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Abstract Biosimilars are medical products that are developed as copies of already
established, large molecule drugs (biologics). For gaining approval, sponsors have to
confirm that the proposed biosimilar has the same efficacy and safety as the originator
product. This comparability exercise includes also, in most cases, that large clinical
trials are conducted in patients. However, even with the evidence gained during the
clinical studies, there is still some uncertainty if patients who were already treated
with the originator can be switched to the biosimilar or if even multiple switches be-
tween the biosimilar and the originator are acceptable. A simple way to address the
question of switchability is the estimation of so-called mixed and self-carryover ef-
fects, which are carryover effects that not only depend on the treatment in the current
period, but also on the treatment in the previous period. In this paper, we determine
universally optimal designs for the estimation of mixed-carryover effects in a linear
model with treatment, period, subject and self-carryover as nuisance parameters.
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1 Introduction

A biosimilar (the test product) is developed as a copy of an already approved large
molecule drug, a so-called biologic (the reference product). Market authorization is
granted after the sponsor of the biosimilar has shown the comparability of the test
and the reference products at the analytical, non-clinical and clinical level (CHMP,
2014). If a biosimilar gains approval, it has been confirmed that patients who are tak-
ing the biosimilar can expect the same treatment effect and the same safety profile as
patients who are taking the reference product.

Biosimilars are still a fairly new concept with the first biosimilar approved in Eu-
rope in 2006 (Omnitrope, Sandoz) and the first biosimilar approved in the USA in
2015 (Zarxio, Sandoz). Even though there are by now already 36 approved biosim-
ilars in Europe (Generics and Biosimilars Initiative, 2017a) and 7 approved biosim-
ilars in the USA (Generics and Biosimilars Initiative, 2017b) and many more are
expected to gain market authorization in the next years, there is still some uncertainty
if patients who were already treated with the reference product can be switched to
the biosimilar or even if multiple switches are allowed. This would mean that the au-
tomatic substitution of the reference product by the biosimilar at the pharmacy level
could be possible. The practice of switching at the pharmacy level is mostly accepted
for generics. For biosimilars, the positions of regulatory agencies are diverse: for
example, regulators in Finland state that ”switches between biological products are
common and usually not problematic” (Finnish Medicines Agency, 2015) while the
regulatory agency in Ireland ”does not recommend that patients are switched back
and forth between a biosimilar and the reference medicinal product” (Health Prod-
ucts Regulatory Authority, 2015).

Additional evidence might be required to support the decision as to whether single
or multiple switches between a biosimilar and its reference product should be permit-
ted. This evidence could be provided by an additional clinical study that is conducted
specifically for analysing the impact of single or multiple switches on the treatment
success. A simple statistical methodology for showing the impact of switching be-
tween a biosimilar and its reference product could be based on the direct estimation of
the impact of switching by calculating the so-called mixed and self-carryover effects.
This idea was first proposed by Afsarinejad and Hedayat (2002). They introduced a
model in which the usual carryover effect that only depends on the treatment in the
previous period is replaced by two different carryover effects per treatment. These
carryover effects do not only depend on the treatment in the previous period, but
also on the treatment in the current period: if both treatments are different, a mixed-
carryover effects is introduced, if the treatment are the same, a self-carryover effect
is used. In the case of two treatments, the proposed model is identical to the inclusion
of interactions between the direct effects and carryover effects. From previous paral-
lel groups trials, it will generally be known prior to the assessment of switchability
that the direct effects of the two treatments can be considered similar. From previous
long term experiments (where subjects receive either reference or test over several
periods) it will also be known that the self-carryover effects can be considered to
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be identical. However, for claiming switchability, we might want to confirm that the
mixed-carryover effects have equal values. Hence, it is necessary to perform a study
which uses a design that allows the estimation of the mixed-carryover effects.

It is generally desirable to use a study design which is as efficient as possible.
While for the showing of biosimilarity, mostly parallel groups designs were con-
ducted in the past (Mielke et al, 2016), such designs are clearly not appropriate for
the assessment of switchability because one or multiple switches have to be included
in the study design. So far, not many switching studies have been published and there
is currently no well-established standard for the choice of the study design. In this pa-
per, we determine universally optimal designs for the estimation of mixed-carryover
effects in the case of two treatments (the test and the reference product) in a linear
model with treatment, period, subject and self-carryover effects as nuisance param-
eters. This work builds on results by Kunert and Stufken (2002) and Kunert and
Stufken (2008) who studied optimal designs for the estimation of the treatment effect
when period, subject and both self and mixed-carryover effects are nuisance param-
eters. We study efficient designs for the joint estimation of self and mixed-carryover
effects in a separate paper.

