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Abstract

Quantitative predictions in computational life sciences are often based on regression models. The advent of machine
learning has led to highly accurate regression models that have gained widespread acceptance. While there are statistical
methods available to estimate the global performance of regression models on a test or training dataset, it is often not clear
how well this performance transfers to other datasets or how reliable an individual prediction is-a fact that often reduces a
user’s trust into a computational method. In analogy to the concept of an experimental error, we sketch how estimators for
individual prediction errors can be used to provide confidence intervals for individual predictions. Two novel statistical
methods, named CONFINE and CONFIVE, can estimate the reliability of an individual prediction based on the local
properties of nearby training data. The methods can be applied equally to linear and non-linear regression methods with
very little computational overhead. We compare our confidence estimators with other existing confidence and applicability
domain estimators on two biologically relevant problems (MHC-peptide binding prediction and quantitative structure-
activity relationship (QSAR)). Our results suggest that the proposed confidence estimators perform comparable to or better
than previously proposed estimation methods. Given a sufficient amount of training data, the estimators exhibit error
estimates of high quality. In addition, we observed that the quality of estimated confidence intervals is predictable. We
discuss how confidence estimation is influenced by noise, the number of features, and the dataset size. Estimating the
confidence in individual prediction in terms of error intervals represents an important step from plain, non-informative
predictions towards transparent and interpretable predictions that will help to improve the acceptance of computational

methods in the biological community.
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Introduction

Computational methods, in particular regression methods, are
usually praised as a potential replacement of wet lab experiments.
Due to their ability to learn patterns and coherences from
empirical data they can provide reasonably accurate predictions in
a very time-efficient manner. Unfortunately, the credibility of
computational models in the biological community is still rather
low. One major reason is their “black box” character: Biologists
are often left with plain prediction values without any additional
error information. Since biologists are not made aware of the fact
that predictions can be prone to errors, they are forced to use the
regression model as a “black box”, leaving them disappointed in
case of less accurate prediction.

In the experimental sciences, the concept of a measurement and
its associated error is a cornerstone in understanding the reliability
of a data point. Determining these errors is well established, be it
through experimental replicates or by considering uncertainty in
the input variables. Not specifying the error of an experimental
measurement is thus rightly considered a violation of good
scientific practice.

Statistical measures to capture the prediction error of compu-
tational methods are not a direct replacement for the measure-
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ment error. In most cases, it is not even clear what the reliability of
a prediction method means. Specifying the correlation coefficient
for a training dataset is not sufficient to really give the user an idea
of the error of an individual prediction. A further complication is
the fact that regression methods are often trained on rather limited
datasets. While they maintain good performance on closely related
datasets, the error may increase drastically when applied to data
points far from the training set. Most of this is usually totally
opaque for the user of machine learning methods and hardly ever
reported in the popular web servers offering predictions in
bioinformatics.

To overcome these problems, confidence estimation, which
determines the reliability of individual predictions, is desirable. In
cases where highly accurate predictions are required, e.g. for
choosing candidates for expensive experiments, confidence inter-
vals would be especially invaluable to biologists.

In classification, the confidence of individual predictions have
sometimes already been estimated. Intuitive estimation approaches
use the uncertainty between classes, expressed by the posterior
probability [1] or the distance to a separating hyperplane [2], to
assess the different nature of individual predictions. In contrast,
confidence estimators for regression have to utilize properties of
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the training data or characteristics of the machine learning model
[3].

In the area of quantitative structure-activity relationships
(QSAR), where regression methods are applied to predict the
biological activity of small molecules, the concept of confidence
estimation was introduced through so-called applicability domains
[4]. The AD defines the input space on which the model is
expected to give reliable predictions [5]. However, AD estimators
were designed to detect possible extrapolation errors but not to
measure the error of instances within the AD. Consequently, some
estimators cannot express the confidence in a prediction in a
quantitative manner. Although some estimators can provide
quantitative scores, it is usually difficult to relate a score to an
actual error. Despite some efforts in AD estimation, confidence
estimators for regression models have not been applied extensively
in the context of computational biology.

It can be distinguished between methods that utilize certain
properties of a regression model, e.g. the predictive variance of a
Gaussian process, and methods that are independent from a
particular regression model. Here, we concentrate on the latter,
since model-independent confidence estimators are more univer-
sal.

In this work, we introduce a novel concept to confidence
estimation. In analogy to experimental measurements, we
associate each individual regression prediction with an estimate
of its error. We propose two novel confidence estimators,
CONFINE and CONFIVE, which return confidence intervals
with only a small computational overhead. These intervals contain
the real value with a certain probability, while being very small for
confident predictions and fairly broad if the prediction is likely to
be erroneous. Hence, in contrast to other estimation approaches
that only return arbitrary scores, their error estimates are very
intuitive and easy to interpret.

