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Abstract

An elastic shell on the micro-scale filled with a suitable passive or active phase is what we
refer to as a microcapsule. This work covers several classes of microcapsules spanning from
static elastic shells under hydrostatic loads to animal cells made from a dynamic cytoskeleton
interacting with a surrounding elastic shell. Both are microcapsules, the former enclosing a
passive phase and the latter enclosing an active phase. Whereas passive microcapsules are
important from a technical point of view, active microcapsules are predominantly relevant in
biology. Both branches merge in the experimental realization of biological systems for which
specially designed elastic containers are required. Deformations of microcapsules induced
by constant axisymmetric loads are well described by classical continuum theories. These
allow for reverse-engineering techniques, i.e., inferring information on the elastic material
properties from shape profiles. Due to chemical activity, animal cells are, however, far from
equilibrium and symmetry. Thus, they require refined models that account for the physical
dynamics of the cytoskeleton, whose activity originates in chemical reactions. Enduring
energy consumption results in a perpetually changing filament structure, where filaments
grow stochastically and exert polymerization forces onto the shell. In turn, the shell exerts
elastic forces onto filaments slowing down filament growth. This complex interplay between
filament dynamics and shape changes of the elastic shell exhibits collective phenomena.
In the first part of this work, we employ elastic shell theory to investigate elastic shells

filled with a fluid phase. We focus on rotationally symmetric shapes in three dimensions
and calculate these from elastic shape equations in static force equilibrium. To determine
the shell’s elastic moduli from pendant capsule images we introduce an efficient open source
software and demonstrate its applicability by numerous examples. As an extension, we
introduce a novel shape analysis concerning elastic capsules adsorbed to planar liquid-liquid
interfaces. Together, these two methods form a comprehensive framework to quantify the
elastic properties of materials from experimental setups by non-contact techniques.

In the second part of this work, we employ a discrete elastic shell model without symmetry
requirements in two dimensions. Dynamic microtubules placed inside the shell stochastically
apply deformations to the shell. Investigating this non-equilibrium model with regard to its
dynamic properties, we find that microtubules synchronize when interacting via an elastic
shell, as found in an animal cell. Implementing regulatory mechanisms, we rationalize
experimental observations concerning cell polarization, i.e., we find persistently polarized
shapes by employing mutual exclusive feedback mechanisms with membrane associated
proteins, which allow for breaking the spherical symmetry as it is necessary for cells that
migrate or swim.





Zusammenfassung

Eine elastische Schale auf der Mikroskala, die mit einer geeigneten passiven oder aktiven
Phase gefüllt ist, bezeichnen wir als Mikrokapsel. Diese Arbeit behandelt mehrere Klassen
von Mikrokapseln, die von statischen elastischen Schalen unter hydrostatischer Belastung
bis zu tierischen Zellen, in welchen ein dynamisches Zytoskelett mit einer umgebenden
elastischen Schale interagiert, reichen. Während passive Mikrokapseln (erstere) wichtig im
Hinblick auf technische Anwendungen sind, haben aktive Mikrokapseln (letztere) hauptsäch-
lich biologische Relevanz. Beide Zweige verschmelzen in der experimentellen Realisierung
biologischer Systeme, für die spezielle elastische Kontainer erforderlich sind. Verformungen
von Mikrokapseln, die durch konstante achsensymmetrische Belastungen induziert werden,
sind durch klassische Kontinuums-Theorien gut beschrieben. Diese ermöglichen Reverse-
Engineering-Techniken, das heißt Rückschlüsse auf die elastischen Materialeigenschaften
aus Formprofilen zu ziehen. Aufgrund der chemischen Aktivität sind tierische Zellen jedoch
weit entfernt von Gleichgewicht und Symmetrie. So erfordern sie verfeinerte Modelle, in
denen die physikalische Dynamik des Zytoskeletts, dessen Aktivität in chemischen Reak-
tionen entsteht, berücksichtigt wird. Der permanente Energieverbrauch führt zu einer sich
ständig verändernden Filamentstruktur, bei der die Filamente stochastisch wachsen und
Polymerisationskräfte auf die Schale ausüben. Die Schale wiederum übt elastische Kräfte
auf die Filamente aus und verlangsamt so das Filamentwachstum. Dieses komplexe Zusam-
menspiel von Filamentdynamik und Formänderungen der elastischen Schale bringt kollektive
Phänomene hervor.

Im ersten Teil dieser Arbeit untersuchen wir theoretisch elastische Schalen, die mit einer
flüssigen Phase gefüllt sind. Wir konzentrieren uns auf rotationssymmetrische Formen
in drei Dimensionen und berechnen diese aus elastischen Formgleichungen im statischen
Kraftgleichgewicht. Um die Elastizitätsmoduln der Schale anhand von Bildern hängender
Kapseln zu bestimmen, stellen wir eine leistungsfähige Open-Source-Software vor und zeigen
anhand zahlreicher Beispiele ihre Anwendbarkeit. Als Erweiterung stellen wir eine neuar-
tige Formanalyse für elastische Kapseln vor, die an planaren Flüssig-Flüssig-Grenzflächen
adsorbiert sind. Zusammen bilden diese beiden Methoden einen umfassenden Rahmen zur
Quantifizierung der elastischen Eigenschaften von Werkstoffen aus Versuchsaufbauten durch
berührungslose Verfahren.

Im zweiten Teil dieser Arbeit verwenden wir ein diskretes elastisches Schalenmodell ohne
Symmetrieanforderungen in zwei Dimensionen. Dynamische Mikrotubuli im Inneren der
Schale verformen diese stochastisch. Die Untersuchung dieses Nichtgleichgewichtsmodells
hinsichtlich seiner dynamischen Eigenschaften zeigt, dass sich Mikrotubuli bei der Inter-
aktion über eine elastische Hülle synchronisieren. Indem wir regulatorische Mechanismen
implementieren, machen wir experimentelle Beobachtungen zur Zellpolarisation plausibel,
d. h. wir finden persistent polarisierte Formen durch den Einsatz von sich gegenseitig
ausschließenden Rückkopplungsmechanismen mit Membran-assoziierten Proteinen, die es
erlauben die sphärische Symmetrie zu brechen, wie es für migrierende oder schwimmende
Zellen notwendig ist.
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1 Outline of the thesis

This thesis has been supervised by Prof. Jan Kierfeld at TU Dortmund University. A brief
outline of the content and important results is given below.
An elastic shell on the micro-scale filled with a suitable passive or active phase is what

we refer to as a microcapsule. In this thesis, we cover two classes of microcapsules, namely
elastic shells subjected to hydrostatic loads (surface tension and pressure) and elastic shells
subjected to dynamic forces exerted by active filament structures. The former is relevant in
several technical and clinical applications as will be pointed out in chapter 2, whereas the
latter serves as a model for animal cells, which are essential biological building blocks, as
will be pointed out in chapter 3.

Both classes of microcapsules have crucial properties in common. They provide isolated or
regulated compartments serving as cargo containers in case of simple shells and, additionally,
as chemical reactors in case of animal cells. The term ‘compartment’ is generally defined as
a closed spatial barrier of arbitrary shape. Compartments are necessary for the protection
of the cargo or providing the required chemical conditions for filament assembly. Shells or
membranes (thin shells) are flexible compartments and exhibit elastic properties, such that
they dynamically change their shape when they are subjected to forces as, for example,
shells in a cell colony. In addition to external forces exerted by neighboring cells or the
extracellular matrix, internal polymerization forces exerted by filament growth likewise induce
shape changes and give rise to feedback mechanisms. Due to the diversity of shape change
phenomena it is important to gain a deeper understanding of these flexible compartments.

As a part of this, we introduce the framework of classical elastic shell theory in chapter 2
and review elastic shape equations. These have been used successfully within reverse-
engineering techniques in the past [1]. In this thesis, we consider two different hydrostatic
setups, which are (i) a capsule adsorbed to a liquid-liquid interface (sec. 2.1) and (ii) a
capsule hanging from a capillary like in a pendant drop tensiometer (sec. 2.2). First, we
present a shape analysis for (i) employing the full set of elastic constants while including the
bending rigidity (sec. 2.1). We derive analytic expressions that allow us to determine the
surface Young modulus and the bending modulus of the shell material from experimentally
accessible quantities. We show that the surface Young modulus can be obtained by measuring
the height of the capsule or, alternatively, the contact angle at the three phase contact line.
The bending modulus can be obtained from the surface tension in the interface plane, the
thickness of the capsule layer, and the surface curvature in meridional direction at the three
phase contact line. The results concerning elastic capsules at liquid-liquid interfaces originate
from a collaboration with Dr. Horst-Holger Boltz and have, to the date of handing in this
thesis, been submitted as a regular article to the Soft Matter Journal [2]. The shape analysis
of adsorbed capsules is a novel approach that suffers so far from lacking experimental data.
However, soft elastic microcapsules are promising candidates for emulsification purposes,
because their adsorption energy is significantly increased compared to filled soft particles.
We apply the shape analysis to (ii) using a reduced set of elastic constants while neglecting
the bending rigidity (sec. 2.2). The bending rigidity is determined afterwards in a separate
wrinkle analysis. The shape analysis for capsules in pendant drop tensiometers (sec. 2.2)
is relevant in research and industry, which is why we give a detailed description of the
corresponding numerical analysis in sec. 2.3 and provide the source code [3] under a GPL
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1 Outline of the thesis

license [4]. The results concerning pendant elastic capsules originate from a collaboration
with the chair of physical chemistry of Prof. Heinz Rehage at TU Dortmund University and
have been published in the Journal of Colloid and Interface Science [5].
Apart from technical applications, we note that animal cells are the most complex

microcapsules found on earth. Their activity expresses in a huge number of proteins that
collaborate and, thus, form a collective. The result is a mechanical machine with abilities to
sense its environment and to perform different actions. Theoretical physics can only approach
this complexity by massive coarse-graining, i.e., focusing on the macroscopic properties. In
this thesis, we incrementally develop such an approach. We start by presenting cell mechanics
with an extensive introduction in chapter 3. Thereafter we cover the stochastic (and force-
dependent) dynamics of single microtubules in section 3.1. Employing this framework we
pursue mean-field approaches for a single microtubule interacting with an elastic barrier in
section 3.2 and multiple microtubules interacting collectively with a shared elastic barrier in
section 3.3. The latter has been investigated in [6] but we provide an improved version of this
theory. In section 3.4 we develop a two-dimensional stochastic simulation model and identify
the key features found in both theories from sections 3.2 and 3.3. Finally, in section 3.5, we
include the Rac-Rho feedback mechanism into the two-dimensional simulation model and
study polymerization phenomena. We find persistent cellular polarization employing two
coupled feedback mechanisms involving microtubule dynamics and the Rho GTPases Rac
and Rho. The results concerning cell mechanics have, to the date of handing in this thesis,
not been published.
In chapter 4 we summarize our results and give a perspective for possible future work.
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2 Deformation behavior of static elastic
shells under hydrostatic loads

“The willow which bends to the tempest, often escapes
better than the oak which resists it; and so in great
calamities, it sometimes happens that light and frivolous
spirits recover their elasticity and presence of mind sooner
than those of a loftier character.”

Albert Schweizer

Microcapsules, “hollow microparticles composed of a solid shell surrounding a core-
forming space available to permanently or temporarily entrapped substances” [7] (Fig. 2.1),
are both an important artificial construct used in many applications as well as
an essential model for biologically relevant elastic containers, such as cells, vesicles, virus
capsules and red blood cells [8–20]. The solid shell can be comprised of, amongst others,
colloidosomes [21, 22], copolymer vesicles [23], polymer multilayers [12], or bacteria [24], and
gives rise to elastic properties allowing for tunable deformability and mechanical adaptation.
The core-forming space can be made from liquids, polymer matrices (gel-like), or solid
cores [19], with the typical situation being a capsule enclosing a liquid phase. For all
applications, a characterization of the mechanical properties of the capsule shell, i.e., its
elastic moduli, is necessary [25, 26].

The exact composition of the solid shell and the core-forming space depends on the specific
application, where requirements might be of chemical, biological or mechanical
nature. Drugs are the main application of microcapsules nowadays [16]. In medicine,
microcapsules enable targeted release of incorporated drugs or cells under certain conditions
[12, 13]. Moreover, microcapsules are used for food [14], textiles [15], cosmetics [16], self-
healing materials [17, 18, 27] and powders [19].
Elasticity protects microcapsules from breakage or rupture by converting externally

applied forces into deformation energy. This enables microcapsules to resist high external
loads, pass through thin capillaries, and take diverse shapes. In order to ensure their
function, microcapsules need to be probed and manipulated. In vivo, red blood cells change
their shape to enter or pass thin blood vessels. This is a crucial ability and therefore
continuously tested by the human spleen [28], which picks out cells having lost their
elasticity due to aging. Microcapsules can also be stress-tested in vitro by exposing them
to hypertonic solutions [29] or shear stress [30], and have been successfully functionalized
with magnetic/gold particles allowing for positioning via applied magnetic fields, but also
for opening via laser irradiation [31].
Talking about elasticity, we need to differentiate between bending and stretching

elasticity. Depending on the material structure one of them may dominate or both
contribute equally. Vesicles exhibit a vast shape diversity that is purely determined by
bending energy and inextensibility [36]. A good example where both bending and stretching
contribute are red blood cells, which likewise exhibit a vast shape diversity [37]. Many
artificial microcapsules are made from polymeric materials that predominantly exhibit
stretching elasticity [5]. In general, assuming an isotropic and homogeneous material, the

3



2 Deformation behavior of static elastic shells under hydrostatic loads

Figure 2.1: Left: Droplet holding a spherical shape on 5 grains of hydrophobic sand, licensed
under CC BY-SA 4.0 [32] and provided via Creative Commons [33]. The surface tension prevents
wetting of the surface and maintains the cluster of water molecules. Right: Alginate-chitosan
microcapsules observed through a microscope, licensed under CC BY 3.0 [34] and provided via
Creative Commons [35].

dominating contribution can be identified from the ratio of stretching and bending energy
which is ∼ (R0/H)2 [38] for a spherical shell of size R0 and thickness H. Bending becomes
important if R0 and H are of the same order, i.e., R0 ∼ H. In the stretching dominated
regime we have, however, R0 � H, corresponding to a thin shell. In addition to bending
and stretching, shells that have been assembled at a liquid interface are also subject to
surface tension, which can be easily included in the elastic description [1]. The impact of
surface tension on the elastic properties is usually small for mm sized capsules, but becomes
increasingly important for smaller capsules of size ∼ 100 nm [39].

Many aspects of elastic shells have been discussed in literature, predominantly buckling
and wrinkling [40–47], where the elasticity regimes just discussed play an important role.
Apart from purely elastic features of the membrane, different constraints can be included
in the theoretical description, such as volume and area constraints. For red blood cells
or vesicles both constraints apply [37, 48]. In general, volume constraints apply for shells
with an impermeable membrane being filled with an incompressible liquid, whereas area
constraints apply for inextensible shells.
Elastic shell theory is not only applicable to microcapsules, it also applies on larger

scales, e.g., for domes or gas containers [49]. The microcapsules we are interested in can
be referred to the micro-scale ranging in size from µm to mm and are primarily relevant
in biology as well as in technical applications. In contrast to the larger macroscopic scales,
where objects compete with wind blasts or gas pressure, microcapsules on the micro-scale
have to deal with hydrostatic forces, thermal fluctuations, or force exertion by filaments.
Probing capsules on the micro-scale is thus more challenging from a technical point of
view. The visual microcapsule analysis techniques provided in this work give rise to
numerous possible applications in research departments and, being highly performant, these
techniques are also suitable for industrial usage.
In the following two sections, we study deformations of microcapsules in two dif-

ferent hydrostatic setups. At first, we study elastic microcapsules adsorbed to
liquid-liquid interfaces and introduce the elastic shape equations in their most general
form for shells of finite thickness. We explore the full range of capsule shapes and discuss
the limit of membranes, i.e., infinitesimal thin shells. In this limit, we also study pendant
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2.1 Elastic shells adsorbed to planar liquid-liquid interfaces

elastic capsules, which can be prepared in pendant drop tensiometers. We provide a
software, which determines the elastic constants from pendant capsule images by full shape
analyses and we show that this method is widely applicable to different materials. In
future work, the software for pendant capsules could be extended to capsules at liquid-liquid
interfaces. The required theoretical groundwork will be established in the following section.

2.1 Elastic shells adsorbed to planar liquid-liquid interfaces
We investigate the deformation of elastic microcapsules adsorbed at liquid-liquid interfaces
[2]. An initially spherical elastic capsule at a liquid-liquid interface undergoes equatorial
stretching due to the liquid-liquid surface tension and becomes lens- or discus-shaped,
depending on its bending rigidity. The resulting elastic capsule deformation is qualitatively
similar, but distinct from the deformation of a liquid droplet into a liquid lens at a liquid-
liquid interface. During capsule deformation at the liquid-liquid interface into a lens-like
shape the adsorption energy, which is proportional to the occupied interface area, increases
significantly leading to mechanical stabilization of the interface. This effect is useful in
applications regarding foams and emulsion stabilization and is stronger for hollow soft
elastic capsules as compared to filled soft particles. We discuss the deformed shapes of
droplets or capsules adsorbed at liquid-liquid interfaces for a whole range of different surface
elasticities: from droplets (only surface tension) leading to liquid lenses, to membrane covered
droplets (finite stretching modulus, zero bending modulus) leading to the elastic lenses, to
microcapsules (finite stretching and bending modulus) leading to rounded elastic lenses. We
calculate capsule shapes at liquid-liquid interfaces numerically using shape equations from
non-linear elastic shell theory. We also present theoretical results for the contact angle (or,
alternatively, the capsule height) and the meridional capsule curvature at the three phase
contact line, which provide methods to estimate elastic moduli from experimental shapes.

There have been various studies concerning hard particles at liquid-liquid interfaces [50, 51]
that might be extended to deformable particles in the future resulting in an additional
degree of tunability. Recently, the spreading of filled soft particles made from crosslinked gels
(microgel particles) at liquid-liquid interfaces has been investigated experimentally [52], by
molecular dynamics simulations [53, 54], and analytically [55]. When it comes to collective
phenomena, experiments with microgel particles with solid silica cores have revealed complex
packing phenomena at the interface [56]. Interfaces with soft shell hard particles also
exhibit special elasticity with constitutive relations that change upon hard core contact [57].
Soft particles at liquid-liquid interfaces are efficient emulsifiers because they stretch during
adsorption [55]. During deformation at the liquid-liquid interface a soft particle assumes a
lens-like shape [53, 54], which increases the occupied interface area and, thus, the adsorption
energy. Increased adsorption energies lead to a significantly more stable interface. In Ref.
[58] the adsorption stability of nanoparticles at liquid-liquid interfaces has been investigated
as a function of the particle shape, where it turns out that oblate shapes are most stable
due to the high area occupation within the interface. This effect is more pronounced the
softer the particle is. Therefore, hollow elastic capsules with a thin elastic shell, which are
much softer than filled particles, are very attractive candidates to improve emulsification
further. We will characterize their deformation behavior in detail in this section and show
that elastic capsules or droplets at a liquid-liquid interface take discus-like shapes due to
surface tension in the interface plane, which leads to an expansion of the capsule equator.
Whereas a liquid-liquid surface tension always exerts tensile equatorial tensions, there

are also realizations of contractile equatorial tensions, which are impossible at a liquid-
liquid interface. Positive (contractile) line tension leads to dumbbell shapes (equatorially
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2 Deformation behavior of static elastic shells under hydrostatic loads

constricted spheres), e.g., for two component vesicles with phase separation [59], or during
mitosis [60], where the tension is exerted by the contractile actin ring. The qualitative
difference between these two cases is sketched in Fig. 2.2D.
Our perspective on capsule deformation by (interfacial) equatorial tension is that this

constitutes an independent hydrostatic method of probing the deformation behavior and,
thus, the elastic properties of microcapsules. Understanding the deformation under known
external loads allows for elastometry, i.e, the determination of the elastic properties of
the capsule’s shell, which in turn can be used to infer information about the physics and
chemistry of the shell as, for example, its state of crosslinking. We will show that the overall
shape of the deformed capsule, i.e., the height or contact angle of the lens-like shape allows us
to infer information about the Young’s modulus of the capsule shell, whereas the meridional
curvature at the ‘tips’ of the lens, i.e., across the equator where the tensile tension acts
allows us to infer information about the bending modulus of the shell. Other elastometry
methods following the same philosophy are the study of deformations of pendant capsules
under volume changes to obtain elastic moduli as investigated in Refs. [1, 5, 61], the study
of the edge curvature of a buckled shapes to obtain the bending modulus [44], or the study
of shapes of osmotically buckled capsules to infer the osmotic pressure [62].
We study a model microcapsule under the influence of planar localized tensions, either

extensile or contractile. The resulting shapes are given by the interplay of external loads
and internal elasticity while accounting for possible additional constraints, such as volume
(incompressibility) and area (local or global inextensibility) constraints. We focus on the
volume constraint assuming incompressible liquids and impermeable shells as this is most
relevant for applications. If the shell material has been assembled at a liquid-liquid interface,
e.g., oil droplets in water, the interfacial surface tension gives an additional contribution
to the elastic properties. One has to distinguish between the simpler symmetric case,
where these interfacial surface tensions are equal in both liquid phases, which also leads to
symmetric shapes, and the more general asymmetric case.
The section is structured as follows: at first, we introduce our model of a microcapsule,

its solution using shape equations and the way how external loads and constraints are
incorporated. Then, we discuss the resulting shapes in three elasticity regimes: the droplet
regime, in which we only consider the effects of surface tension and incompressibility, the
membrane regime corresponding to a shell of vanishing thickness but with finite Young’s
modulus, and the shell regime, where we also account for bending moments and transverse
shear stress due to the shell’s finite thickness. We will provide complete numerical solutions
on the more general asymmetric case but, regarding analytic solutions, we focus on the
symmetric case. We then show how the maximal capsule curvature at the liquid-liquid
interface depends on the bending rigidity of the capsule shell and how this relation can be
employed to measure the capsule’s bending rigidity. Finally, we discuss the enhancement of
the adsorption energy for hollow capsules.

2.1.1 Model

In this section, we introduce an elastic description (Hookean shell) suitable for shells of
finite thickness as this is the most general case. Later on, we will simplify this description
to discuss the cases of vanishing thickness (Hookean membrane without bending rigidity)
and, ultimately, vanishing Young’s modulus (liquid droplet).
We consider an elastic shell of thickness H whose resting shape is a sphere with radius

R0. In the limit of a thin shell, H � R0, made from an isotropic and homogeneous elastic
material we can map the three-dimensional elasticity onto an effective two-dimensional
description with a two-dimensional Young’s modulus Y2D = Y3DH and a bending modulus
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2.1 Elastic shells adsorbed to planar liquid-liquid interfaces

Figure 2.2: A) Forces and torques acting on an infinitesimal membrane patch. Both forces and
torques are integrated over the thickness H of the material, which is assumed to be constant. B)
Shape profile given by the shape equations. The shape profile generates a surface of revolution
describing a three-dimensional axisymmetric object. The curvatures κφ and κs determine the
local bending energy. C) Stretching of an infinitesimal membrane patch. The strains λφ and λs
determine the local stretching energy. D) Two classes of deformations. Positive interface loads
σ > 0 induce equatorial expansion, whereas negative interface loads σ < 0 induce equatorial
compression and, thus, indentation. Assuming an incompressible liquid inside the capsule leads
to volume conservation, which is controlled by a hydrostatic pressure difference p0 = pin − pout.

given by [63]

EB = Y2DH
2

12(1− ν2
2D)

, (2.1)

where ν2D is the two-dimensional Poisson ratio taking values −1 ≤ ν2D ≤ 1. Choosing R0 as
unit of length and Y2D as unit of tension, the dimensionless bending modulus is given by

ẼB = EB
Y2DR2

0
= 1
γFvK

= H2

R2
0
, (2.2)

where γFvK is the Föppl-von-Kármán number. Note that we use the same units throughout
the paper, i.e., we measure tensions in units of Y2D and lengths in units of R0. Using these
natural units we transform quantities x to their dimensionless counterparts x̃. The last
equality in (2.2) holds for a thin shell made from an isotropic and homogeneous elastic
material according to eq. (2.1). By fixing Poisson’s ratio ν2D = 1/2 (corresponding to a
linearly incompressible bulk material) the capsule’s elastic response to external forces is solely
determined by the dimensionless bending modulus ẼB. Typical values for microcapsules range
within ẼB = 10−10 . . . 10−1 assuming EB = 10−16 . . . 10−14 Nm, Y2D = 10−2 . . . 100 N/m and
R0 = 10−6 . . . 10−3 m [5]. Finally, we note that there are applications in which the relation
(2.1) and its underlying assumption of a three-dimensional homogeneous elastic material
are not applicable; this only invalidates (2.1) but the Hookean elasticity and constitutive
relations can still be formulated by a two-dimensional Young’s modulus and a dimensionless
bending modulus.
We consider the elastic shell as a surface of revolution around the z-axis. The shell

contour is given in cylindrical coordinates (r(s0), z(s0)), where s0 is the arc length of the
undeformed shape and r is the distance from the z-axis (Fig. 2.2B,D). The total arc length
of the contour is L0, i.e., 0 ≤ s ≤ L0. The arc length element of the deformed shape
derives as ds =

√
r′(s0)2 + z′(s0)2 ds0, and the unit tangent vector es = (cosψ, sinψ),

where ψ is the arc between es and the r-axis, gives the orientation of a capsule patch
relative to the axis of symmetry. From es we construct the surface normal vector n =
(sinψ,− cosψ). The undeformed reference shape shall be given by a circle with rest radius
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2 Deformation behavior of static elastic shells under hydrostatic loads

R0, i.e., (R0 sin(πs0/L0), z0 +R0(1− cos(πs0/L0))), which generates (by revolution around
the z-axis) a sphere with radius R0 whose lower apex is located at z0. With apex we refer
to the intersection point of capsule and axis of symmetry. Changing only z0 corresponds to
a translation of the center of mass, which is initially located at the height of the interface
(z0 = −R0).

The effect of external loads will be a deformation, which we quantify in terms of strains
that we can use together with an energy functional to compute the capsule’s elastic response,
i.e., the restoring stresses. Stretching deformations with respect to the undeformed spherical
shape can be expressed in terms of the stretches (Fig. 2.2C) λs = ds/ds0 and λφ = r/r0,
and bending deformations in terms of the principal curvatures (Fig. 2.2B) κs = dψ/ds and
κφ = sinψ/r, which derive from the second fundamental form of a surface of revolution [64].
We consider stretches and curvatures relative to the undeformed shape, i.e., use the strains
es,φ = λs,φ − 1 and bending strains Ks,φ = λs,φκs,φ − κs0,φ0 . We consider hyperelastic
materials, whose elastic energy can be expressed in terms of a local energy density, and use
a Hookean surface energy density [63]

w(s0)dA0 =
(

Y2D
2(1− ν2

2D)
(e2
s + 2ν2Deseφ + e2

φ)

+ EB
2 (K2

s + 2ν2DKsKφ +K2
φ) + λsλφγ

)
dA0.

(2.3)

The three terms in the energy density correspond to the three contributions from stretching,
from bending, and from the fluid interface. We explicitly state the undeformed surface
element dA0 to highlight the fact that this energy functional operates on the undeformed
surface which is important for computing stresses from it. We note that, apart from being
arguably the most simple though non-trivial choice, this energy functional (with ν2D = 1/2)
also correctly describes the low-strain behavior of more sophisticated energy functionals,
e.g., of the Mooney-Rivlin type [63]. For the reference shape, we use w = γ corresponding to
the situation that the two-dimensional capsule shell is initially formed at a liquid interface
with surface tension γ (and, therefore, with a rest shape that is given by the Laplace-Young
equation).
Taking derivatives of w with respect to the strains es,φ gives the tensions τs,φ; taking

derivatives with respect to the curvatures Ks,φ gives the bending moments ms,φ (see Fig.
2.2A). This gives the corresponding constitutive relations of the capsule material,

τs,φ = 1
λφ,s

∂w

∂es,φ
= Y2D

1− ν2
2D

1
λφ,s

(es,φ + ν2Deφ,s) + γ,

ms,φ = 1
λφ,s

∂w

∂Ks,φ
= EB
λφ,s

(Ks,φ + ν2DKφ,s),
(2.4)

which are nonlinear since the Cauchy stresses are defined with respect to the deformed
arc length, but the surface energy density measures lengths in terms of the undeformed
arc length. Note that the surface tension γ gives a constant and isotropic contribution to
the tensions τs and τφ because the shell has been formed at a liquid interface with surface
tension γ.

One important class of systems where the Hookean elasticity eq. (2.3) is not applicable are
capsules made of a membrane that is (virtually) inextensible, e.g., vesicles and (to a lesser
extent) red blood cells. There are strategies [65] for implementing this local inextensibility
constraint (by demanding λφλs ≡ 1) in a similar shape equation based setup as we will
present in the next section but we refrain from covering these materials here and focus on
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2.1 Elastic shells adsorbed to planar liquid-liquid interfaces
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Figure 2.3: A) Shape evolutions for the elastic lens (left) and the elastic shell (right). The
upper two shape evolutions show the symmetric case, where γA = γB. Here, in addition to
discus shapes occurring at liquid-liquid interfaces, dumbbell shapes resulting from a contractile
equatorial tension are shown, but these are unstable in the asymmetric case. In the lower two
shape evolutions the surface tension γA in the lower half space is increased step-wise, which would
ultimately lead to desorption into phase B. B) Sketch of the deformation following adsorption to
an interface (here between liquid phases A and B) for a liquid droplet (upper row), membrane
coated droplet (mid row), and a shell coated droplet or microcapsule (lower row). A liquid
droplet deforms into a lenticular shape. Such a liquid lens consists of two spherical caps with a
kink at the interface, where surface tensions are balanced. Adsorption of a thin spherical elastic
capsule to a planar liquid-liquid interface yields an elastic lens, where the kink at the interface
is still preserved but shapes are less spherical. Finally, adsorption of an elastic shell leads to
rounded edges due to a finite thickness of the material. Tangential stresses τs, the liquid surface
tensions σ acting along the liquid interface and, for shells, the discontinuity ∆q in the normal
transverse shear force density q have to balance each other at the contact line.

microcapsules, whose membrane is a thin shell of a homogeneous isotropic three-dimensional
bulk material. From a technical perspective, the treatment of capsules with conserved area
is also more demanding as the undeformed shape cannot be a sphere, because the combined
volume and area constraints only allow for non-spherical rest shapes in general.

2.1.2 Shape equations

The equilibrium shape of an infinitesimal thin shell is described by local stress equilibrium in
(i) tangential and (ii) normal direction. Elastic shells of finite thickness additionally require
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2 Deformation behavior of static elastic shells under hydrostatic loads

(iii) torque (bending moment) balance. This yields a set of three balance conditions [44, 63]

(i) 0 = −cosψ
r

τφ + 1
r

d(rτs)
ds − κsq − ps,

(ii) 0 = −p+ κφτφ + κsτs + 1
r

d(rq)
ds ,

(iii) 0 = cosψ
r

mφ −
1
r

d(rms)
ds − q,

(2.5)

which have to be satisfied locally for each s0 ∈ [0, L0] along the shape profile. Here, q is
the transverse shear stress; it describes a normal force density that arises from shearing a
membrane patch as shown in Fig. 2.2A. It is important to note that q is of order O(H) since
it acts on the cross-section of the shell, and is, thus, only needed for shells of finite thickness
or, in other word, for shells with bending rigidity. For Hookean membranes without bending
rigidity, we have q = 0 and ms = mφ = 0, i.e., all terms in the moment equilibrium (iii)
vanish and only the two stress equilibria are needed. For a liquid droplet the tensions have
no elastic contribution and τs = τφ = γ = const, such that the stress equilibria further
simplify.

In combination with the constitutive laws (2.4) and three differential equations following
from our cylindrical parametrization the stress and moment equilibrium (2.5) lead to the
full system of shape equations for a Hookean shell (see Fig. 2.2A-C)

r′(s0)=λs cosψ, z′(s0)=λs sinψ, ψ′(s0)=λsκs,

τ ′s(s0) = λs

(
τφ − τs
r

cosψ + κsq + ps

)
,

m′s(s0) = λs

(
mφ −ms

r
cosψ − q

)
,

q′(s0) = λs

(
−κsτs − κφτφ −

q

r
cosψ + p

)
,

(2.6)

where p = p0 +pn is the total normal pressure and ps is the shear-pressure. Since we consider
a closed microcapsule encapsulating an incompressible liquid phase, p will have a hydrostatic
contribution, p0, that has to be fixed by a volume constraint, see below. External forces
enter via the normal and shear-pressure as also described below. The first three equations
are geometric relations. The fourth and sixth equations in (2.6) describe the tangential
and normal force equilibrium, respectively. The fifth equation is the equilibrium of bending
moments. The shape equations (2.6) are closed by eliminating λs and τφ by using the two
constitutive relations for stresses and strains from eq. (2.4), using the geometric relation
κφ = sinψ/r, and eliminating and κs and mφ by using the two constitutive relations for
bending moments and bending strains from eq. (2.4). This procedure is explained in detail
in Ref. [44].
The shape equations (2.6) introduced above describe a Hookean shell. The Hookean

membrane, but also the liquid droplet, derive from (2.6) as limit cases. The shell becomes
a membrane in the limit H ≈ 0, i.e., EB ≈ 0, which also implies ms = 0 and q = 0. The
additional limit Y2D ≈ 0 gives a liquid droplet, where the tangential stresses τs = τφ = γ
can be eliminated from (2.6), yielding the Laplace-Young equation.
The system (2.6) is completed by specifying boundary conditions at the apices. As the

capsule is closed and kinks are absent, we have r(0) = r(L0) = 0 and ψ(0) = π − ψ(L0) = 0.
Absence of point loads at the apices requires q(0) = q(L0) = 0 (as will be shown below, see
eq. (2.1.4)). The boundary conditions to the remaining quantities are a priori unknown and
fixed by a shooting method, during which we shoot from both apices (this is necessary as
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2.1 Elastic shells adsorbed to planar liquid-liquid interfaces

the system becomes singular for r ≈ 0) towards the liquid-liquid interface. For the Hookean
shell we need to fix the values of three remaining shooting parameters z, τs, ms at each
apex and, thus, require six additional matching conditions at the interface. For the Hookean
membrane we have ms = 0 and only need to fix two shooting parameters z, τs, at each apex
and, thus, need four additional matching conditions at the interface.
We translate the z-coordinate such that the liquid-liquid interface is located at z = 0.

The capsule then consists of two solution branches z > 0 and z < 0, for which we will use
superscripts + and −, respectively. We also introduce s0 = ` as the arc length at which the
liquid-liquid interface is located. The first obvious matching conditions are z+(`) = z−(`) = 0
(which fix the shooting parameters z(0) and z(L0)) and r+(`) = r−(`) ≡ r(`) from requiring a
closed capsule. For a shell with bending rigidity we also have the requirement ψ+(`) = ψ−(`)
because a kink in the capsule shell costs an infinite bending energy. Membranes and droplets,
however, will exhibit such kinks and ψ+(`) and ψ−(`) can freely adjust.
For a shell, these are four matching conditions such that two matching conditions are

missing. This will be a Young-Dupré equation for the force equilibrium at the contact
line between capsule and liquid interface and a corresponding moment equilibrium. For
a membrane, these are three matching conditions, and one matching condition is missing,
which will be a Young-Dupré equation. Moreover, we will need a condition to determine the
arc length value s0 = `, where the interface is located. In the symmetric case of identical
liquids outside the capsule, we simply have ` = L0/2 by symmetry, whereas ` has to be
determined separately by energy minimization in the general asymmetric case. The missing
conditions also depend on the external load by the surface tension of the liquid-liquid
interface and will be discussed below in Sec. 2.1.4 in detail.

2.1.3 External loads

Pressure

Assuming an incompressible liquid within the capsule and an impermeable membrane leads
to conservation of the capsule volume

V =
∫
πr2dz =

∫ L0

0
πr2λs sinψds0 = V0 ≡

4π
3 R3

0.

The volume constraint V = V0 = const has to be satisfied by adjusting the hydrostatic
pressure p0, which serves as a Lagrange parameter. In practice, the volume constraint is
realized by including it in the shooting method, i.e., by using p0 as shooting parameter to
obtain a given volume V0 at the end of the integration along the contour. It is important to
note that we will always assume that both liquid phases outside the capsule have the same
pressure and, thus, have a planar interface.
If p0 is not interpreted as Lagrange parameter we have actual pressure control. Then

the pressure p0 is prescribed and determines the capsule volume V = V (p0). Solutions for
pressurized capsules are numerically simpler to obtain and possibly exhibit more diverse
shapes due to the lacking volume constraint.

Another possibility, which is intermediate between pure pressure and pure volume control,
is osmotic pressure control [62]. Then the osmotic pressure inside the capsule becomes a
function of the capsule volume p0 = p0(V ), the shape of which depends on the osmolyte
concentration. For high osmolyte concentrations inside the capsule tends to assume an
osmotically preferred volume and the situation resembles volume control. At low osmolyte
concentrations the pressure is almost fixed over a wide range of volumes. We restrict
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2 Deformation behavior of static elastic shells under hydrostatic loads

ourselves here to capsules with a constant volume in which the hydrostatic pressure adapts
accordingly.

Surface tensions

The most important effect here is capsule or droplet deformation by the surface tension
between the two liquid interfaces. The frame of reference is chosen such that the planar
interface of the two immiscible liquid phases, A and B (Fig. 2.3), is located at z = 0. As
there is also a surface tension contribution to the elastic energy of the capsule shell, see
eq. (2.3), and this contribution will depend in general on whether the capsule is in contact
with liquid phase A or B, we have to consider three surface tensions γA (A-capsule), γB
(B-capsule), and σ (A-B). We will refer to the latter one as the interface load as the surface
tension σ is responsible for stretching the capsule. In this setup (Fig. 2.3), γ ≡ γ(s0) (see eq.
(2.3)) is a function of the arc length s0, i.e.,

γ(s0) =
{
γA z(s0) < 0
γB z(s0) > 0.

As z(s0) will be a monotonous function in the regime we are interested in we can simplify
this to

γ(s0) =
{
γA s0 < `

γB s0 > `.

with z(`) = 0. Since these surface tensions arise from capsule-liquid interfaces (A-C and
B-C), they can be directly included in the elastic energy functional (2.3) and also transfer
to the constituting laws (2.4). The symmetric case corresponds to γA = γB.
In contrast, external forces arise from the liquid-liquid interface (A-B) and, thus, are

handled as point loads acting on the contour, though actually acting on a great circle when
rotating the shape profile. In practice, this means that we employ adequate boundary
conditions or matching conditions for the forces τs and q to include these point loads.
Therefore, we decompose the external forces in normal and tangential contributions, which
are localized to a specific arc length ` by employing a delta distribution. The liquid-liquid
AB-interface induces a point force density (see Fig. 2.3B)

fσ(s0) = σδ(z)er = σδ(s0 − `)er

leading to normal and tangential pressure contributions

pn = fσ · n = σδ(s0 − `) sinψ,
ps = −fσ · es = −σδ(s0 − `) cosψ.

