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1 Introduction

Covariance and correlation are a central topic in finance. One example is the risk
correction in asset prices. The basic pricing equation from the consumption-based
model in asset pricing (Cochrane 2000):

pt = Et
(
β
u′(ct+1)

u′(ct)
· xt+1

)
(1.1)

defines the price pt of an asset with future payoff xt+1 in a two period model, which
maximizes an investor’s utility. The optimization problem is the choice of consuming
today or investing today and additionally consuming the payoff of the asset tomorrow.
The stochastic discount factor mt+1 is the product of the subjective discount factor β
and the marginal rate of inter-temporal consumption utility given the investor’s utility
function u: One can show that prices of assets are a function of the covariance of the
stochastic discount factor and the asset’s payoff (Cochrane 2000, p. 22ff). Consequently
their volatility determines the magnitude of the price correction, while the correlation
determines the sign. Assets with a positive correlation with the stochastic discount
factor show a higher price and vice versa. Turing from the stochastic discount factor to
the consumption itself, this effects switches the sign, due to the (assumed) concavity of
the utility function u. Assets with a negative correlation with future consumption show
a higher price and vice versa:

pt =
E(xt+1)

Rf

+
cov [βu′(ct+1), xt+1]

u′(ct)
(1.2)

where Rf denotes the risk free gross return. Formulated in terms of gross returns R,
one can construct an upper bound for the absolute value of any assets excess return:

|E (Rt+1)−Rf |
σRt+1

≤
σmt+1

E (mt+1)
(1.3)
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1 Introduction

This inequality is due to the bounded correlation coefficient. It defines the slope of the
mean-standard deviation frontier in which all single assets and all possible portfolios lie

In practice one has to deal with estimates of both the mean and the covariance. Of
course, one would like to have a precise, well-conditioned estimate. In the case of the
covariance matrix an invertible matrix is highly desirable. An invertible covariance
matrix is a necessity for the analytical solution of the minimization problem from
above (cf. Cochrane 2000, p. 81ff). For the covariance’s sample estimator to be
nonsingular/invertible more observations than dimensions of the covariance matrix
are needed (Ledoit and Wolf 2004a). There exist two main approaches to deal with
this problem, assuming factor models for the returns or using shrinking methods. In
chapter 2 examines if improvements in covariance estimations translate to correlation
estimations. Here, the differences between the estimated and true matrices are measured
and statistically analyzed, using a Monte Carlo Simulation. Several data-generating
distributions and underlying covariance matrices are implemented to determine the
magnitude and significance of non-normally distributed returns upon estimators using
exactly the normality assumption and distribution free estimators. The results show that
the improvements in covariance estimation precision translate to correlation matrices
estimation precision in general. The second goal of this chapter is to add economic
considerations. Does an improvement in estimation precision lead to a statistical
out-performance of portfolios based on this estimate? Chapter 2 uses the covariance
estimates to determine the corresponding minimum-variance portfolios. Due to a better
estimation, Sharpe ratios can be increased by a factor of about two, which corresponds
to a volatility reduction of a factor of about two. The results are robust when changing
the data-generating distribution and the underlying covariance type respectively.

In all these considerations a constant covariance/correlation matrix is assumed. If this
is not the case, the time series show a structural break within their relational structure.
There exist several tests for structural breaks, starting from the (Chow 1960) test for
time series themselves. In brief, the test divides the sample at the a priori known break
and regressions in the subsamples are tested to be statistically different. Chapter 3
deals with a nonparametric test for breaks in the correlation structure of returns. Using
such a test allows identifying periods with a statistically constant correlation structure
and thereby periods in which, for example, portfolio optimization is valid. The crux
in such tests is the need of many observations relative to the number of assets in the
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observed portfolio. Chapter 3 proposes to reduce the dimension of the portfolio and test
the ’reduced version’ of the portfolio for structural breaks. The Principal Component
Analysis and the Hierarchical Clustering techniques are introduced and the validity of
the limiting distribution, power and size are discussed using Monte Carlo Simulations.
The aptitude of this two stage process is demonstrated by two empirical cases. In the
first case, the scenario described in Wied (2015) is extended to a longer time horizon
and the full portfolio of the EuroStoxx-50 and comparable break dates to the original
test are shown. In the second case, the NASDAQ-100 index is analyzed to detect
multiple break dates using the algorithm proposed in Galeano and Wied (2014) and
find matching time-points for breaks in several reduced dimensions.

Thus far, this thesis looks at methods for improved estimations in the mean-squared
error sense and the detection of structural breaks in the estimated aggregate of a
high dimensional distribution. While the latter takes the aggregate for granted, the
former tries to minimize the estimation error, while keeping the aggregating function
mostly unaffected. The second part of the thesis is devoted to the aggregating process
itself. Following the concept of entropy shifts (Bowden 2016a) the starting points are
conditional moments, unlike the mean or variance of a set of observations. An internal
point of view is taken where one asks the question: am I in a better situation than the
others in the sample?

Chapter 4 answers this question in the context of incomes and thereby examines
the inequality associated with the income distribution. The estimate of the complete
distribution is based on data of the EU-SILC database, which enables a granularity on
the level of families. Different from Eltetö and Frigyes (1968) not a single ’representative
agent’ (using the mean/median of the observations) is analyzed, but all possible reference
points are taken into account. A relative advantage/asymmetry metric is created, which
shows a duality property: a change of sign results in a metric for spread. Phase planes,
based on these two metrics, visualize the trajectories of European countries from 2005 to
2013 and enable a grouping into three categories of inequality risers, fallers and a mixed
group. As a result, the ambiguity of the Gini coefficient in terms of asymmetry and
spread is resolved. In a regression analysis chapter 4 analyzes the effects of variables,
stated to be a determinant of the Gini index, on the metrics proposed here. Since we
find a strong correlation between the Gini and the d metric, one can transfer the results
of the latter to the Gini and analyze European effects on inequality based on rather
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1 Introduction

new and high resolution data.
Structural similarities of the standardized dispersion metric and the Sharpe ratio were

the starting point for the final research question of this thesis: How does a performance
metric based on the internal view of a fund manager look like and would fund managers
be ranked differently when using different performance metrics? Chapter 5 proposes
a performance measure based on the metrics of the previous chapter. It is analyzed
how the asymmetry of the return distributions affects the metric’s sign and magnitude
compared to the Sharpe ratio. Afterwards the rank correlations with other performance
metrics are shown based on four different asset classes. Stocks, bonds and foreign
exchange rates are used and as a portfolio of many different asset classes hedge funds.
High and statistically significant correlations for the other metrics are found (c.f Eling
and Schuhmacher (2007)). The ones proposed here do not show these high correlations,
but are nearly uncorrelated. The conclusion is, that these aggregate the distributions
in such a manner that new information is created.
Summarizing, this thesis focuses on the aggregating process of high dimensional

distributions and the detection of structural breaks within those. The latter is addressed
in chapter 3, where an extension to higher dimensional portfolios is shown. The former is
the topic of chapter 4 and chapter 5 and indirect in chapter 2, since not the aggregating
process itself is the topic but rather an a posteriori improvement of the estimation.
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1.1 Publication details

1.1 Publication details

Paper I (chapter 2):
Estimation of Large Correlation Matrices using Shrinking Methods

Authors:
Peter N. Posch, Daniel Ullmann

Abstract:
Quantitative estimations are subject to estimation errors, due to limited observations.
One way of minimizing them is the shrinking approach. This paper studies shrinking
estimators with and without the normality assumption of returns together with several
data-generating distributions and different types of underlying covariance matrices. The
transferability of covariance estimation improvements to the correlation matrix and
to economic improvements is analyzed. Significant out-performance of some shrinking
estimators in the Sharpe ratio and the volatility of minimum-variance portfolios is
found, which seem to depend weakly on the normality assumption. Using a scaled
identity matrix as shrinking target, the Sharpe ratio increases by a factor of about two.

Publication details:
Working paper.

5



1 Introduction

Paper II (chapter 3):
Detecting Structural Breaks in large Portfolios

Authors:
Peter N. Posch, Daniel Ullmann, Dominik Wied

Abstract:
Model free tests for constant parameters often fail to detect structural changes in
high dimensions. In practice this corresponds to a portfolio with many assets and a
reasonable long time series. We reduce the dimensionality of the problem by looking
at a compressed panel of time series obtained by cluster analysis and the principal
components of the data. With this procedure we can extend tests for constant correla-
tion matrix from a sub portfolio to whole indices, which we exemplify using a major
stock index.

Publication details:
Revised and Resubmitted to Empirical Economics
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1.1 Publication details

Paper III (chapter 4):
Income distribution in troubled times: Disadvantage and dispersion

dynamics in Europe 2005-2013

Authors:
Roger J. Bowden, Peter N. Posch, Daniel Ullmann

Abstract:
Income distribution has been a longstanding focus of social and economic interest, but
never more so than in recent times. New metrics for disadvantage and spread enable a
more precise differentiation of directional asymmetry and dispersion, drawing on an
internal contextual perspective. The dual metrics for asymmetry and spread can be
plotted over time into a phase plane, enabling comparative social welfare perspectives
over time and between countries. The methods are utilized to study the dramatic
changes that took place in Europe prior to and after the global financial crisis. Major
differences are revealed. In terms of asymmetry and spread, some countries have been
fallers (lower in both) while other countries are risers.

Publication details:
Finance Research Letters, Forthcoming 2017
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Paper IV (chapter 5):
Asymmetry and performance metrics for financial returns

Authors:
Roger J. Bowden, Peter N. Posch, Daniel Ullmann

Abstract:
The assumption of symmetric asset returns together with globally risk averse utility
functions is unappealing for fund managers and other activist investors, whose pref-
erences switch between risk aversion on the downside and risk seeking on the upside.
A performance return criterion is originated that is more consistent with the implicit
Friedman-Savage utility ordering. Adapted from recent developments in the income
distribution literature, the metric w weights the lower versus upper conditional ex-
pected returns, while a dual spread or dispersion metric d also exists. The resulting
performance metric is easy to compute. A point of departure is the conventional Sharpe
performance ratio, with the empirical comparisons extending to a range of existing
performance criteria. In contrast to existing metrics, the proposed performance metric
W results in different and more embracing rankings.

Publication details:
Working paper
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2 Estimation of Large Correlation Matrices
using Shrinking Methods

The following is based on Posch and Ullmann (2017).

For many purposes an accurate estimation of a covariance or a correlation matrix
given historical returns is of high interest. One example is the Markowitz (1952)
portfolio optimization. Here one seeks to find assets which negatively correlate to the
existing portfolio to gain a diversification effect. Especially when testing for the validity
of the optimization, the correlation matrix becomes the center of interest and tests for
a constant correlation matrix outperform the ones for a constant covariance matrix, cf.
Wied, Kraemer, and Dehling (2012).

Formally, one estimates a covariance matrix Σ from N given time series of length
T , which is equivalent to looking at T N -dimensional random vectors Xt. The sam-
ple/empirical covariance matrix estimator is then calculated as:

S =
1

T − 1

T∑
t=1

(
Xt − X̄

) (
Xt − X̄

)′
, (2.1)

where X̄ = T−1
∑T

t=1 Xt ∈ RN denotes the vector of first moments.

Of course this estimator is only appropriate if the sample is representative, which
means that no structural break did occur; cf. Posch, Ullmann, and Wied (2017) for
testing for structural breaks in high dimensions. Furthermore this estimator is limited
to situations where the number of observations is sufficiently large (N � T ). In other
situations, the estimated matrix is no longer positive definite (Kwan 2010), nor is it
invertible (Ledoit and Wolf 2004a), thus only usable to a limited extent in the context
of portfolio optimization. One could argue that this is only a theoretical problem
as in practice stocks are traded daily and sufficient data should be available. But
even portfolios of a single asset class, like stocks, are affected by this problem as the
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2 Estimation of Large Correlation Matrices using Shrinking Methods

number of positions increase. For example fully replicating the S&P 500 index leads to
N ≈ 500 and thus to a need of over two years of daily data for all constituents without
any structural break present. When looking at multi-asset class portfolios, the joint
information available for all assets is typically much shorter. Consider, for example, a
simple portfolio with an interest rate swap for which market values are calculated only
from inception or a future which rolls every three months. Apart from the problem of
sufficient data availability it is desirable that the estimator is well conditioned, i.e. the
estimation errors do not amplify by inverting the estimated matrix, which is not the
case for the sample covariance estimator in equation (2.1) (Ledoit and Wolf 2004b).

In principle there exist two main approaches to this problem: The first is to impose
some structure on the covariance matrix and use a factor model (Fan, Fan, and Lv 2008).
The second is to use a method called shrinkage (Stigler 1990), which is an application
of the Stein paradox (Efron and Morris 1977). The idea is that the sample covariance
matrix S is transformed via a linear combination with another, well-conditioned target
matrix TM

Σ∗ = (1− λ)S + λTM , (2.2)

where well-conditioned is defined as follows: let A be a regular matrix and ‖·‖ a
matrix-norm. The condition of the matrix is then defined as

cond(A) := ‖A‖
∥∥A−1

∥∥ ∈ (1,∞), (2.3)

where cond(A) ≈ 1 corresponds to a well-conditioned matrix and ill-conditioned else
(Bronstein 2012; Touloumis 2015). The weight is chosen by minimizing the estimation
error of the shrinking matrix and the population matrix, measured by the mean-squared
errors. As a result extreme values shrink towards more central values and thus the
mean-squared error becomes smaller (Ledoit and Wolf 2004b).

Contrary to the standard procedure in the literature, where only the out-performance
over other estimators is shown, this analysis considers three different quantities, based
on the covariance matrix, additionally. We assess the overall performance of the different
estimators for different purposes, in the sense of a ’one for all’ solution. Two types of
estimators for the covariance are used, which are derived under different assumptions.
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2.1 Shrinking estimators

Not only the distance to the true covariance matrix is measured, but also the distance
of the resulting correlation matrix, defined as:

ρ = (ρi,j) ∈ RN×N with ρi,j =
Cov(Xi, Xj)√
V ar(Xi)V ar(Xj)

(2.4)

Both quantities, the correlation and the variances define the covariance. So it is not
obvious, if a more precise estimation of the covariance is due to a more precise estimate
of the correlation or a more precise estimation of the variances.

A second point of view is the economic significance of the findings from above. Does the
rather abstract smaller distance to the true matrix result in better investment decisions
or do these benefits get lost during the information processing process? Minimum-
variance portfolios, based on the covariance estimations are analyzed concerning their
Sharpe ratio and annualized volatilities.

The scheme of the paper is as follows. The assumptions under which the different
shrinking estimators are derived are described in section 2.1. Afterwards, we present our
simulation environment, which is adapted from Touloumis (2015). Section 2.3 shows
and discusses the results of our simulation study and the final section concludes.

2.1 Shrinking estimators

Starting from equation (2.2), there exist several possibilities for the target matrix.
The most common ones are the identity matrix I, the scaled identity matrix µ∗I (µ∗

denotes the average of the eigenvalues of the covariance matrix) and the diagonal matrix
DΣ = diag(Σ) (Chen, Wiesel, and Hero 2009; Ledoit and Wolf 2004a).

Using the target matrix µ∗I, Ledoit and Wolf (2004a) derive the optimal shrinking
intensity λ as

λ =
E
[
‖S − λ‖2]

E
[
‖S − µI‖2] . (2.5)

Both Fisher and Sun (2011) and Touloumis (2015) use this result and propose
estimators for the unknown quantities. They extend the possible target matrices from
only the scaled identity matrix to the sole identity matrix I and the diagonal matrix

11



2 Estimation of Large Correlation Matrices using Shrinking Methods

of the empirical covariance matrix DS = diag (S). To do so, Fisher and Sun (2011)
assumes normally distributed returns and the following two assumptions:

lim
N→∞

1

N
tr Σi <∞ ∀i ∈ 1, ..., 4 and T − 1 = O(Nk) for 0 < k ≤ 1

Using the results of Srivastava (2005), he derives the optimal shrinking intensities
λµ, λI , λD (c.f. equation (2.2)) as:

λFµ =
â2 +Nâ2

1

T â2 + (N − T + 1)â2
1

(2.6)

λFI =
1

T−1
â2 + N

T−1
â2

1

T
T−1

â2 + N
T−1

â2
1 − 2â1 + 1

(2.7)

λFD =
â2 +Nâ2

1 − 2a∗2
T â2 +Nâ2

1 − (T + 1)â∗2
(2.8)

with

â1 =
tr S
N

= ν (2.9)

â2 =
(T − 1)2

T (T + 1)

1

N

[
tr S2 − 1

N − 1
tr2S

]
(2.10)

a∗2 =
T − 1

T + 1

trD2
S

N
(2.11)

and tr· denoting the trace of the respective matrix.

Touloumis (2015) relaxes the assumption of normally distributed returns, to iid.
returns. To restrict the dimension of the covariance matrix Σ he assumes

lim
T→∞

N →∞ and lim
T→∞

tr Σ4

tr2Σ2
→ t1 and lim

T→∞

tr Σ2

tr2Σ
→ t2

together with 0 ≤ t2 ≤ t1 ≤ 1.

While the first assumption here is equivalent to the second in Fisher and Sun (2011),
the set of possible covariance matrices differs. In Fisher and Sun (2011) suppose
finite arithmetic means of the eigenvalues for the first four moments, Touloumis (2015)
restricts this set by assumptions two and three.
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2.1 Shrinking estimators

The shrinking intensities for the three different shrinking targets are given by:

λTµ =
b̂2 + b̂2

1

T b̂2 + N−T+1
N

b̂2
1

(2.12)

λTI =
b̂2 + b̂2

1

T b̂2 + b̂2
1 − (T − 1)(2b̂1 −N)

(2.13)

λTD =
b̂2 + b̂2

1 − 2b̂3

T b̂2 + b̂2
1 − (T − 1)b̂3

(2.14)

Using results from Himeno and Yamada (2014), b̂1, b̂2 and b̂3 can be expressed as follows:

b̂1 = Nâ1 = N · ν = tr S (2.15)

b̂2 =
T − 1

T (T − 2)(T − 3)

[
(T − 1)(T − 2)tr S2 + tr2S − TQ

]
(2.16)

b̂3 =
1

PN
2

N∑
a=1

∗∑
i 6=j

X2
iaX

2
ja

− 4
1

PN
3

{
N∑
a=1

(
T∑
i=1

X2
ia

)(
T−1∑
i=1

T∑
j=i+1

XiaXja

)
−

N∑
a=1

∗∑
i 6=j

X3
iaXja

}

+
2

PN
4

2
N∑
a=1

(
T−1∑
i=1

T∑
j=i+1

XiaXja

)2

−
N∑
a=1

∗∑
i 6=j

X2
iaX

2
ja

 (2.17)

with
∑∗ denoting summation over mutually distinct indices. The quantities Q and P s

t

are defined as:

Q =
1

T − 1

T∑
t=1

[(
Xt − X̄

)′ (
Xt − X̄

)]2

(2.18)

P s
t = s!/(s− t)! (2.19)

Touloumis (2015) shows that both estimator groups, the ones with the normality
assumption of Fisher and Sun (2011) and his own, not using the normality assumption
lead to comparable shrinking intensities, thus comparable estimates of the covariance
matrix. He proposes a data-driven selection of the shrinking target: First one compares
the shrinking intensities for all three targets and chooses the target matrix with the
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2 Estimation of Large Correlation Matrices using Shrinking Methods

largest proposed intensity.
In the following section, we present our Monte Carlo simulation environment: the

data-generating processes and different covariance types used together with the overall
procedure.

