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Abstract

Functional data analysis is typically conducted within the L2-Hilbert space framework. There
is by now a fully developed statistical toolbox allowing for the principled application of the func-
tional data machinery to real-world problems, often based on dimension reduction techniques
such as functional principal component analysis. At the same time, there have recently been a
number of publications that sidestep dimension reduction steps and focus on a fully functional
L2-methodology. This paper goes one step further and develops data analysis methodology for
functional time series in the space of all continuous functions. The work is motivated by the
fact that objects with rather different shapes may still have a small L2-distance and are therefore
identified as similar when using an L2-metric. However, in applications it is often desirable to
use metrics reflecting the visualaization of the curves in the statistical analysis. The method-
ological contributions are focused on developing two-sample and change-point tests as well as
confidence bands, as these procedures appear do be conducive to the proposed setting. Particular
interest is put on relevant differences; that is, on not trying to test for exact equality, but rather
for pre-specified deviations under the null hypothesis.

The procedures are justified through large-sample theory. To ensure practicability, non-
standard bootstrap procedures are developed and investigated addressing particular features that
arise in the problem of testing relevant hypotheses. The finite sample properties are explored
through a simulation study and an application to annual temperature profiles.
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1 Introduction
This paper proposes new methodology for the analysis of functional data, in particular for the two-
sample and change-point settings. The basic set-up considers a sequence of Banach space-valued
time series satisfying mixing conditions. The proposed methodology therefore advances functional
data analysis beyond the predominant Hilbert space-based methodology. For the latter case, there
exists by now a fully fledged theory. The interested reader is referred to the various monographs
Ferraty and Vieu [21], Horváth and Kokoszka [26], and Ramsay and Silverman [34] for up-to-date
accounts. Most of the available statistical procedures discussed in these monographs are based
on dimension reduction techniques such as functional principal component analysis. However, the
integral role of smoothness has been discussed at length in Ramsay and Silverman [34] and virtually
all functions fit in practice are at least continuous. In such cases dimension reduction techniques can
incur a loss of information and fully functional methods can prove advantageous. More recently, Aue
et al. [6], Bucchia and Wendler [12] and Horváth et al. [28] discussed fully functional methodology
in a Hilbert space framework.

Since all functions utilized for practical purposes are at least continuous, and often smoother than
that, it might be more natural to develop methodology for functional data in the space of continuous
functions. This is the approach pursued in the present paper. While it might thus be reasonable
to build statistical analysis adopting this point of view, there are certain difficulties associated with
it. Giving up on the theoretically convenient Hilbert space setting means that substantially more
effort has to be put into the derivation of theoretical results, especially if one is interested in the
incorporation of dependent functional observations. Section 2 of the main part of this paper gives an
introduction to Banach space methodology and states some basic results, in particular an invariance
principle for a sequential process in the space of continuous functions.

The theoretical contributions will be utilized for the development of relevant two-sample and
change-point tests in Sections 3 and 4, respectively. Here the usefulness of the proposed approach
becomes more apparent as differences between two smooth curves are hard to detect in practice. Ad-
ditionally, small discrepancies might perhaps not even be of importance in many applied situations.
Therefore the “relevant” setting is adopted that is not trying to test for exact equality under the null
hypothesis, but allows for pre-specified deviations from an assumed null function. For example, if
C(T ), the space of continuous functions on the compact interval T , is equipped with the sup-norm
‖f‖ = supt∈T |f(t)|, and µ1 and µ2 are the mean functions corresponding to two samples, interest
is in hypotheses of the form

H0 : ‖µ1 − µ2‖ ≤ ∆ and H1 : ‖µ1 − µ2‖ > ∆, (1.1)

where ∆ ≥ 0 denotes a pre-specified constant. The classical case of testing perfect equality, obtained
by the choice ∆ = 0, is therefore a special case of (1.1). However, in applications it might be
reasonable to think about this choice carefully and to define precisely the size of change which
one is really interested in. In particular, testing relevant hypotheses avoids the consistency problem
as mentioned in Berkson [9], that is: any consistent test will detect any arbitrary small change in
the mean functions if the sample size is sufficiently large. One may also view this perspective
as a particular form of a bias-variance trade-off. The problem of testing for a relevant difference
between two (one-dimensional) means and other (finite-dimensional) parameters has been discussed
by numerous authors in biostatistics (see Wellek [41] for a recent review), but to the best of our
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knowledge these testing problems have not been considered in the context of functional data. It turns
out that from a mathematical point of view the problem of testing relevant (i.e., ∆ > 0) hypotheses
is substantially more difficult than the classical problem (i.e., ∆ = 0). In particular, it is not possible
to work with stationarity under the null hypothesis, making the derivation of a limit distribution of a
corresponding test statistic or the construction of a bootstrap procedure substantially more difficult.

Section 3 develops corresponding two-sample tests for the Banach space C(T ). Section 4 ex-
tends these results to the change-point setting (see Aue and Horváth [5] for a recent review of change-
point methodology for time series). Here, one has to deal with the additional complexity of locating
the unknown time of change. Several new results for change-point analysis of functional data in
C(T ) are put forward. A specific challenge here is the fact that the asymptotic null distribution of
test statistics for hypotheses of the type (1.1) depends on the set of extremal points of the unknown
difference µ1 − µ2, and is therefore not distribution free. Most notable for both the two-sample and
the change-point problem is the construction of non-standard bootstrap tests for relevant hypotheses
to solve this problem. The bootstrap is theoretically validated and then used to determine cut-off
values for the proposed procedures.

Another area of application that lends itself naturally to Banach space methodology is that of
constructing confidence bands for the mean function of a collection of potentially temporally depen-
dent, continuous functions. There has been recent work by Choi and Reimherr [17] on this topic in
a Hilbert space framework for functional parameters of independent functions based on geometric
considerations. Here, results for confidence bands for the mean difference in a two-sample frame-
work are added in Section 3.2.1. Natural modifications allow for the inclusion of the one-sample
case. One of the main differences between the two approaches is that the proposed bands hold point-
wise, while those constructed from Hilbert space theory are valid only in an L2-sense. This property
is appealing for practitioners, because two mean curves can have a rather different shape, yet the
L2-norm of their difference might be very small.

The finite-sample properties of the relevant two-sample and change-point tests and, in particular,
the performance of the bootstrap procedures are evaluated with the help of a Monte Carlo simulation
study in Section 5. A number of scenarios are investigated, with the outcomes showing that the
proposed methodology performs reasonably well. Furthermore, an application to a prototypical data
example is given, namely two-sample and cange-point tests for annual temperature profiles recorded
at measuring stations in Australia.

The outline of the rest of this paper is as follows. Section 2 introduces the basic notions of the
proposed Banach space methodology and gives some preliminary results. Section 3 discusses the
two-sample problem and Section 4 is concerned with change-point analysis. Empirical aspects are
highlighted in Section 5. Proofs of the main results can be found in an online supplement to this
paper.

2 C(T )-valued random variables
In this section some basic facts are provided about central limit theorems and invariance principles
for C(T )-valued random variables, where C(T ) is the set of continuous functions from T into the
real line R. In what follows, unless otherwise mentioned, C(T ) will be equipped with the sup norm
‖·‖, defined by ‖f‖ = supt∈T |f(t)|, thus making (C(T ), ‖·‖) a Banach space. The natural Borel σ-
field B(T ) over C(T ) is then generated by the open sets relative to the sup norm ‖ · ‖. Measurability
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of random variables on (Ω,A, P ) taking values in C(T ) is understood to be with respect to B(T ).
The underlying probability space (Ω,A,P) is assumed complete. It is further assumed that there is
a metric ρ on T such that (T, ρ) is totally bounded. The fact that T is metrizable implies that C(T )
is separable and measurability issues are avoided (see Theorem 7.7 in Janson and Kaijser [30]).
Moreover, any random variable X in C(T ) is tight (see Theorem 1.3 in Billingsley [10]).

Let X be a random variable on (Ω,A, P ) taking values in C(T ). There are different ways to
formally introduce expectations and higher-order moments of Banach space-valued random vari-
ables (see Janson and Kaijser [30]). The expectation E[X] of a random variable X in C(T ) exists
as an element of C(T ) whenever E[‖X‖] < ∞. The kth moment exists whenever E[‖X‖k] =
E[supt∈T |X(t)|k] < ∞. As pointed out in Chapter 11 of Janson and Kaijser [30], kth order mo-
ments may be computed through pointwise evaluation as E[X(t1) · · ·X(tk)]. The case k = 2 is
important as it allows for the computation of covariance kernels in a pointwise fashion.

A sequence of random variables (Xn : n ∈ N) converges in distribution or weakly to a ran-
dom variable X in C(T ), whenever it is asymptotically tight and its finite-dimensional distributions
converge weakly to the finite-dimensional distributions of X , that is,

(Xn(t1), . . . , Xn(tk))⇒ (X(t1), . . . , X(tk))

for any t1, . . . , tk ∈ T and any k ∈ N, where the symbol “⇒” indicates convergence in distribution
in Rk.

A centered random variable X in C(T ) is said to be Gaussian if its finite-dimensional distribu-
tions are multivariate normal, that is, for any t1, . . . , tk, (X(t1), . . . , X(tk)) ∼ Nk(0,Σ), where the
(i, j)th entry of the covariance matrix Σ is given by E[X(ti)X(tj)], i, j = 1, . . . , k. The distribu-
tion of X is hence completely characterized by its covariance function k(t, t′) = E[X(t)X(t′)]; see
Chapter 2 of Billingsley [10].

In general Banach spaces, deriving conditions under which the central limit theorem (CLT) holds
is a difficult task, significantly more complex than the counterpart for real-valued random variables.
In Banach spaces, finiteness of second moments of the underlying random variables does not provide
a necessary and sufficient condition. Elaborate theory has been developed to resolve the issue,
resulting in notions of Banach spaces of type 2 and cotype 2 (see the book Ledoux and Talagrand
[31] for an overview). However, the Banach space of continuous functions on a compact interval
does not possess the requisite type and cotype properties and further assumptions are needed in order
to obtain the CLT, especially to incorporate time series of continuous functions into the framework.
To model the dependence of the observations, the notion of ϕ-mixing triangular arrays (Xn,j : n ∈
N, j = 1, . . . , n) of C(T )-valued random variables is introduced; see Bradley [11] and Samur [38].
First, for any two σ-fields F and G, define

φ(F,G) = sup
{
|P(G|F )− P(G)| : F ∈ F, G ∈ G, P(F ) > 0

}
,

where P(G|F ) denotes the conditional probability of G given F . Next, denote by Fnk,k′ the σ-field
generated by (Xn,j : k ≤ j ≤ k′). Then, define the ϕ-mixing coefficient as

ϕ(k) = sup
n∈N,n>k

max
k′=1,...,n−k

φ(Fn1,k′ ,F
n
k′+k,n)
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and call the triangular array (Xn,j : n ∈ N, j = 1, . . . , n) ϕ-mixing whenever limk→∞ ϕ(k) = 0.
The ϕ-mixing property is defined in a similar fashion for a sequence of random variables.

In order to obtain a CLT as well as an invariance principle for triangular arrays of ϕ-mixing
random elements in C(T ), the following conditions are imposed.

Assumption 2.1. Throughout this paper the following conditions are assumed to hold:

(A1) There is a constant K such that, for all n ∈ N and j = 1, . . . , n, E[‖Xn,j‖2+ν ] ≤ K for some

ν > 0.

(A2) Let E[Xn,j] = µ(j) for any n ∈ N and j = 1, . . . , n. The distributions of the observations

in each row only differ in their means, that is, the centered array (Xn,j − µ(j) : n ∈ N, j =

1, . . . , n) is rowwise stationary. Additionally, the covariance structure is the same in each row,

that is

Cov(Xn,j(t), Xn,j′(t
′)) = γ(j − j′, t, t′)

for all n ∈ N and j, j′ = 1, . . . , n. Note that γ(−j, t, t′) = γ(j, t′, t).

(A3) (Xn,j : n ∈ N, j = 1, . . . , n) is uniformly Lipschitz, that is, there is a real-valued random

variable M with E[M2] <∞ such that, for any n ∈ N and j = 1, . . . , n, the inequality

|Xn,j(t)−Xn,j(t
′)| ≤Mρ(t, t′)

holds almost surely for all t, t′ ∈ T .

(A4) (Xn,j : n ∈ N, j = 1, . . . , n) is ϕ-mixing with exponentially decreasing mixing coefficients,

that is, there is a constant a ∈ [0, 1) such that ϕ(k) ≤ ak for any k ∈ N.

(A5) For any sequence (rn)n∈N ⊂ N such that rn ≤ n, rn/n→ 0 as n→∞, it follows that

1√
n

rn∑
j=1

(Xn,j − µ(j)) = oP(1).

Note that these assumptions can be formulated for sequences of random variables (Xn : n ∈ N)
inC(T ) in a similar way. Condition (A5) is satisfied if the distribution of the sums

∑k
j=1(Xn,j−µ(j))

is symmetric for any k = 1, . . . , n and n ∈ N (see the remark after Proposition 3.1 in Samur
[37]). Assumptions (A1)–(A4) imply the following CLT which is proved in Section 6.2 of the online
supplement. Throughout this paper the symbol  denotes weak convergence in (C([0, 1]))k for
some k ∈ N.

Theorem 2.1. Let (Xn,j : n ∈ N, j = 1, . . . , n) denote a triangular array of random variables

in C(T ) with expectations E[Xn,j] = µ(j) such that conditions (A1) – (A4) of Assumption 2.1 are
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satisfied. Then,

Gn =
1√
n

n∑
j=1

(Xn,j − µ(j)) Z

in C(T ), where Z is a centered Gaussian random variable with covariance function

C(s, t) = Cov(Z(s), Z(t)) =
∞∑

i=−∞

γ(i, s, t). (2.1)

Assumption (A5) will be used to verify a weak invariance principle for the process (V̂n : n ∈ N)
given by

V̂n(s) =
1√
n

bsnc∑
j=1

(Xn,j − µ(j)) +
√
n
(
s− bsnc

n

)(
Xbsnc+1 − µ(bsnc+1)

)
, (2.2)

useful for the change-point analysis proposed in Section 4. Note that the process (V̂n(s) : s ∈ [0, 1])
is an element of the Banach space C([0, 1], C(T )) = {φ : [0, 1] → C(T ) | φ is continuous}, where
the norm on this space is given by

sup
s∈[0,1]

sup
t∈T
|φ(s, t)| = ‖φ‖C([0,1]×T ) (2.3)

(note that each element of C
(
[0, 1], C(T )

)
can equivalently be regarded as an element of C([0, 1]×

T )). Here and throughout this paper the notation ‖ · ‖ is used to denote any of the arising sup-norms
as the corresponding space can be identified from the context. The proof of the following result is
postponed to Section 6.2 of the online supplement.

Theorem 2.2. Let (Xn,j : n ∈ N, j = 1, . . . , n) denote an array of C([0, 1])-valued random vari-

ables such that Assumption 2.1 is satisfied. Then, the weak invariance principle holds, that is,

V̂n  V (2.4)

in C([0, 1]× T ), where V is a centered Gaussian measure on C([0, 1]× T ) characterized by

Cov
(
V(s, t),V(s′, t′)

)
= (s ∧ s′)C(t, t′), (2.5)

and the long-run covariance function C is given in (2.1).
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3 The two-sample problem
From now on, consider the case T = [0, 1], as this is the canonical choice for functional data analysis.
Two-sample problems have a long history in statistics and the corresponding tests are among the most
applied statistical procedures. For the functional setting, there have been a number of contributions
as well. Two are worth mentioning in the present context. Hall and Van Keilegom [24] studied the
effect of smoothing when converting discrete observations into functional data. Horváth et al. [27]
introduced two-sample tests for Lp-m approximable functional time series based on Hilbert-space
theory. In the following, a two-sample test is proposed in the Banach-space framework of Section
2. To this end, consider two independent samples X1, . . . , Xm and Y1, . . . , Yn of C([0, 1])-valued
random variables. Under (A2) in Assumption 2.1 expectation functions and covariance kernels
exist and are denoted by µ1 = E[X1] and µ2 = E[Y1], and k1(t, t′) = Cov(X1(t), X1(t′)) and
k2(t, t′) = Cov(Y1(t), Y1(t′)), respectively. Interest is then in the size of the maximal deviation

d∞ = ‖µ1 − µ2‖ = sup
t∈[0,1]

|µ1(t)− µ2(t)|

between the two mean curves, that is, in testing the hypotheses of a relevant difference

H0 : d∞ ≤ ∆ versus H1 : d∞ > ∆, (3.1)

where ∆ ≥ 0 is a pre-specified constant determined by the user of the test. Note again that the
“classical” two-sample problem H0 : µ1 = µ2 versus H0 : µ1 6= µ2 – which, to the best of our
knowledge, has not been investigated for C([0, 1])-valued data yet – is contained in this setup as the
special case ∆ = 0. Observe also that tests for relevant differences between two finite-dimensional
parameters corresponding to different populations have been considered mainly in the biostatistical
literature, for example in Wellek [41]. It is assumed throughout this section that the samples are
balanced in the sense that

m

n+m
−→ λ ∈ (0, 1) (3.2)

asm,n→∞. Additionally, letX1 . . . , Xm and Y1, . . . , Yn be sampled from independent time series
(Xj : j ∈ N) and (Yj : j ∈ N) that satisfy conditions (A1)–(A4) of Assumption 2.1. Under these
conditions both functional time series satisfy the CLT and it then follows from Theorem 2.1 that

√
n+m

m

m∑
j=1

(Xj − µ1) 
1√
λ
Z1 and

√
n+m

n

n∑
j=1

(Yj − µ2) 
1√

1− λ
Z2, (3.3)

where Z1 and Z2 are independent, centered Gaussian processes possessing covariance functions

C1(t, t′) =
∞∑

j=−∞

γ1(j, t, t′) and C2(t, t′) =
∞∑

j=−∞

γ2(j, t, t′),

respectively. Here γ1 and γ2, correspond to the respective sequences (Xj : j ∈ N) and (Yj : j ∈ N)
and are defined in Assumption 2.1. Now, the weak convergence in (3.3) and the independence of the
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samples imply immediately that

Zm,n =
√
n+m

( 1

m

m∑
j=1

Xj −
1

n

n∑
j=1

Yj − (µ1 − µ2)
)
 Z (3.4)

in C([0, 1]) as m,n → ∞, where Z = Z1/
√
λ + Z2/

√
1− λ is a centered Gaussian process with

covariance function

C(t, t′) = Cov(Z(t), Z(t′)) =
1

λ
C1(t, t′) +

1

1− λ
C2(t, t′). (3.5)

Under the convergence in (3.4) the statistic

d̂∞ =
∥∥∥ 1

m

m∑
j=1

Xj −
1

n

n∑
j=1

Yj

∥∥∥ (3.6)

is a reasonable estimator of the maximal deviation d∞ = ‖µ1− µ2‖, and the null hypothesis in (3.1)
is rejected for large values of d̂∞. In order to develop a test with a pre-specified asymptotic level,
the limit distribution of d̂∞ is determined in the following. For this purpose, let

E± =
{
t ∈ [0, 1] : µ1(t)− µ2(t) = ±d∞

}
(3.7)

if d∞ > 0, and define E+ = E− = [0, 1] if d∞ = 0. Finally, denote by E = E+ ∪ E− the set of
extremal points of the difference µ1−µ2 of the two mean functions. The first main result establishes
the asymptotic distribution of the statistic d̂∞.

