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Abstract

Consider the problem of pointwise estimation of f in a multiple isotonic regression model Z =

f(X1, . . . , Xd) + ε, where Z is the response variable, f is an unknown non-parametric regression func-

tion, which is isotonic with respect to each component, and ε is the error term. In this article, we investigate

the behaviour of the least square estimator of f and establish its asymptotic properties. We generalize the

greatest convex minorant characterization of isotonic regression estimator for the multivariate case and use

it to establish the asymptotic distribution of properly normalized version of the estimator. Moreover, we

test whether the multiple isotonic regression function at a fixed point is larger (or smaller) than a specified

value or not based on this estimator, and the consistency of the test is established. The practicability of the

estimator and the test are shown on simulated and real data as well.

Keywords: Consistency, Convex function, Cumulative sum diagram, Non-standard asymptotic distribution,

Rate of convergence

1 Introduction

Monotonicity perhaps is the most basic shape constraint for a real valued function on R, and for various

applications, monotonicity of the unknown regression function is assumed. For example, in environmental

science, the number of days until freezing of Lake Mendota has been modelled as an isotonic function or in

medical science, monotone relationship has been extensively used in growth curves (see, e.g., Barlow (1972)).

Since then several attempts had been made to incorporate the monotonicity (i.e., isotonic) constraint on the

unknown regression function of one variable. The use of isotonic methods, i.e., the least squares estimation

under a monotonicity constraint for such estimation problem is motivated by its attractive properties as well

as the marked advantage of not having to specify a user-specified bandwidth for estimation. The study of

isotonic regression models for one variable dates back to Brunk (1958) and since then it has been studied

by several authors under various assumptions (see, e.g., Brunk (1970), Groeneboom and Wellner (1992),

Banerjee and Wellner (2001), Wang and Huang (2002), Abrevaya and Huang (2005), Bagchi et al. (2016)

and Dhar (2016)).
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Although, to the best of our knowledge, the investigation on consistency property of estimated isotonic

regression function with more than one covariate (i.e., multivariate isotonic regression function) started in

1970’s (see, e.g., Robertson and Wright (1973) and Makowski (1977)), the asymptotic distribution of the

estimated multiple isotonic regression function has not been paid attention in the literature. Recently, Han

et al. (2017) studied the risk bounds of the multiple isotonic least square estimator, and a sort of similar work

was carried out by Chatterjee et al. (2018) for bivariate isotonic least square estimator. However, none of them

derived the asymptitoic distribution of the least square estimator, which is essential for important statistical

problems like testing and constructing confidence interval of the regression function.

Regarding real application of multiple isotonic regression model, we would like to mention that a nat-

ural monotone relationship between the response and several co-variates is quite common in practice. For

instance, it is an accepted fact in medical science that the blood pressure is monotonically associated with the

use of tobacco and the body weight (see, e.g., Moolchan et al. (2004)). Motivated by such type of real life

examples, the multiple isotonic regression model is considered in this article, and to estimate the unknown

multiple isotonic regression function, the methodology of the least square is adopted following the idea of

Makowski (1977). In this article, the multivariate isotonic regression model is studied in two steps. At first,

we establish a characterization of the isotonic least square estimator in terms of the cumulative sum process

of the data, similar to greatest convex minorant characterization for univariate case. This characterization

enables us to establish geometric properties as well as derive explicit asymptotic distribution of the estimator

after an appropriate normalization. The limit distribution we obtain is a generalization of well-known Cher-

noff’s distribution (see Brunk (1970)). Next, although the theoretical properties of this multivariate version

requires extending the seminal works of Groeneboom (1989) and Groeneboom and Wellner (2001) for mul-

tivariate case and beyond the scope of this article, we propose simulation methods to compute the quantiles

numerically. This quantiles are then used to implement this methodology such as in testing of hypothesis

problem, which will be discussed in the subsequent paragraph.

As it is mentioned in the last paragraph, the level of blood pressure can be modelled by multiple isotonic

regression model with the covariates like the amount of using tobacco and the body weight. In this example,

one may have interest to know whether the diastolic blood pressure will be more than 90 or not when the

body weight of an individual = 80 kilogram, and the individual consumes 5 cigarettes per day. To test such

type of assertion, a formal testing of hypothesis problem is formulated, and a test statistic based on the least

square estimator is proposed. Moreover, the consistency property of the test based on that test statistic is

investigated under any fixed alternative. We also thoroughly explore the performance of the test through

extensive simulation study when the sample size is finite, and the test is implemented on two benchmark data

set as well.

The rest of the article is organized as follows. In Section 2, the theoretical properties of the least square

estimator of the unknown isotonic regression function is developed. The geometric characterization and the

asymptotic distribution of the estimator are explored in Sections 2.1 and 2.2, respectively. In Section 3, we
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test whether the multiple isotonic regression function at a fixed point is larger (or smaller) than a specified

value or not based on the least square estimator, and the consistency of the test is established. The procedures

of computing the quantile and estimating all necessary parameters associated with partial derivative of the

non-parametric regression function are thoroughly discussed in Sections 4.1 and 4.2. Section 4.3 investigates

the finite sample performance of the estimator and the test for various examples. Section 5 implements the

test on two well-known real data sets, and Section 6 contains a few concluding remarks. Some technical

details are provided in the Appendix.

2 Isotonic Regression Estimator and Its Asymptotic Properties

The notion of monotonicity and linearity can be extended to multivariate case in a number of ways. Before

we introduce our regression model, we formally define the notion of monotonicity and linearity in Rd that we

are going to use.

Definition 2.1. A function f : Rd → R is said to be monotone (or linear) if for every coordinate i ∈
{1, 2, . . . , d} and every choice of x1, . . . xd ∈ R, the function y 7→ f(x1, . . . , xi−1, y, xi+1, . . . , xd) is

monotone (or linear).

We consider the isotonic regression problem with data Zi1...id ; ik = 1, · · · , nk for k = 1, . . . , d from the

regression model

Zi1...id = f(x1,i1 , . . . , xd,id) + εi1...id , (2.1)

where xk,1 ≤ xk,2 ≤ · · · ≤ xk,nk are the fixed design points for each coordinate k = 1, 2, . . . , d, f :

[0, 1]d → R is continuous and non-decreasing at every coordinate, and εi1...id are independent and identically

distributed random variables with mean zero and finite variance σ2. We here denote the total sample size to

be n :=

d∏
i=1

ni and define a d-dimensional monotone cone L as follows: let y = (y1, . . . , yd) ∈ L, if y′ ∈ Rd

is such that y′k ≥ yk with strict equality for at least one coordinate, then y′ ∈ L. Let L be the collection of all

such monotone cones.

The isotonic regression estimator (IRE) for f in (2.1) is obtained by minimizing the squared error loss

over monotone cones, which can be written as the following optimization problem

arg min
f

n1∑
i1=1

· · ·
nd∑
id=1

(Zi1...id − fi1...id)2, s.t. {fi1...id} ⊂ L for some L ∈ L. (2.2)

The solution of the above optimization problem is given by the following max-min representation.

f̂n(u1, . . . , ud) = max
L:(u1,...,ud)∈L

L∈L

min
K:(u1,...,ud)∈K,

K∈Lc

∑
(x1,i1

,...,xd,id )∈K∩L

Zi1...id
|K ∩ L|

, (2.3)
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where Lc := {Lc : L ∈ L}. The estimator in (2.3) can be numerically computed using multivariate pooled

adjacent violators algorithm (PAVA) as described in Hoffmann (2009). However, this max-min representation

is not particularly useful to derive the asymptotic properties of the estimator, due to the complex geometry

of multivariate cones and their complements. The geometric characterization of the estimator will be investi-

gated in the following subsection.

2.1 Geometric Characterization of Isotonic Regression Estimator

A very popular and useful characterization of classical isotonic regression estimator is as left-derivative of

greatest convex minorant of the cumulative sum process of the data. We here show a similar geometric

representation for the estimator defined in (2.3). The key element here is a generalization of the notion of

greatest convex minorant for Rd. To this end, for a real-valued function G defined on Rd, we introduce

d-dimensional left-slope ∂`G(u1, . . . , ud) as simply left partial derivative with respect to u1, . . . , ud. For

example, if d = 2, we have

∂`G(u1, u2) := lim
h→0

G(u1, u2)−G(u1 − h, u2)−G(u1, u2 − h) +G(u1 − h, u2 − h)

h2
.

The right-slope ∂rG can be defined similarly. With this notations, we define the class of d-convex functions

on I ⊂ Rd to be

CI := {G : I 7→ R, ∂`G is coordinate-wise monotone}. (2.4)

Note that if G ∈ CI , G is convex on I then; however, the converse is not necessarily true.

Next, for any real-valued function S defined on I ⊂ Rd, we define d-GCM TI(S) of S as the point-wise

supremum of all d-convex function below S, i.e.,

TI(S)(u1, . . . , ud) = sup
G∈CI ;G≤S

G(u1, . . . , ud). (2.5)

Note here that Equation (2.5) implies that d-GCM is a d-convex function itself (see Lemma A.4). In the

sequel, for sake of notational simplicity, if I = Rd, we drop the subscript and write TRd(S) as T (S). In this

context, it should be mentioned that for d = 1, TI(S) is the regular GCM (greatest convex minorant) of S. In

fact, it inherits some useful properties of regular GCM such as piecewise linearity, and indeed the following

property stated in the lemma (similar to regular GCM), which is essential to study the geometry of d-GCM.

Lemma 2.1. Suppose S : I 7→ R is a continuous function on an interval I ⊆ R2. If TI(S) and S do not

have any touch point in an interval J ⊆ I , then TI(S) is linear on J .

