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Introduction

“The world is full of nasty numbers...”

— J.H. Conway and N.J.A. Sloane, Sphere packings, lattices and groups, p.56

WHAT THIS THESIS IS ABOUT. AND WHY.

The study of lattices and geometric properties of point sets in Euclidean space are brought together in
a vast amount of mathematical research. The more prominent problems, such as the sphere packing
problem and the sphere covering problem, are both classical and still current subjects of research. But
there is another geometric problem involving Euclidean lattices, which has received less attention, at
least from the mathematical community:

the lattice quantizer problem.

We will handle lattice quantization from a purely mathematical point of view. For an detailed account
of its history in information theory as well as a collection of some of the most important results up
to its publication, we refer the interested reader to [GN98]. For a textbook introduction to lattice
quantization, also written from an information theoretic point of view, we refer the interested reader
to [Zam14]. A resource from mathematics that we wish to mention is [Hem04], a Ph.D. thesis which
shows where the mathematical reception of the problem stood around 2004. Since then, not to much
has happened on the mathematical side of this problem!.

Lattice quantization emerged as a subject of research in its own right as a special case of general vector
quantization. The underlying principle is easy: suppose you have to deal with arbitrary real numbers,
produced in some way and yours to handle. Maybe these are descriptions of analog phenomena like
speech, or video. In any case, it might be reasonable to ask how to efficiently get a discretized, possibly
finite, description of real numbers, that albeit loses only as much “information” as is unavoidable. This
is the basic question of quantization: Given a source that produces real numbers x, choose a discrete
(and for practical purposes finite) subset of the real line and provide a rule to assign one of those values
to a number produced by that source. Or to quote: “A quantizer [...] is a device for converting nasty

IThere is one notable exception in form of [DSSV09]. There, among other things, the explicit value of the quantizer constant
of certain highly symmetrical lattices is derived.
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INTRODUCTION

numbers into nice numbers” (cf. Chapter 2, 3.1 in [CS98]). The easiest example one can possibly think
of is to use the set Z and simply round a real number to the integer nearest to it.

Now a vector quantizer is based on the idea that it might be beneficial to not quantize, or round, each
real number for itself, but rather to collect, say, n of them and find a way to quantize the so obtained
vector. Before we talk about how to do so, we should be allowed to ask: why do we do so? The
answer is that it pays off. The idea is to assign a performance measure to a quantizer and ask for
such structures that optimize performance with respect to said measure. A crucial insight is that using
higher-dimensional structures allows to reduce the margin of error. We will give a short account of
this for lattice quantizers later on (cf. Chapter 5).

In this thesis we deal with two mathematical problems that arose from this general setup. We will
discuss them in two separate parts.

Similar sublattices and finite quadratic modules

The main goal of this part is to
enumerate similar sublattices of integral lattices.

More recently several authors discussed the idea to assign multiple descriptions to each quantized
vector, rather than to just take the output of the quantizer as a final result. The idea here is that if certain
of these descriptions would get lost, say, after sending the information over a channel, the received
subset of descriptions could be used to at least get a (good) approximation of the initial code word.
While we will not include a discussion of such schemes in this thesis, this was the starting point for the
investigations regarding similar sublattices: the multiple-description lattice quantization schemes all
use similar sublattices in the construction of the descriptions (cf. [SVS99], [KGKO00], [VSS01], [DSV02],
[AS10], and [AS12]).

A sublattice of a lattice L is called similar if it is the image L under an isometry followed by a scaling
operation Aid. Below we depict examples for similar sublattices of the standard lattice Z? and the
Hexagonal lattice A,. The superlattice consists of all points shown (black and red), while the sublattice
consists of the red points only. For Z* we show a similar sublattice with scale factor 2, it is obtained by
a 45-degree rotation and followed by 2id:

T 0o ’
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WHAT THIS THESIS IS ABOUT. AND WHY.

We also show fundamental parallelotopes for the super- and the sublattice, from which one can visu-
ally read off that the scale factor is in fact 2.

For A, we provide an example of a similar sublattice that is obtained by a 30-degree rotation followed
by 3id. We depict A, with lattice basis (1,0), (1/2,v/3/2):

. ) . .
) . . . )
(0,0)
. ) . . ) .

Again, it is easy to verify the scale factor to be 3. At this point we should wonder in which way the
shown sublattices are special. Could we have found similar sublattices for an arbitrary scale factor? Is
there just this one, or are there more? Both questions can be answered for these special lattices, but in
higher dimensions both problems become increasingly difficult.

However, the extent in which the mathematical literature deals with this geometric problem is rather
small. What can be found in the literature, is a criterion for the existence of similar sublattices of
rational lattices (cf. [CRS99]) and some results on the number of similar sublattices of certain lattices
in dimensions 2 and 4 (cf. [BSZ11], [BM99], and [BHMO8]). But these works often rely on certain
structural assumptions that are quite special and their methods are not likely to be applicable in higher
dimensions.

We use an arithmetical approach to obtain results on the number of similar sublattices (under certain
conditions). At least in theory this approach provides a method to explicitly construct similar sub-
lattices with the use of a computer algebra system. The main results for this part are presented in
Chapter 2, where we classify and count maximal totally isotropic submodules of regular quadratic
modules over finite rings, and in Chapter 3, where we relate the study of similar sublattices to the
results of Chapter 2.

If we consider a slightly generalized situation, namely that of sublattices of an integral lattice L that
are similar to some lattice in the genus of L, rather than only to L itself, the full strength of the arith-
metic approach becomes visible. For certain well-behaved classes of lattices, most prominently even
unimodular lattices, our approach gives a full answer to the related counting problem: for a given
scale factor, or equivalently index, how many sublattices similar to a lattice in the genus of L do exist?
Given L there might be a finite number of exceptions, where we cannot predict this number, the case
of scale factors not coprime to the determinant of L. However, for unimodular lattices this is without
consequence.



INTRODUCTION

A locally explicit formula for the quantizer constant in monohedral periodic vector quantization

The main goal of this part is to
systematically investigate the quantizer constant and its minimal values for monohedral periodic sets.

We take a set of points in R™, use their Dirichlet-Voronoi tiling of R™ and associate to an x € R™ the
Dirichlet-Voronoi cell it is contained in?. This defines a vector quantizer.

If the points form the standard lattice Z™, this is just component wise rounding;:

Here the black dots are the lattice points and we depict the Dirichlet-Voronoi cell of the origin in a
darker red shade. We see that the other Dirichlet-Voronoi cells of this lattice are all translates, by lattice
points, of this fundamental cell. We depict some of them in a lighter red shade. As an example for
quantization take a look at the points v, w. They lie in distinct Dirichlet-Voronoi cells and v would be
quantized by (0,0) and w would be quantized by (—1,0). Another example, where it is still easy to see
how to quantize, is the Hexagonal lattice A,. We depict it with lattice basis (1,0), (1/2,/3/2):

the above remarks hold in a literal manner.

2If x is contained in several Dirichlet-Voronoi cells, which can happen if and only if it lies on their boundary, the tie can be
broken arbitrarily.
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STRUCTURE OF THE THESIS

A good reason why to use lattices instead of dealing with arbitrary point sets is lies in the hardness of
the closest vector problem. It surely is hard for lattices, but it is much harder for arbitrary unstructured
sets. We utilize the squared Euclidean distance as a measure of performance and ask to minimize the
mean error of quantization. For a lattice this amounts to a minimization of the quantity

1 1
P S :
G(L) ndet(L)l/2+1/n JDV(L) Ix]ax

We contribute to the problem of finding and identifying the best lattices for this measure of quality, by
utilizing a reduction theory of Voronoi. This will allow us to reduce the general problem of evaluating
the integral above for arbitrary lattices, to a finite number of easier problems. To be precise we will
be able to express this integral as the quotient of a polynomial by a power of det(L) in Corollary 6.3.9.
This expression also will show that the problem of finding the best lattice in a fixed dimension can be
translated into a finite number of polynomial optimization problems in Theorem 6.3.7. But beware,
their number explodes from dimension 6 onwards.

The methods utilized do not depend on the underlying point set to be a lattice. More generally they
work for periodic sets and, in particular, for periodic sets for which all Dirichlet-Voronoi cells are
congruent to one another. This latter property is commonly asked for in quantization, following a
conjecture of Gersho [Ger79]. We thus chose to derive all results directly in the case of monohedral
periodic sets, including lattices as a special case.

The approach to obtain an explicit formula for the quantizer constant in this way is not new, it was
first used in [BS83] to prove that the lattice A% ~ D% is a global minimum for the lattice quantizer
problem in dimension 3, and that it is in fact the only local minimum in this dimension. We provide a
systematic treatment of this approach and find that both A% and D} are local minima in dimension 4
in Theorems 6.4.3 and 6.4.4.

STRUCTURE OF THE THESIS

This thesis is divided into two parts, which are almost independent of each other, only Part II uses
some of the notation provided in Chapter 1 of Part I to reduce redundancy. This is done on purpose to
make the main results of each part easier to access if one is only interested in this particular problem.
We described above how these parts are connected and that, in fact, they started out from a single
question:

what can mathematics contribute to the vector quantizer problem?

Part I starts off with an introductory chapter on quadratic forms and lattices (cf. Chapter 1). We
then present some results on maximal totally isotropic submodules of regular quadratic modules over
finite rings (cf. Chapter 2). The first part is concluded by an arithmetic approach to the enumeration
of (genus-)similar sublattices of integral lattices (cf. Chapter 3).

Part II starts off with an introductory chapter on point sets and tilings in Euclidean space (cf. Chapter
4). Here we continue with a short introduction to, or survey of, vector quantization (cf. Chapter 5).
The second part is concluded by the application of Voronoi ’s second reduction theory to the quantizer
problem for monohedral periodic sets and local optimality of lattices in dimension 4 (cf. Chapter 6).
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INTRODUCTION

MAIN RESULTS

We present a list of what we deem to be our main results, by parts. They are presented in their order
of appearance.

Part I:
e Theorem 2.4.4, achieving the full classification of maximal totally isotropic submodules of regular
quadratic modules over finite local rings.

e 2.6, presenting the explicit numbers of maximal totally isotropic submodules of regular quadratic
modules over finite local principal ideal rings, in low dimensional cases. Those are of importance
for the application to the enumeration of similar sublattices.

e Theorem 3.3.13, the most general result we derive on the validity of the arithmetic approach to
enumerate (genus-)similar sublattices of integral maximal lattices.

Part II:
e Theorem 6.3.7, showing that the quantizer problem for suitable periodic sets is equivalent to a
finite number of polynomial optimization problems.
e Corollary 6.3.9, providing an explicit expression for the quantizer constant for lattices.

e Theorems 6.4.3 and 6.4.4, proving local optimality of the root lattices D and A% for the lattice
quantizer problem in dimension 4.

USE OF COMPUTER ALGEBRA SYSTEMS

We used the computer algebra systems MAGMA [BCP97] (V2.22-7) and MAPLE?® (2015.0) [Map] to
obtain the computational results of this thesis. Wherever results depend on the usage of said systems,
an indication is given.

3Maple is a trademark of Waterloo Maple Inc.
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List of notations

We provide a list of symbolic notations used throughout this thesis. The symbolic notation is grouped
according to the chapter it is introduced in and sorted in order of appearance.

Chapter 1

the associated bilinear form of the quadratic form q.
matrix notations for free quadratic modules.
isometry group of the (E,b) (E, q).

isometry of quadratic and bilinear modules.

gram matrix of (E,b), (E, q).

determinant of (E,b), (E, q).

gram matrix of (E,b), (E, q).

as operator: orthogonal sum; as exponent: orthogonal module.
the dual module of E, E+ := Homg (E, R).
bonE:b:E— E*; y— b(y).

bonE: b(y): E — R; x — b(x,y).

the hyperbolic plane.

the field (ring) of p-adic rational numbers (integers).
the Archimedean completion of Q, Z.

the Hasse-symbol.

the scale, norm, volume ideal of the lattice L.

the lattice L with its quadratic (bilinear) form scaled by o.
the dual lattice of L, L* := {x € KL | b(x,L) < o}.
the p-partial dual lattice of L, LP# := % n L%

the localization of L at p.

the genus of L.

the norm group of L.
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PART I

SIMILAR SUBLATTICES AND FINITE QUADRATIC
MODULES






CHAPTER

1

Quadratic modules and lattices

In this first introductory chapter we collect basic algebraic and arithmetic notions and results of the
theory of quadratic forms.

We first discuss the abstract theory of quadratic forms over rings and fields in 1.1. This includes the
notions of regularity, duality and isometry.

Basic facts about the localizations of Q and Z in 1.2 are followed by a discussion of lattices over Z and
its localizations in 1.3. In particular, we provide an overview of the arithmetic theory of integral lattices
and their localizations, including the notion of a genus of a lattice and the classification of unimodular
and maximal Z,-lattices.

1.1 QUADRATIC FORMS OVER RINGS AND FIELDS

We follow the exposition in [Kne02]. Let R be a commutative ring with 1 and let E be an R-module.
Furthermore let S be a ring extension of R, i.e., there exists a monomorphism of rings 1 : R < S.

1.1.1 Quadratic and bilinear forms

An S-valued quadratic form on E is a map q : E — S which satisfies

q(Ax) =A%q(x) forallAe R,x € E,
q(x +y) = q(x) + q(y) + bq(x,y),
where b is a symmetric bilinear form, the associated bilinear form to q. The pair (E, q) is then called a

quadratic module. If Ris a field, E is a vector space and we use the term quadratic space. Accordingly
we speak of a bilinear module (E,b), whenever b is a symmetric bilinear form on E.

Directly from the definition we obtain that 2q(x) = bg(x,x), thus if 2 is not a zero-divisor in R, a
quadratic form is uniquely determined by the associated bilinear form b, if 2 € R*, we obtain q(x) =
%bq (x,x). In this case only little distinction is necessary between (E, q) and (E, bg).

3



1. QUADRATIC MODULES AND LATTICES

If E is a finitely generated projective! R module of rank n, we can find a not necessarily symmetric
bilinear form a : E x E — R for which q(x) = a(x,x). We can do so by choice of a basis (x1,...,xn) for
a free module G = E @ E’ enveloping E, using

n n
A Ax) =Y axI)M 4+ Y, belxi, )N,
i=1 i=1 1<i<j<n

and setting a(xi, xi) := q(xi), a(xq, xj) := bg(xq,x) for i < j and a(xi, x;) := 0 for i > j. We silently
used the extension of q to G where q(x) = 0 for all x € E’. In any case, a bilinear form a will always
lead to a quadratic form q(x) := a(x, x), with associated bilinear form by (x,y) = a(x,y) + a(y, x).

This also shows that free quadratic modules are in correspondence to homogeneous polynomials with
coefficients in R of degree 2 in n indeterminates, which is the more classical definition of a quadratic
form.

To describe a free quadratic module of rank n we may write

a1 A ... Qin q(x1) bglx,x2) ... bglxy,xn)
ax _ q(x2)

Qnn q(xn)

where all entries below the diagonal are zero. If the matrix is diagonal we write [q(x1),..., qxn)]. If 2
is not a zero divisor we write

b1 > < q(x1,%1) oo bgl(x1,%xn)
bn anxl cee bq(xn/xn)
and accordingly (bq(x1,%1), bg(Xn,Xn))

1.1.2 Isometries

An isometry of quadratic modules (E, q), (E’, q’) is an injective module-homomorphism ¢ : E — E’
such that

q'(dp(x)) = q(x), Vx e E.

If there is a bijective isometry, we say that (E, q) and (E’, q’) are isometric and write (E, q) = (E/, q').
The collection of all isometries (E, q) — (E, q) is the isometry group of (E, q), we write O(E, q).

Similarly an isometry of bilinear modules (E,b), (E’,b’) is an injective module-homomorphism ¢ :
E — E’ such that

b'(d(x), d(y)) =blx,y), ¥x,y € E.

If there is a bijective isometry, we say that (E,b) and (E’, b’) are isometric and write (E,b) = (E’, b’).

1A module is (finitely generated) projective if and only if it is a direct summand of a free module (of finite rank), cf. Propo-
sition 3.10 and its Corollary in [Jac09].
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1.1. QUADRATIC FORMS OVER RINGS AND FIELDS

The collection of all isometries (E,b) — (E, b) is the isometry group of (E, b), we write O(E, b).

It is readily checked that each isometry of quadratic modules is also an isometry for the associated
bilinear forms.

1.1.3 Gram matrices and determinants of free modules

If (E,b) is a free bilinear module of rank n and B = (xq,...,x,) is a basis, the matrix Gg(E,b) :=
(b(x1,%;))ij=1,.,n is the Gram matrix of (E, b) with respect to the basis B. If B’ is another basis there
is an element T € GL,,(R) such that Gg/(E,b) = TTG3(E,b)T. To any Gram matrix we associate its
determinant in the usual way and observe that det(Gg/(E, b)) = det(T)?>det(G5(E, b)). Therefore we
define the determinant of a free bilinear module as the class of the determinant of any Gram matrix in
R/ R*2. We denote this square class by d(E, b), or in short dE.

We associate a determinant to any free quadratic module (E, q) by d(E, q) := d(E, bg).

1.1.4 Orthogonality

Elements x,y € E are orthogonal with respect to some symmetric bilinear form b : E x E — R if
b(x,y) = 0. For any F c E we have an orthogonal submodule F* := {y € E | b(F,y) = 0}. We say that
E is the (internal) orthogonal sum of submodules Ey, ..., E,, if E = @, E; and b(E;, Ej) = 0forall
i#j,andwriteE=EF; L ... L E,;.

The (external) orthogonal sum of bilinear modules (E, b), (E’, b’) is their exterior direct sum, together
with the bilinear formb L b’ : E®@E' x E®E — R; (x+x/,y+y’) — b(x,y) +b’(x’,y’). It is denoted
by (E LE/,b Lb").

For a quadratic module (E, q) we use the above terms if they hold for the associated bilinear form by.

1.1.5 Duality and regularity

We denote the dual module of any R-module E by E* := Homg(E, R). Assume that E is equipped with
a bilinear form b. We define a module homomorphism b : E — E*, where the value of b on yektis
given by the linear form

b(y): E—>R; x— blx,y).

To any submodule F = E we write br for the map b followed by the restriction map from E* to F*, that
is, the value of b on y € E is given by the linear form

br(y): F—>R; x— b(x,y).
It is clear that ker(BF) = FL. For a submodule F ¢ E we therefore have E = F L F+ if and only if b
induces a bijection of F on br(E), thatis if by (E) = bp(F) and F~ FL = {0}. We write b = be.

We say that a bilinear form b on E is non-degenerate if b is injective, and regular if b is bijective and E
is finitely generated projective.

A submodule F of a module E is primitive if F is a direct summand of E. If b is a bilinear form on
E, F is b-primitive if F is finitely generated projective and if bg(E) = F*. In this situation, a regular
submodule is b-primitive and a b-primitive submodule is primitive.



1. QUADRATIC MODULES AND LATTICES

For a quadratic module (E, q) we use the above terms if they hold for the associated bilinear form by.

1.1.6 Isotropy and hyperbolic modules

Let (E, q) be a quadratic module. x € E is called isotropic if q(x) = 0, otherwise it is called anisotropic.
A submodule F c E is called isotropic if it contains an isotropic x # 0, it is called anisotropic if it does
not contain non-zero isotropic elements. It is called totally isotropic if every element is isotropic.

For a free R-module E set H(E) := E@E* and equip it with the quadratic form q(x,y) =< x,y >=y(x).
This defines a free regular quadratic module. We say that a free quadratic module (E, q) is hyperbolic
if there exists some free R-module F such that E =~ H(F). If (E,q) = H(R) we say that (E,q) is a
hyperbolic plane.

A hyperbolic plane can be written as Re + Rf, with q(e) = q(f) = 0 and by(e, f) = 1, we then refer to
such a basis (e, f) as hyperbolic pair. In the above matrix notation this is expressed by

0 1 01
o ol G o)

whenever applicable.

1.2 LOCAL NOTIONS

References for the subsequent discussion should be found in almost all introductory texts on algebraic
number theory and the arithmetic of quadratic forms, for example Kapitel 2 in [Neu06] and Section 15
in [Kne02].

1.2.1 Localizations of Q and Z

Every valuation on Q is equivalent to either a p-adic valuation, where p runs through the primes of
Z, or to the usual absolute value (cf. 12.1 in [O'M73]). It is common to say that a p-adic valuation
is introduced by the finite (or non-Archimedean, or prime) spot p (or rather p = (p) = pZ) and the
absolute value is induced by the infinite (or Archimedean) spot co. We will denote spots on Z by p,
including the case p = cc.

If p is a prime of Z, we denote by Q,, the completion of Q in the topology induced by the p-adic
valuation, and refer to it as the localization of Q at p, it therefore is a complete local field. Similarly
we write Z, for the completion of Z under the above topology and refer to this as the localization of
Z at p. In this situation Q,, is the field of fractions of Z,, and Z, is the valuation ring and topological
closure of Z in Q,, both with respect to the p-adic valuation. We refer to elements of Z;, as the integers
of Q. For a fractional ideal a of Z we can define a,, as the topological closure of a in Z,, (cf. 81 : 13
in [O'M73]). Note that Z,, is a discrete valuation ring and therefore a principal ideal domain.

If p is the Archimedean spot co the situation becomes even simpler, we set Q = R, the completion of
Q with respect to the usual absolute value. We then write Zy, = Qo = R.

6
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1.2.2 Local invariants for quadratic spaces

We define the Hilbert-symbol for Q and primes p € Z to be

+1, IxyeQ,: ax*+by? =1,
(arb)p = v
-1, else.

Clearly the Hilbert-symbol is invariant under distinct representatives of a square class in each argu-
ment, thus we will allow for the arguments to be square classes of field elements.

IfV=<o >L... L< &y >isanon-degenerate quadratic space of dimension n over Q,, we also have

the Hasse-symbol
SpV: H ((Xi, H (Xj)p.

1<i<n 1<j<i

This definition does not depend on the chosen orthogonal splitting of V. Furthermore if p is a prime
spot and V' is another Q,, space of dimension n, then V =~ V'’ if and only if S,V = S,V’ (cf. §63B.
in [O'M73] ).

The only invariant we need for quadratic spaces over Qo is the usual notion of the signature over the
real numbers.

1.3 LATTICES OVER Z AND ITS LOCALIZATIONS

We now gather aspects of the theory of lattices over the ring Z or one of its completions and clarify the
notation used. A general reference for this is [O'M73] and we follow closely the notation of this book
and only indicate certain spots of interest more clearly with a direct reference to this book.

Let K be one of the fields R, Q, Qp, Q, where p is a prime. Let 0 = Z if K € {R,Q} and let o be the
localization of Z in K if K = Q,, for a prime p or K = Qo = R.

1.3.1 Lattices

An o-lattice in a K vector space V is a finitely generated o-submodule of V, it is on V if KL = V. For
any lattice in V we can find a basis B, by which we understand a vector space basis B = (v1,...,Vm)
of KL < V, such that

L=ovi+...4+0vp.

The number m = dim(KL) = rk(L) is the rank of L as o-module and is referred to as the rank of the
lattice L. All of the above lattices are free modules, because we assume o to be a principal ideal ring.

A subset L’ < L that is itself a lattice, is called a sublattice of L.

1.3.2 Lattices on bilinear and quadratic spaces

Let (V, b) is a bilinear space with associated quadratic form q defined by q(x) = b(x,x)? for x € V. Let
L be a lattice on V3. If B = (v1,...,Vvn) is a lattice basis, the Gram matrix of L with respect to B is the

Thatis, b = }bg.
4 209q
31t is not hard to see that we in fact could start with some finitely generated torsion-free quadratic or bilinear o-module L
and embed it into the K vector space V := K ®, L such that L is a lattice on V. This shows that the actual object of interest is
given by the pair (L, b), resp. (L, q).
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Gram matrix of the quadratic o-module (L, q)
Gs(L,b) :=Gs(V,b) = (b(vi,vj))ij=1,.n-

The volume ideal of L is the ideal vL = det(Gz(L, b))o, this definition does not depend on the chosen
basis: the determinants of different Gram matrices differ by the square of a unit. The determinant of L
is the determinant of the quadratic o-module (L, q), thus vL is the ideal generated by any representative
of the determinant of L. If 0 = Z, 1 is the only square of a unit in Z. We therefore interpret det(L, q) as
an integer and obtain vL = (det(L)).

For a lattice L a Gram matrix of V with respect to any lattice basis B is also called a Gram matrix of L,
we write Gg (L, b).

If x e Kand Lisin (V,b), we write *L for the lattice L in (V, ab), which we abbreviate to *V if the
bilinear form is clear from context. We say that we scale L (respectively V, or b) by « in that case.

To L we associate the scale ideal sL, the o-ideal generated by the set b(L,L) = {b(x,y) | x,y € L}, and
the norm ideal nL, the o-ideal generated by the set q(L) = {b(x,x) | x € L}. Then (cf. §82E. in [O'M73])

251 < nL c 5L, and vL < (sL)™.
Furthermore for o € K we immediately obtain

L = asl, n*L = oL, v*L = o™ vL.

Let L be a Z-lattice over K € {Q, R} and let L’ be a sublattice of L. Then
det(L’) = [L: L"]* det(L),
this is sometimes called the determinant-index formula (cf. 81 : 11 and 82 : 11 in [O’M73]).

A non-zero lattice on a non-degenerate quadratic space (V, b) is called a-maximal, for some fractional
ideal a, if nL < a and for every lattice L’ on V, for which L < L" and nL’  a are satisfied, the equality
L = L’ holds. For « € K we immediately obtain that if L is a-maximal on V, then *L is ca-maximal on
*V.

We can adapt the notions of isometry and isometry groups to lattices in a literal manner from 1.1.2.
This induces an equivalence relation on the set of lattices on V and the equivalence class of a lattice
L is called isometry class of L, denoted by cls(L). The isometry group of a lattice is often called its
orthogonal group if 0 = Z and K € {Q,R}. The automorphism group of L is Aut(L) = {¢ € GL(V) |
¢ (L) =L}, thus O(L, b) = Aut(L) nO(V, b). If the bilinear form or quadratic form is clear from context
we also abbreviate O(L) for O(L, b) or (O(L, q)). For « € K we immediately obtain

O(L) = O(*L), and cls(L) = cls(*L).

The dual lattice of L in (V, b) is given by L* := {x € KL | b(x,L) < o}. If B = (v4,..., vy ) is a basis for
L in which

L=ovi+...4+0vy,
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then
L=ovi+...+ovf,
where B = (v, ...,V ) is the dual basis of B with respect to b, that is b(vi,v?) =dyj.

Let L be an integral Z-lattice over Q or R. We associate to any integer p | det(L) the p-partial dual
LP#:= ZL n L* and for any co-prime integers p, q such that det(L) = pq we immediately derive

L* = 1P# ~ L9#, (1.1)

A lattice is called a-modular for some fractional ideal a if sL = a and vL = a™. For € K we say that L
is a-modular if L is (&) = xo-modular. L is unimodular if it is o-modular. If (L, b) is non-degenerate
then L is unimodular if and only if L = L*.

1.3.3 Localizations and the genus of an integral lattice

Let p be a prime of Z. We can localize a vector space V over Q and a Z-lattice Lin V. We set V, := Q,V
and L, = Z,L for the localization. In addition, Q,, = R and Z,, = R. Then L, is a lattice on V;,, and
in fact L, is the Z,-submodule generated by L in V,,. If B is a basis of L, then

Ly =Zpvi+...+ Zpvm.

In particular s(L,) = (sL)p, n(Ly) = (nL)p, v(L,) = (vLl),, and L is a-maximal if and only if L, is
ap-maximal (cf. §82K. [O'M73]).

It is the well-known Hasse-Minkowski Theorem (cf. 66 : 4 in [O’M73]) that relates non-degenerate
quadratic spaces and their localizations: non-degenerate quadratic Q-spaces V, V' are isometric if and
only if V, =~ V{, for all primes p of Z and V, = V/,. Therefore, two non-degenerate Q-spaces V, V' are
isometric if and only if V;, >~ V; for all prime numbers and if the signature of RV and RV’ are identical.

Now for lattices on a non-degenerate quadratic space V the Hasse-Minkowski Theorem fails in general:
there might be non-isometric lattices L, L’ such that L, =~ L}, for all spots p (including primes and co)
of Z. Thus the set

gen(L) := {L’ lattice on V | L, = L, for all spots p of Z}

will in general be a disjoint union of several distinct isometry classes of lattices on V. We call this set
the genus of L. The number of distinct isometry classes in gen(L) is the class number of L and we say
that L is unigeneric if this number is equal to 1.

1.3.4 Unimodular lattices over local fields

Let L be a Zy-lattice over Qp,, where p is a prime of Z. In this situation, for any dimension n, the
classification of unimodular lattices divides into two cases. We have to handle the case that p | 2, the
so called dyadic case and the case that 2 € Z7, the so called non-dyadic case, separately

In the non-dyadic case there are two classes of non-isometric non-degenerate quadratic spaces over Q,,
on which a unimodular lattice can exist, and on each of those there exists exactly one isometry class of

9
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unimodular lattices. In particular, this implies thatif L, L’ are on V and both are unimodular at p, then
L, = LI’) (cf. §92. in [O’M73]).

In the dyadic case this becomes more difficult. We need an additional invariant, the norm group of a
lattice

gL := q(L) + 2sL.
This group in fact generates the norm ideal, but might provide more information as
251 < gL < nl.

And in fact: unimodular lattices L, L’ on the same space over Q, are isometric if and only if gL = gL’
(cf. Theorem 93 : 16 in [O’M73]).

For unimodular lattices over Z, this implies that g(L) = Z, or g(L) = 2Z,, the odd and even case.

1.3.5 Maximal lattices over local fields

Another well-behaved class of lattices over the fields Q,, is that of maximal lattices. If V is a regular
quadratic space over Q,, and if a is a fractional ideal of its ring of integers, then L =~ L’ for all a-maximal
lattices L, L’ on V (cf. 91 : 2 in [O’M73]).

10



CHAPTER

2

Maximal totally isotropic submodules of
regular quadratic modules over finite
rings

This chapter contains some of the main results of this thesis. We provide a local-global principle for
quadratic forms over finite rings, classify maximal totally isotropic submodules of regular quadratic
modules over finite rings, and count their number over finite principal ideal rings.

We start by recalling some basic results for quadratic forms over special rings. This includes splitting
off hyperbolic planes, Witt’s Theorem over local rings, and basic facts regarding quadratic forms over
finite fields.

This is followed by a discussion of quadratic forms over finite rings, where we derive a local-global
principle for finite quadratic forms in Theorem 2.2.2.

Using a variant of Hensel’'s Lemma we relate regular quadratic modules over finite local rings to
regular quadratic spaces over their residue fields. As a consequence, we can divide regular quadratic
modules over finite local rings into 3 cases (cf. Proposition 2.2.5). For each case we can derive a formula
for the order of the orthogonal group (cf. 2.2.8).

Together with a construction we refer to as slicing (cf. 2.3.1), this enables us to give explicit formulae
for the number of isotropic elements of given order (cf. Propositions 2.3.8 and 2.3.9).

We then focus on the classification of maximal totally isotropic submodules of regular quadratic mod-
ules over finite rings (cf. 2.4). This classification is one of the main results of this thesis and achieved in
Theorem 2.4.4. Its proof is subdivided into a number of Lemmata and presented in 2.4.3. The classifi-
cation is based on the new notion of type of a maximal totally isotropic submodule, explicit examples
of such submodules, for every type, are collected in Example 2.4.3.

Combining the results of 2.3 and 2.4, we provide a way to count the number of maximal totally
isotropic submodules of regular quadratic modules over finite principal ideal rings. The main case
is that the ring is also local, then Proposition 2.5.5 gives the number of maximal totally isotropic sub-
modules of a fixed type. The general case can be reduced to the local case by the local-global principle
established earlier (cf. Proposition 2.5.1).