Theorem 3.1. IfX1, . . . , Xm and Y1, . . . , Yn are sampled from independent time series (Xj : j ∈ N)

and (Yj : j ∈ N) in C([0, 1]), each satisfying conditions (A1)–(A4) of Assumption 2.1, then

Tm,n =
√
n+m(d̂∞ − d∞)

D−→ T (E) = max
{

sup
t∈E+

Z(t), sup
t∈E−
−Z(t)

}
, (3.8)

where the centered Gaussian process Z is given by (3.5) and the sets E+ and E− are defined in (3.7).

It should be emphasized that the limit distribution depends in a complicated way on the set E of
extremal points of the difference µ1 − µ2 and is therefore not distribution free, even in the case of
i.i.d. data. In particular, there can be two sets of processes with corresponding mean functions µ1, µ2

and µ̃1, µ̃2 such that ‖µ1−µ2‖ = ‖µ̃1− µ̃2‖. However, the respective limit distributions in Theorem
3.1 will be entirely different if the corresponding sets of extremal points E and Ẽ do not coincide.
The proof of Theorem 3.1 is given in Section 6.3 of the online supplement. In the case d∞ = 0,
E+ = E− = [0, 1] and it follows for the random variable T ([0, 1]) in Theorem 3.1 that

T = max
t∈[0,1]

|Z(t)|. (3.9)
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Here the result is a simple consequence of the weak convergence (3.4) of the process Zm,n (see
Theorem 2.1) and the continuous mapping theorem.

However, Theorem 3.1 provides also the distributional properties of the statistic d̂∞ in the case
d∞ > 0. This is required for testing the hypotheses of a relevant difference between the two mean
functions (that is, the hypotheses in (3.1) with ∆ > 0) of primary interest here. In this case the
weak convergence of an appropriately standardized version of d̂∞ does not follow from the weak
convergence (3.4), as the process inside the supremum in (3.6) is not centered. In fact, additional
complexity enters in the proofs because even under the null hypothesis observations cannot be easily
centered. For details, refer to Section 6.3 of the online supplement.

3.1 Asymptotic inference

3.1.1 Testing the classical hypothesis H0 : µ1 ≡ µ2

Theorem 3.1 also provides the asymptotic distributions of the test statistic d̂∞ in the case of two
identical mean functions, that is, if µ1 ≡ µ2. This is the situation investigated in Hall and Van
Keilegom [24] and Horváth et al. [27] in Hilbert-space settings. Here it corresponds to the special
case ∆ = 0 and thus d∞ = 0,E± = [0, 1]. Consequently,

Tm,n
D−→ T (m,n→∞),

where the random variable T is defined in (3.9). An asymptotic level α test for the classical hypothe-
ses

H0 : µ1 = µ2 versus H1 : µ1 6= µ2 (3.10)

may hence be obtained by rejecting H0 whenever

d̂∞ >
u1−α√
n+m

, (3.11)

where u1−α is the (1 − α)-quantile of the distribution of the random variable T defined in (3.9).
Using Theorem 3.1 it is easy to see that the test defined by (3.11) is consistent and has asymptotic
level α.

3.1.2 Confidence bands

The methodology developed so far can easily be applied to the construction of simultaneous asymp-
totic confidence bands for the difference of the mean functions. There is a rich literature on con-
fidence bands for functional data in Hilbert spaces. The available work includes Degras [18], who
dealt with confidence bands for nonparametric regression with functional data; Cao et al. [16], who
studied simultaneous confidence bands for the mean of dense functional data based on polynomial
spline estimators; Cao [15], who developed simultaneous confidence bands for derivatives of func-
tional data when multiple realizations are at hand for each function, exploiting within-curve corre-
lation; and Zheng et al. [42] who treated the sparse case. Most recently Choi and Reimherr [17]
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extracted geometric features akin to Mahalanobis distances to build confidence bands for functional
parameters.

The results presented here are the first of their kind relating to Banach space-valued functional
data. The first theorem uses the limit distribution obtained in Theorem 3.1 to construct asymptotic
simultaneous confidence bands for the two-sample case. A corresponding bootstrap analog will be
developed in the next section. Confidence bands for the one-sample case can be constructed in a
similar fashion using standard arguments and the corresponding results are consequently omitted.

Theorem 3.2. Let the assumptions of Theorem 3.1 be satisfied and, for α ∈ (0, 1), denote by u1−α

the (1− α)-quantile of the random variable T defined in (3.9) and define the functions

µ±m,n(t) =
1

m

m∑
j=1

Xj −
1

n

n∑
j=1

Yj ±
u1−α√
n+m

.

Then the set Cα,m,n =
{
µ ∈ C([0, 1]) : µ−m,n(t) ≤ µ(t) ≤ µ+

m,n(t) for all t ∈ [0, 1]
}

defines a

simultaneous asymptotic (1− α) confidence band for µ1 − µ2, that is,

lim
m,n→∞

P(µ1 − µ2 ∈ Cα,m,n) = 1− α.

Note that, unlike their Hilbert-space counterparts, the simultaneous confidence bands given in
Theorem 3.2 (and their bootstrap analogs in Section 3.2.1) hold for all t ∈ [0, 1] and not only
almost everywhere, making the proposed bands more easily interpretable and perhaps more useful
for applications.

3.1.3 Testing for a relevant difference

Recall the definition of the random variable T (E) in Theorem 3.1, then the null hypothesis of no
relevant difference in (3.1) is rejected at level α, whenever the inequality

d̂∞ > ∆ +
u1−α,E√
n+m

(3.12)

holds, where uα,E denotes the α-quantile of the distribution of T (E) (α ∈ (0, 1)). A conservative test
avoiding the use of quantiles depending on the set of extremal points E can be obtained observing
the inequality

T (E) ≤ T, (3.13)

where the random variable T is defined in (3.9). If uα denotes the α-quantile of the distribution of
T , then (3.13) implies uα,E ≤ uα and a conservative asymptotic level α test is given by rejecting the
null hypothesis in (3.1), whenever the inequality

d̂∞ > ∆ +
u1−α√
n+m

(3.14)
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holds. The properties of the tests (3.12) and (3.14) depend on the size of the distance d∞ and will be
explained below. In particular, observe the following properties for the test (3.14):

(a) If d∞ < ∆, Slutsky’s theorem yields that

lim
n,m→∞

P
(
d̂∞ > ∆ +

u1−α√
n+m

)
= lim

n,m→∞
P
(√

n+m(d̂∞ − d∞) >
√
n+m(∆− d∞) + u1−α

)
= 0.

(b) If d∞ = ∆, we have

lim sup
n,m→∞

P
(
d̂∞ > ∆ +

u1−α√
n+m

)
= lim sup

n,m→∞
P
(√

n+m(d̂∞ − d∞) >
√
n+m(∆− d∞) + u1−α

)
≤ lim

n,m→∞
P
(√

n+m (d̂∞ − d∞) > u1−α,E
)

= α. (3.15)

(c) If d∞ > ∆, the same calculation as in (a) implies

lim
n,m→∞

P
(
d̂∞ > ∆ +

u1−α√
n+m

)
= 1,

proving that the test defined in (3.14) is consistent.

(d) If the mean functions µ1 and µ2 define a boundary point of the hypotheses, that is, d∞ = ∆ and
either E+ = [0, 1] or E− = [0, 1], then T (E) = maxt∈[0,1] Z(t) or T (E) = maxt∈[0,1]−Z(t),
and consequently

lim
n,m→∞

P
(
d̂∞ > ∆ +

u1−α√
m+ n

)
=
α

2
.

Using similar arguments it can be shown that the test (3.12) satisfies

lim
n,m→∞

P
(
d̂∞ > ∆ +

u1−α,E√
n+m

)
=


0 if d∞ < ∆.

α if d∞ = ∆.

1 if d∞ ≥ ∆.

Summarizing, the tests for the hypothesis (3.1) of no relevant difference between the two mean
functions defined in (3.12) and (3.14) have asymptotic level α and are consistent. However, the
discussion given above also shows that the test (3.14) is conservative, even when E = [0, 1].

3.2 Bootstrap
In order to use the tests (3.11), (3.12) and (3.14) for classical and relevant hypotheses, the quantiles
of the distribution of the random variables T (E) and T defined in (3.8) and (3.9) need to be estimated,
which depend on certain features of the data generating process. The law T (E) involves the unknown
set of extremal points E of the differences of the mean functions. Moreover, the distributions of
T (E) and T depend on the long-run covariance function (3.5). There are methods available in the

11



literature to consistently estimate the covariance function (see, for example, Horváth et al. [27]). In
practice, however, it is difficult to reliably approximate the infinite sums in (3.5) and therefore an
easily implementable bootstrap procedure is proposed in the following.

It turns out that a different and non-standard bootstrap procedure will be required for testing
relevant hypotheses than for classical hypotheses (and the construction of confidence bands) as in
this case the null distribution depends on the set of extremal points E. The corresponding resampling
procedure requires a substantially more sophisticated analysis. Therefore the analysis of bootstrap
tests for the classical hypothesis and bootstrap confidence intervals is given first and discussion of
bootstrap tests for relevant hypotheses is deferred to Section 3.2.2.

3.2.1 Bootstrap confidence intervals and tests for the classical hypothesis H0 : µ1 = µ2

Following Bücher and Kojadinovic [14] the use of a muliplier block bootstrap is proposed. To
be precise, let (ξ

(1)
k : k ∈ N), . . . , (ξ

(R)
k : k ∈ N) and (ζ

(1)
k : k ∈ N), . . . , (ζ

(R)
k : k ∈ N) denote

independent sequences of independent standard normally distributed random variables and define
the C([0, 1])-valued processes B̂(1)

m,n, . . . , B̂
(R)
m,n through

B̂(r)
m,n(t) =

√
n+m

{ 1

m

m−l1+1∑
k=1

1√
l1

( k+l1−1∑
j=k

Xj(t)−
l1
n

m∑
j=1

Xj(t)
)
ξ

(r)
k

+
1

n

n−l2+1∑
k=1

1√
l2

( k+l2−1∑
j=k

Yj(t)−
l2
n

n∑
j=1

Yj(t)
)
ζ

(r)
k

}
(r = 1, . . . , R)

(3.16)

for t ∈ [0, 1], where l1, l2 ∈ N denote window sizes such that l1/m → 0 and l2/n → 0 as
l1, l2,m, n → ∞. The following result is a fundamental tool for the theoretical investigations of
all bootstrap procedures proposed in this paper and is proved in Section 6.3 of the online supple-
ment.

Theorem 3.3. Suppose that (Xj : j ∈ N) and (Yj : j ∈ N) satisfy conditions (A1)–(A4) of Assump-

tion 2.1 and let B̂(1)
m,n, . . . , B̂

(R)
m,n denote the bootstrap processes defined by (3.16) such that l1 = mβ1 ,

l2 = nβ2 with 0 < βi < νi/(2 + νi) and νi given in Assumption 2.1, i = 1, 2. Then,

(Zm,n, B̂
(1)
m,n, . . . , B̂

(R)
m,n) (Z,Z(1), . . . , Z(R))

in C([0, 1])R+1 as m,n → ∞, where Zm,n is defined in (3.4) and Z(1), . . . , Z(R) are independent

copies of the centered Gaussian process Z defined by (3.5).

Note that Theorem 3.3 holds under the null hypothesis and alternative. It leads to the following
results regarding confidence bands and tests for the classical hypothesis (3.10) based on the the
multiplier bootstrap. To this end, note that for the statistics

T (r)
m,n = ‖B̂(r)

m,n‖, r = 1 . . . , R,

12



the continuous mapping theorem yields(√
n+m d̂∞, T

(1)
m,n, . . . , T

(R)
m,n

)
⇒ (T, T (1), . . . , T (R)), (3.17)

where the random variables T (1), . . . , T (R) are independent copies of the statistic T defined in (3.9).
Now, if T {bR(1−α)c}

m,n is the empirical (1 − α)-quantile of the bootstrap sample T (1)
m,n, . . . , T

(R)
m,n, the

following results are obtained.

Theorem 3.4. Let the assumptions of Theorem 3.3 be satisfied and define the functions

µR,±m,n(t) =
1

m

m∑
j=1

Xj −
1

n

n∑
j=1

Yj ±
T
{bR(1−α)c}
m,n√
n+m

.

Then, ĈR
α,m.n = {µ ∈ C([0, 1]) : µR,−m,n(t) ≤ µ(t) ≤ µR,+m,n(t) for all t ∈ [0, 1]} defines a simultaneous

asymptotic (1− α) confidence band for µ1 − µ2, that is,

lim
R→∞

lim inf
m,n→∞

P(µ1 − µ2 ∈ ĈR
α,m.n) ≥ 1− α.

This section is concluded with a corresponding statement regarding the bootstrap test for the
classical hypotheses in (3.10), which rejects the null hypothesis whenever

d̂∞ >
T
{bR(1−α)c}
m,n√
n+m

, (3.18)

where the statistic d̂∞ is defined in (3.6).

Theorem 3.5. Let the assumptions of Theorem 3.3 be satisfied, then the test (3.18) has asymptotic

level α and is consistent for the hypotheses (3.10). More precisely, under the null hypothesis of no

difference in the mean functions,

lim
R→∞

lim sup
m,n→∞

P
(
d̂∞ >

T
{bR(1−α)c}
m,n√
n+m

)
= α, (3.19)

and, under the alternative, for any R ∈ N,

lim inf
m,n→∞

P
(
d̂∞ >

T
{bR(1−α)c}
m,n√
n+m

)
= 1. (3.20)

3.2.2 Testing for relevant differences in the mean functions

The problem of constructing an appropriate bootstrap test for the hypotheses of no relevant difference
in the mean functions is substantially more complicated. The reason for these difficulties consists

13



in the fact that in the case of relevant hypotheses the limit distribution of the corresponding test
statistic is complicated. In contrast to the problem of testing the classical hypotheses (3.10), where
it is sufficient to mimic the distribution of the statistic T in (3.9) (corresponding to the case µ1 ≡ µ2)
one requires the distribution of the statistic T (E), which depends in a sophisticated way on the set
of extreme points of the (unknown) difference µ1 − µ2. Under the null hypothesis ‖µ1 − µ2‖ ≤ ∆
these sets can be very different, ranging from a singleton to the full interval [0, 1]. As a consequence
the construction of a valid bootstrap procedure requires appropriate consistent estimates of the sets
E+ and E− introduced in Theorem 3.1.

For this purpose, recall the definition of the Haussdorff distance between two sets A,B ⊂ R,
given by

dH(A,B) = max
{

sup
x∈A

inf
y∈B
|x− y|, sup

y∈B
inf
x∈A
|x− y|

}
and denote by K([0, 1]) the set of all compact subsets of the interval [0, 1]. First, define estimates of
the extremal sets E+ and E− by

Ê±m,n =
{
t ∈ [0, 1] : ± (µ̂1(t)− µ̂2(t)) ≥ d̂∞ −

cm,n√
m+ n

}
, (3.21)

where cm,n ∼ log(m+n). Our first result shows that the estimated sets Ê+
m,n and Ê−m,n are consistent

for E+ and E−, respectively.

Theorem 3.6. Let the assumptions of Theorem 3.3 be satisfied, then

dH(Ê±m,n,E
±)

P−→ 0,

where the sets Ê±m,n are defined by (3.21).

The main implication of Theorem 3.6 consists in the fact that the random variable

max
t∈Ê+

m,n

B̂m,n(t)

converges weakly to the random variable maxt∈E+ Z(t). Note that B̂m,n  Z by Theorem 3.3
and that dH(Ê+

m,n, Ê
+) → 0 in probability by the previous theorem, but the combination of both

statements is more delicate and requires a continuity argument which is given in Section 6.3 of the
online supplement, where the following result is proved.

Theorem 3.7. Let the assumptions of Theorem 3.3 be satisfied and define, for r = 1, . . . , R,

K(r)
m,n = max

{
max
t∈Ê+

m,n

B̂(r)
m,n(t), max

t∈Ê−m,n

(
− B̂(r)

m,n(t)
)}
. (3.22)
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Then,

(√
n+m (d̂∞ − d∞), K(1)

m,n, . . . , K
(R)
m,n

)
⇒ (T (E), T (1)(E), . . . , T (R)(E)), (3.23)

in RR+1, where d∞ = ‖µ1−µ2‖, the statistic d̂∞ is defined in (3.6) and the variables T (1)(E), . . . , T (R)(E)

are independent copies of T (E) defined in Theorem 3.1.

Theorem 3.7 leads to a simple bootstrap test for the hypothesis of no relevant change. To be pre-
cise, let K{bR(1−α)c}

m,n denote the empirical (1− α)-quantile of the bootstrap sample K(1)
m,n, . . . , K

(R)
m,n,

then the null hypothesis of no relevant change is rejected at level α, whenever

d̂∞ > ∆ +
K
{bR(1−α)c}
m,n√
n+m

. (3.24)

The final result of this section shows that the test (3.24) is consistent and has asymptotic level α.
The proof is obtained by similar arguments as given in the proof of Theorem 3.5, which are omitted
for the sake of brevity.