The total normal pressure is then given by p = p0 +pn, where p0 gives a constant contribution
acting as a Lagrange parameter on the capsule volume as described above. Note that for
elastic shells in the symmetric case, γA = γB, we have ps = 0 due to ψ(`) = π/2 which is
required by reflection symmetry with respect to the liquid-liquid interface at z = 0.

Gravity

If the capsule desorbs from the interface, external forces vanish and the capsule will take a
spherical shape as this is the stress-free ground state. Re-adsorption to the interface will
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2.1 Elastic shells adsorbed to planar liquid-liquid interfaces

only take place randomly if the capsule can make contact with the interface again, e.g.,
due to Brownian motion or by gravitational forces, which arise in the presence of density
differences.
Interfacial adsorption of a droplet or capsule requires three immiscible phases of similar

densities ρA, ρB, and ρC. In this section we only discuss the artificial and thereby most
simple case ρA = ρB = ρC, but different densities between exterior and interior liquid can be
easily included in the theoretical description by including them into the hydrostatic pressure,
p0 → p0 −∆ρg(z − z0), where p0 is the pressure at the lower apex, g is the gravitational
acceleration, and ∆ρ is the density difference inner and outer phase. Note that the latter
has to be defined piecewise with respect to the two different outer phases.

2.1.4 Matching conditions at the interface

At the liquid-liquid interface at z = 0 and s0 = ` the shape equations (2.6) have to be
complemented by matching conditions. We argued above that six matching conditions
are needed for a Hookean shell, whose shape is obtained by the full set (2.6) of six shape
equations, whereas only four matching conditions are needed for a Hookean membrane,
which is described by four shape equations (ms = 0 and q = 0 in eqs. (2.6)). Moreover, we
need to determine the parameter ` itself by energy minimization in the general asymmetric
case. For the symmetric case γA = γB we have ` = L0/2 by symmetry.
We already mentioned the obvious matching conditions

z+(`) = z−(`) = 0 and r+(`) = r−(`) ≡ r(`)

from requiring a closed capsule. The two matching conditions for z fix the shooting
parameters z(0) and z(L0). From continuity of r also continuity of λφ = r/r0 immediately
follows. For a shell with bending rigidity we also have the requirement

ψ+(`) = ψ−(`) (2.7)

because a kink in the capsule shell costs an infinite bending energy. Membranes and droplets,
however, will exhibit such kinks and ψ+(`) and ψ−(`) can freely adjust. From continuity of
r and ψ, also the continuity of the curvature κφ = sinψ/r follows.
All remaining matching conditions can be derived based on the variational calculus

introduced in Ref. [44] by minimizing the total free energy G =
∫
w(s0)dA0 − p0V − σπr2(`)

or (using eq. (2.1.3))

G =
∫ `

0
ds0

(
2πr0w

− − p0π(r−)2λ−s sinψ−
)

+
∫ L0

`
ds0

(
2πr0w

+ − p0π(r+)2λ+
s sinψ+

)
− σπr(`)2, (2.8)

where the energy −σπr2(`) is the potential for the point force fσ from eq. (2.1.3). The
free energy G has to be extremized with respect to the function r±(s0) and ψ±(s0) as
well as with respect to the location ` of the liquid-liquid interface. The total variations
δr ≡ (r+ δr)(`+ δ`)− r(`) = δr(`) + r′(`)δ` at the variable interface position ` have to fulfill
the continuity conditions δr− = δr+ and, for a shell, δψ− = δψ+. Each continuity condition
entails a corresponding Weierstrass-Erdmann condition, and because of the variable interface
position we obtain an additional transversality condition.
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2 Deformation behavior of static elastic shells under hydrostatic loads

The variation of G gives the additional algebraic relation [44]

q cosψ + τs sinψ = 1
2p0r,

for s0 6= `, which corresponds to a first integral of the shape equations and can replace the
shape equation for q in (2.6). Equation (2.1.4) also implies that q = 0 at the apices where
r = 0 and ψ = 0 or π, which justifies the boundary conditions q(0) = q(L0) = 0. At the
interface at s0 = ` the right hand side of eq. (2.1.4) is continuous such that we also obtain a
continuity condition (

q+ cosψ+ + τ+
s sinψ+

) ∣∣
`

=
(
q− cosψ− + τ−s sinψ−

) ∣∣
`

= 1
2p0r(`)

(2.9)

The same condition can be derived from the following conserved quantity U(s) = const,
which has been found in Ref. [66, 67],

U = 2πr(q cosψ + τs sinψ)

− 2π
∫ s

0
ds̃((p0 + pn) cosψ + ps sinψ)

= 2πr(q cosψ + τs sinψ)− πp0r
2,

where we used eq. (2.1.3) for pn and ps to obtain the last equality. Because of U(0) = 0 at
the apex, we have U(s) = const = 0 resulting again in the continuity condition (2.9). From
the force contributions in eq. (2.1.4) it is also apparent that the continuity condition (2.9)
describes a force equilibrium in the z-direction at the contact line between capsule and liquid
interface and is, thus, a Young-Dupré equation (see also Fig. 2.3B). The liquid interface is
not exerting forces in the z-direction and, thus, σ does not enter eq. (2.9); discontinuities
in the normal shear force density q and in the tangential force density τs have to cancel in
z-direction.
Equating all boundary terms ∝ δr+ = δr− in the variation δG to zero we obtain the

Weierstrass-Erdmann condition(
q+ sinψ+ − τ+

s cosψ+
) ∣∣

`

=
(
q− sinψ− − τ−s cosψ−

) ∣∣
`

+ σ,
(2.10)

which describes the force equilibrium in the radial direction at the contact line between
capsule and liquid interface and is, thus, a second Young-Dupré equation (see Fig. 2.3B).
Discontinuities in the normal shear force density q and in the tangential force density τs in
r-direction have to cancel with the tension σ, which also acts in r-direction.
Likewise, equating boundary terms ∝ δψ+ = δψ− in δG to zero, we obtain another

Weierstrass-Erdmann condition
m+
s (`) = m−s (`), (2.11)

which holds for shells and describes the moment equilibrium at the contact line. Continuity
of ms and κφ (see above) also entails continuity of κs and mφ and, thus, of the entire bending
energy density.
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2.1 Elastic shells adsorbed to planar liquid-liquid interfaces

Figure 2.4: Illustration of the multiple shooting method applied to numerically solve the shape
equations. The r-z-plane is separated by a liquid-liquid interface at z = 0 arising from two
different liquid phases A and B residing in the lower and upper half space, respectively. The
lower and upper branches are integrated from the apices on the z-axis to the interface on the
r-axis, where we employ matching conditions corresponding to the different limit cases (Hookean
membrane and Hookean shell) as discussed in this section.

Equating all boundary terms ∝ δ` in the variation δG to zero, we obtain a transversality
condition (

w+ − λ+
s λ

+
φ τ

+
s

) ∣∣∣
`

=
(
w− − λ−s λ−φ τ

−
s

) ∣∣∣
`
.

Because the bending energy part of w is continuous, it follows that the discontinuity in
w across the interface is exactly due to the discontinuity in γ, which jumps from γA for
z < 0 to γB for z > 0. This means, in turn, that the stretching elasticity part of w is also
continuous. Because λφ is continuous (see above), also λs and, thus, the elastic parts of the
tensions τs − γ and τφ − γ have to be continuous across the interface then.

2.1.5 Shooting method

In our numerical treatment, we will not employ the transversality condition in the form
(2.1.4) but prefer to numerically minimize the total energy with respect to `. Changing the
interface arc length ` for this minimization requires a re-meshing in the shooting method
(Fig. 2.4), which we will discuss here briefly. To achieve numerical stability we subdivide
each solution branch in M segments. At each intermediate point we gain six shooting
parameters and six continuity conditions (for the general shell case). The (−)-branch is
integrated counter-clockwise over the interval [0, `] starting at s0 = 0 and ending at s0 = `,
the (+)-branch is integrated clockwise over [`, L0] starting at s0 = L0 and ending at s0 = `.
Both branches thus start at the axis of rotation and match at the interface. When the
interface arc length ` is changed, the segmentation of the shape has to be adapted, such that
the (−)-branch is integrated over the intervals [k`/M, (k + 1)`/M ] where k = 0, . . . ,M − 1,
and the (+)-branch is integrated over the intervals [L0−(k+1)(L0−`)/M,L0−k(L0−`)/M ].
During the minimization (2.8) we iteratively change the segmentation of the shape, i.e.,
change ` until the total free energy G reaches its minimum.
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2 Deformation behavior of static elastic shells under hydrostatic loads

2.1.6 Shell, membrane and droplet regime

In the following, we discuss numerical solutions of the shape equations for the general
asymmetric case for three different types of interface elasticity: liquid lenses, lens-shaped
capsules with a Hookean membrane (elastic lenses), and capsules with Hookean shell elasticity
as shown in Fig. 2.3A. We specify shape equations and the matching conditions for the three
different regimes.

Liquid lens

The liquid lens is the simplest case discussed in this section, as it is obtained in the absence
of any elastic tension, Y2D ≈ 0 (τs = τφ = γ) and EB ≈ 0 (q = 0 and ms = mφ = 0). For
this liquid surface there is no reference shape and surface tension and incompressibility
determine the droplet shape. From the local force balance condition p0dV = σdA, we obtain
the Laplace-Young equation,

p0 = γ(κs + κφ), (2.12)

which can be recasted as a set of three shape equations

r
′(s0) = cosψ, z

′(s0) = sinψ,
ψ
′(s0) = p0/γ − sinψ/r,

(2.13)

using cylindrical parametrization. This set of equations also directly derives from (2.6)
by employing the limits given above. The resulting shapes have constant mean curvature
according to the Laplace equation (2.12) (or according to κs + κφ = ψ

′ + sinψ/r = const
in (2.13)), which only allows lens shapes that are composed of two spherical caps with the
same radius R.

For the numerical determination of the shape of the liquid lens we shoot from both apices
with boundary conditions r(0) = r(L0) = 0 and ψ(0) = π − ψ(L0) = 0. We will determine
two shooting parameters z(0) and z(L0) such that z+(`) = z−(`) = 0. Because we have
three shape equations (2.12), there are no free shooting parameters left. There are, however,
three matching conditions at the AB-interface at s0 = `: the Young-Dupré equations (2.9)
and (2.10) for force equilibrium in z- and r-direction, respectively, which become (q = 0,
τ−s = τ−φ = γA, τ+

s = τ+
φ = γB)

f1 = γA cosψ−(`)− γB cosψ+(`)− σ = 0
f2 = γA sinψ−(`)− γB sinψ+(`) = 0

(2.14)

and the continuity condition r−(`) = r+(`). For the liquid lens, there is no reference shape,
and these matching conditions have to be used to determine the arc lengths L0 − ` and
` of the upper and lower part. We thus have three matching conditions for two unknown
parameters ` and L0 (the reason is the existence of the first integral U [44, 67]). Numerically,
we find that working with such an over-determined system of matching conditions leads to
faster convergence of the shooting method. We note that liquid lenses exhibit a kink at the
interface, i.e., there is no continuity of ψ at the AB-interface. We also note that, because
there is no elastic energy or reference shape, L0 is not fixed beforehand by the reference
shape and ` does not have to be determined from energy minimization as will be the case
for Hookean membranes and shells.
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2.1 Elastic shells adsorbed to planar liquid-liquid interfaces

Elastic lens

In case of finite stretching resistance Y2D, but vanishing bending rigidity EB ≈ 0, i.e.,
vanishing shell thickness H ≈ 0, we have an elastic lens with Hookean membrane elasticity
with vanishing bending moments ms = mφ = 0 and vanishing transverse shear stress q = 0.
The system (2.6) reduces to four coupled nonlinear differential equations

r
′(s0) = λs cosψ, z

′(s0) = λs sinψ,
ψ
′(s0) = λs(p− κφτφ)/τs,

τ
′
s(s0) = λs

(
τφ − τs
r

cosψ + ps

)
.

(2.15)

Shapes are still similar to liquid lenses, and there is a kink at the AB-interface because there
is no continuity of ψ.
For the numerical determination of the elastic lens shape we shoot from both apices

with boundary conditions r(0) = r(L0) = 0 and ψ(0) = π − ψ(L0) = 0. The two shooting
parameters z(0) and z(L0) are determined from z+(`) = z−(`) = 0. Because we have four
shape equations (2.15), there are two free shooting parameters τs(0) and τs(L0) left, which
have to be determined from matching conditions at the AB-interface at s0 = `.

As for a liquid lens, there are three matching conditions: the Young-Dupré equations (2.9)
and (2.10) for force equilibrium in z- and r-direction, respectively, which become (q = 0)

f1 = τ−s (`) cosψ−(`)− τ+
s (`) cosψ+(`)− σ = 0

f2 = τ−s (`) sinψ−(`)− τ+
s (`) sinψ+(`) = 0,

(2.16)

and the continuity condition r−(`) = r+(`). These three matching conditions are used to
determine the two shooting parameters τs(0) and τs(L0). Again, we have an over-determined
system of matching conditions (due to the first integral U) but using all three conditions
leads to faster convergence of the shooting method. Finally, the arc length position ` of the
AB-interface is determined by total energy minimization.

In the symmetric case, where γA = γB and ψ−(`) = π − ψ+(`), we find τ−s (`) = τ+
s (`).

Note that the tensions τ−s and τ+
s include the liquid interface tensions γA and γB in addition

to elastic contributions. In the symmetric case the shooting parameters τs at the upper and
lower apices are identical and thereby only one parameter is left. Symmetry with respect to
the liquid-liquid interface also inherently satisfies the conditions r+(`)−r−(`) = 0 and f2 = 0
such that we are left with exactly one matching conditions f1 = 0 from the Young-Dupré
equation (2.10) for force equilibrium in r-direction.
Numerically calculated shapes of elastic lenses are shown in Fig. 2.3A both for tensile

(σ > 0) and contractile (σ < 0) equatorial tensions. The resulting lens shapes also appear
to be similar to liquid lens shapes composed of two spherical caps. We will exploit this
similarity for an analytical approximation in the next section, which also shows that this
approximation is not exact, i.e., elastic lens shapes are similar, but distinct from liquid lens
shapes.

Elastic shells

Finally, we incorporate the effect of a finite bending rigidity. Then we have the full set (2.6) of
six shape equations. We shoot from both apices with boundary conditions r(0) = r(L0) = 0,
ψ(0) = π − ψ(L0) = 0 and q(0) = q(L0) = 0. The two shooting parameters z(0) and z(L0)
are determined from z+(`) = z−(`) = 0. Now we have four free shooting parameters τs(0),
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2 Deformation behavior of static elastic shells under hydrostatic loads

τs(L0), ms(0), and ms(L0) left, which have to be determined from matching conditions at
the AB-interface at s0 = `.

There are five matching conditions at the AB-interface: the continuity conditions r−(`) =
r+(`) and also ψ+(`) = ψ−(`) (see eq. (2.7)) because kinks in the capsule shell are now
suppressed by bending energy. Moreover, we also have the continuity condition m+

s (`) =
m−s (`) (see eq. (2.11)) from the moment equilibrium at the AB-interface and two Young-
Dupré equations (2.9) and (2.10) for force equilibrium in z- and r-direction. The two
Young-Dupré equations can be rearranged into direct jump conditions for τs and q at the
AB-interface,

q+(`)− q−(`) = σ sinψ−(`)
τ+
s (`)− τ−s (`) = −σ cosψ−(`).

Again, we have an over-determined system of five matching conditions for four shooting
parameters (due to the first integral U) and also here we achieve faster convergence employing
all five matching conditions. The arc length position ` of the AB-interface is determined by
total energy minimization.
Fig. 2.5 (right) shows numerically calculated capsule shapes for the symmetric case for

varying bending modulus, Fig. 2.3A shows shapes for varying liquid-liquid surface tension σ,
both for tensile (σ > 0) and contractile (σ < 0) equatorial tensions. For decreasing bending
moduli the rounded kink at the AB-interface becomes increasingly sharp and approaches
the elastic lens shape. We will quantify this relation in the following section in order to
establish the kink curvature as experimentally accessible observable, which allows us to infer
the bending modulus of the capsule material.

2.1.7 Lens height and contact angle

As it is evident from eq. (2.13) liquid lens shapes exhibit constant curvature and, thus,
can be constructed from spherical caps. In this section, we use this fact to obtain an
exact analytical result for the contact angle and the height of liquid lenses. We generalize
this approach to elastic lenses by taking also elastic stresses into account and obtain an
approximative theory, which gives the contact angle and the height of an elastic lens by
solving numerically a single algebraic equation. Finally, these theoretical results enable a
determination of Young’s modulus of an elastic lens by a single measurement of the height
or the contact angle.

Exact solution for liquid lenses

Lenticular liquid shapes, e.g., on solid substrates have been discussed in literature [68] and
analytical solutions for liquid lenses at liquid-liquid interfaces can be obtained analogously.
We restrict ourselves here to the symmetric case γ ≡ γA = γB. The total energy of the
system is given by

E = γA− σAB, (2.17)

where A is the total area of the liquid lens and AB the occupied cross-section area within
the liquid-liquid interface plane. We use the fact that the liquid lens is composed of two
spherical caps of equal radius R = 2γ/p0 (for the symmetric case) according to the Laplace
equation (2.12), and of equal base radius RB. Then A = 2π(R2 + h2) is the surface of
the lens (two spherical caps) and AB = πR2

B the occupied cross-section area within the
liquid-liquid interface plane. Here, h denotes the height of the spherical caps, which is
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2.1 Elastic shells adsorbed to planar liquid-liquid interfaces

related to RB and R via R2
B = 2Rh− h2, see also Fig. 2.6 for the involved quantities. In the

following, we measure lengths in units of the radius R0 of a spherical droplet of the same
volume V ≡ 4πR3

0/3 and thereby introduce reduced quantities h̃ = h/R0 and R̃ = R/R0.
For a fixed volume,

Ṽ = πh̃

3
(
3R̃− h̃

)
= 4π

3 = Ṽ0,

the radius R and the height h are related by

R̃(h̃) = 1
3

( 2
h̃2 + h̃

)
. (2.18)

We can now write the free energy (2.17) as a function of the reduced height h̃, minimize
with respect to the reduced height h̃, and find

h̃ = 21/3(2− σ/γ)1/3

(4 + σ/γ)1/3 , (2.19)

from which we also obtain the opening angle

θ(h̃) ≡ arccos(1− h̃/R̃(h̃)) (2.20)

and, finally, the pressure

p0(h̃) = 2γ
R̃(h̃)

= 6h̃2γ

2 + h̃3

from the Laplace-Young equation. Relations (2.19) and (2.20) for liquid lenses are in good
agreement with solutions for elastic membrane lenses (see Fig. 2.5 (left)) in the corresponding
limit γ � Y2D. Relation (2.19) can likewise be obtained by solving f1 = 0 in (2.14) employing
the volume constraint (2.18) in combination with the relations θ = ψ−(`) = π − ψ+(`) and
γA = γB.

Approximative solution for elastic lenses

For the symmetric case, we can derive an approximative analytical solution for the elastic
membrane shape based on a spherical cap approximation. We investigate partially spherical
solutions, because, intuitively, the difference between a liquid droplet and a liquid droplet
coated with an elastic ‘skin’ should be negligible for small interface loads as also suggested
by the numerically calculated shapes of elastic lenses in Fig. 2.3A. Force balance for an
unloaded spherical cap implies a constant tension τs = const [69] such that, additionally,
τs = τφ must hold to fulfill the force balance conditions (2.5) (i).
Deforming a hemisphere into a spherical cap by uniform strains leads, however, to

anisotropic tensions τs 6= τφ. The spherical cap has only one free parameter, which is its
reduced height h̃, as it already has been introduced above in the context of liquid lenses.
From geometrical arguments (see Fig. 2.6) we can calculate the uniform stretches λs and λφ
for the deformation into a spherical cap,

λs = 2θ(h̃)
π

R̃(h̃) and λφ = R̃B = R̃(h̃) sin(θ(h̃)), (2.21)
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2 Deformation behavior of static elastic shells under hydrostatic loads

0.0

0.4

0.8

1.2

1.6

0 1 2 3 4 5 6 7 8 9 10

ψ
−
(`
)

σ/γ

liquid lens
shape eqn. γ/Y2D = 10
shape eqn. γ/Y2D = 1

shape eqn. γ/Y2D = 1/10
elastic lens γ/Y2D = 10
elastic lens γ/Y2D = 1

elastic lens γ/Y2D = 1/10

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10

h̃

σ/γ

Figure 2.5: A) Opening angle θ as a function of tension σ/γ for the symmetric case: comparison
of liquid lens result (2.19) and spherical cap approximation (2.22) for the elastic lens with
numerical results from solving the shape equations (2.15). Dots are numerical results for the
elastic lens in three different regimes, which are (i) fluid regime γ/Y2D � 1, (ii) crossover regime
γ/Y2D ∼ 1, and (iii) elastic regime γ/Y2D � 1. B) Analogous comparison for the reduced height
h̃ = h/R0 as a function of the tension σ/γ for the symmetric case.

where R̃(h̃) is the reduced radius as given by the function (2.18) and θ(h̃) is the opening
angle of the spherical caps according to (2.20), which is related to the slope angle ψ via
θ = ψ−(`) = π − ψ+(`). Obviously λs < λφ because θ < π/2 and R > R sin θ, i.e., the
stretches (2.21) are anisotropic. Inserting these stretches into the constitutive relations (2.4)
we also obtain anisotropic stresses, τs < τφ. Therefore, assuming constant tensions in a
spherical cap formed from a hemispherical rest shape violates the force balance conditions
(2.5). For γ ≥ Y2D, i.e., small deviations from the fluid-like behavior deviations from force
balance are also small, and we can use spherical caps as an approximation.

Inserting the uniform strains (2.21) into the constitutive relations (2.4) gives the stresses
τs(h̃) and τφ(h̃) as a function of the reduced spherical cap height h̃. To satisfy the Young-
Dupré equation we employ f1 = 0 from eq. (2.16) in the symmetric case, i.e., θ = ψ−(`) =
π − ψ+(`) and γA = γB, to obtain

σ = 2τs(h̃) cos θ(h̃) (2.22)

for the height h of the spherical cap. The pressure p0 is then also a function of h,

p0(h̃) = 3h̃2(τs(h̃) + τφ(h̃))
2 + h̃3 .

Solutions of (2.22) are in good agreement with numerical simulations, see Fig. 2.5 (left)
within the range of the fluid and the crossover regime, i.e., for γ ≥ Y2D. Even for γ ≤ Y2D we
find acceptable agreement. The solutions we obtain from (2.22) violate, however, the force
balance condition (2.5) (i), which explicitly demonstrates that already a simple Hookean
stretching energy leads to non-trivial shapes. Note that we, instead of solving (2.22), we
could likewise minimize the free energy for the elastic lens, which is obtained analogously to
(2.17), but with an additional elastic energy term as in (2.3).

Equation (2.22) can also be used to determine Young’s modulus Y2D and the pressure
p0 from a single measurement of the cap height h or the contact angle θ, if the surface
tensions σ and γ are known. Two height measurements of the same capsule at different
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2.1 Elastic shells adsorbed to planar liquid-liquid interfaces

Figure 2.6: Deforming a hemispherical rest shape A into a spherical cap B. The resulting
spherical cap has constant tension τs = const in meridional direction, constant tension τφ = const
in circumferential direction, but tensions are anisotropic, i.e., τs 6= τφ violating the force balance
conditions (2.5) (i). We conclude that spherical caps with hemispherical rest shape exhibit
inhomogeneous stresses in order to fulfill (2.5) (i).

surface tensions σ or at different capsule volumes V0 could be used to determine Young’s
modulus Y2D and Poisson’s ration ν2D.

2.1.8 Curvature at the interface

From Fig. 2.5 (right) it is clear that the bending modulus of the shell’s material controls the
curvature of the capsule at the liquid-liquid interface, i.e., smaller bending resistance leads
to sharper bends with smaller radius of curvature at the liquid-liquid interface. Therefore,
measurements of the curvature at the interface can provide information on the bending
modulus EB , provided that we can quantify the scaling law relating between both quantities.
We will show analytically in the following paragraph that curvature at the interface and
bending modulus are, indeed related by a simple scaling relation, which is also verified
numerically in Fig. 2.8.

Pogorelov approximation

In Fig. 2.8 we find a scaling κs ∼ E−1/2
B for the curvature κs at the interface from numerical

simulations. We can derive this scaling from an adaption of Pogorelov’s theory [70] as it
has been used in Ref. [45, 71]. We start from an elastic lens shape for vanishing bending
rigidity EB ≈ 0, which is described by the contour (r(s0), z(s0)) and has a sharp edge at
the AB-interface. If the bending rigidity is introduced, the shape becomes rounded at the
edge, which is described by an additional displacement field (v(s0), u(s0)) such that

(r(s0), z(s0))→ (r(s0) + v(s0), z(s0) + u(s0)).

during rounding. Rounding involves two additional energies contributing to the shape:
the additional bending energy UB associated with the bending rigidity and an additional
mechanical work Uσ performed against that the surface tension σ because rounding displaces
the three phase contact line against the surface tension σ as can be clearly seen in Fig. 2.5
(right).

Since the interface load acts in radial direction, it is reasonable to assume that u(s0) = 0,
i.e., only radial shape perturbations occur. This allows us to write the total energy change,
induced by bending and pulling against σ while starting at the elastic lens, as

U = UB + Uσ = 2
∫ `+ε

`
ds0

[
πRDEBv

′′(s0)2 − πRDσv(s0)δ(s0 − `)
]

(2.23)
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Figure 2.7: A) Shapes with increasing bending modulus. The bending modulus of the shell’s
material obviously determines the curvature at the liquid-liquid interface at z = 0 where the
interface load σ pulls the equator outwards. Increasing the bending modulus increases the radius
of curvature at the interface. Shapes were calculated in the elastic regime with γ/Y2D = 1/10.
B) Illustration of the geometrical quantities employed within the Pogorelov approximation. We
assume that the major contribution to the bending energy is located within a small region of size
ξ at s0 = `, i.e., the liquid-liquid interface. When the bending energy is switched on, the kink
of the elastic lens vanishes and the contact angle α decreases from a finite value to zero. This
deformation is quantified by the radial displacement field v(s0). The curvature at the interface
is accessible via κs ∼ α/ξ employing the length scale ξ and the contact angle α.

where ε describes a small arc length region over which the kink of the shape is rounded
and RD is the radius of the circle in the interface plane, i.e., the radius of the interface
cross-section. In eq. (2.23) we neglect the apparent hoop stretching as well as higher order
and constant terms of the bending energy (for a detailed analysis, see Ref. [70]). Throughout
the following calculations we use approximations for small α, which is the turning angle of
the shape at the interface and related to the opening angle of the elastic lens via α = π/2−θ.
To find the corresponding characteristic arc length scale ξ ∼ ακ−1

s on which the shape gets
bent at the interface, we non-dimensionalize eq. (2.23) according to

s0 = ξs̄0,

−v(s0) = ξαv̄(s̄0),

−v′′(s0) = d2v(s0)
ds2

0
= α

ξd2v̄(s̄0)
ξ2ds̄2

0
= α

ξ
v̄(s̄0)′′,

and recast the energies in (2.23) as

UB = EBRD
α2

ξ

∫ ¯̀+ε̄

¯̀
ds̄0v̄(s̄0)′′2,

Uσ = πRDσξα

∫ ¯̀+ε̄

¯̀
ds̄0v̄(s̄0)δ(s̄0 − ¯̀). (2.24)
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quantities in dimensionless form, see eq. (2.2).)

Minimizing the total energy U = UB + Uσ with respect to ξ we find the scaling relations

ξ ∼ α1/2

√
EB
σ
,

U = U0 ∼ RDα3/2√EBσ.
(2.25)

The dimensionless integrals in eq. (2.24) only contribute numerical prefactors, the essential
result is the scaling behavior of U0 and ξ. Note that the above scaling relations still depend on
α. This dependence can be eliminated by employing the symmetric force balance condition
(2.22). Expansion in α gives

α ∼
{
σ1/3 Y

−1/3
2D , γ � Y2D (elastic)

σ γ−1, γ � Y2D (fluid),

where we differentiate between an elastic and a fluid regime. Both scaling relations are
verified numerically in Fig. 2.8 (right), where we obtain α ∼ σ1/3 for the elastic and α ∼ σ
for the fluid regime. Inserting these scaling relations into eq. (2.25) gives

ξ ∼

E
1/2
B σ−1/3 Y

−1/6
2D , γ � Y2D (elastic)

E
1/2
B γ−1/2. γ � Y2D (fluid).

From κs ∼ α/ξ we finally obtain the scaling laws for the shell’s curvature at the AB-interface

κs ∼

E
−1/2
B σ2/3 Y

−1/6
2D , γ � Y2D (elastic)

E
−1/2
B σγ−1/2, γ � Y2D (fluid),

(2.26)

which are verified numerically in Fig. 2.8 (left). Note that the exponent of the bending
modulus in κs ∼ E−1/2

B is universal, i.e., independent of whether we are in the fluid or elastic
regime. For comparison, spherical shells which buckle upon deflation have κs ∼ E

−1/4
B at

the spherical rim of the indentation [45, 71].
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sions. For the above measurement we used
γ/Y2D = 1/10. The insets show the corre-
sponding capsule shapes.

Experimental perspective

The scaling results presented above are well suited to be used experimentally in order to
determine the bending modulus of elastic shells adsorbed to a planar liquid-liquid interface.
Provided that the thickness of the layer, the interface load and the shell’s curvature at the
interface are known or can be measured, the bending modulus is given by

EB = 9.3436H1/2σκ−3/2
s , (2.27)

where the numerical prefactor in relation (2.26) was determined by a linear fit to the
numerical results and Y2D was obtained from the layer’s thickness by employing relation
(2.1). Note that σκ−3/2

s = const, which is why it makes sense to vary the interface load
σ in order to improve the statistical significance of such a measurement. This could be
achieved by, e.g., adding surfactants to one of the liquid phases A or B that decrease σ with
increasing surfactant concentration. The dependence of σ and the surfactant concentration
can be determined, e.g., in a pendant drop tensiometer. The curvature κs can be obtained
from analyzing capsule images and fitting a circle to the capsule edge at the liquid-liquid
interface.

2.1.9 Adsorption energy

During deformation at the liquid-liquid interface capsules deform into a lens-like shape,
which increases the occupied interface area and, thus, the adsorption energy. This can
significantly enhance their efficiency as emulsifiers.

Using our numerical results we can quantify the increase in adsorption energy as a function
of the softness of the capsule. The adsorption energy of the soft capsule is given by the total
energy gain

Esoft = −σπr2(`) +
∫
w(s0)dA0

where πr2(`) is the occupied circular cross-section area within the liquid-liquid interface
plane and the last term the total elastic energy including stretching energy, bending energy,
and the surface energy γA. Each capsule at the liquid-liquid interface lowers the interfacial
energy by Esoft and, thus, decreases the effective surface tension of the liquid-liquid interface.
This effect is stronger for hollow soft elastic capsules as compared to hard particles and

becomes more pronounced with decreasing thickness of the capsule. For hard spherical
particles of equal size we have an adsorption energy Ehard = γ4πR2

0 − σπR2
0. In Fig. 2.9
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2.1 Elastic shells adsorbed to planar liquid-liquid interfaces

we numerically quantify the adsorption energy difference between soft and hard particles
∆E ≡ Esoft − Ehard as a function of the dimensionless bending modulus ẼB = H2/R2

0,
which characterizes the thickness of the capsule, see eq. (2.2). This allows us to quantify
the enhancement of the adsorption energy due to capsule softness by decreasing ẼB or the
capsule thickness. For ẼB ∼ 1 the results should become similar to the energy gain for soft
filled particles as they have been considered in Refs. [53–55]. Fig. 2.9 then clearly shows
that hollow capsules are much more efficient as emulsifiers than filled soft particles (or even
a filled hard particle) of equal size.

2.1.10 Conclusion

We investigated shapes of deformed microcapsules adsorbed at liquid-liquid interfaces both
by calculating shapes numerically and by analytical approximation methods. We derived
shape equations and matching conditions at the liquid-liquid interface for the numerical
calculation of shapes and discussed the generic case, i.e., extensible shells of finite thickness
and constant volume, as well as two important limiting cases, namely liquid lenses and
elastic lenses. The shape equations together with the appropriate matching conditions at
the liquid-liquid interface enable us to calculate numerical solutions for each of these cases,
see Figs. 2.5 and 2.3.
Liquid lenses shapes are composed of two spherical caps and can be exactly calculated

analytically. Elastic lenses exhibit similar shapes, which motivated an approximative theory
using spherical caps and leading to a much simpler description by a single algebraic equation
(2.22) for the elastic lens shape. The spherical cap approximation becomes exact in the limit
of thin H � R, and soft γ � Y2D or weakly stretched capsules with σ � γ.
These results can, in principle, be used for elastometry, i.e., to determine the elastic

moduli from an experimentally acquired image by fitting numerical solutions of the shape
equations to a set of contour points extracted from the image. Other elastometry methods
following the same philosophy are the study of deformations of pendant capsules under
volume changes to obtain elastic moduli as investigated in Refs. [1, 5, 61], the study of the
edge curvature of a buckled shapes to obtain the bending modulus [44], or the study of
shapes of osmotically buckled capsules to infer the osmotic pressure [62].
The approximative theory using spherical caps shows that the height or contact angle

of the lens-like shape is a simple experimental readout that can be used to determine
the Young modulus of the capsule shell if the surface tension σ is known, either by using
the approximation by the algebraic equation (2.22) for the elastic lens shape or by using
numerical results for the relation between height and Young modulus.
For shells of finite thickness we also found the relation between the curvature at the

interface, the bending modulus, Young’s modulus and the interface load, see eq. (2.27),
which can be used to determine the bending modulus from a curvature measurement at
the interface, provided Young’s modulus has been determined before, e.g., by elastometry
methods as just described for elastic lenses, or the method described in Ref. [5] by preparing
a pendant capsule.

In principle, the results presented in this paper allow us to determine the full set of elastic
constants from shape profiles of elastic capsules adsorbed to liquid-liquid interfaces. Similar
methods exist for the pendant capsule method, which has been shown to be widely applicable
to experimental data [5]. We extend this method to capsules at liquid-liquid interfaces.
Unfortunately, there is no experimental data available yet.
Finally, we could show that hollow elastic microcapsules can be much more effective in

reducing the interfacial energy than filled soft particles or even hard particles of the same
size, see Fig. 2.9. During capsule deformation at the liquid-liquid interface into a lens-like
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2 Deformation behavior of static elastic shells under hydrostatic loads

shape the adsorption energy, which is proportional to the occupied interface area, increases
significantly. This shows that hollow microcapsules could be much more efficient in foam
and emulsion stabilization than filled particles of comparable size.

In the following section, we stick to the Hookean membrane approximation and provide a
performance optimized version of the algorithm first developed in [1].

2.2 Elastic capsules prepared in a pendant drop tensiometer
Classical elastic shell theory enables reverse-engineering techniques that allow for inferring
information on the material properties from shape profiles. Thereby, the elastic parameters
are varied in the theoretical description until the experimental shape profile is matched. In
this section, we rigorously apply this method to pendant elastic capsules using the Hookean
membrane approximation. We like to stress either, that both the elastic laws and the
hydrostatic setup are replaceable, i.e., the method is universally applicable.
We provide a C/C++ software for the shape analysis of deflated elastic capsules in a

pendant capsule geometry, which is based on an elastic description of the capsule material as
a quasi two-dimensional elastic membrane using shell theory. Pendant capsule elastometry
provides a new in-situ and non-contact method for interfacial rheology of elastic capsules
that goes beyond determination of the Gibbs- or dilational modulus from area-dependent
measurements of the surface tension using pendant drop tensiometry, which can only give a
rough estimate of the elastic capsule properties as they are based on a purely liquid interface
model. Given an elastic model of the capsule membrane, pendant capsule elastometry
determines optimal elastic moduli by fitting numerically generated axisymmetric shapes
optimally to an experimental image. For each digitized image of a deflated capsule elastic
moduli can be determined, if another image of its undeformed reference shape is provided.
Within this paper, we focus on nonlinear Hookean elasticity because of its low computational
cost and its wide applicability, but also discuss and implement alternative constitutive laws.
For Hookean elasticity, Young’s surface modulus (or, alternatively, area compression modulus)
and Poisson’s ratio are determined; for Mooney-Rivlin elasticity, the Rivlin modulus and a
dimensionless shape parameter are determined; for neo-Hookean elasticity, only the Rivlin
modulus is determined, using a fixed dimensionless shape parameter. Comparing results for
different models we find that nonlinear Hookean elasticity is adequate for most capsules. If
series of images are available, these moduli can be evaluated as a function of the capsule
volume to analyze hysteresis or aging effects depending on the deformation history or
to detect viscoelastic effects for different volume change rates. An additional wrinkling
wavelength measurement allows the user to determine the bending modulus, from which the
layer thickness can be derived. We verify the method by analyzing several materials, compare
the results to available rheological measurements, and review several applications. We make
the software available under the GPL license at github.com/jhegemann/opencapsule.
Encapsulation applications employ closed microcapsules, but often capsules can likewise

be produced in a pendant or hanging capsule geometry, where the capsule is not closed
and the capsule edge is attached to a capillary [10, 72–79]. Such capsules can be produced
by self-assembly onto a droplet hanging from a capillary or onto an air bubble rising from
a capillary, or by interfacial crosslinking at the interface of a pendant droplet [1]. An
advantage of this pendant capsule geometry is that volume reduction or pressure application
can easily be realized by fluid suction through the capillary and it, thus, offers a simple way
of micromanipulation for mechanical characterization.
The related pendant droplet tensiometry is a standard tool to determine the surface

tension of a liquid interface using the Laplace-Young equation to model the droplet shape
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2.2 Elastic capsules prepared in a pendant drop tensiometer

[80–83], which is commercially available. The same Laplace-Young analysis has frequently
been applied to pendant elastic capsules with different shell materials or droplets coated
with solid-like layers of adsorbed particles [72, 75–77, 84–89] resulting in the determination
of an ‘effective surface tension’ γ describing the solid shell interface of surface area A.
Changing the surface area A in deflation experiments, the so-called Gibbs- or dilational
modulus EGibbs = dγ/d lnA can be calculated. Pendant drop tensiometry can also be
applied to droplets or capsules with a viscoelastic interface by employing oscillating droplets
[72, 85, 87–89]; then a complex dilational modulus can be obtained, which includes a real
elastic and an imaginary loss part. The elastic dilational modulus is equal to the area
compression modulus K2D for a fluid interface or for a two-dimensional solid interface in a
planar Langmuir-Blodgett trough geometry. Application of the same concept to pendant
elastic capsules gives misleading results because of inhomogeneous and anisotropic elastic
stresses in the capsule geometry and the existence of a curved undeformed reference shape
of the capsule [1, 72–74, 79]. In Ref. [1], an elastic model based on shell theory has been
developed which is capable of describing capsule shapes in a deflation experiment more
realistically. Similar elastic models have been formulated in Refs. [72–74, 79]. In Ref. [1]
this approach has been extended to the pendant capsule elastometry method, where the
elastic model is used to determine two elastic constants, the surface Young modulus Y2D and
Poisson’s ratio ν2D, by optimally fitting calculated shapes to experimental images. Pendant
capsule elastometry has already been applied to OTS-capsules and hydrophobin-coated
bubbles [1] but also to bacterial films at interfaces [24].

