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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Entwicklung thermodynamisch konsisten-
ter Materialmodelle zur Beschreibung des makroskopisch nichtlinearen hysteretischen
Verhaltens von ferroelektrischen ein- und polykristallinen Materialien. Als erstes wird
ein phänomenologisches Materialmodell vorgestellt, welches sowohl zum Verständnis des
allgemeinen elektromechanischen Kopplungsverhaltens dient, als auch zur Untersuchung
der ratenabhängigen makroskopischen Polarisationsentwicklung in kristallinen ferroelek-
trischen Festkörpern genutzt wird. Im Anschluss an den phänomenologischen Modellie-
rungsrahmen werden laminatbasierte Modelle entwickelt, bei denen die Volumenfrak-
tionen der tetragonalen ferroelektrischen Varianten als interne Zustandsvariablen in den
thermodynamischen Potentialen verwendet werden. Im Kontext der Mittelungsverfahren
werden unterschiedliche thermodynamische Potentiale für die verschiedenen laminatba-
sierten Materialmodelle postuliert. Der Einfluss von sowohl der Belastungsgeschwin-
digkeit als auch der Höhe der externen Druckspannung auf die Domänenentwicklung
und Umklappvorgänge der Polarisation werden in tetragonalen ferroelektrischen Ein-
kristallen unter kombinierter elektromechanischer Belastung mit Hilfe der entwickelten
laminatbasierten Modellen simuliert. Zum Schluss werden homogenisierungsartige Ver-
fahren basierend auf Zufallsverteilungen der einzelnen einkristallinen Körnern in einem
polykristallinen Verbund im Detail vorgestellt. Die Eigenschaften der zufällig verteilten
Körner werden in einem Finite Elemente Rahmen gemittelt, um die Umklappvorgänge
der Polarisation und die makroskopische Hysteresekurve einer tetragonalen ferroelektri-
schen Keramik zu simulieren.
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Abstract

The present thesis deals with the development of thermodynamically consistent material
models to describe the macroscopic non-linear hysteretic behaviour of ferroelectric single
and polycrystalline materials. At first, a phenomenological material model is discussed
in order to gain an understanding of the overall electromechanical coupling behaviour
as well as to study the rate-dependent macroscopic polarisation evolution in crystalline
ferroelectric solids. Following the phenomenological framework, laminate-based models
are developed by treating the volume fraction of the tetragonal ferroelectric variants
as internal state variables in their thermodynamic potentials. By considering different
averaging principles, distinct thermodynamic potentials are postulated for the individ-
ual laminate-based material models. The influence of both the loading rate and the
magnitude of the external compressive stress on the domain evolution and polarisa-
tion switching in tetragonal ferroelectric single crystals under combined electromechan-
ical loading is simulated with help of the developed laminate-based models. Finally,
a homogenisation-type strategy based on random orientations of the individual single
crystal grains in a polycrystalline aggregate is detailed. The properties of the randomly
oriented grains are averaged within a finite element framework to simulate the polar-
isation switching response and the macroscopic hysteresis curves for a bulk tetragonal
ferroelectric ceramic.
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1 Introduction

Ferroelectric materials, both single crystals and polycrystalline ceramics, are increas-
ingly preferred in industrial and technological applications which require electromechan-
ical sensing and actuating functions. This is due to their exceptional material properties
which include high dielectric permittivity values and strong intrinsic electromechani-
cal coupling properties, to name a few. Ferroelectric memory appliances, transducers,
multilayer piezoelectric stack actuators and precision electro-optics are some devices
employing polycrystalline ferroelectric solids, see Tichý et al. [140]. In recent times, de-
velopment of thin-film polycrystalline ferroelectrics has made the use of these functional
materials possible in integrated semiconductor chips and in non-volatile memories, which
include ferroelectric random access memories (FeRAM) and dynamic random access
memory (DRAM) capacitors for example, see Scott [128]. A detailed review of the ap-
plications related to thin-film ferroelectric materials is provided by Setter et al. [130] and
Scott [127]. In order to increase the design efficiency of the functional devices employing
ferroelectric materials, the overall macroscopic behaviour based on microscopic effects
needs to be predicted well in advance. The present dissertation deals with the ther-
modynamic consistent material modelling as well as with the numerical implementation
for the simulation of the electromechanically coupled material behaviour in tetragonal
ferroelectric single and polycrystalline solids.

Both ferroelectric single and polycrystalline solids belong to the class of perovskite,
non-centrosymmetric materials. Typical ferroelectric perovskites include, for example,
barium titanate (BaTiO3) and lead titanate (PbTiO3), in pure compound form, and lead
zirconate titanate (Pb[Zr1−xTix]O3, 0 < x < 1, or in general PZT), in solid solution form.
The unit cell of a ferroelectric perovskite undergoes a phase transition from a non-polar
cubic structure to a polar tetragonal phase when cooled below the Curie temperature.
The underlying tetragonal unit cells exhibit a lattice distortion and a spontaneous po-
larisation or electric dipole moment due to the reduction in crystallographic symmetry.
In a general three-dimensional setting, there are six equally likely directions in which
the unit cells can be oriented or polarised. Moreover, from its default orientation, the
direction of the spontaneous polarisation can be switched by the application of suffi-
ciently large external electrical fields or mechanical loads. Multiple regions of uniformly
oriented unit cells are termed as domains, and a collection of a number of domains of
different orientations constitute a single crystal grain. Within individual single crystal
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1 Introduction

grains, two arbitrary domains of different configurations are separated by an interface
or, in other words, a domain wall. Upon the application of a sufficiently large external
electrical field along a particular global crystallographic axis, ferroelectric switching initi-
ates in the crystal, and the randomly oriented domains gradually align along the loading
direction. The single crystal is said to be poled and possesses an overall anisotropic
symmetry, characterised by macroscopic polarisation and strains. This process is known
as poling of the ferroelectric crystal. After the removal of the external electrical fields,
the crystal reaches a remnant state described by an irreversible macroscopic remnant
strain and a non-vanishing macroscopic remnant polarisation. The poled configuration
of the crystal is preserved in its remnant state. A ferroelastic domain switching per-
pendicular to the loading direction is initiated by the application of a large compressive
mechanical stress along a particular crystallographic direction of the crystal. While an
externally applied large electrical load induces both 90◦ and 180◦ switching of the do-
mains, a purely mechanical loading activates 90◦ ferroelastic switching only. Note, that
a 180◦ domain reversal induces a polarisation change without any difference in the strain
magnitude, whereas a 90◦ domain switching induces a change in crystallographic shape
of the crystal.

A bulk polycrystalline ferroelectric is a compact aggregate of a number of single crys-
talline grains of various shapes and orientations. Two neighbouring grains are separated
from each other by a grain boundary. Due to the, say randomly oriented single crys-
tal grains, the virgin and unpoled polycrystalline ceramic may be considered isotropic
on a macroscopic level devoid of a macroscopic remnant polarisation. However, with
the application of sufficiently large electrical fields, ferroelectric switching initiates with
the reorientation of the domains within the individual grains which transforms, in turn,
the bulk ceramic into a macroscopically anisotropic material. After the removal of the
externally applied loads, the remnant state of the bulk ceramic is recovered and the
poled configuration is characterised by macroscopic remnant polarisation and strains.
Upon the application of a sufficiently large external compressive mechanical stress on
a poled polycrystalline ferroelectric material along a particular global crystallographic
direction, ferroelastic switching is initiated and the domains within the individual single
crystal grains switch by 90◦. The ferroelastic effects within the individual grains lead to a
macroscopic depolarisation of the bulk ceramic. Figure 1.1 shows the optical microstruc-
tural images of single and polycrystalline tetragonal BaTiO3 along with the schematic
sketch of a spontaneously polarised tetragonal BaTiO3 unit cell. The micrographs cor-
responding to single and polycrystalline BaTiO3 microstructures are reprinted with the
permission from Merz [108] and from Arlt and Sasko [2] respectively. For a more detailed
insight into the general theory and properties of ferroelectric materials, the reader is re-
ferred to the monographs, for instance by Jona and Shirane [70], Jaffe et al. [66], Lines
and Glass [96], Damjanovic [35], Smith [137] as well as by Tagantsev et al. [139].

The 90◦ and 180◦ switching phenomena encountered in ferroelectric solids upon the
application of a cyclic electrical loading are dissipative in nature and result in a macro-
scopic non-linear hysteretic material response. The hysteresis plot corresponding to the
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single crystal BaTiO3 polycrystal BaTiO3
Ba2+ Ti4+ O2−

Figure 1.1: Optical observations of the microstructure depicting the different domain configurations in
single and polycrystalline materials. The domains within the single crystal (left) and within the indi-
vidual grains of a polycrystal (right) are a collection of a number of spontaneously polarised tetragonal
BaTiO3 unit cells (sketched in the middle). The single and polycrystalline micrographs are reprinted
with the permission from Merz [108] and from Arlt and Sasko [2] respectively.

applied cyclic electric field, along a particular direction, versus the resulting total strain
values, also along the loading direction, is termed as the butterfly curve or the strain hys-
teresis plot. Similarly, the hysteresis loop or the dielectric displacement hysteresis plot
denotes the response between the applied cyclic electric field and the resulting dielectric
displacement values along the loading direction. Both the butterfly and dielectric hys-
teresis loops are dependent on the frequency of the applied electrical field, cf. Viehland
and Chen [146], Zhou et al. [156], Burcsu et al. [21] and Maniprakash et al. [104]. In ad-
dition to the rate-dependent behaviour, the shape of the ferroelectric hysteresis curves
is dependent on the magnitude of the compressive mechanical stress applied parallely
to the cyclic electrical load. With respect to the single crystal ferroelectric solids, the
effect of the moderate compressive stress along with the cyclic electric field initiates the
stress-activated 90◦ domain switching which, in turn, enhances the magnitude of the re-
sulting total strains along the loading direction, see Shu and Bhattacharya [134], Burcsu
et al. [21, 22] and Yen at al. [151]. Thus, the shape of the macroscopic non-linear ferro-
electric hysteresis curves is dependent on both the loading rate and external compressive
stress magnitude.

In the context of the purely compressive mechanical loading and unloading of ferro-
electric single and polycrystalline solids, the macroscopic response between the applied
compressive load and the measured total strains along the loading direction is termed as
ferroelastic hysteresis curve. Analogously, the mechanical depolarisation hysteresis curve
denotes the response between the applied compressive load and the resulting dielectric
displacement values. Similar to the rate-dependent ferroelectric hysteretic response, the
shape of both the ferroelastic and mechanical depolarisation hysteresis curves is influ-
enced by the compressive loading frequency, cf. Lu et al. [99] and Li and Li [95].

The external stress and electrical rate-dependent hysteretic ferroelectric and ferroe-
lastic material responses as well as the evolving microstructural domain patterns of
both single and polycrystalline BaTiO3 have been studied by many experimentalists
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1 Introduction

and material scientists over the years. Unlike commercially available polycrystalline
ferroelectric ceramics, single crystal ferroelectrics, for example BaTiO3, are solution-
grown in laboratories with special techniques. These methods include the Remeika
method [117], the top-seeded solution growth procedure [119] and the template grain
growth process [116, 150], amongst others. This limits the number of research publica-
tions focussing entirely on the study of the single crystal BaTiO3 material behaviour.
Nevertheless, the study of BaTiO3 crystals possessing a single grain structure and hence
devoid of grain boundaries and their influences, raises the understanding of the funda-
mental material behaviour of ferroelectric materials. To name but a few, we refer to
the works by Merz [108], Burcsu et al. [21, 22], Shieh et al. [131, 132, 151] and by Li and
Li [94, 95] for the experimental investigations on single crystal BaTiO3 under different
loading scenarios. In view of the experimental studies on polycrystalline ferroelectric
ceramics, the reader is referred to the monographs [36, 66, 96, 149].

The high magnitude of actuation strains obtained from single crystal BaTiO3 un-
der combined electromechanical loading is a topic of particular interest. Subjecting a
tetragonal BaTiO3 single crystal to a combined electromechanical load, i.e. an alternating
electric field and a constant compressive mechanical load, the actuation strains obtained
along the loading direction increase with the moderate increase in the applied stress
magnitude. This is due to the enhanced 90◦ ferroelastic domain switching evident in the
crystal due to the combined loading, cf. Burcsu et al. [22], Shu and Bhattacharya [134],
Yen et al. [151] and Li and Li [95]. In the experimental work of Burcsu et al. [22], a
tetragonal BaTiO3 single crystal, initially oriented along the [100]-direction, was in-
vestigated under combined electromechanical loading. The crystal when loaded with an
alternating electric field at 0.05 Hz along with a constant compressive stress of magnitude
3.6 MPa resulted in a hysteretic response with the obtained total strains reaching 0.8 %
along the loading direction, see Figure 1.2 (left). Furthermore, the high actuation strain
response obtained from single crystal ferroelectrics under combined electromechanical
loading is dependent on the frequency of the external electrical field. The rate-dependent
behaviour of single crystal tetragonal BaTiO3 under combined electromechanical load-
ing was reported by Burcsu et al. [21]. Figure 1.2 (right), taken from [21], depicts the
rate-dependent strain response of a single crystal BaTiO3 under a cyclic electric field
at varying frequencies along with a constant compressive stress of magnitude 1.07 MPa,
along the electrical loading direction. The measured magnitudes of the actuation strains,
shown in Figure 1.2, corresponding to the tetragonal BaTiO3 single crystals are found
out to be quite high compared to the strain values measured in experiments made on
polycrystalline BaTiO3 ceramics under combined electromechanical loading. The acti-
vation of the 90◦ domain switching due to the applied external compressive stress, along
with the subsequent 180◦ domain switching due to the cyclic electrical load, is reported
as the reason for high strain values in BaTiO3 single crystals. An elaborate study of the
[100] and [001]-oriented tetragonal BaTiO3 crystals under combined electromechanical
loading conditions along with detailed description of the considered experimental set up
is provided in the doctoral dissertation by Burcsu [20].
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Figure 1.2: Experimental butterfly curves depicting the high actuation strain response of single crystal
tetragonal BaTiO3 under combined electromechanical loading. On the left, butterfly curves measured
under a constant compressive stress of 3.6 MPa along with a cyclic electric field at 0.05 Hz, taken from
Burcsu et al. [22]. On the right, butterfly curves obtained for a constant compressive stress of 1.07 MPa
along with an alternating electric field at varying frequencies, taken from Burcsu et al. [21].

In order to predict the rate and external stress-dependent macroscopic hysteretic re-
sponse, mathematically sound material models need to be formulated fulfilling ther-
modynamic relations and restrictions. The underlying modelling approaches can be
classified into phenomenological models, micromechanical formulations and approaches
such as phase-field methods. A detailed review of the different modelling practices de-
veloped for the study of the overall ferroelectric material response is provided by Kam-
lah [71], Landis [89], Huber [54] and by Potnis et al. [115]. Phenomenological models are
considered in order to predict the macroscopic non-linear and dissipative response of
ferroelectric solids. In view of ferroelectric solids, these robust phenomenological models
are developed in order to gain an understanding of the overall electromechanical coupling
behaviour. On the other hand, thermodynamically consistent micromechanical models
are formulated in order to simulate the domain evolution and polarisation switching at
the unit cell level. The simulation of such effects give a detailed insight into the mi-
croscopic phenomena leading to the macroscopic non-linear and hysteretic behaviour in
ferroelectrics. Laminate-based models are of particular interest amongst the microme-
chanically motivated formulations. The major part of this work deals with the develop-
ment of laminate-based material models to study the rate and external stress-dependent
domain evolution and polarisation switching, and hence the macroscopic hysteretic re-
sponse, in both single and polycrystalline tetragonal ferroelectric BaTiO3. Models such
as phase-field formulations describe the domain evolution and poling on the microscale
by resolving the domains in space and time. These phase-field approaches have recently
become increasingly popular in studying the material characteristics, the effect of the
grain size as well as the influence of electrode on thin-film polycrystalline ferroelectrics;
see the contributions by Zhang and Bhattacharya [153, 154], Schrade et al. [121, 123] and
Miehe et al. [113].
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1 Introduction

1.1 Outline of the present work

The present dissertation deals with the development of thermodynamic consistent mate-
rial models along with the description of their numerical framework in order to study the
macroscopic non-linear hysteretic behaviour of electromechanically coupled ferroelectric
single crystals and ceramics. This research work is outlined as follows:

Chapter 2 summarises the essential equations governing the coupled electromechanical
response in ferroelectric materials. The basic relations of electrostatics in vacuum and
dielectric solids are provided first, followed by the introduction of the kinematic and
stress measures assuming geometrically linear theory within the general framework of
continuum mechanics. On the basis of the balance laws, the thermodynamic framework
for the description of the non-linear and the dissipative behaviour of general ferroelectric
solids is detailed. Following the thermodynamic framework, the necessary weak formu-
lations and their approximations as well as the nodal residual equations needed for the
finite element framework will be outlined.

Chapter 3 presents a phenomenological material model for the description of the rate-
dependent macroscopic polarisation switching evident in ferroelectric solids. Starting
with a brief overview of the phenomenological formulations for piezoceramic materials
existing in the literature, a rate-dependent macroscopic model is developed by defining
a total electric Gibbs energy and a rate-dependent dissipation equation. The evolution
equation of the macroscopic remnant polarisation is obtained by fulfilling the necessary
conditions of the postulated dissipation relation. By adopting single crystal BaTiO3

material parameters, representative numerical tests under both homogeneous and inho-
mogeneous states of deformation will be presented.

Laminate-based formulations based on the mixture theory ansatz form the core of
Chapter 4. A brief overview of the existing micromechanical models for the ferroelectric
materials in the form of a literature survey is provided. Based on the symmetry consid-
erations and on the material properties of the distinct tetragonal ferroelectric variants,
a general laminate-based framework is presented detailing the thermodynamic model
formulation. The set of equations defining the evolution of the inequality constrained
multi-rank laminate volume fractions is solved by considering a Fischer–Burmeister-
type approach. After the general framework and the algorithmic formulation, four dis-
tinct laminate-based models are described in detail. The average electric Gibbs energy
formulated for the distinct laminate-based models is based on different mixture the-
ory assumptions and averaging formulations. The difference between the four distinct
laminate-based models is highlighted by studying the obtained material responses, in
terms of the volume fractions evolution and of the hysteresis curves, considering single
crystal tetragonal BaTiO3 material parameters.

Chapter 5 focusses on the computational framework in order to predict the rate-
dependent polycrystalline tetragonal BaTiO3 material response under external loading
conditions. The specific computational strategy is based on random initialisation of ori-
entations of the individual single crystal grains within a polycrystalline aggregate. At
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1.2 Notations used in this work

first, the model parameters influencing the shape of the hysteresis curves using a par-
ticular single crystal laminate-based model, introduced in Chapter 4, are identified by
minimising a least-square functional based on available experimental data. Following the
calibration of the model parameters, the computational framework and its subsequent
implementation within a finite element environment will be elaborated. Apart from
solving representative boundary value problems, the obtained polycrystalline tetrago-
nal BaTiO3 butterfly and dielectric hysteresis curves for a particular loading rate are
compared with the recently measured experimental data.

1.2 Notations used in this work

In view of the notations used in this work, the scalar quantities are denoted by italic
Latin or Greek letters or by upright sans-serif letters; for example a, B, α, a. Euclidean
vectors or first-order tensors are represented by boldface italic Latin letters, e.g.a, B.
Likewise, Euclidean second-order tensors are designated by boldface italic Latin or Greek
letters, e.g.v, T , σ, ε.

Following Einstein’s summation convention, the Euclidean vectors are expressed by
their coefficients (•)i and by Cartesian base vectors ei, for i = 1, 2, 3, as

{a, B} = {ai, Bi} ei .

Analogously, the Euclidean second-order tensors are expressed by their tensor coefficients
(•)ij and by the Cartesian base vectors as

{T , σ} =
{
Tij, σij

}
ei ⊗ ej ,

wherein ⊗ denotes the standard dyadic product symbol. In particular, I = δij ei ⊗ ej
signifies the second-order identity tensor, wherein δij is the Kronecker delta symbol with
the properties δij = 1 for i = j and δij = 0 for i 6= j. The symmetric part of an arbitrary
second-order tensor A is introduced as

Asym =
1

2

[
A+At

]
,

wherein At denotes the transpose of A.
Euclidean third and fourth-order tensors are indicated by boldface upright sans-serif

letters, for example a, B. These higher-order tensors are expressed by

a = aijk ei ⊗ ej ⊗ ek and

B = Bijkl ei ⊗ ej ⊗ ek ⊗ el ,

wherein aijk and Bijkl denote the respective third and fourth-order tensor coefficients.
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1 Introduction

In the context of inner products, the single contraction between two arbitrary vectors
a and b is denoted as

a · b = ai bi ,

whereas the single and double contractions between any two arbitrary second-order
tensors A and B are written respectively as

A ·B = Aij Bjk ei ⊗ ek and

A : B = Aij Bij = tr(A ·Bt) .

Note, the trace of an arbitrary second-order tensor A is, accordingly, computed as
tr(A) = A : I. The inner product rule can be used involving tensors of different orders,
wherein the desired number of contractions is characterised by the specified number of
dots. In this regard, the double contraction of an arbitrary fourth-order tensor B with
a second-order tensor A results in

B : A = BijklAkl ei ⊗ ej .

The non-standard dyadic products ⊗ and ⊗ used in this work are defined as

[T 1 ⊗ T 2] : T 3 = T 1 · T 3 · T t
2 ,

[T 1 ⊗ T 2] : T 3 = T 1 · T t
3 · T t

2 and

[T 1 ⊗ v1] · v2 = T 1 · v2 ⊗ v1 ,

for all second-order tensors T 1, T 2, T 3 and for all vectors v1, v2. Based on the above
defined non-standard dyadic product definitions, the fourth-order symmetric identity
tensor is introduced as

Isym =
1

2
[I ⊗ I + I ⊗ I] .
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2 Essential balance relations

This chapter summarises the fundamental kinematic and balance relations and outlines
the coupled thermodynamic framework required to model the behaviour of ferroelectric
continua. The present chapter is subdivided into the following four sections. Section 2.1
introduces the fundamental quantities as well as the constitutive relations of electro-
statics in both vacuum and dielectric medium. Assuming geometrically linear theory
within the general framework of continuum mechanics, Section 2.2 introduces the strain
and stress measures required to describe the deformation and internal state of a physical
body under the influence of external forces. Following the fundamental notes on electro-
statics and kinematics, Section 2.3 summarises the coupled electromechanical balance
relations and the thermodynamic framework needed for the description of dissipative
ferroelectric materials. Finally, Section 2.4 outlines the necessary weak formulations
and their approximations as well as the nodal residual equations required for the fi-
nite element framework in order to solve the coupled electromechanical boundary value
problems.

2.1 Electrostatics

This section provides the fundamental relations of electrostatics. Without going into
the details of the derivations, the basic equations related to the electrostatic theory
in both vacuum and dielectric medium will be introduced. For further references with
respect to the detailed derivation of the introduced relations, the reader is referred to the
monographs on this subject by Landau and Lifshitz [86], Griffiths [52] and Jackson [65].

Electric charge, denoted by q and with coulomb (C) as its SI unit, is the fundamental
quantity defining the property of particles. If we assume there are N particles with
individual point charges qi, wherein i = 1, . . . , N , then the net charge is an additive
measure of the sum of the individual static charges, that is

Q =
∑N

i=1
qi . (2.1)

A single electric charge or an accumulation of electric charges are either positively or
negatively charged. The elementary positively charged particles or protons are denoted
by e+ ≈ 1.6 × 10−19 C and the elementary negatively charged particles or electrons are
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2 Essential balance relations

represented by e− ≈ − 1.6 × 10−19 C. Based on experiments, the electrostatic force f e
1

exerted by an arbitrary charge q1 at point x1 on a test charge q0 located at x is given
by Coulomb’s law

f e
1 =

q1 q0

4πε0

x− x1

‖x− x1‖3
, (2.2)

wherein ε0 ≈ 8.854 × 10−12 C2/(N m2) is the permittivity of free space. Considering an
accumulation of point charges q1, . . . , qN , located at x1, . . . ,xN , the total electrostatic
force of the individual charges on the test charge q0 is given by

F e =
∑N

i=1
f e
i =

∑N

i=1

qi q0

4πε0

x− xi
‖x− xi‖3

= q0E(x) . (2.3)

Here, E(x) is the total electric field of the individual point charges and is defined as

E(x) =
∑N

i=1

qi
4πε0

x− xi
‖x− xi‖3

. (2.4)

Note, that the total electric field (2.4), measured in V/m, is independent of the influence
of test charge q0 but is written as a function of the location of the test charge. Assuming
that the individual point charges qi are distributed continuously over a volume V ∈ R3,
the total electric field is expressed in terms of the charge per unit volume ρv(x̄) as

E(x) =

∫
V

ρv(x̄)

4πε0

x− x̄
‖x− x̄‖3

dv̄ , (2.5)

wherein dv̄ is the infinitesimal volume element at position x̄. Inserting the definition
∇x [− 1/‖x− x̄‖] = [x− x̄] /‖x− x̄‖3 in Equation (2.5), one obtains

E(x) = −∇x φ(x) , (2.6)

wherein φ(x) is the scalar electric potential and is defined as

φ(x) =

∫
V

ρv(x̄)

4πε0

1

‖x− x̄‖
dv̄ . (2.7)

Furthermore, from Equation (2.6) it follows that the electric field vector is irrotational
and that the divergence of the electric field takes a non-zero value, that is

∇x ×E(x) = 0 and ∇x ·E(x) =
ρv

ε0
. (2.8)
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2.1 Electrostatics

Equation (2.8)2 is the local form of Gauß’s law of electrostatics in free space. Introducing
the term electric displacement

D(x) = ε0E(x) , (2.9)

the local form of Gauß’s law in free space is reformulated as

∇x ·D(x) = ρv . (2.10)

The introduced electrostatic relations as well as Gauß’s law consider the interactions
between the static charges in free space or vacuum. In order to describe the electrostatic
phenomena in ferroelectric materials, the above defined fundamental relations need to
consider the influence of the material medium. Ferroelectric single and polycrystalline
solids which do not conduct electricity fall into the class of non-conducting or insulat-
ing materials and are, in general, termed as dielectrics. In contrast to the conducting
materials which are composed of free charge carriers responsible for the conduction of
electricity, dielectric materials are composed of bound charges, denoted by ρvb , which
are bound to the material and can only move to a limited extent from their original
position upon the application of an external electric field. Considering an individual
atom, a dipole moment pe is created due to the separation of the positive and negative
charges when the dielectric is subjected to an external potential difference. Assuming
N such dipole moments, an overall polarisation at the macroscopic level is obtained as
a summation of the finite number of dipole moments per unit volume. The macroscopic
polarisation P of a given volume V is measured in C/m2 and is given by

P =
1

V

∑N

i=1
pe
i . (2.11)

Note, that the bound charges within the dielectric solid are only responsible for the
induced macroscopic polarisation, see [52, 65]. Without further derivations, the relation
between the macroscopic polarisation and the bound charges is written as

∇x · P (x) = − ρvb . (2.12)

Furthermore, the induced macroscopic polarisation is also expressed in terms of the
electric field as

P (x) = ε0 χE(x) , (2.13)

wherein χ denotes the electric susceptibility of the material. Decomposing the total
charge density per unit volume ρv into free and bound charges per unit volume, that is

ρv = ρvf + ρvb , (2.14)
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2 Essential balance relations

the local form of Gauß’s law of electrostatics (2.8)2 is reformulated using Equations (2.14)
and (2.12) as

∇x ·E(x) =
ρv

ε0
=
ρvf + ρvb
ε0

=
ρvf −∇x · P (x)

ε0

⇒ ∇x · [ε0E(x) + P (x)] = ρvf . (2.15)

The local form of Gauß’s law of electrostatics in dielectric medium reads

∇x ·D(x) = ρvf , (2.16)

wherein

D(x) = ε0E(x) + P (x) , (2.17)

is the dielectric displacement vector measured in C/m2.

2.2 Kinematic and stress measures

Based on the theory of continuum mechanics, this section introduces the kinematic strain
measure and the constitutive stress quantity in order to describe the deformation and
the internal state of a physical body. For a detailed study on the subject of continuum
mechanics and thermodynamics of materials, the reader is referred to the monographs
by Müller [114], Ciarlet [33], Šilhavý [147] and by Holzapfel [53].

With reference to the right handed rectangular coordinate axes defined by orthonormal
basis vectors e1,2,3 at a fixed origin O, the continuum body occupies a solid domain in a
three-dimensional space B ∈ R3 with boundary ∂B at time t. The physical body consists
of material points or particles, wherein each point is identified by a position vector x
with respect to origin O. The velocity of an arbitrary material point at position x is
denoted by

ẋ = ∂tx . (2.18)

The deformation of the physical body under the influence of external electrical and me-
chanical forces is described by the displacement vector u(x, t) corresponding to the indi-
vidual material points. Under the assumption of geometrically linear theory, i.e. bodies
undergoing small or infinitesimal deformations, the second-order linear strain tensor is
introduced as the local strain measure. The infinitesimal or linear strain tensor is defined
as the symmetric part of the displacement gradient, that is

ε(x) := ∇sym
x u(x, t) . (2.19)
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2.3 Balance relations and thermodynamic framework

Considering a normal n of a cutting plane passing through an arbitrary material point
x ∈ B, the traction vector t(x,n) is defined as the force per unit surface area across the
cutting plane. The linear dependency of the traction vector with respect to the outward
normal is established through Cauchy’s stress theorem

t(x,n) = σ(x) · n , (2.20)

wherein σ(x) denotes the Cauchy stress tensor. The stresses σ(x) describe the internal
loading state of the physical body under the influence of external forces.

2.3 Balance relations and thermodynamic framework

This section summarises the balance relations as well as the energy and entropy axioms
which form the basis for the modelling of ferroelectric crystalline and ceramic solids. The
equations are based on the coupled thermodynamic framework for electromechanical
problems outlined by, for example, Toupin [141], Eringen [47], Eringen and Maugin [48]
and by Bustamante et al. [23].

With respect to closed systems, the conservation of mass states that the mass of the
system does not change during the deformation over time. Denoting the mass density
by ρ and neglecting the current of free charges, the local form of the conservation of
mass is given by

ρ̇ = 0 , (2.21)

wherein ρ̇ corresponds to the time derivative of the mass density.
The balance of linear momentum states that the sum of all external forces equals

the time derivative of linear momentum during the deformation. The local form of the
axiom of balance of linear momentum reads

∇x · σ + b = ρ ẍ , (2.22)

wherein b is the vector of body forces and wherein ẍ = ∂tẋ is the acceleration of
an arbitrary material point at x. Note, that the local statement of the balance of
linear momentum (2.22) neglects the influence of electrostatic forces on the deformation,
i.e. the electrical volume force vector derived from the Maxwell or electrostatic stress
tensor is assumed to be approximately equal to zero. In context with the study of the
ferroelectric crystals and ceramics, the magnitude of the electrostatic stress tensor is very
small in comparison to the mechanical Cauchy stress, see Kamlah [71]. Therefore, the
electrically induced volume forces are assumed to vanish while considering the axiom
of the balance of linear momentum. Moreover, quasi-static conditions are assumed
during the deformation. Due to this assumption, the acceleration of the material points,
appearing in Equation (2.22), is approximated to zero, i.e. ẍ ≈ 0.
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2 Essential balance relations

The axiom of the balance of angular momentum states that the time derivative of
the angular momentum with respect to a given point in a body is equal to the sum of
all the external moments. A direct consequence of the axiom of the balance of angular
momentum is that the Cauchy stress tensor σ(x) is symmetric, that is

σ = σt . (2.23)

Following the axioms on the balance of mass and momentum, the balance of energy or
the first law of thermodynamics states that the rate of change of the total energy is equal
to the sum of the external powers. The total energy is given as the sum of the internal
and kinetic energies of the body, and the external power consists of the summation of
the mechanical, thermal and electrical powers. The local form of the balance of energy
reads

U̇ = σ : ε̇+E · Ḋ + r −∇x · q , (2.24)

wherein U defines the internal energy per unit volume, r denotes the external heat source
per unit volume, q represents the heat flux vector and wherein the notation •̇ is the time
derivative of the corresponding quantity. In Equation (2.24), σ : ε̇ corresponds to the
rate of the mechanical work and E · Ḋ relates to the electrical power of the body.