11
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We conclude this chapter with some explicit numbers of maximal totally isotropic submodules of reg-
ular quadratic modules of even rank over finite local principal ideal rings (cf. 2.6). In particular, these
results apply to modules over Z/p’Z (and by multiplicativity to modules over Z/cZ). By Theorem
3.3.12) we find that (2.9) provides the number of similar sublattices of Eg of norm p". These were not
known before, this application to the counting of similar sublattices was the main motivation for the
subsequent research.

2.1 GENERALITIES

2.1.1 Quadratic modules split off hyperbolic planes
For the sake of readability we collect some basic results for quadratic modules over commutative rings
with 1.

PROPOSITION 2.1.1 (CF. (1.6) IN [KNEO2]). Let (V, q) be a quadratic module. If U < V is a regular sub-
module then U splits V: V = U L U+

As in the case of fields, a free regular totally isotropic submodule of a quadratic module can be em-
bedded in a hyperbolic submodule. A bit more is actually true.

PROPOSITION 2.1.2 (CF. (2.22) IN [KNEQ2]). Let U be a by-primitive free totally isotropic submodule of a
quadratic module (V, q). Then there exists a hyperbolic submodule W < V such that U < W.

In the case of primitive isotropic elements of regular modules, we obtain the well known process of
splitting off an hyperbolic plane.

COROLLARY 2.1.3. Let (V, q) be a quadratic module. Let v € V be bq-primitive isotropic. Then there exists a
hyperbolic plane H and a submodule W < V such that V=H 1L W

2.1.2 Witt’s Theorem for quadratic forms over local rings
Let R be a local ring with maximal ideal m. We start by recalling in which way a quadratic module

over a local ring can be described as an orthogonal sum of submodules.

PROPOSITION 2.1.4 ((CF. (4.1) IN [KNEO2]). Let V be an finitely generated R-module with symmetric bilin-
ear form b. Then V can be decomposed orthogonally into reqular submodules of rank 1 or 2, and a module W
such that (W, W) c m. V is regular if and only if W = {0}.

There is a version of Witt’s theorem which holds over local rings:

THEOREM 2.1.5 (CF. (4.3) IN [KNEO2]). Let (V, q) be a quadratic R-module with associated bilinear form
b ="bq, X,Y, Z submodules, where X,Y are free and of finite rank and let

~ A

bx(Z) =X*, by(Z) = Y*

be satisfied. Let ¢ : X — Y be an isomorphism satisfying ¢ (x) =z x for all x € X. Then there is an extension of
¢ to an automorphism of V, satisfying &(v) =z v for all v € V, while fixing every z € Z*+.

12
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This implies the validity of Witt’s cancellation Theorem for local rings.

COROLLARY 2.1.6. Let (V, q) be a quadratic module over a local ring R. Let ¢’ : X — Y be an isometry of
bg-primitive submodules of V. Then there is an isometry ¢ : V — V such that ¢|x = ¢’

COROLLARY 2.1.7. Let (X1, q1), (X2, q2), (Y1,91), (Y2, q2) be quadratic modules over a local ring R, where
X1, Xy are regular. Then

X1J_Y1;XZJ_YzandxlzXzzYl;YQ.

COROLLARY 2.1.8. Let (V, q) be a quadratic R-module. Then tk(M) = rk(Ma) for any b q-primitive maxi-
mal totally isotropic submodules M1, M, of V.

We will write ind((V, q)) = rk(M) for any by-primitive maximal totally isotropic submodule of a
quadratic module (V, q) and refer to this as the Witt index of (V, q), which is well-defined by the
above result.

2.1.3 Facts on quadratic forms over finite fields

Let (V, q) be a regular quadratic space with ind(V) = m over F. The following facts can be found in
§12 Klassifikation and §13 Anzahlbestimmungen in [Kne02].

FACT 2.1.9. Let V be a regular quadratic IF q-space with ind(V) = m. Then V decomposes as
VHL...l1HLW,

with W anisotropic, where we distinguish 3 cases:

I) dim(V) =2m, dim(W) = 0 and V is hyperbolic.
I1.1) dim(V) =2m+1, dim(W) = 1 and V is non-hyperbolic of odd rank,
11.2) dim(V) =2m+ 2, dim(W) = 2 and V is non-hyperbolic of even rank.

In cases 1 and 11.2 the decomposition determines the isometry class of V. In case 11.1 and char(Fq) # 2, there
are 2 distinct isometry classes. In all these cases the spaces are regular. If char(IFy) = 2 there exist no regular
quadratic spaces of odd dimension.

In the case of char(F) # 2 this can be reformulated in terms of orthogonal bases.

FACT 2.1.10. Let (V, q) be a regular quadratic IF i-space where char(Fq) # 2. Then V =< 1,...,1,det(q) >,
and there are two distinct isometry classes of given dimension.

FACT 2.1.11. Let V be a regular quadratic IF y-space with ind (V) = m. The order of the corresponding orthog-
onal groups are

D[OV)| =2 "™ D2 (1—q™) [T (1-q7),

2i<n
Hl) |O(V)| =cC- q“(“—l)/z . H (1 _ q—Zi),
2i<n
.2) [O(V)|=2-q"™ V2 (14 ™). [[(1-q72),
2i<n

where c = 1if char(Fq) =2 and c = 2 else.
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FACT 2.1.12. Let V be a regular quadratic F q-space with ind(V) = m. The number of primitive isotropic
vectors is given by

D) s*(V)=(q™ = 1)(q™ " +1),
IL1) s*(V) = g™ —1,
L.2) s*(V) = (¢™ +1)(q™ — 1).

FACT 2.1.13. For regular quadratic spaces V and W, both hyperbolic or both non-hyperbolic, with dim(W) =
dim(V) — 2:

|O(V)| =s*(V) - q" 2 |O(W)|.

2.2 REGULAR QUADRATIC FORMS OVER FINITE RINGS

2.21 Artinian rings

A commutative ring R, with unity, is artinian if it satisfies the descending chain condition for ideals,
that is, if for every descending chain

LhoLho...
of ideals of R, there exists an r € N such that
Loho...oL=Li1=...,
we say that the chain becomes stable. In particular,
VI<RIreN: IoPo...oI"=I"", (2.1)

Let specR denote the spectrum of R, that is, the set of all prime ideals of R. If R is artinian, every
prime ideal is already maximal (cf. Proposition 8.1 in [AM94]) and specR is finite (cf. Proposition 8.3
in [AM94]). The intersection 91(R) := ﬂmespecR m is the nilradical and it is nilpotent (cf. Proposition
8.4 in [AM94]).

Let m € specR, and let r be minimal in (2.1). Then we get the localization R, = R/m" of R at m (cf.
proof of Theorem 8.7 in [AM94]).

If R is artin local with maximal ideal m, then m = 91(R) and thus nilpotent. In this case the minimal r
in (2.1) is the nilpotency index of m in R.

THEOREM 2.2.1 (CF. THEOREM 8.7 IN [AM94]). Let R be artinian and let r be the nilpotency index of 9(R).
Then R is a finite direct product of artin local rings:

R [[ Ruz [[ R/m".

mespec R mespec R

For a local artinian ring R the quotients m*/m'*! are R/m-vector spaces. Since artinian rings are noethe-
rian, the dimension of these R/m-spaces is finite. Furthermore, R is a principal ideal ring if and only if
dimg /m (m/m?) < 1.
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2.2.2 Finite rings

Every finite ring R is both artinian and noetherian and thus Theorem 2.2.1 is applicable.

Let R be finite local, with maximal ideal m. Then R/m is a finite field, and thus there exists a prime p
and a power q = p* such that R/m = Fq. Then there exists s € N, such that |[R| = ¢°, in fact, |[R| =
[Ti_; [m*~!/m'| and as we noted each m*~!/m" is a F 4-vector space, thus all cardinalities appearing are
powers of q. But then ¢ = |[R/m| =[R:m] = IRl and thus lm| = q~1.

m

R is a principal ideal ring if and only if dimg /,(m/m?) < 1. We distinguish the two possible cases.
Either dimg /y (m/m?) = 0 and m = m? = {0}, so Ris a field, or |m*| = |m|* = q* forall 0 < k < rand,
in particular, r = s.

2.2.3 A local-global principle for quadratic forms over finite rings
Let R be finite, let specR = {my, ..., m}. By Theorem 2.2.1

1 1

R [[Rm, = [[R/m], (2.2)
i=1 i=1

where 1 is minimal in (2.1) for my. Let V be a finitely generated R module. Then this implies that

L 1
Ve [ [V, =[] V/ml,
i=1 i=1

where Vi, := Ry, ®r V. If V carries a quadratic form q, we can localize q as well: qu; : Vin;, — Ru,
defined by qu, (x ® v) := a ® q(v). The associated bilinear form qy,, is then the localization of the
associated bilinear form of q.

Now each Ry, is a flat R-module, that is, tensoring with Ry, preserves exact sequences (cf. p. 16 and
Theorem (3.11) in [Rei75]). This property is quite useful, as the next result will show.

THEOREM 2.2.2 (LOCAL-GLOBAL PRINCIPLE FOR FINITE QUADRATIC FORMS). Let R be a finite ring.

i. A quadratic module (V, q) is reqular over R if and only if (Vin, qu) is regular for all m € specR.

ii. For R-modules (V,q), (V’,q’), we have (V,q) =z (V’,q’) if and only if (Vi, qm) = (Vi, qe,) for all
m € specR.

PROOF. Ad (i): We consider the dual module of V first. Let m € specR:
(HomR (V/ R) )mi = Rmi ®Rr HomR (V/ R)
= Homg,, (Vi Rm,)

~ ki ki
= Hom, V/mt, R/m:),

/mlfi (
where the first isomorphy comes from Theorem 3.18 in [Rei75] if we note that V is clearly finitely

presented.

Taking this isomorphy and the decomposition of R, V, and V* as direct products, we see that (V, q) is
regular if and only if

bg:V — Homg(V,R)
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is an isomorphism if and only if
b, : Vm — (Homg(V,R)),, = Homg,, (Vin, Ri)
is an isomorphism for all m € specR if and only if (Vi qm) is regular for all m € specR.

Ad (ii): Write specR = {mg,...,m;} and to each m; let r; be as in (2.2). Clearly q(v) = q’(v’) if and
only if ®(q(v)) = ®(q(v’')) under the isomorphism

1
®: R—[[R/ml.
i=1

Let 71; be the projection of the direct product onto R/m}*, and  its injection. Then given a map ¢ :
V — V'’ we obtain a map ®(¢) : [[+_, V/mI* — []i_; R/m!* in the natural way.

Thus, by directness of the product, we derive that ¢ : V — V' is an isometry if and only if ®(¢) is if
and only if 71; 0 @(Pp) oty 1 V/m* — R/m* is. O

2.2.4 Isometry classes over finite local rings
We now restrict ourselves to the case that R is a finite local ring with maximal ideal m of nilpotency
index r. For a quadratic R-module V we set V := V/m, q(v) := q(v) for the quadratic R/m space (V,q)
that is induced from V. More generally for 1 < k < 1 we set v = V/mk, G (3 to refer to the
projection modulo the ideal m* of R, where VY =Vand V" 2 v.

We restrict our interest to finitely generated projective modules V, which then are free since R is as-
sumed to be a commutative local ring (cf. [Theorem 7.7] [Jac09], also true for arbitrary projective
modules over local rings, (cf. [Kap58, Theorem 2] ).

Since Rlocal, sois R/I for any ideal I < R. In particular, m/I is the maximal ideal of R/I. It is easily seen
that if V is regular over R, then V/I is regular over R/I: in fact, since V is free, regularity is equivalent
todV = s:RXz, with ¢ € R*. Now if vy,..., v, isabasis of V, thenv; + 1V, ...,v, + [V is a basis for V/I,
thus dV/I = (e + I)(R/I)Xz. Thus ¢ € R* = R\m implies that e+ € (R/I)* = R/I\m/I, so that the claim
on regularity follows.

LEMMA 2.2.3. Let (V,q), (W, q') be regular quadratic R-modules of rank n.
VWe VW
If R is a principal ideal ring, each isometry V — W lifts to |m|™ ("—1)/2 distinct isometries of V onto W.

PROOF. This is basically a finite version of Hensel’s Lemma (cf. (15.3) in [Kne02]). Let r be minimal
with m" = {0}.

First of all, if V =~ W, there is some R-linear map ¢ : V — W, for which ¢ : V = W is an isometry.
This can be obtained by choice of bases x1,...,xn of Vand yy, ..., yn of W for which ¢(xi) = yi holds,
simply set ¢(xi) := y; in that case.

We denote ¢ := ¢ for one such map and proceed iteratively.
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2.2. REGULAR QUADRATIC FORMS OVER FINITE RINGS

Given ¢j_1, satisfying q’($;j_1(v)) =ni—1 q(v) for all v € V, we construct ¢; satisfying q’(d;(v)) =i
q(v). Of course, once we reach j = 7, that is after r — 1 steps, we have constructed the desired isometry
¢ =¢r: VoW

Since q'(dj—1(v)) =ni-1 q(v), we see that the quadratic form q;(v) := q’($;j_1(v)) — q(v) satisfies
q;(V) c m)~L. Let a be a bilinear form (not necessarily symmetric) such that qj(v) = a(v,v), note that
also a(V,V) c mJ—1 (cf. 1.1.1).

Make the ansatz ¢;(v) = ¢;j_1(v) +P(v), with some linear map 1 : V — m~1W. Then

q'(d;(v)) = q'(bj—1(v)) + q"(W(V)) + bgr (i1 (v), b (v))
= q'(Pj21(v)) + bgr (bj—1(v), P(v))

This shows that for ¢; as such, by definition of qj, the congruences
q'(d;(v) = q(v) forallveV,
are equivalent to
by (dj—1(v), ¥(v)) =i —qj(v) = —a(v,v) forallve V. (2.3)
We now claim that we can choose { in such a way, that more generally the following holds:

by (bj—1(w), (V) = —alw,v), forallweV.

To see this, fix a basis vy, ..., vy of V. For all v; + mJ we find an element z; + mJ € V/mJ such that
bgr(dj_1(w+ m),zi +m)+m) = —a(w+ ), v +mI) +mwl, forallw+ml e V/, (2.4)

simply by regularity of the reduction of by» modulo m). Thus we can define a map 1 by the conditions
vi — zi. It remains to show that (V) < m)~!W, but this follows from the fact that z; € m/ ='W for
i€ {1,...,n}: The reduction of by modulo m1is regular, so the congruence

by (dj—1(w),zi) =n —alw,vi) =41 0

holds for all ¢;_1(w) + m/~!, where w € V. But the reduction of ¢;_; modulo m'~! is an isometry
V/mt - W/m =1 thus x + w1 by (x + mI71, zg + mI~1) + w1 is the zero map, which implies
ziemi~L

It remains to count the number of extensions of every isometry over the residue field to isometries over
Rin the case that m # {0} is a principal ideal. We have to check which z;+m/ € m/~! /mJ are solutions to
the congruence equation (2.4). There is a total of [m'~! /mJ| choices of z; for each 1, thus in combination
we have [mi~!/mJ|™™ possible choices for 1 modulo m}. But each } : V — m/~!W generates one of
the [m/~! /mJ | ("*+1)/2 quadratic forms on the R/m-vector space m! ~'W/mJ =~ (m~!/m/)"™. Conversely
each such quadratic form on (m/~!/m/)™ can be obtained this way, and each one of them is constructed
the same number of times. This in particular implies that every quadratic form on (m'~!/m/)" is the
image of exactly [m~1/m} [ (n=1)/2 = |i—1 /mJ|n (M +D/2 Jinear maps V — (m) 71 /mi)™.

So at each step above there are precisely [m)~!/m/ [ ("~1/2 linear maps V — (m/~!/m/)", such that
condition (2.3) is satisfied for the quadratic form a(v,v). Completing all r — 1 steps we arrive at

T n-(n—1)/2
H |mj71/mj ‘n-(nfl)/Z — <||nt:~||) — ‘m|n~(n71)/2
j=2

distinct lifts to isometries V — W. O
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2. M.T.I.S OF REGULAR QUADRATIC MODULES OVER FINITE RINGS

REMARK 2.2.4. We have pursued the counting of lifts only in the case that m is a principal ideal.
The proof is intendedly written in such a way that it can be directly generalized to the non-
principal case, but more variables come in to play: as is evident from the proof, it is the dimension
of the R/m vector space m’~!/mJ that brings in new degrees of freedom once m is not principal.
One has to evaluate this dimension at each step and the resulting quantity will not posses a closed
form as simple as in the principal ideal case. n

Lemma 2.2.3 provides a very important result, which allows us to explicitly describe the possible Witt-
decompositions of regular quadratic modules (V, q) over R, just as in the case of finite fields.
PROPOSITION 2.2.5. Let V be a regular quadratic module over R. Then

VeHLl... LTHLW,

where W is the (unique up to isometry) non-hyperbolic quadratic R-module of rank 0 (case I), 1 (case I1.1), or 2
(case I1.2).

As with finite fields, in the case of char(R) # 2 we can reformulate this in terms of orthogonal bases.

PROPOSITION 2.2.6. Let (V, q) be a reqular quadratic R-module where char(R) # 2. Then
q={,...,1,det(q))

and there are two distinct isometry classes of given rank.

PROOF. This follows from 2.2.3 and the well-known classification of regular quadratic modules over
finite fields (cf. (12.5) in [Kne02] and 2.1.10). O

REMARK 2.2.7. The non-hyperbolic regular module W of rank 1 or 2 is not anisotropic if r > 1,
though it cannot contain primitive isotropic elements, it certainly will contain isotropic elements,
namely those of the submodule m!™/2IW, which is totally isotropic (cf. Lemma 2.4.10). n

By the above, it is possible to compute the orthogonal groups of regular quadratic modules over R by
computation of the lifting homomorphisms used in the proof of Lemma 2.2.3, this can be of use for the
construction of similar sublattices in certain cases (cf. Remark 3.3.14). In any case, we can derive the
orders of the associated orthogonal groups of such modules.

COROLLARY 2.2.8. Let R be a principal ideal ring. Let (V, q) be a regular quadratic R-module of cardinality
q®. Then

[O(V, q) |= [m["™ D72 | OV, 7) |.
That is, if V is hyperbolic

|0(V,q) [=2- (¢*)"™ /2 (1 —q2). T (1 —q %),
2i<n
if V is non-hyperbolic of odd rank
|0V, q) [=c- (g2 [T (1-q7%),
2i<n
where ¢ = 1if char(Fq) = 2 and ¢ = 2 else, and if V is non-hyperbolic of even rank
|0V, q) [=2- (¢ )" 2 1+ [J(1—q7*),

2i<n
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2.3. COUNTING ISOTROPIC ELEMENTS IN REGULAR QUADRATIC MODULES OVER FINITE LOCAL P.L.R.

2.2.5 Isometry classes over finite rings

Let R be a finite ring. From Theorem 2.2.2 we immediately derive that the isometry classes of a reg-
ular quadratic module over R are in bijection with all direct products of isometry classes of regular
quadratic spaces over its localizations. There are no regular quadratic modules over R if 2 | |R| and the
rank of the localization at the maximal ideal containing 2 is odd (cf. 2.1.9).

2.3 COUNTING ISOTROPIC ELEMENTS IN REGULAR QUADRATIC MODULES OVER FINITE
LOCAL PRINCIPAL IDEAL RINGS

Throughout this section R is a finite local principal ideal ring with maximal ideal m and corresponding
nilpotency index r. Note that if |[R| = q° then s = r for such rings. There are a few results which hold
in greater generality, these are clearly marked to hold for rings that are not necessarily principal ideal
rings.

A direct approach to count the isotropic elements of given m-order, comparable to 13 Anzahlbestim-
mungen in [Kne(2] seems to lead to a messy inductive calculation involving a range of representation
numbers once Ris not a field. We relate isotropic elements of fixed m-order k < 2r to primitive isotropic
elements of a related regular quadratic module over the ring R/m"~2*. Counting primitive isotropic el-
ements of a regular quadratic R-module can be reduced to the counting of primitive isotropic elements
over the residue field of R, combining both we obtain the number of isotropic elements of arbitrary
m-order.

2.3.1 Slicing of regular quadratic modules

Let (V, q) be a regular quadratic R-module. Let v € V, we denote by vy, (v) the m-order of v, that
is Vin(v) = max{ ke Ny | m"*v =0 }. We sort the elements of V into layers comprised of those
elements with identical m-order. The union of all such layers, starting at any 0 < k < v, will then be
a submodule. We ultimately will count the number of isotropic elements for each layer separately; to
do so we proceed by giving a description of all isotropic elements with m-order equal to k below.

DEFINITION 2.3.1. Let V be a regular quadratic space over R, and let 0 <k <.

Vi = { veV‘vm(v)Zk },
VF]Z) = { veV‘vm(v):k }.

LEMMA 2.3.2. Let V be a free reqular quadratic space over R, and let 0 < k < 1. Then
V(k) = mkV,
k
Vi) = m<VEr
In particular for v € V, v (v) = k if and only if there is a v’ such that v = u*v’, and v, (v) = k if and only if

there is a primitive v’ such that v = pu*v' for some y € m.

PROOF. Since V is free we can identify elements of V with the vector of their coefficients A;, with
respect to some basis. Let v € V(y, that is m"~*v = 0 and it follows that for each coefficient A; we have
m"™*¥v; = 0. But this implies that vy (A1) > k, and A; € mk, therefore Vi < mKkV, the other inclusion is
obvious.
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2. M.T.I.S OF REGULAR QUADRATIC MODULES OVER FINITE RINGS

Now assume v, (v) = k. Then v, (v') = v (v) — k = k — k = 0 shows that v’ is primitive. O

We want to use the fact that every element of V(y therefore “essentially is divisible by m*”.
"=k, we see that V(i has a structure as R/m""*-module. If 2k < 1, we
make V(i) a quadratic R/m"*-module by defining a quadratic form q(y, on V(y), that is “essentially
the form q divided by m?*”. Let vy, ..., v, be a basis of V. Without loss of generality we assume that
the basis is chosen such that with respect to this basis

Since V(y) is annihilated by m

i. for 2 { char(R) we have q =<1,...,1,5) where § = det(q) (cf. Proposition 2.2.6);

ii. for 2 | char(R) we have a decomposition

ind(V)

0 1
— "%
v [0 0} /

where

{0} ifn =2ind(V),

W = 01 . .
0 ifn=2ind(V) +2,

If 2k < 1, we fix the basis of the R/m"™*-module V(k) that is obtained by the images of vy, ..., v,, under
the structure transport discussed above. By the values on this basis we define a form q i) on V(y, as
follows:

r—k

i. if p # 2 we define (V(x), q(x)) to be the quadratic R/m"~*-module

<=lr—k]

Vg =4{1,...,1,5 >,

where g[rik] is the canonical image of det(q) embedded in R/m"™* and the diagonal form is
written with respect to the above fixed basis of V(y;;
ii. if p =2 we define (Vy), q(x)) to be the quadratic R/m"™*-module
ind(V)

01
Vi) = {0 0] L W,

where

{0} if n =2ind(V),
0
0

Wi =

1
01 ifn=2ind(V) +2,

with respect to the above fixed basis of V/y.

LEMMA 2.3.3. Let V be a regular quadratic R-module and let 2k < v. With the above definition of q) we
obtain a reqular quadratic R/m™%-module (Vi Q). In particular, (V(xy, q(x)) is hyperbolic (resp. non-
hyperbolic) if and only if (V, q) is hyperbolic (resp. non-hyperbolic).
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2.3. COUNTING ISOTROPIC ELEMENTS IN REGULAR QUADRATIC MODULES OVER FINITE LOCAL P.L.R.

r—2k

By reduction of (V(y), q(x)) modulo m"~2* /m"~¥ we obtain a regular quadratic R/m module, which

characterizes the isotropic elements of m-order k.

LEMMA 2.3.4. Let (V, q) be a reqular quadratic R-module and let 2k < v. The following are regular quadratic
modules of the same rank. One of the three is hyperbolic if and only if all of them are.

i. (V,q) as R-module,

ii. (Vixy, qe)) as R/m™ *-module,

N
=
S
VS
<
=
.
O

) [T_Zk]> as R/m"=2%-module.

An element v € V(y) is g-isotropic if and only if Vi (q)(v)) = 1 — 2k if and only if vI"=2¢

isotropic.

] is q(x)

r—k

If 2k > 7, then (V(y), q(x)) is a totally isotropic quadratic R/m"~*-module and therefore every element

is isotropic.

Combining this we obtain the desired description of isotropic elements of m-order k.

LEMMA 2.3.5. In the above notation: Forve V with0 < via(v) =k < [%J

q(v) =0< W[T_Zk] (v[‘r‘—Zk}) =0.

In addition, every v € V with v, (v) > [3] is isotropic.

2.3.2 Counting elements

DEFINITION 2.3.6. Let V be a regular quadratic module over R.

S(V):={ ve V\{0} | q(v) =0 }

S(V) = IS (V)|

$*(V) := { ve V\{0} | q(v) =0, v primitive }
s*(V) = [S* (V)|

We compute s*(V) and s(V). The next Lemma shows that s*(V) = |O(V)|/|stabo(y)|. Then it will
suffice to compute |staboy)(v)| for an arbitrary primitive isotropic v, since we can get the value of
| O(V)] from Corollary 2.2.8.

LEMMA 2.3.7. Let (V, q) be a regular quadratic R module, R not necessarily a principal ideal ring. O(V) acts
transitively on S* (V).

PROOF. We fix some vy € S*(V), thus v is a primitive isotropic element of V and we can find some
hyperbolic plane Hj that contains v and write V = Hy L W (cf. Corollary 2.1.3). Now for an arbitrary
v € $*(V) the same is true and we obtain a decomposition V = H 1L W’ where v € H. Clearly, there
exists an isometry Hy — H that sends vy to v. In addition, Hy and H are b, -primitive because they are
regular submodules. Thus Corollary 2.1.6) assures the existence of an isometry V — V sending vy to
v. O
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2. M.T.I.S OF REGULAR QUADRATIC MODULES OVER FINITE RINGS

Since Rv is contained in a hyperbolic plane H = Rv + Rv’, we split this plane from V and obtain
V =H 1L W. For ¢ € O(V) to be in stabp(v)(v), it is necessary and sufficient to satisfy ¢(v) =
v,q(d(v')) =0,b(v, d(v')) = 1. By Witt'’s Theorem on the extension of isometries (cf. Corollary 2.1.6)
we can choose any u € V satisfying these conditions and find ¢ € O(V) with ¢(v) = v, (V') = w.
Write u = Av+ uwv’ +w, then q(u) = q(w) +Aub(v,v’) = q(w)+Anaswellas1 =b(v,u) = b(v, w’) =
ub(v,b’) = . Putting this together we arrive at 0 = q(w) + A. For each w € W this necessitates
A = —q(w). Therefore, we obtain q*("~2) distinct such 1 and conclude:

| stabo(v) (V)| = [{ ueV ‘ qu) =0,b(v,u) =1 }|-|O(W)
_ qs(n72] . |O(W)|

PROPOSITION 2.3.8. Let V be a regular quadratic R-module of rank n and with ind(V) = m. Then s*(V) is
as follows:

Ds*(V)=q 00 (g™ =™+ 1),
IL1) s*(V) = qs~ D=1 (2™ _ 1),
I1.2) s*(V) = q(sfl)(nfl) ) (qm+1 1) (g™ - 1).

PROOF. From
s*(V) =|0(V)|/| stabo(v)(v)|,
where v is an arbitrary primitive isotropic vector, and the above discussion we find
|stabov) (v)| = ¢*" 72 - |O(W)),

where dim(W) = dim(V) — 2 and W hyperbolic if and only if V hyperbolic. Therefore,

—stn-2) 1O(V)]
S* V) = s(n—2) ‘
V=a OW]|
—s(n— s—1)(2n— O(V)
_ g1, gs-nen-) [OV)]

|O(W)|
_ qfs(n72) . q(sfl)(2n73) . qn72 . S*(V)

_ q(sfl)(nfl) . S*(V),

where V, W are the corresponding reductions modulo m. The second equality follows from Corollary
2.2.8 and the third equality follows from Fact 2.1.13. Filling in the quantities s* (V) from Fact 2.1.12 we
arrive at the claim. O

We proceed with s(V). We use the above introduced (cf. 2.3.1) slicing of V.

PROPOSITION 2.3.9. LetV be a regular quadratic R-module of rank n and with ind (V) = m. If V is hyperbolic
m_ m—1 . gkn . g((s—=2k)=1)(n—1)

*(V):{(q D™ +1)-q*" - q k<s/2

s
k qls=k=Dn(gn — 1) k>s/2,

[s/2]-1
S(V) — (qm . 1)(qm71 + 1) . < Z an . q((SZk)l)(nl]> + q(sf[s/Z])n,
k=0
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if V is non-hyperbolic of odd rank

2m Cakn 4 ((s—2k)—1)(n-1)
SE(V) = (g™ =1)-9"" - q k <s/2
qlskn(gr —1) k> s/2,

[s/2]-1
S(V) — (q2m _ 1) . ( Z an . q((s—Zk)—l)(n—l)> + q[s—[s/2])n,
k=0

and if V is non-hyperbolic of even rank

. B (qm+1 4 1)(qm _ 1) . qkn . q((372k)71)(n71) k < 5/2
sp(V) =
gt (qr - 1) k> s/2,

[s/2]—
S(V)Z(qm+l+1) ( Z an (s— 2k)—1)(n—1)> +q(s—[s/2])n

PROOF. We fix t := [s/2]. Write V = ;o V[},,-

First of all we have seen that for 2k > s each of the q(*~*)™ distinct elements of V/y) is isotropic (cf.
Lemma 2.3.5). Because of V(1) = s n<i<s VFE)/ we write V = J;_, Vpr U V(). This decomposition is

disjoint, so we find s(V Zk 0™ ( VIDr )+s( Zk 08*( VlDr )+q s—tn

Following Lemma 2.3.5, in the case 2k < s a vector v € V[ is isotropic if and only if the corresponding

V € V(i satisfies q(v) = 0 (here we work with the reduction modulo m™=2k/m"=¥).
By construction of V), each primitive isotropic vector in V() represents qls—kin/qls=2kn = gkn
distinct isotropic elements in VFE). This states that there are q*™ - s*(V(y)) isotropic vectors in ka).

But V() is regular, as noted after its construction, so we already know the quantities s*(V(y)) by
Proposition 2.3.8.

Since V() is hyperbolic if and only if V(y, is hyperbolic if and only if V is hyperbolic, we arrive at

t—1
S(V) _ S*(V) . <Z qkn . q((SZk)l)(nl)> + q(sft)n. ]

2.4 A CLASSIFICATION OF MAXIMAL TOTALLY ISOTROPIC SUBMODULES OF REGULAR
QUADRATIC MODULES OVER FINITE LOCAL RINGS

Throughout this Section R will be a finite local ring of cardinality s, with maximal ideal m and corre-
sponding nilpotency index r, if not specified otherwise.

2.4.1 Reduction of the general case

As in the case of isometry above, the problem of identifying maximal totally isotropic submodules
obeys to the local-global principle of Theorem 2.2.2.

23



2. M.T.I.S OF REGULAR QUADRATIC MODULES OVER FINITE RINGS

PROPOSITION 2.4.1. Let R be a finite ring with spectrum specR = {my,..., m}. Let (V, q) be a quadratic
R-module, and let M be a submodule. Then

e

1
H M/ml
i=1

M is (maximal) totally isotropic if and only if My, is (maximal) totally isotropic in (Vi, qwm) for all m € specR.

1
M= ] [Mu,
i=1

PROOF. The decomposition of M into local factors and quotient rings is clear since it holds for all
finitely generated modules over R. Since a module (M, q) is totally isotropic if and only if it is isometric
to (M, 0), where 0 is the trivial quadratic form, and since (M, 0), = (M, 0) for all maximal ideals, the
assertion of the Proposition follows by 7i. of Theorem 2.2.2. O

2.4.2 A structure theorem for maximal totally isotropic submodules of regular modules over
finite rings
We achieve a complete classification of maximal totally isotropic submodules of regular modules over
the finite ring R by a structural decomposition of any such submodule M into blocks that are supported
on a rank 2 submodule. This is the main result of this Chapter and its proof will be given in quite some
detail.