Here, we want to present and make publicly available a much more efficient implementation
of the pendant capsule elastometry method as a C/C++ software with a high degree of
numerical efficiency and automation. In contrast to Ref. [1], where elastic constants were
optimized on a grid in parameter space to optimally match the experimental shape profile, we
optimize elastic constants in continuous parameter space, which improves both performance
and accuracy. Moreover, we go beyond Ref. [1] and generalize the shape analysis method
to other constitutive laws. In particular we investigate the behavior of the shape analysis
method in combination with Mooney-Rivlin or neo-Hookean elasticity models, which are
commonly used for inextensible polymeric materials.

These significant improvements turn the analysis into a strong tool to investigate different
materials in a short time and on a large scale. We demonstrate these capabilities by analyzing
a variety of deformation experiments for different materials. In pendant capsule elastometry
Young’s modulus and Poisson’s ratio (or the Rivlin modulus and the dimensionless shape
parameter) of the two-dimensional capsule shell material are obtained from an analysis
of a digitized image of the deflated capsule shape and a second image of its undeformed
reference shape. If the capsule wrinkles upon deflation, an additional wrinkling wavelength
measurement allows us to determine the bending modulus, from which the layer thickness
can be derived if the shell material is a thin layer of a three-dimensional isotropic elastic
material.

2.2.1 Experimental methods

Several interfacial rheology methods exist, which allow the determination of the elastic
properties of the capsule shell material. We review four different rheological methods, which
we will use as references for the pendant capsule method described in this paper. Typical
experimental methods are (i) surface shear-rheometry [90], (ii) Langmuir-Blodgett trough,
(iii) shear flow rheoscope (flow cell) [91], and (iv) spinning drop apparatus [92]. Methods
(i) and (ii) work with planar membranes of the shell material, whereas methods (iii) and
(iv) directly work in the curved capsule geometry, like pendant capsule elastometry does.
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2 Deformation behavior of static elastic shells under hydrostatic loads

Apart from these four methods there are other contact techniques such as probing capsules
with AFM tips, micromanipulators, or optical tweezers (see Ref. [26] for a review). Pendant
capsule elastometry is a non-contact technique and, in comparison with methods (iii) and
(iv), it does not require fluid motion in the surrounding fluid. We focus here on elastic
capsule shell materials. For viscoelastic materials there are other interfacial rheology methods
available [87], such as double wall ring rheometry [93] or magnetic rod rheometry [94].

In shear-rheometry, a transducer (thin disk or ring) is placed in a circular vessel at a planar
liquid-liquid or air-liquid interface; between transducer and container wall a membrane
with the shell material is prepared, such that membrane deformations can be applied in
circumferential direction. While oscillating at a certain frequency, the mechanical response
is measured, which gives the interfacial storage modulus µ′ and the loss modulus µ′′. From
µ′ one determines the surface Young modulus Y2D = 2(1 + ν2D)µ′ provided that the Poisson
ratio ν2D is known.
In a Langmuir-Blodgett trough, a membrane made from the shell material is prepared

in a rectangular vessel at a liquid-liquid or air-liquid interface. During compression of the
membrane, the surface tension γ and area A are measured, from which the Gibbs modulus
EGibbs = dγ/d lnA is determined. The Gibbs modulus EGibbs corresponds to the area
compression modulus K2D in the planar trough geometry; we will show that these two
parameters differ substantially in the curved capsule geometry.
In a shear flow rheoscope, a closed capsule is placed in a liquid phase between two

concentric hollow cylinders. By rotating the cylinders in opposite directions a shear flow is
induced, which deforms the capsule. Comparing the shape profile with ellipses gives the
compression of the surface and, thus, the surface Young modulus [95].

In a spinning drop apparatus a closed capsule is placed in a cylindrical vessel filled with a
fluid. When the vessel is rotated at high frequencies the capsule is exposed to centrifugal
forces, which induce a deformation. Similar to the shear flow rheoscope the surface Young
modulus is obtained from a shape analysis [92].

2.2.2 Pendant capsule elastometry

The pendant drop apparatus is widely spread in industrial environments and research
departments. Typically it is shipped with a software performing a Laplace-Young analysis
on captured images in order to determine the surface tension of fluid interfaces. In this
paper, we provide a generalized algorithm as a C/C++ software, which is able to perform
an analogous shape analysis for elastic membranes in order to determine the surface Young
modulus Y2D and the Poisson ratio ν2D (or the Rivlin modulus YM and the dimensionless
shape parameter Ψ) of the material. In section 2.2.8, we will present examples with several
different capsule shell materials, which demonstrate that our software is widely applicable
and that pendant capsule elastometry results are in good agreement with other rheological
measurements. As compared to pendant drop tensiometry, the shape analysis of pendant
elastic capsules comes at the cost of an additional amount of runtime (one or few minutes
per image), but enables the proper characterization of the elastic material properties.

In the following, we will focus on pendant elastic capsules produced by interfacial crosslink-
ing, gelation or polymerization, see Fig. 2.10. Consider a droplet of size ∼ 1mm hanging
from a capillary. The inner (liquid) and outer phase (liquid/air) are separated by a liquid
interface with a surface tension compensating the pressure difference. Surfactants, and po-
tentially crosslinkers, are dissolved in the droplet or the surrounding fluid. When forming the
droplet, surfactants immediately start to adsorb to the interface and spread over it. During
equilibration of bulk and interface surfactant concentrations, the surface tension decreases.
Though the interface is now partially occupied by surfactants, it is still a liquid interface
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2.2 Elastic capsules prepared in a pendant drop tensiometer

Figure 2.10: Typical experimental procedure in pendant drop elastometry. In a first step, a
pendant capsule is prepared by coating a pendant droplet with an elastic shell, for example, by
interfacial crosslinking. When the coating process is completed, cyclic pressure/volume changes
are applied to the capsule and images are taken continuously during this procedure. Fitting
theoretical shapes from the elastic model to the shape profile extracted from the image gives the
elastic moduli of the shell membrane. For sufficiently solid and thin materials wrinkles occur
upon deflation, which can be analyzed to give the bending modulus of the shell membrane.
The procedure allows for multiple inflation-deflation-cycles, which can reveal aging effects or
hysteresis. Application of different volume change rates can reveal viscoelastic effects.

obeying the Laplace-Young law. This changes when crosslinkers start to connect previously
freely diffusing surfactants and turn the interface into an elastic solid by forming elastic
bonds above a threshold concentration for gelation. After completion of this crosslinking
process, an elastic capsule in its reference, i.e., undeformed or stress-free shape has been
formed.

By slowly reducing the volume of the capsule one observes elastic deformations, which are
specific to the microscopic structure of the membrane. We neglect such microscopic details
by assuming a homogeneous isotropic material and focus on the set of elastic constants,
which describe the macroscopic properties of the membrane. Nonetheless, microscopic effects
can be observed in the elastic constants, if these are measured during the course of deflation.
Phase transitions that occur as a function of the accessible surface area induce a rapid
change in the elastic moduli and are, therefore, detected. Viscoelastic or creep behavior
are detected, if elastic moduli change with the rate of volume reduction. Aging effects are
detected, if elastic moduli change during the course of multiple cycles of de- and inflation
that are applied to the capsule.

The general aim of pendant capsule elastometry is the same as in pendant drop tensiometry,
namely to adjust material parameters (elastic constants or surface tension and, eventually,
pressure) such that theoretically generated axisymmetric capsule/droplet shapes optimally
fit a given experimental shape. The shape of an elastic capsule can be described by classical
elastic shell theory (if bending moments are included) or elastic membrane theory (if bending
moments are neglected) [96], which requires an elastic material model specified by its
constitutive stress-strain relation or a corresponding elastic energy. We neglect bending
moments and mainly focus on Hookean membrane elasticity throughout this paper but
also discuss Mooney-Rivlin or neo-Hookean elastic membranes, which are also implemented
in the software. Each elastic material model is characterized by a set of elastic material
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2 Deformation behavior of static elastic shells under hydrostatic loads

Figure 2.11: Parametrization of the shape equations. Axisymmetric shapes are described
by a shape profile in the r-z-plane, which generates a surface of revolution by rotation with
respect to the z-axis. The shape equations are integrated over the thickness H of an infinitesimal
membrane patch, which is an approximation for thin shells. Forces and torques resulting from
curvature are neglected and, thus, depicted in gray.

parameters, such as the surface Young modulus Y2D and the Poisson ratio ν2D in Hookean
membrane elasticity (or the Rivlin modulus YM and the dimensionless shape parameter Ψ
in Mooney-Rivlin membrane elasticity), which we aim to determine by optimally fitting
theoretical to experimental shapes. For an elastic material we also need an elastically relaxed
reference shape, with respect to which local stretch factors or strains in the material are
defined, in order to calculate deformed shapes. This problem will be discussed in Sec. 2.2.3
in detail.
In a pendant capsule geometry (see Fig. 2.10) the capsule is formed hanging from an

axisymmetric capillary. Therefore, we assume axisymmetric shapes which can be uniquely
described by their shape profile, i.e., the intersection of the capsule surface with a plane. We
use cylindrical coordinates to describe axisymmetric shapes (with the z-axis as symmetry
axis) and describe the profile as a contour in the r-z-plane, see Fig. 2.11. The shape profile
can be trivially acquired experimentally by taking a two-dimensional image from the side.

For a given elastic model, tangential and normal force equilibrium of stresses and external
forces at every point on the surface determine the equilibrium shape. The equations of force
equilibrium, geometric relations, and constitutive relations can be used to derive a closed
system of first order differential equations for r, z, a slope angle ψ (see Fig. 2.11) and the
meridional elastic stress τs with the arc length s0 of the undeformed spherical profile as
independent variable, which are called shape equations and discussed below in Sec. 2.2.3 in
detail. The shape equations use the constitutive relations and are, therefore, specific for the
elastic model that is used to describe the capsule material. We discuss shape equations for
Hookean elasticity, Mooney-Rivlin, and neo-Hookean materials in detail in Sec. 2.2.3. The
solution of the shape equations determines the theoretical shape profile of an axisymmetric
shape for a given set of material parameters, a given pressure inside the capsule, and a
given elastically relaxed reference shape. We solve the shape equations numerically by a
shooting method (see 2.3.3) because boundary conditions have to be applied at both ends of
the shape profile, i.e., at the attachment point to the capillary and at the lower apex of the
capsule.
Comparison between experiment and theory is achieved by overlaying the theoretical

shape and the image, regardless of the employed elastic model. In pendant capsule elastom-
etry elastic material parameters of individual capsules are then determined by fitting the
parameters (i.e., elastic moduli) of the model until the theoretical shape (for each parameter
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2.2 Elastic capsules prepared in a pendant drop tensiometer

set obtained by solution of the shape equations) optimally matches the contour given in the
image. We determine the optimal fit by minimizing the mean-square deviations between
image contour points and theoretical contour (see 2.3.4).

This approach works with different constitutive relations with different numbers of elastic
moduli, as long as the shape is sensitive to each of the employed material parameters. One
prominent example for a parameter, where the shape is rather insensitive to, is the bending
modulus EB for a thin capsule membrane. Therefore, the bending modulus of a thin capsule
membrane cannot be determined reliably by fitting to the shape profiles but has to be
determined via a different approach, namely the analysis of wrinkle wavelengths. In case of
a wrinkling instability, we have to use an effective constitutive relation in the wrinkled part
of the shape profile and corresponding effective shape equations, which are also discussed in
the next Sec. 2.2.3.

Thus, for the complete pendant elastometry shape analysis we have to handle three major
tasks, (i) solving the shape equations for the given elastic model to determine the theoretical
deformed shape from the elastically relaxed reference shape, (ii) decoding the contour from
the image and (iii) adapting the model parameters (elastic moduli) to fit the contour.
Details of the algorithm are described in the Appendix: (i) solving the shape equations by
a multiple shooting method in 2.3.3 and determining the reference shape in 2.3.2, (ii) the
image processing in 2.3.6, and (iii) parameter determination by shape regression in 2.3.4.
In contrast to previous implementations [1], we strongly focus on numerical performance
and robustness as well as a high degree of automation and make the resulting C/C++ code
publicly available under a GPL License [4]. We also implement shape equations for different
constitutive relations for elastic membranes: nonlinear Hookean as in Ref. [1], strictly linear
Hookean as in Ref. [72, 74, 79], Mooney-Rivlin, and neo-Hookean membranes as in Ref.
[73]. We verify our method by analyzing several materials and comparing the results to
rheological measurements.

2.2.3 Shape equations

Liquid reference shape

The shape of a liquid droplet hanging from a capillary can be described by a system of
nonlinear differential shape equations with the arc length s0 of the contour as independent
variable,

r
′
0(s0) = cosψ0, z

′
0(s0) = sinψ0,

ψ
′
0(s0) = (p0 −∆ρgz0)/γ − sinψ0/r0

(2.28)

(primes denote derivatives d/ds0). The z0-axis is the axis of symmetry, r0 the radius and
ψ0 the slope angle of the contour. We use quantities with a subscript ‘0’ because we will
employ a Laplace-Young fit for the elastically relaxed reference state of our elastic capsule
before deformation by volume reduction, see Sec. 2.2.3 below. The first two equations are
geometric relations involving the slope angle ψ0; the third equation is the Laplace-Young
force balance equation in cylindrical parametrization, where we use κs0 = dψ0/ds0 and
κφ0 = sinψ0/r0 for the curvature of the droplet meridional and circumferential direction.
Note that the Laplace-Young shape equations (2.28) are already closed, i.e., the right hand
side is completely written in terms of the three functions r0(s0), z0(s0), ψ0(s0) on the left
hand side. The arc length s0 varies in the range [0, L0] and the lower apex is located
at s0 = 0 the drop is attached to the capillary at s0 = L0. The Laplace-Young shape
equations are solved with initial conditions r0(0) = 0, ψ0(0) = 0, and z0(0) = ζ arbitrary;

31



2 Deformation behavior of static elastic shells under hydrostatic loads

the contour length L0 is determined by the boundary condition r0(L0) = a/2, where a is
the inner capillary diameter. The right hand side of ψ′0(0) at s0 = 0 is ambiguous using
the initial values; L’Hôpital’s rule leads to ψ′0(0) = (p0 − ∆ρgζ)/2γ at s0 = 0 which is
also needed to start the integration of the shape equations. The solution gives the droplet
shape (r0(s0), z0(s0)) as a function of the parameters p0, ∆ρ and γ. The pressure p0 is the
hydrostatic pressure at the apex (if ζ = 0), ∆ρ the density difference between the inner and
outer phase, and γ the surface tension. The pressure difference ∆ρgz0 is induced by gravity.

Elastic membrane materials

The Laplace-Young shape equations (2.28) are well suited for fluid interfaces, but interfacial
crosslinking or gelation actually turns the interface into a two-dimensional elastic solid. From
classical shell theory and neglecting bending moments one derives the elastic shape equations
with the arc length s0 of the undeformed spherical contour as independent variable, [1]

r
′(s0) = λs cosψ, z

′(s0) = λs sinψ,

ψ
′(s0) = λs

τs

(
p−∆ρgz − sinψ

r
τφ

)
,

τ
′
s(s0) = −λs

cosψ
r

(τs − τφ)

(2.29)

(primes denote derivatives d/ds0). The meridional and hoop stretches λs = ds/ds0 and
λφ = r/r0 capture the elastic deformation state and are, thus, only defined with respect to
the undeformed reference shape r0(s0) (with subscript ‘0’); the corresponding strains are
(λ2
s − 1)/2 ≈ λs − 1 and (λ2

φ − 1)/2 ≈ λφ − 1. Note that s denotes the arc length of the
deformed configuration, whereas s0 denotes the arc length of the undeformed configuration.
Fig. 2.11 illustrates the involved quantities. The first to equations are geometric relations
involving the slope angle ψ. The third and fourth equations describe normal and tangential
force balance, respectively. In the normal force balance, the principal curvatures κs = dψ/ds
and κφ = sinψ/r have been used.

It is important to note that eqs. (2.29) are still valid regardless of the constitutive relation.
This is also the reason why eqs. (2.29) are not yet closed: we have to rearrange the constitutive
relations τs = τs(λs, λφ) and τφ = τφ(λs, λφ) in order to express τφ and λs on the right hand
side of eqs. (2.29) in terms of τs and λφ = r/r0, i.e., in terms of the functions τs(s0) and
r(s0) from the left hand side (and the known reference shape r0(s0)). We will discuss closure
of the shape equations for different constitutive relations and also in the presence of wrinkles
in the following sections. Once the shape equations (2.29) are closed, they are solved with
the boundary conditions r(0) = 0, ψ(0) = 0, and z(0) = ζ arbitrary at the capsule apex.
A fourth boundary condition τs(0) = µ at the capsule apex serves as shooting parameter
to satisfy the boundary condition r(L0) = a/2 at the capillary (see 2.3.3 for the numerical
realization of the shooting method). The right hand sides of ψ′(0) and τ ′s(0) at s0 = 0 are
ambiguous using the initial values; L’Hôpital’s rule leads to λs(0) = λφ(0) and isotropic
tensions τs(0) = τφ(0) at the apex. This results in τ ′s(0) = 0 and ψ′0(0) = λs(0)(p−∆ρgζ)/2µ
at s0 = 0 which are also needed to start the integration.
The pressure p is the hydrostatic pressure at the apex of the deflated shape (if ζ = 0),

which is below the pressure p0 of the reference shape, i.e., p < p0. In principle, information
on the pressure p could be experimentally available if pressure measurements are possible.
In the current implementation of the method and all applications below, the pressure p
serves as Lagrange multiplier that is changed to control the capsule volume and determined
from shape fitting along with the elastic moduli.
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Nonlinear Hookean elastic membrane

For a Hookean stretching elasticity the meridional and circumferential tensions τs and τφ
are related to the stretches λs and λφ by the constitutive relations

τs = 1
λφ

Y2D
1− ν2

2D
((λs − 1) + ν2D(λφ − 1)) + γ,

τφ = 1
λs

Y2D
1− ν2

2D
((λφ − 1) + ν2D(λs − 1)) + γ,

(2.30)

where Y2D is the surface Young modulus and ν2D Poisson’s ratio. Instead of the surface
Young modulus Y2D we could also use the surface shear modulus µ′ (sometimes called storage
modulus G′) or the area compression modulus K2D as alternative elastic constants of the
membrane material, which are related by

µ′ = Y2D
2(1 + ν2D) = K2D

1− ν2D
1 + ν2D

and K2D = Y2D
2(1− ν2D) .

Although we use a simple Hookean elastic energy, the relations (2.30) are nonlinear because
of the additional 1/λ-factors, which arise for purely geometrical reasons: the Hookean elastic
energy density is defined per undeformed unit area, whereas the Cauchy stresses τs and τφ
are defined per deformed unit length. The relations (2.30) still contain an interfacial tension
γ because the elastic capsule is formed in the initial shape of a fluid interface. We assume
that γ is the tension of the fluid interface in presence of a saturated interfacial surfactant
concentration before crosslinking the surfactants to an elastic shell. This assumption is
addressed in detail in Sec. 2.2.3.
The system of shape equations (2.29) can now be closed by using on the right hand side

the constitutive relation for τφ from eqs. (2.30), and the relation

λs = (1− ν2
2D)λφ

τs − γ
Y2D

− ν2D(λφ − 1) + 1 with λφ = r

r0
,

which derives from the constitutive relation for τs from eqs. (2.30). The resulting shape
equations have also been used in Ref. [1].

Alternative elastic laws

At this point we want to compare to similar approaches to pendant capsule shapes by shape
equations in the literature. Shape equations very similar to eqs. (2.29) have been obtained
in Refs. [72–74, 79], where the same normal and tangential force balance and geometry
relations have been employed, however, in combination with different constitutive relations.
In Ref. [73], an incompressible neo-Hookean constitutive relation has been used for the shell
material, which is a special case of an incompressible Mooney-Rivlin material. In Refs.
[72, 74, 79], a strictly linear Hookean constitutive law has been used, where the 1/λ-factors
are missing as compared to the relations (2.30), (note that constitutive linear Hookean laws
in Refs. [74, 79] contain some misprints). In Refs. [73, 74], exemplary theoretical shapes
have been discussed but no elastic parameters have been determined from systematically
fitting theoretical shapes to experimental images, i.e., using a least square minimization
algorithm to optimally match the experimental shape with a theoretically generated contour.
Therefore, we want to discuss how the shape equations (2.29) can be closed not only for a
nonlinear Hookean membrane as in (2.2.3) but also for other constitutive relations.
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The simplest example is a strictly linear Hookean membrane, where the closure is simply
lacking one factor λφ as compared to eq. (2.2.3) [97],

λs = (1− ν2
2D)τs − γ

Y2D
− ν2D(λφ − 1) + 1 with λφ = r

r0
.

Thus, the closure relations are, as for the nonlinear Hookean membrane, analytically
accessible.

The Mooney-Rivlin membrane model is frequently used for polymer materials as it describes
membranes made from incompressible materials. It describes these materials also deep into
the nonlinear regime as it captures effects from strain-stiffening. It has the constitutive
relation [97]

τs = YM
3λφλs

(
λ2
s −

1
(λsλφ)2

)[
Ψ + (1−Ψ)λ2

φ

]
+ γ,

τφ = YM
3λφλs

(
λ2
φ −

1
(λsλφ)2

)[
Ψ + (1−Ψ)λ2

s

]
+ γ,

(2.31)

where YM is the surface Rivlin modulus and Ψ a dimensionless shape parameter. A neo-
Hookean membrane has Ψ = 1. In the limit of small strains a neo-Hookean membrane reduces
to a Hookean membrane with Y2D = YM and ν2D = ν3D = 1/2 (for incompressibility). In
order to close the shape equations we have to use the constitutive relations (2.31) to find λs
and τφ as a function of τs and λφ = r/r0 in order to replace λs and τφ on the right hand side
in the shape equations (2.29), as for the Hookean case. Unfortunately, this involves roots
of fourth order polynomials. Therefore, we perform this task numerically in our software.
Note that this numerical solution has to be obtained in each step of numerical integration of
the shape equations, i.e., during each evaluation of the shape equations, which increases the
computational runtime significantly (roughly by a factor of 10) as compared to fits with the
nonlinear Hookean relation.

Wrinkling

The above shape equations (2.29) only hold for thin materials H � R, since we neglected
bending elastic energy terms resulting from curvature, which can, in principle, be included
into shape equations (see Ref. [44]). This is justified as the bending modulus is expected to
scale EB ∝ H3, whereas Young’s modulus scales as Y2D ∝ H. Consequently, for thin capsule
shells, the shape profiles are insensitive to changes in the bending modulus, which makes it
practically impossible to infer EB from fitting theoretical shape contours to experimental
images.

Nevertheless, we can determine the bending modulus in a separate analysis of the wrinkle
wavelength [1]. Wrinkles in meridional direction are present if τφ < 0, i.e., if compressive
stresses occur in circumferential direction (neglecting a small critical Euler stress necessary
to trigger wrinkling). This condition determines the extent of the wrinkled region in
meridional direction. In order to describe wrinkled shapes violating axisymmetry we use
a pseudo-surface (r̄(s0), z(s0)) (all modified quantities related to the pseudo-surface are
denoted with bars) representing the average amplitude of the wrinkling modulation. If
τφ < 0, the algorithm switches to a different set of shape equations for the pseudo-surface
which is obtained by explicitly setting τφ = 0 [1]. The modified set of shape equations is
also obtained from force-balance for the pseudo-surface. The meridional stresses for the
pseudo-surface are related to the original stresses by τ̄s = τsλφ/λ̄φ, where λ̄φ = r̄/r0 is
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2.2 Elastic capsules prepared in a pendant drop tensiometer

the apparent stretch of the pseudo-surface. Together with τ̄φ = τφ = 0 we obtain shape
equations for the pseudo-surface,

r̄
′(s0) = λs cos ψ̄, z

′(s0) = λs sin ψ̄,

ψ̄
′(s0) = λs

τ̄s
(p−∆ρgz) ,

τ̄
′
s(s0) = −λs

cos ψ̄
r̄

τ̄s.

(2.32)

Note that these shape equations hold independently of the constitutive relation of the
material. Therefore, they are not yet closed. To close these shape equations we need to
rearrange the constitutive relations τ̄s = τs(λs, λφ)λφ/λ̄φ of the considered model and the
wrinkling condition 0 = τφ(λs, λφ) in order to express λs in terms of τ̄s and λ̄φ = r̄/r0. We
switch to this new set of shape equations (2.32) as soon as τφ < 0 is reached at s0 = s1
along the contour; this gives a switching condition that also depends on the constitutive
relation of the material. We switch back to the shape equations (2.29) without wrinkles as
soon as this condition is violated again at s0 = s2 > s1. The extent of the wrinkled region is
Lw = s2 − s1.
For a nonlinear Hookean membrane the constitutive relations (2.30) lead to a wrinkling

condition

λφ = 1− γ 1− ν2
2D

Y2D
λs − ν2D(λs − 1) (2.33)

which is also used to identify the wrinkled region τφ < 0 along the contour. The constitutive
relations (2.30) also lead to the following expression for λs in terms of τ̄s and λ̄φ = r̄/r0,

λs = λ̄φτ̄s + Y2D − γ(1 + ν2D)
Y2D(1− 2ν2D)− (1− ν2

2D)γ2/Y2D
,

which closes the modified shape equations (2.32) in the wrinkled region.
Similarly we proceed for the constitutive relations of a strictly linear Hookean, and eqs.

(2.31) of a Mooney-Rivlin or neo-Hookean membrane in the wrinkled region. For the strictly
linear Hookean membrane the wrinkling condition τφ = 0 is given by

λφ = 1− γ 1− ν2
2D

Y2D
− ν2D(λs − 1),

where a factor λs is missing compared to (2.33). Again, we find a relation for the meridional
stretching factor in terms of τ̄s and λ̄φ = r̄/r0,

λs = Y2D(Y2D + γ(ν − 1))(1 + 2ν)
2Y 2

2Dν

±

√
Y 2

2D(Y 2
2D + γ2(ν − 1)2 + 2Y2D(γ(ν − 1)− 2λ̄φτ̄sν))

2Y 2
2Dν

,

where the solution with the negative root has to be chosen.
Unfortunately, for the Mooney-Rivlin membrane analytic expressions are impracticable

since they contain roots of fourth order polynomials. However, λs and λφ can be reliably
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Figure 2.12: The interfacial gelation phase (ii) fitted with a model for liquid interfaces
(Laplace-Young, orange) and a model for elastic interfaces (Hooke membrane, gray), where
we use the reference shape from the very beginning of phase (ii), i.e., phase (i). No active
pressure or volume change have been applied. Left: H20-droplet coated with Ce(SO4)2 and
CTAB-surfactants in a dodecane phase. Right: OTS-capsule, i.e., a p-xylol droplet in solution
with 1,2,4-trichlorobenzene and coated with OTS in a glycerol-water mixture.

determined by numerically solving

τφ(λs, λφ) = 0 and τ̄s − τs(λs, λφ)λφ/λ̄φ = 0.

Note that, in the wrinkled region, λs and λφ have to be determined, whereas in the non-
wrinkled region λs and τφ have to be determined. The solution (λs, λφ) of the above set of
equations closes the shape equations (2.32) and can, in principle, be obtained in the same
way for any constitutive law.

The extent of the wrinkled region where τφ < 0 of course depends on the value of the
interfacial tension γ in all constitutive relations (2.30) or (2.31). The fact that we generally
obtain good agreement with experiments regarding the extent of the wrinkled region also
supports the inclusion of the interfacial tension into the constitutive relations.

2.2.4 Equilibrium shapes

Solutions of the elastic shape equations (2.29) presume an elastically relaxed reference shape,
with respect to which elastic strains are defined. The choice of the reference shape is subject
to certain assumptions which will be discussed in this section.
Capsule formation by crosslinking or polymerization proceeds via three phases (see Fig.

2.10). In phase (i) we have a liquid drop without any surfactants and a stationary shape
(which is a teardrop shape due to gravity). Phase (ii) starts when surfactants and/or
crosslinkers are added to one of the bulk phases such that adsorption of surfactants and
subsequent crosslinking into a two-dimensional network can occur. If surfactants and/or
crosslinkers are dissolved in the droplet or the surrounding fluid, then phase (ii) starts
immediately when forming the droplet. In phase (ii) the shape changes and the capsule
finally reaches a new equilibrium shape. In phase (iii) the capsule is in its new stationary
shape after successful crosslinking; this is the state where the deflation experiment is started.
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2.2 Elastic capsules prepared in a pendant drop tensiometer

For the regression of deflated capsule shapes we usually assume that the equilibrium
state reached in phase (iii) is identical to the elastically relaxed state and, thus, free of
elastic tensions. As discussed above, we also assume in the constitutive relations (2.30) that
the surface tension γ gives a constant contribution to the tensions τs and τφ. Then the
surface stress in the elastically relaxed state of the membrane is solely determined by the
isotropic surface tension γ. We thus assume in (2.30) that the elastically relaxed state can
be described as a liquid drop shape using the Laplace-Young equation. Based on these two
assumptions we use a Laplace-Young fit for the equilibrium shape in phase (iii).
These two assumptions are based on the following picture for the crosslinking process in

phase (ii): When adding surfactants to one of the bulk phases at the beginning of phase (ii),
the surface tension typically decreases linearly or exponentially in time until it reaches a
plateau at the equilibrium surface tension γA. The actual crosslinking of the membrane only
happens after the plateau at the surface tension γA has been reached. During crosslinking
the interfacial tension γA of the fluid interface remains unchanged. If this picture is valid, we
should observe a sagging of the capsule under the action of gravity while a decreasing surface
tension gives shapes that can be successfully fitted using the Laplace-Young shape equations
(2.28). The sagging should stop when the surface tension reaches the plateau. During this
plateau phase the crosslinking is established, while the capsule shape is unchanged. Fig. 2.12
(right) shows an example of an OTS-capsule where all these features can indeed be observed.
Fitting the shape using the Laplace-Young shape equations gives only small errors and the
interfacial tension γ follows the expected temporal evolution.

There are, however, capsule formation processes which deviate from this picture. Another
possible scenario is that the formation of a solid shell by crosslinking happens earlier in phase
(ii) but further polymerization during phase (ii) generates elastic strains and stresses. All
further shape changes during phase (ii) have to be interpreted as a result of strain and stress
generation during the polymerization process, and the capsule shell is pre-stressed in the
equilibrium state in phase (iii). Then the elastic reference shape is not exactly known and,
in principle, can be any of the shapes encountered in phase (ii). One extreme assumption is
that crosslinking is fast and a solid membrane is established right at the beginning of phase
(ii). Then the shape in the beginning of phase (ii) directly after addition of surfactants and
crosslinkers can be viewed as the elastic reference shape and all subsequent shapes should be
fitted with an elastic model using this reference shape. Fits with the elastic model should
reveal how strains, stress, and elastic moduli evolve during phase (ii).

In order to decide which choice of reference shape is most appropriate, one can try different
fits using different shapes from phase (ii) as elastically relaxed reference shapes (for example,
from the end or the beginning of phase (ii)). All shapes before the reference shape are fitted
using the Laplace-Young shape equations and described by an interfacial tension γ that
decreases in time. All shapes following the reference shape are fitted using the elastic shape
equations and described by a surface Young modulus Y2D and a Poisson ratio ν2D, which
evolve in time. The reference shape giving the best fits (with smallest errors) should be
chosen. Moreover, choices of reference states producing unphysical results, such as a surface
Young modulus Y2D which is decreasing in time during the crosslinking process in phase (ii)
(more crosslinks or junction points should always increase Y2D), should be discarded.

Two examples are shown in Fig. 2.12. OTS-capsules show the typical sagging in phase (ii)
and can be fitted quite well with the Laplace-Young shape equations giving a surface tension
γ, which at first decreases linearly or exponentially and then reaches a plateau, consistent
with the standard scenario that the shell is crosslinked at the end of phase (ii). But the
shapes can also be fitted quite well assuming that crosslinking is established at the beginning
of phase (ii); then the observed sagging leads to fits with a decreasing Young modulus Y2D
and should, therefore, be discarded as unphysical.
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2 Deformation behavior of static elastic shells under hydrostatic loads

The second, untypical example are H20-droplets coated with coagulated films of Ce(SO4)2
and CTAB-surfactants, which only show little sagging during crosslinking and even develop
wrinkles already during phase (ii), which is a strong hint that a solid membrane had been
established early in phase (ii). The crosslinking process is much slower for these capsules.
Here, fits with the Laplace-Young shape equations give a decreasing γ that reaches a plateau;
the resulting fit errors are, however, quite large and growing in time. The assumption that
the shape in the beginning of phase (ii) is already crosslinked and can be regarded as the
elastically relaxed reference shape gives a Young modulus Y2D, which increases sharply in
the beginning of phase (ii) and then reaches a plateau; there is no pronounced decrease in
Y2D. Fit errors for this scenario are decreasing in time. The fit errors for the two fitting
approaches actually show an intersection point early in phase (ii). Between the beginning
of phase (ii) and the intersection point, the capsule shape is adequately described by the
liquid model. Beyond the intersection point the elastic model provides a more accurate
description than the liquid model. One might conclude that the formation of the network at
the interface is completed, when the system passes the intersection point. The surface Young
modulus does not change significantly after passing the intersection point, which confirms
our conclusion. Comparing fit errors could serve as a simple method to estimate the time
needed to built a crosslinked solid shell for different materials or chemical processes.

2.2.5 Software overview

The software and source code [3] provided with this paper are freely available at github.com/
jhegemann/opencapsule under a GPL license [4]. It is a command line program developed
in C/C++ and most compatible with Linux/Unix. Usage is fairly simple and a guideline
(README.md) is provided as part of the github repository. We give a brief description of
how the program works and how the typical workflow looks like.
Presuming that at least one image of the reference capsule and at least one image of a

deformed capsule is given, a first call OpenCapsule will establish the workspace, i.e., create
folders for the input/output files as well as a standard configuration file. The essential
information in the configuration file should be updated according to the needs. In particular,
the density difference ∆ρ between the inner and the outer phase is needed, as well as the
outer capillary diameter b. Both can be manipulated via the corresponding environment
variables EXPERIMENT_DENSITY and EXPERIMENT_CAPDIAMETER. In addition, the names and
paths of the image files need to be specified. Files have to be listed (separated by colons) next
to the environment variables REFERENCE_SHAPE and ELASTIC_SHAPE. Note that the software
searches for images by default in the ./input/-folder. If images are placed somewhere
else, the path should be specified via the variable INPUT_FOLDER. Requirements for capsule
images are detailed in the appendix.

This suffices to run the first analysis. To check if everything works correctly the command
OpenCapsule -r should be called, which will analyze the reference shapes and determine
the surface tension as an average over all given images and, of course, for each individual
image. This analysis can also be used to fit the deformed shapes with the Laplace-Young
equation, e.g. to determine the Gibbs-modulus. If the results are satisfactory, the command
OpenCapsule -s will run the elastic analysis. Both types of analyses are completely autom-
atized. The essential numerical results are placed in the ./global_out/-folder. The results
for the reference shapes are listed in reference.dat; the results for the deformed shapes in
sequence.dat. Though no graphical user interface is provided, the results will be printed in
a comprehensive html-report, which can be opened in a web browser. This report contains
the original capsule images with an overlay of the theoretical shape and a scale bar (see Fig.
2.13), from which one can instantly judge if the fitting procedure was successful. In case
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A B

C D

E2E1

Figure 2.13: Pendant capsule elastometry results for five different types of capsules. The
above images are the original input files overlayed with the best fit theoretical contour, the
scale-bar is of length 1 mm. These images are automatically generated by our Software. A)
Reference and deflated shape of a FC-40 droplet coated with supramolecular polymers and
crosslinked with cucurbit[8]uril in H2O [78]. Both the capsule contour and the wrinkling region
are perfectly described by the elastic model. The Laplace-Young analysis yields a surface tension
γ = 20.0 mN/m. The elastic analysis yields an area compression modulus K2D = 44 mN/m, a
Poisson ratio ν2D = 0.29, a bending modulus EB = 5·10−16 Nm and a layer thicknessH = 256 nm.
B) Reference and deflated shape of a dodecane droplet coated with three layers of PMAA/PVP
in H2O [98]. The Laplace-Young analysis yields a surface tension γ = 13.2 mN/m. The elastic
analysis yields an area compression modulus K2D = 141 mN/m, a Poisson ratio ν2D = 0.75, a
bending modulus EB = 2.20 · 10−14 Nm and a layer thickness H = 1.28µm. C) Reference and
deflated shape of an OTS-capsule, i.e., p-xylol droplet in solution with 1,2,4-trichlorobenzene and
coated with OTS in a glycerol-water mixture, see also Fig. 2.16, D) Reference and deflated shape
of a Span 65 capsule, i.e., H20-droplet coated with Span 65 (sorbitan tristearate) in dodecane, see
also Fig. 2.15 (left). E) Reference and deflated shape of an amino-functionalized polyacrylamide
capsule, i.e., H20-droplet with Na2CO3, N-(3-Aminopropyl)-methacrylamide, and DTAB E1)
or CTAB E2) surfactants, surrounded by an outer phase with p-xylol and sebacoyl dichloride,
see also Fig. 2.15 (right). For all five capsule types predicted wrinkle regions (blue lines) fit the
actual wrinkled area quite well. The wrinkles of the Span 65 capsule are hardly visible by eye,
probably because of a very thin shell and, thus, a small wrinkle wavelength. Span 65 is expected
to form molecular monolayers, which is consistent with this interpretation.

of failure, one should adapt the configuration file according to the guideline. Setting up a
proper configuration file once for a specific capsule type is typically sufficient. Afterwards it
can be used without changes for the same type of capsules.
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2 Deformation behavior of static elastic shells under hydrostatic loads

2.2.6 Reference analysis

The shape analysis is split into two batched parts, which are (i) reference shape analysis
and (ii) deformed shape analysis. For the former one it is advantageous to analyze as many
images as possible showing the same, undeformed state of the capsule. This is particularly
necessary if images are slightly blurred from camera shake or capsule motion. Averaging
over all images improves accuracy, which is important here, since we use the reference shape
and parameters during the complete analysis of the deformed shapes. The reference analysis
gives the surface tension γ and the shape profile that is necessary to define the strains in
the elastic analysis.
From the experiment we know the outer capillary diameter b and the density difference

∆ρ both in SI units. Solutions of the shape equations have to match the inner capillary of
width a, which is the relevant length scale. This quantity is typically specified by the needle
manufacturer, but due to material sediments, which potentially change the effective inner
capillary diameter, we prefer to measure it directly from the image. Actually, we determine
α in units of the image (pixels) by choosing it as an independent fit parameter that rescales
all lengths occuring in the Laplace-Young shape equations. From image processing we also
know the outer capillary diameter β in units of the image (pixels). Thus, we find a = 〈α/β〉b,
which is the effective inner capillary diameter in SI units. Scaling dimensionless lengths
with a transforms them to SI units. We introduce dimensionless quantities p̃0 = ap0/γ and
∆ρ̃ = a2∆ρg/γ and minimize the mean square deviation between shape and contour with
respect to the parameter set x0 = (p̃0,∆ρ̃, α). After successful minimization, we obtain the
surface tension via γ = a∆ρg/∆ρ̃. To prepare all contours for the elastic analysis we scale
them with 1/α and thereby transfer them to dimensionless units.