The rest of the paper is structured as follows: in Section 2, we introduce the
necessary notation that is used in Section 3 for identifying the optimal designs. In
Section 4, we compare the derived optimal designs with designs used in practice. In
Section 5, we investigate if the designs can be improved by including periods without
any treatment. We summarize our results in Section 6.

2 Notations and definitions

We consider the model that was described in Kunert and Stufken (2002) and Kunert
and Stufken (2008). We assume that the response yu,r of subject u (u = 1, ...,n) in
period r (r = 1, ..., p) can be written by

yu,r =

{
αu +βr + τd(u,r)+ρd(u,r−1)+ eu,r if d(u,r) 6= d(u,r−1)
αu +βr + τd(u,r)+χd(u,r−1)+ eu,r if d(u,r) = d(u,r−1)

,

where d(u,r) gives the treatment of subject u in period r, αu is the subject effect of
subject u, βr is the period effect in period r, τi is the treatment effect of treatment i,
ρi is the mixed-carryover effect of treatment i and χi is the self-carryover effect of
treatment i. The residual error eu,r is assumed to be independent and identically dis-
tributed with expectation 0 and variance σ2. To simplify the notation, we set σ2 = 1.

The set of all designs with t treatments, n subjects and p periods is denoted as
Ωt,n,p. Here, we focus on the case of two treatments (Test - T, Reference - R; t = 2)
and p > 2. Using the notation of Kunert and Stufken (2002), we define the matrices
U = In⊗ 1p (subject effect), P = 1n⊗ Ip (period effect), Td (treatment effect), Md
(mixed-carryover effects) and Sd (self-carryover effect), where ⊗ denotes the Kro-
necker product, Im is the identity matrix of dimension m and 1m is a vector with
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length m that only contains the entries 1.

The goal of this analysis is to derive the characteristics of a design d that is univer-
sally optimal for the estimation of the mixed-carryover effects in the class of design
Ω2,n,p. Universally optimal is a term introduced by Kiefer (1975). If all information
matrices Cd have row sums and column sums 0, then a design d∗ is universally opti-
mal if its information matrix Cd∗ is completely symmetric and the design maximises
the trace of Cd over all d ∈ Ω2,n,p. A matrix A is called completely symmetric if it
can be written in the form

A = aI+b11T ,

where a and b are real numbers. The information matrix for the estimation of the
mixed-carryover effects is given by

C̃d = MT
d ω
⊥([P,U,Td ,Sd ])Md ,

where ω⊥(A) = I−A(AT A)−AT is the projection on the space of all vectors that
are orthogonal to the columns of A and where AT gives the transpose and A− the g-
inverse of A. It can be easily confirmed that all information matrices C̃d have column

and row sums 0: for that, define q =

(
0

1p−1

)
. Then, we observe that

Md12 +Sd12 = Pq⇒Md12 = Pq−Sd12 ∈ im([Sd ,P])⊂ im([Td ,Sd ,U,P]),

where im(A) gives the image of matrix A and the first equality holds because each
subject experiences a mixed or a self-carryover effect in all periods except in the first
period. With that, we know that

ω
⊥([Td ,Sd ,U,P])Md12 = 0,

which directly leads to the conclusion that the column sums and row sums of C̃d =
MT

d ω⊥([P,U,Td ,Sd ])Md are 0. Therefore, the concept of universally optimal is ap-
plicable.

3 Identification of universally optimal designs

The strategy presented in this paper for identifying universally optimal designs fol-
lows the ideas of Kunert and Stufken (2002) and Kunert and Stufken (2008) and
consists of two main steps: first, a matrix Cd that is larger in the Loewner sense than
the information matrix C̃d is derived (Section 3.1). Then, an upper bound for the
trace of Cd is determined and a class of designs is identified that reaches this bound
(Section 3.2).
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3.1 An upper bound for the information matrix

In this section, we derive an upper bound for the information matrix C̃d in the Loewner
sense. Since C̃d has row and column sums 0 and is completely symmetric, we can
multiply the information matrix from both sides with a matrix B2 ∈ R2x2 which has
diagonal elements 1/2 and off-diagonal elements −1/2 without changing the matrix
and we have the equality

C̃d = BT
2 C̃dB2 = (MdB2)

T
ω
⊥([P,U,Td ,Sd ])(MdB2).