Finally, the axiom of the entropy inequality or the second law of thermodynamics
states that the rate of change of entropy of the body is always larger than or equal to
the difference between the total heat produced by the internal entropy and the entropy
supply due to the heat flux through the surface of the body. Without going into the
details of the derivation, the local form of the entropy inequality for a general coupled
thermo-electromechanical process assuming isothermal conditions is given by

− U̇ + σ : ε̇−E · Ḋ + ϑ η̇ ≥ 0 , (2.25)

wherein, ϑ is the absolute temperature and η denotes the volume specific entropy. It is to
be noted that the internal energy per unit volume for the coupled dissipative process is
written as a function of linear strain tensor ε, dielectric displacement vector D, volume
specific entropy η and of a set of internal state variables ν, that is

U := U(ε,D, η,ν) . (2.26)

The choice of the governing thermodynamic potential depends on the process variables
considered. One may arrive at the desired thermodynamic potential starting from the
internal energy together with a partial or full Legendre–Fenchel transformation with
respect to the particular process variables. Instead of the volume specific internal energy,
it is beneficial to introduce the electric Gibbs energy per unit volume for the analysis of
global coupled electromechanical boundary value problems. A partial Legendre–Fenchel
transformation of the volume specific internal energy is performed with respect to the
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2.3 Balance relations and thermodynamic framework

dielectric displacement vector and the entropy in order to arrive at the electric Gibbs
energy as

H(ε,E, ϑ,ν) = inf
D,η

[U(ε,D, η,ν)−E ·D − ϑ η ] . (2.27)

The electric Gibbs energy is a function of the total linear strain tensor, the electric field
vector, the absolute temperature and of the set of internal state variables. Neglecting the
influence of the absolute temperature on the deformation, the local form of the entropy
inequality (2.25) for dissipative ferroelectric solids is reformulated in terms of the electric
Gibbs energy as

− Ḣ(ε,E,ν) + σ : ε̇−D · Ė ≥ 0 . (2.28)

Following the Coleman–Noll procedure of rational thermodynamics, the constitutive
quantities, namely the second-order stress tensor and the dielectric displacement vector,
are given by

σ =
∂H(ε,E,ν)

∂ε
and (2.29)

D = − ∂H(ε,E,ν)

∂E
, (2.30)

and the reduced dissipation inequality reads

Dred = f(ν) · ν̇ ≥ 0 , (2.31)

wherein f(ν) is the set of driving forces conjugate to the rate of the set of internal state
variables ν̇ identified as

f(ν) = − ∂H(ε,E,ν)

∂ν
. (2.32)

Based on the postulate of maximum dissipation, rate-dependent dissipation functions
will be formulated for the phenomenological and laminate-based model formulations in
Chapters 3 and 4 respectively. The evolution equations of the set of the internal state
variables will be obtained by fulfilling the necessary conditions of the postulated scalar
rate-dependent dissipation relations and will be detailed in the forthcoming chapters.
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2 Essential balance relations

2.4 Finite element approximation

This section reviews the standard finite element approximation procedure considered
to solve the quasi-static electromechanical coupled boundary value problems. For a
detailed study on the finite element method, the reader is referred to the monographs
by, for example, Bathe [17], Hughes [58], Zienkiewicz et al. [157] and Wriggers [148].

Allik and Hughes [1] formulated the finite element setting for piezoelectric solids con-
sidering the displacement vector and scalar electric potential as the mechanical and
electrical nodal quantities, respectively. Their standard finite element framework was
preferred for solving coupled boundary value problems in order to prove the versatility
of the thermodynamically consistent material models in a number of research works.
To name a few, we refer to the works by Hwang and McMeeking [61, 62], Schröder et
al. [124–126], Miehe et al. [111, 112], amongst others. In contrast, an alternative approach
favouring the dielectric displacement vector potential instead of the scalar electric poten-
tial as the electrical nodal field variable was introduced by Landis [87]. The finite element
framework [87] was considered by Kamlah et al. [75] for the numerical simulation of the
ferroelectric polycrystalline response. With respect to the numerical implementation of
the material models developed in the present research work, the standard finite element
procedure for coupled electromechanical problems is followed. Both the displacement
vector and scalar electric potential are treated as primary field variables in solving the
global boundary value problems, see also Dusthakar et al. [43] in this regard.

The local forms of the governing field equations describing the electromechanically
coupled behaviour are the balance of linear momentum and Gauß’s law in dielectrics,

∇x · σ + b = 0 and ∇x ·D − ρvf = 0 , (2.33)

which must be satisfied at all points within the ferroelectric domain B. In Equa-
tions (2.33)1 and (2.33)2, σ denotes the second-order (symmetric) stress tensor, D rep-
resents the dielectric displacement vector, b is the body force vector and ρvf characterises
the density of free charge carriers. Assume for simplicity that the electrostatic forces are
negligible and that the temperature field remains constant. Furthermore, any contribu-
tions of defects and surface charges are assumed to be neglected. The partial differential
equations (2.33)1 and (2.33)2 are solved with respect to the prescribed Dirichlet and Neu-
mann boundary conditions. The displacements u and electric potential φ corresponding
to the Dirichlet boundary conditions are prescribed on the Dirichlet part of the bound-
aries, that is

u = ū on ∂Bu and (2.34)

φ = φ̄ on ∂Bφ . (2.35)
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2.4 Finite element approximation

Analogously, the surface tractions t and the surface free charge density ρ af correspond
to the Neumann boundary conditions. These surface quantities are prescribed on the
Neumann part of the boundaries, that is

t = σ · n = t̄ on ∂Bσ and (2.36)

− ρaf = D · n = − ρ̄af on ∂BD , (2.37)

wherein n denotes the outward normal unit vector. The local form of the governing par-
tial differential equations (2.33)1 and (2.33)2, along with the boundary conditions (2.34)
to (2.37), form the set of equilibrium equations in the strong form that needs to be solved
within the ferroelectric solid domain B.

Adopting the Galerkin method – based on the principle of virtual work – both the local
form of the governing mechanical and electrical equilibrium equations are reduced to
their corresponding weak forms. The weak form of the governing mechanical equilibrium
equation is derived by multiplying the local form of balance of linear momentum (2.33)1

with a vector-valued test function δu and integrating over the solid domain B. Similarly,
the weak form of the governing electrical equilibrium equation is arrived by multiplying
the local form of Gauß’s law in dielectrics (2.33)2 with a scalar-valued test function δφ
and integrating over the solid domain B. Without further details, the derived mechanical
and electrical weak formulations read

Gu =

∫
B
∇x δu : σ dv −

∫
∂Bσ

δu · t̄ da−
∫
B
δu · b dv = 0 and (2.38)

Gφ =

∫
B
∇x δφ ·D dv +

∫
∂BD

δφ ρ̄af da+

∫
B
δφ ρvf dv = 0 . (2.39)

Next, the ferroelectric solid domain B is approximated into Bh and is further discre-
tised by nel finite elements Be, i.e.B ≈ Bh =

⋃nel
e=1 Be. Each finite element is described

by nen distinct nodes and by the interpolation or shape functions NI(x), defined for
the individual nodes I. Following the standard Bubnov–Galerkin procedure, the dis-
placements, the scalar electric potential as well as the virtual displacement and electric
potential within each finite element are approximated as

•e(x) ≈ •h,e(x) =
∑nen

I=1
NI(x) •I , (2.40)

wherein {•} = {u, δu, φ, δφ}. Analogously, the virtual displacement and electrical po-
tential gradients, are approximated as

∇x δue(x) ≈ ∇x δuh,e(x) =
∑nen

I=1
δuI ⊗∇xNI(x) and (2.41)

∇x δφe(x) ≈ ∇x δφh,e(x) =
∑nen

J=1
δφJ ∇xNJ(x) . (2.42)
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2 Essential balance relations

Adopting the isoparametric concept, the element geometry is approximated by the same
shape functions as considered for the nodal quantities. By inserting the approxima-
tions (2.40) to (2.42), the discrete counterparts of the weak form provided in Equa-
tions (2.38) and (2.39) within each finite element are approximated as

Gh,e
u =

∑nen

I=1
δuI · ruI = 0 and Gh,e

φ =
∑nen

J=1
δφJ r

φ
J = 0 , (2.43)

wherein the residuals ruI and rφJ corresponding to nodes I, J = 1, . . . , nen read

ruI =

∫
Be
∇xNI · σ dv −

∫
∂Beσ

NI t̄ da−
∫
Be
NI b dv and (2.44)

rφJ =

∫
Be
∇xNJ ·D dv +

∫
∂BeD

NJ ρ̄
a
f da+

∫
Be
NJ ρ

v
f dv . (2.45)

The derived residuals are non-linear, with respect to the constitutive relations, and
depend on nodal solutions uI and φJ . In order to solve them, a method of consistent
linearisation is used which reduces the system of non-linear equations to a linearised
form which can be solved at each iteration step by means of a Newton–Raphson scheme.
The consistent linearisation of the residuals is postulated as

Lin (ruI ) = ruI + ∆ruI = 0 and Lin (rφJ) = rφJ + ∆rφJ = 0 , (2.46)

wherein the nodal increments of the residuals are given as

∆ruI =
∑nen

K=1
Kuu

IK ·∆uK +
∑nen

L=1
Kuφ

IL ∆φL and (2.47)

∆rφJ =
∑nen

K=1
Kφu

JK ∆uK +
∑nen

L=1
Kφφ

JL ∆φL . (2.48)

The entries Kuu
IK , Kuφ

IL , Kφu
JK and Kφφ

JL in Equations (2.47) and (2.48) correspond to the
nodal stiffness contributions and are defined as

Kuu
IK :=

druI
duK

=

∫
Be
∇xNI ·

dσ

dε
· ∇xNK dv , (2.49)

Kuφ
IL :=

druI
dφL

=

∫
Be
∇xNI ·

dσ

dE
· ∇xNL dv , (2.50)

Kφu
JK :=

drφJ
duK

=

∫
Be
∇xNJ ·

dD

dε
· ∇xNK dv and (2.51)

Kφφ
JL :=

drφJ
dφL

=

∫
Be
∇xNJ ·

dD

dE
· ∇xNL dv . (2.52)
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2.4 Finite element approximation

The nodal level residuals and their increments are arranged in vector and matrix form,
respectively, in order to obtain element level entries. The element-level residual vectors,
the stiffness matrices as well as the increments of the primary fields are assembled over
nel finite elements to arrive at the corresponding global entries

r :=

nel

A
e=1

[
rue

rφe

]
, K :=

nel

A
e=1

[
Kuu

e Kuφ
e

Kφu
e Kφφ

e

]
and ∆d :=

nel

A
e=1

[
∆ue

∆φe

]
, (2.53)

wherein the element-level quantities are denoted with the subscript e. The global system
of equations reads

r +K ·∆d = 0 , (2.54)

which is solved iteratively for the displacement and electric potential increments and the
global solution vector d is updated after each iteration, that is

d⇐ d+ ∆d , (2.55)

until the norm of the global residual vector reaches a given tolerance value, ‖r‖ < tol.
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3 Phenomenological modelling of
ferroelectric materials

This chapter presents a phenomenological material model to study the macroscopic
hysteretic response of single crystal ferroelectric solids. The model framework consists
of formulating an electric Gibbs energy and a rate-dependent dissipation equation to
describe the dissipative ferroelectric material behaviour. The electric Gibbs energy is
defined in terms of total strain tensor, electric field vector and additional internal state
variables. The macroscopic remnant polarisation of the ferroelectric single crystal is
regarded as the only internal state variable. The evolution of the macroscopic remnant
polarisation is obtained by solving the particular rate-dependent dissipation equation.

Following the model formulation, the algorithmic treatment to solve the non-linear
evolution equation is briefly explained. Considering single crystal tetragonal BaTiO3

material parameters, the presented model reproduces the characteristic butterfly and
dielectric hysteresis curves under cyclic electrical loading. The influence of both the
loading frequency and the viscosity parameter is studied under homogeneous states of
deformation. The macroscopic material model is further implemented in a finite element
environment to solve inhomogeneous boundary value problems. A concise description
of the presented phenomenological model along with simulations pertaining to two-
dimensional boundary value problems can be found in the work by Dusthakar et al. [43].

3.1 Overview of phenomenological models

This section is devoted to an overview of the existing phenomenological models for
ferroelectric materials in literature. Macroscopic models are considered in order to study
the overall behaviour of a material. These models are formulated with a reduced number
of internal state variables. Thereby, the underlying material response is reproduced with
the help of model or fitting parameters. In view of ferroelectric solids, these robust
phenomenological models are developed in order to gain an understanding of the overall
electromechanical coupling behaviour.

Chen and Peercy [29] presented a macroscopic one-dimensional theory for an idealised
polycrystalline ferroelectric under dynamic loading conditions. In their work, both the
stress and dielectric displacement were assumed to depend on the strain, external electric
field, absolute temperature, and on a scalar internal state variable. The effective number
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of aligned dipoles per unit volume was considered as the only internal state variable. In
addition to the constitutive quantities, the evolution equation for the aligned dipoles due
to domain switching was postulated. Their framework provided the complete system of
equations needed for a coupled dynamic ferroelectric theory. Based on their framework,
numerical computations assuming isothermal and stress-free states were provided in
the subsequent work by Chen and Montgomery [28]. The numerical results included
the computed butterfly and dielectric hysteresis loops for a PZT 65/35 ceramic. The
dielectric hysteresis curve was further compared to the experimental PZT 65/35 data.
An extension to a general three-dimensional model formulation was made by Chen [25].

Bassiouny et al. [15] formulated the general thermodynamic framework for macroscopic
modelling of coupled ferroelectric materials. Their model formulation was analogous to
the plasticity theory and considered the macroscopic remnant polarisation as the inter-
nal state variable to capture the dissipative ferroelectric behaviour. Suitable Helmholtz
energy, written in terms of the internal state variable, and necessary yield function,
in terms of applied loads, were introduced in their framework. Following that work,
Bassiouny et al. [16] provided the set of relations describing the poling process of ceram-
ics. In their work, the dipole moment along with the respective rate law were considered
to describe the poling of ferroelectric solids. Both the dipole moment and the rate law
were in line with the works by Chen et al. [25–31]. Based on the framework developed
in [15, 16], the identification of material parameters to fit the macroscopic polarisation
hysteresis loop to the experimental data was carried out by Bassiouny and Maugin [13].
The influence of the combined electromechanical loading on the ferroelectric material
behaviour was discussed in the subsequent contribution by Bassiouny and Maugin [14].
The macroscopic formulations elaborated in [13, 15, 16] do not account for the prediction
of the butterfly hysteresis loop. Nevertheless, the associated thermodynamic framework
formed the basis for many constitutive models to describe the behaviour of functionally
graded materials.

Zhang and Rogers [155] proposed a one-dimensional macroscopic model to reproduce
the polarisation hysteresis loop considering domain switching dynamics. Their modelling
approach included the introduction of tangent hyperbolic-type functions in order to
capture the basic characteristics of a polarisation hysteresis loop. A polarisation reversal
equation was formulated as a tangent hyperbolic function written in terms of the coercive
electric field and of an additional material parameter. Along with the external electric
field, absolute temperature and total strain, the Helmholtz energy formulated in [155]
treated the relative polarisation as an internal state variable to predict the ferroelectric
material response.

A multi-axial constitutive model to capture the ferroelectric and ferroelastic behaviour
spanning across different length scales was derived by Lynch [101]. The constitutive
model framework was motivated from the experimental investigations on different com-
positions of PZT ceramics by Cao and Evans [24], and on lanthanum doped PZT (PLZT)
ceramics by Lynch [100]. In the model by Lynch [101], apart from the reversible strain
and dielectric displacement, the Helmholtz energy was written as a function of two in-
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ternal state variables, namely the remnant strain and polarisation. Interaction between
the internal state variables was described by considering two additional scalar quanti-
ties. Along with the set of evolution equations for the scalar quantities, the model [101]
provided the set of constitutive equations for the reproduction of strain and polarisation
hysteresis curves.

Fan et al. [49] formulated a one-dimensional model to study the stress–strain and
stress–dielectric displacement behaviour. Their mechanical model was composed of three
Maxwell-type elements arranged in parallel, wherein each element consisted of a frictional
slider and a non-linear spring. The resulting ferroelastic hysteresis curves from their
mechanical model were presented in comparison with the experimental loops for both
hard and soft PZT ceramics.

A phenomenological model to predict the ferroelastic switching response of an unpoled
polycrystalline ceramic subject to pure mechanical compressive loading was postulated
by Landis and McMeeking [90]. Their constitutive model was formulated to compute
the stress and strain states around a crack tip in a ferroelastic material. Three internal
state variables were defined with respect to the principal remnant strains to capture the
important characteristics of ferroelastic switching behaviour. Cocks and McMeeking [34]
developed a uni-axial constitutive model to reproduce the non-linear strain and dielectric
hysteresis curves. Their uni-axial model formulated the Helmholtz energy as an additive
potential comprising of a reversible and an irreversible part. The average remnant strain
and polarisation were treated as internal state variables. The increments of both the
average remnant strain and polarisation were determined with the help of the relevant
convex yield surface defined in their model. The obtained numerical plots were further
compared to the experimental hysteresis loop for PLZT under electrical loading.

A rate-independent one-dimensional model for the description of hysteretic behaviour
in ferroelectric ceramics was derived by Kamlah and Tsakmakis [74]. Motivated from
the assumptions presented in [15, 34], Kamlah and Tsakmakis [74] considered remnant
strain and polarisation as the internal state variables in their formulation. They assumed
an additive decomposition of the macroscopic remnant strain into a part induced by
remnant polarisation and another part due to ferroelastic switching. Suitable evolution
equations for the ferroelastic part of the total strain and for the remnant polarisation
were derived based on the theory of incremental plasticity. The resulting numerical strain
and dielectric hysteresis curves, both for combined electromechanical and for mechanical
compressive loading scenarios, were reported in their work. An extension of the one-
dimensional formulation [74] to a general multi-axial model was provided by Kamlah
and Böhle [72]. Their three-dimensional model was implemented in a finite element
environment to simulate the poling process in a multilayer stack actuator. The solution
procedure in [72] was based on a two-step scheme or on a staggered approach in order
to overcome global convergence issues.
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Landis [88] developed a three-dimensional, multi-axial generalisation of the uni-axial
model introduced in [34]. As proposed in the one-dimensional formulation [34], the model
by Landis [88] considered the Helmholtz energy to be additively decomposed into a
reversible and an irreversible part. The irreversible part of the Helmholtz energy was
formulated as a function of the internal state variables, namely the remnant strain tensor
and polarisation vector. Satisfying the Clausius–Duhem inequality to ensure that the
reduced dissipation remains positive, a convex switching surface was defined such that
both the remnant strain and polarisation increments remained normal to the switching
surface. Considering optimal fitting parameters, the three-dimensional model in [88]
reproduced the ferroelectric and ferroelastic hysteresis curves. The resulting plots were
compared to the experimental data provided in [55, 100]. McMeeking and Landis [106]
proposed a simplified formulation of the multi-axial model [88] by treating the remnant
strain as a function of the remnant polarisation, as proposed in [74].

Schröder and Romanowski [126] formulated a coordinate-invariant macroscopic model
for polycrystalline ceramics. Their macroscopic model was based on the previous work by
Schröder and Gross [124] on the coordinate-invariant formulation for electrostrictive and
piezoelectric materials. Following the modelling assumptions in [106], the model in [126]
assumed a one-to-one relation between the remnant polarisation and strain. In view of
the coordinate-invariant theory, the enthalpy function in [126] was formulated in terms
of basic and mixed invariants of the total strain, electric field, remnant quantities, and
a structural vector. The framework [126] included the update algorithm needed for the
implementation of the invariant-based material model in a finite element environment.
Representative numerical examples, both under homogeneous and inhomogeneous states
of deformation, were presented. However, the model does not capture the polarisation
rotation of ceramics due to the assumption of a constant structural vector. For a more
detailed insight on the coordinate-invariant model formulation for ferroelectric ceramics,
the reader is referred to the doctoral dissertation by Romanowski [118].

A rate-independent constitutive model to capture the ferroelectric and ferroelastic
hystereses of a ceramic under uni-axial loading conditions was proposed by Klinkel [85].
In his model, the electric field was assumed to be additively split into a reversible and
an irreversible part. The assumption of such a split of the electric field was made in
view of a straightforward implementation of the model in a finite element framework,
where the nodal unknowns are the displacements and scalar electric potential. The
remnant strain along with the irreversible electric field quantities were treated as the
two internal state variables. The remnant strain was further considered to be additively
decomposed into two parts. One part was due to the mechanical depolarisation and the
other resulted from the dielectric switching effect. The uni-axial model [85] was extended
to a generalised three-dimensional setting in the subsequent work by Klinkel [84]. The
ferroelectric and ferroelastic hysteresis curves reproduced with the three-dimensional
model were in good agreement with the experimental curves.
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A three-dimensional phenomenological model to capture the rate-dependent behaviour
of ferroelectric ceramics was formulated by Miehe and Rosato [110]. The rate-dependent,
incremental variational model was motivated from the experimental observations on PZT
ceramics at varying loading frequencies reported by Zhou et al. [156] and by Viehland and
Chen [146]. The macroscopic remnant polarisation was considered as the only internal
state variable in their model. An energy storage function and a convex rate-dependent
dissipation potential were introduced to define an incremental functional for finite time
increments. Solving the evolution equation for the update of remnant polarisation at
each time step, the incremental stress and consistent tangent modulus were obtained.
The macroscopic remnant strain was computed as a deviatoric function of the updated
remnant polarisation. The butterfly and dielectric displacement hysteresis curves for
varying loading frequencies under homogeneous states of deformation were reproduced.
The model was further implemented in a finite element environment, with displacements
and electric potential as primary fields, in order to solve inhomogeneous two-dimensional
boundary value problems. An extension of the variational model [110] to study the
magneto-electro-mechanical coupling behaviour in multi-ferroic solids was postulated in
the subsequent work by Miehe et al. [112].

A very recent work on the constitutive modelling of ferroelectric bulk and composite
materials along with parameter identification based on experimental data was carried
out by Maniprakash et al. [104]. In their work, a constitutive model for bulk PZT was
introduced by formulating an electric enthalpy per unit volume and a rate-dependent
dissipation equation. The developed model was extended in order to study the behaviour
of a 1–3 PZT composite by a simple homogenisation approach. In the subsequent work by
Maniprakash et al. [103], a multi-surface model for polycrystalline ferroelectric solids was
proposed. The motivation for a multi-surface model was to capture the minor hysteresis
loops and the asymmetric butterfly curves observed in the experiments. Apart from
these two model frameworks, the doctoral dissertation by Maniprakash [102] includes
two other macroscopic model formulations for ferroelectric solids. One of the models
included an anisotropic switching surface to study the influence of compressive loads,
applied along the direction of the cyclic electrical field. The other being a temperature-
dependent model to predict the anti-hysteresis loop and to investigate the influence of
temperature on the hysteresis curves.

3.2 Rate-dependent phenomenological framework

This section presents a rate-dependent phenomenological material model to study the
overall macroscopic response in single crystal tetragonal ferroelectric materials. The
presented model is based on the general ideas for phenomenological modelling of ferro-
electric ceramics outlined in the works by Kamlah [71], Schröder and Romanowski [126]
and Miehe and Rosato [110]. The modelling framework is restricted to the capturing
of the macroscopic rate-dependent remnant polarisation switching behaviour evident in
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single crystal ferroelectric solids. Several micromechanical aspects, such as the resolution
in space of the spontaneous polarisation switching, are not taken into account.

Bulk ferroelectric single crystals are sub-divided into multiple regions of uniformly
oriented unit cells called domains. Two arbitrary domains of different orientations are
separated by an interface termed as a domain wall. Any particular domain in the crystal
is characterised by the spontaneous polarisation value and by the spontaneous strain
coefficient. In case of a tetragonal BaTiO3, there are six equally possible directions in
which the domains are aligned. The non-uniform distribution of the domains results in
a macroscopic unpoled configuration of the crystal devoid of an overall polarisation and
strain. A more detailed insight on the different types of domain configurations can be
found in the monographs [35, 66, 96].

The spontaneous or microscopic ferroelectric polarisation switching is initiated in the
crystal under the application of a sufficiently strong external electric field along a par-
ticular direction. This switching aligns the individual domains along the direction of
the applied field. Consequently, the crystal reaches a poled state characterised by an
elongation along the loading direction. This poled configuration is preserved even after
the removal of external loads. The macroscopic remnant state of the crystal can be de-
scribed by the remnant polarisation P r and the remnant strain εr. Assuming the single
crystal to be transversely-isotropic in both the poled and remnant states, we define two
structural quantities in order to characterise the piezoelectric behaviour, namely the
first-order structural tensor or polarisation director a and the second-order structural
tensor m. The structural vector is defined as

a :=
P r

‖P r‖
with ‖a‖ = 1 , (3.1)

and the second-order structural tensor is specified as

m := a⊗ a with tr(m) = 1 . (3.2)

The total strain ε and the dielectric displacement D of the bulk ferroelectric crystal
are considered to be additively decomposed into an elastic and a remnant part as

ε = εe + εr and D = De + P r . (3.3)

Here, εe denotes the reversible strain tensor and De refers to the reversible dielectric
displacement vector of the crystal. The macroscopic remnant polarisation P r is a result
of the net microscopic polarisation of individual domains. Loading the crystal along
a direction, aligns the microscopic polarisation such that a net macroscopic remnant
polarisation is obtained along the loading direction. As a consequence, the macroscopic
remnant strain εr also evolves along the direction of P r, see e.g. [74, 106]. Moreover,
experimental findings in [24] show that the changes in strains are volume preserving in
nature. Based on these findings and following the assumptions made in [74], a deviatoric
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form of the remnant strain is considered for the single crystal response. Thus, the specific
form of remnant strain tensor written as a function of the macroscopic polarisation is
introduced as

εr(P r) =
3

2

εsat

P sat
‖P r‖

[
m− 1

3
tr(m) I

]
=

3

2

εsat

P sat
‖P r‖

[
m− 1

3
I

]
, (3.4)

cf. [110]. Here, P sat denotes the saturation polarisation and εsat refers to the saturation
strain value, both defined for the ferroelectric single crystal.

The electric Gibbs energy for the phenomenological model formulation to describe
the dissipative response of ferroelectric crystal takes the form H(ε,E,P r), wherein the
macroscopic remnant polarisation vector P r is the only internal state variable driving
the dissipative ferroelectric behaviour. The electric Gibbs energy is further additively
decomposed as

H(ε,E,P r) = Hpiezo(εe,E,P r) +Hrem(P r) . (3.5)

The piezoelectric part of the electric Gibbs energy reads

Hpiezo(εe,E,P r) =
1

2
[ε− εr(P r)] : E : [ε− εr(P r)]− 1

2
E · ε ·E

− ‖P
r‖

P sat
E · e(a) : [ε− εr(P r)]− P r ·E . (3.6)

This part of the total electric Gibbs energy takes an additive form comprising of me-
chanical, piezoelectric coupling and electrical terms. With respect to the piezoelectric
energy (3.6), both the fourth-order elasticity modulus E and the second-order dielectric
tensor ε are considered to be isotropic. This assumption neglects the influence of load-
ing history on the material moduli, cf. [71]. The third-order piezoelectric tensor e(a) in
the reversible energy function (3.6) is considered to be transversely-isotropic dependent
on the polarisation director. Referring to the model in [71], the piezoelectric modulus
is scaled by a factor ‖P r‖/P sat to consider the history dependence of anisotropy. The
scaling factor ensures that the piezoelectric effect vanishes in an unpoled crystal. On
the other hand, the piezoelectric response and the anisotropy becomes evident once the
remnant polarisation evolves at stronger electric fields along the direction of the polar-
isation director a. The closed form representation of the elasticity, piezoelectric and
dielectric material moduli reads

E := λE I ⊗ I + 2µE Isym , (3.7)

e(a) := − βe
1 a⊗ I − βe

2m⊗ a−
βe

3

2
[I ⊗ a+ I ⊗ a] and (3.8)

ε := − 2 γε I . (3.9)
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In Equations (3.7) to (3.9), λE and µE refer to the Lamé parameters, βe
1, βe

2 and βe
3

are the piezoelectric constants and γε is the dielectric parameter. These coordinate-
invariant material parameters can be identified from the single crystal BaTiO3, referring
to an orthonormal base system including the easy axis a, as

λE = E1122 , µE =
1

2

[
E1111 − E1122

]
, (3.10)

βe
1 = − e311 , βe

2 = − e333 + e311 + 2 e131 , βe
3 = − 2 e131 , (3.11)

γε = − 1

2
ε11 . (3.12)

The remnant part of the total electric Gibbs energy, dependent on the macroscopic rem-
nant polarisation, is formulated based on the saturation-type functions. These functions
are postulated in order to capture the monotonically increasing remnant polarisation
from zero to the saturation level P sat. A detailed insight on the saturation-type func-
tions can be found in [55, 88, 106, 137]. For the presented macroscopic model, the
remnant contribution of the total electric Gibbs energy reads

Hrem(P r) =
1

c

[
1

2
P sat ln

(
1−

[
‖P r‖
P sat

]2
)

+ ‖P r‖ arctanh

(
‖P r‖
P sat

)]
, (3.13)

wherein scalar c is a model or fitting parameter that influences the shape of the hysteresis
curves. The specific form of the tangent hyperbolic remnant function (3.13) is taken
from the coordinate-invariant macroscopic ferroelectric model postulated by Schröder
and Romanowski [126].

With reference to the essential equations introduced in Chapter 2, the local form of
the Clausius–Duhem inequality for the electromechanical process, considering isothermal
conditions, takes the form

− Ḣ(ε,E,P r) + σ : ε̇−D · Ė ≥ 0 . (3.14)

Following the Coleman–Noll procedure of rational thermodynamics, the constitutive
quantities, namely the stresses and dielectric displacements read

σ =
∂H(ε,E,P r)

∂ε
and D = − ∂H(ε,E,P r)

∂E
, (3.15)

respectively. Furthermore, the procedure yields a reduced dissipation inequality of the
form Dred = f(P r) · Ṗ r ≥ 0, wherein f(P r) is the driving force vector conjugate to Ṗ r

identified as

f(P r) = − ∂H(ε,E,P r)

∂P r . (3.16)
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Explicit expressions for the stress tensor, dielectric displacement vector and the driving
force vector are derived respectively as

σ = E : [ε− εr(P r)]− ‖P
r‖

P sat
et(a) ·E , (3.17)

D =
‖P r‖
P sat

e(a) : [ε− εr(P r)] + ε ·E + P r and (3.18)

f(P r) = [ε− εr(P r)] : E :
∂εr(P r)

∂P r +
1

P sat

[
E · e(a) : [ε− εr(P r)]

]
a

+
‖P r‖
P sat

E · ∂e(a)

∂P r : [ε− εr(P r)]− ‖P
r‖

P sat
E · e(a) :

∂εr(P r)

∂P r (3.19)

+E −Eb(P r) ,

wherein Eb(P r) denotes the back electric field defined as

Eb(P r) :=
∂Hrem(P r)

∂P r =
1

c
arctanh

(
‖P r‖
P sat

)
a . (3.20)

In contract to the macroscopic material model presented by Miehe and Rosato [110],
wherein the driving force defining the macroscopic remnant polarisation evolution was
approximated by f(P r) ≈ E −Eb(P r), the presented numerical model is implemented
by considering the full driving force expression (3.19).

With respect to kinetics, a suitable dissipation equation to capture the evolution of
macroscopic remnant polarisation is formulated in terms of a convex and non-negative
function. To this end, the rate-dependent form of the dissipation equation proposed by
Miehe and Rosato [110] is considered. The scalar dissipation equation reads

ζ(Ṗ r) = sup
f

{
f(P r) · Ṗ r − Ec

ηp [m+ 1]

〈
‖f(P r)‖
Ec

− 1

〉m+1
}
, (3.21)

wherein the Macaulay bracket, 〈•〉 = max {•, 0}, is used. The model parameters ηp > 0
and m > 0 influence the rate-dependent evolution of macroscopic remnant polarisation.
Solving the necessary condition (3.21) particularises the rate-type evolution equation as

Ṗ r =
1

ηp

〈
‖f(P r)‖
Ec

− 1

〉m
f(P r)

‖f(P r)‖
. (3.22)

Once the norm of driving force exceeds the coercive electric field Ec, the macroscopic
remnant polarisation evolves along the direction of the driving force. The necessary
relations for both the rate-dependent and rate-independent forms of the dissipation
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equation are discussed in detail by Miehe and Rosato [110]. For the partial derivations
of the quantities used in the phenomenological model formulation, the reader is referred
to Appendix A.

3.3 Algorithmic treatment of the evolution equation

The rate-dependent equation defining the remnant polarisation evolution (3.22) is highly
non-linear. To this end, we consider a straightforward discretisation of the evolution
equation (3.22) within the finite time interval [tn, tn+1]. Let the time increment or the
step size be defined as ∆tn+1 := tn+1 − tn > 0. Within this finite time increment, the
rate of macroscopic polarisation is considered to be constant so that approximation

Ṗ r
n+1 ≈

P r(tn+1)− P r(tn)

∆t
=
P r
n+1 − P r

n

∆t
, (3.23)

holds. Henceforth, we denote the quantities evaluated at time tn+1 without subscript
for the sake of brevity. The macroscopic remnant polarisation P r

n at time tn is assumed
to be known. Following the implicit Euler integration method, the current value of
macroscopic polarisation P r at time tn+1 is obtained as

P r = P r
n + ∆t Ṗ r . (3.24)

The solution of Equation (3.24) is determined by iteratively solving the residual

R(P r) = P r − P r
n −

∆t

ηp

〈
‖f(P r)‖
Ec

− 1

〉m
f(P r)

‖f(P r)‖
= 0 , (3.25)

by means of a suitable scheme such as the Newton–Raphson method. The residual vector
is solved in each time increment for P r. The particular form of Newton-type update

P r|k+1 = P r|k − J−1|k ·R(P r)|k , (3.26)

is fulfilled until ‖R(P r)‖ < tol, wherein k denotes the iteration counter. The tangent
matrix J , related to the residual function (3.25) used in the update relation (3.26), is
derived as

J :=
dR(P r)

dP r = I − m∆t

ηpEc

〈
‖f(P r)‖
Ec

− 1

〉m−1
f(P r)

‖f(P r)‖
∂‖f(P r)‖
∂P r

− ∆t

ηp

〈
‖f(P r)‖
Ec

− 1

〉m
∂

∂P r

[
f(P r)

‖f(P r)‖

]
. (3.27)
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Table 3.1: Single crystal tetragonal BaTiO3 material parameters used for the numerical computations
with the phenomenological model. The material parameters are taken from [152] with the elasticity and
dielectric constants fitted by means of a least-squares method, cf. [125].