Note that the collection of all touch points, i.e., the points where the functions S and TI(S) coincide are

union of rectangles I1 × · · · × Id where each Ik is either an interval or a singleton set. Lemma 2.1 ensures in
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between these rectangles (which may be a point) the d-GCM is linear.

With the definition of d-GCM, we are ready to establish the relation between the IRE and the cumulative

sum process. To this end, let Sn be the cumulative sum diagram of the data, i.e., technically speaking, we

define Sn on [0, 1]d as follows

Sn(x1,i1 , . . . , xd,id) =
1

n1 . . . nd

∑
l1≤i1

· · ·
∑
ld≤id

Zl1...ld , for ik = 0, . . . , nk; k = 1, . . . , d

with the notations xk,0 = 0 and Zi1...id = 0 if ik = 0 for any k and Sn is interpolated linearly at each

coordinate in between the design points. Finally, we are now ready to state first main result which gives

explicit characterization of Isotonic regression estimator.

Theorem 2.2. Let G := T[0,1]d(Sn) and g(u1, . . . , ud) := ∂`G(u1, . . . , ud) be the left-slope of G. Then g is

the unique solution to the isotonic regression problem described in (2.2).

The proof is a generalization of the argument given in the proof of Theorem 1.2.1 from Robertson et al.

(1988) using induction type argument and is deferred to the Section A.2. This result also provides some

insight to the geometry of the estimator. The following corollary is a direct consequence of Theorem 2.2 and

Lemma 2.1.

Corollary 2.3. The isotonic regression estimator is piecewise constant and right continuous.

Corollary 2.3 provides us the idea about the feature of the isotonic regression estimator for a given data.

It also opens a new research problem that how to construct a smooth (i.e., differentiable) estimator of the

multivariate isotonic regression function.

2.2 Asymptotic Properties of the Isotonic Regression Estimator

With the geometric characterization explained in the earlier subsection, we now focus on the asymptotics

of f̂n, the solution of (2.2). To be more precise, we are interested in obtaining a limit distribution of

dn(f̂n(u1, . . . , ud)−f(u1, . . . , ud)) for some fixed (u1, . . . , ud) ∈ (0, 1)d and appropriately chosen dn such

that dn → ∞ as n → ∞, with n = n1 . . . nd. In the sequel, we establish such a distributional convergence

result and derive the appropriate rate of convergence dn in the process.

In order to study aforementioned issues, we proceed in two steps. First we write dn(f̂n(u1, . . . , ud) −
f(u1, . . . , ud)) as left-slope of d-GCM of a normalized and localized version of the partial sum process. We

then establish a distributional convergence result of the partial sum process to a functional of regular Brownian

Motion, where the convergence is shown on the space of continuous functions on Rd. The distributional

convergence of normalized version of the estimator is finally proved in view of arguments like localization

and continuous mapping.
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To this end, for any real-valued S defined on Rd, we define

∆S(u1, . . . , ud, h1, . . . , hd) =

∫ u1+h1

u1

· · ·
∫ ud+hd

ud

dS(v1, . . . , vd).

With this notation, we have the following result:

Proposition 2.4. The normalized isotonic regression estimator can be written as

dn(f̂n(u1, . . . , ud)− f(u1, . . . , ud))

=
dd+1
n ∂dT

(
∆Sn

(
u1, . . . , ud,

s1
dn
, . . . , sddn

)
− f(u1,...,ud)s1...sd

ddn

)
∂s1 . . . ∂sd

∣∣∣∣∣∣
s1=0,...,sd=0

.

The assertion in Proposition 2.4 implies that to establish the asymptotic distribution of dn(f̂n(u1, . . . , ud)−
f(u1, . . . , ud)), one needs to have the convergence of the process Wn defined as

Wn(s1, . . . , sd) := dd+1
n

(
∆Sn

(
u1, . . . , ud,

s1
dn
, . . . ,

sd
dn

)
− f(u1, . . . , ud)s1 . . . sd

ddn

)
. (2.6)

The following result describes the convergence of Wn to the process defined as

W(s1, . . . , sd) = B(s1, . . . , sd) +
|s1 . . . sd|

2

(
|s1|f1(u1, . . . , ud) + · · ·+ |sd|fd(u1, . . . , ud)

)
, (2.7)

where B(s1, . . . , sd) is a Gaussian process with zero mean and covariance kernel

K
(
(s1, . . . , sd), (t1, . . . , td)

)
= (|s1| ∧ |t1|)× · · · × (|sd| ∧ |td|), (2.8)

and fk is the partial derivative of f with respect to the k-th co-ordinate.

Theorem 2.5. Let dn = n1/d+2, the partial sum process Wn converges in distribution to W uniformly on all

compact sets of Rd. In other words, for Ic := [−c, c]d, the processes {Wn(s1, . . . , sd)}(s1,...,sd)∈Ic converges

in distribution to {W(s1, . . . , sd)}(s1,...,sd)∈Ic .

Proof. Introduce the notations

Fn(u1, . . . , ud) =
1

n

∑
x1,i1

≤u1

· · ·
∑

xd,id≤ud

f(x1,i1 , . . . , xd,id)

F (u1, . . . , ud) =

∫ u1

0

· · ·
∫ ud

0

f(x1, . . . , xd)dx1 . . . dxd.
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We decompose the partial sum process as follows:

Wn(s1, . . . , sd) = Bn(s1, . . . , sd) +Rn(s1, . . . , sd) +Mn(s1, . . . , sd) + En(s1, . . . , sd),

with Bn(s1, . . . , sd) =
dd+1
n

n

∑
(i1,...,id)∈Dn εi1...id , where the sum is over the rectangleDn := [n1u1, n1u1+

n1s1/dn]× · · · × [ndud, ndud + ndsd/dn];

Rn(s1, . . . , sd) :=dd+1
n [∆Fn(u1, . . . , ud, s1/dn, . . . , sd/dn)−∆F (u1, . . . , ud, s1/dn, . . . , sd/dn)] ;

Mn(s1, . . . , sd) =dd+1
n

[
∆F (u1, . . . , ud, s1/dn, . . . , sd/dn)− f(u1, . . . , ud)

s1 . . . sd
ddn

]
,

andEn is the approximation error due to linear interpolation with sup
s1,...,sd

|En(s1, . . . , sd)| = O(dd+1
n /n). As

f is bounded on [0, 1]d, we have sup
[0,1]d

|Fn−F | = O(1/n), and therefore, sup
s1,...,sd

|Rn(s1, s2)| = O(dd+1
n /n).

For, s1, . . . , sd > 0, using Taylor’s expansion, we have

Mn(s1, . . . , sd) = dd+1
n

[∫ u1+s1/dn

u1

· · ·
∫ ud+sd/dn

ud

f(x1, . . . , xd)dx1 . . . dxd − f(u1, . . . , ud)
s1 . . . sd
ddn

]

= dd+1
n

[∫ u1+s1/dn

u1

· · ·
∫ ud+sd/dn

ud

(
f(u1, . . . , ud) +

d∑
k=1

(xk − uk)fk(u1, . . . , ud) +O(d−2n )

)
dx1 . . . dxd

−f(u1, . . . , ud)
s1 . . . sd
ddn

]
=
s21
2
s2 . . . sdf1(u1, . . . , ud) + · · ·+ s1 . . . sd−1

s2d
2
fd(u1, . . . , ud) +O(d−1n ).

So, for (s1, . . . , sd) ∈ Rd, we have

Mn(s1, . . . , sd) =
|s1 . . . sd|

2

(
|s1|f1(u1, . . . , ud) + · · ·+ |sd|fd(u1, . . . , ud)

)
+O(d−1n ).

Finally, for s1, . . . , sd > 0,

Bn(s1, . . . , sd) =
dd+1
n

n

bn1u1+s1n1/dnc∑
i1=bn1u1c

· · ·
bndud+sdnd/dnc∑

id=bndudc

εi1...id

d
=
dd+1
n

n

b s1n1
dn
c∑

i1=1

· · ·
b sdnddn

c∑
id=1

εi1...id + o(1).

It is clear from the above expression that the sum will converge in distribution when n

dd+1
n

=
√

n1...nd
ddn

⇒
dd+2
n = n. As symmetric arguments can be made for (s1, . . . , sd) in all quadrants of Rd by general Central

Limit Theorem, with dn = n1/d+2, on [−c, c]2, the processes Bn(s1, . . . , sd) converge in distribution to a

zero mean Gaussian process with covariance kernel given by (2.8). Moreover, when dn = n1/d+2, the order
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of the residual terms O(dd+1
n /n) = O(n−1/(d+2)), this completes the proof. 2

For any function S : I ⊂ Rd → R, introduce the notation

TI(S)′(u1, . . . , ud) :=
∂dTI(S)(x1, . . . , xd)

∂x1 . . . ∂xd

∣∣∣
x1=u1,...,xd=ud

,

and we drop the subscript if I = Rd. Note that by Proposition 2.4, the normalized estimator is T (Wn)′(0, . . . , 0),

and we intend to use argument like continuous mapping theorem to show this converges in distribution to

T (W)′(0, . . . , 0). However, the map f 7→ T ′(f) is not continuous. Though, one can show that the map

f 7→ T ′K(f) is indeed continuous for any compact set K. Therefore, one needs the following localization

result in order to effectively use continuous mapping argument.

Proposition 2.6. Let In = [−s1dn, (1− s1)dn]× · · · × [−sddn, (1− sd)dn]. Then for any compact interval

J ⊂ In and C = [−c, c]d, given ε > 0, we have

lim
c→∞

P
(

sup
J
|TC(W)′(.)− T (W)′(.)| > ε

)
= 0

and

lim
c→∞

lim sup
n→∞

P
(

sup
J
|TC(Wn)′(.)− TIn(Wn)′(.)| > ε

)
= 0.

