′1, . . . , λ′1︸ ︷︷ ︸
µ1 times

, λ′2, . . . , λ′2︸ ︷︷ ︸
µ2 times

).

Then, the eigenvalues of exp((α · α′)X′) are given by

exp(αα′λ′1) = exp
(

αλ′1
λ1 − λ2

λ′1 − λ′2

)
= exp

(
αλ1 − αλ1

λ′1 − λ′2
λ′1 − λ′2

+ αλ′1
λ1 − λ2

λ′1 − λ′2

)
= exp

(
αλ1 + α

λ′1(λ1 − λ2)− λ1(λ
′
1 − λ′2)

λ′1 − λ′2

)
= exp(αλ1) exp

(
α

λ1λ′2 − λ′1λ2

λ′1 − λ′2

)
and

exp(αα′λ′2) = exp
(

αλ′2
λ1 − λ2

λ′1 − λ′2

)
= exp

(
αλ2 + α

λ′2(λ1 − λ2)− λ2(λ
′
1 − λ′2)

λ′1 − λ′2

)
= exp(αλ2) exp

(
α

λ1λ′2 − λ′1λ2

λ′1 − λ′2

)
.

Denote c := exp
(

α
λ1λ′2−λ′1λ2

λ′1−λ′2

)
∈ R>0. By the above calculations, exp(D′) = c exp(D)

holds and consequently exp(αα′X′) = c exp(αX). This also implies c =
‖exp(αα′X′)‖F
‖exp(αX)‖F

which yields the desired equation.

The two preceding lemmata may now be applied to analyze to what extent the
minimal distance of a codebook Cα

0 depends on α.

(6.30) Corollary
Consider a real spectrum S0 = {(λ1, µ1), (λ2, µ2)} satisfying λ1 6= λ2 and a finite set
C0 ⊆ HS0 .

Then
R>0 → R, α 7→ min

X1,X2∈Cα
0 ,X1 6=X2

∆(X1, X2)

is continuous and strictly monotonously increasing. �
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Proof. Choose X∗1 , X∗2 ∈ C0 according to lemma 6.28, such that for all α ∈ R

∆
(
(X∗1)

(α), (X∗2)
(α)
)
= min

X1,X2∈Cα
0 ,X1 6=X2

∆(X1, X2).

It will be shown that the left hand side is continuous and strictly monotonously
increasing in α.

To that end, define S ′0 = {(1, µ1), (0, µ2)} and according to lemma 6.29 choose α′ ∈ R

and X′1, X′2 ∈ HS ′0 satisfying

(X∗i )
(α) =

ρ∥∥exp(αX∗i )
∥∥

F
exp(αX∗i ) =

ρ∥∥exp((αα′)X′i)
∥∥

F
exp((αα′)X′i)

for i = 1, 2 and all α ∈ R. By proposition 6.27 the map

ϕ : R>0 → R, α 7→ ∆

(
ρ∥∥exp(αX′1)

∥∥
F

exp(αX′1),
ρ∥∥exp(αX′2)

∥∥
F

exp(αX′2)

)

is strictly monotonously increasing. Since α′ > 0, lα′ : R→ R, α 7→ α′α is continuous
and strictly monotonously increasing as well and consequently ϕ ◦ lα′ is. The latter
map is identical to α 7→ ∆((X∗1)

(α), (X∗2)
(α)), as for any α ∈ R one obtains

ϕ ◦ lα′(α) = ∆

(
ρ∥∥exp(α′αX′1)

∥∥
F

exp(α′αX′1),
ρ∥∥exp(α′αX′2)

∥∥
F

exp(α′αX′2)

)

= ∆

(
ρ∥∥exp(αX∗1)

∥∥
F

exp(αX∗1),
ρ∥∥exp(αX∗2)

∥∥
F

exp(αX∗2)

)
= ∆

(
(X∗1)

(α), (X∗2)
(α)
)

.

Therefore, the assertion of the corollary follows.

The preceding corollary establishes that for a given set C0, the minimal distance
of the codebooks Cα

0 increases strictly monotonously in α. Next, it will be shown
that the limit of the codebooks Cα

0 for α → ∞ exists and consequently provides a
codebook with strictly larger minimal distance than any of the Cα

0 . The fact that the
limit exists is a direct result of the following proposition.

