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Als Manuskript gedruckt. Printed in Germany.

ISBN 978-3-921823-93-4



T O MY PARENT S





Acknowledgements

This thesis was generated during my stage at the Institute of Mechanics at TU Dort-
mund. During this time I grew in scientific and personal aspects which enabled me to
successfully complete this thesis. I should like to take this opportunity to mention and
thank some of the persons who accompanied and supported me during this time.

Probably the biggest part of my success I owe to my mentor and adviser Professor
Jörn Mosler. He welcomed me in his team in February 2012 and inspired me with
many interesting topics in the field of computational mechanics. Deeply convinced by
the ”elegance of variational formulations” it was especially the scientific thinking which
impressed and influenced me mostly. His motivative attitude and his confidence encour-
aged me to finalise this thesis successfully. Therefore, I express my sincere gratitude to
him.

For agreeing to be the co-referee of my thesis I would like to thank Professor Klaus
Hackl. It was at his chair at the Ruhr-Universität Bochum during my studies where I
made my first steps within the theory of materials. Furthermore, I would like to thank
Professor Andreas Menzel for acting as third referee of my thesis. I should also like to
thank Professor Jochen Deuse, the chairman of the examination committee.

Special thanks go to the whole team of the Institute of Mechanics. During my time
there I really enjoyed being a member of it. The reason for this was the amazing
atmosphere and were my fantastic colleagues. To some of them I should like to express
my gratitude with special thanks. For their outstanding administrative support I would
like to thank the dream team ”Kerstin & Tina”, who organised various events like
Christmas parties, breakfasts, institute trips and other parties resulting in a wonderful
team spirit. Moreover, I thank Kerstin Walter for managing my administrative issues and
Christina McDonagh for her professional translation support in writing papers, especially
this thesis. I shall not forget Matthias (Mr. CentOS) Weiss, who professionally serviced
my hardware and software. Thanks also go to Juniorprofessor Sandra Klinge. Due to
her motivation during my master thesis I started strengthening my interest in the field
of computational mechanics.

Next, I would like to express my sincere gratitude to my colleagues for their cor-
diality and friendship. The ”special” moments we had during and besides the work
helped me to distract from mechanics crises and to motivate me to new ”mechanical
high performances”. Especially the ”scientific” exchange of theories and information
in the kitchen of the institute I will definitely miss. Under the guidance of Thorsten
(Over-Engineer) Bartel, a lot of ingenious questions and topics were discussed together
with Richard Ostwald, Raphael Holtermann, Tim (S04) Heitbreder, Guillermo (Tim-

i



Till) Diaz, Volker (The Pain) Fohrmeister, Christian (Fuchs) Sievers, Karsten (BCK)
Buckmann, Dinesh Dusthakar and Rolf (Rolle) Berthelsen. The discussions, anger and
fun we shared together I will definitely keep in good memories.

I would also like to thank my other colleagues and former colleagues Professor Björn
Kiefer, Boadong Shi, Malek Homayonifar, Maniprakash Subramanian, Tim Furlan, Till
Clausmeyer, Krishnendu Haldar, Professor Ralf Denzer, Muhammad Osman, Cesar
Polindara, Tobias Asmanoglo, Robin Schulte, Markus Schewe, Lars Rose, Leon Sprave,
Patrick Kurzeja, Kai Langenfeld and Serhat Aygün for their helpful and engaged team-
work. I hope we stay in touch.

Last but not least, I would like to thank my family and friends for their support,
which was necessary for my graduation and for writing this thesis. My longtime ”Jugo”
friends from Sassenberg I thank for the many special weekends and holidays we had
together. My girlfriend Malgorzata (Gosia) I thank for her patience and love especially
in the end phase of this thesis. Finally, I gratefully thank my family, particularly my
parents Ingrid and Wilfred, for their support during my whole education process. This
thesis is dedicated to them.

Dortmund, Juni 2017 Alexander Bartels

ii



Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Entwicklung neuer Materialmodelle zur Ab-
bildung der Evolution von Mikrostrukturen. Die Untersuchung von Mikrostrukturen
ist essenziell für die Eigenschaftscharakterisierung von metallischen Werkstoffen, wel-
che im Rahmen dieser Arbeit beschrieben werden. In Abhängigkeit der betrachteten
Anwendung werden Mikrostrukturen auf der technologisch wichtigen Makroskala oder
der materialwissenschaftlich wichtigen Mikroskala untersucht. Unabhängig von der zu
untersuchenden Skala sind mechanische und thermische Belastungen die dominierenden
Faktoren einer Mikrostrukturentwicklung. Das Ziel dieser Arbeit ist die Berücksichtigung
von Mikrostrukturentwicklungen sowohl auf der Makroskala als auch auf der Mikroskala.
Ein wesentlicher Aspekt einer makroskopisch motivierten Modellierung betrifft die Tem-
peraturvorhersage in Metallen aufgrund plastischer Verformungen. Mit Hilfe eines neu-
en und allgemeinen Kopplungsansatzes, der auf einer angepassten Aufteilung gespei-
cherter und dissipativer Energieanteile basiert, wird eine realistischere Temperaturvor-
hersage gegenüber gewöhnlichen Kopplungsansätzen getroffen. Des Weiteren werden
anisotrope Texturevolutionen durch ein verallgemeinertes Distorsionsverfestigungsge-
setz berücksichtigt, welches auf Formänderung einer Fließfunktion beruht. Durch die
Verbindung der neuen Temperaturkopplung und Distorsionsverfestigung werden die re-
levanten Mechanismen der Makroskala abgebildet. Um ein detaillierteres Verständnis
von Mikrostrukturen zu bekommen, werden die Heterogenität von Mikrostrukturen und
die damit verbundene Umwandlung von Phasen aufgrund von mechanischen Lasten
zusätzlich zum zuvor beschriebenen makroskopischen Modell mittels Phasenfeldtheorien
untersucht. Ein Problem in bisherigen Phasenfeldmodellen stellt dabei die Bestimmung
der effektiven Eigenschaften im Diffuse Interface dar. Um Mikrostrukturen möglichst ge-
nau charakterisieren zu können, wird ein verallgemeinertes Phasenfeldmodell entwickelt,
das sowohl etablierte als auch neue und effizientere Homogenisierungstheorien einbindet.
Für die Phasenumwandlungsprozesse werden sowohl Allen-Cahn als auch Cahn-Hilliard
ähnliche Modelle verwendet, so dass die wesentlichen Effekte einer Mikrostrukturent-
wicklung wiedergegeben werden.
Alle Materialmodelle sind dreidimensional für finite Verformungen entwickelt und basie-
ren auf thermodynamisch konsistenten Ansätzen. Unter Berücksichtigung variationeller
Modellierungsansätze folgen die Bilanz- und Evolutionsgleichungen aus Minimierungs-
prinzipien. Darauf basierend werden die hergeleiteten Modellformulierungen numerisch
effizient in die Finite Elemente Methode implementiert und implizit monolithisch gelöst.
Mittels geeigneter Beispiele werden die Eigenschaften aller Modelle veranschaulicht.
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Abstract

This thesis deals with the development of novel material models that capture the evo-
lution of microstructures. The analysis of microstructures is essential for the descrip-
tion of metallic material properties, which are considered in this thesis. Depending on
the underlying application, microstructures are analysed on the technological relevant
macroscale or on the materials science relevant microscale. Independent of the underly-
ing scale, mechanical and thermal loadings are the most dominating factors of evolving
microstructures. The objective of this work is to capture evolving microstructures for
the technologically relevant macroscale as well as for the materials science relevant mi-
croscale.
A key aspect of a macroscopically motivated modelling is related to the temperature pre-
diction in metals which are induced by plastic deformations. By means of a novel and
generalised coupling, which is based on an adopted decomposition of stored and dissipa-
tive energy parts, a more realistic temperature prediction compared to standard coupling
approaches is achieved. Furthermore, the anisotropic texture evolution in hardening pro-
cesses is incorporated by a generalised distortional hardening model, which takes account
of the distortion of a yield surface. Based on the novel thermomechanical coupling and
distortional hardening, the relevant mechanisms are captured on the macroscale. In ad-
dition to the macroscopic modelling and in order to obtain a more detailed insight into
microstructures, the heterogeneity of microstructures and the underlying transformation
of phases is described by means of phase field theories. A problem in existing phase field
models pertains the determination of effective properties in the diffuse interface. In order
to describe microstructures as exactly as possible, a generalised phase field model is de-
veloped incorporating state-of-the-art as well as novel and more efficient homogenisation
assumptions. For the phase transformations, Allen-Cahn-type and Cahn-Hilliard-type
models are applied so that the most important effects of the evolution of microstructures
are included.
All material models are derived three-dimensionally at finite strains and are based on
thermodynamically consistent formulations. Considering an overall variational mod-
elling, the balance and evolution equations follow jointly from underlying minimisation
principles. The derived formulations are efficiently implemented in finite elements and
are implicitly and monolithically solved. Demonstrative examples show the capability
of the derived models.
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1 Introduction

1.1 Motivation

Most materials such as metallic alloys are heterogeneous at a certain microscale. For
instance, by examining the structure of metallic alloys under the microscope, it can be
observed that the microstructure is polycrystalline composed of different oriented and
different sized single-crystals, grain boundaries and dislocations. These microstructures
also evolve in time depending on the applied loading conditions. Obviously, the evolution
of microstructure can be analysed on different scales since the underlying effects corre-
spond to different microscales. Examples for scale dependent microstructures are related
to the formation of texture in polycrystalline materials at the macroscopic scale or are
related to the transformation of phases in single grains at the microscopic scale. Clearly,
the form and design of evolving microstructures strongly depend on the applied pro-
cessing condition and on the applied loading conditions. The most dominating loadings
driving the evolution of microstructures are the deformation field and the temperature
field. The effect of mechanical and thermal loadings are, for instance, the formation
of grain boundary motion induced by plastic deformations or the temperature driven
recrystallisation of crystal lattice. Mechanical and thermal loadings also influence the
microstructure at a different microscale. For instance, the deformation of the crystallo-
graphic structure leads to a martensite-austenite phase transformation in TRIP steels.
Thermal loadings are applied as well to overcome the energy barrier between phases
in shape memory alloys. In summary, microstructures exhibit a complex topology and
evolve due to applied loadings in time. These evolving microstructures, in turn, define
the effective response of the considered material at the macroscale. Thus, the evolution
of microstructure is essential for the resulting effective material properties which are
relevant for large-scale technological processes.

The main objective of this thesis is to establish a link between the evolution of mi-
crostructures and the resulting macro-properties. For that purpose, two constitutive
frameworks are elaborated in this thesis. The first one corresponds to the macroscale
and, consequently, represents a natural connection to the scale for real technological
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1 Introduction

processes. The second one is related to the microscale and thus shows a strong link to
materials science.

Forming technologies such as deep drawing or sheet metal forming are the underly-
ing focus of a macroscopic model. Due to high forming degrees, high plastic strains
occur which lead to an anisotropic texture evolution and consequently to anisotropic
hardening. Since isotropic and kinematic hardening cannot capture the anisotropic tex-
ture evolution, the more general framework of distortional hardening characterised by
an evolution of the yield surface is necessary. Moreover, due to the high plastic defor-
mations, energy dissipates which leads to a temperature increase within the material.
For this reason, the anisotropic hardening model requires a thermomechanically coupled
framework. A summary of the characteristic features of the model is given below.

• realistic prediction of temperatures caused by inelastic deformations

• generalised anisotropic/distortional hardening

• thermodynamical consistency

• efficient numerical implementation

In order to provide a deeper insight into the evolution of microstructures, the second
part of the thesis deals with the analysis of phases at the microscale. The focus lies on
phase transformation and precipitation in metallic alloys. Regarding such phenomena it
is well-known that the governing driving force is strongly influenced by the mechanical
field. In order to simulate mechanically driven phase transformations, phase field theories
appear to be a natural choice. By using phase field theories, the evolution of phases is
approximated in a diffuse manner, i.e. the interfaces are not considered to be sharp, but
show a finite thickness. Although phase field theories are already well developed in the
context of multi-physical coupling, some fundamental problems still exist. The problem
addressed in this thesis is related to the exact definition of effective microstructural
properties within the diffuse interface by means of homogenisation theories. Accordingly,
the second part of the thesis deals with a unified and robust phase field framework
fulfilling the following properties:

• geometrically exact description based on finite deformations

• unified phase field framework based on homogenisation schemes

• displacive as well as diffusion-driven phase transformations

• numerically robust algorithmic formulation.

1.2 State of the art

As mentioned before, this thesis mainly deals with the modelling of microstructures at
different scales. While the first part deals with a new model for the realistic prediction of

2



1.2 State of the art

thermomechanically coupled anisotropic hardening, the second part focuses on a unified
modelling framework for phase field theory. The following sections provide a concise
state-of-the-art review on these two parts.

1.2.1 Macroscopic models accounting for the evolution of
microstructures

The evolution of microstructures and its impact on macroscopic materials properties is
governed, among others, by mechanical and thermal loadings. Concerning the latter,
the understanding and the correct prediction of the thermomechanical coupling is of
utmost importance in a broad variety of different scientific areas. From an engineering
point of view, the coupling is for instance crucial for most production technologies of
semi-finished parts such as extrusion or sheet metal forming, cf. Clausmeyer et al.
[31], Parvizian et al. [102]. A more specific example is sheet forming of magnesium
which can usually only be carried out at elevated temperatures (typically, above 200◦C),
cf. Mekonen et al. [82]. This is due to the temperature dependence of the dominant
underlying deformation modes. To be more precise, forming of magnesium requires a
sufficiently high twinning activity which, in turn, usually requires elevated temperatures,
see Homayonifar and Mosler [56], Mekonen et al. [82]. For this reason, thermomechanical
coupling is also crucial in materials science. In materials science, this coupling often
represents the only way to investigate the irreversible mechanical response of solids, i.e.,
instead of measuring the dissipation directly, the temperature increase is monitored, cf.
Jiang et al. [59], Oliferuk et al. [96]. An excellent overview in connection herewith is
given in Bever et al. [17] and references cited therein.

The modelling of self-induced heating, i.e. temperature increase due to plastic de-
formations, can be modelled by using two fundamentally different approaches. These
approaches are based either on thermodynamical considerations (see e.g. Simo [119])
or on the so-called Taylor-Quinney factor [130]. Focussing first on thermodynamical
consistent modelling, the temperature evolution equation is provided by the first and
second law of thermodynamics for given Helmholtz energy and suitable evolution equa-
tions. However, as shown in Chaboche [28, 29], Hodowany et al. [54], Nemat-Nasser and
Kapoor [94], Rosakis et al. [109] the temperatures which are computed by this straight-
forward modelling are usually overestimated. The reason for the over-prediction of the
temperature is the overestimation of the internal dissipation which is converted to heat.
Therefore, the Taylor-Quinney factor is frequently applied. It correlates the work due
to plastic deformations in an ad-hoc approach to the dissipation. Hence, this factor can
be used to reduce the dissipation. Several experiments and numerical simulations such
as Parvizian et al. [102], Simo and Miehe [121] show that the Taylor-Quinney factor
often provides sufficiently accurate temperature predictions. Unfortunately, this ansatz
is not consistent with the conservation of energy. It can be concluded that temper-
ature predicting models based on thermodynamically consistent assumptions are still
rare. First ideas towards a thermodynamically consistent temperature modelling can

3



1 Introduction

be found in the works of Ristinmaa et al. [108], Rosakis et al. [109]. In Rosakis et al.
[109] a Helmholtz energy is computed which corresponds to the stored energy in cold
work. However, in the proposed one-dimensional setting the dual variables do not fol-
low from this energy. In Ristinmaa et al. [108] the evolution of isotropic hardening is
modified. To be more precise, an offset is considered such that isotropic hardening does
not start from a ”virgin” state but from an initial history deformation. Based on these
ideas, the first and second law of thermodynamics are fulfilled and the temperatures are
decreased. However, the generalisation of these ideas in terms of kinematic hardening
and finite strains is still missing. For this purpose, a novel thermodynamically consis-
tent framework is elaborated which indeed allows a realistic prediction of temperature
evolution.

As mentioned before, the evolution of microstructures in metals is governed by the
interaction between mechanical and thermal loads. Often the evolution leads to a certain
anisotropy at the macroscale - for instance, to the evolution of textures. To be more
precise and as shown in several experiments, the microstructural dislocation motion
and the macrostructural properties are highly connected, see e.g. Nesterova et al. [95]
for steel alloys and Rauch et al. [107] for aluminium alloys. Experimentally it can be
observed that, after a certain magnitude of mechanical loading, dislocation boundaries
are activated leading to an anisotropic microstructure. For example, Fig. 1.1a) shows
the evolution of microbands after an orthogonal loading with respect to the rolling
direction. Along with the Bauschinger effect a cross hardening or softening effect can
also often be observed. On the macroscopic scale the motion of grain boundaries can be
studied by the evolution of yield surfaces, see e.g Ishikawa [58] for steel alloys and Khan
et al. [62, 63, 64] for aluminium alloys. Consequently, the aforementioned microscopical
anisotropies result in a distortion of the yield surface as shown in Fig. 1.1b).

Motivated by experiments in Fig. 1.1 the anisotropic evolution of texture can be de-
scribed by two different modelling classes. These are crystal plasticity e.g. Agnew and
Duygulu [1], Homayonifar and Mosler [56], Kalidindi and Anand [60], Miehe et al. [83]
or purely macroscopic theories e.g. Baltov and Sawczuk [9], Feigenbaum and Dafalias
[43], Haddidi et al. [52], Ortiz and Popov [101], Shi and Mosler [113]. By using crystal
plasticity, the most relevant microscopical effects such as the plastic slip in individual slip
planes are naturally captured in the constitutive assumptions. This makes crystal plas-
ticity well applicable for the aforementioned texture evolution. However, since metallic
alloys are polycrystalline in nature, the associated numerical effort is not practicable.
For this reason, macroscopic theories are frequently applied due to their numerical ef-
ficiency. However, in order to capture effects of the atomic lattice rotation within the
individual grains as well as the distortion and elongation of the grains macroscopically,
the constitutive models become more complex. As noted in Haddidi et al. [52] isotropic
and kinematic hardening cannot realistically capture the resulting macroscopic distor-
tion of the yield surface. Models accounting for the distortion of the yield surface are
referred to as distortional hardening models, cf. Baltov and Sawczuk [9], Haddidi et al.
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Figure 1.1: Experiments associated with texture evolution. a) TEM microstructure of a Ti-killed IF
steel. Anisotropic evolution after 10% shear loading in rolling direction followed by 20% shear loading
at 135° in rolling direction. Reprinted from Nesterova et al. [95] with kind permission from Elsevier.
b) Yield surface evolution for aluminium alloy 6061-T6511 subjected to simple tension of 2%, 4% and
6% strain loading. Experimental measurements are taken from Khan et al. [62].

[52], Ortiz and Popov [101]. Since the modelling of technologically relevant forming
processes is analysed, distortional hardening is adopted here.

The modelling of evolving plastic anisotropies by means of macroscopic description
goes back – at least – to the pioneering works of Baltov and Sawczuk [9], Ortiz and Popov
[101]. In the cited publications, anisotropy is captured by evolving structural tensors
entering the yield surface and – through the normality assumption – also the evolution
equations. Examples which also contain state-of-the-art distortional hardening models
can be found in Barthel et al. [15], Feigenbaum and Dafalias [43], Haddidi et al. [52], Shi
and Mosler [113], Wang et al. [135] and references cited therein. The important physical
effects that capture the distortion of the yield surface are dynamic and latent hardening
or softening, see Barthel et al. [15], Wang et al. [135]. In models based on dynamic
hardening, currently active dislocations lead to an elongation/shrinkage of the yield
surface in loading direction. In addition to this effect, the orthogonal direction can also
undergo cross hardening/softening. Particularly for materials showing a pronounced
variation of the Lankford coefficient (r-value), an uncoupling of dynamic and latent
hardening is important. In relation to physics, latent hardening is due to currently
inactive dislocations which have to be crossed by the active ones, thereby providing
additional hardening. Finally, for some materials such as high-strength aluminium alloys,
a higher curvature of the yield function is observed in loading direction in contrast
to the reverse direction, cf. Fig. 1.1b). Models taking account of this effect can be
found in Feigenbaum and Dafalias [43], Ortiz and Popov [101], Pietryga et al. [105]. In
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general, the evolving plastic anisotropy is captured in Barthel et al. [15], Feigenbaum
and Dafalias [43], Haddidi et al. [52], Pietryga et al. [105], Shi and Mosler [113], Wang
et al. [135] by means of fourth-order tensors defining the equivalent stress in the yield
function. Although the aforementioned physical effects can be captured in one evolution
equation, see Baltov and Sawczuk [9], Feigenbaum and Dafalias [43, 44], Ortiz and Popov
[101], Shi and Mosler [113], a decoupling of dynamic and latent hardening describes the
cross hardening effect more realistically, see Barthel et al. [15], Haddidi et al. [52], Wang
et al. [135].

Since essential physical aspects (thermodynamical consistency, boundedness and con-
vexity of yield surfaces) are not sufficiently discussed in the cited works, a novel gen-
eralised distortional hardening model falling into the range of generalised standard ma-
terials is introduced, cf. Lemaitre [72], Mandel [80]. Another drawback of the cited
works is the restriction to an isothermal setting. Since technological processes are even-
tually to be analysed, a thermomechanically coupled theory as discussed in the previous
paragraphs is elaborated in the thesis. Furthermore, a numerically efficient algorithmic
framework is advocated.

1.2.2 Explicit modelling of evolving microstructures by means of
phase field theories

The models discussed before are usually based on evolution equations for fourth-order
tensors. In order to derive or motivate these tensors, accompanying explicit simula-
tions of the evolving microstructures are meaningful. For this purpose, both phase field
theory and phase field modelling have become crucially important over the last years.
Nowadays, phase field modelling can be found in many classic disciplines like fracture
mechanics (see Bourdin et al. [21], Francfort and Marigo [46]), topology optimisation
(see Bourdin and Chambolle [22], Wallin et al. [134]) and in materials science (see Chen
[30], Steinbach [127]). The beginning of phase field theory goes back to the pioneering
works of Cahn and Hilliard [24] ff. and by Allen and Cahn [2]. They proposed a smooth
approximation of the sharp interface problem. Modica and Mortola [87] showed that
this regularisation converges in the limiting case to the sharp interface (strictly speaking
for time-invariant interfaces). Based on this description, structure and orientation of
domains are identified and the evolution of the phase position is automatically tracked.

Originally, phase field models by Cahn and Hilliard [24] and Allen and Cahn [2] were
introduced in metallurgy to describe the topology in binary alloy systems. A good
overview of phase field modelling in the context of multi-phase alloys is also given in
Moelans et al. [88] and Steinbach [127]. Although these works are restricted to phase
transformations, phase field models are also suitable for the description of multi-physics.
Focussing on physics in solid-solid transformations, phase field-type models can be found
in the context of elastoplasticity (e.g. Ammar et al. [3], de Rancourt et al. [36]), chemical
concentration (e.g. Steinbach and Apel [124]), and ferroelectrics (e.g. Schrade et al.
[112], Zhang and Bhattacharya [140]) – to mention only a few.
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Figure 1.2: Atomic force microscope image of a Cu–14wt.% Al–3.4wt.% Ni alloy. Twinning of two
martensitic twin volumes 1 and 2. Reprinted from Liu and Dunne [78] with kind permission from
Elsevier.

In addition to thermal fields, phase transformations are often also strongly influ-
enced by the mechanical problem. Experimentally, this can be observed for example in
martensite twins of Cu-Al-Ni alloys as shown in Fig. 1.2. Phase transformations of this
kind are intensively analysed and studied in the case of deformation induced martensite
transformations by Levitas [73], Levitas et al. [76] and citations therein.

Although the aforementioned complex phenomena have already been analysed by us-
ing phase field models, some fundamental problems still exist. The problem considered
in this thesis is associated with the computation of the effective mechanical bulk proper-
ties in the diffuse interface. These properties – in turn – define the driving force acting
at the interface. Certainly, the effective bulk properties depend on the properties of
the neighbouring bulk phases. However, the quantitative relation is not clear. In the
literature, mainly two concepts can be found for the definition of the aforementioned ef-
fective properties. Regarding the first (see Khachaturyan [61]), one effective bulk energy
is assumed in an ad-hoc manner. At the boundary of the diffuse interface, this energy
converges to that of the neighbouring phases. This implies that the effective proper-
ties can be understood as an interpolation of the properties of the individual phases.
Since this interpolation does not represent a homogenisation in general, an approach
of Khachaturyan-type does not show the localisation property, i.e., the response of the
individual phases defining the diffuse interface cannot be computed - for instance the
stresses. Models of this type can be found in Clayton and Knap [32], Denoual et al.
[39], Levitas [73], Levitas et al. [76]. From a physics point of view, Khachaturyan-type
models are meaningful for very thin interfaces, for which the interface properties do not
directly derive from the neighbouring bulk behaviour (by means of homogenisation).

7
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Regarding the second class of models, each phase is characterised by an individual bulk
energy, and the effective bulk properties in the diffuse interface follow naturally as a
result from the homogenisation theory Mosler et al. [92], Steinbach and Apel [124, 125].
For this reason, this type of approach shows the localisation property. This type of
model class which will be considered in the following is, from a physics point of view,
meaningful for relatively thick interfaces.

The most frequently applied homogenisation assumptions for defining the effective
properties of the bulk material in the diffuse interface are the Reuss/Sachs model and the
Taylor/Voigt model (see Ammar et al. [3], Steinbach and Apel [124]). While Reuss/Sachs
considers spatially constant stresses, Taylor/Voigt assumes spatially constant strains.
Clearly, these two homogenisation assumptions are limiting cases in the sense of ener-
gies, i.e. they represent lower (Reuss/Sachs) and upper (Taylor/Voigt) energy bounds.
Speaking in the sense of physics, the Reuss/Sachs model does not fulfil kinematic com-
patibility across the interface, while the Taylor/Voigt model does not fulfil static equilib-
rium at the interface. A good overview of these models and of the previously mentioned
Khachaturyan model is given in Ammar et al. [3], de Rancourt et al. [36]. A novel ho-
mogenisation scheme simultaneously fulfilling kinematic compatibility as well as static
equilibrium across the interface is presented in Mosler et al. [92]. For a geometrically
linearised theory and linear elasticity, similar ideas can be found in Durga et al. [40, 41],
Schneider et al. [111]. In Mosler et al. [92], kinematic compatibility is enforced by ap-
plying the Cauchy & Hadamard condition. The normal vector occurring in the Cauchy-
Hadamard condition is computed from the spatial distribution of the phase field, while
the vector associated with the deformation jump is computed by energy relaxation. It
can be shown that this relaxation is equivalent to enforcing traction continuity across
the interface.

The homogenisation scheme proposed in Mosler et al. [92] is inspired by the works
of Aubry and Ortiz [6], Ortiz and Repetto [98], Bartels et al. [13], Levitas and Ozsoy
[74, 75], Bartel and Hackl [10]. In contrast to Mosler et al. [92], the normal vector in
the Cauchy-Hadamard condition as well as the phase fraction are locally relaxed and
not related to a globally defined phase field parameter. From a mathematical point of
view, the models in Aubry and Ortiz [6], Ortiz and Repetto [98], Bartels et al. [13],
Levitas and Ozsoy [74, 75], Bartel and Hackl [10] are based on rank-1 convexification.
Since the orientation of the normal vector is not locally relaxed in Mosler et al. [92], the
respective model is termed partial rank-1 homogenisation. A generalised version of the
model proposed in Mosler et al. [92] is elaborated in this thesis, which accounts for a
locally defined normal vector – similar to the idea in rank-1 convexification frameworks
Aubry and Ortiz [6], Ortiz and Repetto [98]. This generalised version is referred to as
full rank-1 homogenisation.

In order to compare the state-of-the-art homogenisation assumptions of Taylor/Voigt
and Reuss/Sachs to the novel assumptions based on rank-1 homogenisation, a unified
framework is elaborated in this thesis. Independent of the underlying homogenisation
assumption all models are presented in a unified variational structure where all unknowns
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follow jointly from energy minimisation. Following Fischer [45], see also Bartel and Hackl
[10], Schmidt-Baldassari [110], the admissible range of the order parameter is enforced
through nonlinear complementary conditions.

While martensitic phase transformations are displacive in nature, the formation of
precipitates e.g. in NiTi shape memory alloys is driven by diffusion, cf. Bouville and
Ahluwalia [23]. Displacive transformations are usually described by an Allen-Cahn-type
phase field formulation (see Allen and Cahn [2]) as described in the previous paragraphs.
By way of contrast, diffusion based phase transformations can be studied by a Cahn-
Hilliard -type phase field model, cf. Cahn and Hilliard [24]. Mechanically induced phase
segregation of Cahn-Hilliard-type can be found in Larché and Cahn [69], Onuki [97] and
Maraldi et al. [81] and can be embedded into a variational format as shown in Miehe
et al. [84]. Coupled Cahn-Hilliard-type phase field models can be found in the context
of chemically induced swelling Miehe et al. [85] and elastoplasticity Anand [4] among
others.

Since Cahn-Hilliard-type models naturally enforce conservation of volume and account
for a rearrangement of material (see Gurtin [50]), they are also suitable for topology
optimisation, as shown in Blank et al. [19], Dedè et al. [38], Wallin et al. [134]. The main
goal in topology optimisation is the determination of the optimal material distribution.
Based on the ideas given in Kotucha [67], Wallin and Ristinmaa [133], Wallin et al. [134]
a model is presented for the optimisation of structures. By using the aforementioned
nonlinear complementary conditions as proposed in Fischer [45] a robust and efficient
implementation is proposed.

1.3 Structure of the thesis

This thesis is structured in two main parts which are associated with the macroscopic as
well as with the microscopic scale. Starting with the fundamentals of continuum mechan-
ics in Chapter 2, the relevant balance laws within this thesis are introduced. The focus
of this chapter lies on the development of coupled constitutive models at finite strains.
To be more precise, three material models covering hyperelasticity, thermoelasticity and
thermoplasticity are discussed, where special emphasis is on the thermomechanical cou-
pling in dissipative materials. Furthermore, the aforementioned constitutive models are
presented in a variational format which serves as natural framework for thermomechan-
ically coupled problems.

The correct prediction of temperatures and the correct thermomechanical coupling is
addressed in Chapter 3. Particularly, the dissipation associated with plastic deformation
influences the temperature evolution. For this reason, the dissipation is intensively
analysed for standard dissipative materials as well as for generalised standard materials.
Based on this analysis, a novel and generalised thermomechanical coupling is proposed,
which accounts for an adequate split of energetic and dissipative parts. Interestingly,
the advocated model shows a strong analogy to the ad-hoc ansatz of Taylor-Quinney.
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As already pointed out in the previous section, the first main focus of the thesis is
the development of a suitable material model for the technological relevant macroscale.
Such a model is presented in Chapter 4, where the texture evolution is captured by
means of a macroscopic distortional hardening model. For this purpose, a novel thermo-
dynamically consistent distortional hardening model is proposed falling into the range
of generalised standard materials. This novel model is incorporated into the generalised
thermomechanical framework elaborated in the previous chapter. Regarding the numer-
ical implementation of the coupled distortional hardening model, an efficient algorithmic
formulation for the fourth-order evolution equations is developed, so that the numerical
complexity is significantly reduced. Several numerical examples show the application for
complex technological processes.

Chapter 5 represents the second main focus of the thesis, i.e. the efficient modelling
of effective properties at the microscale. For this purpose, a unified Allen-Cahn-type
phase field model is developed which includes homogenisation assumptions defining the
mechanical response of the bulk material in the interface. The proposed framework
includes state-of-the-art homogenisation schemes, such as the classic Taylor/Voigt and
Reuss/Sachs assumptions as well as novel homogenisation schemes based on a rank-1
connection of the interface. As a key aspect of this chapter a robust numerical im-
plementation is developed, such that admissible order parameters are guaranteed and
the constrained optimisation is transferred into an unconstrained optimisation. The ob-
tained algorithmic system of equations is implemented into a finite element scheme and
the capability of the different homogenisation assumptions is investigated.

In Chapter 6 the Allen-Cahn-type phase field model as elaborated in Chapter 5 is
adapted for a deformation-diffusion driven Cahn-Hilliard-type phase field model. Al-
though the underlying Cahn-Hilliard equation driving the diffusion process is a fourth-
order differential equation, the proposed model can efficiently be solved based on a mixed
three-field formulation. It is shown that the constitutive assumptions inherit a natural
variational structure, where the constitutive equations and the balance laws such as the
mass conservation law follow jointly from the underlying minimisation principle. The
resulting algorithmic formulation is implemented by using the aforementioned numeri-
cal framework in order to obtain an unconstrained optimisation. Based on the resulting
model, the evolution of microstructures caused by the interaction between mechanics
and diffusion are numerically analysed. A further point of this chapter deals with the
prediction of the optimal design of structures. For this purpose, the Cahn-Hilliard-type
phase field model which naturally enforces conservation of volume is adapted. The final
system of governing equations shows a strong analogy to the evolution equation of the
aforementioned coupled Cahn-Hilliard phase field model. The capability of the proposed
model is demonstrated.

The present thesis is closed with a short summary and a short discussion of future
perspectives.
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2 Introduction to continuum
mechanics

This chapter gives an introduction to continuum mechanics with focus on con-
stitutive modelling. After introducing the notation of the underlying tensor operations
in Section 2.1, the kinematics of the geometrically non-linear theory at finite strains is
summarised in Section 2.2. Subsequently, the basic balance equations are derived in
Section 2.3. Focussing on hyperelastic, thermoelastic and thermoplastic materials, the
underlying constitutive equations are deduced in Section 2.5. Furthermore, Section 2.6
presents the constitutive models previously presented in Section 2.5 in a variational
form.

It should be mentioned that the derived equations and relations are neither new nor
completely presented in detail here. In fact, this chapter provides a basis for the follow-
ing constitutive models and contains general equations and relations for the following
chapters. A complete overview of classic continuum mechanics can be found for example
in Holzapfel [55], Hutter and Jöhnk [57], Šilhavý [116].

2.1 Notation

The following notation is used throughout the entire thesis. If necessary, use is made
of index notation which implies the Einstein summation rule. The Euclidean space R3

is spanned by the Cartesian vectors ei for i = {1, 2, 3} with O being the centre. For
the sake of simplicity, all vectors and higher order tensors are spanned by Cartesian
basis vectors. Accordingly, these basis vectors are omitted in the following. First
order tensors are denoted by bold-face symbols, e.g. a, b, and second order tensors
are denoted by bold-face symbols, e.g. A, B. Fourth order tensors are symbolised by
blackboard-bold letters, e.g. A, B. Basic algebraic operations between these tensors are
presented below.
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Scalar products:

a · b = [a]i [b]i

A : B = [A]ij [B]ij

A :: B = [A]ijkl [B]ijkl

The dots stand for the order of contraction. While (·) is a simple contraction, double
dot (:) and double-double dot (::) stand for double contractions and fourth order
contractions of indices, respectively. A generalised scalar product of two n-th order
tensors X , Y is denoted by the (◦) symbol, i.e. X ◦ Y .

Standard and non-standard inner vector and tensor products:

[A · b]i = [A]ij [b]j

[A ·B]ij = [A]im [B]mj

[A · b]ijk = [A]ijkl [b]l

[A : B]ij = [A]ijkl [B]kl

[A : B]ijkl = [A]ijmn [B]mnkl

[A� B]ijkl = [A]im [B]jmkl

[a • B]ijk = [a]m [B]imjk

In this regard only the definitions of the operations (�) and (•) are non-standard since
they represent inner tensor products associated with the second index.

Standard and non-standard outer vector and tensor products:

[a⊗ b]ij = [a]i [b]j

[A⊗B]ijkl = [A]ij [B]kl

[A⊗B]ijkl = [A]il [B]jk

[A⊗B]ijkl = [A]ik [B]jl .

In this regard only the definitions of the operations (⊗) and (⊗) are non-standard in
classic continuum mechanics.
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Identity tensors:
By use of Kronecker Delta δ, the identity tensors

[I]ij = δij

[I]ijkl = [I⊗ I]ijkl = δik δjl[
I
dev
]
ijkl

=

[
I− 1

3
I⊗ I

]
ijkl

= δik δjl −
1

3
δij δkl

are defined, which exhibit the following identity properties. The trace of a second order
tensor A is determined by trA = A : I. The fourth order identity tensor I implies
I : A = A ∀ A. Based on the deviatoric fourth order identity tensor Idev, the deviatoric
part of a second order tensor, i.e. devA = Idev : A, and the deviatoric part of a fourth
order tensor, i.e. devA = Idev : A are computed.

2.2 Kinematics

In this section the motion of a continuous body (Boltzmann continuum) is briefly sum-
marised. A body B0 ⊂ R3 at time t = 0, which refers to the reference or undeformed
configuration, is described by a set of material points or particles. Every material point
P of B0 is defined by its coordinate X(P ) in the Euclidean space R3. The body deforms
under loading. This configuration of the body, also referred to as deformed or current
configuration, is denoted by Bt for time t > 0. The underlying deformation of material
points from B0 to Bt is described by the mapping

ϕ :

{
B0 × τ → Bt ⊂ R

3

(X, t) 	→ x = ϕ(X, t)
. (2.1)

The mapping indicates that to every material point in the reference configuration one
coordinate x = ϕ(X, t) in the deformed configuration is assigned. The mapping is
illustrated for an infinitesimal volume element in Fig. 2.1. For the sake of simplicity,
identical Cartesian coordinates are chosen for the reference and current configuration.
The difference between current and referential coordinate results in the displacement
vector

u = x−X . (2.2)

In order to describe the deformation process locally, deformation gradient

F =
∂x

∂X
=
∂ϕ

∂X
= GRADϕ (2.3)
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Figure 2.1: Motion of a body. Reference and current configuration

is introduced. In this regard and throughout this thesis, derivatives with respect to the
reference configuration are applied. Consequently, the gradient and the divergence for
any tensor valued quantity (•) are defined as

GRAD • = ∂•
∂X

, DIV • = GRAD • : I . (2.4)

Based on the definition of F, the mapping of line, surface and volume elements, as
shown in Fig. 2.1, can be performed. The deformation gradient F maps a line segment
dX from the reference configuration to the current configuration dx by means of

dx = F · dX . (2.5)

Due to the invertibility constraint of material points, the Jacobian of F requires

J = detF > 0 , (2.6)

where (det) denotes the determinant of F. A surface element is transformed from the
reference to the deformed configuration by means of Nanson formula

n da = J F−T ·N dA . (2.7)

As illustrated in Fig. 2.1, n and N are the normal vectors on the surface elements da
and dA for the reference and current configuration, respectively. The current volume
element dv and the referential volume element dV are connected via

dv = J dV . (2.8)
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Since some material models rely on evolution equations, the rates of deformation-like
quantities are also required. For that purpose, the spatial velocity gradient

l = Ḟ · F−1 (2.9)

is introduced where dot denotes the material time derivative. Following standard con-
tinuum mechanics notation, cf. Holzapfel [55], Hutter and Jöhnk [57], lower case letters
are used to indicate variables belonging to the current configuration, and upper case let-
ters are used to indicate variables belonging to the reference configuration. For the sake
of simplicity, the balance equations and constitutive models are presented with respect
to the reference configuration. However, balance laws can equivalently be formulated
for the deformed configuration of the body. For more details with respect to contin-
uum mechanics discussed in the context of deformed and undeformed configurations,
the interested reader is referred to Holzapfel [55], Hutter and Jöhnk [57] and others.

2.3 Balance equations

This section gives a short overview of balance equations used within this thesis.
Adopting the cutting principle (see Hutter and Jöhnk [57], p.51), the following balance
laws are derived integrally for a control volume and control surface. The control
volume and control boundary are denoted as subsets Ω0 ⊂ B0 and ∂Ω0 ⊂ ∂B0. Based
on the integral formulations, the local balances, that are the balance of mass, linear
momentum, energy and the entropy inequality, are derived.

Balance of mass:
For a generalised open system with a fixed body volume, mass can flow over the boundary
or created by a source. Consequently, the mass balance in its referential configuration
reads

d

dt

∫
Ω0

ρ0 dV = −
∫

∂Ω0

H̄ dA +

∫
Ω0

M dV . (2.10)

The rate of the referential density ρ0 > 0 is balanced by the mass flux H̄ acting on the
boundary and by mass source M . Similarly to Stokes’ heat flux theorem (cf. Holzapfel
[55] §4), the mass flux is linearly dependent on the normal vector, i.e. H = H ·N. The
mass transfer is defined by the nominal mass flux vector H. Within this work, no mass
sources and fluxes over the boundary are considered, i.e. M = 0 and H̄ = 0. For the
referential density ρ0(X) > 0 being only a function of the referential position X and
independent on the time, the mass is conserved, i.e.

d

dt
ρ0 = ρ̇0 = 0 . (2.11)
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This corresponds to a closed system and is assumed for the following balance laws.
Further information on mass balances in the context of open and closed systems can be
found in Epstein and Maugin [42] and Kuhl [68].

Balance of linear momentum:
The conservation of linear momentum states that the time rate of momentum equals the
sum of external forces acting on body B0. The external forces

F =

∫
Ω0

ρ0B dV +

∫
∂Ω0

T̄dA (2.12)

are determined by the body force ρ0B and the prescribed tractions T̄ on the boundary.
The linear momentum of the body is defined by

L =
d

dt

∫
Ω0

ρ0 ϕdV . (2.13)

Consequently, the linear momentum balance L̇ = F leads to∫
Ω0

ρ0 ϕ̈ dV =

∫
Ω0

ρ0 B dV +

∫
∂Ω0

T̄ dA . (2.14)

In this regard the double dot indicates the second material time derivative of the defor-
mation map ϕ. For stress vector T Cauchy’s stress theorem is assumed. This theorem
implies the linear dependency on the normal vector, i.e. T = P ·N, where P denotes the
first Piola-Kirchhoff stress tensor. Inserting this relation into Eq. (2.14) and applying
the Gauss divergence theorem, the surface integral is converted into a volume integral.
Consequently, for any material point X ∈ B0, the momentum balance Eq. (2.14) is
transformed into the local form

ρ0 ϕ̈ = DIVP+ ρ0 B on B0 . (2.15)

If dynamic effects are neglected, the inertia term ρ0 ϕ̈ vanishes, and thus the balance of
linear momentum results in

DIVP+ ρ0 B = 0 on B0 . (2.16)

Remark 2.3.1: From the balance of angular momentum it can be deduced that Cauchy
stress tensor σ = J−1P · FT requires symmetry (for a classic Boltzmann continuum).
This implies that P · FT = F · PT has to hold. Similarly, it follows from the balance of
angular momentum that the second Piola-Kirchhoff stress tensor S = F · P is symmet-
rically.
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Balance of energy:
The balance of energy is equivalent with the first law of thermodynamics. From the
physics point of view it states that the rate of kinetic energy K and internal energy
E of a thermodynamic system equals the external mechanical power PF, external ther-
mal power PΘ and other external powers Pext which are related to further macro- or
micromechanical forces. Thus, the balance reads

d

dt

∫
Ω0

{K + E} dV = PF + PΘ + Pext . (2.17)

Focussing on thermomechanically coupled Boltzmann continua, Pext is currently skipped.
For dynamic systems the kinetic energy K = 1/2 ρ0 ‖ϕ̇‖2 is taken into account, in which
‖ · ‖ denotes the Euclidean 2-norm. The external power of the mechanical system

PF =

∫
∂Ω0

T̄ · ϕ̇ dA +

∫
Ω0

ρ0B · ϕ̇ dV (2.18)

is determined by the tractions T̄ acting on the surface and the body force ρ0 B. The
external power of the thermal system is determined by the prescribed heat flux Q̄ acting
on the surface and the volume specific heat source ρ0RΘ, i.e.

PΘ = −
∫

∂Ω0

Q̄ dA +

∫
Ω0

ρ0RΘ dV . (2.19)

For heat flux Q, Stoke’s heat flux theorem is postulated. Hence, Q is linearly dependent
on the surface normal vector N and the heat flux vector Q, i.e. Q = Q ·N.

In order to obtain a local version of Eq. (2.17), Gauss’s divergence theorem is applied
for the transformation of surface into volume integrals. After insertion of balance of lin-
ear momentum (Eq. (2.15)), the resulting energy balance equation reads for all material
points

Ė = P : Ḟ− DIVQ+ ρ0RΘ , (2.20)

where P : Ḟ denotes the stress power. Equation (2.20) refers to the local form of the
first law of thermodynamics. It balances the mechanical and thermal energies inside
and outside of a body B0. However, the direction of energy transformation cannot
be governed from the first law of thermodynamics. To this end, the second law of
thermodynamics is applied.
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2 Introduction to continuum mechanics

Remark 2.3.2: For isothermal conditions, i.e. for constant temperature Θ = const.
without considering heat flux Q and heat source RΘ, the balance of internal energy
Eq. (2.20) reduces to

Ė = P : Ḟ . (2.21)

By means of the Legendre transformation (see Remark 2.5.1) this equation can be rep-
resented as

Ψ̇ + Θ Ṅ = P : Ḟ . (2.22)

Entropy inequality:
The direction of energy transfer is addressed in the entropy inequality, also known as
the second law of thermodynamics. It states that the rate of entropy N is greater than
the rate of entropy input. According to Clausius-Duhem the total production of entropy

Γ =
d

dt

∫
Ω0

N dV +

∫
∂Ω0

Q̄
Θ

dA−
∫
Ω0

ρ0RΘ

Θ
dV ≥ 0 (2.23)

is defined. It requires that Γ ≥ 0 is fulfilled for all possible processes. For Γ = 0, the
process is termed reversible and for Γ > 0 the process is termed irreversible. Irreversible
processes are associated with dissipation of energy. Moreover, the inequality is only valid
for temperatures

Θ :

{
B0 × τ → Bt ⊂ R

+

(X, t) 	→ Θ(X, t)
, (2.24)

i.e Θ > 0, where the temperature is measured in Kelvin. In order to obtain a local form
of Eq. (2.23) the surface integral is converted into a volume integral by means of Stoke’s
heat flux theorem. The resulting local form reads for all material points

Ṅ +
DIVQ

Θ
− 1

Θ2
Q ·GRADΘ− ρ0RΘ

Θ
≥ 0 . (2.25)

By multiplying this equation with Θ the second law of thermodynamics

D = Θ Ṅ +DivQ+Q ·G− ρ0RΘ ≥ 0 (2.26)

is obtained. The magnitude of irreversibility is denoted by dissipation D. In this context,
the generalised temperature gradient G = −GRADΘ/Θ is introduced. For the thermo-
mechanically coupled version of the dissipation inequality, the term DivQ − ρ0RΘ is
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2.4 Boundary conditions

replaced by the use of the balance of energy (2.20). Thus, the dissipation inequality
reads for the thermomechanically coupled case

D = P : Ḟ+Θ Ṅ +Q ·G− Ė ≥ 0 . (2.27)

Again, P : Ḟ is the stress power. Furthermore, temperature Θ and entropy rate Ṅ
are thermodynamically conjugated to one another, and heat flux Q and normalised
temperature gradient G are thermodynamically conjugated to one another. According
to Clausius-Planck, a stronger form of Ineq. (2.27) requires that

Dint = P : Ḟ+Θ Ṅ − Ė ≥ 0 , Dcon = Q ·G ≥ 0 (2.28)

are independently fulfilled. Dint denotes the internal dissipation and Dcon denotes the
dissipation due to heat conduction. This decomposition is inspired by the observation
that heat flows from warm to cold zones even for thermoelastic processes where Dint = 0.
Clearly, the inequalities (2.28) need separately be proven for all constitutive material
models, i.e. approaches for internal energies and heat conduction. Regarding the ther-
modynamical consistency of material models, the framework of Coleman and Noll [35],
Coleman [33], Coleman and Gurtin [34], Truesdell and Noll [132] is usually considered.
More details are given in the following chapters.