Denomination Parameter Value Unit Reference

Elastic stiffness E1111 213.303× 103 MPa –

Elastic stiffness E1122 102.515× 103 MPa –

Lateral piezoelectric coefficient e311 − 0.7 C/m2 [152]

Axial piezoelectric coefficient e333 6.7 C/m2 [152]

Piezoelectric shearing coefficient e131 34.2 C/m2 [152]

Vacuum permittivity ε0 8.854× 10−12 F/m [152]

Dielectric permittivity ε11 1485.33 ε0 F/m –

Saturation polarisation P sat 0.26 C/m2 –

Saturation strain εsat 0.001 – –

Coercive electric field Ec 1.0 kV/mm –

Viscosity-type parameter ηp 0.1 m2/C s –

3.4 Numerical examples

In this section, numerical capabilities of the derived phenomenological model are shown
with the help of representative examples. The butterfly and dielectric hysteresis loops
for single crystal tetragonal BaTiO3 are reproduced by tests under homogeneous states
of deformation. These tests are performed on a three-dimensional specimen subjected to
a cyclic electrical load at varying loading frequencies. Inhomogeneous boundary value
problems are solved with respect to a plate with centred hole example. The strain
and dielectric displacement distributions in the inhomogeneous specimen are studied for
cyclic electrical loading.

The single crystal BaTiO3 material constants such as elastic stiffness, piezoelectric
and dielectric tensor components are taken from Zgonik et al. [152]. The elasticity
and dielectric permittivity constants reported in [152] are fitted, respectively, to ob-
tain isotropic elastic and dielectric permittivity constants by means of a least-squares
method, cf. Schröder and Keip [125]. The parameter fitting procedure is briefly explained
in Appendix A. The fitted elastic and dielectric constants along with the piezoelectric
and other parameters needed for the computations are listed in Table 3.1.

3.4.1 Tests under homogeneous states of deformation

The schematic sketch of the three-dimensional specimen of interest along with the loading
curve and boundary conditions is depicted in Figure 3.1. The crystallographic axes of
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Figure 3.1: Schematic representation of the three-dimensional specimen along with load curve and
boundary conditions considered for the tests under homogeneous states of deformation.

this initially unpoled specimen are assumed to coincide with the reference Cartesian
axes e1,2,3. Cyclic electrical loading is applied along the e3-axis. The potential difference
across the specimen is generated by keeping the lower electrode grounded at all times,
while its upper counterpart is surcharged with an alternating scalar electric potential
φ(t) with φmax = ±10 kV. Due to the applied cyclic loading and due to the prescribed
displacement boundary conditions, the specimen under study elongates and contracts
along the e3-axis while experiencing corresponding contraction and elongation along
both the e1 and e2-axes. The strains and dielectric displacements resulting from this
rate-dependent and non-linear deformation are computed iteratively. By plotting the
obtained total strains against the applied electric field we arrive at the strain hysteretic
response. Analogously, the dielectric hysteresis loop is obtained by plotting the resulting
D3 values against E3.

With the above described test set-up, a first set of computations is carried out by
surcharging the specimen with an alternating electrical load at 0.05 Hz. The hysteretic
responses of the specimen are plotted in Figure 3.2 for parameters c = 3.0 and m = 2.0.
The initial unpoled configuration of the specimen is reflected with zero values of strain
and dielectric displacement along the loading direction. Figure 3.2 shows the total strain
and dielectric displacement values {ε33 , D3}|t0 = 0 at electric field E3|t0 = 0 kV/mm.
Starting from this point, the potential difference across the specimen is decreased in
steps of ∆t. This is continued until the induced electric field reaches the coercive field
Ec = 1 kV/mm. During this loading phase the specimen of interest does not undergo any
deformation in shape. This can be verified by the butterfly curves in Figure 3.2, wherein
for electrical loading E3 < Ec we obtain a total strain ε33 = 0. However, this initial
loading results in a linear increase of dielectric displacement along the loading direction
with respect to the applied electric field, see Figure 3.2. The linear relation D3 = ε11E3

holds for E3 < Ec. Moreover, both the macroscopic remnant strain and polarisation do
not evolve from their zero values, i.e. {εr

33, P
r
3} = 0, until the applied field reaches the

coercive limit, see Figure 3.3. This is a further indication that no ferroelectric domain
switching has occurred in the specimen during the loading phase E3 < Ec.

Once the specimen is loaded beyond the coercive limit, domain switching is initiated
followed by non-linear evolution of macroscopic polarisation. The remnant polarisation
P r

3 evolves until it asymptotically approaches the saturation polarisation value P sat. The
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Figure 3.2: Hysteresis curves simulated with the phenomenological model under homogeneous states of
deformation for c = 3.0, m = 2.0. Butterfly curve (left) and dielectric hysteresis loop (right) obtained
for a single crystal BaTiO3 specimen subjected to a cyclic electrical loading at 0.05 Hz.
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Figure 3.3: Macroscopic remnant strain response (left) and macroscopic remnant polarisation response
(right) corresponding to the butterfly and dielectric hysteresis curves plotted in Figure 3.2.

evolution of macroscopic polarisation is accompanied by a non-linear elongation along
the positive e3-direction. The non-linear increase of the total strain ε33 can be observed
in the strain hysteresis loop in Figure 3.2. With respect to dielectric hysteresis, the non-
linear increase of D3 beyond the coercive limit is also directly related to the evolution
of macroscopic polarisation. One can observe the non-linear increase and subsequent
saturation of D3, around E3 = 2 kV/mm, in Figure 3.2. The specimen is now poled
along the positive e3-axis at this maximum loading point.

As the electric load is reduced from this point, the specimen contracts linearly along
the e3-axis and reaches a remnant state at E3 = 0 kV/mm. This state is characterised
by an irreversible remnant strain and a non-vanishing macroscopic remnant polarisation
in the specimen, see Figures 3.2 and 3.3. The macroscopic remnant polarisation along
the loading direction attained with the removal of electrical load is equal to saturation
value P sat. Analogously the macroscopic remnant strain εr

33 equals the saturation value
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of strain εsat. The relations D3 = P r
3 = P sat and ε33 = εr

33 = εsat hold at remnant state
for the considered perfect crystal specimen. Due to the unchanged P r

3 value during this
unloading phase to zero electric field, the poled configuration of the specimen along the
positive e3-axis is still preserved in the remnant state.

Next, the specimen is loaded beyond the coercive limit in the negative regime. During
this phase, the remnant polarisation P r

3 first decreases in magnitude and then switches
by 180◦. After its reversal, P r

3 evolves non-linearly along the negative e3-direction.
The evolution of polarisation continues until it asymptotically saturates around point
E3 = − 2 kV/mm, see Figure 3.3. Due to 180◦ macroscopic polarisation switching, the
specimen is now poled along the negative e3-axis. In view of deformation, the speci-
men initially contracts non-linearly as the electric field decreases in the negative direc-
tion. Once the coercive limit is exceeded, the specimen elongates along the positive
e3-direction. Note, that the resulting ε33 values at E3 = ± 2 kV/mm are identical even
though the specimen under study is poled in opposite directions. This is due to the total
strains being symmetric.

Subsequent increase in electrical loading to 2 kV/mm re-orients the domains and
macroscopic polarisation back along the positive e3-axis. Consequently, the specimen
is now re-poled along the loading direction. The remnant state is recovered once the
electric field is completely reduced to zero. The characteristic butterfly and dielectric
hysteresis loops are thus numerically reproduced. The influence of the viscous-like pa-
rameter and the dependence of loading frequency on the hysteretic response are studied
in the following computations.

After setting slope parameter c to a constant value, the tests under homogeneous
states of deformation are performed for two different positive values of the viscous-like
parameter. The influence of this viscous-like model parameter m on the polarisation
evolution can be observed in both the strain and dielectric hysteresis curves. With an
electrical loading rate of 0.2 Hz and with slope parameter c = 1.0, the butterfly curves
and dielectric hysteresis for two different values of m are shown in Figure 3.4. As the
applied electric field exceeds the coercive limit, the evolution of macroscopic remnant
polarisation differs for m = 2.0 and m = 3.0. This leads to a difference in shape of
both the butterfly and dielectric hysteresis loops, see Figure 3.4. In view of the butterfly
curves, the value of strain ε33 obtained at remnant state is of lower magnitude with
m = 3.0 compared to the remnant strain value obtained for m = 2.0. Similarly, the
values of total strain ε33 at E3 = ± 2 kV/mm are lower for m = 3.0 in comparison to
the values obtained for m = 2.0. With respect to dielectric hysteresis, in addition to
the decrease in absolute value of dielectric displacement |D3| at both remnant and poled
states, the dielectric hysteresis curves widens for m = 3.0.

In order to study the rate-dependent behaviour, the last set of computations under
homogeneous states of deformation are performed under varying electrical loading rates.
By setting c = 1.0 and m = 2.0, the specimen is electrically loaded with three different
frequencies of 1 Hz, 0.1 Hz and 0.01 Hz. The resulting butterfly and dielectric displace-
ment hysteresis curves are plotted in Figure 3.5. From the butterfly curves, one observes
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Figure 3.4: Influence of viscous-like parameter m on the hysteresis curves simulated with the phe-
nomenological model for slope parameter c = 1.0. Butterfly curves (left) and dielectric hysteresis loops
(right) obtained for a single crystal BaTiO3 specimen subjected to a cyclic electrical loading at 0.2 Hz.
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Figure 3.5: Rate-dependent hysteresis curves simulated with the phenomenological model for c = 1.0,
m = 2.0. Butterfly curves (left) and dielectric hysteresis loops (right) obtained for a single crystal
BaTiO3 specimen subjected to a cyclic electrical loading at varying frequencies.

that the magnitude of ε33 at the remnant state reduces with increasing electrical load-
ing rates. Furthermore, the shape of the butterfly curves computed at 1 Hz around
E3 = ± 2 kV/mm differs from the responses obtained at lower frequency levels. The
total strain does not saturate around these maximum loading points when loaded at
higher frequencies of 1 Hz. This may be due to the incomplete switching of the domains
which is typical for ferroelectric materials at higher rates of loading. With respect to di-
electric hysteresis, the curves widen with increasing loading rates. The absolute value of
dielectric displacement |D3| obtained at the remnant state decreases as the specimen is
loaded at higher frequencies. Similar to the strain response, the dielectric displacement
D3 does not saturate around point E3 = ± 2 kV/mm at higher frequencies compared to
the related values obtained at lower rates of loading.
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Figure 3.6: Schematic representation of a three-dimensional plate with a centred hole specimen along
with the loading curves and boundary conditions subjected to a cyclic electrical load. The two loading
curves refers, respectively, to the time-dependent electric potential applied at the top and bottom
electrodes of the specimen.

3.4.2 Test under inhomogeneous states of deformation

In this subsection, the versatility of the phenomenological model is demonstrated by
solving an inhomogeneous boundary value problem. The specimen of interest is a three-
dimensional plate of planar dimensions L ×H = 10 mm × 10 mm and with a thickness
T = 1 mm. The plate has a centred hole of diameter D = 3 mm. Both the top and
bottom surfaces of the plate are prescribed with zero values of displacements along all
the three Cartesian directions. The specimen is surcharged with alternating electric
potential with φmax = ±10 kV at both the top and bottom surfaces. The schematic
sketch of the specimen along with boundary and loading conditions are depicted in
Figure 3.6. The plate is discretised by 800 tri-linear brick elements. Both the resulting
strain and dielectric displacement distribution in the specimen are studied for specific
model parameters at different time intervals.

The considered inhomogeneous capacitor is subjected to an alternating electric field at
0.2 Hz. The viscosity and slope parameters for this test are set to m = 2.0 and c = 3.0,
respectively. For the defined boundary and loading conditions, the total strains and the
dielectric displacements are computed iteratively. Figure 3.7 shows the distribution of
the electric potential, total strain and dielectric displacement at different time intervals
along the loading direction across the specimen.

Starting from a virgin unpoled configuration, the electric potential is incrementally
applied in steps of ∆t. Domain switching and subsequent evolution of macroscopic
polarisation along the loading direction is initiated once the applied electric field exceeds
the coercive limit. Due to the inhomogeneity of the problem under study, the evolution
of macroscopic polarisation in the specimen is not uniform. At t = 1.25 sec, the potential
difference across the specimen reaches its negative maximum value of ∆φ = − 20 kV.
The generated field aligns the macroscopic polarisation and the specimen attains a poled
configuration along the positive e3-direction at this point of maximum loading. Due to
the imposed zero displacements at both the top and bottom surfaces, the deformation
obtained across the specimen is highly non-uniform. This can be observed in Figure 3.7
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Figure 3.7: Contour plots of the scalar electric potential φ, total strain ε33 and dielectric displacement
D3 at different time intervals simulated with the phenomenological model. The load curve on the
left-most side depicts the time-dependent electric potential loading at the top electrode.
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with respect to the contour plot of the total strain ε33 at t = 1.25 sec. From this negative
maximum loading point, the electrical load is decreased to zero and further loaded along
the negative e3-direction until ∆φ = 20 kV at t = 3.75 sec. The load reversal switches
the macroscopic polarisation by 180◦ and the specimen attains a new poled configuration
along the negative e3-direction at this point. The remnant state is recovered at t = 5 sec
when the specimen is electrically unloaded. As expected, the poled configuration along
the negative e3-direction is retained in this remnant state. Subsequent increase in loading
until it reaches ∆φ = − 20 kV at t = 6.25 sec re-orients the specimen back along the
positive e3-direction. However, it can be observed that the distribution of both the total
strain and dielectric displacement is slightly different for the poled states at t = 1.25
and 6.25 secs. This explains that the behaviour of ferroelectric material is different when
loaded from an unpoled configuration compared to the re-poling of a specimen from its
remnant state.
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4 Laminate-based modelling of single
crystalline ferroelectric materials

The present chapter deals with the development of laminate-based models to study
the rate and external stress-dependent domain evolution, and hence the macroscopic
hysteretic response, in single crystal tetragonal ferroelectric materials. Laminate-based
models are micromechanically motivated and consider the volume fraction of the distinct
ferroelectric variants or states directly in their formulation. These constitutive models
are based on a mixture theory ansatz and aim to study the domain patterns, and their
evolution, within the ferroelectric single crystal under external electrical and mechanical
loading. By considering different mixture formulations and averaging principles, four
laminate-based models are postulated in this chapter. The formulations are developed
considering the average strain and polarisation compatibility conditions, as introduced
for ferroelectric materials by Shu and Bhattacharya [134]. The four individual laminate
models are verified by means of representative boundary value solutions under various
loading scenarios. The individual formulations as well as the general algorithmic scheme
considered to solve the evolution equations are largely based on the works by Dusthakar
et al. [41–44, 46].

The chapter is structured as follows. Section 4.1 provides a brief overview of the
micromechanical models established for the modelling of the single and polycrystalline
ferroelectric solids. A general laminate-based approach for the numerical modelling of
single crystal tetragonal ferroelectric solids is presented in Section 4.2. In particular, the
necessary equations needed for the development of the four individual laminate-based
models are outlined. Section 4.3 elaborates on the general algorithmic formulation for
solving the update of the rate-dependent evolution equations. The Fischer–Burmeister-
type algorithm in combination with a Newton–Raphson scheme is adopted in order
to solve the rate-dependent evolution equations so as to arrive at the update of the
inequality constrained multi-rank laminate volume fractions.

Following the general framework and the algorithmic formulation, Sections 4.4 to 4.7
are devoted to the detailed description of the individual laminate-based material models.
The four distinct models are denoted as laminate-based Models 1, 2, 3 and 4 respectively.
Each of the laminate models formulates an average electric Gibbs energy to describe
the dissipative ferroelectric material behaviour. The average energy is written as a
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4 Laminate-based modelling of single crystalline ferroelectric materials

Table 4.1: A short summary of Sections 4.4 to 4.8.

Section Description

Section 4.4 Laminate-based Model 1

– Average electric Gibbs energy of the crystal is formulated by considering

only the polarisation compatibility condition.

– Numerical examples include tests under both homogeneous and

inhomogeneous states of deformation.

– Comparison of laminate-based Model 1 and the phenomenological model is

shown with respect to simulated butterfly and dielectric hysteresis curves.

Section 4.5 Laminate-based Model 2

– Electric Gibbs energy is postulated for each of the ferroelectric variants and

weighted by the volume fractions to obtain the average energy of the crystal.

– Numerical examples under homogeneous states of deformation are presented.

Section 4.6 Laminate-based Model 3

– Average electric Gibbs energy formulated for the crystal based on both the

average remnant quantities and on the averaged material moduli.

– Numerical examples under homogeneous states of deformation are provided.

Section 4.7 Laminate-based Model 4

– Extention of the average electric Gibbs energy introduced in Model 3 by

postulating an additional average remnant energy contribution.

– Numerical tests under homogeneous states of deformation are discussed.

Section 4.8 Comparison of laminate-based Models 2, 3 and 4

– Comparison of the specific laminate Models 2, 3 and 4 in context of numerical

tests under homogeneous states of deformation.

function of the total linear strain tensor, the electric field vector, and the scalar-valued
laminate volume fractions, treated as internal state variables. The precise form of the
electric Gibbs energy for the individual laminate-based models is constructed based on
the different mixture theory assumptions and averaging formulations. Table 4.1 provides
a quick overview of Sections 4.4 to 4.8.

Section 4.4 focusses on the description of laminate-based Model 1. The particular form
of the electric Gibbs energy and the explicit relations for the constitutive quantities and
for the driving forces are introduced. Representative numerical examples based on tests
under both homogeneous and inhomogeneous states of deformation are studied. Fur-
thermore, a comparison of laminate-based Model 1 and the phenomenological model,
established in Chapter 3, is provided. The comparison is accomplished in the context of
numerical simulations under both homogeneous and inhomogeneous states of deforma-
tion. Section 4.5 is dedicated to laminate-based Model 2 formulation. With an electric
Gibbs energy defined for each of the six tetragonal ferroelectric variants, the average
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state of the crystal is obtained by weighting the individual energies over their respective
variant volume fractions. Numerical simulations under homogeneous states of defor-
mation considering electrical and combined electromechanical loading are presented. In
Section 4.6, an alternate formulation for the overall electric Gibbs energy of the crystal is
given, which forms the basis for laminate-based Model 3. The average electric Gibbs en-
ergy of the crystal is formulated based on the averaged remnant quantities and material
moduli. Numerical examples based on tests under homogeneous states of deformation
for three different loading scenarios are investigated. Section 4.7 outlines the average
electric Gibbs energy along with the constitutive and the driving force relations corre-
sponding to laminate-based Model 4. The average total electric Gibbs energy postulated
for laminate-based Model 4 is decomposed into a piezoelectric and a saturation-type
remnant energy part. Tests under homogeneous states of deformation are presented in
order to demonstrate the versatility of the derived laminate-based Model 4.

Section 4.8 provides a comparison of laminate-based Models 2, 3 and 4 with respect to
the simulated butterfly and dielectric hysteresis curves, obtained from the numerical
tests under homogeneous states of deformation. The tests under homogeneous states of
deformation are performed on a three-dimensional specimen under electrical, mechanical
and under combined electromechanical loading scenarios. The comparison also highlights
the difference in the hysteresis curves obtained with two different values of the viscosity-
type parameter.

4.1 Overview of micromechanical models

This section provides an overview in the form of a literature survey of the existing mi-
cromechanical material models for ferroelectric solids. Micromechanical models are reli-
able means of studying the microscopic domain evolution and the polarisation switching
giving rise to the macroscopic hysteretic behaviour in ferroelectric materials. A detailed
review of the micromechanical modelling practices devised for the study of the overall
ferroelectric material response is provided by Kamlah [71], Landis [89] and Huber [54].

The underlying micromechanical model formulations are classified into two categories.
On the one hand, suitable energy arguments are postulated as switching criteria in order
to determine the response of the individual single crystal unit cells. Considering appro-
priate homogenisation procedures, the individual response of the randomly oriented unit
cells are averaged to obtain the macroscopic response of the overall ferroelectric ceramic.
Alternate formulations are based on treating the volume fractions of the distinct variants
of the individual single crystal unit cells as internal state variables in the constitutive
model framework. The evolution of these volume fractions under applied external loads
influences the domain switching, and hence the overall remnant strain and polarisation
changes or evolves in the crystal.
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Hwang et al. [63] proposed a hysteresis model for ferroelectric ceramics by postulating
a switching criterion based on a combined mechanical and electrical energy argument.
They assumed each grain in the ferroelectric ceramic as a single domain, characterised
by values of both the spontaneous strain and polarisation. The spontaneous polarisation
switching of an individual grain along the direction of the applied load was assumed to
occur once the sum of the electrical and mechanical works exceeded a critical value. The
work per unit volume in switching between any two polarisation states was considered
as the critical value in their switching criterion. Averaging the obtained response of the
randomly oriented individual grains, and along with the linear constitutive relations,
the overall material behaviour of the ceramic was computed. Their averaging procedure
neglected the interactions between the neighbouring grains and assumed a Reuss type
approximation, wherein both the applied stress and electric field are uniform throughout
the ceramic.

McMeeking and Hwang [105] developed a formulation by considering a piezoelectric
inclusion in an isotropic matrix. The inclusion and the matrix were assumed to possess
the same elastic and dielectric moduli. The potential energy of the inclusion, derived
following the standard Eshelby method, was considered in the switching criterion to
compute the increments of remnant polarisation and strain under applied electrical and
mechanical loads. Following [105], Hwang et al. [64] simulated the response of a spherical
piezoelectric inclusion in an infinite homogeneous matrix. Hwang and McMeeking [61]
implemented the microscopic material model developed in [63] within a finite element
framework. They studied the polarisation switching of the ferroelectric ceramic subject
to pure electrical loading. For the simulations, each finite element was assumed to be
a single domain grain, and 1000 such elements of random orientation were considered.
The homogenised remnant polarisation of the ceramic was computed by averaging the
response of the individual finite elements. They reproduced the macroscopic dielectric
hysteresis to fit the experimental loop for a PLZT ceramic. In an analogous formulation,
Hwang and McMeeking [62] considered only the stress-based switching criterion of [63]
to reproduce the ferroelastic hysteresis loop by implementing the model within a finite
element framework.

Chen and Lynch [32] developed a micromechanical model for ferroelectric ceramics
based on a single crystal constitutive model formulation. Their framework included
a modified ferroelectric/ferroelastic switching criterion in order to take the strain and
polarisation discontinuities between two neighbouring single crystal grains into account.
Their modified switching law was motivated from the assumptions considered in [105].
Defining random orientations for the individual grains, the macroscopic response of the
polycrystalline ferroelectric was simulated and subsequently fitted to the experimental
tetragonal and rhombohedral PLZT curves.

Arockiarajan et al. [4, 37] developed a three-dimensional micromechanical model for
a ferroelectric ceramic. Based on the criterion for electric field switching, postulated
in [63], their model investigated the rate-dependent polarisation switching behaviour in
polycrystalline ferroelectric solids. A probability function was postulated to capture
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the interactions between the adjacent grains. They computed the dielectric hysteresis
curves at various electrical loading frequencies using the finite element method. Later,
Arockiarajan et al. [5] extended the formulations [4, 37] by incorporating the combined
electromechanical switching criterion postulated in [63]. In doing so, both the dielectric
and strain hysteresis curves for a soft PZT ceramic under varying electrical loading ampli-
tudes and frequencies were simulated, see [5]. In their subsequent work [6], the influence
of an axial compressive stress applied along the direction of the external electrical field
was presented with the help of finite element method. Further studies by Arockiarajan
et al. [3, 7] aimed at incorporating the interaction between the neighbouring ferroelectric
grains in their micromechanical model formulations. In [3], a Weibull-type probability
function was adopted to handle the inter-granular effects. However, a gradient term at
the boundary of the switching domain was considered in [7] to avoid the sharp change
in the Gibbs energy between any two neighbouring grains.

Keip and Schröder [78] postulated a tetragonal model based on the microscopic en-
ergy switching criterion to study the single crystal ferroelectric material behaviour. Their
model incorporated the underlying tetragonal structure of the ferroelectric unit cell by
defining three perpendicular crystallographic axes, out of which one represented the
normalised preferred direction. Suitable structural tensors were introduced to define the
mechanical, piezoelectric and dielectric invariants. The electric enthalpy, governing the
thermodynamic process, was written as an additive function of the introduced basic and
mixed invariants. The microscopic ferroelectric switching criterion postulated in their
model considered the difference of only the electrical energy causing the domain switch-
ing within a tetragonal unit cell. With the formulated energy enthalpy and switching
criterion, strain and dielectric hystereses were presented for an ferroelectric single crystal
specimen under homogeneous electrical loading conditions. An extension of the model
to incorporate a unified ferroelectric and ferroelastic switching criterion was carried out
in the subsequent works by Keip and Schröder [79, 80]. The microscopic switching cri-
teria used in the three contributions [78–80] were comparable to those proposed in [63].
In the doctoral dissertation by Keip [77], the tetragonal model [79] was combined with
a homogenisation procedure to simulate the macroscopic ferroelectric and ferroelastic
hysteretic behaviour of a BaTiO3 ceramic. Considering random orientations of the unit
cells, the homogenised material moduli and constitutive quantities of the underlying
ceramic were computed for both cyclic electrical and mechanical loading conditions.

Shilo et al. [133] proposed a model to capture the response of single crystal BaTiO3

under combined electromechanical loading. The work was motivated from the measured
data on BaTiO3 reported in [21, 22]. Their one-dimensional model explicitly defined a
Gibbs energy per unit volume for each of the in- and out-of-plane directions of the applied
load. The total driving force defining the domain evolution was additively decomposed
into two parts. One part of the driving force was due to the difference in the Gibbs
energies obtained when switching from one state to another. The other part took the
friction between the specimen and the loading fixture into account and was defined
in terms of the frictional coefficient and of the specimen’s geometry. The simulated
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butterfly curves showed in [133] predicted an increase in the actuation strain response of
the single crystal BaTiO3 with decreasing values of the frictional coefficient.

A very recent contribution on formulating a switching criterion for single crystal
tetragonal BaTiO3 was presented by Li and Li [95]. Based on the energy-based switch-
ing criterion of [63], Li and Li [95] formulated an incremental criterion for 90◦ domain
switching by considering the additional hardening effects. Their incremental switching
criterion was motivated from the experimental findings reported in their previous works,
on the hardening effects and on the large strain actuation observed in ferroelectric single
crystals, see [93, 94]. Furthermore, the simulated ferroelectric and ferroelastic hystereses
were compared to their experimental data, see [95].

In contrast to the above mentioned energy-based formulations for defining discrete
switching criteria, a number of micromechanically motivated models were developed by
taking the volume fraction of the distinct ferroelectric variants into account. The for-
mulations by Huo and Jiang [59, 60] were based on the mixture theory to study the
hysteretic behaviour of ferroelectric ceramics. Each grain in the polycrystal was as-
sumed as a mixture of the distinct variants, characterised by their volume fractions.
The average polarisation of an individual grain was assumed to be a linear function of
the considered volume fractions. Under external loading, the change in volume frac-
tion values of the corresponding domains was directly related to the domain switching
in the grain. By considering interaction between the grains, the macroscopic dielectric
hysteresis curves for a ceramic were reproduced. Kamlah and Jiang [73] presented a
rate-dependent constitutive model by treating the volume fraction of the ferroelectric
variants as internal state variables. Satisfying the Clausius–Duhem inequality, the driv-
ing forces were derived from the postulated Gibbs energy. Their generalised model was
implemented to reproduce the rate-dependent hysteresis curves under uni-axial loading.

A micromechanical model based on the volume fraction concept was developed by Lu
et al. [99] to investigate both the ferroelectric and ferroelastic hysteretic behaviour. Their
work included the measured hysteresis curves of a soft PZT ceramic under electrical and
mechanical loading scenarios. The theoretical framework considered the polycrystalline
ferroelectric to be composed of multiple single crystal grains. An orientation distribution
function was postulated to incorporate the random grain direction. Each single crystal
tetragonal grain was modelled by postulating specific Gibbs energy for each variant state.
The driving force responsible for the switching of domains was computed as the difference
in the Gibbs energy between any two domain states. With the computed response of the
individual crystals, the macroscopic behaviour of the ceramic was obtained by performing
a Reuss approximation.

A constitutive model for polycrystalline ferroelectric was developed by Huber et
al. [57]. Unlike the assumption of an instantaneous switching between the distinct vari-
ant states, their model incorporated the progressive polarisation switching and domain
evolution. The progressive polarisation switching inside the individual grains was formu-
lated analogously to the crystal plasticity approach. Considering the distinct variants
in a tetragonal grain to be associated with their corresponding volume fractions, the
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incremental transformation from one variant to another under external loading was de-
fined similar to the incremental slip in crystal plasticity theory. The thermodynamic
driving force determined the amount of energy dissipated in the transformation from
one variant to another. Following a self-consistent scheme, the individual single crystal
responses was used to compute the overall macroscopic properties of the ferroelectric
ceramic. Based on the self-consistent estimates of the incremental response, represen-
tative numerical examples depicting the ferroelectric and ferroelastic hysteresis curves
were presented. Huber and Fleck [55] discussed three material models to study the po-
larisation rotation evident in polycrystalline ferroelectric ceramics. Apart from their
previous self-consistent model [57], both a simplified rate-dependent crystal plasticity
model and a rate-independent phenomenological model were formulated in [55]. The
change in dielectric displacement with respect to the applied electric field was computed
for all the three models and compared with the experimental data of a PZT-5H ceramic.
In their subsequent work, Huber and Fleck [56] calibrated and studied the influence of
model parameters used in the self-consistent approach [57].

Kamlah et al. [75] implemented the micromechanical model developed in [57] within
a finite element environment to obtain the macroscopic ferroelectric hysteresis curves.
The model implementation was performed in the finite element framework proposed by
Landis [87], wherein the dielectric displacement vector was treated as the primary field
variable instead of the standard scalar electric potential. Contribution [75] presented
the strain and dielectric hysteresis curves, as well as the volume fraction evolution of a
ferroelectric single crystal grain. The obtained individual grain responses were embedded
in the finite element framework of [87] by applying an orientation distribution to the
crystallographic axes of the individual grains. Assuming plane-strain conditions, both
strain and dielectric response of a bulk ferroelectric ceramic were numerically computed.

Kim and Seelecke [83] came up with a micromechanical model to study the behaviour of
single crystal BaTiO3 under combined electromechanical loading. Their three-dimensional
model was based on the framework presented in [129, 138]. In their model, each of the
six distinct tetragonal ferroelectric variants was associated with a volume fraction and
with a specific Gibbs energy. The change in Gibbs energy between any two variants
due to the applied external load defined the driving force associated with the domain
evolution. Considering a probability factor, the evolution equations for the six volume
fractions were formulated based on the computed changes in Gibbs energies. Numerical
examples under homogeneous states of deformation were presented and compared with
the experimental data provided in [21]. Their model reproduced both the rate-dependent
and external stress-dependent response of the BaTiO3 crystal.

Menzel et al. [107] proposed two micromechanical formulations in order to study the
rate-dependent ferroelastic switching under mechanical loading. The first model was
formulated by considering the volume fractions of the individual unit cells. By assigning
a limit-time scalar parameter, the number of unit cells switched under external compres-
sive loads was determined. The second model was based on a reorientation approach,
whereby the introduced orientation tensor is dependent on the limit-time parameter.
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Both the models were based on a Gibbs energy written as a function of the stress, elec-
tric field, and of a structural vector. The numerical ferroelastic hysteresis curves were
compared to the experimental data provided in [99].

Laminate-based models are of particular interest among the micromechanically mo-
tivated formulations taking the distinct laminate volume fractions into account. The
framework is based on a mixture theory ansatz and aims to study the domain patterns,
and their evolution, under external electrical and mechanical loading. A review of the
laminate-based methods to predict the evolving microstructures in general phase trans-
forming materials is given by Li et al. [92]. With respect to ferroelectric materials, Shu
and Bhattacharya [134] presented a theoretical work on the different types of domain pat-
terns and explained the high actuation strain response of single crystal BaTiO3 under
combined electromechanical loading. Their study was based on the energy minimisation
principles derived in [9, 18, 39] for phase transforming solids. In [134], the total energy
of the ferroelectric crystal was constructed as an additive function of the Helmholtz
energy, the domain wall energy, the free space energy, and of the energetic contribution
due to the applied electrical and mechanical loads. The current state of a material point,
namely the strain and polarisation, was obtained by minimising the total energy subject
to the given loading conditions. Assuming an undistorted and a charge-free state at
the domain interface, the formation of banded and crossed domain patterns as well as
the magnitude of the actuation strains were derived for tetragonal, rhombohedral and
orthorhombic ferroelectric phases. The theory presented in [134] formed the basis for
the laminate-based models developed to predict the high magnitude of actuation strains
obtained from single crystal ferroelectric solids. Subsequently, a concise theory on un-
derstanding the domain patterns of both the single and polycrystalline ferroelectrics was
provided by Bhattacharya and Li [19].