The proof is closely related to the proof of Theorem A.1 of Anevski and Hössjer (2006) and deferred to

Section A.3.

Finally, we now state the main result:

Theorem 2.7. If f̂n is the solution of the optimization problem in (2.2), we then have

n1/(d+2)
(
f̂n(u1, . . . , ud)− f(u1, . . . , ud)

)
d→ T (W)′(0, . . . , 0),

where W is defined as in (2.7)

Proof. It follows from Proposition 2.4 that

n1/(d+2)
(
f̂n(u1, . . . , ud)− f(u1, . . . , ud)

)
= TIn(Wn)′(0, . . . , 0).

Now, using Theorem 2.5, one can claim that Wn converges to W as processes in C(Rd). By Lemma A.6, we

have the map TK : C(K) 7→ C(Rd) is continuous for all compact K ⊂ Rd. This along with the application

of continuous mapping theorem implies that for all c > 0, we have T[−c,c]d(Wn) converges in distribution

to T[−c,c]d(W) as processes in C(Rd). Also, by Corollary A.10, (0, . . . , 0) is not a touch point of W and

T[−c,c]d(W) almost surely, and therefore, Lemma 2.1 ensures that with probability 1, (0, . . . , 0) is a point of
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differentiability of T[−c,c]d(W). Hence, using continuity of left derivatives of d-convex functions, (Lemma

A.2), we have T[−c,c]d(Wn)′(0, . . . , 0)
d→ T[−c,c]d(W)′(0, . . . , 0). Finally, Proposition 2.6 along with an

application of converging together lemma (Theorem 8.6.2 in Resnick (1999)) gives the desired result. 2

Remark 2.8. In our model, we assume that the design points are fixed. In case the design points xij’s are

random (and independent of the error distribution) the limit distribution of Wn defined in (2.6), and con-

sequently, the limit distribution of the isotonic regression estimator depend on the distribution of the design

points. For the special case, xij’s are generated independently as ni points from uniform [0, 1] random vari-

able, for each i ∈ {1, . . . , d}, the limit distribution of isotonic regression estimator is the same as Theorem

2.7.

3 Applications : Testing of Hypothesis and Confidence Interval

In the last section, we established that the least square estimator of unknown multiple isotonic regression

function converges weakly to a random variable associated with a certain functional of the multivariate Brow-

nian Motion. In addition to the estimation of the unknown function, as it is indicated in Section 1, one may

have interest to know whether the unknown multiple isotonic regression function at a fixed point is larger

(or smaller) than any fixed value or not. Technically speaking, we want to test H0 : f(x1,0, . . . , xd,0) > c

against H1 : f(x1,0, . . . , xd,0) ≤ c, where {x1,0, . . . , xd,0} and c are specified. To test H0 against H1, for

arbitrary c0 and c1 are such that c1 < c < c0, one may consider simple null and alternative hypotheses as

H∗0 : f(x1,0, . . . , xd,0) = c0 against H∗1 : f(x1,0, . . . , xd,0) = c1, for technical simplicity.

In order to test H∗0 against H∗1 , the test statistic Tn = n
1
d+2 {f̂n(x1,0, . . . , xd,0) − c0} can be formu-

lated, which is essentially the difference between estimated regression function and the specified value of the

function with appropriate normalization when the null hypothesis is true. The following theorem states the

consistency property of the test based on Tn.

Theorem 3.1. Let cα be the (1−α)-th quantile of the distribution of T (W)′(0, . . . , 0). The test, which rejects

H∗0 if Tn > cα, will have asymptotic size = α. Moreover, PH∗
1
[Tn > cα] → 1 as n → ∞, i.e., the test will

be a consistent test.

Proof. First note that since under H∗0 , Tn converges weakly to T (W)′(0, . . . , 0), the asymptotic level of the

test based on Tn will be α.

The asymptotic power of the test will be

PH∗
1

[
n

1
d+2 {f̂n(x1,0, . . . , xd,0)− c0} > cα

]
= PH∗

1

[
n

1
d+2 {f̂n(x1,0, . . . , xd,0)− c1 + c1 − c0} > cα

]
PH∗

1

[
n

1
d+2 {f̂n(x1,0, . . . , xd,0)− c1} > cα − n

1
d+2 (c1 − c0)

]
→ 1 as n→∞.
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The implication follows form the facts that cα−n
1
d+2 (c1−c0)→ −∞ as c1 > c0, and n

1
d+2 {f̂n(x1,0, . . . , xd,0)−

c1} is bounded in probability under H∗1 . This completes the proof. 2

To implement the test based on Tn, one needs to compute f̂n(x1,0, . . . , xd,0) for a given data, and that can

be done using the geometric property discussed in Section 2.1. Besides, in order to compute the the specified

quantile of the distribution of T (W)′(0, . . . , 0), one may adopt the methodology that will be discussed in

Section 4.1. In this discussion, we would like to emphasize that the assertion in Theorem 3.1 implies that the

test based on Tn poses good power when the sample size is large enough.

Further, note that one can also construct the pointwise confidence interval of the multiple isotonic re-

gression function based on the result stated in Theorem 2.7. For instance, (1 − α)% (α ∈ (0, 1)) confi-

dence interval of f(u1, . . . , ud) at the point (u1, . . . , ud) based on our proposed least square estimator is(
f̂n(u1, . . . , ud)− c1−α

n
1
d+2

, f̂n(u1, . . . , ud) + cα

n
1
d+2

)
, where cα and c1−α are α and (1 − α)-th quantiles of

the distribution of TIn(Wn)′(0, . . . , 0), respectively. That is, in other words, the aforementioned (1 − α)%

asymptotic confidence interval is the acceptance region of the test H0 against H1 when the level of signifi-

cance = α.

4 Finite Sample Simulation Study

In the earlier section, the asymptotic distribution of f̂n(x1, . . . , xn) has been established after appropriate

normalization; that however does not address how the estimator behave for finite sample size. To study this

issue, we explore the performance of f̂n(x1, . . . , xn) in this section when the sample size is finite. In the

course of this study, one needs to know how to compute the quantile of the limiting distribution associated

with finding the critical value and to estimate the partial derivatives involved in the limiting distributions.

These two issues are discussed in Subsections 4.1 and 4.2, and the models of simulation study and results are

discussed in Subsection 4.3.

4.1 Computing Quantiles of the Limiting Distribution

The random variable T (W)′(0, . . . , 0) appearing in the limit as described in Theorem 2.7 is indeed a gener-

alization of the well-known Chernoff’s distribution (See Groeneboom (1985)). The theoretical properties of

this random variable will require a deep study of Gaussian process and its d-convex minorant similar to the

works of Groeneboom (1989), Groeneboom and Wellner (2001) etc, and it is beyond the scope of this arti-

cle. However, one can simulate the data from the distribution associated with T (W)′(0, . . . , 0) and compute

the empirical version of a certain quantile based in the simulated data. As it is discussed in Section 3, that

quantile can be used in estimating critical value and to formulate the point-wise confidence interval.
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In the course of analyzing the random variable T (W)′(0, . . . , 0), one can note that this random variable

involves (d+1) many parameters, namely, the error variance = σ and the d-dimensional gradient of f defined

as ∇f := (f1(u1, . . . , ud), . . . , fd(u1, . . . , ud))
T , where fj is the partial derivative of f with respect to j-th

component, j = 1, . . . , d. At first, we generate the data from the model yi1...id = (∇f)1i1/n1 + · · · +
(∇f)did/nd + εi1...id for n1 = . . . = nd = 103, where (∇f)j is the j-th component of the d-dimensional

vector (∇f), and εi1...id are i.i.d. with variance = σ. The estimation of the partial derivative of the unknown

regression function is described in the next subsection. We employ then the multivariate PAVA to calculate

the isotonic regression estimator f̂n from this data at u1 = · · · = ud = 0 and its normalized version. The

same procedure is repeated M = 104 times, and α% empirical quantile of the distribution associated with

T (W)′(0, . . . , 0) can be obtained from the α% quantile of the M many values of T (W)′(0, . . . , 0).

4.2 Estimation of the Partial Derivatives

As in the case of single covariate, estimation of the partial derivatives (i.e., fj , j = 1, . . . , d) is one of the

most challenging part for implementing this method. We here use a kernel based estimate from Banerjee and

Wellner (2005) defined as

f̂j(u1, . . . , ud) =
1

hj

∫
K

(
uj − x
hj

)
df̂n(u1, . . . , uj−1, x, uj+1, . . . , ud) (2.9)

for j = 1, . . . , d, where hj is the bandwidth, and K is a Gaussian kernel (see Silverman (1986)). However,

to implement the aforementioned methodology, one needs to choose the bandwidth hj in an appropriate way.

In the numerical study reported in this article, the bandwidth is chosen by the method of cross -validation,

which is described as follows. To implement the cross validation technique, we divide the dataset into two

parts randomly, and each data-point is assigned to one of the two sets with probability = 0.5 using an auxiliary

Bernoulli random variable having success probability = 0.5. Let Di denote the set of indices of the i-th data

set (i = 1 and 2), and we then estimate f̂k,Di,hj as (2.9) using the data having the indices Di. Next, f̂Di,hj is

calculated by numerically integrating f̂k,Di,hj with respect to the k-th coordinate, and we finally calculate

CVk(hj) =
∑

(i1,...,id)∈D1

(Zi1...id−f̂D2,hj (x1,i1 , . . . , xd,id))2+
∑

(i1,...,id)∈D2

(Zi1...id−f̂D1,hj (x1,i1 , . . . , xd,id))2.

(2.10)

The optimal bandwidth is obtained by minimizing CVk(h) with repsect to h.