Remark 2.3.3: For isothermal conditions, i.e. for constant temperatures Θ > 0 without
consideration of heat flux Q and heat source RΘ, the dissipation inequality Eq. (2.27)
reduces to

D = P : Ḟ+Θ Ṅ − Ė ≥ 0 . (2.29)

By considering a Legendre transformation (see Remark 2.5.1) this equation reduces to

D = P : Ḟ− Ψ̇ ≥ 0 . (2.30)

2.4 Boundary conditions

In order to solve thermomechanically coupled boundary value problems or, to be more
precise, the balance of linear momentum (Eq. (2.16)) and the energy balance (Eq. (2.20)),
suitable boundary and initial conditions are required. To this end, boundary ∂B0 is
decomposed into Dirichlet and Neumann boundaries for each field variable. For the
mechanical boundary value problem, its boundary is decomposed into

∂B0 = ∂B0,ϕ ∪ ∂B0,T , ∂B0,ϕ ∩ ∂B0,T = ∅ . (2.31)

The Dirichlet boundary ∂B0,ϕ and Neumann boundary ∂B0,T are determined by

ϕ = ϕ̄ ∀X ∈ ∂B0,ϕ , P ·N = T̄ ∀X ∈ ∂B0,T , (2.32)
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2 Introduction to continuum mechanics

where ϕ̄ denotes the prescribed deformation on the Dirichlet boundary and T̄ denotes
the prescribed tractions on the Neumann boundary. The initial deformation map at
time t = 0 is indicated by the index ”0”, i.e. ϕ(X, t = 0) = ϕ0(X).

Analogously, the thermal boundary is decomposed into Dirichlet boundary ∂B0,Θ and
Neumann boundary ∂B0,Q, such that the boundaries fulfil

∂B0 = ∂B0,Θ ∪ ∂B0,Q , ∂B0,Θ ∩ ∂B0,Q = ∅ . (2.33)

The respective boundary conditions are determined by the prescribed temperature Θ̄
and the prescribed heat flux Q̄, i.e. more precisely by

Θ = Θ̄ ∀X ∈ ∂B0,Θ , Q ·N = Q̄ ∀X ∈ ∂B0,Q . (2.34)

Initial conditions for the temperature field are described by Θ(X, t = 0) = Θ0(X), with
Θ0 being the initial temperature. Note, that in a thermomechanically coupled system
thermal and mechanical boundaries can intersect.

2.5 Constitutive modelling

In order to define the material response of a body, constitutive relations need to be
defined. Three constitutive models at finite strains are presented in the following. All
models have in common that the existence of a Helmholtz energy Ψ is postulated.

2.5.1 Hyperelasticity

Focussing first on isothermal processes, the Helmholtz or free energy Ψ is solely a function
of the deformation gradient F

Ψ = Ψ(F) , (2.35)

which demonstrates that the stored energy is locally defined. Postulating that the mate-
rial fulfils objectivity or frame indifference (see Holzapfel [55] §6), the free energy satisfies

Ψ(F) = Ψ(Q · F) . (2.36)

It states that the stored energy is unaffected by any rigid body motion Q ∈ SO(3).
Equivalently, the stored energy can also be expressed in terms of the right Cauchy-
Green tensor

C = FT · F , (2.37)

i.e. Ψ(F) = Ψ(C). Since C is symmetric, objectivity implies automatically balance of
angular momentum as well (see Simo and Hughes [120] §7). If the Helmholtz energy is
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2.5 Constitutive modelling

assumed to be isotropic, meaning the material to behave identical in all directions, the
relation Ψ(F) = Ψ(F ·QT) ∀Q ∈ SO(3) has to be fulfilled as well.

Hyperelastic material response is denoted as perfectly elastic behaviour, since the
deformation process is not associated with dissipation. As a consequence, the local
dissipation inequality (2.30) obtains D = 0. By means of relation Ψ̇ = ∂FΨ : Ḟ,
Eq. (2.30) yields

D = P : Ḟ− Ψ̇ =

[
P− ∂Ψ

∂F

]
: Ḟ = 0 . (2.38)

First, it can be deduced that stress power P : Ḟ equals the rate of the Helmholtz energy
Ψ̇. And secondly, for Ḟ being arbitrary, the constitutive relation

P =
∂Ψ

∂F
(2.39)

is derived. Within the framework of Coleman and Noll [35] and Coleman and Gurtin
[34] the first Piola-Kirchhoff stress tensor or simply the Piola stress tensor P is referred
to as thermodynamic force. The derivation of thermodynamic forces by means of the
second law is also known as Coleman & Noll procedure.

2.5.2 Thermoelasticity

For thermoelastic material properties the Helmholtz energy depends locally on the de-
formation gradient F and the temperature Θ > 0, i.e.

Ψ = Ψ(F,Θ) . (2.40)

To be more precise, an additive decomposition of Helmholtz energy (2.40) is assumed.
A possible split of the Helmholtz energy

Ψ(F,Θ) = Ψel(F) +M(F,Θ) + T (Θ) (2.41)

contains the purely elastic contribution Ψel, the thermoelastic coupling M(F,Θ) and
the purely thermal potential T (Θ). A purely hyperelastic material is obtained for the
isothermal condition Ψ(F) = Ψ(F,Θ)|Θ=const. For a stored energy, depending on the
deformation gradient F and the entropy N , the internal energy E is considered. Ψ and
E are connected via the Legendre transformation (Remark 2.5.1).

Remark 2.5.1: The Helmholtz energy Ψ = Ψ(•,Θ) and the internal energy E =
E(•, N) as functions of a generalised variable set (•) are related via the Legendre trans-
formation

E(•, N) = Ψ(•,Θ) + ΘN . (2.42)
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2 Introduction to continuum mechanics

Temperature Θ and entropy N are thermodynamically conjugated quantities.

The constitutive relations are subjected to the second law of thermodynamics, i.e.
more precisely, the dissipation inequality (2.28)1. For thermoelastic (perfect) materials
the identity Dint = 0 is postulated. Thus, inserting an internal energy of the form
E = E(F, N) results in

Dint = P : Ḟ+Θ Ṅ − Ė =

[
P− ∂E

∂F

]
: Ḟ+

[
Θ− ∂E

∂N

]
Ṅ = 0 . (2.43)

For arbitrary deformations and entropies, the Piola stress tensor P and the temperature
Θ are obtained, i.e.

P =
∂E

∂F
, Θ =

∂E

∂N
. (2.44)

By means of the Legendre transformation (2.42) equation (2.43) is re-written into

Dint = P : Ḟ− Θ̇N − Ψ̇ =

[
P− ∂Ψ

∂F

]
: Ḟ−

[
N +

∂Ψ

∂Θ

]
Θ̇ = 0 , (2.45)

leading to the constitutive relations

P =
∂Ψ

∂F
, N = −∂Ψ

∂Θ
. (2.46)

As can be seen, that N and Θ are thermodynamically conjugated to one another (Re-
mark 2.5.1).

Temperature equation: The evolution of temperature is naturally defined by the
first law of thermodynamics. For this purpose, the local energy balance (2.20) is con-
sidered. However, the process direction of the temperature is not included. Therefore,
the Clausius-Planck relation for thermoelastic materials (2.43) is inserted into Eq. (2.20)
leading to

Θ Ṅ = −DIVQ+ ρ0RΘ . (2.47)

Due to the dependency on F and Θ (see Eq. (2.46)) the entropy rate yields

Ṅ = − ∂2Ψ

∂Θ∂F
: Ḟ− ∂2Ψ

∂Θ2
Θ̇ . (2.48)

Multiplied by Θ, two quantities are derived i.e.

c = −Θ∂
2Ψ

∂Θ2
, A = Θ

∂2Ψ

∂Θ∂F
: Ḟ . (2.49)
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2.5 Constitutive modelling

The heat capacity is denoted by c and is restricted to the constraint c > 0. The structural
heating defined as A describes the thermoelastic response, which is also referred to as
the Gough-Joule effect. Inserting these two relations into Eq. (2.47) yields the local
temperature evolution equation

Θ̇ =
1

c
[A−DIVQ+ ρ0RΘ] . (2.50)

Constitutive relations for the heat flux are given in Remark 2.5.2 and Remark 2.5.3.
They are based on a Fourier-type heat conduction. For adiabatic heat conditions (for
Q = 0 and without consideration of heat sources RΘ = 0), the temperature equation
reduces to

Θ̇ =
1

c
A . (2.51)

Remark 2.5.2: In this work a Fourier-type heat conduction is used. It is assumed that
the constitutive heat flux vector Q is given in the reference configuration as

Q = −k0 ·GRADΘ , (2.52)

with k0 being the thermal conductivity tensor. If k0 is positive definite, Eq. (2.52) au-
tomatically satisfies the conductivity related dissipation Ineq. (2.28)2. For an isotropic
conductivity tensor k0 = k0 I, the heat conduction reduces to

Q = −k0GRADΘ , (2.53)

and the conductivity term of the dissipation yields

Dcon = Q ·G =
k0
Θ
‖GRADΘ‖2 > 0 . (2.54)

Remark 2.5.3: An alternative approach for the Fourier-type heat conduction is proposed
in Yang et al. [139]. It is based on the convex potential

χ =
1

2

k0
Θ0
‖G‖2 (2.55)

from which heat flux Q follows as thermodynamic force

Q =
∂χ

∂G
= − k0

Θ0

GRADΘ

Θ
. (2.56)

Clearly, with Θ0 > 0 being the referential temperature, dissipation inequality is automat-
ically satisfied. Further constitutive assumptions of Fourier-type heat conduction can be
found in Holzapfel [55] §4.5.
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2 Introduction to continuum mechanics

Remark 2.5.4: An alternative approach for the modelling of thermoelastic material is
based on the decomposition of motion into a purely mechanical deformation and a purely
thermal deformation. Accordingly, the deformation gradient

F = FM · FΘ (2.57)

is multiplicatively decomposed into the mechanical deformation gradient FM and the
thermal deformation gradient FΘ. For further details the interested reader is referred
to Holzapfel [55] §7.8. As a consequence of the thermoelastic deformation gradient the
Helmholtz energy is given in the form

Ψ(F,Θ) = Ψel
(
F · FΘ−1

)
+ T (Θ) , (2.58)

where the thermomechanical coupling is already included in the multiplicative split (2.57),
cf. Eq. (2.41).

2.5.3 Thermo-elastoplasticity

Next, the thermoelastically coupled material model in Subsection 2.5.2 is extended to
irreversible processes. For this purpose, plastic deformations are taken into account,
where the classic work of Lee [70] is considered for the kinematical relations. In Lee [70]
the deformation gradient is multiplicatively decomposed into an elastic and a plastic
contribution. The decomposition yields

F = Fe · Fp , detFe > 0 , detFp > 0 (2.59)

with Fe and Fp being the elastic and plastic deformation gradient, respectively. As-
sociated with this decomposition, the intermediate configuration is introduced as illus-
trated in Fig. 2.2. While the mapping Fp is associated with purely plastic deformations,
fully unloaded mechanical system, Fe characterises the elastic part of the deformation.
Experimental investigations show that for metal plasticity, which is assumed in the
following, plastic deformation is isochoric. Based on these observations it is assumed
that detFp = 1 holds. In standard plasticity theories Fp is most frequently chosen as
history-dependent, internal variable. The evolution of this variable can be determined
by different rate equations. Therefore, and in analogy to the standard spatial velocity
gradient in Eq. (2.9) the two additional velocity gradients

Lp = Ḟp · Fp−1 , le = Ḟe · Fe−1 (2.60)

are also defined. Note, that le is associated with the deformed configuration whereas Lp

refers to the intermediate configuration induced by the multiplicative split (2.59).
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B0

∂B0
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Figure 2.2: Multiplicative decomposed deformation gradient. Introduction of intermediate configura-
tion.

Remark 2.5.5: The multiplicative decomposition (2.59) is motivated by the microme-
chanical observation of the crystal lattice. While Fp is responsible for the sliding of the
crystal lattice, Fe represents the distortion and rotation of the crystal lattice. Referring
to Lubliner [79] §8.2, the plastic distortion rate Lp depends on i-slip systems which are
spanned by the slip unit vectors ni and the slip directions mi and are weighted by the
shear rates γ̇, i.e.

Lp =
∑
i

γ̇imi ⊗ ni . (2.61)

Based on the thermoelastic Helmholtz energy given in the previous subsection, the
material is extended to irreversible plastic behaviour. The thermo-elastoplastic material
is defined by the Helmholtz energy

Ψ = Ψ(F,Fp,Θ,α) . (2.62)

To be more precise, the underlying Helmholtz energy is additively decomposed into

Ψ(F,Fp,Θ,α) = Ψel
(
F · Fp−1

)
+Ψpl(α,Θ) +M(F,Θ) + T (Θ) . (2.63)

The argument α ∈ R
n of the plastic energy Ψpl is a generalised set of internal variables

associated with hardening related phenomena. Ψpl may also be a function of the tem-
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perature. The elastic energy Ψel depends solely on the elastic part of the deformation
gradient Fe = F · Fp−1.

The second law of thermodynamics imposes restrictions on the constitutive assump-
tions. Inserting Helmholtz energy (2.63) into the Clausius-Planck inequality (2.28)1
yields

Dint = P : Ḟ− Θ̇N − Ψ̇

=

[
P− ∂Ψ

∂F

]
: Ḟ−

[
N +

∂Ψ

∂Θ

]
Θ̇− ∂Ψ

∂Fp
: Ḟp − ∂Ψ

∂α
◦ α̇ ≥ 0 .

(2.64)

For a purely elastic material response (α̇ = 0, Ḟp = 0), Piola stress P = ∂FΨ and
entropy N = −∂ΘΨ are deduced, cf. Eqs. (2.46). For inelastic deformations the re-
insertion of these constitutive relations leads to the reduced dissipation inequality

Dint = Σ : Lp +Q ◦ α̇ > 0 . (2.65)

The reduced dissipation is determined by the plastic work rate Σ : Lp and the hardening
related power Q ◦ α̇. In detail, the stress-like hardening variable

Q = −∂Ψ
∂α

= −∂Ψ
pl

∂α
(2.66)

is thermodynamically conjugated to the generalised set of internal variables α. The
plastic power is derived by

Σ : Lp = − ∂Ψ

∂Fp
: Ḟp =

[
FeT · ∂Ψ

el

∂Fe

]
:
[
Ḟp · Fp−1

]
, (2.67)

in which the intermediate configurational Mandel stress tensor is defined as

Σ = FeT · ∂Ψ
el

∂Fe
. (2.68)

For an isotropic and hyperelastic energy Ψel, the Mandel stress tensor Σ is symmetric
and the stress space is six-dimensional. For an un-symmetric Σ, the stress space is nine-
dimensional. This property is important for the definition of the space of admissible
stresses. In order to distinguish between fully elastic and elastoplastic states, a level set
or more precisely a convex yield function φ(Σ,Q,Θ) ≤ 0 is introduced. The respective
stress space is defined by the set

EΣ = {(Σ,Q,Θ) ∈ R
9+n+1|φ(Σ,Q,Θ) ≤ 0} . (2.69)

The elastic domain is determined by φ < 0. Stress states outside of EΣ are not permis-
sible.
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2.5 Constitutive modelling

In order to fulfil the dissipation Ineq. (2.65), appropriate evolution equations are
required. By applying the principle of maximum dissipation (see Simo and Hughes [120]
§2.6), associative flow rules and hardening laws are derived. In this case, the flow rule
Lp and the associative hardening law α̇ read

Lp = λ
∂φ

∂Σ
, α̇ = λ

∂φ

∂Q
, (2.70)

where λ denotes the plastic multiplier. An admissible elastoplastic solution is obtained
if loading/unloading conditions

λ ≥ 0 , φ ≤ 0 , λ φ = 0 (2.71)

are fulfilled. Constitutive modelling of plasticity, which follows the associativity of flow
rule and hardening law is also referred to as standard materials. Flow rules and hardening
laws which are not proportional to the normality rule of the yield function (∂Σφ or ∂Qφ)
can often be described by the framework of generalised standard materials (see Lemaitre
[72], Mandel [80]). Within this framework, a plastic potential g = g(Σ,Q,Θ) is intro-
duced and the evolution equations are postulated together with the loading/unloading
conditions in Eq. (2.71) as

Lp = λ
∂g

∂Σ
, α̇ = λ

∂g

∂Q
. (2.72)

Clearly, for a detailed derivation of evolution equations specific assumptions are re-
quired, e.g. for the Helmholtz energy, for the yield surface and if necessary for the plastic
potential. Examples of such models are presented in Chapters 3 and 4.

Temperature equation: Similar to the thermoelastic material, the temperature
evolution equation for the elastoplastic material is subjected to the first and second law
of thermodynamics. The combination of Eq. (2.20) and Clausius-Planck relation (2.64)
yields

Θ Ṅ = Dint − DIVQ+ ρ0RΘ . (2.73)

Since the entropy is a function of {F,Θ,α}, its corresponding rate yields

Ṅ = − ∂2Ψ

∂Θ∂F
: Ḟ− ∂2Ψ

∂Θ∂α
◦ α̇− ∂2Ψ

∂Θ2
Θ̇ . (2.74)

The multiplication of this rate with the temperature defines the heat capacity c =
−Θ ∂ΘΘΨ > 0 and the structural heating

A = Θ ∂Θ

{
P : Ḟ+Q ◦ α̇

}
. (2.75)
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In contrast to the purely elastic structural heating in Eq. (2.49), the structural heating
in Eq. (2.75) consists of elastic and plastic contributions. The self-heating is determined
by

HΘ = A+Dint = Θ ∂Θ

{
P : Ḟ+Q ◦ α̇

}
+Dint . (2.76)

Accordingly, the local temperature equation yields

Θ̇ =
1

c
[HΘ − DIVQ+ ρ0RΘ] . (2.77)

Since for metals the influence of the structural heating is comparably small, the temper-
ature approximation

Θ̇ ≈ 1

c
[Dint − DIVQ+ ρ0RΘ] (2.78)

can be assumed, see Hodowany et al. [54]. Furthermore, if adiabatic heat conditions
are assumed, the temperature evolution depends solely on the dissipation. Thus, the
prediction of the internal dissipation is of utmost importance for a realistic temperature
prediction during plastic deformations, see Chapter 3.

2.6 Incremental variational updates

The subsequent section deals with the constitutive modelling in the context of varia-
tional principles. It is well-known that variational principles play an important role
in mechanics, e.g. for stability analyses. Variational formulations contain the intrin-
sic characteristic that all ”information” of a system is included in one potential. This
information includes balance laws, evolution equations of internal variables and Neu-
mann boundary conditions. The stationarity point of the potential corresponds to the
underlying Euler-Lagrange equations. Consequently, all unknowns follow jointly from
minimisation/stationarity of the potential. Apart from the alternative derivation of bal-
ance equations, variational formulations provide a basis for mesh adaptivity in finite
elements (e.g. Mosler and Ortiz [91]), for homogenisation theory (e.g. Miehe et al. [83])
and for the analysis of evolving microstructures (e.g. Bartels et al. [13]). The exis-
tence of solutions is also linked to the existence of a variational potential, which is an
interesting aspect from a mathematical point of view. Due to its canonical structure,
variational formulations inherit a natural symmetry. This symmetry becomes benefi-
cial when Newton-type solution schemes are applied. Hence, symmetric solvers can be
applied which requires less data storage. Within this section the framework of Ortiz
and Stainier [99] is applied, in which a rate dependent potential is transferred into an
incremental variational potential. Since the focus is on material modelling, the following
subsections are restricted to the quasi-static case.

28



2.6 Incremental variational updates

2.6.1 Hyperelasticity

Variational principles have gained a huge popularity in the context of the finite element
method. Especially in the case of hyperelastic materials variational principles are widely
used. The cornerstone of a variational principle is that the equilibrium point corresponds
to the minimum of the underlying potential energy. In contrast to classic literature on the
minimum of potential energy, a rate form is considered here. The reason for this unusual
choice is the coupling to additional phenomena such as temperature and phase field in
the following sections and chapters. Accordingly, the rate potential of the hyperelastic
problem is defined as

İ =

∫
B0

Ψ̇(F)dV −PF(ϕ̇) . (2.79)

Assuming deformation independent loads for body force ρ0B and the prescribed trac-
tions T̄, the external power is linearly dependent on the deformation rate ϕ̇, i.e.

PF =

∫
B0

ρ0B · ϕ̇ dV +

∫
∂B0

T̄ · ϕ̇ dA . (2.80)

A state of equilibrium is found for the stationary point δİ = 0. A straightforward
calculation yields

δϕ̇I =

∫
B0

∂Ψ

∂F
: δḞ dV −

∫
B0

ρ0B · δϕ̇ dV −
∫
∂B0

T̄ · δϕ̇ dA

= −
∫
B0

{
DIV

(
∂Ψ

∂F

)
+ ρ0 B

}
· δϕ̇ dV +

∫
∂B0

{
∂Ψ

∂F
·N− T̄

}
· δϕ̇ dA = 0 .

(2.81)

The virtual displacement field, also known as test function, is denoted as δϕ while the
virtual deformations are denoted as δF = GRADδϕ. Clearly, in Eq. (2.81) use is made
of partial integration and the Gauss divergence theorem. If arbitrary deformation rates
δϕ̇ are considered and if the constitutive relation P = ∂FΨ is substituted, Eq. (2.81)
is equivalent to the principle of virtual work. Consequently, the local balance of linear
momentum (2.16) and the Neumann boundary condition (2.32)

DIVP+ ρ0 B = 0 on B0 ,
P ·N = T̄ on ∂B0,T ,

(2.82)

are obtained. Since functional (2.79) is linearly dependent on the deformation rate, it
does not strictly represent a minimisation principle. A minimisation principle can be
achieved if the time-continuous potential (2.79) is written into a time-discrete poten-
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tial. Following Ortiz and Stainier [99] an incremental variational potential is derived by
integrating over the time interval τ = [tn, tn+1] leading to

ΔI =

∫
τ

İ dt =
∫
B0

{Ψn+1(Fn+1)−Ψn(Fn)} dV −PF(ϕn+1) + PF(ϕn) . (2.83)

Index n + 1 denotes all configurations at time tn+1 and the index n denotes all known
configurations at time tn. Finally, the unknown deformation map ϕn+1 follows from the
minimisation

ϕn+1 = arg inf
ϕn+1

ΔI . (2.84)

2.6.2 Thermoelasticity

Next, the thermoelastic material model proposed in Subsection 2.5.2 is presented in a
variational structure. The variational treatment of thermoelastic problems goes back
to the pioneering works of Biot [18]. The demands on a variational description of a
thermoelastic material are that the underlying stationarity conditions with respect to
the deformation and the temperature correspond to the balance of linear momentum
and the energy balance. In order to guarantee a variationally consistent formulation an
enhanced Hu-Washizu-type potential is proposed where equilibrium temperature and
external temperature are distinguished.

Following Yang et al. [139], the starting point is the definition of the mixed potential

İ =

∫
B0

{
Ė(F, N)−Θ Ṅ − χ(Θ,GRADΘ)

}
dV − PF(ϕ̇)− PT (Θ) , (2.85)

in which both, the external temperature Θ and the thermodynamically conjugated en-
tropy N appear. Furthermore, potential (2.85) depends on the deformation field ϕ
and on the rates ϕ̇ and Ṅ . Since the constitutive model is usually defined in terms of
Helmholtz energy Ψ, the internal energy E is obtained by means of Legendre transforma-
tion (2.42). Thermal conduction is captured by means of the convex potential χ, where
the choice of constitutive assumptions is restricted to the Fourier-type conductivity in
Eq. (2.55). The externally applied thermal forces, i.e. the prescribed heat fluxes Q̄ and
the heat source ρ0RΘ, are summarised in the external potential (cf. Eq. (2.19))

PT (Θ) =

∫
∂B0

Q̄ ln

(
Θ

Θ0

)
dA−

∫
B0

ρ0RΘ ln

(
Θ

Θ0

)
dV . (2.86)
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2.6 Incremental variational updates

The canonical structure of potential (2.85) is elaborated next. For this reason, the
stationarity condition δİ = 0 is evaluated. For the variation with respect to the defor-
mation rate, the weak formulation (cf. Eq. (2.81))

δϕ̇İ =

∫
B0

∂E

∂F
: δḞ dV −

∫
B0

ρ0B · δϕ̇ dV −
∫

∂B0

T̄ · δϕ̇ dA

= −
∫
B0

{
DIV

(
∂E

∂F

)
+ ρ0 B

}
· δϕ̇ dV +

∫
∂B0

{
∂E

∂F
·N− T̄

}
· δϕ̇ dA = 0

(2.87)

is obtained. By inserting the Piola stress tensor (2.44)1 into Eq. (2.87), the stationar-
ity condition corresponds to the balance of linear momentum and Neumann boundary
condition (cf. Eq. (2.82)).

As mentioned before, the proposed potential is based on a distinction of external tem-
peratures and equilibrium temperatures. The equivalence of these quantities is obtained
by the variation

δṄ İ =

∫
B0

{
∂E

∂N
−Θ

}
δṄ dV = 0 ⇔ ∂E

∂N
−Θ = 0 , (2.88)

where ∂NE is denoted as equilibrium temperature. At equilibrium, Eq. (2.88) confirms
the constitutive relation (2.44)2.

Furthermore, the variation with respect to the temperature leads to

δΘİ =

∫
B0

{
−Ṅ δΘ− ∂χ

∂G
· δG+

ρ0RΘ

Θ
δΘ

}
dV −

∫
∂B0

Q̄
Θ
δΘdA = 0 . (2.89)

By using the relation G = −GRADΘ/Θ, chain rule

∂Gχ · δG = −DIV

(
∂Gχ

Θ
δΘ

)
+

DIV (∂Gχ)

Θ
δΘ (2.90)

and the divergence theorem, the variation (2.89) is re-written into

δΘİ =

∫
B0

{
−Ṅ − DIV (∂Gχ)

Θ
+
ρ0RΘ

Θ

}
δΘdV

+

∫
∂B0

{
∂Gχ ·N

Θ
− Q̄

Θ

}
δΘdA = 0 .

(2.91)
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For arbitrary virtual temperatures δΘ, the brace expressions in (2.91) vanish. If the
constitutive heat flux according to Eq. (2.56) is used, the resulting local balance equation
and Neumann boundary conditions are

−Ṅ − DIVQ
Θ

+
ρ0RΘ

Θ
= 0 on B0 ,

Q ·N = Q̄ on ∂B0,Q .
(2.92)

Evidently, the stationarity condition (2.92)1 is equivalent to the temperature equa-
tion (2.47). Thus, it can be stated, that the Euler-Lagrange equations of rate po-
tential (2.85) are equivalent to the balance of linear momentum and the energy balance.

Next, the proposed rate potential (2.85) is transferred into a time-discrete minimi-
sation problem. Furthermore, the underlying three-field formulation can efficiently be
reduced to a two-field formulation by condensation of the balance equation (2.88). For
that purpose, the rate potential (2.85) is integrated in the time interval τ = [tn, tn+1].
This results the time-discrete potential

ΔI =

∫
τ

İ dt =
∫
B0

ΔE dV −PF(ϕn+1) + PF(ϕn)−ΔtPT (Θn+1) , (2.93)

in which the time increment is denoted as Δt = tn+1− tn and the incremental potential
ΔE is determined as

ΔE = En+1(Fn+1, Nn+1)− En(Fn, Nn)−Θn+1 [Nn+1 −Nn]

−Δt χ(Θn+1,GRADΘn+1) .
(2.94)

Since the entropy (Nn+1, Nn) is locally defined in all material points, the incremental
potential can be reduced by the minimisation

ΔEred = inf
Nn+1

ΔE . (2.95)

Based on this reduced potential, the update of the deformation map and the temperature
follow jointly from the saddle-point problem

(ϕn+1,Θn+1) = arg inf
ϕn+1

sup
Θn+1

ΔIred . (2.96)

2.6.3 Thermo-elastoplasticity

The extension of a thermoelastic variational principle to a thermomechanically coupled
variational formulation for dissipative materials is not straightforward. The variational
formulation for a class of dissipative materials goes back to the works of Hackl [51], Or-
tiz and Stainier [99]. However, the cited works are restricted to the isothermal case.
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2.6 Incremental variational updates

Although the mechanical and the thermal problem show independently a variational
structure (see Simo and Miehe [121]), the thermomechanically coupled system of equa-
tions shows no symmetry and therefore no variational structure at first glance. In fact,
a straightforward derivation of associated Hessian matrix shows an unsymmetric struc-
ture, i.e., the coupled problem does not show a variational structure. A symmetrisation
of the thermomechanically coupled dissipative materials is investigated in Yang [138] and
Yang et al. [139]. Without going into too much detail, the cornerstones of the respective
model are the previously presented Hu-Washizu-type enhanced variational principle and
a suitable integrating factor. Based on these ideas, an incremental potential is derived
which defines every aspect of the coupled problem, i.e., all unknown state variables fol-
low jointly and canonically from the stationarity of the potential. The following theory
is in line with Yang et al. [139], Stainier and Ortiz [123] and Canadija and Mosler [25].

Starting point of the variational formulation is the extension of the thermoelastic
potential given in Eq. (2.85). Based on this formulation, the thermomechanically coupled
potential for dissipative materials reads

İ =

∫
B0

Ė(F,Fp,α, N,Θ,GRADΘ) dV −PF(ϕ̇)− PT (Θ) (2.97)

with

Ė = Ė(F,Fp,α, N)−Θ Ṅ + f ζ(Ḟp, α̇)− χ(Θ,GRADΘ) . (2.98)

The internal energy E may also be a function of a generalised set of internal variables
α (together with Fp) as proposed in Sec 2.5.3. Furthermore, the dissipation potential
ζ can depend on the temperature and on the rates of internal variables. For the sake
of simplicity, it depends only on {Ḟp, α̇}. In the case of a rate independent material,
the dissipation potential ζ is equivalent to a positively homogeneous dissipation Dint of
degree one with respect to stress-like internal variables. Note, that not all dissipative
materials are covered by a potential formulation, see also Remark 2.6.1.

Following Yang et al. [139], the integration factor f is chosen as

f =
Θ

∂NE
. (2.99)

For an equilibrium state f = 1, the absolute temperature Θ equals the equilibrium
temperature ∂NE. Therefore, the integration factor is strongly related to the proposed
Hu-Washizu principle. For dissipative material models, the concept of external and
equilibrium temperature is in line with the stability of thermomechanically coupled
processes presented in Petryk [103, 104].

The effect of the integration factor becomes evident if one computes the stationary
conditions of rate potential (2.97). For the sake of conciseness, the variation with respect
to the deformation rate is neglected here (cf. Eq. (2.87)).
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Likewise to the purely thermoelastic problem, the variation with respect to entropy
rate yields

δṄ İ =

∫
B0

{
∂E

∂N
−Θ

}
δṄ dV = 0 ⇔ ∂E

∂N
−Θ = 0 , (2.100)

which confirms the equilibrium statement of the integration factor f . The importance
of integration factor f becomes evident for the stationary condition

δΘİ =

∫
B0

{
−Ṅ δΘ+

δΘ

∂NE
ζ − ∂χ

∂G
· δG+

ρ0RΘ

Θ
δΘ

}
dV −

∫
∂B0

Q̄
Θ
δΘdA = 0 . (2.101)

Using chain rule in Eq. (2.90) and Gauss divergence theorem, the weak form

δΘİ =

∫
B0

{
−Ṅ +

ζ

∂NE
− DIV (∂Gχ)

Θ
+
ρ0RΘ

Θ

}
δΘdV

+

∫
∂B0

{
∂Gχ ·N

Θ
− Q̄

Θ

}
δΘdA = 0

(2.102)

is derived. This equation is equivalent to the local temperature equation and Neumann
boundary condition

−Ṅ +
ζ

∂NE
− DIVQ

Θ
+
ρ0RΘ

Θ
= 0 on B0 ,

Q ·N = Q̄ on ∂B0,Q .
(2.103)

Herein, the heat flux Q = ∂Gχ (see Eq. (2.56)) is applied again. For ζ = Dint, and if
equilibrium condition (2.100) is inserted, the temperature equation (2.103)1 is equiva-
lent to Eq. (2.73). Thus, integration factor f is crucially important for the variational
structure of dissipative materials.
Furthermore, and without further derivation, the variations with respect to the inelastic
deformations {Ḟp, α̇} yield

δḞp İ = 0 ⇔ Σ = FeT · ∂E
∂Fe

,

δα̇İ = 0 ⇔ Q = −∂E
∂α

.

(2.104)
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2.6 Incremental variational updates

Within the framework of incremental variational updates all unknowns are determined
by minimisation or maximisation of a time-discretised potential. To this end, the rate
potential (2.97) is integrated in time (cf. Eq. (2.93)), such that

ΔE = En+1(Fn+1,F
p
n+1,αn+1, Nn+1)− En(Fn,F

p
n,αn, Nn)−Θn+1 [Nn+1 −Nn]

+
Θn+1

∂NE(Fn+1,F
p
n+1,αn+1, Nn+1)

Δζ(Fp
n+1,αn+1)−Δt χ(Θn+1,GRADΘn+1)

(2.105)

is obtained, where Δζ denotes the integrated dissipation potential and where Δt denotes
the time increment. Since Fp

n+1,αn+1 and Nn+1 are gradient-free, ΔE is locally reduced
by the minimisation

ΔEred = inf
Fp

n+1,αn+1,Nn+1

ΔE , (2.106)

in which the updated unknowns are the minimiser of the potential.
It should be emphasised that the chosen parametrisation cannot be utilised without

further restrictions. Depending on the chosen material model, Fp
n+1 and αn+1 are linearly

dependent on one another, leading to a singular Hessian matrix. Furthermore, the
plastic constraint detFp

n+1 > 0 is variationally not enforced. Hence, in order to obtain
a numerically unconstrained minimisation principle, an admissible parametrisation of
the internal variables is required. This problem is pertained in Section 3 and is also
addressed in Mosler and Bruhns [90] and Bleier and Mosler [20].

For a reduced potential (2.106) the global field variables, i.e. the deformation and
the temperature, follow jointly from the saddle-point problem (cf. Eq. (2.96))

(ϕn+1,Θn+1) = arg inf
ϕn+1

sup
Θn+1

ΔIred (2.107)

based on

ΔIred =

∫
B0

ΔEred dV − PF(ϕn+1) + PF(ϕn)−ΔtPT (Θn+1) . (2.108)

Remark 2.6.1: A variational structure is not obvious for all class of dissipative material
models. A class of material models which shows a variational structure is presented
in Ortiz and Stainier [99] and Mosler and Bruhns [90]. Those materials belong to
the so-called standard dissipative materials (Lubliner [79] p.129), where the flow rule
and hardening law are often associated. Even for non-associative kinematic hardening
a variational principle can be found as presented in Mosler [89]. However, generally
non-associative or anisotropic hardening cannot be symmetrised such that a variational
structure is obtained, e.g. distortional hardening models as derived in Chapter 4.
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3 Thermomechanical coupling in
dissipative materials

One of the main objective of this thesis is to capture the dominating effects
driving the macroscopic scale. As mentioned before, the macroscale is essentially
influenced by the deformation and the temperature, where special attention lies on the
thermomechanical coupling, known as self-heating effect. A more detailed discussion
regarding the thermomechanical coupling in dissipative materials is given in this
chapter.

The modelling of thermomechanics seems to be straightforward and fully understood
at a first glance: Once the Helmholtz energy and suitable evolution equations fulfilling
the second law of thermodynamics are defined, the coupling is provided by the first law
of thermodynamics. However, the temperature predicted from such a straightforward
viewpoint is usually too high, cf. Chaboche [28, 29], Hodowany et al. [54], Nemat-Nasser
and Kapoor [94], Rosakis et al. [109]. For this reason, the so-called Taylor-Quinney factor
is frequently applied, see Taylor and Quinney [130]. Essentially, this factor reduces
the part of the dissipation which converts to heat. Several experiments and numerical
simulations such as Simo and Miehe [121] show that the Taylor-Quinney factor often
gives sufficiently accurate temperature predictions. The disadvantage of this ad-hoc
approach is that the first law of thermodynamics is not considered at all. To be more
precise, it is completely unclear where the other part of the dissipation remains, which is
not converted to heat. That can lead to a violation of the second law of thermodynamics,
e.g., in the case of kinematic hardening. In summary, thermodynamically sound models
which predict the temperature increase realistically as a result of plastic deformation are
still rare. First ideas towards such models can be found in Ristinmaa et al. [108], Rosakis
et al. [109]. The ideas proposed in the cited papers will be discussed in detail later.

Having briefly discussed the fundamentals of thermomechanically coupled plasticity
theory in Subsection 2.5.3, the dominating factor leading to an over-prediction of the
temperature is identified: the internal dissipation. A more detailed discussion on the
internal dissipation is given in Section 3.1. Adopting an energetical point of view, the
definition of the internal dissipation is equivalent to the decomposition of the total en-
ergy into dissipative and stored parts. That leads to the crucial question whether a
certain phenomenon is energetic (Helmholtz or internal energy) or dissipative in nature.
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3 Realistic temperature prediction

Based on this question, all hardening models are partitioned accordingly. Interestingly,
this partition shows strong analogies to the Taylor-Quinney approach. Due to the im-
portance of the energy within the advocated viewpoint, incremental energy minimisation
seems to be the natural framework for the thermomechanically coupled problem. Such
a variational setting is introduced in Section 3.2. The predictive capabilities of the final
model are demonstrated in Section 3.3.

3.1 Analysis of internal dissipation

This section deals with the analysis of the internal dissipation and the resulting local
temperature prediction.

3.1.1 Isothermal plasticity theory

For the isothermal case, the set of internal variables is defined according to α =
{Fp,αk, αi} where αk and αi denote strain-like variables which account for kinematic
and isotropic hardening. A frequently made assumption for such plasticity models (cf.
Section 2.5.3) is a Helmholtz energy of the type

Ψ = Ψel(F,Fp) + Ψpl(αk, αi) . (3.1)

In addition to the Mandel stresses Σ = [Fe]T ·∂FeΨ which define the thermodynamically
conjugated forces with respect to the velocity gradient Lp, one introduces

Qk = −∂αkΨ = −∂αkΨpl , Qi = −∂αiΨ = −∂αiΨpl (3.2)

as stress-like quantities conjugated to αk and αi. Note, that the definition of Ψpl as
contribution to the total energy renders hardening effects as purely energetic. With this
assumption and the introduced notations, the internal dissipation is now given by

Dint = Σ : Lp +Qk : α̇k +Qi α̇i ≥ 0 . (3.3)

For the sake of simplicity, the theory will be restricted to rate-independent processes.
In this setting, the constitutive behaviour is conveniently defined by a suitable yield
function φ = φ̂(Σ,Qk, Qi). The family of material models discussed here is based on
the following assumptions:

• φ is convex in (Σ−Qk, Qi) and exhibits the form

φ = Σeq(Σ−Qk)−Qi − y0 , (3.4)

where y0 reflects the initial yield limit.
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3.1 Analysis of internal dissipation

• The equivalent stress measure Σeq is a positively homogeneous function of degree
one, i.e. in particular[

Σ−Qk
]
: ∂[Σ−Qk]Σ

eq = Σeq . (3.5)

Since ∂[Σ−Qk]Σ
eq = ∂ΣΣ

eq holds, this is equivalent to[
Σ−Qk

]
: ∂ΣΣ

eq = Σeq . (3.6)

The evolution of the introduced internal variables is governed by evolution equations.
Those can for example be derived via the postulate of maximum dissipation as introduced
in Section 2.70. The evaluation yields

Lp = λ ∂Σφ = λ ∂ΣΣ
eq , (3.7)

α̇k = λ ∂Qkφ = λ ∂QkΣeq , (3.8)

α̇i = λ ∂Qiφ = −λ , (3.9)

with λ as plastic multiplier. The solution of these equations is subjected to the fulfilment
of the loading-unloading conditions (2.71). Inserting (3.7), (3.8), (3.9) into Ineq. (3.3)
and additionally taking into account the identity ∂QkΣeq = −∂ΣΣeq and (3.6) results in

Dint = λ
[
Σeq −Qi

]
. (3.10)

Since φ = 0 has to hold for an inelastic equilibrium state (otherwise λ = 0), it finally
follows that

Dint = λ y0 (3.11)

according to Eq (3.4). From this equation it becomes apparent, that the initial yield
stress y0 plays a crucial role for predicting the temperature evolution. However, in this
context, it has to be emphasised that the determination of this quantity from experiments
is on the one hand subjected to specific uncertainties and can therefore usually not be
performed with a satisfying accuracy. On the other hand, most constitutive models start
from a “virgin” state of the material which is a rather unrealistic idealisation. In fact,
one could assume that the initial state of the material under consideration is already a
result of certain inelastic processes associated with hardening effects. These might have
been occurred during the forming process of the considered workpiece. If it is assumed
that such pre-hardening effects are “measured” by an initial accumulated equivalent
plastic strain, i.e. αi(t0), this would give rise to an initially existing isotropic hardening
quantity Qi

0 = Qi(αi(t0)) > 0. As a consequence, the redefined yield limit ỹ0 would then
be given by

ỹ0 = y0 −Qi
0 . (3.12)
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3 Realistic temperature prediction

Following (3.11), one would obtain

Dint = λ ỹ0 = λ
[
y0 −Qi

0

]
< λ y0 (3.13)

for the dissipation rate density. Accordingly, the standard approach would lead to a
greater dissipated power. To generalise this idea, one may also introduce a weighting
factor βD ∈ [0, 1] such that

Dint = λ ỹ0 = λ βD y0 , ỹ0 = βD y0 . (3.14)

By enforcing the first law of thermdynamics (energy equivalence), the energy contribu-
tion related to plastic hardening has to be enhanced in the case of Eq. (3.14) in terms
of

Ψpl(αk, αi) = Ψkin(αk) + Ψiso(αi)− [1− βD]αi y0 . (3.15)

Here, Ψkin and Ψiso denote the energy contributions related to kinematic and isotropic
hardening that will still evolve — and thus will result in hardening effects concerning the
effective material response — whereas the term [1 − βD]αi y0 reflects the offset energy
due to pre-hardening. Note, that in this framework αi < 0 holds in general and hence
the last term in (3.15) is always positive. From Eq. (3.15) one particularly obtains

Qi = −∂αiΨ = −∂αiΨiso + [1− βD] y0 , (3.16)

which finally leads to

ỹ0 +Qi = y0 − ∂αiΨiso . (3.17)

The resulting yield function for the isothermal case is now given by

φ = Σeq(Σ−Qk)−Qi − ỹ0 = Σeq(Σ+ ∂αkΨkin)− y0 + ∂αiΨiso , (3.18)

which is independent of βD. Thus, the introduction of the factor βD has practically no
effect within an isothermal setting (except for the dissipation). The significance of the
factor βD can only be verified by considering the thermomechanical coupling.

3.1.2 Thermomechanically coupled theory

3.1.2.1 A concise review of existing models

In a thermodynamically consistent setting, the first law of thermodynamics governs the
temperature increase due to inelastic deformation. However, as illustrated in Figure 3.1,
a straightforward application of this coupling usually leads to a significant overprediction
of the temperature. According to the previous sections, such an overprediction is a
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Figure 3.1: Temperature evolution for Al-2024 under uniaxial stretch. The experimental data was taken
from Hodowany et al. [54]. The simulations are based on a standard plasticity model with exponential-
saturation-type isotropic hardening, where the temperature increase during plastic deformations is
clearly overestimated.

result of an overprediction of the internal dissipation. This observation suggests to
simply decrease the internal dissipation. An idea in line with this thought was already
proposed in the beginning of the last century. To be more precise, Taylor and Quinney
[130] noticed in experiments that only a certain fraction of the plastic power

Ẇ p = Σ : Lp (3.19)

is transformed into heat. For this reason, the Taylor-Quinney factor βTQ ∈ [0, 1] was
introduced and only the part

˙̃W p = βTQΣ : Lp (3.20)

was assumed to be transformed into heat. Conceptually, this modification can be in-
cluded into the framework discussed before by setting the internal dissipation identical
to the reduced plastic power, i.e., by

Dint =
˙̃W p = βTQΣ : Lp . (3.21)

Apparently, such a modification does neither guarantee that the first nor the second law
of thermodynamics is fulfilled. However, assumption (3.21) is not necessarily thermo-
dynamically inconsistent. To be more precise, a Taylor-Quinney factor complying with
the restrictions imposed by thermodynamics can be derived by enforcing that Eq. (3.21)
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3 Realistic temperature prediction

is identical to the real internal dissipation (3.3). This leads to the thermodynamically
consistent Taylor-Quinney factor

βTQ =
Dint

Ẇ p
, (3.22)

In the case of the model defined by Eq. (3.3), this yields

βTQ = 1 +
Qk : α̇k +Qi α̇i

Σ : Lp
. (3.23)

By considering a monotonic loading test starting from the ”virgin” state, the numerator
Qk : α̇k +Qi α̇i is always negative (in the case of hardening), while the denominator Σ :
Lp is positive. Thus, the Taylor-Quinney factor predicted by thermodynamics is usually
less than one. Furthermore, it depends on the internal variables and consequently, it is
not constant, but deformation-dependent. However, usually a constant Taylor-Quinney
factor is considered.