2.2 Simulation environment

Our Monte Carlo simulation is similar to Touloumis (2015). We increase the number of
simulations by a factor of 5 to 5,000. To generate random correlated numbers for a
given covariance matrix Σ we:

1. Calculate the Cholesky Decomposition C, i.e. CC ′ = Σ.

2. Generate N random time-series Xi of length T where all entries are iid. with zero
mean and unit variance, e.g. xi,t ∼ N (0, 1) ∀i ∈ 1, ..., N, t ∈ 1, T .

3. Transforming the time-series via ri,t = µi + CXi := µi +Ri with a given mean µi
leads to the desired covariance structure:

Var (R) = E
(
CX (CX)′

)
= E (CXX ′C ′) = E (CC ′) = Σ. (2.20)

The S&P500 index from 2007 to 2017 is used for the estimation of this true covariance
matrix and the average return, where due to data availability only 400 constituents are
included. In the following analyses 1, 2 and 3 years of financial returns are mimicked
through 250, 500 and 750 returns per stock.
Then resulting panel is used to estimate the quantities of interest: the covariance

matrix, the correlation matrix and the weights of the minimum-variance portfolio. The
difference of the covariance and the correlation matrix is measured using the Frobenius
norm, which is defined as follows:

‖A‖F =

√√√√ N∑
i=1

N∑
j=1

|ai,j|2. (2.21)

The weights of the minimum-variance portfolio are defined as the weights w ∈ RN ,
which result in in minimal variance of the portfolio. With the covariance matrix ΣP of
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2.2 Simulation environment

the portfolio’s assets, the portfolio variance is defined as:

σ2
PF = w′ΣPw. (2.22)

The different covariance estimations result in different weights and those lead to different
Sharpe ratios and different annualized volatilities.

For the true covariance matrix, three different approaches are used. The first one
uses random eigenvalues λi ∈ [1, 10], together with a randomly generated orthogonal
matrix Ψ. The construction of the covariance matrix follows:

Σ = Ψ · diag (λ1, . . . , λN) ·Ψ′. (2.23)

This procedure yields a positive definite matrix, when choosing the boundaries for the
eigenvalues appropriately. The correlation matrix is calculated by dividing the matrix
by the square root of the corresponding diagonal elements. The second approach uses a
AR(1) model with the true covariance matrix defined as

Σ = σ2


1 ρ . . . ρN−1

ρ 1 . . . ρN−2

...
... . . . ...

ρN−1 ρN−2 . . . 1

 , (2.24)

with ρ ∈ [−1, 1] and a common variance σ2 (Fisher and Sun 2011). It can be shown,
that this definition of a covariance matrix results in a positive definite matrix as well
(Pourahmadi 2013). Our last approach is to use the empirically estimated covariance
matrix, described at the beginning of this section. We pretend that the 10 years of
historical data are a all realizations from a constant covariance matrix. So the empirical
estimate yields a positive definite matrix as well.

For the assets returns, we use a normal distribution, a t-distribution with 5 degrees
of freedom and a gamma-distribution with parameters 4 and 0.5. Whereas the first two
are well known and often used in modeling asset returns, the latter is used to ensure
comparability with the results of Touloumis (2015).
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2.3 Simulation results

Our first quantity of interest is the covariance matrix. Table 2.1 shows the scaled
Frobenius norm of the different differences from estimators to the true matrix. For
clarity, the results are scaled by a factor 10,000. We group by the data by generating
process vertically into the ’normal’, ’t’ and ’gamma’ columns, for returns generated by
the corresponding distribution. These columns are separated by the length of the time
series.

The horizontal grouping in table 2.1 is based on the different estimators. The first
three rows correspond to the empirical estimation using equation (2.1), where the
type of underlying covariance matrix (’AR’ for the covariance matrix created by the
AR-model (2.24), ’eigen’ for the matrix created by random eigenvalues (2.23) and ’emp’
for the empirically estimated covariance matrix) is denoted in the column ’type’ (second
from the left). The middle part of the table correspond to the estimators in Fisher and
Sun (2011), first grouped by the covariance type, like in the upper part and grouped by
the shrinking target (most left column named ’target’). The lower part corresponds to
the estimators in Touloumis (2015) with the same grouping as before. T-statistics are
not reported since all differences are highly significant different from zero.

The distance becomes smaller, the longer the time series is, independent of the
estimator, the data generating distribution and the covariance type. The differences
over different time horizons are statistically significant on the 0.1% level. For the identity
matrix as shrinking target, the differences between the Fisher and Touloumis estimator
are not significant on a 10% level and they do not show a significant improvement over
the empirical estimator.

In the case of Fisher’s estimator using the scaled identity matrix, we see a general
improvement over the empirical estimator of 11.6− 13.5% and for the diagonal matrix
an improvement of 83.9 − 87.3%, which is comparable to the Touloumis estimators.
In their case, using the scaled identity matrix the improvement is even higher with
16.8− 34.5%. All those are statistically significant on a 0.1%, as well as the differences
for the diagonal shrinking target between Fisher’s and Touloumis’ estimators. The
differences between different data generating processes are not significant on a 10%

level, like in Touloumis (2015), as well as differences for different covariance models.

Conversely, in the following analyses, differences between estimators within the data
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generating processes or the covariance models are found to be significant on a 0.1% level
if not else explicitly stated. So a compressed version of the results is shown in table 2.2
and the residual extended tables can be found in tables A.1 to A.3 in the appendix.

Table 2.1: Distances to the true covariance matrix. Results are grouped horizontally
by the three data generating distributions and the number of observations. The vertical
grouping is based on the estimator used and the underlying covariance type. For
clarity, the differences are scaled by a factor of 10,000.

250 500 750 250 500 750 250 500 750

normal t gamma

target type Empirical

AR 87.919 62.223 50.834 87.911 62.226 50.826 87.908 62.220 50.824
eigen 87.936 62.202 50.859 87.929 62.206 50.826 87.932 62.201 50.851
emp 87.915 62.211 50.836 87.906 62.195 50.839 87.909 62.190 50.839

Fisher

µ
AR 76.042 55.007 44.169 75.969 54.980 44.171 76.030 54.950 44.207
eigen 76.056 54.982 44.211 76.068 54.974 44.205 76.044 55.004 44.174
emp 75.980 55.003 44.150 75.986 55.000 44.217 76.074 54.973 44.157

I
AR 87.919 62.223 50.834 87.911 62.226 50.826 87.908 62.220 50.824
eigen 87.936 62.202 50.859 87.929 62.206 50.826 87.932 62.201 50.851
emp 87.915 62.211 50.836 87.906 62.195 50.839 87.909 62.190 50.839

D
AR 11.111 9.017 8.170 11.028 9.008 8.193 11.049 9.000 8.165
eigen 11.059 9.024 8.190 11.039 8.990 8.163 11.046 8.997 8.203
emp 11.062 8.998 8.186 11.046 9.013 8.159 11.041 9.001 8.139

Touloumis

µ
AR 57.565 48.200 42.300 57.520 48.214 42.291 57.547 48.197 42.314
eigen 57.586 48.195 42.343 57.580 48.160 42.307 57.556 48.184 42.312
emp 57.535 48.225 42.268 57.526 48.183 42.321 57.602 48.146 42.284

I
AR 87.919 62.223 50.834 87.911 62.226 50.826 87.908 62.220 50.824
eigen 87.936 62.202 50.859 87.929 62.206 50.826 87.932 62.201 50.851
emp 87.915 62.211 50.836 87.906 62.195 50.839 87.909 62.190 50.839

D
AR 11.145 9.178 8.503 11.057 9.163 8.535 11.081 9.152 8.516
eigen 11.090 9.184 8.548 11.069 9.131 8.517 11.079 9.157 8.551
emp 11.090 9.158 8.528 11.075 9.170 8.513 11.077 9.153 8.475

Note: For clarity, t-statistics are omitted. All differences are significant on the 0.1% level.

The left hand side of table 2.2 shows the distance to the true correlation matrix. Note

17



2 Estimation of Large Correlation Matrices using Shrinking Methods

that these distances are not scaled. A similar pattern to before is visible: The gained
estimation precision using the identity matrix as target is the smallest of all shrinking
target. It is found to be in the range of one-tenth of a percent and significant on the
0.1% level. Fisher’s and Touloumis’ estimator are statistically not distinguishable from
one another on a 10% level.

The improvements using the diagonal matrix are in the range of 93.9− 89.3% where
the improvement is higher for less observations. This observation holds for Touloumis’
estimator using the scaled identity matrix (with improvements in the range 62.6−37.9%)
and Fisher’s estimator (with improvements in the range 93.9−51.2%), while the absolute
distance is increasing for an increasing number of observations for the latter.

These results indicate an out-performance of the diagonal shrinking target over all
other estimators. Although we use non-normally distributed returns we find marginal
gains by using the Touloumis estimator compared to Fisher’s, where the assumption of
normality has been abandoned.

Table 2.2: Distances to the true correlation matrix on the left hand side, Sharpe
ratios on the in the middle and volatilities (given in percent) on the right hand side for
minimum-variance portfolios resulting from the different covariance estimators. The
result correspond to the case of normally distributed returns and an AR(1) covariance
model.

250 500 750 250 500 750 250 500 750

Correlation Sharpe Ratios Annualized Volas / %

Empirical

emp 25.339 17.922 14.636 - 0.288 0.473 - 2.833 1.732

Fisher

µ 1.545 5.308 7.139 0.578 0.575 0.618 1.406 1.408 1.314
I 25.317 17.914 14.632 0.389 0.291 0.473 2.098 2.808 1.731
D 1.545 1.556 1.543 0.578 0.551 0.579 1.406 1.471 1.402

Touloumis

µ 9.479 9.488 9.080 0.593 0.567 0.611 1.369 1.429 1.331
I 25.317 17.914 14.632 0.389 0.291 0.473 2.098 2.808 1.731
D 1.569 1.576 1.562 0.579 0.554 0.583 1.400 1.462 1.389

Note: All values are greater than zero on the 0.1% significance level.
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2.3 Simulation results

In the last part of our analysis these abstract distance quantity are transformed
to economically interpretable quantities: the Sharpe ratio and annualized volatilities,
shown in the middle and right part of table 2.2 respectively.

Due to non-invertibility of the empirical estimator based on 250 observations, the
corresponding cells are left blank (-). For the Sharpe ratio all shrinking estimators show
improvements to the empirical. Except for 750 observations in the case of the scaled
identity matrix, Touloumis’ estimator yields higher Sharpe ratios than Fisher’s. The
Sharpe ratio increases by a factor of 1.91− 1.99 in the case of 500 and by a factor of
1.22− 1.31 for 750 observations. Within the two shrinking targets improvements are
statistically significant on a 0.1% level but marginal in size with only a few percent.
As before, Fisher’s and Touloumis estimator using the identity matrix target are not
distinguishable on a 10% level and for the case of 750 observations end up with the same
Sharpe ratio as the empirical estimator. The other two shrinking targets outperform
the identity matrix in all lengths of the given time series by a factor of 1.48− 1.52. An
interesting pattern appears when switching from 250 to 500 observations. We find a
slight decrease (statistically significant on a 0.1% level) in the Sharpe ratio, although
the analyses above show a more precise estimation of the covariance/correlation matrix
in these cases. Going from 500 to 750 observations the Sharpe ratio increases, as
well as the precision of the covariance/correlation estimation. This indicates that the
general tendency of a more precise estimation of the covariance matrix leading to higher
Sharpe ratio of the resulting minimum-variance portfolio does not hold in all cases. The
question remains if the higher Sharpe ratios are caused by higher portfolio returns or
by lower portfolio volatilities.

To answer this question, table 2.2 shows the corresponding annualized volatilities of
the portfolios on the right hand side. The shrinking estimators using the identity matrix
are not distinguishable on a 10% level and lower the volatility by about 1 percent in
the case of 500 observations. The difference to the empirical estimator is statistically
significant on a 0.1% level, whereas the difference for 750 observations is not. For the
scaled identity matrix, we find roughly half and three quarters the volatility for 500
and 750 observations respectively.

The diagonal shrinking target shows about the same improvement sizes. Except for
Fisher’s scaled identity and diagonal target, we find the differences between the shrinking
targets to be significant on the 0.1% level and lower volatilities for the scaled identity
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2 Estimation of Large Correlation Matrices using Shrinking Methods

matrix as shrinking target. Differences between Fisher’s and Touloumis estimators for
the last two shrinking targets are all significant on a 0.1% level. A similar pattern as in
the case of Sharpe ratios can be seen when increasing the length of the time series. The
portfolio volatility increases from 250 to 500 observations and decreases when using 750
observations, which explains the observation in the Sharpe ratios. This increase by a
factor of about 2 comes with a decrease of volatilities by a factor of about 2. Thus we
conclude the improvements in the Sharpe ratios are caused mostly by the effect of a
lower portfolio variance and rather stable portfolio returns.

2.4 Conclusion

An accurate estimate of a covariance matrix is highly desirable for many purposes, e.g.
the portfolio optimization. Especially in the case of fewer observations than dimensions
of the covariance matrix, shrinking estimators are one tool to get an accurate estimate.
This study uses Monte-Carlo simulations to assess the improvement in estimation
accuracy of shrinking methods compared to the empirical estimator. Several data
generating processes are used to determine the influence of non-normally distributed
returns on estimator’s estimation precision. The differences between estimators using
the normality assumption and the ones not using this are marginal but significant.
Differences within a shrinking estimator concerning the data-generating distribution
are not found to be significant. Also different types of covariance matrices, used to
correlate the generic returns are used and differences in the accuracy are found to be
not significant as well.
The general tendency of an out-performance of the scaled identity matrix and the

diagonal matrix over the sole identity matrix, independent of the quantity of interest
is shown. The latter performed comparably to the empirical estimator and thus does
not seem to fulfill its purpose in the cases analyzed here. Going further we show that
improved covariance accuracy also translates to improved correlation estimation, when
scaling the covariance matrix by the variances, given on the diagonal.
By using the Sharpe ratio and the annualized volatility of the different minimum-

variance portfolios we analyze if the abstract improvement of a smaller distance between
the matrices translates to economically interpretable improvement. Here the important
fact of an invertible covariance matrix for fewer observations than dimensions comes
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2.4 Conclusion

to play, since for the empirical estimator the minimum-variance portfolio is undefined.
It is shown that the Sharpe ratios of the minimum-variance portfolio based on the
corresponding covariance estimation can increase by about 100% compared to the
empirical estimator. The annualized volatilities of these portfolios show that the benefit
in the Sharpe ratio is due to a smaller volatility.
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3 Detecting Structural Breaks in large
Portfolios

The following is based on Posch, Ullmann, and Wied (2017)
Portfolio optimization is most often based on the empirical moments of the portfolio

constituents’ returns, where the diversification effect is based on some measure of
pairwise co-movement between the constituents, e.g. correlation. Whenever the
characteristics of either the individual moments or the correlation changes, the portfolio’s
optimality is affected. Thus, it is important to test for the occurrence of changes in these
parameters and there exist tests for detecting retrograde structural breaks, (see Andreou
and Ghysels (2009) and Aue and Horváth (2013) for an overview). In the last few years,
there is a growing interest in the literature for detecting breakpoints in dependence
measures, especially for the case that the time of potential breaks need not be known for
applying the test. People look, e.g., at the whole copula of different random variables
(Bücher, Axel and Kojadinovic, Ivan and Rohmer, Tom and Segers, Johan 2014), but
also at the usual bivariate correlation (Wied et al. 2012). The motivation for such
approaches comes from empirical evidence that correlations are in general time-varying
(see Longin and Solnik (1995) for a seminal paper on this topic), but it is unclear
whether this is true for both conditional and unconditional correlations.

In this paper, we investigate in detail potential changes in correlation using the
nonparametric fluctuation test for a constant correlation matrix proposed by Wied
(2015). This test, as many others constructed in similar fashion, needs a high number
of time observations relative to the number of assets for sufficient size and power
properties. In practice, a typical multi asset portfolio has several hundreds of assets
under management, but the joint time series for all assets is considerably smaller.
So how can we test for a structural break of the correlation structure of a portfolio

where the number of assets is large and possibly larger than the number of observations?
Our approach is to reduce the dimensionality and then applying the Wied (2015) test
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to the reduced problem. We consider two classical approaches to reduce the dimension
of the problem, in order to check, if they can be used, or not. In the latter, more
advanced methods like the Multi-way principal components analysis (Wold, Esbensen,
and Geladi 1987) could be used.
First, we employ cluster analysis, second principal component analysis, cf. Fodor

(2002) for a discussion of their use in dimensionality reduction. Cluster analysis has a
wide range of applications such as biology (Eisen et al. 1998), medicine (Haldar et al.
2008) and finance, resp. econophysics (Bonanno et al. 2004; Brida and Risso 2010;
Mantegna and Stanley 1999; Mantegna 1999; Tumminello, Lillo, and Mantegna 2010),
where it is also applied in portfolio optimization (Onnela et al. 2002, 2003; Tola et al.
2008). Yet, as far as we know, we are the first to combine clustering and tests for
structural breaks, which might be an interesting contribution to the existing literature on
portfolio optimization. The principal component analysis (PCA) dates back to Pearson
(1901) and is "one of the most useful and most popular techniques of multivariate
analysis" (Hallin, Paindaveine, and Verdebout 2014) with wide applications in finance,
cf. Greene (2008) or Alexander (1999). It is suitable for reducing the dimensionality
of a problem (Fodor 2002), since its central idea is the transformation and dimension
reduction of the data, while keeping as much variance as possible (Jolliffe 2002).

3.1 Methodology

In this section we develop the test approach to detect structural breaks in a large
portfolio’s correlation structure. The basis for our analysis is the correlation matrix:

ρ = (ρi,j)i,j=1,...,n where ρi,j =
E
(
(xi − µi)(xj − µj)

)√
σ2
jσ

2
i

(3.1)

with µi as the first moment and σ2
i as the variance of the corresponding time series.