2.2.7 Elastic analysis

In the elastic regression we determine the area compression modulus K2D and the Poisson
ratio ν2D by minimizing the mean-square deviations between image contour points and
theoretical contour, i.e., with respect to the parameter set x = (p̃, ν2D, K̃2D), where p̃ = ap/γ
and K̃2D = K2D/γ. From these quantities we also obtain the surface Young modulus
Y2D = 2K2D(1− ν2D), see eq. (2.2.3). For the Mooney-Rivlin elasticity model we determine
analogously the parameter set x = (p̃,Ψ, ỸM ) within the shape regression. For the neo-
Hookean elasticity model we keep Ψ = 1 fixed during the shape regression.
It is not required that elastic shapes are ordered chronologically, but it decreases the

runtime significantly, since the final parameters of a deformed shape can be used as an initial
guess for the following shape, which is probably deformed by a similar extent.
In the current implementation, the pressure p is an additional fit parameter and will

also be determined from fitting calculated shapes to an image. In this implementation
the elastometry method also serves as pressure measurement and no additional pressure
measurement is necessary. If such information is experimentally available from additional
measurements, it could be used to improve the results for the elastic moduli, by fixing the
pressure to the experimentally obtained value.
After a successful regression we can estimate the bending modulus [1]

EB = Λ4τ̄s/16π2L2
w

by an image analysis of the wrinkles. We determine the length Lw of the wrinkles in
meridional direction directly from the shape by finding the zero crossings s1 and s2 of τφ(s0).
The interval [s1, s2] in which wrinkles occur sets the meridional extent of the wrinkled
region, in which we determine the average meridional tension τ̄s. It is important to note
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that the extent of the wrinkled region is not a fit parameter but is predicted by the shape
equations and the wrinkling criterion τφ < 0, according to Sec. 2.2.3. In order to estimate
the wrinkling wavelength Λ, we select the wrinkling region from the image and perform an
edge detection with high sensitivity and only in horizontal direction to estimate the average
distance between the wrinkles, which should correspond to one wavelength Λ. We then
count the detected edge pixels NE and the total number N of pixels in the selected region.
The ratio N/NE now approximately gives the number of wrinkles apparent in the image,
if we consider the region as rectangular with equidistant vertical wrinkles. Finally, we use
the estimate Λ ≈ πr̄NE/N , where r̄ is the capsule radius r(s0) averaged over the interval
[s1, s2].
Knowing Y2D, ν2D and EB, we can directly determine the Föppl von Kármán number

γFvK = Y2DR
2
0/EB of the capsule, where R0 is the maximum capsule radius. If we assume

that the shell material is a thin layer of a three-dimensional isotropic elastic material, we
additionally find the thickness H = [12EB(1 − ν2

2D)/Y2D)]1/2 of the layer, where we use
Y2D = Y3DH, EB = Y3DH

3/12(1− ν2
3D) and ν3D = ν2D.

2.2.8 Applications

In this section we demonstrate the wide applicability of our pendant capsule elastometry
software to different capsule materials, see Fig. 2.13. We apply our software to crosslinked
polymeric capsule shell materials like OTS (octadecyltrichorosilane) (Fig. 2.13 C) and amino
functionalized polyacrylamide (Fig. 2.13 E), as well as more exotic capsule materials like
Span 65 [99–101], which is a food emulsifier (Fig. 2.13 D). Moreover, Fig. 2.13 shows analyses
of two sorts of capsules from literature, cucurbit[8]uril-capsules that have been introduced
and discussed in Ref. [78] (Fig. 2.13 A) and PMAA/PVP-capsules from Ref. [98] (Fig. 2.13
B). In addition, the method has been used previously (in a less advanced implementation)
on hydrophobin-coated air bubbles [1].
As can be seen in Fig. 2.13, nonlinear Hookean fits for all capsule materials work well

and correctly predict the extents of the wrinkled regions (blue lines). The different capsule
materials that could be analyzed have quite diverse area compression moduli ranging
from K2D ∼ 50 mN/m (polyacrylamide capsules and cucurbit[8]uril-crosslinked capsules) to
K2D ∼ 4 N/m (OTS-capsules), which corresponds to two orders of magnitude. The bending
moduli from the wrinkle analysis range from EB = 5 · 10−16 Nm (cucurbit[8]uril-crosslinked
capsules) to EB = 10−13 Nm (OTS-capsules from Fig. 2.17). For the Span 65 capsules we
find even lower bending moduli of order EB = 10−20 Nm assuming a quite short wrinkle
wavelengths just below the image resolution. However, the existence of these wrinkles could
not be verified experimentally, yet.
Capsules in Fig. 2.13 develop a ‘neck’ upon deflation. We note that this neck is not

associated with any mechanical instability (e.g., a buckling-type instability [44, 71]), i.e., there
is no bifurcation between different types of shapes upon deflation but all shapes continuously
evolve into the necked shapes. The deflated shapes exhibit high compressive stretches in
particular in the wrinkled region as Fig. 2.14 shows, where the resulting stretches λs and λφ
are plotted along the deflated contours for all capsules shown in Fig. 2.13 and, indeed, values
significantly smaller than 1 occur for λφ. This raises the question whether nonlinear effects
are adequately treated by the nonlinear Hookean material model. This model contains
nonlinearities only via the 1/λ-factors in the constitutive relations (2.30), which arise because
we use Cauchy stresses defined per deformed unit length in the force-equilibria.

Our model explicitly includes, however, wrinkle formation, which is a nonlinear phe-
nomenon. We actually use a different constitutive relation τφ = 0 (see eqs. (2.32) above) in
the wrinkled region, such that a further decrease in the apparent stretch λ̄φ = r̄/r0 in the
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Figure 2.14: Stretching factors λs,φ along the deflated capsule contours from Fig. 2.13 obtained
from shape regressions with the nonlinear Hookean elasticity (solid lines), and the Mooney-Rivlin
or neo-Hookean elasticity model (dashed lines). The wrinkled region is indicated by transparent
lines (either solid or dashed) for both elasticity models. Left: Meridional stretching factor λs
as a function of the arc length s0. Except of the cucurbit[8]uril and the Span 65 capsules, all
capsules have small strains |λs− 1| < 0.1 and, thus, can be successfully treated with small strain
approximations, i.e., the nonlinear Hookean elasticity model. Right: Circumferential stretching
factor λφ (apparent stretch λ̄φ in the wrinkled region) as a function of s0. Particularly in the
wrinkled region, we see significant deviations from the small strain limit |λφ − 1| < 0.1. In the
wrinkled region we use, however, a different constitutive law (τφ = 0) independent of λ̄φ. In the
non-wrinkled region, we find again small strains |λφ − 1| < 0.1 for PVMAA/PVP, OTS, and
polyacrylamide capsules.

wrinkled region does no longer lead to increased compressive stresses τφ but only modifies
the effective constitutive law (2.2.3) for the meridional stresses τ̄s of the pseudo-surface.
Therefore, small values of λ̄φ in the wrinkled region do not imply that a different, more
appropriate nonlinear constitutive relation should be used. The results in Fig. 2.14 show
that strains |λφ − 1| become large only in this wrinkled region. This suggests that usage of
the nonlinear Hookean elasticity is justified.
In order to investigate nonlinear effects further, we also performed fits of all capsules

from Fig. 2.13 with a nonlinear Mooney-Rivlin or neo-Hookean elasticity model. The
resulting best fits for the theoretical contour are not distinguishable from the nonlinear
Hookean contours shown in Fig. 2.13, which already suggests that nonlinearities are already
adequately treated by the nonlinear Hooke law. In Fig. 2.14 we also compare the stretches
resulting from shape regressions with the nonlinear Hookean and the Mooney-Rivlin or
neo-Hookean elasticity model for all deflated capsule shapes from Fig. 2.13. We see that
strains are similar for both models for any of the capsule materials, except of the Span 65
capsules, where we were not able to obtain a reliable fit result using the Mooney-Rivlin
elasticity model. For Span 65 the meridional stretching factor varies strongly with the arc
length indicating strongly inhomogeneous stresses, which might be the reason for these
problems. Treating the dimensionless shape parameter Ψ within Mooney-Rivlin elasticity
as an independent fit variable results in Ψ → 1 for PVMAA/PVP, OTS, polyacrylamide
CTAB, and polyacrylamide DTAB capsules. It is noticeable that all these materials give a
Poisson ratio ν2D > 0.5 employing the nonlinear Hookean fit. Only for the cucurbit[8]uril
capsules, which have a Poisson ratio ν2D < 0.5 we find Ψ < 1 and, thus, deviations from the
neo-Hookean behavior. This indicates that most of the capsule materials discussed in this
paper behave like a neo-Hookean material and, thus, also similar to a nonlinear Hookean
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Figure 2.15: Left: Pendant capsule elastometry results for Span 65 capsules, i.e., H2O-
droplets coated with Span 65 (sorbitan tristearate) in dodecane. We analyzed eight individual
capsules (color code), most of them fitted over three phases of deflation. The inset also shows
the three inflation phases for one of these capsules. The inflation phases differ significantly
among the capsules, and there is no generic behavior as for the deflation phases. Among the
individual capsules, volume change rates vary between 0.5 and 1.0µl/s. Surface shear-rheometry
measurements give K2D = 0.9N/m, Langmuir-Blodgett trough K2D = 0.33N/m, spinning-
drop K2D = 0.36N/m, and rheoscope K2D = 0.54N/m. Rheological measurements are thus
consistent with our method, which also reveals a strong variation of K2D with the volume. The
Poisson ratio is roughly given by ν2D = 0.8. Right: Pendant capsule elastometry results for
polyacrylamide capsules, i.e., H20-droplet with Na2CO3, N-(3-Aminopropyl)-methacrylamide
and DTAB (circles) or CTAB (quads) surfactants. The outer phase consists of p-xylol and
sebacoyl dichloride. We analyzed four individual CTAB and four individual DTAB capsules,
most of them fitted over three phases of deflation. Deformations were applied after 60 minutes
equilibration time with the crosslinker. The Poisson ratio is ν2D = 0.6 with DTAB surfactants
and ν2D = 0.5 with CTAB surfactants. The values of the area compression modulus are consistent
with shear-rheometer measurements, which give K2D = 30 . . . 100mN/m.

material in the small strain limit. This limit is obviously applicable to PVMAA/PVP, OTS
and polyacrylamide capsules, since they all satisfy |λs − 1| < 0.1 over the whole contour,
and also |λφ − 1| < 0.1 in the non-wrinkled region. Because of these results and the fact
that Mooney-Rivlin fits require a much higher computational cost, we focus on nonlinear
Hookean elasticity in the following, which gives good results for all capsule types.
Where comparison to other rheological measurements is possible, results from pendant

droplet elastometry are in good agreement. For PMAA/PVP-capsules, the surface Young
modulus of Y2D = 211mN/m agrees with the findings in Ref. [98]. In the following we will
discuss results on the OTS-, amino-functionalized polyacrylamide, and Span 65 capsules,
which have not been previously discussed in the literature, in more detail. Pendant capsule
elastometry allows us to obtain elastic moduli of the two-dimensional capsule shell material
for each digitized image of the deflated capsule shape (if at least one image of its undeformed
reference shape is provided). Therefore elastic moduli can be determined as a function of
the deflation volume. If the volume change rate can be controlled, elastic moduli can be
determined as a function of the volume change rate to investigate viscoelastic effects. If
series of images over one or several deflation cycles are available, we can investigate aging
effects, for example, by plastic deformation over many deflation cycles. We will explore these
possibilities for OTS-, polyacrylamide, and Span 65 capsules, starting with the latter.
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2 Deformation behavior of static elastic shells under hydrostatic loads

Span 65 capsules

Span 65 has a polar head group connected to three carbon chains leading to intermolecular
interactions when adsorbed to a liquid interface. Though not explicitly crosslinked, the
material shows elastic properties due to the formation of temporary networks. For Span 65,
our method agrees with four different rheological measurements (surface shear-rheometry,
Langmuir-Blodgett, spinning-drop method, and shear flow rheoscope), which all give area
compression moduli K2D between 0.3 and 0.9 N/m. These fit well to the values K2D =
0.2 . . . 1.0 N/m obtained by our method for small deformations at V/V0 > 0.8, see Fig. 2.15
(left). The pendant capsule elastometry results in Fig. 2.15 (left) also reveal that the area
compression modulus strongly varies with the volume: deflated capsules with V/V0 < 0.5
become very soft withK2D < 0.1N/m. This pronounced compression softening can eventually
explain the deviations among previous rheological measurements. Upon re-inflating the
capsule, the compression modulus exhibits a non-monotonous behavior (see Fig. 2.15 inset)
but we do not find a generic pathway among the eight individual capsules that we analyzed.
We can, however, speculate based on visual impressions from the images that the capsule
material develops overlaps or similar microscopic folds that vanish after complete re-inflation.
As a consequence, we see hysteresis but no aging effects as the compression modulus returns
to its original value after completing a deformation cycle, see Fig. 2.15 (left). We also do not
see a pronounced change of this behavior if the volume change rate is changed. All these
results suggest that the compression softening could be a result of reversible rearrangements
of the temporary network of the capsule material on time scales, which are short compared
to the time scale of volume changes. These reversible rearrangements lead to an apparent
decrease of elastic moduli with decreasing volume. In Fig. 2.14 we showed that Span 65
capsules exhibit strongly inhomogeneous strains, which likewise indicates a quite complex
elastic behavior. Eventually, one might conclude that Span 65 is not well described by
classical elastic models. Specific models that account for the microscopic details of the
material have to be developed to analyze the elastic properties of Span 65 in more detail.
In contrast to permanently crosslinked polymer membranes Span 65 forms temporarily
crosslinked network structures [102]. Within these structures, the applied stresses can relax
with time constants of the order of several minutes, which leads to time-dependent transitions
from solid into liquid like membranes. This more complicated rheological behavior, can
only be described by time-dependent nonlinear constitutive laws. Bending moduli can not
be determined directly from the images since the wrinkles are not visible by eye although
the shape analysis suggests the existence of wrinkles over an extended region, see Fig. 2.13
D. One could assume a wrinkle wavelength just below the image resolution, which gives
Λ ≤ 8µm, EB ≤ 2 · 10−20 Nm, and H ≤ 1.67 nm. Eventually wrinkles could also be absent
in this system because compressive hoop stresses can be relaxed by the rearrangements in
the temporary network.

Polyacrylamide capsules

We tested our software also on amino functionalized polyacrylamide capsules formed with two
different surfactants CTAB and DTAB, see Fig. 2.15 (right). For the CTAB polyacrylamide
capsules we find area compression moduli in the range K2D = 50 . . . 100 mN/m and a Poisson
ratio ν2D = 0.5, for the DTAB polyacrylamide capsules we find K2D = 30 . . . 60 mN/m and
ν2D = 0.6. These values are consistent with surface shear-rheometry measurements giving
K2D = 30 . . . 100 mN/m. Our pendant capsule elastometry results show that the elastic
properties of this type of capsule can be tuned by changing only the surfactants (CTAB vs.
DTAB) and not the crosslinker. Fig. 2.15 (right) clearly shows that CTAB gives consistently
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Figure 2.16: Pendant capsule elastometry results for OTS-capsules, i.e., a p-xylol droplet in
solution with 1,2,4-trichlorobenzene and coated with OTS in a glycerol-water mixture. We
analyzed a single individual capsule with a volume change rate of 0.5µl/s (points) and total
volume reductions of 2.5µl (gray), 5.0µl (blue), 7.5µl (dark violet), 10.0µl (light violet), 12.5µl
(red). The same capsule was analyzed with step-wise increased volume change rates (1.0, 2.5, 5.0,
7.5µl/s) up to 10µl/s (orange) and the same total volume reductions. The capsule was subject
to 30 cycles of de- and inflation, and we analyzed 1674 images for the first and last five cycles,
which allows us to calculate error bars by averaging over small volume ranges. Spinning drop
measurements give K2D = 3.0 . . . 7.5 N/m and rheoscope measurements K2D = 4.0 . . . 10 N/m,
depending on which Poisson ratio ν2D is assumed to obtain K2D from the actually measured Y2D.
These values are slightly higher than our pendant elastometry measurements. For the Poisson
ratio we get roughly ν2D = 0.85, which is slightly above previous measurements predicting
ν2D = 0.5 . . . 0.8 [91]. We see that, for the last 5 cycles with a volume change rate of 10.0µl/s
(orange), the material has softened significantly, regarding Y2D and µ′. The area compression
modulus K2D increased, however, due to an increased Poisson ratio. In principle, these effects
could either be induced by aging or by viscoelastic effects. For viscoelastic materials we typically
expect a stiffening when volume change rates are increased. Therefore, we suggest that this
softening is induced by aging at the intermediate rates 1.0, 2.5, 5.0 and 7.5µl/s that have been
applied before the final 10.0µl/s rate.

stiffer capsules than DTAB. Bending moduli for the DTAB polyacrylamide capsules are
slightly smaller than for the CTAB polyacrylamide capsules. We find EB = 10−14 Nm for
CTAB and EB = 8 · 10−15 Nm for DTAB (using images from Fig. 2.13).

OTS capsules

For the OTS-capsules from Fig. 2.16 we find values K2D = 1.0 . . . 4.0 N/m, which is just
slightly below the rheological data from other methods giving K2D = 3.0 . . . 10.0 N/m
(spinning drop measurements give K2D = 3.0 . . . 7.5 N/m and rheoscope measurements
K2D = 4.0 . . . 10 N/m), see Fig. 2.16. In Fig. 2.16, we analyzed a single OTS-capsule for
different volume change rates ranging from 0.5 (slow) to 10.0µl/s (fast). In principle,
this enables us to see viscoelastic effects. We expect a viscoelastic material to exhibit a
smaller shear modulus µ′ for slow deformation such that creep or viscoelastic relaxation
is possible. Fig. 2.16 shows that the surface Young modulus and the shear modulus
µ′ = K2D(1− ν2D)/(1 + ν2D) are both significantly decreased for higher volume change rates.
Therefore, this is probably an effect of aging rather than viscoelastic behavior. It is thereby
difficult to explain the increased area compression modulus and Poisson’s ratio, which
indicates that the capsule material tends to become incompressible due to microscopic effects,
that cannot be observed in detail experimentally. However, by exploring volume cycles for
a wide range of volume change rates, it should, in principle, be possible to determine the
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Figure 2.17: We analyze a single OTS-capsule [1], i.e., a H2O-droplet coated with OTS in p-
xylol, for three consecutive deflation and inflation cycles. This reveals aging effects: deformations
become nearly reversible after two complete deformation cycles. For the first two cycles we
clearly see hysteresis. Note that these OTS-capsules exhibit much smaller values of the area
compression modulus K2D compared to those in Fig. 2.16. Since both capsule membranes are
made from OTS, and both should have a similar thickness ranging from 100 to 1000 nm, we
conclude that this has to originate in the different liquid phases that have been used. Here, a
water droplet was used in a p-xylol phase, whereas for the capsules in Fig. 2.16 a p-xylol droplet
was used in a glycerin-water mixture. This possibly influences the network forming process, such
that capsules from Fig. 2.16 appear more like an incompressible material.

frequency dependence of the surface shear (storage) modulus µ′ from these measurements.
Therefore, individual capsules should be prepared for each volume change rate to eliminate
the influence of aging.

For OTS-capsules (with different liquid phases compared to those in Fig. 2.16) we analyzed
aging effects in more detail in Fig. 2.17 by monitoring the change of elastic constants over
three consecutive deformation cycles of the same capsule. For this capsule, the deformation
behavior becomes approximately reversible only after completing two deflation-inflation
cycles. The first two cycles exhibit hysteresis hinting to plastic deformation in the capsule.
Similar effects can be seen in Fig. 2.16, where the OTS-capsule was subject to 30 de- and
inflation cycles in total. The orange circles show the last five cycles where we observe a
softening regarding the shear modulus, a stiffening regarding the area compression modulus,
as well as an increased Poisson ratio. For all quantities the volume dependence is weakened.
Capsules from Fig. 2.16 obviously exhibit a more complex aging behavior, which can only be
caused by the different liquid phases (essentially oil and water phase swapped), because the
OTS shell material is the same. However, these results suggests that by iteratively applying
small volume change rates and small total volume reductions, capsule deformations can reach
a reversible regime, where subsequent deformation cycles yield the same elastic constants and
aging is effectively absent. If, however, the volume change rates or total volume reductions
are successively increased, aging proceeds and the capsule material becomes even softer.
By applying the wrinkling analysis to the capsules from Fig. 2.16 we measure wrinkling

wavelengths Λ = 0.2 mm leading to a bending modulus of EB = 10−15 . . . 10−14 Nm and a
thickness H = 90 . . . 290 nm. Electron microscopy measurements give H = 100 . . . 1000 nm,
which roughly agrees. The quality of these estimates depends crucially on the measurement
of the wrinkling wavelength since we have EB ∝ Λ4. We prefer to measure Λ at the bottom
of the wrinkles, because length measurements in the center of the capsule can be better
translated to the length scale prescribed by the outer capillary diameter.
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2.2 Elastic capsules prepared in a pendant drop tensiometer

2.2.9 Gibbs modulus

Finally, we like to discuss why the Gibbs modulus is not suitable to analyze solid-like elastic
shell materials. As mentioned above, the Gibbs modulus EGibbs = dγ/d lnA is frequently
determined from measurements of an ‘effective surface tension’ γ describing the solid shell
interface as a function of the surface area A. We use the term ‘effective’ here, because, in
principle, one cannot determine a surface tension from deformations of a solid shell interface.
The Gibbs modulus EGibbs is equal to the area compression modulus K2D for a fluid interface
or for a two-dimensional solid interface in a planar Langmuir-Blodgett trough geometry.
It is possible to determine the Gibbs modulus by using a standard pendant drop ten-

siometer measuring only the surface tension and the surface area. Commercial pendant drop
tensiometers apply sine-like volume changes and determine the complex Gibbs modulus with
an elastic and a viscoelastic contribution. This type of analysis is sometimes referred to as
the ‘oscillating drop’ method.

To be consistent with our purely elastic model, we apply a linear fit in the (lnA, γ)-plane.
For the OTS-capsules we find EGibbs = 40 mN/m, which is two orders of magnitude below
the actually measured area compression moduli. Similar results were obtained in Ref. [1],
where EGibbs and K2D were compared for theoretically generated shapes. For the Span
65 capsules we get EGibbs = 33 mN/m, which is one order of magnitude below the value
obtained in the Langmuir-Blodgett trough. We obtained similar values EGibbs ≈ 40 mN/m
by applying the oscillating drop method to Span 65 capsules, which explicitly demonstrates
that determining the Gibbs modulus with a pendant drop tensiometer leads to misleading
results, as already stated in Ref. [1]. The deformed shapes of elastic capsules cannot be
fitted accurately with the Laplace-Young equation for fluid interfaces as we have already
shown in Fig. 2.12. Moreover, the relation between Gibbs modulus and area compression
modulus K2D becomes non-trivial and geometry-dependent because of inhomogeneous elastic
stresses in the capsule geometry and the existence of a curved undeformed reference shape
of the capsule. Only in a planar geometry, where the elastically relaxed reference state is
planar and where stresses remain homogeneous, the Gibbs modulus coincides with the area
compression modulus.

2.2.10 Conclusion

We developed an efficient and completely automated C/C++ software in order to perform
pendant capsule elastometry in pendant drop devices. The analysis is based on a thin elastic
shell model of the capsule interface and, thus, applies for elastic solid capsule materials.
Such materials can be recognized, for example, by their ability to develop wrinkles.
The analysis requires a reference shape, for which we usually assume that it can be

described by a liquid Laplace-Young shape if the shell material is crosslinked at a liquid
interface. A minimum set of two images, one of the reference shape and another of a deformed
shape, and two experimental parameters, namely the density difference ∆ρ and the outer
capillary diameter b, are sufficient to run the complete analysis and obtain values for Young’s
modulus and Poisson’s ratio using the Hookean elasticity model, or, alternatively, the Rivlin
modulus and the dimensionless shape parameter using the Mooney-Rivlin elasticity model.
In addition, if wrinkling occurs, the bending modulus and, thus, the shell thickness can be
determined from a wrinkle wavelength measurement.

More interesting results are often obtained, if a whole sequence of deformed states can be
analyzed in chronological order, which makes it possible to investigate the dependence of the
elastic moduli on the capsule volume. This is where possible phase transitions, hysteresis
and aging effects, or plastic deformations of the material could be detected. Future work
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should explore whether a frequency-dependent surface shear (storage) modulus µ′ can be
reliably determined by measurements at different volume change rates.

In our present implementation pendant capsule elastometry does not require experimental
information on the pressure p but rather serves itself as a pressure measurement because p
is determined by shape fitting. If such pressure is measured independently, this additional
information can be readily used to improve the results for the remaining fit parameters
by setting p to a constant value within shape regression. This option is supported by the
current version of our software. But there are also other possibilities to use the pressure
information, e.g., to directly calculate local stresses in the deformed state from additional
image information on local curvatures and radii [77]. This additional stress information can
then be used to improve the shape fitting procedure beyond simple elimination of one fit
parameter [61].
In the present form of the code, we provide linear Hookean elasticity, nonlinear Hookean

elasticity, and Mooney-Rivlin or neo-Hookean elasticity to describe the elastic behavior of
the shell material. We find that the nonlinear Hookean model gives the best compromise
between accuracy and performance. Moreover, we randomly checked the results against
Mooney-Rivlin elasticity (which is much slower due to numerical determination of the closure
relations). This revealed that both elasticity models give similar results over a wide range of
materials and deformation behavior. We find that the simple linear Hookean elasticity can
only describe very small deformations compared to nonlinear Hookean or Mooney-Rivlin
elasticity. We gained this insight from generating theoretical shapes, where we decreased
the pressure successively, thereby simulating proceeding deflation. Numerics for the linear
Hookean elasticity failed much earlier in fulfilling the required boundary conditions, which is
necessary to generate a valid shape. It remains to be verified systematically, however, what
differences eventually arise between fitting with different elasticity models. Fitting with the
most appropriate model should produce the least elastic parameter variation as a function
of the volume.

For certain materials the use of even more specific elastic models is more appropriate, for
example, hydrophobins coating air bubbles [1, 10] act as interfacial rafts of hard particles
with soft shells, which require a more refined elastic description to interpret capsule shapes
correctly and avoid jumps in elastic constant in elastometry fits [57]. Therefore, future work
should also aim at implementing different elastic models in order to compare fit results for
different models and determine the most appropriate model from the data. In particular,
for the Span 65 investigated in this paper, we suggest to develop such microscopic models,
because we found strongly inhomogeneous strains and generally atypical elastic behavior.
Moreover fit results revealed a pronounced compression softening, which we did not find
for any other capsule material, which also hints to the use of a more appropriate elasticity
model.

As we have shown, our software for pendant drop devices is widely applicable. We tested
it on different materials and the results are in good agreement with available rheological
data. We make the OpenCapsule software freely available under the GPL license [4] at
github.com/jhegemann/opencapsule.

2.3 Numerics of pendant capsules and shape analysis
Since we explicitly focused on performance and robustness within pendant capsule elastome-
try, we give a detailed description of the numerical procedure we apply. These numerical
details shall also help to understand the source code of the pendant capsule elastometry
software OpenCapsule provided with this work.
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2.3 Numerics of pendant capsules and shape analysis

2.3.1 Least squares

Both the shooting method and the shape regression require least square error/deviation
minimization. Fitting shape equations to experimental contours is implemented by a nested
minimization algorithm, which minimizes the distance between individual shape segments
(and the boundary conditions) in an inner loop, which we call shooting method (see Sec. 2.3.3
below), and the deviation between theoretical shape and contour in an outer loop, which we
call shape regression (see Sec. 2.3.4 below). At first, we characterize the error function that
has to be minimized within the least square algorithm.
Consider a global residual vector

F (x) = (ϕ1(x), . . . ,ϕN (x))T

assembling the individual residuals ϕi that depend on an arbitrary parameter set x. In case
of the shooting method, the residuals ϕi are defined by the distances between consecutive
shape segments and, finally, between the last shape segment and the boundary condition.
Thus, the parameter set x can be identified with the set of shooting parameters, which
are the initial values of the individual shape segments. In case of the shape regression, the
residuals ϕi give the shortest distances between the discrete points of the contour (obtained
from the image) and the theoretical shape profile given by a solution of the shape equations.
Thus, the parameter set x can be identified with the shape parameters characterizing the
solutions of either the Laplace-Young equations (2.28) or the elastic shape equations (2.29).

We now introduce the general least square method, stressing again that we use this method
for both the shooting method and the shape regression. The Jacobian JF measures the
change of F (x) at some point x. In order to minimize the euclidean norm ‖F (x)‖ with
respect to x we linearize F (x) within a small region ∆x according to

‖F (x + ∆x)‖ = ‖F (x) + JF ∆x‖ != 0

yielding the linear and typically over-determined system of equations

JF ∆x = −F (x).

Standard algorithms like the Gauss-Newton method solve the quadratic normal equation

JTF JF ∆x = −JTF F (x),

but we prefer to directly solve (2.36), because the condition of JTF JF can be poor in comparison
to the condition of JF , i.e.,

cond(JTF JF ) ∼ cond(JF )2.

We do so by decomposing JF = QR via Householder transformations and multiplying with
QT ,

R∆x = −QTF (x),

where we used that QTQ = 1. Note that this yields

R =
(

R0
0

)
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2 Deformation behavior of static elastic shells under hydrostatic loads

and

QTF (x) =
(

b0
b1

)

in case of over-determined systems, such that the solution is given by

∆x = R−1
0 b0

with a finite error

‖F (x) + JF R−1
0 b0‖ = ‖b1‖.

Applying the parameter shift ∆x resulting from (2.42) or (2.36) iteratively to the current
parameter set finally gives a solution x∗, which minimizes ‖F (x)‖, i.e.,

min
x
‖F (x)‖ = x∗.

To obtain the sequence {xk} that finally converges to x∗, we use the update scheme

xk+1 = xk + λj∆xk,

where λj is chosen such that ‖F (x)‖ decreases in each step of iteration. Several line search
methods may be applied here, but, in view of efficiency, we prefer to chose λj = 1/2j , where
we increase j starting from j = 0 until

‖F (xk + λj∆x)‖ < ‖F (xk)‖.

This is sometimes referred to as a ‘backtracking line search’ method. The minimization
algorithm will be used for the multiple shooting method, where (2.36) is quadratic, as well
as for the final regression of the shape equations, where (2.36) is strongly over-determined.
Since we exclusively use numerical differential quotients the algorithm converges linearly,
whereas a classical Newton minimization would converge quadratically due to analytical
derivatives.

2.3.2 Reference shape

Obtaining a shape profile from the set of shape equations (2.28) is trivial, since there are no
shooting parameters. In practice, one integrates the set of shape equations (2.28) (while
increasing the arc length s0) until r0(s0) = a/2 is satisfied for the second time, meaning
that the shape enters the capillary from r0 > a/2 (there is also a solution, which enters the
capillary for the first time from r0 < a/2; this solution has a much smaller volume and does
usually not correspond to the experimental reference shape). The arc length s0 that satisfies
this condition is chosen as the undeformed contour length L0, such that r0(L0) = a/2.
Note that the undeformed length L0 is fixed for the deformed shape profiles. The resulting
reference shape

y0(s0,x0) =

r0(s0,x0)
z0(s0,x0)
ψ0(s0,x0)


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is obtained as a function of of the parameter set x0 = {p0, ρ, α}, which are adapted during
the shape regression (see Sec. 2.3.4) to optimally match the contour points extracted from
the image.

2.3.3 Shooting method

Solving the elastic shape equations requires a shooting method to be applied, because of
the unknown initial tension τs(0) = µ at the capsule’s apex. For a given initial value µ we
therefore integrate the shape equations starting at the capsule’s apex from s0 = 0 to s0 = L0,
where L0 was determined before by satisfying the boundary condition of the Laplace-Young
reference shape. We thereby obtain a deformed shape trajectory y(s0;µ)T , which depends
on the reference shape via the shape profile r0(s0) and the length of the undeformed contour
L0. However, the deformed length L =

∫ L0
0 λsds0 of course adapts according to the stretch

factor λs. For a capsule with inner capillary width a centered at r = 0 a valid solution has
to satisfy the boundary condition

f(µ) = r(L0;µ)− a/2 != 0.

The function f(µ), which is measured from the solution y(s0;µ)T , has to be minimized by
applying a bisection with respect to the parameter µ. We recommend a bisection in this
case, because the function f(µ) is very steep, particularly for large area compression moduli
K2D. The algorithm is assumed to be converged if |f(µ)| < εsingle. Note that our software
takes this as a minimum criterion, i.e., it tries to minimize |f(µ)| even further until the
interval within the bisection method becomes smaller than 10−16. It is generally important
to minimize |f(µ)| as far as possible, because the shape trajectories are very sensitive to the
initial value µ.
In cases where the required accuracy εsingle can not be reached, we further improve

solutions by applying a multiple shooting method subsequently. For this purpose we divide
the interval [0, L0] in q sub-intervals with q+1 grid points at sk = k L0/q, where k = 0, . . . , q.
On the sub-interval [sk, sk+1] we define the k-th segment

yk(s0) ≡ y0
k +

∫ s0

sk

ds′0 f
(
y(s′0) ; y0

k

)
by integrating the set of shape equations

y′ = f
(
y(s0) ; y0

k

)
,

starting at

y0
k = (r0

k, z
0
k, ψ

0
k, τ

0
k ) ∈ R4

and ending at

yk ≡ yk(sk+1, y
0
k) ∈ R4.

Note that the final segment yq−1 has to match the final grid point yq. Having decomposed
the continuous solution in q individual segments, we track the k-th residual vector separating
the k-th and (k + 1)-th segment via

ϕk =
{

yk − y0
k+1 ∈ R4 k = 1 . . . q − 2

yk,1 − y0
k+1,1 ∈ R1 k = q − 1 .
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The last segment and grid point, yq−1,1 = rq−1(sq) and y0
q,1 = r0

q = a/2, define the final
boundary condition (2.48), where the capillary has to be matched. Any other residual
corresponds to continuity conditions that ensure a smooth shape. To arrange the segments
into a continuous solution while satisfying the boundary condition at the capillary, we
have to set up the Jacobians for each segment yk, where k ∈ [0, q − 1], with respect to the
corresponding initial values y0

k. At s0 only τ0
0 can be chosen freely, whereas r0

0 = 0, z0
0 = ζ

and ψ0
0 = 0 are fixed due to axis symmetry. At sq we have to satisfy the boundary condition

rq−1(sq)− a/2 = 0 whereas zq−1(sq), ψq−1(sq) and τq−1(sq) are arbitrary. The Jacobian J0
corresponding to y0 is a column vector in R4, the Jacobian Jq−1 corresponding to yq−1 is a
row vector in R4. All intermediate Jacobians Jk with k = 1, . . . , q− 2 are quadratic matrices
in R4×4 and we can write them as

J0 = ∂y0
∂τ0

0
, Jk = ∂yk

∂y0
k

, Jq−1 = ∂rq−1
∂y0

q−1
,

where we use differential quotients

∂yk
∂y0

k,i

= 1
2∆

(
y(sk+1; sk,y0

k + ∆ei)− y(sk+1; sk,y0
k −∆ei)

)
with canonical unit vectors ei and i = 1, . . . , 4. Note that we typically use ∆ = 10−6. Finally
we find the block-matrix

J =
∂(y0 − y0

1, . . . ,yq−1,1 − y0
q,1)

∂(y0
0, . . . ,y

0
q−1)

=


J0 −1 . . . 0
... . . . . . . ...
... . . . −1
0 . . . . . . Jq−1

 ,

where 1 ∈ R4 denotes the identity matrix. Applying the least square minimization method
described above, i.e., solving the quadratic system JF ∆x = −F iteratively, where

F = (ϕ0, . . . ,ϕq−1)

assembles the residuals and

∆x = (∆τ0
0 ,∆y0

1, . . . ,∆y0
q−1)

is the initial value shift we get in each iteration, we finally converge into the continuous
solution. The speed of convergence varies with the number of sub-intervals q, which thus
has to be optimized in each iteration. We typically increase q corresponding to q → q + 4
starting at q = 4 until we achieve convergence. This is efficient, because it keeps q small.
Note that adding only a single interval, i.e., q → q + 1, leads to four extra dimensions in the
quadratic system J∆x = −F .
The multiple shooting is assumed to be converged if ‖F ‖ < εmulti, which also implies
|f(µ)| < εmulti. It is thus reasonable to use εsingle = εmulti. Note that the multiple shooting
method has to be applied only if the required accuracy in the single shooting method could
not be reached.
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2.3 Numerics of pendant capsules and shape analysis

The resulting deformed shape

y(s0,x) =


r(s0,x)
z(s0,x)
ψ(s0,x)
τs(s0,x)


is obtained as a function of the parameter set x = {p, ν,K2D}, which are adapted during
the shape regression (see Sec. 2.3.4) to optimally match the contour points extracted from
the image.

