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A monolithic conservative level set method with built-in redistancing

Manuel Quezada de Luna ∗ Dmitri Kuzmin † Christopher E. Kees ‡

Abstract

We introduce a new level set method for representing evolving interfaces. In the case of
divergence-free velocity fields, the new method satisfies a conservation principle. Conservation
is important for many applications such as modeling two-phase incompressible flow. In the present
implementation, the conserved quantity is defined as the integral of a smoothed characteristic func-
tion. The new approach embeds level sets into a volume of fluid formulation. The evolution of an
approximate signed distance function is governed by a conservation law for its (smoothed) sign. The
non-linear level set transport equation is regularized by adding a flux correction term that assures
a non-singular Jacobian and penalizes deviations from a distance function. The result is a locally
conservative level set method with built-in elliptic redistancing. The continuous model is monolithic
in the sense that the level set transport model, the volume of fluid law of mass conservation, and
the minimization problem that preserves the approximate distance function property are incorpo-
rated into a single equation. There is no need for any extra stabilization, artificial compression,
flux limiting, redistancing, mass correction, and other numerical fixes which are commonly used in
level set or volume of fluid methods. In addition, there is just one free parameter that controls the
strength of regularization and penalization in the model. The accuracy and conservation properties
of the monolithic finite element / level set method are illustrated by the results of numerical studies
for passive advection of free interfaces.

1 Introduction

Flows of immiscible fluids with different material properties (e.g. water and air) commonly occur
in fluid mechanics and engineering applications. The design of numerical simulation techniques for
such multi-phase flows requires an accurate mathematical description of evolving interfaces between
subdomains occupied by different fluids. Moreover, numerical methods should be efficient and preserve
important qualitative properties of the continuous model as far as possible. This work is motived by
the requirement of mass and volume conservation in numerical models of incompressible two-phase
flows.

There is an extensive list of methods based on reconstruction of material interfaces from auxiliary
functions. Popular choices include the Volume of Fluid (VOF) method by Hirt and Nichols [17]
and level set techniques by Osher and Sethian [30], Sussman et al. [36]. The VOF method uses a
characteristic function to identify the phases, e.g., fluids A and B. The exact phase indicator function
equals one in fluid A, zero in fluid B, and is discontinuous at the interface. The average over any
given cell defines the fraction of the cell occupied by fluid A. Therefore, cells with averages in the
range (0, 1) must contain the interface. The characteristic function is evolved by solving a hyperbolic
conservation law. In applications to interfacial two-phase flows, the velocity field is obtained by solving
the incompressible Navier-Stokes equations with piecewise-constant density and viscosity. Therefore,
a reconstruction of the interface from cell averages is required to determine the instantaneous location
of the boundary between the two phases and set the material properties inside each subdomain.
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The level set method reconstructs the interface between the two phases using a continuous auxiliary
function which has a constant value on the evolving interface (e.g., a signed distance function which is
positive in fluid A and negative in fluid B). Since the interface is defined as the manifold on which the
prescribed value (e.g., zero) is attained, the process of interface reconstruction reduces to calculation
of isolines/isosurfaces. The level set function is advected by the fluid velocity and remains constant
along the characteristics of the hyperbolic transport equation which models its evolution.

The main disadvantage of the VOF method is the difficulty and ambiguity of interface recon-
struction. In level set methods, interfaces are uniquely defined and easy to reconstruct. However,
numerical approximations based on the level set approach may fail to preserve the area/volume of an
incompressible fluid enclosed by the interface. This issue is commonly dealt with by using global mass
correction techniques like the one introduced by Smolianski [34]. Additionally, a variety of hybrid
methods based on combined VOF and level set formulations were proposed in the literature, see for
instance Enright et al. [14], Ianniello and Di Mascio [19], Sussman and Puckett [35]. Kees et al. [20]
used the VOF solution to correct the redistanced level set function so as to enforce a regularized con-
servation law for a smoothed Heaviside function. This approach guarantees local mass conservation
since the amount of correction depends on the residual of the conservation law. The underlying design
philosophy is similar to that behind the dual level set method of Lesage and Dervieux [24] but the use
of a Laplacian-type regularization term leads to a well-posed non-linear problem with just one free
parameter. Building on this conservative level set algorithm, optimal control approaches to flux-based
mass correction were developed in Basting and Kuzmin [7], Kuzmin [22]. As shown in these papers, the
use of PDE-constrained optimization makes it possible to minimize deviations from a non-conservative
target subject to a flux-corrected conservation law for the composition of the Heaviside function and
the corrected level set function. However, the practical utility of such mass correction techniques is
limited by the high cost of solving non-linear constrained optimization problems.