The upper bound of the information matrix is obtained by removing the period
effect from the information matrix. More concrete, we use Proposition 2.3 in Kunert
(1983) which states that

C̃d ≤ (MdB2)
T

ω
⊥([U,Td ,Sd ])MdB2 = Cd , say, (1)

which equality if and only if

(MdB2)
T

ω
⊥([U,Td ,Sd ])P = 0. (2)

Then, as shown in Kunert and Martin (2000), it is possible to use the following de-
composition of the information matrix Cd :

Cd =Cd11−Cd12C−d22CT
d12− (Cd13−Cd12C−d22Cd23)

(Cd33−CT
d23C−d22Cd23)

−(Cd13−Cd12C−d22Cd23)
T ,

where, in the situation of this paper,

Cd11 = B2MT
d MdB2−

1
p

B2MT
d UUT MdB2,

Cd12 = B2MT
d Td−

1
p

B2MT
d UUT

d T,

Cd13 = B2MT
d Sd−

1
p

B2MT
d UUT Sd ,

Cd22 = TT
d Td−

1
p

TT
d UUT TT

d ,

Cd23 = TT
d Sd−

1
p

TT
d UUT ST

d ,

Cd33 = ST
d Sd−

1
p

ST
d UUT ST

d .

In order to use the reduced information matrix stated in Equation (1), it is nec-
essary to show that the condition stated in Equation (2) is fulfilled. We first note
that there is always a dual-balanced design among the optimal designs. A sequence
s is called dual to a sequence s′ if sequence s can be changed to sequence s′ by in-
terchanging the two treatments (e.g., TRTR, dual sequence: RTRT). A design d is
dual-balanced if it uses sequence s exactly as often as sequence s′. It is noteworthy
that dual-balanced designs fulfill all conditions stated in Kunert and Stufken (2002)
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(in each period, all treatments appear equally often, the mixed carryover effects of
all treatments appear equally often, the self carryover effects of all treatments appear
equally often) and we can therefore directly use the results obtained in Kunert and
Stufken (2002). We refer to the conditions stated in Kunert and Stufken (2002) as
conditions (∗). For showing that Equation (2) holds, we first rewrite the equation:

(MdB2)
T

ω
⊥([U,Td ,Sd ])P =B2MT

d ω
⊥(U)P−Cd12C−d22TT

d ω
⊥(U)P

−(Cd13−Cd12C−d22Cd23)(Cd33−CT
d23C−d22Cd23)

−

(TT
d ω
⊥(U)P−Cd23C−d22ST

d ω
⊥(U)P).

From Kunert and Stufken (2002), we use that TT
d ω⊥(U)P = 0 and

B2MT
ω
⊥(U)P = 0

for the designs which fulfill conditions (∗), i.e., for all dual-balanced designs, which
simplifies the term to

(MdB2)
T

ω
⊥([U,Td ,Sd ])P =− (Cd13−Cd12C−d22Cd23)(Cd33−CT

d23C−d22Cd23)
−

(−Cd23C−d22ST
d ω
⊥(U)P).

The matrices Cd22 and Cd23 have column sums 0 (Kunert and Stufken, 2002) and
as these matrices are in addition completely symmetric, they are a multiple of B2.
Therefore, we can replace

Cd22 = k22B2,

Cd23 = k23B2.

Furthermore, as B2 is idempotent,

B−2 = B2.

This leads to

(MdB2)
T

ω
⊥([U,Td ,Sd ])P =− (Cd13−Cd12(k22B2)

−k23B2)

(Cd33− (k23B2)
T (k22B2)

−k23B2)
−

(−k23B2(k22B2)
−ST

d ω
⊥(U)P)

=− (Cd13−Cd12
k23

k22
B2)

(
Cd33−

k23

k22
B2

)−
(
−k23

k22
B2ST

d ω
⊥(U)P

)
= 0,

where the last equality uses that B2ST
d ω⊥(U)P = 0 (Kunert and Stufken, 2002).

Therefore, we only need to determine sequences which maximise the trace of the
matrix

Cd = (MdB2)
T

ω
⊥([U,Td ,Sd ])MdB2.



Universally optimal designs for mixed-carryover effects 7

3.2 Maximising the trace of Cd

Since the column sums of Cd11,Cd12 and Cd13 are 0 because of the multiplication
by B2, we are in the same setting as in Proposition 2 in Kunert and Martin (2000)
and can therefore use the same strategy to find the optimal design. Let x,y ∈ R and l
be an equivalence class of sequences which consists of a specific sequence s and its
dual-balanced sequence s′. Since we are in the two-treatment case and we consider
only dual-balanced designs, Ω2,n,p consists of 2p−1 different equivalence classes. Let
πdl be a vector of length 2p−1 which gives the proportion of sequences of the design
d which belongs to the lth equivalence class. We use from Kunert and Stufken (2008)
that for any design d ∈Ω2,n,p,

tr(Cd)≤ n ·min
x,y

2p−1

∑
l=1

πdlhl(x,y) =: q∗d ,

with

hl(x,y) = c11(l)+2xc12(l)+ x2c22(l)+2yc13(l)+ y2c33(l)+2xyc23(l),

where, in our situation,

c11(l) := tr(B2MT
u w⊥(Uu)MuB2) = tr(B2(MT

u (I−Uu(UT
u Uu)

−UT
u )Mu)B2)