2.3.4 Shape regression

In the shape regression we find the material parameters which minimize the deviation/error
between contours and theoretical shapes from solving shape equations.
The Laplace-Young equation depends on the parameter set x0 = (p0,∆ρ, α), where α is

a scaling factor, which sets the length scale. The elastic shape equations depend on the
parameter set x = (p, ν2D,K2D). Let (r̂i, ẑi) with i = 1, . . . , N be a set of contour points
resulting from image processing. We translate this set of contour points, such that these are
symmetric with respect to the z-axis and the apex is located at z = 0. We then accordingly
chose z(0) = ζ = 0. We thereby fix the theoretical shape relatively to the contour points at
the apex, and minimize the residual along the remaining shape profile.
The residuals

ϕi = min
s0∈[0,L0]

(
|r̂i| − r(s0,x)
ẑi − z(s0,x)

)

are calculated by a bisection-like algorithm in the arc length s0, which terminates when the
interval length falls below the threshold εrms. From the residuals ϕi we calculate the average
mean square deviation

χ =

√√√√ 1
N

N∑
i=1
‖ϕi‖2

between the contour and the theoretical shape, as well as the Jacobians

J0 = ∂(ϕ1, . . . ,ϕN )
∂(p0,∆ρ, α)

J = ∂(ϕ1, . . . ,ϕN )
∂(p0, ν2D,K2D)

for the reference and the deformed shape. These Jacobians are sufficient to minimize
the error χ and find the best fit parameter set x by solving the strongly over-determined
system JF ∆x = −F iteratively. Note that we have to find the best fit parameter set for
the reference shape first, and afterwards perform the shape regression for the deformed
shape, using the already determined reference shape. Each iteration of shape regression
requires three numerical derivatives to find the elements of the Jacobian, which in turn
require two executions of the shooting method. This yields a parameter shift ∆x in each
iteration, which we assume to be converged if we find λj‖∆x‖ < εlaplace/hooke during the
backtracking line search. In addition to the minimization algorithm explained above, our
software additionally provides the so-called Nelder-Mead downhill simplex method, which
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2 Deformation behavior of static elastic shells under hydrostatic loads

symbol precision performance
εrms 10−16 10−16

εsingle 10−6 10−4

εmulti 10−6 10−4

εlaplace 10−6 10−4

εhooke 10−6 10−4

hlaplace 10−4 10−3

hhooke 10−4 10−3

Table 2.1: Precision and performance optimized values for the thresholds used in the numerical
algorithms.

works without derivatives. In rare cases, where the standard procedure fails, one should try
this more robust method.

2.3.5 Numerical thresholds

To ensure convergence of the shape regression and the shooting method, we have to specify
thresholds.
For the average mean square displacement (2.59), i.e., the individual residuals (2.58)

between the contour points and the theoretical shape we apply a bisection-like algorithm
terminating when the interval length falls below the threshold εrms.
For the single and multiple shooting methods we define the thresholds εsingle and εmulti,

which have different meanings: the accuracy εsingle is reached if |f | < εsingle, see eq. (2.48), is
satisfied for the boundary deviation at the capillary, whereas the accuracy εmulti is reached
if ‖F ‖ < εmulti is satisfied for the global residual, which also implies |f | < εmulti. We define
εlaplace and εhooke as thresholds for the euclidean norm of the parameter shift λj∆x, which is
applied to the parameters of the shape equations during the regression and the backtracking
line search, respectively. To integrate the shape equations we use a 4-th order Runge-Kutta
method with constant step widths hlaplace and hhooke.
In Tab. (2.1) standard values for the numerical algorithms are given. For the analysis

of the capsules used in this paper, the numerical thresholds always ranged within the
given boundaries. To improve the performance for specific capsules these thresholds can be
increased, but it should be checked if the results are still in rough agreement with higher
precision measurements, meaning that no systematic errors occur. Note that the parameters
of the image processing also change the numerical behavior since the set of contour points
results directly from image processing. Changing, for example, the width of the Gaussian
smoothing of the image will alter the fitting results.

2.3.6 Image processing

Several filters, transformations and algorithms are applied to the image in order to get a
set of contour points, which can be used for shape regression. Initially, we use a Gaussian
filter to smoothen the image and run the Canny edge detection. This is common practice
to extract contours from images. From the binary image we measure the outer and inner
capillary diameter (the latter implicitly in terms of the fit parameter α), which is necessary
to relate the length scale set in the image to SI units. Likewise, we measure the height of
the capsule and its distance from the bottom of the image. These quantities are necessary
to translate the contour points according to the remarks stated in 2.3.4. Furthermore, we
extract the contour points and reduce their number to improve efficiency. To ensure that the
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2.3 Numerics of pendant capsules and shape analysis

capturing algorithm works correctly, images have to meet certain requirements. In principle,
all file formats supported by the OpenCV library can be used with our software, but we
recommend png-files. Gravity should act downwards along the vertical axis and the capsule
should be centered in the image with the capillary entering the image at the top. If these
requirements are fulfilled, it is, in contrast to the typical pendant drop software packages,
not necessary to select the capsule region manually, since the software detects the capillary
and therefore the top side of the capsule automatically. The background should be uniformly
colored and clean from small particles or other objects disturbing the edge detection. To
ensure a proper automatic wrinkle detection the wrinkles should be visible over the whole
width of the capsule. If the edge detection for the wrinkles does not work, one can provide a
manually measured wrinkle wavelength in the configuration file. Even if the edge detection
for the wrinkles works, one should randomly check the results by measuring the wrinkling
length manually since the automatic detection requires uniformly illuminated capsules.
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3 Cooperative microtubule dynamics in
closed elastic compartments

“It seems reasonable since art copies nature, and men can
make various automata which move without thought, that
nature should produce its own automata much more
splendid than the artificial ones. These natural automata
are the animals.”

René Descartes

Perpetually changing environmental conditions, in particular climate (atmosphere) and
surface structure, led to emergence of life. The origin of the first biological structure on
planet earth is still subject of research and typically discussed in the context of abiogenesis
[103, 104]. It is assumed that the first cell prototype was formed spontaneously in a
‘prebiotic soup’ [105], i.e., in presence of energy and the required chemical substances. More
recent studies suggest that life evolved in an inorganic compartment, thus lacking a cell
membrane [106]. However, starting from unicellular organisms, evolution brought forth a
vast variety of different beings by natural selection. From the viewpoint of physics, those are
complex biological machines made from ∼ 1013 cells of size ∼ 10µm (humans) [107]. The
human organism evolves from a single cell to a multi-cellular organism via cell division and
differentiation. Information needed to guide this process is encoded in a small coiled string of
length ∼ 1 m called DNA (deoxyribonucleic acid). It was first present in the original cell and
then copied with each cell division. What we call ‘life’ is mostly referable to self-organization
phenomena on the molecular, supra-molecular and cellular level. Interaction energies of
order ∼ kBT enable spontaneous assembly of higher order structures, which are commonly
referred to as soft matter. The interplay between different participants in cell mechanics
seems to be carefully orchestrated, such that small variations or dysfunctions may cause
serious disease, or even death. Many of these phenomena express themselves in mechanical
properties: It has been reported that the stiffness of cancer cells shows a ten fold decrease
compared to normal cells [108] and applying chemotherapy to cancer cells resulted in an
increased stiffness [109]. It is thus crucial to reveal and identify the key mechanisms in cell
mechanics.

We briefly introduce the design of animal cells by focusing on structures involved in their
mechanical properties as a whole (see Fig. 3.1). If not stated explicitly, we refer to Refs. [107,
110]. First of all, a cell is a container, which is filled with cytoplasm providing a liquid medium
for cellular processes, like filament assembly and chemical reactions. Compartmentalization
enables the organism to control chemical conditions on the scale of the cell size, where elastic
cell membranes allow for additional mechanical feedback loops as well as dynamic shape
change in response to external forces. Apart from the cell membrane that will be discussed
in detail later, important cellular components are the nucleus, ribosome, mitochondrion
and cytoskeleton, where only the latter directly affects mechanical stability. However, the
other parts are necessary to provide the building blocks and energy needed by cytoskeletal
dynamics. The DNA is stored in the nucleus, which, due to its mass and size, also acts
as an obstacle to intracellular diffusion. The ribosome produces proteins by reading the
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3 Cooperative microtubule dynamics in closed elastic compartments

Figure 3.1: Left: Healthy endothelial cells observed through a microscope (public domain
[112]). The cell’s nucleus is colored blue, microtubules are colored green, actin is colored red.
Obviously cell shapes are far from being symmetric due to several shape changing factors.
Microtubules grow from the centrosome (or nucleus) towards the cell periphery, where they
interact with the (thin) actin cortex. Right: Cancerous melanoma cells observed through a
microscope (public domain [113]). Here, green indicates actin regulating factors and yellow
highlights podosomes, which are actin rich structures associated with cell motility and cancer
cell invasion.

RNA previously synthesized in the nucleus and thus serves as a factory that assembles
amino acids to proteins. These are essential building blocks of several structures within
and outside the cell. The mitochondrion supplies ATP (adenosine triphosphate), which is
used as a source of chemical energy by ATPases as e.g. motor proteins, similar to GTP
that is produced from GDP during the citric acid cycle and associated with GTPases. Both
ATP and GTP work as activating factors for proteins. The cytoskeleton is built from three
major filament types, namely F-actin (two filaments assembled from G-actin intertwined
in a helix), MTs (microtubules, cylindrical tubulin lattice made of typically 13 straight
protofilaments) and intermediate filaments (chain of tetrameric subunits). Only recently,
septin has been proposed as the fourth cytoskeletal component [111]. Since we aim to study
the interplay between the MT cytoskeleton and the cell periphery in this work, we will start
by introducing these parts separately in the following, starting with MTs, which are dynamic
protein tubes on the micrometer scale (see green filaments in Fig. 3.1 left).
In animal cells, MTs fulfill various functions and are part of several higher order

structures. In the mitotic spindle, kinetochore MTs, interpolar MTs and astral MTs collab-
orate to segregate the chromosomes [114]. Cells can establish cilia or flagella needed for
movement in liquid environments and the core of these flexible protrusions is made from a
MT bundle, which is called the axoneme [115]. During locomotion of adhered cells, MTs
have been reported to interact with FAs (focal adhesions) in two ways [116–120]. FAs are
responsible for cellular traction, i.e., they anchor cells to the extracellular matrix. In the
cell back MTs trigger disassembly of FAs supporting membrane retraction, whereas in the
cell front MTs trigger assembly of FAs and thus guide the adhesion process. MTs might
be guided to FAs by interacting with actin stress fibers [121]. Proteins of the CLIP-family
promote capturing of MTs at cortical sites through direct interaction with dynein-dynactin
[122, 123]. In addition, MTs serve es a dynamic scaffold for the cell membrane and therefore
mechanically stabilize the cell as a whole. MTs form a transport network within the cell
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and can be utilized by motor proteins for delivery of vesicles from the nucleus to the cell
periphery or vice versa [124].
To fulfill all these functions, subpopulations of MTs with specific characteristics are

required. Local occurrence of specific tubulin isotypes can induce the formation of such
subpopulations. MT composition is typically cell-type specific. Both α- and β-tubulin
isotypes are encoded by multigene families and most MTs are composed of an isotype
mixture. Based on different isotypes, post-translational modifications [125–130] lead to
additional differentiation. Excluding (de)acetylation, the C-terminal (carboxy-terminal)
of tubulin is used for chemical modifications like (de)glycosylation, (de)phosphorylation,
(de)tyrosination or (de)glutamylation. Since the C-terminal is located on the outer surface
of the MT, this also affects interactions with MAPs (MT associated proteins) and motor
proteins.
MAPs interact with the MT lattice and thereby influence MT characteristics like

polymerization velocities, transition rates, interactions with motor proteins or linkage to
other cytoskeletal players. MTs participate in formation of axons and growth cones [131],
where they exert polymerization forces and deliver vesicles dedicated to extend the plasma
membrane and, thus, leading to plastic deformations, which are supported by remodeling of
the actin cortex. Dynamic instability enables the growth cone to explore its environment
and find its synaptic target. Since such protrusions can reach lengths up to meters, MTs
need to be stabilized to maintain the pathway of the axon. This is achieved by MAPs
interacting with the MT. The tau-protein, which is highly conserved in neurons, stabilizes
MTs and supports MT bundling, for example, in dendrites. Tau has been reported to bind
longitudinally to the MT lattice [132] supporting linkage to actin [133] or stiffening of the
MT filament [132, 134]. In addition, tau decreases catastrophe rates, increases rescue rates,
and slightly increases polymerization velocities above the critical tubulin concentration
[132, 135]. Dysfunctions of the tau-protein are related to Alzheimer’s disease [136], dementia
or other neurological disorders [137]. This highlights the important role of microtubules as
one of the essential cytoskeletal filaments.

MTs in the cytoskeleton are constantly growing and shrinking because of their dynamic
instability [138]. MTs grow radially from a centrosome or MTOC (MT organizing center)
towards the cell periphery, where they can directly exert forces onto the cell membrane
[139, 140]. In general, force generation by MTs is limited by buckling [141, 142], but
MT buckling can be prevented by bundling MT interactions [142] or surrounding filament
meshwork providing a supporting elastic medium [143]. MTs can generate forces in the
pN-regime, which are sufficient to strongly deform lipid bilayer vesicles [139] or giant
liposomes [144], but even cooperatively generated MT forces are presumably not sufficient to
directly deform the complete cell cortex [6]. Growing MTs interact, however, with the actin
cortex [145–147], in particular via pioneering MTs [147–150], where they can trigger actin
polymerization and, thus, additional force generation. This mechanism allows polymerizing
MTs to induce cell cortex deformations and changes to the cell shape [145, 146]. On the
other hand, the cell cortex exerts elastic forces onto polymerizing MTs, which depend on the
global shape of the cell and slow down polymerization [141]. This gives rise to an interplay
between cell shape and MT organization within the cell via elastic cell cortex forces and
MT polymerization forces. Ultimately, this leads to cooperative effects due to force sharing
between polymerizing MTs [6, 151].

Dynamic MTs organize within a rigid compartment enclosed by a cell wall, like in plant
cells, either because of mutual collision-induced interactions [152, 153], by motor-induced
interactions [154] or as a result of direct interaction with the cell walls [155, 156]. In
combination with motor proteins MTs spontaneously form asters under suitable conditions
[157, 158]. Aster positioning inside a cell with rigid walls involves pushing forces and motor
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3 Cooperative microtubule dynamics in closed elastic compartments

Figure 3.2: Sketch of a cell membrane with multiple different proteins incorporated (public
domain [163]). Incorporated proteins modulate the bending rigidity of the plasma membrane.
The membrane is attached to filaments of the cytoskeleton via linker proteins.

forces [155, 159–161]. Much less is known about MT organization in a flexible or elastic
compartment as it is provided by a lipid bilayer membrane [162] or the cell cortex of animal
cells. In order to sketch out the properties of a complex object like the cell cortex, we assume
that the properties of the individual parts are additive, which allows us to discuss the lipid
bilayer and the actin cortex independently. This assumption can be justified as we will point
out later.

The lipid bilayer (see Fig. 3.2) provides different possibilities of elasticity manipulations
[164–167], which, to a large extent, consist in the generation of local bending moments.
This can be understood in the context of the so called ‘mosaic membrane’. Cell membranes
incorporate proteins and, likewise, proteins adhere to the membrane. Apart from specific
functions like channeling and sensing, local bending moments generated by those proteins
mainly depend on their geometry, which may vary in time due to, e.g., opening and closing
of a channel. More specifically, an increasing bilayer stiffness has been observed due to
incorporation of sufficient high concentrations of cholesterol [168, 169]. Protein incorporation
induces local modulations of the bending modulus since incorporation always involves
reordering of the lipids, i.e., change in the lateral packing density and thus change of the
bilayer energy. Moreover, the bilayer itself, though it typically occurs in a fluid state, can
exhibit phase separation by applied curvature [170]. In brain sphingomyelin cells, phase
separation occurs even at low temperatures ranging from 30 to 60C◦ [171]. Phase separation
manifests in the coexistence of solid domains and liquid particles diffusing at the interface.
Line tension along the domain border can induce shape changes [59]. Domain formation can
also be induced by Ca2+ influx locally in the inner leaflet [171]. Though the area of lipid
membranes is approximately constant (fluctuations ∼ 4%), additional area can be provided
by vesicular addition or intracellular stores, such as tiny invaginations or protrusions [172].
Providing area from microscopic folds is sometimes referred to as a ‘shrink-wrap-mechanism’
[173].
The actin cortex [174] is a network of individual actin filaments typically connected

by crosslinkers. On the one hand, elastic properties of the cortex are determined by the
properties of individual filaments, such as length, bending rigidity and inextensibility [175],
and on the other hand by the topology and the constitution of the network, which turn out
to be quite diverse in vivo. One may mention here the branching degree, bundle thickness,
or mesh size. Assuming a mesh size ξ, the shear modulus scales according to G′ ∼ ξ−3 in
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an ideal network [176], and according to G′ ∼ ξ−2 in actin networks [177]. With respect
to the actin density cA it has been reported that G′ ∼ c

11/5
A for an entangled solution,

and G
′ ∼ c

5/2
A for densely cross-linked gels [177]. For fibroblasts it has been found that

G
′ ∼ 200 Pa [178]. In general, the shear modulus varies over several orders of magnitude

dependent on crosslinker and actin density [179]. Elastic properties are highly dynamic due to
continuous polymerization and depolymerization of actin filaments, which can be controlled
and triggered either by microtubules [180] or by signals received from the extracellular
matrix, for example, via insulin [181]. Active tension in the cortex can be adapted by the
amount of motor proteins like dynein or myosin [182], which shift pairs of filaments against
each other. As already mentioned, we assume the properties of actin cortex and lipid bilayer
to be additive due to structural linking via ERMs, which are introduced in the following.
ERMs (ezrin, radixin, moesin) are responsible for linking the actin cortex to the

plasma membrane, similar to spectrin. A loss of this linkage leads to blebbing phenomena
[182], which have been studied widely, in particular regarding cell death and bleb related
motility [183]. ERMs are known to contribute to cortical stiffness [172], for example, moesin
during mitosis [184]. Ezrin has been reported to down-regulate Rho activity in neurons [185],
which likewise effects cortical rigidity. Due to mechanical linkage between actin cortex and
lipid bilayer both parts can be regarded as a structural unit, which we call the cell cortex.
We thereby neglect the contribution of ERMs to cortical stiffness and, thus, only consider
the linkage character.
Septin has recently been referred to as the ‘fourth component of the cytoskeleton’ [111].

Septins assemble to filaments and other higher order structures, such as rings, meshwork,
or scaffolds. Their functions are diverse and reach from controlling cortical rigidity during
mitosis or bleb retraction [172, 186] to localizing specific proteins by acting as diffusion
barriers [187]. Septin has been reported to build cage-like structures around bacteria [111],
which have invaded the cell. Once engulfed, bacteria exploit the actin cytoskeleton to
move towards the nucleus. Interaction with actin and thereby movement can be effectively
prevented by septin cages. Most importantly, septins interact with MTs, actin and the
phospholipid bilayer. Regarding the latter one, it has been shown that septins are able to
apply morphological changes to phospholipid based liposomes in vitro [188].

The most important family of proteins involved in cellular signaling pathways is the Rho
family [189] including the proteins Rho, RhoB, RhoC, Rac1, Rac2, Rac3 and Cdc42. These
are calledGTPases since they are capable of binding guanosine to its G-domain, which gives
rise to a switching process between active GTP (guanosine triphosphate) bound states and
inactive GDP (guanosine diphosphate) bound states. GTP is produced from GDP during the
citric acid cycle. Hydrolysis of GTP to GDP releases energy ∼ 20 kBT ; the reverse pathway
from GDP to GTP via a condensation reaction consumes the same amount of energy. The
change in the protein energy landscape can trigger folding processes, which are necessary
for the protein to perform dedicated tasks. Due to many different participating GTPases
residing in the actin cortex, complex activation patterns emerge, which orchestrate actin
dynamics. Crosstalk between the MT and the actin cytoskeleton is enabled by pioneering
MTs that regulate GTPases residing in the actin cortex. Such regulation is typically realized
by the corresponding mediators, see Fig. 3.3.

Cytoskeletal dynamics, i.e., dynamics of microtubules and actin filaments, is regulated by
activation patterns via GTP resources, which are mediated by GEFs (guanosine exchange
factors), GAPs (guanosine activating proteins), and GDIs (guanosine nucleotide dissociation
inhibitors) (see Fig. 3.3). GEFs promote activation of Rho GTPases by catalyzing conversion
from GDP to GTP, GAPs lead to deactivation via the reverse pathway by promoting
hydrolysis from GTP to GDP, and GDIs compete with GEFs by stabilizing GDP-bound
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3 Cooperative microtubule dynamics in closed elastic compartments

Figure 3.3: Controlling GTPase activation patterns via GEFs, GAPs and GDIs.

GTPase states. Together, these three players allow tight regulation of GTP/GDP incidence
and therefore several GTP/GDP activation/deactivation dependent processes.
Due to their dynamic instability, MTs can be regarded as stochastic oscillators. In

a cell, MT oscillations are coupled via mechanical interaction with the elastic cell cortex.
Systems of coupled oscillators are known to exhibit collective oscillations under suitable
conditions. Typical phenomena, which have been studied concerning synchronization, are
firefly populations synchronizing by light flashes [190] and neuronal networks synchronizing
by electric activity [191]. The standard model to describe synchronization phenomena is
the Kuramoto model, which predicts spontaneous synchronization at a critical coupling
strength [192]. The existence of a similar transition for MT ensembles in dependence of
elastic membrane properties or MT parameters might give rise to controlling mechanisms,
which allow cells to switch between collective and non-collective behavior. Regarding a
ring with nearest neighbor coupling, the Kuramoto model predicts that the frequency
of the phase-locked solution is given by the arithmetic mean of the individual oscillator
frequencies [193]. Neglecting long-range interactions this rule might similarly apply to an
MT cytoskeleton interacting with a surrounding elastic shell.

While the phase-locked solution describes a symmetric state of the MT aster, and cortex
deformations will be reversible if one assumes a purely elastic cortex, a major question is
how MT asters are involved in permanent changes of the cell shape. Typical cell
shapes are spheres (onset of mitosis), platelets (blood cells), star-like (adhered to ECM),
or ellipsoidal shapes (lamellipodium). To become polar, the cell has to break a spherical
symmetry either spontaneously or induced by an external trigger. Polarity is achieved
by shape transformations of the surrounding cell membrane and changes of cytoskeletal
dynamics. These changes arise, for example, from spatial inhomogenities in the viscosity of
the cell plasm, the elasticity of the cortex, filament assembly, or signalling proteins. Breaking
the spherical symmetry is necessary, in particular for swimming or migrating cells [194].
Even transient, asymmetric shapes might become long-lived by remodeling of the actin
cortex, which allows plastic deformations to a certain degree [174].
In the following sections, we study the mutual influence between cell shape and MT

organization within the elastic cell cortex by a simplified model that captures only essential
features of cell dynamics. We will neglect buckling and consider an ensemble of straight
MTs growing radially outwards from a centrosome forming an aster-like structure. Both
the cell membrane and the actin cortex exhibit elastic behavior, and we regard them as
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3.1 Single MT dynamics

a single structural unit, which we treat as an effective membrane with stretching and
bending elasticity. We assume that a growing MT can deform this effective elastic membrane,
mimicking cell cortex and membrane, by steric interaction. MT ensembles have been modeled
as active gels [195], for example, in a description of the mitotic spindle [196]; other models
are based on individual MTs [151, 197]. Here, we follow the latter approach and couple the
polymerization dynamics of the MT aster modeled on an individual basis to the deformation
of the elastic confinement which encloses the MT aster.
In general, we distinguish two possible possible effects on MT dynamics: structural and

regulatory. Within the structural analysis we investigate steric interactions, polymerization
kinetics and elastic deformations. This model serves as a basic setup for further investigation
of regulatory mechanisms including signaling cascades via GTPases, and interactions with
MAPs. These mechanisms enter our model via temporal or spatial inhomogenities encoded
in properties of the cell cortex or the MT cytoskeleton. We develop a simulation model,
which mechanically couples the stochastic dynamics of an MT aster with an effective elastic
membrane. This can be seen as a minimal model for a primitive eucaryotic cell. In vivo,
cells are surrounded by the ECM (extracellular matrix), which can be arranged in many
different ways, for example, in a dense cell compound, where cells interact mechanically
[198]. The cell interior is a mixture of cytoplasm, cytoskeletal filaments, and various other
components, such as organelles. We reduce this complexity by assuming the ECM and the
cell interior to be a homogeneous, viscous medium. Therefore, we describe the effective
elastic membrane by overdamped dynamics characterized by a Stokes friction constant. In
the limit of vanishing mechanical attenuation, membrane dynamics is much faster than MT
dynamics, which is equivalent to a membrane with zero relaxation time, thus maintaining
static force equilibrium.
For the sake of simplicity, we develop the model in two-dimensional space. Though,

especially the membrane is expected to behave differently in three dimensions, as it can
release stress in one extra dimension, the two-dimensional approach is suitable, e.g., for flat
cells adhered to a substrate. We could regard our two dimensional model as a projection
(slice) of a three dimensional, flattened cell. From this perspective, we could argue that the
two dimensional projection can fluctuate freely in its area and contour length, since there is
a material exchange between the slice and the bulk.
Within this work we try to answer several questions emerging from cell mechanics.

Employing a two-dimensional simulation model we investigate the parameter dependence of
typical observables in both a symmetric and an asymmetric (polarized) state and compare
our results, as far as possible, to one-dimensional mean-field approaches. We also discuss
unique features of the two-dimensional model, such as synchronization of the MT ensemble,
i.e., collective length fluctuations. As it turns out, collective events trigger cell polarization
in a setup including a Rac-Rho feedback mechanism, which is a combination between two,
mutual exclusive, MT regulated feedback mechanisms.

3.1 Single MT dynamics
MTs are stiff filamentous proteins consisting of tubulin-dimers (called monomers in the
following), which are organized in a tube-like structure and form a helical lattice, see Fig.
3.4. While new monomers attach and detach stochastically at the tip, the whole MT
switches stochastically between phases of growth and phases of rapid shrinkage. This
behavior originates in the hydrolysis of tubulin dimers with the MT and is known as dynamic
instability [138]. If in a growing phase the stabilizing GTP-tubulin cap is lost by hydrolysis
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3 Cooperative microtubule dynamics in closed elastic compartments

the MT undergoes a catastrophe and starts to shrink rapidly; if the GTP-cap is re-formed
the MT is rescued and growth resumes.

3.1.1 Fokker-Planck equation

A simple stochastic model for this process is based on four parameters [199, 200]: Assembly
and disassembly are modeled by two (deterministic) velocities, a shrinking velocity v− and a
growth velocity v+. MTs stochastically switch from the growing to the shrinking state with
the catastrophe rate ωc and back to the growing state with the rescue rate ωr. In vivo, all
these parameters are modified by various biochemical processes. A comprehensive list of how
MAPs influence, for example, the growth velocity v+ and the catastrophe rate ωc is given in
Ref. [201]. The stochastic process can be described by a Fokker-Planck equation [200, 202],

∂tp = (Ω− V∂l) p, (3.1)

where the matrices

Ω =
(
−ωc ωr
ωc −ωr

)
and V =

(
v+ 0
0 −v−

)

define the time evolution of the vectorial probability density

p(l, t) = (p+(l, t), p−(l, t))T .

Here, p±(l, t)dt are the probabilities of finding the MT in the growing or in the shrinking
state. In the following, we will always use a reflecting boundary at l = 0,

v+p+(0, t) = v−p−(0, t),

corresponding to the situation that a shrinking MT undergoes a forced rescue or re-nucleation
at l = 0. In an MT ensemble this condition corresponds to a constant number M of MTs,
i.e., M = const. The growth dynamics is governed by the characteristic length parameter

λ ≡ v+v−
v+ωr − v−ωc

. (3.2)

If λ < 0, the average length loss after a catastrophe exceeds the average length gain, in
case of λ > 0, the average length gain exceeds the average length loss. Without confining
boundary in (+)-direction, but including a reflective boundary in (−)-direction (at the
origin), a stationary length distribution can only be obtained for bounded growth with λ < 0.
Then, ∂tp = 0 in eq. (3.1) leads to

∂lp = V−1Ωp

with the general solution

p(l) = exp
(
V−1Ωl

)
p0.

Using p ≡ p+ + p− and the normalization condition
∫∞

0 dl p ≡ 1 yields an exponential length
distribution

p(l) = 1
|λ|
e−l/|λ|,
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3.1 Single MT dynamics

Figure 3.4: Sketch of the cylindrical MT lattice, which is made from tubulin dimers (image
provided by T. Splettstoesser [203] and licensed under CC BY-SA 4.0 [32]). Tubulin dimers are
composed of two subunits, namely α- and β-tubulin. Due to polar dimers, the MT lattice has a
polar structure with (+)- and (−)-end, which is exploited by motor-proteins to control their
direction of movement. The hollow cylinder formed by tubulin dimers has a diameter ∼ 25 nm
and is typically made from 13 protofilaments. After a catastrophe, these curl outwards and the
MT switches to a phase of rapid shrinking.

where |λ| = 〈l〉 is the average MT length. For unbounded growth, i.e., λ > 0, 〈l〉 grows with
constant velocity, there is no steady state solution, and for long times p(l, t) asymptotically
approaches a Gaussian distribution, where the average MT length

〈l〉 ≈ Jt with J = v+ωr − v−ωc
ωr + ωc

(3.3)

and the variance

〈l2〉 − 〈l〉2 ≈ 2DJ t with DJ = ωcωr(v+ + v−)2

(ωc + ωr)3 (3.4)

are time-dependent [199, 200]. It has been shown that single unconfined MTs with λ > 0
essentially self-organize to λ−1 = 0 when they are inserted into an elastic confinement [204].
MTs confined by an elastic obstacle thus always remain in the bounded regime, even for
non-zero rescue-rate. Many MTs cooperate and generate more mean force than single MTs
[6].

3.1.2 Rigid confinement

Though we discuss elastic obstacles in this thesis, solutions for rigid confinements can provide
suitable approximations in the limits of very soft or stiff obstacles. Here we consider a
one-dimensional box of size L. To transfer the obtained solutions we could, for example, set
the box size L to the maximum possible elongation of the elastic obstacle.

A rigid obstacle can neither be moved nor be passed by the MT. By reaching the boundary
the MT instantly stops growth and undergoes a catastrophe after a short time. In a box
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3 Cooperative microtubule dynamics in closed elastic compartments

[0, L] with rigid walls MT lengths are described by the probability density [204, 205]

p(l) = N el/λ
(

1 + v+
v−

)
with l ∈ [0, L].

MT lengths thus follow an exponential distribution, where, in case of bounded growth, the
probability of finding a length l decreases, and, in case of unbounded growth, the probability
increases towards the barrier. Solving the corresponding Fokker Planck equation yields
p+(l) = N el/λ and p−(l) = N v+

v−
el/λ [204]. The probability Q+ of finding the MT stuck at

the boundary is given by

Q+ = N v+
ωc,L

eL/λ, (3.5)

assuming a constant catastrophe rate ωc,L for the stalled MT [204]. The normalization
constant derives as

N−1 = λ

(
1 + v+

v−

)(
eL/λ − 1

)
+ v+
ωc,L

eL/λ.

Together, p+(l) and Q+(l) give the fraction of growing MTs and we can derive the probability
of undergoing a catastrophe by weighting with the catastrophe rate, which yields a piecewise
defined probability density

pc(l) =
{
Cωcel/λ, l < L

Cv+e
l/λδ(l − L), l = L

with a normalization constant

C−1 = v+e
L/λ +

∫ L

0
dl ωcel/λ = v+e

L/λ + ωcλ(eL/λ − 1).

The probability pc(l)dl grows exponentially when approaching the static barrier at l = L.
Though the MT stalls immediately at reaching the barrier, the catastrophe probability
remains finite, meaning that the resting time remains finite, too. We obtain the average
catastrophe length by taking the expectation value

〈lmax〉 = C
∫ L

0
dl lωcel/λ + C

∫ L

0
dlv+e

l/λδ(l − L)

= Cωcλ2
[
1 + eL/λ

(
L

λ
− 1

)]
+ CLv+e

L/λ.

Note that we always have 〈lmax〉 < L as long as ωc > 0, which implies a finite catastrophe
probability before reaching the barrier. From p(l) we find the average MT length [204]

〈l〉 = N
∫ L

0
dl lP (l) +NLQ+

= N
(

1 + v+
v−

)
λ2
[
1 + eL/λ

(
L

λ
− 1

)]
+NL v+

ωc,L
eL/λ

66



3.1 Single MT dynamics

and the mean square displacement

〈l2〉 = N
∫ L

0
dl l2P (l) +NL2Q+

= N
(

1 + v+
v−

)
λeL/λ(2λ2 − 2λL+ L2)− 2N

(
1 + v+

v−

)
λ3 +NL2 v+

ωc,L
eL/λ.

The maximum and the average MT length give rather similar results, since the MT shrinking
velocity is large against the growth velocity, i.e., v− � v+. This leads to small shrinking
fractions, which contribute to 〈l〉, but not to 〈lmax〉. In both cases, bounded and unbounded
growth, length fluctuations 〈l2〉 reach a maximum in the limit |λ| → 0 (uniform length
distribution) and, analogously, vanish in the limit |λ| → ∞ (delta peak length distribution).

3.1.3 Plastic confinement

Analogous to the limit of a rigid confinement corresponding to a diverging elastic modulus,
we discuss the limit of a plastic obstacle corresponding to a vanishing elastic modulus. Such
an obstacle either moves at velocity v+ or holds its position at the maximum length the
MT has ever reached in its history. Rarely, the MT overcomes this maximum length, moves
the obstacle further at velocity v+, then undergoes a catastrophe and leaves the obstacle at
the new maximum length, where the obstacle stays until the MT returns to again exceed
its maximum length. This states a common problem from classical extreme value theory
[206, 207].
In the following, we investigate how the maximum turning point of the MT evolves in

time. Therefore, we assume at first that MT growth is bounded and, thus, λ < 0. The
probability that the MT does not reach the maximum MT length lc within nc ≥ 1 cycles is
given by

Pnc(l < lc) =
(∫ lc

0
dl 1
|λ|
e−l/|λ|

)nc
=
(
1− e−lc/|λ|

)nc
.

The probability Pnc(l > lc) that the MT exceeds the maximum MT length lc within nc
cycles is complementary to Pnc(l < lc), i.e.,

Pnc(l > lc) = 1−
(
1− e−lc/|λ|

)nc
.

From this probability we derive the probability density via differentiation with respect to lc
leading to

pnc(lc) = nc
|λ|
e−lc/|λ|

(
1− e−lc/|λ|

)nc−1
= nc
|λ|

nc−1∑
k=0

(
nc − 1
k

)
(−1)ke−(k+1)lc/|λ|.

We now calculate the expectation value of lc after nc growth cycles to

〈lc〉(nc) = nc
|λ|

nc−1∑
k=0

(
nc − 1
k

)
(−1)k

∫ ∞
0

dlc lce−(k+1)lc/|λ|︸ ︷︷ ︸
=|λ|2/(k+1)2

= |λ|
nc∑
k=1

(
nc
k

)
(−1)k−1 1

k

= |λ|
nc∑
k=1

1
k
≈ |λ|(γem + ln(nc)),
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3 Cooperative microtubule dynamics in closed elastic compartments

where γem is the Euler-Mascheroni constant. Obviously, the average maximum length 〈lc〉
grows logarithmically with the number nc of growth cycles. Since we investigate a plastic
obstacle here, this scaling transfers directly to the obstacle elongation, which thus likewise
grows logarithmically. Assuming that a single cycle typically takes a time tc we can substitute
nc = t/tc to find 〈lc〉 ∼ |λ| ln(t). For the expectation value of the quadratic maximum length
we find

〈l2c 〉(nc) = nc
|λ|

nc−1∑
k=0

(
nc − 1
k

)
(−1)k

∫ ∞
0

dlc l2ce−(k+1)lc/|λ|︸ ︷︷ ︸
=2|λ|3/(k+1)3

= 2|λ|2
nc∑
k=1

(
nc
k

)
(−1)k−1 1

k2

≈ |λ2|(γem + ln(nc))2 + |λ|2
(
π2

6 −
1
nc

)
,

where we used Stirling’s formula for nc � 1 and again approximated the harmonic series
with

∑n
k=1 1/k ≈ γem + ln(n). Using our results for 〈l2c 〉 and 〈lc〉 we see that the variance

〈l2c 〉 − 〈lc〉2 = |λ|2
(
π2

6 −
1
nc

)

becomes constant in the limit nc →∞, i.e.,

lim
nc→∞

(
〈l2c 〉 − 〈lc〉2

)
= π2

6 |λ|
2.

Note that, in the same limit, the relative standard deviation

lim
nc→∞

√
〈l2c 〉 − 〈lc〉2
〈lc〉

= 0 (3.6)

vanishes, because the variance approaches a constant in the limit nc → ∞, whereas the
expectation value 〈lc〉 grows logarithmically.
For unbounded MT-growth we found 〈l〉 ∼ t for the average MT length (3.3) and
〈l2〉 − 〈l〉2 ∼ t for the MT length variance (3.4), such that the relative standard deviation
vanishes,

lim
t→∞

√
〈l2〉 − 〈l〉2
〈l〉

= 0, (3.7)

in the limit t→∞. These results also hold for the maximum MT length lc, if J ≈ v+ such
that 〈lc〉 − 〈l〉 ≈ const.

Though we presented our results here in the context of a plastic barrier, they can likewise
be used to explain how MTs explore space. Ballistic behavior, like for unbounded MT
growth, leads to a phase exploration that is linear in time. In contrast, due to their dynamic
instability, bound MTs sample space only logarithmically in time. This logarithmical phase
exploration is accompanied with fluctuations that sharply increase for small times t ∼ tc and
then saturate. Now that we have investigated the limit cases of rigid and plastic confinements,
we introduce elastic confinements in the following.

3.1.4 Force-dependent MT growth

The single MT dynamics model is completed by the force dependence of polymerization
velocities and catastrophe rate. The shrinkage velocity v− is assumed to be force-independent,
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3.1 Single MT dynamics

parameter symbol value
effective monomer length dm 0.6 · 10−9 m
characteristic force F0 6.67 · 10−12 N
shrinking velocity v− 3.0 · 10−7 m/s
random hydrolysis rate r 3.7 · 106 m−1s−1

vectorial hydrolysis velocity vh 4.2 · 10−9 m/s
on-rate ωon 70.0 s−1

off-rate ωoff 6.0 s−1

Table 3.1: Parameters of MT dynamics as used within this thesis.

since it is barely concerned by axial loads and releases stress from the tip. For similar
reasons, we assume the rescue rate to be constant. MT growth, on the other hand, is slowed
down by an opposing force. Assuming that force only affects to on-rate, we use [140, 208]

v+(f) = dm
(
ωone

−f/F0 − ωoff
)
, (3.8)

where dm = 8 nm/13 is the length difference induced by the attachment of a single monomer,
F0 = kBT/dm ∼ 6.6pN is the force scale set by thermal fluctuations and f is an axial load
acting on the MT tip. For strong forces f � F0, the Arrhenius factor e−f/F0 effectively
suspends the attachment of new monomers at the tip. The Arrhenius factor is related to
the Brownian ratchet model, which assumes a fluctuating barrier in front of the MT tip
[208]. In the force-free case, v+ becomes the net on-rate multiplied by the effective monomer
length, i.e., v+(0) = dm(ωon − ωoff). The critical point of the function (3.8) is obtained by
inversion, i.e., fstall = f(v+ = 0), which gives the stall force fstall = F0 ln(ωon/ωoff), at which
MT growth stops. The stall force is uniquely related to a stall length lstall = xstall, if an
invertible force relation f(x) is provided. Here, x denotes the obstacle elongation and l the
MT length. Both stall force and stall length represent insuperable limits for the MT. Note
that such an invertible force relation can only be provided in simple systems where single
MTs interact with a well-defined barrier. In more complex systems, where multiple MTs
collaborate to elongate the obstacle (which might also change its shape), the stall force
becomes history dependent and can thus only be determined as a statistical average.

