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1 Abstract

An analysis is performed to study the two-phase natural convection flow of nanofluid along a
vertical wavy surface. The model includes equations expressing conservation of total mass,
momentum and thermal energy for two-phase nanofluid. Primitive variable formulations
(PVF) are used to transform the dimensionless boundary layer equations into a convenient
coordinate system and the resulting equations are integrated numerically via implicit fi-
nite difference iterative scheme. The effect of controlling parameters on the dimensionless
quantities such as skin friction coefficient, rate of heat transfer and rate of mass transfer is
explored. It is concluded from the present analysis, that the diffusivity ratio parameter, NA

and particle-density increment number, NB have pronounced influence on the reduction of
heat transfer rate.
Keywords: Natural convection, Nanofluid, Two-phase, Dusty fluid, Wavy surface.

2 Introduction

The analysis of nanofluids have received a notable attention because of their tremendous
spectrum of applications including sterilization of medical suspensions, nanomaterial pro-
cessing, automotive coolants, microbial fuel cell technology, polymer coating, intelligent
building design, microfluid delivery devices and aerospace tribology. The term nanofluid,
first coined by Choi [1], refers to a liquid containing a dispersion of submicron solid particles
(nanoparticles) having higher thermal conductivity in a base fluid. It is noteworthy that
these nanoparticles are taken ultrarefine (i.e., length of order 1-50nm), so that nanoflu-
ids appear to behave more like a single-phase fluid than a solid-liquid suspension. The
nanoparticles used in nanofluids are usually made of chemically stable metals, oxides, car-
bides, nitrides, or non-metals, and the base fluid is generally a conductive fluid, such as
water, ethylene glycol (or other coolants), oil (and other lubricants), polymer solutions,
bio-fluids and other common fluids. Because of the enhanced heat transfer characteristics
and useful applications, numerous investigations have been made on nanofluids under var-
ious physical circumstances. In this context, book by Das et al. [2] and review papers in
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[3]-[8] presents comprehensive discussion of published work on convective heat transfer in
nanofluids.

The investigations on flow of fluids with suspended particles have attracted the
attention of numerous researchers due to their practical applications in various problem of
atmospheric, engineering and physiological fields [9]. Farbar and Morley [10] were the first
to analyze the gas-particulate suspension on experimental grounds. After that, Marble [12]
studied the problem of dynamics of a gas containing small solid particles and developed the
equations for gas-particle flow systems. Singleton [13] was the first to study the boundary
layer analysis for dusty fluid and later on, the dynamics of two-phase flow was investigated
by numerous authors under different physical circumstances [14]-[20].

It is noteworthy to mention here that irregular surfaces, say, vertical or horizontal
wavy surfaces have been considered vastly in the literature [21]-[27]. Through these anal-
ysis, it has been reported that such surfaces serves practically in engineering applications
(for instance in solar collectors, grain storage containers, industrial heat exchangers and
condensers in refrigerators). Although the single-phase flow of nanofluids over flat and/or
wavy geometries have been considered extensively in the literature, no work has been re-
ported on the problem of effect of solid inert (dust) particles on heat and mass transfer of
two-phase nanofluid flows along irregular surfaces. The goal of this work is to develop nu-
merical computational techniques which can be applied to two-phase dusty nanofluid flows
along vertical wavy surface. The mathematical model considered in present problem is a
dusty fluid model proposed by Saffman [11], which handles the discrete phase (particles)
and the continuous phase (fluid) as two continua occupying the same space. In our work,
the nanoparticles are assumed to move due to such phenomena as Brownian motion and
thermophoresis and are carried by the flow of the base fluid. Furthermore, water is taken
as continuous base fluid that contains dust particles in it. Our purpose is to investigate
the combined effect of surface roughness element and dust particles on the flow and heat
transfer phenomena for the class of nanofluids. The Navier-Stokes and energy equations
are coupled with nanoparticle volume fraction, dusty phase and amplitude of surface wavi-
ness to describe the phenomenon systematically. Taking Grashof number GrL to be very
large, the boundary layer approximation is invoked leading to a set of non-similar parabolic
partial differential equations whose solution is obtained through implicit finite difference
method. From the present analysis, we will interrogate whether the presence of dust par-
ticles in nanofluids affects the physical characteristics associated with the wavy surfaces or
not? The computational data is presented graphically in the form of wall shear stress, heat
transfer rate and mass transfer rate by varying several controlling parameters. In addition,
streamlines, isotherms, velocity and temperature profiles are plotted to observe the flow
pattern within the boundary layer.