CONFINE and CONFIVE estimate the confidence of a
prediction by inspecting local properties of the input space.
CONFINE determines the error rate of the nearest neighbors of a
test instance in the training data. CONFIVE examines the
variance in the surrounding local environment and assumes that
large variances result in higher error rates. Since both estimators
are strictly model-independent, they can be applied with any linear
and non-linear regression algorithm.

After presenting related work in this area, we introduce the
methods underlying CONFINE and CONFIVE. We discuss their
applicability by analyzing the influence of noise, the number of
features, and the dataset size on the quality of the estimated
confidence intervals. We then compare our confidence estimators
with other existing confidence and AD estimators on two well-
studied biological benchmark datasets from MHC—peptide bind-
ing prediction and QSAR. Our results suggest that CONFINE
and CONFIVE perform comparable to or better than previously
proposed estimators, given a sufficient amount of training data.
We also show that confidence intervals are a very intuitive and
informative way to express the reliability of individual predictions.
To illustrate the universal character of CONFINE and CONTF-
IVE, we apply them to linear as well as non-linear regression. The
results confirm that the confidence estimators presented here are
able to estimate the reliability of predictions in terms of their error
and thus can improve the user’s confidence in prediction methods
in computational biology.

An open-source implementation of both methods is available in
the R package confReg (http://cran.r-project.org/web/packages/
confReg/index.html).
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Estimating Confidence of Individual Predictions

Related Work

When the response of a novel instance x* has been predicted
using a trained regression model, confidence estimators try to
determine the reliability of this particular prediction. A confidence
estimator is a function f : R¥—>R, where the input is a test
instance x* and the output is a confidence score ¢s(x*). Note that
confidence estimators and AD estimators do not try to predict the
exact error of a prediction itself. Instead, they require predictions
with a low error to have a small confidence score and predictions
with a high error to have a large confidence score. Scores
determined by different estimators are not necessarily comparable
nor interpretable. Determining a threshold for the applicability
domain of a model is, hence, often very vague. Instead of relying
on non-interpretable scores that cannot be interpreted by a user,
we propose an approach of translating confidence scores into
interpretable confidence intervals, a more intuitive expression of
confidence. We will briefly discuss related work before introducing
our novel concepts for confidence estimation in ‘Materials and
Methods’.

A traditional approach to estimate ADs is based on the number
of neighbors (NoNN) of x* in the training dataset [4,6]. It is based
on the assumption that the prediction error is lower for instances
within a more populated subspace and higher for instances within
a sparsely populated subspace. The size of the subspace can either
be given in advance or determined in a cross-validation.

An intuitive approach to confidence estimation calculates the
absolute difference of the predicted response y* and the average
response of the m nearest neighbors [6]:

m
espignn(x)=1— ‘—Z’;l Y.

If the error difference is relatively low, the prediction is assumed
to be reliable.

Another popular class of AD estimators are distance-based
[7,8]. One popular representative is the average Euclidean
distance (AvgDist) to instances in the training dataset [4]:

* 1 - *
S vgpin(x') =1~ ~ Z d(x;,x").

It is assumed that predictions of instances with a large average
distance to the training dataset are more erroneous since the
model has to extrapolate.

Bosnic’ and Kononenko [9] introduced a method of confidence
estimation based on the local sensitivity of a regression model.
Predictions are rated as confident if the local variance (LocalVar)
mtroduced by local changes in the learning data is considerably
low. Local changes are introduced by adding the test instance to
the training datasets using different response values. For each
change, the model is re-trained and the original prediction is
repeated. This obviously requires a lot of runtime resulting in a
huge computational overhead. A detailed description of this
approach can be found in the Supporting Information S1. Note,
when this method is applied in combination with linear regression,
it approximates the predictive variance of the regression model.

Later, the same authors proposed a confidence estimator that
performs a leave-one-out cross-validation on the m nearest
neighbors of x* (LocalCV) [6]. It does not consider errors made
by the overall model, but errors made by locally trained models.
The local environment E(x*,m) of x* in training dataset D is
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defined as a set of the m nearest neighbors, the m instances
{(x1,91)5 - - (Xmsym) } €D with the smallest Euclidean distance
d(x;,x*) to x*. For every neighbor (x;,y;) in the local environment
E, a regression model is trained on E\(x;,y;). Then, the response
¥i of x; is predicted with this model and the absolute prediction
error ¢ =|p;—yi| is calculated. By weighting the instances
according to their distance to x*, we receive the following
confidence estimator:

Zm 1 efo.Sd(x,v,x*)2 &

s o—0.5d(x; )2

CSLoca/CV(X*) =1-

Obviously, estimation with LocalCV requires long runtimes,

since the leave-one-out cross-validation has to be repeated for
. . . oon
every single instances x*. In our work, we set m to mln{% ,50} to

reduce runtime.

