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Abstract

This paper considers the problem of testing if a sequence of means (µt)t=1,...,n of a

non-stationary time series (Xt)t=1,...,n is stable in the sense that the difference of the

means µ1 and µt between the initial time t = 1 and any other time is smaller than

a given level, that is |µ1 − µt| ≤ c for all t = 1, . . . , n. A test for hypotheses of this

type is developed using a bias corrected monotone rearranged local linear estimator

and asymptotic normality of the corresponding test statistic is established. As the

asymptotic variance depends on the location and order of the critical roots of the

equation |µ1−µt| = c a new bootstrap procedure is proposed to obtain critical values

and its consistency is established. As a consequence we are able to quantitatively

describe relevant deviations of a non-stationary sequence from its initial value. The

results are illustrated by means of a simulation study and by analyzing data examples.

AMS subject classification: 62M10, 62F05, 62G08, 62G09

Keywords and phrases: locally stationary process, change point analysis, relevant

change points, local linear estimation, Gaussian approximation, rearrangement estimators
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1 Introduction

A frequent problem in time series analysis is the detection of structural breaks. Since the

pioneering work of Page (1954) in quality control change point detection has become an im-

portant tool with numerous applications in economics, climatology, engineering, hydrology

and many authors have developed statistical tests for the problem of detecting structural

breaks or change-points in various models. Exemplarily we mention Chow (1960), Brown

et al. (1975), Krämer et al. (1988), Andrews (1993), Bai and Perron (1998) and Aue et al.

(2009)] and refer to the work of Aue and Horváth (2013) and Jandhyala et al. (2013) for

more recent reviews.

Most of the literature on testing for structural breaks formulates the hypotheses such

that in the statistical model the stochastic process under the null hypothesis of “no change-

point” is stationary. For example, in the problem of testing if a sequence of means

(µt)t=1,...,n of a non-stationary time series (Xt)t=1,...,n is stable it is often assumed that

Xt = µt + εt with a stationary error process (εt)t=1,...,n. The hull hypothesis is given by

H0 : µ1 = µ2 = · · · = µn , (1.1)

while the alternative (in the simplest case of only one structural break) is defined as

H1 : µ(1) = µ1 = µ2 = · · · = µk 6= µk+1 = µk+2 = · · · = µn = µ(2),

where k ∈ {1, . . . , n} denotes the (unknown) location of the change. The formulation of

the null hypothesis in the form (1.1) facilitates the analysis of the distributional properties

of a corresponding test statistic substantially, because one can work under the assumption

of stationarity. Consequently, it is a very useful assumption from a theoretical point of

view.

On the other hand, if the differences {|µ1−µt|}t=2,...,n are rather “small”, a modification

of the statistical analysis might not be necessary although the test rejects the “classical”

null hypothesis (1.1) and detects non-stationarity. For example, as pointed out by Dette

and Wied (2016), in risk management one wants to fit a model for forecasting the Value at

Risk from “uncontaminated data”, that means from data after the last change-point. If the

changes are small they might not yield large changes in the Value at Risk. Now using only
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the uncontaminated data might decrease the bias but increases the variance of a prediction.

Thus, if the changes are small, the forecasting quality might not necessarily decrease and

- in the best case - would only improve slightly. Moreover, any benefit with respect to

statistical accuracy could be negatively overcompensated by additional transaction costs.

In order to address these issues Dette and Wied (2016) proposed to investigate precise

hypotheses in the context of change point analysis, where one does not test for exact

equality, but only looks for “similarity” or a “relevant” difference. This concept is well

known in biostatistics [see, for example, Wellek (2010)] but has also been used to investigate

the similarity of distribution functions [see Álvarez Esteban et al. (2008, 2012) among

others]. In the context of detecting a change in a sequence of means (or other parameters

of the marginal distribution) Dette and Wied (2016) assumed two stationary phases and

tested if the difference before and after the change point is small, that is H0 : |µ(1) −
µ(2)| ≤ c versus H1 : |µ(1) − µ(2)| > c, where c > 0 is a given constant specified by the

concrete application (in the example of the previous paragraph c could be determined by

the transaction costs). Their approach heavily relies on the fact that the process before

and after the change point is stationary, but this assumption might also be questionable

in many applications.

In the present paper we investigate alternative hypotheses in the change point problem,

which are motivated by the observation that in many applications the process parameters

change continuously, and - if the amount of change and the time of a substantial change are

small - the statistical analysis does not have to be modified. For this purpose we consider

the location scale model

Xi,n = µ(i/n) + εi,n, (1.2)

where {εi,n : i = 1, . . . , n}n∈N denotes a triangular array of centered random variables

(note that we do not assume that the “rows” {εj,n : j = 1, . . . , n} are stationary) and

µ : [0, 1] → R is the unknown mean function. We define a change as relevant, if the

amount of the change and the time period where the change occurs are reasonable large.

More precisely, for a level c > 0 we consider the level set

Mc = {t ∈ [0, 1] : |µ(t)− µ(0)| > c}
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of all points t ∈ [0, 1], where the mean function differs from its original value at the point

0 by an amount larger than c, and define

Tc := λ(Mc)

as the corresponding excess measure, where λ denotes the Lebesgue measure. We now

propose to investigate the hypothesis that the relative time, where this difference is larger

than c does not exceed a given constant, say ∆ ∈ (0, 1), that is

H0 : Tc ≤ ∆ versus H1 : Tc > ∆ . (1.5)

In many applications it might also be of interest to investigate one-sided hypotheses, be-

cause one wants to detect a change in certain direction. For this purpose we also consider

the sets M±
c = {t ∈ [0, 1] : ± (µ(t)− µ(0)) > c} and define the hypotheses

H+
0 : T+

c = λ(M+
c ) ≤ ∆ versus H+

1 : T+
c > ∆ , (1.6)

H−0 : T−c = λ(M−
c ) ≤ ∆ versus H−1 : T−c > ∆ . (1.7)

Although the mean function in model (1.2) cannot be assumed to be monotone, we use a

monotone rearrangement type estimator [see Dette et al. (2006)] to estimate the quantities

Tc, T
+
c , T−c , and propose to reject the null hypothesis (1.5), (1.6) (1.7) for large values of the

corresponding test statistic. We study the properties of these estimators and the resulting

tests in a model of the form (1.2) with a locally stationary error process, which have found

considerable interest in the literature [see Dahlhaus et al. (1997), Nason et al. (2000),

Ombao et al. (2005), Zhou and Wu (2009) and Vogt (2012) among others]. In particular

we do not assume that the underlying process is stationary, as the mean function can vary

smoothly in time and the error process is non-stationary. Moreover, we also allow that the

derivative of the mean function µ may vanish on the set of critical roots

C = {t ∈ [0, 1] : |µ(t)− µ(0)| = c}

and prove that appropriately standardized versions of the monotone rearrangement esti-

mators are consistent for Tc, T
+
c and T−c , and asymptotically normal distributed. It is
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demonstrated - even in the case of independent or stationary errors - that the variance of

the limit distribution depends sensitively on (eventually higher order) derivatives of the

regression function at the critical roots, which are very difficult to estimate. Moreover,

because of the non-stationarity of the error process in (1.2) the asymptotic variance de-

pends also in a complicated way on the unknown dependence structure. We propose a

bootstrap method to obtain critical values for the test, which is motivated by a Gaussian

approximation used in the proof of the asymptotic normality. This re-sampling procedure

is adaptive in the sense that it avoids the direct estimation of the critical roots and the

values of the derivative of the regression function at these points.

Note that Tc is the excess Lebesgue measure (or mass) of the time when the absolute

difference between the mean trend and its initial value exceeds the level c. Thus our ap-

proach is naturally related to the concept of excess mass which has found considerable

attention in the literature. Many authors used the excess mass approach to investigate

multimodality of a density [see, for example, Müller and Sawitzki (1991), Polonik (1995),

Cheng and Hall (1998), Polonik and Wang (2006)]. The asymptotic properties of distances

between an estimated level and the “true” level set of a density have also been studied in

several publications [see Baillo (2003), Cadre (2006), Cuevas et al. (2006) and Mason and

Polonik (2009) among many others]. The concept of mass excess has additionally been used

for discrimination between time series [see Chandler and Polonik (2006)], for the construc-

tion of monotone regression estimates [Dette et al. (2006), Chernozhukov et al. (2010)],

quantile regression [Dette and Volgushev (2008), Chernozhukov et al. (2009)], clustering

[Rinaldo and Wasserman (2010)] and for bandwidth selection in density estimation [see

Samworth and Wand (2010)], but to our best knowledge it has not been used for change

point analysis.

Most of the literature discusses regular points, that are points, where the first deriva-

tive of the density or regression function does not vanish, but there exist also references

where this condition is relaxed. For example, Hartigan and Hartigan (1985) proposed a

test for multimodality of a density comparing the difference between the empirical distri-

bution function and a class of unimodal distribution functions. They observed that the

stochastic order of the test statistic depends on the minimal number k, such that the kth

derivative of the cumulative distribution function does not vanish. Polonik (1995) studied

the asymptotic properties of an estimate of the mass excess functional of a cumulative dis-
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tribution function F with density f and Tsybakov (1997) observed that the minimax risk

in the problem of estimating the level set of a density depends on its “regularity”. More

recently, Chandler and Polonik (2006) used the excess mass functional for discrimination

analysis under the additional assumption of unimodality.

The present paper differs from this literature with respect to several perspectives. First,

we are interested in change point analysis and develop a test for a relevant difference in

the mean of the process over a certain range of time. Therefore - in contrast to most of the

literature, which deals with i.i.d. data - we consider the regression model (1.2) with a non-

stationary error process. Second, we are interested in an estimate, say T̂N,c of the Lebesgue

measure Tc of the level set Mc and its asymptotic properties in order to construct a test

for the change point problem (1.5). Therefore - in contrast to many references - we do not

discuss estimates of an excess mass functional or a distance between an estimated level

set and the “true” level set, but investigate the asymptotic distribution of T̂N,c. Third, as

this distribution depends sensitively on the critical points and the dependence structure of

the non-stationary error process, we use a Gaussian approximation to develop a bootstrap

method, which allows us to find quantiles without estimating the location of the critical

points and the derivatives of the regression function at these points.

The rest of paper is organized as follows. In Section 2 we define an estimator of the

quantity Tc and give some basic assumptions of the non-stationary model (1.2). Section 3

is devoted to a discussion of the asymptotic properties of this estimator in the case, where

all critical points are regular points, that is µ(1)(s) 6= 0 for all s ∈ C. We focus on this case

first, because here the arguments are more transparent. In particular we identify a bias

problem, which makes the implementation of the test at this stage difficult. The general

case is carefully investigated in Section 4, where we also address the bias problem using

a Jacknife approach. The bootstrap procedure is developed in Section 5, where we also

prove its validity and illustrate its finite sample properties by means of a simulation study

and by analyzing data examples. Finally, most of the technical details are deferred to an

appendix in Sections 7 and 8 (the latter section contains some auxiliary results).

6



2 Estimation and basic assumptions

Recall the definition of the testing problems (1.5), (1.6), (1.7) and note that Tc = T+
c +T−c ,

where

T+
c =

∫ 1

0

1(µ(t)− µ(0) ≥ c)dt , T−c =

∫ 1

0

1(µ(t)− µ(0) ≤ −c)dt,

and 1(B) denotes the indicator function of the set B. In most parts of the paper we mainly

concentrate on the estimation of the quantity T+
c and study the asymptotic properties of an

appropriately standardized estimate [see for example Theorem 3.1 and 4.1]. Corresponding

results for the estimators of T−c and Tc can be obtained by similar methods and the joint

weak convergence is established in Theorem 3.2 and Theorem 4.2 without giving detailed

proofs.

We propose to estimate the mean function by a local linear estimator

(µ̂bn(t), ˆ̇µbn(t))T = argmin
β0∈R,β1∈R

n∑
i=1

(Xi − β0 − β1(i/n− t))2K
(i/n− t

bn

)
, (2.1)

where K(·) denotes a continuous and symmetric kernel supported on the interval [−1, 1].