In summary, choosing an ad-hoc Taylor-Quinney factor often violates fundamental
thermodynamical principles, while choosing the thermodynamically consistent defini-
tion (3.22) leads to an overprediction of the temperature — fully analogously to the
underlying thermodynamical sound model.

The model proposed in Ristinmaa et al. [108] is among the first where the weight-
ing of cold work for heat generation is incorporated in a thermodynamically consistent
framework. In this work, the authors establish the idea that the effectively accumulated
equivalent plastic strain does not necessarily has to coincide with the internal vari-
able associated with isotropic hardening. More precisely, the difference between both
quantities may be exemplified by an offset in terms of isotropic hardening which is in
agreement with the above mentioned discussion. However in the present chapter, this
idea is generalised in terms of kinematic hardening and the incorporation of the model
into a variational framework which will be discussed in detail in the following sections.

An alternative model for a consistent prediction of the thermomechanically coupled
problem is presented in Rosakis et al. [109]. In contrast to Ristinmaa et al. [108], it is
restricted to a one-dimensional setting and linearised kinematics are considered. The
underlying idea of this model is a proper computation of that part of the Helmholtz
energy which is related to cold work. However, this energy does not define the relation
between dual variables (the internal stress-like variables are not the negative derivative
of the energy with respect to the dual strain-like variables). This is significantly different
compared to the framework in Ristinmaa et al. [108] and also to the model advocated in
this chapter. Due to this non-standard uncoupling between the Helmholtz energy and the
internal variables, the mechanical response is essentially uncoupled from the temperature
increase due to plastic deformation and the thermomechanically constitutive model can
be fitted better.
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3.1 Analysis of internal dissipation

3.1.2.2 A novel constitutive model

As a prerequisite, the model formulation presented in Subsection 3.1.1 is enhanced by the
introduction of further coefficients βk and β i which affect the plastic energy contribution,
cf. (3.15), in terms of

Ψ̃pl(αk, αi) = [1− βk] Ψkin(αk) + [1− βi] Ψiso(αi)− [1− βD]αiQeq
0 (y0) , (3.24)

where Qeq
0 (y0) denotes a generalised yield limit depending on the initial value y0 as well

as other quantities such as temperature. The purely mechanical response is supposed to
be unaffected by this enhancement, thus

φ = Σeq(Σ+ ∂αkΨkin) + ∂αiΨiso −Qeq
0 (3.25)

still holds for the yield function. As a consequence, the evolution equations (3.7) to (3.9)
still apply. The enhancement of the model becomes apparent in terms of the redefined
reduced dissipation rate density. Starting from

Dint = Σ : Lp − ∂αkΨ̃pl : α̇k − ∂αiΨ̃pl α̇i (3.26)

and taking into account the evolution equations (3.7) to (3.9) one obtains

Dint = λ
[
Σ : ∂ΣΣ

eq + [1− βk]Qk : ∂QkΣeq − [1− βi]Qi − [1− βD]Qeq
0

]
(3.27)

with the redefined conjugate forces

Qk = −∂αkΨkin , Qi = −∂αiΨiso . (3.28)

Furthermore, the relations ∂QkΣeq = −∂ΣΣeq , ∂ΣΣ
eq = ∂Σ−QkΣeq , [Σ − Qk] :

∂Σ−QkΣeq = Σeq and φ = 0 (in the case of elastoplastic loading) lead to the conclu-
sion, that all terms in Ineq. (3.27) which are independent of the β-factors cancel out.
Thus, one finally obtains

Dint = λ
[
βk Qk : ∂ΣΣ

eq + βiQi + βDQeq
0

]
(3.29)

for the reduced dissipation rate density. Analogously, it can be shown that

∂tΨ̃
pl +Dint = λ

[
Σ : ∂ΣΣ

eq − [Σeq −Qi −Qeq
0 ]
]

φ=0
= λΣ : ∂ΣΣ

eq = Σ : Lp
(3.30)

and therewith, this term is independent of the β-factors. Together with the general
relation

∂tΨ
el = P : Ḟ−Σ : Lp , (3.31)
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3 Realistic temperature prediction

the rate of total energy (for fixed temperatures)

∂tΨ
el + ∂tΨ̃

pl +Dint = P : Ḟ (3.32)

is equal to the stress power and thus unaffected by the aforementioned approach. The
significance of this enhancement becomes obvious by the comparison with the original
Taylor-Quinney approach. As indicated above, the internal dissipation rate density is
therein determined by

DTQ
int = βTQ Ẇ p = βTQΣ : Lp = βTQ λΣ : ∂ΣΣ

eq . (3.33)

By using the identity

Σ : ∂ΣΣ
eq =

[
Σ−Qk

]
: ∂ΣΣ

eq +Qk : ∂ΣΣ
eq = Σeq +Qk : ∂ΣΣ

eq. (3.34)

one obtains

DTQ
int = βTQ λ

[
Σeq +Qk : ∂ΣΣ

eq
]
. (3.35)

Furthermore, it follows from φ = 0 that

Σeq = Qi +Qeq
0 (3.36)

and hence

DTQ
int = λ βTQ

[
Qk : ∂ΣΣ

eq +Qi +Qeq
0

]
. (3.37)

By the comparison of dissipation (3.29) and dissipation (3.37) one can conclude that
the enhanced model coincides with the Taylor-Quinney approach if βD = βk = β i =
βTQ. In this regard, (3.24) represents a generalisation of the Taylor-Quinney approach.
This remarkable conclusion, however, represents a significant drawback of the presented
framework due to the fact that it might violate the second law of thermodynamics as
will be discussed now.

Thermodynamical consistency can only be ensured if the dissipation rate density
(3.29) is greater than or equal to zero, i.e.

λ
[
βk Qk : ∂ΣΣ

eq + βiQi + βDQeq
0

]
≥ 0 . (3.38)

Since λ ≥ 0 holds in general, it remains to show that

βk Qk : ∂ΣΣ
eq ≥ −βD Qeq

0 − β iQi , (3.39)
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3.1 Analysis of internal dissipation

where focus is laid on the critical part related to kinematic hardening. Considering a
worst-case scenario characterised by

∂ΣΣ
eq = −Qk/‖Qk‖ , βD = 1 , β i = 0 , βk = 1 , (3.40)

this restriction can be reformulated as

‖Qk‖ ≤ Qeq
0 . (3.41)

For associated flow rules, this condition cannot be fulfilled in general since the internal
variable αk and with it the thermodynamically conjugated force Qk related to kinematic
hardening are not bounded. To circumvent this issue, non-associated theories ensuring
the validness of restriction (3.41) have to be considered which will be discussed in the
following section.

As a preliminary conclusion, the following aspects about the developed framework
shall be pointed out: Standard plasticity models treat hardening effects as purely en-
ergetic. As a consequence, the predicted local temperature increase due to plastic de-
formations is overestimated to a significant extent. The theory presented here solves
this problem by the introduction of scaling parameters. These factors are associated
with the scaling of the initial yield limit as well as the scaling of the hardening-related
contributions to the total energy. It can be shown, that this generalised model indeed
is equivalent to the Taylor-Quinney-ansatz for a special case. However, even if it fulfils
the first law of thermodynamics, it may contradict the second law. To overcome this
problem, the model for kinematic hardening has to be extended to a saturation-type
ansatz which is only possible via non-associated relations.

3.1.3 A thermodynamically consistent prototype model

As discussed in the previous section, the presented framework has to be extended to
non-associated plasticity rules in order to unconditionally fulfil the second law of ther-
modynamics. To this end, an Armstrong-Frederick-type model for kinematic hardening
is introduced exemplified by

Ψkin =
1

2
ck αk : αk , α̇k = λ ∂Qkg , g = φ+

1

2

bk

ck
Qk : Qk . (3.42)

Here, g denotes an inelastic potential and bk, ck are the parameters associated with the
Armstrong-Frederick-type ansatz. The extended dissipation rate density then reads

Dint = λ

[
βkQk : ∂ΣΣ

eq + [1− βk]
bk

ck
Qk : Qk + βiQi + βDQeq

0

]
. (3.43)
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3 Realistic temperature prediction

Note, that isotropic hardening always has a stabilising effect since Qi ≤ 0. In a similar
manner as before, a worst case is constructed via ∂ΣΣ

eq = −Qk/‖Qk‖, βk = 1, β i = 0
and βD = 1 which yields

Dint = λ
[
−‖Qk‖+Qeq

0

]
. (3.44)

The extension to an Armstrong-Frederick-type approach for kinematic hardening now
makes it possible to determine a maximum value — namely, the saturated value — for
‖Qk‖. This is achieved by setting ‖α̇k‖ = 0, which together with Eq. (3.42) results in

bk

ck
‖Qk‖ = ‖∂ΣΣeq‖ = 1 ⇔ ‖Qk‖ = ck

bk
(3.45)

for λ �= 0. Thus, one can define restrictions on the Armstrong-Frederick parameters via

Dint = λ

[
−c

k

bk
+Qeq

0

]
≥ 0 (3.46)

which finally yields

ck

bk
≤ Qeq

0 . (3.47)

This condition guarantees the fulfilment of the second law of thermodynamics. As a
summary, it is possible to deduce such restrictions for the specific kinematic hardening
related parameters for each material model based on non-associated hardening rules.
These guarantee, that also the second law of thermodynamics is unconditionally fulfilled.
Altogether, the proposed theory offers a fully thermodynamically consistent framework.
It will be shown that it also accounts for the realistic prediction of the local temperature
evolution.

3.2 Variational framework

Using an energetic approach as given by the proposed framework facilitates the intro-
duction of a variational framework. Although the novel thermomechanical coupling in
Subsection 3.1.2.2 is not restricted to a specific model or framework, variational princi-
ples show a natural decomposition of energetic and dissipative parts, and are therefore
favoured here. According to the fundamentals presented in Subsection 2.6.3, the func-
tional

İ =

∫
B0

Ė dV −PF −PT with Ė = Ė −Θ Ṅ + f ζ − χ (3.48)

46



3.2 Variational framework

is introduced for that purpose (cf. Eq. (2.97)). Again, the convex potential χ in
Eq. (2.55) and the external forces PF and PT in Eq. (2.80)) and Eq. (2.86) are ap-
plied.

According to the framework presented in the previous sections, the internal energy
density E is defined as

E = Eel(Fe, N) + Epl(αk, αi) (3.49)

with

Epl = [1− βk]Ekin(αk) + [1− βi]Eiso(αi)− [1− βD]αiQeq
0 (y0) . (3.50)

Analogously, the dissipation functional ζ —which is known to be identical to the reduced
internal dissipation rate density Dint for rate-independent processes — is decomposed
according to

ζ = Dint = λ

[
βk Qk : ∂ΣΣ

eq + [1− βk]
bk

ck
Qk : Qk + βiQi + βDQeq

0

]
, (3.51)

focussing on an Armstrong-Frederick-type modelling of kinematic hardening, cf. dissipa-
tion (3.43). Again, the functional İ = İ(ϕ̇, Ḟ p

, α̇k, α̇i, Ṅ ,Θ) represents a Hu-Washizu-
type functional depending on the rates of state variables except for the temperature Θ.
In order to receive the underlying stationarity conditions, the variations with respect
to the given arguments need to be derived. Since they have already been discussed in
Subsection 2.6.3, the derivations are omitted here but can also be found in Yang et al.
[139], Stainier and Ortiz [123], Canadija and Mosler [25].

Following the framework of incremental variational updates as introduced in Sec-
tion 2.6, the rate dependent and time-continuous potential (3.48) is converted into a
time-discrete incremental potential (cf. Eq. (2.105)). As a result, the time-discrete
incremental potential

ΔE = En+1(F
e
n+1, Nn+1,α

k
n+1, α

i
n+1)− En(F

e
n, Nn,α

k
n, α

i
n)−Θn+1 [Nn+1 −Nn]

+
Θn+1

∂NE(Fe
n+1, Nn+1,αk

n+1, α
i
n+1)

Δζ(Fp
n+1,α

k
n+1, α

i
n+1)

−Δt χ(Θn+1,GRADΘn+1) ,

(3.52)

is derived. Based on this potential, the unknowns at time tn+1 are updated according to

(ϕn+1,Θn+1,F
p
n+1, Nn+1,α

k
n+1, α

i
n+1) = arg inf

ϕn+1,F
p
n+1,Nn+1,αk

n+1,α
i
n+1

sup
Θn+1

ΔI . (3.53)
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3 Realistic temperature prediction

In order to reduce the number of unknown state variables, focus is now on the parametri-
sation of the underlying evolution equations. For this purpose, the equations (3.7)-(3.9)
are time integrated by a Backward-Euler scheme leading to the time-discretised values

tn+1∫
tn

Lp dt ⇒ ΔLp = Δλ
∂φ

∂Σ
,

tn+1∫
tn

α̇k dt ⇒ αk
n+1 =

αk
n −ΔLp

1 + bk Δλ
,

tn+1∫
tn

α̇i dt ⇒ αi
n+1 = αi

n −Δλ ,

(3.54)

where the incremental plastic multiplier is given as Δλ =
∫ tn+1

tn
λ dt. Values at the

previous time step are denoted by index (•)n and values at the current time step are
denoted by index (•)n+1. Moreover, the evolution of the plastic deformation gradient re-
quires a time-discretisation. Using an implicit time integration, the updated deformation
gradient is computed by the now standard exponential mapping

Fp
n+1 = EXP(ΔLp) · Fp

n . (3.55)

Based on this equation, the elastic deformation gradient yields

Fe
n+1 = Fe

trial · EXP(−ΔLp) , (3.56)

with Fe
trial = Fn+1 ·Fn−1

n being the trial value for the elastic deformation and with EXP
denoting the exponential map (see Remark 3.2.1).

Since the yield function is of a von Mises-type and positively homogeneous of
degree one in Σ, the flow direction features the property ‖∂Σφ‖ = ‖∂ΣΣeq‖ = 1.
Consequently, the incremental plastic multiplier can be computed by the norm of the
flow rule

Δλ = ‖ΔLp‖ = Δλ

∥∥∥∥ ∂φ∂Σ
∥∥∥∥ . (3.57)

Due to the fact that ΔLp is deviatoric (and symmetric), the number of unknowns for
the evolution equations reduces to dim(ΔLp) = 5 independent coefficients. In order
to incorporate the deviatoric constraint of the flow rule, one may substitute ΔLp

33 by
−ΔLp

11 −ΔLp
22. A more detailed discussion regarding the parametrisation of evolution

equations is given in Bleier and Mosler [20]. Regarding the dissipation functional, ζ
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3.3 Uniaxial tension test of a bar made of Al 2024-T3

is now completely parametrised by ΔLp. For a plastic state the potential (3.52) is
expressed now by

ΔE = En+1(Fn+1, Nn+1,ΔLp)− En(F
e
n, Nn,α

k
n, α

i
n)−Θn+1 [Nn+1 −Nn]

+
Θn+1

∂NE(Fn+1, Nn+1,ΔLp)
Δζ(ΔLp)−Δt χ(Θn+1,GRADΘn+1) .

(3.58)

Due to the occurrence of global and local variables (for global variables, their gradients
also enter the potential), a two step optimisation is performed as suggested in Eq. (2.106).
While in a first step the global variables (ϕn+1,Θn+1) are kept fixed, ΔE is minimised
with respect to the internal variables (Nn+1,ΔL

p
11,ΔL

p
12,ΔL

p
13,ΔL

p
22,ΔL

p
23). Thus, the

reduced potential depending only on the global variables reads

ΔEred = inf
Nn+1,ΔLp

11,ΔLp
12,ΔLp

13,ΔLp
22,ΔLp

23

ΔE . (3.59)

In the subsequent second step the global saddle-point problem

(ϕn+1,Θn+1) = arg inf
ϕn+1

sup
Θn+1

ΔIred (3.60)

is resolved, in which the reduced potential is defined as

ΔIred =

∫
B0

ΔEred(ϕn+1,Θn+1) dV − PF(ϕn+1) + PF(ϕn)−ΔtPT (Θn+1) . (3.61)

Remark 3.2.1: The exponential map of a tensorA, here a two-point tensor, is computed
by use of the Taylor series expansion (see Ortiz et al. [100]). Since the exponential map
enters the potential energy, gradient or Newton-type solution schemes of this potential
energy require first and second derivatives of the exponential map EXP(A). While the
first derivative of the exponential map DEXP(A) = ∂AEXP(A) yields a fourth-order
tensor, the second derivative of the exponential map D2EXP(A) = ∂AAEXP(A) results
in a sixth-order tensor. For the numerical computation, the recursion property of the
exponential map can be used. Further details are omitted here, but can be found in Ortiz
et al. [100].

3.3 Uniaxial tension test of a bar made of Al 2024-T3

The predictive capabilities of the proposed framework and the fundamental features
of the thermomechanical coupling are demonstrated here by means of a representative
numerical example. For that purpose, a uniaxial tensile test is considered and the
response predicted by the model is compared to the results observed in the experiments
reported by Hodowany et al. [54].
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3 Realistic temperature prediction

3.3.1 A thermomechanical prototype model

The constitutive model employed in the computations is briefly summarised in this
section. In contrast to the variational framework discussed in Section 3.2, the model
is defined by means of the Helmholtz energy Ψ. From that representation, the internal
energy E is computed by applying a standard Legendre transformation of the type (2.42).
An explicit computation of the internal energy based on the following Helmholtz energy
is given in Appendix A.1. Starting from an additive decomposition of the energy into
parts related to elastic deformation (Ψel) and those corresponding to plastic work (Ψpl),
the thermoelastic response of the prototype model is specified by

Ψel = W (C̄e) + U(J) +M(J,Θ) + T (Θ) . (3.62)

Concerning the individual parts in Eq. (3.62), they are chosen as

W (C̄e) =
1

2
μ
[
trC̄e − 3

]
, with C̄e = J−2/3[Fe]T · Fe , (3.63)

U(J) =
1

2
κ

[
1

2
[J2 − 1]− ln J

]
, (3.64)

M(J,Θ) = [Θ−Θ0] [−3α0 ∂JU ] , (3.65)

T (Θ) = c0

[
Θ−Θ0 −Θ ln

Θ

Θ0

]
. (3.66)

They are associated with the purely mechanical deviatoric response W , with the purely
mechanical volumetric response U , with the thermoelastic coupling M and with the
thermal potential T . κ and μ are the bulk and the shear modulus, α0 is the thermal
expansion coefficient (assumed as constant), c0 is the thermal heat capacity (assumed
as constant) and Θ0 is a reference temperature.

Next, the constitutive assumptions regarding plastic deformations are summarised. It
is assumed that such deformations are only possible, if the von Mises-type yield function

φ = ‖devΣ−Qk‖ −Qi −Qeq
0 (3.67)

vanishes to zero. In order to capture thermal softening effects, the initial yield stress
Qeq

0 within the yield function is temperature dependent. To be more precise, the linear
thermal softening function

Qeq
0 (Θ) = y0 [1− ω0[Θ−Θ0]] (3.68)

is adopted. Herein, y0 describes a reference flow stress, ω0 is a model parameter related to
the slope of softening and Θ0 denotes a reference temperature. The model is completed
by an associative flow rule and hardening models. Concerning the latter, the following
models will be considered:
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3.3 Uniaxial tension test of a bar made of Al 2024-T3

• Model 1 (M1) – Associative isotropic hardening with exponential saturation

Ψpl = ci
[
1

bi
exp(bi αi)− αi

]
, α̇i = λ ∂g/∂αi, g = φ (3.69)

• Model 2 (M2): Non-associative isotropic hardening with exponential saturation

Ψpl =
1

2
ci αi2 , α̇i = λ ∂g/∂αi, g = φ+

1

2

bi

ci
Qi2 (3.70)

• Model 3 (M3): Non-associative kinematic hardening with exponential saturation
(Armstrong-Frederick model)

Ψpl =
1

2
ck αk : αk , α̇k = λ ∂g/∂αk, g = φ+

1

2

bk

ck
Qk : Qk. (3.71)

Here, ci, ck, bi and bk are model parameters. They control the hardening rate (b) and
the saturation of the stresses (c/b). The models are designed such that they lead under
isothermal conditions to the same uniaxial stress-strain response for monotonic loading
(for the choice ci = ck and bi = bk). The hardening-independent model parameters are
summarised in Tab. 3.1.

Name Symbol Value Unit

Shear modulus μ 28 [GPa]
Bulk modulus κ 73 [GPa]
Thermal expansion α0 2.4 ·10−5 [K−1]
Heat capacity c0 2.4325 [MPa/K]
Thermal heat softening ω0 0.002 [K−1]

Table 3.1: Material parameters for Al 2024-T3 at Θ0 = 293 K (the respective parameters related to
the hardening models are summarised in Tab. 3.2 and Tab. 3.3)

3.3.2 Isotropic hardening

The remaining model parameters y0 (reference yield stress), b and c are computed from
a standard least-squares fit in which the difference between the experimentally measured
stress-strain and strain-temperature response and the numerically predicted counterparts
are minimised. The calibrated model parameters are summarised in Tab. 3.2, while the
computed strain-temperature response is given in Fig. 3.2. The diagram in Fig. 3.2
corresponds to purely energetic hardening (β i = 0 and βD = 1).
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3 Realistic temperature prediction

associative hardening (M1)

bi [-] ci [MPa] y0 [MPa]
4.07 305.77 322.83

non-associative hardening (M2)

bi [-] ci [MPa] y0 [MPa]
4.05 1259.11 322.91

Table 3.2: Material parameters for Al 2024-T3: Isotropic hardening models for purely energetic hard-
ening

non-associative hardening (M3)

bi [-] ci [MPa] y0 [MPa]
4.05 1259.11 322.91

Table 3.3: Material parameters for Al 2024-T3: Kinematic hardening model for purely energetic hard-
ening (model M3 on page 51)
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Figure 3.2: Uniaxial tension test of a bar made of Al 2024-T3 (adiabatic heat conditions): stress-strain
response (left); temperature increase for isotropic hardening (right). Model 1 (M1) associative and
purely energetic hardening [βi = 0, βD = 1]. Model 2 (M2) non-associated hardening and purely
energetic hardening [βi = 0, βD = 1] and model M2 with optimised diss./energ. hardening [βi = 0.25,
βD = 0.57]

According to Tab. 3.2 and in contrast to the isothermal setting, the model parame-
ters related to the two different isotropic hardening models are not identical anymore.
Although both models (M1 and M2; see page 51) show a good agreement with the experi-
mentally measured stress-strain response, they significantly over-predict the temperature
increase induced by plastic deformation. This over-prediction is even more pronounced
in the case of the non-associative model (M2). That is consistent with the larger internal

dissipation of this model (Dint = λQeq
0 for model M1; Dint = λQeq

0 +λ bi/ciQi2 for model
M2).

52



3.3 Uniaxial tension test of a bar made of Al 2024-T3

Next, the advocated decomposition of hardening into energetic and dissipative parts
is considered. For that purpose, the parameters β i and βD of model M2 are optimised
by a least-squares approach in which the error of the predicted temperature evolution
is monitored. The objective function F err = 1/2 ||Θexp − Θsim||2 defining the error is
plotted in Fig. 3.3. Form this figure, the dependence of the predicted temperature on the

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.45 0.50 0.55 0.60 0.65 0.70

β
i

βD

F err

2.00

2.00

2.00

2.00

1.50

1.50

1.50

1.50

1.00

1.00

1.00

1.00

0.70

0.70

0.70

0.70

0.54

0.54

0.54

0.53

0.53

0.52

0.50

1.00

1.50

2.00

2.50

3.00

Figure 3.3: Uniaxial tension test of a bar made of Al 2024-T3 (adiabatic heat conditions): Error in
temperature prediction for isotropic hardening and model M2. Error is defined as Ferr = 1/2 ||Θexp −
Θsim||2

advocated decomposition into energetic and dissipative parts is evident. Furthermore,
the choice of the model parameters related to the energetic-dissipative-decomposition
does not seem to be unique. This observation is in line with the work Ristinmaa et al.
[108]. The thermomechanical response of the model with optimised parameters β i and
βD is given in Fig. 3.2. Now, the model predictions are in good agreement with the
experimental measurements.

3.3.3 Kinematic hardening

The example is re-analysed using a kinematic hardening model (see model M3 on page
51). The model parameters defining the initial flow stress and the hardening response
for a purely energetic description are summarised in Tab. 3.3 (βk = 0 and βD = 1).
A comparison between the numerically predicted and the measured thermomechanical
response is given in Fig. 3.4.
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Figure 3.4: Uniaxial tension test of a bar made of Al 2024-T3 (adiabatic heat conditions): stress-
strain response (left); temperature increase for kinematic hardening (right). Non-associative hardening
model M3 for purely energetic hardening [βk = 0, βD = 1] and for diss./energ. hardening [βk = 0.25,
βD = 0.57]; material parameters according to Tab. 3.3.
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Figure 3.5: Uniaxial tension test of a bar made of Al 2024-T3 (adiabatic heat conditions): Error in
temperature prediction for kinematic hardening (model M3 on page 51). Error is defined as Ferr =
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3.3 Uniaxial tension test of a bar made of Al 2024-T3

In line with the isotropic model, the purely energetic approach leads to an over-
prediction of the temperature increase. Again, a significant improvement is obtained
by the decomposition of the hardening model into energetic and dissipative parts. The
error in temperature depending on this decomposition is shown in Fig. 3.5. Similar to
isotropic hardening, the choice of the parameters βk and βD does not seem to be unique.
The thermomechanical response predicted by setting βk = 0.25 and βD = 0.57 is given
in Fig. 3.4. Again, a significant improvement in the temperature prediction is evident.
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4 Numerical implementation of
thermomechanically coupled
anisotropic hardening

The development of a material model, which accounts of the most relevant ef-
fects of the macroscale, requires along with a realistic temperature prediction, as
discussed in the previous chapter, the consideration of anisotropic texture evolutions.
The incorporation of anisotropic hardening is especially relevant for technological
forming processes.

However, the classic isotropic and kinematic hardening cannot account for anisotropic
hardening. For this purpose, the more general framework of distortional hardening
characterised by an evolution of the yield surface’s shape can capture the effect of texture
evolution on the macroscopic response and is elaborated therefore in the following.

Anisotropic plastic evolution by means of distortional hardening can be found in
the state-of-the-art works Barthel et al. [15], Feigenbaum and Dafalias [43], Haddidi
et al. [52], Shi and Mosler [113], Wang et al. [135] and references therein. However,
the cited distortional hardening models are restricted to an isothermal setting, i.e.,
a thermomechanically coupled framework, important for most technologically relevant
forming processes is not considered. Moreover, the thermodynamcial consistency and
the underlying physical bounds (i.e. boundedness and convexity of the yield surface) are
missing in most of the cited works.

In this chapter a novel distortional hardening model is presented which falls into
the range of generalised standard materials (see Lemaitre [72], Mandel [80]), and is
therefore thermodynamically consistent. Based on a novel potential, two independent
fourth-order evolution equations capturing dynamic and latent hardening are introduced.
Furthermore, the effect of a higher curvature of the yield surface in loading direction
can be incorporated into this model.

As shown in Chapter 3, a naive and straightforward extension of an isothermal elasto-
plasticity model to the thermomechanically coupled setting usually leads to unrealistic
temperature predictions. For this purpose, the advocated idea of Subsection 3.1.2.2 is
adopted for the thermomechanical coupling to distortinal hardening. Since the initial
yield stress is the dominating factor in the temperature over-estimation, it is decom-
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4 Thermomechanically coupled distortional hardening

posed into a purely dissipative part and a purely energetic part. The energetic part does
not enter the first law of thermodynamics and thus does not result in a temperature
increase due to plastic deformations.

For the resulting model, an efficient numerical implementation is proposed. A return-
mapping scheme for updating the fourth-order evolution equations is derived which is
based on a novel exponential time integration scheme. The resulting implicit return-
mapping scheme for updating the internal variables shows the same numerical complex-
ity as a return-mapping scheme for purely isotropic hardening. This efficient return-
mapping scheme is finally incorporated into a thermomechanically coupled finite ele-
ment formulation, and the resulting set of equations is fully implicitly and monolithically
solved by means of a Newton-type iteration.

The chapter is organised as follows: A prototype distortional hardening model in-
cluding isotropic and kinematic hardening is elaborated in Section 4.1. The extension of
this anisotropic hardening model to the fully thermomechanically coupled setting is the
focus of Section 4.2. An efficient numerical implementation of the resulting framework is
proposed in Section 4.3. The predictive capabilities of the advocated constitutive frame-
work as well as the numerical efficiency and robustness of the elaborated finite element
formulation are demonstrated in Section 4.4 by means of several numerical examples.

4.1 Generalised distortional hardening – isothermal
setting

This section deals with a generalised anisotropic hardening model. Whereas a by now
standard setting for the modelling of elastoplasticity including isotropic and kinematic
hardening is introduced in Subsection 4.1.1, extensions necessary for distortional harden-
ing are addressed in Subsection 4.1.2. For the sake of simplicity, this section is restricted
to the isothermal case.

4.1.1 Prototype hardening model

In order to model isotropic and kinematic hardening, the set of strain-like internal vari-
ables α is chosen as α = {Fp, αi,αk} and a Helmholtz energy of the type

Ψ = Ψel(Fe) + Ψiso(αi) + Ψkin(αk) (4.1)

is assumed, cf. Eq. (3.1). While an exponential saturation-type hardening is considered
for isotropic hardening (Example 1), an Armstrong & Frederick-type nonlinear hardening
is assumed for kinematic hardening (Example 2). Accordingly, the stress-like variables
{Σ, Qi,Qk} are derived in Section 3.2 as thermodynamical conjugate to the strain-like
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4.1 Generalised distortional hardening – isothermal setting

variables α. In order to distinguish elastic from plastic states, the space of admissible
stresses

EΣ = {(Σ, Qi,Qk) ∈ R
9+n|φ(Σ, Qi,Qk) ≤ 0} . (4.2)

is defined where φ denotes the yield function. At the beginning, the class of positively
homogeneous yield functions of degree one spanned by

φ = Σeq −Qi −Qeq
0 with Σeq =

√
[devΣ−Qk] : H : [devΣ−Qk] . (4.3)

is considered with Qeq
0 being the equivalent yield stress again. The fourth-order Hill-type

tensor H characterises the material symmetry, i.e., the shape of the field surface. Up
to now, it is assumed as constant. Consequently, its material time derivative vanishes.
Clearly, by setting Idev = I− 1/3 I⊗ I, the yield surface φ degenerates to the classic von
Mises surface, cf. 3.1.1. However, more complex material symmetries can certainly also
be captured by means of Eq. (4.3). The respective yield surface should fulfil Drucker’s
postulate [79], i.e., the yield function needs to be convex in the stress space.

The model is completed by loading/unloading conditions and suitable evolution equa-
tions. Concerning the latter, they are derived by employing the framework of generalised
standard materials proposed by [72, 80]. Accordingly, a convex plastic potential g is in-
troduced and the evolution equations are postulated as gradients of this potential, i.e.,

Lp = λ
∂g

∂Σ
, α̇i = λ

∂g

∂Qi
, α̇k = λ

∂g

∂Qk
, λ ≥ 0. (4.4)

The solution of these equations is subjected to the loading/unloading conditions in
Eq. (2.71).

Example 1: Isotropic hardening with exponential saturation can be modelled by choosing
the energy and plastic potential

Ψiso = ci
[
1/bi exp(bi αi)− αi

]
, g = φ , (4.5)

together with the associative evolution equation

α̇i = −λ . (4.6)

This leads to the stress-like internal variable

Qi = −ci
[
exp(bi αi)− 1

]
. (4.7)

The model parameters ci and bi define the saturation value of isotropic hardening and
the hardening slope, respectively.
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4 Thermomechanically coupled distortional hardening

Example 2: Nonlinear kinematic hardening of Armstrong & Frederick-type [5] is ob-
tained by choosing

Ψkin =
1

2
ckαk : αk (4.8)

and

g = φ+
1

2

bk

ck
Qk : Qk. (4.9)

Again, the model parameters bk and ck are related to the saturation rate and the satura-
tion value. More details regarding the thermodynamical forces are presented in Subsec-
tion 3.1.3.

4.1.2 Distortional hardening

4.1.2.1 Fundamentals

Having briefly introduced a standard framework for elastoplasticity including isotropic
and kinematic hardening, the focus is now on the modelling of distortional hardening
– a less standard hardening theory, cf. Barthel et al. [15], Feigenbaum and Dafalias
[43], Haddidi et al. [52], Ortiz and Popov [101], Shi and Mosler [113], Wang et al. [135]
and references cited therein. An illustration of different important distortional hardening
effects is given in Fig. 4.1.
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Figure 4.1: Yield surface evolution according to distortional hardening – uniaxial loading in 1-direction:
(left) dynamic hardening – the diameter of the yield surface increases only in loading direction; (middle)
latent hardening; – the diameter of the yield surface increases only in the direction orthogonal to the
loading direction; (right) generalised distortional hardening showing dynamic hardening and a higher
curvature in loading direction, cf. Feigenbaum and Dafalias [43].

According to the previous section, the shape of the yield function is implicitly defined
by means of the fourth-order tensor H for the considered prototype model. Conse-
quently, and following Barthel et al. [15], Feigenbaum and Dafalias [43], Shi and Mosler
[113], the distortion of the yield surface can be modelled by a suitable evolution law
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4.1 Generalised distortional hardening – isothermal setting

for H. In order to account for the different underlying physical mechanisms leading to
distortional hardening, the evolution law for H is decomposed into one part related to
latent hardening (captured by the fourth-order tensor Al) and into another part related
to dynamic hardening (captured by the fourth-order tensor Ad), i.e.,

H = H(Ad,Al). (4.10)

4.1.2.2 A novel distortional hardening model

The starting point of the constitutive distortional hardening model (see also Shi and
Mosler [113]) is a Helmholtz energy of the type

Ψ = Ψel(Fe) + Ψdis(Ed,El) . (4.11)

Accordingly, the part due to cold work is enhanced by the additional term

Ψdis =
1

2
cd Ed :: Ed +

1

2
cl El :: El (4.12)

accounting for distortional hardening. The superscripts •d and •l highlight terms related
to dynamic hardening and latent hardening, respectively. Furthermore, Ed and El are
fourth-order tensors enhancing the set of internal variables and cd and cl can be inter-
preted as hardening moduli (see Eq. (4.8)). The variables energetically conjugated to
E
d and E

l are introduced by means of

A
d = −∂EdΨdis = −cd Ed and A

l = −∂ElΨdis = −cl El . (4.13)

Such tensors enter the yield surface through

H = [1− bd − bl]H0 + bd Ad + bl Al . (4.14)

Here, the fourth-order tensor H0 describes the symmetry (shape) of the initial yield
surface and bd and bl are weighting factor for dynamic and kinematic hardening. Since

Ḣ = bd Ȧd + bl Ȧl , (4.15)

the fourth-order tensors Ad and Al indeed define the evolution of the material symmetry.

Next, the evolution equations Ėl and Ėd are defined. They have to fulfil the dissipation
inequality

Dint = Σ : Lp + A
d :: Ėd + A

l :: Ėl ≥ 0 . (4.16)
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4 Thermomechanically coupled distortional hardening

In order to fulfil Ineq. (4.16), the framework of generalised standard materials is again
employed and a quadratic and convex plastic potential of the type

gdis =
1

2

[
[NΞ ⊗NΞ] :: A

d
]2

+
1

2

[[
I
dev −NΞ ⊗NΞ

]
:: Al

]2
(4.17)

is introduced where NΞ = devΣ/‖devΣ‖ is the direction of the deviatoric stress tensor.
Application of the framework of generalised standard materials leads to the evolution
equations

Ė
d = λ ∂Adgdis = λ [NΞ ⊗NΞ] :: A

d [NΞ ⊗NΞ] ,

Ė
l = λ ∂Algdis = λ

[
I
dev −NΞ ⊗NΞ

]
:: Al

[
I
dev −NΞ ⊗NΞ

] (4.18)

and consequently to the hardening related rates

Ȧ
d = −λ cd ∂Adgdis = −λ cd [NΞ ⊗NΞ] :: A

d [NΞ ⊗NΞ] ,

Ȧ
l = −λ cl ∂Algdis = −λ cl

[
I
dev −NΞ ⊗NΞ

]
:: Al

[
I
dev −NΞ ⊗NΞ

]
.

(4.19)

As a result, Ed evolves in the loading direction [NΞ ⊗NΞ] (dynamic hardening), while
El evolves in the orthogonal direction

[
Idev −NΞ ⊗NΞ

]
(latent hardening). Since

[NΞ ⊗NΞ] ::
[
Idev −NΞ ⊗NΞ

]
= 0 this decomposition is indeed orthogonal. Assuming

an associated flow rule of the type

Lp = λ ∂Σφ = λ/Σeq [H : Ξ] , (4.20)

thermodynamical consistency of the model can be checked in a straightforward manner.
To be more precise, the dissipation inequality implied by the model reads

Dint = λQeq
0 + λ 2 gdis ≥ 0. (4.21)

The factor 2 occurring in this equation is a result of g being positively homogeneous of
degree two with respect to A

d and A
l. Along with the thermodynamical consistency, the

yield surfaces saturate and the stress states are therefore bounded (see Remark 4.1.1).

Remark 4.1.1: In the following, it is shown first that the yield function indeed converges
to a limiting yield surface. For that purpose, an arbitrary loading path is approximated by
piece wise radial loading paths. If the respective radial loading direction (normalized rel-
ative stress) is given by NΞ, the evolution equation corresponding to dynamic hardening
(cf. Eq. (4.19)) yields the analytical solution

A
d(t) =

8

EXP
(
−Δλ cd [NΞ ⊗NΞ]⊗ [NΞ ⊗NΞ]

)
:: Ad

0 , (4.22)

where A
d
0 represents the initial state of Ad(t) and Δλ is the integrated plastic multiplier.

By a standard Taylor-series expansion (see Section 4.3.1) of the eighth-order exponential
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4.1 Generalised distortional hardening – isothermal setting

map
8

EXP the evolution equation can be simplified. Inserting the derived equations (4.61)
yields eventually for cd ≥ 0

A
d t→∞→ A

d
0 − [NΞ ⊗NΞ]⊗ [NΞ ⊗NΞ] :: A

d
0 . (4.23)

As a result, Ad indeed converges. Analogously, it can be shown that latent hardening
converges to (if cl ≥ 0 and Al

0 being the initial latent state)

A
l t→∞→ A

l
0 −

1

7

[
I
dev −NΞ ⊗NΞ

]
⊗
[
I
dev −NΞ ⊗NΞ

]
:: Al

0 . (4.24)

Accordingly, the fourth-order tensor H saturates.

Remark 4.1.2: If the initial values A
d
0 = A

l
0 = H0 = I

dev are chosen, together with
bd = bl and cd = 7 cl, the fourth-order tensor H in Eq. (4.14) reduces to

H =
[
1− bd + bd exp(−Δλtcd)

]
I
dev . (4.25)

According to Eq. (4.25), the distortional hardening model is then equivalent to isotropic
hardening.

4.1.3 Prototype model including isotropic, kinematic and
distortional hardening

The fully coupled isothermal hardening model including isotropic, kinematic and distor-
tional hardening shows the Helmholtz energy

Ψ(F,Fp, αi,αk,Ed,El) = Ψel(Fe) + Ψiso(αi) + Ψkin(αk) + Ψdis(Ed,El) (4.26)

and the yield function

φ = Σeq −Qi −Qeq
0 with Σeq =

√
[devΣ−Qk] : H : [devΣ−Qk] . (4.27)

While isotropic hardening is still modelled by means of the associated ansatz (4.5) and
(4.6) – in line with the flow rule – the slightly modified kinematic hardening evolution
law

α̇k = λ

[
−∂Σφ+

bk

ck
‖∂Σφ‖Qk

]
(4.28)

will be considered in the following, cf. Feigenbaum and Dafalias [43]. In sharp contrast
to the original version (4.9), this evolution equation guarantees that the back stress
tensor converges, i.e., ‖Qk‖ → ck/bk <∞.
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4 Thermomechanically coupled distortional hardening

Finally, the distortional hardening model must also be adapted. According to the
previous paragraph, the tensor NΞ = devΣ/‖devΣ‖ defines the dynamic hardening
direction. However, if kinematic hardening is present, the physically more relevant
relative stresses show the direction

NΞ =
devΣ−Qk

‖devΣ−Qk‖ . (4.29)

For this reason, NΞ = devΣ/‖devΣ‖ is replaced by direction (4.29) in the distortional
hardening model.

Due to the additive structure of the Helmholtz energy (4.26), distortional hardening
does not effect isotropic and kinematic hardening, and thus the considered isotropic and
kinematic hardening models comply with the restrictions imposed by the second law of
thermodynamics. A straightforward computation of the dissipation inequality for the
resulting coupled hardening model yields

Dint = λQeq
0 + λ

bk

ck
‖∂Σφ‖Qk : Qk + λ 2 gdis ≥ 0 , (4.30)

and thus, the second law of thermodynamics is still fulfilled. Furthermore, simple con-
straints for modelling parameters bd and bl of the yield evolution can be derived by
analysing the convexity of the yield surface. As proven in Remark 4.1.3 convexity of
yield surfaces is satisfied for the case bd, bl < 1.

Remark 4.1.3: Proving convexity of the yield function for arbitrary fourth-order tensors
Ad and Al is relatively difficult – it is at least difficult to derive simple constraints for the
model parameters guaranteeing convexity. Within this model, the initial yield surface is
characterised by a von Mises yield function H0 = Ad

0 = Al
0 = Idev, and saturated internal

variables are assumed, cf. Eq. (4.23) and Eq. (4.24). In this case, the saturated fourth-
order tensor yields

H = I
dev − bd NΞ ⊗NΞ − bl

[
I
dev −NΞ ⊗NΞ

]
. (4.31)

Based on Eq. (4.31) convexity can be analysed. For that purpose, the respective condition

V : ∂2φ
∂Σ2 : V ≥ 0 is computed where V is an arbitrary normalized deviatoric second-order

tensor. After a lengthy but straightforward calculation, this inequality can be rewritten
as

‖devΣ−Qk‖V :
∂2 φ

∂Σ2 : V =
(1− β2)(1− bl)√

1− bd
≥ 0. (4.32)

Since β = V : NΞ ∈ [−1,+1] implying (1 − β2) ≥ 0, two conditions have to be fulfilled
in order to guarantee Ineq. (4.32). They are:

bd < 1, bl < 1, (4.33)
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4.1 Generalised distortional hardening – isothermal setting

These conditions are fulfilled for all models presented in Section 4.4.

4.1.4 Distortional hardening with higher curvature in loading
direction

As written in Feigenbaum and Dafalias [43], some materials exhibiting dynamic dis-
tortional hardening show a higher curvature of the yield surface in loading direction
compared to the opposite direction, see right diagram in Fig. 4.1. That can be taken
into account by modifying Eq. (4.14) to

H = [1− bd − bc [NΞ : Qk]− bl]H0 + [bd + bc [NΞ : Qk]]Ad + blAl , (4.34)

where the factor

NΞ : Qk (4.35)

precisely captures the higher curvature in loading direction, cf. Feigenbaum and Dafalias
[43]. It bears emphasis that this modification does not change the structure of the
dissipation inequality. More explicitly, Ineq. (4.30) is still valid. It can be shown that
the the additional material parameter bc has to fulfil the inequality 1− bd− bc ck/bk > 0
(see Remark 4.1.4).

Remark 4.1.4: Since simple constraints for guaranteeing convexity of the yield surface,
i.e. Eq. (4.34), are difficult to derive, the model is proven for saturated hardening vari-
ables. Within this model, the initial yield surface is characterised by an initial von Mises
yield function with H0 = Ad

0 = Al
0 = Idev, leading to the saturated fourth-order tensor

H = I
dev −

[
bd + bc

ck

bk
α

]
NΞ ⊗NΞ − bl

[
I
dev −NΞ ⊗NΞ

]
, (4.36)

cf. Eq. (4.14). In Eq. (4.36), the saturated back stress

Qk t→∞→ ck

bk
∂Σφ

‖∂Σφ‖
=
ck

bk
Nφ, Nφ =

∂Σφ

‖∂Σφ‖
, (4.37)

together with the abbreviation α = NΞ : Nφ, has been inserted.

Based on Eq. (4.37) convexity can be analysed. For that purpose, the respective con-

dition V : ∂2φ
∂Σ2 : V ≥ 0 is computed with V being an arbitrary second-order tensor. This

results into a lengthy inequality which is omitted here for readability. In contrast to a
model without higher curvature (bc = 0), simple conditions such as those in Ineq. (4.33)
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4 Thermomechanically coupled distortional hardening

cannot be derived for a model exhibiting a higher curvature (bc > 0). However, the
necessary condition for convexity

1− bd − bc c
k

bk
α > 0 (4.38)

needs to be satisfied. It can be shown that this condition is equivalent to V : H : V ≥ 0
for all V. Since bc ≥ 0 and ck/bk ≥ 0, Ineq. (4.38) is fulfilled, if (sufficient condition)

1− bd − bc c
k

bk
> 0. (4.39)

This constraint is fulfilled by all models in Section 4.4.

4.2 Thermomechanically coupled setting

4.2.1 Fundamentals

According to Subsection 3.1.2.2, a direct coupling of an isothermal elastoplasticity model
with the thermal problem through the first law of thermodynamics would generally lead
to an over-prediction of the temperature increase due to plastic deformations. This effect
is equivalent to an over-prediction of the internal dissipation. To be more precise, the
temperature evolution (2.78) can be conveniently approximated for most metals under
adiabatic conditions by means of

Θ̇ ≈ 1

c
Dint , (4.40)

which clearly confirms the previous statement. Furthermore, if a positively homogeneous
yield function of degree one (such as that defined in Eq. (4.3)) is used, combined with
associative evolution equations, the internal dissipation simplifies to Dint = λ Qeq

0 . This
result confirms once again that the over-prediction of the temperature increase is often a
result of an initial yield stress Qeq

0 which is too large. Similar arguments also hold in the
more general case of non-associative evolution equations and the underlying dissipation,
e.g. Eq. (4.30). However, the most dominant factor in the dissipation remains the yield
stress Qeq

0 , which needs to be adjusted. Likewise to the novel thermomechanical coupling
in Subsection 3.1.2.2 an adjustment of the Helmholtz energy is also advocated here.