It has turned out that the catastrophe rate, in contrast to the rescue rate, also exhibits a
force-dependence via the growth velocity. Several models for catastrophe rates have been
proposed, experimental and theoretical ones [209, 210]. Flyvbjerg et al. [210] derived an
exact analytical result for ωc, which depends on v+, the random hydrolysis rate r and the
vectorial hydrolysis velocity vh, see Tab. 3.1 for the corresponding values. The random
hydrolysis rate concerns single tubulin dimers that hydrolize stochastically within the lattice,
whereas the vectorial hydrolysis velocity concerns hydrolysis waves that propagate through
the lattice with constant velocity. The dimensionless catastrophe rate α is given by the
smallest solutions of [210]

Ai′(ξ2 − α) = −ξAi(ξ2 − α) (3.9)

with the Airy function Ai, ξ ≡ (v+ − vh)D−2/3r−1/3 and the diffusion constant D ≡
dm(v+ +vh)/2. We numerically solve eq. (3.9) for −10 ≤ ξ ≤ 10. Beyond this interval we use
the asymptotics α ∼ 1/2ξ for ξ ≥ 10 and α ∼ ξ2 for ξ ≤ −10 [210]. We obtain ωc through
comparison with α ≡ ωcD

−1/3r−2/3. The Flyvbjerg catastrophe model is characterized
by ωc ∼ v

−2/3
+ for intermediate growth velocities resulting in an exponentially increasing

catastrophe rate under force via the exponentially decreasing growth velocity according to eq.
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3 Cooperative microtubule dynamics in closed elastic compartments

(3.8). Janson et al. [209] obtained a slightly different dependence ωc ∼ v−1
+ in experiments.

Both models give an exponentially increasing catastrophe rate above the characteristic force
F0. For MT dynamics under force this is typically the essential property, which gives rise to
a certain robustness of results with respect to different catastrophe models [6, 204].
An increasing force exponentially slows down MT growth while, at the same time, the

catastrophe rate increases exponentially. Both effects decrease the inverse growth parameter
λ−1, see eq. (3.2). This is an essential feature of MTs, which makes it possible to confine a
single MT within some elastic barrier: the MT increases its length and, thus, the elastic
force until the inverse growth parameter λ−1 vanishes and MT growth becomes bounded,
i.e., the MT essentially self-organizes to a bound state with λ−1 = 0 [204].

Based on the force-dependent single MT dynamics, MTs in the ensemble interact by force
re-distribution via the elastic membrane configuration, which depends on the whole aster
configuration. In our final model (3.4), the elastic obstacle dynamically reacts to stochastic
displacements produced by multiple MTs and changes its shape. This alters local forces onto
MTs which, in turn, adapt their growth velocities accordingly. This mechanism can give rise
to cooperative behavior, such as collective catastrophes and rescues events [6, 151], as well
as collective length oscillations [6].

Before taking the full stochastics into account, we explore mean-field approaches for single
and multiple MTs. We begin by quantifying the dynamic properties of single MTs, which
are limited by an elastic barrier.

3.2 Mean-field theory
We investigate a one dimensional model, in which a single MT of length l(t) grows against a
spring of length x(t). Both the spring and the MT are attached to the MTOC, which is
placed in the origin. The dynamics of the system is driven by stochastic growth and shrinkage
of the MT, while the spring adapts dynamically to the current MT length. The spring has a
rest length x0 and we have x(t) ≥ x0 for all times. For l(t) < x0 the MT is always detached
and follows its free dynamics. For l(t) > x0 the MT is occasionally attached and, in case of
contact and growth, the spring opposes a force E(x(t)− x0) = E(l(t)− s0). If the MT is
detached and we have x(t) > x0 the spring relaxes following an overdamped dynamics, i.e.,
relaxes exponentially. Without confining spring, the MT switches stochastically between
free growth and shrinkage. In a confinement, a phase of growth under force enters between
the former and the latter. Thus, three phases have to be considered regarding the MT (cp.
Fig. 3.5):

1 The MT grows force free with l(t) < x(t) and is described by

∂tl = v+(0),

which takes a time τ+,0. Free growth ends when the MT encounters the relaxing spring
or undergoes a catastrophe. The MT can therefore occasionally skip phase 2.

2 After attachment, which happens at xmin, where the situation changes from l(t) < x(t)
to l(t) = x(t), MT growth is slowed down by the force E(l(t)− x0) and described by

∂tl = v+(E(l − x0)),

which takes a time τ+,1 and is, taking fluctuations into account, an optional phase.
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3.2 Mean-field theory

Figure 3.5: Simplified model for a single MT growing against a membrane. Phases of elongation
(pushing MT) and phases of relaxation alternate and perform a continuous cycle with constant
frequency.

3 After detachment at l = xmax or a catastrophe at l = lmax the MT shrinks following

∂tl = −v−

for a time τ− determined by the distance to the MTOC and the apparent rescue rate.
After shrinking, the MT is rescued at lmin.

If phase 2 took place, xmax and lmax coincide. Otherwise the MT undergoes a catastrophe
before reaching the spring, which thus does not stop its relaxation. Spring dynamics
alternates between two different states:

M1 During force free growth or shrinkage of the MT the spring relaxes following

γ∂tx = −E(x− x0)

with a Stokes friction coefficient γ.

M2 During growth under force, the spring follows the same dynamics as the MT, i.e.

∂tx = v+(E(x− x0)).

As wee see, the MT can take a lot more oscillations than the spring in the same time, since
it does not necessarily reach the spring. This effect becomes stronger with increasing friction.
Even for an infinite fast spring, the MT potentially performs more oscillations than the
spring, if it undergoes a catastrophe before reaching x0. Only if x0 = 0 and γ → 0 the
MT and the spring can be part of one single oscillation, where free growth is completely
excluded.

In a mean-field approach, we determine the average oscillation cycle of the MT defined by
passing subsequently all three phases 1, 2 and 3. The occasional skip of phase 2 will be
included in the mean first contact time that is needed to pass phase 1. If convenient, we use
abbreviations l̄ ≡ l − x0 and x̄ ≡ x− x0.

3.2.1 Oscillation cycle

To characterize the oscillation cycle we introduce average times, namely the time MTs spend
attached to the membrane and exert force τ+,1, the time of free growth τ+,0, and the time
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Figure 3.6: Average maximum membrane elongation xmax in units of the MT stall length
versus elastic modulus. Dots are simulation results for a single MT confined by an overdamped
spring and lines are solutions of (3.15).

of shrinking τ−. One also might consider to reformulate these quantities via the catastrophe
time τc = τ+,0 + τ+,1 and the rescue time τr = τ−, or the attached time τatt = τ+,1 and
the detached time τdet = τ− + τ+,0, where we implicitly assume that shrinking MTs are
not attached, i.e., that attached MTs always grow. Note that, in the following, we always
refer to times averaged over the stochastic MT dynamics, i.e., we drop the brackets in our
notation and assume τ ≡ 〈τ〉. Similarly, we always refer to oscillation limits averaged over
the stochastic MT dynamics, i.e., x ≡ 〈x〉 or l ≡ 〈l〉

From the time periods introduced above several other interesting quantities derive directly,
such as the effective catastrophe and rescue frequency ωc = 1/τc and ωr = 1/τr. More
importantly, we can specify the probability of each state in the oscillation cycle, as, for
example, the probability of being attached and detached

patt = τatt/τtot and pdet = τdet/τtot

where the total duration of the oscillation cycle

τtot = τ+,0 + τ+,1 + τ− = τatt + τdet = τc + τr

gives the characteristic timescale of MT dynamics confined by the elastic obstacle. Note
that this timescale of course differs from the timescale corresponding to a free MT growing
permanently force-free, which would be

τ free
tot = τ+,0 + τ− = τdet = τc + τr.

In order to quantify the duration of the three phases (Fig. 3.5), we solve the differential
equations describing MT dynamics and obstacle elongation in the following, and investigate
the three phases separately.

3.2.2 Obstacle elongation

At first, we consider the growth phase from l = xmin to l = lmax = xmax under force. This
phase and the obtained oscillation maximum are identical for both the MT and the spring.
Nevertheless, we differentiate between both in our notation. We have lmax = xmax, because
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3.2 Mean-field theory

detachment and catastrophe happen simultaneously. The MT is rescued at lmin, afterwards
attaches at xmin, and finally detaches while simultaneously undergoing a catastrophe at
l = lmax = xmax. We introduce the probability p+,1(t) that the MT is still growing after a
time t, which fulfills

∂tp+,1 = −ωc(v+(Ex̄(t))) p+,1. (3.10)

For convenience, we neglect rescue events at the moment. Since ωc(v+) is a non-trivial
function we cannot find a closed solution, but write

p+,1(t) = p+,1(0) exp
(
−
∫ t

0
dt′ ωc(v+(Ex̄(t′)))

)
,

where p+,1(0) is the probability that the MT is still intact at t = 0 respectively l = xmin.
The MT has to overcome the distance xmin− lmin without undergoing a catastrophe to enter
the growth phase under force. Integrating equation (3.10) gives∫ p+,1(τ+,1)

p+,1(0)

dp+,1
p+,1

= −
∫ τ+,1

0
dt ωc(v+(Ex̄(t)))

ln p+,1(τ+,1)− ln p+,1(0) = −
∫ x̄max

x̄min
dx̄ ωc(v+(Ex̄))

v+(Ex̄) .

(3.11)

A good approximation for the mean stochastic growth time τ+,1 consists in the condition
p+,1(τ+,1) = 1/e, which produces the exact result for a constant catastrophe rate. Assuming
further the MT has definitely reached the membrane after a time τ+,0, we can use p+,1(0) = 1
to find

f1(x̄min, x̄max) = 1−
∫ x̄max

x̄min
dx̄ ωc(v+(Ex̄))

v+(Ex̄) = 0. (3.12)

from Eq. (3.11). For a fast spring we can set x̄min = 0 and directly solve for x̄max, which
coincides with l̄max here. To solve for both oscillation limits we need an additional condition,
which will be derived in 3.2.3. Depending on the two oscillation limits x̄min and x̄max, the
growth time under force can be calculated to

τ+,1 =
∫ x̄max

x̄min

dx̄
v+(Ex̄) = τe ln

(
ω̃on − eEx̄min/F0

ω̃on − eEx̄max/F0

)
,

where the relative on-rate ω̃on = ωon/ωoff and the characteristic elongation time τe =
F0/Edmωoff are introduced. The growth time τ+,1 is positive if 0 < x̄min < x̄max < l̄stall
holds. In the limit E → 0, i.e., unconfined MT, we find x̄max = x̄min + v+(0)/ωc(v+(0)) from
(3.12), which gives the correct result for the free MT. In the following, we derive the second
condition that is required to solve for both oscillation limits.

3.2.3 Obstacle relaxation

Detached MTs either shrink or grow force-free. Meanwhile, the spring relaxes from x̄max to
x̄min according to x̄min(t) = x̄max exp(−t/τ0), where τ0 = γ/E is the characteristic relaxation
time of the spring.

Force-free growth: For the free growth time we additionally consider catastrophe events,
which occur before the MT contacts the spring. The lifetime distribution for a the free MT
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Figure 3.7: Attachment probability versus elastic modulus. Without rescues, the spring
exhibits a sweet spot for intermediate elastic moduli, where the attachment probability is maxed
out. In presence of rescue events, the attachment probability saturates for small elastic moduli.

is given by the simple exponential p+,0(t) = exp(−ωc(v+(0))t). The probability to reach the
membrane without undergoing a catastrophe is thus given by p+,0(xmin/v+(0)). One single
cycle, in which the MT grows from l = 0 to l = lmax and shrinks back to l = 0, occurs with
probability 1− p+,0(smin/v+(0)). In general, the MT performs n cycles before reaching the
membrane. The mean first contact time for the MT to contact the membrane at xmin > lmax
can thus be approximated by

τ+,0 =
∞∑
n=0

(
xmin − lmin
v+(0) + nlmax

( 1
v+(0) + 1

v−

))
(1− p+,0)np+,0

= xmin − lmin
v+(0) + lmax

( 1
v+(0) + 1

v−

)(
exp

(
(xmin − lmin) ωc(v+(0))

v+(0)

)
− 1

)
.

In the above expression, the n-th term accounts for the contribution of performing n cycles
before reaching the membrane. The sum can be evaluated by reducing it to geometric series.
We choose lmax to be the average length after a catastrophe as expected for a MT in a rigid
box of size xmin− lmin in order to avoid contributions from l > xmin to the mean first contact
time. Though we neglected rescues in Eq. (3.10), we take rescues into account for the mean
first contact time by transforming xmin → xmin − lmin.

Shrinking: Analogously to catastrophes, rescue events follow an exponential probability
density

p−(t) =

 ωre
−ωrt, t < lmax

v−

e−ωrtδ
(
t− lmax

v−

)
, t ≥ lmax

v−

but at the MTOC MTs are immediately rescued, which leads to a cut-off of the rescue time
probability density at t = lmax/v−. Thus, probabilities accumulate at the MTOC, which
leads to an average shrinking time

τ−(lmax) =
{
ω−1
r (1− e−ωrlmax/v−), ωr > 0
lmax/v−, ωr = 0 (3.13)
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3.2 Mean-field theory

where we took the expectation value with respect to the probability density p−(t). Using the
shrinking time just obtained we find the relation lmin(lmax) = lmax − v−τ−(lmax) and, finally,

f2(x̄min, x̄max) = x̄max exp(−(τ− + τ+,0)/τ0)− x̄min = 0. (3.14)

This is the second condition that is needed to solve for both oscillation limits. Equation
(3.14) has to be solved together with (3.12), i.e.,(

f1(x̄min, x̄max)
f2(x̄min, x̄max)

)
= 0. (3.15)

This equation lets us determine x̄min and x̄max with (3.12) and (3.14). We thus find a
complete solution by applying, for example, a Newton method to solve (3.15).

Solutions of eq. (3.15) are shown in Fig. 3.6 and Fig. 3.7. The former shows the oscillation
maximum xmax in units of the stall length lstall for both presence and absence of rescues.
In both cases, when increasing the elastic modulus E, MTs smoothly transition from non-
stalling to stalling in the limit E →∞. In the limit E → 0, however, xmax/lstall vanishes in
absence of rescues but converges to a finite value in presence of rescues.

Regarding the attachment probability shown in Fig. 3.7 we can state that the rich behavior
is clearly related to the inflection point, i.e., the transition regime observed for the oscillation
maximum in Fig. 3.6. The attachment probability undergoes a maximum in absence of
rescues and saturates in presence of rescues. Actually, the MT thereby passes three different
regimes of obstacle interaction. In the limit E → 0, we observe a free MT due to an effectively
absent obstacle, which is pushed far away from the MT seed once, but never returns as the
relaxation time diverges, i.e., τ0 → ∞. While increasing E starting from E = 0, the MT
enters a regime where elasticity dominates and timescales of MT and obstacle relaxation
match. Increasing E further until E → ∞ we actually observe interaction with a rigid
obstacle. The same argumentation applies also for anharmonic springs as the limit cases
remain the same, meaning that our results are robust against changing the elastic model.
However, the interval of elastic moduli, where the elastic features are observed, probably
changes when changing the elastic model.

3.2.4 Polymerization force

To calculate the average force 〈f〉 = E〈x〉, we have to average over the trajectories x̄max(t)
and x̄min(t) during one oscillation cycle of the spring. From ∂tx̄ = v+(Ex̄) we find the
trajectory

x̄max(t) = F0
E

ln
(
ω̃on −

(
ω̃on − eEx̄min/F0

)
e−t/τe

)
for spring elongation during force exertion. In the limit t → ∞ the force Ex̄max(t) ap-
proaches the MT stall force F0 ln ω̃on. Together with the relaxation trajectory x̄min(t) =
x̄max exp(−t/τ0) we find the expressions

〈f〉+ = F0
τ+,1

∫ τ+,1

0
ln
(
ω̃on −

(
ω̃on − eEx̄min/F0

)
e−t/τe

)
dt,

〈f〉− = Ex̄max
τ− + τ+,0

∫ τ−+τ+,0

0
e−t/τ0 dt

for the average force 〈f〉+ during force exertion and the average force 〈f〉− during spring
relaxation. The former corresponds to the polymerization force which is exerted directly
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Figure 3.8: The average force acting on the membrane during a complete oscillation cycle
undergoes a maximum in absence of rescues and saturates for vanishing elastic moduli in presence
of rescues, similar to the attachment probability. However, in contrast to the attachment
probability, the average force 〈f〉 increases with increasing friction due to larger relaxation times
τ0.

by the MT, whereas the latter originates in the relaxation process of the spring taking a
time τ+,0 + τ−. However, both functions 〈f〉+(E) and 〈f〉−(E) qualitatively follow the same
course, which thus also transfers to the average polymerization force over a complete cycle
given by

〈f〉 = patt〈f〉+ + pdet〈f〉−.

Its behavior is qualitatively similar to the attachment probability: in absence of rescues
it exhibits a maximum for intermediate elastic moduli, whereas in presence of rescues it
saturates for vanishing elastic moduli (Fig. 3.8). The average polymerization force increases,
however, with increasing friction due to larger relaxation times τ0. This is in contrast to the
attachment probability, where we observe the opposite behavior.

3.2.5 Conclusion

We investigated a single MT coupled to an overdamped spring in a one dimensional toy
model and found analytic solutions, which are in good agreement with simulations. The
attachment probability exhibits a maximum for intermediate elastic moduli of the spring,
which is the most important result here. Furthermore the attachment probability increases
with decreasing friction. In the limit of a stiff spring, but also for the free MT the attachment
probability vanishes in absence of rescue events as expected. In contrast, when rescue events
are present, the attachment probability saturates for vanishing elastic moduli, since the MT
length parameter λ is sufficiently increased to follow the spring and stretch it to a critical
extent.
In view of the two-dimensional analysis performed in section 3.4, where an ensemble of

MTs is coupled by a closed elastic membrane, the attachment probability plays an important
role, since it is a is a measure for the coupling strength. Though the coupling modulates the
results just obtained, the one-dimensional model gives a first hint to what happens in the
closed elastic compartment.
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3.3 Ensemble mean-field theory

3.3 Ensemble mean-field theory
So far, we analyzed a single MT interacting with an elastic barrier following an overdamped
dynamics in a mean-field approach. Now, we extend our interest to multiple MTs interacting
via an elastic barrier and thereby focus on a collective growth state of the MT ensemble, by
which we refer to a state with a non-zero fraction of growing MTs that interact with the
barrier. Note that this is not necessarily a restriction since it is in principle possible to find
a system in a permanent collective growth state. We take two types of barriers into account,
which are (i) a barrier that exerts a constant force and (ii) a barrier that exerts a force
growing monotonically in time, due to enduring and non-stationary obstacle elongation.
Based on stochastic switching and directional persistence, individual MT velocities are

dichotomous Markov noises, which behave partially diffusive and partially wavelike [211].
MT arrays interacting with an elastic obstacle thus exhibit complex pinning and de-pinning
dynamics, meaning that adsorption and desorption events occur stochastically. To describe
this process, we utilize a system of one-step master equations corresponding to a birth-death
process, where birth and death are associated to adsorption and desorption events.
An MT population of M MTs can be subdivided into n+ attached and n− detached

MTs, where the total MT number M = n+ + n− is conserved. Attached MTs participate
in elongating the elastic obstacle by uniformly sharing its opposed force. Detached MTs
reside in the cell interior and after some time potentially re-enter the (moving) boundary.
Attachment and detachment events change the current boundary occupation. This process
is described by effective rates, which of course depend on the current boundary occupation
and the force exerted by the elastic obstacle. Technically, these effective rates depend on
the stochastic number n+ of attached MTs and the total force F exerted by the obstacle.
In a mean-field approach we replace F by its expectation value 〈F 〉 with respect to many
realizations of the stochastic n+ dynamics, meaning that all these realizations experience
one and the same force 〈F 〉. Note that we chose the number n+ as a discrete variable and
consider an infinite number of collective MT systems, which contain M MTs each. Together,
these systems are characterized by one-step master equations concerning the probabilities
pn+(t). The probability to find a system with n+ MTs exerting force at a given time t is
pn+(t), which, in case of a monotonically growing force, depends on the history of the force
〈F 〉, i.e., its time evolution.
In the following, we derive the time evolution for the probabilities pn+(t) employing a

system of (M + 1) one-step master equations dependent on the force 〈F 〉. For constant force,
i.e., 〈F 〉 = const, we calculate the steady state 〈n+〉eq(〈F 〉) and the mean first-passage time
T (〈F 〉), i.e., the endurance of the collective state of growth. Assuming a linear force relation
〈F 〉 = E(〈x〉 − x0) leads to a time evolution ∂t〈F 〉 = E∂t〈x〉 = Ev+(〈F 〉/n+) for a given
boundary occupation n+. This time evolution drives the system out of its stationary state.
For such a system, we determine the ensemble stall force defined by 〈v+(〈F 〉/n+)〉 = 0 and
the nullcline defined by ∂t〈n+〉 = 0, both by sampling individual phase space trajectories
with reasonable initial conditions.

The theory we derive holds for MT bundles pushing against a one dimensional obstacle
as well as asters confined by a circular symmetric membrane, because both systems are
equivalent. Effects of asphericity or shape fluctuations, which apparently occur in simulations
like in sec. 3.4, are therefore neglected. In contrast to Ref. [6], we take the full stochastics of
the variable n+ into account and, similar to Ref. [6], we treat the force with a mean-field
approach. Moreover, we do not compare to simulation results like in Ref. [6], where theory
and simulation results are in reasonable agreement.
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3 Cooperative microtubule dynamics in closed elastic compartments

3.3.1 Collective rates

In order to describe adsorption and desorption of MTs at the membrane with a system
of one-step master equations we define effective rates. Desorption is associated with the
backward rate, and adsorption is associated with the forward rate. The former decreases
and the latter increases the boundary occupation. The backward rate rn+ = n+ωc(〈F 〉/n+)
for n+ > 0 (Fig. 3.9 right) is a generalization of the catastrophe rate for ensembles under
uniform force sharing, where we assume that catastrophe rates are independent from each
other and thereby additive. The forward rate gn+ = (M − n+)/τ(〈F 〉/n+) for n+ < M (Fig.
3.9 left) is proportional to the inverse average catch-up time τ(〈F 〉/n+), which is obtained
from the shrinking time τ− (cp. (3.13)) and the time τ+ of free growth. Effective rates
very similar to rn+ and gn+ defined above have been derived in Ref. [6]. However, we use a
more accurate expression for the shrinking time τ−. We quantify the times τ− and τ+ in the
following.
By assuming a linear and invertible average force 〈F 〉 = E(〈x〉 − x0) we implicitly

assume an average obstacle position 〈x〉, which can be used to determine the shrinking time
τ−(〈x〉) = τ−(〈F 〉/E + x0) using (3.13). In order to determine the time of free growth, we
state that in a system with n+ MTs exerting a force 〈F 〉 the boundary moves at velocity
v+(〈F 〉/n+), if we assume uniform force sharing. Note that this implies a moving boundary
according to ∂t〈x〉 = v+(〈F 〉/n+) for a given boundary occupation n+. During shrinking,
MTs move away from the boundary at a relative velocity v−+v+(〈F 〉/n+). During force-free
growth, MTs catch up at a relative velocity v+(0) − v+(〈F 〉/n+). The ratio of these two
relative velocities is the same as the ratio of the free growth time τ+ and the shrinking time
τ−, because the MT has to overcome the same relative distance in both phases. From these
considerations we gain the relation

τ+(〈F 〉/n+) = τ−(〈x〉) v− + v+(〈F 〉/n+)
v+(0)− v+(〈F 〉/n+) ,

which gives the time between rescue and re-entering the group of MTs that exert force. This
relation enables us to find

τ(〈F 〉/n+) = τ−(〈x〉) + τ+(τ−(〈x〉)) = τ−(〈x〉)
(

1 + v− + v+(〈F 〉/n+)
v+(0)− v+(〈F 〉/n+)

)
for the overall catch-up time, which is simply the sum of τ+ and τ−. In contrast to Ref. [6], we
use the average shrinking time τ−(〈x〉) from eq. (3.13) obtained within the one-dimensional
mean-field theory in section 3.2. MTs that undergo a catastrophe during collective force
exertion, catch up on average after a time τ(〈F 〉/n+). Note that the free growth time
τ+(〈F 〉/n+) differs from the free growth time τ+,0 employed in the one-dimensional mean-
field theory from section 3.2. Here, the obstacle does not relax during the catch-up process.
Instead, the system is still in a state of collective growth, during which the remaining MTs
participate in elongating the obstacle.

3.3.2 Boundary occupation

Using the forward and backward rates we can describe the MT population in a stochastic
manner, i.e., set up the one step master equations. In case of a constant force 〈F 〉 = const
the boundary is stationary at 〈x〉 = 〈F 〉/E + x0 = const. In case of a time-dependent force
∂t〈F 〉 = E〈v+(〈F 〉/n+)〉 the boundary itself is dynamic according to ∂t〈x〉 = 〈v+(〈F 〉/n+)〉.
Here, we averaged over the stochastic n+ dynamics, i.e., took the expectation value with
respect to the probabilities pn+(t). We aim to predict the fractions of the population
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Figure 3.9: Left: Forward rate gn+ for ωr = 0.0 s−1 and several values n+ = 0 . . . 15 from top
to bottom. The forward rate decreases with an increasing number of force exerting MTs due to
an increased obstacle velocity and, thus, an increased catch-up time. Right: Backward rate
rn+ for several values n+ = 1 . . . 16 from left to right. The backward rate is identical to the
Flyvbjerg catastrophe rate multiplied by the integral number n+.

residing at the boundary and in the cell interior during a collective growth phase. Therefore,
we consider a set of M + 1 discrete occupation levels n+ ∈ [0,M ] under individual loads
〈F 〉/n+ and investigate the evolution of the probabilities p(t) = (p0, p1, . . . , pM )T ∈ RM+1

in continuous time. Exchange between adjacent levels occurs with forward rate gn+ =
(M − n+)/τ(〈F 〉/n+) and backward rate rn+ = n+ωc(〈F 〉/n+). Note that 1 − p0(t) gives
the fraction at the boundary and p0(t) the fraction currently residing in the cell interior
either shrinking or growing force-free.

Constant force: Assuming a constant force the time evolution of the probabilities p(t) is
given by the system of master equations

∂tp(t) = Mp(t), (3.16)

with a time-independent tridiagonal transition matrix

M =



−g0 r1 0 . . . 0
g0 −(g1 + r1) r2

0 g1 −(g2 + r2)
...

... 0
−(gM−1 + rM−1) rM

0 . . . 0 gM−1 −rM


.

Note that we have
∑M
i=0 Mij = 0 for all columns j. From the occupation probabilities we

obtain the expectation value

〈n+〉 =
M∑

n+=0
n+pn+ . (3.17)
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3 Cooperative microtubule dynamics in closed elastic compartments

The steady state of eq. (3.16) can be obtained from the equilibrium condition gnp
eq
n =

rn+1p
eq
n+1 corresponding to a locally vanishing probability net flux. Using this condition we

express all probabilities

peq
n+ = peq

0

n+−1∏
i=0

gi
ri+1

in terms of peq
0 , which can be obtained via normalization

peq
0 = 1

1 +
∑M
n+=1

∏n+−1
i=0

gi
ri+1

.

Using the steady state, we find the expectation value

〈n+〉eq =
M∑

n+=0
npeq

n+ . (3.18)

This steady state might be reached in the limit E � F0/x0 of a soft barrier, where the force
exerted by the obstacle is small and approximately constant. In the continuous limit and
neglecting fluctuations, i.e., assuming that p(n+) = δ(n+ − 〈n+〉), we find

∂t〈n+〉 = g(n+)− r(n+) = M − 〈n+〉
τ(〈F 〉/〈n+〉)

− 〈n+〉ωc(〈F 〉/〈n+〉). (3.19)

from eq. (3.17). The nullcline defined by ∂t〈n+〉 = 0 in (3.19) is obtained from the
self-consistent equation [6]

〈n+〉 = 1
1 + ωc(〈F 〉/〈n+〉)τ(〈F 〉/〈n+〉)

(3.20)

and has a loop shape in the (〈F 〉, 〈n+〉)-plane consisting of a stable upper branch and an
unstable lower branch merging at a saddle node bifurcation, where ∂〈F 〉/∂〈n+〉 = 0, i.e.
the loop has a vertical slope (Fig. 3.10 right). This point marks the maximum possible
polymerization force of the MT ensemble [6]. Beyond this critical force the expectation
value 〈n+〉 spontaneously drops to zero.

Passage time for constant force: The following calculations are adapted from Refs.
[212, 213] To deduce the mean first passage time needed to pass from n+ to zero, we start
with the recursive expression

Tn+ =


0 n+ = 0
τ esc
n+ + τ esc

n+ gn+Tn++1 + τ esc
n+ rn+Tn+−1 0 < n+ < M

τ esc
M + τ esc

M rMTM−1 n+ = M

(3.21)

where we have to use an absorbing boundary at n+ = 0, i.e., g0 = 0 and T0 = 0, as well as
a reflecting boundary at n+ = M , i.e., gM = 0. On the one hand, by reaching the state
n+ = 0 the system is trapped, on the other hand n+ = M is the highest accessible state.
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Figure 3.10: Left: Mean first passage time for microtubule ensemble under constant force from
n+ = 1 (left line) to n+ = 16 (right line). The mean first passage time decreases for decreasing
number of force exerting MTs n+ as well as for increasing average force 〈F 〉. Right: Numerical
solution of the nullcline ∂t〈n+〉 = 0 (cp. Eq. (3.20)) and analytic steady state expression (3.18).
The intersection of nullcline and steady state defines a fixed point. Phase space trajectories are
attracted by this fixed point.

The escape time

τ esc
n+ =


∞ n+ = 0
1/(gn+ + rn+) 0 < n+ < M

1/rM n+ = M

is the average time spent in state n+. During this time, the system moves forward with
probability τ esc

n+ gn+ , which leads to contributions from the passage time Tn++1. The same
applies for the backward move with probability τ esc

n+ rn+ and the passage time Tn+−1. By
substituting Sn+ = Tn++1 − Tn+ we find SM−1 = 1/rM from (3.21). We can thus solve via
the recursive relation Sn+−1 = (1 + gn+Sn+)/rn+ for the remaining differences

Sn+ =
M∑

j=n++1

∏j−1
k=n++1 gk∏j
k′=n++1 rk′

.

Now, since T0 = 0 we have S0 = T1 and thus

Tn+(F ) =
n+∑
i=1

M∑
j=i

∏j−1
k=i gk∏j
k′=i rk′

for the mean first passage time of a collective force exertion phase under constant force (Fig.
3.10 left).

Monotonically increasing force: If transition rates depend on time, equation (3.16)
has to be recasted to describe a non-equilibrium, i.e., semi-Markovian process, since the
transition matrix M becomes time-dependent. Then, the system of master equations reads

p(t) = exp
(∫ t

0
dt′M(t′)

)
p(0). (3.22)
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Figure 3.11: Steady state, nullclines and phase space trajectories for ωr = 0.00 s−1 (left)
and ωr = 0.10 s−1 (right). The colored phase space trajectories were calculated with the
algorithm from sec. 3.3.3 using an elastic modulus E = 10−4 N/m, which corresponds to a
stiff barrier compared to Ref. [6]. Using a soft barrier with E = 10−7 N/m should result in
trajectories that are attracted by the upper branch of the nullcline, because, in this limit, the
〈n+〉-dynamics is much faster than the 〈F 〉-dynamics. The nullcline ∂t〈n+〉 = 0 (gray dots) is
directly determined from the zeros of the phase space trajectories. Compared to Ref. [6] we find
additional substructures in the phase space, which originate in fluctuations of the stochastic
variable n+, and can be interpreted as finite size effects. Within these elliptical substructures
we have negative mean-field flow ∂t〈n+〉, which destabilizes the state of collective growth. The
effect of fluctuations is reduced by increasing the rescue rate.

The transition matrix M depends on 〈F 〉 and n+ via the forward and backward rates.
In general, 〈F 〉 is time dependent and increases monotonically during the pushing phase.
Distributing the force 〈F 〉 equally on the number n+ of MTs currently exerting force leads to
a force 〈F 〉/n+ acting on single, pushing MTs. The time evolution of 〈F 〉 can be obtained to

∂t〈F 〉 = E〈v+(F/n+)〉〉 = E
M∑

n+=1
pn+v+(〈F 〉/n+)− p0Edmωoff (3.23)

where we used ∂t〈x〉 = 〈v+(〈F 〉/n+)〉 and ∂x〈F 〉 = E, i.e., assumed a linear force relation
〈F 〉 = E(〈x〉 − x0) as in the previous section, but now in a mean-field approach averaging
the force 〈F 〉 over the stochastic n+ dynamics or, in other words, calculating the expectation
value 〈F 〉 with respect to the probabilities pn+(t). Starting from 〈F 〉 = 0 at 〈x〉 = x0 the force
increases monotonically and approaches the stall force of the MT ensemble, which corresponds
to 〈v+(〈F 〉/n+)〉 = 0 and defines the nullcline of eq. (3.23). Using the approximation
〈v+(〈F 〉/n+)〉 ≈ v+(〈F 〉/〈n+〉) like in Ref. [6] we find Fstall = 〈n+〉F0 ln(ωon/ωoff), which is
a linear function in 〈n+〉 and lies above the nullcline given by (3.23) This is consistent with
Fig. 3.11, where we numerically verify a linear relation for the time-dependent system.

3.3.3 Phase space dynamics

We derived the time evolution of the MT population, subdivided into attached and detached
MTs, and the elastic force confining the MT ensemble, where we applied a mean-field
approach to the latter. The occupation probability dynamics (3.22) has been derived
dependent on the average force; the dynamics of the average elastic force (3.23) has been
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derived dependent on the occupation probabilities. Both evolutions (3.22) and (3.23) are
coupled and have to be solved together. For this purpose, we suggest the following algorithm:

1 initialize distribution pk = δ(n+ − 〈n+〉) and let 〈F 〉k = ε,

2 evolve occupation probability pk+1 = exp
(
M(〈F 〉k)∆t

)
pk,

3 update force 〈F 〉k+1 = 〈F 〉k + ∆tE〈v+(〈F 〉k/n+)〉pk ,

4 measure 〈n+〉pk and ∂t〈n+〉pk ,

5 let pk = pk+1, 〈F 〉k = 〈F 〉k+1, k = k + 1 and go to 2.

Note that the resulting trajectories go beyond Ref. [6]. We find that each trajectory in
the phase space undergoes at least one saddle node bifurcation, where 〈v+(〈F 〉/n+)〉 = 0
and ∂〈F 〉/∂〈n+〉 = 0. After crossing the first bifurcation point, trajectories oscillate closely
around 〈v+(〈F 〉/n+)〉 = 0 and meanwhile alternate between stable and unstable branches.
Time evolutions are attracted by the fixed point given by the intersection between the line
〈v+(〈F 〉/n+)〉 = 0 and the steady state 〈n+〉eq(〈F 〉). Our results suggest a linear relation
Fstall ∼ 〈n+〉 (see Fig. 3.11), where the slope can be determined from numerical calculations.
In contrast to Ref. [6], where the stable limit cycle given by eq. (3.19) (Fig. 3.10 right) has
been calculated, the algorithm above reveals additional elliptical substructures in the phase
space (Fig. 3.11). Though we likewise find a linear relation between the stall force Fstall and
〈n+〉, our results suggest a different slope as in Ref. [6].

3.3.4 Conclusion

As we found out in this section, multiple MTs collaborating in elongating an elastic obstacle
exhibit phases of collective force exertion as can be concluded from the observed stable
limit cycle. Equivalently, we can conclude that MTs perform collective length oscillations.
Increasing the rescue rate increases both the maximum possible number of participating
MTs and the generated polymerization force, as can be seen from Fig. 3.11, from which
we additionally gathered a linear relationship Fstall ∼ 〈n+〉. Future work should aim at
systematically investigating the slope of these linear functions dependent on, for example, the
rescue rate. In the following, we now finally derive the complete two-dimensional simulation
model in order to verify the collective effects discovered in this section, but also the effects
for single MTs found in the previous section.

3.4 Simulation model for multiple MTs within a cell cortex
Now that we have investigated the stochastic dynamics of single MTs interacting with an
overdamped elastic obstacle and, in addition, multiple MTs that equally share a unique
force, both in a one-dimensional geometry and by means of mean-field theories, we extend
our interest to a two-dimensional model. In both the single and the ensemble mean-field
theories we gained important insights regarding MT interactions: in the single MT mean-field
theory we found that the attachment probability as well as the polymerization force exhibit
a maximum for intermediate elastic moduli in absence of rescues. In presence of rescues
we found a saturation for vanishing elastic modulus. In a multiple MT mean-field theory
similar to Ref. [6] we found a stable limit cycle in the (〈n+〉, 〈F 〉)-phase-space, which clearly
indicates that collective force exertion takes place when many MTs are coupled via an elastic
obstacle and share its opposed force uniformly. By collective force exertion we refer to stable
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3 Cooperative microtubule dynamics in closed elastic compartments

growth maintained by a MT cluster. The end of such a collective growth phase is typically
marked by a collective catastrophe, which is defined by a collective break-down of all MTs
and has been observed experimentally by Laan et al. [151].

Our perspective in this chapter is that coupling multiple MTs with an overdamped elastic
obstacle that can change its shape leads to a combination of both effects, i.e, cooperative
behavior that depends on the intrinsic ability of the MT ensemble to synchronize and the
shape of the elastic obstacle. We therefore refrain from mean-field approximations and take
the full stochastics into account, meaning that we model each MT individually and introduce
a two-dimensional circular and discretized membrane that is not restricted by symmetry.
Regarding the average shapes, however, circular symmetry will be conserved at the moment,
but we discuss symmetry breaking mechanisms in the next section.