3 Flow Analysis

A two-dimensional natural convection flow of two-phase dusty nanofluid is modeled along
a heated vertical wavy surface. The boundary layer analysis outlined below allows the
shape of the wavy surface, ȳw = σ̄ (x̄), to be arbitrary, but our detailed numerical work
will assume that the surface exhibits sinusoidal deformations. Therefore, the shape of wavy
surface profile is assumed to pursue the following pattern:

ȳw = σ̄ (x̄) = ā sin

(
2πx̄

L

)
(1)
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where ā is the amplitude of the transverse surface wave and L is the characteristic length
associated with the wave. Overbars denotes the dimensional quantities. The surface of
vertical wavy plate is maintained at a constant temperature Tw, which is higher than the
ambient fluid temperature, T∞. The assumption of two-phase flow has been extensively
analyzed in the past (for details see Refs. [11], [19]), and the equations describing the com-
plete description of the convective flow along vertical surface can be written in dimensional
form as:
For fluid phase:

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0 (2)

ρf

(
ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ

)
= −∂p̄

∂x̄
+µf∇2ū+ρfgβ(T−T∞)(1−φ∞)−g(ρnp−ρf )(φ−φ∞)+

ρp
τm

(ūp−ū)

(3)

ρf

(
ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ

)
= −∂p̄

∂ȳ
+ µf∇2v̄ +

ρp
τm

(v̄p − v̄) (4)

ρfcf

(
ū
∂T

∂x̄
+ v̄

∂T

∂ȳ

)
= κf∇2T + (ρc)np

(
DB∇φ.∇T +

DT

T∞
∇T.∇T

)
+
ρpcs
τT

(Tp − T )

+
ρp
τm
{(ūp − ū)2 + (v̄p − v̄)2}

(5)

ū
∂φ

∂x̄
+ v̄

∂φ

∂ȳ
= DB∇2φ+

DT

T∞
∇2T (6)

For particle phase:
∂ūp
∂x̄

+
∂v̄p
∂ȳ

= 0 (7)

ρp

(
ūp
∂ūp
∂x̄

+ v̄p
∂ūp
∂ȳ

)
= −∂p̄p

∂x̄
− ρp
τm

(ūp − ū) (8)

ρp

(
ūp
∂v̄p
∂x̄

+ v̄p
∂v̄p
∂ȳ

)
= −∂p̄p

∂ȳ
− ρp
τm

(v̄p − v̄) (9)

ρpcs

(
ūp
∂Tp
∂x̄

+ v̄p
∂Tp
∂ȳ

)
= −ρpcs

τT
(Tp − T ) (10)

where (ū, v̄), T , φ, p̄, ρf , cf , β κf , µf are respectively the velocity vector in the (x̄, ȳ)
direction, temperature, concentration of nanoparticles, pressure, density, specific heat at
constant pressure, volumetric expansion coefficient, thermal conductivity and dynamic vis-
cosity of the suspension of nanofluid. Similarly, (ūp, v̄p), Tp, p̄p, ρp and cs corresponds to the
velocity vector, temperature, pressure, density and specific heat for the particle phase. In
addition, g the gravitational acceleration, τm (τT ) the momentum relaxation time (thermal
relaxation time) for dust particles, φw the nanoparticle volume fraction near the surface,
φ∞ the nanoparticle volume fraction at outer edge of boundary layer region, ρnp the den-
sity of the nanoparticles, DB the Brownian diffusion coefficient and DT the thermophoretic
diffusion coefficient.
The fundamental equations stated above are to be solved under appropriate boundary con-
ditions to determine the flow fields of the fluid and the dust particles. Therefore, the
boundary conditions for the problem under considerations are:
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For fluid phase:

