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Abstract: We revisit the MIT Benchmark 2001 and introduce a viscoelastic constitutive law into the fluid in motion. Our 
goal is to study the effect of viscoelasticity into the periodical behavior of the physical quantities of the corresponding 
benchmark. We use a robust numerical technique in simulating complex fluid flow problems based on higher order Finite 
Element discretization. While marching in time, an A-stable method of second order is favorable, i.e Crank-Nicolson 
scheme, to reproduce periodical behaviors. We use a differential form of viscoelastic model, i.e Oldroyd-B type and find out 
that a small amount of viscoelasticity reduces the oscillatory behavior. 
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1. INTRODUCTION 

 
The MIT Benchmark 2001 [1] describes a 

heat driven cavity flow in a stretched rectangular 
domain (1:8). This very simple setup leads to a 
challenging numerical method near a critical 
Rayleigh number (Ra), and introduces already a 
complex multi-scale phenomena. Thus, the study of 
transport of temperature in this simple geometry is 
very important from both numerical and experimental 
view point. The flow model for the MIT Benchmark 
can be described as the following:  
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with numerical variables are velocity, pressure, 
temperature (࢛, ,݌ ߠ ) and material parameters are 
thermal expansion and viscosity (ߛ,  The values for .(ߟ
material parameters can be seen in [1]. The viscosity 
is expressed in terms of Prandtl number and Rayleigh 

number (ߟ ൌ ට௉௥

ோ௔
). In the above equation (1), the 

coupling with the temperature is given by Boussinesq 
approximation using the gravity vector (࢐), in which 
its direction is visible in Fig. 1. Furthermore, the 
stress tensors are represented by the symmetric part 
of gradient velocity, ࡰ ൌ 1/2ሺ࢛׏ ൅ ሻ்࢛׏ , and the 
gradient of hydrostatic pressure.  
 In the previous study [2] we have shown that 
our chosen methodology to tackle equation (1) is 
highly competitive w.r.t. the benchmark work in [1]. 
This means that all the quantitative data at points of 
interest (1 and 2 at the corner of the domain) as well 
as the computed Nusselt number on the side wall 
have less than 0.02% differences from the references. 
Thus, we would like to research further in the 
direction of slightly different material law than the 
above quasi Newtonian fluid, which is viscoelastic 

fluid. On this study, we would like to see 
qualitatively the effect of inserting viscoelasticity and 
would be done only with one grid.  
 

 

 
Fig.1. Geometry and set up 

 
 

2. INSERTING VISCOELASTICITY  
 

We introduce a differential form of viscoelastic 
material law into equation (1) using an Oldroyd-B 
fluid [3]. The emerging equation can be written as 
follows: 
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(2) 
Different than equation (1), one notices an extra 
viscoelastic stress equation with a new material 
parameter which is called relaxation time, Λ . The 
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numerical treatment of viscoelastic fluid governed by 
the above material law is studied by many authors. 
Please see in [4] and all the citations therein for 
further details. Furthermore, one notices that an 
additional viscoelastic stress tensor, ࣎, appears on the 
right hand side, and that the viscosity is now split into 
two parts, ߟ ൌ ௦ߟ ൅  ௣, which are the viscous and theߟ
viscoelastic part. In this study, we choose a 
“moderate” number of relaxation time, Λ ൌ 0.1 , to 
avoid unnecessary numerical effects related to 
viscoelastic problem, and use a fraction of viscous 
part, ߚ ൌ  to give a control on how viscoelastic ,ߟ/௦ߟ
contribution into the total viscosity may change the 
flow behavior. So, if we set a value to ߚ ൌ 1, this 
corresponds to a full viscous contribution (no 
viscoelasticity), which would lead to an uncoupling 
of the additional viscoelastic contribution on the right 
hand side of the momentum equation. Thus, one 
would expect the same numerical results as the one 
from solving equation (1). If we set a value to ߚ ൏ 1, 
the viscoelastic effect contributes into the total 
viscosity, which would be reflected by a different 
temperature behavior than the one from solving 
equation (1). 
 