For the estimator ρ̂ we use the empirical average µ̂i and the empirical variance σ̂2
i .

Since the estimated correlation matrix has to be positive definite (Kwan 2010), we need
more observations than assets. Looking at n assets with T observations, a sequence of
random vectors Xt = (X1,t, X2,t, . . . , Xn,t), we alculate the correlation matrix from the
first k observations according to equation (3.1) and denoted as ρ̂k.
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We set the hypotheses as

H0 : ρt = ρt+τ ∀ t = 1, ..., T ; τ = 1, . . . , T − t (3.2)

H1 : ∃t, τ : ρt 6= ρt+τ (3.3)

and define the difference to the correlation matrix from all T observations as

P̂k,T = vech (ρ̂k − ρ̂T ) , (3.4)

where the operator vech(A) denotes the half-vectorization:

vech(A) = (ai,j)1≤i<j≤dim(A) (3.5)

The test statistic is given by Wied (2015) as

ÂT := max
2≤k≤T

k√
T

∥∥∥Ê− 1
2 P̂k,T

∥∥∥
1
, (3.6)

where ‖ · ‖1 denotes the L1 norm. The null is rejected if ÂT exceeds the threshold given
by the 95% quantile of A with the following definition:

A := sup
0≤s≤1

∥∥∥B n(n−1)
2 (s)

∥∥∥
1

(3.7)

Here Bk(s) is the vector of k independent standard Brownian Bridges. If the test
statistic exceeds this threshold, we define the structural break date k as the following
time point:

arg max
k

k√
T

∣∣∣P̂k,T ∣∣∣ (3.8)

For the limiting distribution of the statistic we need a ’scaling’ matrix Ê, which can be
obtained by bootstrapping in the following way:

• We define a block length l and divide the data into T − l − 1 overlapping blocks:

B1 = (X1, . . . , Xl) , B2 = (X2, . . . , Xl+1) , . . .
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• In each repetition b ∈ [1, B] for some large B, we sample
⌊
T
l

⌋
times with re-

placement one of the blocks and merge them all to a time series of dimension
l ·
⌊
T
l

⌋
× n.

• For each bootstrapped time series we calculate the covariance matrix. We convert
the scaled elements above the diagonal to the vector v̂b =

√
T
(
ρ̂i,jb,T
)

1≤i<j≤n

• We denote the covariance of all these vectors with Ê := Cov(v̂1, . . . , v̂B)

For the original test to provide a good approximation of the limiting distribution the
ratio of observations to assets needs to be much larger than one. A portfolio with
a large number of assets and insufficient time length of observation thus cannot be
analyzed with the present test for structural changes in its correlation matrix.

To quantify this problem, we simulate for 4, 6 and 10 assets time series with length
200, 500, 1000 and 2000 observations. To assess the power and size of the test, we
simulate in one case with a constant correlation matrix and in another with a break in
the middle of the time series. For the latter, we choose randomly with replacement n/2
correlations (ρ∗i,j) in the given correlation matrix randomly to a new correlation in [-1,1].
We transform the resulting matrix into a positive definite matrix, and consequently the
resulting matrix differs from the original one in all cases, but most prominently in the
randomly selected ρ∗i,j.

The result of the simulation study is shown in table 3.1. Thereby we use the critical
values 4.47, resp. 9.13, resp. 23.21 for the number of assets being equal to 4, resp. 6,
resp. 10. Our simulations runs 2500 times. We find comparable results as in Wied (2015)
for the size distortions. It seems that the level converges to the 5% level. Concerning
the power, we find an increase in the number of observations and a decrease with the
number of assets. A very extreme decrease can be found for 500 observations and the
shift from 6 to 10 assets. Whereas in the former case we find a rejection rate of about
72% it drops in the latter case to only about 20%. Such drops seem to exist for all
cases, but are not that prominent. The lower rejection rate in the case of 4 assets
can be explained in the random choice of pairwise correlations. Since we draw with
replacement, the chance of a given pair is drawn twice considerably higher than for 6
and 10 dimensions and thus the size of the break in the correlation structure is smaller
when compared to the number of assets.
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Table 3.1: Empirical rejection rate (in percent) of H0 of the test in Wied (2015)
based on 2500 simulations.

number of assets

4 6 10

number of observations ∆ρ∗i,j = 0

200 4.60 2.16 0.80
500 4.33 3.29 0.75
1000 4.07 4.01 1.30
2000 5.44 4.11 4.20

number of observations ∆ρ∗i,j 6= 0

200 39.48 31.77 4.73
500 70.31 71.98 19.73
1000 72.84 84.22 75.93
2000 79.64 96.49 95.13

In the following, we analyze how the use of dimension reduction techniques before
applying the test changes these findings. We discuss two techniques, clustering and
principal component analysis, to reduce the dimensionality of the problem and apply
the test afterwards. A first approach is to use exogenous clusters such as e.g. industry
sectors which, however, imposes an exogenous structure possibly not present in the data.
Clustering endogenously based on the present correlation structure instead preserves
this information (cf. Mantegna 1999), an approach which is applied widely, e.g. in
financial markets by Brida and Risso (2010), in medicine by Eisen et al. (1998).

The first step is to transform the correlation into a distance metric d fulfilling
the following four requirements (3.9)–(3.12) where in the application of a clustering
algorithm (3.12) is replaced by the stronger (3.13), since an ultra-metric is used.

d(x, y) ≥ 0 (3.9)

d(x, y) = 0⇔ x = y (3.10)

d(x, y) = d(y, x) (3.11)

d(x, z) ≤ d(x, y) + d(y, z) (3.12)

d(x, z) = max{d(x, y), d(y, z)} (3.13)
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Following Anderberg (2014) and Mantegna (1999) we use

d(xi, xj) =
√

2(1− ρi,j), (3.14)

which is the Euclidean distance between the standardized data points xi and xj. The
metric is bounded in the interval d ∈ [0, 2] and smaller values correspond to a smaller
distance and thus to more similarity. The clustering algorithm itself runs as follows:

1. Find the pair i, j which satisfies: d(xi, xj) = min
m,n

d(xn, xm)

2. Merge the pair i and j into a single cluster

3. Calculate the distance to the other clusters

4. Repeat steps 1 and 2 as often as desired

In the calculation of the distance in the third step we choose the following approaches

• Complete linkage: the distance to the other clusters is set to the maximum of the
two distances of the merging clusters (Anderberg 2014). The maximal distance
corresponds to a minimum in the absolute value of the correlation.

• Single linkage: the distance to the other clusters is determined by the minimum of
the two sets to be merged (Anderberg 2014; Gower and Ross 1969). The minimal
distance corresponds to a maximum in the absolute value of the correlation.

• Average linkage: the distance to the remaining clusters is calculated as the equally
weighted average of all merged cluster elements (Anderberg 2014).

Furthermore we apply the ward algorithm, where the criterion for selecting two clusters
to merge is such that the variance within them becomes minimal (Anderberg 2014;
Murtagh and Legendre 2014; Ward Jr. 1963). This approach should lead to the most
homogeneous clusters, while our three linkage algorithms are based on the correlation
with the complete linkage reacting most conservative to correlation, the single linkage
most aggressively and the average linkage providing a middle way between these two.
To calculate the distance in step 3, there exist several algorithms, which all result

in different cluster constituents. In order to choose the ’best’ one, we use the concept
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of equally sized clusters: If we seek to form m clusers out of n assets and one of them
contains n−m+ 1 assets, we end up with the most unequal cluster size possible. In this
extreme case the likelihood for a randomly chosen asset to be in the one large cluster is
highest and its cluster weight lowest. In contrast clusters are uniformly distributed in
size the sensitivity of the cluster formation is higher. To gain a homogeneously sized
clustering we use the (Herfindahl) Hirschman index (Hirschman (1964, 1980)).

In our application, the ward algorithm, where the criterion for selecting two clusters
to merge is such that the variance within them becomes minimal (Anderberg (2014),
Murtagh and Legendre (2014), and Ward Jr. (1963)) is the one which satisfies best our
specifications. In general, it leads to the most homogeneous clusters, due to the minimal
variance criterion, while other linkage algorithms like complete linkage, single linkage
or average linkage are based on the correlation. Complete linkage is reacting most
conservative to correlation, the single linkage most aggressively and the average linkage
providing a middle way between these two. All algorithms result in a hierarchical,
which does not make any statement about the clusters itself. Instead they are formed
by cutting the hierarchical tree horizontally at a height such that the desired amount
of clusters is formed.

In a final step we transform the each cluster into a cluster-portfolio, which is a
sub-portfolio of the initial portfolio of all assets. In general the weights needed are free
parameters and a choice for their determination is needed. As examples one can use
the market capitalization, like in the NASDAQ-100 index, weights according to the
position in the portfolio observed or simple equal weights. Since the first two methods
impose an external structure, which prefers some assets to others, we use the third
option of equally weighting all assets within each cluster-portfolio.

This concludes the clustering approach. We now turn to the PCA as an alternative
technique to reduce the dimensionality. Here the given data X in the high dimensional
Cartesian coordinate system are projected onto another orthonormal coordinate system,
which is based on the eigenvalue decomposition of the data’s covariance matrix.

Let Σ = Var(X) ∈ Rn×n denote the empirical covariance matrix. Than there exists a
transformation (Bronstein 2012) as:

Σ = P ΛP ′ Λ ∈ Rn×n, P ∈ Rn×n (3.15)
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3 Detecting Structural Breaks in large Portfolios

where P is the matrix formed by the eigenvectors of Σ and Λ as a diagonal matrix with
the eigenvalues λi on its diagonal. The matrix of principle components is calculated as
Z = X · P . This is the representation of the given data in the eigenvector coordinate
system. For the variance of the "rotated" data we get

Var(Z) = Cov ((X P )′, X P ) = Cov (P ′X,X P )

= P ′Cov (X ′, X)P = P ′ΣP = Λ (3.16)

which is a diagonal matrix and therefore uncorrelated data in the rotated system.
By using only the k largest eigenvalues, we can now reduce the dimensions in the

orthonormal base. The obtained data is an approximation of the original data but with
only k dimensions in the orthonormal base and n dimensions in the Cartesian space, cf.
Hair et al. (2006). But the following concern comes with the application of the PCA:
As the dimensions increases, we have to neglect relatively more dimensions, since only
a rather small number of time series in the basis of the eigenvectors. We are then left
only with the high volatile dimensions and a structural break detected therein can be
regarded as a rather big and thus most obvious break. In this light we like to address
the error made in neglecting small volatile dimensions. In general, the variation in the
small eigenvalues corresponds to noise in the estimation of the true correlation matrix,
cf. Laloux et al. (1999, 2000) and Plerou et al. (2002). As a result one can obtain a
more accurate estimate when intentionally not using these dimensions. Thus is not true
that a reduction in the percentage of variation represented by the first k eigenvalues
likewise reduces the likelihood of detecting a structural break. Improving the accuracy
of the estimated correlation may even occur, since noise has been neglected. Concluding,
we only have to worry about the information associated with eigenvalues, which are
smaller than the fourth largest eigenvalue and larger then this threshold eigenvalue.

3.2 Limiting distribution and finite sample evidence

The two methods of clustering and PCA are two approaches to reduce the dimension of
the problem at hand resulting in a linear transformation of the given data and forming
actually indices or sub-portfolios, which are analyzed in the Euclidean or another
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3.2 Limiting distribution and finite sample evidence

"Eigen" space. Both transformations are linear. Thus the limiting distribution should
not change. An economic interpretation is the following: Suppose one chooses stocks
from a given universe and creates portfolios thereof. This investor then could use a
test to analyze the correlation structure, resp. breaks in the structure between her
portfolios. No matter how the weights are constructed, e.g. all weights are unequal to
zero (PCA case) or some of them are zero (hierarchical tree case), a valid financial time
series is created.
To test this, we simulate 2500 realizations of 1000 assets with 1500 time points

and a fixed random correlation matrix. We randomly choose the eigenvalues in the
interval [1, 10] and use the columns of a random orthogonal matrix as the corresponding
eigenvectors. Figure 3.1 shows the histogram of the test statistic on the left hand side
and the corresponding empirical p values on the right hand side.

Figure 3.1: Empirical p values for the cluster and PCA approach. The figure
shows the p values of the test statistic for both the cluster and the PCA approach.
The original test statistic of Wied (2015) with 4 assets is denoted with bc.

We do not find deviations from the original limiting distribution in Wied (2015) for
both methods. The p values seem to be uniformly distributed, so we conclude, that
the limiting distribution does not change. Since these transformations are all linear,
this result is what one can expect and the test seems to have the same validity as the
original. Furthermore, we replace the generic correlation matrix from above with an
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3 Detecting Structural Breaks in large Portfolios

empirical estimate from a sample of 50 stocks from the NASDAQ-100 index. Applying
the same methodology as above, we find a very similar shape of the test statistic and of
the distribution of the p-values.
The finite sample properties of the proposed test using a Monte-Carlo simulation

clarifies what breaks are detected, resp. what it means, if the test statistic exceeds
the critical value. We illustrate these for different number of observations per time
series t ∈ {500, 1000, 2000, 4000}, and simulate such from a 100-dimensional normal
distribution. In one case the correlation matrix is kept fix, in the other case we include a
break in the middle of the time series. To do so, we change randomly nρ∗i,j ∈ {100, 1000}
entries in the correlation matrix and transform it in a positive definite matrix. It is
then used for the second half of the time series. We use 3, 4 and 5 clusters (with
corresponding critical values of 2.27, 4.47 and 6.60) and check if the maximum of the
test statistic is larger than the corresponding critical value. We repeat this process 2500
times. The result is shown in table 3.2. In all cases we find an increasing power in the
number of reduced dimensions, but as a trade off the size distortion increases as well.

The upper part of the table shows the empirical rejection rate given H0 holds. For the
PCA case, the size distortion seems to converge monotonously to the level of 5%. For
the hierarchical tree, we find comparable sizes of size distortions but the convergence
process seems not to be monotonous. The middle part corresponds to the case, where
the break in the correlation structure of size nρ∗i,j = 100 occurs. Keeping in mind that
in a portfolio of 100 assets, a change in 100 pairwise correlations corresponds to roughly
one asset changing its correlation to all other assets. So this is a rather small break in
our setting. We find for nearly all cases a higher rejection rate for the hierarchical tree
approach than for the PCA.
The lower part corresponds to the break size of nρ∗i,j = 1000. Compared to the

100 · 99/2 = 4950 pairwise correlations overall, this is a rather big break. We find higher
rejection rates compared to the small break before. This is what one expects, since
the L1 norm increases and thus the probability of an exceedance of the critical value.
In contrast to the case before, the rejection rates are higher for the PCA than for the
hierarchical tree approach.

This suggest that no approach dominates the other and when using both approaches
one can create two information sets, with a non-empty overlap. Compared with the
original test, we find comparable rejection rates and size distortions for a break in
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3.3 Correlations within and between clusters

Table 3.2: Empirical rejection rate (in percent) of H0 given a portfolio of 100 assets
and different number of clusters, given the 95% quantile.

reduced dimensions PCA reduced dimensions HT

number of observations 3 4 5 3 4 5

∆ρ∗i,j = 0

500 3.28 2.88 2.18 5.12 3.78 3.87
1000 4.58 3.81 2.66 4.54 4.67 3.13
2000 4.74 3.97 4.00 4.10 4.42 5.51
4000 4.80 4.67 4.14 4.32 4.93 3.97

∆ρ∗i,j 6= 0, nρ∗i,j = 100

500 6.06 10.31 16.56 11.76 12.75 19.43
1000 5.30 10.81 26.00 12.88 27.18 23.18
2000 7.75 17.00 35.31 16.38 14.56 43.56
4000 13.69 23.56 50.88 22.50 42.50 50.69

∆ρ∗i,j 6= 0, nρ∗i,j = 1000

500 75, 14 97.43 99.86 46.29 60.85 77.57
1000 74.86 98.57 100 68.14 92.86 96.43
2000 84.14 99.43 100 87.00 98.29 99.43
4000 92.43 99.86 100 88.43 100 100

1000 pairwise correlations. This suggests that when dealing with big breaks in a large
portfolio the upstream clustering creates time series which can be treated as in the
original test, such that the test has comparable finite sample properties.

3.3 Correlations within and between clusters

In the following we answer the question which correlation breaks we are able to detect.
Using the notation of figure 3.2, we check for the correlation between clusters (ρ) and
not for correlations within cluster (ρi,j) in the first place.

An implicit assumption is that the correlation changes within a cluster are transmitted
to the clustered time series and thus are implicitly detectable. Consider the situation in
figure 3.2. We have 4 assets (symbolized as circles) and form 2 clusters (symbolized as
ellipses). Suppose the time series of the single assets are denoted as xi for i ∈ {1, 2, 3, 4}
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3 Detecting Structural Breaks in large Portfolios

Figure 3.2: Notation for correlations within and between cluster. Shown are
4 assets (circles), where 2 assets are included in a cluster (ellipse). The correlation
between clusters is denoted as ρ and the correlation between assets i, j as ρi,j

with zero mean and finite variance. Using the constant cluster weights wi, the clustered
time series yi are calculated as follows:

y1 = w1x1 + w2x2 (3.17)

y2 = w3x3 + w4x4 (3.18)

For the correlation between the clusters, it holds:

ρ := Cor(y1, y2) = w1w3ρ13 + w1w4ρ14

+ w2w3ρ23 + w2w4ρ24 (3.19)

Since the weights are constant over time, a change in this correlation is then a conse-
quently a weighted sum of the single pairwise correlation changes:

dρ = dCor(y1, y2) = w1w3dρ13 + w1w4dρ14

+ w2w3dρ23 + w2w4dρ24 (3.20)

It follows that the change of correlations within a cluster does not change the
correlation between clusters per se, since dρ is independent of e.g. dρ1,2. Besides a
very low probability of a change of one asset with solely one another within the cluster,
there is also the condition of a positive definite correlation matrix of the whole xi.
So a change of e.g. ρ1,2 cannot be independent of all other things, so that the other
correlations are affected as well.

To check if the cluster formation is a stable process over time, we use a sample of
50 stocks over a timespan of 1500 observations and calculate the cluster members for
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3.3 Correlations within and between clusters

each time point t ∈ [100, 1500]. We choose a lag of 100 data points to get a stable
first estimate. We can conclude that cluster changes occur frequently especially at
the beginning of the time interval which corresponds to the stability of the correlation
matrix estimation. Also there exist many breaks in the correlation structure, which are
so big, that assets would leave the cluster. In the following we simulate such breaks.
We use 4 normal distributed variables correlated with a given correlation matrix with
lengths of 500, 1000, 1500 and 2000 data points. To simulate a larger cluster, in which
only one asset changes the within correlation, we set the weight w2 randomly in the
interval (i) [0.1, 0.5], (ii) [0.01, 0.05] and (iii) [0.01, 0.5]. So we can compare the behavior
for small (i) and large (ii) clusters. Case (iii) serves as an overall assessment. We repeat
this simulation 50000 times.