The underlying idea of the thermomechanical framework advocated in Subsec-
tion 3.1.2.2 is to shift a certain portion of Qeq

0 into isotropic hardening, since only the
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4.2 Thermomechanically coupled setting

non-energetic dissipative part of Qeq
0 enters the internal dissipation. For that purpose,

the Helmholtz energy of the original model is changed to

Ψ(F,Fp, αi,αk,Ed,El) = Ψel(Fe) + Ψiso(αi) + Ψkin(αk) + Ψdis(Ed,El)

+
[
Q̃eq

0 −Q
eq
0

]
αi ,

(4.41)

where the last term is new. This modification leads to the new isotropic stress-like
hardening variable

Qi = −∂Ψ
∂αi

= −∂αiΨiso − Q̃eq
0 +Qeq

0 . (4.42)

Consequently, if Q̃eq
0 is assumed to be the initial yield stress, the yield function

φ = Σeq −Qi − Q̃eq
0 = Σeq + ∂αiΨiso −Qeq

0 (4.43)

resulting from this modification is identical to that of the original model. Accordingly,
the isothermal response of the model is not affected. A straightforward computation of
the dissipation resulting from this modified model yields

Dint = λ Q̃eq
0 + λ

bk

ck
‖∂Σφ‖Qk : Qk + λ 2 gdis ≥ 0 . (4.44)

Since the first term in Eq. (4.44) is the most dominant one (for most metals), the
internal dissipation can be conveniently controlled by changing Q̃eq

0 < Qeq
0 . For a better

interpretation, the factor

βD =
Q̃eq

0

Qeq
0

∈ [0, 1] (4.45)

is introduced by which the internal dissipation becomes

Dint = λ βDQeq
0 + λ

bk

ck
‖∂Σφ‖Qk : Qk + λ 2 gdis ≥ 0 . (4.46)

Again, βD is related to the classic Taylor-Quinney factor. However, as deduced in
Chapter 3 the presented modification is thermodynamically consistent: the first and
the second law of thermodynamics are fulfilled. Furthermore, the energetic term Q̃eq

0 −
Qeq

0 give rise to an initially existing pre-hardening due to an underlying manufacturing
process, cf. p. 39.

67



4 Thermomechanically coupled distortional hardening

4.2.2 Prototype model

A thermomechanically coupled distortional hardening framework is obtained by incor-
porating the isothermal distortional hardening models as discussed in Subsections 4.1.3
and 4.1.4 into the thermomechanical setting outlined in the previous subsection. This
coupling leads to a Helmholtz energy of the type

Ψ = Ψel(Fe,Θ) + Ψpl(α,Θ) , (4.47)

in which the two involved energies are chosen as

Ψel(F,Fp,Θ) = Ψel
mech(F

e) +M(Fe,Θ) + T (Θ) (4.48)

and

Ψpl(αi,αk,Ed,El,Θ) = Ψiso(αi) + Ψkin(αk) + Ψdis(Ed,El)

+
[
βD − 1

]
Qeq

0 (Θ)αi .
(4.49)

In Eq. (4.48), Ψel
mech corresponds to the purely mechanical part of Ψel, the energy M is

associated with the thermoelastic coupling and T covers the purely thermal part. By
comparing Eq. (4.49) to its isothermal counterpart (4.41), it can be seen that the only
influence of the temperature on Ψpl is through the temperature-dependent yield stress
Qeq

0 (Θ). Certainly, temperature-dependent hardening could also be taken into account in
a similar straightforward manner. However, this effect is not very pronounced for most
metallic alloys in a temperature range of 0 − 100 K, cf. Hodowany et al. [54], Rosakis
et al. [109]. With regard to the temperature-dependent part, linear thermal softening is
assumed, resulting in the yield stress

Qeq
0 = y0 [1− ω0 [Θ−Θ0]] . (4.50)

In Eq. (4.50), y0 is the yield stress at reference temperature Θ0, while the coefficient
ω0 controls the thermal softening slope. It is subjected to constraint ω0 [Θ − Θ0] ≤ 1.
Otherwise, the effective temperature-dependent yield stress would be negative and the
second law of thermodynamics would also be violated. A prototype model falling into
the range of the coupled setting proposed here is summarised in Fig. 4.2.

4.3 Numerical implementation

The numerical implementation of the presented thermomechanically coupled framework
suitable for distortional hardening is elaborated here. While the update of the internal
variables and the computation of the stresses is outlined in Subsection 4.3.1, Subsec-
tion 4.3.2 is associated with an efficient finite element formulation for the solution of the
thermomechanically coupled boundary value problem.
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4.3 Numerical implementation

• Helmholtz energy:

Ψ = Ψel(Fe,Θ) + Ψpl(αi,αk,Ed,El,Θ)

Ψel =W (Fe)︸ ︷︷ ︸
Eq.(4.87)

+ U(J)︸ ︷︷ ︸
Eq.(4.88)

+M(J,Θ)︸ ︷︷ ︸
Eq.(4.93)

+ T (Θ)︸ ︷︷ ︸
Eq.(4.94)

Ψpl = Ψiso(αi)︸ ︷︷ ︸
Eq.(4.5)

+Ψkin(αk)︸ ︷︷ ︸
Eq.(4.8)

+Ψdis(Ed,El)︸ ︷︷ ︸
Eq.(4.12)

+
[
βD − 1

]
Qeq

0 (Θ)αi

• Yield function:

φ = Σeq −Qi −Qeq
0 (Θ) with Σeq =

√
Ξ : H : Ξ , Ξ = devΣ−Qk

• Tensor defining the material symmetry:

H = [1− bd − bc [NΞ : Qk]− bl]H0 + [bd + bc [NΞ : Qk]]Ad + bl Al ,

NΞ = Ξ/‖Ξ‖

• Driving forces:

Σ = FeT · ∂FeΨ , Qk = −ck αk , Qi = −ci
[
exp(bi αi)− 1

]
,

A
d = −cd Ed , A

l = −cl El

• Evolution equations:

Ḟp = Lp · Fp = λ ∂Σφ · Fp

α̇i = −λ ,
α̇k = −λ

[
∂Σφ+ bk ‖∂Σφ‖αk

]
,

Ė
d = λ [NΞ ⊗NΞ] :: A

d [NΞ ⊗NΞ] ,

Ė
l = λ

[
I
dev −NΞ ⊗NΞ

]
:: Al

[
I
dev −NΞ ⊗NΞ

]
• State equations:
First Piola-Kirchhoff stresses, entropy, specific heat capacity, heat flux, me-
chanically induced self-heating

P = ∂FΨ = ∂FeΨ · Fp−T , N = −∂ΘΨ , c = −Θ ∂ΘΘΨ ,

Q = −k0GRADΘ (see Eq. (2.53))

HΘ = A+Dint = Θ
∂2Ψ

∂J∂Θ
J̇

+ λ

[
βD y0

[
1− ω0

[
Θ

βD −Θ0

]]
+
bk

ck
‖∂Σφ‖Qk : Qk + 2 gdis

]

Figure 4.2: Thermomechanically coupled elastoplasticity model accounting for isotropic, kinematic and
distortional hardening including a higher curvature of the yield surface in loading direction
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4 Thermomechanically coupled distortional hardening

4.3.1 Constitutive updates

A return-mapping-type algorithm for the computation of updated internal variables and
stresses is presented here. In order to derive this algorithm, partition

τ =
nτ⋃
n=1

[tn, tn+1] (4.51)

of the total time interval is considered. Furthermore, an elastic trial state in the consid-
ered time interval [tn, tn+1] is introduced in standard manner, i.e., by means of

Fp
n+1 = Fp

n, αi
n+1 = αi

n, αk
n+1 = αk

n, A
d
n+1 = A

d
n, A

l
n+1 = A

l
n. (4.52)

Based on this state, the trial yield function

φtrial = φ(Σtrial, α
i
n,α

k
n,A

d
n,A

l
n) with Σtrial = Fe

trial
T · ∂FeΨ

∣∣
Fe

trial

(4.53)

and

Fe
trial = Fn+1 · Fp

n
−1 (4.54)

can be evaluated.
If plasticity occurs within the considered time interval [tn, tn+1] by φtrial > 0, the evolu-
tion equations have to be integrated. For that purpose, a standard exponential integra-
tion scheme is applied to the flow rule yielding

Fp
n+1 = EXP (Δλ ∂Σφ|n+1) · Fp

n , (4.55)

with EXP(•) being the exponential map for second-order tensors, whereas a backward
Euler integration is adopted for the evolution equations of isotropic and kinematic hard-
ening, i.e.,

αi
n+1 = αi

n −Δλ ,

αk
n+1 =

αk
n −Δλ ∂Σφ|n+1

1 + Δλ bk ‖∂Σφ|n+1‖
.

(4.56)

Regarding the fourth-order tensors Ad and A
l, a different time integration is proposed,

since a straightforward application of an implicit scheme would result in 2×3×3×3×3 =
162 additional equations. Starting points of this integration scheme are the differential
equations (see Eq. (4.19))

Ȧ
d = −λ cd [NΞ ⊗NΞ] :: A

d [NΞ ⊗NΞ] ,

Ȧ
l = −λ cl

[
I
dev −NΞ ⊗NΞ

]
:: Al

[
I
dev −NΞ ⊗NΞ

]
.

(4.57)
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Here, the notation

NΞ =
Ξ

‖Ξ‖ =
devΣ−Qk

‖devΣ−Qk‖ (4.58)

for the direction of the relative stresses has been used. By assuming a piece-wise constant
approximation of NΞ, the analytical solution of Eq. (4.57) reads

A
d(t) =

8

EXP
(
−Δλ cd [NΞ ⊗NΞ]⊗ [NΞ ⊗NΞ]

)
:: Ad

0 ,

A
l(t) =

8

EXP
(
−Δλ cl

[
I
dev −NΞ ⊗NΞ

]
⊗
[
I
dev −NΞ ⊗NΞ

])
:: Al

0 ,

(4.59)

with A
d
0 = A

d(tn) and A
l
0 = A

l(tn). If this assumption does not hold, Eq. (4.59) is a
time-discrete approximation of Eq. (4.57). It bears emphasis that the by now standard

exponential map for Fp
n+1 in Eq. (4.55) is based on the same idea. In Eq. (4.59),

8

EXP(•)
denotes the exponential map of an eighth-order tensor (•). In order to reduce the
extensive calculation of this exponential map, the identities

N⊗ N :: N⊗ N =

{
N⊗ N for N = [NΞ ⊗NΞ]

7N⊗ N for N =
[
I
dev −NΞ ⊗NΞ

] (4.60)

are used within a Taylor series expansion of Eq. (4.59). Based on the identities (4.60),
the exponential mappings (4.59) can be rewritten as

8

EXP
(
−Δλ cd [NΞ ⊗NΞ]⊗ [NΞ ⊗NΞ]

)
=

8

I+
[
exp

(
−Δλ cd

)
− 1

]
[NΞ ⊗NΞ]⊗ [NΞ ⊗NΞ] ,

8

EXP
(
−Δλ cl

[
I
dev −NΞ ⊗NΞ

]
⊗
[
I
dev −NΞ ⊗NΞ

])
=

8

I+

[
1

7
exp

(
−Δλ 7 cl

)
− 1

] [
I
dev −NΞ ⊗NΞ

]
⊗
[
I
dev −NΞ ⊗NΞ

]
,

(4.61)

with
8

I denoting the eighth-order identity tensor defined as
8

I :: A = A, ∀A. Accordingly,
the numerically extensive exponential map for the eighth-order tensor has been replaced
by means of the exponential function (exp) for scalars. Clearly, this modification sig-
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4 Thermomechanically coupled distortional hardening

nificantly improves the numerical efficiency of the algorithm. Based on Eqs. (4.61), the
time integration scheme (4.59) can be replaced by means of the equivalent equations

A
d(t) = A

d
0 +

[
exp

(
−Δλ cd

)
− 1

] {
[NΞ ⊗NΞ] :: A

d
0

}
[NΞ ⊗NΞ] ,

A
l(t) = A

l
0 +

1

7

[
exp

(
−Δλ 7 cl

)
− 1

] { [
I
dev −NΞ ⊗NΞ

]
:: Al

0

} [
I
dev −NΞ ⊗NΞ

]
.

(4.62)

Such equations are now used for any time interval resulting in the novel time integration

A
d
n+1 = A

d
n +

[
exp

(
−Δλ cd

)
− 1

] {
[NΞ,n+1 ⊗NΞ,n+1] :: A

d
n

}
[NΞ,n+1 ⊗NΞ,n+1] ,

A
l
n+1 = A

l
n +

[
1

7
exp

(
−Δλ 7 cl

)
− 1

]{
[
I
dev −NΞ,n+1 ⊗NΞ,n+1

]
:: Al

n

} [
I
dev −NΞ,n+1 ⊗NΞ,n+1

]
.

(4.63)

Finally, the fourth-order tensor H defining the shape (distortion) of the yield surface
can be computed by means of Eq. (4.63). By considering Eq. (4.34) for H0 = Idev, the
update

Hn+1 = [1−bd−bc [NΞ,n+1 : Q
k
n]−bl] Idev+[bd+bc [NΞ,n+1 : Q

k
n]]A

d
n+1+b

l
A

ln+1 (4.64)

is advocated. It bears emphasis that the coupling NΞ : Qk between kinematic and dis-
proportional hardening, necessary if a higher curvature of the yield surface in loading
direction is to be modelled, is approximated in a mixed explicit/implicit manner. To be
more precise, NΞ,n+1 : Q

k
n+1 ≈ NΞ,n+1 : Q

k
n. This approximation turned out to improve

the efficiency of the implementation without degrading the numerical accuracy, cf. Re-
mark 4.3.1. However, this approximation is certainly not mandatory and a fully implicit
scheme could also be used. Furthermore, if a higher curvature in loading direction is not
modelled (factor bc = 0), Eq. (4.64) is indeed a fully implicit update scheme.

According to Eqs. (4.55)–(4.56) and Eqs. (4.63)–(4.64), the updated internal variables
can be expressed in terms of the unknowns χ = {Δλ,Ξn+1}. They follow from the
solution of the non-linear set of algebraic equations

rχ(Δλ,Ξn+1) =

[
φ
rΞ

]
=

[√
Ξn+1 : H(Δλ,Ξn+1) : Ξn+1 −Qi(Δλ)−Qeq

0 (Θn+1)
Ξn+1 − devΣ(Fn+1,Θn+1,Δλ,Ξn+1) +Qk(Δλ,Ξn+1)

]
= 0 .

(4.65)

The solution of the 7 (10) dimensional problem is computed by employing a Newton-type
iteration (7 unknowns in the case of symmetric Mandel stresses, 10 unknowns in the case
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4.3 Numerical implementation

of non-symmetric Mandel stresses). It is noteworthy that the number of unknowns of
the considered complex distortional hardening model is thus as small as the number of
unknowns of standard isotropic hardening models. However, and in contrast to isotropic
models where only 10 internal variables have to be stored (Fp

n and αi
n), a naive storage

implementation would require {Fp
n, α

i
n,α

k
n,A

d
n,A

l
n}, 9 + 1+ 9+ 81+ 81 = 181 variables.

By considering the initial conditions Ad
0 = Al

0 = Idev as well as the minor and major
symmetries of Ad and A

l, the 81 + 81 components of the fourth-order tensors A
d and

Al can be spanned by means of only 21 + 21 independent history variables. If it is
additionally taken into account that Ad and Al are deviatoric tensors (projections), the
21+21 independent variables can be further reduced to 15+15. By doing so, the resulting
algorithm is very efficient in terms of the computing time (only 7 (10) unknowns in the
return-mapping scheme) and in terms of storage (only 9+1+9+15+15 = 49 independent
variables have to be stored).

A summary of the resulting return-mapping scheme is given in Fig. 4.3. Having
computed the solution of Eq. (4.65), the updated internal variables as well as the updated
stresses can be calculated.

Remark 4.3.1: If a higher curvature of the yield surface in loading direction was
considered by setting bc �= 0, a fully implicit time integration, together with a fully
implicit coupling factor of the type NΞ,n+1 : Qk

n+1, would not allow to express the
fourth-order tensor Hn+1 only in terms of Δλ and Ξn+1. Consequently, an additional
fourth-order tensor would enter the set of unknowns, significantly worsening the nu-
merical performance. However, numerical experiments showed that the approximation
NΞ,n+1 : Qk

n ≈ NΞ,n+1 : Qk
n+1 has only little influence on the numerical accuracy and,

therefore, the approximation seems to be reasonable.

4.3.2 Weak form – FEM implementation

While the updated internal variables and the stresses follow from the (local) return-
mapping scheme, the computation of the primary fields ϕ and Θ requires the consid-
eration of the global boundary value problem. The starting point of the finite element
formulation to be elaborated is the weak form of balance of linear momentum

δWϕ =

∫
B0

P : δF dV −
∫

∂B0

δϕ ·T dA−
∫
B0

δϕ · ρ0B dV = 0 ∀ δϕ ∈ H1
0(B0) (4.66)
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1. Given state:
current global variables: {F,Θ}
history variables at time tn: Γn = {Fp

n, α
i
n,α

k
n,A

d
n,A

l
n}

2. Compute trial state:
compute trial strains: Fe

trial = F · Fp
n
−1

compute trial stresses: Σtrial = Fe
trial

T · ∂FeΨ(Fe
trial), Ξtrial = devΣtrial −Qk

n

3. Check yield condition:
compute: φtrial =

√
Ξtrial : Hn : Ξtrial −Qi

n −Q
eq
0 (Θ) with Hn = H(Ad

n,A
l
n)

IF φtrial ≤ 0 THEN
set: Γ = Γn

EXIT
ELSE

GO TO 4. (Return-mapping)
ENDIF

4. Return-mapping:
set: χ = [Δλ,Ξ]T = [0,Ξtrial]

T

set: Γ = Γn and {Qi,Qk,H} = {Qi
n,Q

k
n,Hn}

WHILE ‖rχ‖ > TOL
compute: ∂χr
update: χ←− χ− ∂χrχ · rχ
update: Γ(χ) → (Eq. (4.55)–Eq. (4.56))
compute: {Qi,Qk,H}
compute: rχ → (Eq. (4.65))

END

Figure 4.3: Return mapping algorithm of the proposed distortional hardening model
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and the weak form of the first law of thermodynamics

δWΘ =

∫
B0

{
δΘ

[
c Θ̇−HΘ

]
−H ·GRADδΘ

}
dV

+

∫
∂B0

δΘ H̄ dA−
∫
B0

δΘ ρ0RΘ dV = 0 ∀ δΘ ∈ H1
0(B0) .

(4.67)

In theses equations, δ(•) symbolises the virtual quantity of (•), and H1
0 denotes the

space of admissible test functions. The rates (velocities) in Eq. (4.67) are approximated
in the standard manner

Θ̇ =
dΘ

dt
≈ Θ−Θn

Δt
, J̇ =

dJ

dt
≈ J − Jn

Δt
, λ ≈ Δλ

Δt
. (4.68)

Accordingly, the time index (•)n+1 for the current time is omitted and only variables
belonging to the previous time are highlighted by (•)n. With Eqs. (4.68), the first
integral in Eq. (4.67) is approximated by∫

B0

{
δΘ

1

Δt

[
c [Θ−Θn]−ΔHΘ

]
−H ·GRADδΘ

}
dV , (4.69)

where the self-heating-related term reads

ΔHΘ = Θ
∂2Ψ

∂J∂Θ
[J − Jn]

+ Δλ

[
βD y0

[
1− ω0

[
Θ

βD −Θ0

]]
+
bk

ck
‖∂Σφ‖Qk : Qk + 2 gdis

]
.

(4.70)

For the spatial discretisation, a finite element triangulation is used. For that purpose,
the referential body B0 and the referential boundary of the body ∂B0 are approximated
by

B0 ≈ Bh
0 =

nel⋃
e=1

Be
0 , ∂Bh

0 =

n∂B
el⋃

e=1

∂Be
0 . (4.71)

Subsequently, the primary fields are interpolated in every finite element as

X
∣∣
Be
0
≈ Xh =

nen∑
a=1

Na Xa , ϕ
∣∣
Be
0
≈ ϕh =

nen∑
a=1

Na ϕa , Θ
∣∣
Be
0
≈ Θh =

nen∑
a=1

Na Θa . (4.72)
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Here, Xa, ϕa and Θa are the nodal values at node a and Na are shape functions.
Approximations (4.72) lead to the gradients

Fh = GRADϕh =
nen∑
a=1

ϕa ⊗GRADNa , GRADΘh =
nen∑
a=1

ΘaGRADNa . (4.73)

The variations of these gradients follow identical lines. To be more precise, with

δϕ
∣∣
Be
0
≈ δϕh =

nen∑
a=1

Na δϕa , δΘ
∣∣
Be
0
≈ δΘh =

nen∑
a=1

Na δΘa , (4.74)

one obtains

δFh = GRADδϕh =

nen∑
a=1

δϕa⊗GRADNa, GRADδΘh =

nen∑
a=1

δΘa⊗GRADNa. (4.75)

As can be seen, a Bubnov-Galerkin-type approximation is considered.

Finally, by inserting Eqs. (4.71)–(4.75) into the balance laws (4.66) and (4.67) (see
also the time-discretised counterpart (4.69) and (4.70)), the contributions of each finite
element to the weak forms of the balance laws can be derived. They are summarised in
the compact notation

δWϕ

∣∣
Be
0
=

nen∑
a=1

δϕa ·
[
faϕ,int − faϕ,sur − faϕ,vol

]
,

δWΘ

∣∣
Be
0
=

nen∑
a=1

δΘa
[
fa
Θ,int + fa

Θ,sur − fa
Θ,vol

]
,

(4.76)

where the generalised forces are defined by

faϕ,int =

∫
Be
0

P ·GRADNa dV , faϕ,sur =

∫
∂Be

0

Na T̄ dA , faϕ,vol =

∫
Be
0

Na ρ0B dV ,

fa
Θ,int =

∫
Be
0

{
Na 1

Δt

[
c [Θ−Θn]−ΔHΘ

]
−GRADNa ·H

}
dV ,

fa
Θ,sur =

∫
∂Be

0

Na H̄ dA , fa
Θ,vol =

∫
Be
0

Na ρ0RΘ dV .

(4.77)

For the sake of simplicity, the mechanical forces B and T̄ and the thermal heat source RΘ

are assumed to be independent of the primary fields. By way of contrast, the prescribed
heat flux H̄ may depend on the temperature. The assembly over all finite elements
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yields the approximation of the fully coupled boundary value problem. For instance, by
introducing the global assembly operator A, the contribution related to global node A
reads

rA =

nel

A
e=1

[
raϕ
raΘ

]
= 0 with

[
raϕ
raΘ

]
=

[
faϕ,int − faϕ,sur − faϕ,vol

fa
Θ,int + fa

Θ,sur − fa
Θ,vol

]
. (4.78)

In this chapter, the fully coupled non-linear system of equations is solved in a monolithic
manner by employing Newton’s scheme. Therefore, the nodal residuals ra = [raϕ, r

a
Θ]

have to be linearised with respect to the unknowns db = [ϕb,Θb]. The resulting element
stiffness matrix can be written as

Kab =
dra

ddb
=

[
Kab

ϕϕ Kab
ϕΘ

Kab
Θϕ Kab

ΘΘ

]
, (4.79)

with the sub-matrices

Kab
ϕϕ =

draϕ
dϕb

=

∫
Be
0

GRADNa • dP
dF
·GRADN b dV ,

Kab
ϕΘ =

draϕ
dΘb

=

∫
Be
0

N b dP

dΘ
·GRADNa dV ,

Kab
Θϕ =

draΘ
dϕb

=

∫
Be
0

Na dΔHΘ

dF
·GRADNa dV ,

Kab
ΘΘ =

draΘ
dΘb

=

∫
Be
0

{
Na 1

Δt

[
c− dΔHΘ

dΘ

]
N b + k0GRADNa ·GRADN b

}
dV

+

∫
∂Be

0

Na∂H̄

∂Θ
N b dV .

(4.80)

Due to the missing variational structure, the stiffness matrix is generally not symmetric,
which is in contrast to the thermomechanical frameworks Canadija and Mosler [25, 26],
Yang et al. [139]. Further details regarding the computation of sensitivities

dP =
∂P

∂F
: dF+

∂P

∂Θ
dΘ +

∂P

∂χ
· dχ (4.81)

and

dΔHΘ =
∂ΔHΘ

∂F
: dF+

∂ΔHΘ

∂Θ
dΘ +

∂ΔHΘ

∂χ
· dχ (4.82)
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can be found in Appendix B.1.

Remark 4.3.2: It is well known that finite elements based on linear shape functions
can lead to spurious locking effects in the nearly incompressible regime, e.g., in the
case of isochoric plasticity. This effect is reduced here by using bi-quadratic and tri-
quadratic shape functions: A 9-noded quadratic element has been implemented for the
2D simulations in the case of plain strain and axisymmetric analysis, whereas a 20-noded
serendipity element has been derived for the 3D formulation. In addition to a standard
two-field formulation in terms of the deformation and the temperature field, an enhanced
assumed strain (EAS) approach is also used, cf. Appendix B.2 and Appendix B.3.

Remark 4.3.3: For polar axisymmetric problems, such as the boundary value problem
presented in Subsection 4.4.5, the deformation gradient written in polar axisymmetric
coordinates reads

F =

⎡⎣∂Rϕr ∂Zϕr 0
∂Rϕz ∂Zϕz 0
0 0 r/R

⎤⎦ . (4.83)

Remark 4.3.4: For polar axisymmetric problems, such as the boundary value problem
presented in Subsection 4.4.5, the vector of internal forces can be written in matrix
notation as

faϕ,int =

∫
Be
0

BaT · P̂ dV with P̂ =
[
P11 P12 P21 P22 P33

]T
, (4.84)

where

Ba =

[
∂RN

a ∂ZN
a 0 0 Na/R

0 0 ∂RN
a ∂ZN

a 0

]
. (4.85)

4.4 Representative numerical examples

In this section, the predictive capabilities of the proposed generalised plasticity frame-
work and the robustness and efficiency of the elaborated algorithmic formulation are
demonstrated by means of several numerical examples.

In order to show the directive distortion of yield surfaces the aluminium alloy Al6061-
T6511 is numerically investigated in Subsection 4.4.1. Therefore, experiments reported
in Khan et al. [62] are identified for the isothermal setting, since temperature data for a
thermomechanically coupled analysis is missing.

The thermomechanically coupled distortional hardening model is numerically anal-
ysed in Subsection 4.4.2 and its predictions are compared to the uniaxial tension test
experiments reported in Hodowany et al. [54], Rosakis et al. [109] in which the alu-
minium alloy Al2024-T3 was characterised, see also Kintzel and Mosler [65]. Compu-
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tations based on an isotropic and a kinematic hardening model are also presented for
the sake of comparison. After a parameter identification of the different hardening mod-
els, the resulting distortional hardening models are subsequently used for more complex
structural analyses: a contact bending test in Subsection 4.4.3, inhomogeneous tension
test in Subsection 4.4.4 and necking of a bar in Subsection 4.4.5.

4.4.1 Uniaxial tension test of the aluminium alloy Al6061-T6511 –
isothermal setting

4.4.1.1 Elastoplastic prototype model

For the elastoplastic response of the model, the elastic energy is defined next. The
prototype Helmholtz energy is given by

Ψel = W (Fe) + U(J) , (4.86)

in which the elastic energy is split into an purely isochoric partW and a purely volumetric
part U . More precisely, the parts are defined as

W (Fe) =
1

2
μ
[
J−2/3Fe : Fe − 3

]
, (4.87)

U(J) =
1

2
κ

[
1

2
[J2 − 1]− ln J

]
, (4.88)

where μ = E/2/[1+ ν] is the shear modulus (depending on the Young’s modulus E and
Poisson’s ratio ν), κ = E/3/[1− 2 ν] is the bulk modulus. Furthermore, the initial yield
stress is equivalent to the yield limit y0, i.e.

Qeq
0 = y0 . (4.89)

The elastic model parameters are summarised in Tab. 4.1.

Al 6061-T6511 Name Symbol Value Unit

Youngs modulus E 74000 [MPa]
Poisson ratio ν 0.32 [–]

Table 4.1: Material parameters for the aluminium alloy Al 6061-T6511 at Θ0 = 293 K

4.4.1.2 Mechanical response

According to the experimental measurements reported in Khan et al. (2009), aluminium
alloy Al6061-T6511 shows a pronounced distortion of the yield surface during deforma-
tion. Furthermore, the respective yield loci have a higher curvature in loading direction
compared to the opposite reverse direction. Within the experiments reported in Khan
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et al. [62], a bar made of Al6061-T6511 is deformed under monotonic uniaxial tension
(strain-controlled). In order to identify the material parameters of the hardening be-
haviour, a standard least square fit

{y0, ck, bk, bd, bl, bc} = arg inf
y0,ck,bk,bd,bl,bc

Ferr (4.90)

with

with Ferr =
1

2

n∑
i=1

‖σKhan(F
(i)
11 )− σmodel(F

(i)
11 )‖2 (4.91)

is applied. The stress states σKhan taken from Khan et al. [62] are based on uniaxial

stretches F
(i)
11 . These stresses are numerically compared to stress states σmodel of the

proposed model. A summary of the identified hardening parameters are presented in
Tab. 4.2.

Al 6061-T6511 Name Symbol Value Unit

Yield limit (∗) y0 93.9 [MPa]
kinematic hard. mod. (∗) ck 18800 [MPa]
kinematic sat. coef. (∗) bk 91.9 [–]
dynamic hard. mod. cd 40.0 [–]
dynamic sat. coef. (∗) bd -44.5 [–]
latent hard. mod. cl 5.0 [–]
latent sat. coef. (∗) bl -5.6 [–]
curvature coef. (∗) bc 0.144 [MPa−1]

Table 4.2: Uniaxial tensile test of the aluminium alloy Al 6061-T6511: Hardening associated param-
eters. Only the parameters highlighted by (∗) have been computed by means of the least square-type
identification (4.90). Parameters cd and cl have been chosen beforehand.

The results of the novel model together with their experimentally measured counter-
parts are given in Fig. 4.4. Three yield surfaces corresponding to engineering strains of
2%, 4% and 6% are summarized in this figure. As can be seen, the surfaces predicted
by the novel model are in excellent agreement with the experimental measurements. All
characteristic features of the investigated aluminium alloy Al6061-T6511 are captured
such as high curvature changes of the yield surface as well as an exceeding dynamic and
latent softening. For a realistic prediction of technological processes, temperature effects
need to be considered. Since temperature effects are not available for this material, the
focus is in the following on a different aluminium alloy for which temperature data is
available.
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Figure 4.4: Evolution of the yield surface (left) for aluminium alloy 6061-T6511 subjected to simple
tension of 2%, 4% and 6%. The respective stress-strain response is shown in the right diagram. Lines
represent the predictions obtained from the novel model, while the symbols are associated with the
experimental measurements reported in Khan et al. [62].

4.4.2 Comparison of different hardening models for a uniaxial
tension test of the aluminium alloy Al2024-T3 –
thermomechanically coupled setting

4.4.2.1 Thermo-elastoplastic prototype model

In the following, the hardening-independent structure of the considered thermo-
elastoplastic prototype models is summarised. The underlying Helmholtz energy is given
by

Ψel = W (Fe) + U(J) +M(J,Θ) + T (Θ) , (4.92)

where W and U are defined by Eqs. (4.87) and (4.88). The energy M is associated with
the thermoelastic coupling and is assumed to be volumetric in nature. T covers the
thermal part. Such individual energies are chosen as

M(J,Θ) = [Θ−Θ0] [−3α0 ∂JU ] , (4.93)

T (Θ) = c0

[
[Θ−Θ0]−Θ ln

Θ

Θ0

]
, (4.94)

where α0 is the (constant) thermal expansion coefficient, c0 is the (constant) heat ca-
pacity and where Θ0 denotes the reference temperature. Heat conduction is modelled
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4 Thermomechanically coupled distortional hardening

by means of the isotropic Fourier’s law (2.53). Furthermore, linear heat convection of
the type

HN = kc [Θ0 −Θ] (4.95)

is considered at the thermal Neumann boundary ∂B0,H. Finally, thermal-softening is
included in the model by means of the temperature-dependent yield limit

Qeq
0 = y0 [1− ω0 [Θ−Θ0]] . (4.96)

For the considered aluminium alloy Al2024-T3, the model parameters are summarised
in Tab. 4.3.

Al 2024-T3 Name Symbol Value Unit

Youngs modulus E 74000 [MPa]
Poisson ratio ν 0.32 [–]
Thermal expansion α0 2.4 ·10−5 [K−1]
Heat capacity c0 2.4325 [MPa/K]
Thermal conductivity k0 120 [W/(mK)]
Yield limit y0 322.91 [MPa]
Thermal yield softening ω0 0.003 [K−1]
Reference temperature Θ0 293 [K]
Air temperature Θ∞ 293 [K]
Convection coefficient kc 0.0175 [N/(mm sK)]

Table 4.3: Material parameters for the aluminium alloy Al 2024-T3 at Θ0 = 293 K

4.4.2.2 Mechanical response

In the following, the four different hardening models

1. associative isotropic hardening – see Eq. (4.5)

2. non-associative kinematic hardening – see Eq. (4.8) and Eq. (4.9)

3. distortional hardening model 1 (M1)– see Eq. (4.12), Eq. (4.17) and Eq. (4.34))
with bc = 0
kinematic hardening coupled to latent hardening and dynamic softening

4. distortional hardening model 2 (M2) – see Eq. (4.12), Eq. (4.17) and Eq. (4.34)
with bd = 0
kinematic hardening coupled to latent softening and dynamic hardening with high
curvature in loading direction compared to the opposite direction
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4.4 Representative numerical examples

will be used in order to numerically analyse the uniaxial tension test as experimentally
studied in Hodowany et al. [54]. The initial yield surface of all models is assumed to be of
von Mises-type. Therefore, the material symmetry is described by H0 = A

d
0 = A

l
0 = I

dev

at time step t = 0. Furthermore, the other internal variables are initialised by Fp
0 = I

, αi
0 = 0 and αk

0 = 0 for all simulations. In order to compute the models’ hardening
parameters, a standard least-square method is employed. It is based on the minimisation
principle

{c, b} = arg inf
c,b
Ferr with Ferr =

1

2

n∑
i=1

‖σHodowany(F
(i)
11 )−σmodel(F

(i)
11 )‖2 , (4.97)

where σHodowany(F
(i)
11 ) is the uniaxial tensile stress (of Cauchy-type) for the stretch F

(i)
11

measured in Hodowany et al. [54] and where σmodel(F
(i)
11 ) denotes the numerically pre-

dicted counterpart (depending on the underlying hardening model). Within the first
step, thermal softening is ignored (ω0 = 0) and only the purely mechanical response is
considered in the material parameter identification process. A summary of the model
parameters associated with the four different hardening models is given in Tab. 4.4.

Hardening model Name Symbol Value Unit

isotropic (associative) isotropic hard. mod. (∗) ci 266.02 [MPa]
isotropic sat. coef. (∗) bi 4.814 [–]

kinematic kinematic hard. mod.(∗) ck 1280.7 [MPa]
kinematic sat. coef.(∗) bk 4.814 [–]

distortional hard. model 1 (M1) kinematic hard. mod. (∗) ck 1430.7 [MPa]
kinematic sat. coef. (∗) bk 4.435 [–]
dynamic hard. mod. cd 1.0 [–]
dynamic sat. coef. bd -1.0 [–]
latent hard. mod. cl 1.0 [–]
latent sat. coef. bl 0.2 [–]
curvature coef. bc 0.0 [MPa−1]

distortional hard. model 2 (M2) kinematic hard. mod.(∗) ck 1343.8 [MPa]
kinematic sat. coef.(∗) bk 6.758 [–]
dynamic hard. mod. cd 1.0 [–]
dynamic sat. coef. bd 0.0 [–]
latent hard. mod. cl 1.0 [–]
latent sat. coef. bl -1.0 [–]
curvature coef. bc 0.0035 [MPa−1]

Table 4.4: Uniaxial tensile test of the aluminium alloy Al 2024-T3: Model parameters associated with
the four different hardening models. Only the parameters highlighted by (∗) have been computed by
means of the least square-type approach according to Eq. (4.97). The remaining parameters were chosen
beforehand.
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4 Thermomechanically coupled distortional hardening

The mechanical response as predicted by the different hardening models is summarised
in Fig. 4.5. According to Fig. 4.5a), all models are in good agreement with the exper-
imental observations for loading. This is clearly not surprising since the respective
stress-strain response served as the input for the model parameter identification process.
However, the differences between the models become visible during unloading. Apart
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Figure 4.5: Uniaxial tensile test of the aluminium alloy Al 2024-T3: Stress vs. strain response for the
different hardening models: a) (left) loading regime – used in the parameter identification. b) (right)
loading-unloading-loading cycle

from the model based on isotropic hardening, all models show the Bauschinger effect.

In order to make the differences between the hardening models visible during loading
as well, the evolution of the yield surfaces are depicted in Fig. 4.6 – in the {Σ11,

√
3Σ12}

Mandel stress space. As can be seen in Fig. 4.6b), the initially circular yield function
(see Fig. 4.6a) indeed evolves differently for the four hardening models. The models
only agree in the loading direction. While the purely isotropic and the purely kinematic
hardening model enforce the initial shape of the yield function, a distortion of the yield
surface is captured by the distortional hardening models M1 and M2. Furthermore,
the distortional hardening model M1 shows softening in loading direction (dynamic
softening; the diameter of the initial yield surface decreases in loading direction) and
hardening orthogonal to the loading direction (latent hardening; the diameter of the
initial yield surface increases in the direction orthogonal to the loading direction). By
way of contrast, model M2 leads to hardening in loading direction and to latent softening.
Additionally, the curvature of the yield surface as predicted by model M2 is significantly
higher in the loading direction than in the opposite direction.
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Figure 4.6: Uniaxial tensile test of the aluminium alloy Al 2024-T3: Yield surface evolution for the
different hardening models at different loading stages
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4 Thermomechanically coupled distortional hardening

4.4.2.3 Thermal response

So far, thermal effects have not been considered in the model parameter identification
process. Such effects will be included next. For that purpose, the measurements as
reported in Hodowany et al. [54] will be considered. Since the thermomechanical coupling
is bi-directional in nature, the consideration of thermal effects influences the mechanical
response as well. In order to weaken this coupling, thermal softening is still ignored
(ω0 = 0). In this case, the thermal problem influences the mechanical problem only
through structural heating. However, this effect is not very pronounced for the material
parameters characterising the aluminium alloy Al 2024-T3.

Following Stainier and Ortiz [123], the experiment performed in Hodowany et al. [54]
is approximated by means of adiabatic heat conditions and no additional heat sources
are considered. A straightforward and naive thermomechanical coupling (βD = 1, see
Eq. (4.45)) of the purely mechanical models discussed in the previous subsection leads
to the temperature evolution as shown in Fig. 4.7. Accordingly, all hardening models
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Figure 4.7: Uniaxial tensile test of the aluminium alloy Al 2024-T3: Temperature evolution ΔΘ =
Θ−Θ0 for βD = 1: a) (left) loading regime. b) (right) loading-unloading-loading

significantly over-predict the temperature increase due to dissipation. As pointed out in
Subsection 4.2.1, the over-prediction of the temperature increase is a direct consequence
of the over-prediction of the mechanical dissipation implicitly controlled by model pa-
rameter βD = 1. For this reason, a reduction of parameter βD which also reduces the
mechanical dissipation is expected to yield a more realistic temperature evolution. For
instance, by setting βD = 0.5 only 50% of the initial yield stress enters the mechanical
dissipation, while the remaining 50% of the initial stress corresponds to previous ener-
getic hardening. The temperature evolution for βD = 0.5 is depicted in Fig. 4.8. As
can be seen, the temperature increase predicted by the different models is now in better
agreement with the experimental observations reported in Hodowany et al. [54].
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Figure 4.8: Uniaxial tensile test of the aluminium alloy Al 2024-T3: Temperature evolution ΔΘ =
Θ−Θ0 for βD = 0.5: a) (left) loading regime. b) (right) loading-unloading-loading

It bears emphasis that thermal softening has not yet been considered. In line with
values reported in the literature (see, e.g. Simo and Miehe [121]), ω0 = 0.003 is chosen for
the examples presented in the next subsections. As mentioned before, this parameter
influences the mechanical as well as the thermal response of the considered material.
For this reason, weighting factor βD has to be adapted. A good agreement between
experiment and model was obtained for βD = 0.7. Consequently, this value will be
chosen in the following.

4.4.3 Contact bending test – distortional hardening model

Having discussed the basic features of the novel class of thermomechanically coupled
distortional hardening models, more complex structural analyses will be analysed next.
The first example is cyclic bending of a plate, see Fig. 4.9. A similar test setup can be

u2(t) u2(t)

L

T R

R

A
B

C

∂B = ∂B0,H

Figure 4.9: Contact bending test: Dimensions: L = 100 mm, T = 10 mm, R = 10 mm; Prescribed
loading: u2(t) = u0 sin(π/0.4 t), u0 = 15 mm; material parameters are given in Tab. 4.3 and Tab. 4.4

found in Simo and Miehe [121]. The system consists of two rigid cylinders each with
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4 Thermomechanically coupled distortional hardening

a radius of R = 10 mm. The distance between the cylinders is 30 mm. A plate made
of the aluminium alloy Al 2024-T3 is centred between the cylinders and is cyclically
loaded by prescribing the vertical displacement u2(t) = u0 sin(π/0.4 t) at both ends of
the plate. The dimensions of the plate are 100× 10 mm2 and the material parameters
corresponding to the aluminium plate are given in Tab. 4.3 and Tab. 4.4.

The plate is discretised by means of 100 × 12 9-noded quadrilateral elements with
bi-quadratic shape function. The mesh is refined in the contact area. Plain strain
conditions are assumed. Furthermore, it is assumed that the outer surface of the plate
has a convective boundary ∂B0,H described by Eq. (4.95). For the contact between
the cylinders and the plate, no friction is considered. This contact is modelled by the
respective built-in algorithm of FEAP. It is based on an augmented Lagrangian method
and an Uzawa algorithm. The simulation is divided into 1600 time steps with a constant
time step of Δt = 0.002 s resulting in 4 bending cycles.

The contact bending test is numerically analysed by means of the distortional hard-
ening model M1. For the sake of comparison, an additional computation based on
kinematic hardening is also carried out.

The distributions of different plasticity-related internal variables are shown after four
loading cycles in Fig. 4.10. The plots on the left hand side are associated with the

αi

−4.52

0

a) distortional hardening model M1 b) kinematic hardening model

‖αk‖
0

0.12

Figure 4.10: Contact bending test: Distribution of plasticity-related internal variables (deformed con-
figuration) after four loading cycles (t = 3.2 s). Top row: negative integrated plastic multiplier
αi = −

∫
λdt; bottom row: norm of the back strain tensor αk

distortional hardening model M1, whereas the plots on the right hand side are related
with the kinematic hardening model. The top row depicts the distribution of the negative
integrated plastic multiplier αi = −

∫
λ dt and the bottom row shows the norm of the

back strain tensor αk. According to Fig. 4.10, both hardening models seem to predict
a similar elastoplastic response at first glance. However, a more detailed comparison
leads to the conclusion that necking, i.e., strain localisation, is more pronounced for the
purely kinematic hardening model.

As a consequence of the dissipation accompanying plastic deformations, the tempera-
ture increases in the plate, see Fig. 4.11. Due to coupling (2.78), the spatial temperature
evolution is expected to be similar to the spatial distribution of the plasticity-related in-
ternal variables. This can indeed be verified by comparing Fig. 4.11 to Fig. 4.10. Again,
necking is more pronounced for the kinematic hardening model, see Fig. 4.11.
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a) distortional hardening model M1 b) kinematic hardening model

ΔΘ

0

97.1

Figure 4.11: Contact bending test: Distribution of temperature increase ΔΘ = Θ−Θ0 at two different
time steps; top row: time t = 0.8 s; bottom row: after four loading cycles (t = 3.2 s)

Necking is the result of plastic strains which are localised in a narrow band. As can be
seen in the right diagram in Fig. 4.12, this effect increases from a (plastic) loading cycle
to a (plastic) loading cycle. Furthermore, necking is more pronounced in the case of the
purely kinematic hardening model. Since necking in the middle of the bar is directly
related to plastic deformations which, in turn, are linked to the temperature increase,
the purely kinematic hardening model predicts higher temperatures in the middle of the
bar (see right diagram in Fig. 4.12).
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Figure 4.12: Contact bending test: Temporal evolution of different variables. Left: time vs. reaction
force acting in point A (see Fig. 4.9); right: change in thickness (ū2 = x2,C − x2,B) in the middle of the
plate between points B and C (see Fig. 4.9) and temperature change at point B vs. time

From a structural mechanical point of view, necking leads to geometrically induced
softening. This effect is superposed by thermal softening. As a result, the maximum
loading (reaction force) decreases from loading cycle to loading cycle (see Fig. 4.12 - left
diagram).
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Figure 4.13: Numerical setup of the 3D test (left) with dimensions L = 36 mm, D = 10 mm, W =
20 mm, t = 1 mm. Temperature evolution (right) at time t = 1 s. Temperature evolution: a) distortional
hardening model M2; b) kinematic hardening

4.4.4 Inhomogeneous tension test - distortional hardening model
with higher curvature of the yield function in loading direction

This test deals with an uniaxial deformation of a plate with a cylindrical hole. The
corresponding specimen has the dimensions [L ×W × t] = [36 × 20 × 1] mm3, and the
hole has the diameter D = 10 mm at the centre of the plate. At the top and the bottom
surface, the plate is subjected to prescribed displacements u2(t) = u0/2 sin(π t) with
u0 = 1.26 mm. The test time takes t ∈ [0, 1] s. Correspondingly, u2 considers loading
and unloading. Moreover, at the top and bottom surface the temperature is fixed to
the reference temperature Θ0. The setup of the test is illustrated in Fig. 4.13. Material
parameters for the aluminium plate are taken from Tab. 4.3 and Tab. 4.4.

As depicted in Fig. 4.13, the specimen is discretised with 952 20-noded serendipity
elements with quadratic ansatz functions. The test is performed in 100 time steps with
the constant time step of Δt = 0.01 s.

The test is numerically analysed by means of distortional hardening model M2, which
captures a higher curvature of the yield function in loading directions (see the example
in Subsection 4.4.1). In order to compare the results, a second test based on kinematic
hardening is also carried out.