(6.31) Proposition
Let A ∈ H(T) be a Hermitian matrix with maximal eigenvalue λmax of multiplicity
µ. Furthermore suppose u1, . . . , uT to be linearly independent eigenvectors of A such
that u1, . . . , uµ are eigenvectors with respect to λmax.
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The following holds:

lim
α→∞

( √
µ

‖exp(αA)‖F
exp(αA)

)
= U

(
Iµ 0
0 0

)
U>.

This is the projection matrix onto the eigenspace of A with respect to λmax. �

Proof. Denote by λ1, . . . , λT the eigenvalues of A such that λi = λmax for i = 1, . . . , µ.
By lemma (2.27), an eigenvalue decomposition of

√
µ

‖exp(αA)‖F
exp(αA) is given by

√
µ

‖exp(αA)‖F
exp(αA) = U

√
µ

‖exp(αA)‖F

exp(αλ1)
. . .

exp(αλT)

U>.

It will be shown that the limit of the corresponding diagonal matrix exists and is
given by:

lim
α→∞

√
µ

‖exp(αA)‖F

exp(αλ1)
. . .

exp(αλT)

 =

(
Iµ 0
0 0

)
.

The assertion of the proposition follows directly from this equality.

To check the statement made on the diagonal matrix above, the eigenvalues of√
µ

‖exp(αA)‖F
exp(αA) have to be examined. They are given by λ

(α)
i :=

√
µ exp(αλi)√

∑T
j=1 exp(αλj)2

for i = 1, . . . , T. In order to study their behavior for α→ ∞, the maximal eigenvalue
has to be treated seperately. Therefore, two cases are distinguished.

1) For i ∈ {µ + 1, . . . , T}, that is λi < λmax, one obtains

0 ≤ λ
(α)
i ≤

√
µ exp(αλi)√

∑
µ
j=1 exp(αλj)2

=
exp(αλi)

exp(αλmax)
=

(
exp(λi)

exp(λmax)

)α

.

The right hand side of the inequality above converges towards zero for α → ∞
and consequently limα→∞

(
λ
(α)
i

)
= 0 can be concluded.
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2) For i ∈ {1, . . . , µ}, that is λi = λmax, one obtains(
λ
(α)
i

)2
=

µ exp(αλmax)2

∑T
j=1 exp(αλj)2

=
µ exp(αλmax)2 + ∑T

k=µ+1 exp(αλk)
2 −∑T

k=µ+1 exp(αλk)
2

∑T
j=1 exp(αλj)2

= 1−
T

∑
k=µ+1

exp(αλk)
2

∑T
j=1 exp(αλj)2

= 1− 1
µ

T

∑
k=µ+1

(
λ
(α)
k

)2
.

By case 1) all the summands converge toward zero as α goes towards infinity and
hence limα→∞

(
λ
(α)
i

)
= 1 follows.

The proposition provides the limit for α → ∞ for any codeword of Cα
0 . Therefore, a

limit of the whole codebook Cα
0 for α→ ∞ exists.

(6.32) Definition
Consider a real spectrum S0 = {(λ1, µ1), (λ2, µ2)} satisfying λ1 > λ2, a finite set
C0 ⊆ HS0 and the signal-to-noise ratio ρ ∈ R>0.

Define

C∞
0 : =

{
lim

α→∞

ρ

‖exp(αX)‖F
exp(αX)

∣∣∣∣X ∈ C0

}
=

{
ρ
√

µ1
U
(

Iµ1 0
0 0

)
U>

∣∣∣∣UDU> ∈ C0

}
�

Note that codebooks of the form C∞
0 correspond to the case of positive semidefi-

nite, but not positive definite spectra which was not covered by the parametrization
expα,β. Considering the codebooks Cα

0 and C∞
0 covers all possible codebooks from

coding spaces HS for a positive semidefinite spectrum S containing exactly two
distinct eigenvalues.

It can now be formally shown that the codebook C∞
0 is expected to outperform all

codebooks Cα as was conjectured in example 6.26.

(6.33) Lemma
Consider a real spectrum S0 = {(λ1, µ1), (λ2, µ2)} satisfying λ1 > λ2 and a finite set
C0 ⊆ HS0 .