We fix some notation: Let M be a maximal totally isotropic submodule of V. We let
vm =min{ vu(m) ‘ meM: q(m)=0 }

denote the minimal m-order of an isotropic element in M.

DEFINITION 2.4.2. Let H = Re + Rf =~ H be a hyperbolic plane over R, where (e, f) is a hyperbolic
pair. Then M = mFe + m"~*f is a maximal totally isotropic submodule. We write He ¢(k) =
He,¢(vam) for this submodule. If we are interested in a representative of an M as such up to
isometry, we will use the notation H(k). .

EXAMPLE 2.4.3. Let (V, q) be a regular free quadratic module. We can construct examples of
maximal totally isotropic submodules from rank-two building blocks.

i. Let V.=H; L ... L Hy, with Hi = Rey + Rf; = H and (e, fi) hyperbolic pairings. Let
0 < ki,...,km < [7]| be integers. Then M := Hi, ¢ (k1) L ... L Hpe, . (k) is @ maximal
totally isotropic submodule.

ii. Let V.=H; L ... L Hn L W, with H; = Re; + Rf; =~ H and ey, f; hyperbolic pairings,
W non-hyperbolic, free regular of rank 1 or 2. Let 0 < ky,...,km < [%] be integers. Then
M :=Hie (k1) L ... L Hie, ¢ (km) L mI™2IW is a maximal totally isotropic submodule.

We will not dwell on providing a proof, for the maximality of the submodules above, here. This
will be proven along the lines of the proof of the structural decomposition Theoremin2.4.3. N

This example already contains a representative for each isometry class of maximal totally isotropic
submodules of free regular quadratic modules over R. This is made precise in the main Theorem
of this Chapter, which gives a structural decomposition of any maximal totally isotropic submodule,
which looks as the examples above.
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THEOREM 2.4.4 (STRUCTURAL DECOMPOSITION FOR MAXIMAL TOTALLY ISOTROPIC SUBMODULES).
Let R be a finite local ring with maximal ideal m and corresponding nilpotency index r. Let V be a free reqular
quadratic module over R, with ind(V) = m. Let M be a maximal totally isotropic submodule of V. Then there
exists a (unique) sequence vm = k1 < ... < kmy < [5] together with a decomposition of V into hyperbolic
planes H; = Re; + Rfy, and possibly some non-hyperbolic module W of rank 1 or 2, such that:

I) Vs hyperbolic (rk(V) = 2m) and
V=H; L...1LHn
M =Hie, (k1) L... L Hme, ¢, (Km),
II) Vis non-hyperbolic (rk(V) =2m+1or rk(V) =2m+ 2) and
V=H;l...lH, LW
M =Hier (k1) L. LHme, p, (k) L ml™72W.
DEFINITION 2.4.5. Let V be a free regular quadratic module over R and M < V be a maximal
totally isotropic submodule. We define the type of M to be the sequence
[ki, ..., kml, if Vis hyperbolic,
or
k1, ..., km, [r/2]], if V is non-hyperbolic,

where the integers vpt = k1 < ... < kyy < [7] are those obtained from Theorem 2.4.4. .

REMARK 2.4.6. Itis quite clear that the notion of type as defined above is well-defined. For if
M=~H(ky) L... LH(km) LW

and M = H(l;) L ... L H(l,,) L W’ for admissible sequences ki, ..., Kkm], [l1, ..., L], the equality
[ki,...,km] = [l1,...,Ln] is inevitable. To see this consider the first index j from the left where
k; # 1j, wlo.g. we assume k; > 1. Then it is easy to see that the number of elements with m-
order k; in H(ky) L ... L H(kn) L W’ would be strictly larger than the number of such elements
inH(l;) L ... LH(l,n) L W/, while both are isometric to M. This is absurd. |

The discussion of the examples in 2.4.3 and the structural decomposition Theorem 2.4.4 immediately
characterizes the set of possible types of a given free regular quadratic module V over R.

COROLLARY 2.4.7. Let V be a reqular quadratic module over R with ind(V) = m.

i) If V is hyperbolic, a sequence [v1, ..., vm] is the type of a maximal totally isotropic submodule of V if and
only if vi € {0,...,[r/2]} is a non decreasing sequence.

ii) If V is non-hyperbolic, a sequence [v1, ..., Vi, [Vm+1]] is the type of a maximal totally isotropic submod-
ule of Vif and only if vin1 = [r/2] and vi € {0,.. ., [r/2]} is a non decreasing sequence.

As mentioned before, the case of primitive maximal totally isotropic submodules over local rings is
not much different from the situation over fields. In particular, their rank is an invariant (cf. Corollary
2.1.8), equal to ind (V).
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COROLLARY 2.4.8. Let V be a reqular quadratic module over a finite local principal ideal ring R, and let M be
a maximal totally isotropic submodule of type t.

i. Ifris even, then M| = q"("/2).
ii. If v is odd, then

IL1) M| =qlr=1/72. gqr(n=1/2),
IL.2) M| = qr=1 . qr((n/2)=1),

n/2

In particular |M| = q*("/2) if and only if v is even or if M is hyperbolic.

Furthermore, it is an easy consequence of the fact that O(V) acts transitively on the set of primitive
isotropic elements (cf. Lemma 2.3.7) that all primitive maximal totally isotropic submodules lie in one
orbit under the action of O(V). This situation generalizes to non-primitive maximal totally isotropic
submodules.

COROLLARY 2.4.9. Let V be a regular quadratic module over R and let t be a type of V. Then for any maximal
totally isotropic submodules M, M of type t there exists ¢ € O(V) such that $(M) = M.

2.4.3 The proof of the structural decomposition Theorem

We will work through the proof of the structural decomposition Theorem in several steps. We start
with the description of the maximal totally isotropic submodules of the regular free non-hyperbolic
and hyperbolic modules of rank 1 and 2 in Lemmata 2.4.10 and 2.4.11. The general situation will then
be reduced to these. To do so, Lemma 2.4.14 provides a way to split off some H(k) from a given M. This
can be done in such a way that M = H(k) L M’, where M’ is a maximal totally isotropic submodule
of a free regular quadratic module V’, which is Witt-equivalent to V and satisfies rk(V') = rk(V) — 2.

LEMMA 2.4.10. Let W be a non-hyperbolic regular quadratic module of rank 1 or 2 over R. Then

i. we W is isotropic if and only if vi,(w) = [v/2], that is, w € ml™/2lw.,
ii. mI™/2\W is the unique maximal totally isotropic submodule of W.

PROOF. It is clear that W has no primitive isotropic elements, for those would project to primitive
isotropic elements of W, which itself is an anisotropic space. Along the same lines we conclude that
q(w) € R* for all primitive w € W; if w e W with q(w) € R\R* = m, then w is isotropic modulo m and
therefore W is the zero element of W, thus w cannot be primitive.

If w € m*W is isotropic, we write w = p*w’ with w’ primitive and p € m\m?. Then q(w) = u?*q(w’).
Since q(w’) € R* we have v, (q(w)) = 2k. So necessarily k > r/2 if q(w) = 0.

Clearly m!™/2IW is a totally isotropic subspace and, by the above, there are no isotropic elements in
WA\m!™/2IW. This completes the proof. O

Having settled the non-hyperbolic case of rank 1 and 2, we deal with the second basic building block,
hyperbolic planes.
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LEMMA 2.4.11. Let H be a hyperbolic plane over R. Let M be a maximal totally isotropic submodule of M and
let x € M be such that k '= vy (x) = vm. Then there exists a hyperbolic pair (e, f) such that

i. H =Re+ Rf,
ii. M =He(k)=m e +m"kf,
PROOF. Let x’ be primitive in H, so that x = Ax’ for A € m*.

Given x’ (not necessarily isotropic itself), there exists some primitive isotropic element f € H, such that
b(x’, f) = 1. For if we choose any isotropic basis hj, h, of H, non-existence of an f as proposed would
mean that b(f, hi) € m, a contradiction to the regularity of H.

We now show that M = m*x/ + m™*f. If k = 0 this is clear since every primitive isotropic element x
of H is contained in a uniquely determined maximal totally isotropic submodule Rx, as in the case of a
field.

If k > 0, we see that ax’ ¢ M for all « € R\m¥, since vy, (ox’) = vin(a) < k = v (M) would be a
contradiction. Now the submodule Rx & M, because Rx is not maximal totally isotropic. In fact let o €
m¥, B e m"¥, then q(Bf) =0, and q(ax’ + Bf) = aPf € m" = {0}, showing Rx = m*x’ & m*x’ +m"¥f,
where the latter submodule is totally isotropic. Therefore, there exists y € M\Rx. Write y = ax’ + Bf.
Since v, (M) = k, it follows that &, § € m*. But then Bf =y — ax’ € M and therefore m*x’ + Rp3f = M.
In particular, for some p € m\m? we set z := u*x’ + Bf € M and obtain q(z) = p*p = 0, showing
B € m"¥. Therefore y € m*x’ + m"~*f and thus M © m*x’ + m"~*f. But since the latter is a totally
isotropic subspace and M is a maximal totally isotropic subspace it follows that equality holds.

We now show that there is a hyperbolic pair (e, f) such that M. = m*x’ + m"~*f = m*e + m*f. Suppose
that x’ is not isotropic itself, otherwise e := x" and f are a basis as desired. Since x’, f are a basis of H,
sois x’ + Bf,f, for B € R. Then

q(x’+Bf) = q(x') + B*q(f) + B - bg(x’,f) = q(x') +0+B-1=q(x") + B

implies, that with e := x’ — q(x’)f, we arrive at a hyperbolic pair (e, f). We claim that Ae € M. To see
this note that q(x’) € m"~2 because otherwise

Va(4(X)) = Vi (q(AX)) = Vi (W) + Vi (q(x)) < 2k +1 =2k =T,

contradicting q(x) = 0. Thus Ae = Ax’ — (Aq(x/))f € m*x’'+m"~*f = M, since vin (Aq(x’)) = k+1—2k =
T — k. It now follows that m*e + m"*f = mkx/ + m"*f = M. 0O

This settles the problem for the rank 1 and 2 modules. We proceed by a reduction of the general
situation to the rank 1 and 2 case.

LEMMA 2.4.12. Let V be a regular quadratic module over R, such that tk(V) = 3. Then there exists a basis
consisting of isotropic elements.

PROOF. This clearly is true if V is hyperbolic. So assume that V is not hyperbolic and write n := rk(V)
and V=H; L ... L Hy L W, where W is a regular non-hyperbolic quadratic module of rank 1 or 2.
We concatenate a basis hy, ..., hn_; of the hyperbolic part and a basis of W, to obtain a basis derived
from the decomposition in an obvious way. W.l.o.g. we can assume that q(h;) = 0 for all indices i. By
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assumption at least one hyperbolic plane splits V, and by its universality we can, for each w in a basis
of W, choose some h,, € H such that q(h,,) = —q(w). Replacing w by w + h,, in the above basis we
arrive at a basis composed of isotropic elements. O

LEMMA 2.4.13. Let V be a regular quadratic module over R, such that tk(V) > 3. Let x € V be primitive,
such that Xx is isotropic for some A with v (A) < 5. Then there exists a submodule H = Rx + Rv that splits V,
such that H ~ H, x € H, bq(x,v) = 1, and q(v) = 0 are satisfied.

PROOF. Choose some primitive isotropic v € V that satisfies b, (x,v) = 1. Such an element has to exist,
since there is some isotropic basis of V by Lemma 2.4.12 and the regularity of V does not allow that
bq(x,v) € m for all v in such a basis.

Set H := Rx + Rv. This is a regular submodule, where the regularity can be checked by computing
the determinant of H to be equal to —1. A regular quadratic module of rank 2, which by assumption
contains the isotropic element Ax € H with v, (Ax) < 7, can not be non-hyperbolic as noted in Lemma
2.4.10. Therefore, H ~ H and H splits V. O
LEMMA 2.4.14. Let V be a reqular quadratic module over R, such that tk(V) = 3. Let M be a maximal
totally isotropic submodule of V. Then there exists some hyperbolic plane H < V, with corresponding splitting
V =H L V/, such that

i M=H’"1 M’ where H' =« Hand M’ < V"'.
ii. H' =M n H is a maximal totally isotropic submodule of H and vim~n = vm,

iii. M/ =M n V' isamaximal totally isotropic submodule of V' and vima~v: < Vm.
PROOF. Assume that vy < 3, because otherwise M < ml™/2lV, where the latter is totally isotropic,
thus implying equality and the claim holds by Witt decomposition of V.

If k :=vm < 7, there is some x € M with v, (x) = vm = k < 7, so there exist a A € R and a primitive
x' € V with vy(A) = k < 7 such that x = Ax’. Using Lemma 2.4.13 we find H = Rx' +Rv < V

hyperbolic such that x’ € H, v is isotropicand V. =H L V.

STEP 1: We show that m*V nxt = H’ L m*V’, where H’ = m*x’ +m" v is a maximal totally isotropic
submodule of H.

Since m*V’ < m*V n xt, we can write m*V n xt = m*H ~ x+ L m*V’. We are left to show that

m*H N xt = m*x’ + m™*v, where the “>” inclusion is straightforward.

Towards the “c” inclusion we choose y € m*H = m*x’ + m*v with bg(x,y) = 0. We can write
Yy = apyx’ + Bupv with py, g € m*\m**1, whence

0 ="bq(x,y) =bqg(W, apax’ + Brav) = abgq (AX', x) + ABpab(x’,v) = Az B.

Only the last equality needs some justification: by choice of x we have bq(x,x) = 2q(x) = 0. Now
bg(x,x) = bgq(Ax’,Ax’) and for this to equal 0 necessarily Vi (bg(x’,x')) = 1 — 2vy(A) = v — 2k has
to hold, so bq(x/,x’) € m"~2*. But then also bq(Ax/, pix’) = Apb(x/,x’) € m* - m* - m™2k = {0}.

Furthermore b (x’,v) = 1 by construction of H (cf. Lemma 2.4.13). Having justified this, we observe
that clearly Apy 3 = 0 if and only if B € m™2* if and only if ; € m™~*. Maximality of H' follows from
the classification made in Lemma 2.4.11. This concludes the first step.
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STEP 2: We show that M < H’ 1 m*V’.

It is clear that M = x*, and by assumption M = m*V. Thus M € m*V n x*. By the identity
m*V Axt =H 1 mkV/,

which was proved in STEP 1, we therefore obtain M = H’ L m*V’. This concludes the second step.
STEP 3: We show that H' < M.

Fory € H' we find M < Ry+ M. We claim that Ry + M is totally isotropic, which then implies equality
by the maximality of M. Take any element ay + m where m € M can be written as m = h + v with
he H’ and v e m*V’. Then

q(oay +m) =bg(ay, m) =bg(ay, h+v) =bg(ay, h) + bg(ay,v) = q(ay +h) =0,

where by (xy,v) = 0 by the orthogonality of H and V’. Furthermore, ay,h € H’, so ay + h € H’ and
0 = q(ory + h) = b(ay, h) by the total isotropy of H'. This concludes the third step.

STEP 4: We show that M = H’ L M/, where M/ :== M. n m*V’ < V’ is a maximal totally isotropic
submodule of V.

By step 2 we can write an m € M as m = h + v with h € H’ and v € m*V’. By the inclusion H' = M of
step 3 then alsov =m — h e M. With M’ := M n m*V’ = V' we obtain M = H’ L M’. H' is maximal
totally isotropic in H by step 1. Furthermore M’ is totally isotropic with vpm > vm, and in fact, M is
a maximal totally isotropic submodule of V', because for totally isotropic M” < V' with M’ < M” we
have M ¢ H" + M”, where the maximality of M forces equality and shows M’ = M". This concludes
the fourth step.

Conclusion of the proof:

We just established that M = H’ 1 M’ with H’ = M n H ¢ H maximal totally isotropic by step 1 and
M’ =M n V' c V' maximal totally isotropic by step 5. This concludes the proof. O

Before we go on to put all pieces together and give a proof of Theorem 2.4.4, we formulate a Corollary
to the preceding Lemma which will be of use later on (cf. Lemma 2.5.2).

COROLLARY 2.4.15. Let V be a reqular quadratic module over R and let M be a maximal totally isotropic
submodule. Let x € M, such that vy, (x) = vm and that there exists a hyperbolic plane H containing x. Then
V = H L V' with V,V' Witt-equivalent, and M. = H(vm) L M/, where M’ is a maximal totally isotropic
submodule of V.

PROOF OF THEOREM 2.4.4. We start with the existence of a decomposition as claimed. If rk(V) < 2
this is covered by the Lemmata 2.4.10 and 2.4.11.

If rk(V) > 3 we proceed by induction with Lemma 2.4.14: We write V. = H L V' and see that M =
MnHLMnV where H = M nHand M’ = M n V' are maximal totally isotropic subspaces of
Hand V’. By Lemma 2.4.11, H' = H(vm) = H(vpm). Furthermore since V and V' are Witt-equivalent
and since rk(V’) = rk(V) — 2 we inductively get

M’ =Hy(ka) L ... L Hp(kpm), or
M’ =Hy(ks) L ... L Hp(km) L ml™2IW,
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depending on V being hyperbolic or not.

Uniqueness of a decomposition as such, up to isometry, was already discussed in Remark 2.4.6. O

2.5 COUNTING MAXIMAL TOTALLY ISOTROPIC SUBMODULES OF QUADRATIC MODULES
OVER FINITE PRINCIPAL IDEAL RINGS

Let R be a finite principal ideal ring. Let M (V) denote the set of all maximal totally isotropic submod-
ules of V and let M(V, t) denote the set of maximal totally isotropic submodules of V, that are of type
t. We set m(V) := IM(V)] and m(V, t) := |M(V, t)].

2.5.1 Reduction of the general case
Employing the results on the decomposition of modules over finite rings, we immediately derive the

following multiplicativity result.

PROPOSITION 2.5.1. Let (V, q) be a regular quadratic module over R. Then

m((V,a) = [] m(Vi qu)),

mespec R

where M((Vim, qm)) is the number of maximal totally isotropic submodules of the reqular quadratic Ry-module
(Vim, qm ).

PROOF. This follows directly from Proposition 2.4.1. O

2.5.2 The case of a finite local principal ideal ring

Let R be local in addition to the assumptions already made. Let m be the maximal ideal of R. Then if
IR| = g°, we find that s = r, where 7 is the nilpotency index of m. To compute the number of maximal
totally isotropic submodules of regular quadratic modules over R we compute the number of maximal
totally isotropic submodules of a given type, followed by summation over all different types.

Let sfl (V) denote the number of isotropic elements of V with m-order t; = v;, and let si["1 (t) denote the
number of isotropic elements with m-order t; in a maximal totally isotropic submodule of type t.

LEMMA 2.5.2. Let V be a regular quadratic module over R and let t be a type. Let M be of type t and write
V=HL1V, M=H(t1) L M’asin Lemma 2.4.14. The number of maximal totally isotropic subspaces of type
t obeys to the recursion

S
m(vr t) = stl : m(v/’ t/)/

where t' is the type of M.

PROOF. Letx € S5 (V), and let H be any hyperbolic plane in V that contains x (as is given by Lemma
2.4.13) and write V=H L V’. Let N € M(V, t) be composed of those maximal totally isotropic spaces
of type t that contain x. By Corollary 2.4.15 we can write any M € N as M = H(v;) L M’ where M is
a maximal totally isotropic submodule of V’. Then M’ is of type t’ := [ty, ..., t,, 2] by the uniqueness
of type (cf. Theorem 2.4.4). So there are exactly m(V’,t’) distinct elements of M(V, t) that contain x.
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Of course m(V’,t’) does not depend on V' itself, but only on the Witt-equivalence class of V' and its
rank.

If we do so for all of the s¥ (V) elements of Sf (V), we meet each element M € M(V, t) exactly s¥ (t)
times: Once for each isotropic element x € M with v(x) = t;, of which there are s¥ by definition of this
quantity.

But this translates to m(V, t) - sf (t) = s§ (V) - m(V’,t’) and therefore proves the claim. O
So we are left with the need to compute the quantities s¥ (t) and s¥ (V), in order to be able to compute
m(V,t). The latter one is given in Proposition 2.3.9, the former one is calculated below.

We fix some notation. Given a type t = [ty, ..., t, o] for some V with ind(V) = m, let (sy, ..., sq) be the
sequence of numbers that indicate how many consecutive entries of t are equal before each increment
that does not reach 7 and let s = sy +... + s4. That s,

.
tl ... :tsl < t51+1 — ... :t51+52 <...< t51+'._sa71+1 = ... :ts < E
Then we have that s < m and m’ = [n/2] — s is exactly the number of entries of t equal to [7].

Furthermore, we set tU) := t;, . 1, 11, thatis, tU) picks out the j-th smallest value of t.

REMARK 2.5.3. For a type t of a regular quadratic R-module V certain restrictions apply for the
numbers s, m’. These are:

i. Vhyperbolic, rodd: s =m, m’ =0;
ii. Vhyperbolic, reven: 0 < s <m,0<m’ < m,suchthats +m’=m;
iii. V non-hyperbolic, r odd: s =m, m’ =1;

iv. V non-hyperbolic, reven: 0 < s <m,1<m’<m+1,suchthats+m’'=m+1.

LEMMA 2.5.4. Let V be a regular quadratic module over R, and let t be a type of V. Then if t; < [3]:
D) st (1)

1) s% (t)
1.2) 5% (t)

q™M1—-q),
qrm(l o q—sl) . q[r/ZJ/
q —_

rm(l

q7) - q2[r/2J'

Ifti = [%], then M. = mI™/21V and therefore s (t) = st (V).

PROOF. Let M c V be a maximal totally isotropic subspace of type t, and let m = ind(V). We use
Theorem 2.4.4 to obtain a decomposition V. =H; L ... L Hy L V/, where V. n M = m!™/21V’ and
we write n’ = rk(V’) = n — 2s. Therefore, we can find a basis eq, fy,...,es, fs,Vv1,...,vn of V (each
Re; + Rfy = H, V/ = Rv; ®...® Rvy/) in which

M =M, L Mg, L Mmp
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where
M, = mt(l)el + mr_t(l)fl + ...+ mt(s1)esl + mr—t(sﬂfsu
7\/[5_51 :mt(51+1)651+1 +m' t(s1+1) fg 41 ert(s)eS err_t(s)fs,
Mm/ = m[r/Z]V/_

For x € M we accordingly write x = x5, +Xs_s; + Xm’. Such x is primitive relative to M, i.e., a member
of S§ (t), if and only if x;, is primitive relative to M, i.e., if and only if

t r—t ts T—ts
Xs; = CXllfLe]lel + Blufl 1fl + ...+ o‘sluesl1 e + [551 Hfsl 1fslr

where L, [f, € m\m?, with at least one o; € R*.

There is a total of q(""1*1 elements of M, that are not primitive relative to M. This follows from
the observation that for the s; hyperbolic pairs (e;, f;) that span M, we may not use a unit «;. This
leaves us with q{"~1) different possibilities to choose o« € R\R* = m. These scalars then amount to
q (r—1)—t distinct elements aptt e; for each primitive e;. To such an o; we can choose an arbitrary 3 € R,
giving ' distinct elements Bufi f; for each primitive f;. In total, each pair (e;, fi) thus contributes to
qr~V=t . gt = q"~! different elements of M, not primitive relative to M.

Since in the above decomposition of x, the summands xs_s, and xm,/ can be chosen arbitrarily and
since |[M_g,| = g7V, M/ = q™'I'/2), we have a total of

(qm _ q(r—l)s1) .qr(s—sﬂ ] q“'WZJ

elements in S¥ (t). Depending on the parity of r and whether n’ = 2m’ or n’ = 2m’ — 1 this can be
simplified to the formulation in the Lemma. O

We now can compute m(V, t) for given V and t.

PROPOSITION 2.5.5. Let V be a reqular quadratic module over R, with ind (V) = m. Then:

if V is hyperbolic

s
m(Hm,t) :q(r72)(msfs(s+1)/2)qfs . n(q(mfi+1) — 1)(q(m,i) + 1)
i=1

qu—l ]_[qq—l

Hq (m—i)t™® 1_[ q_z(m_i)t(all

i=s14..+Sq_1+1

if V is non-hyperbolic of odd rank

s
m(Hm L W,t) :q(rfz)((erl)sfs(erl)/Z]qfs[r/zj . n(qZ(m—iH) _ 1)
i=1

-ﬂq (" —1)" l_[q (" —1)"

. n q- (m—i+1)—-1)t™® o n q—(Z(m—i+1]—l)t(“’

i=s1+..+85q-1+1
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and if V is non-hyperbolic of even rank

S

(HmLW ) =q (r— 2)((m+1]s—s(s+1)/2)q—s(r+1 mod 2) .n(q(m—i+2)+1)(q[m—i+l) _1)

i=1
Hq (q"-1)" ]_[q (q"—1)"

Hq (m—i+1)t™ . n q72(mfi+1)t(‘”

i=s1+..+sq-1+1
PROOF. By Lemma 2.5.4 we recursively obtain
S Sfi (H[m—i+1))

st (tiz1)

and

st (ti-1)
where t5) = [tj;1,...,tm] is the type obtained from t by omitting the first j entries.
We write s(<1) = s1 + ... + s1. Using Proposition 2.3.9 and Lemma 2.5.4 we get for t; = t!!) < I, that
is, forie [s(<1—1) + 1,...,s(<pyl: for V hyperbolic
S’fi (Hm—1+1)

T m7i+1_1 m1+1 2)(m—1i) ,—1
Sy (q )(q )q"" q

'q—Z(m—i)t(L)q (<1)— 1+1(q (<1)—i+1 1)—1,

for V non-hyperbolic of odd rank

(Hm i+1 LW)
st (1)

(qu i+1 l)q(T72)(mfi+1)q7[r/2J

. q—(Z(m—iJrl)—l]t(Uqs(gl)—iJrl(qs(g”—iJrl _ 1)—1,

and for V non-hyperbolic of even rank
S;:ki (Hm—iJrl i W)
st, (i)

_ (qui+2 + 1)(qui+1 . 1)q(r72)(m7i+1)q7(r+1 mod 2)

. q—Z(m—iJrl)t“)qs(éu—iJrl(qs(éU—iJrl _ 1)—1.

Substituting these values we get for V hyperbolic

a

Hm t HH m—s(<1-1)—i+l 1)(qm—s(<1,1]—i+1)q(r—2)[m—s(<l,l)—i)
1=1i=1
. q71q72(m73(<1,1)7i)t(”qSL*iJrl(qSl*iJrl -1

for V non-hyperbolic of odd rank

a
m(HmJ_Wt HH (m—s(<1_1)—i+1) 1)q(r72)[mfs(sl,1)fi+1)
1=11i=1
. qflr/ZJqf(Z(mfs(sl_nfi+1)71)t(”qslfi+1(qslfi+l o 1)71
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and for V non-hyperbolic of even rank

a sy
m(Hm LW, t) :H n(qm—s(gl,l]—iJrZ _ 1)(qm—s(<l,1)—i+1 + 1)q(r—2)(m—s(<1,1)—i+1]
1=11i=1
. qf(r+1 mod 2)q72(m75($1,])fi+1)t“)qslfi+1(qslfi+1 N 1)71

respectively.

After some term rewriting, we finally arrive at the formulae given in the statement of the Lemma. O

2.6 LOW RANK CASES OVER FINITE PRINCIPAL IDEAL RINGS

For certain low rank cases we provide a formula for the number of maximal totally isotropic submod-
ules of regular quadratic modules over R. The results for modules over non-local finite rings then are
obtained by the multiplicativity statement of Proposition 2.5.1. We used MAPLE for the computations
presented below.

We only present the results for modules of even rank here. We include the hyperbolic and non-
hyperbolic case (for even 1) up to rank 6 and the hyperbolic case of rank 8. This selection stems
from the main application of these results to the problem of counting similar sublattices of integral
lattices, where only such maximal totally isotropic submodules with cardinality q"™/2 are of interest
(cf. Corollary 2.4.8 and Theorem 3.3.12). All results are in particular valid for modules over Z/p"Z
(with g =p).

We will make use of an abbreviated form of m(V, t) for explicit types. Suppose t is a type for which,
in the terminology introduced before Lemma 2.5.4, we have distinct entries j; < ... < jq for which j;
occurs a total of s; times. We then identify m(V, t) with

mjl...jl...ja...ju(v)-
& dila-Jg
Sl Sa

We ignore any entry of the form [ 7| thus for example m(V, [j1,j2,j2, 5, 3]) (for some even r) in a module
of rank 5 would be encoded by mj,j,j, (V). If the module V is clear from context, we allow ourselves to
drop it from the notation.

2.6.1 Rank?2

It is straightforward that the types in the hyperbolic case are of the form [j] with j < 7, whereas in the
non-hyperbolic case there is only the type [[5]]. Using Proposition 2.5.5 we see

2.q"1(D1(q)) -2 i<
m(H, [j]) = { ar @D s
0 J: 27
0 j<?
m(A, fj]) = { =2
1 j= [ﬂr
and therefore
m(H) =r+1,
m(A) =1
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2.6.2 Rank4
We handle the hyperbolic and non-hyperbolic cases separately.

The hyperbolic case

There are up to 4 distinct classes of types to be considered. The types are given by [j1,j2], [j1,j1] in the
case of r odd and additionally [ji, 5], [5, 5] for r even, as long as the restrictions j; < ji11 and j; <
apply for every occurrence.
For these we compute using Proposition 2.5.5

mj;, =247 Oa(q)? - g7,
my;, =2q" 2 Dy(q)-q-q P
mj, =q"2- 0y(q)? - g7,

We notice that m;,;, does not depend on the value of j».
Thus for odd r and 1 := "5

1-1 1 3
= Z Z My, + Z M55 -

j1=0j2=j1+1 j1=0

This is essentially a geometric sum, which we simplify using the symbolic engine of MAPLE to

q - (r+1)(g*=1) —2q) +2.

m(H) = (q-1)°

2.5)

For even r we have to add the contribution from the types which include 3, we fix 1 = 5 — 1:
-1 1 !
= Z Z myj, + 2 (mjljl +mjl) +1,
J1=0j2=j1+1 j1=0
Explicit evaluation of the above then shows that the formula in (2.5) is also valid for even .

The non-hyperbolic case

For the following we assume that r is even. There are up to 2 distinct classes of types to be considered.
The types are given by [j1, 5] and [7, 7], as long as the restriction j; < 5 applies for every occurrence.

For these we compute using Proposition 2.5.5

mj, =q" % O4(q) - g
Thus with 1 := 5 — 1 we obtain:
q" - Dy(q) -2
m(H L W)= th+1 el (2.6)

2.6.3 Rank6
We handle the hyperbolic and non-hyperbolic cases separately.
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The hyperbolic case

There are up to 8 distinct classes of types to be considered. The types are given by

G1,32,33), G1, 32,320, G191, 320, Gas 3, 91d

in the case of odd r and additionally

b1,32, 3 09 50 0 50 503 3

for even 1, as long as the restrictions j; < ji1 and j; < 5 apply for every occurrence.

Applying Proposition 2.5.5, we compute

Myi1jajs = ZqS(Tiz) - Ds(q 2. ®3(q) - Pu(q) - qi4j1 : q72j2’
Ol a

(
My1j0j, = 2 qS(Tiz) : (I)Z(q : 72].2/
Myij1j, = 2 qS(Tiz) : (I)Z(q :

(

3(r—2
mjljljlzzq(T )‘(qu ’

my,5, = 2072 0y(q)? - @3(q) - Dalq) - q""‘ : q*"z,
my,j, = q°" ) @a(q) - Ds3(q) - Palq) - q-q~°
my, = qz(r—z) . @3(q) . q)4(q) . q,4j1

We notice that mj,,j, does not depend on the value of j;3 and that m;,;,;, does not depend on the value
of jz.