Domain engineering and the construction of energy minimising multi-rank laminates
for ferroelectric single crystals were introduced by Li and Liu [91, 97, 98]. Their works
were largely based on the theoretical formulation of multi-rank laminates proposed in [18,
40]. Considering the average polarisation and strain compatibility conditions at the
domain interfaces [134], Li and Liu [91] related the distinct tetragonal variant volume
fractions to the multi-rank laminate volume fractions. The energy minimising domain
configuration of a ferroelectric crystal was obtained with the help of these compatible
laminate structures. Using the multi-rank construction, the effective properties of linear
piezoelectric materials, such as tetragonal BaTiO3 and rhombohedral PMN-PT, were
computed and compared to the experimental values.

Yen et al. [135, 151] developed a two-dimensional laminate-based model, taking the ef-
fect of depolarisation into account, in order to explain the high actuation strain response
of single crystal tetragonal BaTiO3 under combined electromechanical loading. A rank-
3 laminated domain structure was constructed in [135, 151], based on the multi-rank
laminate domain pattern introduced in [91]. Both the average remnant polarisation and
strains were postulated based on the multi-rank laminate volume fractions. The total
energy of the crystal, formulated in [134], was taken as the reference and reduced to a
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4.2 Rate-dependent laminate-based framework

simplified form consisting of only the applied load terms and the depolarisation energy.
The negative sensitivity of the simplified total energy with respect to the multi-rank
laminate volume fractions defined the driving forces of the individual laminates. Suit-
able resistance forces, written in terms of the laminate volume fractions, were postulated
such that the domain evolution was assumed to occur once the driving forces exceeded
the resistance values. The influence of the depolarisation energy on the obtained strains
was investigated and the computed ferroelectric butterfly curves were compared to their
experimental data for different external compressive stress magnitudes. Shu et al. [136]
extended the formulation [135] to study the domain patterns in rhombohedral single
crystal ferroelectric materials by using a diffusive laminate-based formulation. In their
formulations, the gradient of the laminate volume fractions was considered as an order
parameter analogous to the gradient of polarisation postulated in the phase-field models,
e.g. [122, 153, 154]. The total energy postulated in [136] was comprised of an additional
domain wall and anisotropic energies. Under external electrical loads, the minimisation
of the total energy lead to the herringbone-like domain structure.

Tsou and Huber [142, 143] postulated sequential laminate-based models considering
exact compatibility between the distinct domain orientations. They studied the do-
main arrangements and, furthermore, investigated the poling behaviour of tetragonal
and rhombohedral single crystal BaTiO3. Their formulations stood in contrast to the
average jump conditions for polarisation and strain between the domain orientations
proposed in [91, 131, 151]. In [143], a detailed summary of the domain patterns gener-
ated by considering both the average and exact compatibility conditions was provided.
Furthermore, an algorithm was postulated in order to obtain the optimal domain con-
figuration possessing the minimum energy during the poling process. Tsou et al. [144]
extended the exact compatible domain patterns to arrive at the complete set of distinct
domain combinations for tetragonal and rhombohedral systems with the help of a search
algorithm. In doing so, they identified the particular set of domain configurations that
formed exact compatible laminates. A variational model to study the domain evolution
and the hysteretic response of a single crystal tetragonal BaTiO3 was developed by Tsou
et al. [145]. A Gibbs energy, consisting of the sum of potential and external loads, and
a rate potential, consisting of a domain mobility function, was formulated in order to
simulate the hysteresis curves and the shape of the domain patterns.

4.2 Rate-dependent laminate-based framework

Following the literature review of the micromechanically motivated models, we proceed
to the general rate-dependent laminate-based model formulation for tetragonal single
crystal ferroelectric solids. In particular, the important relations needed for developing
the four distinct laminate-based models are outlined in this section.
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Figure 4.1: Schematic representation depicting the six equivalent orientation states, along with their
respective variant volume fractions λ(α), of a tetragonal BaTiO3 unit cell below the Curie temperature.

4.2.1 Symmetry and material properties of ferroelectric variants

Considering BaTiO3 at room temperature, the spontaneously polarised tetragonal unit
cell exhibits six equally possible variants, see Figure 4.1 for a graphical representation.
The individual variants are characterised by the spontaneous strain ε(α) and by the

spontaneous polarisation P (α), wherein α ∈ {1, . . . , nv = 6}. Depending on their specific
crystallographic axis, the spontaneous quantities corresponding to the six tetragonal
ferroelectric variants are represented by

ε(1) = ε(2) = [ηs
1 − ηs

2] e1 ⊗ e1 + ηs
2 I , P (1) = −P (2) = P s e1 , (4.1)

ε(3) = ε(4) = [ηs
1 − ηs

2] e2 ⊗ e2 + ηs
2 I , P (3) = −P (4) = P s e2 , (4.2)

ε(5) = ε(6) = [ηs
1 − ηs

2] e3 ⊗ e3 + ηs
2 I , P (5) = −P (6) = P s e3 , (4.3)

cf. [151]. Here, ηs
1 and ηs

2 are the measured spontaneous strain coefficients and P s char-
acterises the magnitude of the spontaneous polarisation, all referring to the BaTiO3

crystal. The unit vectors e1,2,3 denote the crystallographic axes of the parent cubic unit
cell.

With respect to the material properties, i.e. the characterisation of the individual
variants, we assume the spontaneously polarised unit cell to be transversely-isotropic.
Following this assumption, two structural quantities are introduced in order to charac-
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4.2 Rate-dependent laminate-based framework

terise the piezoelectric behaviour; one being the polarisation director or structural vector
a(α) and the other, a second-order structural tensor m(α). For the particular variant α,
the structural vector a(α) is defined as

a(α) :=
P (α)

‖P (α)‖
with ‖a(α)‖ = 1 , (4.4)

and the second-order structural tensor m(α) is specified as

m(α) := a(α) ⊗ a(α) with tr(m(α)) = 1 . (4.5)

The fourth-order elasticity tensor E(α)(a(α)), the third-order piezoelectric tensor e(α)(a(α))

and the second-order dielectric tensor ε(α)(a(α)) defining the transverse isotropic material
response of the individual ferroelectric variants are introduced based on the definition
of the structural quantities in Equations (4.4) and (4.5). These transversely-isotropic
material moduli for the individual variants read

E(α)(a(α)) = λE I ⊗ I + 2µE Isym + αE
1

[
m(α) ⊗ I + I ⊗ m(α)

]
+ 2αE

2 m(α) ⊗m(α) + αE
3

[
m(α) ⊗ I + I ⊗m(α)

]
, (4.6)

e(α)(a(α)) = − βe
1 a(α) ⊗ I − βe

2m(α) ⊗ a(α)

− βe
3

2

[
I ⊗ a(α) + I ⊗ a(α)

]
and (4.7)

ε(α)(a(α)) = − 2 γε1 I − 2 γε2m(α) , (4.8)

cf. [125, 126]. In (4.6), λE, µE, αE
1 , αE

2 and αE
3 refer to the mechanical parameters. The

piezoelectric coupling parameters in (4.7) are denoted by βe
1, βe

2 and βe
3. The dielectric

parameters in (4.8) are represented by γε1 and γε2. The relation between material param-
eters and coefficients of tensors when referring to an orthonormal base system, which
includes the easy axis a(α), is given as

λE = E1122 , µE =
1

2

[
E1111 − E1122

]
, αE

1 = E1122 + 2 E1313 − E1111 ,

αE
2 =

1

2

[
E1111 + E3333

]
− 2 E1313 − E1133 , αE

3 = E1133 − E1122 , (4.9)

βe
1 = − e311 , βe

2 = − e333 + e311 + 2 e131 , βe
3 = − 2 e131 , (4.10)

γε1 = − 1

2
ε11 , γε2 = − 1

2

[
ε33 − ε11

]
. (4.11)
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4.2.2 Compatibility conditions and averaging principles

Under external loading, the ferroelectric crystal forms compatible domain configurations
in order to minimise the total energy, see [35, 134]. For any two adjacent variants α and
β existing in a crystal, separated by an interface, the average kinematic and polarisation
compatibility conditions read

ε(α) − ε(β) =
[
aαβ ⊗ nαβ

]sym
and

[
P (α) − P (β)

]
· nαβ = 0 , (4.12)

cf. [134], wherein nαβ denotes the normal of the domain interface and where aαβ rep-
resents an arbitrary vector. These compatibility conditions ensure that the interfaces
separating the individual domains are undistorted and uncharged.

Considering any material point in a single crystal, a mixture of ferroelectric domains
or variants separated by compatible domain walls is highly possible [91, 134]. Associating
the distinct individual variants with their respective volume fraction λ(α), wherein the

restrictions
∑nv

α= 1 λ(α) = 1 and λ(α) ≥ 0 hold, the volume average of any particular
domain quantity in a material point is obtained by weighting the individual domain
component by their corresponding volume fraction. In this context, the general form of
any averaged quantity in a material point is represented as

[•]M(λ) =
∑nv

α= 1
λ(α) [•](α) with λ = [λ(1), . . . , λ(nv)] ∈ Rnv , (4.13)

wherein [•](α) refers to an arbitrary domain quantity and where [•]M denotes the cor-
responding volume average of the particular domain quantity. Following the general
expression (4.13), the average remnant quantities, namely the average remnant strain
εM and the average remnant polarisation PM, of the crystal read

εM(λ) =
∑nv

α= 1
λ(α) ε(α) and PM(λ) =

∑nv

α= 1
λ(α)P (α) . (4.14)

Analogously, the volume averaged material moduli, i.e. the average elasticity tensor
EM(λ), the average third-order piezoelectric tensor eM(λ) and the average second-order
dielectric tensor εM(λ) are expressed as{

EM(λ), eM(λ), εM(λ)
}

=
∑nv

α= 1
λ(α)

{
E(α), e(α), ε(α)

}
. (4.15)

Instead of weighting the individual domain quantities by the α-th variant volume frac-
tion, a representation based on the multi-rank laminate volume fraction µj of the j-th
rank laminate, wherein j = 1, . . . , nv − 1, can be introduced such that

µj =


0 for

∑j−1
α= 1 λ(α) = 1 ,

λ(j)

1−
∑j−1

α= 1 λ(α)

otherwise ,
(4.16)
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holds, along with the inequality constraint 1 ≥ µj ≥ 0 for the individual j-th rank
laminates, cf. [18, 91]. The distinct multi-rank laminate volume fractions are arranged
in the form of an array µ = [µ1, . . . , µnv−1] ∈ Rnv−1. Considering such a multi-rank
laminate volume fraction representation ensures that the interfaces remain compatible
during the domain evolution, see [91, 151]. Following this µ-based representation, the
volume average of the remnant strains and polarisation, introduced in Equation (4.14),
can be reformulated in terms of the multi-rank laminate volume fractions. The averaged
remnant strain and polarisation at a material point in the crystal read

εM(µ; ε(1,3,5)) =
[
µ1 + µ2

[
1− µ1

]]
ε(1)

+
[
1− µ1

] [
1− µ2

] [
µ3 + µ4

[
1− µ3

]]
ε(3)

+
[
1− µ1

] [
1− µ2

] [
1− µ3

] [
1− µ4

]
ε(5) and (4.17)

PM(µ; P (1,3,5)) =
[
µ1 − µ2

[
1− µ1

]]
P (1)

+
[
1− µ1

] [
1− µ2

] [
µ3 − µ4

[
1− µ3

]]
P (3)

+
[
1− µ1

] [
1− µ2

] [
1− µ3

] [
1− µ4

] [
2µ5 − 1

]
P (5) . (4.18)

Similarly, the µ-based representation can be extended so as to arrive at the volume
average of the material moduli at any point within the crystal. Starting from the in-
dividual variant material moduli, introduced in Equations (4.6) to (4.8), the averaged
fourth-order elasticity tensor EM(µ; E(1,3,5)), the averaged third-order piezoelectric ten-

sor eM(µ; e(1,3,5)) and the averaged dielectric tensor εM(µ; ε(1,3,5)) are re-formulated in
terms of the multi-rank laminate volume fractions as

EM(µ; E(1,3,5)) =
[
µ1 + µ2

[
1− µ1

]]
E(1)

+
[
1− µ1

] [
1− µ2

] [
µ3 + µ4

[
1− µ3

]]
E(3)

+
[
1− µ1

] [
1− µ2

] [
1− µ3

] [
1− µ4

]
E(5) , (4.19)

eM(µ; e(1,3,5)) =
[
µ1 − µ2

[
1− µ1

]]
e(1)

+
[
1− µ1

] [
1− µ2

] [
µ3 − µ4

[
1− µ3

]]
e(3)

+
[
1− µ1

] [
1− µ2

] [
1− µ3

] [
1− µ4

] [
2µ5 − 1

]
e(5) and (4.20)

εM(µ; ε(1,3,5)) =
[
µ1 + µ2

[
1− µ1

]]
ε(1)

+
[
1− µ1

] [
1− µ2

] [
µ3 + µ4

[
1− µ3

]]
ε(3)

+
[
1− µ1

] [
1− µ2

] [
1− µ3

] [
1− µ4

]
ε(5) . (4.21)
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4.2.3 Thermodynamic model formulation

With the symmetry considerations and material properties governing the tetragonal
ferroelectric variants as well as the averaging principles introduced, we proceed to the
general thermodynamic laminate-based model formulation. The electric Gibbs energy is
a function of the second-order strain tensor, the electric field vector, and of the internal
state variables, determining the dissipative process. For the considered laminate-based
models, domain evolution in the crystal occurs as one ferroelectric variant expands at
the expense of the adjacent variant. In other words, domains in the crystal evolve as
the volume fraction of one laminate increases with respect to its adjacent counterpart.
This gives rise to the introduction of multi-rank laminate volume fractions µ as the
internal state variables. Both evolution and reduction of the multi-rank laminate volume
fractions correlate to the rate-dependent switching of the domains in the ferroelectric
single crystal. Thus, the general form of the electric Gibbs energy for the laminate-
based model reads H(ε,E,µ), whereby the multi-rank laminate volume fractions µ
are considered as internal state variables. The specific form of the thermodynamic
potential is defined for the four laminate models with respect to the different mixture
ansatz assumptions and averaging formulations. The individual energy formulations are
detailed in the subsequent sections.

Following the standard Coleman–Noll procedure, the constitutive equations for the
second-order stress tensor and the dielectric displacement vector of the single crystal are
obtained as

σ =
∂H(ε,E,µ)

∂ε
and D = − ∂H(ε,E,µ)

∂E
, (4.22)

and the reduced dissipation inequality reads

Dred =
∑nv−1

j= 1
f j(µ) µ̇j ≥ 0 . (4.23)

Herein, f j(µ) is the thermodynamic driving force corresponding to the particular
j-th rank laminate. The individual driving forces, defined as the work conjugate to
the rate of change of the corresponding multi-rank volume fraction µ̇j, are identified as

f j(µ) = − ∂H(ε,E,µ)

∂µj
for j = 1, . . . , nv − 1 . (4.24)

The definite form of the formulated electric Gibbs energy results in distinct driving
forces for the respective laminate models. Thus, the material response predicted by the
models, in terms of the laminate volume fraction evolution and hence the macroscopic
hysteresis curves, is distinct for each of the four laminate-based models.

The individual driving forces f j(µ) defining the domain evolution are resisted by the
dissipative motion of the domain walls, cf. [57, 151]. The critical resistance force or the
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4.2 Rate-dependent laminate-based framework

threshold value corresponding to the j-th rank laminate is denoted by gc, j(µ) ≥ 0. An
elastic domain, analogous to the classic plasticity and viscoplasticity theory, is postulated
in the space of the individual driving forces f j(µ) as

E :=
{
f j(µ)

∣∣Φj(f j) := |f j(µ)| − gc, j(µ) ≤ 0 ; j = 1, . . . , nv − 1
}
. (4.25)

Once the driving force of a particular j-th rank laminate exceeds the critical resistance
force gc, j(µ), domain evolution of the particular laminate occurs. The explicit form of
the individual threshold quantities gc, j(µ) can be written in terms of the experimentally
determined values of the coercive fields required for 90◦ and 180◦ domain switching, as
explained in the work by Yen et al. [151]. For a three-dimensional system with nv = 6,
the critical resistance expressions based on the distinct domain wall movements read

gc, 1(µ) = 2Ec
180◦ P

s µ2 + Ec
90◦ P

s
[
1− µ2

]
, (4.26)

gc, 2(µ) = Ec
90◦ P

s
[
1− µ1

]
, (4.27)

gc, 3(µ) =
[
2Ec

180◦ P
s µ4 + Ec

90◦ P
s
[
1− µ4

]] [
1− µ1

] [
1− µ2

]
, (4.28)

gc, 4(µ) = Ec
90◦ P

s
[
1− µ1

] [
1− µ2

] [
1− µ3

]
and (4.29)

gc, 5(µ) = 2Ec
180◦ P

s
[
1− µ1

] [
1− µ2

] [
1− µ3

] [
1− µ4

]
, (4.30)

cf. [151]. In contrast to the constant resistance force values considered in many mi-
cromechanical models, the individual critical threshold force expressions (4.26) to (4.30)
are functions of the evolving multi-rank laminate volume fractions µ. For more details
on the resistance forces for a tetragonal system, the reader is referred to Yen et al. [151].

Based on the postulate of maximum dissipation, suitable evolution equations for
the internal state variables need to be formulated. To this end, a non-negative rate-
dependent dissipation equation ζ(µ̇) is postulated in terms of the rate of the multi-rank
laminate volume fractions. The general form of the rate-dependent dissipation equation
reads

ζ(µ̇) =
∑nv−1

j=1
sup
fj

{
f j(µ) µ̇j − 1

ηp [m+ 1]

〈
Φj(f j)

〉m+1
}
, (4.31)

cf. [110], wherein the Macaulay bracket 〈•〉 = max {•, 0} is used, and where the model
parameters ηp > 0 and m > 0 influence the time-dependent evolution of the laminate
volume fractions. After solving the necessary condition of Equation (4.31), we arrive at
the set of the rate-type evolution equations

µ̇j =
1

ηp

〈
|f j(µ)| − gc, j(µ)

〉m f j(µ)

|f j(µ)|
for j = 1, . . . , nv − 1 , (4.32)

wherein the inequality constraint 1 ≥ µj ≥ 0 holds for the individual j-th rank laminates.
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4.3 Algorithmic treatment of the evolution equations

An efficient numerical scheme is required in order to solve the set of non-linear rate-
dependent evolution equations for the update of the inequality constrained multi-rank
laminate volume fractions. To this end, the Fischer–Burmeister-type algorithm in com-
bination with a standard Newton–Raphson method is considered. The particular algo-
rithmic procedure has proved its efficiency in solving the inequality constrained volume
fraction evolution equations in general phase transformation material models.

Fischer [50] introduced the algorithm to transform inequality constraints into equal-
ity relations. Schmidt-Baldassari [120] replaced the set of Kuhn–Tucker conditions with
the Fischer–Burmeister complementarity functions in the context of a rate-independent
crystal plasticity model. With respect to the micromechanical model formulations de-
veloped by Bartel et al. [10–12], the Fischer–Burmeister complementarity functions were
employed to study the constrained volume fraction evolution describing the austenitic to
martensitic phase transformations. Kiefer et al. [81] compared the standard predictor-
corrector return-mapping scheme to the Fischer–Burmeister-based integration algorithm
for the constitutive model predicting the martensitic variant reorientation in magnetic
shape memory alloys. In a subsequent work, Kiefer et al. [82] detailed on the robustness
and on the efficiency of the Fischer–Burmeister algorithm in comparison to two other
solution schemes, namely the active set strategy and the staggered solution method.
The Fischer–Burmeister complementarity functions were considered in their non-local
gradient-enhanced formulation to solve the inequality constrained damage evolution.
Based on the above-mentioned works, the Fischer–Burmeister algorithm in combination
with a Newton–Raphson scheme is applied to all the distinct laminate-based models.
By doing so, the non-linear rate-dependent evolution equations are solved with respect
to the underlying inequality constraints of the laminate volume fractions.

As a starting point, let the electromechanical loading process be sub-divided into finite
time intervals [tn, tn+1] with the time increment defined as ∆t := tn+1 − tn > 0. The
quantities computed at time tn+1 shall be denoted without the subscript n + 1 for the
sake of brevity. The rate of the individual laminate volume fractions is considered to be
constant within the defined finite time increment. In this context, the approximation

µ̇j ≈
µj(tn+1)− µj(tn)

∆t
=
µj − µjn

∆t
, (4.33)

holds. Assuming that the value of the multi-rank laminate volume fractions µjn at
the previous time step tn are known, the current values µj at time tn+1 are computed
following the implicit Euler integration scheme as

µj = µjn + ∆t µ̇j for j = 1, . . . , nv − 1 . (4.34)
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The update of the individual laminate volume fractions is obtained by iteratively solving
the set of residual functions

Rj(µ) := µj − µjn −
∆t

ηp

〈
|f j(µ)| − gc, j(µ)

〉m f j(µ)

|f j(µ)|
= 0 , (4.35)

within each time increment using the standard Newton–Raphson scheme.
In view of the Fischer–Burmeister approach, the inequality constrained multi-rank

laminate volume fractions are reformulated into a set of additional constraints

rjI := −µj ≤ 0 and rjII := µj − 1 ≤ 0 . (4.36)

These additional constraints are assembled in the form of two arrays ri = [r1
i , . . . , r

nv−1
i ]

with i = I, II. In order to restrict the additional constraints within the bounds as defined
in (4.36), Lagrange multipliers Γ i = [Γ 1

i , . . . , Γ
nv−1
i ] with i = I, II, dual to the additional

constraints ri, are introduced. These Lagrange multipliers Γ I and Γ II take arbitrary
values during external loading so as to restrict the multi-rank laminate volume fractions
within their limits. The list of dependent variables governing the electric Gibbs energy
H(ε,E,µ) is extended with the Lagrange multipliers as additional arguments, such
that an enhanced electric Gibbs energy of the form Henh(ε,E,µ,Γ I ,Γ II) is devised in
order to describe the governing electromechanical response. Considering the additional
constraints and Lagrange multipliers, the enhanced form of the electric Gibbs energy is
formulated as

Henh(ε,E,v) = H(ε,E,µ) +
∑nv−1

j= 1
rjI Γ

j
I +

∑nv−1

j= 1
rjII Γ

j
II , (4.37)

cf. [81], wherein v denotes the solution array

v = [v1, . . . ,vnv−1]t = [µ,Γ I ,Γ II ]
t ∈ R15×1 , (4.38)

for a tetragonal system with nv = 6. Here, vj = [µj, Γ j
I , Γ

j
II ]

t, for j = 1, . . . , nv − 1, is
the solution array for the individual laminate system. Considering the definitions of the
additional constraints (4.36), the enhanced electric Gibbs energy (4.37) is reformulated
as

Henh(ε,E,v) = H(ε,E,µ)−
∑nv−1

j= 1
µj Γ j

I +
∑nv−1

j= 1

[
µj − 1

]
Γ j
II . (4.39)

From the reduced dissipation inequality, the individual enhanced driving forces corre-
sponding to the j-th rank laminate read

f jenh(µ, Γ j
I , Γ

j
II) = − ∂Henh(ε,E,v)

∂µj
= − ∂H(ε,E,µ)

∂µj
+ Γ j

I − Γ
j
II . (4.40)
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The set of residual functions (4.35) are reformulated considering the enhanced driving
forces and the Fischer–Burmeister functions, which read

ξji =

√[
rji
]2

+
[
Γ j
i

]2
+ rji − Γ

j
i for i = I, II . (4.41)

With these complementarity functions, the residual vector for an individual j-th rank
laminate system takes the form

Rj(µ, Γ j
I , Γ

j
II) =



Rj
enh

ξjI

ξjII


=


µj − µjn −

∆t

ηp

〈
|f jenh| − gc, j

〉m f jenh

|f jenh|√[
rjI
]2

+
[
Γ j
I

]2
+ rjI − Γ

j
I√[

rjII
]2

+
[
Γ j
II

]2
+ rjII − Γ

j
II


= 0 , (4.42)

for j = 1, . . . , nv−1. The overall residual for a tetragonal ferroelectric system is obtained
as an array of the individual residual functions (4.42) as R(v) = [R1, . . . ,Rnv−1]t ∈
R15×1. The non-linear residual R(v) is solved by means of the Newton–Raphson method
in each time increment for the current update of the solution vector v = [v1, . . . ,vnv−1]t.
The particular form of the Newton-type update

v|k+1 = v|k − J−1|k ·R(v)|k , (4.43)

is fulfilled until ‖R(v)‖ < tol, wherein k denotes the iteration counter. The computed
volume fractions are automatically constrained within the limits [0, 1]. The overall tan-
gent matrix J ∈ R15×15, related to the residual R(v) used in the update relation (4.43),
consists of the individual laminate tangent matrices arranged diagonally. The corre-
sponding tangent matrix J j for the individual laminate system related to the residual
Rj(µ, Γ j

I , Γ
j
II) reads

J j :=
dRj

dvj
=



J jµµ J jµΓI
J jµΓII

J jξIµ
J jξIΓI

J jξIΓII

J jξIIµ
J jξIIΓI

J jξIIΓII


=



dRj
enh

dµj
dRj

enh

dΓ j
I

dRj
enh

dΓ j
II

dξjI
dµj

dξjI
dΓ j

I

dξjI
dΓ j

II

dξjII
dµj

dξjII
dΓ j

I

dξjII
dΓ j

II


. (4.44)

With respect to the implementation, the total derivatives J jµµ, J jµΓI
and J jµΓII

are numer-
ically approximated due to the algebraic complexity involved. For a detailed insight on
the numerical approximation of tangent moduli, the reader is referred to [38, 109]. The
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Figure 4.2: Graphical representation of the Fischer–Burmeister function ξI =
√

[rI ]
2

+ [ΓI ]
2

+ rI −ΓI .

remaining total derivative entries, J ξji µ
, J ξji Γ

j
I

and J ξji Γ
j
II

, of the tangent matrix (4.44)

are analytically computed, see Appendix B.

The Fischer–Burmeister complementarity functions are numerically sensitive since
their derivatives are non-smooth, see e.g. [10, 12, 81]. In particular, the functions (4.41)
are not differentiable at rji = 0 and Γ j

i = 0, see Figure 4.2 for a graphical representation
of the Fischer–Burmeister functions (4.41) for the case i = I. In order to overcome this
numerical instability, a regularisation parameter 1� δ > 0 is introduced such that the
functions (4.41) takes a regularised form

ξji =

√[
rji
]2

+
[
Γ j
i

]2
+ 2 δ2 + rji − Γ

j
i for i = I, II , j = 1, . . . , nv − 1 . (4.45)

The regularised set of equations (4.45) are considered in the residual (4.42) in order to
obtain the solution update. Moreover, the individual Lagrange multipliers are initialised
to Γ j

I = Γ j
II = 10−6 at the start of numerical simulations as compared to the theoretical

initial zero values. This ensures further numerical stability of the algorithmic scheme.
For more details on the different regularised forms, the reader is referred to [8, 38, 76, 82].

4.4 Laminate-based Model 1

This section provides details on laminate-based Model 1 to study the domain evolution
and the subsequent polarisation switching in ferroelectric single crystals. For compar-
ison purposes, the particular laminate-based Model 1 is developed analogously to the
phenomenological model presented in Section 3.2.

With regards to laminate-based Model 1, the microscopic evolution of domains un-
der external electromechanical loading considers the average polarisation compatibility
condition (4.12)2. The macroscopic remnant polarisation of the crystal PM(µ) is com-
puted following the relation (4.18). The average kinematic compatibility (4.12)1 and
the subsequent volume averaged remnant strain relation (4.17) are not considered for
laminate-based Model 1. Instead, the average remnant strain of the crystal is postulated
as a function of PM(µ).
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4 Laminate-based modelling of single crystalline ferroelectric materials

As a starting point, we define two structural quantities, namely the structural vector
a(PM) and the second-order structural tensor m(PM), both similar to the assumptions
followed in the phenomenological model. The particular structural vector for laminate-
based Model 1 is defined as

a(PM) :=
PM

‖PM‖
with ‖a(PM)‖ = 1 , (4.46)

whereas the second-order structural tensor reads

m(PM) := a(PM)⊗ a(PM) with tr(m(PM)) = 1 , (4.47)

cf. Equations (3.1) and (3.2). The two structural quantities characterise the transversely-
isotropic behaviour of the crystal in both the poled and remnant states. Moreover, these
structural quantities a(PM) and m(PM) are introduced as a function of the average
remnant polarisation which is, in turn, dependent on the inequality constrained multi-
rank laminate volume fractions µ = [µ1, . . . , µnv−1].

The second-order linear strain tensor ε and the dielectric displacement vector DM1

of the ferroelectric single crystal for laminate-based Model 1 are additively decomposed
into an elastic and a remnant part as

ε = εe + εr(PM) and DM1 = De + PM , (4.48)

wherein εe and De denote the elastic strain tensor and dielectric displacement vector,
respectively. The remnant polarisation PM(µ), as introduced in Equation (4.18), is the
volume average of the distinct microscopic polarisations of the tetragonal ferroelectric
crystal. For comparison purposes with the phenomenological model, the average remnant
strain of the crystal for laminate-based Model 1 is written as a function of the averaged
remnant polarisation PM(µ). The average remnant strain tensor takes the specific form

εr(PM) =
3

2

εsat

P sat
‖PM‖

[
m(PM)− 1

3
I

]
, (4.49)

cf. the phenomenological remnant strain relation (3.4). Here, P sat and εsat denote the
saturation polarisation and strain of the crystal, respectively.

A suitable thermodynamic potential for laminate-based Model 1 needs to be con-
structed. The average electric Gibbs energy of the crystal is postulated in terms of the
linear strain tensor, electric field vector, and the multi-rank laminate volume fractions
as the internal state variables, i.e.HM1(ε,E,µ). Analogous to the phenomenological
model, the electric Gibbs energy for laminate-based Model 1 is additively decomposed
into a reversible or piezoelectric and into a remnant part as

HM1(ε,E,µ) = Hpiezo
M1 (εe,E,PM) +Hrem

M1 (PM) . (4.50)
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The particular form of the piezoelectric energy for laminate-based Model 1 reads

Hpiezo
M1 (εe,E,PM) =

1

2

[
ε− εr(PM)

]
: E :

[
ε− εr(PM)

]
− 1

2
E · ε ·E

− ‖P
M‖

P sat
E · e(a(PM)) :

[
ε− εr(PM)

]
− PM ·E , (4.51)

wherein E and ε refer to the isotropic elasticity and dielectric moduli, respectively, and
where e(a(PM)) denotes the transversely-isotropic piezoelectric modulus. The closed
form representation of the elasticity and the dielectric material moduli are provided in
Equations (3.7) and (3.9). The third-order piezoelectric modulus e(a(PM)) takes the
form as given in Equation (3.8), wherein the definitions for the structural quantities
a(PM) and m(PM) are introduced in Equations (4.46) and (4.47). The remnant energy
contribution of the thermodynamic potential (4.50) is constructed based on a saturation-
type function dependent on the average remnant polarisation PM(µ). The considered
form of the remnant energy for laminate-based Model 1 reads

Hrem
M1 (PM) =

1

c

[
1

2
P sat ln

(
1−

[
‖PM‖
P sat

]2
)

+ ‖PM‖ arctanh

(
‖PM‖
P sat

)]
, (4.52)

cf. Equation (3.13), wherein c denotes a model parameter influencing the shape of the
hysteresis curves. The piezoelectric and remnant energy contributions for laminate-based
Model 1 are postulated analogous to the phenomenological model.

Based on the Coleman–Noll procedure, the explicit relations of the constitutive equa-
tions for the average stress tensor and for the average dielectric displacement vector for
the particular laminate-based Model 1 are derived as

σM1 =
∂HM1

∂ε
= E :

[
ε− εr(PM)

]
− ‖P

M‖
P sat

et(a(PM)) ·E and (4.53)

DM1 = − ∂HM1

∂E
=
‖PM‖
P sat

e(a(PM)) :
[
ε− εr(PM)

]
+ ε ·E + PM . (4.54)

Following Equation (4.24), the driving force responsible for the domain evolution of the
j-th rank laminate is derived as

f jM1(µ) = σM1 :
∂εr(PM)

∂µj
+
‖PM‖
P sat

E · ∂e(a(PM))

∂µj
:
[
ε− εr(PM)

]
+

1

P sat

[
E · e(a(PM)) :

[
ε− εr(PM)

] ] [
a(PM) · ∂P

M

∂µj

]
(4.55)

+
∂PM

∂µj
·E − Eb, j

M1 (PM) .
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The term Eb, j
M1 (PM) represents the back electric field contribution of the individual j-th

rank laminates and is derived as

Eb, j
M1 (PM) :=

∂Hrem
M1 (PM)

∂µj
=

1

c
arctanh

(
‖PM‖
P sat

)[
a(PM) · ∂P

M

∂µj

]
. (4.56)

With respect to the Fischer–Burmeister complementarity function-based algorithm,
the enhanced driving forces for laminate-based Model 1 considering the derived driving
force of the individual laminates (4.55) are given as

f jenh(µ, Γ j
I , Γ

j
II) = f jM1(µ) + Γ j

I − Γ
j
II , (4.57)

cf. Equation (4.40). The domain evolution does not occur until the enhanced driving
force within each laminate exceeds the critical resistance force of the particular laminate
system. Equation (4.25) is reformulated in terms of the enhanced driving forces and
is considered as the modified elastic range of the laminates. Once the driving force
in each laminate exceeds the corresponding threshold limit, domain evolution of the
particular laminate occurs, responsible for the macroscopic hysteretic response. The
dissipation and the evolution equations defining the rate-dependent domain switching are
introduced in Equations (4.31) and (4.32), respectively. The inequality constraints are
satisfied automatically and efficiently by the considered Fischer–Burmeister approach.
The overall residual R(v) is iteratively solved with the Newton–Raphson update (4.43)
for the current value of the solution vector v = [µ,Γ I ,Γ II ]

t ∈ R15×1. The algorithmic
scheme to arrive at the update of the multi-rank laminate volume fractions is explained
in Section 4.3.