Theorem 3.8. Let the assumptions of Theorem 3.3 be satisfied. Then, under the null hypothesis of

no relevant difference in the mean functions,

lim
R→∞

lim sup
m,n→∞

P
(
d̂∞ > ∆ +

K
{bR(1−α)c}
m,n√
n+m

)
= α,

and, under the alternative of a relevant difference in the mean functions, for any R ∈ N,

lim inf
m,n→∞

P
(
d̂∞ > ∆ +

K
{bR(1−α)c}
m,n√
n+m

)
= 1.

4 Change-point analysis
Change-point problems arise naturally in a number of applications (for example, in quality control,
economics and finance; see Aue and Horváth [5] for a recent review). In the functional framework,
applications have centered around environmental and climate observations (see Aue et al. [3, 6])
and intra-day finance data (see Horváth et al. [26]). One of the first contributions in the area are
Berkes et al. [8] and Aue et al. [4] who developed change-point analysis in a Hilbert space setting
for independent data. Generalizations to time series of functional data in Hilbert spaces are due to
Aston and Kirch [1, 2]. For Banach-spaces, to the best of our knowledge, the only contributions
to change-point analysis available in the literature are due to Račkauskas and Suquet [35, 36], who
have provided theoretical work analyzing epidemic alternatives for independent functions based on
Hölder norms and dyadic interval decompositions. This section details new results on change-point
analysis for C([0, 1])-valued functional data. The work is the first to systematically exploit a time
series structure of the functions as laid out in Section 2.
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4.1 Asymptotic inference
More specifically, the problem of testing for a (potentially relevant) change-point is considered for
triangular arrays (Xn.j : n ∈ N, j = 1, . . . , n) of C([0, 1])-valued random variables satisfying As-
sumption 2.1. Denote by µ(j) = E[Xn,j] ∈ C([0, 1]) the expectation of Xn,j and assume as in part
(A2) of Assumption 2.1 that γ(j − j′, t, t′) = Cov(Xn,j(t), Xn,j′(t

′)) is the covariance kernel com-
mon to all random functions in the sample. Parametrize with s∗ ∈ (ϑ, 1 − ϑ), where ϑ ∈ (0, 1) is a
constant, the location of the change-point, so that the sequence (µ(j)j∈N of mean functions satisfies

µ1 = µ(1) = · · · = µ(bns∗c) and µ2 = µ(bns∗c+1) = · · · = µ(n). (4.1)

Then, for any n ∈ N, both Xn,1, . . . , Xn,bns∗c and Xn,bns∗c+1, . . . , Xn,n consist of (asymptotically)
identically distributed but potentially dependent random functions. Let again d∞ = ‖µ1−µ2‖ denote
the maximal deviation between the mean functions before and after the change-point. Interest is then
in testing the hypotheses of a relevant change, that is,

H0 : d∞ ≤ ∆ versus H1 : d∞ > ∆, (4.2)

where ∆ ≥ 0 is a pre-specified constant. The relevant change-point test setting may be viewed
in the context of a bias-variance trade-off. In the time series setting, one is often interested in
accurate predictions of future realizations. However, if the stretch of observed functions suffers from
a structural break, then only those functions sampled after the change-point should be included in
the prediction algorithm because these typically require stationarity. This reduction of observations,
however, inevitably leads to an increased variability that may be partially offset with a bias incurred
through the relevant approach: if the maximal discrepancy d∞ in the mean functions remains below
a suitably chosen threshold ∆, then the mean-squared prediction error obtained from predicting with
the whole sample might be smaller than the one obtained from using only the non-contaminated
post-change sample. In applications to financial data, the size of the allowable bias could also be
dictated by regulations imposed on, say, investment strategies (Dette and Wied [20] specifically
mention Value at Risk as one such example).

Recall the definition of the sequential empirical process in (2.2), where the argument s ∈ [0, 1] of
this process is used to search over all potential change locations. Note that (V̂n(s, t) : (s, t) ∈ [0, 1]2)
can be regarded as an element of the Banach space C([0, 1]2) (see the discussion before Theorem
2.2). Define the C([0, 1]2)-valued process

Ŵn(s, t) = V̂n(s, t)− sV̂n(1, t), s, t ∈ [0, 1], (4.3)

then, under Assumption 2.1, Theorem 2.2 and the continuous mapping theorem show that

Ŵn  W (4.4)

in C([0, 1]2), where W(s, t) = V(s, t) − sV(1, t). In particular, W is a centered Gaussian measure
on C([0, 1]2) defined by

Cov(W(s, t),W(s′, t′)) = (s ∧ s′ − ss′)C(t, t′). (4.5)
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In order to define a test for the hypothesis of a relevant change-point defined by (4.2) consider the
sequential empirical process (Ûn : n ∈ N) on C([0, 1]2) given by

Ûn(s, t) =
1

n

( bsnc∑
j=1

Xn,j(t) + n
(
s− bsnc

n

)
Xn,bsnc+1(t)− s

n∑
j=1

Xn,j(t)
)
. (4.6)

Evaluating its expected value shows that, in contrast to Ŵn, the process Ûn is typically not centered
and the equality

√
n Ûn = Ŵn holds only in the case µ1 = µ2. A straightforward calculation shows

that
E
[
Ûn(s, t)

]
=
(
s ∧ s∗ − ss∗

)(
µ1(t)− µ2(t)

)
+ oP(1)

uniformly in (s, t) ∈ [0, 1]2. As the function s 7→ s ∧ s∗ − ss∗ attains its maximum in the interval
[0, 1] at the point s∗, the statistic

M̂n = sup
s∈[0,1]

sup
t∈[0,1]

|Ûn(s, t)| (4.7)

is a reasonable estimate of s∗(1− s∗) d∞ = s∗(1− s∗)‖µ1 − µ2‖. It is therefore proposed to reject
the null hypothesis in (4.2) for large values of the statistic M̂n. The following result specifies the
asymptotic distribution of M̂n.

Theorem 4.1. Assume d∞ > 0, s∗ ∈ (0, 1) and let (Xn,j : n ∈ N, j = 1, . . . , n) be an array of

C([0, 1])-valued random variables satisfying Assumption 2.1. Then

Dn =
√
n
(
M̂n − s∗(1− s∗)d∞

) D−→ D(E) = max
{

sup
t∈E+

W(s∗, t), sup
t∈E−
−W(s∗, t)

}
, (4.8)

where the statistic M̂n is defined in (4.7), W is the centered Gaussian measure on C([0, 1]2) charac-

terized by (4.5), E = E+ ∪ E− and the sets E+ and E− are defined in (3.7).

The proof of Theorem 4.1 is given in Section 6.4 of the online supplement. The limit distribution
of Dn is rather complicated and depends on the set E which might be different for functions µ1− µ2

with the same sup-norm d∞ but different corresponding set E. It is also worthwhile to mention
that the condition d∞ > 0 is essential in Theorem 4.1. In the remaining case d∞ = 0 the weak
convergence of M̂n simply follows from

√
nÛn = Ŵn, (4.4) and the continuous mapping theorem,

that is,

√
n M̂n

D−→ Ť = sup
(s,t)∈[0,1]2

|W(s, t)| (4.9)

whenever d∞ = 0.
If d∞ > 0, the true location of the change-point s∗ is unknown and therefore has to be estimated

from the available data. The next theorem, which is proved in Section 6.4 of the online supplement,
proposes one such estimator and specifies its large-sample behavior in form of a rate of convergence.
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Theorem 4.2. Assume d∞ > 0, s∗ ∈ (0, 1) and let (Xn,j : n ∈ N, j = 1, . . . , n) be an array

of C([0, 1])-valued random variables satisfying Assumption 2.1, where the random variable M in

Assumption (A3) is bounded. Then the estimator

s̃ = arg max
1≤k<n

∥∥Ûn(
k

n
, ·)
∥∥ (4.10)

satsifies |s̃− s∗| = OP(n−1).

Recall that the possible range of change locations is restricted to the open interval (ϑ, 1 − ϑ) and
define the modified change-point estimator

ŝ = max
{
ϑ,min{s̃, 1− ϑ}

}
, (4.11)

where s̃ is given by (4.10). Since |ŝ− s∗| ≤ |s̃− s∗|, it follows that |ŝ− s∗| = OP(n−1) if d∞ > 0,
and, if d∞ = 0 suppose that ŝ converges weakly to a [ϑ, 1− ϑ]-valued random variable smax.

Corollary 4.1. Let the assumptions of Theorem 4.2 be satisfied and define

d̂∞ =
M̂n

ŝ(1− ŝ)
(4.12)

as an estimator of d∞. Then,
√
n
(
d̂∞ − d∞

)
⇒ T (E) = D(E)/[s∗(1− s∗)], where D(E) is defined

in (4.8).

Remark 4.1. A consistent level α test for the hypotheses (4.2) is constructed along the lines of the

two-sample case discussed in Section 3.

(a) Consider first the case ∆ > 0, that is, a relevant hypothesis. If d∞ > 0, implying the existence

of a change-point s∗ ∈ (0, 1), then the inequality

T (E) ≤ T =
1

s∗(1− s∗)
sup
t∈[0,1]

|W(s∗, t)| (4.13)

holds. If uα,E denotes the quantile of T (E), then uα,E ≤ uα for all α ∈ (0, 1). Consequently,

similar arguments as given in Section 3.1.3 show that the test which rejects the null hypothesis

of no relevant change if

d̂∞ > ∆ +
u1−α√
n

(4.14)

is consistent and has asymptotic level α. Note that an estimator of the long-run covariance

function is needed in order to obtain the α-quantile uα of the distribution of T . Moreover, the
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test (4.14) is conservative, even when the set E of extremal points of the unknown difference

µ1 − µ2 is the whole interval [0, 1] (in this case the level is in fact α/2 instead of α - see the

discussion at the end of Section 3.1.3).

(b) In the case of testing the classical hypotheses H0 : µ1 = µ2 versus H1 : µ1 6= µ2, that is

∆ = 0, the test described in (4.14) needs to be slightly altered. The asymptotic distribution of

M̂n under H0 can be obtained from (4.9) and now it can be seen that rejecting H0 whenever

d̂∞ >
ǔ1−α√
n
,

where ǔ1−α denotes the (1− α)-quantile of the distribution of the random variable Ť defined

by (4.9), yields a consistent asymptotic level α test.

4.2 Bootstrap
In order to avoid the difficulties mentioned in the previous remark, a bootstrap procedure is devel-
oped and its consistency is shown. To be precise, denote by

µ̂1 =
1

bŝnc

bŝnc∑
j=1

Xn,j and µ̂2 =
1

b(1− ŝ)nc

n∑
j=bŝnc+1

Xn,j

estimators for the expectation before and after the change-point. Let (ξ
(1)
k : k ∈ N), . . . , (ξ

(R)
k : k ∈

N) denote R independent sequences of independent standard normally distributed random variables
and consider the C([0, 1]2)-valued processes B̂(1)

n , . . . , B̂
(R)
n defined by

B̂(r)
n (s, t) =

1√
n

bsnc∑
k=1

1√
l

( k+l−1∑
j=k

Ŷn,j(t)−
l

n

n∑
j=1

Ŷn,j(t)
)
ξ

(r)
k

+
√
n
(
s− bsnc

n

) 1√
l

( bsnc+l∑
j=bsnc+1

Ŷn,j(t)−
l

n

n∑
j=1

Ŷn,j(t)
)
ξ

(r)
bsnc+1,

(4.15)

where l ∈ N is a bandwidth parameter satisfying l/n→ 0 as l, n→∞ and

Ŷn,j = Xn,j − (µ̂2 − µ̂1)1{j > bŝnc}

for j = 1, . . . , n (n ∈ N). Note that it is implicitly assumed that B̂(r)
n ((n− l + 1)/n, t) = B̂

(r)
n (s, t)

for any t ∈ [0, 1] and any s ∈ [0, 1] such that bsnc > n− l + 1. Next, define

Ŵ(r)
n (s, t) = B̂(r)

n (s, t)− sB̂(r)
n (1, t) ; r = 1, . . . , R.
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Theorem 4.3. Let B̂(1)
n , . . . , B̂

(R)
n denote the bootstrap processes defined by (4.15), where l = nβ

for some β ∈ (0, 1/3). Further assume that the underlying array (Xn,j : j = 1, . . . , n;n ∈ N)

satisfies Assumption 2.1 with the additional requirement that ν ≥ 2 in (A1), and suppose that, for

any sequence (rn : n ∈ N) ⊂ N such that rn ≤ n, rn/n→ 0 as n→∞, it follows that

1√
n

rn∑
i=1

( 1√
l

i+l−1∑
j=i

(Xn,j − µ(j))
)
ξ

(r)
i = oP(1). (4.16)

Then, (Ŵn, Ŵ(1)
n , . . . , Ŵ(R)

n )  (W,W(1), . . . ,W(R)) in C([0, 1]2)R+1, where Ŵn and W are de-

fined in (4.3) and (4.5), respectively, and W(1), . . . ,W(R) are independent copies of W.

The proof of Theorem 4.3 is provided in Section 6.4 of the online supplement. Note that con-
dition (4.16) is similar to Assumption (A5) and ensures that the weak invariance principle holds for
the bootstrap processes.

We now consider a resampling procedure for the classical hypotheses, that is ∆ = 0 in (4.2). For
that purpose, define, for r = 1, . . . , R,

Ť (r)
n = max

{∣∣Ŵ(r)
n (s, t)

∣∣ : s, t ∈ [0, 1]
}
. (4.17)

Then, by the continuous mapping theorem,

(
√
n M̂n, Ť

(1)
n , . . . , Ť (R)

n )⇒ (Ť , Ť (1), . . . , Ť (R))

in RR+1, where Ť (1), . . . , Ť (R) are independent copies of the random variable Ť defined in (4.9).
If Ť {bR(1−α)c}

n is the empirical (1 − α)-quantile of the bootstrap sample Ť (1)
n , Ť

(2)
n , . . . , Ť

(R)
n , the

classical null hypothesis H0 : µ1 = µ2 of no change point is rejected, whenever

M̂n >
Ť
{bR(1−α)c}
n √

n
. (4.18)

It follows by similar arguments as given in Section 6.3 of the online supplement that this test is
consistent and has asymptotic level α in the sense of Theorem 3.5, that is

lim
R→∞

lim sup
n→∞

PH0

(
M̂n >

Ť
{bR(1−α)c}
n √

n

)
= α , lim inf

n→∞
PH1

(
M̂n >

Ť
{bR(1−α)c}
n √

n

)
= 1,

for any R ∈ N. The details are omitted for the sake of brevity.
We now continue developing bootstrap methodology for the problem of testing for a relevant

change point, that is ∆ > 0 in (4.9). It turns out that the theoretical analysis is substantially more
complicated as the null hypothesis defines a set in in C([0, 1]). Similar as in (3.21) the estimates of
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the extremal sets E+ and E− are defined by

Ê±n =
{
t ∈ [0, 1] : ± (µ̂1(t)− µ̂2(t)) ≥ d̂∞ −

cn√
n

}
, (4.19)

where cn ∼ log(n) and d̂∞ is given in (4.12). Consider bootstrap analogs

T (r)
n =

1

ŝ(1− ŝ)
max

{
max
t∈Ê+

n

Ŵ (r)
n (ŝ, t), max

t∈Ê−n

(
− Ŵ (r)

n (ŝ, t)
)}
, r = 1, . . . , R, (4.20)

of the statistic
√
n
(
d̂∞ − d∞

)
in Corollary 4.1, where d∞ = ‖µ1 − µ2‖.

Theorem 4.4. Let the assumptions of Theorem 4.3 be satisfied, then, if d∞ > 0,

(
√
n(d̂∞ − d∞), T (1)

n , . . . , T (R)
n )⇒ (T (E), T (1), . . . , T (R))

in RR+1, where T (1), . . . , T (R) are independent copies of the random variable T (E) defined in Corol-

lary 4.1.

A test for the hypothesis of a relevant change-point in time series of continuous functions is now
obtained by rejecting the null hypothesis in (4.2), whenever

d̂∞ > ∆ +
T
{bR(1−α)c}
n √

n
, (4.21)

where T {bR(1−α)c}
n is the empirical (1 − α)-quantile of the bootstrap sample T (1)

n , T
(2)
n , . . . , T

(R)
n .

It follows by similar arguments as given in Section 6.3 of the online supplement that this test is
consistent and has asymptotic level α in the sense of Theorem 3.8, that is

lim
R→∞

lim sup
n→∞

PH0

(
d̂∞ > ∆ +

T
{bR(1−α)c}
n √

n

)
= α

and

lim inf
n→∞

PH1

(
d̂∞ > ∆ +

T
{bR(1−α)c}
n √

n

)
= 1,

for any R ∈ N. The details are omitted for the sake of brevity.
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5 Empirical aspects
In this section, the finite sample properties of the proposed methodology are investigated by means
of a small simulation study (see Section 5.1 and 5.2) and its applicability illustrated in a small data
example (see Section 5.3). All simulation results presented here are based on 1,000 runs, the length
of the blocks in the bootstrap procedure is l = 2, l1 = 2, l2 = 2, and the number of bootstrap
replications is chosen as R = 200 throughout.

5.1 Two sample problems

5.1.1 Classical hypotheses

First, a brief discussion of the bootstrap test (3.18) for the ”classical” hypotheses (3.10) is given.
For this problem, Horvath et al. [28] proposed a test in a Hilbert-space framework, and therefore a
similar scenario as in this paper is considered. Specifically, the sample sizes are chosen as m = 100,
n = 200 and the error processes are given by fAR(1) time series (see Horvath et al. [28]). The left
panel of Table 5.1 displays the rejection probabilities of the new test (3.18) for the mean functions

µ1 ≡ 0 , µ2(t) = at(1− t) (5.1)

for various values of the parameter a, while the right panel shows results for the functions

µ1 ≡ 0 , µ2(t) = 0.1
(1− t(1− t))k∫ 1

0
(1− t(1− t))kdt

(5.2)

for different values of k. Note that only the model in (5.1) with a = 0 corresponds to the null
hypothesis. A similar approximation of the nominal level as for the test of Horvath et al. [28]
is observed as well as reasonable rejection probabilities under the alternative. For the sake of a
comparison the results of the test proposed by Horvath et al. [28] are also displayed, using their
statistics U (1)

100,200 and U (2)
100,200 on page 109 of their paper (these are the two numbers in brackets). For

the models (5.1) the new test is in most cases more powerful than the test proposed by these authors.
This superiority is also observed for the models (5.2) if k = 4, 5. On the other hand, if k = 2, 3, the
test of Horvath et al. [28] based on the statistic U (2)

100,200 yields the best performance, but the new test
is always more powerful than the test based on their statistic U (1)

100,200.