We define an estimator of T+
c by

T̂+
N,c =

1

N

N∑
i=1

∫ ∞
c

1

hd
Kd

( µ̂bn(i/N)− µ̂bn(0)− u
hd

)
du, (2.2)

where Kd(·) is a symmetric kernel function supported on the interval [−1, 1] such that∫ 1

−1
Kd(x)dx = 1. In (2.2) the quantity hd > 0 denotes a bandwidth and N is the number

of knots in a Riemann approximation (see the discussion in the following paragraph), which

does not need to coincide with the sample size n. A statistic of the type (2.2) has been

proposed by Dette et al. (2006) to estimate the inverse of a strictly increasing regression

function, but we use it here without assuming monotonicity of the mean function µ. We

shall see later that hd is usually chosen to be small to reduce error in the approximation

of
∫ 1

0
1(µ(t) − µ(0) ≥ c)dt by

∫ 1

0
1
hd

∫∞
c
Kd

(µ(t)−µ(0)−u
hd

)
dudt. Observing that µ̂bn(t) is a
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consistent estimate of µ(t) we argue (rigorous arguments are given later) that

T̂+
N,c =

1

N

N∑
i=1

∫ ∞
c

1

hd
Kd

(µ(i/N)− µ(0)− u
hd

)
du+ oP (1)

=
1

hd

∫ 1

0

∫ ∞
c

Kd

(µ(x)− µ(0)− u
hd

)
dudx+ oP (1) = T+

c + oP (1) (2.3)

as n,N → ∞, hd → 0. In Section 3 we will establish the asymptotic properties of the

statistic T̂+
N,c as an estimator of T+

c for a twice continuously differentiable mean function.

For these investigations we will make the following basic assumptions for model (1.2).

Assumption 2.1.

(a) The mean function is twice differentiable with Lipschitz continuous second derivative.

(b) There exists a positive constant ε0, such that for all δ ∈ [0, ε0] there are kδ closed

disjoint intervals I1,δ, . . . , Ikδ,δ, such that

{
t ∈ [0, 1] : |µ(t)− µ(0)− c| ≤ δ

}
∪
{
t ∈ [0, 1] : |µ(t)− µ(0) + c| ≤ δ

}
=

kδ⋃
i=1

Ii,δ,

where the number of intervals kδ satisfies sup0≤δ≤ε0 kδ ≤ M for some universal con-

stant M . In particular there exists only a finite number of roots of the equation

µ(t)− µ(0) = ±c. We also assume that |µ(1)− µ(0)| 6= c.

Our first result makes the approximation of T+
c by deterministic counterpart

T+
N,c :=

1

N

N∑
i=1

∫ ∞
c

1

hd
Kd

(µ(i/N)− µ(0)− u
hd

)
du (2.4)

in (2.3) more precise. For this purpose let

mγ,δ(µ) = λ
(
{t ∈ [0, 1] : |µ(t)− γ| ≤ δ}

)
denote the Lebesgue measure of the set of points, where the mean function lies in a δ-

neighbourhood of the point γ.
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Proposition 2.1. If Assumption 2.1 holds and mc+µ(0),δ(µ) = O(δι) for some ι > 0 as

δ → 0, we have for the quantity T+
N,c in (2.4),

T+
N,c − T

+
c = O(max{hιd, N−1})

as N →∞, hd → 0.

Proof. By elementary calculations it follows that∫ ∞
c

1

hd
Kd

(µ(i/N)− µ(0)− u
hd

)
du− 1(µ(i/N)− µ(0) ≥ c)

= 1({|c− (µ(i/N)− µ(0))| ≤ hd})
∫ ∞
c−µ(i/N)+µ(0)

hd

Kd(x)dx

− 1({µ(i/N)− µ(0)− hd ≤ c ≤ µ(i/N)− µ(0)}).

Therefore, we obtain (observing that
∫ 1

−1
Kd(x)dx = 1)

|T+
N,c − T

+
c | =

∣∣∣ 1

N

N∑
i=1

∫ ∞
c

1

hd
Kd

(µ( i
N

)− µ(0)− u
hd

)
du− 1(µ( i

N
)− µ(0) ≥ c)

∣∣∣+O
( 1

N

)
≤ 2

N

N∑
i=1

1(|µ(i/N)− µ(0)− c| ≤ hd) +O(N−1)

= 2mc+µ(0),hd(µ) +O(N−1) = O
(

max{hιd,
1

N
}
)
.

as N →∞, hd → 0. �

For q ≥ 1 let ||X||q =
(
E|X|q

)1/q
denote the Lq-norm of the random variable X. We begin

recalling some basic definitions on physical dependence and locally stationary processes.

Definition 2.1. Let η = (ηi)i∈Z be a sequence of indendent identically distributed random

variables, Fi = {ηs : s ≤ i}, denote by η′ = (η′i)i∈Z an independent copy of η and define

F∗i = (. . . , η−2, η−1, η
′
0, η1, . . . , ηi). For t ∈ [0, 1] let G : [0, 1]×R∞ → R denote a nonlinear

filter, that is a measurable function, such that G(t,Fi) is a properly defined random variable

for all t ∈ [0, 1].
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(1) A sequence (εi,n)i=1,...,n is called locally stationary process, if there exists a filter G such

that εi,n = G(i/n,Fi) for all i = 1, . . . , n.

(2) For a nonlinear filter G with supt∈[0,1] ‖G(t,Fi)‖q <∞, the physical dependence mea-

sure of G with respect to ‖ · ‖q is defined by

δq(G, k) = sup
t∈[0,1]

‖G(t,Fk)−G(t,F∗k )‖q. (2.5)

(3) The filter G is called Lipschitz continuous with respect to ‖ · ‖q if and only if

sup
0≤s<t≤1

‖G(t,Fi)−G(s,Fi)‖q/|t− s| <∞. (2.6)

The filter G is used to model non-stationarity. The quantity δq(G, k) measures the depen-

dence of G(t,Fk) on η′0 over the interval [0, 1]. When δq(G, k) converges sufficiently fast to

0 such that
∑

k δq(G, k) <∞, we speak of a short range dependent time series. Condition

(2.6) means that the data generating mechanism G is varying smoothly in time. We refer

to Zhou and Wu (2009) for more details, in particular for examples of locally stationary

linear and nonlinear time series, calculations of the dependence measure (2.5) and for the

verification of (2.6). With this notation we make the following assumptions regarding the

error process in model (1.2).

Assumption 2.2. The error process (εi,n)i=1,...,n in model (1.2) is a zero-mean locally

stationary process with filter G, which satisfies the following conditions:

(a) There exists a constant χ ∈ (0, 1), such that δ4(G, k) = O(χk) as k →∞.

(b) The filter G is Lipschitz continuous with respect to ‖·‖4 and supt∈[0,1] ‖G(t,F0)‖4 <∞

(c) The long-run variance

σ(t) :=
∞∑

i=−∞

cov(G(t,Fi), G(t,F0)), t ∈ [0, 1]

of the filter G is Lipschitz continuous on the interval [0, 1] and non-degenerate, that

is inft∈[0,1] σ(t) > 0.
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Condition (a) of Assumption 2.2 means that the error process {εi,n}i=1,...,n in model (1.2)

is locally stationary with geometrically decaying dependence measure. The theoretical

results of the paper can also be derived under the assumption of a polynomially decay-

ing dependence measure with substantially more complicated bandwidth conditions and

proofs. Conditions (b) and (c) are standard in the literature of locally stationary time

series. They are used later for a strong Gaussian approximation of the locally stationary

time series; see for example Zhou and Wu (2010).

3 Twice continuously differentiable mean functions

In this section we briefly consider the situation, where the derivatives of the mean function

at the critical set to do not vanish. These assumptions are quite common in the literature

[see, for example, condition (B.ii) in Mason and Polonik (2009) or assumption (A1) in

Samworth and Wand (2010). ] We discuss this case separately because of (at least) two

reasons. First, the results and required assumptions are slightly simpler here. Second, and

more important, we use this case to demonstrate that the estimates of Tc, T
+
c and T−c have

a bias, which is asymptotically not negligible and makes their direct application for testing

the hypotheses (1.5), (1.6) and (1.7) difficult. The general case is postponed to Section

4, where we also solve the bias problem. We do not provide proofs of the results in this

section, as they can be obtained by similar (but substantially simpler) arguments as given

in the proofs of Theorem 4.1 and 4.2 below.

Recall the definition of the statistic T̂+
N,c in (2.2), where µ̂bn(t) is the local linear es-

timate of the mean function with bandwidth bn. Our first result specifies its asymptotic

distribution, and for its statement we make the following additional assumption on the

bandwidths.

Assumption 3.1. The bandwidth bn of the local linear estimator satisfies bn → 0, nbn →
∞, bn/hd →∞,

√
nbn/ log4 n→∞, and π∗n/hd → 0 where

π∗n := (b2
n + (nbn)−1/2 log n) log n.

Theorem 3.1. Suppose that Assumptions 2.1, 2.2 and 3.1 hold, that there exist roots
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t+1 , . . . , t
+
k+ of the equation µ(t)− µ(0) = c satisfying µ̇(t+j ) 6= 0 for 1 ≤ j ≤ k+, and define

R̄1,n =
n1/4 log2 n

nbn
, R̄2,n =

( 1

Nbn
+

1

Nhd

)
(bn ∧ hd),

χ̄n = (b4
n +

1

nbn
)(h−1

d + πnh
−2
d ).

If Nbn →∞, Nhd →∞,
√
nbn(χ̄n + R̄1,n + R̄2,n) = o(1),

√
nbnhd = o(1), then

√
nbn

(
T̂+
N,c − T

+
c − µ2,Kb

2
n

k+∑
j=1

µ̈(t+j )

|µ̇(t+j )|
+
b2
nc2,K µ̈(0)

2c0,K

k+∑
j=1

1

|µ̇(t+j )|

)
D

=⇒ N (0, τ 2,+
1 + τ 2,+

2 ),

where

τ 2,+
1 =

k+∑
s=1

σ2(t+s )

µ̇(t+s )2

∫
K2(x)dx,

τ 2,+
2 =

σ2(0)

c2
0,K

( k+∑
j=1

1

|µ̇(t+j )|

)2
∫ 1

0

(
µ2,K − tµ1,K

)2
K2(t)dt,

the constants c0,K and c2,K are given by

c0,K = µ0,Kµ2,K − µ2
1,K , c2,K = µ2

2,K − µ1,Kµ3,K

and µl,K =
∫ 1

0
xlK(x)dx for (l = 1, 2, . . .).

Theorem 3.1 establishes asymptotic normality under the scenario that µ̇(t) 6= 0 for all

points t ∈ C+ = {t ∈ [0, 1] : µ(t) − µ(0) = c}. This condition guarantees that the mean

function µ is strictly monotone in a neighbourhood of the roots. Moreover, Assumptions

2.1(b) and 3.1 imply the asymptotic independence of the estimators of µ(0) and µ(t) for

any t ∈ C+.

We conclude this section presenting a corresponding weak convergence result for the

joint distribution of (T̂+
n,c, T̂

−
n,c), where

T̂−N,c =
1

N

N∑
i=1

∫ −c
−∞

1

hd
Kd

(
µ̂bn(i/N)− µ̂bn(0)− u

hd

)
du
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denotes an estimate of the quantity T−c defined in (1.7).

Theorem 3.2. Suppose that Assumptions 2.1, 2.2 and 3.1 are satisfied and that the band-

width conditions of Theorem 3.1 hold. If there also exist roots t−1 , . . . , t
−
k− of the equation

µ(t)− µ(0) = −c, such that µ̇(t−) 6= 0 (l = 1, . . . , k−), then, as n→∞,

√
nbn

(
T̂+
N,c − T

+
c − b+

c , T̂
−
N,c − T

−
c − b−c

)T D
=⇒ N (0, Σ̃),

where

b±c =
µ2,Kb

2
n

2

k±∑
j=1

µ̈(t±j )

|µ̇(t±j )|
+
b2
nc2,K µ̈(0)

2c0,K

k±∑
j=1

1

|µ̇(t±j )|
, (3.1)

and the elements in the matrix Σ̃ = (Σ̃ij)i,j=1,2 are given by Σ̃11 = τ 2,+
1 + τ 2,+

2 , Σ̃22 =

τ 2,−
1 + τ 2,−

2 and

Σ̃12 = Σ̃21 = −c−2
0,Kσ

2(0)
( k+∑
j=1

1

|µ̇(t+j )|

)( k−∑
j=1

1

|µ̇(t−j )|

)∫ 1

0

(µ2,K − tµ1,K)2K2(t)dt.

where τ 2,+
1 and τ 2,+

2 are defined in a similar way as τ 2,+
1 and τ 2,+

2 in Theorem 3.1.