= tr
(

B2

(
MT

u Mu−
1
p

MT
u UuUT

u Mu

)
B2

)
= tr

(
B2

(
MT

u Mu−
1
p

MT
u UuUT

u Mu

))
,

c12(l) := tr(B2MT
u w⊥(Uu)Tu) = tr

(
B2

(
MT

u Tu−
1
p

MT
u UuUT

u Tu

))
,

c13(l) := tr(B2MT
u w⊥(Uu)Su) = tr

(
B2

(
MT

u Su−
1
p

MT
u UuUT

u Su

))
,

c22(l) := tr(B2TT
u w⊥(Uu)Tu) = tr

(
B2

(
TT

u Tu−
1
p

TT
u UuUT

u Tu

))
,

c23(l) := tr(B2TT
u w⊥(Uu)Su) = tr

(
B2

(
TT

u Su−
1
p

TT
u UuUT

u Su

))
,

c33(l) := tr(B2ST
u w⊥(Uu)Su) = tr

(
B2

(
ST

u Su−
1
p

ST
u UuUT

u Su

))
.

In these equations, Mu,Uu,Tu,Su are the design matrices for the uth subject of the
mixed-carryover effects, the subject effects, the treatment effects and the self-carryover
effects, respectively. Due to the properties of πdl (non-negative, ∑

2p−1

l=1 πdl = 1), it is
clear that

2p−1

∑
l=1

πdlhl(x,y)≤max
l

hl(x,y)

which leads to
tr(Cd)≤min

x,y
max

l
hl(x,y).
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Let x∗,y∗ be values such that

max
l

hl(x∗,y∗)≤max
l

hl(x,y).

Following Kunert and Stufken (2008), we define L∗ as the set of equivalence classes
with

l ∈ L∗ if and only if hl(x∗,y∗) = max
µ

hµ(x∗,y∗).

As in previous publications, the main technical difficulty is to identify numbers x∗,y∗

and optimal classes of sequences l ∈ L∗. In the derivation of optimal designs for the
estimation of the direct treatment effects in the presence of mixed and self-carryover
effects as nuisance parameters (two treatments, Kunert and Stufken, 2008), the task
was massively simplified because it was possible to show that the function hl is,
at the optimal values x∗,y∗, independent of the choice of the equivalence class l∗.
Unfortunately, this trick is not applicable in our case. Therefore, we optimize x∗,y∗

and the optimal classes of sequences l ∈ L∗ simultaneously. It is important to note
that since the terms ci j(l) are invariant for a sequence and its dual sequence and
therefore are invariant for all sequences within one equivalence class, we represent
an equivalence class l, without loss of generality, with a sequence s that ends with
treatment T. For example, if TRT and RTR are the dual sequences of equivalence
class l, we focus on the sequence s = T RT . In the following we introduce additional
notation which is required for the identification of optimal designs. For that, let n j(s)
be the number of appearances of treatment T ( j = 1) or R ( j = 2) in the sequence
s, ñ j(s) is the number of appearances of mixed-carryover effects and tp j(s) is 1 if
treatment j is in the last period and 0 otherwise. With that notations, it follows that
for every s, there is exactly one j such that tp j(s) = 1 and it is 0 in all other cases.
The number of appearances of self-carryover effects is given by

n̄ j(s) = n j(l)− ñ j(s)− tp j(s).

It is necessary to distinguish between the sequences that start with treatment T and
the sequences that start with treatment R. In the first case, if ñ1(s) is the number of
mixed-carryovers for treatment T, the number of mixed carryovers for treatment R
is ñ2(s) = ñ1(s). If the treatment sequence starts with an R, the number of mixed
carryovers for R is ñ2(s) = ñ1(s) + 1. Using this notation, it is possible to derive
simpler terms for ci j (see Appendix) and this allows the simplification of the function
hl . In our situation, for the special case of two treatments, we can write the function
hl as

hl,1(x,y) =ñ1(s)
(
1−2x− y2−2xy

)
+n2

1(s)
(
−2x2

p
− 2y2

p
− 4xy

p

)
+n1(s)

(
2x2 +2y2 +

2y2

p
+4xy+

2xy
p

)
+

(
−y2

2
− y2

2p
− y2−2xy

)
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in case the sequence s starts with T and as

hl,2(x,y) =ñ1(s)
(
1−2x− y2−2xy

)
+n1(s)2

(
−2x2

p
− 2y2

p
− 4xy

p

)
+n1(s)

(
2x
p
+

2y
p
+4xy+2x2 +2y2

)
+

(
1
2
− 1

2p
−2x− y− y2−2xy

)
in case the sequence s starts with R. It is noteworthy that the trace of the informa-
tion matrix is completely determined by n1(s) and ñ1(s). Therefore, these are the
parameters that need to be identified for the determination of the optimal design. The
following new proposition is the main tool for the identification of optimal sequences
in the case of designs with an odd number of periods.