5.1.2 Confidence bands

In order to investigate the finite sample properties of the confidence bands proposed in Section 3.2.1
we investigate a similar scenario as in Sections 6.3 and 6.4 of Aue et al. [3]. To be precise let
D ∈ N, consider B-spline basis functions ν1, . . . , νD (here D = 21) and the linear space H =
span{ν1, . . . , νD}. Now define independent processes ε1, . . . , εn ∈ H ⊂ C([0, 1]) by

εj =
D∑
i=1

Ni,jνi, j = 1, . . . , n,
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(5.1) (5.2)
a 1% 5% 10% k 1% 5% 10%

0
2.7 7.4 13.7

2
27.8 56.4 79

(1.8, 1.9) (6.6, 7.2) (12.2, 13.5) (27.6, 57.8) (52.6, 77.4) (63.6, 84.9)

0.4
21 37.7 46.7

3
31.3 76.4 94.9

(19.4, 12.3) (35.9, 26.5) (46.7, 36.3) (27.5, 64.3) (49.4, 82.1) (61.2, 88.7)

0.6
49.4 67.6 76.9

4
61.2 96.8 1

(42.1, 29.6) (62.2, 51.8) (73.1, 62.5) (28.2, 71.6) (52.5, 88.7) (66.7, 93.8)

0.8
74.3 87.1 91

5
90.3 1 1

(68.6, 53.8) (85.7, 74.6) (91.5, 83.1) (27.8, 78) (51.6, 91.7) (64.3, 95.5)

Table 5.1: Simulated rejection probabilities of the bootstrap test (3.18) for the hypotheses (3.10) (in
percent). The mean functions are given by (5.1) (left part) and by (5.2) (right part), the sample sizes
are m = 100 and n = 200 and the case a = 0 corresponds to the null hypotheses. The numbers in
brackets represent the results of the two tests proposed by Horvath et al. [28] taken from Table 1 in
this reference.

where N1,j, N2,j, . . . , ND,j are independent, normally distributed random variables with expectation
zero and variance Var(Ni,j) = σ2

i = 1/i2 (i = 1, . . . , D; j = 1, . . . , n). The fMA(1) process
is finally given by ηi = εi + Θεi−1, where the operator Θ: H → H (acting on a finite dimensional
space) is defined by κΨ (here κ = 0.5). The matrix Ψ is chosen randomly, that is, a matrix consisting
of normally distributed entries with mean zero and standard deviation σiσj is generated and then
scaled such that the resulting matrix Ψ has induced norm equal to 1. Finally the two samples are
given by

Xi = µ1 + ηXi (i = 1, . . . ,m) and Yi = µ2 + ηYi (i = 1, . . . , n),

where (ηXi : i ∈ Z) and (ηYi : i ∈ Z) are independent fMA(1) processes distributed as (ηi : i ∈ Z).
In Table 5.2 we display the simulated coverage percentage and the half width of the confidence band
defined in Theorem 3.4, that is

T
{bR(1−α)c}
m,n√
m+ n

.

The two mean functions are given by

µ1(t) = 0, µ2(t) =



0.5t, t ∈ [0, 1
5
]

0.1, t ∈ (1
5
, 3

10
]

−0.5t+ 0.25, t ∈ ( 3
10
, 7

10
]

−0.1, t ∈ ( 7
10
, 4

5
]

0.5t− 0.5 t ∈ (4
5
, 1]

(5.3)
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Figure 5.1: Simulated rejection probabilities of the test (3.24) for a relevant difference in the max-
imal distance between mean functions of size ∆ = 0.1. The error processes are given by fMA(1)
processes. Left panel: model (5.3); right panel: model (5.4).

(left panel) and

µ1(t) = 0, µ2(t) =


0.4t, t ∈ [0, 1

4
]

0.1, t ∈ (1
4
, 3

4
]

−0.4t+ 0.4, t ∈ (3
4
, 1]

(5.4)

(right panel). Note that d∞ = 0.1 in both cases. For example, for sample sizes m = 50 and n = 100
the coverage probability of the 95% uniform confidence band for the difference of the mean functions
in model (5.4) is 94.1,% and the width is 2 · 0.34 = 0.68. We observe a reasonable approximation
of the nominal level in all cases under consideration.

(5.3) (5.4)
(m,n) 1% 5% 10% 1% 5% 10%

(50, 100) (97.5, 0.44) (92.9, 0.34) (88, 0.29) (98.2, 0.44) (94.1, 0.34) (88.1, 0.29)
(100, 100) (98.3, 0.36) (94.7, 0.28) (89.3, 0.24) (98.9, 0.36) (95.5, 0.28) (91.2, 0.24)
(100, 200) (98.2, 0.31) (94.5, 0.24) (90.4, 0.21) (98.5, 0.31) (94.2, 0.24) (89.7, 0.21)

Table 5.2: Simulated coverage probabilities (first number) and half width (second number) of the
confidence band for the difference of the two mean functions. The error processes are given by
fMA(1) processes. Left part: model (5.3); right part: model (5.4).

5.1.3 Testing for a non relevant difference

In this paragraph the finite sample properties of the test (3.24) for the relevant hypotheses of the
form (3.1) are investigated, using the same scenario as in Section 5.1.2, that is fMA(1) time series
with mean functions defined by (5.3) and (5.4) are used. The constant cm,n in (3.21) is chosen as
0.1 log(m+ n).
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Figure 5.1 shows the rejection probabilities of the test (3.24) for a relevant difference in the
maximal distance between mean functions of size ∆ = 0.1, where the mean functions are given
by (5.3) (left panel) and (5.4) (right panel). The results correspond to the theoretical properties
described in Theorem 3.8. More precisely, if d∞ = |a| < ∆ (interior of the null hypothesis) the
probability of rejection is substantially smaller than α and decreases with increasing sample size. At
the boundary of the hypotheses, that is d∞ = ∆, we observe from Table 5.3 that the simulated level
is close to the nominal level α. On the other hand, the power of the test is strictly increasing with
d∞ > ∆ (see Figure 5.1).

(5.3) (5.4)
(n,m) 1% 5% 10% 1% 5% 10%

(50, 100) 2.4 7 13.7 2.5 7.2 13.8
(100, 100) 1.7 6.7 11.1 1.7 5.9 11.5
(100, 200) 1.2 3.8 9.7 1.2 4.2 10.2

Table 5.3: Simulated nominal level of the test (3.24) for a relevant difference in the mean functions
at the boundary of the null hypothesis, that is d∞ = ∆ = 0.1. The error processes are given by
fMA(1) processes. Left part: model (5.3); right part: model (5.4).

5.2 Change-point inference
In this section we investigate the finite sample performance of the change-point tests based on the
maximal deviation d∞ proposed in Section 4. Throughout this section consider a time series of the
form

Xi = µi + ηXi (i = 1, . . . , n) (5.5)

where (ηXi )i∈Z is the fMA(1) process defined in Section 5.1.2 and the sequence of mean functions
satisfies (4.1). We investigate the problem of testing for a relevant change of size ∆ = 0.4 in the
mean functions. The corresponding results are depicted in Table 5.4, where we consider again the
model (5.5) with mean functions before and after the change point s∗ = 0.5 given by (5.3) and (5.4).
The parameter cn in (4.19) is chosen as 0.1 log(n). The case a = 0.4 corresponds to the boundary
of the hypotheses and here a rather accurate approximation of the nominal level is observed. In
the interior of the null hypothesis (that is a < 0.4) the rejection probability, for n = 200, 500, is
strictly smaller than the nominal level and decreasing with an increasing sample size as described
at the end of Section 3.1.3 (note that the same arguments also hold for the change point problem).
Similarly, under the alternative (i.e. a > 0.4) the test shows reasonable rejection probabilities which
are increasing with sample size and a.

5.3 Data example
To illustrate the proposed methodology, two applications to annual temperature profiles are reported
in this section. Data of this kind were recently used in Aue and van Delft [7] and van Delft et al. [39]
in the context of stationarity tests for functional time series and earlier in Fremdt et al. [22] in support
of methodology designed to choose the dimension of the projection space obtained with fPCA. For
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n 100 200 500
a 1% 5% 10% 1% 5% 10% 1% 5% 10%

(5.3)

0.37 1.9 4.7 8.4 0.3 0.5 1.1 0 0 0.1
0.38 2.2 5.2 7.2 0.2 0.6 1.2 0 0 0.1
0.39 1.8 5 9 0.4 1.1 3.4 0.2 0.5 1.2
0.4 2.8 9.3 17.7 1.3 5.1 10.4 0.9 4.2 8.6

0.41 6.1 14.0 24.7 5 15 26.2 12.1 29.8 44.4
0.42 09.3 25.3 40.4 14.8 36.9 58.1 45.9 84.2 95.4
0.43 19.3 42.2 62.9 42.2 76.4 91.0 91.8 99.4 99.7

(5.4)

0.37 1.9 4.6 8.2 0.3 0.5 1.1 0 0 0
0.38 2.1 4.6 7.2 0.1 0.6 1.2 0 0 0.1
0.39 2.0 5.2 8.7 0.3 1.1 3.1 0.1 0.2 0.8
0.4 2.3 7.8 16.3 1.5 5.4 11.6 0.7 4.2 9.7

0.41 6.7 17.4 32.6 7.9 21.3 37.3 18.0 43.8 64.9
0.42 14.6 35.8 54.9 27.7 62.1 81.9 76.1 96.0 99.5
0.43 32.7 63.9 78.3 68.1 91.8 96.5 98.1 99.7 99.8

Table 5.4: Simulated nominal level (in percent) of the test (4.21) for the hypotheses (4.2) of a relevant
change in the maximal deviation of the mean functions in model (5.5), where ∆ = 0.4. The case
a = 0.4 corresponds to the boundary of the hypotheses, a < 0.4 to the null hypothesis and a > 0.4
to the alternative. The error processes are given by fMA(1) processes. Upper part: model (5.3);
lower part: model (5.4).

all examples, functions were generated from daily values through representation in a Fourier basis
consisting of 49 basis functions, where reasonable deviations from this preset do not qualitatively
change the outcome of the analyses to follow.

5.3.1 Two-sample tests

For the two-sample testing problem, annual temperature profiles were obtained from daily temper-
atures recorded at measuring stations in Cape Otway, a location close to the southernmost point of
Australia, and Sydney, a city on the eastern coast of Australia. This led to m = 147 respectively
n = 153 functions for the two samples. Differences in the temperature profiles are expected due to
different climate conditions, so the focus of the relevant tests is on working out how big the discrep-
ancy might be. The data considered here is part of the larger data set considered, for example, in
Aue and van Delft [7] and van Delft et al. [39].

To set up the test for the hypotheses (3.1), the statistic in (3.6) was computed, resulting in the
value

d̂∞ = 5.73.

To see whether this is significant, the proposed bootstrap methodology was applied. To estimate the
extremal sets in (3.7), the estimators in (3.21) were utilized with cm,n = 0.1 log(m+n) = 0.570. The
resulting bootstrap quantiles are reported in the second row of Table 5.5. Also reported in this table
are the results of the bootstrap procedure in (3.24) for various levels α and relevance ∆. Note that
the maximum difference in mean the functions is achieved at t = 0.99, towards the end of December
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∆ 99% 97.5% 95% 90%
q 5.138 4.201 3.757 3.009

5.4 TRUE TRUE TRUE TRUE
5.45 FALSE TRUE TRUE TRUE
5.5 FALSE FALSE TRUE TRUE

5.55 FALSE FALSE TRUE TRUE
5.6 FALSE FALSE FALSE FALSE

Table 5.5: Summary of the bootstrap two sample procedure for relevant hypotheses with varying ∆
for the annual temperature curves. The label TRUE refers to a rejection of the null, the label FALSE
to a failure to reject the null.

and consequently during the Australian summer. The results show that there is strong evidence in
the data to support the hypothesis that the maximal difference is at least ∆ = 5.4, but that there is no
evidence that the maximal difference is even larger than ∆ = 5.6. Several intermediate values of ∆
led to weaker support of the alternative. The left panel of Figure 5.2 displays the difference in mean
functions graphically.

5.3.2 Change-point tests

Following Fremdt et al. [22], annual temperature curves were obtained from daily minimum temper-
atures recorded in Melbourne, Australia. This led to 156 annual temperature profiles ranging from
1856 to 2011 to which the change-point test for the relevant hypotheses in (4.2) was applied based
on the rejection decision in (4.14). To compute the test statistic d̂∞ in (4.12), note that the estimated
change-point in (4.11) was ŝ = 0.62 (corresponding to the year 1962). This gives

d̂∞ = 1.765.

To see whether this value leads to a rejection of the null, the multiplier bootstrap procedure was
utilized with bandwidth parameter l = 1, leading to the rejection rule in (4.21). In order to apply
this procedure, first the extremal sets Ê+ and Ê− in (4.19) were selected, choosing cn = 0.1 log n =
0.504. This yielded the bootstrap quantiles reported in the second row of Table 5.6.

Several values for ∆, determining which deviations are to be considered relevant, were then
examined. The results of the bootstrap testing procedure are summarized in Table 5.6. It can be seen
that the null hypothesis of no relevant change was rejected at all considered levels for the smaller
choice ∆ = 1.2. On the other extreme, for ∆ = 1.4, the test never rejected. For the intermediate
values ∆ = 1.25, 1.3, 1.35, the null was rejected at the 2.5%, 5% and 20% level, at the 5% and 10%
level, and at the 10% level, respectively. Estimating the mean functions before and after ŝ (1962)
shows that the maximum difference of the mean functions is approximately 1.765, lending further
credibility to the conducted analyses. The right panel of Figure 5.2 displays both mean functions
for illustration. It can be seen that the mean difference is maximal during the Australian summer
(in February), indicating that the mean functions of minimum temperature profiles have been most
drastically changed during the hottest part of the year. The results here are in agreement with the
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Figure 5.2: Mean functions for the Australian temperature data. Left panel: Estimated mean func-
tions of the Cape Otway and Sydney series for the two-sample case. Right panel: Estimated mean
functions before and after the estimated change-point for the Melbourne temperature series.

∆ 99% 97.5% 95% 90%
q 6.632 6.278 5.603 4.697

1.2 TRUE TRUE TRUE TRUE
1.25 FALSE TRUE TRUE TRUE
1.3 FALSE FALSE TRUE TRUE

1.35 FALSE FALSE FALSE TRUE
1.4 FALSE FALSE FALSE FALSE

Table 5.6: Summary of the bootstrap change-point procedure for relevant hypotheses with varying ∆
for the annual temperature curves. The label TRUE refers to a rejection of the null, the label FALSE
to a failure to reject the null.

findings put forward in Hughes et al. [29], who reported that average temperatures in Antarctica have
risen due to increases in minimum temperatures.

In summary, the results in this section highlight that there is strong evidence in the data for
an increase in the mean function of Melbourne annual temperature profiles, with the maximum
difference between “before” and “after” mean functions being at least 1.25 degrees centigrade. There
is weak evidence that this difference is at least 1.35 degrees centigrade, but there is no support for
the relevant hypothesis that it is even larger than that.

Acknowledgements The authors thank Martina Stein, who typed parts of this manuscript with
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[8] Istvan Berkes, Robertas Gabrys, Lajos Horváth, and Piotr Kokoszka. Detecting changes in the
mean of functional observations. Journal of the Royal Statistical Society: Series B, 71:927–
946, 2009.

[9] Joseph Berkson. Some difficulties of interpretation encountered in the application of the chi-
square test. Journal of the American Statistical Association, 33:526–536, 1938.

[10] Patrick Billingsley. Convergence of Probability Measures. Wiley, New York, 1968.

[11] Richard C. Bradley. Basic properties of strong mixing conditions. A survey and some open
questions. Probability Surveys, 2:107–144, 2005.

[12] Beatrice Bucchia and Martin Wendler. Change-point detection and bootstrap for Hilbert space
valued random fields. Journal of Multivariate Analysis, 155:344–368, 2017.
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[22] Stefan Fremdt, Lajos Horváth, Piotr Kokoszka, and Josef G. Steinebach. Functional data anal-
ysis with increasing number of projections. Journal of Multivariate Analysis, 124:313–332,
2014.
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6 Online supplement: Proofs

6.1 Convergence of suprema of non-centered processes
This section collects some preliminary results useful in the proofs of the main results. Van der Vaart
and Wellner [40] formulate the concept of weak convergence in a slightly more general way, not
restricting to sequences of random variables. They state their theory for nets of random variables
(Xα : α ∈ A), where A is a directed set, that is, a non-empty set equipped with a partial order ≤
with the additional property that, for any pair a, b ∈ A, there is c ∈ A such that a ≤ c and b ≤ c.
This is a natural extension of the case considered in this paper and it will sometimes be used in the
proofs to follow. The weak convergence result presented next is central to establishing limit results
for the two-sample and change-point tests.

Theorem 6.1. Let (Xα : α ∈ A) denote a net of random variables taking values in C(T ) and let

µ ∈ C(T ). If r : A→ R+ is defined such that aα = log(rα)/
√
rα = o(1) and if Zα =

√
rα(Xα− µ)

converges weakly to a Gaussian random variable Z in C(T ), then

Dα =
√
rα
(
‖Xα‖ − ‖µ‖

)
⇒ D(E) = max

{
sup
t∈E+

Z(t), sup
t∈E−
−Z(t)

}
in R, where ⇒ denotes convergence in distribution, E = E+ ∪ E− the set of extremal points of µ,

divided into E± = {t ∈ T : µ(t) = ±‖µ‖}, tacitly adopting the convention E± = T if µ ≡ 0.

Proof of Theorem 6.1. First notice that, if µ is the zero function, the result is implied by the
continuous mapping theorem. Hence, only the case ‖µ‖ > 0 is considered in the following for
which some arguments from Raghavachari [33] are applied. To show that Dα

D−→ D(E), introduce

Dα(E) =
√
rα

(
sup
t∈E
|Xα(t)| − ‖µ‖

)
and note that the assertion of Theorem 6.1 directly follows from the following lemmas.

Lemma 6.1. Under the assumptions of Theorem 6.1, it holds that Dα(E)⇒ D(E).