4.4.1 Numerical examples

This section presents the numerical capabilities of laminate-based Model 1. Several
representative tests under both homogeneous and inhomogeneous states of deforma-
tion are performed considering single crystal tetragonal BaTiO3 material parameters.
The butterfly and dielectric displacement hysteresis curves for an initially poled three-
dimensional specimen, subjected to a cyclic electrical load at varying frequencies, are
reproduced by tests under homogeneous states of deformation. Furthermore, the in-
fluence of the viscous-like parameter on the hysteretic behaviour is discussed for the
tests under homogeneous states of deformation. The derived model is implemented in
a standard finite element environment with displacements and electric potential as pri-
mary field variables in order to solve an inhomogeneous boundary value problem. A
three-dimensional quarter hole plate is considered for the tests under inhomogeneous
states of deformation. The total strain and dielectric displacement distributions in the
inhomogeneous specimen are investigated for cyclic electrical loading.
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4.4 Laminate-based Model 1

Table 4.2: Single crystal tetragonal BaTiO3 material parameters considered for numerical computations
with laminate-based Model 1.

Denomination Parameter Value Unit Reference

Elastic stiffness E1111 213.303× 103 MPa –

Elastic stiffness E1122 102.515× 103 MPa –

Lateral piezoelectric coefficient e311 − 0.7 C/m2 [152]

Axial piezoelectric coefficient e333 6.7 C/m2 [152]

Piezoelectric shearing coefficient e131 34.2 C/m2 [152]

Vacuum permittivity ε0 8.854× 10−12 F/m [152]

Dielectric permittivity ε11 1485.33 ε0 F/m [152]

Saturation polarisation P sat 0.26 C/m2 –

Saturation strain εsat 0.001 – –

Spontaneous polarisation P s 0.26 C/m2 [151]

Coercive electric field for 90◦ switching Ec
90◦ 0.26 kV/mm [151]

Coercive electric field for 180◦ switching Ec
180◦ 0.23 kV/mm [151]

Viscosity-type parameter ηp 0.1 m2/C s –

The single crystal BaTiO3 material constants such as elastic stiffness, piezoelectric
and dielectric tensor components are exactly the same as considered for the numerical
simulations with the phenomenological model. The spontaneous polarisation, and the
coercive electric field limits for 90◦ and 180◦ domain switching, respectively, are the
additional material parameters. These three constants referring to the single crystal
tetragonal BaTiO3 are taken from the data published by Yen et al. [151]. The parameter
defining the rate-dependency of the polarisation evolution is set to ηp = 0.1 m2/C s,
whereas different values for viscous-like parameter m and for slope parameter c are
chosen. Table 4.2 summarises the input material parameters used in the simulations
pertaining to laminate-based Model 1.

4.4.1.1 Tests under homogeneous states of deformation

The schematic sketch of the three-dimensional specimen under study along with the
loading curve and boundary conditions is depicted in Figure 4.3. An initially poled
specimen is considered for the following tests under homogeneous states of deformation.
The crystallographic axes of this initially poled specimen are assumed to coincide with
the reference Cartesian axes e1,2,3.

For the considered specimen, the initial variant volume fraction values are set to
λ(6)|t0 = 1 and λ(1,2,3,4,5)|t0 = 0. Using Equation (4.16), the initial variant volume frac-
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Figure 4.3: Schematic representation of an initially poled three-dimensional specimen subjected to a
cyclic electrical load along with the loading curve and boundary conditions. The poled state along the
e3-axis is obtained by setting the multi-rank laminate volume fractions µ1,2,3,4,5|t0 = 0.

tion values correspond directly to the zero value of the multi-rank laminate volume
fractions, i.e.µ1,2,3,4,5|t0 = 0. Inserting the distinct laminate volume fraction values in
Equation (4.18), the average remnant polarisation results in PM

3 |t0 = −P s. Following
Equation (4.49), the magnitude of the average remnant strain along the e3-axis, εM

33|t0 ,
equals the saturation strain value εsat. The non-vanishing values of the average remnant
strain and polarisation result in the initial poled configuration of the specimen along the
negative e3-axis.

Analogous to the tests performed under homogeneous states of deformation with the
phenomenological model, a cyclic electrical load is applied along the e3-axis. The electric
potential difference across the specimen is generated by keeping the lower electrode
grounded at all times, while its upper counterpart is surcharged with a time-dependent
cyclic scalar electric potential φ(t) with φmax = ±10 kV. The dielectric displacements
and the total strains resulting from this rate-dependent and non-linear homogeneous
deformation are iteratively computed. The obtained total strains ε33 and dielectric
displacements D3 of the specimen are plotted, respectively, against the applied cyclic
electric field E3, see Figure 4.4. The average remnant polarisation PM and the average
remnant strain εr(PM) are computed using Equations (4.18) and (4.49), respectively.
Figure 4.5 shows εr

33(PM) versus E3 plot as well as PM
3 versus E3 plot. The corresponding

laminate and variant volume fraction evolution in the specimen with respect to the cyclic
electric field E3 for the considered loading are plotted in Figure 4.6. All the plotted
curves, Figures 4.4 to 4.6, are obtained for an electrical loading frequency of 0.05 Hz and
for model parameters c = 3.0 and m = 2.0.

Starting from the initial poled configuration along the negative e3-axis, the potential
difference across the specimen is reduced from ∆φ|t0 = 0 kV in steps of ∆t. During
this loading phase, laminate-based Model 1 predicts a non-linear evolution of only the
laminate volume fraction µ5 in the specimen, see Figure 4.6. The value of µ5 evolves from
its initial zero value and reaches its maximum limit µ5 = 1 at E3 ≈ 1 kV/mm. This
non-linear evolution of laminate volume fraction µ5 is directly related to the change in
remnant polarisation PM

3 from its initial value −P s to a magnitude of PM
3 = P s at

E3 ≈ 1 kV/mm. The reversal of PM
3 corresponds to the switching of the specimen from

its initial negative e3-direction to along the positive e3-axis. Upon further loading of
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Figure 4.4: Hysteresis curves simulated with laminate-based Model 1 under homogeneous states of
deformation for c = 3.0, m = 2.0. Butterfly curve (left) and dielectric hysteresis loop (right) obtained
for a single crystal BaTiO3 specimen subjected to a cyclic electrical loading at 0.05 Hz.

-2.0 -1.0 0.0 1.0 2.0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

εr
33(PM) [%]

E3 [kV/mm]
-2.0 -1.0 0.0 1.0 2.0

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

PM
3 [C/m2]

E3 [kV/mm]

Figure 4.5: Remnant strain response (left) and average remnant polarisation response (right) corre-
sponding to the butterfly and dielectric hysteresis curves plotted in Figure 4.4.
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Figure 4.6: Evolution of the laminate volume fractions (left) and of the variant volume fractions (right)
corresponding to the butterfly and dielectric hysteresis curves plotted in Figure 4.4.
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4 Laminate-based modelling of single crystalline ferroelectric materials

the specimen, until the applied electric field reaches E3 = 2 kV/mm, the considered
Fischer–Burmeister algorithm ensures that the maximum limit µ5 = 1 is not exceeded.
At the maximum positive electrical loading of E3 = 2 kV/mm, the specimen remains
poled along the positive e3-axis.

From this maximum positive electrical load, the applied electric field is gradually
reduced to E3 = 0 kV/mm in steps of ∆t. During this unloading phase, the specimen
contracts linearly at first and then non-linearly before reaching the remnant state at
E3 = 0 kV/mm. As predicted, the remnant state is characterised by an irreversible
remnant strain εr

33 = εsat = ε33 and a non-vanishing remnant polarisation PM
3 = P sat =

D3 for the perfect single crystal under study. Moreover, the poled configuration of the
specimen along the positive e3-axis is still preserved in the remnant state even after the
removal of the external electrical loads.

Next, the specimen is loaded from E3 = 0 kV/mm until the applied electrical load
reaches E3 = − 2 kV/mm. During this phase, the laminate volume fraction µ5 decreases
non-linearly from µ5 ≈ 0.95 at E3 = 0 kV/mm to µ5 ≈ 0 at E3 = − 2 kV/mm. The
reduction in the magnitude of µ5 corresponds directly to the decrease in the value of
PM

3 followed by the reversal of PM
3 by 180◦. At E3 = − 2 kV/mm the magnitude of

remnant polarisation equals −P s. Due to 180◦ remnant polarisation switching, the
specimen is now poled along the negative e3-axis. Note, that the resulting ε33 values at
E3 = ± 2 kV/mm are identical even though the specimen is poled in opposite directions.
This is due to the total strains being symmetric.

Subsequent increase in electrical loading to 2 kV/mm re-orients the particular laminate
volume fraction µ5, and hence the remnant polarisation PM

3 , back along the positive e3-
axis. Consequently, the specimen is now re-poled along the loading direction. The
remnant state is recovered once the electric field is completely reduced to zero. The
characteristic butterfly and dielectric hysteresis loops are thus numerically reproduced,
see Figure 4.4. During the entire electrical loading and unloading of the specimen, only
the laminate volume fraction µ5 showed a predominant evolution and reduction in its
values between 0 and 1. The other laminate volume fractions µ1,2,3,4 did not show a
significant change from their initialised almost zero values highlighting the absence of
90◦ domain switching within the specimen, see Figure 4.6.

The influence of the viscous-like parameter and the dependence of loading frequency
on the hysteretic response are studied in the following computations. After setting the
slope parameter c to a constant value, the tests under homogeneous states of deformation
are performed for two different positive values of viscous-like parameter m. With an
electrical loading rate of 0.2 Hz and with slope parameter c = 1.0, the butterfly curves
and dielectric hysteresis loops for two different values of viscous-like parameter m are
plotted in Figure 4.7. The shape of both the strain and dielectric hysteresis curves
differs for m = 2.0 and m = 3.0. In context of the strain response of the specimen for
the two different viscous-like parameters, the total strains ε33 obtained at the remnant
configuration is of a lower magnitude with m = 3.0 in comparison to the remnant strain
obtained with m = 2.0. The magnitudes of ε33 at E3 = ± 2 kV/mm are lower for m = 3.0
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Figure 4.7: Influence of viscous-like parameter m on the hysteresis curves simulated with laminate-
based Model 1 for slope parameter c = 1. Butterfly curves (left) and dielectric hysteresis loops (right)
obtained for a single crystal BaTiO3 specimen subjected to a cyclic electrical loading at 0.2 Hz.
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Figure 4.8: Rate-dependent hysteresis curves simulated with laminate-based Model 1 for c = 1.0 and
for m = 2.0. Butterfly curves (left) and dielectric hysteresis loops (right) obtained for a single crystal
BaTiO3 specimen subjected to a cyclic electrical loading at varying frequencies of 1, 0.1 and 0.01 Hz.

compared to those obtained for m = 2.0. Moreover, with an increasing magnitude of
the viscous-like parameter from m = 2.0 to 3.0, the dielectric hysteresis loops widen in
shape during the entire loading and unloading process.

In order to study the rate-dependent behaviour, the last set of computations un-
der homogeneous states of deformation are performed under varying electrical loading
rates. By setting c = 1.0 and m = 2.0, the specimen is electrically loaded with three
different frequencies of 1 Hz, 0.1 Hz and 0.01 Hz. The resulting butterfly curves and di-
electric hysteresis loops are plotted in Figure 4.8. Both the total strain ε33 and dielectric
displacement D3 do not saturate around E3 = ± 2 kV/mm when loaded at higher fre-
quencies of 1 Hz in comparison to the values obtained considering the other two loading
frequencies. The incomplete switching of the ferroelectric domains within the specimen
at higher loading rates is well predicted by laminate-based Model 1. At such high elec-

65



4 Laminate-based modelling of single crystalline ferroelectric materials

∆φ

φ(t)

e1

e2

e3

φ(t)
t

φ = 0 kV

L

H

T

R

Figure 4.9: Schematic representation of the three-dimensional specimen along with loading curves and
boundary conditions considered for the test under inhomogeneous states of deformation. The loading
curve refers to the time-dependent electric potential applied at the top electrode of the specimen. The
bottom electrode is grounded by setting φ = 0 kV.

trical loading frequencies, laminate-based Model 1 also predicts the widening in shape
of both the butterfly and dielectric displacement hysteresis curves.

4.4.1.2 Test under inhomogeneous states of deformation

In this subsection, the versatility of laminate-based Model 1 is demonstrated by solving
an inhomogeneous boundary value problem. The specimen is a three-dimensional plate
of planar dimensions L × H = 5 mm × 5 mm and with a thickness T = 1 mm. The
plate has a radial cut measuring R = 1.5 mm. Both the top and bottom surfaces of
the plate are prescribed with zero values of displacements along all the three Cartesian
directions. With respect to the electrical boundary conditions, both the top and bottom
are prescribed with electric potential values. At the top surface, an alternating time-
dependent electric potential φ(t) with φmax = ±10 kV is applied to all the nodes, whereas
the nodes at the bottom surface are grounded by prescribing φ = 0 kV. The schematic
sketch of the specimen along with boundary and loading conditions are depicted in
Figure 4.9. The plate is discretised by 200 tri-linear brick elements. Both the resulting
strain and dielectric displacements are studied for an applied electrical frequency of
0.2 Hz and for model parameters m = 2.0 and c = 3.0.

The initial variant volume fractions are set to λ(6)|t0 = 1 and λ(1,2,3,4,5)|t0 = 0 at
all integration points within the individual finite elements rendering an initial poled
configuration of the specimen along the negative e3-axis. These initial variant volume
fractions correspond directly to zero value of the multi-rank laminate volume fractions,
i.e.µ1,2,3,4,5|t0 = 0. For the defined boundary and loading conditions, the total strains
and the dielectric displacements within the specimen are computed iteratively under
external electrical loading. Figure 4.10 shows the distribution of electric potential φ,
total strain ε33 and of dielectric displacement D3 at different time intervals across the
specimen.

Starting from the initial poled configuration, the applied electric potential difference
is decreased in steps of ∆t from ∆φ|t0 = 0 kV until ∆φ|t1.25 = − 10 kV. During this
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Figure 4.10: Contour plots of the scalar electric potential φ, total strain ε33 and dielectric displacement
D3 at different time intervals simulated with laminate-based Model 1. The load curve on the left-most
side depicts the time-dependent electric potential loading at the top electrode.
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loading phase, evolution of the multi-rank laminate volume fractions is initiated once
the driving force corresponding to the particular laminates within the specimen exceeds
the critical resistance force value. In context of the problem under study, the inho-
mogeneous loading and boundary conditions result in an non-uniform evolution of the
laminate volume fractions within the specimen. This corresponds to the non-uniform
distribution of the total strains and dielectric displacements within the specimen along
the loading direction. At t = 1.25 sec, the generated negative maximum potential differ-
ence aligns the remnant polarisation along the positive e3-direction, and the specimen
attains a poled configuration along that direction. This is observed in Figure 4.10 with
respect to the contour plots of ε33 and D3 at t = 1.25 sec. From this negative maximum
loading, the potential difference is increased until it reaches ∆φ = 10 kV at t = 3.75 sec.
The load reversal initiates the evolution of the corresponding laminate volume fractions
along the loading direction and hence switches the remnant polarisation by 180◦. The
specimen attains a poled configuration along the negative e3-direction at t = 3.75 sec.
The remnant state of the specimen is recovered at t = 5 sec. The specimen retains its
poled configuration along the negative e3-axis in its remnant state. Subsequent increase
in loading until it reaches ∆φ = − 10 kV at t = 6.25 sec re-orients the specimen back
along the positive e3-direction.

4.4.2 Comparison of laminate-based Model 1 and phenomenological
model

This section highlights the differences in the single crystal BaTiO3 material responses
obtained when considering the phenomenological model and laminate-based Model 1.
With respect to the phenomenological model, the polarisation vector is treated as the
only internal state variable. The evolution of the polarisation determines the remnant
strain; dependence of energy storage on its direction results in generally transversely-
isotropic material behaviour. In contrast, laminate-based Model 1 treats the volume
fractions of the distinct ferroelectric as internal state variables. The evolution of these
multi-rank laminate volume fractions determines, in turn, the remnant polarisation as
volume averages of corresponding ferroelectric variant quantities. The respective model
formulations, detailed in Sections 3.2 and 4.4 respectively, are compared in the context of
numerical simulation examples considering three-dimensional specimens based on tests
under both homogeneous and inhomogeneous states of deformation. The considered
material parameters for the phenomenological and laminate-based Model 1 are listed
in Tables 3.1 and 4.2 respectively. The influence of viscous-like parameter m and slope
parameter c with respect to both the butterfly and dielectric hysteresis curves will be
studied in the subsequent simulations.

With reference to the tests under homogeneous states of deformation, the boundary
value problem depicted in Figure 4.3 is considered. In view of laminate-based Model 1,
the initial multi-rank laminate volume fractions are set to zero values, i.e.µ1,2,3,4,5|t0 = 0.
Note, that this results in an initially poled specimen along the negative e3-direction. In
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Figure 4.11: Comparison of the phenomenological model and laminate-based Model 1 with respect to
the butterfly curves (left) and dielectric displacement hysteresis loops (right) for a cyclic electrical load
at 0.01 Hz and for m = 2.0, c = 2.0.
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Figure 4.12: Comparison of the phenomenological model and laminate-based Model 1 with respect to
the butterfly curves (left) and dielectric displacement hysteresis loops (right) for a cyclic electrical load
at 0.1 Hz and for m = 2.0, c = 2.0.
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Figure 4.13: Comparison of the phenomenological model and laminate-based Model 1 with respect to
the butterfly curves (left) and dielectric displacement hysteresis loops (right) for a cyclic electrical load
at 1 Hz and for m = 2.0, c = 2.0.
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Figure 4.14: Comparison of the phenomenological model and laminate-based Model 1 with respect to
the butterfly curves (left) and dielectric displacement hysteresis loops (right) for a cyclic electrical load
at 0.01 Hz and for m = 2.0, c = 3.0.
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Figure 4.15: Comparison of the phenomenological model and laminate-based Model 1 with respect to
the butterfly curves (left) and dielectric displacement hysteresis loops (right) for a cyclic electrical load
at 0.1 Hz and for m = 2.0, c = 3.0.
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Figure 4.16: Comparison of the phenomenological model and laminate-based Model 1 with respect to
the butterfly curves (left) and dielectric displacement hysteresis loops (right) for a cyclic electrical load
at 1 Hz and for m = 2.0, c = 3.0.
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Figure 4.17: Comparison of the phenomenological model and laminate-based Model 1 with respect to
the butterfly curves (left) and dielectric displacement hysteresis loops (right) for a cyclic electrical load
at 0.01 Hz and for m = 3.0, c = 2.0.
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Figure 4.18: Comparison of the phenomenological model and laminate-based Model 1 with respect to
the butterfly curves (left) and dielectric displacement hysteresis loops (right) for a cyclic electrical load
at 0.1 Hz and for m = 3.0, c = 2.0.
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Figure 4.19: Comparison of the phenomenological model and laminate-based Model 1 with respect to
the butterfly curves (left) and dielectric displacement hysteresis loops (right) for a cyclic electrical load
at 1 Hz and for m = 3.0, c = 2.0.
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Figure 4.20: Comparison of the phenomenological model and laminate-based Model 1 with respect to
the butterfly curves (left) and dielectric displacement hysteresis loops (right) for a cyclic electrical load
at 0.01 Hz and for m = 3.0, c = 3.0.
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Figure 4.21: Comparison of the phenomenological model and laminate-based Model 1 with respect to
the butterfly curves (left) and dielectric displacement hysteresis loops (right) for a cyclic electrical load
at 0.1 Hz and for m = 3.0, c = 3.0.
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Figure 4.22: Comparison of the phenomenological model and laminate-based Model 1 with respect to
the butterfly curves (left) and dielectric displacement hysteresis loops (right) for a cyclic electrical load
at 1 Hz and for m = 3.0, c = 3.0.
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contrast, the initial state of the specimen is unpoled for the tests considering the phe-
nomenological model. Due to the differences in the initial configurations, the butterfly
and dielectric displacement hysteresis curves plotted in Figures 4.11 to 4.22 correspond
to the second loading cycle.

Cyclic electrical loading under homogeneous deformations is considered. Under the
action of a cyclic electric field, along the e3-axis, the total strains and dielectric dis-
placements are computed iteratively. In view of the phenomenological model, switching
is initiated as the applied electric field E3 reaches the coercive limit value Ec, such that
the macroscopic remnant quantities, namely the remnant polarisation P r and the rem-
nant strains εr(P r), evolve. With reference to laminate-based Model 1, evolution of the
multi-rank laminate volume fractions µ occurs as the driving forces exceed the critical
threshold values which, in turn, are used to compute the average remnant polarisation
PM. The simulated butterfly and dielectric hysteresis curves comparing the phenomeno-
logical model and laminate-based Model 1 for slope parameter c = 2 and for viscous-like
parameter m = 2, for different electrical loading frequencies, are shown in Figures 4.11
to 4.13. The tests are repeated by setting different model parameter values. The hys-
teresis curves simulated with both the models for other sets of model parameter values
are plotted, see Figures 4.14 to 4.22. The important features of the strain and dielectric
hysteresis curves are recaptured by both models for all the considered loading rates and
for the different model parameters. In particular, laminate-based Model 1 predicts a
more pronounced rate-dependent response at higher loading frequencies, say at 1 Hz, in
comparison to the phenomenological model, see Figures 4.13, 4.16, 4.19 and 4.22. The
incomplete domain switching evident in the ferroelectric crystals at higher frequencies
is well reciprocated by laminate-based Model 1 for all sets of model parameter values.
The region of switching initiation observed in the strain and dielectric hysteresis plots
differs for both models. This difference is due to the fact that the coercive electric
field Ec, defining the macroscopic polarisation evolution, is a direct input parameter
for the phenomenological model. In view of laminate-based Model 1, the domain wall
motion is initiated once the driving force exceeds the corresponding threshold value for
the particular laminate, and hence the switching initialisation is not based on an input
parameter. Both the modelling frameworks nicely recapture the underlying dissipative
and rate-dependent effects, represented by means of simulated butterfly and dielectric
hysteresis loops. The differences in the hysteresis curves between the two models also re-
flect that the phenomenological model is motivated from the modelling of polycrystalline
ferroelectric solids, whereas laminate-based Model 1 is designed specifically to capture
the response of the single crystalline ferroelectric materials.

The boundary value problem sketched in Figure 4.9 is chosen for the comparison of
the phenomenological model and laminate-based Model 1 in context of the tests under
inhomogeneous states of deformation. The planar dimensions of the specimen are L ×
H = 5 mm × 5 mm and thickness T = 1 mm. The radial cut in the plate measures
R = 1.5 mm. The plate is discretised by 200 tri-linear brick elements. Both the top and
bottom surfaces of the plate are prescribed with zero values of displacements along all
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Figure 4.23: Phenomenological model: contour plots of the scalar electric potential φ, total strain
ε33 and dielectric displacement D3 at different time intervals for model parameters m = 1.5, c = 3.5.
The load curve on the left-most side depicts the time-dependent electric potential loading at the top
electrode.
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Figure 4.24: Laminate-based Model 1: contour plots of the scalar electric potential φ, total strain ε33
and dielectric displacement D3 at different time intervals for model parameters m = 1.5, c = 3.5.
The load curve on the left-most side depicts the time-dependent electric potential loading at the top
electrode.
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the three Cartesian directions. With respect to the electrical boundary conditions, an
alternating time-dependent electric potential with φmax = ±10 kV is applied to all the
nodes at the top surface. All the nodes at the bottom surface are grounded by prescribing
φ = 0 kV. The comparison of the phenomenological model and laminate-based Model 1
with respect to the obtained strain and dielectric displacement distributions within the
specimen is studied for an applied cyclic electrical frequency of 0.2 Hz and for model
parameters m = 1.5 and c = 3.5.

Analogous to the initial configuration of the specimen considered for the tests under
homogeneous states of deformation, the initial multi-rank laminate volume fractions are
set to µ1,2,3,4,5|t0 = 0 for laminate-based Model 1 rendering an initially poled state of
the inhomogeneous specimen along the negative e3-direction. With respect to the phe-
nomenological model, the initial state of the specimen is considered to be in an unpoled
state. The distribution of the scalar electric potential φ, total strain ε33 and dielectric
displacement D3 at different time intervals along the loading direction across the spec-
imen simulate with laminate-based Model 1 and the phenomenological models is shown
in Figures 4.23 and 4.24. Due to the considered inhomogeneous boundary value problem,
the distribution of the total strains and dielectric displacements within the specimen,
for both the models, are non-uniform. The differences in the total strain distribution
within the specimen between the two models are due to the different assumptions pos-
tulated for the remnant strain evolution. In the case of the phenomenological model,
the macroscopic remnant strain is computed directly based on the evolution of rem-
nant polarisation P r. With reference to laminate-based Model 1, the remnant strains
are obtained based on remnant polarisation PM which are, in turn, dependent on the
evolution of the multi-rank laminate volume fractions µ. Nevertheless, both the mod-
elling frameworks nicely recapture the underlying polarisation switching effects evident
in single crystal ferroelectric solids based on finite element simulations.

4.5 Laminate-based Model 2

This section focusses on the development of laminate-based Model 2. Based on the spon-
taneous strain and polarisation as well as on the material moduli introduced for each of
the distinct tetragonal ferroelectric variants, an electric Gibbs energy H(α) correspond-
ing to the individual tetragonal ferroelectric variants α is postulated for the particular
model formulation. Thus, each of the distinct states of the tetragonal single crystal
BaTiO3 is characterised by the energy level of the particular state. The variant specific
electric Gibbs energy is formulated as a function of the elastic strains εe

(α), the electric
field E and of the structural vector a(α), defining the transversely-isotropic tetragonal
ferroelectric unit cell. The elastic strains corresponding to the individual ferroelectric
variants α is defined as

εe
(α) = ε− ε(α) . (4.58)
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The particular form of the electric Gibbs energy for the distinct ferroelectric variant α
is postulated as

H(α)(ε,E,a(α)) =
1

2

[
ε− ε(α)

]
: E(α)(a(α)) :

[
ε− ε(α)

]
− 1

2
E · ε(α)(a(α)) ·E

−E · e(α)(a(α)) :
[
ε− ε(α)

]
− P (α) ·E . (4.59)

The variant specific quantities, namely the spontaneous strains and polarisation, ε(α)

and P (α), the structural vector a(α) and the transversely-isotropic material moduli,

E(α)(a(α)), ε(α)(a(α)) and e(α)(a(α)), are introduced in Equations (4.1) to (4.8). The in-
dividual electric Gibbs energies are weighted by the volume fraction of the respective
variants in order to arrive at an average electric Gibbs energy for the single crystal. For
a three-dimensional setting with nv = 6, the average electric Gibbs energy HM2(ε,E,λ)
for laminate-based Model 2 is specified following the general relation (4.13) as

HM2(ε,E,λ) =
∑nv

α= 1
λ(α) H(α)(ε,E,a(α)) . (4.60)

Considering the µ-based representation, as introduced in Equation (4.16), wherein the
domain quantities corresponding to the α-th variant volume fraction are related to the
j-th rank multi-rank laminate volume fraction µj, the average electric Gibbs energy (4.60)
is reformulated based on the multi-rank laminate volume fractions µ as

HM2(ε,E,µ) = µ1H(1) + µ2
[
1− µ1

]
H(2)

+
[
1− µ1

] [
1− µ2

] [
µ3H(3) + µ4

[
1− µ3

]
H(4)

]
(4.61)

+
[
1− µ1

] [
1− µ2

] [
1− µ3

] [
1− µ4

] [
µ5H(5) +

[
1− µ5

]
H(6)

]
.

With the average electric Gibbs energy governing the coupled electromechanical response
of the ferroelectric single crystal postulated, the constitutive equations for the stress
tensor and the dielectric displacement vector of the single crystal for laminate-based
Model 2 are obtained following the standard Coleman–Noll procedure as

σM2 =
∂HM2(ε,E,µ)

∂ε
and (4.62)

DM2 = − ∂HM2(ε,E,µ)

∂E
. (4.63)
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The explicit relations of the average stress tensor and the average dielectric displacement
vector read

σM2 = µ1 σ(1) + µ2
[
1− µ1

]
σ(2) +

[
1− µ1

] [
1− µ2

] [
µ3 σ(3) + µ4

[
1− µ3

]
σ(4)

]
+
[
1− µ1

] [
1− µ2

] [
1− µ3

] [
1− µ4

] [
µ5 σ(5) +

[
1− µ5

]
σ(6)

]
and (4.64)

DM2 = µ1D(1) + µ2
[
1− µ1

]
D(2) +

[
1− µ1

] [
1− µ2

] [
µ3D(3) + µ4

[
1− µ3

]
D(4)

]
+
[
1− µ1

] [
1− µ2

] [
1− µ3

] [
1− µ4

] [
µ5D(5) +

[
1− µ5

]
D(6)

]
, (4.65)

wherein the second-order stress tensor σ(α) and dielectric displacement vector D(α) of
the specific variant α are identified as

σ(α) =
∂H(α)

∂ε
= E(α) : εe

(α) − et
(α) ·E and (4.66)

D(α) = −
∂H(α)

∂E
= e(α) : εe

(α) + ε(α) ·E + P (α) . (4.67)

The thermodynamic driving force responsible for the domain evolution and polarisation
switching within the particular j-th rank laminate in the single crystal is identified as

f jM2(µ) = − ∂HM2(ε,E,µ)

∂µj
for j = 1, . . . , nv − 1 , (4.68)

wherein the derived relations for the individual driving forces read

f 1
M2(µ) = −H(1) + µ2H(2) +

[
1− µ2

] [
µ3H(3) + µ4

[
1− µ3

]
H(4)

]
+
[
1− µ2

] [
1− µ3

] [
1− µ4

] [
µ5H(5) +

[
1− µ5

]
H(6)

]
, (4.69)

f 2
M2(µ) = −

[
1− µ1

]
H(2) +

[
1− µ1

] [
µ3H(3) + µ4

[
1− µ3

]
H(4)

]
+
[
1− µ1

] [
1− µ3

] [
1− µ4

] [
µ5H(5) +

[
1− µ5

]
H(6)

]
, (4.70)

f 3
M2(µ) =

[
1− µ1

] [
1− µ2

] [
−H(3) + µ4H(4)

]
+
[
1− µ1

] [
1− µ2

] [
1− µ4

] [
µ5H(5) +

[
1− µ5

]
H(6)

]
, (4.71)

f 4
M2(µ) =

[
1− µ1

] [
1− µ2

] [
1− µ3

] [
−H(4) + µ5H(5) +

[
1− µ5

]
H(6)

]
and (4.72)

f 5
M2(µ) =

[
1− µ1

] [
1− µ2

] [
1− µ3

] [
1− µ4

] [
−H(5) +H(6)

]
. (4.73)
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The derived driving forces corresponding to the individual laminates, Equations (4.69)
to (4.73), are considered for the computation of the enhanced driving force expressions

f jenh(µ, Γ j
I , Γ

j
II) = f jM2(µ) + Γ j

I − Γ
j
II , (4.74)

in context with the Fischer–Burmeister algorithm. The enhanced driving forces are
considered in the modified Fischer–Burmeister residual (4.42) in order to arrive at the
update of the multi-rank laminate volume fractions defining the hysteretic response for
laminate-based Model 2.

4.5.1 Numerical examples

In order to verify the proposed laminate-based Model 2, representative numerical simula-
tions under homogeneous states of deformation are performed and are presented in this
section. The butterfly curves and the dielectric displacement hysteresis loops at varying
frequencies are reproduced by the tests under homogeneous states of deformation. The
domain considered is a three-dimensional poled specimen, the crystallographic axes of
which are assumed to coincide with reference Cartesian axes e1,2,3. Based on the single
crystal tetragonal BaTiO3 material parameters, the poled specimen under study is sub-
jected to purely cyclic electrical loading and to a combined electromechanical loading.

The single crystal tetragonal BaTiO3 material constants, such as the piezoelectric
coupling coefficients and the dielectric permittivity parameters are taken from Zgo-
nik et al. [152]. The transversely-isotropic elasticity components of the single crystal are
chosen from the values computed by Schröder and Keip [125]. The spontaneous polari-
sation and strain coefficients as well as the coercive electric field limits for 90◦ and 180◦

domain switching, all referring to single crystal tetragonal BaTiO3, are taken from the
data reported by Yen et al. [151]. The magnitude of the saturation polarisation is con-
sidered to be the same as its spontaneous polarisation value, with the assumption of a
perfect single crystal devoid of any impurities. Apart from these material parameters, the
model or fitting parameters such as viscosity-type parameter ηp, viscous-like parameter
m and slope parameter c are initialised to non-zero positive values. Table 4.3 summarises
the material parameters used in all of the subsequent numerical simulations. Note, that
the single crystal material parameters in Table 4.3 refer to coefficients of tensors and, ac-
cordingly, to a particular base system, see Equations (4.9) to (4.11). Moreover, the listed
material parameters in Table 4.3 are considered for all the simulations pertaining to the
present laminate-based Model 2 as well as for all the numerical simulations considering
laminate-based Models 3 and 4, to be dealt in Sections 4.6 and 4.7 respectively.
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Table 4.3: Single crystal tetragonal BaTiO3 material parameters used for the numerical computations
with laminate-based Models 2, 3 and 4, taken from [125, 151, 152].