The distribution of the temperature increase is shown in Fig. 4.13 for the distortinal
hardening model M2 (a) and for the kinematic hardening model (b). The applied dis-
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a) b)

‖αk‖

0

0.112

Figure 4.14: Inhomogeneous tension test: loading and unloading. Distortional hardening model M2
a) and purely kinematic hardening b) at t = 1 s. The marked area (solid line and dotted line) are
associated with the yield surface evolutions in Fig. 4.15.
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Figure 4.15: Yield surface evolution of two marked points: a) yield surfaces correspond to the dotted
white line in Fig. 4.14; b) yield surfaces correspond to the solid white line in Fig. 4.14. Yield surfaces in
grey colour are associated with loading point u2 = u0/2 at t = 0.5 s and yield surfaces in black colour
are associated with unloading point u2 = 0 at t = 1 s.
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Figure 4.16: Radial displacement ur,A at the inner cycle point A as a function of the vertically applied
displacement u2(t) (see setup in Fig. 4.13). Results are shown for distortional hardening model M2 and
kinematic hardening. Arrows indicate loading and unloading.

placements lead to maximal temperature increase of ΔΘ = 13 K at the hole. Hence,
thermal softening plays only a minor role. The temperatures are slightly higher for the
kinematic hardening model. The distribution of the norm of the back strain tensor αk is
illustrated in Fig. 4.15. As one can observe, plastic strains localise for both models in a
narrow band. Both models seem to predict a similar distribution. However, an analysis
of the yield surface evolution in the plastic zone shows the differences between both
models. Due to the anisotropic distortion of the yield surface the radial displacements
at node point A (given in setup 4.13) evolves softer for the distortional hardening model
M2. The results are illustrated as a function of the vertically applied displacement u2
in Fig. 4.16.

4.4.5 Necking of an axisymmetric bar - distortional hardening model

Necking of a cylindrical tensile bar is analysed next, cf. Lehmann and Blix [71], Simo
and Armero [117], Simo and Miehe [121], Wriggers et al. [137] and references cited
therein. Two different conditions for the heat conduction between the specimen and
the environment are considered in the cited works: on the hand hand adiabatic heat
conduction at the external surface where no heat is exchanged with the surrounding
medium or on the other hand non-adiabatic heat conduction at the external surface
where heat can flow inside or outside of the bar. The non-adiabatic case is analysed in
the following.

The considered cylindrical bar made of the aluminium alloy Al2024-T3 has a radius
of R = 6.413 mm and a length of L = 53.334 mm. Due to axisymmetry, the problem
size can be reduced to one quarter, see Fig. 4.17. Convection between the surface
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D
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L/2 L/2
u2(t) u2(t)

∂B0,H

∂B0,H

Figure 4.17: Necking of an axisymmetric bar: Numerical setup and finite element mesh of the ax-
isymmetrical problem (one quarter). Dimensions are L = 53.334 mm, D = 2R, R = 6.413 mm and
prescribed displacement is u2(t) ∈ [0, u2,max] with u2,max = 10 mm.

of the bar and the environment (surrounding air) is again described by means of the
linear model according to Eq. (4.95). The top surface of the bar is subjected to the
prescribed displacement u2(t) which is linearly increased in time up to an amplitude of
u2,max = 10 mm. The velocity of the top surface is u̇2 = 10 mm/s.

The bar is again numerically analysed by means of the distortional hardening model
M1 and the purely kinematical hardening model. The respective model parameters are
still the same as the ones summarised in Tab. 4.3 and Tab. 4.4. In contrast to the isother-
mal or the adiabatic case [117, 136], no material imperfection is necessary in order to
trigger necking. To be more explicit, convection at the bar’s surface breaks the symme-
try of the problem, i.e., the highest temperature leading to thermal softening occurs in
the middle of the bar. The circular bar is discretised by means of 1920 axisymmetrical
quadratic elements with 9 nodes and quadratic shape functions. A refined mesh is used
in the expected necking area. All simulations were performed with a constant time step
of Δt = 0.001 s.

The resulting temperature increase ΔΘ = Θ−Θ0, the shear stress σRZ (Cauchy stress
in the axisymmetric coordinate system; R corresponds to the radial direction, while Z
denotes the respective orthogonal direction) and the norm of the kinematic hardening
back-strain tensor ||αk|| are displayed in the upper row in Fig. 4.18 for the distortional
hardening model M1 and in Fig. 4.19 for the kinematic hardening model. Additionally,
Fig. 4.18 and Fig. 4.19 show the evolved yield surfaces for three different material points
at two different loading steps.

According to Fig. 4.18 and as expected, the distortional hardening model M1 predicts
necking in the centre of the bar. Consequently, the highest plastic deformation (signalled
by the norm of the equivalent plastic back-strain tensor; see top right picture in Fig. 4.18)
is found in precisely this area. Through the coupling by means of the first law of
thermodynamics (see Eq. (2.78)), the temperature increase looks qualitatively similar
to the spatial distribution of ||αk||. By way of contrast, the Cauchy shear stress plotted
in the top middle picture in Fig. 4.18 looks slightly different: In line with thermal
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Figure 4.18: Necking of an axisymmetric bar – results obtained from the distortional hardening model
M1: (top row; from left to right): temperature increase, shear stress (Cauchy stress in the axisymmetric
coordinate system) and norm of the back strain tensor. The plots correspond to time step u2/umax =
0.925; (bottom row): evolution of the yield surface for the three different points A, B and C (see top
left plot) at two different time steps
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softening, the maximum shear stress moves away from the necked cross section. Similar
distributions of the increase in temperature due to plastic deformation, the shear stress
and the norm of the back strain tensor are also observed for the model based on purely
kinematic hardening, see Fig. 4.19. However, and agreeing with the computations for the
uniaxial tensile test presented in the previous subsection, necking is more pronounced
in the case of purely kinematic hardening.

A comparison between the yield surfaces predicted by the distortional hardening
model M1 (bottom diagrams in Fig. 4.18) and those associated with the purely kine-
matic hardening model (bottom diagrams in Fig. 4.19) highlights the differences in the
anisotropic hardening evolution. While for material point C this effect is less pronounced,
a high distortion of the initially circular yield surface can indeed be seen for points A
and B.

In order to obtain further insight into the physics of the problem, the evolution of the
temperature for two characteristic points (P1 and P2) is depicted in Fig. 4.20. The dia-
grams correspond to the distortional hardening model M1, to the purely kinematic hard-
ening model and to two different weighting factors for the dissipation βD ∈ {0.5, 0.7}.
In addition, diagrams associated with adiabatic heat conduction are also presented for
the sake of comparison (only for βD = 0.7). In line with Wriggers et al. [137], the less in-
teresting adiabatic case leads to a (bi-)linear temperature increase for points P1 and P2.
Furthermore, the thermal response of both points is almost identical. In Wriggers and
Simo [136], the adiabatic case was analysed in detail and was found to be unstable. This
problem can only be solved by carrying out a bifurcation analysis. By way of contrast,
the more interesting and more realistic non-adiabatic case does not show this problem.
Equally important and as a result of the different boundary conditions, the evolution of
the temperature for point P1 and P2 are now different. In the necking domain at point
P1, a large temperature increase can be seen (up to to 120 K). This is related to the
large plastic deformations in this domain. Clearly, this effect is more pronounced for a
larger weighting factor βD. The temperature difference between the different hardening
models is comparably small.

Regarding the non-adiabatic case, the evolutions corresponding to point P1 and P2

start to deviate at a loading amplitude of u2 ≈ 5.7 mm. According to Fig. 4.21, this
amplitude is associated with the maximum loading and after u2 ≈ 5.7 mm softening
occurs. However, softening is characterised by (plastic) loading in narrow bands, while
the remaining part of the structure unloads elastically. Since point P2 belongs to the
”remaining part” and since elastic unloading has only a negligible effect on the temper-
ature change, an almost constant temperature is predicted after u2 ≈ 5.7 mm for point
P2 in the non-adiabatic case. For adiabatic heat conduction this effect cannot be seen,
since heat conduction leads to a smearing of the spatial temperature field.

The structural mechanical response is given in Fig. 4.21 by means of a load-
displacement diagram (Fig. 4.21a) and by means of the evolution of the cross sectional
diameter in the necking domain (Fig. 4.21b). The curves correspond to the different
hardening models and different weighting factors for the dissipation βD ∈ {0.5, 0.7}.
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Figure 4.19: Necking of an axisymmetric bar – results obtained from the purely kinematic hardening
model: (top row; from left to right): temperature increase, shear stress (Cauchy stress in the axisym-
metric coordinate system) and norm of the back strain tensor. The plots correspond to time step
u2/umax = 0.925; (bottom row): evolution of the yield surface for the three different points A, B and
C (see top left plot) at two different time steps
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Figure 4.20: Necking of an axisymmetric bar – temperature evolution for the two different points P1

and P2. The results are obtained from distortional hardening model and the purely kinematic hardening
model. Two different dissipative weighting factor are considered (βD = 0.7 in black colour and βD = 0.5
in grey colour). For the sake of comparison, results corresponding to adiabatic heat conduction are also
shown (only for βD = 0.7).

Furthermore, in addition to the standard finite element formulation based on isopara-
metric quadratic shape functions (Q2), the EAS formulation advocated in Glaser and
Armero [49], Simo and Armero [117] was also implemented. According to Fig. 4.21 all
constitutive models and all numerical formulations lead to a similar mechanical response.
Physically and numerically meaningful results are obtained up to a loading amplitude
of u2 = 0.925 u2,max. After this state, the finite element meshes become too distorted.
Interestingly, the four-noded enhanced assumed strain elements show already numerical
problems at an amplitude of u2 = 0.825 u2,max. Further loading results in hourglassing as
becomes evident in Fig. 4.22. However, both finite element formulations lead to almost
identical results up to this point.
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Figure 4.21: Necking of an axisymmetric bar – structural mechanical response: (left) Load-deflection
curve and (right) radius-deflection curve. Two different dissipative weighting factor (βD = 0.7 in black
colour and βD = 0.5 in grey colour) and two different finite element formulations (standard finite element
with quadratic shape functions (Q2) and four-noded enhanced assumed strain elements according to
Glaser and Armero [49], Simo and Armero [117] (EAS)) are considered.

a) deformed mesh at
u2/u2,max = 0.925 for
quadratic elements (Q2)

b) deformed mesh at
u2/u2,max = 0.925 for en-
hanced assumed strain ele-
ments (EAS)

Figure 4.22: Necking of an axisymmetric bar – deformed finite element meshes obtained from different
finite element formulations; (left): standard finite elements with quadratic shape functions (Q2) and
(right): enhanced assumed strain elements according to Glaser and Armero [49], Simo and Armero [117]
(EAS)
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5 Allen-Cahn-type phase field theory
coupled to continuum mechanics:
Computation of effective material
properties based on variational
constitutive updates

So far the developed material model for capturing the evolving microstructures
was associated with the technological relevant macroscale. In order to get a more
detailed insight into the evolution of microstructures, more precisely the transformation
of phases, the more relevant microscale is analysed. For this purpose, phase field
theories of Allen-Cahn-type can be applied for the description of phase transformations.

This chapter deals with efficient variational constitutive updates for an Allen-Cahn-
type phase field theory coupled to a geometrically exact description of continuum me-
chanics. The starting point of the implementation is a unified variational principle: A
time-continuous potential is introduced, the minimisers of which describe every aspect of
the aforementioned coupled model – including the homogenisation assumptions defining
the mechanical response of the bulk material in the diffuse interface region. With regard
to these assumptions, classic models such as the one by Taylor/Voigt or the one by
Reuss/Sachs are included. Additionally, more sound homogenisation approaches falling
into the range of rank-1 convexification are also incorporated in the unified framework.

These homogenisation schemes include the recently proposed work of Mosler et al.
[92], where the properties in the interface are determined by the Cauchy-Hadamard
condition. In contrast to a classic rank-1 convexification given in Aubry and Ortiz
[6], Ortiz and Repetto [98], Carstensen et al. [27], Bartel and Hackl [10], the normal
vector in the Cauchy-Hadamard condition and the phase fraction are globally defined.
Since in Mosler et al. [92] the normal vector is coupled to the phase front direction, the
respective homogenisation is termed partial rank-1. In addition to this homogenisation
assumption, a generalised version of Mosler et al. [92] is presented in this chapter. The
underlying assumption is referred to as full rank-1 homogenisation and is based on the
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5 Computation of effective material properties in the interface

idea of a locally relaxed normal vector in the Cauchy-Hadamard condition – similar to
classic rank-1 convexification.

Based on a direct discretisation of the underlying time-continuous potential in time
and space, an efficient numerical finite element implementation is proposed. In order
to guarantee admissible order parameters of the phase field, the unconstrained optimi-
sation problem is supplemented by respective constraints. They are implemented by
means of Lagrange parameters combined with the Fischer-Burmeister NCP functions,
cf. Fischer [45]. This results in an exact fulfillment of the aforementioned constraints
without considering any inequality. Several numerical examples show the predictive ca-
pabilities as well as the robustness and efficiency of the final algorithmic formulation.
Furthermore, the influence of the homogenisation assumption is analysed in detail. It
is shown that the choice of the homogenisation assumption does indeed influence the
predicted microstructure in general. However, all models converge to the same solution
in the limiting case.

This chapter is structured as follows: Section 5.1 gives a concise overview of the
sharp interface regularisation. Moreover, a unified variational format is introduced in
Section 5.2 for a phase field model coupled to mechanics. The homogenisation of the bulk
energy in the diffuse interface is addressed in Section 5.3. Based on a unified framework
proposed in Subsection 5.3.1, different homogenisation assumptions are derived and
compared to each other in Subsection 5.3.2. These are: a) Reuss/Sachs, b) full rank-1, c)
partial rank-1 and d) Taylor/Voigt. Section 5.4 deals with the numerical implementation.
First, the underlying time-continuous coupled phase field model is discretised in time
(Subsection 5.4.1). Subsequently, Fischer-Burmeisters NCP functions are applied to the
coupled phase field model in Section 5.4.2, and the obtained algebraic system of equations
is discretised in space and linearised within a finite element scheme in Section 5.4.3. The
numerical framework and the modelling capabilities of the proposed homogenisation
assumptions are presented in Section 5.5. Finally, the influence of varying interface
thicknesses, in the sense of a sharp interface approximation, is analysed.

5.1 Diffuse approximation of interfaces

A body B0 consisting of NV different phases is considered in the following. Their sets
can be identified by the respective indicator functions. While such functions are discon-
tinuous (either 0 or 1), if the interfaces between the different phases are understood as
sharp interfaces, they are approximated by means of continuous functions in the case of
a phase field description. In the phase field setting, these functions are often denoted as
order parameters ξi. In line with the indicator function, they show the partition of unity
property

∑NV

i=1 ξi = 1 ∀ X ∈ B0. For the sake of simplicity, only dual-phase materials
are considered in the following. The order parameters of the two phases are ξ1 ∈ [0, 1]

100



5.1 Diffuse approximation of interfaces

and ξ2 ∈ [0, 1]. However, due to the partition of unity property, only one of these order
parameters is independent, i.e.,

ξ1 = 1− ξ2. (5.1)

ξ2 is chosen as the independent function and, in line with other publications on phase
field theory, it is denoted as p, i.e., p = ξ2. Based on the field,

p :

{
B0 × τ → [0, 1]

(X, t) 	→ p(X, t)
(5.2)

the interface between two phases can be approximated.

The approximation of the interface is illustrated in Fig. 5.1. A classic smooth approx-

B0

∂B0

p = 1 p = 0p ∈ (0, 1)

ε ∇p
‖∇p‖

Figure 5.1: Illustration of a body B0 consisting of two phases (phase 1: p = 0 and phase 2: p = 1)
and the interface (p ∈ (0, 1) with interface thickness ε). The normal of the interface is specified by
N = ∇p‖∇p‖.

imation for a dual-phase system was proposed in Modica and Mortola [87]. Without
going into too much detail, it can be shown that the minimiser of the functional (under
suitable boundary conditions)

f ε(p,∇p) =
∫
B0

{
6

ε
p2 [1− p]2 + 3

2
ε‖∇p‖2

}
dV (5.3)

converges to the area of the sharp interface Γ. To be more precise,

inf
p∈[0,1]

f ε(p) −→ Γε (5.4)
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5 Computation of effective material properties in the interface

and Γε converges to Γ in the sense of Γ-convergence. The thickness of the approximated
interface is given by the value of ε. Here and in what follows the gradient ∇p is referred
to the reference configuration, i.e.,

GRADp = ∇Xp = ∇p. (5.5)

Based on approximation (5.3) the energy related to the interfaces can be approximated
by

ΨΓ = ψΓ
0

{
6

ε
p2 [1− p]2 + 3

2
ε‖∇p‖2

}
(5.6)

where ψΓ
0 is the area specific interface energy. Accordingly, the interface energy within

a body reads

IΓ =

∫
B0

ΨΓ dV . (5.7)

5.2 A coupled phase field approach

5.2.1 Balance equations for a deformation driven phase field model

Next, the mechanical model and the interface model are coupled. The underlying bound-
ary value problem is described by the deformation field ϕ and by the order parameter
field p as introduced in the previous section (Eq. (5.2)). These two fields are restricted
to the dissipation inequality and respective balance equations. The balance of linear
momentum is the governing equation for the mechanical problem. In the referential
configuration, the balance reads

DIVP+ ρ0 B = 0 on B0 , (5.8)

as discussed in detail in Eq. (2.16). Without further discussion and derivation, angular
momentum and mass conservation are assumed to be fulfilled, see Remark 2.3.1. For the
phase field parameter, the balance of micro forces is applied. Following Gurtin [50] the
internal micro forces π and the external micro forces γ of a cell equal the micro stresses
ξ · N acting across the boundary of a unit cell. In the integral form the micro force
balance reads∫

∂Ω0

ξ ·N dA+

∫
Ω0

[π + γ] dV = 0 . (5.9)

In this context, the word ”micro” is associated with the order parameter p capturing
the evolution of the underlying micro-structure. From a physics point of view, the
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5.2 A coupled phase field approach

internal micro force π describes forces associated with changing the configuration of
atoms within the unit cell (similar to the explicit derivative within the framework of
configurational/material forces). The external micro force γ is related to changes of atom
configurations of external sources. However, the external sources are not considered in
this work, i.e. γ = 0. Moreover, the first term in Eq. (5.9) corresponds to a flux across
neighbouring cells in which ξ denotes the micro stress vector and in which N denotes
the normal on the surface ∂Ω0, cf. Gurtin [50] p.180. By applying the Gauss theorem
to the first term, the local form of the micro balance

DIVξ + π = 0 on B0 (5.10)

is derived. The consideration of micro forces causes the additive enhancement of the
balance of energy (2.17), i.e.

d

dt

∫
Ω0

{K + E} dV = PF + PΘ + Pp . (5.11)

In the following, inertia effects are not considered, i.e. K = 0. The external power
associated with the micro forces is determined by the flux of micro stresses acting on
the surface ξ̄ = ξ ·N, i.e.

Pp =

∫
∂Ω0

ξ̄ ṗdA . (5.12)

The external mechanical power PF and the external thermal power PΘ are taken from
Eq. (2.18) and Eq. (2.19). After transformation of the surface integrals into volume
integrals and after insertion of micro force balance (5.10) into Eq. (5.11), the local
energy balance

Ė = P : Ḟ− DIVQ+RΘ − π ṗ+ ξ · ∇̇p (5.13)

is derived. While the stress power P : Ḟ is associated with the mechanical response and
−DIVQ + RΘ is associated with the thermal response, the last two terms refer to the
power generated by the micro field p. For the sake of simplicity, the isothermal case
with Q = 0, RΘ = 0, Θ̇ = 0 is discussed in the following. In this case, the internal
energy (5.13) reduces to

Ψ̇ + Θ Ṅ = P : Ḟ− π ṗ + ξ · ∇̇p , (5.14)
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where use is made of Legendre relation (2.42). For the derivation of the dissipation
inequality, the term DIVQ − RΘ in Eq. (2.26) is replaced by Eq. (5.13) leading to the
dissipation inequality

D = P : Ḟ+Θ Ṅ +Q ·G− π ṗ+ ξ · ∇̇p− Ė ≥ 0 . (5.15)

Focussing on isothermal conditions the dissipation inequality reduces therefore to

D = P : Ḟ− π ṗ+ ξ · ∇̇p− Ψ̇ ≥ 0 . (5.16)

Remark 5.2.1: Following the work of Gurtin [50] the rate of the free energy cannot
exceed the power of external forces, i.e.

d

dt

∫
Ω0

ΨdV ≤ PF + Pp , (5.17)

which is equivalent to the derived dissipation inequality in Eq. (5.16). Another important
observation in this context is that if the homogeneous Neumann boundary ξ ·N = 0 on
∂B0,ξ holds, the Lyapunov relation∫

B0

D dV = − d

dt

∫
B0

ΨdV ≥ 0 (5.18)

is fulfilled.

Boundary conditions: In order to solve the coupled system of equations (the linear
momentum balance (5.8) and the micro force balance (5.10)), boundary and initial
conditions need to be defined. For this purpose, the boundary of the referential body
∂B0 is decomposed for the mechanical and the phase field problem into their Dirichlet
and Neumann boundaries

∂B0 = ∂B0,ϕ ∪ ∂B0,T ∂B0 = ∂B0,p ∪ ∂B0,ξ . (5.19)

This boundary decomposition is disjunct in the sense B0,ϕ∩∂B0,T = ∅ for the mechanical
problem and by ∂B0,p ∩ ∂B0,ξ = ∅ for the phase field problem. While for the mechanical
boundaries the classic conditions

ϕ = ϕ̄ on B0,ϕ and P ·N = T̄ on ∂B0,T (5.20)

are applied, the Dirichlet and Neumann conditions for the phase parameter and the
micro tractions are defined as

p = p̄ on B0,p and ξ ·N = ξ̄ on ∂B0,ξ , (5.21)
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in which p̄ and ξ̄ denote the prescribed phase parameter and the prescribed micro trac-
tions. Frequently, homogeneous micro tractions are assumed, i.e.

ξ̄ = 0 on ∂B0,ξ . (5.22)

This initial distribution of the order parameter p at time t0 is denoted as

p(X, t0) = p0(X) in B0 . (5.23)

5.2.2 Variationally consistent phase field modelling

In this section, suitable constitutive assumptions are included into the framework pre-
sented before. Here, hyperelasticity is assumed. Hence, the mechanical response is de-
fined through a Helmholtz energy ΨB depending only on F. Accounting for eigenstrains
FB (Bain strains) in the material, the Helmholtz energy is of the type

ΨB = ΨB(F
e) with Fe = F · FB−1

, (5.24)

where frame indifference is postulated for ΨB. In this context the Bain strains FB are
material specific constants which describe the transformation strain of an individual
unit cell. The volume-specific Helmholtz energy of the bulk energy (5.24) combined
with interface energy (5.6) is thus of the type

Ψ(F, p,∇p) = ΨB(F, p,∇p) + ΨΓ(p,∇p) . (5.25)

Accordingly, a deformation-independent interface energy is chosen, i.e., ΨΓ only depends
on the phase field parameter (and its gradient), cf. Eq. (5.6). Furthermore and in
contrast to a single phase material, the Helmholtz energy representing the bulk material
also depends on p. This extension is necessary, since the bulk material response of points
within the diffuse interface (p ∈ (0, 1)) is based on a suitable averaging or homogenisation
of the constitutive models of the individual phases. Further details with regard to this
homogenisation are discussed in detail in Section 5.3.

The constitutive model implied by Helmholtz energy (5.25) is supplemented by the
dissipation inequality (5.16). By inserting the free energy (5.25) into the dissipation
inequality (5.16), one obtains

D =

[
P− ∂Ψ

∂F

]
: Ḟ+

[
ξ − ∂Ψ

∂∇p

]
· ∇̇p−

[
π +

∂Ψ

∂p

]
ṗ ≥ 0 (5.26)

and thus, application of the classic Coleman & Noll procedure yields the first Piola-
Kirchhoff stress tensor P and the constitutive relation for the micro stresses ξ

P =
∂ΨB

∂F
and ξ =

∂Ψ

∂∇p . (5.27)
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By way of contrast, π is not chosen to be an energetical variable (π �= ∂Ψ/∂p). It can be
interpreted as a generalized dissipative force which is associated with the phase motion.
Therefore, an additional constitutive assumption is required. By inserting the state
functions (5.27) into the dissipation inequality (5.26) the reduced dissipation inequality
reads

Dint = F ṗ with F = −
[
π +

∂Ψ

∂p

]
. (5.28)

By assuming that the dissipative driving force F is proportional to the phase motion i.e.
F = η ṗ, the dissipation inequality becomes Dint = η ṗ2. Hence, under the constraint
that the mobility of the phase front η is η ≥ 0, the dissipation inequality is always
fulfilled. The constitutive model F = η ṗ is equivalent to choosing a convex dissipation
functional of the form φ(F) = 1/2F2/η. Alternatively, its dual – in the sense of a
Legendre-Fenchel transformation of the type φ∗(ṗ) = F ṗ− φ(F) –

φ∗(ṗ) =
1

2
ηṗ2 (5.29)

can be applied. This dual dissipation functional is also referred to as Ginzburg-Landau-
type dissipation functional.

Next, a variational structure – similar to the one characterised by Eq. (2.84)
– is derived. For that purpose, the rate potential

Ė(F, p,∇p) = Ψ̇B(F, p,∇p) + Ψ̇Γ(p,∇p) + φ∗(ṗ) (5.30)

is introduced. For rate-independent materials, i.e., those depending on a dissipation
functional which is positively homogeneous of degree one, this rate potential equals the
stress power. For such materials, the total power of the total body is given by

İ =

∫
B0

Ė(ϕ, p) dV − PF(ϕ) . (5.31)

Although this interpretation is lost for rate-dependent materials such as those discussed
in this chapter, rate potential (5.31) will nevertheless be considered in the following. As
will be shown, the minimiser of the time-discrete potential corresponding to Eq. (5.31)
is the solution of the coupled boundary value problem, i.e.,

(ϕ, p) = arg inf
ϕ,p

ΔI . (5.32)
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In order to show this, stationarity conditions of Eq. (5.31) are elaborated next. A
variation with respect to the deformation mapping yields

δϕ̇İ = −
∫
B0

{DIV(∂FΨB) + ρ0B} · δϕ̇ dV +

∫
∂B0

{
∂FΨB ·N− T̄

}
· δϕ̇ dA = 0. (5.33)

By inserting the stresses P = ∂FΨ into this equation it can be seen that this stationary
condition is equivalent to the balance of linear momentum and to the Neumann boundary
conditions. To be more explicit, Eq. (5.33) is equivalent to

DIVP+ ρ0 B = 0 on B0 ,
P ·N = T̄ on ∂B0,T ,

(5.34)

where N is the normal at the surface ∂B and where T̄ denotes the prescribed traction
vector. Analogously, the stationary condition with respect to the phase field parameter
gives

δṗİ =

∫
B0

{∂p[ΨB +ΨΓ] + ∂ṗφ
∗ − DIV (∂∇p[ΨB +ΨΓ])} δṗ dV

+

∫
∂B0

{∂∇p[ΨB +ΨΓ] ·N} δṗdA = 0 .

(5.35)

Since ξ = ∂∇p[ΨB +ΨΓ], Eq. (5.35) is equivalent to

∂p[ΨB +ΨΓ] + ∂ṗφ
∗ −DIVξ = 0 on B0 ,

ξ ·N = 0 on ∂B0,ξ ,
(5.36)

which shows the same structure as Eq. (5.34). According to Eq. (5.36), homogeneous
Neumann boundary conditions are applied within the phase field problem. By inserting
the dual dissipation functional (5.29) into Eq. (5.36) the micro force balance can be
rewritten as

∂p[ΨB +ΨΓ]− DIV (ξ) = −η ṗ . (5.37)

This type of equation is known as a Ginzburg-Landau-type evolution equation character-
ising an Allen-Cahn-type phase field model. Note, that it does not imply conservation of
volume (phase contents) within domain B0. This is in sharp contrast to Cahn-Hilliard -
type phase field models as discussed in Chapter 6.
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5 Computation of effective material properties in the interface

5.3 Bulk response within the diffuse interface

Once the Helmholtz energies are chosen, the mechanical properties of the two different
bulk phases and those of the sharp interface are uniquely defined. However, the bulk
properties within the diffuse interface region, where p ∈ (0, 1), are not uniquely defined.
According to Eq. (5.25), it has been assumed that the energy within the diffuse interface
shows the form

ΨB = ΨB(F, p,∇p). (5.38)

Essentially, two different approaches for defining Eq. (5.38) can be found in the literature.
Within the first class of approaches, a certain interpolation is postulated in an ad-hoc
manner, cf. Khachaturyan [61]. Alternatively, and as proposed e.g. in Ammar et al.
[3], de Rancourt et al. [36], Mosler et al. [92], Steinbach and Apel [124], this energy can
be computed by applying homogenisation theories. For that purpose, an RVE with two
different phases is analysed. Clearly, all models based on the homogenisation theory also
fall into the first class of approaches. The opposite is not true. For instance, models
based on a pure interpolation usually do not show the important localisation property
inherent to the homogenisation theory. That is, the effective mechanical response of
the bulk phase within the diffuse interface does not define the mechanical response of
the individual phases. In the following only models based on homogenisation theory are
considered. Further details can be found in Ammar et al. [3], Mosler et al. [92].

5.3.1 Fundamentals of the homogenisation theory

The fundamentals of the homogenisation theory are concisely summarised in this sec-
tion. A comprehensive overview on classical homogenisation theories such as those by
Taylor/Voigt and Reuss/Sachs or the self-consistent schemes is given in Nemat-Nasser
and Hori [93]. For novel computational homogenisation schemes the interested reader is
referred to Miehe et al. [86], Smit et al. [122], Svenning et al. [129] – among many others.
For the sake of simplicity, focus shall lie on hyperelastic materials in the following. For
dissipative materials, the reader is referred to Mosler et al. [92].

An RVE with two different phases is considered. This RVE is associated with a
material point at the macroscale belonging to the diffuse interface region (p ∈ (0, 1)).
The material response of the two hyperelastic phases in the RVE is defined by means of
Helmholtz energies ΨB1(F

e
1) and ΨB2(F

e
2). They are of the type (5.24). Thus, the effect

of Bain strains is accounted for. In phase field theory, the deformation within the two
different phases belonging to the same macroscopic material point is approximated as
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5.3 Bulk response within the diffuse interface

piece-wise constant. The respective deformation gradients are denoted as F1 and F2.
Accordingly, the macroscopic bulk energy of the RVE is computed as

ΨB =
1

V (B0)

∫
B0

ΨBi
dV = [1− p] ΨB1

(
F1 · FB

1

−1
)
+ pΨB2

(
F2 · FB

2

−1
)
. (5.39)

Thus, the order parameter (related to the second phase) represents the volume ratio, i.e.,
p = V (B0,2)/V (B0). Likewise, the macroscopic deformation gradient F can be written
as

F =
1

V (B0)

∫
B0

Fi dV = [1− p]F1 + pF2 . (5.40)

By introducing the jump �F� = F2 − F1 of the deformation gradient from phase one to
phase two, Eq. (5.40) yields

F1 = F− p �F� and F2 = F+ [1− p] �F� . (5.41)

In Fig. 5.2 possible configurations of the deformation gradient jump are depicted.

�F� ∈ URS �F� ∈ UR1, U∂R1 �F� ∈ UTV

1− p
p

Figure 5.2: Illustration of the continuity of deformation in a dual phase material point. The jump
of the deformation gradient �F� depends on the admissible space U (the Taylor/Voigt space UTV and
the spaces based on a rank-1 connection UR1 and U∂R1 are kinematically compatible, the Reuss/Sachs
space URS is kinematically incompatible). A detailed discussion follows in Subsection 5.3.2.

Consequently, the macroscopic bulk energy (5.39) within the diffuse interface region
can be rewritten into the alternative format

ΨB(F, p, �F�) = [1− p] ΨB1

(
[F− p �F�] · FB

1

−1
)

+ pΨB2

(
[F+ [1− p] �F�] · FB

2

−1
)
.

(5.42)
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5 Computation of effective material properties in the interface

Since hyperelasticity is based on the natural variational principle of energy minimi-
sation, the jump �F� is also computed by relaxing the energy (5.42) with respect to the
jump. This relaxation depends on the space of admissible jumps and will be discussed
in detail in the next subsections. Independent of the space of admissible jumps, this
relaxation leads to the reduced (relaxed) bulk energy

Ψred
B = inf

�F�∈U
ΨB(F, p, �F�) , (5.43)

which serves as an effective hyperelastic potential defining the effective mechanical re-
sponse. To be more precise, the effective first Piola-Kirchhoff stress tensor reads

P =
∂Ψred

B

∂F
= [1− p]P1 + pP2 , (5.44)

where

Pi =
∂ΨBi

∂Fi
=
∂ΨBi

∂Fe
i

· FB
i

−T
(5.45)

are the first Piola-Kirchoff stress tensors within the two phases.

It becomes apparent that models relying on such homogenisation theories show the
localisation property, i.e. the individual stresses in the interface follow directly from the
homogenisation assumption. In contrast, models based on pure interpolation schemes
do not inherit this property (Remark 5.3.1).

Remark 5.3.1: An effective bulk energy of Khachaturyan-type is represented by

ΨB = Ψ̂B

(
F̄(F, p), F̄B(p,FB

1 ,F
B
2 ), X̄ (p,X1,X2)

)
, (5.46)

which depends on homogenised Bain strains F̄B and homogenised material parameters
X̄ . Therein, an explicit interpolation for the Bain strains and the material parameters
is assumed, e.g. Levitas et al. [77].

5.3.2 Space of admissible jumps in the deformation gradient –
different homogenisation assumptions

As mentioned before, the effective bulk behaviour (5.43) depends on the space of ad-
missible jumps in the deformation gradient. According to Eq. (5.36), the effective bulk
energy, in turn, affects the driving force governing the evolution of the interfaces. It will
be shown in this section that by choosing proper spaces U of the jump of the deformation
gradient, some of the classic homogenisation assumptions can be obtained.
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5.3 Bulk response within the diffuse interface

5.3.2.1 Reuss/Sachs-type homogenisation

The classic Reuss/Sachs assumption states that the stresses in both phases are identical,
i.e., P1 = P2. Consequently, the traction vectors fulfil �T� = [P2 − P2] · N = 0.
Ignoring interfacial effects such as surface tension, the Reuss/Sachs-type homogenisation
assumption thus enforces equilibrium. However, kinematical compatibility/admissibility
is completely ignored.

As shown in Mosler et al. [92], the Reuss/Sachs-type homogenisation is equivalent to
the relaxed energy

Ψred
B = inf

�F�∈R3×3
ΨB(F, p, �F�) . (5.47)

Hence, the space of admissible jumps in the deformation gradient is defined by 3 × 3
matrices, i.e., �F� ∈ R3×3. The equivalence between the variational problem (5.47) and
the classic Reuss/Sachs assumption can be seen by computing the stationary condition
corresponding to Eq. (5.47). To be more explicit, a variation with respect to �F� yields

δ�F�ΨB =
∂ΨB

∂�F�
: δ�F� = 0 with

∂ΨB

∂�F�
= p [1− p] [−P1 +P2] = 0

⇔ P2 −P1 = �P� = 0 ,

(5.48)

and therefore the respective driving force acting at the interface is computed as

δpΨB =
∂ΨB

∂p
δp with

∂ΨB

∂p
= �ΨB�−P : �F� ,

(5.49)

where the macroscopic stress tensor P shows the form (5.44) and �ΨB� = ΨB2 − ΨB1

denotes the energy jump of the two bulk energies.

5.3.2.2 Full rank-1 homogenisation

The Reuss/Sachs-type homogenisation assumption is statically compatible, i.e., it fulfils
equilibrium at the interface. However, it is not kinematically compatible. The condition
guaranteeing kinematical compatibility is the Cauchy & Hadamard condition. For an
interface with normal vector Ñ this condition reads

�F� = a⊗ Ñ . (5.50)
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5 Computation of effective material properties in the interface

Here, vector a characterises the jump of the deformation gradient. Accordingly, the
deformation gradients in the two phases are rank-1 connected. Inserting condition (5.50)
into Eq. (5.42) leads to the macroscopic energy

ΨB(F, p, a, Ñ) = [1− p] ΨB1

([
F− p [a⊗ Ñ]

]
· FB

1

−1
)

+pΨB2

([
F+ [1− p] [a⊗ Ñ]

]
· FB

2

−1
)
.

(5.51)

In line with the Reuss/Sachs-type homogenisation assumption, a relaxation of this poten-
tial with respect to the jump in the deformation gradient yields the relaxed macroscopic
energy. Since the jump is now of type (5.50), this relaxation reads

Ψred
B = inf

a∈R3

Ñ∈S2

ΨB(F, p, a, Ñ) , (5.52)

where S2 is the three-dimensional unit sphere. Evidently, the full rank-1-type homogeni-
sation fulfils kinematic compatibility at the interface. In order to check static compati-
bility, the stationary conditions related to the relaxed energy (5.52) are analysed. The
first of those is obtained as

δaΨB =
∂ΨB

∂a
· δa = 0 with

∂ΨB

∂a
= p [1− p]

[
−P1 · Ñ+P2 · Ñ

]
= 0

⇔ [P2 −P1] · Ñ = �P� · Ñ = 0 .

(5.53)

Thus, static equilibrium is indeed fulfilled at an interface with the normal vector Ñ (if
interfacial effects such as surface tension are neglected). The second stationary condition
reads

δÑΨB =
∂ΨB

∂Ñ
· δÑ = 0 with

∂ΨB

∂Ñ
= 0 . (5.54)

The constraint Ñ ∈ S2 is enforced by setting Ñ = N/‖N‖ ∀N ∈ R3. By doing so,
Eq. (5.54)2 can be re-written as

∂ΨB

∂N
= p [1− p] a · [P2 −P1] ·

∂Ñ

∂N

= p [1− p] a · �P� · 1

‖N‖

[
I− Ñ⊗ Ñ

]
= 0

⇔ a · �P� · 1

‖N‖

[
I− Ñ⊗ Ñ

]
= 0.

(5.55)
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5.3 Bulk response within the diffuse interface

For a · �P� �= 0, this equation vanishes only for a · �P� being parallel to Ñ, since

Ñ ·
[
I− Ñ⊗ Ñ

]
= 0. Condition (5.55) is equivalent to torque equilibrium across the

interface (cf. Aubry and Ortiz [6]), i.e.,

a · [−P1 +P2]× Ñ = a · �P�× Ñ = 0 . (5.56)

As shown in Levitas and Ozsoy [74, 75] Eq. (5.56), together with linear momentum (5.55)
implies a · �P� = 0. Finally, the driving force related to the bulk energy is computed.
It yields

δpΨB =
∂ΨB

∂p
δp with

∂ΨB

∂p
= �ΨB�−P : [a⊗ Ñ] .

(5.57)

Denoting the space of admissible jumps in the deformation gradient as URS for the
Reuss/Sachs-type homogenisation assumption and the one related to the approach based
on the rank-1 connection as UR1, the obvious ordering UR1 ⊂ URS holds. Therefore, the
effective energy corresponding to the Reuss/Sachs method represents a lower bound.

5.3.2.3 Partial rank-1 homogenisation

Although full rank-1 homogenisation is certainly not a new relaxation, it is novel within
the phase field framework. The first publication in which a similar relaxation is incorpo-
rated into phase field theory is the one by Mosler et al. [92]. However, and in contrast to
the classic rank-1 homogenisation discussed in the previous paragraph, the normal vec-
tor Ñ is not considered to be an independent variable in Mosler et al. [92]. Instead, this
normal is related to the phase field by enforcing Ñ = N = ∇p/‖∇p‖. As a consequence,
the macroscopic bulk energy then reads

ΨB(F, p,∇p, a) = [1− p] ΨB1

(
[F− p [a⊗N]] · FB

1

−1
)

+pΨB2

(
[F+ [1− p] [a⊗N]] · FB

2

−1
)
.

(5.58)

Since the normal vector N depends on the (non-local) gradient of the phase field, it
cannot be computed from a local relaxation. For this reason, the relaxed energy is given
by

Ψred
B = inf

a∈R3
ΨB(F, p,∇p, a) . (5.59)
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5 Computation of effective material properties in the interface

The respective stationary condition – in line with Eq. (5.53) – is obtained as

δaΨB =
∂ΨB

∂a
· δa = 0 with

∂ΨB

∂a
= p [1− p] [−P1 ·N+P2 ·N] = 0

⇔ [P2 −P1] ·N = �P� ·N = 0 .

(5.60)

Hence, static equilibrium at the interface is again fulfilled. Finally, the driving force of
the interface due to the bulk energy is given by

δpΨB =
∂ΨB

∂p
δp+

∂ΨB

∂∇p · δ∇p with

∂ΨB

∂p
= �ΨB�−P : [a⊗N] ,

∂ΨB

∂∇p = p [1− p] a · [−P1 +P2] · ∂∇pN .

(5.61)

Accordingly, since the energy also depends on the gradient of the order parameter, an
additional term arises.

By comparing the equations characterising the full rank-1 homogenisation presented
in the previous paragraph to those related to the partial rank-1 homogenisation, one can
see that the only difference between such approaches is constraint Ñ = N = ∇p/‖∇p‖.
Thus, both approaches are statically as well as kinematically compatible. While the
full rank-1 homogenisation guarantees equilibrium and kinematic compatibility at an
interface with normal Ñ which is independent of the phase field, the partial rank-1
homogenisation guarantees the same properties at an interface defined by the phase
field, i.e., Ñ = N = ∇p/‖∇p‖.

Remark 5.3.2: The normal vector N = ∇p/‖∇p‖ is only well defined if gradient ∇p
does not vanish. However, this cannot be guaranteed in general. For instance, within each
of the phases, i.e., where either p = 0 or p = 1, this condition is evidently not fulfilled.
Speaking of the physics, the normal vector is not constrained in such cases. For this
reason, partial rank-1 homogenisation is then identical to a full rank-1 homogenisation.
Further details are omitted here, but will be discussed in Section 5.4.

Remark 5.3.3: While partial rank-1 homogenisation has already been successfully ap-
plied in phase field theory, cf. Mosler et al. [92], this is not the case for the full rank-1 ho-
mogenisation. However, the full rank-1 homogenisation is indeed mathematically sound,
cf. Aubry and Ortiz [6] and Carstensen et al. [27]. Furthermore, due to the order rela-
tion U∂R1 ⊂ UR1 ⊂ URS of the spaces of admissible jumps in the deformation gradient,
full rank-1 homogenisation fills the gap between Reuss-/Sachs-type homogenisation and
homogenisation based on partial rank-1 homogenisation.
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5.3 Bulk response within the diffuse interface

Remark 5.3.4: Within the previous subsection, the partial rank-1 homogenisation was
presented for two phases. If real materials are to be modelled, the presented framework
certainly has to be extended to multiple phases (n > 2). For that purpose, the presented
rank-1 laminate approximation has to be extended to a rank-n laminate approximation
– similar to the works Ortiz and Repetto [98],Bartel and Hackl [10],Bartels et al. [14].

5.3.2.4 Taylor/Voigt-type homogenisation

The simplest choice for the space of the admissible jumps in the deformation gradient is
the empty set, i.e., F = F1 = F2. In this case the resulting bulk energy reads

ΨB(F, p) = [1− p] ΨB1

(
F · FB

1

−1
)
+ pΨB2

(
F · FB

2

−1
)
. (5.62)

The choice F = F1 = F2 is kinematically compatible. However, static equilibrium is
ignored. Therefore, P1 ·N �= −P2 ·N where N is the normal vector implied by the phase
field. Since no jump is considered in the Taylor/Voigt-type homogenisation, the driving
force at the interface due to the bulk energy simplifies to

δpΨB =
∂ΨB

∂p
δp with

∂ΨB

∂p
= �ΨB� .

(5.63)

5.3.2.5 Summary

The four different presented homogenisation assumptions can be defined by their spaces
of admissible jumps in the deformation gradient. Such spaces are

�F� ∈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R

3×3 = URS{
a⊗ Ñ | a ∈ R3; Ñ ∈ S2

}
= UR1

{a⊗N | a ∈ R3; N = ∇p/‖∇p‖} = U∂R1

∅ = UTV .

(5.64)

A graphic illustration of the different spaces is shown in Fig. 5.2. Accordingly, they show
the order relation URS ⊃ UR1 ⊃ U∂R1 ⊃ UTV. This, in turn, implies the order of relaxed
energies

inf
�F�∈URS

ΨB ≤ inf
�F�∈UR1

ΨB ≤ inf
�F�∈U∂R1

ΨB ≤ inf
�F�∈UTV

ΨB . (5.65)

From a physics point of view, only the approaches based on rank-1 homogenisation are
sound, since they fulfil static as well as kinematic compatibility. Interestingly, a mathe-
matical point of view leads to the same conclusion: The Taylor/Voigt-assumption usually
leads to energies which are not rank-1 convex implying that they are not quasi-convex.
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5 Computation of effective material properties in the interface

For this reason, numerical solutions based on such models are not objective. Similarly,
the Reuss/Sachs-type approach is not mathematically sound either. To be more precise,
convexity combined with material frame indifference leads to unphysical models, cf. Ball
[8]. Nevertheless, despite such deficiencies, the Taylor/Voigt-homogenisation as well as
the Reuss/Sachs-homogenisation will be considered in the following. The reasons for this
are two-fold. First, they serve as upper and lower bounds for the two other approaches.
Furthermore, the diffuse interface region, i.e., the only region which is affected by the
homogenisation assumption is supposed to be sufficiently small in phase field theories
(the sharp interface model is recovered in the limiting case for which the thickness of
the interface converges to zero).

Although the aforementioned homogenisation assumptions are indeed different, they
can be written in a unified variational principle. In order to derive this principle, the
jump in the deformation gradient is inserted into the rate potential (5.30)), i.e.,

Ė = Ψ̇B(F, p, �F�) + Ψ̇Γ(p,∇p) + φ∗(ṗ) (5.66)

and hence, Eq. (5.31) changes to

İ =

∫
B0

Ė(ϕ, p, �F�) dV −PF(ϕ̇). (5.67)

In summary, the only difference between the four different homogenisation assumptions
is the space of admissible jumps in the deformation gradient.