In the sense of this work, we combine the description of elastic capsules with the modeling
of the polymerization kinetics of microtubules. This way we introduce a very simple and
well comprehensible model for a primitive eucaryotic cell, similar to two-dimensional phase
field models that have been investigated earlier [214, 215]. In contrast to these models,
which employ actin polymerization explicitly but neglect microtubules, we explicitly simulate
microtubules and incorporate the actin polymerization forces effectively in both the membrane
dynamics and the microtubule polymerization kinetics. Coarse graining techniques allow
us to reach large timescales where synchronization and polarization phenomena can be
accurately measured.

In our two-dimensional model, the cell boundary is given by a closed line. The elasticity of
this one-dimensional line is derived from a two-dimensional elastic ribbon that can be seen as
a virtual extension of the line into the third dimension, perpendicular to the two-dimensional
simulation plane. In other words, we consider a slice (with a finite height) of a three
dimensional spherical cell. This gives rise to a more realistic elasticity and allows us to use
literature values for the elastic constants. Considering only a slice of a three dimensional
object there is no need to employ surface area or volume constraints, since the single slice
can exchange surface area or volume with the bulk it has been cut from.

3.4.1 Elastic shell

We model the closed membrane in two-dimensional space as a discretized polygonal chain
with N vertices at xn = rnen, where we use polar coordinates with the distance rn of vertex
n = 1, ..., N from the centrosome at r = 0 and with unit vectors en = (cosφn, sinφn)T .
We distribute the vertices equidistantly in angular space at fixed angles φn = 2πn/N but
variable radii rn ≥ 0. Vertices are connected by bonds with stretching and bending energy.

Within the closed membrane an ensemble of M MTs is growing radially starting at the
centrosome at r = 0. We choose the number of vertices N to be a multiple of the number of
MTs M and distribute MTs isotropically, i.e., we choose a fixed number of bonds between
two MTs (usually we consider M = 16 . . . 64 MTs enclosed by a membrane consisting of
N = 64 . . . 256 bonds). The configuration of the MT aster is described by the MT tip
vectors lm = lmemq (m = 1, ...,M and n = 0, . . . N − 1), where the index n(m) = mq with
q = N/M gives the radial growth direction of the m-th MT.
After some time MTs push radially outwards against a vertex of the membrane, which

generates an opposing force. An MT couples to the membrane if it attaches to the polygonal
membrane, i.e., lm = rmq (by choosing N a multiple of M , the existence of a vertex at this
location is guaranteed). As long as lm < rmq, no force is transmitted to the growing MT;
as soon as lm = rmq during growth, the MT keeps pushing the vertex outwards but the
membrane exerts an opposing force, which decreases the growth velocity and increases the
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Figure 3.12: Sketch of the cell membrane
explaining quantities in 3.24. Membrane ver-
tices xn are connected by the bond vectors
tn. The inward directed normal vectors nn
are given by the difference between adjacent
bond vectors. The interface is denoted by ∂Γ
and the enclosed domain by Γ. Every vertex
has a corresponding arc length sn.

catastrophe rate according to the rules defined in sec. 3.1.4. The elastic force is derived
from an elastic energy functional for the membrane.

In general, soft and elastic materials have elastic energy contributions from bending energy
induced by curvature and stretching energy induced by strain. The membrane enclosing the
MT aster is a model for the actin cortex and the phospholipid bilayer. Note that similar
systems, i.e., liposomes with actin cortices have also been realized experimentally [216, 217].
Assuming that both parts are structurally linked and their properties are additive, their
elastic contributions can be treated individually. In principle, we also expect an additional
tension contribution, which could be caused, for example, by motor proteins in the actin
cortex [182]. This would result in a uniformly precompressed cortex and, thus, a smaller
equilibrium shape. Such a contribution will be neglected here.
In our two-dimensional cell model the enclosing membrane will be treated as a one-

dimensional polygonal chain, whose elasticity is obtained from the elasticity of a two-
dimensional ribbon by integrating over the width dc of the latter. Using a typical number of
∼ 600 MTs in a cell of radius R0 = 10µm [218], a typical distance between neighbored MTs
is dc ∼ 0.2µm. A reasonable choice of a shape free energy is

F [{xn}] = 1
2

N∑
n=1

κnsn
(
nn/s

2
n − c0n̂n

)2
+ 1

2

N−1∑
n=0

Yn` (|tn|/`− 1)2 (3.24)

with periodic boundary conditions x0 ≡ xN . However, we like to stress that the choice of
(3.24) is not unique, i.e., other choices are possible and similarly reasonable, but the above
energy functional allows us to obtain reliable results and, moreover, satisfies some technical
requirements.
The bond vectors are given by tn = xn+1 − xn and the inward directed normals by

nn = tn− tn−1, see Fig. 3.12. In static force equilibrium, bond vectors have a length |tn| = `
and normal vectors have a length |nn| = `2c0, where c0 = 1/R0 is the spontaneous curvature
of the cell contour. Note that both terms in (3.24) are integrated over the width dc of the
ribbon, which is assumed be constant, even if the ribbon is stretched or bent. Though
not explicitly stated in (3.24), the width dc is included in the one-dimensional bending
rigidity κ and the one-dimensional Young modulus Y , which are related to the corresponding
two-dimensional values via κ = κ2Ddc and Y = Y2Ddc. We require the ribbon to have zero
curvature and zero strain in z-direction, which is the direction perpendicular to the enclosed
cell area Γ. We thus mapped the elasticity of the two-dimensional ribbon to the cell contour
line ∂Γ by employing effective one-dimensional elasticity constants. Details of this mapping
are given below.
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3 Cooperative microtubule dynamics in closed elastic compartments

The first term in (3.24) is a discretized version of a Hookean bending energy

EB = dc
2

∮
∂Γ

dsκ2D(s) (κs − c0)2 (3.25)

of the contour ∂Γ enclosing the two-dimensional domain Γ with a function κ2D(s) giving the
local bending rigidity. The ribbon is bent only in s-direction and no bending occurs in the
z-direction, i.e., κφ = 0. Thus, the bending energy can be readily integrated over the width
dc of the ribbon. We include this effectively by introducing the one-dimensional bending
rigidity κ = κ2Ddc. The curvature κs is measured per arc length sn = (1/2)(|tn−1|+ |tn|)
and can be approximated by a differential quotient κs = |∂2

sx| ≈ |nn|/s2
n within the discrete

model. Since bending occurs at the vertices, we have to average the arc length over adjacent
bond vectors. The integral in (3.25) is transformed to a sum via∮

∂Γ
ds→

∑
n

sn.

Within this transformation, we refrain from a small strain approximation sn ≈ `, because this
leads to shape artifacts in numerical simulations, in particular for equilibrium membranes,
which are minimized in each timestep. With respect to the rest radius R0 of the membrane
we choose the spontaneous curvature c0 = 1/R0, which corresponds to a constant area
difference between the two leaflets of the bilayer and, thus, inhibited lipid exchange.
The second term in (3.24) is a discretized version of a Hookean stretching energy

ES = dc
2

∮
∂Γ

ds Y2D(s)(λs − 1)2 (3.26)

describing a polymeric linear elasticity, where we assumed a Poisson ratio ν2D = 0 and
thereby a constant width dc of the ribbon, i.e., λφ = 0. The function Y2D(s) gives the local
surface Young modulus dependent on the arc length. Again, we can readily integrate over
the width dc of the ribbon by introducing the one-dimensional Young modulus Y = Y2Ddc.
When discretizing the above energy, the resting length ` of the spring enters via the strain
λs = ds/ds0 ≈ |tn|/` of the contour ∂Γ. With respect to the rest radius R0 we choose
the rest length ` = 2R0 sin(π/N), according to a regular polygon. Here, we discretize the
integral along the undeformed contour by weighting directly with the resting length and
thereby assume small strains, i.e., ∮

∂Γ
ds→

∑
n

`,

A contribution like in (3.26) will arise from the polymer meshwork in the actin cortex. The
resulting force on the vertices increases linearly with spring extension.

The bending and stretching energies in (3.24) vanish independently in the reference state
of the membrane, which is a regular polygon with outer radius R0. The material properties
of the enclosing membrane are described by the one-dimensional Young modulus Y and
the one-dimensional bending rigidity κ, respectively the elasticity fields Y (s) → Yn and
κ(s)→ κn. These effective values already contain the mapping from the two-dimensional
ribbon to the one-dimensional cell contour line ∂Γ.
The elastic properties of the actin cortex have been investigated in Ref. [182]: Typical

values for the two-dimensional modulus of cortex elasticity are Y2D ∼ 0.24 · 10−3 N/m
corresponding to a bulk modulus Y3D ∼ 2.4 · 103 N/m2, assuming a typical cortex thickness
of h = 0.1µm. In live HeLa cells a cortex thickness of h ∼ 0.2µm has been found [219]. In
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3.4 Simulation model for multiple MTs within a cell cortex

experimental model systems, i.e., artificially produced liposomes with actin cortices, the
cortex thickness varied between 0.05 and 0.5µm [216, 217], and was found to depend strongly
on the size of the liposome [217]. Within this work, we focus on thin cell membranes of
thickness h ∼ 0.05µm, because these require less computational cost in numerical simulations.
However, our model allows, in principle, arbitrary values for h and future studies should
clarify in which way an increased cortex thickness changes the results. Based on isotropic
linear elasticity we could expect a bending modulus κ2D ∼ Y2Dh

2 ∼ 2.4 · 10−18 Nm for a
membrane material with thickness h. For the one-dimensional effective membrane model,
this leads to estimates Y ∼ Y2Ddc ∼ 4.8 · 10−11 N and κ ∼ κ2Ddc ∼ 4.8 · 10−25Nm2. In
simulations we use only Young’s modulus Y as a parameter and fix the bending rigidity via
κ = Y h2/12 (corresponding to ν2D = 0) with a constant cortex thickness h ≈ 0.06µm.

3.4.2 Liquid interface

MT asters have been confined in liquid droplets in vitro [220]. The shape of a droplet
is determined by balance between surface tension and pressure. Instead of a hydrostatic
pressure that has been used for the elastic capsules, we refer to an osmotic pressure here,
which originates in different concentrations of freely diffusing non-solvent particles inside
and outside the cell. Elastic capsules have been investigated under the influence of osmotic
pressure in Ref. [62]. Note that the outer concentration is experimentally controllable, for
example, via salt concentrations. Assuming that osmotically active particles behave like an
ideal gas, the free energy of the liquid interface accounting for the inner and outer solutions
in two-dimensional space is given by

F = σL− kBTNin ln
(

e
λ2
B

A

Nin

)
− kBTNex ln

(
e
λ2
B

Aex −A
Nex

)
,

where λB is the thermal de Broglie wavelength λB = h/
√

2πmkBT with the Planck constant
h. The numbers Nin and Nex denote the particle numbers residing in the cell interior
respectively the extracellular matrix. The area,

A =
x

Γ
dA =

N−1∑
n=0
|xn × xn+1|/2,

of Γ is enclosed by the cell contour ∂Γ and depends on the current cell shape; the area Aex
is the size of the experimental container. The line tension σ acts as a Lagrange parameter
concerning the length

L =
∮
∂Γ

ds =
N∑
n=1
|tn|

of the cell contour ∂Γ. In the limit Aex � A we can rewrite the above free energy as

F = σL− kBTNin ln (A) + kBT
Nex
Aex

A+ const,

where the outer concentration Nex/Aex is the experimental control parameter. Using van’t
Hoff’s law we identify the external pressure pex = kBTNex/Aex and the internal pressure
pin = kBTNin/A leading to

F = σL− pinA ln (A) + pexA+ const. (3.27)
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The first contribution in (3.27) describes an energy associated with a line tension σ, which
would, in an elastic membrane, arise from additional active forces generated by motor
proteins or actin polymerization [182]. Here, σ arises from the fluid interface and describes
a simple surface tension. The last two terms arise from the osmotic pressure, which mimics
a semi-permeable membrane and allows for solvens conduction from inside to outside and
vice versa.

We assume the number Nin of osmotically active particles residing in the cell interior to
be constant, which means that these particles cannot diffuse across the membrane. Likewise,
particles from the external reservoir cannot enter the cell. In the reference state, the number
Nin shall also satisfy the Laplace-Young equation, which derives directly from (3.27) via
differentiation and requiring force balance. These considerations result in

pin = A0
A

(
σ

R0
+ pex

)
for the internal pressure. In other words, we choose the inner pressure such that the
equilibrium shape of the two-dimensional drop is a circle of radius R0, for given external
pressure pex and surface tension σ, which both serve as parameters in simulations. Inserting
the above relation in the free energy (3.27) allows us to eliminate the internal pressure pin
leading to

F = σ

(
L− A0

R0
lnA

)
+ pex (A−A0 lnA) .

Note that the inner pressure pin is not a constant since it naturally depends on the area A,
which fluctuates due to MT induced deformations of the drop interface.

In contrast to the elastic membrane, where bending and stretching forces vanish indepen-
dently in the equilibrium configuration, the equilibrium liquid interface is defined by balance
between contractile line tension forces and expansive pressure forces. In other words, the
length of the contour ∂Γ tends to be small, whereas the area of the domain Γ tends to be
large. Both effects compete and thereby define the equilibrium configuration of the two
dimensional droplet.
For a pure liquid interface we have σ2D ∼ 10 nN/µm [5] and, thus, σ ∼ σ2Ddc ∼ 2 nN.

However, the surface tension can be decreased significantly by surfactants that adsorb to
the interface. For the external pressure we could assume p2D = 5 · 105 N/m2 [182] leading to
pex ∼ p2Ddc ∼ 0.1 N/m, but such a high pressure value is equivalent to a sharp area constraint.
Since we consider the two-dimensional cell domain Γ as a slice of a three dimensional capsule,
this is incompatible with our model. Hence, we focus on an approximation for large systems
with Aex � A or, in other words, small exterior concentrations, such that pex � pin ln(A).

3.4.3 Boundary dynamics

From the elasticity of the enclosing membrane or interface we can deduce the force onto a
vertex at xn by taking the negative gradient −∇xnF of the free energies (3.24) and (3.27).
We assume that the radial component of this force opposes growth of a MT that is attached
to this vertex.
Derivating the elastic shape free energy 3.24 with respect to the vertex configuration

X ≡ (x1, . . . ,xN )T gives the force field

T (X) = −∇X F = −
(
∂F
∂x1

, . . . ,
∂F
∂xN

)T
= (f1,f2, . . . ,fN )T .
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The elastic force acting on the n-th membrane vertex can be readily calculated to

f elastic
n = f

κn−1
n,‖ + f

κn+1
n,‖ + f

κn−1
n,⊥ + fκn

n,⊥ + f
κn+1
n,⊥ + fYn−1

n + fYnn , (3.28)

where we decomposed the bending force vectors in lateral and normal contributions. In
addition, we ordered terms with respect to the elasticity fields κn and Yn, which become
important in the context of feedback mechanisms employing local elasticity manipulations,
see sec. 3.5. The individual terms in eq. (3.28) are the normal bending forces

f
κn−1
n,⊥ = −κn−1

2

[
2nn−1
s3
n−1

− 2c0n̂n−1
sn−1

]
,

fκn
n,⊥ = κn

2

[
4nn

s3
n

− 4c0n̂n

sn
+
(

3n2
n

2s4
n

− c0|nn|
s2
n

− c2
0
2

)
(t̂n−1 − t̂n)

]
,

f
κn+1
n,⊥ = −κn+1

2

[
2nn+1
s3
n+1

− 2c0n̂n+1
sn+1

]
,

the lateral bending forces

f
κn−1
n,‖ = κn−1

2

(
3n2

n−1
2s4
n−1
− c0|nn−1|

s2
n−1

− c2
0
2

)
t̂n−1,

f
κn+1
n,‖ = κn+1

2

(
3n2

n+1
2s4
n+1
− c0|nn+1|

s2
n+1

− c2
0
2

)
(−t̂n),

and the stretching forces

fYn−1
n = −Yn−1

( |tn−1|
`
− 1

)
t̂n−1,

fYnn = Yn

( |tn|
`
− 1

)
t̂n.

Note, that we have f elastic
n ≡ fn(xn−2, . . . ,xn+2), i.e., the force at the n-th vertex depends

on two neighbors in both directions, thus vertices are locally coupled.
From the liquid interface shape free energy (3.27) we obtain the force vectors

f liquid
n = fσn + f∆p

n = σ(t̂n − t̂n−1) + (pin − pex)
(
R−π/2xn+1 + Rπ/2xn−1

)
/2 (3.29)

acting on the n-th vertex of the interface. In the above expression, Rα is a two-dimensional
rotation matrix.
The force vectors f elastic

n and f liquid
n associated with the free energy functionals (3.24)

and (3.27) vanish in the equilibrium configuration of the cell boundary, which is a regular
polygon.
We state that membrane and consequently MT dynamics is driven by the force field

T (X). The time evolution of the membrane is described by the 2N -dimensional overdamped
equation of motion

γ ∂tX = T (X) ,

where γ = 6πRhη is the Stokes friction coefficient of the membrane with the viscosity
η of the surrounding medium [221] and the hydrodynamic radius Rh. We typically use
γ = 10−5 Ns/m, assuming, for example, Rh = 1 · 10−7 m and η = 5 Ns/m2, where the
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latter corresponds to a dilute polymer melt. Throughout this work, we consider the radial
projection of the above equation, which is a reasonable approximation for small and radial
perturbations and leads to a system of N equations,

γ ∂trn = fn(X), (3.30)

where fn = fnen and rn = xnen; lateral forces are thereby neglected. In principle, any
configuration being a regular polygonal chain is a possible equilibrium configuration according
to the free energy functionals (3.24) and (3.27), but the spherical parametrization we employ
(movement only in radial direction) limits the infinite number of regular polygons to only
one regular polygon, whose center is the origin, i.e., rn = R0 ∀n ∈ [1, N ].
Let us briefly discuss the consequences of these assumptions. Suppose we have rn = R0

and fn = 0 for all n vertices. By translating the polygon in an arbitrary direction, the
lengths |tn| of the tangents tn change, since they are defined by the intersection with the
angular grid we chose. During translation, forces (induced by the parametrization) are
generated that lead to a re-localization of the membrane into the state rn = R0. This is
artificial and might be interpreted as a drawback of our model, since translations of the
membrane relative to the centrosome (at the origin) are suppressed. Nevertheless, it is a
reasonable approximation in overdamped environments and, most importantly, exhibits
several advantages: The spherical parametrization trivializes the collision detection, because
each MT has only one related vertex that has to be checked for collision. This implies that
collisions of MTs with bonds, i.e., between vertices, are inhibited, such that there is no
need to implement torques and slipping mechanisms of MTs at the membrane. In addition,
overlaps of the membrane are excluded and the shape of the membrane always remains
stellar with respect to the origin, since any point within the area Γ can be reached from the
origin via a straight line.

3.4.4 Equilibrium boundary

In the limit of vanishing Stokes friction, γ = 0 (corresponding to η → 0 or Rh → 0), we have
to minimize the energy functional (3.24) instead of solving the dynamical equations (3.30).
In such a system, MT induced deformations unfold their full potential since mechanical
attenuation is absent. The minimization of (3.24) can be seen as a mapping χ(L) =
X, which gives the geometry of the membrane in dependence of the current MT aster
configuration. Minimization with constraints is quite demanding from a technical point of
view. Transforming vertices with a monotonic function, and thereby changing to generalized
coordinates r̃n and the corresponding forces f̃n, allows us to use standard minimization
techniques, instead of taking the constraints explicitly into account.

Coordinate transformation

We use the function m(n) = n/q to find the m-th MT associated with the n-th membrane
vertex and inhibit intersections of MTs and membrane by introducing the constraints
rn ≥ ln/q. These are handled by changing to generalized coordinates,

r̃n =

ln
(
rn − ln/q

)
, n = mq

ln(rn), n 6= mq
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obtained by transforming with the logarithm. The domain of the coordinates thereby changes
from

rn ∈
{

[ln/q, ∞), n = mq

[0, ∞), n 6= mq

to the full space of real numbers

r̃n ∈ (−∞, ∞) ∀ n ∈ {1, . . . N}.

For vertices without related MT we obviously use ln/q = 0. The radial forces acting on the
transformed vertices x̃n,

f̃n = fn
∂rn
∂r̃n

= fne
r̃n ,

are used to determine the gradient of the energy functional (3.24) in the generalized coordinate
space.

Conjugated gradients

We use a modified Polak-Ribière-Polyak method, which is a conjugated gradient method
[222, 223]. The mapping χ can be applied by following descent directions with respect to
the shape free energy (3.24). This has to be done iteratively until the equilibrium of the
membrane is reached. To obtain the sequence {Xk}, which converges to the equilibrium
configuration X∗, we use the iteration scheme

Xk+1 = Xk + αkqk,

where k is the index of the iteration and αk the step-length, which has to be chosen such
that Armijo and strong curvature conditions are fulfilled. A descent direction qk can be
obtained by

qk =
{

Tk, k = 0,
Tk + βPRP

k qk−1 − θk(Tk−1 − Tk), k > 0,

where βPRP
k = −Tk(Tk−1−Tk)/‖Tk−1‖2 and θk = −Tkqk−1/‖Tk−1‖2. During the line-search

we need to find a step length αk, which satisfies the conditions

F(X + αkqk) ≤ F(X)− c1αkq
T
k Tk,

|qTk Tk+1| ≤ c2|qTk Tk|,

where c1 = 10−4 and c2 = 0.3 turn out to optimize convergence in our specific case. Therefore
we start with α0 = 1/‖qk‖ and proceed with αl = α0/2l until the above conditions hold.
The sequence {Xk} is assumed to be converged if αk < ε. In equilibrium, dynamics is driven
by the field T (X∗), where X∗ is a solution of

F0 = min
X
F(X),

i.e., has been obtained by the iteration scheme above with respect to the given boundary
conditions L = (l1, . . . , lM )T . In general, T (X∗) is non-zero due to arbitrary boundary
conditions.
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The equilibrium membrane approach replicates the maximum coupling strength between
MTs, because deformations propagate instantaneously along the membrane. This corresponds
to the elastic capsules that have been investigated in static force equilibrium earlier in this
work, with the difference that the boundary conditions are given by geometric constraints
(aster configuration) here, instead of hydrostatic forces as for the elastic capsules.

3.4.5 MT coupling

We now introduce an algorithm which numerically couples the MT ensemble to the polygonal
chain, which can behave either according to the energy functional (3.24) or (3.27). For the
polymerization kinetics we sample single realizations from the master equation (3.1), where
the catastrophe rate ωc(v+) and the growth velocity v+ now both depend on the force acting
on the corresponding vertex. This force can be derived for both the elastic shell and the
liquid interface as it has been explained above. For an overview of the involved quantities
and state transitions refer to Fig. 3.13. Samples from (3.1) are obtained by applying Euler
steps for the current velocity, i.e.,

lk+1
m =

{
lkm + ∆tv+(fmq), (+)− state
lkm −∆tv−, (−)− state

followed by a stochastic MT state shift with transition probabilities

pc,m =
∫ t+∆t

t
dt ωc[v+[fmq(t)]]e−ωc[v+[fmq(t)]] t = 1− e−ωc[v+[fmq(t)]] ∆t

pr,m =
∫ t+∆t

t
ωre
−ωrtdt = 1− e−ωr∆t,

(3.31)

where we assume that the catastrophe rate ωc[v+[fmq(t)]] is constant over the small time
interval [t, t + ∆t]. Again, we find the n-th vertex associated with the m-th MT via the
function n(m) = mq. For a compact notation we define the outward directed tubulin net
flow of the MT aster as a super position of the outward and inward directed velocity fields,

u = u+ + u− with u+ = Cv+ and u− = −(1− C)v−, (3.32)

where we introduced the MT state tensor

C = diag(c1, . . . , cM ) (3.33)

with cm = 1 for MTs in the growing and cm = 0 in the shrinking state. The vectors v+
and v− aggregate the state dependent velocities for each MT, including their directional
information, i.e., v+,m = v+,memq and v−,m = v−emq. The time evolution of the MT aster
configuration can now be written as ∂tL = u(T ), respectively

∂tlm = cmv+,m(fmq)− (1− cm)v−. (3.34)

Actually, u dt is a stochastic displacement, which is added to the aster configuration L in
each time step. In case of contact, the aster therefore perturbs the membrane configuration
X. Due to this perturbation the membrane generates an opposing force, which triggers
global shape alteration. One can summarize the whole simulation in a few steps:

1 switch MT states (3.33) stochastically with probabilities (3.31),
2 perform timestep of MT dynamics (3.34),
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Figure 3.13: Sketch of MT dynamics in a closed elastic compartment. Green color indicates
force-free MT growth, blue color indicates force-dependent MT growth, gray color indicates
shrinking MTs. Note that we use a discretized cell boundary within numerical simulations. MTs
that exert force onto the cell boundary induce shape change and, thus, restoring stresses that,
in turn, affect the polymerization velocity. This generates a coupling leading ultimately to
collective behavior.

3 perform timestep of shape dynamics (3.30),
4 derive force field (3.28) or (3.29) from membrane geometry,
5 update velocity field (3.32).

This algorithm allows us to explore both, the parameter space of the MT ensemble and the
cell membrane. In contrast to the mean-field approaches that we investigated earlier in this
work, the simulation model is totally stochastic and brings up macroscopic observables like
asphericity and synchronicity.

3.4.6 Observables

In the following, we introduce observables allowing us to discuss results obtained with the
above calculation scheme. We denote the time average of a quantity X by 〈X〉 whereas X(t)
usually refers to a quantity that has been calculated from the set of MT tip-vectors {lm}
or the set of membrane vertices {xn}. The times characterizing the MT oscillation cycle,
which have been introduced in sec. 3.2, are measured via

〈τ〉 = 1
M

M∑
µ=1

1
Nµ

Nµ∑
ν=1

τµ,ν

where we assume Nµ measurements of the time τ for the µ-th MT, where µ ∈ {1, . . . ,M}.
The average times 〈τ〉 describe the oscillation cycle of individual MTs in a mean-field fashion
and, thereby, allow the direct determination of the probabilities patt and pdet. These can
be generalized for multiple MTs by multiplying with M yielding the occupation of the cell
boundary and interior, i.e.,

〈n+〉 = Mpatt and 〈n−〉 = Mpdet,
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3 Cooperative microtubule dynamics in closed elastic compartments

which coincides with

〈n+〉 = 1
Nmes

Nmes∑
ν=1

M∑
µ=1

cµ,νΘ(lµ,ν − rµq,ν + dm),

〈n−〉 = 1
Nmes

Nmes∑
ν=1

M∑
µ=1

Θ(rµq,ν − dm − lµ,ν).

Here, we use the effective monomer length dm as a numerical threshold and average over
Nmes measurements. The ensemble polymerization force grows linearly with the MT number
for small ensembles and logarithmically for larger ensembles [6]. As we have shown in section
3.3, 〈n+〉 and 〈F 〉 exhibit a stable limit cycle, meaning that consistent phases of collective
growth exist. This complex phase space dynamics, which has been described up to here only
in a mean-field approach, can also be measured from the full stochastic model. We measure
the polymerization force using the definitions

〈f〉 = 1
Nmes

Nmes∑
ν=1

1
M

M∑
µ=1

cµ,νΘ(lµ,ν − rµq,ν + dm)fµq,ν and 〈F 〉 = M〈f〉.

Note that only growing MTs contacting the membrane contribute to the exerted polymer-
ization force. The polymerization force can be directly determined from the membrane
forces, because only MTs deform the membrane, which is force-free without the MT en-
semble. In addition, forces exerted by MTs are exclusively transmitted to the membrane.
Back-propagation of forces through the MT lattice, i.e., force transmission to the centrosome,
is inhibited by fixing the centrosome in the origin and negligence of buckling. We thereby
implicitly assume that the centrosome exerts a counter-force −fn to the force fn that is
exerted by the membrane, according to Newton’s third law.

Though we do not cover the dynamics of the centrosome, it can nevertheless align relatively
due to membrane deformations. Aster positioning inside the cell is highly important from
the biological point of view. During mitosis, localization of the spindle poles is important to
mechanically stabilize the spindle. In other situations a more flexible centrosome might be
required, e.g., in a movement cycle or as a response to a deformation triggered by external
forces. To measure how strong the centrosome is localized, i.e., its flexibility, we define the
centroid of the membrane via

RC = 1
N

N∑
ν=1

xν .

Note that the time average of RC vanishes,

〈RC〉 = 1
Nmes

Nmes∑
ν=1

RC,ν = 0, (3.35)

due to stochastic and isotropic forces applied by the MT ensemble. Since we placed the
centrosome in the origin, the centrosome is perfectly centered if RC = 0. A measure for the
flexibility of the centrosome can now be obtained via

〈|RC |〉 = 1
Nmes

Nmes∑
ν=1

∣∣∣∣∣ 1
N

N∑
µ=1

xµ,ν

∣∣∣∣∣, (3.36)
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which gives the average distance of the centroid to the origin. In a rigid confinement we
have |RC |/R0 ≤ 1, whereas a flexible confinement allows |RC |/R0 > 1. Due to the fact that
the chosen parametrization limits the possible equilibrium shapes to only one single circle
with its center at the origin, we expect 〈|RC |〉/R0 ≈ 0 in a stiff confinement. The linear
centroid (3.35) can be used as a measure for asymmetry, but only for single samples and
not as a time average, due to its isotropy. For a single configuration the centroid gives the
magnitude and the direction of the polarization. The quadratic centroid (3.36), however, is
a measure of asphericity that gives the centrosome elongation averaged over time, which
comes at the cost of unavailable directional information.

In addition to the centroid, we measure some other aspects of the geometry characterizing
the shape and size of the cell. The most simple measure of the cell size is the average
distance between vertices and origin,

〈R〉 = 1
Nmes

Nmes∑
ν=1

1
N

N∑
µ=1

rµ,ν ,

which we call the average radius. Though this is a reasonable measure for the size of the
cell, it cannot account for asymmetry, in contrast to the centroid.

A common measure of asphericity [224, 225], which has been used e.g. for polymer rings,
can be defined via the radius of gyration tensor

Qkl = 1
2N2

N∑
i=1

N∑
j=1

(x(i)
k − x

(j)
k )(x(i)

l − x
(j)
l ) .

With Q̂kl = Qkl − δklTr(Q)/2 the time average of the asphericity in two dimensions is given
by

〈∆〉 = 1
Nmes

Nmes∑
ν=1

2Tr Q̂2
ν

(Tr Qν)2

and varies between zero and one, where zero belongs to a two-dimensional symmetric shape
and one describes a one-dimensional object. The asphericity ∆ measures symmetry with
respect to the centroid: two points that lie on a straight line segment crossing the centroid
contribute the quadratic difference of their distances to the centroid. We see that not only
circular shapes have zero asphericity, but any shape where opposing vertices have the same
distance to the centroid. Together, the centroid elongation |RC | and the asphericity ∆
completely describe the asymmetry of the cell contour ∂Γ.

3.4.7 Macroscopic elasticity

In sec. 3.2 we investigated a one-dimensional model with a single MT growing against a
spring described by an overdamped equation of motion. To relate the parameters of this
one-dimensional model to the full two-dimensional model we identify the linear effective
elastic modulus of the membrane by rewriting the free energy 3.24 for circular symmetric
membranes with radius R ≡ 〈R〉 in the limit of a large number of vertices, i.e., 2π/N � 1.
We find the shape free energy

F(R) = κπR(1/R− 1/R0)2 + Y πR0(R/R0 − 1)2 + const (3.37)

as a function of the radius. By neglecting the asphericity of the shape, the two-dimensional
model, where MTs grow radially outwards, becomes equivalent to a one-dimensional model,
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3 Cooperative microtubule dynamics in closed elastic compartments

where MTs grow in a potential described by the free energy (3.37). This corresponds to a
MT bundle growing against an elastic obstacle as, for example, in an optical trap, which
can be realized experimentally [151]. Corresponding to the free energy potential (3.37), the
force needed to stretch the membrane is given by

F (R) = −∂RF(R) = κπ(1/R2 − 1/R2
0)− 2πY (R/R0 − 1).

Expanding in leading order at R = R0,

F (R) = F (R0) + E(R−R0) +O((R−R0)2),

where F (R0) = 0 as it is evident from (3.37), results in a linear effective elastic modulus

E = 2Y
(
πh2

12R3
0

+ 1
R0

)

of the membrane. To obtain this expression, we used the relation κ = Y h2/12 as already
introduced above. Hence, for small deformations, results of the two-dimensional full stochastic
model should be comparable to the one-dimensional mean-field approximation in sec. 3.2.
Note that, in principle, results from the mean-field theory for single MTs can only be
transferred to the full stochastic model or serve as an approximation, if MTs are effectively
uncoupled. Introducing an effective elastic modulus E enables us to easily compare between
the two-dimensional cell model and the one-dimensional model introduced earlier in sec. 3.2.
In numerical simulations, it is only possible for an MT to deform the cortex if a critical

effective elastic modulus is not exceeded. This modulus is given by

Emax = F0 lnωon/ωoff
v+(0)∆t .

In case of E > Emax, a single MT length update would exceed the MT stall force. Values that
are typically used within this work lead to Emax ≈ 40 mN/m. As we have seen, approximating
the full two-dimensional (3.24) model by a circular symmetric membrane (3.37) gives a
rather similar system to the one-dimensional model 3.2 that has been investigated earlier in
this work. We therefore expect both systems to behave qualitatively similar, in particular
for small deformations and effectively uncoupled MTs.

3.4.8 Discussion

In order to smoothly segue into the discussion of results obtained with the simulation
scheme introduced in this section, we at first revisit observables that already have been
discussed in the one-dimensional model in chapter 3.2 and can be simply transferred to
the two-dimensional model by averaging over the individual MTs participating in the MT
ensemble. In particular, we discuss the probability patt of being attached and in a growing
state at the same time. This probability is of central importance due its positive correlation
with a couple of observables, such as the average number 〈n+〉 of MTs that exert force onto
the membrane, and the polymerization force 〈f〉 exerted by the MT ensemble. We thereby
again differentiate between bounded growth, i.e., absence of rescues with ωr = 0.0 s−1, and
unbounded growth, i.e., presence of rescues with ωr = 0.1 s−1. Both cases are physiologically
relevant, because the rescue rate can be tuned via MAPs like, for example, the Tau protein.
In the following, we discuss Fig. 3.14, which shows measurements for both regimes.
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Attachment probability in absence of rescues: The maximum seen in Fig. 3.14 left
can be understood from the limit cases E → 0 and E →∞. The argumentation is analogous
to the one we employed in the one-dimensional model, though the two-dimensional model of
course differs by shape fluctuations leading to a slightly blurred effect. Note that, due to
the remarks in 3.4.7, E is interchangeable with Y in the following discussion.
In case of E →∞, the membrane is actually a rigid and perfectly circular confinement,

where MTs stall immediately when reaching the membrane, hence undergo a catastrophe
rapidly. The attachment probability is thereby determined by the short stall time and
the relatively long time that MTs spend detached, either shrinking or growing force-free.
Precisely speaking, the attachment probability becomes equal to the probability Q+ from
eq. (3.5) that has been obtained for one-dimensional rigid containers in sec. 3.1.2. Since
the Flyvbjerg catastrophe rate does not diverge but saturate for F → ∞, the stall time
and, thus, also the attachment probability patt remains, in principle, finite in the limit
E → ∞. However, in numerical simulations, the limit case E → ∞ is actually reached
earlier at E = Emax, according to the remarks in 3.4.7. Thus, patt effectively nearly vanishes
depending on the size of the container, which sets the re-arrival time of MTs assuming
constant velocities of shrinking and force-free growth.
In case of E → 0, MTs push the membrane far away from the MTOC, because their

growth velocity is unaffected by weak forces F � F0 exerted by the membrane, such that
v+(f) ≈ v+(0). Being that far away, the membrane does not return to its starting point due
to a diverging relaxation time τ0 = γ/E →∞. Rarely, fluctuations produce very long MTs
pushing the membrane even further. Remember that MT growth is bounded here, meaning
that MTs are in a steady state preferring a finite average length. Taken together, these
effects lead, as for the limit case E →∞, to a vanishing attachment probability patt.

Since we found arguments for vanishing attachment probabilities in both limit cases E → 0
and E → ∞, we rationalize a maximum in between, which is verified numerically in Fig.
3.14.

Attachment probability in presence of rescues: The saturation seen in Fig. 3.14
right can likewise be understood from the limit cases E → 0 and E →∞, where we in parts
readopt the above argumentation.
In case of E → ∞, we have the same situation as in absence of rescues, i.e., short

stall times at the membrane and relatively longer re-arrival times, with the difference that
the latter can now be directly tuned respectively shortened by increasing the rescue rate.
Nevertheless, this eventually leads to the same limit behavior of vanishing attachment
probabilities, though shifted to higher values of the elastic modulus.
In case of E → 0, we observe a monotonically increasing attachment probability patt

that saturates because it is naturally limited, i.e., patt ≤ 1. Again, we have τ0 →∞ and the
membrane stays where it has been placed by the MT tip, but, in contrast to the bounded
case with λ < 0, MTs are now capable to follow up the membrane continuously. Eventually,
MTs and membrane assemble to a state with v+(f)ωr = v−ωc(v+(f)), i.e., the average length
loss equals the average length gain. However, due to forces f ∼ F0 phases of force exertion
take a long time compared to phases of shrinking and free growth, leading to a plateau in
the attachment probabilities for small elastic moduli.

Correlated observables: As stated above, the attachment probability patt is equivalent
to the average number 〈n+〉 of MTs that exert force, and positively correlated to the average
individual polymerization force 〈f〉, because MTs can only exert force onto the membrane
when they are attached to it. Therefore, both observables 〈n+〉 and 〈f〉 show the same
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Figure 3.14: Probability patt of being attached to an elastic shell for an individual MT in
the coupled system dependent on Young’s modulus Y . Measurements were obtained with
M = 16 MTs and N = 256 membrane vertices. Colors indicate different characteristic forces
from F0 = 5 pN (dark blue) to F0 = 25 pN (orange) accounting for additional force generation
generated by actin polymerization. In the left plot, where ωr = 0.0 s−1, the probability patt
undergoes a maximum in the regime of intermediate membrane stiffness Y ∼ 10−11 N. In the
right plot, where ωr = 0.1 s−1, the probability patt monotonically increases with decreasing
stiffness of the membrane and saturates in the limit Y → 0. This behavior is analogous, i.e.,
qualitatively similar, to the one dimensional system analyzed in section 3.2. For an overdamped
membrane (circles), additional actin force generation has two effects: On the one hand, it
increases attachment probabilities and, on the other hand, it leads to an effective softening of
the membrane. For the equilibrium membrane (quads), we observe only the latter effect.

qualitative behavior as the attachment probability patt, which is why we refrain from showing
the corresponding data here.