As a starting point we chose the matrix

ρ0 =


1

0.7717 1

0.2597 0.1328 1

−0.0589 0.1665 0.8523 1


which is positive semi definite and has a high correlation between assets 1 and 2 and

assets 3 and 4. This matrix results in the desired clusters, so we create the situation
shown in figure 3.2. This is our starting position in each simulation and we now
distinguish the following cases:

(a) We change only ρ12: This corresponds to fluctuations within a cluster that are
not so large that the asset would leave the cluster. To do this, we set this value
to a random number in the interval [0.7, 1.0].

(b) We decrease ρ12 and increase ρ23, ρ24: This corresponds to a change of the cluster
members in a way, that assets 2, 3 and 4 build a cluster. In order to simulate
this, we set ρ12 ∈ [−0.2, 0.2], ρ32 ∈ [0.6, 1.0], ρ42 ∈ [0.6, 1.0].

(c) We change the correlations of assets 2 and 3: This corresponds to a situation where
a new clustering would result in a cluster of asset 1 and 3 and a cluster of asset 2 and
4. Thus we set ρ12 ∈ [−0.2, 0.2], ρ13 ∈ [0.6, 1.0], ρ24 ∈ [0.6, 1.0], ρ34 ∈ [−0.2, 0.2].
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3 Detecting Structural Breaks in large Portfolios

In all cases we draw from the given interval until a positive semi definite matrix with
the desired entries is obtained which is then used to change the time series’ correlation
at the middle of the simulated time span. Table 3.3 reports the detection of test, where
’BC’ refers to the situation where we have just two equally weighted assets in each of
the two clusters.
The table shows the cases (a) to (c) with the corresponding definitions from above.

In general the size of the change in the correlation structure increases from (a) to (c).
So we find a general tendency for higher rejection rates when moving from the left to
the right hand side of the table.

The table is split up into four horizontal parts. The upper one, labeled with ’BC’ is
our base case, where we simulate only 2 assets in the two clusters. we find rejection
rates of about 4%−5% for the 95% significance level, which is a very poor power. When
to size of break increases, the power converges to 1. also we find a general convergence
with an increasing number of observations. For the second part, labeled with (i) we
simulate a larger portfolio of 2-10 assets in the corresponding cluster. We find lower
rejection rates as in the base case in general, which is expected, since the break size,
relative to the number of other assets decreases. When dealing with a big break, we
find for a sufficient number of observations high detection rates. The third part, labeled
with (ii) simulates a portfolio of 20-100 clustered assets. Thus the relative size of the
break decreases even more and the rejection rates drop further. Only in the case (c),
where the break is such, that a re-clustering would lead to a switch of assets, rejection
rates converge to 1 for a realistic length of the time series. The last part, labeled with
(iii) we simulate a portfolio with 2-100 in the corresponding cluster. Thus it is located
between (i) and (ii), with rejection rates in between (i) and (ii) for the corresponding
observations and scenarios.
Concluding we find that the structural break test is not only able to detect breaks

between clusters, but it may also be able to detect larger fluctuations within (unchanged)
clusters. But this does not mean that finding no breaks between clusters means that
there are no breaks within clusters.
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3 Detecting Structural Breaks in large Portfolios

3.4 Application to a real-life problem

We now turn to the application of the before mentioned methods. In a first step we
want to check, if we can reproduce the break dates found in Wied (2015), although
using a larger portfolio. To do so, we also use the EuroStoxx-50 index which is a
widely used index on European stock markets, consisting of the 50 largest, by market
capitalization, stocks traded publicly in European countries. In a second step, we use
the algorithm described in Galeano and Wied (2014) to detect multiple breaks in the
correlation matrix of the NASDAQ-100 index.

3.4.1 Detecting a single break

We obtain the index composition of early 2015 of the EuroStoxx-50 and individual
stock prices for these constitutions from July 2005 – March 2015.
Based on this sample we form four portfolios:

(i) The portfolio of Wied (2015) which consists of four stocks from the EuroStoxx
index: BASF, Sanofi, Siemens for the time span Jan 2007 – June 2012.

(ii) An extension of the portfolio in (i) with 21 other, randomly chosen stocks from the
remaining index constitutions during the same period. This results in a portfolio
of 25 stocks and thus half of the EuroStoxx50 index

(iii) The full EuroStoxx-50 over the same time period as in (i) and (ii).

(iv) The full EuroStoxx-50 index with all 50 stocks for the full time period 2005-15.

To mimic the setting of Wied (2015) we cluster the portfolios (ii), (iii) and (iv) into
four cluster-portfolios as described in the previous section and shown in figure 3.3. The
most homogenous clusters concerning the size are obtained with the ward algorithm.

To illustrate the difference to the exogenous sector-clustering provided by the index
company we color each constituent with the corresponding sector color. The clusters
do not become totally homogenous, concerning the industry sector, when increasing
the number of assets monitored (figure 3.3). As an example, when monitoring all 50
assets, Deutsche Telekom and Telefonica are not placed in one cluster. This means,
the inevitable error generated by the clustering would be bigger using the exogenous
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3.4 Application to a real-life problem

Figure 3.3: Hierarchical trees and cluster sizes. In the upper part, the figure
shows the hierarchical trees for the portfolio (ii) and in the lower part for the portfolio
(iii) and (iv). The trees are formed by the Ward algorithm. They are cut horizontally to
form the four clusters. On the lower end of the trees we denoted the several companies
and colored them according to their supersector. In the lower part of the figure, the
number of cluster constituents is shown.

industry sectors, since companies from two different sectors may perform more similar
than two in the same sector.

In the discussion of the results we use portfolio (i) as base case and show the result
of the structural change test in figure 3.4. In the upper part, we see the actual test
statistic for the clusters in black and the principal components in the red, dotted line.
The horizontal line denotes the critical value 4.47, which corresponds to a confidence
level of 95%. A structural change is detected if the test statistic exceeds the critical
value, while the actual break date is given at the maximum of the absolute difference
between the corresponding matrices. This difference is plotted in the lower graph scaled
to one. Again, the black line shows the difference for the clusters and the dotted red line
the differences for the principal components. We detect structural changes at the 443th
data point which is 11th September 2008 in calendar date and the 460th data point,
corresponding to 6th October 2008, in line with Wied (2015). Turning to portfolio (ii)
we randomly add 21 stocks during the same period as an intermediate stage. The four
resulting clusters are shown in figure 3.3.
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Figure 3.4: Test statistic and break detection for portfolio (i) and (ii). The
figures show the resulting test statistics in the upper half and the scaled break detection
in the lower half. The black solid lines correspond to the cluster approach and the red
dashed lines to the PCA approach. The 95% confidence level is denoted by the black
dotted line and the break dates are highlighted by the corresponding vertical lines.

The result of the structural change test is shown in Figure 3.4 left hand side with the
previously described legend. The indicated break dates, as shown in the lower part of
the figure, refer to the 11th September 2008 (443rd data point) and to the 21st October
2008 (471st data point). In the PCA case, we are able to preserve 73.6% of the overall
variation. While it’s break dates lag slightly by 15 days, the clusters’ dates remain
unchanged to the base case.
Turning to our full portfolio (iii) and (iv). The formation of the clusters is shown

in figure 3.5 shows the cluster’s composition. The difference between these two is the
monitored time span. In (iii) we use the same period than before and in (iv) we use all
given information.
When we look at the principal components, we are able to capture 65.8% of the

overall variation in the data with the first four eigenvalues in both portfolios. The
resulting test statistics of the structural break test are shown in figure 3.5. We see
significant structural break both in the PCA and the clusters. The corresponding break
dates are the 30th July 2008 (413th data point) and 2nd May 2010 (870th data point)
in the case of portfolio (iii). We see a lag of nearly 2 years compared to portfolio (ii).
It is shifted towards the one in portfolio (ii) when the time interval is increased to the
whole data set in portfolio (iv). Here the corresponding break dates are the 29th July
2008 (800th data point) and the 3rd September 2008 (826th data point). Compared to
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Figure 3.5: Test statistic and break detection for portfolio (iii) and (iv).
The figures show the resulting test statistics in the upper half and the scaled break
detection in the lower half. The black solid lines correspond to the cluster approach
and the red dashed lines to the PCA approach. The 95% confidence level is denoted
by the black dotted line and the break dates are highlighted by the corresponding
vertical lines.

the results of portfolio (ii) we see that we now obtain leads which can be due the full
information set used. With this sample we illustrated the use of a test for changes in
the correlation matrix on a large portfolio where the number of assets does not allow a
direct application of the test. Instead we propose two methods, clustering and PCA, to
reduce the dimension prior to applying the test.

3.4.2 Detecting multiple breaks

We now turn to the application of the before mentioned methods. We use the stock
prices of the constituent of the NASDAQ-100 index as of November 11th, 2015. Our
observations span from January 2000 to December 2016. Thus we proxy a rather large
portfolio, although it does not represent the NASDAQ-100 index at all times, since we
do not adjust for fluctuations in the index constituents. We calculate log returns for all
series and cluster them into 3, 4 and 5 clusters.

Figure 3.6 to 3.8 show the clustered time series for reduced dimension of 3, 4 and
5. The left hand side corresponds to the hierarchical clustering and the right hand
side to the PCA. It can be seen that, while the volatility in the time series decreases
in the PCA case with decreasing eigenvalues, this is not necessarily the case for the
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hierarchical tree. In the former case, we can preserve 40.8%, 44.1% and 46.8% percent
of the total variation in the original data.
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Figure 3.6: Break detection dates for 3 reduced dimensions. The figure shows
the three clustered time series together with the associated break dates. The left hand
side corresponds to the hierarchical clustering and the right hand side to the PCA.
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Figure 3.7: Break detection dates for 4 reduced dimensions. The figure shows
the three clustered time series together with the associated break dates. The left hand
side corresponds to the hierachical clusteing and the right hand side to the PCA.

At the beginning of our time interval from 2000 onwards to roughly 2003, we find very
volatile time series. This could be connected to the Dot-Com Bubble which affected
most the technology companies. Another obvious peak in volatility is located in the
year 2008 and corresponds roughly to the default of Lehman Brothers, which is probably
the best known starting point of the global financial crisis in public. As the NASDAQ
index does not contain financial companies, figure 3.6 to figure 3.8 illustrate the distress
in the whole market, not only in the financial sector.
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3.4 Application to a real-life problem
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Figure 3.8: Break detection dates for 5 reduced dimensions. The figure shows
the three clustered time series together with the associated break dates. The left hand
side corresponds to the hierachical clusteing and the right hand side to the PCA.

The breaks in the correlation are indicated by the vertical lines in the figures and are
listed in table 3.4.

Table 3.4: Detected structural breaks in the correaltion matrix of the NASDAQ-100
index according to different clustering algorithms and number of reduced dimensions.

reduced dimensions cluster break dates

3 ht 3.9.2008 2.5.2013 18.8.2015
pca 22.5.2002 9.4.2013 9.10.2014 17.9.2015

4 ht 5.6.2008 8.9.2010 18.8.2015 30.9.2016
pca 30.7.2007 9.10.2012 24.9.2014 18.9.2015

5 ht 5.6.2008 21.6.2011 30.7.2015
pca 31.10.2007 3.5.2012 19.9.2014

In most cases, we find comparable results for the two clustering algorithms, for a
given dimension. In two of the three cases, we find the same number of breaks, but
we find deviations in the time location in general. A very short time difference is a
break identified in 3 dimensions in 2013. Here the time difference is roughly one month
when comparing the PCA with the hierarchical tree. As a more general example, for
dimensions 4 and 5 the break date differs in about a year time difference. In the case of
3 dimensions, the first break is located in 2002 for PCA, whereas it is located in 2008
for the hierarchical tree. The latter case corresponds to 12 days before the bankruptcy
of Lehman Brothers.
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3 Detecting Structural Breaks in large Portfolios

Keeping the clustering algorithm and looking at different dimensions, we find very
similar break dates. For the hierarchical tree, a break in the second half of 2008 is
indicated for all dimensions, as well as a break at the beginning, reps. middle of August
2015. For the PCA case, a break in the 3rd quarter of 2007, one in September 2014
and in September 2015 is located. Thus we are confident that these are actual breaks.
Additionally there are four other breaks in the range from end 2010 to end 2012. The
break in 2010 is only indicated once, as well as the one in 2011. The two breaks in 2012
for the PCA case in 4 and 5 reduced dimensions have a five month time difference.
On the other hand, we also find some outliers. As mentioned before, the first break

in 2002 in the PCA case for 3 dimensions is not indicated by any of the other 5
tests. Another example is the break in 2016 detected by the hierarchical tree with 4
dimensions.

3.5 Conclusion

Monitoring the correlation matrix of a portfolio is a daily task in financial portfolio
management and modern portfolio optimization heavily relies on the matrix in calculat-
ing the portfolio weights. Likewise triggers the occurrence of changes in this correlation
structure, a structural break, a portfolio adjustment. While test for structural breaks
are readily available and discussed in the literature, they can only deal with a low
number of assets, e.g. Wied (2015) with only four assets. In practice, however, we most
commonly have a situation in which the number of assets by far exceeds the available
time series. Thus so far no test on structural changes in the correlation structure of
typical portfolios was possible.
In order to tackle this dimensionality problem, we propose the use of a hierarchical

tree as foundation for cluster formation. This technique has already applied to cluster
financial markets, especially in the econophysics literature. As an alternative, the
standard principal component analysis is used to form sub-portfolios. In a second stage
a test on structural changes is then applied to the reduced problem.

Using a Monte Carlo simulation, we showed that we are able to extend the original test
to a larger portfolio in the sense that we can reproduce the power with the corresponding
size distortion as the original test for a sufficient big break in the correlation matrix for
a large portfolio. Although we check for breaks between clusters we showed that, due
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3.5 Conclusion

to the fact of a positive semi definite correlation matrix, a change in the correlation
structure within a cluster translates to some extend to the correlation between the
clusters. We quantified this effect through a simulation as well.
Finally we applied both techniques to the case of constituents of the NASDAQ-100

index over a time period of 17 years. We do not check the index itself (since there are
fluctuating constituents), but simulate a rather large portfolio compared to the 4 assets
in the example in Wied (2015). We found some breaks in the correlation structure,
which are independent of the reduced dimensionality and one, which is independent of
the clustering approach at the first stage.
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4 Income distribution in troubled times:
Disadvantage and dispersion dynamics in
Europe 2005-2013

The following is based on Bowden, Posch, and Ullmann (2017b)

Income inequality has been a perennial topic of economic and social interest, but
never more so than the present, where dramatic changes have followed within just a
short span of time. Performance driven management rewards seen as excessive have
attracted much public attention. But other influences have been at least as pervasive.
Technological displacement for middle management, import competition from cheaper
emerging countries, free trade agreements, adverse fallouts from public spending bubbles,
commodity price reversals, the global financial crisis, are all some of the causal influences,
combining as the perfect storm in their fallouts for remuneration and employment down
the line. The empirical content of the present paper, namely the ten years in Europe
just prior to and succeeding the Global Financial Crisis (GFC), reflect changes of this
sort. To what extent they represent welfare loss, and how to measure it, requires a
methodology that is itself adapted to the economic and social context. Metrics are one
thing; meaningful metrics within context are quite another. The agenda of the present
paper is to develop and apply dual metrics for asymmetry and spread that can in turn
be rationalized within a social welfare framework.

Metrics for income distributions are part of a wider body of knowledge into social
welfare functions developed and debated over many years. But establishing a consensus
has not been easy. At the most abstract level, Goodman and Arrow (1953) showed
that the possibility of a consistent ordinal social utility, as earlier envisaged by Bergson
(1938) and Samuelson (1947), was limited at best and certainly would not extend to
universal agreement among the subjects themselves as to a single best metric for income
inequality. Proposed axiomatic bases list desirable characteristics of possible metrics;
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4 Income distribution in troubled times

Cowell (2009) and Kraemer (1998) are useful surveys. But while criteria such as the
Pigou-Dalton transfer principle (Dalton 1920; Pigou 1912) are widely accepted, others
leave space for interpretations or disputes, e.g. as to whether absolute or relative scale
invariance should be imposed.

The empirics have therefore focused upon metrics for income inequality that appeal in
designated ways to the observer’s own preconceptions as to fairness. Still the best known
and most widely accepted metric of this kind is the Gini coefficient, which measures the
non-alignment of the accumulated percentage of income with the progressive numbers
of the people enjoying it. As the Gini coefficient is not able to represent different
social preferences Atkinson (1970), Donaldson and Weymark (1980) and Yitzhaki
(1983) propose a parametric extension, where the parameter can account for different
preferences (Greselin and Zitikis 2015). Sen (1970) proposed a metric that combines in
itself both the mean income and the complement (1-G) of the Gini index.

But the Gini has several downsides, both statistical and interpretive. One such
difficulty is the ambiguity of the coefficient itself. Since it reflects the integral of the
difference of the 45◦ line and the Lorenz curve, one can mirror the Lorenz curve on
the orthogonal line that intersects the 45◦ line in the middle, and end up with just
the same Gini. Apart from this, there is a potential ambiguity problem arising in
intertemporal or cross country comparisons. Atkinson (1970) and Davies and Hoy
(1995) point out that where two Lorenz curves intersect it may not be possible to rank
the Gini coefficients, even using the same underlying social welfare function; only with
further assumptions about the variance, this is possible. The problem is a general one
and applies to all measures based on the Lorenz curves. As a possible alternative, the
Theil index (Theil 1967) uses the distribution’s Shannon entropy in order to measure the
expected information content of the distribution, which is then interpreted as inequality.
But as Sen 1970, p. 36 put it, ’... the average of the logarithms of the reciprocals
of income shares weighted by incomes shares [the Theil index] is not a measure that
is exactly overflowing with intuitive sense.’ See also Conceição and Ferreira (2000).
On the other hand, the Theil index does obey the axiom of decomposability (Foster
1983; Kraemer 1998), which means that the measure for the whole distribution can be
expressed as a weighted sum of the measures applied to subgroups. Bourguignon (1979)
showed that the Gini coefficient, together with other proposed metrics, does not have
this property.
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But a more contextual problem with the Gini index is that it lacks direction as to the
source of the inequality, and in this sense fails to separate out directional skewness from
dispersion or spread (Bowden 2016b). Specifically, it does not properly pick up the kind
of inequality that would concern most observers, namely positive distribution skewness,
meaning too many people on low incomes. Following the precept of Dalton (1920) that
any measurement of inequality has implicitly a social welfare reference, Atkinson (1970)
also Foster, Greer, and Thorbecke (1984), address the direction problem by means of
an observer chosen parameter that reflects a greater, or lesser, observer preoccupation
with the positive skewness in the income distribution. Formally, the Atkinson index
can be transformed to the Theil index and thus both indices belong to the class of
the generalized entropy measures, which is a single parameter family (Shorrocks 1980;
Cowell 1980). In turn, there exist generalizations from the single parameter family to a
two parameter family (Foster and Shneyerov 1999).