Last but not least, the variance of multiple regression models
combined by bootstrap aggregation, also known as bagging, has
been used to estimate confidences [10,11]. Given a training
dataset D, we create m =50 new datasets D; of the same size as D
by uniformly sampling with replacement instances from D. Every
dataset D; is used to train a regression model and to predict our
novel instance x*, resulting in m predicted response values J;.
Since we expect agreement among the predictors in case of a
reliable prediction, the final confidence estimator is based on the
variance of the predicted responses:

X 1 m .
CSbagging(X ): 1— m Z (y* —Ji )2,

i=1

where y* denotes the mean of all predictions J;.

The presented confidence estimation approaches show different
advantages and disadvantages: Estimators NoNN, DiffNN, and
AvgDist are obviously very fast. However, they do not consider the
prediction model and, hence, might be less sensitive to model
specific prediction behavior. Moreover, NoNN and AvgDist
assume that a populated subspace leads to a better prediction
quality, which might be wrong if the responses in the small
subspace show a very large variance. Similar, a large variance of
responses in the local neighborhood can lead to false estimates by
DifINN. Confidence estimators LocalVar, LocalCV, and bagging
are more involved since they consider the used prediction model.
As a consequence, they require far more runtime. These three
estimators analyze the variance of the prediction model using
different approaches. However, none of these approaches take
actual prediction errors into account.

Note that several other estimation methods, which are mostly
modified versions of the above estimators, have been introduced in
the past. A more comprehensive overview of these methods is
given in the Supporting Information S1.

Materials and Methods

In the following, we introduce our two novel confidence
estimators, CONFINE and CONFIVE, and how their output is
transformed into confidence intervals. Since both estimators are
model-independent, they require some regression model to make
predictions. In the first part of this work, we apply all confidence
estimators together with linear least square regression. Let
D={(xpy)|xi=(xi1,. .. Xi) T AYi€R} denote a given training
dataset, with y; being the response values and x; the input features.
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First, we select an appropriate feature set by minimizing the mean
squared error (MSE) in a cross-validation (see Supporting
Information S1 for details). Then, a linear regression model is
trained via ordinary least squares on the resulting training dataset.
The performance of the trained model is subsequently accessed by
predicting the response values of a test dataset, which is disjoint
from D. Later in the manuscript, we also apply our confidence
estimators to non-linear support vector regression (SVR) model
with a Gaussian radial basis kernel.

Errors of Nearest Neighbors

Our first confidence estimator is called CONFINE (CONFidence
estimation based on the Neighbors’ Errors). It is based on the MSE
in the local environment of X* in the training dataset. We simply
analyze how well the model fits the surrounding data and transfer
this error to our test instance x*. It has been adapted from Dimitrov
et al. [5], who proposed a similar approach for classification. If the
MSE of the m nearest neighbors is already very high, we do not
expect the model to be very good on novel instances either. Thus, a
large error in the local environment results in a low confidence
score, whereas a low error results in a large score:

m

* ~2
esconFINE(XT)=1—— E € -
mi3

The prediction errors € can be obtained by predicting the
response values of the training dataset using a model trained on
the same data or by performing a cross-validation on the training
data. The optimal value of m is obtained using five two-fold cross-
validations on the training dataset by averaging the values of m
resulting in the highest estimation quality of each fold. We chose to
use two-fold cross-validations to have a large test set in the
optimization process.

We believe that CONFINE is very powerful since it considers
actual errors made by the model instead of analyzing only the
variance of predictions. If x* lies within a populated subspace,
CONFINE is able to interpolate the error based on very similar
instances. On the other hand, if x* lies within a sparsely populated
subspace, we transfer the errors of instances within these sparsely
populates subspace, which we are likely to show larger absolute
errors.

Note that we also propose a modified version of this estimator,
which uses a kernel density estimate. Instead of relying on a fixed
local environment, we weight instances according to their distance
to x*, such that we put more weight on instances that are close to
x* (see Supporting Information S1 for details).

Variance of in the Environment

Our second confidence estimator is called CONFIVE (CON-
Fldcence estimation based on the Variance in the Environment).
It is based on the variance of the response values of the m nearest
neighbors of x*. CONFIVE assumes that a large variance of the
responses in a local region is difficult to model with a regression
approach. This is especially true if a linear model is applied. Thus,
large variances result in a low confidence score, whereas small
variances result in a large score:

1 m
N Y 1 - =, 2.
esconrive(X") 1 ; =y
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The optimal value of m is also obtained using five two-fold
cross-validations. As an alternative, we propose a version of
CONFIVE based on a kernel density estimate (see Supporting
Information S1).

Confidence Intervals

When the response of a novel instance x* has been predicted
using the trained regression model, we apply our confidence
estimators for this particular prediction. Since obtained confidence
scores ¢s(x*) determined by different estimators are not necessarily
comparable nor interpretable, we calculate normalized confidence
scores nes(x*) as described below. We first predict the responses of
the training data and then apply the confidence estimator for each
prediction. The normalized confidence score ncs(x*) of a novel
instance x* is then calculated by determining the fraction of
predictions from the training dataset with a smaller confidence
value than x*. Thus, an nes of 0.8 implies that 80% of the
instances in the training dataset have been predicted with a smaller
confidence value. Using this approach, we obtain meaningful and
interpretable scores which lie between zero and one.