The code C∞
0 has a larger minimal distance than all the Cα

0 :

min
X1,X2∈C∞

0 , X1 6=X2
∆(X1, X2) > min

X1,X2∈Cα
0 , X1 6=X2

∆(X1, X2) for all α ∈ R. �
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Proof. Consider X1, X2 ∈ C0 and for α ∈ R define β : R → R, α 7→ ρ
‖exp(αX)‖F

for

some X ∈ HS0 . Moreover, denote X(α)
1 := β(α) exp(αX1) and X(α)

2 := β(α) exp(αX2)

such that X(α)
1 , X(α)

2 ∈ Cα
0 .

The map H(T) ×H(T) → R, (X1, X2) 7→ ∆(X1, X2) = Tr((ΛX2)
−1ΛX1) is contin-

uous since trace, matrix multiplication and matrix inversion are. Furthermore, the
limit (X∞

1 , X∞
2 ) := limα→∞

(
X(α)

1 , X(α)
2

)
exists by proposition 6.31 and, therefore,

limα→∞ ∆
(

X(α)
1 , X(α)

2

)
= ∆(X∞

1 , X∞
2 ) follows.

Consequently, for any two elements X∞
1 , X∞

2 ∈ C∞
0 and any α ∈ R, there are elements

X(α)
1 , X(α)

2 ∈ C(α) such that ∆
(

X(α)
1 , X(α)

2

)
< ∆(X∞

1 , X∞
2 ). This is in particular true for

the two elements yielding the minimal distance in C∞
0 which implies the assertion of

the lemma.

In example 6.26 it was seen that enlarging α did only yield codes Cα
0 that performed

at most as good as optimal unitary codes. This observation will now be substanti-
ated.

(6.34) Definition
Consider a real spectrum S0 = {(λ1, µ1), (λ2, µ2)} satisfying λ1 > λ2, a finite set
C0 ⊆ HS0 and the signal-to-noise ratio ρ ∈ R>0. Moreover, for any X ∈ C0 denote by

UX a unitary matrix satisfying X = UXDUX
> for a real diagonal matrix D.

Define the unitary code Cu
0 :=

{
ρ√
µ1

UX · IT×µ1

> ∈ Cµ×T
∣∣∣X ∈ C0

}
. �

This unitary code is in fact Λ-equivalent to C∞
0 which explains that the codebooks

Cα
0 did perform at most equally good as an optimal unitary code in the simulation

results presented in example 6.26.

(6.35) Lemma
Consider a real spectrum S0 = {(λ1, µ1), (λ2, µ2)} satisfying λ1 > λ2 and a finite set
C0 ⊆ HS0 .

C∞
0 is Λ-equivalent to Cu

0 . �

Proof. Denote by U = {UX | X ∈ C0} the finite set of unitary matrices used to define
Cu

0 =
{

ρ√
µ1

UX · IT×µ1

> ∈ Cµ×T
∣∣∣X ∈ C0

}
. Then, C∞

0 can be written as

C∞
0 =

{
ρ
√

µ1
UX

(
Iµ1 0
0 0

)
UX
>
∣∣∣∣UX ∈ U

}
.
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Now note that U
(

Iµ1 0
0 0

)
U> = U′U′

>
holds for any U ∈ U(T) with U′ = U · IT×µ1 .

The matrix U′ satisfies U′
>

U′ = Iµ1 . This yields

Λ ρ√
µ1

U′U′
> = IT +

ρ2

µ1
(U′U′

>
)
>
(U′U′

>
)

= IT +
ρ2

µ1
U′U′

>
U′U′

>

= IT +
ρ2

µ1
U′U′

>
.

Altogether, one obtains the Λ-equivalency of C∞
0 and Cu

0 :

{ΛX | X ∈ C∞
0 } =

{
IT +

ρ2

µ1
U′U′

> | U′ = UX · IT×µ1 , UX ∈ U
}

= {ΛX | X ∈ Cu
0 }.

The results on codebooks constructed from a set HS for a fixed Spectrum S contain-
ing exactly two distinct eigenvalues are summarized in the following theorem.