Proposition 1 Let p be an odd number. Then, for sequences starting and ending with
the same treatment, the upper boundary of the trace of Cd , q∗d , is attained by

x∗ =
p

p+1
, y∗ =− p

p+1

and

n∗1(s) =
p+1

2
, ñ∗1(s) =

p−1
2

.

Proof The proof consists of three main steps: first, we start with a pair of character-
istics of the sequence s, n1(s) and ñ1(s), that we consider to be optimal. In the next
step, we determine optimal values x∗,y∗ for this choice and confirm afterwards that
our choice of n1(s) and ñ1(s) was indeed optimal.

For that, we consider sequences s with the characteristics

n∗1(s) =
p+1

2
and ñ∗1(s) =

p−1
2

.

Next, the corresponding optimal values of x,y should be determined. The partial
derivatives of hl,1(x,y) with respect to x,y are given by

dhl,1(x,y)
dx

=−2ñ1(s)−2yñ1(s)−
4x
p

n1(s)2− 4y
p

n1(s)2 +4xn1(s)

+4yn1(s)+
2yn1(s)

p
−2y,

dhl,1(x,y)
dy

=−2yñ1(s)−2xñ1(s)−
4y
p

n1(s)2− 4x
p

n1(s)2

+4yn1(s)+
4yn1(s)

p
+4xn1(s)+

2xn1(s)
p
− y− y

p
−2y−2x.
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Settings these equations equal to 0, we note that all values of y and

x∗ =
p

p+1

are optimal. In the following, we set

y∗ :=− p
p+1

=−x∗.

In the direction of x, the second derivative is positive, i.e., there exists only one min-
imum in the direction of x. The function is constant in the direction of y. Therefore,
we have identified a global minimum. Including our knowledge in the function hl,1
leads to

h̃l,1 := hl,1(x∗,y∗) =
ñ1(s)

(p+1)2 +
p2− p

2(p+1)2 .

This function appears to be independent of the appearance of treatment T (n1(s) is
not present in the formula), but this is not the case: the appearance of the treatments
influences the range of possible mixed-carryover effects and therefore indirectly still
influences the choice of optimal designs.

In the third step, we need to confirm that our choice of n1(s), ñ1(s) was indeed
optimal. For this, it is sufficient to confirm that the derived function h̃l,1 is maximal
for

n1(s) =
p+1

2
and ñ1(s) =

p−1
2

.

We only need to confirm optimality at the point of the identified values x∗,y∗, since
this is already the minimum of the function h∗l (x,y) with respect to x,y. The derived
function h̃l,1 clearly shows that choosing ñ1(s) as large as possible is optimal. The
largest value for a sequence starting and ending with T is ñ1(s) =

p−1
2 . This choice

directly determines that n1(s) =
p+1

2 which completes the proof. ut

For the chosen values of mixed-carryover effects ñ1(l∗), the function h̃l,1 simpli-
fies to

h̃l∗,1 =
p2−1

2(p+1)2 . (3)

Proposition 1 only refers to sequences which uses the same treatment in the first and
in the last period. Therefore, it is necessary to confirm that starting with a different
treatment than the one used in the last period cannot improve the design in the case
of an odd number of periods.

Proposition 2 Let p be an odd number. Then,

hl,2(x∗,y∗)< hl∗,1(x∗,y∗),

where l∗ is the equivalence class with a sequence s with n∗1 and ñ∗1 as given in Propo-
sition 1. The values x∗ and y∗ are the real numbers which were also identified in
Proposition 1.
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Proof Evaluating the function hl,2 at x∗,y∗ leads to

h̃l,2 =
2pñ1(l)+ p3− p2− p−1

2p(p+1)2 .

It is necessary to compare the value of h̃l,2 to the value of the function h̃l∗,1 which is
given in Equation (3) at x∗,y∗ and therefore to confirm that

p2−1
2(p+1)2 >

2pñ1(l)+ p3− p2− p−1
2p(p+1)2 ⇔ 0 > 2pñ1(l)− p2−1

⇔ ñ <
p
2
+

1
2p

The number of mixed-carryovers, ñ1(l), cannot be larger than p
2 . Therefore, this con-

dition always holds true. ut

Combining Proposition 1 and Proposition 2, we have now identified optimal se-
quences in designs with an odd number of periods. Next, we focus on designs with
an even number of periods.

Proposition 3 Let p be an even number and p> 2. Then, for sequences with different
treatments in the first and last period (start with R, end with T), the upper boundary
of the trace of Cd is reached for

x∗ =
p−1

p
, y∗ =−1− p

p

and

n∗1(s) =
p
2
, ñ∗1(s) =

p−2
2

.