Lemma 6.2. Under the assumptions of Theorem 6.1, it holds that Rα = Dα −Dα(E) = oP(1).

Proof of Lemma 6.1. Define the random variable

D̃α(E) = max
{

sup
t∈E+

Zα(t), sup
t∈E−
−Zα(t)

}
.

From the continuous mapping theorem it follows that D̃α(E)⇒D(E). Recall that d∞ = ‖µ‖ and
rewrite Dα(E) as

Dα(E) =
√
rα

(
sup
t∈E
|Xα(t)| − d∞

)
=
√
rα max

{
sup
t∈E+

|Xα(t)| − d∞, sup
t∈E−
|Xα(t)| − d∞

}
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=
√
rα max

{
sup
t∈E+

Xα(t)− d∞, sup
t∈E−
−Xα(t)− d∞

}
+ oP(1)

=
√
rα max

{
sup
t∈E+

(Xα(t)− µ(t)), sup
t∈E−

(−Xα(t) + µ(t))

}
+ oP(1)

= D̃α(E) + oP(1).

The assertion follows.

Proof of Lemma 6.2. First observe that the assumed weak convergence of Zα =
√
rα(Xα−µ) to Z

and the continuous mapping theorem imply that ‖Zα‖⇒‖Z‖. Consequently, Slutsky’s lemma yields
that

lim
α→∞

P
(
‖Xα − µ‖ >

aα
2

)
= 0, (6.1)

noting that aα = log(rα)/
√
rα = o(1) by assumption. The proof of the lemma is now given in two

steps.
Step 1: First, define the sets

E±α = {t ∈ T : | ± d∞ − µ(t)| ≤ aα} = {t ∈ T : ± µ(t) ≥ d∞ − aα}

on which the function ±µ is within aα from its extremal value d∞, and let Eα = E+
α ∪ E−α . It will

be shown in the following that Dα can be replaced with Dα(Eα) in the definition of Rα without
changing its asymptotic behavior. Here, Dα(Eα) is defined as Dα(E), using Eα in place of E. A
corresponding definition is used for Dα(T \Eα). Then,

0 ≤ Rα = Dα −Dα(E) = max
{
Dα(Eα)−Dα(E), Dα(T \Eα)−Dα(E)

}
. (6.2)

The second term in the maximum on the right-hand side of (6.2) is negligible as the following
considerations show. Note that

Dα(T \Eα)−Dα(E) =
√
rα

(
sup

t∈T\Eα
|Xα(t)− µ(t) + µ(t)| − sup

t∈E
|Xα(t)|

)
≤
√
rα

(
sup

t∈T\Eα
(|Yα(t)|+ |µ(t)|)− sup

t∈E
|Xα(t)|

)
,

where Yα = Xα − µ is the centered version of Xα. The definition of Eα yields that

√
rα

(
sup

t∈T\Eα
(|Yα(t)|+ |µ(t)|)− sup

t∈E
|Xα(t)|

)
<
√
rα

(
sup

t∈T\Eα
|Yα(t)|+ d∞ − aα − sup

t∈E
|Xα(t)|

)
≤
√
rα sup

t∈T
|Yα(t)| − log(rα)−

√
rα

(
sup
t∈E
|Xα(t)| − d∞

)
.
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Observe next that

lim
α→∞

P
(√

rα sup
t∈T
|Yα(t)| − log(rα)−

√
rα

(
sup
t∈E
|Xα(t)| − d∞

)
> 0
)

≤ lim
α→∞

P
(∣∣∣√rα sup

t∈T
|Yα(t)| −

√
rα

(
sup
t∈E
|Xα(t)| − d∞

)∣∣∣ > log(rα)
)

≤ lim
α→∞

{
P
(√

rα sup
t∈T
|Yα(t)| > log(rα)

2

)
+ P

(√
rα

∣∣∣ sup
t∈E
|Xα(t)| − d∞

∣∣∣ > log(rα)

2

)}
= 0.

The first term on the right-hand side converges to 0 because of (6.1) and, recalling the weak conver-
gence shown in Lemma 6.1, it follows by similar arguments that the second term converges to 0. On
the other hand, the first term in (6.2) is always nonnegative as E is a subset of Eα. Therefore,

0 ≤ Rα = Dα(Eα)−Dα(E) + oP(1) =
√
rα

(
sup
t∈Eα
|Xα(t)| − sup

t∈E
|Xα(t)|

)
+ oP(1)

holds and it suffices to evaluate Dα(Eα)−Dα(E).
Step 2: Define R±α = Dα(E±α )−Dα(E±) and observe that then 0 ≤ Rα ≤ max

{
R+
α , R

−
α

}
+ oP(1).

For the completion of the proof it is necessary to show that R±α = oP(1). To this end, write

0 ≤ R+
α =
√
rα

(
sup
t∈E+

α

|Xα(t)| − sup
t∈E+

|Xα(t)|
)

=
√
rα

(
sup
t∈E+

α

Xα(t)− sup
t∈E+

Xα(t)
)

+ oP(1)

=
√
rα

(
sup
t∈E+

α

(
Xα(t)− d∞

)
− sup

t∈E+

(
Xα(t)− d∞

))
+ oP(1)

≤
√
rα

(
sup
t∈E+

α

(
Xα(t)− µ(t)

)
− sup

t∈E+

(
Xα(t)− µ(t)

))
+ oP(1)

=
√
rα

(
sup
t∈E+

α

Yα(t)− sup
t∈E+

Yα(t)
)

+ oP(1).

Define E+(γ) = {s ∈ T : ∃ t ∈ E+ with ρ(t, s) < γ} and δα = 2 inf{γ > 0: E+
α ⊂ E+(γ)}. Since

E+
α ⊂ E+(δα) the above expression can be bounded by

√
rα

(
sup
t∈E+

α

Yα(t)− sup
t∈E+

Yα(t)
)

+ oP(1) ≤
√
rα

(
sup

t∈E+(δα)

Yα(t)− sup
t∈E+

Yα(t)
)

+ oP(1)

≤
√
rα sup

ρ(s,t)<δα

|Yα(s)− Yα(t)|+ oP(1).

Because of equicontinuity, it remains to show that limα→∞ δα = 0. Now, the sequence (δα : α ∈ A)
decreases in α and δα > 0 so that limα→∞ δα exists. By construction, E+

α ⊂ E+(δα) but E+
α 6⊂

E+(δα/4). There is hence a subsequence (sα : α ∈ A) ⊂ E+
α such that ρ(sα, t) ≥ δα/4 for all t ∈ E+

and all α ∈ A. The compactness of T implies that (sα : α ∈ A) contains a convergent subsequence
(sαβ : β ∈ A). It follows thus that limβ→∞ sαβ = s ∈ T and d∞ = limβ→∞ µ(sαβ) = µ(s) because
µ is continuous. Consequently s ∈ E+ but on the other hand ρ(sαβ , s) ≥ δα/4 so that limα→∞ δα
has to be 0. The lemma is now proven because similar arguments imply that R−α = oP(1).

34



6.2 Proofs of the results in Section 2

Proof of Theorem 2.1. Note that the results of Section 1.5 in Van der Vaart and Wellner [40] also

hold, if the space `∞ is replaced by C(T ). Consequently, the assertion follows from the convergence

of the finite dimensional distributions of (Gn : n ∈ N) and the existence of a metric ρ such that

(Gn : n ∈ N) is uniformly ρ-equicontinuous in probability.

In a first step, convergence of finite-dimensional distributions is verified. Let q ∈ N and

t1, . . . , tq ∈ T . By the Cramér-Wold device, the convergence of the finite-dimensional distributions

follows from

Zn =

q∑
j=1

cjGn(tj) =

q∑
j=1

cj
1√
n

n∑
i=1

(
Xn,i(tj)− µ(i)(tj)

)
=

1√
n

n∑
i=1

Zi,n ⇒ Z̄ =

q∑
j=1

cjZ(tj) ,

(6.3)

where Zi,n =
∑q

j=1 cj(Xn,i(tj)− µ(i)(tj)) and c1, . . . , cq ∈ R denote arbitrary constants.

In order to show the weak convergence of Zn to Z̄, a blocking technique similar to Lemma A.1 in

Bücher and Kojadinovic [14] is utilized. Each block consists of a big subblock followed by a small

subblock. For 1/(2 + 2ν) < ηb < ηs < 1/2, where ν > 0 is the same as in Assumption (A1), define

the length of the small and the big subblocks as sn = bn1/2−ηsc and bn = bn1/2−ηbc, respectively. In

total there are therefore kn = bn/(bn + sn)c blocks. Now consider the random variables

Bj,n =

(j−1)(bn+sn)+bn∑
i=(j−1)(bn+sn)+1

Zi,n and Sj,n =

j(bn+sn)∑
i=(j−1)(bn+sn)+bn+1

Zi,n, j = 1, . . . , kn,

corresponding to the sums of the j-th big and small subblock, respectively. It directly follows that

Zn =
1√
n

kn∑
j=1

Bj,n +
1√
n

kn∑
j=1

Sj,n +
1√
n
Rn , (6.4)

where Rn =
∑n

i=kn(bn+sn)+1 Zi,n denotes the sum of the remaining terms Zi,n after the last small

subblock. Now the variance of Zn can be written as

Var(Zn) = Var
( 1√

n

kn∑
j=1

Bj,n

)
+

2

n

kn∑
j,j′=1

E[Bj,nSj′,n] +
2

n

kn∑
j=1

E[Bj,nRn]

+
1

n

kn∑
j,j′=1

E[Sj,nSj′,n] +
2

n

kn∑
j=1

E[Sj,nRn] +
1

n
E[R2

n].

(6.5)
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It will be shown that each term except the first on the right-hand side of (6.5) converges to zero. As

a consequence, it follows that

|Zn − 1/
√
n

kn∑
j=1

Bj,n| = |1/
√
n

kn∑
j=1

Sj,n + 1/
√
nRn| = oP(1), (6.6)

Var(Zn) = Var
( kn∑

j=1

Bj,n

)
+ o(1). (6.7)

First show that the second term on the right side of (6.5) converges to zero. To this end,

E[Bj,nSj′,n] =

(j−1)(bn+sn)+bn∑
i=(j−1)(bn+sn)+1

j′(bn+sn)∑
i′=(j′−1)(bn+sn)+bn+1

E[Zi,nZi′,n] .

Note that σ(X(t)) ⊂ σ(X) for any random variable X in C([0, 1]) and t ∈ [0, 1], where σ(X)

denotes the σ-field generated by X (see Problem 1.7.1 in Van der Vaart and Wellner [40]). Hence,

φ(σ(X(t)), σ(Y (s))) ≤ φ(σ(X), σ(Y )) for any C([0, 1])-valued random variables X, Y and any

s, t ∈ [0, 1]. Using this fact and formula (3.17) in Dehling and Philipp [19] leads to the bound

|E[Zi,nZi′,n]| ≤
q∑

l,l′=1

|clcl′ ||Cov(Xi(tl), Xi′(tl′))| (6.8)

≤ 2ϕ(|i− i′|)1/2

q∑
l,l′=1

|clcl′ | E[Xi(tl)
2]1/2E[Xi′(tl′)

2]1/2 . ϕ(|i− i′|)1/2,

where the last inequality follows from Assumption (A1) and the symbol . means less or equal up

to a constant independent of n. This gives

|E[Bj,nSj,n]| .
(j−1)(bn+sn)+bn∑
i=(j−1)(bn+sn)+1

j(bn+sn)∑
i′=(j−1)(bn+sn)+bn+1

ϕ(|i− i′|)1/2 .
bn+sn−1∑
i=1

iϕ(i)1/2 <∞. (6.9)

The last inequality holds, since Assumption (A4) yields
∑∞

i=1 iϕ(i)1/2 ≤
∑∞

i=1 ia
i/2 <∞. Similarly

it can be shown that |E[Bj,nSj−1,n]| < ∞. For j′ > j + 1 and j > j′ + 1 there is at least one big

subblock between the observations and since ϕ(·) is monotonically decreasing, it follows that

|E[Bj,nSj′,n]| .
(j−1)(bn+sn)+bn∑
i=(j−1)(bn+sn)+1

j′(bn+sn)∑
i′=(j′−1)(bn+sn)+bn+1

ϕ(|i− i′|)1/2 = O(bnsnϕ(bn)1/2) .

36



Overall, it follows that

2

n

kn∑
j,j′=1

E[Bj,nSj′,n] = O(n−1kn) +O(n−1k2
nbnsnϕ(bn)1/2) = O(b−1

n ) +O(nb−1
n sna

bn/2) = o(1),

using that n−1kn = (bn + sn)−1 = O(b−1
n ) and that sn/bn → 0 and nabn/2 → 0.

For the third term in (6.5), proceed in a similar way as in (6.9) to get

E[Bkn,nRn] .
(kn−1)(bn+sn)+bn∑
i=(kn−1)(bn+sn)+1

n∑
i′=kn(bn+sn)+1

ϕ(|i− i′|)1/2 .
bn+(n−kn(sn+bn))−1∑

i=1

iϕ(i)1/2 <∞.

In the case of j < kn, there is again at least one big subblock between the observations in E[Bj,nRn]

and therefore it follows that

|E[Bj,nRn]| .
(j−1)(bn+sn)+bn∑
i=(j−1)(bn+sn)+1

n∑
i′=kn(bn+sn)+1

ϕ(|i− i′|)1/2 = O(b2
nϕ(bn)1/2),

since n− kn(sn + bn) ≤ sn + bn = O(bn). Altogether, the calculations above yield

2

n

kn∑
j=1

E[Bj,nRn] = O(n−1knb
2
nϕ(bn)1/2) +O(n−1) = O(bna

bn/2) +O(n−1),

which converges to zero.

Now consider the fourth term in (6.5) and use (6.8) to conclude

E[Sj,nSj′,n] .
j(bn+sn)∑

i=(j−1)(bn+sn)+bn+1

j′(bn+sn)∑
i′=(j′−1)(bn+sn)+bn+1

ϕ(|i− i′|)1/2. (6.10)

For j = j′, it holds that

E[S2
j,n] .

sn∑
i,i′=1

ϕ(|i− i′|)1/2 .
sn−1∑
i=0

(sn − i)ϕ(i)1/2 . sn

∞∑
i=0

ai/2 . sn (6.11)

and therefore E[S2
j,n] = O(sn). Since there is always at least one big subblock between two small

subblocks, it follows that E[Sj,nSj′,n] = O(s2
nϕ(bn)1/2) for j 6= j′. Hence,

1

n

kn∑
j,j′=1

E[Sj,nSj′,n] = O(n−1knsn) +O(n−1k2
ns

2
nϕ(bn)1/2) = O(b−1

n sn) +O(nb−2
n s2

na
bn/2),
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which converges to zero, since b−1
n sn → 0 and nabn/2 → 0 as n→∞.

For the fifth term in (6.5), use similar arguments as for the third term and for the last term, use

the same arguments as in (6.11) to get

1

n
E[R2

n] = O(n−1(n− kn(bn + sn))) = O(n−1bn)→ 0.

From (6.6) it follows that it suffices to show the convergence n−1/2
∑kn

j=1 Bj,n ⇒ Z̄ in order

to establish (6.3). For that purpose let ψj,n(t) = exp(itn−1/2Bj,n) and define E
[∏kn

j=1 ψj,n(t)
]

as the characteristic function of n−1/2
∑kn

j=1Bj,n. Let B′1,n, . . . , B
′
kn,n

denote independent random

variables such that Bj,n and B′j,n are equally distributed (j = 1, . . . , kn) and define
∏kn

j=1 E[ψj,n(t)]

as the characteristic function of n−1/2
∑kn

j=1B
′
j,n. Then

∣∣∣E[ kn∏
j=1

ψj,n(t)
]
−

kn∏
j=1

E
[
ψj,n(t)

]∣∣∣ ≤ kn∑
i=1

∣∣∣ i−1∏
j=1

E
[
ψj,n(t)

]∣∣∣ ∣∣∣E[ kn∏
j=i

ψj,n(t)
]
− E

[
ψi,n(t)

]
E
[ kn∏
j=i+1

ψj,n(t)
]∣∣∣

. kn max
1≤i≤kn−1

φ
(
σ (ψi,n(t)) , σ

( kn∏
j=i+1

ψj,n(t)
))
. knϕ(sn) = o(1),

where Lemma 3.9 of Dehling and Philipp [19] was used for the the second inequality, while the

third inequality follows, since there are always sn observations between two big subblocks. Hence,

it suffices to show that n−1/2
∑kn

j=1 B
′
j,n converges in distribution to Z̄ in order to establish (6.3). For

that purpose, utilize the Lindeberg–Feller central limit theorem for triangular arrays. It is first shown

that Var(n−1/2
∑kn

j=1B
′
j,n) converges to the variance of Z̄.

Recall that the random variablesB′1,n, . . . , B
′
kn,n

are independent and have the same distributions

as B1,n, . . . , Bkn,n, respectively. Thus,

Var
( 1√

n

kn∑
j=1

B′j,n

)
=

1

n

kn∑
j=1

Var(B′j,n) = Var
( 1√

n

kn∑
j=1

Bj,n

)
− 1

n

kn∑
j,j′=1
j 6=j′

E[Bj,nBj′,n]. (6.12)

It is already known that Var(n−1/2
∑kn

j=1Bj,n) = Var(Zn) + o(1). Recall the calculations in (6.10)

and the subsequent discussion to note that it can be shown in a similar way that E[Bj,nBj′,n] =

O(b2
nϕ(sn)1/2), for j 6= j′. Consequently,

1

n

kn∑
j,j′=1
j 6=j′

E[Bj,nBj′,n] = O(n−1k2
nb

2
nϕ(sn)1/2).
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Since n−1kn = O((bn + sn)−1) = O(b−1
n ), O(n−1k2

nb
2
nϕ(sn)1/2) = O(nasn/2)→ 0, this means that

Var(n−1/2
∑kn

j=1B
′
j,n) =Var(Zn) + o(1).