(6.36) Theorem
Consider a noncoherent STBC C ⊆ CT×T such that spec(X) = {(λ1, M), (λ2, T−M)}
holds for all X ∈ C and distinct real numbers λ1, λ2 > 0.

1) There is a code C∞ ⊆ CT×T with strictly larger minimal distance with respect to
the distance function ∆ than C.

2) There is a unitary code Cu ⊆ CM×T which is Λ-equivalent to C∞. �

In conclusion, this means that it is not possible to find codebooks which outperform
unitary codebooks within the considered class of codes. To that end, in the future
more general classes of codebooks should be investigated.
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§ 7 Conclusion and further thoughts

Within this work a new approach to noncoherent space-time block codes has been
developed. One restriction has been imposed on all considered codebooks. Namely,
it has been assumed that the determinants of the matrices ΛX = IT + X>X are iden-
tical for all codewords X throughout the codebooks. Under this restriction, criteria
to aid the design of good codebooks were formulated. Subsequently, the problem of
finding good codebooks was further formalized by introducing notions of reduced
and equivalent codebooks. It was found that any reduced noncoherent codebook is
equivalent to a codebook which is made up of square positive semidefinite Hermi-
tian matrices. In practice, this means that in order to find good or optimal codes, it
suffices to consider positive semidefinite Hermitian matrices.

However, the problem of designing good noncoherent codebooks remains difficult.
Therefore, special cases for which the design problem can be further simplified are
of interest. In order to provide a systematical approach to simplify the design criteria
for special cases, the notion of a distance function was introduced and studied.

The results summarized above were then applied in the fifth chapter where such
a special case was considered. In particular, the class of codewords for which the
matrices ΛX = IT + X>X for all codewords X possess the same two distinct eigen-
values of the same respective multiplicities was considered. This class has several
useful properties. To begin with, it contains the class of unitary codes and it was
shown that corresponding codebooks can be decoded by means of the GLRT crite-
rion, which is also the main decoding criterion for unitary codes. Moreover, it was
investigated which distance functions can be used on the considered class to design
good codebooks. It was found that amongst others, the GLRT distance can be used
which again can also be used for unitary codes.

In order to further study codebooks which can be obtained from the considered
class, a parametrization of codewords by means of the exponential map was intro-
duced. With the help of this parametrization it was studied how the choice of the
eigenvalues of the matrices ΛX influences the performance of corresponding code-
books. The optimal choice of the eigenvalues was determined and it was shown that
a codebook which corresponds to this optimal case is equivalent to a unitary code-
book. This implies that unitary codes are optimal within the new class of codebooks
which was considered.

The obtained results leave some obvious questions. First, the one general assumption
to restrict the determinants of the matrices ΛX = IT + X>X for all codewords X to
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be identical was made purely for simplicity. The implications of not making this
assumption should be investigated. In particular, the notions of Λ-equivalence and
Λ-reducedness should be studied in this more general context.

Second, also within the considered class of codewords several restrictions can be
relaxed. The restriction to two distinct eigenvalues per codeword was made in order
to find a simpler distance function. For codewords possessing more eigenvalues, a
new approach would be required. There appears to be no systematic way of finding
a simpler distance function in this case. However, one may restrict the spectra of all
codewords to a finite set of distinct spectra, each containing exactly two eigenvalues.
This may allow to use similar methods as the ones presented in this work to find a
distance function which allows the systematic design of codebooks in this case.
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This section provides a general explanation of simulations of wireless communica-
tions using space-time block codes. Whenever a choice specific to the implementa-
tion or specific to the communications channel has to be made, it is noted how this
choice was made for the simulations presented in this work. These simulations were
implemented and run in matlab.

To start with, the input parameters and the output values of a simulation are listed
and each is discussed briefly.

Input parameters:

• The codebook C ⊆ CM×T itself.

This input implicitly defines the amount of transmit antennas M to be used,
the amount of timesteps T over which the channel remains invariant and the
rate of the transmission log2(|C|)

T .

• The target signal-to-noise ratio ρ ∈ R in dB.

As discussed in section 4.1, it can be assumed that the background noise at
any receive antenna is gaussian distributed with variance 1 and expected value
0. However, this means that the codebook has to be rescaled so that the tar-
get SNR will be achieved. This has to be done before the start of the actual
simulation.