Normalized confidence scores are useful indicators of the
prediction error. We assume that the higher the score of a
predicted instance, the more likely this instance was predicted with
a small error. Still, it is not obvious how such a score relates to an
actual error. For example, given an ncs of 0.9, it is not obvious
how large the actual prediction error is.

Confidence intervals are a much more intuitive concept than
arbitrary scores. Instead of predicting only the response y and the
corresponding normalized confidence score ncs, we predict an
interval based on ncs which includes the correct response value y
with a probability of 0.8. Since reliable predictions with a large ncs
have, on average, a smaller squared error, we expect them to have
smaller confidence intervals. We can relate an ncs to confidence
intervals (e.g., 80% confidence intervals) as follows.

Since we assume that instances with a similar confidence score
have a similar error, we estimate confidence intervals based on the
errors of predictions with similar confidence score. In a first step,
we predict the responses of the training instances using a model
trained on the training dataset. Subsequently, the normalized
confidence scores of all training instances are first estimated using
a confidence estimator based on the training data and then sorted
in ascending order {ncsy, ... ,ncs, }. For every possible normalized
confidence score nsc;, we collect the errors of instances with an ncs
of {nes;_so, . ..,ncs;, ... ncsiyso} where possible. Otherwise, we
use a reduced set of errors. Based on this set of errors E, we
calculate the 0.1 quantile gy, (0.1) and the 0.9 quantile gy.,(0.9)
as interval borders. By using empirical quantiles, we do not assume
a normal distribution and, hence, are independent of the
underlying error distribution.

When predicting the response y* and the confidence score ncs*
of a novel instance x*, we calculate the 80% confidence interval as
[j}* + nes (0 l)aj/* + Gnes* (09)]

Note, in case of CONFINE, we could also simply utilize only
the errors of the nearest neighbors of an instance to estimate
intervals. However, we found this naive estimate to perform worse
than the above described approach, possibly due to the smaller set
of acquired errors.

Evaluation

The quality of the predicted confidence intervals is measured
based on a simple requirement: the more erroneous a prediction is,
the larger should be the confidence interval. Hence, predictions
with a large squared error should yield a broad confidence
interval, while predictions with a low squared error are assumed to
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have a small confidence interval. Since, to the best of our
knowledge, there exists no appropriate evaluation metric, we
measure the quality of confidence interval estimation as follows.

An intuitive measure of this requirement is the Pearson product-
moment correlation coefficient p. Consequently, we can assess the
quality of estimates by calculating the correlation p between the
absolute prediction errors |€] and the widths of the corresponding
confidence intervals ciw=¢(0.9)—¢(0.1). The resulting correla-
tion 1s then normalized by the correlation obtained by a perfect
confidence estimator. To simulate a perfect confidence estimator,
we re-order the prediction errors and confidence interval widths in
a way that p is maximized. This can be simply done by sorting |¢|
and ciw. We define the confidence—error correlation (CEC) as

o(ciw,|€l)

CEC=
p(sort(ciw),sort(|¢]))’

where sort is an arbitrary sorting function. Since we wish to
calculate an 80% confidence interval, we obviously also require
about 80% of the test errors to lie within the confidence interval.

In Fig. 1, we show absolute errors as a function of confidence
interval widths estimated by CONFINE. At a first glance, the
resulting CEC of 0.3 does not seem all that impressive. It should
be noted, however, that we do not expect a perfect correlation
between the error and the confidence interval width. It is only
required that the error is smaller than the confidence interval.
While correlation is thus obviously not the perfect measure, we
used it because of its rather intuitive nature.

The CEC should not be confounded with the prediction quality
of a model itself. Even if a model performs almost perfect, it is not
necessarily easier to estimate its prediction errors. It should also be
noted that already a CEC of 0.3 can lead to a considerably
reduced confidence interval for confident predictions, as can also
be seen in the left-hand plot of Fig. 1.

In many real world applications, users are only interested in
highly reliable predictions. To account for that, we also measure
the confidence-associated prediction improvement (CAPI). Therefore, we
calculate by what percentage the MSE is reduced if we consider
only the top 20% predictions, i.e. the 20% predictions with the
smallest confidence intervals.

Datasets

We benchmarked our methods on three different types of
datasets: a synthetic dataset, several QSAR datasets, and a dataset
stemming from immunoinformatics (MHC—peptide binding). The
synthetic dataset was created using the Friedman function [12]
with different levels of Gaussian noise:

. 1
y(x)=10sin (ITx;x,) +20(x3 — 3 ) + 10x4 + 55

+ N (1=0,66{0.1,0.5,1.0,2.0}).