An internal rather than external vantage point using conditional expectations and
thus comparing ’poorer’ with ’richer’ people is given in Eltetö and Frigyes (1968). The
reference point is set as the mean income of the population. The measures are given by
fractions of the conditional expectation of incomes larger, resp. smaller than the mean
income and the mean income itself. It can be shown that the three measures can be
condensed to the relative mean deviation (Kondor 1971).

In a recent contribution by Bowden (2016a) all possible reference points are used
in the calculation, one for each subject in the population. The v-index (standing
for disadvantage or envy) looks at inequality from the point of view of the subjects
themselves. On the average, do people think that others are better off, or worse off,
than themselves? The resulting metric can be simply expressed in terms of the means
of ancillary distributions, the left and right unit entropic shifts of the original. As an
asymmetry measure, the v-metric adheres to all the standard axioms or prescriptions
that have been proposed in the general statistics literature (Kraemer and Conring
2017). However, its special usefulness in the current context originates from two
properties. The first is the connotation as a relative advantage metric. The second
arises from an inherent duality property whereby a simple internal change of sign
yields an accompanying metric for the spread of incomes. Dispersion of the income
distribution can be viewed as a ’noticeability’ property. Wide dispersion attracts more
attention to very high or very low incomes, in this context relative to my own. The
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dual d-metric for spread therefore adds a further measure of social welfare. Taken
together, the two metrics, v for directional asymmetry and d for dispersion, resolve
the inherent ambiguity of the Gini coefficient in terms of asymmetry and the spread
Bowden (2016a).
All this suggests that three key metrics are involved in social judgments about

income distribution: the mean (or median), the directional skewness, and the dispersion
(spread). A cardinal utility analysis would call on some optimum weighting of the three
welfare dimensions: mean, asymmetry, and dispersion. But in an ordinal framework,
one can adopt an indifference curve approach, reminiscent of the ordinal utility Bergson-
Samuelson framework for a social welfare function. Longitudinal studies over time in
the three key metrics can be used to study comparative welfare economics between
countries. Comparisons of this kind are facilitated if the metrics for asymmetry and
spread fall within a common framework. The duality between the v- and d-metrics
ensures both dimensional conformity and a convenient phase plane diagram over time.

The empirical application utilizes such a framework to study changes that took place
pre- and post- the Global Financial Crisis in Europe. This is not to say that the
GFC and its aftermath were by any means the sole causal influence. These were also
the times of structural change arising from import competition, the oil price rise and
fall, and other contributing factors. The result was some dramatic changes in income
distribution metrics and implicitly, the rise or fall in their latent social indifference level
surfaces (section 4.1.3). Nor were these changes equally severe across the respective
countries. The empirical work of the present paper translates the experiences of 15 of
the major European countries in the form of dynamic phase planes between directed
asymmetry and spread. It turns out that there are marked differences, which can be
categorized into two groups, the risers (’bad’) and the fallers (’good’). These tend to
be uncompensated by relative difference in their respective mean income series.

4.1 Methodological review

In what follows the conceptual basis is reviewed, starting with the metrics for dis-
advantage as directed asymmetry (section 4.1.1), followed by spread (section 4.1.2).
Mathematical details are kept to a minimum; a more comprehensive treatment can
be found in Bowden (2016a, 2016b, 2012), also Kraemer and Conring (2017) for the
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4.1 Methodological review

axiomatic basis as an income inequality metric. Section 4.1.3 turns to consideration of
the social welfare; the asymmetry and spread metrics for any given year can be viewed
as analogous to points on a social welfare indifference curve. Over successive years this
curve may itself change, with social welfare shifts as an outcome.

4.1.1 The asymmetry metric

Let Y be the income random variable, defined on R+ with cumulative distribution
function F and density f . Suppose my own income is y. The metric for asymmetry
derives from comparisons between incomes above mine and those below. The average
of those below is the lower conditional expectation µl(y) = E [Y |Y ≤ y] and for those
above, µr(y) = E [Y |Y > y]. Relative to those above and below, my net disadvantage is

v(y) = (µr(y)− y)− (y − µl(y)) . (4.1)

Taking the expected value over the entire distribution F (y) gives a scalar metric that
represents the average degree of peer relative advantage:

v = E (v(y)) = µL + µR − 2µ. (4.2)

Here µ is the mean of the original or natural income distribution. The two terms µL, µR
also refer to means, but in this case of ancillary distributions with densities defined by

fL(y) = ξL(y)f(y); fR(y) = ξR(y)f(y), (4.3)

where ξL(y) = − lnF (y); ξR(y) = − ln (1− F (y)) are factors (technically, Radon-
Nikodym derivatives) that shift the original distribution respectively to the left and
right. The corresponding distribution functions are given by

FL(y) = F (y) (1 + ξL(y)) ; 1− FR(y) = (1− F (y)) (1 + ξR(y)) (4.4)

In such terms, the metric 4.2 becomes easy to compute, starting with the original
histogram for the income distribution. Expression 4.2 can be more compactly expressed
as v = 2 (µc − µ) , where µc is the mean of the centred or average shift Fc(y) =

(FL(y) + FR(y)) /2 . Noting that µ, µl, µr are all commensurate first moments, the
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standardisation ṽ = v/µ is recommended for time series or cross section applications.

The resulting metric v is explicitly a directional asymmetry metric. A value v > 0

means that the distribution is positively skewed, so that µ > xm , the median, while
if v < 0 the reverse is true: µ < xm. Unlike textbook skewness diagnostics such as
the third order moment, the v-metric has contextual reference, in this case to how
people feel about their comparative income. Additionally, since the existence of higher
moments in income distributions cannot be granted in general (Kleiber 1997), it is
possible to assess skewness for a more extended set of distributions.

Figure 4.1 illustrates with the Norwegian monthly disposable income data (truncated
at 200,000 NOK). Over the time span 2005 - 2013 the distributions have become more
symmetric, manifested by the corresponding v-metrics, though still with some way to
go towards perfect symmetry (v = 0). It should further be noted that the mean has
increased over the years. The standardised values ṽ are respectively 0.078, 0.064 and
0.036 (cf. table 4.3).

0.933

0.871

0.913

0.078

0.064

0.036

Figure 4.1: Distribution of the monthly disposable income in Norway.
Shown is the histogram of the monthly disposable income of Norway for the years
2005, 2010 and 2013. The table shows the asymmetry and dispersion metrics relative
to the mean income.
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4.1.2 The dual dispersion metric

A metric for dispersion or distribution spread that is dual with respect to the v-metric
is derived by simply changing the separating sign in expression 4.1. Thus the function

d(y) = (µr(y)− y) + (y − µl(y)) (4.5)

can be interpreted as a dispersion penalty function. This is a two sided function rising
away from the median in either direction. Its expected value is given by

d = E (d(y)) = µR − µL. (4.6)

Note that d > 0 and by construction, d > v. In turn, this can be standardised as
d̃ = d/µ. Several rationales exist for the interpretation of d as a spread or dispersion
metric. It is equal to the total area under the partition entropy function, which refers to
the distribution of uncertainty as to whether Y ≤ y or Y > y as y varies along its range.
Bowden (2012, 2016b) contains further details as to this link. A related rationale runs
in terms of the accumulation function of stochastic dominance theory. A distribution
for which F (y) slopes more gradually will always have a higher value for the metric d.

For the Norwegian example as in figure 4.1, the d measure has decreased over the
given horizon. The effect is accentuated in the standardised versions d̃, where the values
are 0.933, 0.913 and 0.871y (cf. table 4.3). So the net effect, taken in conjunction with
d̃, is for a narrowing of the distribution spread together with diminishing asymmetry.

4.1.3 Social welfare aspects

The v-metric satisfies a number of standard criteria for income distribution metrics,
such as invariance under translation and scale, or under internal transfers that do
not affect rankings, the ’Robin Hood’ principle (Kraemer 1998; Kraemer and Conring
2017). It also straightforward to show that the dispersion metric d is invariant under
translations, proportional under scaling (d(c · y) = c · d(y); c > 0), and increases under a
median preserving spread, i.e. is a dispersive ordering (Jeon, Kochar, and Park 2006).

In addition, the three metrics, namely v for asymmetry and d for spread, together
with µ (or the median) for central tendency, provide potential cues for thinking how the
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average person might react to the publication of income data or an income distribution
histogram. A positive skewness indicator v will indicate that the average person is net
disadvantaged relative to those below and above him or her on the scale. This will
be more noticeable where the distribution has a wider spread. And in both cases the
reaction will be moderated when the average worker’s income has itself risen.

The foregoing suggests an ordinal social welfare function, geared to the average
worker, of the general form

SWF = Ψ (µ, v, d) , (4.7)

with ϕ1 = ∂Ψ
∂µ

> 0; ϕ2 = ∂Ψ
∂v

≶ 0; ϕ3 = ∂Ψ
∂d
< 0 . As a further aid to interpretation,

suppose that ϕ is separable between µ and v, d so:

SWF = Ψ
(
µ, ϕ

(
ṽ, d̃
))

. (4.8)

This would certainly be the case if the parent function (4.7) was homogenous in its
three arguments, but it is not necessary to introduce such a restriction.

As it stands, the form (4.8) could be interpreted as saying that the average worker
looks first at the spread and asymmetry in relation to his or her own income, then
modifies any reaction if the personal income is higher or lower during any given year.
For any given income there is therefore a set of indifference curves (level surfaces) as
between spread and skewness. However, these may not be uniformly concave or convex.
For as skewness (v) becomes more positive, it requires progressively lower dispersion (d)
to materially lessen the envy. By way of contrast, if v becomes more negative, it might
require a progressively higher spread to preserve the same social utility. So the social
indifference curves relating skewness to spread might therefore be sigmoid in shape.

4.2 The European experience: temporal phase plane

During the years 2005 - 2013 Europe passed through a cycle of boom and in some
cases, bust. Although there was a common exposure to the GFC, recovery was far from
universal across the zone. In part this was due to differing exposures to private and
public sector debt. In addition, specific casual influences differed as between individual
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countries. Oil prices recovered quickly between 2009 and 2013, to the benefit of producers
such as Norway, the Netherlands and the UK. A number of countries, including Poland
and the Czech Republic joined the EU in the course of its 2004 enlargement. Some
countries were impacted more than others by the rise of manufactured imports from
China and Vietnam. Data availability precludes coverage of subsequent events such as
the collapse of oil prices and more recently the refugee crisis. The empirical analysis
that follows is based on data drawn from Eurostat, EU Statistics on Income and Living
Conditions (2013). The survey for creating the dataset started in 2003 with six members
of the EU and spans 32 countries in the year 2016 (Eurostat 2016b). It was the first
dataset which provided a longitudinal and cross-sectional micro-level dataset Iacovou,
Kaminska, and Levy (2012). Since we do not try to quantify effects on the income
distribution separately, discussion is confined to the cross-sectional dataset. The subset
selected for detailed analysis covers 15 European countries between 2004 and 2013. In
our analysis, we use the disposable income on the household level. Consistent with
Eurostat (2014), we correct for different household sizes ending up with an equivalised
household income, which is assigned to the corresponding household. Following Kerm
(2007) we winsorize our data, confining its scope to nonnegative values and employing
the 99.5% quantile as an upper threshold. Incomes are converted from local currencies
to comparable US Dollars based on the corresponding purchasing power parity ratios,
provided by the Wold Bank (WorldBank 2016b).

4.2.1 Dynamics with the Gini index

A preliminary check is whether the Lorenz curves do intersect in our dataset. Table 4.1
shows the number of intersections for the Lorenz curves in the case of Germany. In only
five out of 28 combinations the curves none are found. Since the assumptions about
the relative variance required for intersecting curves are not met, it would therefore not
be legitimate to compare the Gini coefficients between intersecting years. Furthermore
when moving to a cross-sectional perspective, the number of comparisons of Lorenz
curves will increase exponentially and with it the incommensurability of the Gini’s
within time or across countries.

Although comparison between different Gini values is non trivial, most analyses use
the Gini, resp. it’s temporal changes and try to explain these. That is why we want to
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Table 4.1: Number of intersections of Lorenz curves for the disposable income in
Germany

2006 2007 2008 2009 2010 2011 2012 2013

1 1 1 1 5 1 4 5 2005
5 3 3 2 2 2 3 2006

5 0 2 2 0 1 2007
2 0 4 0 2 2008

2 10 2 3 2009
1 2 5 2010

0 3 2011
3 2012

clarify the correlation between the Gini and the v and d metrics, independently from
the fact from above. Formats in figure 4.2 show the temporal paths of the Gini measure
(dashed, blue), the v metric (solid, red) and the d metric (dotted, green). On the first
sight, we find a rather strong correlation between the d metric and the Gini whereas
the correlation between the v metric and the Gini is not that strong.
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Figure 4.2: Temporal paths of inequality measures. The figures show scaled
temporal paths of the v, d and the Gini measure for different countries. For clarity,
the time series have been scaled to a unit mean.

To analyze the pattern further, we use a sample cross correlation function on the log
returns of the inequality metrics (cf. Cryer and Chan 2008, p. 265ff). As an example,
the cross correlation functions for Germany are plotted in figure 4.3. Shown are the
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4.2 The European experience: temporal phase plane

lags h ∈ {−3, . . . , 3}. The 5% significance level is denoted as the dotted blue line. At
lag h = 0, only the right part shows a value, significantly different from zero. For all
the other lags, we find a non-significant correlation.
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Figure 4.3: Sample cross-correlation functions for Germany. The figures
shows the sample cross correlation functions for Germany. The left part shows v and
d, the middle part v and Gini and the right part d and the Gini. The 5% confidence
level is denoted by the blue, dashed line. Shown are lags h ∈ {−3, . . . , 3}

We repeat this analysis for all 30 countries and out of these 30 cases, we find
correlations significantly different from zero in 27 cases for the Gini and the d metric,
16 cases for the Gini and the v metric and 22 cases for the v and d metric. This
supports our graphical interpretation of a strong correlation of d and Gini, whereas the
correlation of v and the Gini is not that strong.

4.2.2 Dynamics in the v-d plane

A dynamic phase plane analysis turns out to be an effective way of highlighting both
the similarities and differences. For space reasons the phase diagrams are reproduced
only for the more major economics, or else those that were subject to particular stress.
Diagrams for all the remaining European countries can be obtained from the authors.

Figure 4.4 plots the normalized v metrics against those for spread on the horizontal
axis for the year 2013 for all countries, resp. figures and B.1 for each country from
2004-2013 in the appendix. No country has a negative v metric, hence the positive
vertical half axis. The countries differ as to the observed range of the normalized
asymmetry and spread metrics ṽ, d̃ , and this is reflected in the axis ranges of the
respective diagrams. As a visual aid, directional links are employed to make the time
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sequence more identifiable. The respective time periods of data availability can be
identified from the beginning and end dates of these sequences.

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

AT

BE

BG

CH

CY

CZ DE

DK

EE

ES
FI

FR
GR

HR
HU IE

IS

IT

LT

LU

LV

MT

NL

NO

PL

PT

RO RS

SE

SI

SK
UK

0.05

0.10

0.15

0.20

0.9 1.0 1.1 1.2 1.3

d / % of mean return

v 
/ %

 o
f m

ea
n 

re
tu

rn

Figure 4.4: Phase diagram in 2013. Shown is the phase diagram for all countries
in the year 2013

As a useful if somewhat imprecise generalization, the respective v-d dynamics can be
categorized into three groups, provisionally labeled the ’inequality risers’, the ’inequality
fallers’; and ’mixed’ where the trend is less clear. Table 4.2 lists the countries in this
format. Further details about these groups and their constituents are provided in Table
4.3. There, the first column gives the average GDP per capita change over the available
data horizon (WorldBank 2016a) for each country as the third dimension of welfare
analysis (cf. expression 4.8,), together with the overall ranking of the growth. There is
no clear association on this count between inequality risers and fallers. Also reported
are the asymmetry and dispersion parameters before, at, and after the GFC together
with the corresponding ranking within the 15 countries. Comparative rankings are not
automatically responsive to individual metric changes, though there is some effect with
inequality increases.

What the data do show is that the impact of economic events has varied between the
European countries. For some of the countries in the upper right part of fig 4.4, bad
economic times affected more at the low end of the income scale (such as Italy, Spain
and France); while in Portugal the burden has been spread more uniformly. This is
also true of Germany and the Netherlands, even though the economic impact was more
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4.2 The European experience: temporal phase plane

Table 4.2: Secular inequality trends over the sample period from 2004 - 2013

Inequality risers Inequality fallers Mixed
v, d rise over time v, d fall over time

Austria Czech Republic Belgium
France Germany Hungary
Greece Ireland Italy

Netherlands Norway Spain
Poland Sweden
Portugal

United Kingdom

muted. Newer members of the European Union have fared better in this respect. The
Czech Republic, Hungary, and Poland, all admitted in the 2004 Enlargement, share a
common experience of falling income inequality and a healthy average GDP growth
rate, although Hungary is labeled as a "mixed" country (cf. fig B.1 for details).
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4.3 Determinants of income inequality

4.3 Determinants of income inequality

In the following we assess which economic observables influence the income inequality
measured by our v and d.1 The heterogeneity of both v and d is shown in figure 4.5.
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Figure 4.5: Boxplots for v and d per country. The upper box-plot shows the
v-Index per country and the lower box-plot the d-Index per country from 2004 to 2013.
The whiskers span over the 1.5 interquartile distance.

The upper part corresponds to the v-index and the lower part to the d-index. Shown
are box-plots per country, i.e. the box spans from the lower to the upper quartile and
the whiskers denote the 1.5 interquartile distance. We find a rather stable observables
of inequality within a country but rather big differences between countries. This is in
line with Li and Zou (1998), where data from 1947 to 1994 where used. E.g. Bulgaria,
Latvia or Portugal, as countries on the upper scale on the inequality scale, show the
highest inequality, when looking at the median and no observation lies in the observation
of e.g. Norway or Sweden, which are located at the lower end of the inequality scale.