3. NUMERICAL METHOD 
 

The above nonlinear equation (2) is solved using fully 
coupled strategy, which means that all numerical 
variables (࢛, ,݌ ࣎, ߠ ) are iterated simultaneously in 
each time step and in each nonlinear step. A standard 
ODE-solver of second order is used, i.e. Crank-
Nicolson, for the transient behavior. Inside one time 
step, Newton iteration is used for solving the 
nonlinear discrete problem resulting from standard 
Galerkin Finite Element discretization. Inside one 
Newton iteration a Jacobi matrix is built by using 
divided difference approach which uses a machine 
precision epsilon value. An exemplary form of 
different Jacobi structures can be found in the 
previous work of [6], which generally mimics the 
saddle-point problem, 
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where ܣ is a linearized operator of velocity-stress- 
temperature, ܤ is divergence operator, ࣬  is the 
residuals, and ෥࢛ ൌ ሺ࢛, ࣎, .ሻߠ  A conforming second 
order finite element (with 9 degrees of freedom (dof)) 
is used for the discretization of (࢛, ࣎, ߠ ), while a 
discontinuous linear function is chosen for the 
pressure. This combination is well-known to satisfy 
LBB-condition (after Ladyzhenskaya, Babuska and 
Brezzi) of the mixed problem for velocity-pressure 
approximation, see for example [5]. This condition is 
sometimes also called “Babuska-Brezzi” or “Inf-sup”.  

The grid to produce the initial data is taken by 
doing two times regular refinement from the coarse 
grid shown in Fig. 1. This corresponds to 1408 
elements or approximately 40000 dofs. More 

additional grid refinement would be done in the next 
study. The boundary condition for the two velocity 
components is non-slip everywhere, for the 
temperature is “do-nothing” at top and bottom and a 
prescribed temperature at sides wall (“hot” is set to 
0.5 and “cold” is assigned to -0.5). The boundary 
condition for the viscoelastic stress is “do-nothing” 
everywhere.  
 
 

4. RESULTS AND DISCUSSION 
 
We use the same initial solution, at time ݐ ൌ

0,  for all nonsteady simulations of different ߚ values, 
which is a steady data solution close to a near critical 
Rayleigh number. The following Fig. 2 is the solution 
of temperature oscillation at point 1 by setting full 
viscous contribution, ߚ ൌ 1. As expected, this result 
recovers the MIT Benchmark 2001 initial data, which 
reflects the onset of transient behavior at critical 
Rayleigh number. Please notice that the steady 
oscillation starts to appear approximately at time ݐ ൐
2000. 

 

 
Fig.2. Temperature oscillation at ࢼ ൌ ૚. 

 
In the following, we show that a small 

portion of viscoelasticity into the fluid material 
reduces the amplitude of the corresponding steady 
oscillation for ߚ ൌ 0.75, 0.6, 0.5.  
We first introduce viscoelasticity by setting ߚ ൌ
0.75, see Fig. 3. We obtain in a similar manner as in 
the case of ߚ ൌ 1 a steady temperature oscillation at 
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time ݐ ൐ 2000with slightly smaller amplitude than 
the one from the previous case. At the beginning of 
time iteration one sees a clear different behavior 
between the two cases, where multiple temperature 
oscillations appear in a more chaotic way before it is 
damped later on in the long time computation.  
 

 
Fig.3. Temperature oscillation at ࢼ ൌ ૙. ૠ૞. 
 