Thus forodd rand 1 := rgl :

1-2 —
Z Z Z Mj1j2j3 + Z Z m]l]z)z +m)1]1]2 + Z My1j1ja-

j1=0j2=j1+1 jz=j>+1 j1=0j2=j1+1 j1=0

This is essentially a cascade of geometric sums, which we simplify using the symbolic engine of
MAPLE and some additional work by hand. This gives

m(H?) = g’ asr +¢*" - ax +ag

(-1 (q>-1)(q-1) 2.7)

where

asr = ((r+1)(q° — 1) —2q - D2(q)) - P2(q) - a(q),
ay =2- (DB(q)z/
Qp = 2.

For even r we have to add the contribution from the types which include 7, we fix 1 = 5 — 1

1 1-1 1
Z Z Z M55 + 2 Z (M523, + M55, + Mi5,)
J1=0j2=j1+1j3=ja+1 j1=0j2=j1+1

1
+ Z (mjljljl + my;5, + mjl) +1.
j1=0

Explicit evaluation of the above then shows that the formula in (2.7) is also valid for even .
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The non-hyperbolic case

For the following we assume that 7 is even. There are up to 4 distinct classes of types to be considered.
The types are given by

1,32, 51, 1,91, 30, G 3,50 (5, 5, 30,
as long as the restrictions j; < jiy+1 and j; < 3 apply for every occurrence.
Applying Proposition 2.5.5, we compute

My i = 2 - (q3 +1) - Da(q) - Dulq) - g+ g2,

Thus with 1 := 5 — 1 we obtain:

1-1 1 1
mELW) =" > my+ ) (my 5 +my) +1,
j1=0j2=j1+1 j1=0

which simplifies to

q°" - by + g - bar + by

M LW = e - D 1)

2.8)

where

b3, = Dy(q)* - De(q),
bor = =2 D3(q) - Dg(q),
by =—(q* =29 —1) - Qs(q).

2.6.4 Rank 8

We restrict our investigation to the hyperbolic case. There are up to 16 distinct classes of types to be
considered. The types are given by

[jl/jZ/j3rj4]r [jl/er j3/j3]r [jlrj21j2/j3]/ [jlrj21j2/j2}/
l1,91,32,33), 1,31, 92,321, G, 91,10 320, Gasdas jas 3l

in the case of odd r and additionally

l1,32,33, 51, 132,92, 51, (1,31, 32, 31 G191, 91, 50,
[jl/jZ/ %/ %]/ [jl/jl/ %/ %]/ [jl/ %/ %/ %]/ [%/ %/ %/ %]
for even 1, as long as the restrictions j; < ji+1 and j; < 5 apply for every occurrence.
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2. M.T.I.S OF REGULAR QUADRATIC MODULES OVER FINITE RINGS

Applying Proposition 2.5.5, we compute

My1j1jijn = 2q6(r—2) : (Dz(q)2 - Dy(q) - De(q) - q6 : q—12j1,

My1j1jija = 2 qé(T_Z) : ®2(q)3 : (1)4(61)2 - Dg(q) - q3 : q—12j1’

M550, = 29°72 - @y(q)? - D3(q) - @a(q)* - De(q) - > - q 1V - q 7,
My151j2j5 = 2q6(r—2) ' (Dz(q)3 : (1)3((1) : (1)4((1)2 : (De((ﬂ -q- q—10j1 -q
My1jajaja = 2 qé(T_Z) : (Dz(q)3 : (1)4((1)2 : ®6(q) : q3 : q_6jl : q_6j2/

Myijajajs = 2q6(r—2) ’ (Dz(q)3 - ®3(q) (D4(q)2 - ®(q) - q q_6jl ) q_6j2/
Mj1jojsjs = 2q6(r—2) : (Dz(q)3 - D3(q) - (D4(q)2 ~®g(q)-q-q

M55, =24°0 72 Dy(q)* - @3(q) - Da(q)® - Delq) - g9 q Y2

My1jajs = qé(r_z] - Oz (q 4. D3(q) - CD4(q)2 - Dg(q) - q_6j1 . q—4j2 . q—2]'3,
M55, = ¢ 05(q)° - D3(q) - @u(q)* - Pe(q) - q- g~ - g%,
mj55, = 47 - 0a(q (q)* @s(q)-q-q~ '

- Dy(q)* - Delq) - q - g7,

(q)
(q)
(q)
Mii = 72 - 02(q) - Da(q)? - De(q) - g7 - 712,
m;,5, = ¢ Dy(q)
my;, =g’ Dy(q) -
(q)

my, = > Dy(q)? - Dy(q) - Delq) - g~

—6j —4j —2j
)1, q )2 q ]3,

. q JZ’

We notice that mj, 5, 5, ;, does not depend on the value of j4, that m;, 5, 5,5, and m;, 5, 5, ;, do not depend

on the value of j3 and that m;, ;, ;, j, does not depend on the value of j,.

Thus forodd rand 1 := rgl :

-3 1-2 1-1 1
4y _ C
m(H*) = Z Z My1j2jaja
J1=0j2=j1+1j3=ja+1js=j3+1
1-2 1-1 1
+ Z Z Z My1iaisis T Mriaizjs T Mrirjajs
j1=0j2=j1+1j3=j2+1
1-1 1
+ Z Z Mij2iai2 + Miiiniaia T Miijiinga
j1=0j2=j1+1

1
+ Z M1jijiji-
j1=0

This is essentially a cascade of geometric sums, which we simplify using the symbolic engine of

MAPLE and some additional work by hand. This gives

67 5r 3r
m(H4) — q a651’+q (;5T+(l (13r+(10,
(¢° =1)(q>=1)*(q - 1)
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2.6. LOW RANK CASES OVER FINITE PRINCIPAL IDEAL RINGS

where

agr = ((r+1)(q* = 1) = 2q - D3(q)) - D3(q) - P5(q) - Ds(q),
as, =2 @3(q)° - ©4(q) - De(q),

azr = —2- O4(q) - Os(q),

ap = 2.

For even r we have to add the contribution from the types which include 3, we fix 1 = 5 — 1

1-3 1-2 1-1 1
4 _— e e .
m(H*) = Z Z Z 2 My1j2jsj4
j1=0j2=j1+1j3=j2+1 ja=js+1
1-2 1-1 1
+ Z Z 2 Myijajais T Miiiaiais T Mitjrizis T Mijais
J1=0j2=j1+1j3=j2+1

1-1 1
+ Z Z My1i2i2i2 T Mrinioje T Minininjz T Mnjaja T Myijnia + Myij,
j1=0j2=j1+1

1
+ (Z My T Myijeg + Mgy + mh) +1.
j1=0

Explicit evaluation of the above then shows that the formula in (2.9) is also valid for even .
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CHAPTER

3

Similar sublattices

This chapter contains some of the main results of this thesis. We use the arithmetic theory of integral
lattices to relate similar sublattices of maximal integral lattices and maximal totally isotropic submod-
ules of regular quadratic modules over the rings Z/cZ.

We start by recalling basic facts about similarities of Euclidean lattices. We discuss elementary results
about the structure of the set of all similarities and similar sublattices and introduce the arithmetic
function ssl counting the number of similar sublattices by their index. These notions are generalized
to include sublattices of a lattice L, not necessarily similar to L itself, but rather to any lattice in gen(L).

We then recall basic features of the defined arithmetic functions, in particular, we discuss their super-
multiplicativity and provide an example for the failure of multiplicativity in general. Furthermore
we discuss a result of Conway, Rains and Sloane which was the first result to give necessary and
sometimes sufficient conditions regarding the existence of similar sublattices of rational lattices.

In 3.3.3 we introduce a novel approach to the problem of the enumeration of similar sublattices of
maximal integral lattices. Here we find a bijective correspondence (cf. Lemmata 3.3.9, 3.3.10) between
c-genus-similar sublattices of a lattice L and maximal totally isotropic submodules of L/cL, with a
canonically induced regular quadratic form (cf. Lemmata 3.3.6 and 3.3.7), provided that L is maximal
and integral and that ged(det(L), c) if L is even, and ged(2 det(L), ¢) if L is odd.

This then implies the main results of this chapter, Theorem 3.3.12 which combines the results of the
preceding Lemmata and of chapter 2 to show that under the above assumptions, the arithmetic count-
ing function ssl is multiplicative and that its value on sublattices of index m = c™/? is given by the
number of maximal totally isotropic submodules of L/cL with a suitable quadratic form. In addition,
we obtain Theorem 3.3.13, the analog to Theorem 3.3.12 for genus similar sublattices.

We conclude this chapter with 3.4, a short discussion of Dirichlet series and Zeta functions for the cases
where the above defined arithmetic function ssl? is multiplicative. The lattice Eg satisfies sslg, = sslg8
and is an important special case of the general result. We provide the Dirichlet series for Eg and show
that it satisfies a local functional equation.

41



3. SIMILAR SUBLATTICES

3.1 SIMILAR SUBLATTICES OF LATTICES
Let c € R.. A c-similarity, or similarity of norm c, of (V, b) is a linear map o : V — V satisfying
b(o(x), oly)) = cb(x,y)

forall x,y € V. We write Z(V, b) for the set of all similarities of (V,b). Any similarity is bijective by the
above formula and the non-degeneracy of b. Clearly, Z(V, b) is a subgroup of GL(V). Furthermore, the
norm map N : Z(V,b) — R.; 0 — c associating to a similarity o its norm is a surjective (cf. Section
3.3.) homomorphism of groups with kernel O(V, b). In fact if 0, ¢’ are c-similarities then there exists
¢, ¢’ € O(V) such that 0 = ¢ o 0’ = 0’ o §. In particular, the set Z(V, b;c) :=={o e X(V,b) | N(o) =)},
the fiber of the value c under the norm map N, is a right and left coset of O(V, b).

DEFINITION 3.1.1. Let (L, b) be a Euclidean lattice. A c-similarity, or similarity of norm c, of L,
is a c-similarity o of (RL, b) such that o(L) < L. .

We introduce notation for the set of similarities and similar sublattices of a Euclidean lattice.

DEFINITION 3.1.2. Let (L, b) be a Euclidean lattice.

i. The set of similarities is
I(L,b):={oe Z(RL,b) | o(L) =L}.

The index of a similarity o is the index [L : o(L)].

ii. A sublattice L’  Lis a (self)-similar sublattice, short SSL, if there exists a similarity o such
that L’ = o(L). The norm of L’ is the norm of 0. We set

SSL(L,b) :={o(L) c L | oe Z(L,b)}. R
We will subsequently count similarities and similar sublattices in terms of their index, this will align

nicely into some existing framework regarding Zeta functions. Note that rewriting the counting pro-
cess in terms of their norms is easily done, as we will see now.

LEMMA 3.1.3. Let o be a c-similarity of L and write n = dim(L), then

[L:o(L)] =c™2

We define two counting functions.

DEFINITION 3.1.4. Let (L, b) be a Euclidean lattice. We associate to (L, b) the similarity counting
function

siLy) ' N—=N; a— |Z(L,b;a)l.
where
I(L,b;a):={oe XZ(L,b) | [L:o(L)] =a},
and the similar sublattice counting function

sslip) : N—N; a— |SSL(L,b; a)|,
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3.1. SIMILAR SUBLATTICES OF LATTICES

where

SSL(L,b;a) :={L" € SSL(L,b) | [L: L] = a}.

For the notations introduced above we will as usual sometimes abbreviate (L, b) to L if the inner prod-
uct is clear from context.

Having notation and vocabulary at hand, we now delve into the discussion of the most basic properties
and connections of the objects in question. We first discuss invariance under scaling of a lattice.

LEMMA 3.1.5. Let (L, b) be a Euclidean lattice. Let A € R~q. Then

i. X(L,b) =ZX(L,Ab);
ii. X(L,b;a)=X(L,Ab;a);
1. S(L,b) = S(]_,)\b),‘

iv. ssl(Lp) = ssl(Lab)-

That is, the occurring norms and indexes of similarities and similar sublattices, as well as the number of such,
do not change under scaling.

We collect some facts on the structure of the sets of similarities and and similar sublattices.

LEMMA 3.1.6. Let (L, b) be a Euclidean lattice.

i. (L) < Z(RL) is a monoid, but not a group.
ii. O(L) =X(L;1) < X(L).
iii. X(L;c) is finite forall c € Sp.

PROOF. The claims are quite obvious. Towards (i) we have seen that there always is a similarity of
norm greater than 1, and the inverse of this map can clearly not map into L. (ii) is clear by definition
and towards (iii) we can apply a standard proof for the finiteness of O(L), which of course is a special
case of the claim. The idea is to fix a basis B of L. Let A := max{b(v,v) | v € B}. Then if o is a
c-similarity, o can map the elements of B only to elements in L n B¢, (0), those elements in L of length
at most cA. But since L is discrete and a ball is compact, this set is finite. Thus there can only be finitely
many c-similarities. O

The sets (L) (resp. Z(L; c)) and SSL(L) (resp. SSL(L; c)) are connected to each other through an action
by the orthogonal group of the lattice L:

LEMMA 3.1.7. Let (L, b) be a Euclidean lattice. For the right action of O(L) on the sets Z(L), Z(L;c), for
¢ € Sy we obtain:

i. If similarities o, 0’ € L(L) are in the same O(L)-orbit, their norms agree.
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3. SIMILAR SUBLATTICES

ii. Similarities 0,0’ € X(L;c) are in the same O(L)-orbit if and only if o(L) = o’ (L).

iii. The O(L)-orbits on (L) are of the form Z(L)y» = {0 € Z(L) | o(L) = L'}, where L’ € SSL(L). Thus
SSL(L) is a set of representatives' of the above action and in particular SSL(L; c) is a set of representatives
for the O(L)-action on (L; c).

iv. sp(c) =ssl (c)-|O(L)|.

v. There exist v := ssly (¢) distinct c-similarities 04, ..., 0 such that

- T

I(Le) = Uizlmom.

PROOF. (i) is clear. Towards (ii) the assumption o(L) = ¢’(L) implies that 0! 0 ¢/(L) = L and thus
o' = oo ¢ for some ¢ € O(L). On the other hand if such ¢ exists, clearly 6/(L) = 0 o (L) = o(L). The
remaining claims follow immediately. O

3.2 GENUS-SIMILAR SUBLATTICES OF LATTICES

All of this generalizes to sublattices of a given lattice L that are not necessarily similar to L, but similar
to a lattice in the genus of L. Though this may seem artificial at the moment, it is the natural environ-
ment of the arithmetic method which we apply to the problem of enumerating similar sublattices. This
point of view is, in particular, natural in the theory of representations of a lattice by another one. In
the framework of the arithmetic theory of quadratic forms (with the notation of Chapter X in [Kne02]),
the numbers ssl; (c™/?) and ssl? (c™/?) can be related to the representation numbers

a(L, ') S a(My,© ')
———— and —_—
o) ; O(My)

where {M;, ..., My} is a set of representatives of gen(L).

DEFINITION 3.2.1. Let (L, b) be a Euclidean lattice and let My, ..., My, < RL be a set of represen-

tatives for the (Q-)isometry classes in gen(L).

i. The set of genus similarities is
Y9(L,b):={oe XZ(RL,b) | o(M) =Lfor M € {My,..., Mn}}.

The index of a similarity o is the index [L : o(L)].

ii. A sublattice L’ < L is a genus-similar sublattice, short GSSL, if there exists a similarity o
such that L’ = o(M) for some M € gen(L). We say that the norm of L’ is the norm of 0. We
set

SSLI(L,b) :={o(L) | c € Z9(RL, b)}. .
DEFINITION 3.2.2. Let (L, b) be a Euclidean lattice. We associate to (L, b) the genus similarity
counting function

siLe) ' N—=N a— [Z9(L,b;a)|.

1We allow to refer to any set, that is in a one-to-one correspondence with the equivalence classes of some equivalence
relation, as a set of representatives, rather than considering only subsets of the set the relation is defined on.
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where
Y9(L,b;a):={ce X9(L,b)|[L:o(L)] =a},
and the similar sublattice counting function
sslf’L/b) :N—>N; a— |SSLI(L,b;a)],
where

SSLY(L, b;a) := {L’ € SSLO(L,b) | [L: L] = a}.

The choice of which representatives My, ..., My, we choose does affect the above definitions of X9(L)
and 29(L; ¢), but only in the following sense: If M1, ..., M/, is another set of representatives the asso-
ciated sets would be in bijection, induced by the isometries of My = Mj,..., My = M/, (which we can
assume by appropriate choice of labeling). However, the function s? is well-defined. In any case, as

we make the transition to the associated sets of sublattices of L this ambiguity vanishes entirely.

Now the results of Lemma 3.1.7 do not generalize directly to the case of genus-similar sublattices. This
is for the fact that now we cannot let O(L) act from the right, since in general O(L) will not stabilize
another lattice in the genus of L. We can however let each O(M) act on the right on those similarities
o € Z9(L) that map M into L. But this will only show that |[Z9(L)| = Z?:l ai| O(M)|, where we let

a; denote the number of elements of X9(L; c) that map M into L (in accordance with the discussion
1

above, a; = %)
3.3 EXISTENCE AND ENUMERATION OF SIMILAR SUBLATTICES

3.3.1 Properties of the counting function ssl

Clearly, ssl(L p)(1) = 1, it thus is an arithmetic function and we should ask whether it is multiplicative
or not.

It is not always multiplicative as the following example shows.

EXAMPLE 3.3.1. On page 1392 of [BHMO08] the lattice L = 2e;Z + 3e,Z, together with the standard
inner product, is named as an example for the failure of multiplicativity . Explicitly the first non-
trivial norms of similar sublattices are 4 and 9, and these norms provide a counterexample by

ssli(36) =2>1-1=ssl(4) -ssl (9).
|

PROPOSITION 3.3.2. Let (L, b) be a Euclidean lattice. ssl(y vy and ssl?L,b) are super-multiplicative, that is,
for a, a’ coprime

A proof of this can for example be found in Theorem 2.6 of [Heul0], we present the proof for conve-
nience.
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PROOF. Let My, M, be genus-similar sublattices of index a of L and let Ny, N, be genus similar sub-
lattices of index a’ of Mj, M, respectively. In particular N1, N, are genus-similar sublattices of index
aa’ of L. If we assert that

the Proposition is proven.

In order to do so, we write

a’'=M;: N =[M;i:M;nMy-[M;nM;:N],
a=[L:Mi=[L:M;+ My -M;+M,;: Ml

Since then
M1 + M, : Myl = [Mi : My n Myl

is a common divisor of a and a’, this index equals 1. But this shows M; = M. O

3.3.2 Similarities of rational quadratic spaces and an existence theorem for similarities of rational
lattices

In the case of a Euclidean space the question of existence and even a full description of all similarities
of a given norm c has a straightforward answer. For any ¢ € R-( the map o : V — V; x — 4/cx clearly
is a similarity of norm c and thus the norm map is surjective. The set of all such similarities is then
given as an O(V)-coset Z(V;c) = 0. O(V).

The situation already becomes more difficult by considering rational spaces with an inner product.
Let (V,b) be a positive definite quadratic Q-space. All of the above definitions for real spaces can be
applied to this situation also, where clearly the codomain of the norm map then is Q~¢. It is still true
that the fibers of the norm map are cosets of O(V), but surjectivity can fail.

PROPOSITION 3.3.3. Let (V,b) be quadratic Q-space of dimension n. Then
N(Z(V,b)) = {c € Q=¢ | (¢, (~1)™"1/2qV), =1 for all primes p | 2¢ - dAV}.
PROOF. Observe thatc e N(X(V, b)) if and only if °V =~ V since any such isometry ¢ : °V — V satisfies
cb(x,y) =b(d(x), d(y)) Vx,y eV,

and thus the underlying linear map ¢ : V — V is a c-similarity.

But now V = ¢V if and only if V,, = ©V,, for all primes p € Z, by the Hasse-Minkowski Theorem (cf.
66 : 4 in [O'M73] or the discussion in 1.3.3). We can dismiss the real spot since scaling by a positive
number clearly does not affect the signature.

Thus we have to check the Hasse-symbol of both spaces. These are related by (cf. p. 167 in [O'M73]):
Spcv — (C, (71)n(n+1)/2 . dvn+1)pSpV.

If p is odd and does not divide either c or dV both arguments are units and thus the symbol computes
to 1in any case (cf. 63 : 12 in [O’M73]). Thus we are left to check that it equals 1 in the remaining cases,
and the thus set of c € Q- for which this is the case is precisely the set of norms of similarities. O
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This proof is one half of the proof of the next Theorem, and was given by Conway, Rains and Sloane
in their 1999 work [CRS99].

THEOREM 3.3.4 (THEOREM 1 [CRS99]). A necessary condition for a rational 2k-dimensional lattice L to
have a similar sublattice of norm c is that the Hilbert symbol

(c, (—1)kdetL)p =1

for all primes p dividing 2c det L. If L is unigeneric and rZ-maximal for some v € Q then this condition is also
sufficient.

PROOF. The necessity of the condition is covered by Proposition 3.3.3. On the other hand if c satisfies
the condition in the Theorem, the lattice /cL is rationally equivalent to L (Q+/cL =~ QL) and thus there
is an isometry ¢ of the spaces. Furthermore, ¢ (4/cL) is contained in an rZ-maximal lattice and there is
only one such genus on each space (cf. 102 : 3 in [O’M73]). Since L is assumed to be rZ-maximal and
unigeneric ¢(+/cL) is a sublattice of L and it is by construction c-similar to L. O

3.3.3 Enumeration of similar sublattices of integral lattices using finite quadratic modules

Lemma 3.1.5 showed that the of enumeration of similar sublattices of Euclidean lattice does not depend
on how that lattice is scaled. Therefore it suffices to consider integral lattices instead of rational lattices.
Furthermore, we can assume that s(L) = Z.

LEMMA 3.3.5. Let (L, b) be an integral lattice. Then the norm of any similarity, or similar sublattice, is an
integer.

PROOF. Without loss of generality we assume that s(L) = Z. Let o be a similarity of norm c. Then
[L:o(L)] = c™? e Nby Lemma 3.1.3. By assumption there are x,y € L with b(x,y) = 1. Then

c=c-b(x,y) =b(o(x),0(y)) €Z,

since o(L) is integral as a sublattice of an integral lattice. O

The above allows to argue for the counting functions to be indexed by the norm rather than the index.
However, we stick with the way we introduced them, as functions of the index.

The proof, as well as the condition, of Theorem 3.3.4 clearly has a local flavor. In the subsequent we
will describe a method which relates such sublattices to maximal totally isotropic submodules of free
regular quadratic modules over rings of the form Z/p'Z, with p a prime. This method is subject to
two constraints: It restricts to similarity factors ¢ which satisfy gcd(c, det(L)) = 1 and enumerates
sublattices which are similar to a lattice in the genus of L, rather than to L itself.

If, however, L is unigeneric, we get sublattices necessarily similar to L. In addition we can show that
ssli and ssl{ behave multiplicatively if the above constraints are satisfied. This method was developed
by Rudolf Scharlau, the subsequent discussion is based on a manuscript [Schlla], which was made
available to the author. Publicly available slides of a talk given on this subject can be found online
[Schl1b].

In particular, the subsequent results include the previously unsettled case of the root lattice Es. In
addition, for all similarity factors coprime to the respective determinants we can reproduce results
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about the root lattices A4, D4 (cf. [BM99], [BHMO8]); it should be noted that the aforementioned results
include the cases of similarity factors that are not coprime to the respective determinants and thus are
of greater generality for these specific cases.

Given an integral lattice (L, b). We define a quadratic form q as follows: if L is even, set q(x) := %b(x, x)
for all x € L, otherwise set q(x) := b(x,x) for all x € L. In any case we obtain a quadratic Z-module
with values in Z. Let ¢ € N and let ~ denote reduction modulo ¢, where we assume that the modulus is
clear from context. Furthermore, let 71: L — L/cL be the canonical projection. Then we associate to the
quadratic Z-module (L, q) the free finite quadratic Z/cZ - module (L/cL,q), where q: L/cL — Z/cZ is
the quadratic form induced by q.

LEMMA 3.3.6. Let (L, b) be an integral lattice. (L/cL,q) is a regular quadratic Z/cZ-module if

ged(c,det(L)) =1if L is even
or ged(c,2det(L)) = 1if Lis odd.

PROOEF. In the case that L is even, q(x) = %b(x,x), thus by = b and the claim follows since det(L) €
Z/cZ* is a representative for d(L/cL,q) = d(L/cL, bg) and we assumed gcd(c, det(L)) = 1.

In the case that L is odd, q(x) = b(x,x), thus bq = 2b. But det(L, b) € Z/cZ* if and only if det(L, 2b) €
7./cZ* by the additional assumption 2 1 c. O

We use this quadratic module to characterize sublattices that are c-similar to lattices in the genus of L.

LEMMA 3.3.7. Let L be an integral lattice, o be a similarity of norm c, and M = o(L’) be a sublattice similar
to some lattice L’ € gen(L). If ged(c, det(L)) =1, then cL = M and therefore M /cL < L/cL.

PROOF. By assuming gcd(c,det(L)) = 1 and the fact that [L : M] = ¢™/? it follows that M¥ = M¢"# ~
Mdet(L)# ‘since det(M) = [L : M]2det(L) = c™ det(L) (cf. (1.1)).

We claim that M¢"# = M¢* = 1M and that L/M < 1M/M. Then cL/M = M/M, or equivalently,
cL « M holds.

To prove the claimed equality M¢"# = M¢* = 1M, we make a comparison of orders: Clearly,
IMe™#| = c" by the above. Furthermore, M# < M<"# by definition. Now M* = 1M ~ M*
and since M = o(L’), we find b(x,y) = b(o(x’),o(y’)) = ¢ - b(x’,y’) € cZ with x’,y’ € L’, for
arbitrary x,y € M. But then b(1x,y) € Z, or equivalently 1x € M*. Thus M®* = IM. Finally,
IIM/M| = [M/cM| = ¢™ = [M¢"#| and this completes the proof of the claim. O

If the condition ged(c, det(L)) = 1 is violated, this can be wrong:

EXAMPLE 3.3.8. Using MAGMA, we can compute similar sublattices via backtracking. We found
a similarity o of norm 3 of the Coxeter-Todd lattice Kip, for which 3Kj, ¢ o(Ki2). However,
9K12 C G(Klz). |

LEMMA 3.3.9. Let L be an integral lattice and let ¢ € N with ged(c,det(L)) = 1. If M < L is c-similar to
some lattice in the genus of L, then (M) < L/cL is a maximal totally isotropic submodule of cardinality c™/?
of the free reqular quadratic module (L/cL,q).
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PROOF. Let M c L be a similar sublattice of norm c. By Lemma 3.3.7 M := (M) =M/cLc L/cLisa
submodule of the free regular quadratic module (L/cL,q). Since q(x) is divisible by c for all x € M, we
have q(M) = {0}, thus M is totally isotropic. Furthermore, M| = [L : M] = c™/2. With the classification
of maximal totally isotropic submodules of free regular quadratic modules over Z/p"Z we deduce that
M is maximal (cf Corollary 2.4.8). O

LEMMA 3.3.10. Let L be a vZ-maximal integral lattice, and let c € N be such that gcd(c,2det(L)) =1ifLis
odd and ged(c,det(L)) = 1if L is even. If *(QL) = QL, then for every totally isotropic M < (L/cL,q) with
|M| = c™/? the sublattice M := =1 (M) is c-similar to a lattice in the genus of L.

PROOF. If M = L/cL is a totally isotropic submodule of cardinality c/2. M = 7~ !(M) is integral and
b(M, M) < cZsince b(x,y) = q(x +y) — q(x) — q(y) € cZ for all x,y € M by isotropy of M.

The lattice M’ := C7]M is on CAQL ~ ‘QL = QL, since M is on QL. This implies that we can replace
M’ by some lattice on the same space as L, in particular, this holds for all localizations. However, by
abuse of language, we stick to the name M’. Since there is a c-similarity from M’ to M, we are left to
show that M’ € gen(L).

We show that there is an isometry M|, =~ L, at every prime p, which suffices because L and M’ are
positive definite. We distinguish 2 cases:

i. p{c, which implies that c € Z; ;

ii. p | ¢, which implies that p t det(L).

Adi.: Write M = TL where T is the representation matrix of a base change from L to M. T is integral by
definition and det(T) = [L : M] = ¢™/2. Therefore T, is in GL,,(Zy), since ¢ € Z%. Thus M, = T,L,, =
L. Then

L is rZ-maximal = L, is rZ,-maximal
= M,, is 1Z,-maximal
—1 . _ .
= M/ =° M, is ¢ 'rZ,-maximal

= M; is TZp-maximal,

where for the last implication we again use ¢ € Z} (cf. 1.3.3). M;, and L, are on the same Q}-space
and up to isometry there is only one rZ,-maximal lattice on this space (cf. 1.3.5, or 91 : 2 in [O'M73]).
Thus L, ~ M, forall p {c.

Ad ii.: Since det(L) = det(M’) and p t det(L), we obtain that L, M, are both unimodular. But by
assumption ‘QL = QL, thus we can assume that M’ is on QL as well.

As noted before, L,,, M, are unimodular lattices on the Q,-space QL. For p # 2 we are in the non-
dyadic case, this directly implies L, ~ M/, (cf. 1.3.4, or 92 : 2b. in [O'M73)). If p = 2, the dyadic case, L
is even, since we assumed 2 { ¢ for odd lattices. Thus, to obtain an isometry, we have to assure for L,
and Mr/) to have identical norm groups (cf. 1.3.4, or Theorem 93 : 16 in [O'M73]).

Let Q(x) := b(x,x) = 2q(x) for all x € L. Then g(L,) = Q(L2) + 2sL,. Now Z, < g(L,) < 27Z, because
L, is unimodular. Exactly one equality holds: g(L,) = Q(L;) + 2sL = 2Z,, since Q(L) < 2Z (L is
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even) implies Q(L,) < 2Z,. All of this shows, that g(L,) = 27Z, for all even lattices L, such that L, is
unimodular. But M’ is also even: q(x) = %b(x,x) € cZ for all x e M by construction, thus Q(M) < 2cZ
and after rescaling, c"'Q(M) < 2Z implies that M’ is even. Therefore the same reasoning as above
gives g(M;) = 2Z, = g(L). Thus L, ~ M, forallp | c.

We conclude: L, ~ M/, for all primes p and p = oo, thus M’ € gen(L). O
P P p P P g

This culminates in another criterion for the existence of c-similar sublattices of an integral lattice (cf.
Theorem 3.3.4). Recall that in the case of odd dimension ¢ has to be a square and that for all squares c
a similar sublattice of norm c exists. We thus focus on even dimensional lattices.

THEOREM 3.3.11. Let L be maximal integral lattice of rank n. = 2k and let ¢ € N such that ¢ = [[;_, p}* is
the factorization of ¢ in pairwise distinct primes pi. A necessary condition for L to have a sublattice M that is
c-similar to L, is that the F, -space (L/piL, q) is hyperbolic for all p, for which r; is odd.

PROOF. This follows from Lemma 3.3.10 together with Corollary 2.4.8. O

Putting all of the above together we arrive at the main result of this section.

THEOREM 3.3.12. Let L be an unigeneric maximal integral lattice and c € N such that ged(c,2det(L)) =1
if L is odd and gcd(c,det(L)) = 1 if L is even. If there is at least one similar sublattice of L with norm c,
there is a one-to-one correspondence between sublattices M that are c-similar to L and maximal totally isotropic
submodules of (L/cL,q). The function ssly is multiplicative on all c satisfying the above conditions.

PROOF. Lemmata 3.3.9 and 3.3.10 provide the one-to-one correspondence. Multiplicativity follows by
Proposition 2.5.1. O

This can be slightly generalized without altering the prove, the previous Lemmata have already been
formulated in accordance.