Now consider the variance of Z̄. Recall the definition of Z̄ in (6.3) and note that its variance

satisfies

Var(Z̄) = Var
( q∑
l=1

clZ(tl)
)

=

q∑
l,l′=1

clcl′Cov(Z(tl), Z(tl′)) =

q∑
l,l′=1

clcl′C(tl, tl′). (6.13)

The variance of Zn can be expressed as

Var(Zn) = Var
( 1√

n

n∑
i=1

Zi,n

)
=

1

n

n∑
i,i′=1

Cov(Zi,n, Zi′,n) =
1

n

q∑
l,l′=1

clcl′
n∑

i,i′=1

Cov(Xn,i(tl), Xn,i′(tl′))

=
1

n

q∑
l,l′=1

clcl′
n∑

i,i′=1

γ(i− i′, tl, tl′) =
1

n

q∑
l,l′=1

clcl′
n∑

i=−n

(n− |i|)γ(i, tl, tl′) = Var(Z̄) + o(1)

by the dominated convergence theorem. Consequently, Var(n−1/2
∑kn

j=1B
′
j,n) = Var(Z̄) + oP(1)

follows from the previous discussion.

Finally, verify the Lindeberg condition for the random variables B′j,n. Using Hölder’s inequality

with p = 1 + ν/2 and q = (2 + ν)/ν (here ν is the same as in Assumption (A1)) and Markov’s

inequality yields

E
[
(B′j,n)21{|B′j,n| >

√
nδ}
]

= E
[
B2
j,n1{|Bj,n| >

√
nδ}
]
≤ E

[
|Bj,n|2+ν

]2/(2+ν)P
(
|Bj,n| >

√
nδ
)ν/(2+ν)

≤ E
[
|Bj,n|2+ν

]2/(2+ν)E
[
|Bj,n|2+ν

]ν/(2+ν)
(n1/2δ)−ν = E

[
|Bj,n|2+ν

]
(n1/2δ)−ν .

Minkowski’s inequality gives

E
[
|Bj,n|2+ν

]1/(2+ν) ≤
(j−1)(bn+sn)+bn∑
i=(j−1)(bn+sn)+1

E
[
|Zi,n|2+ν

]1/(2+ν)
= O(bn),

where the last estimate follows from

max
1≤i≤n

E
[
|Zi,n|2+ν

]1/(2+ν) ≤ max
1≤i≤n

q∑
l=1

|cl|E
[
|Xn,i(tl)− µ(i)(tl)|2+ν

]1/(2+ν)
<∞
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by Assumption (A1). Combining these estimates gives the Lindeberg condition, that is,

1

n

kn∑
j=1

E
[
(B′j,n)21{|B′j,n| >

√
nδ}
]

= O(n−1knb
2+ν
n n−ν/2) = O(b1+ν

n n−ν/2) = O(n1/2−ηb(1+ν)) = o(1),

since by assumption ηb > 1/(2 + 2ν).

The proof is completed showing that the process (Gn)n∈N ⊂ C([0, 1]) is uniformly ρ-equicontinuous

in probability with respect to the metric ρ(s, t) = |s − t|. With the notation Yn,j := Xn,j − µ(j) we

obtain

‖Gn(s)−Gn(t)‖2
2 =

1

n

n∑
j,j′=1

E
[(
Yn,j(s)− Yn,j(t)

)(
Yn,j′(s)− Yn,j′(t)

)]

≤ 2

n

n−1∑
j=0

(n− j)E
[(
Yn,1(s)− Yn,1(t)

)(
Yn,1+j(s)− Yn,1+j(t)

)]
(6.14)

(note that each row of the array {Yn,j : n ∈ N, j = 1, . . . , n} is stationary). Using Assumption

(A3), straightforward calculations yield, for any i = 1, . . . , n,

E
[
|Yn,i(s)− Yn,i(t)|2

]1/2
. |s− t| .

The inequality above and (3.17) in Dehling and Philipp [19] together with Assumption (A4) imply,

for any j = 1, . . . , n,

E
[
(Yn,1(s)− Yn,1(t))(Yn,1+j(s)− Yn,1+j(t))

]
. |s− t|2 ϕ(j)1/2 . |s− t|2 aj/2 .

Therefore it follows that

‖Gn(s)−Gn(t)‖2
2 . |s− t|2

∞∑
j=0

aj/2 . |s− t|2,

and we obtain from Theorem 2.2.4 in Van der Vaart and Wellner [40]∥∥∥ sup
ρ(s,t)≤δ

|Gn(s)−Gn(t)|
∥∥∥

2
.
∫ η

0

√
D(ν, ρ) dν + δD(η, ρ)

.
∫ η

0

1√
ν
dν +

δ

η
= 2
√
η +

δ

η
.

where D(η, ρ) = cd 1
η
e is the packing number with respect to the metric ρ(s, t) = |s− t|. Markov’s
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inequality now yields, for any ε > 0,

P
(

sup
ρ(s,t)≤δ

∣∣Gn(s)−Gn(t)
∣∣ > ε

)
≤ 1

ε2

∥∥∥ sup
ρ(s,t)≤δ

|Gn(s)−Gn(t)|
∥∥∥2

2
.

1

ε2

[
2
√
η +

δ

η

]
and, since η > 0 is arbitrary, we have

lim
δ↘0

lim sup
n→∞

P
(

sup
ρ(s,t)≤δ

∣∣Gn(s)−Gn(t)
∣∣ > ε

)
= 0 .

This means that (Gn)n∈N is asymptotically uniformly ρ-equicontinuous in probability and the asser-

tion in Theorem 2.1 follows.

Proof of Theorem 2.2. Theorem 2.1 implies that n−1/2
∑n

j=1(Xn,j−µ(j)) Z in C([0, 1]), where

Z is centered Gaussian with covariance function Cov(Z(s), Z(t)) = C(s, t) for s, t ∈ [0, 1]. More-

over, Assumption (A4) together with Remark 3.6.4 in Samur [38] yield, for any ε > 0,

lim
n→∞

nP
(

1√
n
‖Xn,1 − µ(1)‖ > ε

)
= 0. (6.15)

The assertion now follows from Corollary 3.5 in Samur [38].

6.3 Proofs of the results of Section 3

Proof of Theorem 3.1. Note that N × N is a directed set and [0, 1] is compact. Now by the weak

convergence in (3.4), the claim follows directly from Theorem 6.1.

Proof of Theorem 3.2. Note that

{µ1 − µ2 ∈ Cα,m,n} =
{

sup
t∈[0,1]

√
n+m

∣∣∣ 1

m

m∑
j=1

X̃j(t)−
1

n

n∑
j=1

Ỹj(t)
∣∣∣ ≤ u1−α

}
,

where X̃j = Xj − µ1 and Ỹj = Yj − µ2. Therefore, it follows from the discussion in Section 3.1.1

(applied to the random variables X̃j and Ỹj) that

lim
m,n→∞

P(µ1 − µ2 ∈ Cα,m,n) = lim
m,n→∞

P(Tm,n ≤ u1−α) = 1− α.

This is the assertion.
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Proof of Theorem 3.3. Using the notations

Vm =

√
n+m

m

m∑
j=1

(Xj − µ1) and Wn =

√
n+m

n

n∑
j=1

(Yj − µ2)

write Zm,n = Vm +Wn. Next define

U (r)
m =

√
n+m

m

m−l1+1∑
i=1

1√
l1

( i+l1−1∑
j=i

Xj(t)−
l1
m

m∑
j=1

Xj(t)
)
ξ

(r)
i ,

G(r)
n =

√
n+m

n

n−l2+1∑
i=1

1√
l2

( i+l2−1∑
j=i

Yj(t)−
l2
n

n∑
j=1

Yj(t)
)
ζ

(r)
i ,

then (Zm,n, B̂
(1)
m,n, . . . , B̂

(R)
m,n) = (Vm, U

(1)
m , . . . , U

(R)
m ) + (Wn, G

(1)
n , . . . , G

(R)
n ), and with similar but

easier arguments as in the proof of Theorem 4.3, it can be shown that

(Vm, U
(1)
m , . . . , U (R)

m ) 1√
λ
(Z1, Z

(1)
1 , . . . , Z

(R)
1 ),

(Wn, G
(1)
n , . . . , G(R)

n ) 1√
1−λ(Z2, Z

(1)
2 , . . . , Z

(R)
2 )

inC([0, 1])R+1. Since the two vectors are independent, it directly follows that (Zm,n, B̂
(1)
m,n, . . . , B̂

(R)
m,n) 

(Z,Z(1), . . . , Z(R)) in C([0, 1])R+1.

Proof of Theorems 3.4 and 3.5. The statement (3.19) of Theorem 3.5 is a direct consequence of

Proposition F.1 in the online supplement of Bücher and Kojadinovic [14] (note that the continuity of

the random variable T is implied by the results in Gaenssler et al. [23]).

Now Theorem 3.4 follows from the well-known relation between confidence sets and tests for

simple hypotheses (see for example Lehmann [32], p. 214), observing that

Cα,m,n =

{
f ∈ C([0, 1]) :

∥∥µ̂1 − µ̂2 − f
∥∥ ≤ T

{bR(1−α)c}
m,n√
n+m

}
is defined by the acceptance region of an asymptotic level α test for the hypothesesH0,f : µ1−µ2 ≡ f

versus H0,f : µ1 − µ2 6≡ f , which rejects the null hypothesis, whenever

∥∥µ̂1 − µ̂2 − f
∥∥ > T

{bR(1−α)c}
m,n√
n+m

.

The remaining statement regarding consistency follows from similar arguments as given in Bücher
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et al. [13]. Under the alternative, Theorem 3.1 yields, for any K ∈ N,

lim
m,n→∞

P(
√
n+m d̂∞ ≥ K) = lim

m,n→∞
P(
√
n+m(d̂∞ − d∞) +

√
n+m d∞ ≥ K) = 1. (6.16)

Moreover, under the alternative, Theorem 3.3 together with the continuous mapping theorem yield,

for any R ∈ N,

lim
K→∞

lim
m,n→∞

P(T {bR(1−α)c}
m,n > K) ≤ lim

K→∞
lim

m,n→∞
P( max

r=1,...,R
T (r)
m,n > K) = 0. (6.17)

The assertion in (3.20) now follows from (6.16) and (6.17).

Proof of Theorem 3.6. Straightforward calculations show that

Dm,n =
∣∣d̂∞ − d∞∣∣+ sup

t∈[0,1]

∣∣µ̂1(t)− µ̂2(t)− (µ1(t)− µ2(t))
∣∣

≥
∣∣d̂∞ − d∞∣∣+ sup

t∈E+

∣∣µ̂1(t)− µ̂2(t)− d∞
∣∣

= sup
t∈E+

(∣∣d̂∞ − d∞∣∣+
∣∣d∞ − (µ̂1(t)− µ̂2(t))

∣∣)
≥ sup

t∈E+

∣∣d̂∞ − (µ̂1(t)− µ̂2(t))
∣∣

≥ d̂∞ − inf
t∈E+

(
µ̂1(t)− µ̂2(t)

)
,

and (3.4) and Theorem 3.1 yield (observing the order of the sequence cm,n) that P
( cm,n√

m+n
≥ Dm,n

)
→

1 as m,n→∞. Therefore,

P
(
E+ ⊂ Ê+

m,n

)
= P

(
inf
t∈E+

(µ̂1(t)− µ̂2(t)) ≥ d̂∞ −
cm,n√
m+ n

)
≥ P

( cm,n√
m+ n

≥ Dm,n

)
→ 1

as m,n→∞. This means that, for any ε > 0,

P
(

sup
x∈E+

inf
y∈Ê+

m,n

|x− y| > ε
)
→ 0 (6.18)

as m,n→∞. On the other hand, the inequality

sup
xm,n∈Ê+

m,n

|µ1(xm,n)− µ2(xm,n)− d∞| ≤ sup
xm,n∈Ê+

m,n

|µ1(xm,n)− µ2(xm,n)− d̂∞|+ |d̂∞ − d∞|

≤ sup
xm,n∈Ê+

m,n

(
|µ1(xm,n)− µ2(xm,n)− (µ̂1(xm,n)− µ̂2(xm,n))|+ |d̂∞ − d∞|+

cm,n√
m+ n

)
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shows that

P
(

sup
xm,n∈Ê+

m,n

|µ1(xm,n)− µ2(xm,n)− d∞| ≤ 2
cm,n√
m+ n

)
≥ P

(
sup
t∈[0,1]

|µ1(t)− µ2(t)− (µ̂1(t)− µ̂2(t))|+ |d̂∞ − d∞| ≤
cm,n√
m+ n

)
→ 1

as m,n→∞. Therefore,

sup
xm,n∈Ê+

m,n

|µ1(xm,n)− µ2(xm,n)− d∞| → 0 (6.19)

(outer) almost surely, which implies

sup
xm,n∈Ê+

m,n

inf
y∈E+
|xm,n − y| → 0 (6.20)

(outer) almost surely as m,n → ∞. To see this, assume the contrary. Then there would exist a

sequence (xm,n) in Ê+
m,n with infy∈E+ |xm,n − y| ≥ ε. Now consider the closed set Uε = {t ∈

Ê+
m,n : |t− s| ≥ ε, ∀s ∈ E+}. Then xm,n ∈ Uε and

max{µ1(t)− µ2(t) : t ∈ Uε} < d∞,

which contradicts (6.19) and proves (6.20). Combining (6.18) and (6.20), for any ε > 0,

P
(
dH(Ê+

m,n,E
+) > ε

)
= P

(
max

{
sup

x∈Ê+
m,n

inf
y∈E+
|x− y|, sup

x∈E+

inf
y∈Ê+

m,n

|x− y|
}
> ε
)
→ 0

as m,n→∞. In the same way it can be shown that P
(
dH(Ê−m,n,E

−) > ε
)
→ 0 as m,n→∞, and

the assertion of of Lemma 3.6 follows.

Proof of Theorem 3.7. The proof is a direct consequence of the following lemma, which might be

of own interest and will be proved at the end of this section.

Lemma 6.3. Let ((Xα, X
(1)
α , . . . X

(R)
α ) : α ∈ A) be a net of random variables in C([0, 1])R+1

and ((M
(1)
α ,M

(2)
α ) : α ∈ A) a net of random elements in the set K([0, 1]) of all compact sub-

sets of the interval [0, 1]. Furthermore, let ((Xα, X
(1)
α , . . . X

(R)
α ) : α ∈ A) converge weakly to

(X,X(1), . . . , X(R+1)) in C([0, 1])R+1, where X(1), . . . , X(R+1) are independent copies of X , and

((M
(1)
α ,M

(2)
α ) : α ∈ A) converge in probability to the non random sets (M (1),M (2)) in K([0, 1])2,

44



that is

P
(

max
{
dH(M (1)

α ,M (1)), dH(M (2)
α ,M (2))

}
> ε
)
→ 0

for all ε > 0. Then the random variables

Yα = max
{

max
t∈M(1)

Xα(t), max
t∈M(2)

(−Xα(t))
}

and Y (r)
α = max

{
max
t∈M(1)

α

X(r)
α (t), max

t∈M(2)
α

(−X(r)
α (t))

}
,

(r = 1, . . . , R) satisfy

(Yα, Y
(1)
α , . . . , Y (R+1)

α )⇒ (Y, Y (1), . . . , Y (R))

in RR+1 where Y = max
{

maxt∈M(1) X(t),maxt∈M(2)(−X(t))
}

and Y (1), . . . , Y (R) are indepen-

dent copies of Y .

Theorem 3.3, Lemma 3.6 and Lemma 6.3 show that(
D̃m,n(E), K(1)

m,n, . . . , K
(R)
m,n

)
⇒ (T (E), T (1)(E), . . . , T (R)(E)),

in RR+1, where

D̃m,n(E) =
√
n+m max

{
sup
t∈E+

Zm,n, sup
t∈E−

(−Zm,n)
}

and the random variable Zm,n is defined by (3.4). The proofs of Lemmas 6.1 and 6.2 yield that

√
n+m(d̂∞ − d∞) = D̃m,n(E) + oP(1),

thus completing the proof of Theorem 3.7.

Proof of Lemma 6.3. Only the convergence Y (1)
α ⇒ Y (1) is shown, since the general case follows

from very similar albeit notationally more complex arguments.

Let S denote the space C([0, 1])×K([0, 1])2 equipped with the metric d defined by

d((f, A,B), (g, A′, B′)) = max
{
‖f − g‖∞, dH(A,A′), dH(B,B′)

}
for any (f, A,A′), (g,B,B′) ∈ S. Slutsky’s theorem then yields (X

(1)
α ,M

(1)
α ,M

(2)
α ) (X,M (1),M (2))

in S. Now consider the function

H : S→ R, (f, A,A′) 7→ max{max
t∈A

f(t),max
t∈A′

(−f(t))}
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and show that it is continuous. For this purpose it is sufficient to prove that the maps

h : S→ R, (f, A,A′) 7→ max
t∈A

f(t) and h− : S→ R (f, A,A′) 7→ max
t∈A′

(−f(t))

are continuous (since the maximum of two continuous functions is continuous). Exemplarily, focus

on the map h (the corresponding statement for h− follows from closely analogous arguments). Let

ε > 0 be arbitrary and (f, A,A′), (g,B,B′) ∈ S such that

d((f, A,A′), (g,B,B′)) < min{δ, ε/2},

where δ > 0 is chosen such that, for any t, s ∈ T with |t− s| < δ, the inequality |g(t)− g(s)| < ε/2

holds (note that g is uniformly continuous on [0, 1]). Then,

|h(f, A,A′)− h(g,B,B′)| = |max
t∈A

f(t)−max
t∈B

g(t)| ≤ |max
t∈A

f(t)−max
t∈A

g(t)|+ |max
t∈A

g(t)−max
t∈B

g(t)|,

where the first term can be bounded by maxt∈A |f(t) − g(t)| ≤ ‖f − g‖∞ < ε/2. For the second

term, first consider the case where maxt∈A g(t) ≥ maxt∈B g(t) and obtain

|max
t∈A

g(t)−max
t∈B

g(t)| = max
t∈A

g(t)−max
t∈B

g(t) = g(t1)−max
t∈B

g(t),

where t1 ∈ arg maxt∈Ag(t). Since dH(A,B) < δ, there is a t2 ∈ B such that |t1 − t2| < δ. Thus,

g(t1)−max
t∈B

g(t) ≤ g(t1)− g(t2) < ε/2 .

For the second case, use the same arguments to show that |maxt∈A g(t)−maxt∈B g(t)| < ε/2. This

yields

|h(f, A,A′)− h(g,B,B′)| < ε/2 + ε/2 = ε,

verifying that h is continuous.