4.3 Numerical Studies

We here investigate the performance of the proposed estimator f̂n(x) for finite n, where x = (x1, . . . , xd),

and for that reason, the empirical mean sqaure error (EMSE) is defined here. For a given x and the model
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Y = f(x) + ε, the EMSE of f̂n is 1
M

M∑
i=1

{
f̂n,i(x)− f(x)

}2

, where M is the number of replications, and

f̂n,i(x) is the value of f̂n(x) for the i-th replication. In the numerical study, we consider the following

examples.

Example 1: f(x) = x21 + x22, where x := (x1, x2) =
(

i
n1+1 ,

j
n2+1

)
, i.e., (x1, x2) ∈ (0, 1) × (0, 1). Here

i = 1, . . . , n1 and j = 1, . . . , n2.

Example 2: f(x) = exp(x1 + x2), where x := (x1, x2) =
(

i
n1+1 ,

j
n2+1

)
, i.e., (x1, x2) ∈ (0, 1) × (0, 1).

Here also, i = 1, . . . , n1 and j = 1, . . . , n2.

We would like to mention that here d = 2 is considered only because of concise presentation. In

principle, one may study the behaviour of f̂n for any dimension d. We here investigate the performance

of f̂n(x) at x = (0.5, 0.5) and choose M = 1000, and n = 100 (n1 = n2 = 10), 200 (n1 = 20 and

n2 = 10), 300 (n1 = 30 and n2 = 10), 400 (n1 = 40 and n2 = 10) and 500 (n1 = 50 and n2 = 10).

The different forms of error distribution, namely, standard normal (i.e., the form of the density function:

f(x) = 1√
2π
e−

x2

2 , x ∈ R) and Laplace distributions (i.e., the form of the density function : f(x) = 1
2e
−|x|,

x ∈ R) are considered here. The results are summerized in Table 1. The values in Table 1 indicates that

the EMSE of f̂n decreases as the sample size n increases when the errors are generated from Gaussian

and Laplace distributions. Moreover, it performs better when the errors are generated from the Gaussian

distribution, which is expected since the least sqaure estimator performs well for data following Gaussian

distribution.

n 100 200 300 400 500
Error distribution : standard normal distribution

Example 1 : EMSE of f̂n(x) 0.123 0.111 0.099 0.076 0.063

Example 2: EMSE of f̂n(x) 0.244 0.208 0.176 0.162 0.131
Error distribution : standard Laplace distribution

Example 1 : EMSE of f̂n(x) 0.637 0.558 0.500 0.482 0.336

Example 2: EMSE of f̂n(x) 1.221 1.099 0.899 0.828 0.799

Table 1: The EMSE of f̂n(x) different values of n.

We also want to test that whether f(x) at x = (0.5, 0.5) is larger than 0.35 or not in Example 1, and

in Example 2, the null hypothesis is f(x) at x = (0.5, 0.5) is larger than 2 or not. To carry out the afore-

mentioned testing of hypothesis problem, the permutation tests are done based on the permulated samples

as described in Section 5. In Example 1, the p-values are 0.623 and 0.437 for errros having Gaussian and

Laplace distributions, respectively. While in Example 2, the p-values are 0.847 and 0.501 for errros having

Gaussian and Laplace distributions, respectively. Note that at x = (0.5, 0.5), f(x) = x21 + x22 = 0.5 (in

Example 1) and f(x) = exp(x1 +x2) = e > 2 (in Example 2), and hence, the null hypotheses for both cases

are expected to be accepted, which is reflected in the obtained p-values.
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Further, in order to investigate the performance of the finite sample power of the test based on Tn, we

consider the following examples.

Example 3: Let f(x) = x21 + x22, and x is observed at
(

i
n1+1 ,

j
n2+1

)
, i = 1, . . . , n1 and j = 1, . . . , n2.

Suppose that we want to test H0 : f(x)|x=(0.5,0.5) = 0.5 against H1 : f(x)|x=(0.5,0.5) > 0.5 (say, = a >

0.5), and here, errors follow standard normal distribution.

To implement the test, we compute the critical value using the asymptotic distribution described in The-

orem 2.8, i.e., in other words, at α% level of significance, the critical value will be (1 − α)-th quantile of

the distribution of T (W)′(0, . . . , 0). As the the distribution of T (W)′(0, . . . , 0) is not easily tractable, we

compute the quantile of the aforementioned distribution approximately using the procedure described in Sec-

tion 4.1. For different values of n1, n2 and a, the finite sample power of the test is studied, and the result is

summarized in Table 2.

Finite Sample Power
a 50 60 90 150 500

n1 = 10 and n2 = 10 0.050 0.089 0.112 0.223 0.341
n1 = 25 and n2 = 25 0.052 0.123 0.236 0.356 0.622
n1 = 50 and n2 = 50 0.053 0.436 0.567 0.678 0.943
n1 = 100 and n2 = 100 0.051 0.632 0.902 0.945 0.989

Table 2: The results for Example 3: The finite sample power of the test based on Tn at 5% level of signifi-
cance for different values of n1, n2 and a.

Example 4: Let f(x) = exp(x1 + x2), and x is observed at
(

i
n1+1 ,

j
n2+1

)
, i = 1, . . . , n1 and j =

1, . . . , n2. Suppose that we want to test H0 : f(x)|x=(0.5,0.5) = e against H1 : f(x)|x=(0.5,0.5) > e (say,

= a∗ > e), and here, errors follow standard normal distribution. For different values of n1, n2 and a∗, the

finite sample power of the test based on Tn is studied, and the result is summarized in Table 3.

Finite Sample Power
a∗ e 2e 5e 10e 100e

n1 = 10 and n2 = 10 0.050 0.123 0.0.245 0.546 0.659
n1 = 25 and n2 = 25 0.057 0.244 0.386 0.732 0.844
n1 = 50 and n2 = 50 0.055 0.505 0.667 0.789 0.932
n1 = 100 and n2 = 100 0.050 0.713 0.0.888 0.965 0.999

Table 3: The results for Example 4: The finite sample power of the test based on Tn at 5% level of signifi-
cance for different values of n1, n2 and a∗.

The figures in Tables 2 and 3 indicate that for a fixed n1 and n2 (i.e., sample sizes), the finite sample

power increases as the values of a and a∗ increase. In other words, for the fixed sample sizes, the test

based on Tn will become more powerful as the deviation of the alternative hypothesized value from the null

hypothesized value is getting increased. Besides, for a fixed values of a and a∗, for both Examples 3 and 4,

the finite sample power of the test increases as the sample sizes (i.e, n1 and n2) increase, i.e., this study also
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indicates that the test based on Tn is consistent.

5 Real Data Analysis

5.1 Auto MPG Data Set

This data set lists the miles-per-gallon (MPG) of 392 automobiles manufactured between 1970 and 1982 with

seven covariates. For detailed description of the variables, we refere the readers to https://archive.

ics.uci.edu/ml/datasets/auto+mpg, and it was earlier analyzed in Luss et al. (2012). In this

numerical study, we consider only the continuous covariates, namely, displacement (denote it as x1), horse-

power (denote it as x2), weight (denote it as x3) and acceleration (denote it as x4), and it is seen that MPG

(denote it as y) has monotone association with these four variables. Suppose that for this data, we want to

study the performance of the proposed estimator when x1 = 455, x2 = 225, x3 = 3086 and x4 = 10, and for

this value of (x1, x2, x3, x4), it is given that y = 14. In this study, we generate B many permuted resamples,

and for each resample, our proposed estimate f̂n(x1, x2, x3, x4) is computed, and let f̂n,i(x1, x2, x3, x4) be

the estimate for the i-th permuted resample, where i = 1, . . . , B. The empirical mean square error (EMSE) of

f̂n,i(x1, x2, x3, x4) is defined as 1
B

B∑
i=1

{f̂n,i(x1, x2, x3, x4)− y}2 = 1
B

B∑
i=1

{f̂n,i(x1, x2, x3, x4)− 14}2, and

we here investigate the behavior of EMSE of f̂n(x1, x2, x3, x4) for different values of B. The permutation of

the sample is done in the following way. Let (i1, . . . , in) be one permutation of (1, . . . , n), and the permuted

sample will be (((x1,1, x2,1, x3,1, x4,1), yi1), . . . , ((x1,n, x2,n, x3,n, x4,n), yin)), where n = 392, and xk,l is

the l-th observation of xk; here k = 1, 2, 3, 4 and l = 1, . . . , n. The result is summarized in Table 4.

It clearly indicates from the figures in Table 4 that the EMSE of the proposed estimator decreases as the

number of resamples obtained by permutation decreases. In other words, the least square estimate accurately

estimate the actual value of MPG when the number of replications (i.e., B) is sufficiently large. Moreover,

the EMSE values of f̂n(x) of Bodyfat data are larger than that of f̂n(x) of Auto MPG Data as the Bodyfat

data has a few outliers/influential observations.

Besides, for this data, we also test that whether MPG is larger than ten or not when x1 = 455, x2 = 225,

x3 = 3086 and x4 = 10 (x1, x2, x3 and x4 are same as before). We compute the p-value of the test based

on Tn (described in Section 3) using the permuted resamples as mentioned in the first paragraph in this data

analysis. We obtain the p-value = 0.661, i.e., favours the null hypothesis, and it is expected since at x1 = 455,

x2 = 225, x3 = 3086 and x4 = 10, the MPG is 14. In this study, we have used our own R code to compute

f̂n(x), which is available to the authors.
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B 100 200 300 400 500 1000

Auto MPG Data : EMSE of f̂n(x) 3.227 2.898 2.766 1.868 1.422 1.001

Bodyfat Data : EMSE of f̂n(x) 5.554 5.001 4.998 4.887 4.775 4.776

Table 4: The results for Auto MPG Data and Bodyfat Data: The EMSE of f̂n(x) different values of B.