Remark 3.1. The representation of the bias in (3.1) has some similarity with the approx-

imation of the risk of an estimate of the highest density region investigated in Samworth

and Wand (2010). We suppose that similar arguments as given in the proofs of our main

results can be used to derive asymptotic normality of this estimate [see also Mason and

Polonik (2009)].

Theorem 3.1 and 3.2 can be used to construct tests for the hypotheses (1.6) and (1.7). Sim-

ilarly, by the continuous mapping theorem we also obtain from Theorem 3.2 the asymptotic

distribution of the the statistic T̂N,c = T̂+
N,c + T̂−N,c, which could be used to construct a test

for the hypotheses (1.5). However, such tests would either require undersmoothing or es-

timation of the bias b+
c and b−c in (3.1), which is not an easy task. Therefore we next

investigate an alternative procedure based on the Jackknife principle, which will be the

basic tool for the bootstrap test discussed in Section 5.
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4 Jack-Knife bias corrected test

In this section we will address the bias problem mentioned in the previous paragraph adopt-

ing the Jackknife bias reduction technique proposed by Schucany and Sommers (1977).

Moreover, we also relax the main assumption that the derivative of the mean function

does not vanish at critical roots t ∈ C. Recalling the definition µ̂bn(t) of the local linear

estimator in (2.1) with bandwidth bn we define the Jackknife estimator by

µ̃bn(t) = 2µ̂bn/
√

2(t)− µ̂bn(t) (4.1)

for 0 ≤ t ≤ 1. It has been shown in Wu and Zhao (2007) that the bias of the estimator

(4.1) is of order o(b3
n + 1

nbn
), whenever bn ≤ t ≤ 1 − bn, and Zhou and Wu (2010) showed

that the estimate µ̃bn is asymptotically equivalent to a local linear estimate with kernel

K∗(x) = 2
√

2K(
√

2x)−K(x). (4.2)

In order to use these bias corrected estimators for the construction of tests for the hy-

potheses defined in (1.5) - (1.7), we also need to study the estimate µ̃bn(0), which is not

asymptotically equivalent to a local linear estimate with kernel K∗(x). However, as a

consequence of Lemma 8.2 in the Appendix we obtain the stochastic expansion

∣∣∣µ̃bn(0)− µ(0)− 1

nbn

n∑
i=1

K̄∗(
i

nbn
)ei

∣∣∣ = O(b3
n +

1

nbn
),

where the kernel K̄∗(x) is given by

K̄∗(x) = 2
√

2K̄(
√

2x)− K̄(x) (4.3)

with K̄(x) = (µ2,K − xµ1,K)K(x)/c0,K . Since the kernel K̄∗(x) is not symmetric, the bias

of µ̃bn(0) is of the order O(b3
n + 1

nbn
). The corresponding estimators of the quantities T+

c

and T−c are then defined as in Section 2, where the local linear estimator µ̂bn is replaced by

its bias corrected version µ̃bn . For example, the analogue of the statistic in (2.2) is given

14



by

T̃+
N,c =

1

N

N∑
i=1

∫ ∞
c

1

hd
Kd

( µ̃bn(i/N)− µ̃bn(0)− u
hd

)
du. (4.4)

The investigation of the asymptotic properties of these estimators in the general case

requires some preparations, which are discussed next.

We call a point t ∈ [0, 1] a regular point of the mean function µ, if the derivative µ′

does not vanish at t. A point t ∈ C is called a critical point of µ of order k ≥ 1 if the first

k derivatives of µ at t vanish while the (k + 1)st derivative of µ at t is non zero, that is

µ(s)(t) = 0 for 1 ≤ s ≤ k and µ(k+1)(t) 6= 0. Regular points are critical points of order

0. Theorem 3.1 or 3.2 are not valid if any of the roots of the equation µ(t) − µ(0) = c

or µ(t) − µ(0) = −c is a critical point of order larger or equal than 1. The following

result provides the asymptotic distribution in this case and also solves the bias problem

mentioned in Section 3. For its statement we make the following additional assumptions.

Assumption 4.1. The mean function µ is three times continuously differentiable. Let

t−1 , . . . , t
−
k− and t+1 , . . . , t

+
k+ denote the roots of the equations µ(t) − µ(0) = c and µ(t) −

µ(0) = −c, respectively. For each t−s (s = 1, . . . , k−) and each t+s (s = 1, . . . , k+) there

exists a neighbourhood of t−s and t+s such that µ is (v−s +1) and (v+
s +1) times differentiable

in these neighbourhoods with corresponding critical order ν−s and ν+
s , respectively (1 ≤

s ≤ k−, 1 ≤ s ≤ k+). We also assume that the (v−s + 1)st and (v+
s + 1)st derivatives of the

mean function are Lipschitz continuous on these neighbourhoods.

Assumption 4.2. There exist q points 0 = s0 ≤ s1 ≤ . . . ≤ sq = 1 such that the mean

function µ is strictly monotone on each interval (si, s1+1] (0 ≤ i ≤ q).

It is shown in Lemma 8.1 that under the assumptions made so far the set {t : |µ(t)− c| ≤
hn, t ∈ [0, 1]} can be decomposed as a union of disjoint “small” intervals around the critical

roots t+i ∈ C+ and t−i ∈ C−, whose Lebesgue measure is of order h
1/(ν+i +1)
n and h

1/(ν−i +1)
n ,

respectively, and therefore depends on the order of the corresponding root. In the appendix

we prove the following result, which clarifies the distributional properties of the estimator

T̃+
N,c defined in (4.4) if the sample size converges to infinity.
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Theorem 4.1. Suppose that k+ ≥ 1, and that Assumptions 2.1, 2.2, 4.1 and Assumption

4.2 are satisfied. Define v+ = max1≤l≤k+ v
+
l as the maximum critical order of the roots of

the equation µ(t)− µ(0) = c and introduce the notation

χ+
n =

(
b6
n +

1

nbn

)
h−2
d (hd + πn)

1
v++1 , R+

1,n = h
− v+

v++1

d

(
b3
n +

1

nbn

)
,

R+
2,n =

n1/4 log2 n

nbn
h
− v+

v++1

d , R+
3,n =

( 1

Nbn
+

1

Nhd

)(
bn ∧ h

1
v++1

d

)
.

Assume further that the bandwidth conditions hd → 0, nbnhd → ∞, bn → 0, nb2
n → ∞,

Nbn →∞, Nhd →∞ and πn = o(hd) hold, where

πn := (b3
n + (nbn)−1/2 log n) log n = o(hd), (4.5)

then we have the following results.

(a) If bv
++1
n /hd → ∞,

√
nbnh

v+

v++1

d (χ+
n + R+

1,n + R+
2,n + R+

3,n) = o(1),
√
nbnhd = o(1),

√
nbnh

v+

v++1

d /N = o(1), then

√
nbnh

v+

v++1

d

(
T̃+
N,c − T

+
c

)
D

=⇒ N (0, σ2,+

1 + σ2,+

2 ),

where

σ2,+

1 =
(∫

Kd(z
v++1)dz

)2

((v+ + 1)!)
2

v++1

∑
{t+l : v+l =v+}

σ2(t+l )

|µ(v++1)(t+l )|
2

v++1

∫
(K∗(x))2dx,

(4.6)

σ2,+

2 = σ2(0)((v+ + 1)!)
2

v++1

∫ 1

0

(K̄∗(t))2dt
( ∑
{t+l : v+l =v+}

|µ(v++1)(t+l )|
−1

v++1

∫
Kd(z

v++1)dz
)2

.

(4.7)

(b) If bn/h
1

v++1

d = r ∈ [0,∞),
√
nhdh

v+

2(v++1)

d (χ+
n +R+

1,n +R+
2,n +R+

3,n) = o(1), then

√
nhdh

v+

2(v++1)

d

(
T̃+
N,c − T

+
N,c

)
D

=⇒ N (0, ρ2,+
1 + ρ2,+

2 ),
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where

ρ2,+
1 = |(v+ + 1)!|

1
v++1

∑
{t+l : v+l =v+}

σ2(t+l )

|µ(v++1)(tl)|
2

v++1

∫ ∫ ∫
K∗(u)K∗(v)Kd(z

v++1
1 )

×Kd

((
z1 + r

∣∣∣ (v+ + 1)!

µ(v++1)(t+l )

∣∣∣ −1
v++1

(v − u)
)v++1)

dudvdz1,

and ρ2,+
2 = r−1σ2,+

2 , where σ2,+
2 is defined in (4.7)

In general the rate of convergence of the estimator T̃+
N,c is determined by the maximal

order of the critical points, and only critical points of maximal order appear in the asymp-

totic variance. The rate of convergence additionally depends on the relative order of the

bandwidths bn and hd. Theorem 4.1 also covers the case v+ = 0, where all roots of the

equation µ(t)−µ(0) = c are regular. Moreover, the use of the Jackknife corrected estimate

µ̃bn avoids the bias problem observed in Theorem 3.1.

It is also worthwhile to mention that there exists a slight difference in the statement

of part (a) and (b) of Theorem 4.1. While part (a) gives the asymptotic distribution

of T̃+
N,c − T+

c (appropriately standardized), part (b) describes the weak convergence of

T̃+
N,c − T+

N,c. The replacement of T+
N,c by its limit T+

c is only possible under additional

bandwidth conditions. In fact, if bn/h
1

v++1

d = c ∈ [0,∞), Theorem 4.1 and Proposition 2.1

give

√
nhdh

v+

2(v++1)

d

(
T̃+
n,c − T+

c

)
−Rn

D
=⇒ N (0, ρ2,+

1 + ρ2,+
2 ),

where ρ2,+
1 and ρ2,+

2 are defined in Theorem 4.1, and Rn is a an additional bias term of

order

O(
√
nhdh

v++2
2(v++1)

d ),

which does not necessarily vanish asymptotically. For example, in the regular case v+ = 0

this bias is of order o(1) under the additional assumptions nh3
d = o(1) and bn/hd <∞. Note

that these bandwidth conditions do not allow for the MSE-optimal bandwidth bn ∼ n−1/5.

These considerations give some arguments for using small bandwidths hd in the estimator

(4.4) such that condition (a) of Theorem 4.1 holds, that is hd = o(bν
++1
n ). Moreover, in

numerical experiments we observed that smaller bandwidths hd usually yield a substantially
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better performance of the estimator T̃+
N,c and in the remaining part of this section we

concentrate on this case as this is most important from a practical point of view.

The next result gives a corresponding statement of the joint asymptotic distribution

of (T̃+
N,c, T̃

−
N,c) and as a consequence that of T̃N,c = T̃+

N,c + T̃−N,c, where the statistic T̃−N,c is

defined by

T̃−N,c =
1

N

N∑
i=1

∫ −c
−∞

1

hd
Kd

(
µ̃bn(i/N)− µ̃bn(0)− u

hd

)
du. (4.8)

Theorem 4.2. Assume that the conditions of Theorem 4.1 are satisfied, that k− ≥ 1 and

define v− = max1≤l≤k− v
−
l as the maximum order of the critical roots {t−l : 1 ≤ l ≤ k−}.

If, additionally, the bandwidth conditions (a) of Theorem 4.1 hold and similar bandwidth

conditions are satisfied for the level −c, we have

√
nbn

(
h
v+

v+1
d (T̂+

N,c − T
+
c ), h

v−
v−+1

d (T̂−N,c − T
−
c )
)T
⇒ N (0,Σ),

where the matrix Σ = (Σij)i,j=1,2 has the entries Σ11 = σ2,+
1 + σ2,+

2 , Σ22 = σ2,−
1 + σ2,−

2 ,

Σ12 = Σ21 = −σ2(0)((v+ + 1)!)
1

v++1 ((v− + 1)!)
1

v−+1

∫ 1

0

(K̄∗(t))2dt

×
∑

{t+l : v+l =v+}

∫
Kd(z

v++1)dz

|µ(v++1)(t+l )|1/(v++1)

∑
∑
{t−
l

: v−
l

=v−}

∫
Kd(z

v−+1)dz

|µ(v−+1)(t−l )|1/(v−+1)
,

and σ2,−
1 , σ2,−

2 are defined similarly as σ2,+
1 , σ2,+

2 in (4.6), (4.7), respectively.