ū(x̄, ȳw) = v̄(x̄, ȳw) = T (x̄, ȳw)− Tw = φ(x̄, ȳw)− φw = 0
ū(x̄,∞) = T (x̄,∞)− T∞ = φ(x̄,∞)− φw = 0

(11)

For particle phase:

ūp(x̄, ȳw) = v̄p(x̄, ȳw) = Tp(x̄, ȳw)− Tw = 0
ūp(x̄,∞) = Tp(x̄,∞)− T∞ = 0

(12)

In order to transform all the above-mentioned quantities in Eqs. (2)-(12) in uniform order
of magnitude, the following continuous dimensionless variables have been employed:

x =
x̄

L
, y =

ȳ − σ̄(x̄)

L
Gr

1/4
L , (ū, ūp) =

νfGr
1/2
L

L
(u, up), (v̄, v̄p)− σx(ū, ūp) =

νfGr
1/4
L

L
(v, vp),

a =
ā

L
, (p̄, p̄p) =

GrLρfν
2
f

L2
(p, pp), (θ, θp) =

(T, Tp)− T∞
Tw − T∞

, C =
φ− φ∞
φw − φ∞

, σ =
σ̄

L
,

σx =
dσ̄

dx̄
=
dσ

dx
, GrL =

gβ(1− φ∞)(Tw − T∞)L3

ν2f
, Nr =

(ρnp − ρf )(φw − φ∞)

ρfβ(1− φ∞)(Tw − T∞)
, τ =

(ρc)np
(ρc)f

Pr =
νf
α
, NA =

DT (Tw − T∞)

DBT∞(φw − φ∞)
, NB = τ(φw − φ∞), Ln =

νf
DB

, Ec =
ν2fGrL

L2(Tw − T∞)cp
(13)

By incorporating Eq. (13), the dimensional continuity, momentum and temperature equa-
tions for both phases will be transformed in underlying form.
For the fluid phase:

∂u

∂x
+
∂v

∂y
= 0 (14)

u
∂u

∂x
+ v

∂u

∂y
= −

(
∂p

∂x
− σxGr1/4L

∂p

∂y

)
+
(
1 + σ2x

) ∂2u
∂y2

+ θ −NrC +Dραd(up − u) (15)

σx

(
u
∂u

∂x
+ v

∂u

∂y

)
+ u2σxx = −Gr1/4L

∂p

∂y
+ σx

(
1 + σ2x

) ∂2u
∂y2

+Dραdσx(up − u) (16)

u
∂θ

∂x
+ v

∂θ

∂y
=
(
1 + σ2x

) [ 1

Pr

∂2θ

∂y2
+
NB

Ln

(
∂C

∂y

)(
∂θ

∂y

)
+
NANB

Ln

(
∂θ

∂y

)2
]

+
2

3Pr
Dραd(θp − θ)

+DραdEc
(
1 + σ2x

)
(up − u)2

(17)

u
∂C

∂x
+ v

∂C

∂y
=

(
1 + σ2x

)
Ln

(
∂2C

∂y2
+NA

∂2θ

∂y2

)
(18)

For particle phase:
∂up
∂x

+
∂vp
∂y

= 0 (19)

up
∂up
∂x

+ vp
∂up
∂y

= −∂pp
∂x

+ σxGr
1/4∂pp

∂y
− αd(up − u) (20)
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σx

(
up
∂up
∂x

+ vp
∂up
∂y

)
+ u2pσxx = −Gr1/4∂pp

∂y
− αdσx(up − u) (21)

up
∂θp
∂x

+ vp
∂θp
∂y

= − 2

3γPr
αd(θp − θ) (22)