Remark 5.3.5: Independent of the homogenisation assumption, by enforcing
∂pΨB|�F�∈U = �ΨB� − P : �F� = 0 and neglecting interfacial effects, an immobile phase
front is enforced. This expression is known as the normal of the Eshelby’s momentum
tensor. It is related to the evolution of material defects.

5.4 Numerical implementation

5.4.1 Incremental variational updates

This section elaborates on an efficient numerical implementation falling within the range
of variational constitutive updates as introduced in Section 2.6. The underlying idea of
such updates is the direct time discretisation of the variational time-continuous prob-
lem (5.67). Considering, time interval τ = [tn, tn+1], the integration of Eq. (5.67) reads

ΔI =

∫
τ

İ dt =
tn+1∫
tn

İ dt =
∫
B0

ΔE(ϕn+1, pn+1,βn+1,ϕn, pn,βn) dV

− PF(ϕn+1) + PF(ϕn)

(5.68)
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with

ΔE = ΨB

(
Fn+1, pn+1,∇pn+1,βn+1

)
−ΨB (Fn, pn,∇pn,βn)

+ ΨΓ(pn+1,∇pn+1)−ΨΓ(pn,∇pn) + Δt φ∗ ((pn+1 − pn)/Δt) ,
(5.69)

where Δt = tn+1− tn denotes the time increment. If the external loads are conservative,
the only approximation in Eq. (5.69) is the integration of the dissipation functional φ∗.
Clearly, other consistent approximations of the rate potential (5.67) are also possible.
In this respect, the choice of the time-discrete potential is not unique but relies on the
time discretisation. Assuming the variables at time tn to be known, the unknowns in
Eq. (5.68) are {Fn+1, pn+1,∇pn+1,βn+1}. Here and in what follows, β contains all un-
knowns defining the jump of the deformation gradient across the interface. For instance,
in the case of the homogenisation scheme based on partial rank-1 homogenisation, β = a,
while β contains all nine coordinates of �F� for the Reuss/Sachs-type homogenisation
approach. The update of β in the case of a partial rank-1 homogenisation is explic-
itly derived in Appendix C.1. An overview of the definition of β is given in Table 5.1.
While the parametrisation a) corresponding to the Reuss/Sachs assumption is obvious,

Homogenisation a) Reuss/Sachs b) full rank-1 c) partial rank-1 d) Taylor/Voigt

Structure of �F� �F� a⊗ Ñ a⊗∇p/‖∇p‖ 0

Parametrisation of β �F� a, Ñ a if ‖∇p‖ > 0 0

a, Ñ if ‖∇p‖ = 0
dim(β) 9 5 3(5) 0

Table 5.1: Definition of the variable β for the different homogenisation assumptions. β represents a
parametrisation of the jump of the deformation gradient �F�

constraint ‖Ñ‖ = 1 associated with the full rank-1 method (b)) is enforced through
spherical coordinates, i.e.,

Ñ =

⎡⎣sinα cos γ
sinα sin γ

cosα

⎤⎦ . (5.70)

For the partial rank-1 homogenisation, β = a as long as N = ∇p/‖∇p‖ is well defined,
see Remark 5.3.2. Speaking in the sense of physics, nucleations of new phases in such
domains are not biased by pre-existing interfaces – as in the method based on full rank-1
homogenisation. Accordingly, the function is extended as

N ∈

⎧⎨⎩
∇p
‖∇p‖ if ‖∇ p‖ > 0

Eq. (5.70) otherwise .

(5.71)
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5 Computation of effective material properties in the interface

As a consequence, vector β shows the dimension 3 (dim(a)) or 5 (dim(a)+dim(N(α, γ)))
for the homogenisation method based on partial rank-1 homogenisation.

In order to improve the readability, the time index (•)n+1 associated with the current
time step is removed in the following. Hence, the time-discrete optimisation problem of
the time-continuous potential (5.67) reads

(ϕ, p,β) = arg inf
ϕ,p

inf
β

ΔI (5.72)

Since the variable β is a local quantity, the minimisation problem (5.72) can be conve-
niently decomposed into a local problem (depending on β) and a reduced global problem
(depending only on ϕ and p). To be more explicit, the local problem is given by

ΔE red = inf
β
{ΨB (F, p,∇p,β)} −ΨB (Fn, pn,∇pn,βn)

+ ΨΓ(p,∇p)−ΨΓ(pn,∇pn)
+ Δt φ∗ ((p− pn)/Δt)

(5.73)

and its solution defines the global problem

inf
ϕ,p

ΔIred =

∫
B0

ΔE red(ϕ, p,ϕn, pn) dV −PF(ϕ) + PF(ϕn) . (5.74)

Interestingly, the reduced functional ΔE red acts like a hyperelastic potential, i.e., its
partial derivative yields the first Piola-Kirchhoff stress tensor

P =
∂ΔE red
∂F

. (5.75)

For this reason, stationarity of potential ΔIred implies

δϕ ΔIred =

∫
B0

P : δF dV −
∫
B0

ρ0B · δϕ dV −
∫
∂B0

T̄ · δϕ dA = 0 , (5.76)

which is the weak form of equilibrium. For the sake of completeness, stationarity of
potential ΔIred with respect to the phase field is also given. It can be written as

δp ΔIred =

∫
B0

{
∂ΔE red
∂p

δp+
∂ΔE red
∂∇p · ∇δp

}
dV = 0 . (5.77)

Eq. (5.77) is the weak form of Eq. (5.36).
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Remark 5.4.1: In the model based on partial rank-1 homogenisation, the interface nor-
malN = ∇ p/‖∇ p‖ depends on the phase field variable p. Numerical experiments showed
that an explicit approximation of this normal vector affects the results only marginally
by simultaneously increasing the efficiency significantly. As a consequence, the approxi-
mation

N =
∇p
‖∇p‖

∣∣∣∣
tn+1

≈ ∇p
‖∇p‖

∣∣∣∣
tn

(5.78)

is applied.

5.4.2 Constrained optimisation

The variational principle inf ΔIred(ϕ, p) does not naturally enforce the constraint p ∈
[0, 1] in general. This is due to the mechanical driving forces. For this reason, the
constrained optimisation problem

inf ΔIred(ϕ, p) subject to r1 = p− 1 ≤ 0

r2 = −p ≤ 0
(5.79)

has to be considered. Lagrange multipliers represent a natural way to enforce such
constraints. Therefore, the extended Lagrangian functional

ΔĨred(ϕ, p, λ1, λ2) = ΔIred(ϕ, p) + λ1 r1 + λ2 r2 (5.80)

is introduced. The Lagrange multipliers λi ≥ 0 are dual to the variables to ri. It
bears emphasis that only one of such multipliers can be active, i.e., either p reaches the
bound p = 0 (λ2) or p = 1 (λ1). The classical Karush-Kuhn-Tucker (KKT) conditions
associated with Eq. (5.80) are (cf. Geiger and Kanzow [48])

δpΔIred(ϕ, p) + λ1 ∂pr1 + λ1 ∂pr1 = 0 ,

λi ≥ 0 ,

ri ≤ 0 ,

λi ri = 0 for i = {1, 2}

(5.81)

and evidently enforce the aforementioned constraints. However, the numerical treatment
of the inequalities in Eq. (5.81) is not straightforward. An efficient way of solving (5.81)
– in the sense of a Newton-based solution scheme – is given in Fischer [45] (see also
Bartel and Hackl [10]), in which the inequalities and equalities (5.81)2 – (5.81)4 are
replaced by the equivalent NCP functions

gi =
√
r2i + λ2i + ri − λi = 0 i = {1, 2} . (5.82)
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5 Computation of effective material properties in the interface

To be more explicit, gi = 0 is equivalent to {λi ≥ 0; ri ≤ 0; λi ri = 0}. Consequently, no
inequalities have to be considered in the numerical implementation and problem (5.81)
can be re-written in residual form as

RFB(p, λ1, λ2) =

⎡⎣δpΔĨred(ϕ, p, λ1, λ2)g1(p, λ1)
g2(p, λ2)

⎤⎦ =

⎡⎣δpΔIred(ϕ, p) + λ1 δp− λ2 δp√
[p− 1]2 + λ21 + [p− 1]− λ1√

[−p]2 + λ22 − p− λ2

⎤⎦ = 0 .

(5.83)

By combining Eq. (5.83) with the weak form of equilibrium, the fully coupled problems
yields

[
δϕΔIred (ϕ, p)
RFB(p, λ1, λ2)

]
=

⎡⎢⎢⎣
δϕΔIred (ϕ, p)

δpΔIred (ϕ, p) + λ1 δp− λ2 δp
g1(p, λ1)
g2(p, λ2)

⎤⎥⎥⎦ = 0 on B0 . (5.84)

This problem is completed by the boundary conditions

ϕ = ϕ̄ on ∂B0,ϕ ,
P ·N = T on ∂B0,T ,

p = p̄ on ∂B0,p ,
ξ ·N = 0 on ∂B0,ξ .

(5.85)

Herein, the deformation map ϕ, the phase parameter p and the additional Lagrange
parameters λ1 and λ2 are the primary field variables of the coupled four-field problem.

Remark 5.4.2: In the numerical implementation, the slightly adjusted NCP functions

g1(p, λ1) =
√
[p− 1 + ε0]2 + λ21 + ε2tol + [p− 1 + ε0]− λ1

g2(p, λ2) =
√
[−p + ε0]2 + λ22 + ε2tol + [−p+ ε0]− λ2

(5.86)

are applied (see Eq. (5.82)). By introducing the perturbations ε0 and εtol a numerically
more stable version of the original FB functions is obtained. While εtol enforces the
solution to be real-valued, the perturbation ε0 moves points at the boundaries p = 0 and
p = 1 slightly to the interior of the interval. Numerical experiments have shown that
the latter perturbation improves the performance of the algorithm without significantly
changing the results.

Remark 5.4.3: The extension of the algorithm to more than two phases is straightfor-
ward: For each phase the two constraints jr1 = jp − 1 ≤ 0 and jr2 = −jp ≤ 0 are
defined.
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5.4 Numerical implementation

Remark 5.4.4: Although the presented algorithm for enforcing the constraint p ∈ [0, 1]
is indeed promising – this will also be confirmed by numerical examples – a negative side
effect should also be mentioned: the symmetry intrinsic to the underlying variational
problem is lost. Hence, the matrices resulting from a finite element discretisation are
not symmetric anymore.

Remark 5.4.5: As mentioned before, the natural constraint p ∈ [0, 1] is generally not
fulfilled due to the additional mechanical driving forces. One way of avoiding this problem
– not discussed in this thesis in detail – is therefore the modification of the mechanical
driving force ∂pΨB. Since this driving force is the variational derivative of the effective
bulk energy within the diffuse interface, one could directly modify the underlying bulk
energy, i.e. ΨB = [1− h(p)] ΨB1 + h(p) ΨB2 such that the driving force reads

∂ΨB

∂p
=
∂ΨB

∂h

∂h

∂p
. (5.87)

For instance by choosing the interpolation function h(p) = p2 [3 − 2 p], the properties
h(p = 1) = 1 and h(p = 0) = 0 are naturally fulfilled and the driving force vanishes
in the limiting cases ∂ph(p = 1) and ∂ph(p = 0). Clearly, the order parameter does not
represent the relative volume ratio for this interpolation scheme.

5.4.3 Finite element implementation

5.4.3.1 Discretisation of the weak form

The starting point of the finite element formulation to be elaborated is the partition of
the reference body

B0 ≈ Bh
0 =

nel⋃
e=1

Be
0 (5.88)

into nel finite elements. In each element Be
0 the reference configuration X and the field

variables ϕ and p are approximated by

X|Be
0
≈ Xh =

nX
en∑

a=1

Na
X Xa , ϕ|Be

0
≈ ϕh =

nϕ
en∑

a=1

Na
ϕϕa , p|Be

0
≈ ph =

np
en∑

a=1

Na
p p

a . (5.89)

Here, N
(•)
(•) are shape functions and Xa, ϕa and pa are the referential coordinates, the

deformation mapping and the phase field parameter at node a. In what follows, isopara-
metric elements are considered and the unknown fields are interpolated by means of
the same shape functions, i.e., Na = Na

X = Na
ϕ = Na

p and nen = nX
en = nϕ

en = np
en. In

sharp contrast to the field variables ϕ and p, the Lagrange multipliers λ1 and λ2 are
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5 Computation of effective material properties in the interface

not interpolated, since the NCP functions are applied at the nodes and gradients of the
Lagrange parameters are not required (see Remark 5.4.6).

Based on the interpolations (5.89), the approximations of the gradients are obtained
as

Fh = ∇ϕh =

nen∑
a=1

ϕa ⊗∇Na , ∇ph =

nen∑
a=1

pa∇Na , (5.90)

where ∇Na denotes the gradient of Na with respect to the reference configuration X.
In line with a Bubnov-Galerkin discretisation, the test functions are defined by means
of the same functions spanning the primary variables. Consequently, the test functions
and their gradients read

δϕh =

nen∑
a=1

Na δϕa , δph =

nen∑
a=1

Na δpa ,

δFh = ∇δϕh =

nen∑
a=1

δϕa ⊗∇Na , ∇δph =

nen∑
a=1

δpa∇Na.

(5.91)

Based on the previous interpolations, the variational derivatives (5.84)1 (linear mo-
mentum) and (5.84)2 (integrated evolution equation of the phase field) are computed.
Focussing on one finite element, such variational derivatives yield

δϕΔĨred|Be
0
=

nen∑
a=1

δϕa ·
[
faϕ,int − faϕ,vol − faϕ,sur

]
,

δpΔĨred|Be
0
=

nen∑
a=1

δpa
[
fa
p,int + λa1 − λa2

]
.

(5.92)

Here, δϕa and δpa denote the virtual placement and the virtual phase field parameter
at node a. The nodal element forces entering Eq. (5.92) are

faϕ,int =

∫
Be
0

P · ∇Na dV , faϕ,vol =

∫
Be
0

Na ρ0B dV , faϕ,sur =

∫
∂Be

0

Na T̄ dA ,

fa
p,int =

∫
Be
0

{
Na ∂pΔE red +∇Na · ξ

}
dV .

(5.93)

In Eq. (5.93), faϕ,vol and faϕ,sur are the external volume and the external surface force
vectors of the mechanical problem. Finally, by assembling the nodal contributions of all
finite elements and considering that the weak forms have to be fulfilled for any admis-
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sible test function, the global residuum at node point A associated with the underlying
boundary value problem can be written in the form

rA =

nel

A
e=1

⎡⎢⎢⎣
raϕ
rap
raλ1

raλ2

⎤⎥⎥⎦ = 0 with

⎡⎢⎢⎣
raϕ
rap
raλ1

raλ2

⎤⎥⎥⎦ =

⎡⎢⎢⎣
faϕ,int − faϕ,vol − faϕ,sur

fa
p,int + λa1 − λa2
g1(p

a, λa1)
g2(p

a, λa2)

⎤⎥⎥⎦ . (5.94)

Here, A represents the assembly over all elements e = 1, . . . , nel.

Remark 5.4.6: Within the numerical implementation, bi-linear and tri-linear shape
functions are used for the 2D and 3D simulations. By using linear shape functions, the
extrema of p are always at the nodes and thus, enforcing p ∈ [0, 1] at such nodes implies
that p ∈ [0, 1] everywhere.

5.4.3.2 Linearisation of the discretised weak form

The non-linear algebraic system of equations (5.94) is solved by means of a Newton-type
iteration. For that purpose, the linearisation of the global residuum (5.94) is required. In
line with the computation of the residuum, this linearisation is computed by assembling
the element contributions. Considering discretisations (5.89)2 and (5.89)3 the generic
format of such linearisations with respect to the variables at node b is given by

Δraϕ =
nen∑
b=1

[
draϕ
dϕb
·Δϕb +

draϕ
dpb

Δpb
]
,

Δrap =

nen∑
b=1

[
drap
dϕb
·Δϕb +

drap
dpb

Δpb +
drap
dλb1

Δλb1 +
drap
dλb2

Δλb2

]
,

Δraλ1
=

draλ1

dpb
Δpb +

draλ1

dλb1
Δλb1 ,

Δraλ2
=

draλ2

dpb
Δpb +

draλ2

dλb2
Δλb2 .

(5.95)

Here, Δ(x) denotes the linearisation of the variable (x) – or in a numerical setting,
the increments of the variable (x). These increments are collected in the vector Δdb =
[Δϕb,Δpb,Δλb1,Δλ

b
2]

T corresponding to node b of the respective finite element. Since the
residuals raλ1

and raλ2
depend only on the nodal values of the same node, their linearisation

yields a diagonal matrix. For this reason, it is convenient to decompose the linearisation
into two parts. While the first part is related to the incremental potential (5.80), the
second part precisely corresponds to the constraints enforced by raλ1

and raλ2
. Concerning

123



5 Computation of effective material properties in the interface

the incremental potential (5.80) reflected in the residuals raϕ and raϕ the stiffness matrices
are computed as

Kab
ϕϕ =

draϕ
dϕb

=

∫
Be
0

∇Na • dP
dF
· ∇N b dV ,

Kab
ϕp =

draϕ
dpb

=

∫
Be
0

{
N b dP

dp
· ∇Na +

[
dP

d∇p · ∇N
b

]
· ∇Na

}
dV ,

Kab
pϕ =

drap
dϕb

= Kab
ϕp

T
,

Kab
pp =

drap
dpb

=

∫
Be
0

{
Na

d
[
∂p ΔE red

]
dp

N b + 2∇Na · dξ
dp

N b +∇Na · dξ

d∇p · ∇N
b

}
dV ,

(5.96)

where dead-loads have been assumed for the sake of simplicity. The tangents dP/dF,
dP/dp , dP/d∇p, d

[
∂p ΔE red

]
/dp, dξ/dp and dξ/d∇p entering the stiffness matrix are

derived in Appendix C.2. It bears emphasis that such tangents depend on the reduced
potential (5.73), which in turn depends on the vector β. For this reason – and in line
with the sensitivities in plasticity theory – the tangents require the linearisation of the
local minimisation problem (5.73) as well. For instance,

dP = d

[
∂ΔE red
∂F

]
=
∂2ΔE red
∂F2

: dF+
∂2ΔE red
∂F∂p

dp+
∂2ΔE red
∂F∂β

◦ dβ . (5.97)

The mixed derivative ∂2ΔE red/∂F∂λi vanishes to zero. Most terms in Eq. (5.97) are
standard – except for the last one. Since β does not enter the global problem explicitly,
its sensitivities with respect to the primary variables have to be considered, i.e.,

dβ =
∂β

∂F
: dF+

∂β

∂p
dp , (5.98)

in which the derivative with respect to the Lagrangian parameter ∂β/∂λi vanishes to
zero. They follow from the linearisation of the local minimisation problem (5.73). Fur-
ther details are omitted here, but are given in Appendix C.2.
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Finally, by taking the Fischer-Burmeister restrictions into account, the additional
contributions to the tangent matrices are given by

Kab
pλ1

=
drap
dλb1

= 1, Kab
pλ2

=
drap
dλb2

= −1,

Kab
λ1p

=
draλ1

dpb
=
∂ga1
∂pb

, Kab
λ1λ1

=
draλ1

dλb1
=
∂ga1
∂λb1

,

Kab
λ2p =

draλ2

dpb
=
∂ga2
∂pb

, Kab
λ2λ2

=
draλ1

dλb2
=
∂ga2
∂λb2

.

(5.99)

As mentioned before, they show a diagonal structure. A more detailed and explicit
derivation of these additional stiffness matrices is summarised in Appendix C.3.

5.5 Numerical examples

In this section, several numerical examples are presented. In order to allow for a good
analysis and interpretation of the results, relatively simple, but nevertheless meaningful
benchmarks have been chosen. They are academic in nature and were not supposed to
represent a certain material in a realistic manner. The specific constitutive assumptions
and the numerical setup are described in Subsection 5.5.1. The 2D and 3D computations
are investigated in Subsections 5.5.2 and 5.5.3.

5.5.1 Prototype phase field model

The numerical examples presented in the following subsections are based on the bulk
energies

ΨB1(F
e
1) =

μ1

2

[
Je
1
−2/3 Fe

1 : F
e
1 − 3

]
+
κ1
2

[
Je
1
2

2
− 1

2
− log Je

1

]
+Ψ0

B1
,

ΨB2(F
e
2) =

μ2

2

[
Je
2
−2/3 Fe

2 : F
e
2 − 3

]
+
κ2
2

[
Je
2
2

2
− 1

2
− log Je

2

]
+Ψ0

B2
,

(5.100)

for the two phases. The model parameters of these isotropic neo-Hooke energies are the
shear modulus μi = 1/2 Ei/[1 + νi] and the bulk modulus κi = 1/3 Ei/[1 − 2 νi], where
Ei and νi are the Young’s modulus and the Poisson’s ratio, and where Ψ0

Bi
are chemical

energies being independent of the deformation.

The effective elastic deformation gradients Fe
i in Eq. (5.100) associated with the two

phases follow from the multiplicative decomposition of total deformations gradients Fi

into elastic and Bain-strain related parts FB
i , i.e.,

Fe
1 = F1 · FB

1

−1
, Fe

2 = F2 · FB
2

−1
, (5.101)
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5 Computation of effective material properties in the interface

cf. Eq. (5.24). Based on such deformation gradients, their Jacobians are defined as
Je
i = detFe

i .

With regard to the Bain strains FB
i , the polar decompositions

FB
1 = Q ·UB

1 , FB
2 = UB

2 , (5.102)

are considered and the right stretch tensors are chosen to be

UB
1 =

⎡⎢⎢⎣
α + γ

2

α− γ
2

0

α− γ
2

α + γ

2
0

0 0 β

⎤⎥⎥⎦ , UB
2 =

⎡⎢⎢⎣
α+ γ

2
−α− γ

2
0

−α− γ
2

α + γ

2
0

0 0 β

⎤⎥⎥⎦ . (5.103)

Furthermore, the rotation tensor Q is defined by

Q =

⎡⎢⎢⎢⎢⎣
2αγ

α2 + γ2
−α

2 − γ2
α2 + γ2

0

α2 − γ2
α2 + γ2

2αγ

α2 + γ2
0

0 0 1

⎤⎥⎥⎥⎥⎦ . (5.104)

The resulting Bain strains (deformation gradients) fulfil the twinning equation FB
1−FB

2 =
�FB� = a ⊗ Ñ for the two normal vectors Ñ = ±e1 and Ñ = ±e2, where ei are the
cartesian basis vectors. Hence, FB

1 and FB
2 are rank-1 connected and the corresponding

interface is referred to as coherent interface. The parameters α, β, γ can be interpreted
as edge lengths of the underlying unit cells (see also Hildebrand and Miehe [53] and
references cited therein). They are chosen as α = 1.0619, β = 0.9178 and γ = 1.0231,
cf. Hildebrand and Miehe [53].

The constitutive model is completed by means of an interface energy and a dissipation
functional related to the propagation of such interfaces. In line with Eq. (5.6), a constant
interface energy is adopted and the dissipation is described by the Ginzburg-Landau
dissipation functional (5.29), in which the phase mobility is denoted as η.

With regard to the numerical implementation, each node of the finite element dis-
cretisation shows six degrees of freedom in the three dimensional case (see Section 5.4.2)
– three coordinates associated with the deformation mapping, the order parameter p as
well as two Lagrange multipliers necessary in order to enforce the constraint p ∈ [0, 1].
Certainly, both Lagrange multipliers cannot be simultaneously active reducing the num-
ber of degrees of freedom per node to five. Following the same line of thought, each node
shows 5, respectively 4, degrees of freedom in 2D. Furthermore, the 3D constitutive model
is also considered in the 2D case supplemented by plane strain conditions. The resulting
finite element formulation is implemented into the parallel version of FEAP, see Taylor
[131]. The global system of equations is solved in a monolithic manner. To this end, the
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Newton updates are computed iteratively with a Jacobian-type preconditioner and the
Krylov-subspace biconjugate gradient stabilised method (BCGS).

5.5.1.1 Setup for numerical tests

All numerical analyses presented in this section are related to relaxation tests. The
considered body B0 is initialised by a random phase distribution p0(X) ∈ [0, 1] ∀X ∈ B0
with an initial volume ratio of p̄0 = 0.5, i.e., 50% of phase 1 and 50% of phase 2 (in
terms of volume). In the notation p̄0, subscript 0 denotes the time and the superposed
bar denotes averaged or homogenised variables (in line with homogenisation theory).
Accordingly,

p̄0 =
1

V (B0)

∫
B0

phB0
(t = 0) dV . (5.105)

In order to trigger the formation of a certain microstructure, the deformation at the
boundary ∂B0 of the body B0 is prescribed by

ϕ̂ = F̄ ·X ∀X ∈ ∂B0 . (5.106)

Here, F̄ can be interpreted as the macroscopic deformation gradient. It is a linear
combination of the Bain strains FB

1 and FB
2 such that the relaxed microstructure will

also show both phases. In order to interpret the numerical results more easily, the same
material parameters are chosen for both phases (Young’s moduli, Poisson’s ratios and the
chemical energies). It bears emphasis that even in this case the different homogenisation
assumptions indeed lead to different results, since the Bain strains are different.

5.5.2 Comparison of the homogenisation assumptions – 3D
computations

The four proposed homogenisation assumptions presented in Section 5.3 are analysed
here by means of fully 3D finite element simulations. For that purpose, the body B0 is
defined by a cube with the dimensions 1 × 1 × 1 [mm3]. It is discretised by 643 finite
elements. An equidistant grid with a constant element length h = 1/64 [mm] is chosen.
The macroscopic deformation gradient F̄ prescribing the motion at the boundary is
F̂ = 2

[
[1− p̄0]FB

1 + p̄0F
B
2

]
with p̄0 = 0.5 (initial volume ratio of the two different

phases). The respective macroscopic deformation gradient has been chosen in order to
activate and to check the geometrically exact description (finite deformations). Thus, the
analysed 2D and 3D examples are academic in nature and were not supposed to represent
a certain material in a realistic manner. The material constants are summarised in
Tab. 5.2. For all simulations, constant time steps with Δt = 0.00005 s are used and the
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5 Computation of effective material properties in the interface

total number of time steps is 2000. This number was chosen such that a steady state
was observed for all computations within the final time step.

Phase Name Symbol Value Unit

Phase 1 Youngs modulus E1 40 [GPa]
Poisson ratio ν1 0.3 [-]
Chemical energy Ψ0

B1
0 [MPa]

Phase 2 Youngs modulus E2 40 [GPa]
Poisson ratio ν2 0.3 [-]
Chemical energy Ψ0

B2
0 [MPa]

Interface Area specific surface energy ψΓ
0 0.5 [N/mm]

Interface thickness ε 1/[8π] [mm]
Mobility η 0.1 [N s/mm2]

Table 5.2: Material parameters for 3D finite element computations of a cube; Material parameters of
the bulk energy (see Eq. (5.100)), material parameters of the surface energy (see Eq. (5.6)) and material
parameters of the dissipation functional (see Eq. (5.29))

During the first time steps, the stored energy significantly reduces in all computations.
This is due to the fact that the highly heterogeneous initial random phase distribution
is not energetically favourable for the applied loading conditions. Accordingly, a re-
ordering towards domains with the same phases can be seen. The averaged stored
energies corresponding to the steady state (t = 0.1 s), together with the converged
volume ratios between the two phases are given in Tab. 5.3. It bears emphasis that the

Homogenisation a) Reuss/Sachs b) full rank-1 c) partial rank-1 d) Taylor/Voigt

Ψ̄ [MPa] 184.569 184.742 185.952 188.528
p̄ [–] 0.503322 0.503455 0.483585 0.484384

Table 5.3: Averaged stored energy and averaged phase distribution after 2000 time steps for the 3D
computations

dissipation is zero for the steady state (no further propagation of interfaces) and thus,
the total stored energy is identical to the functional (5.68) defining the initial boundary
value problem. To be more precise, in the steady state case (cf. Eq. (5.68) and (5.69);
no external forces) this functional reads

ΔI =

∫
B0

{[ΨB(tn+1) + ΨΓ(tn+1)]− [ΨB(tn) + ΨΓ(tn)]} dV. (5.107)
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Since the terms depending on the previous time step tn are constant and just shift the
minimum of the functional, they are not relevant for the variational problem. For this
reason, functional (5.107) can indeed be replaced by the stored energy of the body

Ψ̄ =

∫
B0

[ΨB(tn+1) + ΨΓ(tn+1)] dV. (5.108)

Since the bulk energies corresponding to the different homogenisation assumptions ful-
fil the inequalities (5.65) and since the stored energy (5.108) defining the functional
to be minimised precisely depends on the bulk energies, the stored energy associated
with the steady state solution seems to inherit the ordering (5.65), see Tab. 5.3. Thus,
the Reuss/Sachs homogenisation assumption leads to the lowest energy, while the Tay-
lor/Voigt assumption defines the upper bound. However, it bears emphasis that strictly
mathematically speaking, the aforementioned inheritance is not clear, since the final
energies depend also on the path.

From analysing the converged volume fraction as shown in Tab. 5.3 one can see that
the initial condition p̄0 = 0.5 is not exactly preserved – in line with the underlying Allen-
Cahn framework, cf. Chapter 6. However, due to the considered boundary conditions,
the converged volume ratios p̄ are still close to p̄0 = 0.5. Furthermore, the deviations
between the different homogenisation assumptions are relatively small.

Although the averaged volume ratio is almost identical for each of the different ho-
mogenisation assumptions, the spatial distributions of the phases do differ. This is
illustrated in Fig. 5.3 for the steady states (t = 0.1 s). While the Reuss/Sachs ho-
mogenisation assumption and the full rank-1 homogenisation lead to an almost identi-
cal two-column-like microstructure, partial rank-1 homogenisation and the Taylor/Voigt
homogenisation assumption predict an almost identical matrix-inclusion-like microstruc-
ture. Furthermore, a very sharp interphase is captured by the Taylor/Voigt assumption.
By way of contrast, the Reuss/Sachs assumption yields a more diffuse interface repre-
sentation. The degree of diffusion increases in the order Taylor/Voigt, partial rank-1
homogenisation, full rank-1 homogenisation and Reuss/Sachs – in line with the ordering
of the stored energy, cf. Tab. 5.3.

At a first glance, the sharpness of the interface predicted by the Taylor/Voigt as-
sumption seems to be in good agreement with the underlying sharp interface problem.
However, it is well known that the Taylor/Voigt assumption generally predicts too sharp
phase transitions. For instance, if the mixture of two convex energies (phases) is to be
computed, the Taylor assumption will either lead to the energy of phase one or to that of
phase 2. It will not predict a mixing of energies. However, this is neither realistic from
a physics nor from a mathematical point of view (non-convexity). The sharpness of the
diffuse interface is mostly related to the energy barrier separating the individual phases.
If the length scale of the diffuse interface is chosen to be smaller, this energy barrier
increases and thus, the separation of different phases is more pronounced. This leads
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5 Computation of effective material properties in the interface

to sharper approximation of the interfaces. In the limiting case – the length parameter
converges to zero – all homogenisation assumptions predict the same results.

As shown before, the underlying homogenisation assumption clearly influences the
numerical predictions in general. However, it also influences the numerical performance.
The presented results are based on the parallel version of FEAP, see Taylor [131]. The
numerical analyses were run on 12 cores (partition into 12 sub-domains). The fastest
computation took roughly 50 CPU hours and corresponds to the Reuss/Sachs homogeni-
sation, while the Taylor/Voigt model took roughly 125 CPU hours. This ordering is pro-
portional to the activation of the NCP functions: They are not activated in Reuss/Sachs
model, while they are indeed strongly active for the Taylor/Voigt model. The models
based on rank-1 homogenisation are in between.

a) Reuss/Sachs b) full rank-1 c) partial rank-1 d) Taylor/Voigt

p

0 1

Figure 5.3: Microstructural evolution of phase parameter p for different homogenisation assumptions at
t = 0.1 s; (top row) 3D plot of phase distribution p; (bottom row) 3D interface contour plot p ∈ (0.4, 0.6)
of the top row; a) Reuss/Sachs model; b) full rank-1 homogenisation; c) partial rank-1 homogenisation;
d) Taylor/Voigt model

5.5.3 Further numerical analyses in 2D

While the influence of the homogenisation assumption on the numerically predicted
response was analysed in the previous subsection, further numerical aspects are inves-
tigated here. To be more precise, two points are discussed separately. While Sub-
section 5.5.3.1 is associated with the effect of the proposed Lagrange multipliers, in
combination with the NCP functions by Fischer-Burmeister, the convergence behaviour
of the different phase field models methods for a vanishing interface thickness is dealt
with in Subsection 5.5.3.2.
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All tests are again related to the numerical setup illustrated in Subsection 5.5.1.1
– however, now in 2D. The dimensions of the square are B0 = 50 × 50 [mm2]. It is
discretised by an equidistant finite element grid with an element length h. Again, an
initial volume ratio of p̄0 = 0.5 of the two phases is assumed and the boundary ∂B0 is
deformed by the macroscopic deformation gradient F̂. However, the slightly changed
macroscopic deformation gradient F̂ =

[
[1− 0.4]FB

1 + 0.4FB
2

]
is now considered. The

material parameters are selected according to Tab. 5.4. For all simulations, a time step
of Δt = 0.0001 s was chosen and the simulations were stopped at t = 3 s.

Phase Name Symbol Value Unit

Phase 1 Youngs modulus E1 25000 [MPa]
Poisson ratio ν1 0.3 [-]
Chemical energy Ψ0

B1
0 [MPa]

Phase 2 Youngs modulus E2 25000 [MPa]
Poisson ratio ν2 0.3 [-]
Chemical energy Ψ0

B2
0 [MPa]

Interface Mobility η 1.0 [N s/mm2]
Area specific surf. energy ψΓ

0 21.0 [N/mm]
Interface thickness ε 1.25 (Sec. 5.5.3.1) [mm]

2.5/1.25/0.625 (Sec. 5.5.3.2)

Table 5.4: Material parameters for 2D finite element computations of a square; Material parameters of
the bulk energy (see Eq. (5.100)), material parameters of the surface energy (see Eq. (5.6)) and material
parameters of the dissipation functional (see Eq. (5.29))

5.5.3.1 Effect of constraint optimisation based on Lagrange multipliers in
combination with the NCP functions by Fischer-Burmeister

The effect of the Lagrange multipliers necessary in order to enforce p ∈ [0, 1] is analysed
based on 2D computations. Since the 2D computations are numerically less extensive,
a finer grid with 100× 100 can be chosen.

Similar to the 3D computations, a re-ordering of the phases can be observed during
the first stage of the relaxation process. This leads to clusters of phase 1 (p = 0) and
clusters of phase 2 (p = 1). However, due to the mechanical driving force, some of the
material points belonging to such clusters tend towards states which are not admissible
(p /∈ [0, 1]). In this case, the driving forces associated with the Lagrange multipliers λ1
and λ2 become active and prevent such inadmissible states. The spatial distributions
of the plastic multipliers for the time t = 0.255 s are shown in Fig. 5.4. According
to Fig. 5.4 – and in line with the results discussed in the previous subsection – the
spatial distribution of the two different phases does indeed depend on the underlying
homogenisation assumption. The same also holds for the activity of the aforementioned
Lagrange multipliers. It can be seen that the most frequently applied assumption, the
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5 Computation of effective material properties in the interface

a) Reuss/Sachs b) full rank-1 c) partial rank-1 d) Taylor/Voigt
p
1

0

λ1
1.74

0

λ2
1.23

0

Figure 5.4: 2D numerical analyses showing the influence of the Lagrange multipliers λ1 and λ2 for the
different homogenisation assumption (at time t = 0.255 s): (top row) distribution of the phases, (middle
row) distribution of Lagrangian multiplier λ1, (bottom row) distribution of Lagrangian multiplier λ2

Taylor/Voigt assumption, leads to the strongest activity, while the Reuss/Sachs-type
homogenisation approach seems to naturally enforce the constraint p ∈ [0, 1]. In sum-
mary, the degree of activity (Reuss/Sachs → Taylor/Voigt) is inversely proportional to
the degree of relaxation (Taylor/Voigt → Reuss/Sachs) for the analysed example.

Since a monolithic Newton-type algorithm is employed to solve the set of nonlinear
equations resulting from a temporal and spatial discretisation, the activity of the La-
grange multipliers also has an effect on the Newton iteration. To be more explicit,
while only three global iterations are required, if λ1 and λ2 are not active, 4 − 8
iterations are required, if λ1 or λ2 are active (for the relative convergence criteria
|ΔdT ·r| ≤ 10−22 |ΔdT ·r|initial and ‖r‖ ≤ 10−9 ‖r‖initial depending on the nodal residuum
r according to Eq. (5.94) and the increment of the nodal unknowns Δd; the subscript
(•)initial signals the initial values, i.e., at iteration number zero).

The number of Newton iterations certainly also depends on the choice of the initial
values. Whereas, for the displacement field and the order parameter p the choice is
obvious (last converged step), two different strategies are investigated for the Lagrange
multipliers. In the first implementation strategy, both multipliers are set to zero (as
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5.5 Numerical examples

initial value). By way of contrast and following the assumptions for the displacement
field and the order parameter p, λ1 and λ2 are initialised according to their converged
counterparts of the previous loading step within the second implementation. The results
of this investigation are summarised in Tab. 5.5. According to Tab. 5.5, the second

Lagrangian updated re-initialised

(λ1;λ2)
∣∣k=0

tn+1
= (λ1;λ2)

∣∣
tn

(λ1;λ2)
∣∣k=0

tn+1
= (0; 0)∑

Iterations till t = 0.255 s 12928 24967

Table 5.5: Results of 2D numerical analyses showing the influence of the chosen initial values of the
Lagrange parameters on the total number of Newton iterations for the Taylor/Voigt homogenisation.

(λ1;λ2)
∣∣k=0

tn+1
= (λ1;λ2)

∣∣
tn

corresponds to an initialisation according to the converged previous loading
step.

method is significantly more efficient.

5.5.3.2 Convergence behaviour of the different homogenisation assumptions

The influence of the homogenisation assumption on the numerically predicted response
has already been analysed in the previous sections: In general, the homogenisation as-
sumption indeed affects the results. However, all phase field models were derived by
means of an underlying sharp interface model. For this reason, all models should con-
verge to this underlying sharp interface model, if the diffuse interface thickness converges
to zero. The numerical analyses presented in this subsection follow this line of thought,
i.e, the influence of the parameter ε defining the thickness of the diffuse interface is
investigated. To be more precise, the three different length scales ε = 2.5 mm (50 ×
50 discretisation), ε = 1.25 mm (100 × 100 discretisation) and ε = 0.625 mm (200 ×
200 discretisation) are considered in the following. In order to guarantee a minimum
resolution of the interface topology, the diffuse interface is discretised by means of 2.5
finite elements (ε = 2.5 h, cf. Hildebrand and Miehe [53]). The numerical convergence
tests are evaluated by means of three different criteria: (1) spatial distribution of the
phase field parameter, (2) evolution of the stored energy (motivated by the steady state;
see also previous subsection) and (3) volume ratio between the two phases.

The spatial distributions of the phase field parameter corresponding to the steady
state solution are summarised in Fig. 5.5. While the finer discretisations with the
smaller diffuse interface thickness (ε = 1.25 mm and ε = 0.625 mm) do show a non-trivial
microstructure, this is not the case for the thicker diffuse interface (ε = 2.5 mm). The
discretisations with ε = 2.5 mm are too coarse in order to capture the considered random
initial microstructure, i.e., these discretisations act like filters and lead to a smearing of
the phases. Furthermore, the energy barrier induced by the interface energy increases
with decreasing length scale parameter ε. Since the coarsest discretisation shows the
largest ε, it leads to the lowest energy barrier. Accordingly, mixing of the phases is
energetically more favourable than phase separation for the coarsest discretisation.
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Figure 5.5: Influence of the interface thickness ε on the prediction of the microstructure p(X)
for the different homogenisation assumption; Horizontal: variation of the interface thickness ε =
2.5/1.25/0.625 mm. Vertical: different homogenisation assumptions; Material parameters according
to Tab. 5.4
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Figure 5.6: Influence of the interface thickness ε on the prediction of the stored energy Ψ̄ and the
volume ratio p̄ depending on the time t
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5 Computation of effective material properties in the interface

By way of contrast, the two finer discretisations with smaller length scale parameters
(ε = 1.25 mm and ε = 0.625 mm) result in a phase separation. While for a param-
eter ε = 0.625 mm the phase distribution seems to be independent of the underlying
homogenisation assumption, a deviation is observed for ε = 1.25 mm. Particularly the
microstructure associated with the Reuss/Sachs assumption is different from the other
presented homogenisation approaches for ε = 1.25 mm. In summary, the discretisations
are not allowed to be too coarse, even relatively fine discretisations show an influence of
the considered homogenisation schemes (a 100 × 100 × 100 discretisation shows already
more than 5 million degrees of freedom in 3D), and for sufficiently fine discretisations
(and length scale parameters ε) all homogenisation assumptions seem to converge to the
same solution.

This is also confirmed by the predicted average stored energy Ψ̄ and the volume
ratio between the two phases, see Fig. 5.6. While for the coarse discretisation and
the large length scale parameter ε the results strongly depend on the homogenisation
assumption (first row in Fig. 5.6), a convergence for the finer meshes with smaller length
scale parameters can be seen (bottom row in Fig. 5.6). Only the stored energy Ψ̄
corresponding to the Taylor/Voigt assumption shows a larger deviation. Furthermore,
the averaged energies Ψ̄ follow the same order as the bulk energies do (see Eq. 5.65),
i.e.,

Ψ̄RS ≤ Ψ̄R1 ≤ Ψ̄∂R1 ≤ Ψ̄TV. (5.109)

However, it bears emphasis that Ineq. (5.65) does not imply Ineq. (5.109) in general,
since the final energies Ψ̄ are indeed path-dependent.
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6 Cahn-Hilliard-type phase field
models coupled to continuum
mechanics

This chapter presents mechanically driven phase field models, which describe diffusive
phase segregation in solids. The theory originates from Cahn-Hilliard [24] for phase
segregation in the context of spinodal decomposition. In contrast to phase field theories
based on Allen and Cahn [2] as discussed in the previous chapter, Cahn-Hilliard-type
phase field models describe long term phase transformation processes. Modelling of
diffusion based phase transformations is relevant in many technological applications like
drug delivery, bio and chemical technology. In the following sections the mechanically
induced diffusive phase transformation is analysed in the context of the evolution of
microstructures and topology optimisation.

The main difference between the Allen-Cahn-type and the Cahn-Hilliard-type phase
field theory is exemplified by different kinds of phase motions in the unit cell. To be
more specific, the re-arrangement of phases within Cahn-Hilliard-type models is driven
by the difference in the chemical potential. Following the framework of Gurtin [50], the
chemical potential is governed by the (chemical) micro force balances which describe the
transport of phases within and across unit cells. Based on this theory, a Cahn-Hilliard-
type evolution equation is derived which enforces the conservation of volume.

As mentioned before, the focus of this chapter lies on the modelling of a deformation-
diffusion driven phase field model. The coupling of Cahn-Hilliard phase field models
to continuum mechanics (elasticity) was developed by Larché and Cahn [69] and Onuki
[97]. However, the elastic properties in the interface are not derived by homogenisation
theories as discussed in Section 5.3. In line with Section 5.3 the material behaviour of
each phase is determined in the current chapter by its individual bulk energy. By assum-
ing a deformation jump across the interface, effective elastic properties in the interface
follow naturally from homogenisation theory. For the present chapter a homogenisation
based on the Taylor/Voigt assumption is elaborated. With respect to the modelling of
a deformation-diffusion driven phase field theory, a mixed three-field theory depending
of the deformation, the phase parameter and the chemical potential is chosen. This
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6 Cahn-Hilliard-type phase field models coupled to continuum mechanics

approach provides the use of low order ansatz functions for the underlying finite ele-
ment scheme, and higher order ansatz functions for the resolution of the underlying
fourth-order differential equation are not required, cf. Dedè et al. [38], Rajagopal et al.
[106], Stogner et al. [128].

A problem which arises in deformation-diffusion induced phase field modelling is the
fulfilment of the natural phase parameter constraint p ∈ [0, 1]. Due to the coupling
to mechanics, admissible states for the phase parameter cannot be guaranteed a pri-
ori, which results in a constrained optimisation problem. In line with Section 5.4, the
constrained system of equations is transformed into an equivalent system of equations,
which fulfils the aforementioned constraints naturally. For this purpose, a robust imple-
mentation by means of Fischer-Burmeister NCP-functions is again applied.

The exact fulfilment of the phase parameter constraint and the conservation property
of Cahn-Hilliard-type models are very important for two deformation-diffusion driven
models which are considered in the following. In Section 6.1 a deformation driven Cahn-
Hilliard model is derived based on incremental energy minimisation. The second model
in Section 6.2 deals with topology optimisation.

6.1 Microstructural evolution based on a
Cahn-Hilliard-type phase field model

In this section a deformation driven Cahn-Hilliard-type phase field theory is developed
by means of variational constitutive updates. The starting point is a time-continuous
potential at finite strains. The minimiser of this potential follow jointly from the optimi-
sation (minimisation) principle, cf. Miehe et al. [84, 85]. With regard to the numerical
implementation, the time-continuous potential is discretised in time and space. The
aforementioned NCP-functions by Bartel and Hackl [10], Fischer [45] are applied for a
robust algorithmic formulation.

As mentioned before, the focus lies on the volume conservation property of the diffu-
sion driven Cahn-Hilliard theory. In order to demonstrate this feature, phase transfor-
mations based on different transformation (Bain) strains are analysed.