• The amount N ∈N of receive antennas to be used.

In order to compare different codebooks, one has to take care that the amount
of transmit antennas in respective simulations is identical. For the noncoherent
case, the probability of transmission errors was computed in proposition 4.5. It
is clear that the probability becomes smaller, the larger N is. The same is true
for the coherent case, for an explicit computation of the corresponding error
probability see for example [TSC98].

• The number of iterations n ∈N for which the simulation shall be run.

It would be desirable to have a concrete bound on the number of iterations
which implies that the results of the simulation are within a certain range of
the expected value. This is, however, complicated to obtain in general and
therefore a suitable number of iterations is commonly chosen high enough,
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such that the results of the simulation stays about the same when run multiple
times for the same input parameters.

In each iteration, a codeword is randomly picked and its transmission across a chan-
nel with SNR ρ is simulated. A received message is obtained from this simulation
and this message is then decoded by a suitable decoding algorithm. For each it-
eration it is noted if the decoding algorithm yields the codeword that was actually
transmitted.

Output values:

• The actual signal-to-noise ratio of the simulated transmissions.

In practice, it is important to check whether the actual SNR of the simulated
channel coincides with the desired target SNR. Therefore, also the actual SNR
of the simulated transmission is calculated.

• The error rate that was observed.

The main objective of a simulation is to obtain an approximation of the proba-
bility of transmission errors for a given codebook and a given communications
channel. Therefore, the actual error rate that was observed during the simula-
tion is the main result of the simulation.

Each of the steps of the simulation will be discussed in the following.

A.1 Scaling the codebook to attain the desired SNR

As a first step, the given code needs to be scaled such that the target signal-to-
noise ratio will be attained. Recall that the signal-to-noise ratio of a communications
channel is given by

E[‖HX‖2
F]

E[‖V‖2
F]

,

The fading of the channel will now be assumed to be Rayleigh fading as described
in section 4.1 and assumed throughout this work. That is, all fading coefficients
are complex gaussian distributed with expected value 0 and variance 1. Also, the
additive noise is assumed to be complex gaussian distributed with expected value 0
and variance 1. According to lemma 4.2, the above expression for the SNR can then
be simplified to

E[‖X‖2
F]

T
.
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Therefore, if the codebook is used unchanged to communicate over the channel, the
SNR in dB is given by

10 · log10

(
E[‖X‖2

F]

T

)
dB .

All codewords shall now be scaled by a factor σ ∈ R such that the scaled codebook
C ′ = {σX | X ∈ C} attains the target SNR ρ given in dB.

To this end, set σ =
√

T
E[‖X‖2

F]
10

ρ
20 . Then the SNR of the channel, if the scaled

codebook C ′ is used to transmit information, is given by

10 · log10

(
E[‖σX‖2

F]

T

)
dB = 10 · log10

(
σ2 E[‖X‖2

F]

T

)
dB = 10 · ρ

10
dB = ρ dB .

The scaling factor σ depends on the expected value of ‖X‖2
F. Therefore, a probability

distribution needs to be chosen for the codebook C. Practically speaking, this corre-
sponds to the probabilities of one codeword to be transmitted in the practical situ-
ation which is to be modeled. It is usually assumed that all codewords are equally
likely to be transmitted. This was also assumed for the simulations presented in this
work and it implies E[‖X‖2

F] =
1
|C| ∑X∈C ‖X‖

2
F.

A.2 Modeling the transmission

During one iteration of the simulation, the transmission of one codeword over the
channel is modeled. In order to do so, a codeword X is chosen from the codebook
with respect to a predefined random distribution. As mentioned at the end of the
previous section, usually all codewords are assumed to be transmitted with equal
likelihood. That is, they are subject to a uniform random distribution.

In order to simulate the transmission of the chosen codeword X, a channel matrix
H ∈ CN×M and a noise matrix V ∈ CN×T are generated as matrices with complex
gaussian distributed entries each with variance 1 and expected value 0. From these
parameters, the matrix Y = HX + V can be computed. It represents the message
that is received at the receiving antennas.
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A.3 Decoding

Decoding describes the process of finding a codeword X∗ ∈ C that coincides with
high probability with the codeword X ∈ C that has actually been sent across the
channel. In the case of noncoherent coding, all information that is available to this
end is the received message Y. In the coherent case, also the channel matrix H is
known to the decoder.