In this work, we present a new monolithic level set algorithm for mass-conserving evolution of
approximate distance functions. The proposed methodology is based on a single VOF-like non-linear
conservation law for the composition of a smoothed sign function and a level set function. Similarly
to Kees et al. [20], an elliptic regularization term is introduced to control the mass flux and prevent
the Jacobian of the non-linear system from becoming singular away from the interface. Moreover,
we show that this term can be designed to penalize deviations from a distance function in the same
manner as in Basting and Kuzmin [6], Li et al. [26]. As an additional benefit, the embedding of such
penalization into the conservation law eliminates the need for any stabilization of advective terms.

The rest of this paper is organized as follows: In §2 we introduce some notation and preliminaries.
In particular, we define the finite element spaces, the basis functions for the spatial discretization, and
regularized versions of characteristic-like functions that we use. In §2.3 we review the non-conservative
level set method and commonly employed redistancing techniques. The conservative level set method
of Kees et al. [20] is presented in §2.4 and used as a starting point for the derivation of the first
monolithic version in §3. The level set formulation derived in this section already contains the key
ingredients but is quite sensitive to the choice of redistancing operators and iterative solvers for the
non-linear problem. We cure this lack of robustness in §4 by using a (lumped-mass) L2 projection
of the target for the penalization term. In §5 we illustrate the convergence behavior of the proposed
monolithic conservative level set method combined with P1 and P2 finite element approximations.
In §6 we perform additional numerical studies for two- and three-dimensional benchmark problems.
Finally, in §7 we summarize the outcomes of this work, make concluding remarks, and outline some
potential directions for further improvements of the proposed methodology.
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2 Preliminaries

2.1 Spatial discretization

We use the continuous Galerkin finite element method to discretize all equations in space. Let d =
{1, 2, 3} be the number of space dimensions and Ω ⊂ Rd be a bounded domain with boundary ∂Ω ⊂
Rd−1 which we decompose into ∂Ω− = {x ∈ ∂Ω | u · n < 0} and ∂Ω+ = {x ∈ ∂Ω | u · n ≥ 0}. Time-
dependent variables are defined on the time interval t ∈ [0, T ], where T > 0. Given a computational
mesh Th, we consider the finite element space Xp

h = {w ∈ C0(Ω) | w|K ∈ Pp,∀K ∈ Th} spanned by
basis functions {w1, . . . , wdim(Xp

h)
} which possess the partition of unity property; i.e.,

∑
j wj(x) = 1.

The degrees of freedom associated with these basis functions are denoted by uppercase letters. The
finite element solution uh(x) ∈ Xh is given by uh(x) =

∑
j∈I(Ωi)

Ujwj(x), where Ωi is the patch of
elements containing node i. Here, and in the rest of this paper, the notation I(z) is used for the index
set containing the numbers of all basis functions whose support on z is of nonzero measure.

2.2 Use of regularized characteristic-like functions

In different parts of this work, we employ characteristic-like functions. In particular, local conservation
laws are formulated in terms of the Heaviside and sign functions. We replace such discontinuous
functions by regularized counterparts, as is common in level set methods (e.g. Fedkiw and Osher
[16], Kees et al. [20]). We define the regularized Heaviside function Hε(φ) and the regularized sign
function Sε(φ) as follows:

Hε(φ) =


0, if φ ≤ −ε,
1
2

(
1 + φ

ε + 1
π sin(π φε )

)
, if − ε < φ < ε,

1, if φ ≥ ε,
(1a)

Sε(φ) = 2Hε(φ)− 1. (1b)

The value of the parameter ε > 0 determines the width of the smooth transition zone between two
constant states. Fedkiw and Osher [16] use ε = 3

2h(x), where h(x) is a suitably defined local mesh
size. We follow this definition in all numerical experiments of this paper unless stated otherwise. As
the mesh is refined, the regularized characteristic-like functions (1a) and (1b) converge to the sharp
Heaviside function H(φ) = limε→0Hε(φ) and the sharp sign function S(φ) = limε→0 Sε(φ), respectively.

In the context of two-phase flows, Hε(φ) is the local volume fraction of the fluid whose characteristic
function is H(φ). We remark that diffuse interface approximations of this kind are employed, e.g., in
phase field methods and in the conservative level set method of Olsson and Kreiss [29].