The continuous mapping theorem and Theorem 4.2 imply the weak convergence of the

estimator T̂N,c of Tc, that is
√
nbnh

v
v+1

d (T̂N,c−Tc)→ N(0, σ2), where v = max{v+, v−} and

the asymptotic variance is given by σ2 = Σ1,11(v+ ≥ v−) + Σ2,21(v+ ≤ v−) + 2Σ1,21(v+ =

v−).

Remark 4.1. In applications one might also be interested if there exist relevant deviations

of the sequence (µ(i/n))i=bnt0c+1,...,n from an average trend formed from the previous period
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(µ(i/n))i=1,...,bnt0c. This question can be addressed estimating the quantity

∫ 1

t0

1
(
µ(t)−

∫ t0

0

µ(s)ds ≥ c
)
dt = λ

({
t ∈ [t0, 1] : µ(t)−

∫ t0

0

µ(s)ds ≥ c
})
.

Using similar mathematical arguments as given in Section 7 and 8 one can prove consistency

and derive the asymptotic distribution of the estimate

1

N

N∑
i=bNt0c

∫ ∞
c0

1

hd
Kd

( µ̃bn(i/N)−
∫ t0

0
µ̃bn(s)ds− u

hd

)
du

where µ̃bn is the bias-corrected local linear estimator of µ. The details are omitted for the

sake of brevity.

5 Bootstrap

Although Theorem 4.1 is interesting from a theoretical point of view and avoids the bias

problem described in Section 3, it can not be easily used to construct a test for the hypothe-

ses (1.5). The asymptotic variance of the statistics T+
N,c and T−N,c depends on the long-run

variance σ2(·) and the set C of critical points, which are difficult to estimate. Moreover,

the order of the critical roots is usually unknown and not estimable. Therefore it is not

clear which derivatives have to be estimated (the estimation of higher order derivatives

of the mean function is a hard problem anyway). In this section, we develop an adaptive

methodology to address this problem. In particular, we propose a bootstrap test which

does not require the estimation of the derivatives of the mean trend at the critical roots.

The bootstrap procedure is motivated by an essential step in the proof of Theorem 4.1,

which gives a stochastic approximation for the difference

T̃+
N,c − T

+
c = I ′ + op

((√
nbh

v+

v++1

d

)−1
)
,
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where the statistic I ′ is defined as

−1

nNbnhd

n∑
j=1

N∑
i=1

Kd

(µ(i/N)− µ(0)− c
hd

)
σ
( j
n

)(
K∗
(i/N − j/n

bn

)
− K̄∗

( j

nbn

))
Vj, (5.1)

and (Vj)j∈N is a sequence of independent standard normal distributed random variables.

Based on this approximation we propose the following bootstrap to calculate critical values.

Algorithm 5.1.

(1) Choose bandwidths bn, hd and an estimator of the long-run variance, say σ̂2(·), which

is uniformly consistent on the set ∪ν+k=1 Uε(t+k ) for some ε > 0, where Uε(t) denotes a ε-

neighbourhood of the point t.

(2) Calculate the bias corrected local linear estimate µ̃bn(t) and the statistic T̃+
N,c defined

in (4.1) and (4.4), respectively.

(3) Calculate

V̄ =
n∑
j=1

σ̂2
( j
n

)[ N∑
i=1

Kd

( µ̃bn(i/N)− µ̃bn(0)− c
hd

){
K∗
(i/N − j/n

bn

)
− K̄∗

( j

nbn

)}]2

.

(4) Let q+
1−α denote the the 1− α quantile of a centred normal distribution with variance

V̄ , then the null hypothesis in (1.6) is rejected, whenever

nNbnhd
(
T̃+
N,c −∆

)
> q+

1−α. (5.2)

Theorem 5.1. Assume that the conditions of Theorem 4.1 (a) are satisfied, then the test

(5.2) defines a consistent and asymptotic level α test for the hypotheses (1.6).

Remark 5.1.

(a) It follows from the proof of Theorem 5.1 in the appendix that

P
(

test (5.2) rejects
)
−→


1 if T+

c > ∆

α if T+
c = ∆

0 if T+
c < ∆

.

Moreover, these arguments also show that the test (5.2) is able to detect local alternatives
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converging to the null at a rate O(nbn
−1/2h

− v+

v++1

d ). When the level c decreases, the value

of T+
c increases and the rejection probabilities also increase. On the other hand, for any

given level c, the rejection probability will increase when the threshold ∆ decreases (see

equation (7.33) in the appendix).

(b) The bootstrap procedure can easily be modified to test the hypothesis (1.5) referring

to the quantity Tc. In step (2), we additionally calculate the statistic T̂−N,c defined in (4.8),

T̂N,c = T̂+
N,c + T̂−N,c and the quantity

V ∗ =
n∑
j=1

σ̂2(j/n)
( N∑
i=1

K†d

( µ̃bn(i/N)− µ̃bn(0)− c
hd

)(
K∗
(i/N − j/n

bn

)
− K̄∗

( j

nbn

)))2

,

where

K†d

( µ̃bn(i/N)− µ̃bn(0)− c
hd

)
= Kd

( µ̃bn(i/N)− µ̃bn(0)− c
hd

)
−Kd

( µ̃bn(i/N)− µ̃bn(0) + c

hd

)
.

Finally, the null hypothesis (1.5) is rejected if nNbnhd
(
T̂N,c − ∆

)
> q1−α, where q1−α

denotes the (1− α)th quantile of a centered normal distribution with variance V ∗

For the estimation of the the long-variance we define Sk,r =
∑r

i=kXi and for m ≥ 2

∆j =
Sj−m+1,j − Sj+1,j+m

m
,

and for t ∈ [m/n, 1−m/n]

σ̂2(t) =
n∑
j=1

m∆2
j

2
ω(t, j), (5.3)

where for some bandwidth τn ∈ (0, 1),

ω(t, i) = K
(i/n− t

τn

)
/

n∑
i=1

K
(i/n− t

τn

)
.

For t ∈ [0,m/n) and t ∈ (1−m/n, 1] we define σ̂2(t) = σ̂2(m/n) and σ̂2(t) = σ̂2(1−m/n),

respectively. Note that the estimator (5.3) does not involve estimated residuals. The
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following result shows that σ̂2 is consistent and can be used in Algorithm 5.1.

Theorem 5.2. Let Assumption 2.1 - 2.2 be satisfied and assume τn → 0, nτn → ∞,

m→∞ and m
nτn
→ 0. If, additionally, the function σ2 is twice continuously differentiable,

then the estimate defined in (5.3) satisfies

sup
t∈[γn,1−γn]

|σ̂2(t)− σ2(t)| = Op

(√ m

nτ 2
n

+
1

m
+ τ 2

n +m5/2/n
)
, .

where γn = τn +m/n. Moreover, we have

σ̂2(t)− σ2(t) = Op

(√ m

nτn
+

1

m
+ τ 2

n +m5/2/n
)
. (5.4)

for any fixed t ∈ (0, 1) and for s = {0, 1}

σ̂2(s)− σ2(s) = Op

(√ m

nτn
+

1

m
+ τn +m5/2/n

)
.

Note that error term
√

m
nτn

+ 1
m

+ τ 2
n in (5.4) is minimized at the rate of O(n−2/7) by

m � n2/7 and τn � n−1/7, where we write rn � sn if rn = O(sn) and sn = O(rn). For

this choice the estimator (5.3) achieves a better rate than the long-run variance estimator

proposed in Zhou and Wu (2010) (see Theorem 5 in this reference).

6 Finite sample properties

In this section we investigate the finite sample properties of the bootstrap tests proposed

in the previous sections. For the sake of brevity we restrict ourselves to the test (5.2) for

the hypotheses (1.6). Similar results can be obtained for the corresponding tests for the

hypotheses (1.5) and (1.7).

The selection of the bandwidth bn in the local linear estimator is of particular impor-

tance in our approach, and for this purpose we use the generalized cross validation (GCV)

method. To be precise, let ẽi,b = Xi,n − µ̃b(i/n) be the residual obtained from a bias

corrected local linear fit with bandwidth b and define ẽb = (ẽ1,b, . . . , ẽn,b). Throughout this
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section we use the bandwidth

b̂n = argmin
b

GCV (b) := argmin
b

n−1êbΓ̂
−1
n êb

(1−K∗(0)/(nb))2
,

where Γ̂n is an estimator of the covariance matrix Γn := {E(εi,nεj,n)}1≤i,j≤n, which is

obtained by the banding techniques as described in Wu and Pourahmadi (2009).

It turns out that Algorithm 5.1 is not very sensitive with respect to the choice of the

bandwidth hd as long as it is chosen sufficiently small. As a rule of thumb satisfying the

bandwidth conditions of Theorem 4.1(a), we use hd = n−1/2/2 throughout this section. In

order to save computational time we use m = bn2/7c and τn = n−1/7 for the estimator σ̂2

in the simulation study [see the discussion at the end of Section 5]. For the data analysis

in Section 6.2 we suggest a data-driven procedure and use a slight modification of the

minimal volatility method as proposed by Zhou and Wu (2010). To be precise - in order

to avoid choosing too large values for m and τ - we penalize the quantity

ISEh,j = ise[∪2
r=−2σ̂

2
mh,τj+r

(t) ∪2
r=−2 σ̂

2
mh+r,τj

(t)]

in their selection criteria by the term 2(τj+mh/n)IS, where σ̂2
mh,τj

(·) is the estimator (5.3)

of the long-run variance with parameters mh and τj and IS is the average of the quantities

ISEh,j.

6.1 Simulation results

All simulation results presented in this section are based on 2000 simulation runs. We

consider the model (1.2) with errors εi,n = G(i/n,Fi)/5, where

(I) : G(t,Fi) = 0.25| sin(2πt)|G(t,Fi−1) + ηi;

(II) : G(t,Fi) = 0.6(1− 4(t− 0.5)2)G(t,Fi−1) + ηi ,

and the filtration Fi = (η−∞, . . . , ηi) is generated by a sequence {ηi, i ∈ Z} of indepen-

dent standard normal distributed random variables. For the mean trend we consider the

following two cases

(a): µ(t) = 8(−(t− 0.5)2 + 0.25);
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Figure 1: Simulated sample paths for the four models under consideration. The horizontal
lines display the level c which is given by 1.82 and 1.995 for the mean function (a) and by
1.672 and 1.78 for the mean function (b).

(b): µ(t) = sin(2|t− 0.6|π)(1 + 0.4t).

Typical sample paths of these processes are depicted in Figure 1. Note that the mean trend

(b) is not differentiable at the point 0.6. However, using similar but more complicated

arguments as given in Section 7 and 8, it can be shown that the results of this paper

also hold if µ(·) is Lipschitz continuous outside of an open set containing the critical roots

t+1 , . . . , t
+
k+ , t

−
1 , . . . , t

−
k− .

The threshold is given by ∆ = 0.3 and ∆ = 0.15. Following the discussion in Remark

5.1(a) we display in Tables 1 the simulated type 1 error at the boundary of the null

hypothesis in (1.6), that is T+
c = ∆. A good approximation of the nominal level at

this point is required as the rejection probabilities for T+
c < ∆ or T+

c > ∆ are usually

smaller or larger than this value, respectively. The values of c corresponding to T+
c =

0.3 and T+
c = 0.15 are given by c = 1.82 and c = 1.955 for the mean function (a)

and by c = 1.672 and c = 1.78 or the mean function (b). We observe a rather precise

approximation of the nominal level, which is improved with increasing sample size. For

the sample size n = 200 the GCV method selects the bandwidths bcv for 0.25, 0.26, 0.23,

0.19 for the models ((I), (a)), ((I), (b)), ((II), (a)), and ((II), (b)), respectively. Similarly,

24



for the sample size n = 500 the GCV method selects the bandwidths 0.2, 0.17, 0.21, 0.14 for

the models ((I), (a)), ((I), (b)), ((II), (a)) and ((II), (b)), respectively. In order to study

the robustness of the test with respect to the choice of bn we investigate the bandwidths

b−cv = bcv − 0.05, bcv, b
+
cv = bcv + 0.05. For this range of bandwidths the approximation of

the nominal level is remarkably stable.