When it comes to decoding, often a tradeoff has to be made between computational
efficiency and maximizing the probability of decoding the correct codeword that was
actually sent. For all simulation results presented in this work, maximum likelihood
decoding was used. That is, without taking the complexity into account, the decoder
chooses the codeword that was sent with maximal probability. Note that for the
relevant cases, it was shown that the GLRT criterion yields maxmimum likelihood
decoding. Therefore, if a matrix Y ∈ CN×T is obtained as received message, it is
decoded to argminX∈C

∥∥∥X>Y
∥∥∥

F
. This was implemented by exhaustively searching

through the codebook.

A.4 Calculating the output values

To obtain the actual SNR of the simulated transmissions, in every iteration the norm
of the faded signal and the norm of the background noise have to be recorded.
Assume during the i-th iteration for 1 ≤ i ≤ n, the codeword Xi ∈ C is transmitted
across the channel and the corresponding fading and noise matrices are given by
Hi ∈ CN×M and Vi ∈ CN×T. The actual SNR of the simulated transmissions can
then be computed as

∑n
i=1 ‖HiXi‖2

F

‖Vi‖2
F

.

In order to obtain an error rate, during each iteration the decoded codeword X∗ has
to be compared with the transmitted codeword X. There are two different error rates
which are commonly considered.

First, one can simply compare X and X∗. If the two matrices do not coincide, a
transmission error has occured. Denote the number of transmission errors which
occur over the course of the n iterations of the simulation by nerr. The block error
rate of the simulation is then computed as nerr

n . This error rate was used for all
simulations presented earlier.
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Secondly, some simulations provide a bit error rate as result. To obtain this rate,
all codewords X ∈ C have to be associated with a bit sequence sX ∈ {0, 1}r for
some r ∈ N and instead of directly comparing X and X∗, their corresponding
bit sequences are compared. Reasonably, the identification X 7→ sX should be in-
jective and r as small as possible. Under the first assumption, r may be chosen
as dlog2(|C|)e, where dxe denotes the smallest integer larger than or equal to x.
When following this approach, instead of the amount of incorrectly decoded matri-
ces (blocks), the amount of incorrectly decoded bits is counted. To formalize this,
denote the Hamming distance of two bit sequences s, t ∈ {0, 1}r by

h(s, t) := |{i ∈N | 1 ≤ i ≤ r, si 6= ti}| .

Assume during the i-th iteration for 1 ≤ i ≤ n, the codeword Xi ∈ C is transmitted
across the channel and the codeword X∗i ∈ C is decoded. The amount of bit errors
occuring during the simulation is then given by nerr := ∑n

i=1 h(sXi , sX∗i
). Over the n

iterations, n codewords associated each to a sequence of r bits are transmitted. That
is, in total rn bits are transmitted. Consequently, the bit error rate of the simulation
is defined as nerr

rn .

It is noteworthy that the codewords may be associated with corresponding bit se-
quences in a way that the bit error rate may be notably smaller than the block error
rate. In any case, the bit error rate is less than or equal to the block error rate.
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Nomenclature

N the natural numbers {1, 2, 3, 4, . . . }

N0 the nonnegative integers {0, 1, 2, 3, 4, . . . }

R the field of real numbers

R≥0 the nonnegative real numbers {r ∈ R | r ≥ 0}

R>0 the strictly positive real numbers {r ∈ R | r > 0}

C the field of complex numbers

Kn×m the set of n×m matrices with entries from K

loga the real logarithm with respect to base a ∈ R

ln the natural logarithm loge

Tr the matrix trace Tr(A) = ∑i Aii

argmax An argument that maximizes a function f : M→ R.
X∗ = argmaxX∈M( f (X)) ⇐⇒ f (X∗) = maxX∈M f (X)

argmin An argument that minimizes a function f : M→ R.
X∗ = argminX∈M( f (X)) ⇐⇒ f (X∗) = minX∈M f (X)

Abbreviations

dB Decibel, page 19

SNR Signal-to-noise ratio (of a channel), page 22

SNR Signal-to-noise ratio (of a transmission), page 19

STBC Space-time block code, page 21
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