This test function has five relevant features xi,...,xs5, where
two are linear and three are non-linear. We created datasets of
different sizes {100,500,1000} by sampling 10, 50, 100, or 500
features from [0,1] uniformly. The response values were calculated
by applying the Friedman function to the first five features,
additional features Xg, . . . have no influence on the response value.
Since we are able to scale properties such as the size, the number
features, and the noise, this dataset is well suited to measure the
influence of these attributes.
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Figure 1. Example of estimating confidence intervals. In this example, we estimated the confidence intervals of 200 instances. The left-hand
plot shows the confidence interval widths and the corresponding absolute errors. The corresponding CEC equals 0.3. Although the CEC is not very
large, it is possible to see an increased number of small confidence intervals for predictions with a low error. In the right-hand plot, the estimated
confidence interval borders are displayed. In addition, every prediction defined by its prediction error and its normalized confidence score is depicted
by a red circle. On average, the absolute error is smaller for predictions with a high ncs and a small confidence interval.

doi:10.1371/journal.pone.0048723.9001

Furthermore, we used eight popular benchmark datasets from
OSAR [13], which consist of 66 to 397 chemical compounds and
corresponding experimentally obtained response values. We
calculated up to 1,872 features using DragonX 1.4.0 [14].

Our third type of data is MHC—peptide binding data. We
extracted peptides of length nine with experimentally verified
binding affinities to molecules from 12 different MHC class 1
alleles from the IEDB benchmark dataset [15]. We chose the 12
HLA alleles for which more than 1,000 examples are available:

HLA-A*01:01, HLA-A¥02:01, HLA-A%02:02, HLA-A*02:03,
HLA-A*02:06, HLA-A*03:01, HLA-A*11:01, HLA-A*31:01,
HLA-A*33:01, HLA-A*68:01, HLA-A*68:02, and HLA-

B*07:02. Each position in the peptide sequence is encoded by a
vector consisting of 19 zeros and a one corresponding to the amino
acid at this position and, further, six values encoding for the
hydrophobicity and charge of the amino acid. The resulting
datasets contain 1,157 to 3,089 instances, each encoded by 234
features.

We chose datasets from QSAR and MHC-I binding prediction
since they have quite different properties with respect to the
number of data points, the size of the input feature space, and the
coverage of that input space. Peptides are defined by their
sequence, which is usually encoded by a simple 180-dimensional
binary feature vector. In contrast, chemical compounds are more
complex, since their 3D structure has to be encoded into features,
leading to more than 1,500 feature values for each instance.
Moreover, the feature values of compounds can take values that
might be unique within the whole dataset. In contrast, it is very
unlikely that there is no peptide with the same amino acid at one
particular position in a dataset of more than 1,000 peptides.
Further, the amount of training data used for QSAR models is
usually very small, often only 100 to 1,000 instances, while MHC
binding data might be given for more than 1,000 peptides. See
also Table 1 in the Supporting Information S1 for detailed dataset
sizes.
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Results and Discussion

Influence of Dataset Size, Features, and Noise

In an initial experiment, we analyzed how the introduced
confidence estimators are influenced by the dataset size, the
number of features, and noise in the data. The experiment was
performed on the synthetic dataset, which gives us full control over
these parameters. We performed five nested five-fold cross-
validations on randomly generated artificial datasets, each with a
different number of instances, features, and noise levels in the
response variable, resulting in 48 combinations. The estimation
quality of the confidence estimators in terms of the average CEC
(avgCEQ) are shown for different parameter combinations in
Table 1. Details on qualities regarding the confidence associated

Table 1. Performance of confidence estimators on artificial
data with different properties.

n=100 n>100 m=10 m>10 ¢<1.0 6=1.0 best
CONFINE  0.05 0.22 019 005 021 015 030
CONFIVE  —0.02  0.05 003  —001 004 002 007
AvgDist  0.02 0.12 010 003  0.11 008 0.6
Bagging  0.11 0.20 018 011 019 016 025
DiffSNN 0,01 0.17 014 002 014 011 029
Localcy 0.1 0.05 004 002 004 003 005
LocalVar  0.00 0.12 010  —0.00 0.09 008  0.16
NoNN 0.05 0.12 012 003 011 009 016

For every confidence estimator, we calculated the average CEC by considering
datasets with a different number of instances #, a different number of selected
features m, and a different noise level o. In the last column, we show the
average CEC for the best parameter combination (n=1,000, m<10, ¢=0.1).
doi:10.1371/journal.pone.0048723.t001
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prediction improvement (CAPI) can be found in the Supporting
Information SI1.