In order to account for this heterogeneity, we use the following fixed effects model:

yi,t = αi +
∑
n

βnx
n
i,t + εi,t (4.9)

where yi,t denotes the v-index, resp. the d-index of country i at time t and the xni,t the

1We thank Kevin Dresmann, who finalized and calculated the following models during his Master
Thesis, which I supervised.
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4 Income distribution in troubled times

independent variables corresponding to country i at time t. Due to different scales of
our observables, we use standardizes versions of the variables, discussed below, e.g. we
scale them to mean zero and standard deviation one. Other analyses (cf. Nielsen and
Alderson 1995; Lee 2005) use a random effects model, where one has to assume that
the constants αi are uncorrelated with all other regressors (Wooldridge 2010). Since
this seems rather implausible, we use the fixed effects model, which "... can lead to
insignificant coefficients in statistical tests ..." (Lee 2005, p. 168). Our model choice is
also supported by a Hausman-Test, which rejects a random effects model at least at
the 5% significance level.
All our regressors are listed in table 4.4, together with their abbreviations, used

in the following, the corresponding literature, where the effect of the corresponding
regressors on inequality is analyzed, and the origin of the data we use. Also we group
the independent variables into three groups, where the hypothesis are either a positive
effect on our measure of inequality, no effect or a negative effect. This grouping is
consistent with the cited literature, where the measure of inequality is almost always
the Gini coefficient.

In preliminary analyses we use a reduced form of our model in (4.9) where only one
regressor is used. We check if the single regressor has a significant regression coefficient.
All regressions show a R2 < 13% with 271 to 280 observations, depending on the
regressor. In the following we report the cases, where we find deviations form the
literature, concerning both sign of the coefficient or the significance.

• corruption:
The positive effect, cited in the literature remains in our analysis, but we cannot
reject the Null on a 10% significance level.

• education expenditure
The negative effect, cited in the literature remains in our analysis, but we cannot
reject the Null on a 10% significance level.

• foreign direct investment
The positive effect, cited in the literature is not found in our analysis. We find
negative coefficients, which are not significant on a 10% level.

• fraction of rural population
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4.3 Determinants of income inequality

Table 4.4: Independent variables, together with the corresponding literature or
hypothesis and the data-source of the used data, grouped by the hypotized correlation
with the inequality measures.

Indep. Variable Abbr. Literature / Hypothesis Data

positive effect

Corruption co Gupta, Davoodi, and Alonso-
Terme (2002)

Transparency International (2016)

Finacial depth fd Li, Squire, and Zou (1998) WB2 (FS.AST.PRVT.GD.ZS)

Foreign direct investment fdi Jaumotte, Lall, and Papa-
georgiou (2013)

WB (BX.KLT.DINV.WD.GD.ZS)

Fraction 18 to 24 year old
people having left school
early (ISCED ≤ 2)

edu Nielsen and Alderson (1995) ES3 (tsdsc410)

High-tec exports hte Jaumotte, Lall, and Papa-
georgiou (2013)

WB (TX.VAL.TECH.MF.ZS)

Inflation rate ir Aleš (2001) ES (tec00118)

Population growth pg Nielsen and Alderson (1995) ES (tps20006)

Unemployment rate ur Malinoski (2012) WB (SL.UEM.TOTL.ZS)

no effect

GDP per capita gdp Adams Jr. (2003) ES (tec00114)

KOF index of globaliza-
tion

kof Jaumotte, Lall, and Papa-
georgiou (2013)

Dreher (2006) and Dreher, Gaston,
and Martens (2008)

negative effect

Average of highest educa-
tion (ISCED)

edun Nielsen and Alderson (1995) EU-SILC (PE040)

Education exprenditure edue Nielsen and Alderson (1995) WB (NY.ADJ.AEDU.GN.ZS)

Final consumption expen-
diture of general govern-
ment

ceg Mello (2006) ES (tec00010)

Fraction of rural popula-
tion

frp Nielsen and Alderson (1995) WB (SP.RUR.TOTL.ZS)

Government debt gd Higher debt leads to less
money available for social
transfers

ES (tsdde410), WB
(GC.DOD.TOTL.GD.ZS),
Eidgenössische Finanzverwaltung
(2017)

International trade bal-
ance

itb Jaumotte, Lall, and Papa-
georgiou (2013)

ES (tet00002, tec00001)

Life expectancy life Malinoski (2012) WB (SP.DYN.LE00.IN)

People aged 64 or more
over people aged 15-64

age Higher average incomes at
the end of working life, thus
more pensioneers reduce high
incomes

ES (tsdde510)

Personal freedom pf Li, Squire, and Zou (1998) Gwartney, Lawson, and Hall
(2015)

Tax revenue tr Lee (2005) WB (GC.TAX.TOTL.GD.ZS)

Trade in percent of GDP tpc Jaumotte, Lall, and Papa-
georgiou (2013)

WB (NE.TRD.GNFS.ZS)
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4 Income distribution in troubled times

The negative effect, cited in the literature is not found in our analysis. We find
positive coefficients, which are significant on a 1% level.

• government consumption expenditure
The negative effect, cited in the literature is only found for the v metric and not
for the d metric. Both coefficients are insignificant on a 10% level.

• personal freedom
The negative effect, cited in the literature is not found in our analysis. We find
positive coefficients, which are not significant on a 10% level.

• population growth
The positive effect, cited in the literature remains in our analysis, but we cannot
reject the Null on a 10% significance level.

• tax revenue
The negative effect, cited in the literature is not found in our analysis. We find
positive coefficients, which are insignificant on a 10% level.

• unemployment rate
The negative effect, cited in the literature is not found in our analysis. We find
positive coefficients, which are significant on a 1% level.

In the following the model in equation (4.9) is estimated and the starting point for
further analysis. We analyze, if the significance from the single model before translate to
the more complex model. Further we reduce the complexity of the model by eliminating
insignificant variables. With this procedure we end up with 6 models, which are shown
in table 4.5
Turning to model (1), we find for unemployment rate (ur), trade (tpc), financial

depth (fd), education level (edun), age structure (age) and life expectancy (life) no
significant coefficients for both the v-index nor d-index, although significant coefficients
have been found in the reduced model before. The opposite pattern show population
growth (pg), globalization (kof), foreign direct investments (fdi) and personal freedom
(pf): Whereas they have not been significant in the preliminary analysis above, in model
(1) we find significant coefficients at least at the 10% level. In the following we exclude
the variables GDP (gdp), tax revenue (tr), government consumption expenditure (ceg),
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4.3 Determinants of income inequality

Table 4.5: Standardizes regression coefficients for models (1) to (6), using a within-
estimator. The dependent variable is denoted at the top and the corresponding t-values
are given in brackets.

Var Models
(1) (2) (3) (4)

v d v d v d

age -0.01 0.05 0.02 0.04
(-0.06) (-0.36) (0.11) (0.35)

ceg -0.09 0.00
(-0.66) (-0.05)

co -0.12 -0.09
(-0.73) (-0.77)

edu 0.19** 0.24*** 0.19** 0.24*** 0.16***
(1.69) (3.24) (1.78) (3.42) (2.50)

edue -0.21 -0.15
(-0.92) (-0.96)

edun 0.15 0.14 0.21 0.17*
(-0.82) (-1.09) (1.13) (1.37)

fd 0.06 -0.05 0.08 -0.04 0.21*** 0.09**
(-0.51) (-0.60) (0.77) (-0.60) (2.70) (1.70)

fdi -0.05** -0.03* -0.06** -0.03* -0.06**
(-1.67) (-1.41) (-1.73) (-1.45) (-2.08)

frp -1.04** -0.66* -1.09** -0.58* -0.87**
(-1.68) (-1.57) (-1.89) (-1.49) (-1.68)

gd -0.49*** -0.43*** -0.43*** -0.43*** -0.45*** -0.27***
(-3.60) (-4.70) (-3.41) (-5.01) (-5.07) (-4.48)

gdp -0.45 -0.09
(-1.19) (-0.34)

hte 0.32*** 0.20*** 0.32*** 0.19*** 0.29*** 0.15***
(4.28) (3.88) (4.47) (4.02) (4.10) (3.28)

ir 0.07** 0.07*** 0.06** 0.06*** 0.08*** 0.05***
(1.81) (2.75) (1.71) (2.72) (2.61) (2.46)

itb -0.16 -0.18** -0.16* -0.18** -0.15***
(-1.16) (-2.00) (-1,38) (-2,26) (-2.34)

kof 0.25** 0.10 0.18* 0.08
(1.84) (-1.12) (1.47) (0.91)

life 0.24 0.06 0.10 0.01
(0.77) (0.29) (0.33) (0.07)

pf -0.15** -0.14** -0.16** -0.15*** -0.15** -0.16***
(-1.68) (-2.26) (-2.19) (-3.22) (-2.24) (-3.59)

pg -0.28*** -0.20*** -0.26*** -0.19*** -0.21*** -0.14***
(-3.51) (-3.74) (-3.40) (-3.64) (-3.15) (-3.34)

tpc -0.38* -0.24* -0.29* -0.23**
(-1.64) (-1.52) (-1.43) (-1.72)

tr 0.01 -0.04
(-0.12) (-0.69)

ur -0.08 0.00 -0.05 0.02
(-1.00) (0.00) (-0.66) (0.30)

year 0.07 0.59 0.03 0.06
(-0.62) (0.81) (0.33) (0.91)

Within-R2 0.32 0.39 0.30 0.38 0.25 0.33
corr. Within-R2 0.26 0.31 0.24 0.31 0.22 0.28

obs 263 268 270 270

Note: ∗∗∗p < 0.001, ∗∗p < 0.005, ∗p < 0.01 65



4 Income distribution in troubled times

corruption (co) and education expenditure (edue), which do not show a significant
coefficient. This is in line with our preliminary analysis from above. The other variables
show in both in model (1) and the preliminary reduced models significant coefficients
with at least one of the v- oder d-index. The year variable has no significant coefficient.
The estimates of the resulting models in shown in column (2) of table 4.5. The sign
of the coefficients does not change compared to model (1) and the size of the effect
remains roughly the same. In some cases, the significance level changes, e.g. we find a
significant coefficient for education (edun) on a 10% significance level for the d-index,
which has been insignificant in model (1).

In the following, we estimate models for both indices separately. Both have highly
significant coefficients for government debt (gd), population growth (pg) and high-
technology exports (hte) in common. Thus they are included in both models. The
model (3) for the v-index additionally includes foreign direct investments (fdi), inflation
rate (ir), financial depth (fd), fraction of rural population (frp) and personal freedom
(pf). The coefficients do not change their sign and remain roughly constant compared to
models (1) and (2), except for financial depth (fd). Whereas it used to be insignificant
but positive, we now can reject the Null at a 1% level. The size increased from 0.06 to
0.21, thus by a factor of 3.5. Although having reduced the model, we find a comparable
corrected Within-R2 (21.75% compared to 25.56% in model (1)) and all coefficients are
significant at least on the 5% level. The last column of table 4.5 shows the model for
the d-index. Additional to the variables stated above (gd, pg, hte), inflation rate (ir),
financial depth (fd), personal freedom (pf), international trade balance (itb) and early
school leavers (edu) are included. Again, we find comparable results to the models
(1) and (2) concerning the sign and size of the coefficients. In the case of financial
depth, where the coefficient used to be negative, but insignificant, it is not positive on
a significance level of 5%. All coefficients are now significant at least on the 5% level.

Since we found a rather strong correlation between the Gini and the d-index (see 1.3.1)
we also proxy the Gini coefficient with our model (4). Thus, we find some inconsistencies
with the corresponding literature. Although the consumption of the government (ceg)
is said to have a negative effect on inequality, we cannot find a significant coefficient for
our d-index, and thus for the Gini. The same holds for education expenditure (edue),
education level (edun), fraction of rural population (frp), life expectancy (life), trade
(tpc) and tax returns (tr). For variables with the hypothesis of a positive effect, we do
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4.4 Concluding remarks

not find this for foreign direct investments (fdi), corruption (co) and unemployment
rate (ur).
One possible explanation could be that our first estimate of the true underlying

income distribution is more accurate, due to the granularity of the EU-SILC data. This
could lead to different Gini estimates, which translate to different estimated coefficients.
Another possibility could be that there has been a structural break in what drives
income inequality during the last decade, especially during the financial crisis. The latter
itself could be an explanation for the different results. The financial crisis covers affects
most of our data and thus is very prominent in our results, which is not necessarily the
case in the literature, where older data were used.

Comparing the results from model (4) to the ones of model (3), we find consensus for
certain variables. This is the case for e.g. inflation rate (ir) or personal freedom (pf).
Here we find roughly the same coefficients. These effects explain a common movement
in the time-series (see figure 4.2). The differences come from variables like the fraction
of rural population, which is significant for v and a rather large effect, but not for d.
Another example is government debt (gd), where the effect is roughly double the size
for one of the metrics.

4.4 Concluding remarks

The asymmetry - spread phase plane diagrams of figure 4.4 and figureB.1 in the appendix
reveal significant differences over the data horizon. It is easy enough to rationalize the
experience of some countries, Norway being an obvious example with the strength of
oil prices over the interval. Likewise, joining the EU has on the face of it been good,
with fallers such as the Czech Republic or Hungary reflecting rising employment and
wages as tariffs are dismantled and trade opened up.

But other comparisons are more problematical, even those that one might expect
to be similar. Why is France a riser, which one might consider bad, but neighboring
Germany is not, but corresponds to the mixed group? Likewise both Spain and Portugal
suffered from the GFC, but why is Spain a v-d riser while the Portugal is a faller? We
use a fixed-effects estimation to give some insights what causes the movements in the
asymmetry - spread plane. Since our d metric correlates strong with the Gini coefficient,
we compare the results with the literature covering the inequality measured by the Gini.
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4 Income distribution in troubled times

We show that some hypothesis do not hold and rather small models have roughly the
same information content. Also we find common drivers of inequality, both in the v
and d models. Structural factors, which can hardly be measures, such as impediments
to the adjustment of wages or employment might have been of more importance in
countries such as France, with its public sector rigidities and play an important role as
well.

To summarize, the metrics and phase diagrams do not in themselves resolve issues
of this kind. But in throwing up differences in such a dramatic way, they do motivate
the search for answers on a more structural level. Over time there will arise fresh
circumstantial challenges, whether these arise from global fallouts, localized trading
blocs, or political events on a national level. If nothing else, the message of the present
paper is that one way or another, these do have an observable welfare impact on the
economic shares of society.
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5 Asymmetry and performance metrics for
financial returns

The following is based on Bowden, Posch, and Ullmann (2017a)
Performance metrics for equities or managed funds are established tools of the

finance industry, objects of media reporting and investor assessment. The metrics in
question are usually comparative in nature against some benchmark. For example, the
Sharpe (1966) index compares the mean of the security return against the risk free
rate, effectively the expected return on a portfolio long in the security return, short
in the risk free rate. Likewise, Jensen’s alpha looks for positive discrepancies relative
to the beta adjusted market return, provided one is confident that a CAPM style
equilibrium actually exists (Jensen 1968). Even short of this, however, there are some
hidden assumptions in the use of standard metrics. In the case of the Sharpe index, it
is tacitly assumed that the distribution of equity returns is symmetric. But this is not
necessarily true, even in relatively normal times (Fama 1965; Chunhachinda et al. 1997).
If returns are asymmetric over any given interval, then extraordinary exposures to
loss, or else opportunities for gain, can arise. Kraus and Litzenberger (1976) proposed
skewness as a second factor in the traditional Sharpe-Lintner CAPM (Sharpe 1966;
Lintner 1965). Ang and Chua (1979) use this modification in order to define an excess
return performance measure. For other approaches incorporating skewness, see Eling
and Schuhmacher (2007) and Farinelli et al. (2008).
Any such diagnostic metric should be contextual in nature, with reference to the

investor’s gain or loss, in a way that the textbook third order moment for asymmetry
cannot. And there is room for exploration as to just what should be assumed, even
tacitly, about the underlying utility function. A case could be made that the standard
concave (risk-averse) utility function is not a comprehensive representation for investor
motivation. More appropriate might be a utility function that is concave on the
downside and convex on the upside (Friedman and Savage 1948; Kahneman and Tversky
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5 Asymmetry and performance metrics for financial returns

1979). Thus a fund manager would be averse to losses, the more so with the prospect
of employment termination if losses are heavy. On the other hand, the same manager
will be motivated by a more generous performance bonus for progressive gains on the
upside.

The purpose of the present paper is to introduce a performance function that addresses
such objectives. The methodology is an adaptation of a metric for economic disadvantage
recently introduced in the context of income distribution by Bowden (2016b). The
adaptation to asset returns adjusts for differing motivational perspectives; too many
higher incomes are considered bad for social welfare, but high returns are good for
investors! A further normalization adjustment allows a ready comparison with the
corresponding Sharpe metric. The two are the same wherever the return distribution
is symmetric; but they differ where this is not the case. Relative to the proposed
W -metric, the Sharpe metric understates the investor gains when returns are negatively
skewed, i.e. where more distributional weight accrues to higher values, with the reverse
effect where the distribution is positively skewed. An empirical analysis shows that
the same understatement occurs with a range of other performance metrics that have
been proposed, both through time and across an extended range of equities. In this
sense the proposed W -metric adds a more embracing dimension to fund performance
comparisons.

5.1 Metrics and investor utility: the conceptual

framework

The development that follows is general in nature. The basic framework of an investor
profit or loss function based on upper and lower conditional expectations is exposited
on a general level, followed by the connection with Friedman-Savage decision theory.
Taking expected values results in the proposed metric for returns asymmetry, with an
accompanying dual metric for spread or dispersion.

5.1.1 The win function

The proposed metric can be cast in terms of the expected value of a profit or loss
function. Let x represent any outcome (e.g. income, return or any relevant measurable
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outcome). The associated random variable X has distribution function F (x) with
density f(x). For expositional purposes assume −∞ < x <∞ but the treatment can
adapt to the half line 0 < x <∞ or any compact range. Since our proposed measure is
based on the first conditional moment, we shall always assume the existence of the first
moment of the associated random variable X. For most practical purposes, this is a
weak assumption but it does rule out exceptionally long tailed distributions e.g. the
Levy. But it suffices for existence of the proposed skewness parameter for empirical
density functions, as well as for random variables for which higher moments do not
exist (e.g. a t-distribution with df = 2).