Denomination Parameter Value Unit Reference

Lateral piezoelectric coefficient e311 − 0.7 C/m2 [152]

Axial piezoelectric coefficient e333 6.7 C/m2 [152]

Piezoelectric shearing coefficient e131 34.2 C/m2 [152]

Vaccum permittivity ε0 8.854× 10−12 F/m [152]

Dielectric permittivity ε11 2200 ε0 F/m [152]

Dielectric permittivity ε33 56 ε0 F/m [152]

Elastic stiffness E1111 237.4× 103 MPa [125]

Elastic stiffness E1122 92.6× 103 MPa [125]

Elastic stiffness E1133 111× 103 MPa [125]

Elastic stiffness E3333 151× 103 MPa [125]

Elastic stiffness E1313 61× 103 MPa [125]

Spontaneous polarisation P s 0.26 C/m2 [151]

Spontaneous strain coefficient ηs
1 0.67 % [151]

Spontaneous strain coefficient ηs
2 − 0.42 % [151]

Coercive electric field for 90◦ switching Ec
90◦ 0.26 kV/mm [151]

Coercive electric field for 180◦ switching Ec
180◦ 0.23 kV/mm [151]

Saturation polarisation P sat 0.26 C/m2 –

Viscosity-type parameter ηp 0.01 m2/C s –

Viscous-like parameter m 1.5 – –

Slope parameter c 3.5 – –

4.5.1.1 Tests under homogeneous states of deformation

The butterfly and dielectric hysteresis curves for single crystal tetragonal BaTiO3 sim-
ulated with laminate-based Model 2 are reproduced by tests under homogeneous states
of deformation. The representative single finite element is subjected to two different
loading scenarios for varying electrical loading frequencies, namely cyclic electrical and
combined electromechanical loading. The schematic sketches of the boundary value
problems are depicted in Figure 4.25. The crystallographic axes of the specimen for the
two homogeneous loading scenarios are assumed to coincide with reference Cartesian
axes e1,2,3.
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Figure 4.25: Schematic representation of three-dimensional specimens along with the load curves and
boundary conditions considered for tests under homogeneous deformation with laminate-based Model 2.
The specimens are subjected, respectively, to (a) cyclic electrical and (b) combined electromechanical
load. For the two loading scenarios, the specimens are initially poled along the positive e3-axis.

By initialising the initial variant volume fraction values to λ(1,2,3,4,6)|t0 = 0 and

λ(5)|t0 = 1 we arrive at the initial multi-rank laminate volume fractions µ1,2,3,4|t0 = 0

and µ5|t0 = 1. These starting values of the laminate volume fractions result in the
initial poled configuration of the specimen along the positive e3-axis. For the first load-
ing scenario, the poled specimen is subjected to a cyclic electric field applied along the
Cartesian e3-axis as shown in Figure 4.25 (a). Starting from the poled configuration, the
specimen deforms linearly with respect to the applied positive electric field and attains
the maximum value of strain and dielectric displacement as the loading level approaches
E3 = 2 kV/mm. This linear relationship between the electric field and strains as well as
between the electric field and dielectric displacements for the initial loading path can be
observed in the hysteresis plots, see Figures 4.26 and 4.28. Furthermore, with reference
to Figure 4.27, it is observed that the laminate volume fraction µ5 as well as the variant
volume fraction λ(5) during this entire linear deformation does not change from its ini-

tial value, i.e.µ5 = λ(5) = 1, indicating the piezoelectric response without any domain
evolution in the specimen under study.

After decreasing the electric field from E3 = 2 kV/mm, the specimen undergoes a
linear contraction along the e3-axis and reaches a remnant state at E3 = 0 kV/mm. The
values of the remnant strain and polarisation of the specimen is identical to the starting
values of total strains and dielectric displacements for laminate-based Model 2. As the
applied electric field decreases further from 0 kV/mm, a 180◦ polarisation reversal of
the specimen is initiated once the driving forces responsible for the domain evolution
exceed the threshold values. The specimen is now switched along the negative e3-axis
and attains the maximum value of deformation and the minimum value of dielectric
displacement at E3 = − 2 kV/mm. This can be further verified with the decrease of
the variant volume fraction λ(5) from 1 to 0 and subsequently with the increase of λ(6)

from 0 to 1, indicating poling along the negative e3-direction, see Figure 4.27. This
180◦ switching results in a hysteretic response as predicted by laminate-based Model 2,
see Figure 4.26. Note, that the value of strains ε33 obtained at E3 = ± 2 kV/mm are
identical due to the symmetric total strains. Further loading with positive electric fields
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Figure 4.26: Hysteresis curves simulated with laminate-based Model 2 under homogeneous states of
deformation. Butterfly curve (left) and dielectric hysteresis loop (right) obtained for a single crystal
BaTiO3 specimen subjected to a cyclic electrical loading at 0.2 Hz.
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Figure 4.27: Evolution of the laminate volume fractions (left) and of the variant volume fractions (right)
corresponding to the butterfly and dielectric hysteresis curves plotted in Figure 4.26.
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Figure 4.28: Rate-dependent hysteresis curves simulated with laminate-based Model 2. Butterfly curves
(left) and dielectric hysteresis loops (right) obtained for a single crystal BaTiO3 specimen subjected to
a cyclic electrical loading at varying frequencies of 1, 0.1 and 0.01 Hz.
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switches the specimen back to the positively-poled state, and the remnant state of the
specimen is recovered once the electrical field is reduced to zero. In order to study the
influence of loading rates, the specimen is electrically loaded with frequencies of 1 Hz,
0.1 Hz and 0.01 Hz. The rate-dependent hysteretic response of laminate-based Model 2
is shown in Figure 4.28. At 1 Hz, the magnitude of total strains ε33 increases along with
the broadening of both strain and dielectric displacement hysteresis loops.

Starting from its poled configuration, the specimen is subjected to a combined elec-
tromechanical load, i.e. a constant compressive stress and a cyclic electric field, along
the e3-axis. The schematic sketch of the boundary value problem is depicted in Fig-
ure 4.25 (b). Such combined electromechanical loading of single crystal BaTiO3 results in
high actuation strains, mainly due to the enhancement of the stress-driven 90◦ ferroelas-
tic switching, cf. [22, 131, 134, 151]. Furthermore, experimental studies show a significant
increase in obtained actuation strains with an increase in magnitudes of the applied com-
pressive stresses, cf. [95, 131, 151]. In context with the simulations carried out under
combined electromechanical loading, laminate-based Model 2 did not predict an increase
in magnitude of the actuation stress levels with an increase in the magnitude of the
external compressive stresses along the electrical loading direction. The stress-activated
90◦ switching evident in single crystal tetragonal BaTiO3 is not observed in both the
strain and dielectric hysteresis curves with the particular laminate-based Model 2, see
Figure 4.29. Only a shift in the butterfly curves with increasing mechanical loads is
observed, without a notable difference in the shape of the strain response. The dielec-
tric displacement D3 for laminate-based Model 2 results in the same set of values for
different stress levels. Thus, the dielectric hysteresis did not predict any change in shape
with increasing stress magnitudes. The averaging principle used for laminate-based
Model 2 does not appropriately predict the stress-driven 90◦ switching responsible for
increased strain magnitudes under combined electromechanical loading. The response of
the variant volume fractions against the applied electric load at a constant stress level of
2.7 MPa shows the evolution of only the volume fractions λ(5) and λ(6), both responsible
for 180◦ domain switching in the specimen, see Figure 4.30. The other variant volume
fractions λ(1,2,3,4) do not evolve from their initial zero values, augmenting the absence
of 90◦ domain switching in the specimen during the entire cyclic loading process. The
rate-dependent behaviour of the specimen with respect to laminate Model 2 is shown in
Figure 4.31.

From the evolution of both the variant and laminate volume fractions and from the hys-
teresis curves under combined electromechanical loading, it is observed that the stress-
driven response is not predicted by laminate-based Model 2. One reason may be that
the magnitude of the driving forces, obtained as the negative sensitivity of the average
electric Gibbs energy with respect to the corresponding laminate volume fractions, does
not exceed the critical threshold values under combined electromechanical loading. This
corresponds to the fact that the energy level corresponding to the variant specific electric
Gibbs energy H(α) is not influenced explicitly by the applied external stress magnitudes.
In order to overcome this, an average Gibbs energy based on the stress and electric
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Figure 4.29: External-stress dependent hysteresis curves simulated with laminate-based Model 2 under
homogeneous states of deformation for combined electromechanical loading. Butterfly curves (left) and
dielectric hysteresis loops (right) obtained for a single crystal BaTiO3 specimen subjected to a cyclic
electrical loading at 0.2 Hz along with a constant compressive stress of varying magnitudes.
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Figure 4.30: Evolution of the laminate volume fractions (left) and of the variant volume fractions
(right) simulated with laminate-based Model 2 under homogeneous states of deformation for an applied
electrical loading at 0.2 Hz along with a constant compressive stress of 2.7 MPa.
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Figure 4.31: Rate-dependent hysteresis curves simulated with laminate-based Model 2 under homo-
geneous states of deformation for combined electromechanical loading. Butterfly curves (left) and
dielectric hysteresis loops (right) obtained for a single crystal BaTiO3 specimen subjected to a constant
compressive stress of 2.7 MPa along with a cyclic electrical loading at varying frequencies.
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field as independent variables is postulated for the crystal. On this basis, a Legendre
transformation of the average electric Gibbs energy (4.60) with respect to the variable ε
is performed resulting in the average Gibbs energy GM2(∂HM2/∂ε,E,λ), namely

GM2(∂H/∂ε,E,λ) = HM2(ε,E,λ)− ∂HM2

∂ε

∣∣∣∣∣
E

: ε

=
∑nv

α= 1
λ(α) H(α)(ε,E,a(α))− σM2 : ε . (4.75)

For a three-dimensional setting with nv = 6, the average Gibbs energy is reformulated
based on the multi-rank laminate volume fractions as

GM2(σ,E,µ) = µ1H(1) + µ2
[
1− µ1

]
H(2)

+
[
1− µ1

] [
1− µ2

] [
µ3H(3) + µ4

[
1− µ3

]
H(4)

]
(4.76)

+
[
1− µ1

] [
1− µ2

] [
1− µ3

] [
1− µ4

] [
µ5H(5) +

[
1− µ5

]
H(6)

]
− σM2 : ε .

The driving force defining the domain evolution within the j-th rank laminate is now
introduced as

f jM2(µ) = − ∂GM2(σ,E,µ)

∂µj
= − ∂HM2(ε,E,µ)

∂µj
+ σM2 :

∂εM(µ)

∂µj
. (4.77)

The enhanced driving force, needed for the Fischer–Burmeister algorithm, for a given
constant stress tensor reads

f jenh(µ, Γ j
I , Γ

j
II) = − ∂HM2(ε,E,µ)

∂µj
+ σM2 :

∂εM(µ)

∂µj
+ Γ j

I − Γ
j
II . (4.78)

Laminate-based Model 2 was implemented considering the enhanced driving force (4.78)
and the numerical tests under homogeneous states of deformation under combined elec-
tromechanical loading were repeated. However, no significant difference is noted in
the hysteresis loops as well as in the laminate volume fraction evolution curves with
the average Gibbs energy formulation (4.76) in comparison to the response obtained by
considering the average electric Gibbs energy (4.61). It can be concluded that laminate-
based Model 2 is not suitable to predict the external stress-dependent hysteresis response
in single crystal ferroelectric solids under combined electromechanical loading.
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4.6 Laminate-based Model 3

On the basis of the general relations defining the symmetry and material properties of
the distinct ferroelectric variants and by considering the general averaging principles,
this section is devoted to the development of laminate-based Model 3. The particular
model formulation is considered to study the external stress and rate-dependent domain
evolution and the subsequent polarisation switching in tetragonal BaTiO3 single crys-
tals under external applied loads. In the context of laminate-based Model 3, both the
average strain and polarisation compatibility conditions (4.12) are taken into account in
defining the compatible evolution of the domains. Following Equations (4.17) and (4.18),
the macroscopic remnant strain and polarisation for the single crystal are computed di-
rectly based on the evolution of the multi-rank volume fractions under suitable loading
conditions.

Both total linear strain ε and the dielectric displacement DM3 of the ferroelectric
crystal for the laminate-based Model 3 are considered to be additively decomposed into
an elastic and a remnant part as

ε = εe + εM and DM3 = De + PM . (4.79)

Here, εe denotes the reversible or elastic strain tensor and De refers to the reversible
dielectric displacement vector of the crystal. The remnant quantities εM(µ; ε(1,3,5)) and

PM(µ; P (1,3,5)) are defined in Equations (4.17) and (4.18) respectively.
An average electric Gibbs energy is specified, written as a function of the total linear

strains, the electric field and of the multi-rank laminate volume fractions. The specific
form of the average electric Gibbs energy defining the coupled electromechanical response
of the crystal for the specific laminate-based Model 3 reads

HM3(ε,E,µ) =
1

2

[
ε− εM

]
: EM :

[
ε− εM

]
− 1

2
E · εM ·E

−E · eM :
[
ε− εM

]
− PM ·E . (4.80)

The average electric Gibbs energy takes an additive form comprising of mechanical,
piezoelectric coupling and electrical terms. The volume averaged transversely-isotropic
material moduli, namely the averaged fourth-order elasticity tensor EM(µ; E(1,3,5)), the

averaged third-order piezoelectric tensor eM(µ; e(1,3,5)) and the averaged dielectric tensor

εM(µ; ε(1,3,5)) appearing in (4.80) are introduced in Equations (4.19) to (4.21). The spe-

cific form of the average electric Gibbs energy (4.80), considering the averaged anisotropic
material moduli, differs from the laminate-based formulations presented in [41–43].
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Following the standard Coleman–Noll procedure, the constitutive equations for the
stress tensor and for the dielectric displacement vector of the crystal for laminate-based
Model 3 are obtained as

σM3 =
∂HM3(ε,E,µ)

∂ε
= EM :

[
ε− εM

]
−
[
eM
]t ·E and (4.81)

DM3 = − ∂HM3(ε,E,µ)

∂E
= eM :

[
ε− εM

]
+ εM ·E + PM , (4.82)

and the reduced dissipation inequality is given by

Dred =
∑nv−1

j= 1
f jM3(µ) µ̇j ≥ 0 . (4.83)

Herein, f jM3(µ) is the thermodynamic driving force corresponding to the particular j-th
rank laminate for laminate-based Model 3. The individual driving forces, defined as the
work conjugate to the rate of change of the corresponding multi-rank volume fraction
µ̇j, are identified as

f jM3(µ) = − ∂HM3(ε,E,µ)

∂µj

=
∂εM

∂µj
: σM3 −

1

2

[
ε− εM

]
:
∂EM

∂µj
:
[
ε− εM

]
+

1

2
E · ∂ε

M

∂µj
·E

+E · ∂eM

∂µj
:
[
ε− εM

]
+
∂PM

∂µj
·E . (4.84)

The driving forces f jM3(µ) defining the domain evolution are resisted by the dissipative
motion of the domain walls, cf. [57, 151]. The critical resistance forces or threshold values
corresponding to the j-th rank laminate are denoted by gc, j(µ) ≥ 0, see Equations (4.26)
to (4.30) for the explicit forms.

In view of the Fischer–Burmeister algorithm, the obtained set of driving forces (4.84)
are reformulated into an enhanced form by considering the additional Lagrange multi-
pliers

f jenh(µ, Γ j
I , Γ

j
II) = f jM3(µ) + Γ j

I − Γ
j
II , (4.85)

cf. Equation (4.40). The enhanced driving force for the j-th rank laminate system is
considered in the elastic range definition (4.25) and in the subsequent rate-dependent
evolution equation (4.32) as well as in the modified Fischer–Burmeister residual (4.42) in
order to arrive at the update of the multi-rank laminate volume fractions defining the
hysteretic response. With respect to the algorithmic scheme, the reader is referred to
Section 4.3.
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Figure 4.32: Schematic representation of the three-dimensional specimens along with the boundary
conditions and load curves considered for the tests under homogeneous states of deformation. The
specimens are subjected respectively to (a) cyclic electrical loading, (b) compressive mechanical loading
and to (c) combined electromechanical loading. For the three individual loading scenarios, the specimens
are initially poled along the positive e3-axis.

4.6.1 Numerical examples

In this section, the single crystal tetragonal BaTiO3 material response under homo-
geneous states of deformation is presented for the particular laminate-based Model 3
formulation. The strain and dielectric displacement hysteresis loops depicting the ex-
ternal stress and loading rate-dependent response are reproduced by the tests under
homogeneous states of deformation. For the simulations, the domain of interest is a
three-dimensional poled specimen, the crystallographic axes of which are assumed to
coincide with reference Cartesian axes e1,2,3. The poled specimen is subjected to three
different loading scenarios. These include a cyclic time-dependent electrical loading, a
time-dependent compressive mechanical loading and finally a combined electromechani-
cal loading of the three-dimensional specimen. The material and the model parameters
considered for the simulations with the present laminate-based Model 3 are the same as
the ones chosen for laminate-based Model 2, see Table 4.3.

4.6.1.1 Tests under homogeneous states of deformation

The external stress and rate-dependent butterfly and dielectric hysteresis loops corre-
sponding to laminate-based Model 3 are reproduced by tests under homogeneous states
of deformation. The schematic sketches of the boundary value problems are depicted
in Figure 4.32. The crystallographic axes of the specimen under study for all the three
loading scenarios are assumed to coincide with reference Cartesian axes e1,2,3. Before
the start of the simulations, the multi-rank laminate volume fractions are initialised to
µ1,2,3,4|t0 = 0 and µ5|t0 = 1. These starting values of the laminate volume fractions result
in the initial poled configuration of the specimen along the positive e3-axis, characterised
by average remnant polarisation PM

3 |t0 = P s and by average remnant strain εM
33|t0 = ηs

1.
For the first loading scenario, i.e. pure cyclic electrical loading of the poled specimen,

a time-dependent potential difference is applied along the Cartesian e3-axis as depicted
in Figure 4.32 (a). The electric potential difference across the specimen is generated by
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Figure 4.33: Ferroelectric hysteresis curves simulated with laminate-based Model 3 under homogeneous
states of deformation. Butterfly curve (left) and dielectric hysteresis loop (right) obtained for a single
crystal BaTiO3 specimen subjected to a cyclic electrical loading at 0.2 Hz.
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Figure 4.34: Evolution of the laminate volume fractions (left) and of the variant volume fractions (right)
corresponding to the butterfly and dielectric hysteresis curves plotted in Figure 4.33.
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Figure 4.35: Rate-dependent ferroelectric hysteresis curves simulated with laminate-based Model 3 un-
der homogeneous states of deformation. Butterfly curves (left) and dielectric hysteresis loops (right)
obtained for a single crystal BaTiO3 specimen subjected to a cyclic electrical loading at varying fre-
quencies of 1, 0.1 and 0.01 Hz.
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keeping the lower electrode grounded at all times while its upper counterpart is sub-
jected to a time-dependent cyclic scalar electric potential φ(t) with φmax = ±10 kV. The
dielectric displacements and the total strains resulting from this rate-dependent and non-
linear homogeneous deformation are iteratively computed. The obtained total strains
ε33 and dielectric displacements D3 are plotted, respectively, against the applied cyclic
electric field E3 at 0.2 Hz. These plots correspond to the butterfly and dielectric hystere-
sis loop of the specimen simulated with laminate-based Model 3, see Figure 4.33. The
corresponding multi-rank laminate as well as the variant volume fraction evolution in the
specimen with respect to the cyclic electric field E3 at 0.2 Hz are plotted in Figure 4.34.
It is observed that, even though the evolution of the laminate volume fraction µ5 is
predominant, laminate-based Model 3 predicts a small deviation in the volume fractions
µ1,2,3,4 from their initialised zero values. This may be due to the particular formulation of
the average electric Gibbs energy, based on the averaged remnant quantities and on the
averaged material moduli. Due to the small increase in the multi-rank laminate volume
fraction values µ1,2,3,4, the specimen undergoes a small amount of 90◦ domain switching
during electrical loading at 0.2 Hz. The butterfly curves and the dielectric displacement
hysteresis loops obtained under cyclic electrical loading for three different frequencies of
1 Hz, 0.1 Hz and 0.01 Hz are shown in Figure 4.35. The butterfly curve corresponding
to loading rate 1 Hz predicts a higher magnitude of the total strain ε33 in comparison
to the strains obtained at 0.1 Hz and 0.01 Hz. As the loading rate increases, more and
more domains within the specimen undergo the stress-activated 90◦ switching resulting
in the increase of the total strain ε33 values. Moreover, laminate-based Model 3 predicts
widening of both the butterfly and dielectric displacement hysteresis curves at higher
electrical rates, say at 1 Hz.

In the second loading scenario, the poled specimen is loaded with a compressive me-
chanical stress along the e3-axis as illustrated in Figure 4.32 (b). The top surface of the
specimen is loaded and unloaded by a time-dependent compressive mechanical stress.
From a theoretical point of view, such a compressive loading of the poled BaTiO3 crystal
initiates pure 90◦ switching of the domains. Once the applied mechanical stress exceeds
the coercive stress values or once the driving forces needed for the 90◦ domain evolu-
tion exceed the threshold values, the specimen switches along any of the four directions
perpendicularly to the loading direction. This leads to mechanical depolarisation of the
specimen along with a change in strain values along the loading direction. Both the
numerically obtained depolarisation curve and ferroelastic hysteresis curve correspond-
ing to a mechanical loading and unloading at 0.2 Hz are plotted in Figure 4.36. In the
context of the depolarisation and ferroelastic hysteresis curves, the 90◦ switching is initi-
ated and further enhanced during the compressive loading as observed by the non-linear
change in dielectric displacement values D3 and by the decrease of the total strains
ε33 along the e3-axis. The specimen then reaches the minimum value of D3 and ε33

at σmax
33 = − 15 MPa. At this maximum value of the compressive stress, not all the do-

mains are switched along the e1 and e2-directions, since {D3 , ε33}|σmax
33

did not reach the
theoretical values of 0 C/m2 and −0.42 %, see Figure 4.36. During unloading, laminate-
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based Model 3 predicts an initial non-linear decrease in both the dielectric displacement
D3 and total strain ε33 values. This may result from the non-linear response in back
switching of the domains along the stable e1 and e2-directions. At σ33 ≈ − 8.5 MPa,
the specimen depolarises completely and remains in the depolarised state. The evolu-
tion of both the variant and laminate volume fractions for the mechanical loading and
unloading of the poled specimen at 0.2 Hz simulated with laminate-based Model 3 are
plotted in Figure 4.37. During the loading phase of the specimen, wherein the applied
compressive mechanical load is increased from σmin

33 = 0 MPa to σmax
33 = − 15 MPa, the

variant volume fraction λ(5) decreases non-linearly from its initial value, whereas λ(1,2,3,4)

show an increase from their initialised zero values indicating 90◦ domain switching along
the e1 and e2-directions. Both the laminate volume fraction µ5 and the variant vol-
ume fraction λ(6) did not show a deviation from their initialised value during the entire
loading-unloading cycle, indicating that the 180◦ domain switching has not occurred in
the specimen, see Figure 4.37. The rate-dependent depolarisation and ferroelastic curves
simulated with laminate-based Model 3 are plotted in Figure 4.38.

The schematic sketch of the poled specimen subjected to a combined electromechan-
ical loading, i.e. a constant compressive stress and a cyclic electric field, both along the
e3-axis is depicted in Figure 4.32 (c). Such combined electromechanical loading results
in high magnitudes of actuation strain along the loading direction, mainly due to the
enhancement of the stress-driven 90◦ ferroelastic switching, cf. [22, 131, 134, 151]. Fur-
thermore, experimental studies show a significant increase in the obtained actuation
strains with an increase in the applied compressive stress magnitudes in addition to the
cyclic electrical loading. The butterfly curves and dielectric hysteresis loops under cyclic
electrical loading at 0.2 Hz along with varying magnitudes of the constant compressive
stresses simulated with laminate-based Model 3 are plotted in Figure 4.39. The increase
in total strain values ε33, without a significant difference in dielectric displacements D3,
for increase in the applied compressive stress magnitudes is well predicted with laminate-
based Model 3. The evolution of the laminate and variant volume fractions simulated
with laminate-based Model 3 for an electrical loading frequency of 0.2 Hz along with a
constant mechanical stress magnitude of 2.7 MPa is shown in Figure 4.40. At an applied
compressive stress of 2.7 MPa, the evolution of the variant volume fractions λ(1,2,3,4) along
both the e1 and e2-directions, indicates that some of the domains initially switch to 90◦

due to the mechanical load and then complete a 180◦ switching. The enhancement of
the stress-activated 90◦ domain switching at higher magnitudes of the compressive load
is responsible for the increase in the actuation strains obtained. In the context of rate-
dependent response, the butterfly curves and the dielectric displacement hysteresis loops
simulated with laminate-based Model 3 for a constant compressive stress σ33 = 2.7 MPa
and for varying electrical loading frequencies are plotted in Figure 4.41. As the electrical
load is applied at a frequency of 0.01 Hz, the total strains ε33 obtained are quite high
compared to the ε33 values computed at 1 Hz. At lower loading rates the stress-activated
90◦ switching is probably more pronounced, leading to increased total strain values ε33

along the loading direction.
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Figure 4.36: Ferroelastic hysteresis curves simulated with laminate-based Model 3 under homogeneous
states of deformation. Mechanical depolarisation curve (left) and ferroelastic hysteresis curve (right)
obtained for a single crystal BaTiO3 specimen subjected to a compressive mechanical loading and
unloading at 0.2 Hz.
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Figure 4.37: Evolution of the laminate volume fractions (left) and of the variant volume fractions (right)
corresponding to the depolarisation and ferroelastic hysteresis curves plotted in Figure 4.36.
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Figure 4.38: Rate-dependent ferroelastic hysteresis curves simulated with laminate-based Model 3 under
homogeneous states of deformation. Mechanical depolarisation curves (left) and ferroelastic hysteresis
curves (right) obtained for a single crystal BaTiO3 specimen subjected to a compressive mechanical
loading and unloading at varying frequencies of 1, 0.1 and 0.01 Hz.
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Figure 4.39: External-stress dependent ferroelectric hysteresis curves simulated with laminate-based
Model 3 under homogeneous states of deformation for combined electromechanical loading. Butter-
fly curves (left) and dielectric hysteresis loops (right) obtained for a single crystal BaTiO3 specimen
subjected to a cyclic electrical loading at 0.2 Hz along with constant compressive stresses.
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Figure 4.40: Evolution of the laminate volume fractions (left) and of the variant volume fractions
(right) simulated with laminate-based Model 3 under homogeneous states of deformation for an electrical
loading frequency of 0.2 Hz along with a constant compressive stress of 2.7 MPa.
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Figure 4.41: Rate-dependent hysteresis curves simulated with laminate-based Model 3 under homo-
geneous states of deformation for combined electromechanical loading. Butterfly curves (left) and
dielectric hysteresis loops (right) obtained for a single crystal BaTiO3 specimen subjected to a constant
compressive stress of 2.7 MPa along with a cyclic electrical loading at frequencies of 1, 0.1 and 0.01 Hz.

93



4 Laminate-based modelling of single crystalline ferroelectric materials

4.7 Laminate-based Model 4

Based on the underlying equations outlined in Section 4.2, the present section elabo-
rates on the particular laminate-based Model 4. Analogous to laminate-based Model 3,
both the total linear strains ε and the dielectric displacement DM4 of the ferroelectric
single crystal for the present laminate-based Model 4 formulation are considered to be
additively decomposed into an elastic and a remnant part as

ε = εe + εM and DM4 = De + PM . (4.86)

Here, εe denotes the reversible strain tensor and De refers to the reversible dielec-
tric displacement vector of the crystal. The remnant quantities εM(µ; ε(1,3,5)) and

PM(µ; P (1,3,5)) are defined in Equations (4.17) and (4.18) respectively. Similar to the
phenomenological model and to the previously introduced laminate-based models, the
total linear strains and electric field enter the specific laminate-based Model 4 as the
independent constitutive variables defining the average electric Gibbs energy.

In context of the model formulation, the average electric Gibbs energy defining the
coupled electromechanical response of the single crystal is additively decomposed into a
reversible piezoelectric and a remnant part as

HM4(ε,E,µ) = Hpiezo
M4 (εe,E,µ) +Hrem

M4 (µ) . (4.87)

The average electric Gibbs energy HM3(ε,E,µ) postulated for laminate-based Model 3
is chosen for the piezoelectric part of the average electric Gibbs energy for the present
laminate-based Model 4. The piezoelectric part of the average electric Gibbs energy (4.87)
reads

Hpiezo
M4 (εe,E,µ) =

1

2
εe : EM : εe − 1

2
E · εM ·E −E · eM : εe − PM ·E . (4.88)

As postulated in laminate-based Model 3, the piezoelectric electric Gibbs energy (4.88)
comprises of the transversely-isotropic material moduli, i.e. EM(µ; E(1,3,5)), eM(µ; e(1,3,5))

and εM(µ; ε(1,3,5)), all defined in Equations (4.19) to (4.21).

The remnant part of the total electric Gibbs energy (4.87), dependent on the multi-
rank laminate volume fractions, is formulated as a saturation-type energy function. The
considered remnant energy contribution reads

Hrem
M4 (µ) =

1

c

[
1

2
P sat ln

(
1−

[
PN(µ)

]2)
+ ‖PM‖ arctanh

(
PN(µ)

)]
, (4.89)

cf. [126, 137]. Here, scalar c is a model or fitting parameter that influences the shape
of the hysteresis curves. Saturation scalar PN(µ) := ‖PM‖/P sat introduced in Equa-
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4.7 Laminate-based Model 4

tion (4.89) captures the monotonically increasing remnant polarisation up to the satu-
ration level P sat.

Following the standard Coleman–Noll procedure, the constitutive equations for the
stress tensor and the dielectric displacement vector of the crystal are obtained as

σM4 =
∂HM4(ε,E,µ)

∂ε
= EM : εe −

[
eM
]t ·E and (4.90)

DM4 = − ∂HM4(ε,E,µ)

∂E
= eM : εe + εM ·E + PM , (4.91)

and the reduced dissipation inequality reads

Dred =
∑nv−1

j= 1
f jM4(µ) µ̇j ≥ 0 . (4.92)

Herein, f jM4(µ) is the thermodynamic driving force of the specific j-th rank laminate
identified as

f jM4(µ) = − ∂HM4(ε,E,µ)

∂µj

=
∂εM

∂µj
: σM4 −

1

2
εe :

∂EM

∂µj
: εe +

1

2
E · ∂ε

M

∂µj
·E +E · ∂eM

∂µj
: εe

+
∂PM

∂µj
·E − Eb, j(µ) , (4.93)

wherein the back electric field Eb, j(µ) for the j-th rank laminate is defined as

Eb, j(µ) :=
∂Hrem

M4 (µ)

∂µj
=

1

c
arctanh

(
PN(µ)

) [ PM

‖PM‖
· ∂P

M

∂µj

]
. (4.94)

The thermodynamic driving force f jM4(µ) responsible for the domain evolution in the
corresponding j-th rank laminate for the specific laminate-based Model 4 is influenced
by the additional back electric field Eb, j(µ) defined for the individual laminates. Once
the driving force f jM4(µ) exceeds the critical threshold value gc, j(µ) ≥ 0, the evolution
of the laminate volume fraction µj is computed by solving the rate-dependent evolution
equation (4.32) for the j-th rank laminate. The evolution of the multi-rank laminate
volume fractions under the applied external loads is constrained within their range due to
the considered Fischer–Burmeister-type algorithm. The reader is referred to Section 4.3,
for further details on the algorithmic scheme.
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4 Laminate-based modelling of single crystalline ferroelectric materials

4.7.1 Numerical examples

This section demonstrates the numerical capabilities of the formulated laminate-based
Model 4. With respect to the application of the particular material model in order
to study the single crystal behaviour, tests under homogeneous states of deformation
are performed. The hysteresis curves and the volume fraction evolution of the single
crystal are obtained by tests under homogeneous states of deformation. The material
parameters corresponding to the single crystal tetragonal BaTiO3 as well as the model
parameters chosen for laminate-based Model 4 are listed in Table 4.3.

4.7.1.1 Tests under homogeneous states of deformation

The butterfly and dielectric hysteresis curves as well as the mechanical depolarisation
and ferroelastic hysteresis loops for single crystal tetragonal BaTiO3 are reproduced with
tests under homogeneous states of deformation. The representative single finite element
is subjected to three different loading scenarios, namely cyclic electrical, compressive
mechanical and combined electromechanical loading. The schematic sketches of the
boundary value problems are depicted in Figure 4.32. The crystallographic axes of the
specimen corresponding to the individual loading conditions are assumed to coincide
with reference Cartesian axes e1,2,3.