Table 1: Simulated level of the test (5.2) at the boundary of the null hypothesis (1.6). The
sample size is n = 200 (upper part) and n = 500 (lower part) and various bandwidths are
considered. The bandwidth bcv is chosen by GCV, and b−cv = bcv − 0.05, b+

cv = bcv + 0.05.

n model (a,I) (b,I) (a,II) (b,II)

∆ bn 5% 10% 5% 10% 5% 10% 5% 10%

0.3
b−cv 4 8.95 5.35 10.1 4.9 8.8 5.6 9.35
bcv 3.5 8.2 4.15 8.05 4 8 6 10.7

200 b+
cv 4.15 7.6 2.85 5.3 3.75 6.85 4.85 9.15

0.15
b−cv 5.45 8.75 5.8 9.25 6.9 10 6.45 11.55
bcv 6.45 10.8 5.35 8.7 6.45 10.7 7.25 11.05
b+
cv 5.65 10.05 2.45 4.55 6.4 10.15 5.75 9.95

0.3
b−cv 5.2 9.45 5.85 10.1 5.85 10.05 5.55 9.9
bcv 4.6 9.55 5.45 9.85 5.65 9.25 6 10.1

500 b+
cv 5.15 9.1 5 8.95 3.65 7.15 5.45 9.85

0.15
b−cv 7.6 12.1 6.5 9.6 7,7 11.15 7.5 11.3
bcv 6.55 11.25 5.1 9.15 7.75 12.2 5.15 9.25
b+
cv 6.85 10.6 4.4 7.5 6.6 11.05 4.6 8.3

In Figure 2, we investigate the properties of the test (5.2) as a function of the threshold

∆ and level c, where we restrict ourselves to the scenario ((I), (a)). For the other cases

the observations are similar. The bandwidth is bn = 0.2. In the left part of the figure the

level c is fixed as 1.82 and ∆ varies from 0 to 0.4 (where the true threshold is ∆ = 0.3).

As expected the rejection probabilities decrease with an increasing threshold ∆. Similarly,

in the right part of Figure 2 we display the rejection probabilities for fixed ∆ = 0.3 when

c varies between 1.44 and 2. Again the rejection rates decrease when c increases.

We finally investigate the power of the test (5.2) for the hypotheses (1.6) with c = 1.82

and ∆ = 0.3, where the bandwidth is chosen as bn = 0.2. The model is given by (1.2) with
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error (I) and different mean functions

µ(t) = a(−(t− 0.5)2 + 0.25) , a ∈ [7.5, 9.5] (6.1)

are considered (here the case a = 8 corresponds to the boundary of the hypotheses). The

results are presented in Figure 3, which demonstrate that the test (5.2) has decent power.
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Figure 2: Simulated rejection probabilities of the test (5.2) in model (1.2) for varying values
of c and ∆. Left: c = 1.82, ∆ ∈ [0, 0.4] (the case ∆ = 0.3 corresponds to the boundary of
the null hypothesis). Right: ∆ = 0.3, c ∈ [1.44, 2] (the case c = 1.82 corresponds to the
boundary of the null hypothesis).The dashed horizontal line represents the nominal level
10%.

6.2 Empirical Studies

6.2.1 Global temperature data

Global temperature data has been extensively studied in the statistical literature under

the assumption of stationarity [see for example Bloomfield and Nychka (1992), Vogel-

sang (1998) and Wu and Zhao (2007) among others]. We consider here a series from

http://cdiac.esd.ornl.gov/ftp/trends/temp/jonescru/ with global monthly temperature anoma-

lies from January 1850 to April 2015, relative to the 1961 − 1990 mean. The data and

a local linear estimate of the mean function are depicted in left panel of Figure 4. The

figure indicates a non-constant higher order structure of the series and analyzing this series

under the assumption of stationarity might be questionable. In fact, the test of Dette et al.
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Figure 3: Simulated power of the test (5.2) in model (1.2) for the hypothesis (1.6) with
c = 1.82 and ∆ = 0.3. The mean functions are given by (6.1) and the case a = 8
corresponds to the boundary of the null hypothesis. The dashed horizontal line represents
the nominal level 10%.

(2015) for a constant lag-1 correlation yields a p-value of 1.6% supporting a non-stationary

model for data analysis.
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Figure 4: Left panel: deseasonalized global temperature 1850–2015 and its fitted mean-
trend. Right panel: Yearly Rainfall of Tucumán Province, Argentina, 1884–1996.

We are interested in the question if the deseasonalized monthly temperature exceeds

the temperature in January 1850 by more than c = 0.15 degrees Celsius in more than

100∆% of the considered period. For this purpose we run the test (5.2) for the hypothesis

(1.6), where the bandwidth (chosen by GCV) is bn = 0.105 and hd = 0.011 (we note again

that the procedure is rather stable with respect to the choice of hd). For the estimate
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(5.3) of the long-run variance σ2, we use the procedure described at the beginning of this

section, which yields m = 30 and τ = 0.202. For a threshold ∆ = 43.4% we obtain a

p-value of 4.82%.

Next we investigate the same question for the sub-series from January 1850 to December

1974. The GCV method yields the bandwidth bn = 0.135 and we chose hd = 0.013 and

m = 36, τ = 0.234 for the estimate of the time-varying long-run variance (see the discussion

at the beginning of this section). We find that for ∆ = 26% and c = 0.15 the p-value is

6.6%. Comparing the results for the series and sub-series shows that relevant deviations

of more than c = 0.15 degrees Celsius arise more frequently between 1975 and 2015. The

conclusions of this short data analysis are similar to those of many authors, but by our

method we are able to quantitatively describe relevant deviations. For example, if we reject

the hypothesis that in less than 26% of the time between January 1850 and April 2015 the

mean function exceeds its value from January 1850 by more than c = 0.15 degrees Celsius,

the type I error of this conclusion is less or equal than 5%.

6.2.2 Rainfall data

In this example we analyze the yearly rainfall data (in millimeters) from 1884 to 1996 in

the Tucumán Province, Argentina, which is a predominantly agriculture region. Therefore

its economy well-being depends sensitively on timely rainfall. The series with a local

linear estimate of the mean trend are depicted in right panel of Figure 4 (note that the

range of estimated mean function is [71.0mm, 92.5mm]) and it has been studied by several

authors in the context of change point analysis with different conclusions. For example, the

null hypothesis of no change point is rejected by the conventional CUSUM test, isotonic

regression approach of Wu et al. (2001) rejects the hypothesis with p-value smaller than

0.1%, and the robust bootstrap test of Zhou (2013) with a p-value smaller than 2%. On

the other hand a self-normalization method considered in Shao and Zhang (2010) reports

a p-value about 10%.

Meanwhile, there is some belief that there exists a change point because of the con-

struction of a dam near the region during 1952 − 1962. As a result, a more practical

question is whether the construction of the dam has a relevant influence on the economic

well-being of the region via affecting the annual rainfall. To investigate this question, we
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are testing the hypotheses (1.6) with a threshold ∆ = 0.05 (here we calculated bn = 0.235,

m = 11, τ = 0.24 and hd = 0.047 as described at the beginning of this section). For the

level c = 7 the p-value is 6.05%. In other words the hypothesis that in less than 5% of the

113 years the mean annual rainfall is at least 7mm higher than the rainfall in the year 1880

can not be rejected. This result indicates that the effect of the new dam on the change of

the amount of rainfall is small.
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Cuevas, A., González-Manteiga, W., and Rodŕıguez-Casal, A. (2006). Plug-in estimation of

general level sets. Australian & New Zealand Journal of Statistics, 48(1):7–19.

Dahlhaus, R. et al. (1997). Fitting time series models to nonstationary processes. The annals of

Statistics, 25(1):1–37.

Dette, H., Neumeyer, N., and Pilz, K. F. (2006). A simple nonparametric estimator of a strictly

monotone regression function. Bernoulli, 12:469–490.

Dette, H. and Volgushev, S. (2008). Non-crossing non-parametric estimates of quantile curves.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(3):609–627.

Dette, H. and Wied, D. (2016). Detecting relevant changes in time series models. Journal of the

Royal Statistical Society, Ser. B, 78:371–394.

Dette, H., Wu, W., and Zhou, Z. (2015). Change point analysis of second order characteristics

in non-stationary time series. arXiv preprint arXiv:1503.08610.

Hartigan, J. A. and Hartigan, P. M. (1985). The dip test of unimodality. The Annals of Statistics,

pages 70–84.

Jandhyala, V., Fotopoulos, S., MacNeill, I., and Liu, P. (2013). Inference for single and multiple

change-points in time series. Journal of Time Series Analysis, 34(4):423–446.
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7 Proofs of main results

In this section we will prove the main results of this paper. For the sake of a simple

notation we write ei := εi,n throughout this section, where εi,n is the nonstationary error

process in model (1.2). Moreover, in all arguments given below M denotes a sufficiently

large constant which may vary from line to line. For the sake of brevity we will restrict

ourselves to proofs of the results in Section 4, while the details for the proofs of the results

in Section 3 are omitted as they follow by similar arguments as presented here.

Proof of Theorem 4.1. It follows from Assumption 2.1 that there exist k+ ≥ 1 roots

t+1 < . . . < t+k+ of the equation µ(t) = µ(0) + c. Define γ+ = min0≤i≤k+(t+i+1− t+i ) > 0, with

the convention that t+0 = 0 and t+k++1 = 1. Recalling the definition of the statistic T̃+
N,c and

the quantity T+
N,c in (4.4) and (2.4), respectively, we obtain the decomposition

T̃+
N,c − T

+
N,c = ∆1,N + ∆2,N , (7.1)

where the random variables ∆1,N and ∆1,N are defined by

∆1,N =
1

N

N∑
i=1

∫ ∞
c

1

h2
d

K ′d

(µ( i
N

)− µ(0)− u
hd

)
(µ̃bn( i

N
)− µ( i

N
)− (µ̃bn(0)− µ(0)))du,

∆2,N =
1

2N

N∑
i=1

∫ ∞
c

1

h3
d

K ′′d

(ζi − u
hd

)
(µ̃bn( i

N
)− µ( i

N
)− (µ̃bn(0)− µ(0)))2du

(7.2)

(note that we do reflect the dependence of ∆`,N on n in our notation) and ζi denotes a

random variable satisfying |ζi − (µ(i/N)− µ(0))| ≤ |µ̃bn(i/N)− µ(i/N)− (µ̃bn(0)− µ̃(0))|
and |ζi − (µ̃bn(i/N) − µ̃bn(0))| ≤ |µ̃bn(i/N) − µ(i/N) − (µ̃bn(0) − µ(0))|. It is easy to see

that

|2∆2,N | =
∣∣∣ 1

N

N∑
i=1

1

h2
d

K ′d

(ζi − c
hd

)
(µ̃bn(i/N)− µ(i/N)− (µ̃bn(0)− µ(0)))2du

∣∣∣. (7.3)

Recall the definition of πn in (4.5) and define

An =
{

sup
t∈[bn,1−bn]∪{0}

|µ̃bn(t)− µ(t)| ≤ πn, sup
t∈[0,bn)∪(1−bn,bn]

|µ̃bn(t)− µ(t)| ≤ b2
n ∨ πn

}
, (7.4)
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where we denote max{a, b} by a∨b. By Lemma 8.3 in Section 8, we have limn→∞ P(An) = 1

and Lemma 8.1 yields

]{i : |µ̃bn(i/N)− µ̃bn(0)− c| ≤ hd, |µ̃bn(i/N)− µ(i/N)− (µ̃bn(0)− µ(0))| ≤ 2πn}

≤ ]{i : |µ(i/N)− µ(0)− c| ≤ hd + 2πn} = O(N(hd + πn)1/(v++1))(7.5)

almost surely, where ]A denotes the number of points in the set A. Observing the definition

of ζi and (7.5) we obtain that the number of non-vanishing terms on the right hand side

of equality (7.3) is bounded by O(N(hd + πn)
1
v+1 ). Therefore the triangle inequality yields

for a sufficiently large constant M

‖∆2,N1(An)‖2 ≤M
(
b6
n +

1

nbn

)
h−2
d ((hd + πn)

1
v++1 ).

Now Proposition B.3 of Dette et al. (2015) (note that limn→∞ P(An) = 1) yields the

estimate

∆2,N = Op

(
(b6
n +

1

nbn
)h−2

d ((hd + πn)
1

v++1

)
.

Notice that the assumptions regarding bandwidths guarantee that

√
nhdh

v+

2(v++1)

d ∆2,N = o(1), if bv
++1
n /hd = c ∈ [0,∞), (7.6)√

nbnh
v+

v++1

d ∆2,N = o(1), if bv
++1
n /hd →∞, (7.7)

and therefore it remains to consider the term ∆1,N in the decomposition (7.1).