Starting with the same treatment that is used in the last period cannot increase this
value, i.e.,

hl,1(x∗,y∗)< hl∗,2(x∗,y∗).

Proof Very similar to the proof of Proposition 1 and 2. See the Appendix for details.

3.3 Example

The analysis in the previous section showed that for designs with an odd number of
periods, only sequences should be used in which the subjects switch after each period
and the starting and ending period should be the same. For example for 5 periods, this
restricts our attention to sequences s = T RT RT , s′ = RT RT R. If the number of peri-
ods is even, the subjects should again switch between T and R after each period, but
the treatment in the first and in the last period should be different. For 6 periods, this
leads to the sequences s = RT RT RT , s′ = T RT RT R. As optimal designs have to be
dual-balanced, the sequences s and s′ have to be appear equally often.
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4 Study designs in practice

It is interesting to see how these optimized study designs relate to study designs which
are applied for switchability assessment of biosimilars in practice. As an example, we
discuss the study design of the EGALITY study (Griffiths et al, 2017). It is important
to note that the aim of this section is not to criticize the study design of the EGAL-
ITY study: a study design is always optimized for a specific analysis method and the
analysis of mixed-carryover effects, for which the designs we identified in this pa-
per are optimal, was not one of the analyses conducted for the EGALITY study. We
also acknowledge constraints in the choice of designs in practice due to, for example,
operational constraints and expectations of health authorities (e.g., the recommended
design to assess interchangeability (the term used by the health authority in the US
for switchability) as stated in the FDA’s draft guidance (FDA, 2017)). However, we
find it nonetheless interesting to compare the theoretical optimal designs with the de-
signs applied in practice.

The EGALITY study was conducted in patients with moderate to severe chronic
plaque-type psoriasis. 531 patients were randomised 1:1 to Erelzi R© (the biosimilar)
or Enbrel R© (the reference product). The study design is given in Table 1. In the
following, we ignore that the time intervals between the follow-ups are not equidistant
and consider each follow-up assessment as one period.

Table 1 Study design of the EGALITY study (Griffiths et al, 2017). T is the test treatment, R is the
reference treatment.

Sequence/Follow-up Week 12 Week 18 Week 24 Week 30 Week 52

1 T T T T T
2 R R R R R
3 R T R T T
4 T R T R R

The trace of the information matrix for the study design used in the EGALITY
study is 0.8636 (assuming one subject per sequence). The optimal design identified
in this paper had a much larger trace of the information matrix (1.3333) and is clearly
superior for the estimation of mixed-carryover effects. The much lower value of the
criterion for the EGALITY study is due to the fact that half of the subjects (the sub-
jects in the non-switching sequences) do not contribute much to the precision of the
estimation of the mixed-carryover effects. Although the EGALITY study was clearly
not tailored for the estimation of mixed-carryover effects, this shows the potential of
using optimized designs.
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5 The inclusion of dummy treatments

For the designs derived in Kunert and Stufken (2008), it was shown that adding addi-
tional periods does not lead to a relevant improvement of the design, but the inclusion
of dummy treatments (for example: a placebo treatment or no treatment) increased
the precision of the estimator. In this section, we investigate if periods with dummy
treatments can also improve the design in our setting. The dummy treatment is de-
noted by N. For that, we focus on a design with five periods. In this case, s = RT RT R,
s′ = T RT RT are the optimal sequences that were derived in Section 3.3.

We focus on the linear model that was already introduced in Section 2, i.e., the
response yu,r of subject u in period r can be written by

yu,r =

{
αu +βr + τd(u,r)+ρd(u,r−1)+ eu,r if d(u,r) 6= d(u,r−1)
αu +βr + τd(u,r)+χd(u,r−1)+ eu,r if d(u,r) = d(u,r−1)

,

where d(u,r) gives the treatment of subject u in period r (1 ≤ u ≤ n;1 ≤ r ≤ p),
αu is the subject effect of subject u and βr is the period effect in period r. τi is the
direct effect of treatment i with the levels τT (treatment T ), level τR (treatment R) and
level τN (treatment with the dummy treatment N). The mixed-carryover is ρi which
is present in the model for the switches from T to R, from T to N (level ρT ) and
from R to N or from R to T (level ρR). If a subject receives the dummy treatment
(no treatment) in period k− 1 and T or R in period k, no mixed-carryover effect is
assumed because the dummy treatment corresponds to ”no treatment” or ”placebo”
and the situation is therefore comparable to the situation in the first period. The self-
carryover effect is denoted as χi. More concretely, the level χT (treatment in period k
and period k− 1 with T ) and χR (treatment in period k and period k− 1 with R) are
used. No self-carryover effect is introduced for the dummy treatment. In summary,
the mixed and self-carryover effects are defined as:

ρi =


ρT if d(u,r−1) = T and d(u,r) 6= T,
ρR if d(u,r−1) = R and d(u,r) 6= R,
0 if d(u,r−1) = d(u,r) or d(u,r−1) = N

χi =


χT if d(u,r−1) = d(u,r) = T,
χR if d(u,r−1) = d(u,r) = R,
0 if d(u,r−1) 6= d(u,r) or d(u,r−1) = d(u,r) = N.