5.2 Bodyfat Data Set

This data set consists of percentage of body fat (obtained from equation from Siri et al. (1956) ; denote

it as y), Age (years), Weight (lbs), Height (inches), Neck circumference (cm), Chest circumference (cm),

Abdomen 2 circumference (cm), Hip circumference (cm), Thigh circumference (cm), Knee circumference

(cm), Ankle circumference (cm), Biceps (extended) circumference (cm), Forearm circumference (cm) and

Wrist circumference (cm) of 252 men aged from 22 to 81, and it is available in http://lib.stat.

cmu.edu/datasets/bodyfat. This data set was earlier analyzed by Dette and Scheder (2006) in the

context of multiple isotonic regression; although their proposed methodology was different from the estimator

considered here. In that study, they considered two covariates, namely, Weight and Height since bodyfat

should be monotonically increasing function of weight and decreasing function of height. Following their idea

and along with the fact that the unknown regression function is monotonic with respect to each component

in the same direction, Weight (denote it as x1) and the negative of Height (denote it as x2) are considered as

two covariates in this study.

As we discussed in the earlier data, we here also investigate the behavior of EMSE of f̂n(x1, x2) when

x1 = 71 and x2 = −209.25 for different values of B, and for this value of (x1, x2), it is given that y =

1.0468. The results are summarized in Table 4. Here also, we have observed the same phenomena as the

earlier data set that the EMSE decreases as the number of replications increases. Overall, we would like to

conclude that if the data has monotone association, it will be expected that f̂n(x1, . . . , xn) will perform well.

For this data also, we compute the p-value of the test based on Tn to check whether bodyfat (i.e., y) is

larger then one or not when x1 = 71 and x2 = −209.25. To compute the p-value, as we did for Auto MPG

Data Set, we carry out well-known permutation test and obtain the p-value = 0.557 (i.e., favours the said

hypothesis) as expected since for x1 = 71 and x2 = −209.25, y = 1.0468 > 1.

6 Concluding Remarks

In this article, we propose a least square estimator of the multiple isotonic regression function and study

it’s asymptotic properties along with applications in the testing of hypothesis and the formulation of the

pointwise confidence interval. In this context, we would like to point out that even for the smooth (i.e.,

differentiable) multiple isotonic regression function, our estimator is not smooth enough; strictly speaking,
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it is not a differentiable function. To overcome this issue, one may consider the kernalized version of our

proposed estimation, which can be defined as follows.

f̂n,sm(u∗1, . . . , u
∗
d) =

1

nhn

n∑
i=1

k

(
u∗ − xi
hn

)
f̂n(u∗1, . . . , u

∗
d),

where k is a sufficiently smooth kernel function with bandwidth = hn, u∗ = (u∗1, . . . , u
∗
d), and xi is the i-th

covariate. One can hope that under some conditions, the smoothness of f̂n,sm(u∗1, . . . , u
∗
d) will be the same

as that of the kernel k, and the isotonicity propoerty of the estimator depends on the choice of the kernel k.

The issue of robustness is another topic of research since f̂n(.) is an average based estimator, and hence,

it is expected that f̂n(.) will be influenced by the presence of the outliers/influential observations. Technically

speaking, the breakdown point or the influence function may give us an idea about how much the estimator

will be robust against the outliers. Moreover, one may also consider the median or the trimmed mean type of

estimator so that the estimator possess good robustness property. For instance, in the case of univariate iso-

tonic regression function, Dhar (2016) showed that trimmed mean isotonic regression estimator may achieve

25% asymptotic breakdown point.

In order to implement the test described in Section 3, one needs to compute a certain quantile of

T (W)′(0, . . . , 0), which is not easily tractable. As we indicated earlier, note here that T (W)′(0, . . . , 0) can

be thought as a multivariate extension of well-known Chernoff’s distribution; however, unlike the univari-

ate Chernoff’s distribution, the accurate computation of the quantiles of multivariate version of Chernoff’s

distribution is not available in the literature. For univariate case, the readers may see Groeneboom and Well-

ner (2001). Instead of the simulation based procedure of computing quantiles of T (W)′(0, . . . , 0) described

in Section 4.2, it may be of future interest of research about how to compute the quantiles exactly of the

distribution of T (W)′(0, . . . , 0) like the univariate Chernoff’s distribution.

Moreover, to estimate the partical derivatives of the unknown multiple isotonic regression function, we

discussed the cross validation technique to obtain the optimum bandwidth in Section 4.2. Here, in order to

obtain the optimum bandwidht involved in the kernel function, one may consider the asymptotic results of

having the optimum order of the bandwidth in terms of the sample size.
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A Appendix: Technical Details

A.1 Properties of d-convex function and d-GCM

Lemma A.1. If G ∈ CI , then ∂rG is non-decreasing in each co-ordinate.
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Proof. This follows from the convexity of G, noting that convex functions are almost everywhere differen-

tiable and at the points of non-differentiability ∂`G(x1, . . . , xd) < ∂rG(x1, . . . , xd). 2

Lemma A.2. Let Gn ∈ CI for all n ∈ N and lim
n→∞

Gn(x1, . . . , xd) = G(x1, . . . , xd) uniformly on a ball

B((x1, . . . , xd), ε), then

∂`G(x1, . . . , xd) ≤ lim inf
n→∞

∂`Gn(x1, . . . , xd) ≤ lim sup
n→∞

∂rGn(x1, . . . , xd) ≤ ∂rG(x1, . . . , xd).

Proof. Since Gn ∈ CI , for 0 < h < ε, we have.

1

hd

∫ x1

x1−h
· · ·
∫ xd

xd−h
dGn(u1, . . . , ud) =

∫ x1

x1−h
· · ·
∫ xd

xd−h
∂`Gn(u1, . . . , ud)du1 . . . dud

≤ ∂`Gn(x1, . . . , xd) ≤ ∂rGn(x1, . . . , xd)

≤
∫ x1+h

x1

· · ·
∫ xd+h

xd

∂rGn(u1, . . . , ud)du1 . . . dud

=
1

hd

∫ x1+h

x1

· · ·
∫ xd+h

xd

dGn(u1, . . . , ud).

Letting n→∞ and h ↓ 0 gives the desired result. 2

Lemma A.3. Let G be a d-convex function on I ∈ Rd and Id := {xd ∈ R : (x1, . . . , xd) ∈ I}. Then for any

fixed xd,0 ∈ Id, the map (x1, . . . , xd−1) 7→ G(x1, . . . , xd−1, xd,0) is a (d− 1)-convex function.

Proof. Note that for h > 0, we haveGh,`(x1, . . . , xd−1) :=
∫ xd,0
xd,0−h ∂`G(x1, . . . , xd)dxd is a non-decreasing

in all (d− 1) coordinates. The result then follows by letting h→ 0. 2

Lemma A.4. For any real-valued function S on I ⊂ Rd, TI(S) ∈ CI .

Proof. Let l1 < l2 be two real numbers. Without loss of generality, assume that TI(S)(x1, . . . , xd) is

differentiable for x1 ∈ (l1, l2). We can find sequences {G1
n}, {G2

n} ⊂ CI such that G1
n(l1, x2, . . . , xd) ↑

TI(S)(l1, x2, . . . , xd) and G2
n(l2, x2, . . . , xd) ↑ TI(S)(l2, x2, . . . , xd) as n→∞. Define Gn(x1, . . . , xd) =

max{G1
n(x1, . . . , xd), G

2
n(x1, . . . , xd)}. Note that Gn(li, x2, . . . , xd) → TI(S)(li, x2, . . . , xd) for i = 1, 2

as n→∞ and Gn ∈ CI . Then the result follows from Lemma A.2. 2

Lemma A.5. Suppose S : I 7→ R is a continuous function on an interval I ⊆ Rd. If TI(S) and S do not

have any touch point in an interval J ⊆ I , then TI(S) is linear at each coordinate on J .

Proof. Let J = [x1,l, x1,u]× · · · × [xd,l, xd,u], and suppose that the map x1 7→ TI(x1, x2,0, . . . , xd,0) is not

linear on [x1,l, x1,u], for some xk,0 ∈ [xk,l, xk,u] when k = 2, . . . , d. We will construct a d-convex function

G which is a minorant of S on I and is greater than TI(S).
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To this end, let L(x1, . . . , xd) be the line joining TI(S)(x1,l, x2, . . . , xd) and TI(S)(x1,u, x2, . . . , xd), i.e.,

L(x1, . . . , xd) :=
TI(S)(x1,l, x2, . . . , xd)(x1,u − x1) + TI(S)(x1,u, x2, . . . , xd)(x1 − x1,l)

x1,u − x1,l
.

Note thatL(x1, . . . , xd) ≥ TI(S)(x1, . . . , xd) for all (x1, . . . , xd) ∈ J andL(x1, x2,0, . . . , xd,0) > TI(S)(x1, x2,0, . . . , xd,0)

for at least one value of x1 in (x1,l, x1,u). Introduce the notation TI(S)(x1,k, .) =: T k(.) for k = l, u. We

consider the following two cases separately.

Case 1: L(x1, . . . , xd) ≤ S(x1, . . . , xd) for all (x1, . . . , xd) ∈ J . In this case, define

G(x1, . . . , xd) := TI(S)(x1, . . . , xd)1(x1 /∈ (x1,l, x1,u)) + L(x1, . . . , xd)1(x1 ∈ (x1,l, x1,u)).

Note that G ∈ CI , as for x1 /∈ (x1,l, x1,u), G ≡ TI(S) and for x1 ∈ (x1,l, x1,u),

∂`G(x1, . . . , xd) =
1

x1,u − x1,l
(
∂`T

u(x2, . . . , xd)− ∂`T l(x2, . . . , xd)
)

=
1

xu − xl

∫ xu

xl

∂`TI(S)(x1, . . . , xd)dx1.