In the above system of equations, (u, v) are (x, y) components of the velocity field, p the
pressure, θ the dimensionless temperature and C the nanoparticle concentration in bound-
ary layer region. In the above expressions, GrL, Pr, Ec, Nr and Ln are respectively the
Grashof number, Prandtl number, Eckrect number, buoyancy ratio parameter and nanopar-
ticle Lewis number. Furthermore, modified diffusivity ratio and particle-density increment
are respectively denoted by NA and NB and τ the ratio of heat capacity of nanofluid to
the heat capacity of the base fluid. The dimensionless mathematical expressions for the
interaction of two-phases are gives as:

γ =
cs
cf
, τT =

3

2
γτmPr, Dρ =

ρp
ρf
, αd =

L2

τmνfGr
1/2
L

(23)

where, γ, Dρ, αd are respectively symbolizing the specific heat ratio of the mixture, mass
concentration of particle phase and the dust parameter. It is important to mention here
that for different mixtures, the interaction term γ may vary between 0.1 and 10.0 [9]. It can
also be observed that for αd = 0.0, the flow is purely governed by the natural convection
in the absence of the dusty particles (i.e., carrier phase only). It should be noted that

Eqs. (15) and (20) indicates the pressure gradient along y direction is of O(Gr
−1/4
L ) ,

which implies that the lower order of pressure gradient along x direction can be determined
from the inviscid flow solution. However, this pressure gradient is zero, since there is no
externally induced free stream. It can be further noted from Eqs. (15) and (20) that the

terms Gr
1/4
L ∂p/∂y and Gr

1/4
L ∂pp/∂y are of O(1) and can be determined by the left-hand

side of these equations. By solving the Eqs. (15)-(16) and (20)-(21) simultaneously, the
resulting equations for carrier as well as particle phase can be in the following form:

u
∂u

∂x
+ v

∂u

∂y
+

σxσxx
(1 + σ2x)

u2 =
(
1 + σ2x

) ∂2u
∂y2

+
(θ −NrC)

(1 + σ2x)
+Dραd(up − u) (24)

up
∂up
∂x

+ vp
∂up
∂y

+
σxσxx

(1 + σ2x)
u2p = −αd(up − u) (25)

The dimensionless form of boundary conditions is:
For fluid phase:

u(x, 0) = v(x, 0) = θ(x, 0)− 1 = C(x, 0)− 1 = 0
u(x,∞) = θ(x,∞) = C(x,∞) = 0

(26)

For particle phase:

up(x, 0) = vp(x, 0) = θp(x, 0)− 1 = 0
up(x,∞) = θp(x,∞) = 0

(27)

For numerical treatment of our problem, we have to employ the implicit finite difference
together with Thomas Algorithm. For this, first we will introduce the following transfor-
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mations to reduce the system of boundary layer equations into some convenient form:

x = X, y = Y x
1
4 , (u, up) = x

1
2 (U,Up), (v, vp) = x

−1
4 (V, Vp), (θ, θp) = (Θ,Θp), C = C

(28)
By incorporating the transformation defined in Eq. (28), the above system of dimensionless
boundary layer equations can be further mapped into the non-conserved form as follows:
For fluid phase:

1

2
U +X

∂U

∂X
− Y

4

∂U

∂Y
+
∂V

∂Y
= 0 (29)(

1

2
+
XσXσXX(

1 + σ2X
) )U2 +XU

∂U

∂X
+

(
V − Y U

4

)
∂U

∂Y
=
(
1 + σ2X

) ∂2U
∂Y 2

+
(Θ−NrC)(

1 + σ2X
)

+DραdX
1/2(Up − U)

(30)

XU
∂Θ

∂X
+

(
V − Y U

4

)
∂Θ

∂Y
= (1 + σ2X)

[
1

Pr

∂2Θ

∂Y 2
+
NB

Ln

(
∂C

∂Y

)(
∂Θ

∂Y

)
+
NANB

Ln

(
∂Θ

∂Y

)2
]