2.3 Non-conservative level set method and redistancing

Level set approaches belong to the class of front-capturing methods which are based on implicit
representations of evolving interfaces. A continuous function φ(·, t) ∈ C0(Ω̄) is used to represent the
interface as it moves through the flow field. The evolution of φ(x, t) is governed by the first-order
hyperbolic equation

∂tφ+ v · ∇φ = 0. (2)

where v(x, t) is an extension of the interface velocity to the entire domain, see, for example, Fedkiw
and Osher [16], Sethian [33]. The choice of extension velocity is not unique away from the material
interface, but in this work we assume it is in fact the material velocity and is divergence free. In
the classical level set formulation of Osher and Sethian [30], the initial condition is given by a signed
distance φ(x, 0) = ±dist(x,Γ(0)), and the position of an interface at time t ≥ 0 corresponds to the
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zero level set Γ(t) = {x ∈ Ω |φ(x, t) = 0}. It is common knowledge that the solution of (2) remains

constant along each characteristic x(t) defined by the ordinary differential equation dx(t)
dt = v(x(t), t)

and an initial condition of the form x(0) = x0. That is, equation (2) is the Eulerian form of the
Lagrangian identity φ(x(t), t)) = φ(x0, 0) ∀t ≥ 0. It follows that x(t) ∈ Γ(t) whenever x0 ∈ Γ(0).

At the continuous level, the regularized Heaviside function Hε(φ) remains constant along the
characteristics as well. Using the fact that ∇ · v = 0, we find that the solution of (2) must satisfy

∂t(Hε(φ)) +∇ · (vHε(φ)) = 0. (3)

Integrating over Ω and using the divergence theorem, we obtain the integral conservation law

d

dt

∫
Ω
Hε(φ)dx +

∫
∂Ω
Hε(φ)v · nds = 0. (4)

By virtue of (1b), conservation of Hε implies conservation of Sε and vice versa. Hence, physics-
compatible numerical approximations should conserve Hε and Sε at the discrete level.

We use the continuous Galerkin finite element method to discretize (2) in space. Due to the lack
of coercivity, the linear form associated with the advective term v · ∇φ needs to be stabilized (see,
e.g., Ern and Guermond [15]). If the velocity field is exactly divergence-free, the numerical solution
φh produced by the (stabilized) Galerkin method is globally conservative in the sense that

d

dt

∫
Ω
φhdx +

∫
∂Ω
φhv · nds = 0.

However, this conservation property has no physical significance and does not imply that

d

dt

∫
Ω
Hε(φh)dx +

∫
∂Ω
Hε(φh)v · nds = 0. (5)

In this work, we call any level set algorithm that may violate (5) non-conservative. Furthermore, we
do not distinguish between mass conservation, volume conservation, and phase conservation in the
context of level set methods for incompressible two-phase flows.

Another desirable property that tends to be lost in the process of level set advection is the signed
distance function (SDF) property of the initial condition. Even the exact solution of (2) does not
preserve it for general velocity fields. As a consequence, the gradients of φh may become very steep
or very flat, leading to numerical instabilities or ill-conditioned interface reconstruction problems.
A variety of redistancing techniques have been developed to restore the SDF property while preserving
the zero level set as far as possible. Efficient geometric approaches to level set reinitialization were
proposed, e.g., by Ausas et al. [3], Sethian [32, 33], Tsai et al. [39]. PDE-based redistancing procedures
use numerical methods to solve the non-linear Eikonal equation |∇φ| = ±1 or the Euler-Lagrange
equation of a minimization problem. A review of such PDE-based approaches can be found, e.g., in
Basting and Kuzmin [6]. Depending on the type of subproblems to be solved at each iteration or
pseudo-time step they can be classified into hyperbolic, parabolic, and elliptic ones.

The hyperbolic redistancing method of Sussman et al. [36] initializes φ by a level set function φ̃
that defines the desired position of the interface but does not possess the SDF property. In the process
of redistancing, φ is advanced in pseudo-time by solving the non-linear transport equation

∂τφ+ sgn
(
φ̃
) ∇φ
|∇φ|

· ∇φ = sgn
(
φ̃
)
.

Note that the steady state solution of this hyperbolic PDE satisfies the Eikonal equation and has the
same zero level set as φ̃. In a practical implementation, just a few pseudo-time steps are needed to
reinitialize φ in a narrow band around the interface where large deviations from a SDF would have
particularly harmful consequences. It is also possible to embed this kind of redistancing into the
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transport equation (2), as proposed in Ville et al. [41], see also Bonito et al. [9]. One-step algorithms
that update and re-distance φ in this way are referred to as convected level set methods.