By construction of TI(S), the last quantity lies in (∂`TI(S)(x1,l, x2, . . . , xd), ∂`TI(S)(x1,u, x2, . . . , xd))

and non-decreasing in xk for k = 2, . . . , d. Therefore, G is a d-convex minorant of S and G(x1, . . . , xd) >

TI(S)(x1, . . . , xd) for at least one point by our assertion.

Case 2: L(x1, . . . , xd) > S(x1, . . . , xd) for at least one (x1, . . . , xd) ∈ J . We define D as the distance be-

tweenL and S, i.e.,D(x1, . . . , xd) = L(x1, . . . , xd)−S(x1, . . . , xd). Note thatDm = D(x1,m, . . . , xd,m) :=

sup
J
D(x1, . . . , xd) > 0 by our assertion. We further define L2(x1, . . . , xd) = L(x1, . . . , xd) − Dm. Note

that for x1 ∈ [x1,l, x1,u], we have

L2(x1, . . . , xd) ≤ L(x1, . . . , xd)−D(x1, . . . , xd) = S(x1, . . . , xd).

Moreover, L2(x1,u, x2, . . . , xd) < L(x1,u, x2, . . . , xd) = TI(S)(x1,u, x2, . . . , xd), and for all x2, . . . , xd,

and L2 is linear in x1 with slope (TI(S)(x1,u, x2, . . . , xd) − TI(S)(x1,l, x2, . . . , xd)) which is bounded

above by right slope of x1 7→ TI(S)(x1, x2, . . . , xd) at x1,u, due to convexity. Therefore, for x1 > x1,u, we

have L2(x1, . . . , xd) < TI(S)(x1, . . . , xd) ≤ S(x1, . . . , xd). Similarly, we can argue that L2(x1, . . . , xd) <

S(x1, . . . , xd) for x1 < x1,l. Therefore, L2 is a minorant of S on I .

Indeed L2 is d-convex follows from the fact that L ∈ CI and by construction, L2(x1,m, . . . , xd,m) =

S(x1,m, . . . , xd,m) > TI(S)(x1,m, . . . , xd,m), as TI(S) and S do not have any touch point in J by the

assertion of the lemma. Now we define

G(x, y) = max(L2(x, y), TI(S)(x, y)).
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The function G is d-convex by Lemma A.4, and it is a minorant of S, as both L2 and TI(S) lie below S.

Further G ≥ TI(S) on I with G(x1,m, . . . , xd,m) = L2(x1,m, . . . , xd,m) > TI(S)(x1,m, . . . , xd,m).

Therefore, the linearity of TI(S) in x1 must hold under the assumptions of the Lemma. The linearity of

other coordinates can be shown similarly. 2

Lemma A.6. For any compact set K ⊂ Rd, the map TK : C(Rd)→ C(K) is continuous.

Proof. Suppose for two continuous real valued functions f1, f2 on Rd, we have

sup
I
|f1(s1, . . . , sd)− f2(s1, . . . , sd)| < ε (2.11)

for all compact set I ⊂ R2. Using the fact that TK(f + a) = TK(f) + a for any real constant a and

TK(f) ≤ TK(g) provided f ≤ g we write,

TK(f2)− sup
K
|f1(s1, . . . , sd)− f2(s1, . . . , sd)| =TK(f2 − sup

K
|f1(s1, . . . , sd)− f2(s1, . . . , sd)|)

≤TK(f2 + f1 − f2) = TK(f1)

≤TK(f2 + sup
K
|f1(s1, . . . , sd)− f2(s1, . . . , sd)|)

=TK(f2) + sup
K
|f1(s1, . . . , sd)− f2(s1, . . . , sd)|

Under (2.11) we have for any compact set I ⊂ K

sup
I
|TK(f1)(s1, . . . , sd)− TK(f2)(s1, . . . , sd)| < sup

K
|f1(s1, . . . , sd)− f2(s1, . . . , sd)| < ε.

Hence the result. 2

Lemma A.7. Let S be a continuous real-valued function in Rd. The functions xk 7→ T[−c,c]d(S)′(x1, . . . , xd)−
T (S)′(x1, . . . , xd) are non-decreasing on [−c, c] for each coordinate k = 1, . . . , d.

Proof. Let {Jl} be a sequence of open rectangles on (−c, c)d such that their union covers (−c, c)d. Without

loss of generality, either Jl does not have any point of touch for T[−c,c]d(S) and T (S) or have a simply

connected set of touch points ΩJl . (ΩJl is of the form I1 × · · · × Id, where Ik’s are either a singleton set or

an interval in R). If ΩJl is empty, by Lemma A.5, T (S) is co-ordinate wise linear in the interval, so T (S)′

is constant and consequently, T[−c,c]d(S)′ − T (S)′ is co-ordinate wise non-decreasing. If ΩJl is non-empty,

as T (S) is a convex minorant on [−c, c]d, we have T[−c,c]d(S) ≥ T (S). Therefore, T[−c,c]d(S)′ − T (S)′ is

co-ordinate wise non-decreasing. 2
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A.2 Proof of Theorem 2.2

We start by noting that Theorem 2.2 holds for d = 1 in view of the assertion in Theorem 1.2.1 from Robertson

et al. (1988). We use method of induction to prove the result for general d. Before starting the main proof,

we state one additional result characterizing the d-GCM of the partial sum process Sn as described in Section

2.1.

To this end, for any fixed xd,0 ∈ [0, 1], introduce the function Sxd,0n : [0, 1]d−1 7→ R as the restriction of

Sn at xd = xd,0, i.e., Sxd,0n (x1, . . . , xd−1) = Sn(x1, . . . , xd−1, xd,0).

Lemma A.8. The map (x1, . . . , xd−1) 7→ T[0,1]d(Sn)(x1, . . . , xd−1, 1) is the (d− 1)-GCM of S1
n.

Proof. Suppose that the assertion is not true. For notational convenience, we denote the map (x1, . . . , xd−1) 7→
T[0,1]d(Sn)(x1, . . . , xd−1, 1) byG. LetG1 be the GCM of S1

n. Note that by Lemma A.3,G is a (d−1)-convex

minorant of S1
n and therefore, we have G1(x1, . . . , xd−1) ≥ G(x1, . . . , xd−1) and G1(x1, . . . , xd−1) >

G(x1, . . . , xd−1) for some point in [0, 1]d−1. Define G1(x1, . . . , xd) = G(x1, . . . , xd) for (x1, . . . , xd) ∈
[0, 1]d−1 × [0, xd,nd−1]. For every xd, in the interval (xd,nd−1, 1], join T[0,1]d(Sn)(x1, . . . , xd−1, xd,nd−1)

and G1(x1, . . . , xd−1) linearly. More precisely, for (x1, . . . , xd) ∈ [0, 1]d−1 × (xd,nd−1, 1],

G1(x1, . . . , xd) = nd[T[0,1]d(Sn)(x1, . . . , xd−1, xd,nd−1)(1− xd) +G1(x1, . . . , xd−1)(xd − xd,nd−1)].

Claim 1. G1 is in C[0,1]d .

Proof: Similar to proof of G ∈ CI in Lemma A.5.

Claim 2. G1(x1, . . . , xd) ≤ Sn(x1, . . . , xd) for all (x1, . . . , xd) ∈ [0, 1]d.

Proof: This is trivially true if xd ≤ xd,nd−1. Moreover, for every (x1, . . . , xd−1) ∈ [0, 1]d−1, we have

G1(x1, . . . , xd−1, xd,nd−1) = T[0,1]d(Sn)(x1, . . . , xd−1, xd,nd−1) ≤ Sn(x1, . . . , xd−1, xd,nd−1),

G1(x1, . . . , xd−1, 1) = G1(x1, . . . , xd−1) ≤ S1
n(x1, . . . , xd−1) = Sn(x1, . . . , xd−1, 1)

and both xd 7→ Sn(x1, . . . , xd) and xd 7→ G1(x1, . . . , xd) are linear in between (xd,nd−1, 1]. Hence,

G1(x1, . . . , xd) ≤ Sn(x1, . . . , xd) for xd ∈ (xd,nd−1, 1].

Claim 3. G1(x1, . . . , xd) ≥ T[0,1]d(Sn)(x1, . . . , xd) for all (x1, . . . , xd) ∈ [0, 1]d.

Proof: Note that the map xd 7→ T[0,1]d(Sn)(x1, . . . , xd) is indeed convex, and as a consequence for xd ∈
(xd,nd−1, 1], the function T[0,1]d(Sn)(x1, . . . , xd) lies below the line joining T[0,1]d(Sn)(x1, . . . , xd−1, xd,nd−1)

and T[0,1]d(Sn)(x1, . . . , xd−1, 1), which is further belowG1 because of the factG1(x1, . . . , xd−1) ≥ T[0,1]d(Sn)(x1, . . . , xd−1, 1).

For xd ≤ xd,nd−1, the claim is trivially true.
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So G1 constructed this way is a d-convex minorant of Sn such that G1 ≥ T[0,1]d(Sn), with strict inequality

at at least one point because of our assertion. This is a contradiction to the fact that T[0,1]d(Sn) is GCM of

Sn. 2

Now back to the proof of Theorem 2.2, let g(x1, . . . , xd) := ∂`G(x1, . . . , xd). We will show that for

any co-ordinate wise non-decreasing real valued function f on [0, 1]d. We now have

n1∑
i1=1

· · ·
nd∑
id=1

(Zi1...id − f(x1,i1 , . . . , xd,id))2 ≥
n1∑
i1=1

· · ·
nd∑
id=1

(Zi1...id − g(x1,i1 , . . . , xd,id))2 (2.12)

+

n1∑
i1=1

· · ·
nd∑
id=1

(g(x1,i1 , . . . , xd,id)− f(x1,i1 , . . . , xd,id))2.