The discussion at the beginning of this proof shows that

Y (1)
α = max

{
max
t∈M(1)

α

X(1)
α (t), max

t∈M(2)
α

(−X(1)
α (t))

}
⇒ Y (1).

The proof is complete.
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6.4 Proofs of the results in Section 4

Proof of Theorem 4.1. Recall the notations (2.2), (4.3) and (4.6) to obtain

√
n
(
Ûn(s, t)−

(
s ∧ s∗ − ss∗

)(
µ1(t)− µ2(t)

))
= Ŵn(s, t) +

√
n
(
E[Ûn(s, t)]−

(
s ∧ s∗ − ss∗

)(
µ1(t)− µ2(t)

))
= Ŵn(s, t) + oP(1)

uniformly with respect to (s, t) ∈ [0, 1]2. An application of (4.4) shows that the weak convergence

√
n
(
Ûn(s, t)−

(
s ∧ s∗ − ss∗

)(
µ1(t)− µ2(t)

)
: (s, t) ∈ [0, 1]2

)
 
(
W(s, t) : (s, t) ∈ [0, 1]2

)
follows. Now the representation

Dn =
√
n
(

sup
(s,t)∈[0,1]2

∣∣Ûn(s, t)
∣∣− sup

(s,t)∈[0,1]2

∣∣(s ∧ s∗ − ss∗)(µ1(t)− µ2(t)
)∣∣ )

and Theorem 6.1 yield the assertion of Theorem 4.1.

Proof of Theorem 4.2. In order to prove the assertion, use Corollary 2 in Hariz et al. [25]. Let

M be the space of all signed finite measures on C([0, 1]), define πt as the canonical projection

C([0, 1]) 3 x→ x(t) and consider the class F = {πt : t ∈ [0, 1]}. Note that

N(ν) = sup
t∈[0,1]

∣∣∣ ∫
C([0,1])

πt(x) ν(dx)
∣∣∣

defines a semi-norm on M. In particular, if P = PX1 and Q = PXn are the distributions on C([0, 1])

before and after the change-point, it holds that∫
C([0,1])

πt(x)(P −Q)(dx) =

∫
C([0,1])

πt(x)(PX1 − PXn)(dx) =

∫
Ω

πt(X1)dP−
∫

Ω

πt(Xn)dP

=

∫
Ω

X1(t)dP−
∫

Ω

Xn(t)dP = E[X1(t)]− E[Xn(t)] = µ1(t)− µ2(t),

and therefore N(P −Q) = ‖µ1 − µ2‖ > 0. The estimator of the change-point can now be rewritten

as s̃ = n−1 min
(

arg max1≤k<n{N(Dk)}
)
, where

Dk =
k

n

(
1− k

n

)(1

k

k∑
i=1

δXn,i −
1

n− k

n∑
i=k+1

δXn,i

)
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and δx denotes the Dirac measure at the point x ∈ C([0, 1]). The assertion of Theorem 4.2 follows

from Corollary 2 and Remark 2 in Hariz et al. [25] if the following conditions can be verified.

There exist constants C > 0 and ξ > 0 such that, for any p,

sup
t∈[0,1]

sup
k+p≤n

E
[( k+p∑

i=k

(
πt(Xn,i)− E[πt(Xn,i)]

))2
]
≤ Cp2−ξ. (6.21)

For any ε > 0,

N[ ](ε,F, ‖ · ‖G) <∞ , (6.22)

where ‖ · ‖G is a norm on a space G (containing F), which satisfies (|P (|πt|)| + |Q(|πt|)|) ≤ ‖πt‖G
for any t ∈ [0, 1] and N[ ](ε,F, ‖ · ‖G) denotes the bracketing number. Moreover, for any ν ∈M and

f : C([0, 1])→ R, define

ν(f) =

∫
C([0,1])

f(x) ν(dx).

Since Assumption (A3) is satisfied with a bounded random variable M , only consider the sub-

space of C([0, 1]) that consists of all functions that are Lipschitz continuous with a uniform constant

c. Therefore,

|πs(x)− πt(x)| = |x(s)− x(t)| ≤ c|s− t|

for any s, t ∈ [0, 1]. It follows from Theorem 2.7.11 in Van der Vaart and Wellner [40] that

N[ ](2ε̃‖c‖G,F, ‖ · ‖G) ≤ N(ε̃, [0, 1], | · |).

In the equation above N(ε̃, [0, 1], | · |) denotes the covering number, that is the minimal number of

balls of radius ε̃ needed to cover the unit interval [0, 1]. Note that

N(ε̃, [0, 1], | · |) =
⌈ 1

2ε̃

⌉
<∞

and therefore (6.22) is satisfied.
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Using Assumptions (A1), (A4) and (3.17) in Dehling and Philipp [19], leads to

sup
t∈[0,1]

sup
k+p≤n

E
[( k+p∑

i=k

(
πt(Xn,i)− E[πt(Xn,i)]

))2
]

= sup
t∈[0,1]

sup
k+p≤n

E
[( k+p∑

i=k

(
Xn,i(t)− E[Xn,i(t)]

))2
]

= sup
t∈[0,1]

sup
k+p≤n

k+p∑
i,j=k

Cov(Xn,i(t), Xn,j(t)) . sup
k+p≤n

k+p∑
i,j=k

ϕ(|i− j|)1/2

.
p∑
i=0

(p+ 1− i)ϕ(i)1/2 . (p+ 1)
∞∑
i=0

ai/2 . p

which means that (6.21) is satisfied for ξ = 1.

Proof of Theorem 4.3. The weak convergence

(V̂n, B̂
(1)
n , . . . , B̂(R)

n ) (V,V(1), . . . ,V(R)) (6.23)

in C([0, 1]2)R+1 will be verified, where V̂n is defined in (2.2) and V(1), . . . ,V(R) are independent

copies of V defined in (2.5). The assertion then follows from the continuous mapping theorem. We

only consider the case d∞ > 0 since, for d∞ = 0, the assertion follows by similar arguments. The

proof of (6.23) is complicated and consists of a series of steps, which are described first.

(1) Replace the estimates µ̂1 and µ̂2 in (4.15) by the true functions µ1 and µ2 and consider the

process

B̃(k)
n (s, t) =

1√
n

bsnc∑
i=1

1√
l

( i+l−1∑
j=i

(
Yn,j(t)− µ1(t)

))
ξ

(k)
i

+
√
n
(
s− bsnc

n

) 1√
l

( bsnc+l∑
j=bsnc+1

(
Yn,j(t)− µ1(t)

))
ξ

(k)
bsnc+1,

where Yn,j = Xn,j − (µ2 − µ1)1{j > bs∗nc}. For this process, show the weak convergence

(V̂n, B̃
(1)
n , . . . , B̃(R)

n ) (V,V(1), . . . ,V(R)). (6.24)

(2) Next show that

sup
(s,t)∈[0,1]2

|B̃(k)
n (s, t)− B̄(k)

n (s, t)| = oP(1) , (6.25)
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where the process B̄(k)
n is defined by

B̄(k)
n (s, t) =

1√
n

bsnc∑
i=1

1√
l

( i+l−1∑
j=i

Yn,j(t)−
l

n

n∑
j=1

Yn,j(t)
)
ξ

(k)
i

+
√
n
(
s− bsnc

n

) 1√
l

( bsnc+l∑
j=bsnc+1

Yn,j(t)−
l

n

n∑
j=1

Yn,j(t)
)
ξ

(k)
bsnc+1.

(6.26)

(3) Finally establish the assertion (6.23), proving for k = 1, . . . , R, that

sup
(s,t)∈[0,1]2

|B̂(k)
n (s, t)− B̄(k)

n (s, t)| = oP(1) . (6.27)

Combining (1)–(3) completes the proof.

Proof of (6.24). The weak convergence of the process will be shown through proving the weak

convergence of its finite-dimensional distributions and asymptotic tightness.

(A) Convergence of the finite-dimensional distributions. This part uses similar arguments as given in

the proof of Theorem 2.1 and detailed arguments are only given when substantial differences occur.

For the sake of brevity and simpler notations, consider the case R = 1 and prove

Ẑn =

q∑
j=1

cjV̂n(sj, uj) +

q∑
j=1

djB̃
(1)
n (tj, vj)⇒ Z =

q∑
j=1

cjV(sj, uj) +

q∑
j=1

djV(1)(tj, vj) (6.28)

for any q ∈ N, (u1, s1, v1, t1), . . . , (uq, sq, vq, tq) ∈ [0, 1]4 and arbitrary constants c1, d1, . . . , cq, dq ∈
R. The convergence of the finite-dimensional distributions of the process (V̂n, B̃

(1)
n ) then follows

from an application of the Cramér–Wold device. For this purpose define

Zn =

q∑
j=1

cjV̌n(sj, uj) +

q∑
j=1

djB̌
(1)
n (tj, vj),

where

V̌n(s, t) =
1√
n

bsnc∑
j=1

(Xn,j − µ(j)) , B̌(1)
n (s, t) =

1√
n

bsnc∑
i=1

1√
l

( i+l−1∑
j=i

(
Xn,j(t)− µ(j)(t)

))
ξ

(1)
i .

Using Assumption (A2) and the fact that (ξ
(1)
i )i∈N is independent of (Xn,j : n ∈ N, j = 1, . . . , n), it
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can be seen that ‖Ẑn − Zn‖2 . 1√
n

+
√
l√
n
→ 0. Therefore (6.28) follows from

Zn =
1√
n

n∑
i=1

(
Zi,n + Z

(1)
i,n

)
⇒ Z, (6.29)

where (note that Xn,j − µ(j) = Yn,j − µ1)

Zi,n =

q∑
j=1

cj(Yn,i(uj)− µ1(uj))1{i ≤ bsjnc}, (6.30)

Z
(1)
i,n = ξ

(1)
i

q∑
j=1

dj
1√
l

( i+l−1∑
k=i

(Yn,k(vj)− µ1(vj))
)
1{i ≤ btjnc} . (6.31)

A blocking technique will again be utilized to investigate the weak convergence of this sum (see the

proof of Theorem 2.1). To this end, let ηb and ηs denote two constants such that

β(2 + ν) + 1

2 + 2ν
< ηb < ηs <

1

2
, (6.32)

and define the length of the small and the big subblocks as sn = bn1/2−ηsc and bn = bn1/2−ηbc,
respectively. Note that (β(2 + ν) + 1)/(2 + 2ν) < 1/2 (since we assumed that β < 1/3) and that

we have kn = bn/(bn + sn)c blocks in total. Now introducing the sums

Bj,n =

(j−1)(bn+sn)+bn∑
i=(j−1)(bn+sn)+1

(Zi,n + Z
(1)
i,n ) and Sj,n =

j(bn+sn)∑
i=(j−1)(bn+sn)+bn+1

(Zi,n + Z
(1)
i,n ) , (6.33)

of the terms in the j-th big and small subblock, respectively (j = 1, . . . , kn), the representations

(6.4) and (6.5) in the proof of Theorem 2.1 are obtained, adopting appropriate redefinitions of the

quantities Bj,n, Sj,n and Rn involved in this representation. It can be shown that

|Zn − 1/
√
n

kn∑
j=1

Bj,n| = |1/
√
n

kn∑
j=1

Sj,n + 1/
√
nRn| = oP(1) (6.34)

Var(Zn) = Var(
kn∑
j=1

Bj,n) + o(1), (6.35)

proving that each term on the right-hand side of (6.5), with the exception of the first, converges to

zero in probability. Exemplarily, consider the fourth term to indicate the differences to the proof of
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Theorem 2.1. Note that

E[Sj,nSj′,n] =

j(bn+sn)∑
i=(j−1)(bn+sn)+bn+1

j′(bn+sn)∑
i′=(j′−1)(bn+sn)+bn+1

E[Zi,nZi′,n] + E[Z
(1)
i,nZ

(1)
i′,n]

and it follows from (3.17) in Dehling and Philipp [19] together with Assumption (A1) that

|E[Zi,nZi′,n]| ≤
q∑

j,j′=1

|cjcj′ ||Cov(Yi(uj), Yi′(uj′))| . ϕ(|i− i′|)1/2, (6.36)

as the σ-field generated by a C([0, 1])-valued random variable X always contains the σ-field gen-

erated by X(t) for a fixed t ∈ [0, 1]. Moreover, E[(Z
(1)
i,n )2] ≤ const < ∞, which follows from the

representation

E[(Z
(1)
i,n )2] =

1

l

q∑
j,j′=1

djdj′
i+l−1∑
i′,i′′=i

Cov(Yn,i′(vj), Yn,i′′(vj′))1{i ≤ btjnc}1{i ≤ btj′nc}

and the fact that the covariance in the last expression can be estimated by (here C denotes a constant)

1

l

i+l−1∑
i′,i′′=i

|Cov(Yn,i′(vj), Yn,i′′(vj′))| ≤ C +
2

l

i+l−2∑
i′=i

i+l−1∑
i′′=i′+1

|Cov(Yn,i′(vj), Yn,i′′(vj′))|

. C+
2

l

i+l−2∑
i′=i

i+l−1∑
i′′=i′+1

ϕ(|i′ − i′′|)1/2 ≤ C +
2

l

l−1∑
i′=1

(l − i′)ai′/2 <∞,

using Assumptions (A1), (A4) and (3.17) in Dehling and Philipp [19]). Combining this result with

(6.36) leads to

E[S2
j,n] .

j(bn+sn)∑
i,i′=(j−1)(bn+sn)+bn+1

ϕ(|i− i′|)1/2 + sn ≤ 2
sn−1∑
i=0

(sn − i)ϕ(i)1/2 + sn = O(sn) . (6.37)

With similar arguments it follows that E[Sj,nSj′,n] = O(s2
nϕ(bn)1/2) for j 6= j′ since there is at least

one big subblock between the observations. Hence,

1

n

kn∑
j,j′=1

E[Sj,nSj′,n] = O(n−1knsn) +O(n−1k2
ns

2
nϕ(bn)1/2) = O(b−1

n sn) +O(nb−2
n s2

na
bn/2) = o(1)

as b−1
n sn → 0 and nabn/2 → 0. It can be shown by similar arguments that the second, third, fifth and
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sixth term in (6.5) are of order o(1) and (6.34) and (6.35) therefore follow.

Equation (6.34) implies that it suffices to show that n−1/2
∑kn

j=1Bj,n converges in distribution to

Z to prove (6.29). Using similar arguments as in the proof of Theorem 2.1, it can be shown that

∣∣∣E[ kn∏
j=1

ψj,n(t)
]
−

kn∏
j=1

E [ψj,n(t)]
∣∣∣ . knϕ(sn) = O(kna

sn) = o(1) ,

where E[
∏kn

j=1 ψj,n(t)] is the characteristic function of n−1/2
∑kn

j=1Bj,n,
∏kn

j=1 E [ψj,n(t)] is the

characteristic function of n−1/2
∑kn

j=1B
′
j,n and B′1,n, . . . , B

′
kn,n

are independent random variables

such that Bj,n and B′j,n have the same distribution for any j = 1, . . . kn. Therefore (6.29) follows

from

n−1/2

kn∑
j=1

B′j,n ⇒ Z, (6.38)

which can be established by the Lindeberg–Feller central limit theorem for triangular arrays. Similar

arguments as given in the discussion following (6.12) give

Var
(

1√
n

kn∑
j=1

B′j,n

)
= Var

(
1√
n

kn∑
j=1

Bj,n

)
+ o(1) = Var(Zn) + o(1). (6.39)

We now show that Var(Zn) converges to the variance of the random variable Z defined in (6.28),

which is given by

Var(Z) = Var
( q∑
j=1

cjV(sj, uj)
)

+ Var
( q∑
j=1

djV(1)(tj, vj)
)

=

q∑
j,j′=1

cjcj′(sj ∧ sj′)C(uj, uj′) +

q∑
j,j′=1

djdj′(tj ∧ tj′)C(vj, vj′) .

(6.40)

On the other hand (observing that Cov(Zi,n, Z
(1)
i′,n) = 0),

Var(Zn) =
1

n

n∑
i,i′=1

(
E[Zi,nZi′,n] + E[Z

(1)
i,nZ

(1)
i′,n]
)

=
1

n

n∑
i,i′=1

E[Zi,nZi′,n] +
1

n

n∑
i=1

E[(Z
(1)
i,n )2] .

(6.41)
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The second term in this expression satisfies

1

n

n∑
i=1

E[(Z
(1)
i,n )2] =

1

n

n∑
i=1

q∑
j,j′=1

djdj′
1

l

i+l−1∑
i′1,i
′
2=i

Cov(Yi′1(vj), Yi′2(vj′))1
{
i ≤ b(tj ∧ tj′)nc

}
=

q∑
j,j′=1

djdj′
b(tj ∧ tj′)nc

n

l−1∑
i′=−(l−1)

l − |i′|
l

γ(i′, vj, vj′)

→
q∑

j,j′=1

djdj′(tj ∧ tj′)
∞∑

i=−∞

γ(i, vj, vj′) =

q∑
j,j′=1

djdj′(tj ∧ tj′)C(vj, vj′),

where the dominated convergence theorem was used in the last step. For the first term in (6.41),

assume without loss of generality that sj ≤ sj′ and note that

1

n

n∑
i,i′=1

E[Zi,nZi′,n] =
1

n

q∑
j,j′=1

cjcj′

bsjnc∑
i=1

bsj′nc∑
i′=1

Cov(Yi(uj), Yi′(uj′))

=

q∑
j,j′=1

cjcj′

(
1

n

bsjnc∑
i=1

bsjnc∑
i′=1

γ(i− i′, uj, uj′) +
1

n

bsjnc∑
i=1

bsj′nc∑
i′=bsjnc+1

Cov(Yi(uj), Yi′(uj′))

)

=

q∑
j,j′=1

cjcj′sj

∞∑
i=−∞

γ(i, uj, uj′) + o(1) =

q∑
j,j′=1

cjcj′sj C(uj, uj′) + o(1),

where the dominated convergence theorem was used again for the first term and the bound

1

n

bsjnc∑
i=1

bsj′nc∑
i′=bsjnc+1

|Cov(Yi(uj), Yi′(uj′))| .
1

n

bsj′nc−1∑
i=1

iϕ(i)1/2 ≤ 1

n

bsj′nc−1∑
i=1

iai/2 = o(1)

for the second term. Observing (6.39)–(6.41), it follows that Var(n−1/2
∑kn

j=1B
′
j,n) =Var(Z) + o(1)

as postulated.