For this purpose we recall its definition in (7.2) and obtain by an application of Lemma

8.3 and straightforward calculations the following decomposition

∆1,n =
−1

Nhd

N∑
i=1

Kd

(µ(i/N)− µ(0)− c
hd

)
((µ̃bn(i/N)− µ(i/N))− (µ̃bn(0)− µ(0)))

= I +R, (7.8)
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where the terms I and R are defined by

I =
−1

nNbnhd

N∑
i=1

Kd

(µ( i
N

)− µ(0)− c
hd

) n∑
j=1

ej

(
K∗
( i
N
− j

n

bn

)
− K̄∗

( j

nbn

))
, (7.9)

R = O
( 1

Nhd

N∑
i=1

Kd

(µ( i
N

)− µ(0)− c
hd

)(
b3
n +

1

nbn

))
.

By Lemma 8.1 the term R is of order O(h
− v+

v++1

d (b3
n + 1

nbn
)). For the investigation of the

remaining term I, we use Proposition 5 of Zhou (2013), which shows that there exist (on a

possibly richer probability space), independent stand normal distributed random variables

{Vi}i∈Z, such that

max
1≤i≤n

|
i∑

j=1

ej −
i∑

j=1

σ(j/n)Vj| = op(n
1/4 log2 n).

This representation and the summation by parts formula in equation (44) of Zhou (2010)

yield

sup
t∈[0,1]

∣∣∣ n∑
j=1

ejK̃
∗
(t− j/n

bn

)
−

i∑
j=1

σ(j/n)VjK̃
∗
(t− j/n

bn

)∣∣∣ = op(n
1/4 log2 n),

where we introduce the notation

K̃∗
(t− j/n

bn

)
= K∗

(t− j/n
bn

)
− K̄∗

( j

nbn

)
. (7.10)

Using these results in (7.9) and Lemma 8.1 provides an asymptotically equivalent repre-

sentation of the term I, that is

|I ′ − I| = op

(n1/4 log2 n

nbn
h
− v+

v++1

d

)
. (7.11)
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Here

I ′ :=
−1

nNbnhd

n∑
j=1

N∑
i=1

Kd

(µ(i/N)− µ(0)− c
hd

)
σ(j/n)K̃∗

(i/N − j/n
bn

)
Vj

is a zero mean Gaussian random variable with variance

Var(I ′) =
1

n2b2
nh

2
d

n∑
j=1

( 1

N

N∑
i=1

σ(j/n)K̃∗
(i/N − j/n

bn

)
Kd

(µ(i/N)− µ(0)− c
hd

))2

=
1

n2b2
nh

2
d

n∑
j=1

(∫ 1

0

σ(j/n)K̃∗
(t− j/n

bn

)
Kd

(µ(t)− µ(0)− c
hd

)
dt
)2

+ βn

:= ᾱn + βn, (7.12)

and the last two equalities define the quantities ᾱn and βn in an obvious manner. Observing

the estimates

1

N

N∑
i=1

σ(
j

n
)K̃∗

(i/N − j/n
bn

)
Kd

(µ(i/N)− µ(0)− c
hd

)
−∫ 1

0

σ(
j

n
)K̃∗

(t− j/n
bn

)
Kd

(µ(t)− µ(0)− c
hd

)
dt = O

(
(

1

Nbn
+

1

Nhd
)(bn ∧ h

1
v++1

d )
)
,

1

n2b2
nh

2
d

n∑
j=1

(∫ 1

0

σ(j/n)K̃∗
(t− j/n

bn

)
Kd

(µ(t)− µ(0)− c
hd

)
dt
)

= O
(h −v+v++1

d

nbnhd

)
,

we have that

βn =
h
−v+
v++1

d

nbnhd

( 1

Nbn
+

1

Nhd

)
(bn ∧ h

1
v++1

d ) +
(

(
1

Nbn
+

1

Nhd
)(bn ∧ h

1
v++1

d )
)2

, (7.13)

where a ∧ b := min(a, b).

For the calculation of ᾱn we note that

K̄∗
(j/n
bn

)
K∗
(t− j/n

bn

)
Kd

(µ(t)− µ(0)− c
hd

)
= 0. (7.14)

for sufficiently large n. This statement follows because by Lemma 8.1 the third factor
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vanishes outside of (shrinking) neighbourhoods U1, . . . ,Uk+ of the points t+1 , . . . , t
+
k+ with

Lebesgue measure of order h
1

vl+1

d , (1 ≤ l ≤ k+). Consequently, the product of the first and

second factor vanishes, wheneever the point j/n is not an element of the set

{
s+ t

∣∣ t ∈ ∪k+j=1Uj ; s ∈ [−bn, bn]
}
.

However, if n is sufficiently large the intersection of this set with the interval [0, bn], is

empty. Consequently, for sufficiently large n there exists no pair (t, j/n) such that all

factors in (7.14) different from zero.

Therefore, we obtain (recalling the notation of K̃∗ in (7.10))

ᾱn = αn + α̃n, (7.15)

where

αn =
1

n2b2
nh

2
d

n∑
j=1

(∫ 1

0

σ(j/n)K∗
(t− j/n

bn

)
Kd

(µ(t)− µ(0)− c
hd

)
dt
)2

,

α̃n =
1

n2b2
nh

2
d

n∑
j=1

(∫ 1

0

σ(j/n)K̄∗
(j/n
bn

)
Kd

(µ(t)− µ(0)− c
hd

)
dt
)2

. (7.16)

At the end of the proof we will show that

αn =


h
−2v+

v++1

d (nbn)−1σ2,+
1 if bv

++1
n /hd →∞

h
1

v++1

d (nh2
d)
−1ρ2,+

1 if bv
++1
n /hd → r ∈ [0,∞)

(7.17)

α̃n =


h
−2v+

v++1

d (nbn)−1σ2,+
2 if bv

++1
n /hd →∞

h
1

v++1

d (nh2
d)
−1ρ2,+

2 if bv
++1
n /hd → r ∈ [0,∞)

. (7.18)

where σ2,+
1 , σ2,+

2 , ρ2,+
1 and ρ2,+

2 are defined in Theorem 4.1. The assertion now follows

from (7.1), (7.6), (7.7), (7.8) and (7.11) observing that the random variable I ′ is normally
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distributed, where the (asymptotic) variance can be obtained from (7.12), (7.13), (7.15),

(7.17) and (7.18).

Proof of (7.17): By Lemma 8.1 with m replaced by µ(0)+c, there exists a small positive

number 0 < ε < γ+/4 such that when n is sufficiently large, we have

αn =
1

n2b2
nh

2
d

n∑
j=1

( k+∑
l=1

∫ t+l +ε

t+l −ε
σ(j/n)K∗

(t− j/n
bn

)
Kd

(µ(t)− µ(0)− c
hd

)
dt
)2

=
1

n2b2
nh

2
d

n∑
j=1

k+∑
l=1

(∫ t+l +ε

t+l −ε
σ(j/n)K∗

(t− j/n
bn

)
Kd

(µ(t)− µ(0)− c
hd

)
dt
)2

=
1

n2b2
nh

2
d

n∑
j=1

k+∑
l=1

α2
n,l,j,

where the last equation defines the quantities α2
n,l,j in an obvious manner. We now calculate

αn for the two bandwidth conditions in (7.17).

(i) We begin with the case bv
++1
n /hd → ∞, which means b

v+l +1
n /hd → ∞ for l = 1, . . . , k.

By Lemma 8.1 there exists a sufficiently large constant M such that

αn,l,j =

∫ t+l +Mh

1

v+
l

+1

d

t+l −Mh

1

v+
l

+1

d

σ(t+l )K∗
(t− j/n

bn

)
Kd

(µ(t)− µ(0)− c
hd

)
dt
(

1 +O
(
h

1

v+
l

+1

d

))
.(7.19)

Observing the fact that the kernel Kd(·) is bounded and continuous we obtain by a Taylor

expansion of µ(t)− µ(0)− c around t+l ,

∣∣αn,l,j − α∗n,l,j∣∣ = O
(
h

2

v+
l

+1

d 1(|j/n− t+l | ≤ 2bn)
)

(7.20)

uniformly with respect to t ∈ [0, 1], where

α∗n,l,j =

∫ t+l +Mh

1

v+
l

+1

d

t+l −Mh

1

v+
l

+1

d

σ(t+l )K∗
(t− j/n

bn

)
Kd

(µ(v+l +1)(t+l )(t− t+l )v
+
l +1

(v+
l + 1)!hd

)
dt.
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Substituting t = t+l +z
∣∣hd(v+

l + 1)!/µ(v+l +1)(t+l )
∣∣ 1

v+
l

+1 , observing the symmetry of Kd(·) and

using a Taylor expansion shows that

α∗n,l,j =
∣∣∣(v+

l + 1)!hd

µ(v+l +1)(t+l )

∣∣∣ 1

v+
l

+1

(∫
Kd(z

v+l +1)dz
)
σ(t+l )K∗

(t+l − j/n
bn

)
(7.21)

+O
(
h

2

v+
l

+1

d (bn)−11(|j/n− t+l | ≤ 2bn)
)
,

where we have used the fact that
∫
zKd(z

v+l +1)dz <∞ since Kd(·) has a compact support.

Equations (7.19)–(7.21) and the condition bv
++1
n

hd
→∞ now give

αn =
1

n2b2
nh

2
d

k∑
l=1

n∑
j=1

((∫
Kd(z

v+l +1)dz
)
σ(t+l )

∣∣∣(v+ + 1)!hd
µ(v++1)(t+l )

∣∣∣ 1
v++1

K∗
(t+l − j/n

bn

))2

×
(

1 +O
(
h

1
v++1

d bn
−11(|j/n− t+l | ≤ 2bn)

))

=
k∑
l=1

h

−2v+
l

v+
l

+1

d

nbn

(∫
Kd(z

v+l +1)dz
)2

((v+
l + 1)!)

2

v+
l

+1

( σ(t+l )

|µ(v+l +1)(t+l )|
1

v+
l

+1

)2
∫

(K∗(x))2dx

×
(
1 +O

(
(nbn)−1 + h

1

v+
l

+1

d /bn
))

= h
−2v+

v++1

d (nbn)−1σ2,+
1

(
1 + o(1)

)
which proves (7.17) in the case bv

++1
n /hd →∞.

Next we turn to the case bn/h
1

v++1

d → c ∈ [0,∞), introduce the notation αn,l = 1
n2b2nh

2
d

∑n
j=1 α

2
n,l,j

and note that

αn =
k∑
l=1

αn,l. (7.22)

Define cl = b
v+l +1
n /hd for l ∈ {1, . . . , k+}. For those l satisfying cl → ∞, we have already
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shown that

αn,l =
h

−2v+
l

v+
l

+1

d

nbn
= o
(h 1

v+
l

+1

d

nh2
d

)
= o
(h 1

v++1

d

nh2
d

)
.

In the following discussion we prove that for those l, for which cl does not converge to

infinity, the quantity αn,l is exactly of order O(h

1

v+
l

+1

d (nh2
d)
−1). For this purpose define

α′n,l =
1

nb2
nh

2
d

∫ 1

0

(
G(t+l , s, bn, hd)

)2
ds. (7.23)

where

G(t+l , s, bn, hd) =

∫ t+l +ε

t+l −ε
σ(s)K∗

(t− s
bn

)
Kd

(µ(t)− µ(0)− c
hd

)
dt.