Additional force generation by actin: In our measurements, we vary the characteristic
force F0, which sets the force-scale in the velocity profile v+(f), to account for additional forces
generated by actin polymerization. We thereby implicitly assume that actin polymerization
triggered by an MT gives an additional constant and positive force contribution to the
characteristic force, which increases the attachment probability, the number of MTs that
exert force, and the individual polymerization forces. In addition, we observe a shift of the
curves to higher elastic moduli, which can be interpreted as an effective softening of the
membrane. Regarding the equilibrium membrane, we observe only this softening effect but
no pronounced increase of the attachment probability and the related quantities. Hence,
this amplification is clearly related to a finite friction constant.

Synchronicity

In contrast to the one-dimensional models from sections 3.2 and 3.3, the two-dimensional
model exhibits several extra features. Multiple MTs that grow isotropically in two-dimensional
space and fluctuate in their lengths are coupled via an elastic shell. Length fluctuations of
the MT ensemble resulting from stochastic filament assembly are transferred to the shell
and return as elastic forces opposing MT growth. The result is a stochastically driven
N -particle system with the potential ability to exhibit collective phenomena. What we have
primarily in mind here are collective MT length fluctuations, i.e., a pulsating cell where
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Figure 3.15: Simulation snapshots of an elastic shell in the synchronous regime with M = 64
MTs and N = 256 shell vertices. Each snapshot is averaged over 20 seconds to indicate motion
of membrane and MTs. The scale bar has a length of 20µm. Clearly, the collective catastrophe
begins at the upper right and propagates along the cell boundary until it arrives at the lower
left. The collective catastrophe takes less than 100 s, which is short compared to typical phases
of force exertion.

spherical symmetry is conserved. Such a system could be recognized by synchronous MTs
that concurrently switch their states at the same length.

In order to measure synchronicity we need a distinct definition. Synchronous systems can
be recognized by the occurrence of collective catastrophe events, as it has been shown by
Laan et al. [151] for the first time. During a collective catastrophe a group of MTs collapses
simultaneously and the number of pushing MTs rapidly decreases from its current value
to zero, see Fig. 3.15. Depending on the degree of synchronicity, collective catastrophes
may occur in regular intervals, in spates, or randomly. Even asynchronous systems exhibit
collective catastrophe events, but only as a rare product of randomness and not as a
consequence of velocity coupling.
We now introduce a statistical measure of synchronicity and investigate its behavior

dependent on Young’s modulus Y . We detect collective catastrophe events using the
DBSCAN cluster algorithm [226]. DBSCAN is a density based cluster algorithm and
identifies groups of events, which exceed a minimum size and a critical density. Once
identified, the algorithm expands the cluster as long as at least one unvisited point in the
cluster satisfies the cluster condition. Two parameters are needed to deploy the algorithm to
a series S = {tk | k = 1, . . . , Ne} of timestamps marking single catastrophe events: (i) the
number of events mc each cluster must at least contain and (ii) the neighborhood radius
rc which is queried for potential new cluster points. We choose mc = M as the minimum
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Figure 3.16: The synchronicity Σ (defined by the probability of drawing a collective event) for
MTs confined within an elastic shell dependent on Young’s modulus Y in absence of rescues
(left) and in presence of rescues (right). Measurements were obtained with M = 16 MTs and
N = 256 membrane vertices. Both measurements reveal a maximum for intermediate Young
moduli Y ∼ 1010 N, but the system including rescues (right) is about four-fold more synchronous.
In vivo, collective length fluctuations could be triggered, for example, by interaction with the
tau protein or other MAPs that modulate the MT rescue rate. Note that, in both measurements,
we observe underground fluctuations ranging in amplitude up to Σ ∼ 0.05. These are random
collective events that do not occur as a consequence of velocity coupling.

number of MTs in the aster participating in a collective catastrophe. The neighborhood
radius rc is chosen with respect to the average event density

ρ = 1
Ne − 1

Ne−1∑
k=1

(tk+1 − tk)

with a total number of Ne events. We choose rc = mcρ/4, which requires the cluster density
to be twice as large as the average density ρ, i.e., we claim a critical density ρc = 2ρ. Events
that are not related to a specific cluster are marked as noise. Performing the DBSCAN
cluster algorithm results in a number Nn of noise events and Ne −Nn synchronous events.
Thus, for a given partitioning, we obtain the probability

Σ = Ne −Nn

Ne
= 1− Nn

Ne

of drawing a single event, which belongs to a collective event, i.e., is part of a cluster.
As can be seen from Fig. 3.16, synchronization occurs in both absence and presence of

rescues at intermediate elastic moduli E, though clearly more pronounced in presence of
rescues. In both cases, additional force generation via actin polymerization amplifies the
effect. Again, we try to understand this behavior by investigating the limit cases E → 0 and
E →∞.
In case of E →∞, it is directly clear that MTs decouple or desynchronize due to very

short interaction times in such a rigid confinement.
In case of E → 0, the situation actually corresponds to absence of the membrane, i.e.,

again decoupled and asynchronous MTs.
Increasing rescue rates leads to a more localized MT length distribution in an elastic

confinement, as it has been shown in Ref. [204], i.e., increasing rescue rates decreases length
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Figure 3.17: Asphericity measurement for MTs confined within an elastic shell dependent on
Young’s modulus Y in absence of rescues (left) and in presence of rescues (right). Measurements
were obtained with M = 16 MTs and N = 256 membrane vertices. Note that, particularly
in presence of rescues, the maximum of the asphericity coincides with the maximum of the
synchronicity. Left: The asphericity ∆ seems to decrease monotonically with increasing Young’s
modulus. However, two measurements for characteristic forces F0 = 10 pN and F0 = 20 pN
reach very small Young’s moduli Y ∼ 10−13 N and thereby indicate a broad maximum in the
asphericity ∆. This maximum can be rationalized by theoretical considerations, see sec. 3.1.3.
Right: The asphericity ∆ exhibits a sharp maximum, which becomes more pronounced for
increasing characteristic force F0. For small values of Young’s modulus Y , the asphericity ∆
increases linearly with Young’s modulus Y .

fluctuations. Since synchronization is a counter-effect to fluctuations as it requires symmetric
shapes, it is reasonable that increasing rescue rates increases the effect of synchronization.
In this context, we like to note that, particularly in presence of rescues, the maximum of the
asphericity coincides with the maximum of the synchronicity.

Asphericity

The asphericity (see Fig. 3.17) exhibits a broad maximum in absence of rescues and a sharp
maximum in presence of rescues. In case of E → ∞, both systems show the same limit
behavior, which is a vanishing asphericity due to an undeformable and, thus, circular cortex.
In case of E → 0 we have to investigate both systems (absence and presence of rescues)
separately.

Asphericity in absence of rescues for E → 0: This case corresponds to absence of a
membrane and MTs push the membrane far away from the MTOC. Due to τ0 → ∞ the
membrane does not relax. In addition, deformations are local and do not spread over the
membrane, which manifests in tiny tubes that are formed by MTs. The resulting star-like
shapes of the membrane are predominantly determined by the turning points, where MTs
undergo a catastrophe, i.e., switch to a shrinking state. Due to uncoupled MTs as E → 0,
we assume that the asphericity of the shape is positively correlated to the relative standard
deviation of these turning points, which decreases to zero for t → ∞, see eq. (3.6) in sec.
3.1.3. The asphericity should similarly vanish in the limit E → 0 and, indeed, we observe a
broad maximum for some of the curves in Fig. 3.17 left. Within the analysis in sec. 3.1.3,
we particularly found that the average maximum turning lengths evolve logarithmically in
time and, thus, diverge for t→∞. This results in an infinite equilibration time in the limit
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Figure 3.18: Attachment probability and synchronicity for an MT aster confined within a
liquid droplet. Measurements were obtained for M = 16 MTs and N = 64 interface vertices.
Observables are shown dependent on the surface tension σ for negligible external pressure
pex = 10−8 N/m, i.e., in the approximation of a large simulation box Aex � A. Both the
attachment probability and the synchronicity show qualitatively the same behavior as for the
elastic shell, i.e., the attachment probability patt undergoes a maximum in absence of rescues
and saturates for decreasing surface tension in presence of rescues. The synchronicity Σ exhibits
a pronounced maximum in presence of rescues.

E → 0, which makes it difficult to obtain reliable simulation results for very small values of
E. However, we conclude from theoretical considerations that the asphericity ∆ vanishes in
the limit E → 0 and thereby rationalize the broad maximum observed in Fig. 3.17 left.

Asphericity in presence of rescues for E → 0: Again we have to analyze the evolution
of the MT turning points to obtain the asphericity in the limit E → 0, while considering
that MT growth is unbounded here. As we have shown in sec. 3.1.3, the relative standard
deviation of the MT turning lengths vanishes for t→∞ in absence of a barrier, see (3.7).
Again we conclude, now for unbounded MT growth in presence of rescues, that the asphericity
∆ has to vanish in the limit E → 0 and thereby rationalize the maximum observed in Fig.
3.17 right. We like to stress that this maximum is strongly localized compared to the broad
maximum observed in absence of rescues. This is due to reduced MT length fluctuations
induced by a finite rescue rate.

Droplet

In addition to the elastic energy functional (3.24) we also introduced the functional (3.27)
describing liquid droplets subjected to line tension and osmotic pressure. Performing the
same kind of simulations using the liquid droplet instead of the elastic shell functional we
obtain the results presented in Fig. 3.18 and 3.19. Results are obtained in the approximation
of a large simulation box with Aex � A. In addition, we fixed the characteristic force at its
typical value F0 ∼ 6.6 pN due to absence of a actin cortex.

We observe qualitatively the same features as for elastic shells: the attachment probability
exhibits a maximum in absence of rescues and saturates for vanishing surface tension in
presence of rescues. The synchronicity exhibits a pronounced maximum in presence of rescues.
All these effects are reasonable using the same argumentation as for elastic shells. In contrast
to the elastic shell, we observe a strong centrosome elongation even for nearly circular shapes
that occur for high interfacial surface tensions σ ∼ 10−9 N. The functional (3.27) seems to
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Figure 3.19: Asphericity and absolute value of the centroid for an MT aster confined within a
liquid droplet. Measurements were obtained with M = 16 MTs and N = 64 interface vertices.
Both observables are shown dependent on the surface tension σ for negligible external pressure
pex = 10−8 N/m, i.e., in the approximation of a large simulation box Aex � A. The asphericity
∆ exhibits a maximum in presence of rescues. Compared to the elastic shell, we do not see
a vanishing asphericity ∆ in the limit σ → ∞. Actually, shapes for σ ≈ 10−9 N are perfectly
circular, but the asphericity gives non-zero values, because vertices on the shifted circle are
not distributed equidistantly due to the angular grid. The absolute value of the centroid
increases monotonically for decreasing surface tension. It is, however, important to note that the
centrosome is strongly elongated even for σ ∼ 10−9 N, where the membrane is nearly circular,
which is due to the fact that the energy functional (3.27) seems to be less sensitive to translations
of the cell boundary than the energy functional (3.24) for elastic shells.

be less sensitive to translations of the cell contour, which eventually supports pronounced
aster positioning. Centrosome elongation paired with strongly circular shapes also leads to
over-estimated asphericity values, because vertices are not distributed equidistantly along
the cell boundary due to the angular grid we chose. In principle, the asphericity should
vanish in the limit σ →∞, similar to the elastic shell, where the asphericity vanishes in the
limit E →∞.

Equilibrium cell boundaries

As an important limit case of membrane dynamics regarding the friction constant we
investigate equilibrium cell membranes with γ = 0, i.e., instantaneous relaxation according
to τ0 = 0. This limit case is realized by minimizing the shape in each time step with respect
to the boundary conditions given by the MT ensemble, instead of performing the overdamped
shape dynamics, which corresponds to the static elastic shells that have been investigated
earlier in this work using hydrostatic forces as boundary conditions.

Elastic shells: It is clear that such an instantaneously relaxing cell membrane with γ = 0
maximizes the attachment probability with respect to finite frictions γ > 0, as MTs reattach
to the membrane earlier. All effects and phenomena investigated within the analysis of the
two-dimensional model appear more pronounced for γ = 0 (see quads in Figs. 3.14, 3.16,
3.17), and are effectively switched off by applying the opposite case γ →∞. In particular,
increasing the characteristic force F0 corresponds to a pure softening for the equilibrium
membrane, whereas for the overdamped membrane we additionally see that the magnitudes
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3 Cooperative microtubule dynamics in closed elastic compartments

of patt and Σ increase with additional actin polymerization forces added to the characteristic
force F0.

Regarding the asphericity values for the equilibrium shell in Fig. 3.17 (quads), we observe
monotonic behavior in contrast to the broad maximum observed for overdamped elastic
shells. This is due to the vertices between adjacent MTs: In case of the overdamped shell
these vertices stay at their initial rest position, whereas MTs form tiny membrane tubes. In
case of the equilibrium membrane, these vertices actually change their position because MT
induced deformations are global, i.e., propagate instantaneously along the membrane. If
E = 0, the equilibrium configuration is undefined and, in principle, no unique shape can be
determined for a given set of boundary conditions.

Liquid droplets: We find significantly increased synchronicity values due to vanishing
mechanical attenuation. For the liquid interface these effects are, however, clearly less
pronounced compared to the elastic shell. In particular, for the attachment probability and
the asphericity, we observe only small deviations from the overdamped shape dynamics.

3.4.9 Conclusion

We developed a two dimensional model for an MT aster confined within a closed elastic shell
or a liquid droplet. We discussed the corresponding shape free energies and deduced the
force fields. No symmetry breaking mechanisms were applied yet, instead we referred to the
symmetric case and investigated collective length oscillations, i.e., pulsating cells. We find
that systems synchronize for intermediate elastic moduli, which can be understood from
simple arguments.
The degree of synchronicity can be tuned via the rescue rate or the characteristic MT

polymerization force. The former can be influenced by interaction with MAPs, the latter
by MT regulated or triggered actin polymerization. We defined synchronicity as the
occurrence of collective (simultaneous) catastrophes, and verified their occurrence by use of
the DBSCAN cluster algorithm. Simulation results for the two dimensional model are in
qualitative agreement with mean-field results obtained from the one dimensional model 3.2.
Moreover, we found collective behavior in agreement with the ensemble mean-field theory
3.3.
Our results suggest that collective length oscillations can be found independently from

the employed elasticity model, i.e., show a certain robustness. Therefore, we expect also
robustness against changing from the spherical parametrization to a non-approximative
one. To perform this change, one has to include collision detection, torques, and slipping
mechanisms.

We investigated cell behavior in dependence of different parameters like Young’s modulus,
surface tension, rescue rate, and characteristic polymerization force, but still there are
many parameters that have not been investigated yet, like the on-rate, the cortex thickness,
internal MT hydrolysis, i.e., vectorial hydrolysis velocity and random hydrolysis rate, external
pressure, and resting radius.

We proceed with regulatory mechanisms, which add an additional degree of complexity to
the system.

3.5 Rac-Rho feedback mechanism
In this section, we study regulatory mechanisms relying on MT dynamics that enable
polar cell shapes, which are particularly necessary for migrating cells. Cell migration is
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crucial for many physiological processes, such as wound healing or tumor metastasis. In
general, we have to distinguish between undirected und directed cell movement. The latter
originates in external stimuli as, for example, chemotaxis (concentration gradient) [227]
or alternative mechanisms, which signal actin polymerization in a preferred direction; the
former is triggered by fluctuations either cell internal or external.
Though it has been shown that in some cases locomotion can be carried out exclusively

by the actin cortex in collaboration with actin stress fibers [228], MTs are necessary for
movement in most cases [229]. The typical locomotion cycle works as follows: In an initially
spherical cell, actin polymerization is triggered locally in the actin cortex (by Rho GTPases)
and induces a protrusion (lamellipodium), which is often referred to as the leading edge.
Actin stress fibers meanwhile contract to pull the trailing edge of the cell in the same direction.
Stress fiber contraction is usually supported by MTs targeting focal adhesions at the trailing
edge. Focal adhesion complexes disassemble when interacting with a MT tip and then detach
from the extracellular matrix. Once the cell has been detached from the substrate at the
trailing edge, stress fiber induced cell contraction can proceed and the cell returns to a
spherical shape. MTs at the leading edge mechanically stabilize protrusions made by actin,
but also activate Rho GTPases triggering actin polymerization. An inhomogenity in activity
once triggered by an external signal or an internal fluctuation can thus be maintained by
MT activity, which might be important for cells to pass domains, where no signals can be
generated in the ECM.
In the following, we study two coupled feedback mechanisms referred to as the Rac-Rho

feedback mechanism. This mechanism seems to be suitable from several point of views. First,
it is commonly mentioned in literature in the context of cell polarization [230–232]. Second,
it is computationally efficient, as we can solve the master equation on a non-equidistant mesh
and, thus, circumvent a particle based approach. And last, we find persistently polarized
shapes that have been observed experimentally with a similar Rac-Rho feedback mechanism.
Within the Rac-Rho feedback mechanism, MTs participate in two different feedback

cycles. At the leading edge, MT growth activates Rac, which induces actin polymerization.
This additional polymerization forces can be effectively included in the characteristic MT
polymerization force and, thus, leads to a positive feedback cycle. At the trailing edge,
MT shrinkage activates Rho, which induces contractile actin structures. These contractile
structures stiffen the actin cortex, increase restoring membrane stresses and thereby MT
shrinkage and, thus, likewise lead to a positive feedback cycle. Both feedback cycles in
combination polarize the cell persistently, see Fig. 3.21. Note that various feedback cycles
concerning Rac and Rho have been investigated in the context of cell migration, where often
also Cdc42 is investigated as a third participant in this complex process [233, 234]. However,
to the author’s knowledge, none of these models have been investigated in combination with
MT dynamics. Regarding all these models (overview in Ref. [234]), the model we employ is
closest to the model proposed Ref. [235], which states mutual exclusive Rac and Rho activity
during neurite formation. In the following, we at first discuss both feedback cycles separately
and then integrate these mechanisms in the two-dimensional cell model from sec. 3.4.

3.5.1 Actin force generation

In sec. 3.4 we already discussed the effect that additional forces generated by actin poly-
merization have on MT and cell dynamics. In particular, we found out that an increasing
characteristic force increases the attachment probability (or coupling strength) and syn-
chronization. In this chapter we again use this mechanism but add a spatial dependence to
account for local GTPase activation processes.
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In addition to forces ∼ 6.6 pN generated by single MTs, the actin cortex itself can generate
forces ∼ 16 pN [236]. Though theses forces can be generated independently from MTs,
regulation by the MT cytoskeleton is common, and necessary for particular tasks. Actin
polymerization can be triggered by MTs, for example, via the two following pathways:

(i) MTs have been reported to activate Rac1 during growth [237]. It is assumed that both
GEFs and inactive Rac1 proteins bind to the MT lattice leading to Rac1 activation.
Once activated, Rac1 proteins detach from the MT lattice and diffuse back into the
actin cortex, where they trigger actin polymerization via the Arp2/3 complex, which
leads to branching of the actin meshwork. Mechanism (i) commonly takes place in
protrusions or lamellipodia formed by migrating cells. Since it requires the MT lattice
to be in spatial proximity to actin filaments, it is typically related to MTs growing
deep into the lamellipodium. In so doing, MTs become flexible and likely turn around
by reaching the plasma membrane. This enables MTs to control the actin retrograde
flow via interaction with motor proteins.

(ii) A mechanism commonly related to phagocytosis involves the MT tip binding proteins
EB1 and CLIP-170 interacting with mDia1, which belongs to the formin family [180,
238]. Formins serve as actin nucleation sites and thereby promote actin polymerization,
even in absence of CLIP-170, but CLIP-170 amplifies the effect of mDia1 by a factor 3
to 4. The mechanism works in a hierarchical order: EB1 binds to the MT tip, where it
additionally recruits CLIP-170. Together, these two proteins form a complex, which in
turn recruits mDia1. As a result, the MT tip provides multiple actin nucleation sites,
which effectively increase actin polymerization rates 14 fold. Mechanism (ii) works
without EB1, but EB1 amplifies the effect, probably since the EB1/CLIP-170 complex
provides more nucleation sites than provided by sole CLIP-170. In addition, in absence
of EB1, CLIP-170 is not strictly localized to the MT tip.

By assuming that force generation is localized to the MT tip, we can take actin forces
into account by modifying the characteristic MT force F0. Therefore, we could assume a
growth velocity

v+,m = dm
(
ωone

−fmq/χRac
m F0 − ωoff

)
emq, (3.38)

where χRac
m ≥ 1 is a local amplifying factor. This method is well suited for mechanism (ii)

since it is strongly localized to the MT tip, in particular if EB1 is involved. Mechanism (i)
would actually require a more detailed model, but (3.38) is an adequate approximation.

3.5.2 Cortex stiffening

In the trailing edge of migrating cells, MT induced cortex stiffening (via Rho) has been
reported [237, 239]. Likewise Rho activity is required for tail retraction, for example, in
leukocytes [240]. During growth, GEFs accumulate at the MT lattice and are released
during shrinkage. In the actin cortex, released GEFs lead to activation of Rho, which in
turn activates myosin-II via promoting myosin light chain phosphorylation. This leads to a
local stiffening of the cortex and supports retraction after detachment from the substrate.
This mechanism could be modeled by time-dependent modulations of the Young modulus
proportional to the concentration of active Rho proteins, i.e.,

Yn = χRho
n Y.
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Figure 3.20: Snapshots of a reference system (left) and an a priori chemically polarized system
(right), where the characteristic force has been increased for MTs in the lower halfspace, and
the Young modulus of the membrane has been increased in the upper halfspace. The scale bar
indicates the reference cell diameter, which is 20µm.

In vivo, contractions of the cell rear actually marks the beginning for the cell to take again a
spherical shape and move towards the traction points the cell attached to by focal adhesions
in the front. In our model, contraction of the cell rear does not fulfill this function, instead,
it is just a counter-effect to the protrusion formed in the cell front. One could therefore
assume that we look at one specific, intermediate, phase of the movement cycle.

3.5.3 Prescribed chemical polarization

Now that we have included actin polymerization into the MT growth velocities via the force
generating factors χRac

µ and cortex stiffening into Young’s modulus via the stiffening factors
χRho
n , we could presume that the cell is chemically polarized, i.e., prescribe an asymmetric

pattern with the factors χRac
µ and χRho

n . The simplest method to do so is setting both factors
to a constant in exclusive regions. In Fig. 3.20 we used χRac

µ = 4 for M/2 < µ < M and
χRho
n = 4 for 0 < n < N/2, where we additionally ensured a smooth transition at the domain

borders. As a result, the cell polarizes along the prescribed direction, which is the vertical
axis in Fig. 3.20. This is not surprising though, but at least it shows that MTs adapt to the
prescribed chemical polarization pattern and successfully maintain the polarized shape.

3.5.4 MT induced chemical polarization

It seems to be accepted in literature that polarization occurs due to mutually exclusive
mechanisms at the cell front and the cell back [230–232]. MTs that exert force onto the
membrane activate Rac proteins and shrinking MTs activate Rho proteins. Active Rac leads
to additional force generation and active Rho leads to cortex stiffening. Assuming that
active Rac excludes active Rho and vice versa, MTs might be able to trigger segregation of
both populations. This gives rise to a symmetry breaking mechanism, which enables the
cell to polarize in a random direction. Polarization can persist in time, if segregation of
populations is stable, i.e, maintained by MTs. Without MT dependent activation, we do not
observe segregation. A sketch of the two feedback mechanisms is shown in Fig. 3.21. To
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3 Cooperative microtubule dynamics in closed elastic compartments

Figure 3.21: Illustration of the Rho-Rac-switch leading to cell polarity. Two different feedback
cycles are involved (left), one related to shrinking and one related to pushing MTs. Shrinking
MTs trigger Rho, which in turn leads to formation of contractile structures made from myosin
and actin. Myosin motor proteins are concurrently attached to two actin filaments and thereby
shift these filaments against each other leading to contractile tension. Pushing MTs activate
Rac, which in turn leads to formation of protrusive actin structures made from the Arp2/3
complex and actin. The directional branched actin network generates additional polymerization
force. Ultimately, both mechanisms together lead to stable cell polarity (right), where MTs
collaborating with Rac induce a protrusion in the cell front and MTs collaborating with Rho
induce a contraction or stiffening in the cell back. Due to a limited number of actin filaments
and, more importantly, due to a substantially different actin filament ordering (lateral contractile
structures and normal protrusive structures) both mechanisms exclude each other [241].

describe the dynamics of the protein populations we use a system of four coupled master
equations accounting for the fractions of inactive/active Rac and inactive/active Rho in the
cortex. Let a+

n (t) be active Rac, a−n (t) inactive Rac, b+n (t) active Rho and b−n (t) inactive
Rho, such that the stochastic process can be written as

∂ta
+
n (t) = −ω−a+

n (t) + aact
n (t)ω+a−n (t) +D∂ssa

+
n (t),

∂tb
+
n (t) = −ω−b+n (t) + bact

n (t)ω+b−n (t) +D∂ssb
+
n (t),

∂ta
−
n (t) = ω−a+

n (t)− aact
n (t)ω+a−n (t) +D∂ssa

−
n (t),

∂tb
−
n (t) = ω−b+n (t)− bact

n (t)ω+b−n (t) +D∂ssb
−
n (t),

(3.39)

where ω+ = 5 s−1 and ω− = 0.001 s−1 are the activation respectively deactivation rates
and D is the cortex diffusivity. The activation rate ω+ actually controls the strength of
the feedback coupling, such that ω+ = 0 corresponds to absence of the feedback coupling.
Increasing the number M of MTs would have a similar effect. We use D = 9.47 m2/s which
is consistent with values obtained in Ref. [227]. In addition to sink and diffusion terms, we
include source terms being proportional to the activation factors

aact
n (s, t) =

M∑
µ=1

cµΘ(lµ − (rµq − dm))δn,µq
1 + (b+n (t)/kd)3 ,

bact
n (s, t) =

M∑
µ=1

(1− cµ)δn,µq
1 + (a+

n (t)/kd)3 ,
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Figure 3.22: Simulation results for an elastic shell including the two mutually exclusive feedback
mechanisms implementing the Rac-Rho feedback mechanism. Left: Asphericity dependent on
the rescue rate for the feedback system (gray) and the reference system (purple). Polarization is
successfully triggered in the feedback system when MT growth becomes unbounded, i.e., exceeds
a critical value of the rescue rate. Thereafter, the asphericity increases linearly with increasing
rescue rates. For the reference measurement or control group, the asphericity even decreases with
increasing rescue rates. Right: Snapshot of the Rac and Rho density profiles plotted against the
vertex index. Note that arc-lengths between adjacent vertices are not constant due to extensible
bonds. As we see, two stable populations have been formed, where the Rac population forms a
more pronounced and localized maximum as the Rho population. However, details, i.e., width
and amplitude of the maxima, depend on the various parameters in our model, such as MT
ensemble properties, but also diffusion constants and switching rates assumed for the proteins
populating the membrane.

which unlock the activation branches from inactive to active forms of Rac and Rho respectively.
This is where the coupling to the MT ensemble enters. The Kronecker delta δn,µq localizes
the µ-th trigger to the correct vertex n = µq and the Heavy-side function Θ(lµ− (rµq − dm))
becomes 1 if the MT is in spatial proximity to the cortex. The factor (1− cµ) becomes 1 if
the MT is shrinking; cµ becomes 1 if the MT is growing. Both populations are conserved,
meaning that

N∑
n=1

[
a+
n (t) + a−n (t)

]
= 1,

N∑
n=1

[
b+n (t) + b−n (t)

]
= 1,

is fulfilled for all times t. Exchange from a−n to a+
n or from b−n to b+n is exclusively possible

via MT triggering. Mutual exclusion enters on the activation level via the Hill function,
which is also used, for example, in gene transcription models. Activation is suppressed
proportional to the presence of the inhibiting factor. The factor kd is the characteristic
active protein fraction that suppresses activation of the opponent protein by exactly a factor
two. We choose kd = 2 h for our measurements. On the feedback level, we assume that at
a given location and time only a one of both feedback mechanisms can be applied, which
is a model of mutual exclusive structures in the cortex [241]. We make the even stronger
assumption that the active parts of the Rac and Rho populations extinguish each other.
Having calculated the fractions of active Rac and Rho by solving the master equations
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Figure 3.23: Simulation snapshots of a reference system (left) and a persistently polarized
system (right) employing the Rac-Rho feedback mechanism, both in presence of rescues with
ωr = 0.1 s−1. The scale bar indicates the reference cell diameter, which is 20µm. The direction
of polarization is random, i.e., fluctuates in time.

(3.39), we can assume that

Fµ0 (t)
F0χrhoN

= 1 + max(a+
µq(t)− b+µq(t), 0),

κn(t)
κχracN

= 1 + max(b+n (t)− a+
n (t), 0),

Yn(t) = (κn(t) + κn+1(t))/2h2,

to couple protein dynamics to the two dimensional cell model from sec. 3.4. Here, we directly
modulated the bending rigidity κ and determined the Young modulus Y as an average of
two neighbored vertices. We could also have directly modulated the Young modulus Y and
then determine the bending rigidity as an average. Both approaches are equivalent since we
assume an isotropic and homogeneous material which implies a linear dependence between
both quantities κ and Y . Using the maximum function employs the boundary condition
a+(t) = b+(t) = 0 at the domain border between Rac and Rho populations. In consequence,
no feedback mechanism is applied directly at the domain border, which prevents jumps in
the amplitude of the applied feedback mechanisms. Due to extensible bond vectors we have
to solve (3.39) on a non-equidistant mesh. Therefore we use the differential quotients

∂sfn ≈
fn+1 − (1− α2

n)fn − α2
nfn−1

αn(1 + αn)|tn−1|

∂ssfn ≈
fn+1 − (1 + αn)fn + αnfn−1

(αn/2)(1 + αn)|tn−1|2
,

where f serves as a placeholder for a± and b±. The factor αn = |tn|/|tn−1| describes the
relative elongation of consecutive bond vectors. Note that the system of equations (3.39)
has to be solved simultaneously to the numerical model explored in sec. (3.4).

By describing protein dynamics within the membrane with a master equation, we already
spared computational cost compared to a particle approach. Nevertheless we can further
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Figure 3.24: Verification of persistent cell polarization for a simulation time of tmax =
11.57 hours. For comparison a reference measurement is shown. Left: Asphericity dependent on
the simulation time. The polarized system exhibits less fluctuations and is persistently polarized.
In contrast, the reference system is less aspherical and fluctuates regularly to ∆ ≈ 0. Right:
Absolute value of the centroid depending on the simulation time. The same argumentation
as suggested for the asphericity applies here. In contrast to the reference state, the polarized
system shows a persistently elongated centrosome.

simplify by assuming that the passive forms of Rac and Rho can not only diffuse within the
membrane, but also through the cytosol. Since this is a sort of spatial abbreviation for the
proteins, this assumption leads to much higher effective diffusion constants. Ultimately, we
could assume that the passive forms diffuse instantaneously to any location in the actin
cortex, which allows us to replace the spatial grid used for the passive forms by a single
container giving the bulk concentration. This effectively halves the computational cost,
because we discarded roughly the half of all grid computations.

3.5.5 Discussion

In Fig. 3.22 we analyze the polarization capabilities of the model just introduced. Fig. 3.23
shows corresponding snapshots for a rescue rate ωr = 0.10 s−1. Clearly, the cell polarizes
when increasing the rescue rates, which can be seen from an increasing asphericity ∆. In
the discussion of symmetric cells in chapter 3.4 we found asphericity values up to ∆ ≈ 0.01.
Including the two mutual exclusive feedback mechanisms we exceed this value by a factor
10. In fact, there is another difference between both asphericity measurements. Whereas for
the symmetric shell the asphericity fluctuates upwards from ∆ ≈ 0, i.e., the system returns
regularly to values ∆ ≈ 0, we find a constantly non-zero asphericity here, i.e., ∆(t) > 0, see
Fig. 3.24. This clearly proves that the system broke the spherical symmetry.
In the sec. 3.4 we verified the occurrence of collective catastrophes and, particularly in

presence of rescues, we found strong collective behavior. One might ask in which way the
observed polarization behavior depends on those collective catastrophes. The fact that we
find polarization only in presence of rescues already suggests a correlation. And indeed,
when we initialize the system in an unpolarized state with all MTs at the centrosome in a
growing state, we observe the following polarization process: MTs attach to the membrane
after about 200 s and then cooperatively exert force onto the membrane. Meanwhile, Rac is
activated all along the membrane whereas Rho is completely suppressed. The cell blows
up due to a stable phase of collective force exertion by the MT ensemble and, after all,
randomly a single MT undergoes a catastrophe, which propagates in a collective catastrophe
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along the membrane. Since all these subsequent catastrophes produce active Rho stiffening
the cortex, the collective catastrophe propagates even faster than without this feedback
mechanism. Now, since Rac and Rho exclude each other, and the whole membrane was
flooded with Rac before, the collective catastrophe establishes a stable Rho population. As
a key of this mechanism, the collective catastrophe aborts, because it cannot enter the Rac
population, due to mutual exclusion of Rac and Rho.

In the regime of persistent polarization, i.e., ωr = 0.10 s−1, a single collective catastrophe is
sufficient to polarize the cell once and for all. Afterwards, no collective events occur while the
cell maintains its polarized shape. In the regime of transient polarization at ωr = 0.05 s−1,
the polarized state decays after some time. Then, a new collective event again polarizes the
cell and this process is repeated in time.

3.5.6 Conclusion

In this section, we discussed the Rac-Rho feedback mechanism and its integration into the
two-dimensional cell model introduced in sec. 3.4. This mechanism has not been, to the
author’s knowledge, theoretically investigated earlier in feedback cycles with MTs, which
actually give rise to stable and persistent cellular polarization as it also has been observed
experimentally. Future work should clarify, if this is really a spontaneous transition triggered
by MT length fluctuations, or if segregation of populations is inherently included in the model
and only amplified by MT excitations. However, both cases represent possible polarization
pathways. In vivo, populations typically segregate as a response to extracellular signals. It
is thus still not quite clear which role MTs play during this process, i.e., if they are involved
in the triggering process, or rather maintain the segregation. However, we showed that MTs
are capable of both triggering and maintaining segregation, but it remains to be clarified
which of both processes is key to cellular polarization.
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4 Conclusion and outlook

In this work, we investigated elastic shells in static force equilibrium as well as an elastic
cell cortex coupled to an internal active cytoskeleton. The shape analysis of pendant elastic
capsules or elastic shells adsorbed to planar liquid-liquid interfaces exhibits multiple possible
applications in industry and research. The two-dimensional active shell model mimicking an
animal cell is capable of rationalizing experimentally observed cellular polarization mechanism
by employing mutual exclusive Rac and Rho activity. Such polarization mechanisms are of
fundamental interest in cell biology and clinical applications.
Regarding cell mechanics, we pursued a variety of approaches. We started with one-

dimensional mean-field calculations, both for single and multiple MTs, proceeded with
a stochastic two-dimensional model taking shape alterations into account, and finally
implemented regulatory mechanisms exhibiting cellular polarization. Our results suggest that
microtubules play an essential role in cell mechanics as they synchronize when interacting via
an elastic shell. In cooperation with the actin cortex and GTPases, microtubules participate
in polarization mechanisms and are capable to persistently maintain polarized shapes, if the
cortex has been chemically polarized before, and even for a totally unpolarized cortex and
shape. All these results could, in principle, be verified in experimental setups as in Refs.
[216, 217].

One of the drawbacks of our two-dimensional cell model is the spherical parametrization,
which permits only stellar shapes neglecting lateral forces. Since microtubules in the aster-like
geometry only exert stellar forces, this approximation is reasonable, but for shapes deviating
strongly from a circular symmetric shape, we observe artifacts, as, for example, increasing
asphericity values when translating a spherical membrane with respect to the origin. We
found qualitatively similar results when employing different elasticity models for shells and
droplets, and therefore expect our results to be also robust against taking lateral forces into
account. However, by using a spherical parametrization and thereby excluding overlaps, and
by coarse-graining the membrane and the microtubules, we achieve a significant speedup
allowing the simulation to capture the complete relevant cell-life timescale, which is of order
24 h. For comparison, typical molecular dynamic simulations reside within the µs scale.
Future implementations should model microtubules as worm-like chains to account for

buckling and also take lateral forces onto the membrane into account. In order to achieve
this, microtubule-bond collisions have to be included and, in consequence, also torques and
maybe slipping mechanisms. Another possibility is to take fluctuations of the membrane into
account, i.e., to implement the Brownian ratchet model explicitly. It would be interesting if
one would find the same features in such a, more refined, model.
We included actin polymerization forces effectively and regulated by microtubules. How-

ever, our model would also allow to directly take actin polymerization into account by
introducing ghost forces located to the membrane vertices. Actin polymerization could occur
spontaneously or in response to extracellular signals. Then, MTs are not necessary to regulate
actin dynamics but could be an additional regulating factor. In a three-dimensional model
the actin cortex could be taken into account via individual filament modeling, which would
also correctly account for microscopic filament ordering effects. For example, microtubules
growing deep into the lamellipodium, i.e., a dense actin filament meshwork, become flexible,
which might be important concerning direct microtubule membrane interactions.
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4 Conclusion and outlook

Regarding the shape analysis of elastic capsules, either hanging from a capillary as in a
pendant drop tensiometer or adsorbed to a liquid-liquid interface, we achieved significant
progress in this thesis. The shape analysis of pendant elastic capsules was successfully
applied using elastic shape equations in the past. In this thesis, we improved this method
with respect to several aspects. We adapted the shape parameters, i.e., the elastic moduli
of the membrane material, in continuous space, whereas in the past they were optimized
on a spatial grid. Further, we significantly improved the performance of the shape analysis,
automatized it to large degree, and implemented additional constitutive laws, that allow to
find the most appropriate elastic model for a given material. With this work, we provide an
Open Source Software called OpenCapsule that is freely available on the internet and can be
used by companies or research institutes to analyze capsule materials on a large scale.
The shape analysis of elastic capsules adsorbed to liquid-liquid interfaces is a completely

new approach that is introduced for the first time in this work. In principle, the same kind
of rigorous numerical analysis can be applied to capsules at liquid-liquid interfaces, like for
pendant elastic capsules. However, we also derived analytic results that allow the direct
determination of the shell’s bending modulus by measuring the curvature of the capsule at
the three phase contact line, the surface tension within the liquid-liquid interface, and the
thickness of the shell material. Moreover, Young’s modulus can be determined from the
height of an elastic lens or, alternatively, the contact angle at the three phase contact line.

Together, both methods form a comprehensive framework to quantify the material proper-
ties of elastic materials. Such materials have technical applications in the pharma industry,
but are also important for biological model containers. In future work, different hydrostatic
setups could be investigated, and eventually be included in the OpenCapsule Software we
provide with this work.
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