We found that the dataset size has the strongest influence on the
estimation performance. On very small datasets with only 100
instances, the estimators yield an avgCEC of 0.05. When
considering datasets with more than 100 instances, the avgCEC
of all estimators increases to 0.13. In addition, we observed a
CAPI of 9% on small datasets and a CAPI of 21% if more than
100 training instances are given. Still, not all estimators are equally
sensitive to the dataset size. While the avgCEC of estimator
CONFIVE i1s only slightly influenced by the dataset size, the
avgCEC of CONFINE increases by 0.17 when considering
sufficiently large datasets. For large datasets, CONFINE shows a
CAPI of 35%. Moreover, note that when the dataset size is
increased from 100 to 1,000 instances, the standard deviation of
the CECs decreased from 0.27 to 0.11.

We also observed that noisy features and noise in the responses
have an influence on the quality of confidence estimates.
Particularly when the initial number of features was high or the
dataset size was low, noisy, non-predictive features were included
in the feature set. When more than 10 features were selected, the
avgCEC of all estimators decreased by 0.09. Similar results were
obtained regarding the noise in the data. When random values
with a low standard deviation (6 < 1.0) were added to the data, the
avgCEC was up to 0.06 larger compared to avgCECs obtained on
data with a higher noise level.

As expected, when we considered only datasets with 1,000
instances, <10 selected features, and a noise level of ¢=0.1, all
estimators yield their best performance. In particular, CONFINE
performs well, yielding an avgCEC of 0.30 and a CAPI of 0.48,
ie. the 20% of predictions that had the smallest confidence
intervals exhibited a 48% lower MSE than an average prediction.

From our results, we can conclude that — not surprisingly — a
larger amount of training data results in more robust confidence
estimates and higher confidence estimation quality. In addition, a
good feature representation and a low noise level support
confidence estimation. Clearly, these properties are not indepen-
dent of each other. Distinguishing between informative and non-
informative features is easier for large datasets, since the difference
between noise and information becomes more evident. The same
holds for datasets with a low level of noise, resulting in less noisy
features. Since most confidence estimators discussed here inspect
local properties of the input space, they rely on good feature
representation. If noisy features are part of the feature set,
mnstances in the local environment are not necessarily similar to the
test instance and, thus, provide no reliable confidence information.
Furthermore, given more instances in the dataset, we can define a
local environment with a smaller diameter since the density of
instances is higher. Consequently, the nearest neighbors are more
similar to the test instance and contain more relevant confidence
information.

Evaluation on Biological Data

To compare CONFINE and CONFIVE with existing confi-
dence estimators, we performed five nested five-fold cross-
validations on the MHC datasets and the QSAR datasets.

Due to the different properties of the biological datasets, the
results are rather diverse (see Table 2). On the MHC datasets, our
estimators CONFINE and CONFIVE, as well as DiffNN, with an
avgCEC of around 0.25, perform superior to all other estimators,
which yield an avgCEC around 0.12. We summarized the
improvement in CEC values across the MHC datasets with
random effects models [16]. We found that CONFINE,
CONFIVE, and DiffNN show a higher CEC of at least 0.11,
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0.08, and 0.08, respectively, compared to all other methods. In all
three cases the improvement was significantly greater than 0 with
a p-value p<0.001. In addition, the best three confidence
estimators show a CAPI of up to 39%, while the other estimators
yield an average improvement of only 19%. When summarizing
the CAPI improvements across the datasets using random effect
models, we found that CONFINE and CONFIVE perform
significantly better than all other methods except of DiftNN with a
p-value p<0.002. On the QSAR data, bagging performs best (p-
value p<0.005), yielding an avgCEC of 0.20, while estimators
CONFINE, CONFIVE, and LocalCV perform second best, with
avgCECs around 0.08 and p-values of p<0.005, p<0.005, and
p<0.05, respectively. Since most estimators have been shown to
be very sensitive to the dataset size, we also calculated the avgCEC
considering only QSAR datasets with more than 100 learning
examples. On large QSAR datasets, the avgCEC of most
estimators, except for bagging, is considerably improved. In the
case of CONFINE and CONFIVE, the avgCEC improves to 0.13
and 0.15, respectively. A similar trend can be observed when
considering prediction improvement.

Estimating confidences with CONFINE and CONFIVE is
possible with only a minor computational overhead. Estimating
the confidence intervals of one individual prediction requires
about 2 ms on a 2 GHz dual-core AMD Opteron with 4 GB of
RAM using our R implementation. But also most other estimators
need about 2 ms for an estimation. Only estimators LocalCV and
LocalVar require more than 200 ms for an individual estimation.
For each estimation, both estimators train multiple regression
models, which results in a huge computational overhead. Note
that bagging uses only predictions of multiple regression models
and 1s faster than LocalCV and LocalVar as long as we rely on
linear regression, as we will experience in the following section.