THEOREM 3.3.13. Let L be an integral maximal lattice and c € N such that gcd(c,2det(L)) = 1if L is odd
and ged(c,det(L)) = 1 if L is even. If there is at least one sublattice of L which is c-similar to a lattice in
gen(L), there is a one-to-one correspondence between sublattices M which are c-similar to a lattice in gen(L)
and maximal totally isotropic submodules of (L/cL,q). The function ssl? is multiplicative on all ¢ satisfying
the above conditions.

REMARK 3.3.14. The above discussion shows one more thing. If L and c fulfill the assumptions of
Theorem 3.3.12 or Theorem 3.3.13, we cannot only count (genus-)similar sublattices of norm c of L,
but we can compute them explicitly using the results of Chapter 2, for example with MAGMA. To
do so we could compute the orthogonal group O(L/cL,q), compute a representation of (L/cL,q)
in a basis according to a Witt decomposition as in Proposition 2.2.5, and compute the orbits of
O(L/cL,q) on a representative set of maximal totally isotropic submodules as in Example 2.4.3.
Then Theorem 2.4.4 and Corollary 2.4.9 assure that we have computed all such submodules. It is
now a standard problem, which MAGMA is capable of intrinsically, to convert these submodules
of L/cL to sublattices.

At the time of writing this thesis, MAGMA unfortunately does not handle quadratic modules
over arbitrary finite rings, or even local finite rings of the form Z/p"Z, intrinsically. A package to
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overcome this gap, recall that we depend on the orthogonal group of modules over such rings in
the above approach, is in preparation and planned to be made available by the author. n

3.4 A GLANCE TOWARDS ZETA FUNCTIONS FOR COUNTING (GENUS-)SIMILAR
SUBLATTICES

Let L = (L,b) be a Euclidean lattice for which we assume that ssl;, or ssl{ are multiplicative. By
the above results this is true for sslg,, since Eg is unigeneric, and more generally for ssl for all even
unimodular lattices.

In this case it makes sense to define a Dirichlet series as a generating function of ssl;, or ssl?:

2 sslp (m) 1

Difs)i= Y, e = Y, =0 3.1)
m=1 M L’eSSL(L) [L:L7]
2 ssld(m) 1

Dlg_(s) = Z I_s = Z . s (32)
m=1 M L/eSSLY (L) [L:L1]

Examples of Dirichlet series related to similar sublattices of certain low dimensional lattices can be
found in [BM99], [BHMO08], and [BSZ11].

In the latter formulation of (3.1) and (3.2) we see a very general way of assigning Zeta functions to
algebraic structures. Particular well known cases are Zeta functions of algebraic number fields, where
for such a field K

1 1
Cls) = 2, N(a)s 2 log :al°

a<og

This makes sense since the norm of ideals is multiplicative for Dedekind rings, and this can be rewrit-
ten in the form

where a,;, = [{a < ok | M(a) = m}.

This is also true of ssl; and ssl? if these functions are multiplicative. We treat these Dirichlet series as
formal sums and do not dwell on questions regarding their convergence here.

By the multiplicativity result of the Theorems 3.3.12 and 3.3.13 we write

Du(s) =[] 3, 2P, (33)
P r=0 P
00 0 19 (p™

Dis) =[] Ss(;ffs ) (3.4)
p r=0

For ssl{ we can use the results of 2.6 to make this decomposition into Euler factors more explicit.
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EXAMPLE 3.4.1 (A ZETA FUNCTION FOR SIMILAR SUBLATTICES OF Eg). The (even) root lattice Eg
has similar sublattices of arbitrary norm c € N (cf. Theorem 3.3.4). The index of a similar sublattice
of norm c is given by c* by Lemma 3.1.3. With Theorem 3.3.12 we find

sslg, (ct) = m(H?),

where H* is the hyperbolic module of rank 8 over the appropriate ring Z/cZ. If we apply this to
the Dirichlet series (3.3) we find

i sslf (p*") _ W(p,p~*)
Aopr)s A= p )1 +p )1+ p2) (1 —p34s)(1 — pd=4) (1 — p3-25)2(1 + p3-25)2”

where

W(X,Y) = (XY + 1) (XOY2 + X3V +2X4Y + 2X3Y +2X2Y +2XY + Y + 1)
= XY 4 XBY8 4+ 2X7Y8 4+ 2XOY® 4 3X5Y® 4 2X*Y8 + X3Y8
+ XV XY 43XV 42X 42X 4+ Y 1.

Note that the factors in the denominator belong to the Euler factors of zeta functions or their
quotients (cf. the example to Theorem 11.7 in [Apo13]):

1
os)=\1|——

(2s) _ 1
C(s) =11 T4+p=s

P

If we write Z(s) := ]_[p W(p,p~s) we therefore can write

De,(s) = ((4s) - {(4s —3) - ((4s —5) - ((4s — 6)* - Z(s).

An interesting observation is, that the Euler factors satisfy a functional equation. Write Dg,,, for
the complete Euler factor of D¢, at the prime p. Then

Deyplypr = =P - Dy, (3.5)

Observations like (3.5) are a common motive in the theory of Zeta functions of groups and rings,
the interested reader is referred to [DSW08] for information on this topic. We will only add the closing
remark that it should be of interest to fit the Dirichlet series obtained from the (genus)-similar sublattice

CO

unting functions into the more general framework of Zeta functions of groups and rings, the above

cited book deals in some detail with Zeta functions of rings that are not necessarily associative, but
additively isomorphic to Z™, just as lattices are.
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CHAPTER

Geometric foreplay

This introductory chapter starts with 4.1, a collection of some basic notions about lattices and periodic
point sets in Euclidean space. Here we exclude the contents of Chapter 1 from the discussion, wherever
they can be spared. This is concluded by a discussion of suitable parameter spaces for lattices and
periodic sets.

In 4.2 we recall some facts and notions about polyhedral complexes and triangulations.

Finally 4.3 covers Dirichlet-Voronoi and Delone subdivisions induced by Delone sets, in particular, by
lattices and periodic sets. Duality of those polytopal complexes is discussed with the help of the more
abstract notion of Dirichlet-Voronoi polytopes in dual space.

4.1 LATTICES AND PERIODIC SETS

Recall from 1.3 that a (Z-)lattice L in R™ is a finitely generated Z-submodule of R™. So L — R™ is a lattice
in R™ if and only if there are linearly independent vectors vy, ..., vy, of R™ such that L ~ @, v Z.

If L is on R™ with basis B = (vy,...,vn) and if we write B for the matrix whose columns are given by
Vi,...,Vn (in that order) we obtain L = BZ™, and in this way any B € GL,, (R) determines a lattice on
R™, a matrix as such is called basis matrix of the lattice L. The lattice Z™ is called the standard lattice
on R™.

Let L be on R™ and let B = (vy,..., vy ) be a lattice basis of L. The fundamental parallelotope
Fp(l) = {Z Avi | As € 10,1], forie {1,...,n}}
i=1

is a fundamental domain of L. That is, int(x + Fs(L)) n int(y + Fs(L)) = & for any x,y € L and
Uter, () T+ L covers R™.

A periodic set A in R™ is a finite union of translates of a lattice L in R"™, thus it is a set of the form
A=, ti+L forsomet=(ty,...,tm) € (R™)™. We say that L is a translation lattice for A and that
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A is m-periodic for L, or an m-periodic set for L, if none of ty, ..., t;, is a translate of another by some
element of L, that is, if the above union is disjoint. We say that m is the period of A for L. If L = Z"
and t = (tg,...,tm) € (R™)™ we write Ay := i ti + Z™ and refer to this as a standard periodic set.
In particular lattices are special cases of periodic sets.

If A is a periodic set, there always exists a unique maximal translation lattice
La={veR"|VxeA: x+veA}.

Let m be denote the period of A for L, then it is the unique smallest period of A, the minimal period
of A.

For A = [J{%; ti + L, a fundamental domain of L will be called an L-fundamental domain of A. It then
is a fundamental domain of A under the action of the translation lattice L.

4.1.1 Euclidean lattices

If R™ is equipped with an inner product b we can associate certain geometric notions to any lattice. To
make clear which inner product is used, we will write (L, b) instead of L, whenever b is not clear from
context. If we want to emphasize the existence of a inner product we speak of a Euclidean lattice.

We write vol for the Lebesgue-volume on the standard Euclidean space and voly for the volume on
(R™,b). By use of the formulae

volp = +/det(G(b)) vol,
and

vol(F (L)) = | det(B)| = 1/det(Gs (L, b))

we observe that each fundamental parallelotope has the same volume and we call this number the
volume of L:

vol(L, b) :=vol, (F5 (L)) = +/det(L, b).

4.1.2 Isometries of Euclidean lattices and periodic sets

The notion of isometry (cf. 1.1.2 and 1.3.2) can be applied to periodic sets in Euclidean space too. Let
A= Ul“;l ti + L, where wl.o.g. t; =0 and L is on R™, be a periodic set in (R™, b). We set

GL(A) :={U e GLn(Z) | UA = A},
a subgroup of GL, (R), which is conjugate to GLY, (Z) := GL(A;), and its orthogonal group
O(A,b) :={Ue GL(A) | b(Ux, Uy) = b(x,y) Vx,y € A}.
It is a well-known and important fact that the orthogonal group of any Euclidean lattice is finite (cf.

Lemma 3.1.6) and by O(A, b) < O(LA, b), where L, is the maximal translation lattice for A, this also is
true for periodic sets.
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4.1.3 Euclidean lattices and quadratic forms

We will often prefer to work with the notion of a (positive definite) quadratic form instead of that
of an inner product. If Q is any real positive definite quadratic form we obtain an inner product
bo(x,y) = Q(x +y) — Q(x) — Q(y), which is the associated bilinear form. The other way around, if
b is an inner product, we obtain a quadratic form Q by the relation Q(x) = b(x, x) for all x € R™ and
b = 1bg.

Thus we will identify the Euclidean space (R™, %bQ) with the quadratic space (R™, Q) in any such
situation and all of the above stays valid.

Since real positive definite quadratic forms are, by choice of basis and their associated Gram matrices,
in bijection with the cone of positive definite symmetric matrices T, over R. We will also use the
above notation for matrices Q € 8%

4.1.4 Parameter spaces for lattices

If L is any lattice on (R™, b) we can use the Cholesky decomposition of the Gram matrix Q € 8%, of b
with respect to the standard basis € (or by slight modification any basis) Q = G¢(b) = ATA and any
basis matrix B of L to construct a lattice L’ := (AB)Z" in n-dimensional Euclidean standard space, that
is isometric to L.

We note that if L = BZ™, L’ = B’Z™ are lattices in Euclidean standard space R"™, they are

i. equal, if and only if there exists a U € GL,(Z) such that B’ =B - U;

ii. isometric, if and only if there exists a U € O, (R) such that B’ = U - B.

Thus we obtain parameter spaces (up to isometry) for

lattices on R™ «— GL,(R)/GL.,(Z)
isometry classes of lattices on R™ «— O, (R)\ GL,(R)/ GL(Z).

Similarly the lattice Z™ in (R™, Q’), with Q’(x) := Q(Bx), is isometric to L, thus G¢(Q’) = Gz(L, Q).

Since real positive definite quadratic forms are in bijection to 8%, the cone of real positive definite

symmetric n x n-matrices, we identify a real positive definite quadratic form with its Gram matrix
with respect to the standard basis.

We note that (Z™, Q) = (Z™, Q) if and only if Q, Q' are conjugate under the action of GL (Z). Thus
we obtain parameter spaces for

bases up to orthogonal transformations of R™ «— 8T

isometry classes of lattices on R™ «— 8%/ GL,, (Z).

PROPOSITION AND DEFINITION 4.1.1 (COORDINATE REPRESENTATION OF A EUCLIDEAN LATTICE).
Let L be a Euclidean lattice on (R™, Q). We can associate to L and any basis B of L the Euclidean lattice

(Z™, Gz ((L,Q)))-

This lattice is called the coordinate representation of L with respect to B. Furthermore
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i (2", G3((L, Q) = (L Q),
ii. the coordinate representations of isometric lattices are conjugate under the action of GLn (Z),

iii. coordinate representation induces a bijection between 8%,/ GL\,(Z) and the set of isometry classes of
Euclidean lattices on R™.

4.1.5 Parameter spaces for periodic sets

To extend the above parameter spaces for lattices to periodic sets in general, we will accept some
redundancy. We are interested in questions regarding periodic sets only up to isometry. So it is no loss
of generality to confine our parameter spaces to comprise of periodic sets for which we assume that
t; = 0. Furthermore we will not parametrize all periodic sets at once, but give one parameter space
for each m € N that comprises only those that are at most m-periodic.

That said, we use the parameter spaces for lattices above, leading to a basis parameter space
On(R)\GLx (R)/ GLx (2) x (R™)™ 1,
and a coordinate parameter space
85" i= 8%/ GLn(Z) x (R™)™ 7,
contained in
™M™ .= 8"/ GLn (Z) x (R™)™ 1.

While we refer to elements Q of 8™ as quadratic forms, we will refer to elements (Q,t) of 8™ as
periodic forms (cf. section 3.2.1 in [Sch09]).

We should recall that the above parameter spaces do not give systems of representatives of isometry
classes, as was the case for lattices. A periodic set may have several distinct representations of the
above forms, since simply replacing t by some t’ where the t{ are translates of the t; by some lattice
vectors, or are a permutation of the t; gives us a wealth of unequal representations.

We say that A is representable by Ay, or t-representable if and only if there is a R™-isomorphism that
maps A to A¢. If A is t-representable, we can associate to any (A, Q’), for Q’ € 8, some isometric
(A, Q), with Q € 8%, similar to the case of lattices. A periodic form (Q,t) and a periodic set (A, Q)
can be thought of being essentially the same object, we therefore also say that (A, Q’) is represented
by (Q, t), in the above scenario.

Clearly, if Q € 8%, then (A, Q) is a t-representable periodic set, and if U e GL!, then (A, Q) and

>0/
(A, UTQU) are isometric.
PROPOSITION AND DEFINITION 4.1.2 (t-COORDINATE REPRESENTATION OF A PERIODIC SET).
Let t € (R™)™ ', Let (A, Q') be a t-representable Euclidean periodic set on R™. For any Q € 8T, for which
(A, Q) is represented by (Q,t), we say that the periodic set (A¢, Q) is a t-coordinate representation of
(A, Q). This construction implies that there is a surjection between ST,/ GLY (Z) and the set of isometry
classes of t-representable periodic sets on R™.

REMARK 4.1.3. The book [Sch09] covers periodic sets and forms with respect to the packing and
covering problem. The above presentation relies on the notation used there. |
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4.2 POLYTOPES

4.2.1 Polytopes and polytopal complexes

This section follows the treatment in [Zie95].

The dimension of a polytope is the dimension of its affine hull. If a face has dimension k, then we say
it is a k-face. For a polytope of dimension n we, as usual, refer to 0-faces as vertices and n — 1-faces as
facets.

A polytopal complex is a set C of polytopes in R™ such that ¢f € €, for P € € every facet of P is in C,
and for P,Q € €, P n Q is a face of both P and Q. Its underlying setis |C| := | Jp.o P. If €’ < Cisa
polytopal complex, we call it a subcomplex of C. If v is a vertex of the polytopal complex € then the
star of v in P is star(v, C) := {F € C | v € F}, the subcomplex containing all faces of € which contain v.

The face lattice of a polytope P is the partially ordered set (poset) of all faces of P, ordered by inclusion.
It is a lattice in the order-theoretic sense: it is a bounded poset in which every two elements have a
unique upper and lower bound (cf. Definition 2.5 in [Zie95]). It is defined analogously for a polytopal
complex.

Each polytope P gives rise to a complex C(P), the complex of all faces of P. The subcomplex C(JP)
formed by all proper faces of P is called the boundary complex of P, and we have |C(dP)| = 0P. For
a polytopal complex € we fix the abbreviations C*) for the subset consisting of k-faces of €. We write
vert(@) = €0,

A polytopal subdivision of a set M is a polytopal complex € such that || = M. A triangulation of a
set M is a polytopal subdivision T of M such that each S € Cis a simplex. A triangulation is pyramidal
if all of its full dimensional simplices have a point in common, which then is called the apex of the
triangulation. We say that C(P) is the trivial subdivision of P.

Let T be a pyramidal triangulation of a polytope P, such that the apex 0 of T is in the interior of P,
T = vert(P)u{0}, and TnF is a triangulation without new vertices of F for every F € ¢(P)(dim(P)=1) A
pyramidal triangulation T of a polytope P is essentially identifiable with a triangulation of the bound-
ary complex of P, that does not contain points besides the vertices of P. They can be identified by the
process of taking the complex of pyramids over 0 in the one direction and removing the faces that do
contain 0 in the other.

A way to obtain a triangulation without new vertices is by pulling refinements: let € be a polytopal
subdivision and let v € vert(C). Define p; (C) by

po(C) = U Clconv(Fu {v}) u | ] e(c), (4.1)
FcCeC CeC
dim(F)=dim(C)-1 vEC
veC, v¢F

that is, p;, (C) is obtained from C by the following rules: for C € €

i. If v¢ Cthen Cepy (C).

ii. If v e C then for all facets F of C: C(conv(F U {v})) = p;, (€).

IThere are other triangulations that would work as well, the so called lexicographic triangulations, cf. 4.3 in [DRS10]
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Discussions of pulling, and more generally, lexicographic triangulations, can be found in both [DRS10]
(Definition 4.3.7), and [Lee90]. Our presentation follows the latter source. It seems that the pulling
triangulation was first described in [HS69], Lemma 1.4. All of the succeeding can be formulated ac-
cordingly for general lexicographic triangulations.

LEMMA 4.2.1. Let P be a polytope.

i. Let C be a polytopal subdivision of P, and let v € P. Then the above defined p3; (C) is a refinement of C.

ii. Let C(P) be the trivial subdivision of P, and let vert(P) = V < P such that V is finite and labeled? in
{1,...,%}. Then the subdivision

Py, -+ Py, (C(P))
is in fact a triangulation of P with vertices in V.

iii. If in the above case V. = {v1,..., v} U {vo}, where vert(P) = {vy,..., vy} is labeled in {1,...,k} and O
labels a point vy inside P, the triangulation

Py -+ PuPa (C(P))

is pyramidal with apex vo.

Any such triangulation (resp. subdivision) obtained by a labeling ] as above will be referred to as the
pulling triangulation (resp. subdivision) with respect to the labeling J.

PROOE. (i) and (ii) are dealt with in the sources referred to above.

Ad (iii): The first refinement p;, (C(P)) consists of two classes of polytopes by the above rules. Firstly,
all faces of P, since vy ¢ F for all faces F of P. Secondly, all pyramids of faces of P over vy, since vy € P,
but vy ¢ F for all facets F of P, which implies that all elements of C(conv(F u {v})) are added for all
facets F. Note that only the second step is actually required here. The claim then follows by (i). O

It is clear from this definition of the pulling triangulation that it can be read off the from face lattice of
the polytope; that is, if we have a polytope P with k vertices labeled in some ordered set I of cardinality
k, we can compute a pulling triangulation of it simply in terms of the image of the face lattice of P in
2!: all the necessary information, which is of purely combinatorial nature, is accessible from there. In
this sense we allow to speak of the pulling triangulation of an abstract lattice JF, that is (isomorphic
to) the face lattice of some polytope: Given a lattice F € 2!, at the i-th refinement step (for i € I) we
run through all F € J and check whether i ¢ T to keep F part of the refinement or else replace F by
the collection of sets F/ u {i} for each maximal subset F' = F\{i}. Again this can easily be extended to
arbitrary lexicographic triangulations.

LEMMA 4.2.2. Let S be any set of combinatorially equivalent polytopal complexes with k vertices and let 1
be an ordered set of cardinality k. Let F be a representative of their face lattices in 2'. For each € € S fix an
isomorphism from JF to the face lattice Fp of P. Then

2By a labeling by some ordered set ] we mean to express that there is some bijective map from J to V. This is depicted by
enumerating the vertices in the above.
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i. Lis a labeling for the vertices of P,

ii. for every abstract pulling (lexicographic) triangulation T of F, the image Tp of T under the extension of
&p defined on T is a pulling triangulation of P.

This Lemma includes the case (iii) of Lemma 4.2.1. This construction will be applied later on (cf.
Proposition 6.2.1).

REMARK 4.2.3. A little note on the side: If P and P’ are combinatorially equivalent polytopes, for
which we fix a labeling of the vertices, in general it will not be true that a triangulation of P, given
in terms of the labels, also gives a triangulation of P/. An example can be given by two octahedra:

E E

In the right octahedron the complex generated by the 3-simplices
conv{A, B, C,D},conv{A,C,D,E}, conv{A,B, C,E}, conv{A, B, D, F}, and conv{B, C,D, F}

is a triangulation. The translation of this triangulation in terms of the labels to the left octa-
hedron fails to be a subdivision, in particular, it is not a triangulation: in the right octahedron
conv{A, B, C,D} (the red one) is a simplex, it is not full dimensional in the left octahedron. Even
if we would omit this polytope we would not obtain a subdivision of the left octahedron, the
intersection of 3-simplices on different sides of conv{A, B, C, D} is never a common face of both.

However, if P and P’ are equivalent in a stronger sense, namely if they have the same oriented
matroid, then all triangulations can be translated (cf. Corollary 4.1.44. in [DRS10]). In our applica-
tions later on we will not be lucky enough to consider families of polytopes that are equivalent in
this stronger sense. The mentioned defect of the polytope conv{A, B, C, D} not being of the same
dimension in both octahedra is actually a proof of the inequivalence their oriented matroids.

But as stated above: not all hope is lost. If P and P’ are combinatorially equivalent, then at least
the lexicographic triangulations can be translated and we can even do so for polytopes with an
interior point, used in a pyramidal triangulation. ]

4.3 POINT SETS AND TILINGS IN EUCLIDEAN SPACE

In the subsequent (V,b) is an n-dimensional Euclidean space with norm |x| := 1/b(x,x) and affine
isometry group

Iso(V,b) = {p € AGL(V) [ Vx,y € V2 [d(x) = d(y)] = [x —yl}-

61



4. GEOMETRIC FOREPLAY

4.3.1 Tilings

A polytopal tiling of V is a set T of full dimensional polytopes, such that | Jp.+ P = V, where for
arbitrary P, P’ € T the intersection P n P’ is a polytope of at most dimension n — 1. Thus it is a covering
and packing of space by polytopes. A tiling is face-to-face if for arbitrary P,P’ € T the intersection
P n P’ is a face (possibly empty) of both P and P’, that is, if and only if T is the set of full dimensional
polytopes of a polyhedral complex. A tiling is facet-to-facet if for P,P’ € T with n — 1-dimensional
intersection P n P’, this intersection is a facet of both P and P’. A tiling is locally finite if each bounded
set in V intersects only finitely many elements of 7.

If T is a locally finite polytopal tiling, it is face-to-face if and only if it is facet-to-facet (cf. [GR89]). In
this case T induces a subdivision of the embedding space.

A tiling T for which all tiles are congruent to one another is called it is called monohedral. Anisometry
of a tiling 7 in a Euclidean space V is an affine isometry ¢ of V that fixes T under the induced action,
that is for all P € T also ¢(P) € T. If the isometry group of a tiling T operates transitively, the tiling is
called isohedral (cf. [Eng93]).

4.3.2 Delone sets

A set A c Vis called discrete if and only if for each v € A there is some | - ||-ball B;(v) < V such that
B:(v) n A = {v}. A discrete set P < V is a Delone set or (r,R)-system if B,.(p) n P = {p} forallp € P
and if Bg(x) n P # J for all x € V. Thus P is a Delone set if and only if the distance of arbitrary points
p,p’ € Pisatleast r and from each point x € V there is a point p € P of distance at most R. A vertex set
having these properties is referred to as being uniformly discrete and relatively dense respectively.

A Delone set P is said to be symmetric if the (affine) isometry group
Iso(P?,b) := {$p € Iso(V,b) | b(P) = P},
of P acts transitive on P.

An important example of Delone sets are Euclidean lattices and periodic sets. Furthermore lattices are
always symmetric Delone sets.

4.3.3 Dirichlet-Voronoi cells and tilings of Delone sets

We will now meet the main object of interest of this Part:

DEFINITION 4.3.1 (DIRICHLET-VORONOI CELL). Let (V,b) be a Euclidean space with norm | - |,
and let P < V be discrete. The Dirichlet-Voronoi cell (or DV-cell) of an element p € P relative to
Pand | - || is the set

DVy . (p)={ xeV ‘ Ix=p|<|x—q| Vqe? }.

Since the Dirichlet-Voronoi cell of a point of a discrete set P is defined as an intersection of half-spaces,
it is natural to wonder if a finite number of half-spaces suffice and thus if it is a polyhedron in fact.
Now P being discrete does not suffice to ensure this: there exist infinite discrete vertex sets such that
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there are non-polyhedral cells (cf., Example 2.1 in [Voi08a], also available as Beispiel 3.2.1 in [Voi08b]).
However if P is finite (obviously), or a Delone set this can not happen, in such a case every Dirichlet-
Voronoi cell is a polytope (cf. Theorem 2.2 in [Eng93] for the latter). In any case, the Dirichlet-Voronoi
cells of discrete P will be generalized polyhedra, that is every intersection of such a cell with a poly-
tope is itself a polytope (cf. Proposition 32.1 in [Gru07]).

Even though all Dirichlet-Voronoi cells we will deal with will be polytopes, we prefer the name "cell".
At a later point (Definition 4.3.13 below) we will define another object, closely related to the notion
of Dirichlet-Voronoi cell. This new object will be called a Dirichlet-Voronoi polytope, so some care in
handling these objects is in order.

Of direct interest to us is the collection of all Dirichlet-Voronoi cells of points in P with respect to the
norm || - |:
DVy(|-[):={ DV(p) | pe? }.

PROPOSITION 4.3.2. Let P be a Delone set in Euclidean space (V,b) with norm | - |. Then DV (| - |) is the
set of full dimensional cells of a polytopal subdivision of V.

The statement of the Proposition is well-known, cf., Corollary 32.1 in [Gru07] (being facet-to-facet) and
Theorem 2.2 in [Eng93] (being polytopal).

The polytopal subdivision generated by DV (||-|) is called the Dirichlet-Voronoi subdivision of (V, b)
relative to P.

If P is a Delone set, such that DVp(] - ||) is monohedral (isohedral), we will by abuse of language call P
itself monohedral (isohedral).

REMARK 4.3.3. Note that the notion of a Dirichlet-Voronoi cell and tiling still make sense if we
use a positive semi-definite bilinear or quadratic space. However, Dirichlet-Voronoi cells might
be unbounded polyhedrons. |

PROPOSITION 4.3.4. Let P be a discrete set. If ¢ is an affine isometry of P, then
DVy,q(d(x)) = ¢ (DVypg(x)).

PROOF. By definition: ve DVyp o (d(x)) < [d(x) —v[q < [p —Vv|q Vp € P. Since ¢ is an isometry, this
is equivalent to [x — ¢ (v)|q < [¢L(p) — ¢ 1(v)|q Vp € P which by ¢(P) = P can be expressed as
Ix —dV)q < |p — &1 (v)|lo Vp € P. The latter clearly is equivalent to ¢! (v) € DVyp o(x), as was
claimed. O

COROLLARY 4.3.5. Let P < V be a symmetric Delone set. Then DV (| - ||) is an isohedral polytopal tiling of
V. In particular, a symmetric periodic set is a monohedral periodic set.

PROOF. If p,p’ € P, there is an isometry of P mapping p to p’ since P is symmetric. The Proposition
above showed that any such isometry gives rise to an isometry of DV»(Q), mapping DV o (p) to
DV o (p’). Thus already the set of these isometries of DV (Q) acts transitive. O

The above Corollary holds in particular in the case of a lattice (L, Q), where already the translations by
lattice elements operate transitive on the set of all Dirichlet-Voronoi cells and DV g (x) = x+DVp o (0).
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We will usually abbreviate DV(L, Q) = DV (0), as is common in the literature on lattices. If we deal
with a coordinate representation (Z™, Q) of a lattice, we might further abbreviate DV(Q) = DV(Z™, Q);
similarly we write DV(L) = DV(L,{, ) = DV(L, I,) if L is a basis representation in Euclidean standard
space.

More generally, assume that P is a symmetric Delone set in (V, Q) and that 0 € P. We will write
DV(?, Q) := DVy(0) and refer to it as the Dirichlet-Voronoi cell P, which seems justifiable by virtue of
the transitive operation of Iso(P?, Q). If Q = I, i.e., P is in Euclidean standard space, we abbreviate
further and write DV(P). In the case ? = A; on (V, Q), we write DV(Q, t) in resemblance of the above
definition for lattices.

We give another example of symmetric Delone sets.

LEMMA 4.3.6. Let L be a lattice and v ¢ L. Then A := L U v + L is a symmetric periodic set. In fact, if T(L)
denotes the group of translations by elements of L and &, denotes the point reflection with center 1v, then
T(L) % <c])%v> < Iso(A) acts transitively on A.

PROOF. Let Ty denote the translation by x. Then ¢1,, is given by —idot_, =11, 0 —idoT_3,, itis an
isometry, and interchanges L and v + L:

{—idOT_v(X) ev+L forxel,

—idoTt_y(x) eV forxev+ L

Since T(G) acts transitively on L the claim follows immediately. O

For monohedral periodic sets, in particular for lattices, the volume of a Dirichlet-Voronoi cell and the
determinant of a translation lattice are closely related.

LEMMA 4.3.7. Let A be a monohedral periodic set in (R™,b), which is m-periodic for a translation lattice L.
Then

m m

voly (DV(A)) = YOULb) _ /det(L, b)

PROOF. The lattice case first: DV(L) is a fundamental domain of L (cf. 4.3.2), therefore vol, (DV(L)) =
voly (Fg (L)) = vol(L, b).

If A is as above, then F := Ul“z 1 DV A(ti) is a fundamental domain for L. Thus

voly (DV(A)) = %Volb(?) = nllvolb(ffg(l_)) = w‘ .

So in the case of monohedral periodic sets it makes sense to speak of the volume of such a set if we
understand that this is the volume of its Dirichlet-Voronoi cell.

4.3.4 Delone polytopes of point sets

Though we are ultimately interested in Dirichlet-Voronoi cells, Delone polytopes and subdivisions will
play a crucial role.
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DEFINITION 4.3.8 (DELONE POLYTOPE). Let P be a discrete vertex set and let P < V be a polyhe-
dron with vertex set vert(P) < P. P is a Delone polyhedron (with respect to P and | - |) if there
exists c € Vand r € R with |c — p| = r for all p € P, where |c — p|| = r if and only if p € vert(P). «

The definition above is equivalent to P satisfying the empty-sphere property: P is a Delone polyhedron
if and only if there exists a || - |-ball B = B.(c) < V such that B n P = vert(P).

In general, an arbitrary discrete set in a Euclidean space does not have to admit Delone polyhedra.
However if P < V is a Delone set, they exist and are polytopes due to the definiteness of b and
discreteness of P. Even better: they make up a polytopal subdivision of the enveloping space. This
can be seen as follows: for any sphere S in (V, b) that contains no point of P we construct the polytope
P := conv(S n P). Then P is a Delone polytope, we say that it is constructed by the empty-sphere
method. It is full-dimensional if the intersection of P and S contains an affine basis.

PROPOSITION 4.3.9. Let P be a Delone set in (V,b) with norm | - |. Then the set of polytopes constructed by
the empty-sphere method is the polyhedral complex generated by the full-dimensional Delone polytopes.

PROOF. This is the combination of Proposition 32.2 and Theorem 32.1 in [Gru07], there stated as Corol-
lary 32.1 for Delone triangulations, though valid for arbitrary Delone subdivisions. O

DEFINITION 4.3.10. Let P be a Delone setin (V, b). The polytopal complex of Proposition 4.3.9 is
called the Delone subdivision of (V, b) relative to P. We write Dely(| - |) for this subdivision. «

There is an alternative way of constructing the Delone subdivision of a Delone set, by a lifting construc-
tion, which we mention very briefly. Let P = V be a Delone setand let w : V — V x R; x — (x, ||x]?).
Then conv(w(7P)) is a generalized polyhedron. All faces of this generalized polyhedron are lower in
the following sense: if F is a face of P and x € F, then for all ¢ > 0 the point x + ¢(0,—1) € V x R
is not contained in P. Now one can check that the projection of the (lower) faces of P back to V (i.e.,
forgetting the last coordinate) gives a polytopal complex, which is in fact the Delone subdivision of V
(cf. 32.1 in [Gru07]).