Level set functions with desired properties can also be generated by minimizing a suitably defined
objective functional. The redistancing procedures proposed by Li et al. [26] and Basting and Kuzmin
[6] replace the Eikonal equation by the Euler-Lagrange equation

∂R(φ)

∂φ
= 0

of a minimization problem for a generic objective functional R(φ). For example, definition

R(φ) =
1

2

∫
Ω

(|∇φ| − 1)2 dx (6)

leads to a least squares problem for the residual of the Eikonal equation. Li et al. [26] solve this
non-linear problem using time marching based on the parabolic transport equation

∂τφ−∇ ·
(

1− 1

|∇φ|

)
∇φ = 0.

Basting and Kuzmin [6] solve the elliptic Euler-Lagrange equation using a fixed-point iteration method
instead of time marching. To assure well-posedness and prevent any significant displacements of the

interface Γ
(
φ̃
)

= {x ∈ Ω | φ̃(x, t) = 0}, they augment R(φ) by the penalty term

P
(
φ, φ̃

)
=
α

2

∫
Γ(φ̃)

φ2ds,

where α � 1 is a parameter that determines the amount of penalization. The variational elliptic
problem associated with the penalized version of the Eikonal functional (6) is given by∫

Ω

(
1− 1

|∇φh|

)
∇φh · ∇wdx + α

∫
Γ(φ̃h)

φhwds = 0, ∀w ∈ Xh,

where Xh is the space of admissible test functions. It is also possible to minimize other functionalsR(φ)
and incorporate problem-specific features into the definition of the potential function. In particular,
the redistancing procedure may be configured to produce a constant function rather than a SDF near
local extrema. The rationale for using such objective functionals is explained in §3.1.

The minimization-based approach to redistancing is the first key ingredient of the methodology to
be developed in the present work. In §4, we embed generic Euler-Lagrange equations into a conserva-
tion law for the regularized Heaviside function Hε(φ) in a manner similar to that in which the signed
Eikonal equation is embedded into the transport equation of a convected level set method. Building
on ideas developed in Basting and Kuzmin [6], Kees et al. [20], Li et al. [26], Ville et al. [41], we design
a level set algorithm that preserves desired properties of level set functions as they evolve in contrast
to predictor-corrector approaches based on advection, redistancing, and mass correction.

2.4 Conservative level set method

The second key ingredient of the proposed property-preserving monolithic scheme is a built-in mass
correction procedure based on the work of Kees et al. [20]. Their conservative level set method is a
predictor-corrector algorithm which involves four stages. For simplicity, we define these stages using
the forward Euler approximation of time derivatives but the use of other time integrators is possible
and appropriate for many applications of practical interest.
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Let φn denote a numerical approximation to the level set function at the time level tn = n∆t. The
initial condition φ0 can be defined as an approximate signed distance function of the interface Γ(0).
The four stages that are used to update φn in the algorithm of Kees et al. [20] are as follows:

Stage 1: Non-conservative level set (NCLS) advection. Given a divergence-free velocity field v,
advance φn in time by solving the level set transport equation

φ̃n+1 − φn

∆t
+ v · ∇φn = 0. (7)

Stage 2: Redistancing. Post-process the advected level set function φ̃n+1 using one of the methods
presented in §2.3 to produce a redistanced non-conservative level set function φ̂n+1.

Stage 3: Volume of fluid (VOF) advection. Solve the scalar conservation law

Ĥn+1 −Hε(φ
n)

∆t
+∇ · (vHε(φ

n)) = 0 (8)

to calculate a mass-conserving approximate Heaviside function Ĥn+1 as in VOF-like methods.
Stage 4: Mass correction. Adjust φ̂n+1 by adding a localized correction un+1 such that

Hε(φ̂
n+1 + un+1)− Ĥn+1 − κh∆un+1 = 0, (9a)

∇un+1 · n|∂Ω = 0, (9b)

φn+1 = φ̂n+1 + un+1, (9c)

where κ > 0 is a free parameter and h is the mesh size. The regularization term κh∆un+1 in (9a) assures
that a conservation law holds for Hε(φ

n+1) and φn+1 is uniquely defined away from the interface.
The mass conservation property of the fractional-step level set method follows from the fact that∫