Our results suggest that CONFINE and CONFIVE often
perform better than most other confidence estimators while being
comparable in quality to bagging. Especially on the MHC
datasets, where more than 1,000 training examples are given,
and on sufficiently large QSAR datasets, our methods yield high
quality confidence estimates. In contrast, commonly used AD
estimators such as AvgDist, DiffNN, and NoNN often fail to give
reasonable error estimates. Interestingly, CONFIVE performs well
on the biological datasets, while yielding a poor performance on
artificial data. In addition, CONFINE and CONFINE require
only a small computational overhead.

Confidence Estimation for Non-linear Models

To show that CONFINE and CONFIVE can be also applied to
non-linear regression models, we repeated the evaluation on the
MHC and QSAR datasets using SVR. Since estimators Local CV
and LocalVar require too much runtime, we excluded them from
this study. The parameters of the SVR and the estimators were
optimized by performing nested cross-validations on the training
dataset. Since optimizing SVRs requires more runtime, we
restricted the evaluation to only one nested five-fold cross-
validation. The results are shown in Table 2.

Similar to our previous results, confidence estimators CON-
FINE, CONFIVE, DiffNN, and bagging show the best overall
performance. While the avgCEC of CONFINE and CONFIVE
was comparable to our previous results on the MHC datasets, the
avgCEC on the QSAR data was higher. In particular on the
OSAR datasets, the avgCEC and CAPI of CONFINE is
significantly larger than the avgCEC of all other methods except
of DiffNN (p-value p<0.05), which shows large variance in its
performance. Note that we again observed that CONFINE and
CONTFIVE performed better on larger QSAR datasets.
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Confidence scores and confidence intervals could be predicted
with only a small computational overhead using estimators
CONFINE, CONFIVE, AvgDist, DiffNN, and NoNN. On the
MHC and QSAR datasets they require between 9 to 44 ms for an
individual prediction. The different estimation times between
estimators and the differences compared to our previous results
using linear regression origin from the different number of
features. Confidence estimation based on bagging requires the
largest runtime of up to 3 seconds for an individual prediction.

Our findings support the assumption that CONFINE and
CONFIVE show similar behavior when being applied in
combination with non-linear regression models. In particular,
CONYFINE shows again a very good and very robust performance,
while being fast at the same time. Although confidence estimation
based on bagging shows also a good performance, bagging is less
practical for real world applications. If bagging is applied with a
time-consuming regression model, runtimes can be considerably
high. In contrast, CONFINE and CONFIVE perform indepen-
dent of the actual regression model, making them even more
mteresting for real world application.

Evaluation of Confidence Intervals

To show that a score-based 80% confidence interval contains as
many instances as an interval estimated independently from a
confidence score, we compared it with a general 80% confidence
interval. Therefore, we calculate the 0.1 quantile and the 0.9
quantile of the squared errors of all training instances without
considering the confidence scores. While the score-based confi-
dence intervals are expected to be smaller for large ncs, the general
interval is always of the same size.

On the artificial dataset, we observed an almost equal fraction
of 0.72 and 0.73 instances in the score-based interval and the
general interval, respectively. If we consider only datasets with
more than 100 instances, we find about 77% of the instances
within both confidence intervals. Among the different confidence
estimators, we could not find considerable differences. On the
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Table 2. Performance of confidence estimators on biological datasets.
Regression model confidence MHC QSAR

estimator CEC CAPI runtime [ms] CEC CAPI runtime [ms]
LR CONFINE 0.27 0.39 2 0.08 0.09 1

CONFIVE 0.24 0.35 2 0.09 0.13 1

AvgDist 0.11 0.18 2 —0.02 —0.10 1

Bagging 0.13 0.18 1 0.20 0.35 1

DiffNN 0.24 0.32 2 —0.00 —0.14 1

LocalCV 0.16 0.27 214 0.08 0.10 353

LocalVar 0.10 0.17 482 —0.08 —0.22 430

NoNN 0.10 0.17 2 —0.03 —0.09 1
SVR CONFINE 0.23 0.41 9 0.23 0.32 9

CONFIVE 0.21 0.34 10 0.16 0.21 10

AvgDist 0.12 0.23 9 0.02 0.03 12

Bagging 0.21 0.50 374 0.15 0.17 3064

DiffNN 0.24 0.35 9 0.10 0.20 10

NoNN 0.22 0.18 9 0.12 0.14 44
For every confidence estimator, the avgCEC, the confidence associated prediction improvement (CAPI), and the time for an individual estimation in milliseconds on the
MHC datasets and on the QSAR datasets is shown. For the upper part of the table, the estimators were applied together with linear regression (LR), whereas the number
in the lower part were obtained using support vector regression with an RBF kernel (SVR).
doi:10.1371/journal.pone.0048723.t002

MHC datasets, a fraction of 0.74 and 0.77 instances are covered
by the score-based interval and general interval, respectively. In
contrast, only 54% and 55% of the instances from the QSAR
datasets fall into the respective confidence intervals. However,
when considering only QSAR datasets with more than 100
training examples, about 67% of the instances are within both
confidence intervals.