As this investigation is only for illustration, we will use the optimal design with five
periods without the dummy treatment that was stated above and include systemati-
cally the dummy treatment. Since we start with a fixed sequence, it is important to
note that this approach might not lead to the optimal design for a study with a dummy
treatment.

Table 2 shows the results for the inclusion of one dummy treatment. All shown
combinations led to a completely symmetric information matrix and are therefore in
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the class of designs that can be universally optimal. The value of the optimality crite-
rion for the optimal design without any dummy treatment was 0.6667 for one subject
per sequence. Table 2 shows that this value can be improved with a dummy treatment:
for all sequences apart from the one in which the dummy treatment is included in the
first period, the value of the optimality criterion is increased. Interestingly, the crite-
rion for Sequence 2 and 4 is lower than for 3 and 5. While this might be unexpected at
first sight, it can easily be explained: in Sequences 2 and 4 we replaced the treatment
which was already given more often with the dummy treatment (e.g., in Sequence 2
in Table 2 we replaced an R with an N, therefore subjects received T three times, R
once, N once instead of T three times, R twice). This unbalance leads to a lower value
of the criterion.

Including two dummy treatments still increases the value of the criterion (2.2857),
but the value decreases if more than two dummy treatments are included. For study
designs with more periods, the improvement is even higher: for example, for nine pe-
riods, the largest optimality criterion is 4.6364 (with inclusion of four dummy treat-
ments) compared to 0.8 without any dummy treatments.

Table 2 Study designs with one dummy treatment per sequence. The criterion is the trace of the informa-
tion matrix. We only give one sequence, but the design consists of another sequence with is dual-balanced
in terms of T and R, but copies the dummy treatment, e.g., for the sequence TRNTR, the second sequence
would be RTNRT. The first sequence is the sequence without any dummy treatment that serves as the
reference.

No. Sequence Criterion

- TRTRT 0.6667
1 NRTRT 0.55
2 TNTRT 1
3 TRNRT 1.8
4 TRTNT 1
5 TRTRN 1.75

6 Conclusion

In this paper, we showed that for the estimation of mixed-carryover effects it is op-
timal to use a study design in which the subjects switch between T and R after each
period. If an odd number of periods is used in the design, it is optimal to start with the
same treatment that is used in the last period. In the situation with an even number of
periods, the treatment in the last and in the first period has to be different. The rational
for this is that as many mixed-carryover effects as possible should be included in the
design and this number is maximised for the described choice.

We also showed that if the aim of a study is to estimate mixed-carryover effects,
designs which were already used in practice (e.g., the EGALITY study) could be
greatly improved by using our optimized designs. However, it is important to keep in
mind that so far, the estimation of mixed-carryover effects was not among the objec-
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tives of the studies conducted in practice.

Last, we showed that the estimation could be improved if one is willing to in-
clude dummy treatments (i.e., periods without any treatment or placebo). This find-
ing is similar to the one in Kunert and Stufken (2008). It is important to point out
that these results might not be relevant for an application in biosimilar development:
since biosimilars are used for treating serious and often chronic diseases, it might not
be possible to stop the treatment even if this provides an advantage in terms of pre-
cision of the estimator. However, if the methodology is applied to other areas (e.g.,
sensory trials that are mentioned in Kunert and Stufken (2002)) or if the studies are
undertaken in healthy volunteers, it might be possible to consider the use of dummy
treatments if this provides an advantage from a statistical point of view. It is also
important to note that even though our results show that – from a theoretical point
of view – the inclusion of dummy treatments improves the performance of the de-
sign, it is important to point out that this conclusion is purely based on the considered
model and the main assumption, which is that after one period without treatment (the
dummy treatment – a wash-out period), no carryover effects are observed. Before us-
ing the results as a justification why the inclusion of dummy treatments is necessary,
it is important to justify that the model assumptions are met.
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Appendix

A. Derivation of a simpler expression for hl

Using the results obtained by Kunert and Stufken (2002) and the simplifications in the
case of two treatments as described by Kunert and Stufken (2008), easier formulas
for ci j(l) can be derived:

c11(l) :=
t−1

t ∑
j

ñ j(l)−
1
p ∑

j
ñ2

j(l)+
1
pt

(
∑

j
ñ j(l)

)2

=

{
ñ1(l) if sequence starts with T
ñ1(l)+

p−1
2p if sequence starts with R

,

c12(l) :=− 1
p ∑

j
ñ j(l)n j(l)