Ω
Ĥn+1
h dx =

∫
Ω
Hε(φ

n
h)dx

(as long as v · n = 0 or Hε(φ
n
h) = 0 on the outer boundary ∂Ω) and∫

Ω
Hε(φ̂h

n+1
+ un+1

h )dx =

∫
Ω
Ĥn+1
h dx

due to the boundary condition (9b). By definition of Ĥn+1, equation (9a) can be written as

∆un+1 =
∆t

κh

(
Hε(φ

n+1)−Hε(φ
n)

∆t
+∇ · (vHε(φ

n))

)
. (10)

Hence, the amount of mass correction is proportional to the residual of a local conservation law.
The type of space discretization can be chosen individually for each stage. Kees et al. [20] dis-

cretize all transport equations using continuous finite elements and streamline upwind Petrov-Galerkin
(SUPG) stabilization, as proposed by Brooks and Hughes [11].

2.4.1 Towards a monolithic conservative level set method

The main objective of this work is to convert the fractional-step method presented in §2.4 into a single-
stage level set algorithm. As a first step towards that end, we combine stages 3 and 4. Substituting
un+1 = φn+1 − φ̂n+1 into the conservation law (10) and boundary condition (9b), we obtain

Hε(φ
n+1)−Hε(φ

n)

∆t
+∇ ·

(
vHε(φ

n)− κh

∆t
∇(φn+1 − φ̂n+1)

)
= 0, (11a)

∇(φn+1 − φ̂n+1) · n|∂Ω = 0. (11b)
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This formulation makes it possible to determine φn+1 without calculating the auxiliary functions Ĥn+1

and un+1. We also remark that there is no need for any extra stabilization of the advective term when
it comes to solving equation (11) numerically. In contrast to a finite element approximation Ĥn+1

h

produced by a stabilized Galerkin discretization of (8), the regularized Heaviside function Hε(φ
n+1
h ) is

always bounded by 0 and 1. Therefore, no violations of the discrete maximum principle can occur even
if equation (11) is discretized in space using the standard continuous Galerkin method. While Touré
and Souläımani [38] have proposed a monolithic level set scheme that combine interface transport and
redistancing, we know of no other work with the features outlined above.

3 Monolithic conservative level set method

Representation (11) of the conservative level set method reveals that the regularization term penalizes
deviations of ∇φn+1 from ∇φ̂n+1 in regions where Hε is constant. If φ̂n+1 is an approximate distance
function, then the mass correction procedure based on (11) will preserve the SDF property as far
as possible. Instead of using an auxiliary solution φ̂n+1 as a target, the regularization term may be
designed to penalize a suitably chosen redistancing potential in the process of level set evolution. As
a first level set algorithm based on a monolithic formulation of this kind, we consider

∂tSε(φ) +∇ ·
[
vSε(φ)− λ

(
1− 1

|∇φ|

)
∇φ
]

= 0, (12a)

where λ is a free parameter. We impose the following initial and boundary conditions:

Sε(φ(x, 0)) = Sε(φ0(x)) ∀x ∈ Ω, (12b)(
1− 1

|∇φ|

)
∇φ · n = 0 ∀x ∈ ∂Ω. (12c)

Formulation (12) combines the conservative level set method of Kees et al. [20] with the elliptic
redistancing procedure of Basting and Kuzmin [6]. As we discuss below, this particular form of the
regularization term still has some drawbacks. However, the above non-linear problem already exhibits
the essential features of a monolithic conservative level set algorithm with built-in redistancing.

Remark 3.0.1 (On the use of the sign function). Note that we use the regularized sign function Sε(φ),
as defined in §2.2, instead of the regularized Heaviside function Hε(φ). This form of the conservation
law is more symmetric and treats both phases equally. Since −φ satisfies (12) as well, the position of
the interface remains unchanged if the sign of the initial condition is reversed.

Remark 3.0.2 (Conservation). We discretize (12) in space using a continuous Galerkin finite element
approximation. In view of (12c), the variational form of the non-linear problem is given by∫

Ω
∂tSε(φh)wdx−

∫
Ω

[
vSε(φh)− λ

(
1− 1

|∇φh|

)
∇φh

]
· ∇wdx+

∫
∂Ω
Sε(φh)wv · nds = 0, ∀w ∈ Xh.