+Dραd

(
(1 + σ2X)EcX3/2(Up − U)2 +

2

3Pr
X1/2(Θp −Θ)

)
(31)

XU
∂C

∂X
+

(
V − Y U

4

)
∂C

∂Y
=

(
1 + σ2X

)
Ln

(
∂2C

∂Y 2
+NA

∂2Θ

∂Y 2

)
(32)

For particle phase:
1

2
Up +X

∂Up
∂X
− 1

4
Y
∂Up
∂Y

+
∂Vp
∂Y

= 0 (33)(
1

2
+
XσXσXX(

1 + σ2X
) )U2

p +XUp
∂Up
∂X

+

(
Vp −

1

4
Y Up

)
∂Up
∂Y

= −αdX1/2(Up − U) (34)

XUp
∂Θp

∂X
+

(
Vp −

1

4
Y Up

)
∂Θp

∂Y
= − 2

3γPr
αdX

1/2 (Θp −Θ) (35)

The transformed boundary conditions can be written as:

U(X, 0) = V (X, 0) = Θ(X, 0)− 1 = C(X, 0)− 1 = Up(X, 0) = Vp(X, 0) = Θp(X, 0)− 1 = 0
U(X,∞) = Up(X,∞) = Θ(X, 0) = Θp(X,∞) = C(X,∞) = 0

(36)

4 Solution Methodology

The nonlinear interaction among the continuity, momentum and energy equations of carrier
and disperse phase, given in Eqs. (29) to (36), is handled numerically with the aid of
implicit finite difference method which implies Thomas algorithm as a solver. Since the
equations are parabolic in X, therefore the solutions can be marched in the downstream
direction. The computational domain is discretized over the entire boundary layer region.
Keeping numerical stability in view, two-point central difference and backward difference
quotients are respectively used for diffusion and convective terms. The resulting system
of algebraic equations can be cast into a tri-diagonal matrix equation which is solved via
Thomas algorithm. This algorithm works on the following pattern:
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1. Set the suitable boundary conditions.

2. Solve the unknowns U,Up, C,Θ,Θp at Y = 0. It means that these unknowns satisfy
the convergence criteria.

3. Solve for the next step Yj = Yj−1 + ∆Y by using the solution position.

4. The computations are iterated until the unknown quantities meet the convergence
criteria at the stream-wise position.

5. Repeat step 2-4 for X maximum.

In the computation procedure, continuity equation of the carrier and the particle phase are
used to obtain normal velocity component V and Vp respectively by using the following
discretization:

Vi,j = Vi,j−1 +
1

4
Y (Ui,j − Ui,j−1)−

1

2
4Y Ui,j −

1

2

X4Y
4X

(Ui,j − Ui−1,j + Ui,j−1

−Ui−1,j−1)
(37)

Vpi,j = Vpi,j−1 +
1

4
Y
(
Upi,j − Upi,j−1

)
− 1

2
4Y Upi,j −

1

2

X4Y
4X

(
Upi,j − Upi−1,j + Upi,j−1

−Upi−1,j−1

) (38)

At present, rectangular computational domain is used with grid point distribution at equal
spacing. The computations are started at Xi = 0.01 and then marched in down-stream
direction by taking uniform grids. Implicit finite difference scheme is unconditionally stable
and compatible and hence ensures convergence.
As the knowledge of drag force in terms of skin friction is a prime factor to apprehend the
behavior of any fluid/gas machinery system or component. Therefore, the physical quantity,
namely, skin friction, is of significant importance both scientifically and experimentally. In
addition to skin friction, it is also important to investigate the behavior of the heat as
well as mass transfer rate, in terms of Nusselt number coefficient and Sherwood number
coefficient, respectively. These quantities are much significant from engineering point of
view, as rate of heat transfer can be served to improve specifically the efficiency and shape
of many equipments in aerodynamics. The values of these dimensionless coefficients can be
calculated from the following mathematical relations:

τw = Cf (GrL/X)−1/4 =
(
1 + σ2X

)1/2(∂U
∂Y

)
Y=0

Qw = Nu (GrL/X)−1/4 = −
(
1 + σ2X

)1/2(∂Θ

∂Y

)
Y=0

Mw = Sh (GrL/X)−1/4 = −
(
1 + σ2X

)1/2(∂C
∂Y

)
Y=0

(39)

5 Results and Discussions

The main purpose of present analysis is to understand the behavior of two-phase dusty
nanofluid along a vertical wavy surface. We performed two-dimensional simulations in
order to obtain solutions of mathematical model presented in terms of primitive variables
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given in Eqs. (29)-(36) from the two-point implicit finite difference method. Numerical
results are reported for the overall effectiveness of mass concentration of dust particles and
nanoparticles in base fluid (water) moving along a transverse geometry. Particularly, the
solutions are established for the water-based dusty nanofluid (i.e., Pr = 7.0, Dρ = 10.0 and
γ = 0.1). The parametric values for water particulate suspension are taken from study of
Apazidis [28]. While the numerical computations are performed by setting the values of
other parameters as: Nr = 0.0, 0.1, NA = 0.0, 2.0, 5.0, 10.0, NB = 0.0, 2.0, 5.0, 10.0, Ln =
100.0, αd = 0.1, 0.01, Ec = 0.0, 1.0 and a = 0.2, 0.3, 0.5, 0.8. For verification, simulated
results are compared with the published results and it is found that the solutions obtained by
Yao [21] can be recovered by setting a = 0.1, 0.3, Pr = 1.0, αd = 0.0 NA = NB = Nr = 0.0
and Dρ = 0.0. This comparison is appeared in Fig. 2 and results matches well with each
other and shows good accuracy.

The influence of buoyancy ratio parameter, Nr, on skin friction coefficient, τw,
heat transfer coefficient, Qw and mass transfer coefficient, Mw is illustrated in Fig. 3.
For comparison, the effect of Nr on water-based nanofluid without dust particles (i.e.,
Dρ = 0.0) is also presented. It is also important to mention here that the parameter Nr
is responsible for the coupling between the dimensionless nanoparticle concentration and
momentum equation (see Eq. (30)). It can be visualize from Fig. 3(a) that the skin friction
coefficient for dusty as well as clear fluid remains almost invariant under the variations of
parameter Nr. However, variations are recorded for rate of heat transfer as well as for mass
transfer coefficient by magnifying the value of buoyancy parameter, Nr (see Figs. 3(b) and
3(c)). The effect of, Nr, on average, is to reduce the Qw and Mw for clear as well as dusty
fluid. But the plots in Fig. 3(b) reveals the fact that the rate of heat transfer is extensively
promoted by loading the dust particles into the base fluid (i.e., Dρ = 10.0). Such behavior
is expected because the base fluid gains the thermal energy from the dust particles collision
which ultimately promote the rate of heat transfer near the vicinity of wavy plate. Higher
the values of Dρ, the greater will be the rate of heat transfer. On the other hand, Dρ has
a retarding influence on the rate of mass transfer and therefore Mw is sufficiently reduced
when Dρ is penetrated into the mechanism. As expected, higher concentration of dust
particles causes the mass transfer rate to reduce near the axis of flow.

The results for water-based nanoparticulate suspension are represented in terms of
τw, Qw and Mw in Fig. 4. In this figure mass concentration parameter Dρ characterizes the
influence of particles on their surroundings together with the effect of Eckrect number Ec.
The skin friction coefficient, τw remain uniform for overall range of Dρ and Ec (see Fig.
4(a)). However, a large enhancement in the heat transfer rate, Qw and a little reduction
in the rate of mass transfer coefficient, Mw is recorded when mass concentration parameter
and Eckrect number increases (see Figs. 4(b) and 4(c)). It is already mentioned that,
for the heat transfer rate, the dusty water gains some thermal energy from particles and
consequently the temperature gradient for the carrier fluid increases. By loading the dust
particles together with higher values of Ec, causes the carrier fluid to be more condense
which leads to decrease the rate of mass transfer in stream-wise direction. Moreover, it is
intersecting to note that, the non-zero values of Ec only increase (decrease) the rate of heat
transfer (rate of mass transfer) for non-zero values of Dρ. It can be concluded from the
present study that the Eckrect number Ec has a dominating influence on water particulate
suspension as compared to clear fluid.