For a proof of the Lindeberg condition, use Hölder’s inequality (with p = 1 + ν/2 and q =

(2 + ν)/ν, where ν is the same as in Assumption (A1)) and Markov’s inequality to obtain

∆n =
1

n

kn∑
j=1

E
[
(B′j,n)21{|B′j,n| >

√
nδ}
]

=
1

n

kn∑
j=1

E
[
B2
j,n1{|Bj,n| >

√
nδ}
]

≤ 1

n

kn∑
j=1

E
[
|Bj,n|2+ν

]2/(2+ν)P
(
|Bj,n| >

√
nδ
)ν/(2+ν) ≤ 1

n

kn∑
j=1

E
[
|Bj,n|2+ν

]
(n1/2δ)−ν . (6.42)

Now, observing the definition of Zi,n, Z(1)
i,n in (6.30), (6.31), respectively, and Assumption (A1), it
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can be seen that max1≤i≤n E
[
|Zi,n|2+ν

]1/(2+ν)
< ∞ and max1≤i≤n E

[
|Z(1)

i,n |2+ν
]1/(2+ν)

.
√
l, and

the Lindeberg condition follows from (6.42) observing that the representation of Bj,n in (6.33) and

Minkowski’s inequality give E
[
|Bj,n|2+ν

]1/(2+ν)
= O(bnl

1/2), that is,

∆n = O
(knb2+ν

n l(2+ν)/2

n1+ν/2

)
= O

(b1+ν
n l(2+ν)/2

nν/2

)
= O(n1/2−ηb(1+ν)l(2+ν)/2) = O(n1/2−ηb(1+ν)nβ(2+ν)/2),

which converges to zero by the assumption (6.32).

(B) Asymptotic tightness: Since (V̂n)n∈N converges weakly to V, the process (V̂n)n∈N is asymptoti-

cally tight and it remains to show that (B̃
(k)
n )n∈N is asymptotically tight (for any k = 1, . . . , R, note

that marginal asymptotic tightness implies joint asymptotic tightness).

Let s, t ∈ [0, 1] be arbitrary and define εn,j = Yn,j − µ1 for any n ∈ N and j = 1, . . . , n, then,

since ξ(k)
1 , . . . , ξ

(k)
n are independent of εn,1, . . . , εn,n with E[ξ

(k)
j ] = 0 and Var(ξ(k)

j ) = 1,

‖B̃(k)
n (1, s)− B̃(k)

n (1, t)‖2
2 =

1

n

n∑
i=1

E
[1

l

i+l−1∑
j=i

i+l−1∑
j′=i

(
εn,j(s)− εn,j(t)

)(
εn,j′(s)− εn,j′(t)

)]

≤2

l

l−1∑
j=0

(l − j)E
[(
εn,1(s)− εn,1(t)

)(
εn,1+j(s)− εn,1+j(t)

)]
, (6.43)

utilizing the fact that each row of the array (εn,j : n ∈ N, j = 1, . . . , n) is stationary. Assumption

(A3) implies E
[
|εn,i(s)− εn,i(t)|2

]1/2
. |s− t|, and (3.17) in Dehling and Philipp [19] yields

‖B̃(k)
n (1, s)− B̃(k)

n (1, t)‖2
2 .

2

l

l−1∑
j=0

(l − j)|s− t|2 aj/2 . |s− t|2
∞∑
j=0

aj/2 . |s− t|2 .

Now consider the metric ρ(s, t) = |s − t| on the interval [0, 1] and define D(η, ρ) =
⌈

1
η

⌉
as the

corresponding packing number, then Theorem 2.2.4 in Van der Vaart and Wellner [40] shows that∥∥∥ sup
ρ(s,t)≤δ

|B̃(k)
n (1, s)− B̃(k)

n (1, t)|
∥∥∥

2
≤ K ′

[ ∫ η

0

√
D(ν, ρ) dν + δD(η, ρ)

]
. 2
√
η +

δ

η
,

and Markov’s inequality now yields, for any ε > 0,

P
(

sup
ρ(s,t)≤δ

∣∣B̃(k)
n (1, s)− B̃(k)

n (1, t)
∣∣ > ε

)
.

1

ε2

[
2
√
η +

δ

η

]
.

Since η > 0 is arbitrary, it follows that the process (B̃
(k)
n (1, ·))n∈N is asymptotically uniformly

ρ-equicontinuous in probability. Moreover, the finite-dimensional distributions of (B̃
(k)
n (1, ·))n∈N
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converge weakly to the finite-dimensional distribution of V(k)(1, ·) and therefore it follows that

B̃
(k)
n (1, ·)  V(k)(1, ·) in C([0, 1]) (see the discussion at the beginning of the proof of Theorem

2.1).

The asymptotic tightness of the process B̃(k)
n in C([0, 1]2) is now a consequence of Corollary 3.5

in Samur [38]. To be precise, note that B̃(k)
n (1, t) = n−1/2

∑n
i=1D

(k)
n,i (t), where

D
(k)
n,i (t) =

1√
l

( i+l−1∑
j=i

(
Yn,j(t)− µ1(t)

))
ξ

(k)
i =

1√
l

( i+l−1∑
j=i

(
Xn,j(t)− µ(j)(t)

))
ξ

(k)
i .

The array (D
(k)
n,i : n ∈ N, i = 1, . . . , n) is ϕ-mixing and (by Assumption (A1) and Markov’s inequal-

ity)

nP
( 1√

n
‖D(k)

n,1‖ > ε
)
.

1

ε4

1

n

1

l2
E
[( l∑

j=1

‖Xn,j − µ(j)‖
)4]
.

1

ε4

l2

n
=

1

ε4
n2β−1.

Therefore, since β < 1/3 by assumption, limn→∞ nP(n−1/2‖D(k)
n,1‖ > ε) = 0. By the previous

discussion and (4.16), use Corollary 3.5 in Samur [38] to obtain (B̃
(k)
n )n∈N  V in C([0, 1]2), which

finally implies that (B̃
(k)
n )n∈N is asymptotically tight.

Proof of (6.25). Note that

‖B̄(k)
n − B̃(k)

n ‖ ≤
∥∥∥ 1√

n

bsnc∑
i=1

1√
l

(
lµ1(t)− l

n

n∑
j=1

Yn,j(t)
)
ξ

(k)
i

∥∥∥
+ sup

s,t∈[0,1]

∣∣∣√n(s− bsnc
n

) 1√
l

(
lµ1(t)− l

n

n∑
j=1

Yn,j(t)
)
ξ

(k)
bsnc+1

∣∣∣
≤ sup

s∈[0,1]

∣∣∣ 1√
n

bsnc∑
i=1

ξ
(k)
i

∣∣∣× √l√
n

sup
t∈[0,1]

∣∣∣ 1√
n

n∑
j=1

(Xn,j(t)− µ(j)(t))
∣∣∣

+
1√
n

n
max
i=1
|ξ(k)
i | ×

√
l√
n

sup
t∈[0,1]

∣∣∣ 1√
n

n∑
j=1

(
Xn,j(t)− µ(j)(t)

)∣∣∣.
Therein, sups∈[0,1] |n−1/2

∑bsnc
i=1 ξ

(k)
i | = OP(1), maxni=1 |ξ

(k)
i | = OP(

√
log n), while all other terms

are of order OP(
√
l/n) = oP(1), by Theorem 2.1.
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Proof of (6.27). Recall the definition of B̄(k)
n (s, t) in (6.26) and define

B̌(k)
n (s, t) =

1√
n

bsnc∑
i=1

1√
l

( i+l−1∑
j=i

Y̌n,j(t)−
l

n

n∑
j=1

Y̌n,j(t)
)
ξ

(k)
i

+
√
n
(
s− bsnc

n

) 1√
l

( bsnc+l∑
j=bsnc+1

Y̌n,j(t)−
l

n

n∑
j=1

Y̌n,j(t)
)
ξ

(k)
bsnc+1,

where Y̌n,j = Xn,j − (µ̂2 − µ̂1)1{j > bs∗nc}. Then,

sup
(s,t)∈[0,1]2

|B̌(k)
n (s, t)− B̄(k)

n (s, t)| ≤ U (1,1)
n + U (1,2)

n + U (2)
n = oP(1), (6.44)

where

U (1,1)
n = sup

(s,t)∈[0,1]2

∣∣∣ 1√
n

bsnc∑
i=1

1√
l

( i+l−1∑
j=i

εn(t)1{j > bs∗nc}
)
ξ

(k)
i

∣∣∣, (6.45)

U (1,2)
n = sup

(s,t)∈[0,1]2

∣∣∣ 1√
n

bsnc∑
i=1

1√
l

( l
n

n∑
j=1

εn(t)1{j > bs∗nc}
)
ξ

(k)
i

∣∣∣, (6.46)

U (2)
n = sup

(s,t)∈[0,1]2

∣∣∣√n√
l

(
s− bsnc

n

)( bsnc+l∑
j=bsnc+1

εn(t)1{j > bs∗nc} − l

n

n∑
j=1

εn(t)1{j > bs∗nc}
)
ξ

(k)
bsnc+1

∣∣∣,
and εn = µ̂2−µ2− (µ̂1−µ1). To prove (6.44), it will be shown that all terms on the right-hand side

of (6.44) converge to zero in probability, concentrating on U (1,1)
n and U (1,2)

n for the sake of brevity

(the term U
(2)
n can be treated similarly). At the end of this proof it will be verified that

sup
t∈[0,1]

∣∣εn(t)
∣∣ = OP

(
1√
n

)
. (6.47)

Direct calculations observing (6.47) yield

U (1,2)
n ≤ sup

s∈[0,1]

∣∣∣ 1√
n

bsnc∑
i=1

ξ
(k)
i

∣∣∣ ×√l sup
t∈[0,1]

∣∣εn(t)
∣∣ = OP

(√
l

n

)
= oP(1). (6.48)

For the first term on the right side of (6.44) similar arguments yield

U (1,1)
n = sup

t∈[0,1]

∣∣∣ 1√
n

bs∗nc∑
i=1

1√
l

( i+l−1∑
j=i

εn(t)1{j > bs∗nc}
)
ξ

(k)
i

∣∣∣+ oP(1)
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≤
bs∗nc∑

i=bs∗nc−l+1

|ξ(k)
i |
√
l√
n

sup
t∈[0,1]

∣∣εn(t)
∣∣+ oP(1) = OP

( l3/2
n

)
+ oP(1) = OP(n3/2β−1) + oP(1) = oP(1),

which follows using (6.47), β < 1/3 (by assumption) and
∑bs∗nc

i=bs∗nc−l+1 |ξ
(k)
i | = OP(l), the latter

relation implied by Markov’s inequality.

Therefore (6.44) holds and observing the definition of B̂(k)
n in (4.15), it is next shown that

sup
(s,t)∈[0,1]2

|B̂(k)
n (s, t)− B̌(k)

n (s, t)| ≤ Z(1)
n + Z(2)

n + Z(3)
n + Z(4)

n = oP(1), (6.49)

where

Z(1)
n = sup

(s,t)∈[0,1]2

∣∣∣ 1√
n

bsnc∑
i=1

1√
l

i+l−1∑
j=i

(
µ̂1(t)− µ̂2(t)

)(
1{j > bs∗nc} − 1{j > bŝnc}

)
ξ

(k)
i

∣∣∣
Z(2)
n = sup

(s,t)∈[0,1]2

∣∣∣ 1√
n

bsnc∑
i=1

1√
l

l

n

n∑
j=1

(
µ̂1(t)− µ̂2(t)

)(
1{j > bs∗nc} − 1{j > bŝnc}

)
ξ

(k)
i

∣∣∣,
Z(3)
n = sup

(s,t)∈[0,1]2

∣∣∣(s− bsnc
n

)√n√
l

bsnc+l∑
j=bsnc+1

(
µ̂1(t)− µ̂2(t)

)(
1{j > bs∗nc} − 1{j > bŝnc}

)
ξ

(k)
bsnc+1

∣∣∣,
Z(4)
n = sup

(s,t)∈[0,1]2

∣∣∣(s− bsnc
n

)√n√
l

l

n

n∑
j=1

(
µ̂1(t)− µ̂2(t)

)(
1{j > bs∗nc} − 1{j > bŝnc}

))
ξ

(k)
bsnc+1

∣∣∣.
As
∣∣1{j > bs∗nc} − 1{j > bŝnc}

∣∣ = 1{b(ŝ ∧ s∗)nc < j ≤ b(ŝ ∨ s∗)nc}, it follows that

Z(2)
n ≤ sup

(s,t)∈[0,1]2

( 1√
n

bsnc∑
i=1

|ξ(k)
i |√
l

l

n

n∑
j=1

∣∣µ̂1(t)− µ̂2(t)
∣∣ 1{b(ŝ ∧ s∗)nc < j ≤ b(ŝ ∨ s∗)nc}

)
(6.50)

≤ ‖µ̂1 − µ̂2‖∞
( 1√

n

n∑
i=1

|ξ(k)
i |
)√l
n

(
n|ŝ− s∗|+ 1

)
= OP

(√ l

n

)
= oP(1),

using that 1√
n

∑n
i=1 |ξ

(k)
i | = OP(

√
n) (by Markov’s inequality) and ‖µ̂1 − µ̂2‖ = OP(1) (implied by

(6.47)).

For the first term on the right-side of (6.49), use similar arguments as in (6.50) to obtain

Z(1)
n ≤

∥∥µ̂1 − µ̂2

∥∥
∞

1√
n

n∑
i=1

1√
l

( i+l−1∑
j=i

1{b(ŝ ∧ s∗)nc < j ≤ b(ŝ ∨ s∗)nc}
)
|ξ(k)
i |
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=
∥∥µ̂1 − µ̂2

∥∥
∞

1√
n

b(ŝ∨s∗)nc∑
i=b(ŝ∧s∗)nc−l+2

1√
l

( i+l−1∑
j=i

1{b(ŝ ∧ s∗)nc < j ≤ b(ŝ ∨ s∗)nc}
)
|ξ(k)
i |

≤
∥∥µ̂1 − µ̂2

∥∥
∞

√
l√
n

b(ŝ∨s∗)nc∑
i=b(ŝ∧s∗)nc−l+2

|ξ(k)
i | = OP(l3/2n−1/2) = OP(n3β/2−1/2) = oP(1),

since
∑b(ŝ∨s∗)nc

i=b(ŝ∧s∗)nc−l+2 |ξ
(k)
i | = OP(l), which follows from |ŝ − s∗| = OP(n−1). Similarly, one can

show Z
(3)
n = oP(1), Z(4)

n = oP(1) and therefore (6.49) holds, which implies (observing (6.44)) the

assertion (6.27).

In order to prove the remaining statement (6.47), note that

sup
t∈[0,1]

∣∣µ̂1(t)− µ1(t)
∣∣ ≤ 1√

n

n

bŝnc
(
Q(1)
n +Q(2)

n

)
, (6.51)

where

Q(1)
n = sup

t∈[0,1]

∣∣∣ 1√
n

b(ŝ∧s∗)nc∑
j=1

(
Xn,j(t)− µ1(t)

)∣∣∣,
Q(2)
n = sup

t∈[0,1]

∣∣∣ 1√
n

b(ŝ∨s∗)nc∑
j=b(ŝ∧s∗)nc+1

(
Xn,j(t)− µ1(t)

)∣∣∣ .
Recall the definition of V̂n in (2.2), then Theorem 2.2 and the extended continuous mapping theorem

(see Theorem 1.11.1 in Van der Vaart and Wellner [40]) yield

Q(1)
n = sup

t∈[0,1]

∣∣V̂n

(
b(ŝ ∧ s∗)nc/n, t

)∣∣ = OP(1) . (6.52)

On the other hand,

lim
p→∞

lim sup
n→∞

P
(
Q(2)
n > p

)
≤ lim

p→∞
lim sup
n→∞

P
(
Q(2)
n > p ,

∣∣bŝnc − bs∗nc∣∣ ≤ p
)

+ lim
p→∞

lim sup
n→∞

P
(∣∣bŝnc − bs∗nc∣∣ > p

)
.

The second term in this inequality is of order oP(1), since |ŝ− s∗| = OP(n−1). For the first term use

Markov’s inequality and Assumption (A1) to obtain

lim
p→∞

lim sup
n→∞

P
(
Q(2)
n > p ,

∣∣bŝnc − bs∗nc∣∣ ≤ p
)
≤ lim

p→∞
lim sup
n→∞

P
( 1√

n

bs∗nc+p∑
j=bs∗nc−p

(
‖Xn,j‖+ ‖µ1‖

)
> p
)
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. lim
p→∞

lim sup
n→∞

1√
n

= 0 .

This means that Q(2)
n = OP(1). Observing the calculations in (6.51) and (6.52) leads to

sup
t∈[0,1]

∣∣µ̂1(t)− µ1(t)
∣∣ = OP

(
1√
n

)
and sup

t∈[0,1]

∣∣µ̂2(t)− µ2(t)
∣∣ = OP

(
1√
n

)
, (6.53)

the second estimate following similarly. This yields (6.47) and completes the proof of (6.27).

Proof of Theorem 4.4. In order to prove the assertion define

Dn = |d̂∞ − d∞|+ sup
t∈[0,1]

|µ̂1(t)− µ̂2(t)− (µ1(t)− µ2(t))|.

Observing (6.53) and Corollary 4.1, yields P(cn/
√
n ≥ Dn) → 1 as n → ∞, and the same argu-

ments as given in the proof of Lemma 3.6 show dh(Ê
±
n ,E

±)
P∗−→ 0, where the sets Ê+

n and Ê−n are

now defined in (4.19). Theorem 4.3 and Lemma 6.3 lemma imply

(D̃n(E), T (1)
n , . . . , T (R)

n )⇒ (T (E), T (1), . . . , T (R))

in RR+1, where

D̃n(E) =
1

ŝ(1− ŝ)
max

{
max
t∈E+

Ŵn(ŝ, t),max
t∈E−

(−Ŵn(ŝ, t))
}

and the random variable Ŵn is defined by (4.3). From the discussion following Theorem 4.2 and the

proofs of Lemma 6.1 and Lemma 6.2, D̃n(E) = Dn/[ŝ(1− ŝ)] + oP(1) =
√
n(d̂∞ − d∞) + oP(1),

where Dn is defined by (4.8). This implies the assertion.
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