We are mostly interested in the case where P is a periodic vertex set embedded in a quadratic space
(V, Q). In this case we write Dely(Q) for Dely(| - o).

REMARK 4.3.11. Note that the above Definitions and Proposition also make sense if we consider
a positive-definite bilinear space. What changes is that now there can be unbounded Delone
polyhedra. But they are still constructible by the empty-sphere method and make up a polyhedral
complex, which we will then also refer to as Delone subdivision (cf. (1.7) in [Nam?76]) or 2.1
in [Val03]). |

REMARK 4.3.12. It is also possible to define Delone and Dirichlet-Voronoi subdivisions by a lift-
ing construction, we refer the interested reader to Chapter 32 in [Gru07]. ]

4.3.5 Dirichlet-Voronoi polytopes in dual space

We will now define what we understand to be a Dirichlet-Voronoi polytope. These objects are closely
related to Dirichlet-Voronoi cells, but have certain advantages for us, in particular when dealing with
coordinate representations of Euclidean lattices L = (Z™, Q). This definition is, in its generality, due
to [Nam?76] in the case of P = Z™, but all of the properties we are interested in here also hold for the
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case of an arbitrary Delone set. Namikawas definition resembles Voronoi’s original approach to what
is now called a Dirichlet-Voronoi cell (cf. Equation (10) in [Vor08]). The usefulness of this Definition
in a similar context can already be seen in [Val03], where the main application is the lattice covering
problem. In particular we adapt the modern notation used by Vallentin.

DEFINITION 4.3.13 (DIRICHLET-VORONOI POLYTOPE). Let (V, b) be a Euclidean space with norm
| - | and quadratic form Q € 82, with associated bilinear form b = bg. Let P < V be a Delone set
and P = conv{p1, pz, ...} be a Delone polyhedron of Q in P. The polytope

DV(Q,P):={ b(x) e V¥ | [x —pi| < |[x —p, ¥peP }

is called the Dirichlet-Voronoi polytope of Q corresponding to P with respect to P. .

The object defined above actually is a bounded polyhedron, thus a polytope, even if we apply the
above definition to the case of a positive-semidefinite quadratic form (cf. (1.7) in [Nam76]).

Recall that the map b : V — V* is given by b(x) = b(x, -) (cf 1.1.5).

Now if Q € 8%, it is the quadratic form associated to the Euclidean space (R™, 3bg). Since bg and

>0/
1bq are just scaled versions of one another, it actually does not make a difference which of the two

bilinear forms we use for the definition. In particular DV(Q, P) = DV(AQ, P) for all A € R..
The concept of Dirichlet-Voronoi cell and polytope are closely related, we state it as a Lemma.
LEMMA 4.3.14. Let P be a Delone set and Q € 8T, with associated bilinear form'b = bq. Then forp € P

DV5(Q, {p}) = b(DVyp,q(p)).

In particular DV, (p) and DV»(Q, {p}) are affinely isomorphic. O

In particular for the case of a lattice (L, Q) we obtain that
DV1(Q, {0}) = b(DV(L,Q)).
Analogously for an m-periodic set A with translation vectors t,...,tm

DVA(Q, {ti}) = B(DVA,qo(ti)).

4.3.6 Duality of Dirichlet-Voronoi and Delone subdivisions

Dirichlet-Voronoi and Delone subdivisions are combinatorially dual objects. This becomes even more
apparent if we switch Dirichlet-Voronoi cells with the associated Dirichlet-Voronoi polytopes.

The following properties of Delone and Dirichlet-Voronoi polytopes will be useful, they can be found
as part of (1.4) in [Nam?76] if we replace Z™ by P.

PROPOSITION 4.3.15. Let Q € 8%, P be a Delone set.

i. For P,P’ € Dely(Q) we have that P is a face of P if and only if DV(Q, P') is a face of DV(Q, P).
ii. For P € Dely(Q) we have dim(P) + dim(DV(Q, P)) =n.
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By identifying R™ with R™* by means of the standard inner product, it is easy to derive the following
Lemma.

LEMMA 4.3.16. Let P be a Delone set. For Q,Q’ € 8%, with Dely(Q) = Dely(Q’), the normal fans of the
Dirichlet-Voronoi polytopes DV(Q, P) and DV(Q’, P) coincide.

SKETCH OF PROOF. Represent DV(Q, P) by elements of the form Qx of R™. Then all (not necessarily
relevant) defining inequalities of this polytope look like

2(pi =) Qx = [pilG — Ipl%,

for suitable p € P and p; € vert(P). In particular this holds for those inequalities relevant to a given
face. In any case this implies that for Q, Q' as assumed, the polytopes are described by a system Ax > b
and Ax > b’ respectively (where the i-th row of A is a suitable 2(p; —p) "), but this implies the claim.]

This in particular implies that the facet normals are characterized completely by A5 (Q) and coincide
for quadratic forms that induce the same Delone subdivision.

The duality of the Delone and Dirichlet-Voronoi subdivision of a space (V, Q) implies a straightfor-
ward characterization of the vertices of the Dirichlet-Voronoi cell of a point by its star in the Delone
subdivision:

LEMMA 4.3.17. Let P be a Delone set in a quadratic space (V, Q) with norm || - | q. Then
vert(DVyp o (p)) = {centroidq (D) | D € star(p, D), dim(D) =n},

where centroidq (D) is the center of the | - | o-circumsphere of D.
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CHAPTER

5

Periodic vector quantization

This chapter contains a brief presentation of some of the main notions regarding vector quantization.
It is included for the sole purpose of providing a self-contained overview about the main notions
of vector quantization for a reader not yet familiar with this subject. We try to make a case for the
importance of the quantizer constant within this problem. For a more detailed accounts we refer
to [GG12] and [Zam14], the subsequent discussion is strongly based on these sources.

5.1 THE NORMALIZED SECOND MOMENT AND THE QUANTIZER CONSTANT

Given a body! P « R™ and a point X we define the second moment of P about X by
U(P) := f Ix — x[*dx,
P

the normalized second moment

_u(p)
I(P) = vol(P)’

and finally the dimensionless normalized second moment

G L UP) 1 1)
" nvol(P)1+2/n  nvol(P)2/n’

We use the notation that is more common in the mathematical literature, as used by Conway and

Sloane, cf. [CS98, Chapter 21]. However one should note that in much of the literature in information

or coding theory, the name second moment is used for what we call the dimensionless second mo-

ment, denoted o?(P) = %U(P), and the term normalized second moment is as well understood to be

dimensionless, cf. [Zam14].

We now use the notation of Chapter 6 concerning Dirichlet-Voronoi cells. For a lattice L we set

G(L) := G(DV(L))

1We do not get into technicalities here: we only need this notion for convex polytopes and ellipsoids in the remainder. For
such objects the notions discussed here clearly make sense.
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and for any periodic set A with congruent Dirichlet-Voronoi cells we also abbreviate

G(A) = G(DV(A)).

The use of lattices and periodic sets in quantization motivates another name for G(A), it is sometimes
referred to as the quantizer constant of A. We will usually use this nomenclature from here on.

Thus for a lattice L in Euclidean standard space

1 1
Gl)=———— 24x,
) n det(L)/2+1/n JDV(L) Ix[7dx

and for an m-periodic set A = [ Ji; t; + L in Euclidean standard space, for which all Dirichlet-Voronoi
cells are congruent

1 m1+2/n

2
S S L dx,
() n det(L)!/2H1/n JDV(/\) I

by relating the volume of a Dirichlet-Voronoi cell to the determinant of the lattice involved (cf. Chapter
6, Lemma 4.3.7).

If we are in the more general situation of a Euclidean space (R, b), where Q is the Gram matrix of some
inner product b, we find for a lattice

1 1
L = — 2 ,
Gy (L) 1 (det(Q)1/2 det(L))1/2+1/n JDV(L,Q) [ dx

and for an m-periodic set A = Ulnl 1 ti + Lin Euclidean standard space, for which all Dirichlet-Voronoi
cells are congruent

Go(A) = — ml f X[ dx.
1 (det(Q)72 det(L) /2T /™ Jpyiag) @

In this situation we also think of Gy(A) as "a quantizer constant”, but now referring to a different
distortion measure. This will be elaborated on in 5.2.2 and 5.2.4 below.

5.2 VECTOR QUANTIZATION

5.2.1 General notions for vector quantization

In information and coding theory a (finite) vector quantizer of dimension or block length n and size
N is given by specification of a finite set € of cardinality N and a map Q : R™ — €, where € is called
the codebook, its elements the codewords or code vectors, and Q is known as the quantization rule.
We assume that the elements of € are indexed by {1,...,N}. An associated quantity is the resolution
T := (log, N)/n, also called code rate. To each c € C there is associated a quantizer cell Q1) =
{x e R™ | Q(x) = c}, and the collection of all cells gives a partition of R™. We divide cells into two
types, either they are bounded and called granular cell, or they are unbounded and called overload
cell. The collection of either of those is then refered to granular and overload region respectively. A
vector quantizer is called regular if all of its cells are convex, and it is called polytopal if each cell is a
polyhedron.
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To describe and analyze the application of vector quantizers in source coding it is usually decomposed
into two seperate objects. On the one hand we have the encoder € : R™ — {1, ..., N} and on the other
hand the decoder D : {1, ..., N} — R™. We do not wish to go into detail here and refer to [GG12, section
10.1]. The idea of encoding is that the encoder first chooses a suitable ¢ € C by finding the cell that
contains a given source vector and then determines the index of said cell. Both tasks can become
arbitrarily difficult, but can be dealt with for certain structured vector quantizers as we will elaborate
on in a bit.

5.2.2 The performance of a vector quantizer

Let X be continuously distributed random vector in R™ with probability density function fx. Let d be a
distortion measure, that is, a nonnegative function of X and its reproduction Q(X) under quantization.
We assume that fx is a joint probability density function for the components of X. Let {X;} be a (discrete
time) random process constituted of random vectors, we assume from here on that it is independent
and identically distributed (abbreviated by i.i.d.). If this process is stationary and ergodic we find, that
with probability one the limit on the left side exists and satisfies

1 n
lim — > d(X,Q(X)) =E(d(X, (X))
t=1
Here lim,, % Dy d(X,Q(X)) is the time average of the distortion and D = E(d(X, Q(X))) is the
average distortion of the coding scheme (cf. 10.3 in [GG12]). For the vector quantization scheme this
can then be expressed by

D= J d(x, Q(x))fx(x)dx (5.1)

or with the partition of R™ given by the quantizer cells as

D = ) P.Eld(x,c) | Xe Q7 (c)]

ceC

where for ¢ € € we set P. = P(X € Q71(c)) to be the probability of X lying in the cell associated to c.

Of particular interest is the squared error distortion measure given by the squared Euclidean distance
of x and its reproduction Q(x)

d(x, Q(x)) =[x — Q)[*

The reason behind this choice lies rather in the mathematical tractability of this measure, than its actual
performance for various media. In any case, it can be interpreted as the energy of power of an error,
which gives it some physical significance (cf. 2.4 in [Gral2]).

We also want to introduce the weighted squared error measure given by some positive definite bilin-
ear form b through d(x, Q(x)) = b(x—y,x—y) = |x—y|}, where the Mahalanobis distortion measure
is a special case, with b chosen in such a way that the Gram matrix of b with respect to the standard
basis is given by the covariance matrix of the source vector X. In the case of an i.i.d. Gaussian source
with unit variance and zero mean the Mahalanobis distortion measure and the squared error coincide.

The squared error distortion measure also falls into the realm of single letter distortion measures of
the form d(X,X) = Dty dm (X, Xi), where d. is a scalar distortion measure, the per-letter distortion
measure.
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Two well-known optimality criteria in vector quantization are the nearest neighbor condition and the
centroid condition. The nearest neighbor condition states that given a codebook € and a distortion
measure d the optimal choice of the quantizer rule, and thus cell decomposition of R™ associated to Q,
has to satisfy

9(x) = ¢ = d(x,¢) =min{d(x,c’) | ¢’ € C}.

Itis not an “if and only if” statement because the codeword ¢ minimizing the right hand side might not
be unique. Therefore the quantizer cells have to lie between the interior and closure of the Dirichlet-
Voronoi cells of the codewords with respect to the chosen distortion measure. If on the other hand
the cell decomposition {Cy,...,Cn} of R™ is given and the codebook has to be chosen, the centroid
condition states that the optimal choice of € = {cy, ..., cn} has to satisfy

ci = centroid4(Cy) forallie {1,...,N},

where centroid4(C) = argmin{E[d(X,c) | X € C]}. The easy proofs may for example be found in
[GG12, 11.2].

5.2.3 Periodic vector quantization with the squared error distortion measure

We now turn our attention to quantizers whose codebooks come from a (monohedral) periodic set
A < R™ - which is assumed to generate R™. Before focusing on how to quantize, we want to quickly
point out that there are two ways to cope with the infinite size of A. One approach is to chose a finite
subset C, the other idea is to work with the, infinite, periodic set as codebook, but applying some
sort of entropy coding to obtain a notion of coding-rate that is finite. The book [Zam14] offers a quite
recent and rather detailed introduction and discussion of these information theoretic aspects of vector
quantization. Let us only briefly mention, without discussion of the results, that the below rough
estimation of the quality of a quantizer in terms of the quantizer constant is completely justified by
taking a closer look on the results of information theory: it is always the quantizer constant which has
to be as small as possible for a quantization scheme to work well.

We concentrate our attention to distortion measures coming from Euclidean geometry, that is in most
cases the squared Euclidean distance, but we should also keep the weighted squared error measure in
mind. However, as discussed above, it is no restriction of generality to assume that d is the standard
squared error distortion measure.

There is a widely known and widely accepted conjecture of Gersho regarding vector quantization: the
optimal quantizer will have cells that are all congruent to some polytope. This is discussed in his 1979
work [Ger79]. We will therefore restrict our attention to monohedral periodic sets, so that all Dirichlet-
Voronoi cells are congruent. We will call the resulting quantizer a monohedral periodic quantizer.
Mathematically rather well tractable special cases of monohedral periodic sets are symmetric periodic
and, above all, lattices.

If Ais in fact a lattice, we will refer to the resulting quantizer as lattice quantizer.

The basic idea is similar in both cases. Let € < A be the codebook chosen from A. Respecting the
optimality criteria presented above we start with the Dirichlet-Voronoi subdivision (cf. Definition
4.3.3) of R™ induced by €, and map an element x € R™ to the centroid of the Dirichlet-Voronoi cell it is
contained in, or to any one of those centroids of such cells if x is contained in more than one, where a
tie may be broken in an arbitrary way.
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The easiest example, which indeed is a lattice quantizer, that albeit captures the mathematical essence
of this idea, is that of rounding, which we can interpret as using the lattice Z < R with Q(x) = [x].
Thus the quantizer cells are given by the half-open intervals of the form [z — 1/2,z + 1/2) for z € Z.

Now given a symmetric periodic set A < R™ and the squared error distortion measure d(x,y) =
[x — y|* the above summarizes in taking the quantization rule to be given by

Q:R™ - A; x — argmin |[x — A
AEN

where ties might be broken in an arbitrary way. The quantizer cell of a given A € A is then essentially
given by its Dirichlet-Voronoi cell DVA(A) = {x € R™ | ||[x — A| < |x — A/|, forall A’ € A}. This is a bit
imprecise however, as noted before. To obtain a well-defined map Q we were in need to break ties, that
is a point x € R™ lying on the boundary of DV A (A) may not satisfy Q(x) = A. This fortunately is not
a problem in the analysis or design of such quantizers since DVA(A)° < Q(A)~! @ DVA(A), implying
that DVA(A)\Q(A)~! is a null set, regardless of the way a tie is broken. For the sake of analysis we
will therefore assume that equality on the right hand side holds, and by abuse of language we will
therefore sometimes refer to DV A (A) as the quantizer cell of A.

Assuming squared euclidean distance we now focus on the average distortion, which we will refer to
as mean squared error. The easiest case would be that of a uniform source of finite support §, where
€ = A n 8. Then the integral in (5.1) becomes

D= L x — QUo)|Pdx = L e Q(x)||2dx+f x — Qx)[2dx

8o

where 8¢ and 8¢ shall denote the intersection of the granular and overload region with § respectively.

For more complicated and possibly unbounded sources lattice quantization is often used under the
assumption of high, but finite, resolution. We will formulate the analysis for periodic quantizers and
then return to the special case of lattices in a moment. To keep this discussion brief we restrict ourselves
to say that under the high resolution assumption we assume that the rate grows so large that the
source distribution among each cell becomes approximately uniform (cf. [GG12, 10.6]). We therefore
can approximate the average distortion

D~ Y f(A) J [x — A?dx,
); DVA(A)

where we assume that fx(v) ~ f(A) forallv € DVA (A). With Py :=Pr(X € DVA(A)) ~ f(A)-vol(DVA(A))
we get

Pa J 2
D ~ "™ x — Al[“dx.
g@ vol(DVA(A)) Jov, () | ”

This analysis refines when A is a monohedral periodic set, since then all Dirichlet-Voronoi cells in the
granular region are congruent (cf. 4.3.3)). Therefore in such a case we can approximate the granular
contribution to the average distortion by

1 J 2
Dgr ————— x[“dx 5.2
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where we assume that almost all inputs fall into the granular region. Under the high resolution as-
sumption one usually assumes furthermore that Do is neglectable compared to Dg, so that (5.2) be-
comes a good approximation of the average distortion itself.

If we follow these lines we can express the distortion through the dimensionless normalized second
moment of DV(A) by

D ~ N-I(DV(A)) = N-n-vol(DV(A))*2™ . G(DV(A)).

For a lattice L this simplifies to
D~ N-I(DV(L)) =N - n-det(L)/>*V/™. G(L),
since vol(DV(L)) = 4/det(L) in this case.

It is this relation (and in more sophisticated schemes certain similar relations, cf. [Zam14] for a recent
textbook treatment) that justify to call G(A) quantizer constant.

5.2.4 Periodic vector quantization with the weighted squared error case distortion measure

Surely, if b is some positive definite bilinear form and we consider the euclidean space (R™,b), and if Q
is the gram matrix of b with respect to the standard basis, there is an isometry of this space to Euclidean
standard space by mapping the standard basis in R™ to any basis that consist of the columns of any
matrix A that satisfies Q = ATA. Such a matrix always exists as is well-known, i.e., per Cholesky
decomposition. This can be utilized to reduce the more general case of weighted squared error to the
case of standard squared error. Clearly if one follows through the above arguments for the squared
error distortion measure one obtains similar formulae for the distortion with Gy, replacing G. But

Gp(A) = det(A)IG(AN),

as is seen by invoking the formula for change of variables in integration (cf. the reasoning in Lemma
6.3.2). If b is fixed, then this shows that finding the minimal value of Gy, is equivalent to finding the
minimal value for G.
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CHAPTER

Dirichlet-Voronoi cells and their
normalised second moments

This chapter contains some of the main results of this thesis. We aim at contributing to certain math-
ematical facets of the quantizer problem, given that the codebook is a periodic set. In particular, the
most prominent case of lattice codebooks lies at the very center of the subsequent investigations. We
derive polynomial optimization problems related to the quantizer problem, a piecewise explicit ex-
pression for the quantizer constant of suitable periodic sets, and prove that A% and D are local minima
in the class of 4-dimensional lattices.

We will recall some well-known notation and results of Voronoi’s second reduction theory, which we
use as a main tool in our investigations. We then apply this theory to start a systematic investigation
of the quantizer constant for (monohedral) periodic sets. This generalizes the special result that the
root lattice A% =~ D# is the sole local and thus global minimum of the lattice quantizer problem in
dimension 3 (cf. [BS83]).

We fix a rational standard periodic set A¢ and take a look at all periodic forms (Q, t), or equivalently
all periodic sets (A, Q). We can utilize Voronoi’s second reduction theory to obtain a finite partition of
81y x {t}/GLY (Z). This leads to a finite number of local quantizer problems in each dimension for the
chosen standard periodic set. Unfortunately, even for lattices, the number of distinct local quantizer
problems grows to be inaccessible beyond dimension 5.

From this we derive the main results of this part: the general problem of finding the optimal quantizer,
with respect to a periodic codebook satisfying certain conditions (cf. Assumption 6.3.1), can be split
into a finite number of polynomial optimization problems (cf. 6.3.7). A particular class of periodic
sets that satisfy Assumption 6.3.1 without further ado, is the class of lattices. We furthermore show
that for the partition of 8% into secondary cones, there exists a piecewise explicit expression of the
quantizer constant, viewed as a function 8%, — R.. The restriction of this function to each secondary
cone can be written as the quotient of a polynomial in Q, depending only on the secondary cone, and
a power of det(Q) (cf. 6.3.9). For the three inequivalent secondary cones in dimension 4 we compute
these explicit expressions (cf. 6.4.3, in particular, (6.10), (6.11), and (6.12)). We conclude this part with
an application of the result to local optimality of lattices in dimension 4 (cf. 6.4.4).
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6.1 VORONOI'S SECOND REDUCTION THEORY

We sketch out the basic notions of this theory, following the treatment in [Sch09] and [Val03], to keep
this thesis as self contained as possible.

From now on we will restrict to discrete vertex sets that are periodic, including the classical case of
lattices.

6.1.1 Secondary cones of Delone triangulations and subdivisions

Let A = A¢ be a standard discrete periodic vertex set Ay = | J{; ti + Z™ and T be a linear subspace of
8.

We ultimately are interested in classifying all essentially different Delone triangulations of A that occur
by varying the quadratic form defining the geometry in 82, n T. From a technical point of view it is
more appropriate to work in the larger set 8Z; n T = cone{xx" | x € Z™} n T, which is the rational
closure of 8%, n T (cf. Proposition 4.2 in [Sch09]).

Suppose Q € 8%,. Then we can construct Delone polytopes for A as follows: take n + 1 affinely
independent elements of A, construct the circumsphere of the simplex they define. If there are points
of A inside the associated ball, there is no Delone polytope which contains the chosen elements as
vertices; if there are no points of A inside this ball, the convex hull of the set of all elements of A,
which lie on the boundary of the constructed ball, is a Delone polytope by construction. This is the
empty-sphere method (cf. Section 4.3.4).

This does not work for an arbitrary Q € 8Z,. However, by the reasoning above it can bee seen to hold
for such Q € 8¢ for which there exists a U € GL,, Z) such that

0 0
wa=(g o)

with Q’ € 8. In this case the Delone subdivision will contain unbounded polyhedra. As it turns

out this is it, a form Q € 8% admits Delone polyhedra with respect to A if and only if Q € 82,
(cf. [Sch09, 4.1, 4.2], [Nam76, §2.1]).

Let D be any Delone subdivision of A, then we define the T-secondary cone of D with respect to A to
be

Ar(D)={ QeS8 nT | Delp(Q) =D }.

In the classical case T = 8™ we simply speak of secondary cones.

Delone triangulations are of primary interest, since the broader class of general Delone subdivisions
is closely related to them, by the observation that if D is a Delone subdivision, which is not already a

triangulation, there is a Delone triangulation D’, such that At(D) is a face of At (D’) (cf. Section 2.6.
in [Val03]).

Now we let GL! (Z) (cf. 4.1.2) act on the set of T-secondary cones by U.A = UTAU. We call two
T-secondary cones A, A’ (T, t)-equivalent if there is U € GL! (Z) such that UTAU = A’and UTTU = T.
If A is a lattice we simply speak of T-equivalence, if T = 8™ we simply speak of t-equivalence or
GL! (Z)-equivalence.
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A special class of subspaces T of 8™ are those that are of the form T = Tg, where G is a finite subgroup
of GLY (Z) and Tg := {Q € 8™ | UTQU = Q VYU € G}. In this case we will use the notation of (G, t)-
equivalence synonymous for (Tg, t)-equivalence and G-secondary cone synonymous for Tg-secondary
cone.

Two Delone subdivisions D, D’ are referred to as bistellar neighbors if their corresponding (T, t)-
secondary cones are contiguous, that is if F := At (D) n A1(D’) is facet. The transition from D to D’ is
then called a T-flip.

6.1.2 A polyhedral description of secondary cones

The classical case of Voronoi’s second reduction theory for lattices was generalized to consider linear
subspaces T < 8™ (cf. [DSSV08]) and to cover periodic sets (cf. [Sch09], this source also discusses
the result on linear subspaces). We recall the polyhedral description of T-secondary cones as given
in [Sch09, Chapter 4]. This combines Theorems 4.3, 4.5 and 4.7 of the aforementioned work.

To an element w € R™ and an affine basis V < R™ of R™ we associate the quadratic form

Ny = ww! — Z ocvva,
veV

with «, being the affine coordinates of w with respect to the basis V. If V = {vy,...,vn 41} is the vertex
set of a Delone simplex D, and w is such that D’ = conv{vy,...,vn41, W} is another Delone simplex
adjacent (facet-sharing) to D, we write Np p- instead of Ny ,,.

Let D be a polyhedral subdivision of R™, such that A := vert(D) is a standard periodic vertex set (e.g.
a Delone subdivision of any standard periodic vertex set).

Let € denote the system of linear equations of the form

<NV,W/ Q> =0,

where for each n-polytope D € D we choose the vertex set V c vert(D) of an arbitrary n-simplex S
in D and for all w € vert(D) obtain an equation of the above form. Note that the above equations are
trivially satisfied for all Q € §T>/lo whenever D € D is itself a simplex (or more generally if w € V), and
are therefore redundant in this case.

Let U denote the null space of the system £ on 520- Then the last comment in particular implies that
if D is a triangulation, U = §go Since Nv 4y w+v = Ny, for all v e R™, and by periodicity of A, there
are only finitely many such equalities.

Furthermore let J denote the system of linear inequalities of the form

<NVUW,W’/ Q> > 0/

where for every facet F of the complex D and its adjacent n-polytopes D, D’ € D with F = D n D’ we
choose the vertex set V < vert(F) of an arbitrary n — 1-simplex S in F and for arbitrary w € vert(D\F),
w’ € vert(D’\F) we obtain one inequality as above. The definition of U implies that the orthogonal
projection 7y (Nvuw,w’) does not depend on the choice of V,w,w’ satisfying the above restrictions.
Again we see that there are only finitely many distinct inequalities.

The main theorem of Voronoi’s second reduction theory can than be formulated as follows.
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THEOREM 6.1.1. Let D be a polyhedral subdivision of R™, such that A := vert(D) is a standard periodic
vertex set and let T be a subspace of 8™.

i. The closure At (D) is a polyhedral cone in 5;‘“0 N T and
Ar(D) ={Q e Un T | Q satisfies the system J}.

The system J and the number of defining equalities for U are finite.

ii. The map D — At (D) gives an isomorphism between the poset of Delone subdivisions of A ordered by
coarsening and the poset of closures of T-secondary cones ordered by inclusion. The closures of all T-
secondary cones if Delone subdivisions form a polyhedral subdivision of 85, N T.

PROOF. This is an amalgamation of Theorems 4.5, 4.7, 4.13 in [Sch09]. O

REMARK 6.1.2. The classical case of lattices goes back to Voronoi (cf. [Vor08]), the generalization
to periodic sets is due to Schiirmann (cf. [Sch09, Chapter 4]). We have used the language of the
latter to formulate these results. [ |

There are several finiteness results, that ensure the existence of a fundamental domain for the action of
GL(A) = GL! (Z), that is a finite union of secondary cones, if A is a periodic vertex set. We will briefly
collect these here.

THEOREM 6.1.3 (VORONOI’'S SECOND REDUCTION THEORY). Let A = | J,, t+Z™ be a standard periodic
vertex set and G be a finite subgroup of GL(A).

i. The topological closures of (G, t) secondary cones give a polyhedral subdivision of g;o N Tg. The closures
of two secondary cones have a common facet if and only if they are bistellar neighbors.

ii. If Ais rational, there are only finitely many (G, t)-inequivalent G-secondary cones.
PROOF. This is an amalgamation of Theorems 4.7, 4.13, 4.19 in [Sch09]. O

REMARK 6.1.4. This includes the classical case with t = (0) and G being trivial. This can be made
into an algorithm as described in [Sch09, Chapter 4], cf. [SVG] for an implementation of the lattice
case. |

6.1.3 Representatives of low-dimensional Delone triangulations of Z™

There has been a great deal of work done on the classification of inequivalent Delone triangulations
and subdivisions. This includes Voronoi's classification of all inequivalent Delone triangulations up to
dimension 4 (cf. [Vor08]). The classification of the 222 inequivalent Delone triangulations in dimension
5 was then settled by Engel and Grishukhin in 2002 (cf. [EG02]), building up on work of Ryshkov and
Baranovskii (cf. [BR73], [RB78]) who already found 221 inequivalent Delone triangulations and work
of Engel (cf. [Eng98]) who found the missing triangulation.
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6.2 ON THE DV-CELL OF A MONOHEDRAL PERIODIC SET

Within this section (A, Q) will be a monohedral periodic set on (V, Q), and without loss of generality
we assume that 0 € A. It then suffices to study one particular Dirichlet-Voronoi cell for geometrical
insight. We will work with DV(A, Q) := DV q(0).

To compute the explicit quantizer constant of a given lattice, we need knowledge about the geometry
of its DV-cell. There are some rather classical results on the computation of Dirichlet-Voronoi cells and
the quantizer constant (cf. [CS82], or Chapter 21 in [CS98]), and there is a more recent algorithm for
these problems, which can handle higher dimensional lattices, provided a large enough amount of
symmetry (cf. [DSSV09]).

We will work towards a description the Dirichlet-Voronoi cell of a symmetric periodic set, including
the case of lattices, which is suited quite well to find at least locally an explicit expression for the
quantizer constant. The main obstacle to overcome is to handle the geometry of classes of periodic sets
at once, we will now show how Voronoi’s second reduction theory aids to this cause.

6.2.1 The vertices of the DV-cell of a monohedral periodic set

We argued earlier that we can replace an arbitrary periodic set by a coordinate representation through
periodic forms (cf. Propositions 4.1.1 and 4.1.2). Of course this reduces to the case of quadratic forms
in the case of lattices.

So fix a standard periodic point set Ay = R™. Let Q € 8%, and denote D = Delx,(Q). Then the DV
polytope of {0} with respect to A; and Q is determined through star(0, D) by means of its vertices as
we noted in Lemma 4.3.17.

Therefore knowledge about the induced Delone subdivision of a periodic form yields a possibility to
explicitly compute its DV-cell: recall that for an n-simplex S < R™ with vert(D) = {sq,...,sn} its
centroid with respect to Q is the unique solution to the system of linear equalities given by |[x — si|q =
Ix — solg, where i € {1,...,n}. If M(S) denotes the matrix whose i-th row is given by (s; — so)T, we
obtain:

(x —s1)TQ(x — si) = (x — 50) " Q(x — s0)

1
~(Isify — Isol3)-

<(sy — SO)TQX = >

Let a be the vector whose i-th entry is %Isi - So|%2, that is, the vector of halves of squared norms of rows
in M(S) and let b be the vector whose i-th entry is given by %(Isil%2 — |So|%g)- With this notation

c=s0+Q M(S)ta=Q 'M(S) b (6.1)

is the solution of the above system and thus the centroid of S. Now if D € star(0, D) is not a simplex,
we can choose any n + 1 affinely independent vertices of D and compute the centroid of the simplex
obtained in this way. Since D is a Delone polytope this actually is the centroid of D.