The following subsections are structured as follows: In Subsection 6.1.1 the underlying
balance equations are derived. In Subsection 6.1.2 the balance equations and constitu-
tive assumptions are transferred into a variationally consistent framework. Subsequently,
the numerical implementation is addressed in Subsection 6.1.3.1 (variational updates),
Subsection 6.1.3.2 (constrained optimisation) and Subsection 6.1.3.3 (finite element im-
plementation). The capability of the framework is demonstrated in Subsection 6.1.4 by
means of the analysis of evolving microstructures.
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6.1 Microstructural evolution based on a Cahn-Hilliard-type phase field model

6.1.1 Balance equations for a coupled deformation-diffusion driven
phase field model

A dual-phase system is considered in the following. In line with the phase field modelling
of Allen-Cahn-type in Section 5.1, the interface of this dual-phase system is assumed to
occupy a certain volume of the material. The respective fields for the phase parameter
and the deformation field are identical to the definitions in Eq. (5.2) and Eq. (2.1). For
the diffusion process, the additional chemical potential

μ :

{
B0 × τ → R

(X, t) 	→ μ(X, t)
(6.1)

is introduced as the third field variable. The gradient of the chemical potential is referred
to the reference configuration

GRADμ = ∇Xμ = ∇μ . (6.2)

The deformation, phase parameter and chemical potential are restricted to their respec-
tive balance equations and boundary conditions. For the deformation field the governing
equation is the balance of linear momentum (cf. Eq. (2.16))

DIVP+ ρ0 B = 0 on B0 , (6.3)

where inertia effects are not taken into account. For the micro force balance, external
micro forces are not considered (cf. Eq. (5.9)) which leads to the reduced balance
equation

DIVξ + π = 0 on B0 . (6.4)

Moreover, the evolution of the phase parameter within the unit cell fulfils the volume
constraint of the total amount of material. Thus, the phase field parameter p is identified
as a diffusing quantity, which can also be denoted as concentration (cf. Miehe et al. [85]).
The transport of phases is described by the balance of chemical micro forces (see Gurtin
[50])

d

dt

∫
Ω0

p dV = −
∫

∂Ω0

H ·N dA+

∫
Ω0

M dV . (6.5)

It states that the rate of phases equals the transport which is prescribed by the flux
H over the unit boundary ∂Ω0 and by the external supply M , cf. Eq. (2.10). The
minus sign accounts for the flux direction of the phase transport. In the following a
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6 Cahn-Hilliard-type phase field models coupled to continuum mechanics

system without external supply is assumed. After transformation of the surface integral
in Eq. (6.5) into a volume integral, the local form of the chemical micro force balance

ṗ = −DIVH on B0 (6.6)

is derived. The consideration of chemical forces leads to an adjustment of the balance
of energy. In the integral form, the balance of energy reads now

d

dt

∫
Ω0

{K + E} dV = PF + PΘ + Pp + Pμ , (6.7)

in which the chemical power

Pμ = −
∫

∂Ω0

H̄ μ dA (6.8)

is taken into account together with the external forces given in Eq. (2.18) (PF), Eq. (2.19)
(PΘ) and Eq. (5.12) (Pμ). The prescribed mass flux on the boundary is denoted by
H̄ = H ·N. After applying the Gauss divergence theorem and after insertion of balance
equations (6.3), (6.4) and (6.6), the local energy balance

Ė = P : Ḟ− DIVQ+RΘ − (π − μ) ṗ+ ξ · ∇̇p−H · ∇μ , (6.9)

is obtained. Kinetic energy is again omitted here. An important observation with respect
to Eq. (6.9) is that phase parameter and chemical potential are dual conjugated to one
another. This duality motivates a mixed variational principal as will be shown in the
following. For isothermal conditions (Q = 0, RΘ = 0, Θ̇ = 0), which are considered here,
and by means of the Legendre transformation (2.42) the internal energy results in

Ψ̇ + Θ Ṅ = P : Ḟ− (π − μ) ṗ+ ξ · ∇̇p−H · ∇μ . (6.10)

For the derivation of the second law of thermodynamics, the term DIVQ−RΘ in Eq. (6.9)
is used within the dissipation inequality (2.26). The resulting dissipation inequality reads

D = P : Ḟ+Θ Ṅ +Q ·G− (π − μ) ṗ+ ξ · ∇̇p−H · ∇μ− Ė ≥ 0 . (6.11)

As mentioned before, the focus is on isothermal processes so that, inequality (6.11)
reduces to

D = P : Ḟ− (π − μ) ṗ+ ξ · ∇̇p−H · ∇μ− Ψ̇ ≥ 0 . (6.12)

It should be emphasised that the dissipation inequality (6.12) could also be derived by
use of relation (5.17) (see Remark 5.2.1).
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6.1 Microstructural evolution based on a Cahn-Hilliard-type phase field model

Boundary conditions: The coupled system of equations can only be solved by con-
sidering initial and boundary conditions. Therefore, the underlying boundary, here in
its reference configuration ∂B0, is decomposed into Dirichlet and Neumann boundaries.
Since the mechanical-diffuse driven phase field problem is determined by three field
quantities, the deformation field, the chemical potential and the phase parameter, the
boundaries of these fields are specified by

∂B0 = ∂B0,ϕ ∪ ∂B0,T ∂B0 = ∂B0,p ∪ ∂B0,ξ ∂B0 = ∂B0,μ ∪ ∂B0,H . (6.13)

These boundaries are disjunct in the sense ∂B0,ϕ∩∂B0,T = ∅, ∂B0,p∩∂B0,ξ = ∅ and ∂B0,μ∩
∂B0,H = ∅. For the sake of completeness, the boundary conditions of the mechanical
(cf. Eq. (2.32)) and those of the phase field boundary value problem (cf. Eq. (5.21)) are
given again, i.e.

ϕ = ϕ̄ on ∂B0,ϕ , P ·N = T̄ on ∂B0,T (6.14)

and

p = p̄ on ∂B0,p , ξ ·N = 0 on ∂B0,ξ . (6.15)

On the boundary, the chemical potential reads

μ = μ̄ on ∂B0,μ , H ·N = H̄ on ∂B0,H . (6.16)

While μ̄ is the prescribed chemical potential on the Dirichlet boundary ∂B0,μ, flux H̄ is
the prescribed quantity on the Neumann boundary ∂B0,H. Note, that for a homogeneous
Neumann boundary

H̄ = 0 on ∂B0 (6.17)

no mass can flow inside or outside the body and conversation of the integrated phase
parameter is fulfilled (if no source terms are considered), see also Remark 6.1.3. The
initial conditions for the phase parameter are defined by the distribution in B0 at the
initial time t0

p(X, t0) = p0(X) in B0 . (6.18)

6.1.2 A variationally consistent phase field model coupled to
elasticity and diffusion

The starting point of the constitutive modelling is the energy of the deformation driven
phase field model given in Subsection 5.2.2. Again, the free energy (5.25), more precise,

Ψ(F, p,∇p) = ΨB(F, p) + ΨΓ(p,∇p) (6.19)
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6 Cahn-Hilliard-type phase field models coupled to continuum mechanics

is additively decomposed into a bulk energy part ΨB which is a function of the defor-
mation gradient and the phase parameter, and into a surface energy part ΨΓ which is
independent of the mechanical deformation. Postulating that the Helmholtz energy Ψ is
consistent with the dissipation inequality (6.12), Ψ cannot be a function of the chemical
potential μ or gradient ∇μ, since p and μ are dual variables. Inserting Eq. (6.19) into
dissipation inequality (6.12) yields

D =

[
P− ∂Ψ

∂F

]
: Ḟ−

[
π +

∂Ψ

∂p
− μ

]
ṗ+

[
ξ − ∂Ψ

∂∇p

]
· ∇̇p−H · ∇μ ≥ 0 . (6.20)

For arbitrary Ḟ, ṗ and ∇̇p the application of the classic Coleman & Noll procedure
leads to the requirement that the terms in the brackets vanish. Thus, the constitutive
relations for the Piola-Kirchhoff stress tensor P, the internal micro force π and the micro
stress vector ξ are obtained as

P =
∂ΨB

∂F
, π = μ− ∂ΨB

∂p
− ∂ΨΓ

∂p
, ξ =

∂ΨB

∂∇p +
∂ΨΓ

∂∇p . (6.21)

In contrast to Allen-Cahn-type phase field models, the motion of the phases is controlled
by a diffusion process. Therefore, π is a constitutive quantity. Re-inserting the relations
given in Eq. (6.21) into inequality (6.20) leads to the requirement

Ddif = −H · ∇μ ≥ 0 , (6.22)

where Ddif denotes the dissipation due to diffusion. Similarly to thermal conductivity
(cf. Eq. (2.55)), the diffusion process is described by a potential of the type

φ̂ =
1

2
κ|∇μ|2 . (6.23)

Clearly, the constitutive flux

H = − ∂φ̂

∂∇μ (6.24)

fulfils the necessary dissipation inequality (6.22), which results in κ |∇μ|2 ≥ 0 for all
κ > 0. In this regard κ specifies the mobility of the diffusion process. More complex and
more realistic diffusion relations may be obtained by the use of an anisotropic mobility
tensor which also depends on the phase parameter.

Following the work of Gurtin [50], Miehe et al. [84, 85], the deformation-diffusion cou-
pled phase field theory shows a variational structure. This means all balance equations
follow naturally as Euler/Lagrange equations from the minimisation of a functional. Sim-
ilar to the previous chapter, the functional consists of a stored energy rate, a dissipation
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6.1 Microstructural evolution based on a Cahn-Hilliard-type phase field model

functional and power terms as a consequence of external forces. The time-continuous
potential reads

İ =

∫
∂B0

Ψ̇(ϕ, p) dV + Φ(ṗ)− PF(ϕ̇) . (6.25)

Note, that in the current potential (6.25) external power is not generated by micro
tractions on the boundary, since Eq. (6.15) is assumed. The dissipation functional Φ
follows from the maximisation

Φ(ṗ) = sup
μ

⎧⎨⎩
∫
B0

{−μ ṗ− φ̂(∇μ)} dV −Pμ(μ)

⎫⎬⎭ , (6.26)

where the external power Pμ is taken from Eq. (6.8). As pointed out in Miehe et al.
[85], this maximisation can be seen as generalised Legendre transformation in which ṗ
and μ are dual to each other similar to the variational formulation in thermoelasticity,
cf. Subsection 2.6.2. The maximisation of dissipation functional (6.26) with respect to
the chemical potential is equivalent to the balance of chemical micro forces (6.6), which
will be proven later, and the solution

μ = arg sup
μ

⎧⎨⎩
∫
B0

{−μ ṗ− φ̂(∇μ)} dV − Pμ(μ)

⎫⎬⎭ (6.27)

is the maximiser of the dissipation functional (6.26).

In the following, a mixed variational potential is presented based on a three-field
description depending on the deformations, the phase field and the chemical potential.
The time-continuous potential thus reads

İ =

∫
B0

Ė(ϕ, p, μ, ) dV −PF(ϕ̇)− Pμ(μ) , (6.28)

in which the potential

Ė = Ψ̇B(F, p,∇p) + Ψ̇Γ(p,∇p)− μ ṗ− φ̂(∇μ) (6.29)

consists of stored energy contributions (Ψ̇B and Ψ̇Γ) and dissipative contributions

(−μ ṗ− φ̂). In this context, the power related external forces are assumed to be linearly
dependent on the field variables. In contrast to the 2-field potential (6.25), the diffu-

sion potential φ̂ is directly embedded in the rate potential (6.29). Thus, the resulting
potential represents a saddle-point problem with μ and p being dual to one another.
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6 Cahn-Hilliard-type phase field models coupled to continuum mechanics

Applying the framework of variationally consistent updates, the unknowns follow
naturally from the optimisation of the time-discretised potential ΔI, i.e.

(ϕ, p, μ) = arg inf
ϕ,p

sup
μ

ΔI . (6.30)

While the evolutions of the deformation field and the phase field are determined by
minimisation, the chemical potential is determined by maximisation. Further details
regarding the time-discretisation are discussed in Subsection 6.1.3.1.

In order to prove the consistency with respect to the balance equations presented in
Subsection 6.1.1, the stationary conditions of potential (6.28) are analysed. The variation
with respect to the deformation mapping yields by means of relation Eq. (6.21)1 the
balance of linear momentum (6.3) and the Neumann condition (6.14)2, cf. Eq (5.33).
The variation with respect to the phase parameter yields

δṗİ =

∫
B0

{∂p[ΨB +ΨΓ]− μ− DIV (∂∇p[ΨB +ΨΓ])} δṗdV

+

∫
∂B0

{∂∇p[ΨB +ΨΓ] ·N} δṗdA = 0 .

(6.31)

For admissible virtual phase parameter δṗ, the equivalent balance of micro forces and
the associated Neumann conditions are thus obtained, i.e.

−DIVξ − π = 0 on B0 ,
ξ ·N = 0 on ∂B0,ξ ,

(6.32)

in which the constitutive micro force (6.21)2 and the constitutive micro stress (6.21)3
are substituted. Similarly, the equivalent chemical balance equation and the associated
Neumann condition are obtained from the necessary stationarity condition

δμİ =

∫
B0

{
−ṗ+DIV

(
∂∇μφ̂

)}
δμ dV

−
∫
∂B0

{
∂∇μφ̂ ·N+ H̄

}
δμ dA = 0 .

(6.33)

Together with the mass flux (6.24) this condition is equivalent to

−ṗ− DIVH = 0 on B0 ,
H ·N = H̄ on ∂B0,H ,

(6.34)

being the balance equation (6.6) and the Neumann condition (6.16)2.
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6.1 Microstructural evolution based on a Cahn-Hilliard-type phase field model

Remark 6.1.1: A classic Cahn-Hilliard-type evolution equation is obtained by combin-
ing balance equations (6.34)1 and (6.32)1 and the constitutive relations (6.21)2, (6.21)3
and (6.23). The resulting fourth order differential equation

ṗ = −DIVH

= κDIV (∇μ)
= κDIV (∇{∂pΨB + ∂pΨΓ − DIV (∂∇pΨΓ)})

(6.35)

describes the phase parameter evolution for deformation-diffusion phase field problems.
At equilibrium, for p = const., the chemical potential μ is uniformly distributed.

Remark 6.1.2: In contrast to the Cahn-Hilliard-type evolution equation, the well-known
Fickian diffusion law is driven by the gradient of the phase parameter ∇p, i.e.

ṗ = κDIV(∇p) . (6.36)

At equilibrium, for p = const., the phases are uniformly distributed.

Remark 6.1.3: For flux condition H̄ = H · N = 0 on ∂B0 the integrated chemical
balance equation (6.34)1 reduces to∫

B0

ṗdV =

∫
B0

−DIVH dV =

∫
∂B0

−H ·N dA =

∫
∂B0

−H̄ dA = 0 . (6.37)

Consequently, the total volume of the material is conserved within the body B0.

6.1.2.1 Homogenisation of elastic properties in the interface

The hyperelastic material response in the individual phases are of the type

ΨBi
= ΨBi

(Fe
i , p) with Fe

i = Fi · FB
i

−1
, (6.38)

where FB
i describes the eigenstrain (Bain strain) of each individual phase i = {1, 2}. For

the definition of mechanical properties in the interface a homogenisation theory in line
with Section 5.3 is elaborated. For the sake of simplicity, the Taylor/Voigt assumption
�F� = 0 is taken, fulfilling kinematic compatibility but lacking statical compatibility.
In order to fulfil statical as well as kinematical compatibility, homogenisation theories
based on rank-1 connections in the interface (see Subsection 5.3) can also be applied.
Considering a Taylor/Voigt homogenisation assumption, the resulting total bulk energy
reads

ΨB(F, p) = [1− p] ΨB1

(
F · FB

1

−1
)
+ pΨB2

(
F · FB

2

−1
)
. (6.39)
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Note, that the homogenised energy is independent of the phase gradient. Based on
energy (6.39) equations (6.21)1-(6.21)3 result in

P = [1− p]P1 + pP2 , π = μ− �ΨB�− ∂ΨΓ

∂p
, ξ =

∂ΨΓ

∂∇p , (6.40)

in which �ΨB� = ΨB2−ΨB1 is the jump in energy between the two phases. The individual
stresses are defined as

Pi =
∂ΨBi

∂Fe
i

· FB
i

−T
. (6.41)

6.1.3 Numerical implementation

The following section deals with the numerical implementation of the proposed mixed
three-field variational formulation.

6.1.3.1 Incremental variational updates

By applying the framework of incremental variational updates as introduced in Subsec-
tion 2.6.1, the time-continuous rate potential is discretised. To this end, time interval
τ = [tn, tn+1] is considered. The underlying incremental potential reads after time inte-
gration of Eq. (6.28)

ΔI =

tn+1∫
tn

İ dt =
∫
B0

ΔE(ϕn+1, pn+1, μn+1,ϕn, pn, μn) dV

− PF(ϕn+1) + PF(ϕn)−ΔtPμ(μn+1) ,

(6.42)

with Δt = tn+1 − tn being the time increment. For the sake of simplicity, conserva-
tive external loads are assumed. Furthermore, the time-continuous potential (6.29) is
approximated by

ΔE = ΨB (Fn+1, pn+1)−ΨB (Fn, pn)

+ ΨΓ(pn+1,∇pn+1)−ΨΓ(pn,∇pn)
− μn+1 [pn+1 − pn]−Δt φ̂ (∇μn+1) .

(6.43)

For readability reasons, the time index n + 1 at the current time tn+1 is neglected in
the following. The deformation, phase parameter and the chemical potential at current
time are now obtained by means of the variational principle

(ϕ, p, μ) = arg inf
ϕ,p

sup
μ

ΔI . (6.44)
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6.1 Microstructural evolution based on a Cahn-Hilliard-type phase field model

In order to see this more explicitly, the respective stationarity conditions

δϕ ΔI =

∫
B0

P : δF dV −
∫
B0

ρ0B · δϕ dV −
∫

∂B0

T̄ · δϕ dA = 0 ,

δpΔI =

∫
B0

{−π δp+ ξ · ∇δp} dV = 0 ,

δμΔI =

∫
B0

{−[p− pn] δμ+ΔH · ∇δμ} dV −Δt

∫
∂B0

H̄ δμ dA = 0 ,

(6.45)

are computed. Note, that Eq. (6.45)1-(6.45)3 are equivalent to respective weak formu-
lations. An interesting point regarding these variations is that the constitutives P, π, ξ
and ΔH follow naturally as partial derivatives from the incremental potential ΔE , i.e.

P =
∂ΔE
∂F

=
∂ΨB

∂F
= [1− p]P1 + pP2 , ξ =

∂ΔE
∂∇p =

∂ΨΓ

∂∇p ,

π = −∂ΔE
∂p

= μ− �ΨB�− ∂ΨΓ

∂p
, ΔH =

∂ΔE
∂∇μ = −Δt ∂φ̂

∂∇μ .
(6.46)

6.1.3.2 Constrained optimisation

As discussed in Subsection 5.4.2, the constraint p ∈ [0, 1] is a priori not guaranteed
for the saddle point problem (6.44). In order to enforce this constraint, the extended
Lagrangian potential

ΔĨ(ϕ, p, μ, λ1, λ2) = ΔI(ϕ, p, μ) + λ1 r1 + λ2 r2 (6.47)

is introduced. Again, λ1 ≥ 0 is the Lagrange parameter of the constraint r1 = p− 1 ≤ 0
and λ2 ≥ 0 is the Lagrange parameter of the constraint r2 = −p ≤ 0. Following the
proposed solution method in Subsection 5.4.2, the nonlinear complementary conditions
are solved by introducing equivalent Fischer-Burmeister NCP functions gi(p, λi) = 0
for i = {1, 2}, see Eq. (5.82). For further details, the interested reader is referred to
Subsection 5.4.2 and to Bartel and Hackl [10], Fischer [45]. Finally, the overall system
of linear equations can be written into the residual form⎡⎢⎢⎢⎢⎣

δϕΔĨ(ϕ, p, μ, λ1, λ2)
δμΔĨ(ϕ, p, μ, λ1, λ2)
δpΔĨ(ϕ, p, μ, λ1, λ2)

g1(p, λ1)
g2(p, λ2)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
δϕΔI(ϕ, p, μ)
δμΔI(ϕ, p, μ)

δpΔI(ϕ, p, μ) + λ1 δp− λ2 δp√
[p− 1]2 + λ21 + [p− 1]− λ1√

[−p]2 + λ22 − p− λ2

⎤⎥⎥⎥⎥⎦ = 0 on B0. (6.48)
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Standard Newton based solution schemes can be applied to solve the nonlinear system of
equations together with the associated boundary conditions in Eq. (6.14), (6.16), (6.15)
and appropriate initial conditions (6.16). As mentioned before, the introduction of 2
additional field variables λ1 and λ2 increases the system of nonlinear equations to 5 field
variables. However, since only one Lagrange parameter can be active, either r1 or r2 is
not satisfied, the system of equations could be reduced to only one constraint. In the
present work both NCP functions are taken into account. Apart from the constrained
optimisation, the consideration of the NCP functions leads to the loss of the variational
structure, see Remark 5.4.4.

6.1.3.3 Finite element implementation

Next, the presented incremental potential for the coupled problem is spatially discretised
by finite elements. To this end, the referential body is approximated by the partition

B0 ≈ Bh
0 =

nel⋃
e=1

Be
0 , (6.49)

into nel elements. Focussing on one element Be
0, the referential coordinates X, the defor-

mation map ϕ, the phase parameter p and the chemical potential μ, are approximated
by

X|Be
0
≈ Xh =

nen∑
a=1

Na Xa , ϕ|Be
0
≈ ϕh =

nen∑
a=1

Na ϕa ,

p|Be
0
≈ ph =

nen∑
a=1

Na pa , μ|Be
0
≈ μh =

nen∑
a=1

Na μa .

(6.50)

The nodal values at element node a are denoted as Xa, ϕa, pa and μa. Following the
isoparametric concept, all presented field variables are interpolated by the same shape
functions Na. As already emphasised in Subsection 5.4.3, the Lagrange parameters λ1
and λ2 are not interpolated since they constrain the phase parameter at node point a.
Furthermore, within all presented numerical examples linear shape functions are utilised,
due to the constraint p ∈ [0, 1] (see Remark 5.4.6). Based on the approximations (6.50),
the gradients with respect to the reference configuration

Fh = ∇ϕh =
nen∑
a=1

ϕa ⊗∇Na , ∇ph =
nen∑
a=1

pa∇Na , ∇μh =
nen∑
a=1

μa∇Na (6.51)

are obtained, where the gradient of the shape function with respect to the referential
configuration is denoted by ∇Na. Following a standard Bubnov-Galerkin discretisation,
the virtual displacement δϕ, the virtual phase parameter δp and the virtual chemical
potential δμ are interpolated with the same ansatz functions. Subsequently, these rela-
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tions are inserted into the residual form (6.48). For one element, the discretised weak
formulations read

δϕΔĨ|Be
0
=

nen∑
a=1

δϕa ·
[
faϕ,int − faϕ,vol − faϕ,sur

]
,

δμΔĨ|Be
0
=

nen∑
a=1

δμa
[
fa
μ,int − fa

μ,sur

]
,

δpΔĨ|Be
0
=

nen∑
a=1

δpa
[
fa
p,int + λa1 − λa2

]
,

(6.52)

in which δϕa, δμa and δpa denote the virtual placement, virtual phase parameter and
virtual chemical potential at node point a. The nodal forces in Eq. (6.52) are defined as

faϕ,int =

∫
Be
0

P · ∇Na dV , faϕ,vol =

∫
Be
0

Na ρ0 B dV , faϕ,sur =

∫
∂Be

0

Na T̄ dA ,

fa
μ,int =

∫
Be
0

{−Na [p− pn] +∇Na ·ΔH} dV , fa
μ,sur =

∫
∂Be

0

Na Δt H̄ dA ,

fa
p,int =

∫
Be
0

{−Na π +∇Na · ξ} dV .

(6.53)

The external forces are related to the body forces faϕ,vol, the traction forces faϕ,sur and the
forces related to the external mass flux fa

μ,sur. For the finite element solution the forces
in Eq. (6.53) are assembled in the residual form

rA =

nel

A
e=1

⎡⎢⎢⎢⎢⎣
raϕ
raμ
rap
raλ1

raλ2

⎤⎥⎥⎥⎥⎦ = 0 with

⎡⎢⎢⎢⎢⎣
raϕ
raμ
rap
raλ1

raλ2

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
faϕ,int − faϕ,vol − faϕ,sur

fa
μ,int − fa

μ,sur

fa
p,int + λa1 − λa2
g1(p

a, λa1)
g2(p

a, λa2)

⎤⎥⎥⎥⎥⎦ . (6.54)

A solution for the global node point A is found if the global residual rA vanishes.
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The nonlinear coupled system of equations (6.54) can be solved numerically by various
solution schemes (see e.g. Geiger and Kanzow [47]). Coupled systems of equations are
solved either monolithically or in a staggered scheme, e.g. Simo and Miehe [121]. For the
present model a monolithic solution scheme based on Newton-type iteration is applied.
For this purpose, the nodal residuals on the element level ra = [raϕ, r

a
μ, r

a
p , r

a
λ1
, raλ2

]T are
linearised with respect to the nodal solution vector db = [ϕb, μb, pb, λb1, λ

b
2]
T of node point

b. The resulting nodal stiffness components can be written as

Kab =
dra

ddb
=

⎡⎢⎢⎢⎢⎣
Kab

ϕϕ Kab
ϕμ Kab

ϕp 0 0
Kab

μϕ Kab
μμ Kab

μp 0 0
Kab

pϕ Kab
pμ Kab

pp Kab
pλ1

Kab
pλ2

0 0 Kab
λ1p

Kab
λ1λ1

0
0 0 Kab

λ2p
0 Kab

λ2λ2

⎤⎥⎥⎥⎥⎦ . (6.55)

As mentioned in Subsection 6.1.3.2, the consideration of the additional NCP functions
yields an unsymmetrical stiffness matrix. Although the upper matrix, referring to the
variables [ϕb, μb, pb], is based on a variational principle and is therefore symmetric in
nature, the lower matrix shows an unsymmetrical, however, diagonal structure. Here,
the interested reader is referred to Subsection 5.4.3, where the stiffness components are
derived in Eq. (5.99).

The symmetrical part of the stiffness components are computed in the follow-
ing. Based on the incremental variational structure and the constitutive relations in
Eq. (6.46), the nodal stiffness components are obtained by

Kab
ϕϕ =

draϕ
dϕb

=

∫
Be
0

∇Na •
[
[1− p] ∂

2ΨB1

∂F2
1

+ p
∂2ΨB2

∂F2
2

]
· ∇N b dV ,

Kab
ϕp =

draϕ
dpb

=

∫
Be
0

N b [P2 −P1] · ∇Na dV ,

Kab
μμ =

draμ
dμb

=

∫
Be
0

−∇Na · ∂
2φ̂

∂∇μ2
· ∇N b dV ,

Kab
μp =

draμ
dpb

=

∫
Be
0

−NaN b dV ,

Kab
pp =

drap
dpb

=

∫
Be
0

{
Na ∂

2ΨΓ

∂p2
N b +∇Na · ∂

2ΨΓ

∂∇p2 · ∇N
b

}
dV ,

(6.56)

in which, as noted before, dead-loads are assumed for the present model. The triv-

ial stiffness components are identified as Kab
ϕμ = Kab

μϕ
T
= 0. The remaining stiffness

components are symmetric and are not presented here.
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6.1.4 Numerical example

In this section a numerical test is presented which demonstrates the capabilities of the
underlying deformation-diffusion driven phase field model. For this purpose, the evolu-
tion of microstructure in a dual-phase material is analysed.

6.1.4.1 Phase field prototype model

The following prototype model is defined by the hyperelastic energies

ΨB1(F
e
1) =

μ1

2

[
Je
1
−2/3 Fe

1 : F
e
1 − 3

]
+
κ1
2

[
Je
1
2

2
− 1

2
− log Je

1

]
+Ψ0

B1
,

ΨB2(F
e
2) =

μ2

2

[
Je
2
−2/3 Fe

2 : F
e
2 − 3

]
+
κ2
2

[
Je
2
2

2
− 1

2
− log Je

2

]
+Ψ0

B2
,

(6.57)

where each energy term is determined by three material constants. These constants are
the shear modulus μi = 1/2 Ei/[1 + νi] and the bulk modulus κi = 1/3 Ei/[1 − 2 νi]
which are functions of Youngs modulus Ei and Poisson ratio νi. The energy offsets
Ψ0

Bi
take account of chemical contributions. However, they are assumed as constants

here. The elastic energies in Eq. (6.57) only depend on the elastic deformation gradients

Fe
i = Fi · FB

i
−1

(cf. Eq. (6.38)). As mentioned before, the elastic properties in the
interface are derived by the Taylor/Voigt assumption F1 = F2 = F. Accordingly, the
elastic deformation gradients for phase one and two yield

Fe
1 = F · FB

1

−1
Fe

2 = F · FB
2

−1
. (6.58)

In order to examine the influence of Bain strain pairs FB
1 /F

B
2 on the microstructure,

three different Bain strain pairs are considered in the following. These Bain strain pairs
are specified as

• Bain configuration 1: Pure shear connected

FB
1 =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ , FB
2 =

⎡⎢⎢⎣
1 + α 0 0

0 1− α

2
0

0 0 1− α

2

⎤⎥⎥⎦ , (6.59)

with α = 0.1;

• Bain configuration 2: Simple shear connected

FB
1 =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ , FB
2 =

⎡⎣1 α 0
0 1 0
0 0 1

⎤⎦ , (6.60)
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with α = 0.1;

• Bain configuration 3: Rank-1 connected

FB
1 =

⎡⎢⎢⎢⎢⎣
− [α + γ] [α2 − 4αγ + γ2]

2 [α2 + γ2]
−α− γ

2
0

[α− γ] [α2 + 4αγ + γ2]

2 [α2 + γ2]

α + γ

2
0

0 0 β

⎤⎥⎥⎥⎥⎦ , FB
2 =

⎡⎢⎢⎣
α + γ

2
−α − γ

2
0

−α− γ
2

α + γ

2
0

0 0 β

⎤⎥⎥⎦ .
(6.61)

with α = 1.0619, β = 0.9178 and γ = 1.0231 (taken from Hildebrand and Miehe
[53]);

It should be emphasised, that Bain configuration 3 satisfies the twinning equation FB
1 −

FB
2 = a ⊗ Ñ for the normalised vector Ñ = ±e1, where e1 is the Cartesian basis

vector. Thus, the deformations within the different phases are rank-1 connected and the
corresponding interface is denoted as mechanically coherent interface. Further details
are given in Hildebrand and Miehe [53].

Next, the interface energy ΨΓ and the diffusion potential φ̂ are specified. As already
given in Eq. (5.6) and Eq. (6.23), these are

ΨΓ = ψΓ
0

{
6

ε
p2 [1− p]2 + 3

2
ε‖∇p‖2

}
,

φ̂ =
1

2
κ|∇μ|2 .

(6.62)

The interface energy is determined by the area specific interface energy ψΓ
0 and the

length scale parameter ε which describes the interface thickness. The mobility of the
diffusive interface is defined by κ.

The nonlinear system of equations (Eq. (6.54) and Eq. (6.55)) was implemented in
a straightforward manner into the parallel version of FEAP Taylor [131]. In addition
to a fully three-dimensional model, plane strain conditions were also implemented. The
number of unknowns per node is in the general 3D case seven and in the 2D case six.
The system of equations is solved monolithically within a Newton-type solution scheme.
Based on the unsymmetrical stiffness matrix in Eq. (6.55) a solver for unsymmetric
matrices is required. To this end, the direct SuperLU solver of the PETSc library Balay
et al. [7] is applied.

6.1.4.2 Influence of Bain strains on the evolution of the microstructure

The following example is related to the evolution of microstructures driven by defor-
mation and diffusion. For this purpose, a 2D quadratic plate with an edge length of
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Phase Name Symbol Value Unit

Phase 1 Youngs modulus E1 74000 [MPa]
Poisson ratio ν1 0.34 [-]
Chemical energy Ψ0

B1
0 [MPa]

Phase 2 Youngs modulus E2 74000 [MPa]
Poisson ratio ν2 0.34 [-]
Chemical energy Ψ0

B2
0 [MPa]

Interface Area specific surface energy ψΓ
0 20.0 [N/mm]

Interface thickness ε 3.0 [mm]
Diffusion mobility κ 10.0 [mm4/N s]

Table 6.1: Material parameters for the evolution of microstructure based on different Bain strains

L = 100 mm and a circular void in its centre with a diameter of L/3 is considered. The
outer boundary of the body has fixed displacements, i.e. ϕ̄ = 0 on ∂B0,ϕ. The setup of
the test is illustrated in Fig. 6.1. The phase parameter is initialized by

ϕ̄ = 0
�L/3L

L

Figure 6.1: Boundary value problem for the analysis of different Bain strains; Edge length L = 100 mm

p̄0(X) = 0.5 ∀X ∈ B0 . (6.63)

Accordingly, 50% of the volume fraction refer to phase one and the other 50% of the
volume fraction refer to phase two. Conservation is enforced through the boundary
condition (see Eq. (6.37))

H̄ = 0 on ∂B0 . (6.64)

The applied material parameters of the two phases are summarised in Tab. 6.1. The
elastic constants are identical. However, the mechanical behaviour differs in phase one
and two since Bain strain one and Bain strain two are different. In the following, three
different Bain strain pairs, as defined in the previous section, are tested. The domain
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in Fig. 6.1 is discretised with ∼15000 linear 4-noded quadrilateral elements resulting in
more than 90000 degrees of freedom. An adaptive time increment refinement is used,
in which the time increment starts at Δt = 10−6 s and increases to Δt = 0.01 s. The
adaptive time update is identical for all simulations.

During the first steps it can be seen that the initial phase distribution is energetically
not favourable. The structural inhomogeneity of the plate leads to an inhomogeneous
deformation state. Driven by the mechanical deformation field, phase domains are nu-
cleated at the circular hole. Consequently, the energetic relaxation causes the formation
of fine microstructure. Subsequently, a re-ordering can be detected in which clusters of
either phase one (p = 0) or phase two (p = 1) develop, leading to a reduction of the
interface area.

With respect to the constrained optimisation, the NCP functions are activated in all
simulations. The influence of NCP functions leads to the exact fulfilment of the phase
constraint. Furthermore, the total amount of phase volume 1 and 2 is conserved during
the simulations.

In Fig. 6.2 the evolution of phases and the material distribution, are shown for the
three proposed Bain configurations. As expected, the formation of microstructure de-
pends on the considered Bain pairs. Although the boundary value problem is sym-
metrical, the microstructure does not evolve symmetrically. This can be explained by
numerical perturbations during the nucleation process. However, the steady state solu-
tions corresponding to Bain configuration 1 & 2 at tend seem to be symmetrical. Only
Bain configuration 3 results in an unsymmetrical microstructure. Figure 6.2 displays
also the mechanical transformation behaviour. While for Bain configurations 1 & 3 the
deformation of the inner circle increases with time, the final form of the Bain configu-
ration 2 relaxes from a sheared ellipse to the initial circle form. This is due to the fact
that phase one (identity Bain strain) surrounds the inner circle.

The evolution of the chemical potential μ is displayed in Fig. 6.3 for the time steps t1
and tend. High gradients of the chemical potential are initially present for all configura-
tions. Corresponding to the material distribution in Fig. 6.2, the high gradients govern
the diffusion process. At time tend the chemical potential is nearly constant throughout
the domain for all distributions, which confirms the steady state solution. Only for Bain
pair 3 a small gradient still exists.
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Figure 6.2: Evolution of phase field parameter p for three different Bain strain pairs at four time
steps (top down evolution); Bain pair 1 (left column), Bain pair 2 (middle column) and Bain pair 3
(right column) are chosen according to page 151; Plots are shown in the deformed configuration (scale
parameter 5×); Steady state solutions at tend: Bain pair 1 tend = 0.589 s, Bain pair 2 tend = 2.014 s,
Bain pair 3 tend = 6.064 s
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Figure 6.3: Distribution of chemical potential μ for three different Bain strain pairs at two time steps;
Bain pair 1 (left column), Bain pair 2 (middle column) and Bain pair 3 (right column) are chosen
according to page 151; Plots are shown in the deformed configuration (scale parameter 5×); Steady
state solutions at tend: Bain pair 1 tend = 0.589 s, Bain pair 2 tend = 2.014 s, Bain pair 3 tend = 6.064 s
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6.2 A Cahn-Hilliard based phase field model for
topology optimisation

The Cahn-Hilliard model presented before naturally account for a redistribution of mate-
rial by simultaneously conserving the total volume. Thus, the framework is also promis-
ing for topology optimisation.

In line with Blank et al. [19], Bourdin and Chambolle [22], Dedè et al. [38], Wallin
et al. [134] the phase parameter p ∈ [0, 1] represents the material distribution (topology)
of the problem. The phase p = 1 characterises the material phase and p = 0 denotes the
void phase. Intermediate phases p ∈ (0, 1) are penalized due to the underlying interface
energy of Modica and Mortola [87]. In contrast to the classic solid isotropic material
penalisation ansatz (SIMP), cf. Bendsøe and Sigmund [16], Kotucha [67], a gradient
of the phase parameter is included in a natural fashion. As a result of this gradient
regularisation mesh-dependencies in finite element schemes are avoided.

The re-arrangement of material is driven by the gradient of the chemical potential.
However, the underlying balance of chemical micro forces is coupled to the balance of lin-
ear momentum. Therefore, the material distribution is also driven by the elastic material
behaviour. Following the publication of Wallin et al. [134], the optimization procedure
is governed by an objective functional. This objective functional consists of bulk energy,
interface energy and mass diffusion potential. The optimisation of this objective func-
tional is subjected to the balance of linear momentum and traction continuity. For this
purpose, all constraints are incorporated by using Lagrangian multipliers. Hence, all
governing equations follow jointly from the stationary conditions. As mentioned before,
the conservation of volume is naturally embedded in the underlying Cahn-Hilliard-type
phase field theory.

Furthermore, the resulting system of equations is subjected to the admissible phase
range p ∈ [0, 1]. Different strategies for guaranteeing this constraint can be found in
the literature, see e.g. Kotucha [67], Wallin and Ristinmaa [133], Wallin et al. [134]. In
the present section, the robust NCP functions of Fischer-Burmeister are applied again
for the exact fulfilment of this constraint. Surprisingly, the final system of governing
equations shows a strong similarity to the derived equations of the previous section.

This section is structured as follows: After an introduction to structural topology
optimisation within a geometrically linearised theory in Subsection 6.2.1, a model for
topology optimisation is derived in Subsection 6.2.2 based on a Cahn-Hilliard-type phase
field theory. The capability and robustness of the governing formulation is demonstrated
in Subsection 6.2.3.
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6.2.1 Structural topology optimisation

The problem which is addressed in topology optimisation is associated with the distri-
bution of material in the design space B0. For the distribution of material, the design
parameter p ∈ [0, 1] is introduced, where p = 0 determines void and p = 1 determines
full material. In order to compare the optimal design, an objective functional is defined
and subjected to certain constraints. In the following, the stored energy∫

B0

ΨB(ε, p) dV (6.65)

is chosen as the objective function. According to Kotucha [67] the minimisation of
Eq. (6.65) is equivalent to the maximisation of structure stiffness for linearised elasticity
theory. Here, ε denotes the linearised Green-Lagrange strain tensor E = 1/2 [C − I].
Similar to the homogenisation of bulk energies in dual-phases, the bulk energy of a
material point is assumed as

ΨB = [1− p] ΨB1 + pΨB2 , (6.66)

in which every phase energy is defined as ΨBi
= 1/2 εi : Ci : εi. Here, the fourth-order

tensor Ci denotes the elastic stiffness. Assuming a homogenisation of Taylor/Voigt, i.e.
ε = ∇u = ε1 = ε2, the averaged strain tensor is identical in every phase. Since phase
one is associated with the void phase ΨB1 = 0. Thus, the bulk energy reduces to

ΨB = pΨB2 = p
1

2
ε : C : ε . (6.67)

Accordingly, the local Cauchy stress yields σ = pC : ε. The determination of the design
parameter is subjected to the balance of linear momentum, stress continuity and the
preservation of material volume. Therefore, the summarised constrained optimisation
problem reads

inf
p

∫
B0

ΨB(ε, p) dV subject to: divσ + ρ0 b = 0 on B0 ,

σ · n = t̄ on ∂B0 ,

∫
B0

p(x) dV = V0 .

(6.68)

Here, V0 represents the total volume of material phase. The solution of problem (6.68)
provides the distribution of the material phase, i.e. the topology. However, the numeri-
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cal optimisation of this problem becomes challenging if only the integer values p = 0 or
p = 1 are allowed. To overcome this, intermediate values, i.e. p ∈ [0, 1], are permitted.
However, this leads to an undesired smearing of phases. For this purpose, different regu-
larisation approaches have been developed in the past. A frequently applied approach is
based on the SIMP ansatz (solid isotropic material penalisation), see Bendsøe and Sig-
mund [16], Kotucha [67] for further details. However, models based on the SIMP ansatz
are not uniquely defined which leads to mesh dependencies in finite element schemes
(see also Kotucha [67]). By introducing a gradient of the design parameter, this mesh
dependency can be avoided, cf Sigmund and Petersson [115]. An alternative approach
for the regularisation of intermediate phases is addressed in Wallin et al. [134]. It is
based on the extension of the objective functional with an additional interface energy.
This interface energy is related to the phase field theory as advocated in Section 5.1.
The proposed model in Wallin et al. [134] is also applied in the rest of this section.

6.2.2 Regularised topology optimisation based on
Cahn-Hilliard-type phase field modelling

The objective functional (6.68) is now extended by the classic sharp interface approxi-
mation of Modica and Mortola [87] as introduced in Section 5.1. Based on this interface
energy, the minima of the material distribution corresponds to the void phase (p = 0)
and the material phase (p = 1). Intermediate phases p ∈ (0, 1) are penalised. Moreover,
the total amount of material conservation as required in Eq. (6.68)3 is directly incor-
porated into the objective functional by using the Cahn-Hilliard-type potential (6.29).
Following the approach in Eq. (6.29) together with the boundary condition ∇μ · n = 0,
the rate form of the objective potential reads

˙̂
Φ =

∫
B0

{
Ψ̇B(ε, p) + Ψ̇Γ(p,∇p)− μ ṗ− φ̂(∇μ)

}
dV , (6.69)

where ΨΓ again represents the interface energy of Modica and Mortola [87] and where φ̂
again denotes the mass-diffusion potential. Focussing on the numerical implementation,
the time-continuous potential is transferred into a time-discrete potential. Integration
of Eq. (6.69) over time interval τ ∈ [tn, tn+1] leads to

ΔΦ̂ =

tn+1∫
tn

˙̂
Φ dt =

∫
B0

{
ΨB −ΨB|n +ΨΓ −ΨΓ|n − μ [p− pn]−Δt φ̂(∇μ)

}
dV . (6.70)

For the sake of simplicity, the time index (•)n+1 denoting the values and functions at
current time tn+1 is omitted here. Values and functions corresponding to the previous
time tn are indicated by the index (•)n. The time increment is denoted by Δt = tn+1−tn.
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By using the incremental functional (6.70) the optimisation problem in Eq. (6.68) reduces
to

inf
p

sup
μ

ΔΦ̂ subject to: divσ + ρ0 b = 0 on B0 ,

σ · n = t̄ on ∂B0 ,
(6.71)

where the objective potential is still subjected to balance of linear momentum and stress
continuity. In order to take account of these constraints, the Lagrangian multipliers λe

and λt are introduced. The extended functional for the underlying design space yields

ΔΦ̂ext = ΔΦ̂ +

∫
B0

λe · [divσ + ρ0 b] dV +

∫
∂B0

λt · [σ · n− t̄] dA . (6.72)

Consequently, the objective functional in Eq. (6.72) depends on the displacement field
u, phase parameter p, the chemical potential μ and the Lagrangian parameters λe and
λt. To solve optimisation problem (6.72) the stationarity condition

δΔΦ̂ext = 0 (6.73)

is derived with respect to all unknowns. According to Eq. (6.73) the necessary conditions

δuΔΦ̂ext =

∫
B0

[
∂ΨB

∂ε
−∇λe :

∂σ

∂ε

]
: δε dV

+

∫
∂B0

[
λe + λt

]
·
[
n · ∂σ

∂ε

]
: δε dA = 0 ,

δpΔΦ̂ext =

∫
B0

{[
∂ΨB

∂p
+
∂ΨΓ

∂p
− μ−∇λe :

∂σ

∂p

]
δp+

∂ΨΓ

∂∇p · ∇δp
}

dV

+

∫
∂B0

[
λe + λt

]
·
[
n · ∂σ

∂p

]
δp dA = 0 , (6.74)

δμΔΦ̂ext =

∫
B0

{
−[p− pn] δμ−Δt

∂φ̂

∂∇μ · ∇δμ
}

dV = 0 ,

δλeΔΦ̂ext =

∫
B0

[divσ + ρ0 b] · δλe dV = 0 ,
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δλtΔΦ̂ext =

∫
∂B0

[σ · n− t̄] · δλt dA = 0

are required. From Eq. (6.74)1 it can be concluded that the bracket expressions for
arbitrary δε need to vanish, i.e.

∂ΨB

∂ε
−∇λe :

∂σ

∂ε
= 0 on B0 ,

λe + λt = 0 on ∂B0 .
(6.75)

By using Eq. (6.67) and σ = pC : ε, Eq. (6.75)1 leads to the requirement

∇λe = ε . (6.76)

Based on this relation and definition ∇λe : ∂pσ = 2ΨB2, the governing equation for
the phase parameter is derived from Eq. (6.74)2. Considering Gauss theorem and the
homogeneous Neumann boundary ξ · n = ∂∇pΨΓ · n = 0, leads to

∂ΨB

∂p
+
∂ΨΓ

∂p
− μ−∇λe :

∂σ

∂p
− div

(
∂ΨΓ

∂∇p

)
=

−ΨB2 +
∂ΨΓ

∂p
− μ− div

(
∂ΨΓ

∂∇p

)
=

−π − divξ = 0 on B0 ,

(6.77)

in which the constitutive relations π = μ+ΨB2 − ∂pΨΓ and ξ = ∂∇pΨΓ are substituted.
Thus, Eq. (6.74)2 is equivalent to the weak form of micro force balance as derived
in Eq. (6.4). The second term in Eq. (6.74)2 vanishes due to the condition (6.75)2.
Furthermore, variation (6.74)3 corresponds to the time integrated weak form of the
chemical force balance (6.5) under consideration of the boundary condition Δh · n = 0.
In order to prove this, Gauss theorem is applied to variation (6.74)3 leading to the
requirement

−[p− pn] + div

(
Δt

∂φ̂

∂∇μ

)
=

−[p− pn]− divΔh = 0 on B0 ,
(6.78)

where the constitutive flux Δh = −Δt ∂∇μφ̂ is inserted. Furthermore, the variations
in Eq. (6.74)4 and Eq. (6.74)5 imply equilibrium and traction force continuity on the
boundary, i.e.

divσ + ρ0 b = 0 on B0 ,
σ · n = t̄ on ∂B0 .