For a given value X = x, define the progressive conditional expected values as

µl(x) = EF [X|X ≤ x] =
1

F (x)

∫ x

−∞
XdF (X) (left conditional expectation value)

(5.1)

µr(x) = E [X|X > x] =
1

1− F (x)

∫ ∞
x

XdF (X) (right conditional expectation value)

(5.2)

As x → ∞, µl(x) → µ and µr(x) → x → ∞, while for x → −∞, µl(x) → x → −∞
and µr(x)→ µ. Figure 5.1 illustrates with a logistic distribution, which has fat tails
relative to the normal distribution; in this case the asymptotic convergence is very
slow. Expression (5.1) as the conditional lower moment has found application in fund
performance (see section 5.2.2). In contrast, the present application utilizes both upper
and lower conditional moments, with a further stage of consolidation into a single
valued metric. The function v(x) = (µr(x)− x) − (x− µl(x)) is referred to in the
recent income distribution literature as the net economic disadvantage function. In
this context, suppose my income is x. I feel disadvantaged to the extent of the average
income above mine (µr(x)− x), but better off than those below me (x− µl(x)).

In an investment context, where x refers to returns, things have to be reversed. On
any given day suppose the return is x. Now I win to the extent that this exceeds the
average return below (other days are worse), and I lose to the extent that it falls short
of the average above (other days are better). This indicates that a more appropriate
welfare function in the finance context is the negative of the net economic disadvantage
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function, i.e.

w(x) = −v(x) = (x− µl(x))− (µr(x)− x) , (5.3)

the ’win’ function. The function w(x) is concave below (convex above) a break-even
value on the return axis. As x → −∞ it becomes asymptotic from above to the
45 line, and from below as x → ∞. The zero point, where it crosses the x-axis, is
distribution specific (see figure 5.1). An indication of its position can be inferred from
the relationship

w(xm) = 2 (xm − µ) , (5.4)

where µ = E [x] is the expected value and xm is the median. Thus if µ < xm, which will
usually be the case with negative skewness, then has its zero to the left of the median,
conversely if µ > xm. For a symmetric distribution crosses at the common mean and
median, while the function itself is anti-symmetric about the x-axis. The logistic is an
example as in figure 5.1.

Figure 5.1: The w(x) function. The function w(x) illustrated with a logistic
distribution. For clarity, the values have been scaled.

As earlier remarked, lower concavity versus upper convexity is a universal property
(Bowden 2016a, 2016b). This motivates the description of the function w(x) as a
Friedman-Savage utility function. However, there are some qualifications as to scope.
The classical utility function is distribution invariant, but in the present context the
function w(x) depends on the conditional expectation functions µl(x), µr(x) and there-
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5.1 Metrics and investor utility: the conceptual framework

fore upon the distribution F (x). In this sense it could be interpreted as supplementary
guide to decision making. Faced with a given returns distribution, the investor could
use it to decide whether or not the implied w(x) utility function is consistent with his
or her own preferences as between profits and losses.

5.1.2 The expected value

The expected value of the function w(x) results in a single valued metric for investor’s
profit or loss:

w = E [w(x)] =

∫ ∞
−∞

w(x)dF (x). (5.5)

One could imagine an investor selecting a day at random and deriving a return x on
that day. Over any such random choice of day, expression (5.5) gives the expected
gain or loss. The integral in (5.5) represents a double smoothing process. The first
smoothing level (expressions (5.1), (5.2)) is to obtain the conditional expected value to
the left and right of any chosen value x. The second is to smooth the results over all
values of x.

However, the two stages can be condensed into a simple one stage expectation by
means of a change of measure. The left and right entropic shifts of F (x) are distributions
defined by

FL(y) = F (y) (1 + ξL(y)) ; 1− FR(y) = (1− F (y)) (1 + ξL(y)) , (5.6)

where the shift factors (technically Radon-Nikodym derivatives) are given by

ξL(y) = − lnF (y); ξR(y) = − ln (1− F (y)) (5.7)

Properties of the left and right entropic shifts can be found in Bowden (2012, 2016b).
In such terms,

E [µl(x)] =

∫ ∞
−∞

µl(x)dF (x) =

∫ ∞
−∞

xdFL(x) = µL, (5.8)
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the simple mean of the left entropic shift. Similarly,

E [µr(x)] =

∫ ∞
−∞

µr(x)dF (x) =

∫ ∞
−∞

xdFR(x) = µR, (5.9)

the simple means of the shifted distributions defined by expressions (5.6), (5.7). Ex-
pressions (5.8), (5.9) embody the double smoothing property. The first layer is the
progressive smoothing up to or beyond any given point x. The second layer smooths
the result over all such points, using the density as a weighting kernel.

The expected value of the net ’win’ function is therefore

w = 2

(
µ− 1

2
(µL + µr)

)
(5.10)

An implicit asymmetry test is apparent in the form of (5.10). The entropic shifts FL, FR
represent bodily displacements to the left and right of the natural distribution F (x).
If more entropic (uncertainty) mass is contained to the left, then the displacement
difference is greater than to the right and the average of the two means will be less
than the original. Thus a distribution F (x) that is naturally negatively skewed will
have w > 0, while positive skewness will lead to w < 0. For any symmetric distribution,
w = 0. Outcomes of this kind correspond to classical metrics such as the Pearson third
order moment. Unlike the standard cubic, however, there is now an explicit contextual
reference, as to how investors might view things in welfare or utility terms.

5.1.3 An associated dispersion metric

A simple change of sign in expression (5.3) provides a penalty function for spread or
dispersion (Bowden 2016b). This is defined as

d(x) = (x− µl(x)) + (µr(x)− x) = µr(x)− µl(x). (5.11)

It follows from their respective definitions that d(x) > w(x).

Taking the expected value gives a metric for dispersion:

d = E [d(x)] = µR − µL > 0. (5.12)

74



5.2 Performance metrics

The underlying dispersion concept is based on the total partition entropy of the
distribution. The partition entropy function h(x) at any chosen point represents the
uncertainty as to whether X > x or X < x. The partition entropy function has itself
given rise to a number of applications in areas such as a smoothing kernels or scaling
algorithms. Integrating h(x) over x gives the metric d, which can be interpreted as the
total entropic spread of the distribution. There is also a covariance connection with
asymmetry, as measured by the metric w. A distribution is negatively skewed if the
dispersion function d(x) is greater in the region where F (x) < 0.5, so the covariance
between d(x) and F (x) is negative.

5.2 Performance metrics

The foregoing definitions and interpretations are employed in the present section to
define and motivate the proposed performance metric as an alternative to the standard
Sharpe measure. Section 5.2.2 introduced existing performance metrics, which will be
used to compare our analysis to Eling and Schuhmacher (2007) in the fist place.

5.2.1 The W -metric

The basic Sharpe performance index serves as a starting point for a more general
discussion. As we are focusing on investment performance, the general outcome x is
replaced by the context specific return r. The standard Sharpe metric is written as

S(r) =
E [r]− rf
σ (r)

, (5.13)

where E [r] is the expected return, σ its standard deviation and rf is a risk free rate.
Defining r̃ = r− rf as the excess return, with distribution function F̃ , the Sharpe ratio
becomes

S (r̃) =
EF̃ [r̃]

σ̃
, (5.14)

where σ̃ denotes the standard deviation of excess returns.
The proposed W -metric is an alternative to the Sharpe ratio that explicitly encom-
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passes the positive or negative benefits of asymmetry. It is defined as

W (r) =
w(r̃) + r̃m
d(r̃)

:=
w̃ + r̃m

d̃
, (5.15)

where r̃m is the median of the excess return distribution and w, d are defined according
to expressions (5.10) and (5.12). The denominator d of the W -metric is adapted to the
entropic interpretation of the asymmetry metric w in the numerator. For standardizable
distributions such as the Normal, the logistic or the Gumbel, the metrics d and the
standard deviation σ are proportional via the scale parameter. In such cases there is
little effective difference between using either d or σ for the denominator.

In our empirical analysis we will also use the market return as a comparator. This is
indicated by denoting the modified W as W ∗ and the Sharpe ratio S∗ accordingly.

The numerator of the metric (5.15) splits into two terms: w̃ captures the asymmetry
of the excess returns distribution while r̃m adds the median excess return. Rewriting
the numerator of W results in:

w̃ + r̃m = (E [r]− rf ) + (w̃ + rm − E [r]) (5.16)

Thus the W -metric and the Sharpe ratio’s numerator differ in the term [w̃ + rm − E [r]].
Consider the following cases:

(a) The distribution of excess returns r̃ is symmetric. In this case w̃ = 0, rm = E [r],
and the numerators of the W -metric and Sharpe are identical.

(b) The distribution of excess returns is positively skewed. In this case w̃ < 0, and it
is likely that rm − E [r] < 0. Together this means that W < S.

(c) The distribution of excess returns is negatively skewed. In this case, w̃ > 0, and
it is likely that rm − E [r] > 0. Together this means that W > S.

Cases (b) and (c) reflect the implied Friedman-Savage investor utility basis: investors
would like a positively skewed distribution; increasing marginal utility in the higher
zone. But they might back away from a negatively skewed one; too much weight in the
low zone, the area of more negative marginal utility.
The difference between W and S is generated by the implicit underlying utility

functions, and the way that these are responsive to the distribution of returns. The
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Sharpe metric S tacitly assumes a linear utility function, while the W metric is more
responsive to the mixed concave-convex Friedman-Savage type utility function.
Adaptations of W can be devised for other benchmarks. Instead of using the risk

free rate, the comparator could be the market return R, so r̃ = r −R is a compound
return, long in the subject security and short in the market. Alternatively if a CAPM is
thought to exist, a generalization of Jensen’s alpha can be defined with the comparator
return as the market, scaled by the security’s beta.

5.2.2 Other performance metrics

The empirical work of section 5.3 encompasses a range of alternative performance
metrics that have been proposed in the literature. We use add the following ones
to compare our results to Eling and Schuhmacher (2007), Zakamouline (2009), and
Ornelas, Silva Júnior, and Fernandes (2012). Whereas the former finds no difference in
rankings for these performance metrics, the latter two do.

One of them, namely the Treynor ratio (E [r]− rf ) /β requires a more or less explicit
CAPM reference.
Of those that do not, the Sortino and Kappa 3 ratios (“The Dutch Triangle” 1999;

Kaplan and Knowles 2004) have a point of connection in that in drawing on lower
and upper conditional partial moments. Given a threshold return z, the lower partial
moments of order n with the corresponding threshold return z are defined (c.f. Harlow
1991) as

LPMn(z) =
1

F (z)

∫ z

−∞
(z − x)n dF (x) (5.17)

For the Sortino and Kappa 3 ratios:

Sortino(z) =
E [r]− z

2
√
LPM2(z)

resp. K3(z) =
E [r]− z

3
√
LPM3(z)

. (5.18)

The upside potential ratio (UPR) employs the higher partial moment of order one:

UPR(z) =

1
F (z)

∫∞
z

(z − x) dF (x)

2
√
LPM2(z)

. (5.19)
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All versions require the user to specify a benchmark value z, so these are not global
metrics.

A further comparator is the omega ratio of Keating and Shadwick (2002). In the
present notation this can be expressed as

Ω(z) =

∫∞
z

(1− F (x)) dF (x)∫ z
−∞ F (x)dF (x)

:=
Φr(z)

Φl(z)
(5.20)

The function Φl(z) will be familiar from stochastic dominance theory: distribution
A is second order stochastic dominant over B if Φl,A(z) ≤ Φl,B(z) for all z. Keating
and Shadwick propose a less stringent version: the investor sets a threshold value of
z, below which outcomes are regarded as losses and above as gains and compares the
ratio (5.20) relative to that threshold.

There is no direct connection between the Omega ratio and the present W -metric,
though the functions w(x), d(x) utilized in the latter help to determine the shape of
Ω(x) via the differential equation

d log Ω(x)

dx
= −4

d(x)

d2(x)− w2(x)
(5.21)

The omega ratio function is evidently a compounding of both spread and asymmetry,
with the leading effect of order d−1(x). If the dispersion is high, a unit step to the right
on the return axis does not increase the probability for losses that much, compared to
a very dense distribution, where a unit step covers more probability mass.

A final group of comparators utilizes the notion of maximum drawdown (MD)
(Magdon-Ismail et al. 2003). A drawdown is the maximal loss in a given time span
with a designated end date and a variable start date within the given time span. The
maximum drawdown denotes the maximum of the drawdowns within the given time
span. Three variants utilized in the empirical comparisons of section 5.3 are the Calmar
ratio (Young 1991), the Sterling ratio (Kestner 1996) and the Burke ratio (Burke 1994),
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with the following definitions:

Calmar ratio(r) =
E [r]− rf
−MD

(5.22)

Sterling ratio(r) =
E [r]− rf
E (−MD)

(5.23)

Burke ratio(r) =
E [r]− rf√∑
−MD

(5.24)

5.3 Empirical application

The empirical work that follows proceeds in two phases. Section 5.3.1 looks at the
relative performance of the W -metric with the conventional Sharpe ratio as the point of
departure. For this more limited comparison, historical returns on just a single equity
are used. Section 5.3.2 is an extended set of comparisons with the range of alternative
metrics as in section 5.2.2, applied to the complete regimen of equities in the S&P500,
a sample of US corporate bonds, a sample of exchange rates and a sample of hedge
funds. All data are obtained by Thomson Reuters Datastream.

5.3.1 Comparison with the Sharpe ratio

To illustrate the new measure, we use the daily log returns of Ford Motors Company
together with the S&P500 index as a market proxy. By doing so, we find a rather long
time series of historical returns. The market yield on U.S. Treasury securities at 1-year
constant maturity is employed as a proxy for the risk free rate from 1973 to 2016. Table
5.1 gives descriptive statistics. For all the different log return distributions, any evident
skewness has the sign expected in the w statistic of equation (5.5)

Turning to explicit performance indicators, the Sharpe ratios and the W metrics are
compared for two benchmarks: the risk free rate and the market return. The Sharpe
and W measures are calculated using daily returns over each different year. The results
are shown in figure 5.2. The upper part utilizes the risk free rate as benchmark as
in the classic Sharpe ratio. The gray bar corresponds to W in equation (5.15) and
the black bar to the Sharpe ratio. The two measures have a correlation coefficient of
ρS,W = 0.315 at a significance level of α = 5%. There are several occurrences where not
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Table 5.1: Descriptive statistics and the corresponding w measure for the daily returns
distribution of Ford Motors Company. All values are based on log-returns as percentage
values.

Min. 1st Qu. Median Mean 3rd Qu. Max.
Stock

Mean / % -0.47 -0.05 0.01 0.03 0.14 0.56
Median / % -0.64 0.00 0.00 -0.01 0.04 0.29

Var. / % 0.01 0.03 0.04 0.05 0.06 0.37
Skew. -1.95 -0.21 0.04 -0.00 0.30 2.28

Ex. Kurt. -0.70 0.44 1.04 2.22 2.53 15.88
Market

Mean / % -0.23 -0.00 0.04 0.02 0.07 0.12
Median / % -0.20 -0.00 0.06 0.04 0.10 0.19

Var. / % 0.00 0.00 0.01 0.01 0.01 0.06
Skew. -4.94 -0.37 -0.08 -0.26 0.06 0.80

Ex. Kurt. -0.41 0.42 1.32 2.94 1.90 52.95

only the absolute values between the Sharpe and the W -measure differ, but also the
signs.

As discussed in section 5.2, one can look for two scenarios where W is potentially
unequal to the Sharpe ratio S. In the sample there are 23 years with a positive skewness,
of which 20 years confirm the prediction S > W . The empirical hit ratio of rm−E [r] < 0

is 52.2%. In the case of negative skewness, the W > S prediction is confirmed in 16 out
of 21 years. The empirical hit ratio of rm − E [r] > 0 with w̃ > 0 is 75.0%. Changing
the comparator from the risk free rate to the market return, we change the notation
W → W ∗ and S → S∗. The lower chart of figure 5.2 shows the results. The grey bar
corresponds to W ∗ and the black bar to the Sharpe analogue ratio S∗. In 18 out of
44 observations the two have different signs along with an correlation coefficient of
ρS∗,W ∗ = 0.266, significant at the 10% level. For the positive skewness we find S∗ > W ∗

in 16 out of 23 years with an empirical hit ratio of rm − E [r] < 0 is 75.0% therein. In
the 21 years with a negative skewness, 16 years have W ∗ > S∗ and therein we find an
empirical hit ratio of 75.0% for rm − E [r] < 0.

As previously discussed, the standard deviation can be used as denominator instead
of the dispersion metric d, with the performance indicator as WS = w̃+r̃m

σ̃
. The analysis

is then repeated using WS instead of W . The result is shown in figure 5.3. In all cases,
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Figure 5.2: W -metric and Sharpe Ratio. Comparison of the W -metric and the
Sharpe Ratio for the risk-free rate and the market return as comparator benchmarks.

the sign is preserved, i.e. sgn(W ) = sgn(W ∗), but the absolute value of WS is always
larger. Using the standard deviation therefore leads to a higher value of the metric. For
the upper chart, there are three cases where the alternative definitions lead to different
conclusions as to the size of the metric. In 1980, 1998, 2001, 2005, 2008 and 2010 we
find |W | < S < |WS| . For the lower part of figure 5.3 the years 1989, 2005 and 2008
show a similar pattern.

5.3.2 Other literature metrics: a more extended comparison

Turning to the more extended set of measures described in section 5.2, performance
comparisons utilize daily returns on four different asset classes. In the following, we do
not focus on the individual metrics, like the Sharpe Ratio in the former paragraph, but
rather on the rank correlation between these metrics. The general idea comes from the
hedge fund industry, where the performance of a manager does not depend solely on
the value of the metric, but also on the ranking with peers. The question whether the
ranking differs for different performance metrics has been answered in both directions
(Eling and Schuhmacher 2007; Zakamouline 2009; Ornelas, Silva Júnior, and Fernandes
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Figure 5.3: W -metric, WS-metric and Sharpe Ratio. TheW -metric, the Sharpe
Ratio and the WS-metric with SD as denominator, and (a) the risk-free rate and (b)
the market return as benchmarks.
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2012). In our analysis, we use

• stocks, where our universe exists of the constituents of the S&P500 as of November
11th 2015. Starting in 2000, we ignore the stocks, where missing data occur and end
at the end of 2016. In these 17 years, we observe 7179 daily returns distributions.

• bonds, where our universe exists of all US corporate bonds available in Thomson
Reuters Datastream. We cover the timespan from 2010 to 2015 with 330 different
bonds. Again, we ignore the returns of a given bond, if we have some missing
data in the time series. We end up with 1243 daily return distributions.

• exchange rates, where we use the following, all with respect to the US Dollar:
Australian Dollar, Brazilian Real, British Pound, Canadian Dollar, Chinese Yuan,
Danish Krone, Euro, Hong Kong Dollar, Indian Rupee, Japanese Yen, Mexican
Peso and New Zealand Dollar. We use data staring in 1999 and end 2016. This
results in 91 distributions for the daily returns.

• hedge funds, where we use the data given in Thomson Reuters Datastream. We
observe 80 funds from 2008 to 2016. Again, we exclude a fund, if we find missing
observations. We end up with 630 daily return distributions.