It follows from a Taylor expansion and an approximation by a Riemann sum that

|αn,l − α′n,l| ≤
1

nb2
nh

2
d

n∑
j=1

1

n2
sup

j−1
n
≤s≤ j

n

∣∣G(t+l , s, bn, hd)
∣∣ ∣∣∣ ∂
∂s
G(t+l , s, bn, hd)

∣∣∣.
The terms in this sum can be estimated by an application of Lemma 8.1, that is

sup
j−1
n
<s≤ j

n

∣∣G(t+l , s, bn, hd)
∣∣ ≤ Cλ (Dlj) , (7.24)

sup
j−1
n
<s≤ j

n

∣∣∣ ∂
∂s
Gj(t

+
l , s, b, hd)

∣∣∣ ≤ Cλ (Dlj) /bn, (7.25)

where

Dlj =
(j − 1

n
− bn,

j + 1

n
+ bn

)
∩
(
t+l −Mh

1

v+
l

+1

d , t+l +Mh

1

v+
l

+1

d

)
,

M and C are sufficiently large constants and λ(·) denotes the Lebesgue measure. Straight-

forward calculations show that the number of indices j such that the set Dlj is not empty

is of order O(nh

1

v+
l

+1

d ), while the Lebesgue measure in (7.24) and of (7.25) is of order O(bn)
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and O(1), respectively. Combining these facts we obtain

αn,l = α′n,l +O
(
nh

1

v+
l

+1

d bn
1

n3b2
nh

2
d

)
(7.26)

(for all l = 1, . . . , k+ such that cl <∞). As the function σ is strictly positive on a compact

set it follows that

α′n,l = α′′n,l

(
1 +O

(
bn + h

1

v+
l

+1

d

))
, (7.27)

where the quantity α′′n,l is defined as α′n,l in (7.23) replacing the σ(s) by σ(t+l ). Define

α′′′n,l =
σ2(t+l )

nb2
nh

2
d

∫ 1

0

(∫ t+l +ε

t+l −ε
K∗
(t− s
bn

)
Kd

(µ(v+l +1)(t+l )(t− t+l )v
+
l +1

(v+
l + 1)!hd

)
dt
)2

ds (7.28)

and note that the only difference between α′′n,l and α′′′n,l is the term inside Kd(·). A Taylor

expansion around t+l yields

µ(t)− µ(0)− c
hd

=
µ(v+l +1)(t∗l )(t− t+l )v

+
l +1

(v+
l + 1)!hd

for some t∗l ∈ [tl ∧ t∗l , tl ∨ t∗l ] and the mean value theorem gives

Kd

(µ(t)− µ(c)− c
hd

)
−Kd

(µ(v+l +1)(t+l )(t− t+l )v
+
l +1

(v+
l + 1)!hd

)
= K ′d

(((1− θl)µ(v+l +1)(tl) + θlµ
(v+l +1)(t∗l ))(t− t+l )v

+
l +1

(v+
l + 1)!hd

)(µ(v+l +1)(t∗l )− µ(v+l +1)(tl))(t− t+l )v
+
l +1

(v+
l + 1)!hd

for some θl ∈ [−1, 1]. Then similar arguments as used in the derivation of (7.26) show

that

α′′′n,l − α′′n,l = O
(
h
−

2v+
l

v+
l

+1

d n−1
)
. (7.29)
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On the other hand, further expanding the squared term of (7.28) yields that

α′′′n,l =
σ2(t+l )

nb2
nh

2
d

∫ 1

0

∫ t+l +ε

t+l −ε

∫ t+l +ε

t+l −ε
K∗
(t− s
bn

)
Kd

(µ(v+l +1)(t+l )(t− t+l )v
+
l +1

(v+
l + 1)!hd

)
×K∗

(v − s
bn

)
Kd

(µ(v+l +1)(t+l )(v − t+l )v
+
l +1

(v+
l + 1)!hd

)
dvdtds.

For t, v satisfying |t− t+l | = O(min{bn, h
1

v+
l

+1

d }), |v − tl| = O(min{bn, h
1

v+
l

+1

d }), straightfor-

ward calculations show∫ 1

0

K∗
(t− s
bn

)
K∗
(v − s

bn

)
ds = bn

∫ ∞
−∞

K∗
(
u
)
K∗
(v − t

bn
+ u
)
du. (7.30)

To move forward, we introduce the notation

z1 = (t− t+l )
∣∣∣µ(v+l +1)

(t+l )

hd(v+l +1)!

∣∣∣ 1

v+
l

+1 , z2 = (v − t+l )
∣∣∣µ(v+l +1)(t+l )

hd(v
+
l + 1)!

∣∣∣ 1
v+l +1 , θ(v+

l , hd) =
∣∣∣ hd(v+l +1)!

µ
(v+
l

+1)
(t+l )

∣∣∣ 1

v+
l

+1 .

By a change of variables and (7.30), we now obtain

α′′′n,l =
σ2(t+l )θ(v+

l , hd)
2

nbnh2
d

∫ ∫ ∫
K∗(u)K∗

(
u+

1

bn
θ(v+

l , hd)(z2 − z1)
)

×Kd(z
v+l +1
1 )Kd(z

v+l +1
2 )dz1dz2du

=
σ2(t+l )

nh2
d

h

1

v+
l

+1

d

∣∣∣ (v+
l + 1)!

µ(v+l +1)(t+l )

∣∣∣ 1

v+
l

+1

∫ ∫ ∫
K∗(u)K∗(v)Kd(z

v+l +1
1 )

×Kd

((
z1 + cl

∣∣∣ (v+
l + 1)!

µ(v+l +1)(t+l )

∣∣∣ −1

v+
l

+1 (v − u)
)v+l +1)

dudvdz1

Finally, combining (7.26), (7.27) and (7.29) we have that

αn,l = α′′′n,l

(
1 + bn +

1

nbn
+ h

1

v+
l

+1

d

)
,
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and, observing that h

1

v+
l

+1

d = o(h
1

v++1

d ) whenever v+
l < v+, we obtain from (7.22)

αn =
|hd(v+ + 1)!|

1
v++1

nh2
d

∑
{l:v+l =v+}

σ2(t+l )

|µ(v++1)(t+l )|
1

v++1

∫ ∫ ∫
K∗(u)K∗(v)Kd(z

v++1
1 )

×Kd

((
z1 + r

∣∣∣ (v+ + 1)!

µ(v++1)(t+l )

∣∣∣ −1
v++1

(v − u)
)v++1)

dudvdz1(1 + o(1)) ,

which proves (7.17) in the case bv
++1
n /hd → rv

++1 ∈ [0,∞).

Proof of (7.18). Recalling the definition of α̃n in (7.16) we obtain by straightforward

calculations and a Taylor expansion

α̃n =
σ2(0)

nbnh2
d

∫ 1

0

(K̄∗(t))2dt
(∫ 1

0

Kd

(µ(t)− µ(0)− c
hd

)
dt
)2(

1 +O
(
bn +

1

nbn

))
.

Similar (but easier) arguments as used in the derivation of (7.20) and (7.21) show∫ 1

0

Kd

(µ(t)− µ(0)− c
hd

)
dt =|hd(v+ + 1)!|

1
v++1

×
∑

{l:v+l =v+}

|µ(v++1)(t+l )|−
1

v++1

∫
Kd(z

v++1)dz(1 + o(1)),

which gives

α̃n =
σ2(0)h

−2v+

v++1

d ((v+ + 1)!)
2

v++1

nbn

∫ 1

0

(K̄∗(t))2dt

×
( ∑
{l:v+l =v+}

|µ(v++1)(t+l )|−
1

v++1

∫
Kd(z

v++1)dz
)2

(1 + o(1)).

Consequently, if bv
++1
n /hd →∞ we have

α̃n =
h
−2v+

v++1

d

nbn
σ2,+

2 (1 + o(1)).

where σ2,+
2 is defined by (4.7). This proves the statement (7.18) in the case bv

++1
n /hd →∞,
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while the second case follows by similar arguments observing that we have

nh
v+

v++1
+1

d

h
− 2v+

v++1

d

nbn
= r−1

if bv
++1
n /hd → rv

++1 ∈ [0,∞).

Proof of Theorem 5.1. We have to distinguish two cases:

(1) The equation µ(t)− µ(0) = c has at least one solution. Recall the definition of

the quantity I ′ in (5.1), then it follows from the proof of Theorem 4.1, that

Var(
√
nbnh

v+

v++1

d I ′) = σ2,+
1 + σ2,+

2 + o(1),

where σ2,+
1 and σ2,+

2 are defined in (4.6) and (4.7), respectively. Note that Var(I ′) =
1

n2N2b2nh
2
d
Ṽ , where

Ṽ =
n∑
j=1

σ2(j/n)
( N∑
i=1

Kd

(µ(i/N)− µ(0)− c
hd

)(
K∗
(i/N − j/n

bn

)
− K̄∗

( j

nbn

)))2

.

At the end of this proof we will show that

(
√
nbnh

v+

v++1

d )2

n2N2b2
nh

2
d

(Ṽ − V̄ ) = o(1), (7.31)

which implies that

lim
n→∞

√
nbnh

v+

v++1

d q+
1−α/(nNbnhd) = Φ−1(1− α)

√
σ2,+

1 + σ2,+
2 . (7.32)

Observing the identity

P
(
nNbnhd

(
T̃+
N,c −∆

)
> q+

1−α
)

(7.33)

= P


√
nbnh

v+

v++1

d

(
T̃+
N,c − T+

c

)√
σ2,+

1 + σ2,+
2

>

√
nbnh

v+

v++1
d

nNbnhd
q+

1−α +
√
nbnh

v+

v++1

d (∆− T+
c )√

σ2,+
1 + σ2,+

2


44



the assertion now follows from (7.32) and Theorem 4.1, which shows that the random

variable
√
nbnh

v+

v++1

d

(
T̃+
N,c − T+

c

)√
σ2,+

1 + σ2,+
2

converges weakly to a standard normal distribution.

It remains to prove (7.31), which is a consequence of the following observations

(a) σ̂(t+l ) = σ(t+l )(1 + o(1)), uniformly with respect to l = 1, . . . , k+.

(b) The bandwidth condition πn/hd = o(1), Proposition 2.1 and similar arguments as

(7.5) show

Kd

(
µ( i
N

)−µ(0)−c
hd

)
−Kd

(
µ̃bn ( i

N
)−µ̃bn (0)−c
hd

)
= O

( ∑
{l:v+l =v+}

1
(∣∣ i
N
− t+l

∣∣ ≤ h
1

v++1
d

)
πn
hd

)
,

where πn is defined in Theorem 4.1.

This completes the proof of Theorem 5.1 in the case that there exist in fact roots of the

equation µ(t)− µ(0) = c.

(2) The equation µ(t)−µ(0) = c has no solutions. In this case we have µ(t)−µ(0) < c

where c > 0. Note that for two sequences of measurable sets Un and Vn such that P(Un)→ 1

and P(Un ∩ Vn)→ u ∈ (0, 1), we have P(Vn)→ u. Consequently, as the set An defined in

(7.4) satisfies P(An)→ 1 the assertion of the theorem follows from

lim
n→∞

P(nNbnhd(T̃
+
N,c −∆) > q+

1−α, An, µ(t)− µ(0) < c) = 0. (7.34)

However, under the event An and µ(t) − µ(0) < c we have q+
1−α = 0 and T̃+

N,c = 0, if n is

sufficiently large. Thus (7.34) is obvious (note that 0 < ∆ < 1), which finishes the proof

in the case where the equation µ(t)− µ(0) = c has in fact no roots. �

Proof of Theorem 5.2 Define S̃k,r =
∑r∧n

i=k∨1 ei,

∆̃j =
S̃j−m+1,j − S̃j+1,j+m

m
, σ̃2(t) =

n∑
j=1

m∆̃2
j

2
w(t, j).
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Since µ(·) ∈ C2, elementary calculations show that uniformly for t ∈ [0, 1],

|σ̃2(t)− σ̂2(t)| = Op(m
5/2/n) (7.35)

Similar arguments as given in the proof of Lemma 3 of Zhou and Wu (2010) yields

supj ‖∆̃j‖4 = O(m−1/2). A further application of Lemma 3 of Zhou and Wu (2010) gives

‖ sup
t∈[γn,1−γn]

|σ̃2(t)− E(σ̃2(t))|‖2 = O(m1/2n−1/2τ−1
n ), (7.36)

‖σ̃2(t)− E(σ̃2(t))‖2 = O(m1/2n−1/2τ−1/2
n )

Elementary calculations show that

E(σ̃2(t)) = Λ1(t) + Λ2(t) + Λ3(t), (7.37)

where

Λ1(t) =
1

2m

n∑
j=1

S̃2
j−m−1,jω(t, j)

Λ2(t) =
1

2m

n∑
j=1

S̃2
j+1,j+mω(t, j)

Λ3(t) = − 1

2m

n∑
j=1

S̃j+1,j+mS̃j−m−1,jω(t, j)

Recall the representation ei = G(i/n,Fi). Define S̃�j−m+1,j =
∑j

r=1∨(j−m+1) G(j/n,Fr),
and S̃�j−m+1 =

∑n∧(j+m)
r=j+1 G(j/n,Fr). For s = 1, 2, 3, define Λ�s(t) as the quantity where the

terms S̃j−m+1,j and S̃j−m+1 in Λs(t) are replaced by S̃�j−m+1,j, S̃
�
j−m+1, respectively.