We set now ߚ ൌ 0.65 and obtain more reduction of 
the steady amplitude, see Fig. 4. In the same manner 
as in the previous case, the chaotic oscillation in the 
beginning of iteration quickly stabilizes in 
approximately the first 500 time steps, and finally in 
the long time computation, ݐ ൐ 3000 , the solution 
reaches a steady periodical oscillation. 
 In the case ߚ ൌ 0.5 one sees a more present 
damping of the periodical oscillation than the 
previous cases, see Fig. 5. The same as before, in the 
first 200 iterations one sees a chaotic multiple 
oscillations, which are damped in the long time 
computation to a steady state solution, i.e. the steady 
periodical behavior of the temperature is completely 
damped away. The obtained steady data at time ݐ ൌ
6000 are as follows: Temperature ߠଵ=0.2654041 and 
Nusselt number ܰ4.668066=ݑ. 
 The last case provides us information that 
steady solution data exists starting from a certain 
value of viscoelastic contribution. And indeed, one 
can provide this data by using direct steady approach 
to equation (2), i.e. by canceling time dependency, 
డ෥࢛

డ௧
ൌ 0. Table 1 provides these data using the same 

initial solution used for the above unsteady 
simulation with only a few nonlinear iterations. 
  

 
Fig.4. Temperature oscillation at ࢼ ൌ ૙. ૟૞. 
 

 
Fig.5. Temperature oscillation at ࢼ ൌ ૙. ૞. 
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Table 1 Direct steady approach for ࢼ ൑ ૙. ૞ 

 Nonlinear ߚ
steps 

 ݑܰ ଵߠ

0.5 4 0.2654041 4.668066 
0.4 4 0.2654271 4.668867 
0.3 5 0.2654530 4.669650 
0.2 5 0.2654823 4.670387 
0.1 6 0.2655137 4.671005 
0 5 0.2655297 4.670980 
 

  
CONCLUSIONS 
 

The MIT Benchmark 2001 is revisited. Natural 
convection flow clearly behaves differently when a 
small portion of viscoelastic properties is introduced. 
Four points can be observed which are: 1). At the 
beginning of unsteady iteration the oscillations form 
in a more chaotic way when viscoelasticity is 
introduced, 2). After a longer time computation, the 
amplitude of stable periodical oscillation reduces as 
viscoelastic contribution increases, 3). The time steps 
needed for the solution to reach steady oscillation 
increases with increasing viscoelasticity, i.e. 
decreasing ߚ , 4). There exists a steady solution to 
equation (2) for a certain amount of viscoelastic 
contribution, which appears in this work to be ߚ ൑
0.5.    

 
 
ACKNOWLEDGMENTS  
 

We would like to thank the LiDOng cluster 
team for their support with the computing machines, 
and AIF/IGF-project 18485N is gratefully 
acknowledged.  
 
REFERENCES 
 
1. M.A. Christon, P.M. Gresho, S.B. Sutton, “Computational 

predictability of natural convection flows in enclosures”, 
International Journal for Numerical Methods in Fluids, vol. 40, 
pp. 953–980, 2002. 

2. Damanik, H, Hron, J, Ouazzi, A, Turek, S., “A monolithic 
FEM–multigrid solver for non-isothermal incompressible flow 
on general meshes”, Journal of Computational Physics, vol. 
228, pp. 3869–3881, 2009. 

3. J.G. Oldroyd, “On the formulation of rheological equations of 
state”, Proc. R. Soc.Lond., Ser. A 200, pp. 523–541, 1950.  

4. Damanik, H, Hron, J, Ouazzi, A, Turek, S., “A monolithic 
FEM approach for the log-conformation reformulation (lcr) of 
viscoelastic flow problems”, Journal of Non-Newtonian Fluid 
Mechanics, vol. 165, pp.1105–1113, 2010. 

5. Girault, V. and Raviart, P. A., “Finite Element Methods for 
Navier-Stokes equations”, Springer, Berlin-Heidelberg, 1986. 

6. Damanik, H, Hron, J, Ouazzi, A, Turek, “Monolithic Newton-
multigrid solution techniques for incompressible nonlinear 
flow models”, International Journal for Numerical Methods in 
Fluids, vol 71(2), pp. 208-222, 2013. 

 

 
 
 
 


	EB 577
	Ergebnisbericht Nr. 577