Fig. 5 is plotted to visualize the effect of amplitude of wavy surface on the distri-
bution of physical quantities, namely, τw, Qw and Mw. The change in surface contour is
followed by raise and fall of the curves. It can be visualize from Fig. 5(a), that the influ-
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ence of amplitude a, on average, is to reduce the rate of skin friction. Similar behavior is
recorded for the rate of heat transfer (see Fig. 5(b)). As a whole, the rate of heat transfer,
Qw, reduces when the amplitude of the sinusoidal waveform increases. When the amplitude
of wavy surface increases, the shape of the wave gradually changes from sinusoidal waveform
to the unusual shape. The reduction in the magnitude of the temperature gradient hap-
pened due to the simultaneous influence of centrifugal and buoyancy force. Furthermore,
we notice that the change in rate of heat transfer is more pronounced for larger values of
the amplitude a and this factor acts as a retarding force for heat transfer coefficient. As
expected, the surface having large amplitude causes a reduction in rate of mass transfer (see
Fig. 5(c)). It can be seen from Fig. 5(c), that Mw is maximum for small values of a and
depicts a clear decline by increasing the amplitude of wavy surface from 0.3 to 0.8. This may
happen due to the fact that the geometry having a transverse nature offers more resistance
to water particulate suspension and ultimately the rate of mass transfer decreases.

Fig. 6 anticipates the influence of modified diffusivity ratio parameter, NA, on
the distribution of skin friction coefficient, rate of heat transfer and rate of mass transfer
coefficient. The graph in Fig. 6(b) shows a clear decline in the values of heat transfer
coefficient. It is interesting to note that NA not only reduce the rate of heat transfer
but also affect the amplitude of the curves representing Qw. The rate of heat transfer is
maximum for NA = 0.0 and reduced drastically for non-zero values of modified diffusivity
ratio parameter. This is expected because the viscous diffusion rate increases due to an
increase in NA which results in significant reduction in Qw. On the other hand, skin friction
coefficient and mass transfer coefficient are enhanced for higher values of NA as depicted in
Figs. 6(a) and 6(c). Specifically, Fig. 6(c) reveals that the effect of NA on mass transfer
coefficient is more pronounced for higher values of NA.

The influence of particle-density increment number, NB, is observed in Fig. 7. The
figure depicts an interesting behavior of NB on (a) τw, (b) Qw and (c) Mw. It is evident from
Fig. 7 that except the heat transfer coefficient, all quantities shows a pronounced inclined
for increasing values of particle-density increment parameter. By increasing the particle
density, the fluid near the surface will undergoes more resistance to flow and produces
more frictional forces in boundary layer region, which ultimately enhance the skin friction
coefficient(see Fig. 7(a)). As expected to see from Fig. 7(b) that the rate of heat transfer
depicted by Qw shows a significant decline by intensifying NB. This may happen because
of the presence of the nanoparticles in the base fluid results in a zig-zag motion of the
particles, which leads to collisions within the fluid as the particles interact hence increased
heat production. Thus, an enhancement in values of particle-density increment number,
NB causes more collisions which generate more heat and thus the rate of heat transfer is
reduced at the surface of the vertical plate. The non-zero values of NB drastically reduce
the amplitude of the curve depicting the quantity, Qw. Furthermore, it can be seen from
Fig. 7(c), that the rate of mass transfer is very low for NB = 0.0, and extensively promoted
by increasing the values of NB.