Then by Lemma 4 of Zhou and Wu (2010), we have uniformly with resepct to t ∈ [0, 1],

|E(Λ�s(t))− E(Λs(t))| = O(
√
m/n), s = 1, 2, 3.
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By Lemma 5 of Zhou and Wu (2010), it follows for s = 1, 2,

|E(Λ�s(t))− σ2(t)/2| = O(m−1 + τ 2
n), t ∈ [γn, 1− γn],

|E(Λ�s(t))− σ2(t)/2| = O(m−1 + τn), t ∈ [0, γn) ∪ (1− γn, 1].

Define Γ(k) = E(G(i/n,F0)G(i/n,Fk)), then similar arguments as given in the proof of

Lemma 5 of Zhou and Wu (2010) yield Γ(k) = O(χ|k|). Elementary calculations show that

for 1 ≤ j ≤ n

E(S�j−m+1,jS
�
j+1,j+m) =

m∑
k=1

Γ(k) = O(1),

which proves

E(Λ�3(t)) = O(m−1) (7.38)

uniformly with respect to t ∈ [0, 1]. From (7.37)–(7.38) it follows that

sup
t∈[γn,1−γn]

|Eσ̃2(t)− σ2(t)| = O(
√
m/n+m−1 + τ 2

n),

sup
t∈[0,γn)∪(1−γn,1]

|Eσ̃2(t)− σ2(t)| = O(
√
m/n+m−1 + τn).

The theorem is now a consequence of these two equations and (7.36)–(7.37). �

8 Some technical results

8.1 The size of mass excess

Lemma 8.1. Assume that the function µ(·)−m has k roots 0 < t1 < . . . < tk < 1 of order

vi, 1 ≤ i ≤ k, and define γ = 1
2

min0≤i≤k(ti+1 − ti) (with convention that t0 = 0, tk+1 = 1),

such that

(i) For 1 ≤ s ≤ k, the (vs+1)nd derivative of µ(·) exists on the interval Is := (ts−γ, ts+γ),

and is Lipschitz continuous on [ts − γ, ts + γ].
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(ii) µ(·) is strictly monotone on the intervals I−s and I+
s for 1 ≤ s ≤ k, where I−s :=

(ts − γ, ts], I+
s := (ts, ts + γ),

(iii) there exists a positive number ε, such that mint∈[0,1]∩ks=1Īs |µ(t) − m| ≥ ε, where

Īs := [0, ts − γ] ∪ [ts + γ, 1] is complement of Is .

If An denotes the set

An := {s : |µ(s)−m| ≤ hn} , (8.1)

then there exists a sufficiently large constant C such that for any sequence hn → 0, we

have

λ(An) ≤ Ch
1
v+1
n ,

where v = max1≤l≤k vl. Furthermore, there exists a sufficiently large constant M , such that

An = ∪kl=1Bn,l,M (8.2)

when n is sufficiently large, where the sets Bn,l,M are defined by

Bn,l,M = {s : |s− tl|vl+1 ≤Mhn, |µ(s)−m| ≤ hn}.

Proof. Define for 1 ≤ l ≤ k,

An,l = {s : |µ(s)−m| ≤ hn, |s− tl| < min{γ, ζn}} , (8.3)

where ζn is a sequence of real numbers which converges to zero arbitrarily slowly. We shall

show that there exists a constant n0 ∈ N, such that for n ≥ n0

An = ∪kl=1An,l, (8.4)

An,l ⊆ Bn,l,M , 1 ≤ l ≤ k, (8.5)

where M is a sufficiently large constant. Note that (8.4) and (8.5) yield An ⊆ ∪kl=1Bn,l,M .

By definition of Bn,l,M and An, we have that ∪kl=1Bn,l,M ⊆ An, which proves (8.2). Then a
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straightforward calculation shows that

λ(Bn,l,M) ≤ Ch
1

vl+1
n ≤ Ch

1
v+1
n ,

and the lemma follows.

We first prove the assertion (8.4). By definition, An ⊇ ∪kl=1An,l. We now argue that there

exists a sufficiently large constant n0, such that for n ≥ n0, ∪kl=1An,l ⊇ An.

Suppose this statement is not true, then there exists a sequence of points (sn)n∈N, such

that sn ∈ An and sn ∈ ∩kl=1Ān,l, where Ān,l is the complement set of An,l. Since hn = o(1)

we have hn < ε for sufficiently large n and by assumption (iii), there exists an l ∈ {1, . . . , k}
such that

sn ∈ Il ∩ An ∩ Ān,l.

Without loss of generality we assume that sn ∈ I+
l ∩ An ∩ Ān,l. The case that sn ∈

I−l ∩ An ∩ Ān,l can be treated similarly.

A Taylor expansion and assumption (i) yield for sufficiently large n ∈ N

µ(s)− µ(tl) =
µ(vl+1)(tl)

(vl + 1)!
(s− tl)vl+1 +

µ(vl+1)(t∗l )− µ(vl+1)(tl)

(vl + 1)!
(s− tl)vl+1 (8.6)

for s ∈ An,l, where t∗l ∈ [tl ∧ s, tl ∨ s]. By the definition of An,l in (8.3) and the fact that

ζn = o(1), we have that An,l ⊂ Il for sufficiently large n ∈ N. This result together with

sn ∈ I+
l ∩ An ∩ Ān,l implies that tl + ζn < sn ≤ tl + γ. However, by assumption (ii), µ(·)

is strictly monotone in I+
l , which yields that for sufficiently large n,

|µ(sn)− µ(tl)| ≥ |µ(tl + ζn)− µ(tl)| > 2hn, (8.7)

where the last > is due to (8.6), the Lipschitz continuity of µ(vl+1)(·) in the neighbourhood

of tl and the fact that ζn → 0 arbitrarily slowly. By the definition of An in (8.1), equation

(8.7) implies that sn 6∈ An. This contradicts to the assumption that sn ∈ An, from which

(8.4) follows.

Now we show the conclusion (8.5). Since µ(tl) = m and the leading term in (8.6) is of
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order |(s− tl)vl+1|, the set An,l can be represented as

{
s : |s− tl| ≤

( hn
|M1,l +M2,l(s)

|
) 1
vl+1

, |s− tl| ≤ ζn, |µ(s)− c| ≤ hn

}
,

whereM1,l = µ(vl+1)(tl)
(vl+1)!

, andM2,l(s) =
µ(vl+1)(t∗l )−µ(vl+1)(tl)

(vl+1)!
(s−tl)vl+1 for some t∗l ∈ [tl∧s, tl∨s].

By the Lipschitz continuity of µ(vl+1)(·) on the interval [tl−γ, tl+γ], there exists a constant

M ′
l such that |M2,l(s)| ≤ M ′

l |tl − s|. As ζn = o(1) there exists an nl ∈ N such that

|s− tl| ≤ |M1,l|
2M ′l

for all s ∈ An,l whenever n ≥ nl. This yields

|M1,l +M2,l(s− tl)| ≥
|M1,l|

2

for all n ≥ nl, s ∈ An,l. By choosing n0 = max1≤l≤k nl and M = max1≤l≤k

(
2

|M1,l|

) 1
vl+1

, and

noticing the fact that ζn → 0 arbitrarily slow, it follows that

An,l ⊆ Bn,l,M

for n ≥ n0. Thus (8.5) follows, which completes the proof of Lemma 8.1. �

Remark 8.1. Observe that Bn,i,M∩Bn,j,M = ∅ for i 6= j if n is sufficiently large. Moreover,

Bn,i,M can be covered by closed intervals. The Lemma shows that the set {t : |µ(t)−m| ≤
hn, t ∈ [0, 1]} can be decomposed in disjoint intervals containing the root of the equation

µ(t) = m, with Lebesgue measure determined by the maximal critical order of the roots.

8.2 Uniform bounds for nonparametric estimates

In this section we present some results about the rate of uniform convergence of the Jack-

knife estimator µ̃bn(t) defined in (4.1).

Lemma 8.2. Recall the definition of µ̃bn in (4.1) and suppose that Assumption 2.1(a)
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holds. If bn → 0, nbn →∞, then

sup
t∈[bn,1−bn]

∣∣∣µ̃bn(t)− µ(t)− 1

nbn

n∑
i=1

K∗
(i/n− t

bn

)
ei

∣∣∣ = O(b3
n +

1

nbn
), (8.8)

∣∣∣µ̃bn(0)− µ(0)− 1

nbn

n∑
i=1

K̄∗
(i/n
bn

)
ei

∣∣∣ = O(b3
n +

1

nbn
),

where K∗(·) and K̄∗(·) are defined in (4.2) and (4.3), respectively

Proof. We only show the estimate (8.8). The other result follows similarly using Lemma

B.2 of Dette et al. (2015). By Lemma B.1 of Dette et al. (2015) we obtain a uniform bound

for the (uncorrected) local linear estimate µ̂bn in (2.1), that is

sup
t∈[bn,1−bn]

∣∣∣µ̂bn(t)− µ(t)− µ2µ̈(t)

2
b2
n −

1

nbn

n∑
i=1

eiKbn(i/n− t)
∣∣∣ = O(b3

n +
1

nbn
).

Then the lemma follows from the definition of µ̃bn(·). �

Lemma 8.3. If Assumption 2.1(a), Assumption 2.2 are satisfied and nb2n
log4 n

→∞, bn → 0,

then

sup
t∈{0}∪[bn,1−bn]

|µ̃bn(t)− µ(t)| = Op

(
b3
n +

log n√
nbn

)
. (8.9)

sup
t∈[0,bn)∪(1−bn,1]

|µ̃bn(t)− µ(t)| = Op

(
b2
n +

log n√
nbn

)
. (8.10)

Proof. We only prove the estimate

sup
[bn,1−bn]

|µ̃bn(t)− µ(t)| = Op

(
b3
n +

log n√
nbn

)
.

The case that t = 0 in (8.9) and the estimate (8.10) follow by similar arguments, which

are omitted for the sake of brevity. By the stochastic expansion (8.8), it suffices to show

that

sup
t∈[bn,1−bn]

∣∣∣ 1

nbn

n∑
i=1

K∗
(i/n− t

bn

)
ei

∣∣∣ = Op

( log n√
nbn

)
.
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Then Assumption 2.2, Proposition 5 of Zhou (2013) and the summation by parts formula

(44) in Zhou (2010) yield the existence (on a possibly richer probability space) of a sequence

(Vi)i∈Z of independently standard normal distributed random variables such that

sup
t∈[bn,1−bn]

∣∣∣ 1

nbn

n∑
i=1

K∗
(i/n− t

bn

)
(ei − Vi)

∣∣∣ = Op

(n1/4 log2 n

nbn

)
.

Note that (Vi)i∈Z is a martingale difference sequence with respect to the filtration gener-

ated by (V−∞, ..., Vi). By Burkholder’s inequality it follows that for any positive κ and a

sufficiently large universal constant C the inequality

∥∥∥ n∑
i=1

ViK
∗
bn(i/n− t)

∥∥∥2

κ
≤ Cκ

∥∥∥( n∑
i=1

{ViK∗bn(i/n− t)}2
)1/2
∥∥∥2

κ

≤ Cκ
n∑
i=1

∥∥(ViK
∗
bn(i/n− t))2

∥∥
κ
2

= Cκ
n∑
i=1

∥∥(ViK
∗
bn(i/n− t))

∥∥2

κ
≤ Cκ2(nbn)

holds uniformly with respect to t ∈ [bn, 1−bn], where we have used that E|V0|κ ≤ (κ−1)!! ≤
κ
κ
2 in the last inequality. This leads to

sup
t∈[bn,1−bn]

∥∥∥ 1

nbn

n∑
i=1

K∗bn(i/n− t)Vi
∥∥∥
κ

= O
( κ√

nbn

)
.

Similarly, we obtain

sup
t∈[bn,1−bn]

∥∥∥ 1

nbn

n∑
i=1

∂

∂t
K∗bn(i/n− t)Vi

∥∥∥
κ

= O
( κb−1

n√
nbn

)
.

Consequently, Proposition B.1. of Dette et al. (2015) shows that

∥∥∥ sup
t∈[bn,1−bn]

1

nbn

n∑
i=1

K∗bn(i/n− t)Vi
∥∥∥
κ

= O
( κb− 1

κ
n√
nbn

)
The result now follows using κ = log(b−1

n ) observing the conditions on the bandwidths. �
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