6.2.2 On a triangulation for Dirichlet-Voronoi polytopes

We are interested in triangulations of Dirichlet-Voronoi cells of monohedral periodic sets, that do only
depend on the associated secondary cone and are pyramidal with apex 0. Furthermore we would like
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a triangulation as such to add no new vertices, like for example the barycentric triangulation would
do. This latter condition is posed to reduce the complexity of computations, by reducing the number
of vertices involved. This of course comes with a trade-off: the barycentric triangulation might allow
to exploit symmetries of the Dirichlet-Voronoi cell for later applications in computing, for example,
the quantizer constant. For single lattices, opposed to secondary cones, exploiting symmetry by using
a barycentric triangulation, lead to certain precise estimations of the quantizer constant of well-known
lattices, that were inaccessible before (cf. [DSSV09]).

The isomorphy given by Lemma 4.3.14 implies that it suffices to find a triangulation as such for the
Dirichlet-Voronoi polytope corresponding to the Delone polytope {0}. We use the duality between
Dirichlet-Voronoi and Delone subdivisions to define a triangulation, for which the vertices of the
simplices involved can be labeled by a fixed enumeration of the elements of the star of {0}. Then a
triangulation through pulling (cf. Lemma 4.2.1) does the trick.

Let P be a Delone set with corresponding secondary cone A and with Delone subdivision D. Fix an
ordering of the full dimensional Delone polytopes in star(p, D), say (D1, ..., Di). Let p € P. We define
a lattice (order-theoretic) in 2{01--¥} as follows:

i. star(p, D) gives rise to a poset dual to the face lattice Fo for DVyp o (p) for arbitrary Q € A°:
we identify an element of star(p, D) by the n-dimensional Delone polytopes it is a common face
of. Since the n-dimensional Delone polytopes are in bijection with their labels, we can therefore
express any face by a subset of {1, ..., k}. Inclusion of faces in star(p, D) then induces an ordering

we immediately see that this is in fact a lattice and that it is dual to the face lattice of DV (Q, {p})
and thus to DV g (p), since they are affinely isomorphic (by Lemma 4.3.14).

ii. Since o = Fq for all Q,Q’ € A°, we simply write J, it is the face lattice of a realizable convex
polytope.
iii. ¥ and the ordering (D1, ..., Di) induce the pulling triangulation
T=T(D,(Dy,...,Dy),p) :==p ---P1 Py (0F),
cf. Lemma 4.2.2.

PROPOSITION 6.2.1. Let P be a Delone set with corresponding secondary cone A and with Delone subdivision
D. Fix an ordering of the full dimensional Delone polytopes in star(p, D), say (D1, ..., Dx). Let p € P, and let
T =T(D,(Dy,...,Dx),p) be as above. Define a map oq by

¢ conv({centroidg (D) | i€ t}) 0¢t
conv({p} u {centroidg (D;) |0 #iet}) Oet.

Then

i. 0Q(7) is a pyramidal triangulation with apex p of DV (p).
ii. [t| —11is equal to the rank of o (t) forall t € T(D,(Dy,...,Dy),p) ifand only if Q € A°.

PROOF. Ad (i): We have seen in (iii) of Lemma 4.2.2, that for every polytope that realizes F, we obtain
a triangulation, pyramidal with apex p, as desired. This proofs the claim for all Q € A°. If Q € A
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nothing to bad happens: oq(7) still is a triangulation of DV q (p), we only lose injectivity of the map
0q, non-maximal simplices in o (T) might have distinct preimages in 7.

Ad (ii): Let Q € A° and let t be an element of T(D, (Dy, ..., Dx),p). By construction o (t) is a simplex.
Assume that 0 ¢ t, thus p ¢ og(t). Let there be any labels i # j, for which v;,v; € og(t). By definition
vi,v; are centroids of Delone polytopes D; # Dj in D thus implying vi # v;. Therefore og(t) is a
simplex with |t| different vertices, therefore its rank is |t| — 1.

If 0 € t, the same is true by switching to t\{0}, since for all D;, the centroid v; is distinct from p.

If on the other hand Q € 0A we have that Dely(Q) is a coarsening of D and we therefore find a set of
labels 1y, ..., i, such that each Dy; no longer is a Delone polytope, but their join is. Any t containing at
least two of the above labels therefore maps to the convex hull of at most |t| — 1 different vertices of
DV, (0), therefore the rank of o (t) is at most [t| — 2. O

In the implementation used for purposes of this thesis we chose to compute a pulling triangulation of
C(0P) first and then build the pyramids over 0, this was done to decrease the dimension of polytopes
on which the triangulation algorithm has to work on.

ALGORITHM 6.2.2 (LOCAL VORONOI TRIANGULATION).

i. Initialize Dy and fix an ordering (D, ..., Dy) of its elements.

ii. Compute the incidence poset of star(0, D) under the chosen labeling as in the proof of Proposition
6.2.1 and dualize it. Denote the dualized poset by J.

iii. For every facet F € J obtain the face lattice F|r of F by restriction of  and compute the pulling
triangulation py_...p; (Fr).

iv. For each of the obtained triangulations build the pyramids over 0.

v. The set of all of the above obtained pyramids gives an abstract triangulation J(D, (D, ..., D))
as was proposed by Proposition 6.2.1.

Another thing we will need to deal with is the orientation of the simplices in a triangulation of
DVy,q(0) induced by some T as in Proposition 6.2.1. The good news is: given Q,Q’ € A° corre-
sponding simplices o (t), 0g-(t) for t = T are equally oriented.

LEMMA 6.2.3. Let P be a Delone set, p € P and T = T(D, (Dy,...,Dx),p) be as in Proposition 6.2.1. Let
e € {1}, Q € A°® and let o (t) with t € T™™) be e-oriented. Then oq/(t) is e-oriented for all Q" € A° and
for those Q' € OA where it is full dimensional.

PROOF. We show this for the case p = 0, the general case follows by application of a suitable isometry.

Write Sq = 0 (t) and Sq = 0g-(t). Consider the map X : A — R™ ™ given by Q — M(Sq), where
M(Sq) is the n by n matrix whose j-th column is given by the j-th vertex of Sg (excluding the zeroth
vertex 0). This map is entrywise polynomial in the entries of Q and thus continuous, as is easily seen
by invoking the explicit term (6.1) for these vertices, which by construction are centroids of a Delone
simplex. Each of these centroids depends continuously on a change in Q, as Q! and the norms || - ||
do. Therefore the map detoX : A — R is continuous.
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Now Sq is e-oriented if and only if sign(det(M(Sq))) = €, that is, by definition, if sign(detoX(Q)) = e.
If Q' € A, we can move from Q to Q’ along the line segment QQ’ = {AQ + (1 —A)Q’ | A€ [0,1]} as A
is convex. Now we claim that for arbitrary Q € QQ’\Q’ we have that S o is e-oriented.

In any case, QQ/\Q’ < A°. Therefore, for any Q € QQ\Q’ we have that S is full dimensional (cf.

~ ~

Proposition 6.2.1, (ii)) and detoX(Q) # 0. By continuity of detoX it follows that sign(detoX(Q)) = e.

Since Q' is the limit of a sequence in QQ’ we get sign(detoZ(Q)) € {0, €}.

If Q’ € A° and therefore Sq- is full dimensional we obtain that Q' is e-oriented. If Q' € dA and Sq- is
full dimensional the above argument remains valid. O

6.2.3 Classical results on DV-cells of lattices

For sake of completeness we state some of the above mentioned classical results.

DEFINITION 6.2.4 (RELEVANT POINT). A point q € P is called Dirichlet-Voronoi-relevant (DV-
relevant or just relevant) for p € P (or for DV(p)), if the hyperplane between p and q contains a
facet of DV(p). .

In the case of a lattice L we will call a lattice point relevant if it is a relevant point of DV(L).

The following Theorem is due to Voronoi, and characterizes the relevant points of any lattice L.

THEOREM 6.2.5 ([CS98], CH. 21, THEOREM 10). A point 0 # v € L is relevant if and only if +v are the
only shortest vectors in the coset v + 2L.

It is not surprising that the following lemma holds:

LEMMA 6.2.6 (MINIMAL VECTORS ARE RELEVANT). Ifv e Min(L), then v is relevant.

PROOF. We have to assure that +v are the only vectors of length [|v|? in v + 2L. Therefore letv # u €
v+2L: u=v+2w,we L. Then
[ull? = |[v]I* + 4llw]* + 4b(v, w)

If [|u]|? = ||v|?, this leads to —b(w, w) = ||w||>. By the Cauchy-Schwarz inequality we have b(v,w)? <
[v]|? - |[w]|* with equality only if v, w are linearly dependent. In that case we obtain |[v||? = [|w]||?> which
only is possible for w = —v, therefore u = —v. If v, w are linearly independent we have ||w|?> < ||v|J?,
which would contradict v € Min(L). O

6.3 A LOCALLY EXACT FORMULA AND A CONSTRAINED POLYNOMIAL OPTIMIZATION
PROGRAM FOR THE LATTICE VECTOR QUANTIZER PROBLEM

The quantization problem is a minimization problem, where the objective function does not come in a
handy way to employ standard optimization theory, such as linear or semi-definite programming. We
will turn the problem of finding the optimal lattice quantizer of a given dimension n into a collection of
constrained minimization problems, for each of which the objective function, as well as the constraints
are polynomial functions. This is done with the help of Voronoi’s second reduction theory, the same
approach was used in [SV06] for the lattice covering and lattice covering packing problem.
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We now assume to be in a more restricted version of the setup of Theorem 6.1.3. This will be the
general assumption on periodic sets for the application of Voronoi’s second reduction theory to the
periodic quantizer problem.

ASSUMPTION 6.3.1. We assume that A is a rational standard periodic vertex set such that there
exists a finite G < GL(A) = GL! (Z) for which (A, Q) is monohedral forall Q e Q e 8%y n Tg. W

An example for non-lattices that satisfy Assumption 6.3.1 are periodic sets that are the join of 2 trans-
lates of a lattice (cf. Lemma 4.3.6).

The general periodic quantizer problem is a problem of periodic sets in Euclidean standard space, but
every such set is isometric to a coordinate representation, as we noted in Proposition and Definition
4.1.2.

In particular, we identify lattices with positive definite quadratic forms by fixing the set of lattice points
to be the standard vertex set Z™ (Proposition and Definition 4.1.1). For lattices the group G above can
be chosen to be trivial, lattices are symmetric by virtue of the action of translations and thus regardless
of the involved quadratic form.

Let L < R™ be a lattice with respect to the standard inner product and associated coordinate lattice
(Z™,Q). We are interested in minimizing G(L) = det(L)~!/2-1/n Sovi |[x|*dx. Since we prefer to
work with the coordinate representation of L by (Z™, Q), we reformulate this expression in terms of Q.
We, more generally, derive this for periodic sets.

LEMMA 6.3.2. Let A = AA¢ < R™ be a symmetric m-periodic set with respect to the standard inner product
and associated coordinate representation (A, Q), that is Q = ATA. Then

G(A) = G(Q,t),

m1+2/n

where G(Q, t) := det(Q)™™ fpy g IXIQdx.

PROOF. This becomes evident by application of the formula of change of variables for integrals

f x|y dx = f | Ax|2dx
DV (A Q) DV(AQ)

= det(A)! J

Ix|?dx = det(A) ! J Ix|Pdx,
ADV(A,Q) DV(A)

as DV(A) = ADV,(Q) (recall that DV(Q, t) = DV(Ay, Q)). O

A standard technique to compute SDV( A) |x|?dx is to find a triangulation T of DV(A) and compute

Sovin IXPdx =3 scy s [x|*dx via the following formula.
dim(S)=n

THEOREM 6.3.3 ( [CS98], CH. 21, THEOREM 2.). Let V be the Euclidean standard space of dimension n,
and let S < V be a simplex with vertices sy, . .., sn and barycenter § = %H Yo si- Then

24 vol(S) . A2 L N 2

i=0

This then applies to SDVZ" Q) HXH%2 dx as follows.
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COROLLARY 6.3.4. Let (V,Q) be a quadratic space of dimension n with norm | - |q, and let S < V be a
simplex with vertices sy, . .., sy and barycenter § = %H Yo si- Then

o VOIQ ) 1
| Inyax = OIS <|n+1 Q+2|s1|Q)

i=0

Is) N
N mfﬁw ’ <||(“+ D%+ > si|%2> _

i=0

PROOF. Write Q = ATA (Cholesky decomposition). Now by the formula for the change of variables
for integrals we have:

1
2 ax = | 1AxI2dx = J 2
| Ity = | paxpax= g | xax

1 vol(AS) R =
LYol (| +1)As2+2|As#>,

T det(A) (n+D)(n+2) P

where vol(AS) = det(A) - vol(S) and volg (S) = 4/det(Q) - vol(S), so that the claim is proven. O

Employing Voronoi’s second reduction theory we obtain the knowledge needed about DV 5,(Q): with
respect to the rational standard periodic vertex set A we choose a representative set of secondary
cones, which is finite by Theorem 6.1.3. For each of these secondary cones we will formulate a local
quantizer problem, since we can simultaneously triangulate the Dirichlet-Voronoi cells associated to
quadpratic forms in a fixed secondary cone:

Under the Assumption 6.3.1, the A-local quantizer problem is given by

min G(Q, t)
s.t. Q e A.

From now on we fix a secondary cone A. Employing Lemma 4.3.17 we can compute the DV-cell of
any monohedral periodic set (A¢, Q) for Q € A in a general way. Using Proposition 6.2.1 we can find a
triangulation for each of these lattices that can be described entirely by the means of A itself.

LEMMA 6.3.5. Let Sy,...,Sn < R™ be simplices and denote the centroid of Si by ci. Suppose the simplex S:=
conv{0,cy,...,Cn} zsfull dimensional. Let Q € 8%, and let Q be the adjoint of Q, that is, QQ = det(Q)I,,

i. The quantity det(Q)||ci|% = HQciH%2 is polynomial in the entries of Q.
ii. For Ay, ..., Ay € R the quantity det(Q)| > i, ?\iciﬂé =X, )\iQCiH% is polynomial in the entries of
Q.
For the polynomial expressions above, the coefficients are determined solely by Sq, ..., Sn.

PROOF. We have already seen that for Q € 8, and S < R™ a simplex, its centroid is given by ¢ =
Q'M(S)'b. Thus

lelg = (Q7'™™I(S) D) TQ(Q'M(S)'b) = bT(A—l)TQ—lz\A(S)—lb

1 T ST 1 2
_det(Q)b (M(S)"HTQM(S) HQ I/

det
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where the entries of b (and therefore Qc = M(S)~!b) are (linear) polynomials in the entries of Q, and
the entries of Q are polynomial of degree n — 1 in the entries of Q since each entry is a first minor of Q.

Thus H(:H%2 is rational in the entries of Q and det(Q) HC||2Q is polynomial in the entries of Q, both are of
degree n + 1. This proves the first assumption.

For Ay, ...,An € Rand 31 Aici = Q7' 3, A AT 'b; analogously det(Q)| 31, 7\1C1H2Q is polynomial
of degree n + 1. O

This shows that if S = T is a simplex in a triangulation of DV 5,(Q), the norms of its vertices s; are
given by rational expressions in the entries of Q, as is the norm of their barycenter s. To be precise we
. 1 ° 1 2 ° .
have: [si[g = WHQSJ% and 5] = WQ)HQSH%Q’ where HQsiH%2 and HQSH%2 are polynomial in the

entries of Q.

The volume of a n-simplex S © R™ can be calculated in different ways, rather then employing Cayley-
Menger determinants, we use the volume of a related parallelepiped.

LEMMA 6.3.6. Let A = A(D) be a fixed secondary cone and fix an ordering (Dy, ..., Dy) for the elements of
star(0, D). Let T = T(D, (D, ..., Dx),0) be a triangulation as obtained by Proposition 6.2.1. For an n-simplex
S < R™ with vert(S) = {so,s1...,5n} let M(S) be the matrix whose j-th column is s; — s.

Let t € T be maximal element. Then there exists € = e(t) € {+1} such that for arbitrary Q € A
1
volg(og(t)) = e— det(Q)"?det(M(oq(t))),
and
1
vol(og(t)) = e det(M(oq(t))),
where det(Q)? - volg (0q(t)) and det(Q) - vol(oq(t)) are polynomial in the entries of Q.

PROOF. Note that from the construction of the triangulation, M(oq) composes of the nontrivial ver-
tices of 0@, since the zeroth vertex always is 0. Then

vol(og(t)) = %det(M(GQ(t))) = e%det(M(GQ(t))) = e%det(Q)’l det(Q - M(og (1)),

where € is the orientation of o (t), but this only depends on t and A and not on the choice of Q in A,
as we proved in Lemma 6.2.3.

The vertices s; of og(t) are of the form s; = QflA; b, where s; is the centroid of a Delone simplex
D; e star(0, D). Now det(Q - M(og(t))) is a polynomial in the entries of Q, as we already noted in the
proof of Lemma 6.2.3. Thus the volume of o (t) is rational in the entries of Q where the denominator
det(Q) comes from the factor det(Q) " in vol(og(t)) = e L det(Q) ! det(Q - M(0gq(t))). O

Now we are prepared to find an objective function that is polynomial in the entries of Q and can be
used to solve the quantizer problem at least A-locally for each secondary cone A. The constraints we
need are Q € A which can be expressed by linear (and therefore polynomial) inequalities (cf. Theorem
6.1.1) and det(Q) > 1. The latter one is of course polynomial in the entries of Q and is needed to
avoid the remainder det(Q)¢€ that comes from the norms of the vertices, as well as the volume of the
simplices in Dy.
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THEOREM 6.3.7. Let Ay satisfy Assumption 6.3.1. Let A be a secondary cone for Ay. The A-local quantizer
problem

min G(Q, t)
s.t.Qe A

is equivalent to

min GA(Q)
s.t. Qe A
s.t. det(Q) =1

where GA(Q) is a polynomial in the entries of Q. That is, the A-local quantizer problem is equivalent to a
polynomial optimization problem with convex constraints; the constraint Q € A can be replaced by a finite
system of linear inequalities.

PROOF. We have

x| dx = j |2, dx.
vam(Q) Q Z(l] s e

z ScT
dim(S)=n

Using Corollary 6.3.4 the previous Lemmata 6.3.5 and 6.3.6 show that each of the righthand side sum-
mands is the quotient of a polynomial in Q by det(Q)?:

vol(S) .
det(Q)?- L [x|% dx = det(Q)? - e ((n +1)8)% + Seéts |s||6>

<. det(Q) - det(M(S)) .
= e(§). TEET <|(n+1)Qs|§~2 +Se§ts|ng> -
Substituting this we obtain
— l —-1/n 2
G(Q) = det(Q) jmw xR dx
= det(Q)™/"2-Ga(Q),
where
— # S) . . . 2|12 2
6alQ) = gy 3y <(5)-det@) - detMis) <|(n+1)Qs|Q+S€§S|QsQ>

dim(S)=n

is polynomial in the entries of Q.

Since the quantizer constant is invariant to scaling we can assume that det(Q) = 1 is fixed without
missing an optimal solution, thus we get rid of the denominator. The relaxation det(Q) > 1 poses no
threat to finding optimal solutions, since GA(AQ) = A1*2V G (Q) and therefore replacing a Q with
det(Q) > 1 by AQ such that det(AQ) = 1 results in GA(AQ) < GA(Q).

Finiteness of the involved system of linear inequalities was observed in Theorem 6.1.1. O
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REMARK 6.3.8. We chose to drop t from the notation for G,, it is implicitly involved since A is,
by assumption, a secondary cone for Ay. n

We state the following as a Corollary to have an explicit formula for the quantizer constant of a lattice
at hand whenever needed.

COROLLARY 6.3.9. Let Q € 8%, and let A be the secondary cone of Delzn (Q). Then

>0/
Ga(Q)

G(Q) = W,

where Ga(Q) is a polynomial in the coefficients of Q. The coefficients of Ga(Q) depend only on A.

REMARK 6.3.10. In the subsequent we will provide the quantizer polynomials for lattices up to
dimension 4. In all of these cases it turns out that GA(Q) is a multiple of det(Q) (the determinant
of an abstract matrix Q € A as a polynomial in its entries). This is an effect that occurs only for
the full DV-cell, for an simplex the corresponding summand will in general not be divisible by
det(Q), as can be readily checked using the MAPLE-code described in Appendix B. n

6.4 ON THE LATTICE QUANTIZER PROBLEM IN LOW DIMENSIONS

6.4.1 Introductory remarks
Conic parameters for quadratic forms

If we fix a secondary cone A we know that each Q € A can be written as a conic combination Q =
3k Ak(Q)RE) where the R(¥) are the extreme rays of A. for a given Q wesetc(Q) := (A1(Q), ..., Am(Q))
to be the vector of conic parameters.

Now evidently we can transform any quantity F, which is given explicitly in the entries of Q, into a
quantity which is given in the conic parameters of Q, simply by substituting qi; = >, ?\k(Q)Tg{). We
denote such a transformation by F(¢).

There is another similar kind of parameters for quadratic forms, the Selling parameters:

n

Let Q = (qij){j_1. We write qi; = el Qej for i,j € {1,...,n + 1}, where en1 = — Y, ei. Then
i=1

Z]“jll qij = 0, and therefore qi; = — Z?;lzl qij-

Then we call the parameters qy, fori,j € {1,...,n + 1}, 1 # j, the Selling parameters of Q. Below we
will discuss their relation to the conical parameters in a special case.
Voronoi’s principal domain of the first type

A common example of a Delone triangulation in dimension n is given by Voronoi’s principal domain
of the first type, given by A(V™):

Let Q € 8%, be given by qii =1, qi5 = —1foralli,j € {1,...,n}, 1 # j. The lattice (Z™, Q) is then
isometric to A% . We find

V" :=Delyn (Q) ={Ds+Vv| 0€Shyt1, veZ™},
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where
Dy = conv{eg(1),€5(1) + €5(2), €5(1) + -+ + €x(n+1)}s
with the convention e, 1 = — Y ;" ; e;. The automorphism group of V" is isomorphic to Sy 1.
We will use the snake notation of Ryshkov, to write simplices as D, above in a more condensed way:
Vi, e, vy =conv{vy, v + Vo, ..., v ..+ vt (6.2)
Thus

Dy = <€U(1),. . .,ea(n+1)>.

One finds (cf. §102 — 104 in [Vor08])

AV")={Qe 8™ | qi <O0fori+#jand Z qij > 0forie{1,...,n}}.
i=1

The extreme rays of this cone are the matrices Eo; for 1 <i < mnand Ej5 for 1 <1i <j <n. Here E; is
such that the entry at position (i, 1) is equal to 1, while all other are equal to 0 and E;; is such that the
entries at positions (i,1), (j,j) are equal to 1, the entries at positions (i,j), (j, 1) are equal to —1, and all
other entries are equal to 0. If Q € A, we write Ag; for the coefficient of Eg; and A5 for the coefficient of
Eij .

The Selling parameters and conical parameters of Q € V? satisfy the following relation:

—Ay  fori,j<mn,
qij = . .
—Aoi fori<mn,j=n+1.

6.4.2 Lattice quantizer polynomials and globally optimal solutions in dimensions 2 and 3
Dimension 2

We use this case to give a more detailed example of how to compute the quantizer polynomial, every-
thing of importance can be seen here already, while the presentation of the discussion is quite simple.

There is only one equivalence class of Delone triangulations in dimension 2, this was already settled by
Voronoi (cf. [Vor08]), it can be checked by computer using the algorithm sketched in the book [Sch09],
cf. [SVG]. A representative is given by Voronoi’s principal domain of the first type (cf. 6.4.1). The
secondary cone A = A(V?) can then be described as follows:

A=AV ={ Qe8| gy <Ofori#jand 31 qy>0forj=12 }
={ Qes?| qu<0andqui+qu >0and g+ g >0 }.

Those maximal cells of the triangulation V2, that contain the origin 0, are given by star(V?,0). In
hindsight of our wish to fix a lattice in 2{®!~6} which produces a simultaneous triangulation of any
corresponding Dirichlet-Voronoi cell, we fix an order on the elements of V3. Since we can index these
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elements by elements of the symmetric group S it seems rather natural to start from there. A seem-
ingly natural way to numerate the elements of S is to index them by the order in which the Steinhaus-
Johnson-Trotter algorithm produces them. For S; this amounts to 1 2 id,2 2 (23),3 2 (132),4 =
(13),5 = (123),6 = (12). Then

star(V2,0)?) = {Dy,..., D¢},
where
D; = Dijg =conv{0, e, e1 + ez},
Dy = D (g3 =conv{0, e;, —es},
D3 = D(132) =conv{0, —ep, —e; — ez},

and D4 = 7D1,D5 = 7D2, D6 = 7D3.

Now Lemma 4.3.17 shows that the vertex set of the Voronoi cell of an arbitrary Q € A n S can be
read of from \7(2) by vi = centroidg (D;). However, we should note that for Q on the boundary of A
certain of these points v; will coincide, this is a consequence of the fact that there are usually more
inequivalent Delone subdivisions than triangulations, but those appear as the limiting cases of them.
Here an example would be the standard form, where vi = v, and v4 = vs.

In the case of a Q € A” we have that DV~ (Q) is a permutahedron of order 3.

The pulling triangulation that we described in Algorithm 6.2.2 coming from the labeling of elements
of Dy as above leads to an polynomial expression in the entries of Q for the quantizer constant that
computes to

1 qh92 + 9195 — 2qu1di, — 292243 — 243,
24 (d11q22 — q3,)%>

amene{(55)-G D)4 )

we can parametrize an arbitrary Q € A by Ag1, Ag2, A2 € Ry (cf. 6.4.1), the coefficients of Q as a conic
combination of the extreme rays of A. This parametrization is closely related to the selling parameters
of Q, they differ from one another by a change of sign, as noted above.

G(Q) = (6.3)

Since

Now as described in general above we can transform the quantity G(Q) to be an expression in c(Q)
by substituting q11 = Ag1 + A12, q22 = Agz + A1z and qi2 = —Aypp, this computes to

1 A2 A2 + A3 A2 + Aot AL, + Ao1AZ, + A2, A2 + AgeA, + 4Ag1 AgaA12

Gl (e _ - 6.4
(c(Q)) 24 (Ao1A02 + Ag1A12 + ApeA12)3/2 (€4

The related quantizer polynomial is given by

:7\017\02 + Ao1A12 + Ag2A12
24
(A3 A02 + A5 A2 + Aoi A%y + Ao1AZ, + A% A1z 4 AoaA, + 4Agi AdaaAz).

Gl (c(Q))

THEOREM 6.4.1 (CF. P. 81 IN [FT53], P. 60 IN [CS98]). The optimal (lattice) quantizer in dimension 2 is
given by any lattice arithmetically equivalent to the hexagonal lattice Ay =~ A%, the optimal value is G(A;) =
125V/3. This is the only local minimum of the lattice quantizer problem in dimension 2.
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Dimension 3

As in dimension 2, there is only one equivalence class of Delone triangulations in dimension 3, a
representative is given by Voronoi’s principal domain of the first type (cf. 6.4.1). The secondary cone
A can then be described as follows:

A=AV ={ Qe8| qy <Ofori=jand X1, qy >0forj =123 |
that is the set of forms Q € 8 such that the coefficients satisfy

q12 <0,q13<0,q23 <0
qi1+go1 +qs >0
2+ qx+dq3 >0
q13 + g3 + q33 > 0.

Those maximal cells of the triangulation V3, that contain the origin 0, are given by star(V3,0):
star(V%,0)®) = {Dy, ..., Dy},

where again we numerate the elements of V3 by associating an permutation in S4 to the position it has
in the list the Steinhaus-Johnson-Trotter algorithm produces.

If Q € A° we know that DV (Q) is a permutahedron of order 4, i.e., a truncated octahedron. There are
two combinatorially different types of facets appearing: 4-gons and 6-gons. A pulling triangulation
as described in Algorithm 6.2.2 corresponding to the above ordering of vertices can be obtained by
pulling each facet individually and building the pyramids with apex 0 above each simplex won by
this. To be precise it suffices to execute simply one pulling refinement by the vertex with lowest index.
If the facet is a 4-gon we obtain two simplices, if it is a 6-gon we obtain 4 simplices. It is possible to
obtain the polynomial G(AC) (c(Q)) directly from this combinatorial description, cf. [BS83].

This leads to the a polynomial expression in the entries of Q for the quantizer constant that computes
to

(6.5)

with

det
Ga(Q) = # - (411922933 — 971935 — 2411932935 + 4411912913023

—2q11 413022 + 41105033 — 2411922933 + 91192203
—2q11G3; — 2411953933 — 2472033 + 2012973 + 647,q13023
—245,92293 + 2412435 — 41293 + 6412973923
+4q12913922923 + 6412413933 + 4412913923933 — 2435922
—q130% — 2973922435 + 2415G33)
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Since
1 00 0 0 O 0 0 O
A = cone o o0 o0),1/01 01,10 0 0],
0 0 O 0 0 O 0 0 1
1 —1 0 0
-1 0 0 ,
0 —1 0 1

we can parametrize an arbitrary Q € A by Ag1, Aoz, Aoz, A2, A3, A2z € R, the coefficients of Q as a conic
combination of the extreme rays of A. This parametrization is closely related to the selling parameters
of Q, they differ from one another by a change of sign.

Now as described in general above, and laid out for dimension 2 we can transform the quantity Ga(Q)
to be an expression in ¢(Q), this computes to

det'®)
G (c(Q) = e% : (detm S 42T 23) ) (6.6)
where
(6)
T =) A,
T2 = ) ArAoMsAas,
and

(12) (4)
det) = " At AoAis + ) AorAaos.

THEOREM 6.4.2 (THEOREM 1 IN [BS83]). The optimal lattice quantizer in dimension 3 is given by any lat-
tice arithmetically equivalent to the lattice A% ~ D#, the optimal value is G(A%) = 19/(96+/16). This is the
only local minimum of the lattice quantizer problem in dimension 3.

6.4.3 The lattice quantizer polynomials in dimension 4

There are 3 inequivalent secondary cones that represent the three inequivalent Delone triangulations in
dimension 4. We use the description found in [Val03, 4.4.1]. From there we read off that we can describe
those cones with the following positive semi-definite forms Eoj, ..., Eos, E12, E13, . . ., E34 together with

2 1 -1 -1 11 -1 -1
2 -1 -1 1 -1 -1

E, = E. =
a 2 o |’® 1 1
2 1

where Ey; shall be the all zero matrix except that the i-th diagonal entry is equal to 1 and Ey; shall be
the all zero matrix except that the i-th and j-th diagonal entries equal 1 and the entries at positions 1ij
and ji equal —1. Note that E, represents the root lattice D,.

We set
A = A(Del(Ql)) =int (Cone {E01/ ---,Eos4, B12, B3, -, F—34}) (67)
Az = A(Del(Qz)) =int (cone {E()l, ey E04, E13, ey E34, Ea}) (68)
Az = A(Del(Q3)) = int (cone {Eq1, ..., Eos, E13,..., E2s, Eq, Ev}), (6.9)
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where
4 -1 -1 -1 51 -2 =2 6 2 -3 -3
4 -1 -1 5 -2 =2 6 -3 -3
Ql - 4 1 s Q2 - 6 1 s QB = 6 1
4 6 6

In particular Ay = A(V4).

From this we can read of any data we need. The remaining 49 inequivalent Delone subdivisions (that
are not triangulations) correspond to the faces of the closures of these cones, we therefore can compute
their secondary cones from the representations in (6.7),(6.8),(6.9) above. From another look into [Val03,
4.4.1] we obtain that A; shares each of its facets, and therefore each of its faces, with a GL4(Z) translate
of A, and Az shares but one of its facets with a GL4(Z) translate of A,, where its remaining facet
is shared with a GL4(Z) translate of itself. This comes from the fact that the corresponding Delone
triangulations are bistellar neighbors of one another in exactly the same pattern.

Therefore we can proceed by finding a GL4(Z) representative set of facets (and then on of faces of
them) of A, to cover the majority of cases. The remaining work then is to evaluate A; itself, Aj itself
and the remaining facet of Az (and of course its faces).

The 52 inequivalent secondary cones

This classification has been achieved quite a few times, we refer to [Val03, 4.4.4 to 4.4.6] for an exposi-
tory treatment.