(6.79)
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It should be emphasised that the objective functional in Eq. (6.72) does not represent
a variational structure. Although the three governing equations, equilibrium, balance
of micro forces and balance of chemical forces, result from the stationarity condition of
Eq. (6.72), the Hessian of the coupled system (6.77)-(6.77) does not show a symmetric
structure. However, exceptions may be constructed (see Remark 6.2.1).

Remark 6.2.1: Phase field models for topology optimisation generally show no varia-
tional structure. However, for the presented model a rate potential of the form

İ =

∫
B0

{
Ψ̇Γ − Ψ̇B − μ ṗ− φ̂

}
dV + PF(u̇) (6.80)

can be constructed. Evidently, all presented Euler-Lagrange equations in Eq. (6.74) are
stationary conditions associated with Eq. (6.80) (see also Eq. (6.82)).

With respect to the numerical implementation, the optimisation is subject to admis-
sible phases p ∈ [0, 1]. In order to remain in the interval, several techniques are known
in the context of phase field theory. For instance, in Wallin et al. [134] a cut-off function
for the phase separation and a residual interpolation function are suggested to guarantee
the constraint p ∈ [0, 1]. Although states outside this range are highly penalised, the
authors in Wallin et al. [134] obtained non admissible values in their numerical exam-
ples. Thus, an alternative method is necessary for the aforementioned constraint. In
the following, a robust and exact optimisation based on the proposed NCP-functions
in Subsection 5.4.2 is elaborated. Similarly to Subsection 6.1.3.2, the incorporation of
the inequality constraints r1 = p − 1 ≤ 0 and r2 = −p ≤ 0 leads to the Lagrangian
functional

Δ
˜̂
Φ

ext

= ΔΦ̂+

∫
B0

λe · [divσ + ρ0 b] dV +

∫
∂B0

λt · [σ · n− t̄] dA+ r1 λ1+ r2 λ2 . (6.81)

The stationarity conditions corresponding to Eq. (6.81) are given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
B0

−σ : δε dV +
∫
B0

ρ0 b · δu dV +
∫

∂B0

t̄ · δu dA∫
B0

{−[p− pn] δμ+Δh · ∇δμ} dV∫
B0

{[−ΨB2 + ∂pΨΓ − μ] δp+ ξ · ∇δp} dV + λ1 δp− λ2 δp√
[p− 1 + ε1]2 + λ21 + [p− 1 + ε1]− λ1√
[−p + ε2]2 + λ22 + [−p + ε2]− λ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0 on B0. (6.82)

For numerical stability, the slightly adjusted NCP functions (see Remark 5.4.2) with
εtol = 0 are suggested. By choosing the perturbations ε1 = 0 and ε2 = 10−3 the
admissible interval p ∈ [0, 1] moves to interior points, so that a small residual stiffness
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remains in the void phase and no singularity occurs. The nonlinear system of equations is
spatially discretised by means of finite elements and is solved by employing a monolithic
Newton-type solution scheme. For the consistent finite element implementation the
interested reader is referred to Subsection 6.1.3.3. The comparison of the residuals in
Eq. (6.48) (for the Cahn-Hilliard-type phase field model) and in Eq. (6.82) shows a
similar structure. Only the residual of the phase parameter differs.

Remark 6.2.2: Within the presented formulation several model parameters are applied,
which are purely related to the numerical stability within topology optimisation based on
phase field. These parameter are the area specific interface energy ψΓ

0 and the interface
thickness ε.

6.2.3 Numerical example

The capability of the presented topology optimisation is demonstrated in the following
example.

As starting point the constitutive assumptions are defined. For that purpose, the
elastic energy, the surface energy and the dissipation potential due to diffusion are
chosen. Since the void phase requires no energy, only the material phase (phase two) is
specified. It reads

ΨB2 =
1

2
ε : C2 : ε with C2 = C = μ̄ [I⊗I+ I⊗I] + λ̄ I⊗ I . (6.83)

The Lamé constants μ̄ = 1/2E/[1 + ν] and λ̄ = Eν/[1 + ν]/[1 − 2ν] are expressed by
means of Youngs modulus E and Poissons ratio ν. As mentioned before, the interface
energy ΨΓ and the dissipation potenial φ̂ are taken from Eq. (5.6) and Eq. (6.23), i.e.

ΨΓ = ψΓ
0

{
6

ε
p2 [1− p]2 + 3

2
ε‖∇p‖2

}
,

φ̂ =
1

2
κ|∇μ|2 .

(6.84)

The area specific interface energy ψΓ
0 and the length parameter ε are interpreted as purely

numerical parameters. The same interpretation also holds for the diffusive mobility of
phases described by κ. All used model parameters are given in Tab. 6.2.

The optimal design of a 2D rectangular structure with the dimensions 6 × 1 mm2

subjected to a point load is studied next. The setup of the boundary value problem
is illustrated in Fig. 6.4. The structure is initialised by a constant phase distribution
p0(x) = 0.5 ∀x ∈ B0. Accordingly, 50% of the volume belongs to material. In order
to prevent the material to locate at the design space boundary ∂Rp = ∂B0, which can
be observed in Blank et al. [19], Wallin and Ristinmaa [133], Wallin et al. [134], an
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Phase Name Symbol Value Unit

Phase 1 Void – – –
Phase 2 Youngs modulus E2 74000 [MPa]

Poisson ratio ν2 0.33 [-]
Interface Area specific surface energy ψΓ

0 0.3 [N/mm]
Interface thickness ε 1/64 [mm]
Diffusion mobility κ 0.05 [mm4/N s]

Table 6.2: Model parameters for topology optimisation based on phase field

F

a

b

A

∂Rp

Figure 6.4: Setup of the boundary value problem applied to topology optimisation. Point load F =
100 N; Dimension a× b = 6× 1 mm2

additional boundary integral as proposed in Wallin and Ristinmaa [133] is introduced.
Based on the weak Robin-type boundary

γ

∫
∂Rp

p δp dA , (6.85)

an additional surface element is applied along the boundary ∂Rp. Based on this surface
element, the phases p ∈ (0, 1] are penalised along ∂Rp. As a result, only the void
phase can be located along these boundaries. Parameter γ = 10000 N/mm2 controls the
penalisation of phases along ∂Rp.

With respect to the finite element discretisation, the structure is discretised into 384×
64 quadrilateral 4 noded elements with bi-linear shape functions (cf. Subsection 6.1.4).
Consequently, the characteristic element length is h = 1/64 mm. During the simulation,
the mesh grid is not refined and all material parameters in Tab. 6.2 remain constant. In
contrast, in Wallin and Ristinmaa [133], Wallin et al. [134] an adaptive mesh refinement
strategy is applied and the length scale parameter ε is decreased during the simulation.
In the present simulation, only the time increment is adaptively updated (cf. Blank et al.
[19]). Beginning with time increment Δt = 5 · 10−6 s, the increment is increased during
the simulation to Δt = 2 · 10−4 s. The simulation is stopped after 9800 time steps at
t = 1.275 s.
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The nonlinear system of equations has ∼150000 degrees of freedom and is solved in
the parallel version of FEAP, see Taylor [131]. In order to reduce the computation time,
the domain is resolved into 8 parts. Due to the unsymmetrical stiffness matrix, the direct
SuperLU solver of PETSc library (Balay et al. [7]) is utilised. The relative convergence
criteria are |ΔdT · r| ≤ 10−20 |ΔdT · r|initial and ‖r‖ ≤ 10−8 ‖r‖initial according to the
description on page 132.

a)

b)

c)

d)

e)

f)

p

0.001 1

Figure 6.5: Re-distribution of design parameter p for different time steps. Colour range from void phase
(blue) to material phase (red). Formation of structure starting from a) t = 0.001 s over b) t = 0.005 s,
c) t = 0.015 s, d) t = 0.060 s, e) t = 0.315 s and finally to the truss-like structure in f) t = 1.275 s.

In Fig. 6.5a)-f) the evolution of the design parameter is shown. The colour scale
is defined from blue to red, with the range p ∈ [0.001, 1]. The lower range bound
is the result of the adjusted NCP functions, given in Eq. (6.82)5. As a result of the
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NCP functions, values beyond the range p ∈ [0.001, 1] are not obtained. In Fig. 6.5a)-
f) it can be seen that, within the first time steps, fine laminates are formed due to the
Cahn-Hilliard based phase segregation, known as spinodal decomposition. Subsequently,
a coarsening of laminates to larger domains is observed. At the final stage at time
t = 1.275 s a classic truss-like structure is obtained.

A similar result was also obtained in Kotucha [67]. However, in Kotucha [67] the
length scale parameter is adaptively reduced during the simulation, which results in a
finer interface thickness. In contrast to the results in Kotucha [67] no material is located
at the design boundary ∂Rp as can be seen in Fig. 6.5.

The total amount of material is conserved, such that the volume averaged phase
parameter remains at p̄ = 0.5 during the complete simulation. It can be observed that the
material phase is distributed according to the maximum principle stresses of the original
problem dedicated in Fig. 6.4. This leads to an increase of the stiffness or equivalently
to the reduction of structural compliance. As a result of the increased stiffness, the
bending of the structure in Fig. 6.6 is reduced during the optimisation. Regarding the
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Figure 6.6: Vertical displacement u2(t) of node A plotted over the time.

distribution of the chemical potential, at time t = 1.275 s a nearly constant distribution
μ is observed in the design space similar to the example in Subsection 6.1.4.2. Hence, a
steady state solution can be assumed for this state, cf. Remark 6.1.1.
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7.1 Concluding remarks

7.1.1 Macroscopic models accounting for the evolution of
microstructures

The modelling of anisotropic/distortional hardening within a thermomechanically cou-
pled setting was the focus of Chapter 3 and Chapter 4. The presented model is one
of the two main contributions within this thesis. A straightforward thermodynamically
consistent implementation usually leads to an over-prediction of the temperatures, and a
thermomechanical coupling based on a Taylor-Quinney approach can lead to thermody-
namical inconsistencies. Consequently, a novel model has been developed in Chapter 3
which is thermodynamically consistent and predicts the temperatures realistically. It
has been shown that this realistic temperature prediction is equivalent to a correct defi-
nition of stored and dissipative energy parts of the Helmholtz energy. Alternatively, the
temperature prediction can be improved by consideration of a pre-loaded history of the
continuum. The description of anisotropic texture evolution by means of yield surface
distortion was discussed in Chapter 4. The advocated model was based on a gener-
alised distortional hardening model and accounted for dynamic and latent hardening.
The novel model also featured a higher curvature of the yield surface in loading direction
compared to the reverse direction. Furthermore, the model was thermodynamically con-
sistent and was embedded into the aforementioned novel thermomechanically coupled
framework. In order to resolve complex boundary value problems efficiently, a fully im-
plicit return-mapping scheme has been applied for the fourth-order evolution equations
driving dynamic and latent hardening. By elaborating a suitable representation of the
exponential time integration, the complexity of the updating scheme has significantly
been reduced, and the final plasticity model incorporating isotropic, kinematic and dis-
tortional hardening has the same number of algebraic equations as a plasticity model for
purely isotropic hardening. The resulting system of equations was solved fully implicitly
in a thermomechanically coupled finite element scheme. Several examples demonstrated
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the good predictive capabilities which are necessary to simulate the macroscale, most
relevant for technological applications.

7.1.2 Explicit modelling of evolving microstructures by means of
phase field theories

The second main part of this thesis was presented in Chapter 5 and Chapter 6. Both
chapters dealt with the modelling of evolving microstructures by means of novel phase
field theories. First, an Allen-Cahn-type phase field theory coupled to continuum me-
chanics at finite strain was derived in Chapter 5. It has been shown that the bulk
material response in the diffuse interface can be computed by different homogenisa-
tion assumptions. The presented homogenisation theories were the state-of-the-art ap-
proaches: Taylor/Voigt and Reuss/Sachs as well as novel homogenisation assumptions
based on a rank-1 connection in the interface. The novel homogenisation approaches in-
clude the partial rank-1 homogenisation advocated in Mosler et al. [92] as well as a novel
full rank-1 homogenisation. In order to compare the different approaches, the framework
of incremental energy minimisation was adopted where the different homogenisation as-
sumptions were shown to be minimisers of an underlying potential. By using a suitable
time discretisation of the aforementioned (rate) potential, an efficient numerical imple-
mentation was derived. However, the resulting algebraic system of equations could not
be solved by means of an unconstrained algorithm, since the phase parameter did not
naturally fulfil constraint p ∈ [0, 1]. In order to fulfil the respective constraint, Fischer-
Burmeister NCP equations were applied. Several numerical experiments demonstrated
the efficiency and the robustness of the proposed numerical framework. In addition, the
performance of the proposed homogenisation assumptions was analysed. It has been
shown that the evolution of microstructures does indeed depend on the homogenisa-
tion assumption. However, in the limiting case, for an infinitesimal small interface, all
models converged to the same solution. Due to the statical and kinematical compatibil-
ity and the numerical performance (computational time) homogenisation assumptions
based on rank-1 outperformed the other schemes. The Allen-Cahn-type phase field
model presented in Chapter 5 was associated with displacive phase transformations.
Phase transformations based on diffusion were the focus of Chapter 6. To be more pre-
cise, deformation and diffusion based phase transformations were investigated by means
of Cahn-Hilliard-type phase field models in Chapter 6. Two subjects were discussed
in detail in this chapter. In the first part, the continuum mechanically coupled Allen-
Cahn-type model presented in the previous chapter was extended to a Cahn-Hilliard-
type model. It was shown that all unknowns (deformation map, chemical potential
and phase parameter) followed jointly as minimisers from the underlying incremental
potential. With respect to the numerical implementation, the aforementioned poten-
tial was discretised in spaces by means of finite elements and the constrained problem
was transformed into an equivalent unconstrained problem by employing the Fischer-
Burmeister NCP functions – in line with the previous chapter. In order to demonstrate
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the diffusion based volume conservation, the evolution of microstructure was analysed
for different transformation strains. In the second part, the volume conserving prop-
erty of the mechanically coupled Cahn-Hilliard-type phase field model has been used for
topology optimisation. The resulting stationary conditions showed a strong analogy to
the system of equations characterising the classic Cahn-Hilliard-type phase field theory.
Finally, the optimal topology computed by means of the novel algorithm led to a classic
truss-like structure.

7.2 Outlook

This thesis dealt with different aspects regarding the evolution of microstructures.
Clearly, there is always room for improvement of material models which can account
for more complex phenomena or more efficient numerical implementations. Some of
these improvements are discussed below.

Although the presented model in Chapter 4 captures the most relevant effects at the
macroscale and is therefore suitable for a wide range of metallic materials, some aspects
could be considered in future works in order to strengthen the proposed theory. The
anisotropic texture evolution leads to a distortion of the yield surface as highlighted in
Barthel et al. [15], Feigenbaum and Dafalias [43], Haddidi et al. [52], Shi and Mosler
[113]. However, a direct connection to the slip planes of plastic slip systems as discussed
in frameworks associated with crystal plasticity (df. Homayonifar and Mosler [56], Miehe
et al. [86], Ortiz and Repetto [98]) is not given. Especially the cross-hardening effect,
which is observed in many alloys (see Ishikawa [58], Khan et al. [62]), is responsible
for the distortion of the yield surface. A verification by using crystal plasticity could
motivate a further decomposition of the latent hardening, such that the introduced
curvature change factor in Section 4.1.4 can be replaced by a more micromechanically
motivated ansatz. Furthermore, the thermomechnical coupling and anisotropic yield
surface evolution need to be validated simultaneously. Since experiments are limited
to either monitoring temperatures in uniaxial plastic loading tests (cf. Hodowany et al.
[54], Oliferuk et al. [96]) or to measuring the distortion of yield surfaces under isothermal
conditions, a combination of both tests could provide more information for the parameter
identification.

Regarding the constitutive model at the microscale as presented in Chapter 5, the
proposed phase field framework based on efficient rank-1 homogenisation schemes should
be extended to multi-phase materials. An extension to multiple phases can be found
in Steinbach and Apel [124], Steinbach and Pezzolla [126]. However, a multi-phase
description based on rank-1 connections at the interface cannot be implemented in a
straightforward manner. Ideas relevant for such an extension can be found in the context
of convexification, cf. Bartel and Hackl [10], Bartels et al. [14], Ortiz and Repetto [98].
However, an adaptation for diffuse interfaces is still required. Furthermore, the current
phase field models were only applied to hyperelastic material. As noted in Mosler et al.
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7 Conclusion and outlook

[92] the proposed framework can also be applied to dissipative materials. However,
the history dependent internal variables require special attention, cf. Ammar et al.
[3], de Rancourt et al. [36]. Furthermore, thermal effects should also be included in the
phase field model, cf. Liu and Dunne [78].

Finally, the model at the microscale should be linked to the model at the macroscale,
e.g. by using multiscale finite element methods, see Miehe et al. [86], Nemat-Nasser and
Hori [93].
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A Computation of internal energy

A.1 Computation of internal energy by means of
Legendre transformation

According to Eq. (2.42), the internal energy can be computed by means of the Legendre
transformation

E(F, N,α) = Eel(F, N) + Epl(α) = Ψel(F,Θ) + Ψpl(α) + ΘN , (A.1)

where the specific thermoelastic energy (3.62) and an arbitrary plastic energy Ψpl are
assumed. The internal variableα denotes a generalised set of hardening related variables.
Since Ψpl is assumed to be independent on the temperature, the counterpart, Epl is
independent of the entropy. This can be derived by computing

E = inf
Θ
{Ψ+ΘN} . (A.2)

Consequently, Epl = Ψpl and the Legendre transformation (A.1) can be reduced to the
thermoelastic response (3.63)-(3.66), such that

Eel(C̄e, J, N) =W (C̄e, J) + U(J) +M(J,Θ) + T (Θ) + ΘN . (A.3)

In order to substitute Θ by N , the necessary condition imposed by Eq. (A.2) requires

∂Eel

∂Θ
= −3α0

κ

2

[
J − 1

J

]
− c0 ln

(
Θ

Θ0

)
+N = 0 . (A.4)

The solution of this equation yields the constitutive relation

Θ = Θ0 exp

(
N − 3/2α0 κ [J − 1/J ]

c0

)
. (A.5)
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A Computation of internal energy

Re-inserting Θ into Eq. (A.3) leads to the internal energy expression

Eel(C̄e, J, N) =W (C̄e, J) + U(J) + Θ0 [3/2α0 κ [J − 1/J ]− c0]

+ Θ0 c0 exp

(
N − 3/2α0 κ [J − 1/J ]

c0

)
.

(A.6)

Hence, E is indeed independent of Θ.
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B Implementation of
thermomechanically coupled
distortional hardening

Details of the implementation of the thermomechanically coupled distortional
hardening model proposed in Chapter 4 can be found in the following sections.

B.1 Thermomechanically coupled algorithmic tangent

In the present work, the thermomechanically coupled system of non-linear equations is
solved in a monolithic manner by means of Newton’s scheme. Therefore, the algorithmic
tangent of the thermomechanically coupled hardening model needs to be derived. Ac-
cording to linearisations (4.81) and (4.82), the sensitivities with respect to χ = [Δλ,Ξ]T

are required for that purpose. The linearisation of the residual rχ leads to

drχ =
∂rχ
∂F

: dF+
∂rχ
∂Θ

dΘ +
∂rχ
∂χ
· dχ = 0 , (B.1)

such that the sensitivity dχ is obtained as

dχ = −
[
∂rχ
∂χ

]−1

·
[
∂rχ
∂F

: dF+
∂rχ
∂Θ

dΘ

]
. (B.2)

Next, this sensitivity is inserted into the linearisation of the stresses (4.81) and into
the linearisation of the equation defining self-heating (see Eq. (4.82)). This yields the
reduced linearisations

dP =

[
∂P

∂F
− ∂P

∂χ
·
[
∂rχ
∂χ

]−1

· ∂rχ
∂F

]
: dF+

[
∂P

∂Θ
− ∂P

∂χ
·
[
∂rχ
∂χ

]−1

· ∂rχ
∂Θ

]
dΘ (B.3)
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and

dΔHΘ =

[
∂ΔHΘ

∂F
− ∂ΔHΘ

∂χ
·
[
∂rχ
∂χ

]−1

· ∂rχ
∂F

]
: dF

+

[
∂ΔHΘ

∂Θ
− ∂ΔHΘ

∂χ
·
[
∂rχ
∂χ

]−1

· ∂rχ
∂Θ

]
, dΘ

(B.4)

which only depend on the global fields ϕ (through F) and Θ. The partial derivatives
of the type ∂P/∂(•) and ∂ΔHΘ/∂(•) entering the tangents (B.3) and (B.4) can be
computed in a straightforward manner. For the sake of completeness, the variables P
and ΔHΘ associated with the prototype model used in the numerical examples are given
here. They can be written as

P =
∂Ψ

∂Fe
· Fp−T

= μ J−2/3

[
Fe · Fp−T − 1

3
‖Fe‖2F−T

]
+
κ

2

[
J2 − 1

]
F−T

+ [Θ−Θ0]

[
−3α0

κ

2

[
J +

1

J

]]
F−T ,

ΔHΘ = Θ

[
−3α0

κ

2

[
1 +

1

J2

]]
[J − Jn]

+ Δλ

{
βD y0

[
1− ω0

[
Θ

βD −Θ0

]]
+
bk

ck
‖∂Σφ‖Qk : Qk + 2 gdis

}
.

(B.5)

B.2 Enhanced assumed strain finite elements

The implementation of (nearly) incompressible material is especially for the modelling of
elastoplastic material of utmost importance, since in the plastic regime isochoric material
behaviour is commonly assumed. For this purpose, special finite element formulations
are necessary since a standard linear interpolation leads to spurious locking phenomena,
which are the reason for unnatural stiffness, for instance, in bending dominated states.
One method to avoid such problems is to increase the interpolation order of the shape
functions as proposed in Subsection 4.3.2. Alternatively, the enhanced assumed strain
(EAS) formulation can be employed, which goes back to the works of Simo and Rifai
[118] and Simo and Armero [117]. In these works, incompatible deformation modes are
covered by an enhanced deformation gradient. The advantages within this method are
the prevention of spurious locking and the use of low order element formulations which
are more efficient from a computational point of view.
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B.2 Enhanced assumed strain finite elements

The starting point of the EAS formulation is the additive split of the deformation
gradient into a conforming part GRADϕ and an enhanced part F̃, i.e.

F = GRADϕ+ F̃ . (B.6)

The associated spaces, to be more precise, the space of the displacement gradient, de-
noted as GRAD(U), and the space of the enhanced gradient, denoted as F, are disjunct,
i.e. GRAD(U) ∩ F = ∅. Originally, this enhancement was introduced in a mixed Hu-

Washizu-type formulation where displacements ϕ, enhanced deformation gradient F̃ and
stresses P are independent from one another. The variations with respect to these fields
lead to an additional balance equation which requires L2-orthogonality of stresses and
enhanced deformation gradient. The weak form of this condition is defined as

δW
˜F =

∫
B0

P : δF̃ dV = 0 ∀ δF̃ ∈ L2(B0) . (B.7)

The associated fields of a thermomechanically coupled EAS element formulation, i.e. the
geometry, the displacements and the temperature, are interpolated according to Subsec-
tion 4.3.2. Again, a Bubnow-Galerkin approach is applied. According to Eq. (B.6) the
approximation of the deformation gradient implies an enhanced deformation gradient.
Therefore, the discretisation of F is determined by

Fh = GRADϕh + F̃h . (B.8)

While the conforming part GRADϕh is defined by Eq. (4.73)1, the enhanced deformation

gradient F̃h is approximated by a special interpolation scheme.

Remark B.2.1: Geometry, displacements and temperature are linearly interpolated in
this work. Since the EAS element is applied to an axisymmetric quadrilateral element
formulation, a 4-noded element (nen = 4) with bi-linear shape functions is taken.

In line with Glaser and Armero [49] the enhanced deformation gradient F̃h is multi-
plicatively decomposed into

F̃h = F0 · F̃ with F0 = GRADϕ
∣∣
ξ=0

. (B.9)

The conforming deformation gradient F0 evaluated at the centroid of the element guar-
antees a frame indifferent formulation as noted in Simo and Armero [117]. The enhanced

interpolation F̃ is defined as

F̃ =
j0
j
J−T
0 · F · J−1

0 (B.10)
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B Implementation of thermomechanically coupled distortional hardening

and is referred to the reference configuration. In this context, J0 denotes the Jacobian
of the isoparametric map J = ∂ξX

h which is evaluated at the centroid of the master
element, i.e. J0 = J

∣∣
ξ=0

. The determinant of the Jacobian is given as j = detJ.

Accordingly, j0 = j
∣∣
ξ=0

denotes the determinant evaluated at the centroid of the master

element. As can be seen the enhanced deformation gradient field (B.10) is a function of
the natural coordinate ξ. Consequently, the operation given in Eq. (B.10) describes an
invariant transformation of the enhanced field F into the reference configuration. More
precisely, the enhanced field

F =

nenh∑
c=1

βc
F
c (B.11)

is interpolated by nenh local enhanced parameter βc and interpolation matrices Fc (cf.
[49, 66]). An interpolation scheme for the axisymmetric element formulation used in this
work is given in Appendix B.3.
Based on the discretised field variables and test functions, the weak balance equations for
the mechanical and thermal problem are derived (cf. Eq. (4.76)). Due to the enhanced
formulation, weak form (B.7) is also considered. More explicitly, the spatially and
temporally discretised forms of the three-field formulation read for one element

δWϕ

∣∣
Be
0
=

nen∑
a=1

δϕa ·
[
faϕ,int − faϕ,sur − faϕ,vol

]
,

δWΘ

∣∣
Be
0
=

nen∑
a=1

δΘa
[
fa
Θ,int + fa

Θ,sur − fa
Θ,vol

]
,

δWβ

∣∣
Be
0
=

nenh∑
c=1

δβc f c
β,int

(B.12)

and depend on the unknowns {ϕ,Θ, β}. The virtual enhanced parameter δβc refers to
interpolation c of the enhancement. The corresponding nodal forces are defined for the
mechanical problem as

faϕ,int =

∫
Be
0

P ·
[
∇Na +∇Na

∣∣
ξ=0
· F̃
]
dV ,

faϕ,sur =

∫
∂Be

0

Na T̄dA , faϕ,vol =

∫
Be
0

Na ρ0B dV ,

(B.13)
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for the thermal problem as

fa
Θ,int =

∫
Be
0

{
Na 1

Δt

{
c [Θ−Θn]−ΔHΘ

}
−∇Na ·H

}
dV ,

fa
Θ,sur =

∫
∂Be

0

Na H̄ dA , fa
Θ,vol =

∫
Be
0

Na ρ0RΘ dV

(B.14)

and for the enhanced problem as

f c
β,int =

∫
Be
0

P :

[
F0 ·

j0
j
J−T
0 · Fc · J−1

0

]
dV . (B.15)

Note, that P and ΔHΘ are functions of the discretised deformation gradient Fh in
Eq. (B.8) and are therefore dependent on the enhanced parameter β. For the subsequent
numerical implementation, the assembled nodal representation of the global residual
forces (cf. Eq. (4.78)) is reformulated into an element wise representation. Due to the
special structure of the system of equations, two element residua

nel

A
e=1

rem = 0 ,

reβ = 0 (e = 1, · · · , nel)

(B.16)

are defined, which are specified as

rem =

⎡⎢⎢⎢⎢⎢⎣
f1ϕ,int − f1ϕ,sur − f1ϕ,vol

f 1
Θ,int + f 1

Θ,sur − f 1
Θ,vol

...
fnen
ϕ,int − fnen

ϕ,sur − fnen
ϕ,vol

fnen
Θ,int + fnen

Θ,sur − fnen
Θ,vol

⎤⎥⎥⎥⎥⎥⎦ , reβ =

⎡⎢⎣f
1
β,int
...

fnenh
β,int

⎤⎥⎦ . (B.17)

Forces with respect to the displacement field ϕ and the temperature field Θ are as-
sembled over all elements. In contrast to this global assembling, forces with respect to
the enhanced field are treated element wise. According to Eq. (B.7) residuum reβ re-

quires L2-continuity. More precisely, since F̃ and P are discontinuous across the element
boundaries, enhanced parameter β needs only to be continuous within the element Be

0.
Thus, the enhanced parameter can be condensed out by means of static condensation.
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B Implementation of thermomechanically coupled distortional hardening

For this purpose, the non-linear system of equations (B.16) is linearised with respect to
the vectors de = [ϕ1,Θ1, · · · ,ϕnen ,Θnen ] and βe = [β1, · · · , βnenh], i.e.

nel

A
e=1

red +Ke
dd ·Δde +Ke

dβ ·Δβe = 0

reβ +Ke
βd ·Δde +Ke

ββ ·Δβe = 0 (e = 1, · · · , nel) .

(B.18)

The corresponding element stiffnesses are

Ke
dd =

dred
dde

=

⎡⎢⎢⎢⎢⎢⎣
K11

ϕϕ K11
ϕΘ · · · · · · · · ·

K11
Θϕ K11

ΘΘ · · · · · · · · ·
...

...
. . .

...
...

· · · · · · · · · Knennen
ϕϕ Knennen

ϕΘ

· · · · · · · · · Knennen
Θϕ Knennen

ΘΘ

⎤⎥⎥⎥⎥⎥⎦ ,

Ke
dβ =

drem
dβe =

⎡⎢⎢⎢⎢⎢⎣
K11

ϕβ · · · · · ·
K11

Θβ · · · · · ·
...

. . .
...

· · · · · · Knennenh
ϕβ

· · · · · · Knennenh
Θβ

⎤⎥⎥⎥⎥⎥⎦ , Ke
βd =

dreβ
dde

=

⎡⎢⎢⎢⎢⎢⎣
K11

βϕ · · · · · ·
K11

βΘ · · · · · ·
...

. . .
...

· · · · · · Knennenh
βϕ

· · · · · · Knennenh
βΘ

⎤⎥⎥⎥⎥⎥⎦ ,

Ke
ββ =

dreβ
dβe =

⎡⎢⎣K
11
ββ · · · · · ·
...

. . .
...

· · · · · · Knenhnenh
ββ

⎤⎥⎦ ,

(B.19)

in which the associated nodal stiffness components are defined as

Kab
ϕϕ =

draϕ
dϕb

=

∫
Be
0

[
∇Na +∇Na

∣∣
ξ=0
· F̃
]
• dP
dF
·
[
∇N b +∇N b

∣∣
ξ=0
· F̃
]
dV ,

Kab
ϕΘ =

draϕ
dΘb

=

∫
Be
0

N b dP

dΘ
·
[
∇Na +∇Na

∣∣
ξ=0
· F̃
]
dV ,

Kab
Θϕ =

draΘ
dϕb

=

∫
Be
0

Na dΔHΘ

dF
·
[
∇N b +∇N b

∣∣
ξ=0
· F̃
]
dV ,

Kab
ΘΘ =

draΘ
dΘb

=

∫
Be
0

Na 1

Δt

{
c− dΔHΘ

dΘ

}
N b + k0∇Na · ∇N b dV

+

∫
Be
0

Na ∂H̄

∂Θ
N b dV

(B.20)
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and

Kad
ϕβ =

draϕ
dβd

=

∫
Be
0

[
∇Na +∇Na

∣∣
ξ=0
· F̃
]
• dP
dF

:

[
F0 ·

j0
j
J−T
0 · Fd · J−1

0

]

+P ·
[
∇Na

∣∣
ξ=0
· j0
j
J−T
0 · Fd · J−1

0

]
dV ,

Kad
Θβ =

draΘ
dβd

=

∫
Be
0

Na dΔHΘ

dF
:

[
F0 ·

j0
j
J−T
0 · Fd · J−1

0

]
dV ,

Kcb
βϕ =

drcβ
dϕb

= Kbc
ϕβ

T
,

Kcb
βΘ =

drcβ
dΘb

=

∫
Be
0

[
F0 ·

j0
j
J−T
0 · Fc · J−1

0

]
:
dP

dΘ
N b dV ,

Kcd
βΘ =

drcβ
dβd

=

∫
Be
0

[
F0 ·

j0
j
J−T
0 · Fc · J−1

0

]
:
dP

dF
:

[
F0 ·

j0
j
J−T
0 · Fd · J−1

0

]
dV .

(B.21)

Details of the derivatives dP/dF, dP/dΘ, dΔHΘ/dF and dΔHΘ/dΘ can be found in
Appendix B.1.
Now, the focus is on the static condensation of the enhanced part. By transforming
(B.18)2 the increment

Δβe = −Ke
ββ

−1 ·
[
Ke

βd ·Δde + reβ
]

(B.22)

is obtained. Re-inserted into (B.18)1 yields the condensed system of equations

nel

A
e=1

[
red −Ke

dβ ·Ke
ββ

−1 · reβ
]
+
[
Ke

dd −Ke
dβ ·Ke

ββ
−1 ·Ke

βd

]
·Δde = 0 . (B.23)

It should be noted, that the resulting element stiffness shows no symmetry since the
underlying coupled material model does not follow from a variational principle. Thus,
the solution scheme is non-symmetric and requires non-symmetric solvers. The imple-
mentation of static condensation is based on a correct updating scheme of the enhanced
interpolation parameter, cf. de Souza Neto et al. [37]. Such an updating scheme is
presented in Fig. B.1.
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1. Set Newton iteration k + 1

2. Update de based on given Δde:
de ←− de +Δde

3. Update βe:
compute/load residuals and stiffnesses at k-th iteration: Ke

ββ
−1, Ke

βd, r
e
β

compute: Δβe = −Ke
ββ

−1 ·
[
Ke

βd ·Δde + reβ
]

update: βe ←− βe +Δβe

4. Compute Fh and constitutive relations (see Fig. 4.2)

5. Compute element stiffness matrices Ke
dd, K

e
dβ , K

e
ββ, K

e
βd and element residual

vectors red, reβ. Then compute the modified element stiffness K̃e
dd and the

modified element residual r̃ed:

K̃e
dd = Ke

dd −Ke
dβ ·Ke

ββ
−1 ·Ke

βd

r̃ed = red −Ke
dβ ·Ke

ββ
−1 · reβ

6. Check global tolerance:

IF

∥∥∥∥ nel

A
e=1

r̃ed

∥∥∥∥ ≤ TOL THEN

EXIT
ELSE

GO TO 7.
ENDIF

7. Solve the global system of equations:
nel

A
e=1

K̃e
dd ·Δd = −r̃ed

GO TO 1.

Figure B.1: EAS implementation: algorithmic scheme for static condensation
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B.3 Enhanced assumed strain formulation for
axisymmetric elements

Although the axisymmetric case is solved in the two-dimensional R−Z space, its defor-
mation gradient and the respective stresses are three-dimensional. Hence, the enhanced
assumed strain element formulation needs to be adjusted. Following Simo and Armero
[117], Simo and Rifai [118], the enhanced interpolation is transformed to the reference
configuration by the Jacobian

J0 =

[[
∂ξX

h
∣∣
ξ=0

]2×2

0

0T 1

]
, (B.24)

in which only the {3, 3}-entry is additionally taken into account. The interpola-
tion functions of the enhanced field F are restricted to the orthogonality constraint∫
� FR(ξ) dξ = 0 (see Simo and Rifai [118]). A consistent enhanced interpolation reads
for nenh = 5

F
1 =

⎡⎣ξ − ξ̄ 0 0
0 0 0
0 0 0

⎤⎦ , F
2 =

⎡⎣0 ξ − ξ̄ 0
0 0 0
0 0 0

⎤⎦ , F
3 =

⎡⎣ 0 0 0
η − η̄ 0 0
0 0 0

⎤⎦ ,

F
4 =

⎡⎣0 0 0
0 η − η̄ 0
0 0 0

⎤⎦ , F
5 =

⎡⎣0 0 0
0 0 0
0 0 ξ η j/[j0R]

⎤⎦ ,

(B.25)

with

ξ̄ =
1∫

�
R(ξ) dξdη

∫
�
ξ R(ξ) dξdη , η̄ =

1∫
�
R(ξ) dξdη

∫
�
η R(ξ) dξdη . (B.26)

This formulation is slightly different from the original presented by Simo and Rifai [118].
It considers a change of the off-diagonal terms F2 and F3 as proposed and analysed by
Korelc and Wriggers [66].
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C Phase field modelling –
Computation of properties within
the diffuse interface

The following sections are related to the effective computation of properties within
the diffuse interface, which is characteristic for phase field approaches, as addressed in
Chapter 5.

C.1 Computation of the relaxed energy and update of
the stresses based on partial rank-1 homogenisation

Independent of the homogenisation assumption, the relaxed energy follows from mini-
mizing the energy with respect to the variables β, cf. Subsection 5.4.1. The respective
necessary condition reads ∂βΨB = 0. In the case of a partial rank-1 homogenisation, β
equals a, i.e. β = a. Within each time step, a Newton based procedure is used for com-
puting the solution of the non-linear equation ∂βΨB = 0. Due to numerical robustness,
the interface normal N = ∇p/‖∇p‖ is held constant during the computation (mixed
explicit/implicit update), i.e. N = ∇p/‖∇p‖|tn .

The update of the Newton algorithm is given by

a←− a−
[
N • ∂

2ΨB

∂�F�2
·N

]−1

·
[
∂ΨB

∂�F�
·N

]
(C.1)

with the partial derivatives

∂ΨB

∂�F�
= [1− p] p [−P1 +P2] ,

∂2ΨB

∂�F�2
= [1− p] p

[
p
∂P1

∂F1
+ [1− p] ∂P2

∂F2

] (C.2)
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depending on the stresses (Pi) and the tangents (∂Pi/∂Fi) in the two phases. Consider-
ing the Bain-type deformation gradients FB

i within the two different phases, the generic
structures of Pi and ∂Pi/∂Fi reads

Pi =
∂ΨBi

∂Fe
i

· FB
i

−T
,

∂Pi

∂Fi
= Fe

i
−1 � ∂2ΨBi

∂Fe
i
2 · F

e
i
−T.

(C.3)

For the prototype model presented in Section 5.5 (the Helmholtz energies are defined by
Eq. (5.100)), the constitutive model dependent derivatives are obtained as

∂ΨBi

∂Fe
i

= μi J
e
i
−2/3

[
Fe

i −
1

3
‖Fe

i‖2Fe
i
−T

]
+
κi
2

[
Je
i
2 − 1

]
Fe

i
−T

∂2ΨBi

∂Fe
i
2 =

μi

3
Je
i
−2/3

[
3 I+

2

3
‖Fe

i‖2Fe
i
−T ⊗ Fe

i
−T − 4Fe

i ⊗ Fe
i
−T − ‖Fe

i‖2
∂Fe

i
−T

∂Fe
i

]
+
κi
2

[
2 Je

i
2Fe

i
−T ⊗ Fe

i
−T +

[
Je
i
2 − 1

] ∂Fe
i
−T

∂Fe
i

]
(C.4)

with

∂Fe
i
−T

∂Fe
i

= −Fe
i
−T⊗Fe

i
−1. (C.5)

C.2 Computation of the algorithmic tangent

Within the presented work, the resulting discretised initial boundary value problems are
solved by means of a monolithic Newton’s method. Therefore, the algorithmic tangent,
derived in Subsection 5.4.3, is required. According to Eq. ((5.96)), it depends on the
derivatives dP/dF, dP/dp, dP/d∇p, d

[
∂pΔE red

]
/dp, dξ/dp and dξ/d∇p. In order to

compute such derivatives, the linearisations

dP = d

[
∂ΔE
∂F

]
=
∂2 ΨB

∂F2
: dF+

∂2 ΨB

∂F ∂p
dp+

∂2ΨB

∂F ∂β
◦ dβ ,

d

[
∂ΔE
∂p

]
=
∂2 ΨB

∂p ∂F
: dF+

∂2 ΔE
∂p2

dp+
∂2 ΨB

∂p ∂β
◦ dβ ,

dξ = d

[
∂ΔE
∂∇p

]
=
∂2 ΨΓ

∂∇p2 · d∇p

(C.6)

186



C.3 Components of algorithmic tangent due to NCP functions

are considered. By inserting the linearisation of the stationary condition ∂βΨB yielding

d

[
∂ΨB

∂β

]
=
∂2 ΨB

∂β2 ◦ dβ +
∂2 ΨB

∂β ∂F
: dF+

∂2 ΨB

∂β ∂p
dp = 0 (C.7)

into the linearisations (C.6), the non-trivial derivatives defining the stiffness matrices
are finally obtained as

dP

dF
=
∂2 ΨB

∂F2
− ∂2 ΨB

∂F ∂β
◦
[
∂2ΨB

∂β2

]−1

◦ ∂
2 ΨB

∂β ∂F
,

dP

dp
=

dRp

dF
=
∂2 ΨB

∂F ∂p
− ∂2 ΨB

∂F ∂β
◦
[
∂2 ΨB

∂β2

]−1

◦ ∂
2 ΨB

∂β ∂p
,

d∂p ΔE
dp

=
∂2 ΔE
∂p2

− ∂2ΨB

∂p ∂β
◦
[
∂2 ΨB

∂β2

]−1

◦ ∂
2 ΨB

∂β ∂p
,

dξ

d∇p =
∂2 Ψε

Γ

∂∇p2 .

(C.8)

The trivial derivatives are dP/d∇p = 0 and dξ/dp = 0 due to their independency of
the respective variables, cf. Remark (5.4.1).

C.3 Components of algorithmic tangent due to NCP
functions

According to Eq. (5.86), the implemented slightly adjusted Fischer-Burmeister NCP
functions are defined as

g1(p, λ1) =
√
[p− 1 + ε0]2 + λ21 + ε2tol + [p− 1 + ε0]− λ1 ,

g2(p, λ2) =
√
[−p + ε0]2 + λ22 + ε2tol + [−p+ ε0]− λ2 .

(C.9)

The derivatives of such functions entering the stiffness matrix read

∂g1
∂p

=
[p− 1 + ε0]√

[p− 1 + ε0]2 + λ21 + ε2tol
+ 1 ,

∂g1
∂λ1

=
λ1√

[p− 1 + ε0]2 + λ21 + ε2tol
− 1 ,

∂g2
∂p

=
[p− ε0]√

[−p + ε0]2 + λ22 + ε2tol
− 1 ,

∂g2
∂λ2

=
λ1√

[−p + ε0]2 + λ22 + ε2tol
− 1 .

(C.10)
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[102] F. Parvizian, A. Güzel, A. Jäger, H.-G. Lambers, B. Svendsen, A. Tekkaya, and
H. Maier. Modeling of dynamic microstructure evolution of EN AW-6082 alloy
during hot forward extrusion. Computational Materials Science, 50(4):1520–1525,
2011. doi:10.1016/j.commatsci.2010.12.009.

[103] H. Petryk. Thermodynamic Stability of Equilibrium in Plasticity.
Journal of Non-Equilibrium Thermodynamics, 20(2):132–149, 1995.
doi:10.1515/jnet.1995.20.2.132.

[104] H. Petryk. Thermodynamic conditions for stability in materials with rate-
independent dissipation. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 363(1836):2479–2515, 2005.
doi:10.1098/rsta.2005.1584.

[105] M. P. Pietryga, I. N. Vladimirov, and S. Reese. A finite deforma-
tion model for evolving flow anisotropy with distortional hardening includ-
ing experimental validation. Mechanics of Materials, 44:163–173, 2012.
doi:10.1016/j.mechmat.2011.07.014.

[106] A. Rajagopal, P. Fischer, E. Kuhl, and P. Steinmann. Natural element analysis
of the Cahn–Hilliard phase-field model. Computational Mechanics, 46(3):471–493,
2010. doi:10.1007/s00466-010-0490-4.

[107] E. Rauch, J. Gracio, F. Barlat, A. Lopes, and J. F. Duarte. Hardening behavior and
structural evolution upon strain reversal of aluminum alloys. Scripta Materialia,
46(12):881–886, 2002. doi:10.1016/s1359-6462(02)00073-8.

197

http://dx.doi.org/10.1016/0921-5093(93)90475-t
http://dx.doi.org/10.1143/jpsj.58.3065
http://dx.doi.org/10.1016/S0022-5096(97)00096-3
http://dx.doi.org/10.1016/s0045-7825(98)00219-9
http://dx.doi.org/10.1002/nme.263
http://dx.doi.org/10.1061/(asce)0733-9399(1983)109:4(1042)
http://dx.doi.org/10.1016/j.commatsci.2010.12.009
http://dx.doi.org/10.1515/jnet.1995.20.2.132
http://dx.doi.org/10.1098/rsta.2005.1584
http://dx.doi.org/10.1016/j.mechmat.2011.07.014
http://dx.doi.org/10.1007/s00466-010-0490-4
http://dx.doi.org/10.1016/s1359-6462(02)00073-8


Bibliography

[108] M. Ristinmaa, M. Wallin, and N. S. Ottosen. Thermodynamic format and heat
generation of isotropic hardening plasticity. Acta Mechanica, 194(1-4):103–121,
2007. doi:10.1007/s00707-007-0448-6.

[109] P. Rosakis, A. Rosakis, G. Ravichandran, and J. Hodowany. A thermodynamic
internal variable model for the partition of plastic work into heat and stored energy
in metals. Journal of the Mechanics and Physics of Solids, 48(3):581–607, 2000.
doi:10.1016/s0022-5096(99)00048-4.

[110] M. Schmidt-Baldassari. Numerical concepts for rate-independent single crystal
plasticity. Computer Methods in Applied Mechanics and Engineering, 192(11–12):
1261–1280, 2003. ISSN 0045-7825. doi:10.1016/S0045-7825(02)00563-7.

[111] D. Schneider, O. Tschukin, A. Choudhury, M. Selzer, T. Böhlke, and B. Nestler.
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invariant formulation for phase field models in ferroelectrics . International
Journal of Solids and Structures, 51(11–12):2144–2156, 2014. ISSN 0020-7683.
doi:10.1016/j.ijsolstr.2014.02.021.

[113] B. Shi and J. Mosler. On the macroscopic description of yield surface evolution by
means of distortional hardening models: Application to magnesium. International
Journal of Plasticity, 44:1–22, 2013. doi:10.1016/j.ijplas.2012.11.007.

[114] B. Shi, A. Bartels, and J. Mosler. On the thermodynamically consistent modeling
of distortional hardening: A novel generalized framework. International Journal
of Plasticity, 63:170–182, 2014. doi:10.1016/j.ijplas.2014.05.008.

[115] O. Sigmund and J. Petersson. Numerical instabilities in topology optimization:
A survey on procedures dealing with checkerboards, mesh-dependencies and local
minima. Structural Optimization, 16(1):68–75, 1998. doi:10.1007/bf01214002.
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