Our results suggest that score-based confidence intervals contain
the same fraction of instances as general confidence intervals. In
particular, on large datasets, the fraction of instances within the
confidence interval converges to 0.8. Further, since the widths of
score-based confidence intervals are correlated with the absolute
prediction error, they are a very intuitive measure of confidence.

Predicting the Estimation Performance

Although confidence estimation can give valuable information
in addition to plain response values, the quality of estimates differs
from dataset to dataset. To answer the question whether we can
predict the quality of confidence estimates, we compared the
CECs obtained from the training data (CECi,in) with the CECs
obtained from the corresponding test data (CECie) for all
estimators.

On the artificial dataset, we observed an average correlation
coefficient p between CECi;, and CECis of 0.16. When
considering only datasets with more than 100 training examples,
the average p increased to 0.38. The same trend could be observed
in the biological datasets. For the considerably large MHC
datasets, we received an average p between CECipin and CECieg
of 0.91, while no correlation appeared for the fairly small QSAR
datasets. In particular, the training CECs of CONFINE and
bagging show a comparably good correlation with their corre-
sponding CECs for all datasets. See Supporting Information S1
for more details.

If a sufficient amount of training data is available, the
performance of confidence estimators is well correlated with their
performance on the training data. This allows us to make an
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educated guess as to how a confidence estimator will behave on
new data. In particular, the performance of CONFINE and
bagging is quite predictable using performance information from
the training data.

Conclusion

Estimating the confidence in individual predictions is crucial for
the interpretability of machine learning models. Confidence
estimation has two main purposes: it yields reliable bounds on
the error of individual predictions thus increasing the confidence of
the user in predictions and it allows the selection of highly
confident predictions. The latter can be very valuable if
predictions for large datasets are made and confidence can serve
as a selection criterion for experimental validation. For example,
in the case of MHC binding prediction, a large number of high-
affinity binders might be predicted and experimental validation
might proceed based on the confidence in the prediction in order
to confirm a larger number of good binders with fewer
experiments.

In this work, we propose two novel confidence estimators for
regression, CONFINE and CONFIVE. They determine normal-
ized confidence scores and confidence intervals that help biologists
to rate the reliability of an individual prediction. Both estimators
are model-independent and can be applied with any regression
model. In contrast to model-dependent confidence estimation
methods, CONFINE and CONFIVE are computationally very
efficient and can thus be added easily to existing predictors without
a significant performance loss.

In an initial study on artificial data, we observed that
CONFINE and CONFIVE, as well as other estimators, yielded
a better estimation performance on large datasets. A sufficient
amount of training data helps to identify irrelevant features and
increases the prospect of having adequate neighbors in the training
dataset. We then compared CONFINE and CONFIVE with other
existing confidence and AD estimators on two benchmark MHC
binding prediction and QSAR datasets. Our results suggest that
CONFINE and CONFIVE give high quality confidence estimates
if sufficient training data is available. Especially on the large MHC
datasets, both estimators often perform better than existing
methods. Similar results obtained using non-linear support vector
regression demonstrate that CONFINE and CONFIVE can be
applied to non-linear regression models as well. Only confidence
estimation based on bagging performs comparably on the tested
datasets. However, depending on the regression method used,
bagging can require a huge computational overhead. We also have
seen that confidence intervals estimated by our two methods are
comparable to fixed confidence intervals, while having the
advantage of giving a very intuitive measure of confidence.
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Nevertheless, since properties differ from dataset to dataset, care
needs to be taken when applying confidence estimators. Moreover,
different needs might influence the choice of a confidence
estimator. In cases where only outlier detection is required (i.e.,
where the prediction of an applicability domain is required),
simple distance-based estimators might suffice. However, if
enough data is given, one should exploit the advantages of having
quantitative confidence estimates. Furthermore, since the quality
of future confidence estimates by CONFINE and CONFIVE can
be predicted if large training datasets are given, it can be checked
in advance whether they yield satisfactory estimation quality for a
given task.

It is still a long way towards highly accurate confidence
estimators that work equally well on any kind of data. A
combination of multiple confidence estimators as well as an
automated selection [17] could improve both the quality and the
robustness of the estimation. Further, predicting not only the size
of errors but also their sign will increase the amount of information
gained from a confidence estimator. As an alternative, signed error
estimates can be used to correct the prediction results and might
increase the prediction performance of the regression model.

Estimation of normalized confidence scores and confidence
intervals is clearly a step forward, moving away from plain
regression values and a discrete applicability information. In
particular, confidence intervals provide a very intuitive represen-
tation of reliability, which can be easily interpreted by biologists.
As a consequence, confidence information will help to increase the
trust of biologists in & silico predictions. Distinguishing between
confident and almost random predictions will also help biologists
to choose suitable candidates for further experiments. We are
convinced that confidence estimators will become standard for
computational prediction models in the near future.
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