Though one can read off the 52 inequivalent secondary cones from a table in 4.4.6 of the above cited
source, we go ahead and compute them ourselves by directly computing the rays of each of the repre-
sentatives. We collect the data in a table; for more information we again refer to [Val03, 4.4.6].

Using this information it is possible to derive the remaining 49 quantizer polynomials from those given
for the three inequivalent Delone triangulations in dimension 4, below.

The local quantizer polynomial for A(V*):

We start with the rational closure A; of the secondary cone of the Delone triangulation V* of Voronoi’s
principal form of the first type.

Those maximal cells of the triangulation V*, that contain the origin 0, are given by the star of V*
around 0. We set D% =< ey, e, e3, €4, €5 > written in the snake notation of Ryshkov (cf. (6.2)), where
es — —e1 — e — e3 — e4. Then \73 is given by the Ss orbit of D% where S5 is supposed to act on the
subscripts of the vectors. This in particular implies that the automorphism group of V* is isomorphic
to Ss. Thus

star(V4,0)%) = {Dl,...,D%zo},

where we numerate the elements of star(V*,0)*) by associating an permutation in Ss to the position it
has in the list the Steinhaus-Johnson-Trotter algorithm produces.

By the same reasoning as above we can read off the Dirichlet-Voronoi cell of Q € 82 from V¢. If Q € A9
we know that DV3:(Q) is a permutahedron of order 5.
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Table 6.1: Representative vectors of the 52 inequivalent secondary cones in dimension 4.

dim | Representative vector \

1 (0,0,0,0,0,0,0,0,0,0,1,0) | dim [ Representative vector

2 (1,0,0,0,0,0,0,0,0,0,1,0) 7 (1,1,1,1,1,1,1,0,0,0,0,0)
3 (1,1,0,0,0,0,0,0,0,0,1,0) 7 (1,1,1,1,1,1,0,1,0,0,0,0)
3 (1,0,1,0,0,0,0,0,0,0,1,0) 7 (1,1,1,1,1,0,1,1,0,0,0,0)
4 (1,1,1,1,0,0,0,0,0,0,0,0) 7 (0,1,1,1,1,1,1,1,0,0,0,0)
4 (1,1,1,0,0,0,0,0,0,0,1,0) 7 (1,1,1,1,0,1,1,0,0,0,1,0)
4 (1,0,1,1,0,0,0,0,0,0,1,0) 7 (1,1,1,1,0,1,0,1,0,0,1,0)
4 (1,0,1,0,0,1,0,0,0,0,1,0) 7 (1,1,1,1,0,0,1,1,0,0,1,0)
4 (0,0,0,1,0,1,0,1,0,0,1,0) 7 (1,1,0,1,0,1,1,1,0,0,1,0)
5 (1,1,1,1,1,0,0,0,0,0,0,0) 7 (1,1,0,0,0,1,1,1,1,0,1,0)
5 (0,1,1,1,1,1,0,0,0,0,0,0) 7 (0,0,1,1,0,1,1,1,1,0,1,0)
5 (0,0,1,1,1,0,1,1,0,0,0,0) 7 (1,0,1,1,0,1,1,0,0,1,1,0)
5 (1,1,1,1,0,0,0,0,0,0,1,0) 8 (1,1,1,1,1,1,1,1,0,0,0,0)
5 (1,1,1,0,0,1,0,0,0,0,1,0) 8 (1,1,1,1,0,1,1,1,1,0,0,0)
5 | (1,1,0,1,0,1,0,0,0,0,1,0) 8 | (1,1,1,1,0,1,1,1,0,0,1,0)
5 (0,0,1,1,0,1,1,0,0,0,1,0) 8 (1,1,1,0,0,1,1,1,1,0,1,0)
5 1 (1,0,0,1,0,1,0,1,0,0,1,0) 8 | (1,0,1,1,0,1,1,1,1,0,1,0)
6 | (1,1,1,1,1,1,0,0,0,0,0,0) 8 | (1,1,1,1,0,1,1,0,0,1,1,0)
6 11(0,1,1,1,1,1,1,0,0,0,0,0) 8 | (1,1,1,1,0,1,0,1,0,1,1,0)
6 | (1,1,1,1,0,0,1,1,0,0,0,0) 9 | (1,1,1,1,1,1,1,1,1,0,0,0)
6 (1,0,1,1,1,0,1,1,0,0,0,0) 9 (1,1,1,1,0,1,1,1,1,0,1,0)
6 (1,1,1,1,0,1,0,0,0,0,1,0) 9 (1,1,1,1,0,1,1,1,0,1,1,0)
6 [(1,0,1,1,0,1,1,0,0,0,1,0) 9  [(1,1,1,1,0,1,1,1,1,0,0,1)
6 (0,1,1,1,0,1,1,0,0,0,1,0) 10 (1,1,1,1,1,1,1,1,1,1,0,0)
6 [(1,1,0,1,0,1,0,1,0,0,1,0) 0 | (1,1,1,1,0,1,1,1,1,1,1,0)
6 (1,0,1,1,0,1,0,1,0,0,1,0) 10 (1,1,1,1,0,1,1,1,1,0,1,1)
6 (0,1,0,1,0,1,1,1,0,0,1,0)

Recall that
A1 =cone {Egi, ..., Eoa, Eio, Bi3,..., Esa},

sofori=1,...,4 we denote by Ag; = Api(Q) the coefficient of E¢; in a conic representation of Q € Ay,
and fori=1,...,3,1 <j <4 with Aj; =A5(Q) the coefficient of E;.

Ss leaves G invariant by acting on the indices! of the conical parameters, for if p € S5 we have that

Aab(P(Q)) = Ap(a)pm)(Q).

by choice of labeling. This explains our choice in naming the extreme rays and it allows to write up
G (Acl) in a condensed form, which we chose to resemble the one for the three dimensional case V3:

det(®)
48

Gl (c(Q)) = (det®) 5+ 5355+ 5), (6.10)

I'We assume that the permutation acts on the unordered set of subscripts, these of course uniquely determine the parameter.
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where
L= 2(10)7\01,
L= 2(60)7\01?\027\037\127\14 + 2(60)7\017\027\037\127\34 +2- 2(60)7\017\027\037\14?\24,
3= 2(12)7\017\027\137\247\34,
Ly= 2(30)7\01)\02?\037\047\12,
and finally

(5) (60) (60)
det'®) = Z Ao1Ao2A03A0s + Z Ao1Ao2A03A14 + Z Ao1A02A13A24.

The local quantizer polynomial for Ay:

We continue with the rational closure A,, let D? denote its associated delone triangulation.

Those maximal cells of the triangulation D?, that contain the origin 0, are given by the star of D?
around 0. Following [Val03, 8.4.2] we set

D} = <eje—ej,e;+eseq e3> D% = <ejes e €4, €3>
DIZI = < ej,ep—eq,e]+es3 ey, 65> ng = < eq,e3,€ep, 65, €4 >
D%/ = < ej,ep—eq, e t+es5,e3e4 > D%V = < eq,e5,€e,€e3,64 >
D%, = <ej e —ej,e1+eqe3€5> D%; = <ejes e e365>
D3 = <ej e —ej,e1+eqes5€3> D%, = <ejeq €65 6€35 >
D} = <eje—eje;+eseseq> D}, = <eje3e¢e5¢eq4>

which follows Voronois numeration (cf. p. 169 in [Vor08]). Again we use the snake notation of Ryshkov
(cf. (6.2)), where e5 = —e; — ex — e3 — e4. If D is any of the above simplices we denote its image under
— id by the roman numeral that corresponds to 12 + i where i is the value of the roman numeral of D.
star(0, D?) then consists of the translates of the above numbered 24 simplices by their vertices. This
amounts to a total of 120 elements. Thus

star(0, D*)® = (D3,..., D3},

where we numerate the elements of star(0, D)*) by starting with, say, D? := D?, followed by its
translates D3, ..., D2 and continuing with D2 being D% and so on.

We compute Aut(A;) = Dig to be isomorphic to the dihedral group of order 12. In fact we compute the
matrix group fixing E,, which is isomorphic to Aut(D4) and afterwards the subgroup fixing A,. This
matrix group is isomorphic to the direct product of the dihedral group of order 12 and a cyclic group
of order 2 acting on the extreme rays with the cyclic factor being the kernel of the operation. Aut(A;)
acts on the conical parameters if we write it as subgroup of Ss, to be explicit we use the subgroup
generated by (03),(04), and (12). By abuse of language we will also refer to this group as Aut(A).

Doing this we can derive a “compressed” expression for G ifz), however it is unfortunately still quite
messy:

(c) 5
(c) _ det i
Gx, = 50 (Z 7\a~Zi>, (6.11)
i=0
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where
5 = 104,
Y4 =130-
3= 20-
+130-
+ 160 -
= 15
+ 20-
+ 60-
+110-
+120-
+200-

I, = 10

+ 20

+ 40

+ 60

+ 80-

+

+ 100

Z Aot + Z 7\03)
Z 7\21 + Z A2 )
" hoihes + Z Ao1A1z + Z Ao1Az3 + 2 7\037\04)
Z Ao1Azs + Z 7\017\02)
TN+ 3 WA+ 3 Wi+ 3 A + 0 M)
Z A Aoz + 2 AoaAig + 2(6)?\517\34)
Z Ao1AgzA13 + Z 7\037\047\34>
Z Ao1AosAos + Z Ao1AosA23 + Z Ao1A23As + Z 7\017\137\14)
“hohoahs + Z P Norhoshs + Z P horhoshas + Z “hoihoshas + 2(6)?\01?\027\03>
Z 7\01?\027\34)
7\017\027\03 + Z 7\%17\027\13 + 2(12)7\317\027\23 + 2(12)7\%17\037\14
Z( A3shaahag + Z 7\01?\%37\34 + 2(12)7\%)17\037\34 + 2(12)}\%17\03}\23
2(12)?\517\03)\24 + 2(12)?\(2)17\137\23 + 2(12)7\31?\137\24 + Z(lz)?\é1?\137\34
2(12)7\517\237\34 + 2(12)7\017\%37\04 + 2(12)7\017\%37\14 + 2(12)7\017\%37\24

(6) (6) (6) (6) (6)
Z A51A03Mos + Z A3 MaALs + Z A§iA23M04 + Z Ao1A02AG; + Z 7\017\%37\23)

(
(
(X
(
(X
(
(
(
(X
(
(X

(6) (3)
. (Z 7\51)\027\34 + Z 7\33?\14?\24>

(12) (12) (6)
(Z Ao1Ag3AosA1s + Z Ao1Ao2Ag3A13 + Z A01A03A04A34

(6) (6)
D7 MorAoshsis + )| ?\017\037\137\24>

: ( 2(6) ?\017\037\147\342(3)7\017\027\137\23)

(12) (12) (12)
(Z Ao1Ao2Ao3A1g + Z Ao1Ag3AosA23 + Z Ao1A03A14A23

(6) (6) (6) (3)
D7 MoAAsAi + Y Ao AmAraAas + D AoiAosAasdas + Y | 7\017\02?\037\04)

. (2(12)?\017\02?\13?\34 + 2(6))\01)\02)\03)\34)'

o= 5

(2(12)7\%17\027\037\14 + 2(12)7\%17\027\037\24 + 2(12)7\%17\027\037\34 + 2(12)7\(2)17\027\137\24
2(12)7\517\027\147\23 + 2(12))\%17\02}\23)\34 + 2(12)7\517\037\047\23 + 2(12)7\(2)17\037\147\23
Z(lz)?\%17\037\147\24 + 2(12)7\%1?\037\237\24 + Z(u)?\%l?\oﬂ\zﬁ\% + Z(lz)?\%1?\o37\247\34
2(12)7\(2)17\137\147\23 + 2(12)7\%17\137\237\24 + 2(12)7\%17\137\237\34 + 2(12)7\317\137\247\34
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(12) (12) (12) (12)

+ Z Ao A NG A4 + Z Ao1AZ A 1A + Z A1 NG A0a2s + Z A1 NGz A0aA24
(12) (12) (6) (6)

+ DT T A A MaAs + D0 AaAGA2edas + > AG Ao AesAos + Y AfiAcMaMa
(6) (6) (6)

+ Z A3 A aa 2324 + Z Ao1Aoa A Aze + Z 7\337\047\147\24>

(12) (12) (12) (12)

+ 20- (Z Aoih2AoshosAss + O AaAoAosAisAis + Y AorAoAesAraAa + Y AorAoAasA1aAa
(12) (6) (6) (3)

+ D7 AohssAehshas + Y AaAoAsMadas + ) ArAoshosAzsAas + ) | 7\017\027\037\047\34)
(12) (6) (6) (6)

+ 30- (Z Ao1A02A03A14A34 + Z Ao1A02A03A 1424 + Z Ao1A02A13A14A23 + Z 7\017\037\047\237\24>

+ 40- (2(6)7\01)\027\137\247\34>-

In addition we find for the determinant
det'®) = 2?207\}1 “Lai,
where
Lao = 2(12)7\017\027\037\14 + 2[12)7\017\027\137\34 + 2(12)7\017\037\047\23 + 2(12)7\017\037\147\23
+ 2(6)7\017\027\037\34 + 2(6)7\017\027\137\14 + 2(6)7\017\027\137\24 + 2(6)7\017\037\247\34
+ Z(S]?\017\027\037\04,
Lar=2- (Z(12)7\017\027\13 + 2(12)7\017\037\14 + 2(12)7\017\037\24 + 2(12)7\017\037\34
2(6)7\017\027\03 + 2(6)7\017\037\04 + 2(6)7\017\037\23 + 2(6)7\017\137\24 + Z(Z]?\017\137\14)
4- (Z 7\017\027\34)
3 ( P horhos + D " AorAss + 2(6)7\017\23 + 2(3)7\037\04)
+4- (2 Ao1Azg + Z 7\017\02)
Laz=4- Z Aot + Z 7\03)

Tae = 4.

+ o+

The local quantizer polynomial for As:

We continue with the rational closure As, let D? denote its associated Delone triangulation.

Those maximal cells of the triangulation D3, that contain the origin 0, are given by the star of D3
around 0. Following [Val03, 8.4.2] we set

D} = <ese3—egerteq e —eyer+es> DY, = <esepeq € e5>
D%I = < e4,e)+e3 e —ey e e5> D%/IH = < eyt eyq,e3—ey,€4,€1,€5 >
D?H = < €y,€3,€1,€4,€5 > D%X = < ey+ey,e —eyee3 e; >
D3, = <ej+ese3—eyq ey €5 > D} = < e +esz e —e e ey es >
D%, = < e} —eyer,e4,63 —€4,€)+ €1+ €5 > Dg’q = < e, e3,€ey,€4,€5 >
DY, = <eyel —eyer+eye3e5> D}, = <ejeq €63 65>
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which follows Voronois numeration (cf. p. 173 in [Vor08]). Again we use the snake notation of Ryshkov
(cf. (6.2)), where e5s = —e; — e; — e3 — ey. If D is any of the above simplices we denote its image under
—id by the roman numeral that corresponds to 12 + i where 1 is the value of the roman numeral of D.
D3 then consists of the translates of the above numbered 24 simplices by their vertices. This amounts
to a total of 120 elements. Thus

star(0, D*)® = (D3, ..., D3},

where we numerate the elements of star(0, D%)4) by starting with, say, D} := D}, followed by its
translates D3, ..., D2 and continuing with D? being D5} and so on.

We compute Aut(A3) to be the subgroup of Sy, acting on the set {01,02,03, 04, 13, 14, 23,24, b} of indices
of the extreme rays, that is generated by

o1 = (01,03,23,b,24,04)(02, 14,13),
= (01,23)(02,13)(04, b),
= (01,04, 14)(02,23,03)(13,24, b).

This group has order 36 and is available as entry < 36,10 > in the small group database via GAP or
MAGMA (cf. [BE99]). In fact we compute the matrix group fixing E,, which is isomorphic to Aut(Dy)
and afterwards the subgroup fixing As. Aut(A3) does unfortunately not act naturally on the conical
parameters given the above explicit generators. Let us express our understanding that it is quite un-
fortunate that we did not find a nicer description of this action, as was possible in the cases of A; and
Ay,

Doing this we can derive a “compressed” expression for G (C), however it is unfortunately not as com-
A

pressed as the one for G(Acl), but fortunately nicer than the one for G(Acz)

(c) 5
Gy = d;;(: : (5 ~det®) . g4+ Z AL zi> ) (6.12)
where
det'®) = Z?ZOAL “Lai,
where
T5— 104,
+=130-( "),
Ty = 20-(37) +130- (3 hordes + 3 Aenas) +160 - (3 Aern),
=15 (Z A§1 o3 +Z 8)7\317\23) +20- (2(18)?\517\02) +60 - (2(6)7\017\037\13>
+110- ( " Nothoshos + 2(3)7\017\237\24) +120 - (Z(%)?\m?\oz?\m + 2(18)7\017\027\03)
+200- (Z 7\01>\02)\b)
5 (36) 5 (36) 5 (36) 5
1= 10- ( 7\017\02?\03 + Z 7\01?\027\14 T N MM )0 AjAmsAzs + Y AGAoshas

18 ) o)
+ SN Ao+ S R AgsArg + Y Nhashas) +20- (33 Nihaah )
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40- 2(36)7\017\027\037\13) +60 - (2(9)7\01}\027\13?\23)

(

. (2(18)?\017\027\037\14 + 2(18)?\01?\027\13?\14 + 2(18)?\01?\02?\137\24 + 2(9)7\017\02?\037\04)
0- (2(18)7\017\027\037%),
5. (2(36)7\51}\02)\03)\14 + 2(36)?\%17\02?\03?\24 + 2(36)}\%1?\027\03?\13 + 2(36]7\%17\027\137\24
2(36)7\(2)17\03?\047\23 + 2(36)?\%1)\037\23?\24 + 2(18)}\%1}\02)\037\04 + 2(18])\%1}\02}\13)\14

(18) (18) (18) (18)
Z A1 A02A23A04 + Z Aj1A02A23Ab + Z A1 AosMaAas + Z 7\%17\037\147\24)

(36) (18) (18)

1L 20. (Z Ao AoshosAis + Y Aot Ao AosArsAs + Y | 7\01?\027\037\137‘*3)
(18) (18)

+ 30- (Z Ao1A02A03A 1424 + Z Aot }\02)\13}\14}\23)

9)
+ 40- (Z }\017\02?\03}\04}\b> .

In addition we find for the determinant

where

We have already seen that there is only one local, and therefore global, optimum of the quantizer

4.
det'®) = ZFO?\; “Xai,

(18) (18) (18)
Lao = Z Ao1A02A03A14 + Z Ao1Ao2AgzAp + Z Ao1A02A13A 14

(18) 9)
+ D) AodeAshas+ Y, AoAcAosAes,

+
B~
c
>
2
>
o
N
>
o
~—

6.4.4 Results on local optimality in dimension 4

problem in dimensions 2 and 3.

For dimensions larger than 3 we can take a look on certain well-known lattices and check them for local
optimality for the lattice quantizer problem, by use of the explicit formula for the quantizer constant
given in Corollary 6.3.9. Given a lattice L we compute a coordinate representation (Z™, Q). We can
then compute A(Delz» (Q)) and then all secondary cones of triangulations that refine Delz~ (Q). For
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each secondary cone of a triangulation we then compute the explicit term for G(). In fact, since the
conic parameters are homogeneous it is possible to assume that one of them is equal to 1, without any
loss of generality, leading to a term G(,,. Next we compute the gradient and hessian of the altered
explicit term G(, using the symbolic engine of MAPLE.

We do so for dimension 4.

THEOREM 6.4.3. The lattice Dy =~ D% is a local minimum for the lattice quantizer problem in Dimension 4.

PROOF. For D; we have to consider A, and A3, the lattice corresponds to the extreme ray E, which
both cones share. In A? we assume that GE ¢) comes from A, = 1 and find Dy to be represented by
[0,0,0,0,0,0,0,0,0,1] and VG E o) vanishes at the truncated point. In A3we assume that G f ¢) comes from
Aq = 1 and find Dy to be represented by [0,0,0,0,0,0,0,0,1,0] and VG{ o) vanishes at the truncated
point. The hessian, evaluated at this point, is

3 -1 0 0 0 0 0 0 -1

-1 3 0 0 0 0 0 0 -1

0 0 3 0 0 -1 0 -1 0

pa |0 0 0 3 -1 0 -1 0 0
o o 0o -1 3 0 -1 0 o0
3% 1o 0 210 0 3 0 -1 0
0 0 0 -1 -1 0 3 0 0

0O 0 -1 0 0 -1 0 3 0

-1 -1 0 0 0 0 0 0 3

regardless of the cone. This matrix is positive definite, where the integral part has eigenvalues 1 and 4
of multiplicities 3 and 6 respectively. O

THEOREM 6.4.4. The lattice A} is a local minimum for the lattice quantizer problem in Dimension 4.

PROOF. For A% we only have to consider A;. We assume that G(,) comes from Agy = 1. Al is repre-
sented by [1,1,1,1,1,1,1,1,1,1] and VG {C) vanishes at the truncated point. The hessian, evaluated at
this point, is

111 14 14 14 —-65 —-65 14 14 —65
14 111 14 —-65 14 —-65 14 —-65 14
14 14 111 —-65 —-65 14 —-65 14 14
14 —-65 —-65 111 14 14 14 14 —-65

—-65 14 —-65 14 111 14 14 -65 14

—-65 —-65 14 14 14 111 -65 14 14
14 14 -65 14 14 —-65 111 14 14
14 -—-65 14 14 -65 14 14 111 14

—-65 14 14 —-65 14 14 14 14 111

51/4
150000

This matrix is positive definite, where the integral part has eigenvalues 81 + 3v/678, 81 + 34678, 255,
and 18 of multiplicities 1, 1, 3, and 4 respectively. O

THEOREM 6.4.5. The lattice A4 is not a local minimum of the lattice quantizer problem in Dimension 4, it is,
however, a saddle point.
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6. DV-CELLS AND NORMALISED SECOND MOMENTS

PROOF. For A4 we only have to consider A;. We assume that ch) comes from Ag; = 1. Ay is repre-
sented by [1,0,0,1,1,0,0,1,0,1] and VG E o) vanishes at the truncated point. The hessian, evaluated at
this point, is

-3 3 -2 3 2 2
-3 -3 3 -2 -3 2 -2 2 3
3

sa |3 -2 -3 12 3 -2 -3 -2 -3

6000 2 2 3 -2 -3 -3 -2 -3 =2
-2 -2 -3 -3 3 -2 12 3 -3
-3 2 -2 -2 2 -3 3 -3 3
-2 3 -3 3 -2 -2 -3 3 12
This matrix is regular, but indefinite. O
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APPENDIX

A

Table of quantizer constants

We present an overview of some explicit values of the quantizer constant for low dimensions. The
table contains the currently known best monohedral periodic quantizers in dimensions 1 to 10 as well
as those in dimensions 12 and 16, which are lattices with the exception of dimension 7 and 9.

The explicit values for A5 =~ D% appears on p.378 in [Ger79]. Explicit formulae for the quantizer
constant of the root lattice families A,,, A¥ (for n > 1) and Dy, D¥ (for n > 3) as well as the explicit
values for the exceptional lattices E4, E7, Es can be found in Chapter 21 of [CS98], cf. [CS82]. The
approximate value of BWy; is from 2.3, Chapter 2 in [CS98], cf. [CS84]. The exact formulae for Ez, EZ
can be found in [Wor87], [Wor88]. The approximate values for D;, D4 are from Table IV [AE98]. The
explicit values for Dy, and Kj, are from Table 5 in [DSSV09]..

Dimension || Quantizer | Normalized second moment | source
1 Z L ~0.83333 [CS98]
2 Atx=A 23712~ 0.080188 [CS98]
3| Af=D? & - 271/% ~ 0.078543 [CS98]

Az =~ Ds 2-11/3 ~ 0.078745 [CS98]

4| Di¥=D, = 2712 ~ 0.076603 [CS98]
A# 289 .573/4 ~ 0.077559 [CS98]

Ay & -571/% ~ 0.078020 [CS98]

5 D 2041 . 273/5 5 0.075625 [CS98]
Ds &.272/5 % 0.075786 [CS98]

Al 28 . 674/5 ~ 0.076922 [CS98]

As 56715~ 0.077647 [CS98]
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A. TABLE OF QUANTIZER CONSTANTS
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Dimension Quantizer | Normalized second moment source
6 Ef a2l - 31/6 ~ 0.074244 [Wor87]

Eo = - 371/60.074347 [CS98]

7 D, 0.072734 + 0.000003 [AE98]
Ef 261 . 21/70.073116 [Wor88]

E; 3o5 . 2717 ~ 0.073231 [CS98]

8 Ef =~ Eg s ~ 0.071682 [CS98]
9 Dy 0.071103 + 0.000003 [AE98]
10 D, L ~ 0.070813 [DSSV09]
12 K12 S - 371/2 % 0.070095 | [DSSV09]

16 || A1 = BWiyg 0.068299 + 0.000027 [CS98]




APPENDIX

Documentation of computations

B.1 METHOD OF COMPUTATION

To find the explicit expression for the quantizer constant, as proposed by Corollary 6.3.9, in the cases
depicted in 6.4, we used the following approach involving the computer algebra systems MAGMA
[BCP97] and MAPLE [Map].

Let A(D) be the secondary cone of the Delone subdivision D for which we are interested in an explicit
formula.

i. Choose a labeling I for the full dimensional Delone polytopes in star(D, 0).
ii. Choose Qg € A and compute the vertices of its Dirichlet-Voronoi cell in order of the labeling 1.

iii. In MAGMA: The intrinsic command Polytope computes the Dirichlet-Voronoi cell of Qg in
terms of the labeling I, the intrinsic command Faces computes the full face lattice FL.

iv. In MAPLE: Convert FL into suitable input FaceLatt for the command face_to_polytope
(cf. B.2).

v. In MAPLE: For all elements F of FaceLatt compute the pulling triangulation (in the inher-
ent vertex order of the labeling) of face_to_polytope (FacelLatt,F), using the command
pulling_triangulation (cf. B.2).

vi. In MAPLE: The command quantizerformula (cf. B.2) computes the sought after expression.

We quickly explain what a suitable input for the command pulling_triangulation looks like.
An n-polytope P, which we know in terms of its face lattice JF, is converted in the following way:
for 0 < k < n, a k-face of P, given in terms of the labels of the vertices as [ii, ..., 1], is converted
to [k, {i1,...,1k}], that is, for each face of P we store its dimension and its vertices. This produces a
representation J.

The command face_to_polytope will take F and an element F € J as input and compute an anal-
ogously representation of F, given in terms of its faces [k, {i;,,...,1;,, }].
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B. DOCUMENTATION OF COMPUTATIONS

B.2 OVERVIEW OF ROUTINES

centroid(S, Q)

Returns the centroid of the simplex with vertices in the list S with respect to the quadratic
form given by a matrix Q.

q _centroid (S, Q)

Returns Q times the centroid of the simplex with vertices in the list S with respect to the
quadratic form given by a matrix Q.

simplexvolume (S)

Returns the volume of the simplex with vertices in the list S with respect to the standard
inner product.

adj_norm(v,G)

Returns the squared norm of a vector v (can also be the list of coefficients) with respect to
the adjoint of the matrix G.

simplexsummand (S, Q,S_0)

Returns the quantizer summand (cf. Corollary 6.3.4) belonging to the simplex with ver-
tices in the list S cat [0]. S_0 has to be a list of vertices of an explicit realization of S in the
same order as S, it is used to determine the sign of the orientation (cf. 6.3.6).

quantizerformula (Del, VorTriangulation, Q)

S - list; VorTriangulation - list; Q - matrix; Returns the quotient for the quantizer con-
stant. The input has to be: Del - a list of the full dimensional Delone polytopes containing
0; VorTriangulation - a list containing an abstract triangulation of the Dirichlet-Voronoi
cell; Q - a matrix representing an element of the interior of the associated secondary cone.

pyramid (P, v)

‘ Returns the pyramid of v (given as a list) over P.

vertices (P)

‘ Returns all vertices of P.

face_to_polytope (P.F)
‘ Returns the face F of P as a polytope.

104



B.3. WORKSHEETS

pull (L, v)

‘ Returns the pulling refinement of L by pulling v (cf. 4.1).

pulling triangulation (P)

Returns the pulling triangulation of P corresponding to the vertex order in which P is
given (cf. Lemma 4.2.1).

SJT alg(n)

Returns the symmetric group on n symbols in the order produced by the Steinhaus-
Johnson-Trotter algorithm.
use_sym binary(sigma, M)

‘ Returns the result of the operation of sigma on the binary symbols in M.

use_sym_unary (sigma, M)

‘ Returns the result of the operation of sigma on the unary symbols in M.

sym_orbit_sum_red_binary (M, Sym)

Returns the polynomial in | that is the sum of the monomials indexed by sigma(M) for
sigma in Sym, M a list of binary indices. Multiplicities are removed.

sym_orbit_sum_red_unary (M, Sym)

Returns the polynomial in | that is the sum of the monomials indexed by sigma(M) for
sigma in Sym, M a list of unary indices. Multiplicities are removed.

expand_snake (S)

Returns a list of the vertices of the Simplex described by vertices in the list S, which is
interpreted to be in snake notation (cf. 6.2).

B.3 WORKSHEETS

The routines presented in B.2 are available online at

https://marcchristianzimmermann.wordpress.com/

The computations for dimension 4 (cf. 6.4.3, 6.4.4) are also available at the above address: for each
of the three Delone triangulations we provide a text file containing a MAPLE script intended to be a
check and documentation of the involved computations.
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Index

L-fundamental domain, 53 fundamental parallelotope, 52
b-primitive, 4
genus, 8
anisotropic Gram matrix, 4
element, 5 lattice, 7
module, 5
associated bilinear form, 2 Hasse-symbol, 6
automorphism group Hilbert-symbol, 6
of a lattice, 7 hyperbolic
of a periodic set, 53 module, 5
plane, 5
basis matrix hyperbolic pair, 5
lattice, 52
bilinear module, 2 isometric
bilinear modules, 3
complex quadratic modules, 3
boundary, 56 isometry
polytopal, 56 of a bilinear module, 3
conic parameters, 84 of a lattice, 7
of a quadratic module, 3
Delone set, 59 isometry group
isohedral, 60 of a bilinear module, 4
monohedral, 60 of a lattice, 7
symmetric, 59 of a quadratic module, 3
determinant isotropic
of a bilinear module, 4 element, 5
of a quadratic module, 4 module, 5
determinant-index formula, 7
Dirichlet-Voronoi cell lattice, 6
of a discrete set, 60 basis, 6
Dirichlet-Voronoi subdivision, 60 coordinate representation, 54
dual dual, 7
module, 4 basis, 8

107



INDEX

partial, 8

Euclidean, 53

Gram matrix, 6

isometry class, 7

maximal, 7

on, 6

real space, 52

standard, 52

sublattice, 6

unigeneric, 8

unimodular, 8

volume, 53
localization

of Q,5

of a lattice, 8

of a rationals space, 8

of a ring of integers, 5

orthogonal group

of a lattice, 7

of a periodic set, 53
orthogonal sum

internal, 4
orthogonality

of elements, 4

periodic form, 55

periodic set, 52
t-representable, 55
coordinate representation, 55
isohedral, see Delone set
monohedral, see Delone set
standard, 53
translation lattice, 52
volume, 62

polytope
face lattice, 56

primitive, 4

pulling refinement, 56

quadratic form, 2

quadratic module, 2

quadratic space, see quadratic module
quantizer constant, 66

regular
bilinear form, 4
quadratic form, 5

scaling, 7

108

second moment, 65
snake notation, 85
star, 56
subdivision
polytopal, 56
trivial, 56

tiling, 59
isohedral, 59
monohedral, 59
totally isotropic module, 5
triangulation, 56
pulling, 57
pyramidal, 56

vector quantizer, 66
lattice, 68
periodic

monohedral, 68
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