To show (2.12), it is enough to show that

1

n

n1∑
i1=1

· · ·
nd∑
id=1

(Zi1...id − g(x1,i1 , . . . , xd,id))(g(x1,i1 , . . . , xd,id)− f(x1,i1 , . . . , xd,id)) ≥ 0. (2.13)

To this end, we introduce some notations. For all ik and k ∈ {1, . . . , d}, define

Sn,id(x1,i1 , . . . , xd−1,id−1
) :=

1

n

id∑
l=1

Zi1...id−1l,

Gid(x1,i1 , . . . , xd−1,id−1
) :=

1

n

id∑
l=1

g(x1,i1 . . . xd−1,id−1
, xd,l).

With this notation, we have

i1∑
l1=1

· · ·
id−1∑
ld−1=1

Sn,id(x1,l1 , . . . , xd−1,ld−1
) = Sn(x1,i1 , . . . , xd,id),

i1∑
l1=1

· · ·
id−1∑
ld−1=1

Gid(x1,l1 , . . . , xd−1,ld−1
) = G(x1,i1 , . . . , xd,id).
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Using Abel’s partial summation formula on the left hand side of (2.13), we get

1

n

n1∑
i1=1

· · ·
nd∑

id=1

(Zi1...id − g(x1,i1 , . . . , xd,id))(g(x1,i1 , . . . , xd,id)− f(x1,i1 , . . . , xd,id))

=

n1∑
i1=1

· · ·
nd∑

id=1

(f(x1,i1 , . . . , xd,id)− f(x1,i1 , . . . , xd,id−1))(Sn,id−1(x1,i1 , . . . , xd−1,id−1)−Gid−1(x1,i1 , . . . , xd−1,id−1))

+

n1∑
i1=1

· · ·
nd∑

id=1

(g(x1,i1 , . . . , xd,id−1)− g(x1,i1 , . . . , xd,id))(Sn,id−1(x1,i1 , . . . , xd−1,id−1)−Gid−1(x1,i1 , . . . , xd−1,id−1))

+

n1∑
i1=1

· · ·
nd−1∑

id−1=1

(g(x1,i1 , . . . , xd−1,id−1 , xd,nd)− f(x1,i1 , . . . , xd−1,id−1 , xd,nd))(Sn,nd(x1,i1 , . . . , xd−1,id−1)

−Gnd(x1,i1 , . . . , xd−1,id−1))

=I + II + III

Treating each of these terms separately,

I ≥
nd∑

id=1

min
id

(f(x1,i1 , . . . , xd,id)− f(x1,i1 , . . . , xd,id−1))

n1∑
i1=1

· · ·
nd−1∑

id−1=1

(Sn,id−1(x1,i1 , . . . , xd−1,id−1)−Gid−1(x1,i1 , . . . , xd−1,id−1))

=

nd∑
id=1

min
id

(f(x1,i1 , . . . , xd,id)− f(x1,i1 , . . . , xd,id−1))(Sn(x1,n1 , . . . , xd−1,nd−1 , xd,id)−G(x1,n1 , . . . , xd−1,nd−1 , xd,id)).

Every terms inside the last summation is non-negative and hence, I ≥ 0. Using Abel’s formula again and

treating the first (d− 1) summation as one sum over i = 1, . . . , n1 + · · ·+ nd−1, we write

II =

n1∑
i1=1

· · ·
nd∑

id=1

(g(x1,i1 , . . . , xd,id−1)− g(x1,i1 , . . . , xd,id))(Sn,id−1(x1, .., xid−1)−Gid−1(x1, .., xid−1))

=

n1∑
i1=1

· · ·
nd∑

id=1

(g(x1,i1 , ..., xd,id)− g(x1,i1−1, ..., xd,id))(Sn(x1,i1 , ..., xd−1,id−1 , xd,id−1)−G(x1,i1 , ..., xd−1,id−1 , xd,id−1))

+

n1∑
i1=1

...

nd∑
id=1

(g(x1,i1−1, ..., xd,id−1)− g(x1,i1 , ..., xd,id−1))(Sn(x1,i1 , ..., xd−1,id−1 , xd,id−1)−G(x1,i1 , ..., xd−1,id−1 , xd,id−1))

+

n2∑
i2=1

...

nd∑
id=1

(g(x1,n1 , x2,i2 ..., xd,id)− g(x1,n1 , x2,i2−1, ..., xd,id))(Sn(x1,n1 , x2,i2 ..., xd,id−1)−G(x1,n1 , x2,i2 , ..., xd,id−1))

+

n2∑
i2=1

· · ·
nd∑

id=1

(g(x1,n1 , x2,i2−1, . . . , xd,id−1)− g(x1,n1 , x2,i2 , . . . , xd,id−1))(Sn(x1,n1 , . . . , xd,id−1)−G(x1,n1 , . . . , xd,id−1))

...

+

nd∑
id=1

(g(x1,n1 , . . . , xd,id−1)− g(x1,n1 , . . . , xd,id)(Sn(x1,n1 , . . . , xd−1,nd−1 , xd,id−1)−G(x1,n1 , . . . , xd−1,nd−1 , xd,id−1))

The odd-numbered terms (first, third etc), except the last term in the above equation is non-negative be-

cause g is co-ordinate wise non-decreasing, and G is a minorant of Sn. For the second term, note that is
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G(x1,i1 , . . . , xd,id) < Sn(x1,i1 , . . . , xd,id), then by Lemma A.5, we have g(x1,i1 , . . . , xd,id) = g(x1,i1−1, . . . , xd,id).

Therefore, this term is zero. All the even numbered terms and the last term can similarly be shown to be zero.

The treatment of the third term is exactly similar to II . Similar arguments as above along with the

observation that G(x1,n1 , . . . , xd,nd) = Sn(x1,n1 , . . . , xd,nd) by Lemma A.8 yield that III ≥ 0. This shows

(2.13) holds and hence, we have the result.

A.3 Technical Details for Section 2.2

In this section, we present technical details necessary to establish the asymptotic properties of the isotonic

regression estimator. The crucial element for this is Proposition 2.6. The arguments are essentially an exten-

sion of the proof of Theorem A.1 from Anevski and Hössjer (2006).

Proof of Proposition 2.6: We will prove the second part of the Proposition, and the proof of the first part is

similar. For readability, we present the proof for d = 2. The general case can be proven similarly with some

additional notational complexity.

Let K = [−1, 1]2, and δ > 0 be arbitrary. Consider the set,

A(n,M, κ, τ) =

{
sup

s1,s2∈K
|Wn(s1, s2)| ≤M

}⋃{
inf

|s1|>τ,|s2|>τ
(Wn(s1, s2)− κ|s1s2|) > 0

}
.

As Wn converges in distribution W on C(I), and given compact set K and δ > 0, we can find M , such that

P
(
sups1,s2∈K |W(s1, s2)| > M

)
< δ/2, we have

lim sup
n→∞

P
(

sup
s1,s2∈K

|Wn(s1, s2)| > M

)
< δ.

Also by properties of Brownian motion as |s1| and |s2| approach infinity, we have B(s1, s2)/|s1s2| ≤
B(s1, s2)/|s1 + s2| → 0 with high probability. Therefore, W(s1, s2)/|s1s2| → ∞ as |s1|, |s2| → ∞
for almost every sample path. Hence, for sufficiently large τ (for all τ ≥ τ(δ, κ)), we have

lim sup
n→∞

P
(

inf
|s1|>τ,|s2|>τ

(Wn(s1, s2)− κ|s1s2|) ≤ 0

)
< δ.

Therefore, we can find M and τ such that

lim sup
n→∞

P (A(n,M, κ, τ)c) < 2δ. (2.14)

Define sets

B(n, I, c, ε) :=

{
sup
I
|Tc(Wn)′(.)− TIn(Wn)′(.)| < ε

}
.
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By Lemma A.7, for any I ⊂ [−τ, τ ]2 with τ < c, we have

4⋂
i=1

B(n, Iτ,i, c, ε) ⊂ B(n, I, c, ε),

where Iτ,1 = {(−τ,−τ)}, Iτ,3 = {(τ,−τ)}, Iτ,3 = {(−τ, τ)}, Iτ,4 = {(τ, τ)}. Next, we show that for

given δ > 0 and large enough c, for i = 1, . . . , 4,

lim sup
n→∞

P (B(n, Iτ,i, c, ε)
c ∩A(n,M, κ, τ)) < δ. (2.15)

We will show (2.15) for i = 4, other cases can be tackled similarly. Without loss of generality, τ can be

chosen so large that τ > M/κ, and n is large enough so that [−c, c]2 ⊂ In. Then on A(n,M, κ, τ), we have

inf
|s1|>τ,|s2|>τ

Wn(s1, s2) ≥M ≥ sup
(s1,s2)∈K

Wn(s1, s2).

Let Γn,c,τ (., .) be the tangent plane of Tc(Wn)(s1, s2) at (s1, s2) = (τ, τ) with slope Tc(Wn)′(τ, τ). Then,

there can be three possible scenario. If c > τ , we can have

1. Γn,c,τ (s1, s2) ≤Wn(s1, s2) for all (s1, s2) /∈ [−c, c]2;

2. Γn,c,τ (s1, s2) ≤Wn(s1, s2) for all (s1, s2) such that either s1 ≤ −c or s2 ≤ −c.
Γn,c,τ (s1, s2) >Wn(s1, s2) for some (s1, s2) with s1 ≥ c and s2 ≥ c.