The specimen is initially poled along the positive e3-axis. The initial variant volume
fraction values are set to λ(1,2,3,4,6)|t0 = 0 and λ(5)|t0 = 1. These initial values correspond

to the multi-rank laminate volume fractions µ1,2,3,4|t0 = 0 and µ5|t0 = 1. With these
starting values of the laminate volume fractions, the initial average remnant polarisation
results in PM

3 |t0 = P s, refer to Equation (4.18). Following Equation (4.17), the magnitude
of the average remnant strain along the e3-axis for the initial state, εM

33|t0 , equals the
strain value coefficient ηs

1. These non-vanishing magnitudes of the average remnant
strain and polarisation result in the initial poled configuration of the specimen along the
positive e3-axis.

For the first loading scenario, as depicted in Figure 4.32 (a), the specimen is loaded
by a cyclic electrical field at varying frequencies. The potential difference across the
specimen is generated by keeping the lower electrode grounded at all times, while its
upper counterpart is surcharged with an alternating scalar electric potential φ(t) with
φmax = ± 10 kV. Due to the prescribed homogeneous displacement boundary conditions
and due to the applied cyclic electrical loading, the specimen elongates and contracts
along the e3-direction while experiencing a corresponding contraction and expansion
along both the e1 and e2-axes. The strains and dielectric displacements resulting from
this rate-dependent and non-linear deformation are computed iteratively. The butter-
fly curve is obtained by plotting the total strains ε33 against the applied electric field
E3. Analogously, the dielectric displacement hysteresis loop is obtained by plotting the
resulting D3 values against E3. The strain and dielectric hysteresis curves obtained by
surcharging the specimen with an alternating electrical load at 0.2 Hz are plotted in
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Figure 4.42: Ferroelectric hysteresis curves simulated with laminate-based Model 4 under homogeneous
states of deformation. Butterfly curve (left) and dielectric hysteresis loop (right) obtained for a single
crystal BaTiO3 specimen subjected to a cyclic electrical loading at 0.2 Hz.
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Figure 4.43: Evolution of the laminate volume fractions (left) and of the variant volume fractions (right)
in the specimen corresponding to the butterfly and dielectric hysteresis curves plotted in Figure 4.42.
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Figure 4.44: Rate-dependent ferroelectric hysteresis curves simulated with laminate-based Model 4 un-
der homogeneous states of deformation. Butterfly curves (left) and dielectric hysteresis loops (right)
obtained for a single crystal BaTiO3 specimen subjected to a cyclic electrical loading at varying fre-
quencies of 1, 0.1 and 0.01 Hz.
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Figure 4.45: Ferroelastic hysteresis curves simulated with laminate-based Model 4 under homogeneous
states of deformation. Mechanical depolarisation curve (left) and ferroelastic hysteresis loop (right)
obtained for a single crystal BaTiO3 specimen subjected to a compressive mechanical loading and
unloading at 0.2 Hz.
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Figure 4.46: Evolution of the laminate volume fractions (left) and of the variant volume fractions
(right) in the specimen corresponding to the depolarisation and ferroelastic hysteresis curves plotted in
Figure 4.45.
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Figure 4.47: Rate-dependent ferroelastic hysteresis curves simulated with laminate-based Model 4 under
homogeneous states of deformation. Mechanical depolarisation curves (left) and ferroelastic hysteresis
curves (right) obtained for a single crystal BaTiO3 specimen subjected to a compressive mechanical
loading and unloading at varying frequencies of 1, 0.1 and 0.01 Hz.
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Figure 4.48: External-stress dependent ferroelectric hysteresis curves simulated with laminate-based
Model 4 under homogeneous states of deformation for combined electromechanical loading. Butter-
fly curves (left) and dielectric hysteresis loops (right) obtained for a single crystal BaTiO3 specimen
subjected to a cyclic electrical loading at 0.2 Hz along with constant compressive stresses.
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Figure 4.49: Evolution of the laminate volume fractions (left) and of the variant volume fractions
(right) simulated with laminate-based Model 4 under homogeneous states of deformation for an electrical
loading frequency of 0.2 Hz along with a constant compressive stress of 2.7 MPa.
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Figure 4.50: Rate-dependent hysteresis curves simulated with laminate-based Model 4 under homo-
geneous states of deformation for combined electromechanical loading. Butterfly curves (left) and
dielectric hysteresis loops (right) obtained for a single crystal BaTiO3 specimen subjected to a constant
compressive stress of 2.7 MPa along with a cyclic electrical loading at frequencies of 1, 0.1 and 0.01 Hz.
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Figure 4.42. Looking at the simulated hysteresis curves, it can be predicted that only
180◦ domain switching occurs within the specimen. The small variations of the total
strains in the butterfly curves augment, so that no stress induced 90◦ domain switch-
ing ensues in the specimen. The corresponding evolution of the multi-rank laminate
and variant volume fractions in the specimen with respect to the cyclic electric field
E3 at 0.2 Hz is plotted in Figure 4.43. The multi-rank laminate volume fraction values
are restricted within the limits 0 and 1 highlighting the efficiency of the implemented
Fischer–Burmeister algorithm. The evolution of the variant volume fractions λ(5) and
λ(6) further confirm that the specimen undergoes only 180◦ domain switching for cyclic
electric loading at 0.2 Hz. With respect to the rate-dependent response, the hysteresis
loops obtained for varying electrical loading frequencies are shown in Figure 4.44. The
widening of the butterfly and dielectric hysteresis loops at an electrical loading frequency
of 1 Hz indicates the incomplete switching of the domains at higher loading rates. The
increased magnitudes of strains along the e3-direction at 1 Hz in comparison to the values
obtained for 0.1 and 0.01 Hz may be due to the presence of some 90◦ domain switching
within the specimen at higher electrical loading rates.

In the second loading test, the poled specimen is loaded with a compressive me-
chanical load along the e3-direction as depicted in Figure 4.32 (b). The compressive
mechanical loading initiates the stress-activated 90◦ domain switching in the specimen.
As a consequence, the spontaneous polarisation, initially oriented along the positive e3-
axis, will be switched along any one of the energetically favourable e1 and e2-directions.
The rate-dependent mechanical loading and unloading of the poled specimen during
this stress-driven process results in mechanical depolarisation and ferroelastic hysteresis
curves. The numerically obtained depolarisation and ferroelastic hysteresis for a loading
and unloading rate of 0.2 Hz is shown in Figure 4.45. The stress-induced 90◦ switch-
ing of the domains initiates at lower magnitudes of compressive loads and advances
with increasing stress levels. This becomes evident from the decreasing values of the
dielectric displacement and total strains with increasing compressive loading. Further-
more, from the 0.2 Hz hysteresis plots, one may observe that the specimen does not
depolarise completely at the maximum compressive load of σ33 = − 15 MPa. The sim-
ulated stress-induced ferroelastic response with laminate-based Model 4 is comparable
with the experimental data reported by Li and Li [95]. The evolution of the laminate
and variant volume fractions for the mechanical loading scenario at 0.2 Hz are plotted
in Figure 4.46. The rate-dependent hysteretic response of the specimen with respect to
varying mechanical loading and unloading frequencies is plotted in Figure 4.47.

With respect to the high actuation strain response of the tetragonal single crystal
BaTiO3, the final homogeneous test comprises a combined electromechanical loading of
the poled specimen. In this test, a constant compressive mechanical load of varying
magnitudes is applied parallelly to the cyclic electrical field along the e3-axis of the
poled specimen. Figure 4.32 (c) depicts the schematic sketch of the particular boundary
value problem. Setting φ = 0 kV at the lower electrode, a time-dependent cyclic scalar
potential is applied at the top surface of the specimen with φmax = ± 10 kV at 0.2 Hz.

100



4.8 Comparison of laminate-based Models 2, 3 and 4

A constant compressive stress is applied in addition to the electrical load at the top
surface. The response of the specimen is studied for different magnitudes of compres-
sive stress levels ranging from 0 to 2.7 MPa. The applied combined electromechanical
load enhances the stress-driven 90◦ domain switching in the specimen, resulting in high
actuation strains along the loading direction, cf. [22, 131, 134, 151]. The numerically
obtained butterfly and dielectric displacement hysteresis curves for the combined elec-
tromechanical loading are plotted in Figure 4.48. The increase in the obtained actuation
strains with moderate increase in the applied stress levels, without significant differ-
ence in the dielectric displacement values, is well captured by laminate-based Model 4.
The evolution of the multi-rank laminate and the variant volume fractions in the spec-
imen subjected to a cyclic electrical load at 0.2 Hz and a constant compressive stress
of 2.7 MPa are plotted in Figure 4.49. The variant volume fractions λ(1,2,3,4), along the
e1 and e2-directions, evolve in addition to the evolution of λ(5) and λ(6). This indi-
cates that some of the domains initially undergo a 90◦ switching, due to the compressive
mechanical stress, and then complete the 180◦ switching which explains the enhanced
actuation strains obtained during combined electromechanical loading. The hysteretic
response of the specimen under a compressive load of 2.7 MPa along with varying electri-
cal loading frequencies is plotted in Figure 4.50. As expected, at higher electrical loading
frequencies of 1 Hz, both the butterfly and dielectric displacement curves widen due to
the incomplete switching of the domains within the specimen at high electrical loading
rates.

4.8 Comparison of laminate-based Models 2, 3 and 4

This section highlights the differences in the single crystal BaTiO3 hysteretic responses
simulated with laminate-based Models 2, 3 and 4. The respective model formulations,
detailed in Sections 4.5 to 4.7, are compared in the context of tests under homogeneous
states of deformation. The representative single finite element is subjected to three
different loading scenarios, namely cyclic electrical, compressive mechanical and com-
bined electromechanical loading, see Figure 4.32. The considered material parameters
are listed in Table 4.3. Different values for viscous-like parameter m are considered for
the subsequent simulations and their influence is studied. The poled configuration along
the positive e3-axis for all the simulations are obtained by setting µ1,2,3,4|t0 = 0 and
µ5|t0 = 1. The plotted butterfly and dielectric hysteresis curves, Figures 4.51 to 4.56,
correspond to the second loading cycle.

A comparison of laminate-based material Models 2, 3 and 4 with respect to the simu-
lated butterfly curves and dielectric displacement hysteresis loops for an electrical loading
frequency of 0.05 Hz and for two different values of viscous-like parameter m is plotted
in Figures 4.51 and 4.52. With respect to the butterfly curves, the obtained minimum
total strain value εmin

33 of the individual models is considered as reference point to which
the individual curves are shifted. One may observe the high magnitude of remnant and
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Figure 4.51: Comparison of laminate-based Models 2, 3 and 4 with respect to butterfly curves (left) and
dielectric hysteresis loops (right) under homogeneous states of deformation for a cyclic electrical loading
at 0.05 Hz and for model parameters m = 1.5, c = 3.5.
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Figure 4.52: Comparison of laminate-based Models 2, 3 and 4 with respect to butterfly curves (left) and
dielectric hysteresis loops (right) under homogeneous states of deformation for a cyclic electrical loading
at 0.05 Hz and for model parameters m = 2.0, c = 3.5.

maximum strains obtained when considering laminate-based Model 3 in comparison to
the values obtained with laminate-based Models 2 and 4 for both m = 1.5 and m = 2.0.
This may result from the fact that with laminate-based Model 3 some domains within
the specimen prefer to initially switch to 90◦ and thereafter complete a 180◦ domain
switching. In addition, laminate-based Model 3 predicts higher values of the remnant
strains along the e3-axis for m = 2.0 in comparison to the remnant strain values ob-
tained for m = 1.5. It can be inferred that laminate-based Model 3 predicts increased
stress-activated 90◦ domain switching with increasing values of viscous-like parameter
m. The comparison of laminate-based Models 2, 3 and 4 with respect to the dielectric
response for two different values of viscous-like parameter m is shown in Figures 4.51
and 4.52. The dielectric hysteresis response simulated with laminate Models 2 and 3 is
identical for m = 1.5, respectively for m = 2.0. The 90◦ domain evolution observed with
laminate-based Model 3 did not influence the dielectric response of the specimen. The
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Figure 4.53: Comparison of laminate-based Models 2, 3 and 4 with respect to mechanical depolarisa-
tion curves (left) and ferroelastic hysteresis curves (right) under compressive mechanical loading and
unloading at 0.05 Hz and for model parameters m = 1.5, c = 3.5.
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Figure 4.54: Comparison of laminate-based Models 2, 3 and 4 with respect to mechanical depolarisa-
tion curves (left) and ferroelastic hysteresis curves (right) under compressive mechanical loading and
unloading at 0.05 Hz and for model parameters m = 2.0, c = 3.5.

additional remnant energy contribution of the average electric Gibbs energy postulated
for laminate-based Model 4 leads to the difference in the obtained dielectric displacement
values D3 in comparison to D3 values obtained with laminate-based Models 2 and 3. It
is to be observed that all laminate-based Models 2, 3 and 4 predict a broader dielectric
hysteresis curves for m = 2.0 than with m = 1.5.

A comparison of laminate-based material Models 2, 3 and 4 with respect to depolar-
isation and ferroelastic hysteresis curves for a mechanical loading-unloading loading
frequency of 0.05 Hz and for two different values of viscous-like parameter m is shown
in Figures 4.53 and 4.54. Note, that laminate-based Model 2 did not capture the me-
chanical depolarisation behaviour as predicted by laminate-based Models 3 and 4. Even
at compressive loads of σmax

33 = − 15 MPa, laminate-based Model 2 did not predict the
initialisation of the stress-activated 90◦ switching in the specimen. The entire loading-
unloading path for laminate-based Model 2 results in a linear deformation of the specimen
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Figure 4.55: Comparison of laminate-based Models 2, 3 and 4 with respect to butterfly curves (left) and
dielectric hysteresis loops (right) under homogeneous states of deformation for a cyclic electrical loading
at 0.05 Hz along with a constant compressive stress of 2.7 MPa for model parameters m = 1.5, c = 3.5.
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Figure 4.56: Comparison of laminate-based Models 2, 3 and 4 with respect to butterfly curves (left) and
dielectric hysteresis loops (right) under homogeneous states of deformation for a cyclic electrical loading
at 0.05 Hz along with a constant compressive stress of 2.7 MPa for model parameters m = 2, 0, c = 3.5.

which is uncharacteristic for a single crystal tetragonal BaTiO3 solid, see Figures 4.53
and 4.54. The particular averaging principle and the subsequent driving force derivation
for laminate-based Model 2 did not predict the evolution of the variant volume fractions
λ(1,2,3,4) responsible for the 90◦ domain switching in the specimen, refer Figure 4.30. The
initialisation of the 90◦ domain switching and the subsequent non-linear depolarisation of
the specimen with increasing compressive loading are different for laminate-based Mod-
els 3 and 4 for both the viscous-like parameter values. However, both laminate-based
Models 3 and 4 predict complete depolarisation of the specimen before the maximum
compressive load of σmax

33 = − 15 MPa for m = 1.5 in comparison to the curves obtained
with m = 2.0.

The last part of the comparison study is performed on a three-dimensional specimen
subjected to combined electromechanical loading. For this test, a constant compres-
sive mechanical load of varying magnitudes is applied parallelly to the cyclic electrical
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field at 0.05 Hz along the e3-axis of the poled specimen, as depicted in Figure 4.32 (c).
The butterfly curves and dielectric hysteresis loops simulated with laminate-based Mod-
els 2, 3 and 4 for two different values of viscous-like parameter m are plotted in Fig-
ures 4.55 and 4.56. For viscous-like parameter m = 1.5, though both laminate Mod-
els 3 and 4 capture the high magnitude strain response of the poled BaTiO3 specimen,
the material response, in terms of the butterfly curves and dielectric hysteresis loops,
obtained from laminate-based Model 4 is closest to the experimental observations. The
difference between laminate-based Models 3 and 4 with respect to the remnant strain and
polarisation values, obtained at E3 = 0 kV/mm, for both m = 1.5 and m = 2.0 is due
to the influence of the additional remnant energetic part considered in laminate-based
Model 4. As the value of the viscous-like parameter is increased to m = 2.0 from m = 1.5,
both the butterfly and dielectric hysteresis curves widen in shape for all laminate-based
Models 2, 3 and 4. In the context of laminate-based Model 2, the high strain response of
the butterfly curves is not as well pronounced as compared to the response obtained
with laminate-based Models 3 and 4, since the ferroelastic 90◦ domain switching is not
captured by the averaged electric Gibbs energy formulated for laminate-based Model 2.
With reference to the dielectric hysteresis, however, laminate-based Model 2 predicts a
response comparable to laminate-based Models 3 and 4 for both m = 1.5 and m = 2.0.
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5 Laminate-based modelling of
polycrystalline ferroelectric materials

Many technological and engineering applications involving ferroelectric devices are based
on piezoceramics, i.e. polycrystalline ferroelectrics. In order to increase the design ef-
ficiency of these ferroelectric devices, the overall macroscopic response under external
loads needs to be predicted well in advance. This chapter deals with the computa-
tional framework in order to simulate the polarisation switching behaviour and hence
the macroscopic hysteretic response of a polycrystalline ferroelectric.

A polycrystalline ceramic is a compact aggregate of a number of single crystal grains
of various shapes and orientations. Due to the, say randomly oriented grains, the virgin
and unpoled polycrystalline ceramic may be considered isotropic on a macroscopic level.
Upon application of a large external electrical field along a particular global axis, the
randomly oriented domains within each grain gradually align along the loading direction.
The alignment of the microscopic domains leads to the evolution of macroscopic remnant
polarisation along the particular direction. A saturation point is reached, wherein an
additional increase of the applied electric field does not induce any further deformation
or polarisation evolution in the ceramic. At this saturated state, the polycrystalline
ferroelectric is poled and possesses macroscopic anisotropic properties along the loading
direction. The switching phenomenon encountered in the ferroelectric polycrystalline
ceramics is dissipative in nature resulting in a macroscopic non-linear hysteretic material
response.

In order to obtain a clear picture of the macroscopic behaviour of the polycrystalline
ceramics from the polarisation switching response of the individual single crystal grains,
several micromechanical models along with suitable homogenisation or averaging strate-
gies exist in the literature. With the help of these homogenisation procedures, both the
ferroelectric and ferroelastic behaviour of polycrystalline ceramics can be predicted well
in advance. Reference is made to the works by Hwang et al. [63], Chen and Lynch [32],
Hwang and McMeeking [61, 62], Huber et al. [57], Arokiarajan et al. [5–7] and to the
references cited therein for a theoretical and numerical background. Kamlah et al. [75]
implemented the micromechanical model developed in [57] within a finite element envi-
ronment to obtain the macroscopic polycrystalline response. The model implementation
was performed in the finite element framework proposed by Landis [87], wherein the di-
electric displacement vector was treated as the primary field variable instead of the
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standard scalar electric potential. Contribution [75] summarised the strain and dielec-
tric hysteresis curves, as well as the volume fraction evolution of a ferroelectric single
crystal grain first. The obtained individual grain responses were embedded in the finite
element framework of [87] by applying an orientation distribution to the crystallographic
axes of the individual grains. Assuming plane-strain conditions, both strain and dielec-
tric response of a polycrystalline ferroelectric were numerically computed. In view of
the study of the bulk polycrystalline behaviour, Jayabal et al. [68, 69] used the volume
fraction-based approach within a polygonal finite element framework in order to predict
the ferroelectric and ferroelastic hysteresis curves. Each Voronoi polygonal finite element
was assumed to be a single crystal grain. The remnant polarisation and strain, as well
as the material moduli of the individual grains were obtained by weighting the respec-
tive spontaneous values with their corresponding volume fractions. A micromechanical
switching criterion based on both 90◦ and 180◦ domain switching effects was postulated
for each Voronoi grain. Their polygonal model reproduced the hysteresis curves and
the polarisation rotation test for a PZT specimen under combined electromechanical
loading. Extending the formulation of [69], Jayabal and Menzel [67] demonstrated the
applicability of the hybrid finite element method in studying the deformation of a three-
dimensional polycrystalline ceramic under mechanical bending load. As in their previous
formulations, the individual grains of the ferroelectric polycrystal were represented by
means of a Voronoi cell to take the irregular grain shape into account.

Based on the ideas elaborated in the works by Chen and Lynch [32], Arokiarajan
et al. [5] and Bhattacharya and Li [19], the present chapter details the computational
framework in order to simulate the polarisation switching behaviour and the macro-
scopic hysteretic response of a polycrystalline ferroelectric. In particular, laminate-
based Model 4, developed in Chapter 4 for single crystal tetragonal ferroelectrics, is used
to predict the bulk polycrystalline tetragonal BaTiO3 material response by performing
a simple homogenisation procedure. At first, focus is set on the identification of the
model parameters by minimising a least-square functional based on available experi-
mental data. The identification of the model parameters, based on the single crystal
BaTiO3 experimental butterfly and dielectric hysteresis curves, is investigated in the
first part of Section 5.1. The subsequent parts in Section 5.1 validate the single crystal
laminate Model 4 based on tests under both homogeneous and inhomogeneous states of
deformation considering the optimal model parameter values. Following the calibration
procedure, a homogenisation-type strategy based on random orientation of the individual
grains in a polycrystalline aggregate is explained in Section 5.2. The material properties
and the polarisation switching response of the randomly oriented individual grains are
averaged by using a finite element framework in order to study the macroscopic poly-
crystalline behaviour. In order to show the capabilities of the proposed computational
framework, representative finite element simulations depicting the solution of the bound-
ary value problems are presented in Section 5.3. These simulations include the study of
the macroscopic hysteretic response of a three-dimensional block under cyclic electrical
loading at varying frequencies. The obtained macroscopic butterfly curve and dielectric
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Figure 5.1: Experimental butterfly curves (left) and dielectric hysteresis loops (right) for a [001]-oriented
single crystal tetragonal BaTiO3 subjected to combined electromechanical loading. The plotted curves
are extracted from the hysteresis data reported by Shieh et al. [131].

hysteresis loop for a particular electrical loading frequency are compared with newly
generated experimental data for a bulk BaTiO3 piezoceramic. Furthermore, the macro-
scopic ferroelastic hysteresis curves of the three-dimensional block specimen is predicted
for different loading-unloading frequencies. Section 5.3 closes with the analysis of the
non-linear poling behaviour of an inhomogeneous actuator specimen.

5.1 Calibration of model parameters

This section details the calibration procedure considered in order to identify the model
parameters of the laminate-based formulations for single crystal tetragonal ferroelectric
solids based on the available experimental butterfly and dielectric hysteresis curves. For
the calibration process, laminate-based Model 4 is considered as the basis model which
predicts the external stress and rate-dependent material response of the single crystal
tetragonal BaTiO3 closest to the experimental data.

The material parameters defining the linear piezoelectric response behaviour as well as
the coercive electric field constants characterising the onset of polarisation switching of
single crystal tetragonal BaTiO3 are taken from the literature. The list of single crystal
tetragonal BaTiO3 material constants, adopted from [125, 151, 152], are summarised
in Table 4.3. The derived laminate-based Model 4 includes parameters which influence
the non-linear hysteretic behaviour in addition to the listed material constants. These
model or fitting parameters include viscosity-type parameter ηp, viscous-like parameter
m and slope parameter c. These additional fitting parameters need to be identified based
on measured butterfly and dielectric hysteresis data for single crystal BaTiO3 samples.
The discrepancies between the experimental data and the simulated total strains and
dielectric displacements are minimised in order to arrive at the optimal values following
a least-square error minimisation technique.
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Figure 5.2: Loading curve considered for the simulation: applied potential difference vs time.

For reference values, we consider the butterfly and dielectric hysteresis curves mea-
sured by Shieh et al. [131], see Figure 5.1. Unpoled [001]-oriented single crystal tetragonal
BaTiO3 samples of dimensions 5 mm× 5 mm× 2 mm were used in their study. In their
experiments, the single crystal sample was subjected to a combined electromechanical
loading, wherein a cyclic electrical load was applied at 0.2 Hz along with varying magni-
tudes of constant compressive mechanical stress between 0 and 2.7 MPa. With respect
to the numerical simulations, a constitutive driver routine is used to iteratively com-
pute the strains and the dielectric displacements for the prescribed electric field and
compressive stress, cf. [81, 110, 111].

Since the considered experiments [131] were carried out at a fixed electrical loading
frequency, viscosity-type parameter ηp is set to a constant value during the entire cali-
bration process. By setting ηp = 0.01 m2/C s, viscous-like parameter m > 0, introduced
in the rate-dependent dissipation equation (4.31), and slope parameter c > 0, influencing
the remnant energy contribution (4.89) of laminate-based Model 4, are identified by min-
imising a least-square functional f(κ). The specific non-linear constrained optimisation
problem reads

κ = arg min
κ
{f(κ)} such that κ = {m > 0, c > 0} , (5.1)

wherein the least-square functional depending on κ = {m, c} is formulated as

f(κ) =
1

2

T∑
k=1

 Nk
1∑

i=1

wki1

∣∣∣εki, sim33 (κ, Eki, exp
3 )− εki, exp

33 (Eki, exp
3 )

∣∣∣2

+

Nk
2∑

j=1

wkj2

∣∣∣Dkj, sim
3 (κ, Ekj, exp

3 )−Dkj, exp
3 (Ekj, exp

3 )
∣∣∣2
 . (5.2)

Here, index T = 6 represents the set of experimental hysteresis curves for the six differ-
ent external stress levels, see Figure 5.1. Indices Nk

1 and Nk
2 denote the number of data

points extracted from the butterfly and the dielectric hysteresis curves corresponding
to the kth-set of external stress levels. The extracted data points are arranged in the
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form of an array, wherein Nk
1 provides information on the experimental electrical field

values Eki, exp
3 and their equivalent total strain magnitudes εki, exp

33 . Analogously, Nk
2 de-

codes the experimental electrical field values Ekj, exp
3 and their corresponding dielectric

displacements Dkj, exp
3 . Before starting the calibration process, the simulation results

and the experimental data must be referred to identical events in time which, in general,
requires appropriate interpolation techniques. The iteratively computed total strains
under homogeneous states of deformation, for the electric fields Eki, exp

3 and for vary-
ing compressive stress magnitudes σ33 as input values, are denoted by εki, sim33 (κ, Eki, exp

3 ).
Similarly, the simulated dielectric displacements also under homogeneous states of defor-
mation using Ekj, exp

3 and σ33 as inputs are designated by Dkj, sim
3 (κ, Ekj, exp

3 ). Finally, the
scalar and non-negative weighting factors considered in the least-square functional (5.2)
are defined as

wki1 := ∆tki, exp/∆tki, sim and (5.3)

wkj2 := ∆tkj, exp/∆tkj, sim , (5.4)

wherein ∆t is defined as the difference between any two successive time intervals within
the considered loading curve. To be specific, ∆tki, sim = ∆tkj, sim = 0.002 sec is the
constant time increment considered during the simulations. The time increments

∆tki, exp = tki, exp
n+1 − tki, exp

n and ∆tkj, exp = tkj, exp
n+1 − tkj, exp

n , (5.5)

vary with respect to the experimental hysteresis curves corresponding to the specific
external stress level.

The experimental butterfly and dielectric displacement hysteresis plots for varying ex-
ternal stress magnitudes were reported by Shieh et al. [131] for one full triangular loading
cycle. Information on the loops preceding the reported hysteresis curves was not pro-
vided in their work. Based on the available data, the points are extracted starting from
the remnant configuration of the sample, see Figure 5.1. In order to be in line with the
experimental results, the poled specimen considered for the simulations is loaded and
unloaded once at 0.2 Hz such that the remnant state is reached, see the shaded region
OA in Figure 5.2. Starting from this reference remnant state, point A in Figure 5.2, the
identification process is commenced by minimising the least-square functional (5.2).

The error minimisation problem is first solved using the ga solver (genetic algorithm)
within the Optimization Toolbox provided in MATLAB in order to find the suitable
initial values for the two model parameters. By setting the lower and upper bounds
to finite non-negative values, this initial procedure is carried out separately for the six
individual external stress-dependent hysteresis loops. From the generated list of initial
values, an appropriate starting value is selected for each of the two model parameters.
Considering the new start values, the least-square functional (5.2) is minimised by using
the fmincon solver (constrained nonlinear minimisation) powered by SQP-based algo-
rithm considering all the reported hysteresis curves simultaneously in MATLAB. The
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optimal viscous-like and slope parameters obtained considering all six sets of external
stress level data read

m = 1.494 and c = 3.648 . (5.6)

Having identified the optimal fitting parameters and by considering the material parame-
ters listed in Table 4.3, representative boundary value problems both under homogeneous
and inhomogeneous states of deformation are solved with the help of the finite element
method in order to validate the particular laminate-based Model 4.

In the context of the tests under homogeneous states of deformation, the specimen
is subjected to a combined electromechanical loading, wherein varying magnitudes of
compressive mechanical load is applied parallel to the cyclic electrical loading direction.
The boundary conditions as well as the load curves are the same as depicted in Fig-
ure 4.32 (c). The strain and dielectric hysteresis loops under cyclic electrical loading at
0.2 Hz along with varying magnitudes of constant compressive stresses starting from 0
to 2.7 MPa simulated with laminate-based Model 4 for the calibrated model parameters
are plotted in Figure 5.3. For comparison with the experimental data, see Figure 5.1, the
simulated strain and dielectric hysteresis plots correspond to the second loading cycle.
Moreover, for the individual applied stress levels, the minimum value of the obtained
total strains is considered as the reference point to which the individual butterfly curves
are shifted. The increase in the obtained actuation strains, with increase in the ap-
plied stress levels without significant differences in the dielectric displacement values, is
well captured by laminate-based Model 4. The comparison of the experimental data to
the simulated results, with the calibrated model parameters, with respect to the but-
terfly curves and dielectric displacement hysteresis loops for a cyclic electrical loading
frequency of 0.2 Hz and for one specific mechanical load of σ33 = − 2.7 MPa is shown
in Figure 5.4. It is observed that the particular laminate-based Model 4 with the cali-
brated model parameters captures the external stress-dependent hysteretic response of
the single crystal tetragonal BaTiO3 in line with the experimentally obtained data.

The versatility of single crystal laminate-based Model 4 is further demonstrated by
solving an inhomogeneous boundary value problem. This test under inhomogeneous
states of deformation is performed on an initially poled three-dimensional plate with
a centred hole. The boundary conditions along with the load curves for the specimen
under study are the same as the ones considered for the inhomogeneous study with
the phenomenological model, depicted in Figure 3.6. The crystallographic axes of the
initially poled specimen are assumed to coincide with reference Cartesian axes e1,2,3.
The specimen has the planar dimensions L ×H = 10 mm × 10 mm spanning along the
e2 and e3-directions. The thickness of the specimen along the e1-axis is T = 1 mm and
the diameter of the centred hole is D = 3 mm. In view of the finite element method,
the specimen under study is discretised by 400 tri-linear brick elements. With respect
to the displacement boundary conditions, both the top and bottom surfaces of the plate
are prescribed with zero values of displacements along all the three Cartesian directions.
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Figure 5.3: External stress-dependent hysteresis curves simulated with laminate-based Model 4 for
calibrated model parameters m = 1.494, c = 3.648. Butterfly curves (left) and dielectric hysteresis
loops (right) for a cyclic electrical loading at 0.2 Hz along with varying compressive stress levels.
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Figure 5.4: Comparison of experimental and simulated butterfly curves (left) and dielectric hysteresis
loops (right) for a single crystal BaTiO3 specimen subjected to a cyclic electrical loading at 0.2 Hz along
with a compressive stress σ33 = 2.7 MPa. The experimental data is taken from [131] and the simulated
hysteresis curves are obtained with laminate-based Model 4 for m = 1.494, c = 3.648.

A cyclic time-dependent electric field with a potential difference of ∆φmax = ± 20 kV
at a loading frequency of 1 Hz is applied across the top and bottom surfaces of the
plate along the e3-axis. For the defined boundary conditions, the total strains and the
dielectric displacements are computed iteratively with respect to the applied external
electrical field. Figure 5.5 shows the distribution of the electric potential, total strain and
dielectric displacement at different time intervals along the loading direction across the
specimen. Domain switching and subsequent evolution of the laminate volume fraction
along the loading direction is initiated once the corresponding driving force exceeds the
coercive limit. Due to the inhomogeneity of the problem under study, the evolution of the
multi-rank laminate volume fractions in the specimen are not uniform. Moreover, due
to the imposed zero displacements at both the top and bottom surfaces, the deformation
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Figure 5.5: Contour plots of scalar electric potential φ, total strain ε33 and of dielectric displacement D3

at different time intervals simulated with laminate-based Model 4 for the calibrated model parameters
m = 1.494, c = 3.648. The specimen is subjected purely to a cyclic electrical field at 1 Hz. The load
curve on the left-most side depicts the time-dependent electric potential loading at the top electrode.
The schematic sketch of the corresponding boundary value problem is shown in Figure 3.6.
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obtained across the specimen is highly non-uniform and mostly concentrated near the
hole region. It can be observed that the distribution of both the total strain and dielectric
displacement is slightly different for the poled states at t = 0.25 and 1.25 secs. This
explains that the response of the ferroelectric specimen is different when loaded from an
initially poled configuration compared to the re-poling from its remnant state.

5.2 Averaged response of polycrystalline ferroelectrics

The bulk polycrystalline ferroelectric is an aggregate of a number of single crystal grains
of various shapes and orientations. Two neighbouring grains are separated from each
other by a grain boundary. The properties of the crystal near the grain boundaries as
well as the intergranular effects play an important role while studying the macroscopic
response of the bulk ceramic under sufficiently large external electrical or mechanical
loads. In our averaging procedure, the grain-to-grain interactions are not explicitly taken
into account by postulating additional functions. However, the intergranular effects are
established implicitly by solving the necessary finite element equations. In addition,
the assumption of a perfect ceramic devoid of any defects or voids is considered in our
formulation.