Figure 8 is plotted to see the contribution of amplitude of wavy surface, a on velocity
and temperature distribution of dusty water. It can be clearly seen that surface roughness
factor has a notable influence on (U,Up) and (Θ,Θp). The velocity profiles, (U,Up) suffi-
ciently decreases by magnifying the values of a. This may happens because of the fact that
the frictional forces become more influential due to the geometry having large amplitude,
and the velocity of the dusty water sufficiently decreases between the crusts and troughs
of the wavy pattern (see Fig. 8(a)). while on the other hand, a acts like a supportive
driving force that accelerates the water particulate suspension flow, and, as a result, the
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temperature for both phases, (Θ,Θp), within the boundary layer increases significantly (see
Fig. 8(b)). The plots for temperature profiles for both, carrier as well as particle phase,
quickly approaches to its asymptotic value for a = 0.2, as compared to a = 0.3. It can
be concluded that amplitude factor causes a delay for temperature profiles to attain their
limiting values into the boundary layer region.

Representative velocity profiles and temperature profiles for carrier as well as dusty
phase under the effect of modified diffusivity ratio parameter, NA and particle-density
increment parameter NB are respectively plotted in Figs. (9) and (10). It can be seen
from Fig. 9 that U , Up, Θ and Θp tends to increase by owing an increase in the values
of modified diffusivity ratio parameter. However, it is interesting to see that the velocity
as well as temperature profiles for particle phase is always less than the corresponding
profiles for fluid phase. This may happens due to the presence of inert-particles in fluid,
as they resist the flow and produce friction, which leads to a reduction in the magnitude
of Up and Θp. Thus, it can be concluded that Up and Θp decays quickly and attain their
asymptotic behavior as compared to U and Θ. Similarly, large values of particle-density
increment parameter, NB accelerates the fluid flow and ultimately promotes the velocity
and temperature profiles for both phases (see Fig. 10). It is clear from Fig. 10(a) that
the peaks of velocity curves in which non-zero values of NB are considered are relatively
high. The non-zero values of particle-density increment parameter, NB acts as a delaying
factor for velocity and temperature profile of both phases to attain their limiting values in
boundary layer regime.

In order to illustrate the influence of mass concentration of dust particles parame-
ter, Dρ on streamlines and isotherms for water particulate suspension, Fig. 11 is plotted.
These quantities help in visualizing and accessing the performance of the flow velocity and
temperature fields of dusty fluid moving along the wavy surface. For comparison, suspen-
sion without particle cloud (pure water) is also presented in Fig. 11. As expected that by
loading the dust particles, the velocity of dusty fluid reduces significantly as compared to
clear fluid (see Fig. 11(a)). While on the other hand, isotherms in Fig. 11(b) indicates that
presence of dust particles have a notable influence on temperature distribution as isotherms
get stronger for dusty water. When particles are loaded extensively, (i.e., Dρ = 10.0),
the inter-collisions of particles generates thermal energy in the base fluid, which ultimately
increases the overall temperature into the boundary layer region.

6 Conclusion

The present analysis aims to compute the numerical results of boundary layer flow of water-
based dusty nanofluid along a vertical wavy surface. Primitive variable formulations are
adopted to transform the dimensionless boundary layer equations into a convenient form,
and then the resulting nonlinear system of boundary layer equations are iteratively solved
step-by-step by using implicit finite difference method along with tri-diagonal solver. Nu-
merical results gives a clear insight towards understanding the response of roughness of the
surface. Effect of various emerging parameters are explored by expressing their relevance
on skin friction coefficient, rate of heat transfer and rate of mass transfer. Velocity and
temperature distributions are also plotted for carrier as well as particle phase. From this
analysis, it is observed that modified diffusivity ratio parameter, NA and particle-density
increment number, NB, has pronounced effect in reduction of heat transfer rate whereas
reverse behavior is recorded in skin friction and rate of mass transfer under the influence
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of NA and NB. Moreover, the rate of heat transfer is extensively promoted by loading the
mass concentration parameter, Dρ.
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