=

{
−ñ1(l) if sequence starts with T
−ñ1(l)− p−n1(l)

p if sequence starts with R
,
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c13(l) :=− 1
p ∑

j
ñ j(l)(n j(l)− ñ j(l)− tp j(l))+

1
pt

(
∑

j
ñ j(l)

)(
p−1−∑

j
ñ j(l)

)

=

{
0 if sequence starts with T
− p−2n1(l)

2p if sequence starts with R
,

c22(l) := p− 1
p ∑

j
n2

j(l) =
2n1(l)(p−n1(l))

p
,

c23(l) := p−1−∑
j

ñ j(l)−
1
p ∑

j
(n j(l)(n j(l)− ñ j(l)− tp j(l)))

=

{
−ñ1(l)−1+ 2n1(l)(p−n1(l))

p + n1(l)
p if sequence starts with T

−ñ1(l)−1+ 2n1(l)(p−n1(l))
p if sequence starts with R

,

c33(l) :=
t−1

t

(
p−1−∑

j
ñ j(l)

)
− 1

p ∑
j

n̄2
j(l)+

1
pt

(
p−1−∑

j
ñ j(l)

)2

=

{
p−2ñ1(l)−1

2 − (p−2n1(l)+1)2

2p if sequence starts with T
p−2ñ1(l)−2

2 − (p−2n1(l))2

2p if sequence starts with R
,

Plugging these results into the formula for hl lead to the simpler expression.

B. Proof of Proposition 3

The proof follows the lines of the proofs of Proposition 1 and 2. Again, we first
choose values n1(s) and ñ1(s) we consider to be optimal, derive the values x∗,y∗

which minimises hl,2 and show that the choice of n1(s) and ñ1(s) was indeed optimal.
Last, we show that starting with the same treatment that is also used in the last period
cannot improve the design. In the first step, we assume that

n1(s) =
p
2

and thus ñ1(s) =
p−2

2

is the optimal choice. Next, the optimal values for x,y are derived by calculating the
partial derivations of hl,2 with respect to x and y:

dhl,2(x,y)
dx

=−2ñ1(s)−2yñ1(s)−
4x
p

n1(s)2

− 4y
p

n1(s)2 +
2n1(s)

p
+4yn1(s)+4xn1(s)−2−2y,

dhl,2(x,y)
dy

=−2yñ1(s)−2xñ1(s)−
4y
p

n1(s)2

− 4x
p

n1(s)2 +
2
p

n1(s)+4xn1(s)+4yn1(s)−1−2y−2x.
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Setting the equations to 0, we find that

x∗ =
1+2ñ
2ñ+2

=
p−1

p
.

It is important to note that all values are optimal for y. For the rest of the proof, we
set

y∗ :=
2−2p

2p
=

1− p
p

=−x∗.

We note with the same arguments that we used in the proof of Proposition 1 that
we have indeed identified a global minimum. The choice of y again makes the func-
tion ñ1(l) independent of the number of appearances of the treatment (see below).
Plugging x∗ and y∗ into the function hl,2 leads to

h̃l,2 := hl,2(x∗,y∗) =
ñ1(s)

p2 +
p2−3p+2

2p2 .

For showing that the choice of n∗1(s) and ñ∗1(s) is optimal, we use exactly the same
arguments as in the proof of Proposition 1 and confirm that other choices of ñ1(s)
and n1(s) cannot increase the value of hl,2 at x∗ and y∗ because function hl,2(x∗,y∗)
is optimal if as many mixed-carryover effects as possible are used. The maximum
number of mixed-carryover effects is ñ1(s) =

p−2
2 and this leads directly to n1(s) =

p
2 .

Function h̃l,2 simplifies for this choice of mixed-carryover effects to

h̃l∗,2 =
p2−2p

2p2 . (4)

In the last step, it is necessary to verify that starting with a different treatment than
the one used for the last sequence is optimal. This is confirmed by showing that the
value of hl,1(x∗,y∗) is smaller than the obtained optimum. Plugging the values x∗ and
y∗ into the function leads to

hl,1(x∗,y∗) =
ñ1(s)

p2 +
(p−3)3

2p3 .

Comparing hl,2(x∗,y∗) to Equation (4) leads to the conclusion that hl,2(x∗,y∗) is larger
than hl,1(x∗,y∗) if

7p2 +27−27p−2ñ1(s)p > 0.

This condition holds true for p > 2 for all possible choices of ñ1(s) = 1, ..., p
2 . There-

fore, for a design with an even number of periods, it is optimal to start with R and
end with T or vice versa and to use

n1(s) =
p
2

and ñ1(s) =
p−2

2

as the number of appearances of treatment T and the number of mixed-carryovers,
respectively. ut



 



 