Based on these assumptions, the bulk polycrystalline ferroelectric is assigned to a
global reference coordinate system coinciding with Cartesian axes e1,2,3. The single
crystal grains in the bulk ceramic are assigned to a local coordinate system which is
randomly oriented corresponding to the global reference coordinate system. The random
orientation of the individual crystals is obtained by carrying out three successive proper
Euler rotations of the individual default local coordinate axes, cf. [32, 63]. The three
consecutive Euler angles of rotation are designated by θ = (Φ,Θ, Ψ). The three Euler
angles are initialised with random values for individual grains so that

Φ, Ψ ∈ [0, 2π] and sin(Θ − π/2) ∈ [−1, 1] , (5.7)

hold. For further details on the Euler angles and their properties, the reader is referred
to the textbook by Goldstein [51].

The sequence of rotations is as follows. Let an arbitrary single crystal grain be initially
oriented along the default global crystallographic axes e1,2,3, as depicted in Figure 5.6 (a).
The default orientation is rotated by an angle Φ in counter-clockwise direction around
the e3-axis to arrive at the orientation spanned by ẽ1,2,3, as denoted in Figure 5.6 (b).
During this first rotation, e3 = ẽ3 holds. The oriented grain, Figure 5.6 (b), is rotated
counter-clockwise around the ẽ1 by an angle Θ to arrive at the grain orientation with base
vectors ê1,2,3, see Figure 5.6 (c). During the transformation from the second to the third
orientation, condition ẽ1 = ê1 holds. Finally, the rotated configuration, Figure 5.6 (c), is
subjected to a third rotation by an angle Ψ counter-clockwise around the ê3-axis to arrive
at the configuration depicted in Figure 5.6 (d) with unit bases e′1,2,3, with the condition
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ê1

ê2
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Figure 5.6: Schematic representation of the elemental rotation sequence defined by proper Euler angles
Φ,Θ, Ψ starting from an initial configuration (a) to a final rotated configuration (d).

ê3 = e′3. The local coordinates of the rotated individual grains, spanned by the base
vectors e′1,2,3, are related to the global default coordinate system via the relation

e′i = Rθ(θ) · ei for i = 1, 2, 3 , (5.8)

wherein Rθ(θ) is the product of the three successive rotation tensors

Rθ(θ) = RΨ (Ψ) ·RΘ(Θ) ·RΦ(Φ) . (5.9)

The individual rotation tensors for the three proper rotations are defined by the respec-
tive coefficients

[
RΦ
]
ei

=

 cos(Φ) sin(Φ) 0

− sin(Φ) cos(Φ) 0

0 0 1

 , (5.10)

[
RΘ
]
ẽi

=

1 0 0

0 cos(Θ) sin(Θ)

0 − sin(Θ) cos(Θ)

 and (5.11)

[
RΨ
]
êi

=

 cos(Ψ) sin(Ψ) 0

− sin(Ψ) cos(Ψ) 0

0 0 1

 . (5.12)

The reader is referred to the works, for instance [5, 32], for more details on the treatment
of grain orientation effects in polycrystalline ferroelectric solids.
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Due to the random Euler rotations of the single crystals, the spontaneous strain and
polarisation as well as the material properties of the individual crystals are described
based on the rotated local crystallographic axes e′1,2,3. The rotated spontaneous strain
and polarisation of the six tetragonal ferroelectric variants of individual crystals are
represented as

εR(1) = εR(2) = [ ηs
1 − ηs

2 ] e′1 ⊗ e′1 + ηs
2 I , PR

(1) = −PR
(2) = P s e′1 , (5.13)

εR(3) = εR(4) = [ ηs
1 − ηs

2 ] e′2 ⊗ e′2 + ηs
2 I , PR

(3) = −PR
(4) = P s e′2 , (5.14)

εR(5) = εR(6) = [ ηs
1 − ηs

2 ] e′3 ⊗ e′3 + ηs
2 I , PR

(5) = −PR
(6) = P s e′3 . (5.15)

Based on the rotated spontaneous polarisation, the structural vector and the structural
tensor of the tetragonal variants within the rotated single crystals read

aR(α) :=
PR

(α)

‖PR
(α)‖

and mR
(α) := aR(α) ⊗ aR(α) , (5.16)

for α = 1, . . . , nv = 6. Following the definitions of the rotated spontaneous and struc-
tural quantities, the material moduli of the individual variants of the randomly ori-
ented crystals are obtained considering the rotated structural quantities (5.16). The
rotated fourth-order elasticity tensor ER(α)(a

R
(α)), the rotated third-order piezoelectric

tensor eR(α)(a
R
(α)), and the rotated second-order dielectric tensor εR(α)(a

R
(α)) are arrived by

reformulating Equations (4.6) to (4.8) considering the modified definitions for the rotated
structural quantities aR(α) and mR

(α).

The volume average of remnant strain εM, R(µ; εR(1,3,5)) and of remnant polarisation

PM, R(µ; PR
(1,3,5)) of the rotated single crystal grains is arrived at by reformulating the

volume average expressions (4.17) and (4.18) considering the rotated spontaneous strain
and polarisation defined in Equations (5.13) to (5.15). Analogously, the rotated volume
averaged material moduli, namely elasticity tensor EM, R(µ; ER(1,3,5)), piezoelectric tensor

eM, R(µ; eR(1,3,5)) and dielectric tensor εM, R(µ; εR(1,3,5)) are reformulated in terms of the
rotated material moduli of the individual variants. The rotated structural and remnant
quantities as well as the rotated material moduli enter the average electric Gibbs en-
ergy corresponding to laminate-based Model 4 to describe the coupled electromechanical
process. The global governing constitutive equations are solved using the finite element
method in order to arrive at the overall macroscopic response.

5.3 Numerical examples

This section is aimed at studying the average macroscopic response and the remnant
polarisation switching behaviour of bulk ceramic BaTiO3 by solving representative nu-
merical examples. The first part of the simulation involves the investigation of both
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Figure 5.7: Schematic representation of three-dimensional specimen along with the boundary conditions
and load curves subjected to (a) cyclic electrical and (b) electromechanical loading. The geometry
of both the boundary value problems are discretised by 100 tri-linear brick elements, wherein the
crystallographic axes e′i within each element are randomly generated.

the average ferroelectric and ferroelastic hysteresis curves of a three-dimensional block
under electrical and under electromechanical loading conditions. The numerically simu-
lated macroscopic butterfly and dielectric hysteresis loops under pure electrical loading
at 0.2 Hz are compared to the newly measured experimental data. The final part of
the polycrystalline simulation deals with the analysis of an inhomogeneous boundary
value problem in connection with its relevance to practical applications. A multilayer
stack actuator example with necessary symmetry conditions is considered for the study.
The simulated poling behaviour and the remnant polarisation switching response of the
actuator specimen are examined under cyclic electrical loading.

For all the polycrystalline numerical simulations, the bulk specimen under study is
described by a global coordinate frame assumed to coincide with the reference Cartesian
axes e1,2,3. With respect to the finite element method, the respective boundary value
problems are discretised by a number of elements, wherein the crystallographic directions
attached to each finite element are randomly generated. The orientation of the respective
crystallographic axes are spanned by the rotated Cartesian axes e′1,2,3 as defined by the
three randomly initialised Euler angles θ = (Φ,Θ, Ψ), see Section 5.2. Note, that one set
of Euler angles is generated for all integration points within each finite element.

5.3.1 Hysteretic response of a polycrystalline block

In order to predict the average macroscopic hysteretic response of a bulk polycrys-
talline BaTiO3 with the computational framework based on laminate Model 4 formula-
tion, the following numerical tests are performed on a block-type specimen separately
under electrical and under electromechanical loading. The schematic representation of
the boundary value problems considered for the numerical tests is shown in Figure 5.7.
The three-dimensional specimen measures L × H = 5 mm × 2 mm with a thickness of
T = 5 mm. The global coordinate system of the block specimen is assumed to coincide
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with reference Cartesian axes e1,2,3. With respect to the finite element discretisation,
the specimen is subdivided into 100 tri-linear brick elements. The crystallographic axes
of the individual finite elements, assigned to a local coordinate frame spanned by e′1,2,3,
are oriented in different directions due to the random initialisation of the three Euler
angles. Moreover, initial poling along the (local) positive e′3-axis is considered by setting
µ1,2,3,4|t0 = 0 and µ5|t0 = 1.

For the first of the two boundary value problems, the specimen is subjected to an
alternating electrical field at varying loading frequencies. The potential difference across
the specimen is generated by grounding the lower electrode and by applying a time-
dependent scalar electrical potential φ(t) at the upper electrode with φmax = ± 6 kV.
With respect to the displacement boundary conditions, all the nodes at the bottom
surface of the specimen are prescribed to zero values along all the three global Cartesian
axes. The particular boundary value problem along with the load curve is depicted in
Figure 5.7 (a).

The average butterfly and dielectric displacement hysteresis curves obtained for an
electrical loading frequency of 0.2 Hz are plotted in comparison to the experimentally
measured hysteresis data in Figure 5.8. The experiments were carried out in collabo-
ration with Prof. A. Arockiarajan at the Department of Applied Mechanics, Indian In-
stitute of Technology Madras. The cylindrical sample used for the experimental study
was a poled polycrystalline tetragonal BaTiO3 with a diameter measuring 10 mm and
with a thickness of 2 mm. For the purpose of comparison, the remnant strain values of
both the measured and simulated data are considered as reference points to which the
butterfly curves are shifted.

Due to the random initial orientations of the individual crystallographic directions,
the ceramic specimen does not possess a macroscopic polarisation along any particular
direction in its virgin state. The initial unpoled state is characterised by almost zero val-
ues of average dielectric displacements along the loading direction, D3|t0 ≈ 0 C/m2. As
the applied macroscopic electrical field gradually increases, the driving force of the indi-
vidual laminate systems within each grain exceeds the critical force value. This initiates
the microscopic switching and aligns the domains along the electrical loading direction
within the individual grains. On a macroscopic level, one may observe the non-linear
increase in both the simulated average total strain and dielectric displacement from their
initial zero values to their maximum positive values obtained at E3 = 3 kV/mm. At this
maximum positive electrical loading, the ceramic specimen is in an elongated poled state
along the loading direction. Though differences in the strain values at E3 = 3 kV/mm
are visible between the experimental and the simulated butterfly curves, the magnitude
of the numerically computed dielectric displacement D3 at this maximum positive load-
ing point correlates its experimentally measured counterpart. The specimen reaches
a remnant state once the applied electric field is decreased from E3 = 3 kV/mm to
0 kV/mm. During this unloading phase, the specimen behaves linearly exhibiting a lin-
ear piezoelectric response. Moreover, the simulated dielectric displacement values are
comparable to the experimentally measured data during the piezoelectric response. Re-
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versal of the electric field and loading of the specimen further with negative electrical
fields orients the domains within the individual single crystals along the reversed loading
direction. At the negative maximum load of E3 = − 3 kV/mm, the dielectric displace-
ment is almost saturated and the specimen acquires a new poled state along the global
negative e3-axis. Subsequent loading of the specimen up to E3 = 3 kV/mm re-orients
the domains, and hence the macroscopic remnant polarisation back along the loading
direction. The closed butterfly and dielectric hysteresis loops are obtained after the
completion of one full loading cycle. The simulation results predict wider butterfly and
dielectric displacement hysteresis loops for 0.2 Hz in comparison to the measured curves.
The experimental investigation on the ceramic shows that domain switching begins at
much lower magnitudes of the electric field, at E3 ≈ ± 0.3 kV/mm, whereas in the
simulations, macroscopic domain switching initiates at around E3 = ± 1 kV/mm. The
difference in the simulated and measured curves may be due to the fact that the aver-
aging procedure carried out to arrive at the polycrystalline response from single crystal
laminate-based Model 4 is a simple strategy and does not explicitly take into account
the grain-to-grain interactions evident in the bulk ceramic. Moreover, the considered
material parameters for the polycrystalline simulations are based on the single crystal
data. These parameters may also be a source of error.

The simulated average strains and dielectric displacements of the ceramic specimen
under cyclic electrical loading for varying frequencies are shown in Figure 5.9. The
plotted strain and dielectric displacement curves correspond to the second loading cycle.
Furthermore, the butterfly curves for different frequency levels are shifted, such that the
corresponding remnant strains obtained in the simulations at E3 = 0 kV/mm are set to
zero and treated as the reference points. The following features are observed from the
simulated rate-dependent hysteresis curves. With increasing electrical loading rates from
1 Hz to 10 Hz, the coercive electric limit of the bulk specimen shows an increase, and
so consequently both the butterfly and dielectric hysteresis curves widen in shape. This
is due to the delay in the initialisation of the domain switching within the individual
crystals as the applied frequency increases. The magnitude of both the average strains
and dielectric displacements obtained at E3 = ± 3 kV/mm decreases with increasing
loading rates. At higher frequencies, due to the limited time available, not all domains
are switched completely at the maximum electrical load. As a result, the strains and
the dielectric displacements obtained at frequencies greater than 2 Hz do not saturate
at the maximum load E3 = ± 3 kV/mm.

In view of the second boundary value problem, the ceramic specimen is subjected
first to an alternating electrical field and is then loaded by a time-dependent mechani-
cal compressive stress. The boundary value problem along with the load curve for this
electromechanical loading of the block specimen is depicted in Figure 5.7 (b). The po-
tential difference across the ceramic is generated by grounding the lower electrode and
by applying a time-dependent scalar electrical potential φ(t) at the top electrode with
φmax = ± 6 kV. With respect to the displacement boundary conditions, the ceramic is
allowed to elongate and contract along the positive global e3-axis while experiencing a
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Figure 5.8: Comparison of the experimental and simulated butterfly curves (left) and dielectric hystere-
sis loops (right) for a polycrystalline tetragonal BaTiO3 subjected to a cyclic electric loading at 0.2 Hz
along the global e3-axis. The experiments were performed in collaboration with Prof. A. Arockiarajan,
Department of Applied Mechanics, Indian Institute of Technology Madras. The simulated curves are
obtained for the boundary value problem depicted in Figure 5.7 (a).
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Figure 5.9: Simulated butterfly curves (left) and dielectric hysteresis loops (right) of a polycrystalline
tetragonal BaTiO3 subjected to varying frequencies of cyclic electrical loading along the global e3-axis,
with respect to the boundary value problem depicted in Figure 5.7 (a).
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Figure 5.10: Simulated mechanical depolarisation curves (left) and ferroelastic hysteresis curves (right)
of a bulk polycrystalline tetragonal BaTiO3. The specimen, from its remnant configuration, is subjected
to varying frequencies of compressive mechanical loading and unloading along the global e3-axis in
accordance to the boundary and loading scenario as sketched in Figure 5.7 (b).
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Figure 5.11: Schematic representation of three-dimensional stack actuator specimen along with the
boundary conditions and load curves subjected to cyclic electrical loading at 0.2 Hz. The boundary
value problem is discretised by 400 tri-linear brick finite elements, wherein the crystallographic axes
within each element are randomly generated.

corresponding contraction and elongation along both the positive global e1 and e2-axes.
Cyclic electrical loading is applied until the ceramic specimen reaches a macroscopic
remnant configuration. From this remnant state, a rate-dependent mechanical compres-
sive stress σ33(t) is applied at the top surface of the ceramic specimen. Starting from the
remnant state, the simulated average mechanical depolarisation curves and ferroelastic
hysteresis curves resulting from the rate-dependent mechanical loading and unloading
scenario are plotted in Figure 5.10. For the ferroelastic hysteretic response, the remnant
state of the ceramic is set as the reference point to which the obtained average ferroe-
lastic hysteresis curves are shifted, see the ferroelastic curves in Figure 5.10. From both
the macroscopic ferroelastic and depolarisation hysteresis plots it becomes evident that,
even as the applied stress reaches a magnitude of σ33 = − 100 MPa, not all the domains
in the bulk ceramic are switched perpendicularly to the loading direction. Moreover, as
the frequency of the applied load increases, the incomplete domain switching in the ce-
ramic results in an increased non-linear response which becomes visible from the average
hysteresis plots.

5.3.2 Poling behaviour of a polycrystalline stack actuator

Following the investigation on the ferroelectric and the ferroelastic hysteretic response
of a bulk polycrystalline BaTiO3, we proceed to analyse the non-linear response of an in-
homogeneous actuator specimen under cyclic electrical loading. Kamlah and Böhle [72]
have previously studied the response of a two-dimensional stack actuator specimen.
Exploiting the symmetry conditions of the stack actuator boundary value problem as
explained in their work, the dimensions of the actuator specimen along with the bound-
ary conditions and load curves are shown in Figure 5.11. As assumed in the boundary
value problems solved in the preceding subsection, the global coordinate system of the
actuator specimen coincides with the reference Cartesian axes e1,2,3. The boundary value
problem is sub-divided into 400 tri-linear brick elements. Each finite element possesses
randomly oriented crystallographic directions, such that the virgin state of the specimen
corresponds to an unpoled configuration with a nullified overall macroscopic polarisa-
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Figure 5.12: Contour plots depicting the scalar electric potential φ (left) and dielectric displacement D3

(right), along with the remnant polarisation vectors, of the polycrystalline stack actuator specimen at
different time intervals simulated with the help of the computational framework within the finite element
environment. The load curves depicted on the left-most region correspond to the electric potential at
specific time applied at the bottom electrode of the specimen.
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tion. The initial poling direction is chosen along the respective (local) positive e′3-axis by
initialising µ1,2,3,4|t0 = 0 and µ5|t0 = 1 within each finite element. In view of the electrical
loading conditions, a time-dependent electric potential φ(t) is applied at both the top
and bottom surfaces of the specimen at 0.2 Hz with φmax = ± 85 V. Due to the applied
load, a potential difference of ∆φmax = ± 170 V is generated between the electrodes at
the maximum point of loading. The contour plots corresponding to the distribution of
electric potential and to the distribution of macroscopic dielectric displacement, along
with remnant polarisation vectors, at different time intervals are shown in Figure 5.12.

Due to the random initialisation of the single crystal orientations, the virgin state
of bulk polycrystalline specimen corresponds to an unpoled configuration without a
macroscopic remnant polarisation. We obtain almost zero values for the overall dielec-
tric displacement along the loading direction at this initial state, that is D3|t0 ≈ 0 C/m2.
Starting from this unpoled initial configuration, the potential difference across the spec-
imen is decreased in steps of ∆t. As the magnitude of the applied load increases with
time, the driving force exceeds the critical resistance value defined for each laminate
system. This results in the microscopic domain switching within each single crystal
grain and, on a macroscopic level, the remnant polarisation of the bulk specimen evolves
along the loading direction. At t = 1.25 sec, as the applied potential difference reaches
a negative maximum of ∆φ = − 170 V, the spontaneous polarisation of the individual
grains between the two electrodes is aligned along the loading direction and the actuator
reaches a poled state. From this poled state, as the applied electrical loading is linearly
increased to zero value at t = 2.5 sec, the actuator reaches a remnant state. At this
point the macroscopic remnant polarisation direction is still aligned along the global
positive e3-direction. After further increasing the applied potential difference from zero
to a positive maximum ∆φ = 170 V, the macroscopic remnant polarisation reverses its
direction and evolves along the electrical loading direction. Due to the reorientation,
the actuator reaches a poled state at t = 3.75 sec with the remnant polarisation vectors
aligned along the global negative e3-axis. Finally the macroscopic remnant polarisation
is reoriented along the global positive e3-direction as the potential difference is decreased
to its positive maximum of ∆φ = 170 V at t = 6.25 sec.

From the simulations it can be observed that, at the fully poled and at the remnant
states, the actuator acquires a high concentration of macroscopic remnant polarisation
at the lower electrode tip, highlighting the inhomogeneity of the problem. Moreover, at
the fully poled and remnant states, the actuator is only polarised in the region between
the electrodes. The right-most part of the actuator is devoid of an effective macroscopic
polarisation.
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This dissertation deals with the development of thermodynamic consistent material
models along with their numerical implementation in order to simulate the macroscopic
non-linear hysteretic behaviour of both ferroelectric tetragonal single and polycrystalline
solids.

Starting with a brief introduction to ferroelectric crystals and ceramics, the influence
of both the loading frequency and the magnitude of the compressive mechanical stress,
applied in parallel to the external electrical field, on the macroscopic hysteresis curves
are highlighted in Chapter 1. The essential balance relations needed for the develop-
ment of thermodynamically consistent material models in order to describe the coupled
electromechanical behaviour in ferroelectric materials are summarised in Chapter 2. In
particular, the basic equations of electrostatics and the considered strain and stress mea-
sures, assuming geometrically linear theory, governing the deformation of the material
are introduced. Following the kinematic and stress measures, the balance equations for
the coupled electromechanical response as well as the general thermodynamic framework
for dissipative ferroelectric materials are provided. Thereafter, the weak formulation of
the governing equilibrium equations and their approximations as well as the nodal resid-
ual equations needed for the finite element framework are outlined. The displacement
vector and scalar electric potential are both treated as the primary field variables in the
finite element formulation for solving the global boundary value problems.

A rate-dependent phenomenological material model to predict the macroscopic hys-
teretic response of tetragonal ferroelectric materials is discussed in Chapter 3. The model
framework focusses on postulating a total electric Gibbs energy, with the macroscopic
remnant polarisation as the only internal state variable, and a rate-dependent dissipation
equation, written as a function of the rate of the macroscopic remnant polarisation. The
evolution of the macroscopic remnant polarisation is obtained by solving the particular
rate-dependent dissipation equation. In contrast to the incremental variational formula-
tion [110], the full driving force expression defining the remnant polarisation evolution is
considered for the numerical implementation of the presented phenomenological model.
Considering single crystal tetragonal BaTiO3 material parameters, the phenomenolog-
ical model reproduces the characteristic rate-dependent butterfly curves and dielectric
hysteresis loops for a three-dimensional specimen subjected to purely cyclic electrical
loading under homogeneous states of deformation. Moreover, the influence of both the
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loading frequency and the viscous-like parameter on the obtained strain and dielectric
hysteresis curves is studied. The macroscopic material model is further implemented in
a finite element environment to solve boundary value problems to study the total strain
and dielectric displacement distribution under inhomogeneous states of deformation.

Based on the average strain and polarisation compatibility conditions between the
distinct tetragonal ferroelectric variants, four laminate-based models are developed in
Chapter 4 in order to study the rate and external stress-dependent response of ferroelec-
tric single crystals. Starting with the introduction of the symmetry considerations and
material properties of the tetragonal ferroelectric variants, four different formulations of
the average electric Gibbs energy are suggested. The general form of the average electric
Gibbs energy corresponding to the individual models is postulated in terms of the total
strains, electric field and of the multi-rank laminate volume fractions, the latter playing
the role of internal state variables. The update of the inequality constrained laminate
volume fractions is solved by a Fischer–Burmeister-type algorithm in combination with
a Newton–Raphson scheme. The specific algorithm is chosen in order to solve the evo-
lution equations along with automatically constraining the laminate volume fractions
within their allowed range. In context with the formulation of the average electric Gibbs
energy for the individual laminate models, the four laminate-based models are developed
based on different averaging principles. For laminate-based Model 1, the average electric
Gibbs energy of the crystal is formulated analogous to the phenomenological model.
Neglecting the average kinematic compatibility equation, the average remnant strain of
the crystal is postulated as a function of the average remnant polarisation, computed by
considering the polarisation compatibility condition. The material responses obtained
with laminate Model 1 for tests under both homogeneous and inhomogeneous states of
deformation are furthermore compared to those obtained with the phenomenological
model. Laminate-based Model 2 postulates six distinct electric Gibbs energies corre-
sponding to the individual tetragonal ferroelectric variants. The distinct electric Gibbs
energies are weighted by their respective volume fractions so as to arrive at the average
electric Gibbs energy of the single crystal. The rate-dependent hysteresis curves corre-
sponding to an initially poled three-dimensional specimen subjected to a cyclic electrical
load depicting pure 180◦ domain switching are reproduced by tests under homogeneous
states of deformation. However, the high strain response of a single crystal specimen
under combined electromechanical loads is not predicted by the averaging principle con-
sidered for laminate-based Model 2. In laminate-based Model 3, the averaged remnant
quantities and material moduli of the six tetragonal variants are considered in order to
define the average electric Gibbs energy. In view of laminate-based Model 4, the electric
Gibbs energy introduced for laminate-based Model 3 is extended by a saturation-type
remnant energy part based on the averaged remnant polarisation to capture the so-
called back electric field effect observed during the hysteretic response. The differences
in the material responses obtained with laminate-based Models 2, 3 and 4 are highlighted
in the form of a comparison study. Out of the four laminate-based formulations, the
butterfly curves and dielectric hysteresis loops as well as the mechanical depolarisation
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and ferroelastic hysteresis curves predicted by laminate-based Model 4 is closest to the
experimental observations.

Following the laminate-based formulations for tetragonal single crystal ferroelectric
materials, Chapter 5 details the homogenisation procedure to predict the macroscopic
rate-dependent hysteretic response of a ferroelectric ceramic under electromechanical
loading. The first part of this chapter focusses on the identification of the single crystal
model parameters by minimising a least-square functional based on available experimen-
tal hysteresis data. For the calibration process, laminate-based Model 4 is considered
as the basis model. Considering the optimal model parameter values, laminate-based
Model 4 is validated based on tests under both homogeneous and inhomogeneous states
of deformation. The second part of this chapter gives details on a simple homogenisation-
type strategy based on random orientations of the single crystal grains in a polycrys-
talline ferroelectric aggregate. The averaged polarisation switching response of the ran-
domly oriented individual grains is obtained by means of the numerical implementation
within a finite element framework. Both the simulated macroscopic butterfly curve and
dielectric hysteresis loop for a particular electrical loading frequency are compared with
newly generated experimental data for a barium titanate ceramic.

Outlook

The phenomenological and laminate-based model formulations developed in this work are
verified by means of solving representative boundary value problems and the simulated
macroscopic hysteretic responses well reproduced the characteristic ferroelectric and
ferroelastic behaviour.

The phenomenological model offers a robust framework for the simulation of the rate-
dependent macroscopic remnant polarisation evolution in ferroelectric materials. The
macroscopic remnant strains within the constitutive model are assumed as a function of
the remnant polarisation vector, thus simplifying the model formulation and its numer-
ical implementation. As a further development, the ferroelectric yield function defining
the polarisation evolution can be extended by considering the mechanical stress-induced
factors in order to study the combined electromechanical response. With regard to nu-
merics, the coupled global finite element tangent matrix is currently approximated for
the simulations. An analytical exact form of the global tangent matrix is needed which
may increase the computing efficiency.

In view of the laminate-based model formulations developed for single crystal ferro-
electric solids, the average electric Gibbs energy is postulated by neglecting the domain
wall energy contribution. Ab-initio and phase-field calculations as well as experimen-
tal observations confirm the influence of the domain wall energy barrier during the
ferroelectric domain evolution under external loads. Future work should consider the
contribution of the domain wall energy in order to study the microstructural polarisation
evolution in detail within a single crystal grain. With such an enhanced average energy,
the simulated material responses arrived with the laminate-based formulations can be
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6 Summary and outlook

compared to those obtained from phase-field or other diffusive interface modelling ap-
proaches. Furthermore, the developed laminate-based models can be extended to study
the behaviour of ferroelectric crystals with unit cells of rhombohedral symmetry, ex-
hibiting eight equally possible variant orientations. The homogenisation procedure used
in this work in order to compute the average polycrystalline ferroelectric response is a
simple procedure based on random initialisation of the individual single crystal grains.
As a future work, the grain-to-grain interactions evident in a polycrystalline aggregate
needs to be explicitly taken into account in the formulation.
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A Derivations and identification of
parameters – phenomenological
model

The derivations of some of the tensorial quantities with respect to the macroscopic
remnant polarisation needed for the numerical implementation of the phenomenological
model are provided in the first part of this appendix. The latter part gives details on
the identification of the isotropic tensor coefficients based on the transversely isotropic
elasticity modulus.

A.1 Useful derivations for the phenomenological model

The first and second-order derivatives of the structural quantities a(P r) and m(P r),
introduced in Equations (3.1) and (3.2) respectively, with respect to P r are derived as

[
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]
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∂P r

j

=
1

‖P r‖
[
δij − ai aj

]
, (A.1)

[
∂P rm

]
ijk

=
∂mij

∂P r
k

=
∂ai
∂P r

k

aj + ai
∂aj
∂P r

k

, (A.2)

[
∂2
P rP ra

]
ijk

=
∂

∂P r
k

[
∂ai
∂P r

j

]
=

1

‖P r‖

[
− ∂ai
∂P r

k

aj − ai
∂aj
∂P r

k

]
− 1

‖P r‖2

[
δij ak − ai aj ak

]
and (A.3)

[
∂2
P rP rm

]
ijkl

=
∂

∂P r
l

[
∂mij

∂P r
k

]
=

∂

∂P r
l

[
∂ai
∂P r

k

]
aj +

∂ai
∂P r

k

∂aj
∂P r

l

+
∂ai
∂P r

l

∂aj
∂P r

k

+ ai
∂

∂P r
l

[
∂aj
∂P r

k

]
, (A.4)

whereby the indices refer to a Cartesian frame {e1, e2, e3}.
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A Derivations and identification of parameters – phenomenological model

The first and second-order partial derivatives of the third-order piezoelectric coupling
tensor e(P r), introduced in Equation (3.8), with respect to P r are derived as
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Analogously, the first and second-order partial sensitivities of remnant strain tensor
εr(P r), see Equation (3.4), with respect to remnant polarisation P r are given as
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The driving force vector (3.19) reads
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A.2 Identification of isotropic elastic tensor coefficients

The first-order partial derivative of f(P r) with respect to P r is obtained as
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The tangent matrix J , derived in Equation (3.27), used for the update of P r, reads
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A.2 Identification of isotropic elastic tensor coefficients

The matrix form of the transversely isotropic elasticity modulus corresponding to the
single crystal ferroelectric BaTiO3 oriented along the crystallographic axis e3 reads

[Ee3 ]ij =


237.4 92.6 111 0 0 0
92.6 237.4 111 0 0 0
111 111 151 0 0 0
0 0 0 72.4 0 0
0 0 0 0 61 0
0 0 0 0 0 61

× 103 MPa , (A.14)

see Schröder and Keip [125]. Analogously, the matrix entries of the transversely isotropic
elasticity moduli oriented along the crystallographic axes e1 and e2 are obtained by
initialising the structural vector a along the corresponding crystallographic directions.
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A Derivations and identification of parameters – phenomenological model

The elasticity modulus referring to the cubic symmetry of a BaTiO3 crystal is computed
by averaging the individual elasticity moduli along e1, e2 and e3 as

Ecub =
1

3

[
Ee1 + Ee2 + Ee3

]
, (A.15)

wherein Ee1 and Ee2 denote the transversely isotropic elasticity moduli along e1 and
e2 respectively. Following Equation (A.15), the matrix form of the averaged elasticity
modulus Ecub is computed as
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× 103 MPa . (A.16)

The matrix coefficients of Ecub are taken as basis for the identification of the tensor
coefficients appearing in the isotropic elasticity modulus of the ferroelectric crystal. The
matrix form of the isotropic elasticity modulus E, introduced in Equation (3.7) and by
initialising λE = E1122 and µE = 1
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By defining a least-square functional f(κ = {E1111,E1122}) of the form

f(κ) =
1

2

∥∥∥ [Ecub
]
ij
− [E]ij

∥∥∥2

, (A.18)

the isotropic elasticity tensor coefficients E1111 and E1122 are computed by solving the
system of equations ∂f(κ)/∂κ = 0, cf. Schröder and Keip [125]. The identified isotropic
elastic stiffness constants read

E1111 = 213.303 MPa and E1122 = 102.515 MPa . (A.19)
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B Derivations – laminate-based
formulation

The partial derivations of some of the first and second-order tensorial quantities with
respect to the individual multi-rank laminate volume fractions needed for the numerical
implementation of the laminate-based models are provided in this appendix.

B.1 Useful derivations for the laminate-based
formulations

The first-order partial derivative of the averaged remnant strain εM(µ), introduced in
Equation (4.17), with respect to the individual laminate volume fractions µ1,2,3,4,5 is
derived as
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B Derivations – laminate-based formulation

Analogously, the first-order partial derivative of the average remnant polarisation PM(µ),
see Equation (4.18), with respect to the individual laminate volume fractions µ1,2,3,4,5 is
derived as
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With respect to laminate-based Model 1, the sensitivity of structural vector a(PM),
defined in Equation (4.46), with respect to the multi-rank laminate volume fractions µj,
for j = 1, . . . , 5, is given by
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Similarly, the sensitivity of the third-order piezoelectric tensor e(a(PM)) with respect
to the individual laminate volume fractions µj is derived as
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B.2 Derivatives of Fischer–Burmeister functions

B.2 Derivatives of Fischer–Burmeister functions

The set of Fischer–Burmeister functions (4.41) considering the definitions of the addi-
tional constraints (4.36) are re-written as
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The derivatives of, for example, Fischer–Burmeister function ξ1
I with respect to solution

variables v = [µ,Γ I ,Γ II ]
t, see Equation (4.38), are given as
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The total derivatives of, for example, Fischer–Burmeister function ξ1
II with respect to

solution variables v = [µ,Γ I ,Γ II ]
t read
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Analogously, the other Fischer–Burmeister functions ξ2,3,4,5
I as well as ξ2,3,4,5

II are derived
with respect to the solution variables v = [µ,Γ I ,Γ II ]

t.
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