3. Γn,c,τ (s1, s2) >Wn(s1, s2) for some (s1, s2) with s1 ≤ −c or s2 ≤ −c.
Γn,c,τ (s1, s2) ≤Wn(s1, s2) for all (s1, s2) such that either s1 ≥ c or s2 ≥ c.

In case 1, Γn,c,τ is a convex minorant for Wn. As TIn(Wn) is the GCM, we have Tc(Wn)(τ, τ) =

Γn,c,τ (τ, τ) ≤ TIn(Wn)(τ, τ).As TIn(Wn) is a doubly convex function on [−c, c]2, we have TIn(Wn)(τ, τ) ≤
Tc(Wn)(τ, τ). Therefore, Tc(Wn)(τ, τ) = Γn,c,τ (τ, τ) = TIn(Wn)(τ, τ). As Γn,c,τ is a convex minorant,

and TIn(Wn) is the GCM for Wn on In, this implies Tc(Wn)′(τ, τ) ≤ TIn(Wn)′(τ, τ). As TIn(Wn) is a

convex minorant and Tc(Wn) is the GCM of Wn on [−c, c]2, we have Tc(Wn)′(τ, τ) ≥ TIn(Wn)′(τ, τ).

Therefore, in this case, we have Tc(Wn)′(τ, τ) = TIn(Wn)′(τ, τ).
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Under case 2, if c > 2τ , on A(n,M, κ, τ), we have

inf
s1<−c,s2<−c

TIn(Wn)(τ, τ)−Wn(s1, s2)

(τ − s1)(τ − s2)
≤ TIn(Wn)′(τ, τ) ≤ Tc(Wn)′(τ, τ)

≤ inf
τ<si<c

Wn(s1, s2)− Tc(Wn)(τ, τ)

(s1 − τ)(s2 − τ)

≤ inf
τ<si<c

Wn(s1, s2)− TIn(Wn)(τ, τ)

(s1 − τ)(s2 − τ)

≤
∣∣∣∣Wn(2τ, 2τ)− TIn(Wn)(τ, τ)

τ2

∣∣∣∣ .
Let sup

|s1|≤2τ,|s1|≤2τ
Wn(s1, s2) ≤ M̃ with probability at least 1 − δ/4. Then, the right hand side is bounded

above by 2M̃/τ2, and we then have TIn(Wn)′(τ, τ) = Tc(Wn)′(τ, τ) unless

inf
s1<−c,s2<−c

TIn(Wn)(τ, τ)−Wn(s1, s2)

(τ − s1)(τ − s2)
≤ 2M̃

τ2
. (2.16)

Now, assume that (2.16) is true. For sufficiently large τ̃ > τ , we write

|TIn(Wn)′(τ, τ)− Tc(Wn)′(τ, τ)|

≤ inf
τ̃≤s1,s2≤c

Wn(s1, s2)− Tc(Wn)(τ, τ)

(s1 − τ)(s2 − τ)
− inf
τ̃≤s1,s2

Wn(s1, s2)− TIn(Wn)(τ, τ)

(s1 − τ)(s2 − τ)

≤ 2M̃

(τ̃ − τ)2
− inf
τ̃≤s1,s2

Wn(s1, s2)

(s1 − τ)(s2 − τ)
+ inf
τ̃≤s1,s2≤c

Wn(s1, s2)

(s1 − τ)(s2 − τ)

≤ 2M̃

(τ̃ − τ)2
− inf
τ̃≤s1,s2

Wn(s1, s2)

s1s2
+ inf
τ̃≤s1,s2≤c

Wn(s1, s2)

(s1 − τ)(s2 − τ)

≤ 2M̃

(τ̃ − τ)2
+

(
inf

τ̃≤s1,s2≤c

Wn(s1, s2)

s1s2
− inf
τ̃≤s1,s2

Wn(s1, s2)

s1s2

)
+

(
inf

τ̃≤s1,s2≤c

Wn(s1, s2)

(s1 − τ)(s2 − τ)
− inf
τ̃≤s1,s2≤c

Wn(s1, s2)

s1s2

)
.

As lims1,s2→∞ Bn(s1, s2)/(as21|s2| + bs22|s1|)
p→ 0 as n → ∞ for any a, b > 0, given any ε′ > 0, for

large enough n with very high probability, we have

inf
τ̃≤s1,s2≤c

Wn(s1, s2)

s1s2
≤ inf
τ̃≤s1,s2≤c

(1+ε′)
|s1|f1(u1, u2) + |s2|f2(u1, u2)

2
=

(1 + ε′)τ̃

2
(f1(u1, u2)+f2(u1, u2)),

and

inf
c≤s1,s2

Wn(s1, s2)

s1s2
≥ inf
c≤s1,s2

(1− ε′) |s1|f1(u1, u2) + |s2|f2(u1, u2)

2
=

(1− ε′)c
2

(f1(u1, u2)+f2(u1, u2)).
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Hence, for c > τ̃ , we in fact have with very high probability

inf
τ̃≤s1,s2≤c

Wn(s1, s2)

s1s2
− inf
c≤s1,s2

Wn(s1, s2)

s1s2
< (f1(u1, u2) + f2(u1, u2))τ̃ ε′.

Therefore, with appropriate choice of ε′, we can write with probability at least 1− δ/4,

inf
τ̃≤s1,s2≤c

Wn(s1, s2)

s1s2
− inf
c≤s1,s2

Wn(s1, s2)

s1s2
< ε/3,

and consequently,

inf
τ̃≤s1,s2≤c

Wn(s1, s2)

s1s2
− inf
τ̃≤s1,s2

Wn(s1, s2)

s1s2
< ε/3.

Also, in this situation

inf
τ̃≤s1,s2≤c

Wn(s1, s2)

s1s2
≤ inf
c≤s1,s2

Wn(s1, s2)

s1s2
+ ε/3

≤2
(c− τ)2

c2
inf

c≤s1,s2

Wn(s1, s2)

(s1 − τ)(s2 − τ)
+ ε/3

≤2
(c− τ)2

c2

(
inf

c≤s1,s2

Wn(s1, s2)− T (Wn)(τ, τ)

(s1 − τ)(s2 − τ)
+

M̃

(c− τ)2

)
+ ε/3

≤2
(c− τ)2

c2

(
2M̃

τ2
+

M̃

(c− τ)2

)
+ ε/3 ≤ 6M̃

τ2
+ ε/3,

and hence,

inf
τ̃≤s1,s2≤c

Wn(s1, s2)

(s1 − τ)(s2 − τ)
− inf
τ̃≤s1,s2≤c

Wn(s1, s2)

s1s2
≤
(

τ̃2

(τ̃ − τ)2)− 1

)
inf

τ̃≤s1,s2≤c

Wn(s1, s2)

s1s2

≤τ(2τ̃ − τ)

(τ̃ − τ)2

(
6M̃

τ2
+ ε/3

)
.

Therefore, for choice of large enough τ̃ , we have |TIn(Wn)′(τ, τ)− Tc(Wn)′(τ, τ)| < ε with probability at

least 1− δ/4 under (2.16). So under case 2, the probability P (B(n, {(τ, τ)}, c, ε)c ∩A(n,M, κ, τ)) ≤ δ/2,

and hence, we have (2.15). Combining (2.14) and (2.15), we have P (B(n, I, c, ε)c) < 6δ. As the choice of

δ > 0 is arbitrary, we have the desired result. �

Next we prove some properties of the process W appearing in the limit distribution.

Proposition A.9. Let QC = {Q1 × · · · ×Qd : Qj is either [0, C] or [−C, 0]} and for any Q ⊂ Rd,

MQ := inf
(s1,...,sd)∈Q

W(s1, . . . , sd).

Then P(MQ < 0) = 1 for all Q ∈ QC .
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Proof. Let Q = [0, C]d, then

P(MQ ≥ 0) = P(W(s1, . . . , sd) + |s1 . . . sd|(a1|s1|+ . . . ad|sd|) ≥ 0,∀C ≥ s1, . . . , sd > 0)

for some a1, . . . , ad > 0. Using self-similarity of Brownian motion, we can write

P(W(s1, . . . , sd) + |s1 . . . sd|(a1|s1|+ . . . ad|sd|) ≥ 0,∀ C ≥ s1, . . . , sd > 0)

=P(κ−dW(κs1, . . . , κsd) + |s1 . . . sd|(a1|s1|+ . . . ad|sd|) ≥ 0,∀ C ≥ s1, . . . , sd > 0)

=P(W(τ1, . . . , τd) ≥ −κ−1|τ1 . . . τd|(a1|τ1|+ . . . ad|τd|),∀ κC ≥ τ1, . . . , τd > 0)

=P(Aκ) ≡ const.

Note that Aκ → {W(τ1, . . . , τd) ≥ 0,∀τ1, . . . , τd > 0} as κ → ∞. As the probability of Aκ does not

depend on c, it is equal to P(W(τ1, . . . , τd) ≥ 0,∀τ1, . . . , τd > 0). The last probability is zero by law of

iterated logarithm for multivariate Wiener processes. (Theorem 3 and 4 from Paranjape and Park (1973)).

Hence, the result is established. 2

Corollary A.10. With probability 1, T[−c,c]d(W) and W do not touch at (0, . . . , 0) for any c > 0.

Proof. LetMQ be as defined in Proposition A.9 andM := minQ∈QcMQ. Note that the functionG(s1, . . . , sd) ≡
M for (s1, . . . , sd) ∈ Rd is a convex minorant of W and touches W at some point say (u1, . . . , ud). Therefore

the GCM T[−c,c]d(W) and W also have a touch point at (u1, u2, . . . , ud). Therefore if T[−c,c]d(W)(0, . . . , 0) =

0, by convexity it has to be positive on some Q ∈ Qc. This cannot happen if MQ < 0 for all Q ∈ Qc. Hence,

we have the desired result. 2
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