A sample of 10,000 returns for each class is used to give an overview of the general
distribution of the returns. These are shown in figure 5.4. A kernel density estimation
in blue and a normal distribution with the corresponding first two moments in red
are added as comparison. We find a general deviation from a normal distribution.
The distribution of the stocks seems to have the smallest deviation from the normal
distribution and the bonds the biggest.

To quantify the deviation from the normal, we test each distribution with the Jarque-
Bera test. The rejection rate of the null hypothesis of normal distributed returns are
reported in the corresponding columns in table 5.2.
Supporting the impression from figure 5.4, we find a high rejection rate of H0 in

general, but according to the test, the exchange rates have the smallest deviation from
the normal distribution. This could come from the fact, that the median excess kurtosis
is smaller than the one of the stocks, or that the exchange rates show a smaller skewness
in general. All descriptive statistics are reported in the corresponding blocks in table
5.3.
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Figure 5.4: Return distribution of the different asset classes. Histogram of
the log-returns for four different asset classes. Additionally a kernel density estimation
in blue, as well as a normal distribution with the corresponding first two moments in
red is shown.

Table 5.2: Empirical rejection rate based on the Jarque-Bera Test for the four asset
classes.

α crit. Value H0 rejection
Stocks Bonds FX Hedge Funds

10% 4.61 90.52% 96.86% 85.83% 93.97%
5% 5.99 88.12% 95.98% 82.59% 93.02%
1% 9.21 83.88% 94.05% 73.28% 86.67%
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Table 5.3: Descriptive statistics for the return distributions for the four asset classes.
For the sake of fewer decimals, the mean and standard deviation are calculated using
the log returns as percentage values.

Min 1st Qu. Median Mean 3rd Qu. Max

Stocks

Mean -1.42 -0.02 0.05 0.04 0.12 0.89
SD 0.61 1.37 1.85 2.18 2.59 12.80

Skewness -14.11 -0.37 -0.03 -0.12 0.30 10.37
Excess Kurtosis -0.56 1.09 2.19 4.99 4.57 211.30

Bonds

Mean -0.06 -0.01 0.00 0.00 0.01 0.05
SD 0.00 0.07 0.16 0.19 0.30 0.72

Skewness -15.66 -0.45 0.14 0.81 1.76 15.62
Excess Kurtosis -0.96 2.75 11.26 45.09 74.39 244.60

FX

Mean -0.12 -0.02 0.00 0.00 0.03 0.17
SD 0.00 0.33 0.55 0.54 0.74 1.95

Skewness -15.23 -0.40 -0.08 -0.09 0.30 4.66
Excess Kurtosis -0.41 0.71 1.89 5.51 4.72 234.80

Hedge Funds

Mean -0.29 -0.01 0.00 0.01 0.03 0.18
SD 0.01 0.24 0.55 0.67 0.97 2.92

Skewness -15.43 -0.70 -0.33 -0.49 -0.09 12.99
Excess Kurtosis -0.23 1.38 2.15 6.92 4.24 239.70
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In general the correlation of performance measures is calculated using hedge fund
data. What we find from the descriptive statistics is that the other three asset classes
share some features of the hedge fund distributions, such as a negative skewness (at least
in some cases). So we think adding the other classes to our analysis gives additional
insight into the rank correlation of the performance measures.
As earlier noted, the performance comparisons studies encompass a more extended

set of measures that have been proposed in the literature. These are chosen as the
Sortino ratio, Kappa 3, the UPR, the Calmar ratio, Sterling ratio, Burke ratio and the
Treynor ratio to the Sharpe ratio and the Omega ratio.

For the Omega ratio, the Sortino ratio, the Kappa 3 and the UPR, we use the return
distribution as the P&L distribution, e.g. we set the threshold to a value of z = 0.
For the Treynor ratio, the CAPM beta coefficient is estimated for each year using the
corresponding stock returns and the S&P500 returns as proxy for the market return.
Technically this implies a forward looking beta coefficient, but the results do not change
when using the lagged return distributions.

The resulting rank correlations for the four different asset classes are shown in table
5.4 to 5.7. In each table, we report both Kendall’s τ in the upper triangular part and
Spearman’s ρ in the lower part of the correlation matrix. The diagonal kept blank.
In general conformity with Eling and Schuhmacher (2007) findings, we find very high
and significant correlations with most metrics for the stock returns. In general the
correlations are above 80% for all asset classes for all measures except for the Treynor
Ratio and the Upside Potential. The former seems to be in line with the other metrics
in the case of stocks, the correlation drops to about 10%− 20% for the hedge fund and
the bond returns and even turns into a negative one for the exchange rates. The latter
seems to be in line except in the case of bond returns. There the correlation drops to
about 40%− 60%.

Summarizing, we find rather high correlation coefficients for the performance measures
as Eling and Schuhmacher (2007) for hedge funds (except for the Treynor ratio), but
cannot conclude that the choice between them does not make a difference. This is in
line with the findings in Zakamouline (2009) and Ornelas, Silva Júnior, and Fernandes
(2012), but in there significantly lower correlations have been found.

Next, we turn to the W and W ∗ measures as defined in section 5.2. The rank
correlations are for all asset classes lower than for the other measures. For the W ∗,
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5.3 Empirical application
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5 Asymmetry and performance metrics for financial returns
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5.4 Concluding remarks

the correlation is only significantly different from zero for the exchange rates. For the
other classes, we find a non significant correlation most of the time. Thus it evaluates
performance in a way, the other metrics cannot, resp. do not have a strong focus on.
The W measure correlates positively most of the time with most of the metrics but
not as strong as the ones described above. Interestingly we see both a weak positive
correlation (stocks and hedge funds) and a weak negative correlation with the Treynor
Ratio for both of the W/W ∗ measures, together with a weak positive correlation with
the rest of the performance measures. The proposed metrics based on the ’win’ function
therefore differs significantly in the ranking form the existing measures. Since the Sharpe
ratio is known for a skewness bias, the rankings of the other measures may likewise be
influenced by the skewness of the distribution. In the case of the exchange rates, where
the skewness is the lowest for our asset classes, we see a decrease in correlation with
the Sharpe Ratio. Once this is explicitly incorporated via the W -metrics, things do
change. If investors or fund managers prefer negative skewness, as argued in section
5.1, then the W ∗ metric provides a better set of rankings across different returns, in
the sense that skewness is taken in account explicitly.
Further research in this direction may be an analysis weather the informations,

revealed by the new measures, can be transformed into a profitable trading strategy.
If this is the case, these informations may be seen as ’new’ information and one can
expect a premium when trading on them. What changes the observed correlation
changes is another interesting topic. Although the distribution of Hedge Fund returns
and exchange rate returns does not seem very different, we find very different rank
correlations. So the question rises, what drives the correlations? This research question
does not only come from this paper, but might be a natural question following the
other papers concerned with the rank correlation of performance measures.

5.4 Concluding remarks

Investors naturally seek high returns and low volatility, and there is a case for negative
skewness in addition. In order to evaluate return distributions, we propose the ratio
of a contextually motivated skewness metric to dispersion. The latter can be either
as the dual spread metric or else just the standard deviation. A sensitivity analysis
shows that the bias arising from skewness in the Sharpe ratio does not crucially rely on
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5 Asymmetry and performance metrics for financial returns

the definition of the denominator. Thus in the Ford Motors illustration, the pattern
changes in only in 11% of the cases.

Interestingly the analysis shows very different results of the correlations for the differ-
ent asset classes. Keeping in mind the descriptive statistics of the return distributions,
which do not show a completely different picture for the four asset classes, comparable
results were expected across the asset classes. In some cases, we can support the results
in Eling and Schuhmacher (2007), where a very high correlation is found. But we also
find cases, where the correlation is significantly lower (from about 90% to about 50% or
even negative) for some performance metrics. This is in line with Zakamouline (2009)
and Ornelas, Silva Júnior, and Fernandes (2012). When taking the W/W ∗ metric into
account, we find correlations in the range of −10%− 40% to the existing metrics. This
indicates that the use of a Friedman-Savage like function results in a very different
picture, arguably resulting in a bigger information set about the underlying distribution.
Also within the W/W ∗ we do not find a very high correlation. This indicates that
although the use of the market return as benchmark does not lead to very different
values in absolute terms, the ranking is significantly indicated.

Particular motivation for the augmented W -metric exists in episodes where skewness
can arise, as in times of market stress. However even in more normal times, it is useful
to be able to separate out the entangled contribution of skewness as a potentially
important dimension to portfolio analysis. This is especially so where a given stock or
ETF portfolio displays habitual tendencies in one direction or the other. The advantage
of thinking in Friedman-Savage terms is that it does focus on the welfare consequences
of investment decisions in the presence of potential skewness. Once we allow for investor
preferences of this kind, the rankings of alternative investments can change quite
dramatically.
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6 Conclusion

The first part of this thesis is about an accurate estimation of the covariance/correlation
matrix and detecting structural breaks within these dependency structures. Chapter 2
addresses the problem of estimating the covariance/correlation matrix with limited
observations. Estimators with and without the normality assumption of returns are
used and the errors of covariance estimation and correlation estimation compared. It is
analyzed, if estimation improvements transfer to economic improvements measured by
the Sharpe ratio and annualized volatilities of minimum-variance portfolios. Significant
out-performance of some shrinking estimators in the economic sense are found, which
seem to depend weakly on the normality assumption. Using a shrinking estimator with
a scaled identity matrix as shrinking target, the Sharpe ratio increases by a factor of
about two.
Chapter 3 tests for a constant correlation structure without any model assumption.

These model free tests for constant parameters often fail to detect structural changes in
high dimensions. In practice this corresponds to a portfolio with many assets and a
reasonable long time series. The dimensionality of the problem is reduced by looking
at a compressed panel of time series obtained by cluster analysis and the principal
components of the data. With this procedure tests for constant correlation matrix can
be extended from a sub portfolio to whole index, which we exemplify using a major
stock index.

The second part deals with the general problem of aggregating distributions. Using
conditional first moments, one can ask the question: am I better off than the others in
the population? Chapter 4 deals with this question in the context of income distributions
and proposes metrics for skewness and spread, based on this internal view. Using them,
the trajectories of European countries from 2005 to 2013 are tracked in a phase plane.
This movement enables a grouping into three groups of inequality risers, fallers and a
mixed group. In a regression analysis determinants of the Gini coefficient are examined
to check if these effects translate to the two metrics.
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6 Conclusion

Chapter 5 turns to one source of income, investment income and the question arising
from the perspective of a fund manager: How does a performance metric look like and
would fund managers be ranked differently when using different performance metrics?
The originated performance criterion w is more consistent with the implicit Friedman-
Savage utility ordering. It weights the lower versus upper conditional expected returns,
while a dual spread or dispersion metric d also exists. A point of departure is the
conventional Sharpe performance ratio, with the empirical comparisons extending to a
range of existing performance criteria. In contrast to existing metrics, the proposed
performance metric W results in different and more embracing rankings.
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A Extended tables for distances to the true
correlation matrix, Sharpe ratios and
annualized volatilities
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A Extended tables for distances to the true correlation matrix, Sharpe ratios and
annualized volatilities

Table A.1: Distances to the true correlation matrix. Results are grouped by the three
data generating distributions and the number of observations horizontally. Vertically
grouping is based on the estimator used and the underlying covariance type.

250 500 750 250 500 750 250 500 750

normal t gamma

Empirical

AR 25.339 17.922 14.636 25.339 17.922 14.637 25.339 17.922 14.636
eigen 25.340 17.921 14.638 25.338 17.920 14.637 25.340 17.923 14.637
emp 25.338 17.920 14.637 25.339 17.921 14.637 25.338 17.922 14.636

Fisher

µ
AR 1.545 5.308 7.139 1.543 5.325 7.131 1.543 5.327 7.127
eigen 1.548 5.317 7.144 1.538 5.301 7.124 1.543 5.304 7.144
emp 1.542 5.319 7.123 1.543 5.304 7.125 1.543 5.294 7.131

I
AR 25.317 17.914 14.632 25.317 17.914 14.633 25.317 17.914 14.632
eigen 25.317 17.913 14.634 25.316 17.912 14.633 25.318 17.915 14.633
emp 25.316 17.913 14.633 25.316 17.913 14.633 25.316 17.914 14.632

D
AR 1.545 1.556 1.543 1.543 1.551 1.552 1.543 1.552 1.546
eigen 1.548 1.558 1.549 1.538 1.544 1.551 1.543 1.555 1.563
emp 1.542 1.544 1.552 1.543 1.555 1.543 1.543 1.549 1.540

Touloumis

µ
AR 9.479 9.488 9.080 9.473 9.493 9.078 9.479 9.494 9.075
eigen 9.476 9.490 9.084 9.480 9.483 9.074 9.485 9.486 9.084
emp 9.469 9.491 9.075 9.475 9.486 9.074 9.470 9.483 9.077

I
AR 25.317 17.914 14.632 25.317 17.914 14.632 25.317 17.914 14.632
eigen 25.317 17.913 14.634 25.318 17.915 14.633 25.318 17.915 14.633
emp 25.316 17.913 14.633 25.316 17.914 14.632 25.316 17.914 14.632

D
AR 1.569 1.576 1.562 1.565 1.571 1.571 1.566 1.571 1.566
eigen 1.571 1.577 1.569 1.561 1.563 1.571 1.567 1.574 1.582
emp 1.565 1.564 1.571 1.566 1.574 1.564 1.565 1.569 1.559

Note: For clarity, t-statistics are omitted. All differences are significant on the 0.1% level.
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Table A.2: Sharpe ratios of the minimum-variance portfolios, generated by the
different covariance estimators. Results are grouped by the three data generating
distributions and the number of observations horizontally. Vertically grouping is based
on the estimator used and the underlying covariance type.

250 500 750 250 500 750 250 500 750

normal t gamma

Empirical

AR - 0.288 0.473 - 0.289 0.472 - 0.289 0.471
eigen - 0.290 0.470 - 0.288 0.471 - 0.289 0.466
emp - 0.290 0.471 - 0.289 0.472 - 0.289 0.473

Fisher

µ
AR 0.578 0.575 0.618 0.579 0.575 0.618 0.579 0.576 0.617
eigen 0.579 0.576 0.616 0.580 0.577 0.616 0.579 0.575 0.612
emp 0.578 0.579 0.617 0.579 0.575 0.618 0.579 0.577 0.619

I
AR 0.389 0.291 0.473 0.390 0.292 0.473 0.391 0.292 0.471
eigen 0.390 0.293 0.471 0.390 0.291 0.471 0.389 0.292 0.467
emp 0.389 0.293 0.471 0.389 0.291 0.472 0.389 0.292 0.473

D
AR 0.578 0.551 0.579 0.579 0.552 0.579 0.579 0.552 0.579
eigen 0.579 0.552 0.578 0.580 0.553 0.578 0.579 0.551 0.574
emp 0.578 0.555 0.579 0.579 0.552 0.579 0.579 0.553 0.581

Touloumis

µ
AR 0.593 0.567 0.611 0.594 0.567 0.611 0.594 0.568 0.610
eigen 0.594 0.569 0.609 0.594 0.568 0.609 0.594 0.567 0.604
emp 0.593 0.570 0.610 0.594 0.567 0.611 0.594 0.569 0.612

I
AR 0.389 0.291 0.473 0.390 0.292 0.473 0.391 0.292 0.471
eigen 0.390 0.293 0.471 0.390 0.291 0.471 0.389 0.292 0.467
emp 0.389 0.293 0.471 0.389 0.291 0.472 0.389 0.292 0.473

D
AR 0.579 0.554 0.583 0.581 0.555 0.584 0.581 0.555 0.584
eigen 0.581 0.555 0.583 0.582 0.556 0.583 0.581 0.554 0.579
emp 0.580 0.558 0.584 0.581 0.555 0.584 0.581 0.556 0.585

Note: For clarity, t-statistics are omitted. All differences are significant on the 0.1% level.
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A Extended tables for distances to the true correlation matrix, Sharpe ratios and
annualized volatilities

Table A.3: Annualized volatilities of the minimum-variance portfolios, generated by
the different covariance estimators. Results are grouped by the three data generating
distributions and the number of observations horizontally. Vertically grouping is based
on the estimator used and the underlying covariance type.

250 500 750 250 500 750 250 500 750

normal t gamma

Empirical

AR - 2.833 1.732 - 2.824 1.739 - 2.817 1.739
eigen - 2.820 1.741 - 2.825 1.741 - 2.822 1.753
emp - 2.811 1.737 - 2.824 1.734 - 2.819 1.733

Fischer

m
AR 1.406 1.408 1.314 1.405 1.406 1.318 1.405 1.404 1.317
eigen 1.406 1.404 1.319 1.401 1.404 1.319 1.405 1.407 1.328
emp 1.405 1.401 1.317 1.406 1.407 1.316 1.404 1.403 1.313

I
AR 2.098 2.808 1.731 2.096 2.799 1.737 2.094 2.792 1.738
eigen 2.101 2.795 1.740 2.091 2.800 1.740 2.100 2.798 1.752
emp 2.098 2.786 1.735 2.101 2.799 1.733 2.096 2.794 1.731

D
AR 1.406 1.471 1.402 1.405 1.469 1.407 1.405 1.468 1.404
eigen 1.406 1.468 1.407 1.401 1.466 1.407 1.405 1.470 1.416
emp 1.405 1.464 1.405 1.406 1.469 1.403 1.404 1.466 1.400

Touloumis

m
AR 1.369 1.429 1.331 1.369 1.427 1.335 1.369 1.425 1.335
eigen 1.370 1.424 1.337 1.366 1.425 1.336 1.369 1.428 1.346
emp 1.370 1.421 1.334 1.370 1.428 1.333 1.368 1.423 1.330

I
AR 2.098 2.808 1.731 2.096 2.799 1.737 2.094 2.792 1.738
eigen 2.101 2.795 1.740 2.091 2.800 1.740 2.100 2.798 1.752
emp 2.098 2.786 1.735 2.101 2.799 1.733 2.096 2.794 1.731

D
AR 1.400 1.462 1.389 1.400 1.460 1.393 1.400 1.458 1.390
eigen 1.401 1.459 1.393 1.396 1.457 1.393 1.399 1.461 1.402
emp 1.399 1.455 1.391 1.401 1.460 1.390 1.399 1.457 1.387

Note: For clarity, t-statistics are omitted. All differences are significant on the 0.1% level.
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B Phase diagrams for major countries
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Figure B.1: Phase diagrams. Phase diagrams for the different countries for the
complete time interval.
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B Phase diagrams for major countries
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Figure B.1: continued: Phase diagrams.
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Figure B.2: continued: Phase diagrams.
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