(13)

Substituting the test function w ≡ 1, we obtain∫
Ω
∂tSε(φh)dx+

∫
∂Ω
Sε(φh)v · nds = 0 =⇒

∫
Ω
∂tHε(φh)dx+

∫
∂Ω
Hε(φh)v · nds = 0. (14)

In other words, the Galerkin variational form (12) is globally conservative in the sense discussed in
§2.3. Any consistent finite element discretization of (13) is conservative as well since w ≡ 1 is an
admissible test function. Hence, mass conservation errors become arbitrarily small as the residuals of
the non-linear discrete problem are driven to machine zero using an iterative solution procedure.
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3.1 Single- vs. double well-potential functionals

As discussed in §2.3, the parabolic redistancing method of Li et al. [26] and the elliptic redistancing
method of Basting and Kuzmin [6] are derived by minimizing an appropriate functional

R(φ) =

∫
Ω
p(|∇φ|)dx.

The first-order optimality condition

∂R(φ+ εw)

∂ε

∣∣∣∣
ε→0

= 0, ∀w ∈ X,

implies that the solution φ of the minimization problem must satisfy∫
Ω
dp(|∇φh|)∇φh · ∇wdx = 0, ∀w ∈ Xh,

where

dp(|∇φ|) =
p′(|∇φ|)
|∇φ|

is the diffusion rate corresponding to the given potential function p(|∇φ|). In the context of elliptic
redistancing, spurious displacements of the original zero level set are prevented by adding a penalty
term (see §2.3). The possibility of using different potential functions makes it possible to control the
outcome of the redistancing process depending on the desired geometric properties of φ. In particular,
it is important to ensure correct behavior in situations when |∇φ| ≈ 0; i.e., in the vicinity of local
extrema or in regions where the level set function is (almost) constant.

The extension of the monolithic method (12) to a general potential function p(|∇φ|) is given by

∂tSε(φ) +∇ · [vSε(φ)− λdp(|∇φ|)∇φ] = 0, (15a)

dp(|∇φ|)∇φ · n|∂Ω = 0. (15b)

Given an appropriate finite element space Xh, the continuous Galerkin space discretization of
equation (15) yields a numerical approximation φh ∈ Xh such that

R(φh, w) :=

∫
Ω
∂tSε(φh)wdx−

∫
Ω
vSε(φh) · ∇wdx +

∫
∂Ω
Sε(φh)wv · nds

+

∫
Ω
λdp(|∇φh|)∇φh · ∇wdx = 0, ∀w ∈ Xh.

(16)

Li et al. [26] considered the potential functions

p1(s) =
1

2
(s− 1)2 =⇒ d1(s) = 1− 1

s
, (17a)

p2(s) =

{
1−cos(2πs)

(2π)2 , if s ≤ 1,
1
2(s− 1)2, if s > 1

=⇒ d2(s) =

{
sin(2πs)

2πs , if s ≤ 1,

1− 1
s , if s > 1.

(17b)

Basting and Kuzmin [6] found that the definition

p3(s) =

{
1
2s

2(s− 1)2, if s ≤ 1,
1
2(s− 1)2, if s > 1

=⇒ d3(s) =

{
2s2 − 3s+ 1, if s ≤ 1,

1− 1
s , if s > 1

(17c)

is better suited for their elliptic redistancing scheme. In Figure 1 we show the plots of the three
different potential functions and the corresponding diffusion rates.
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Figure 1: Potential functions defined by (17) and the corresponding diffusion rates.

We first remark that all of the above potential functions have a stable potential at |∇φ| = 1,
while p2 and p3 have another one at |∇φ| = 0. It is also important to consider the behavior of the
diffusion rate when |∇φ| < 1. In the case of p1, we have d1 → −∞ when |∇φ| → 0; i.e., an infinite
amount of anti-diffusion is applied in an attempt to correct the gradient if the level set profile becomes
flat. Therefore, this potential is unlikely to behave properly in the presence of local extrema or in
applications to truncated distance functions. This issue is extensively discussed by Utz et al. [40].

The diffusion rates corresponding to p2 and p3 are positive and finite when |∇φ| = 0. Therefore,
moderate diffusion is introduced at local extrema and in flat regions. Instead of p3, we employ

p4(s) =
1

2
s2(s− 1)2, =⇒ d4(s) = 2s2 − 3s+ 1, (17d)

which corresponds to the first branch of p3. The plot for p4 and the corresponding diffusion rate
are also shown in Figure 1. Note that p4 exhibits the correct behavior; i.e., it has the same stable
potentials as p2 and p3, and its diffusion rate behaves as desired. Indeed, the only important difference
compared to p3 is that p4 is more aggressive when |∇φ| > 1; i.e., stronger diffusion is applied when
the gradient becomes too steep. The advantage of using p4 lies in the fact that its diffusion rate is
a polynomial with respect to |∇φ| and not a composite function. Therefore, it is easier to obtain a
suitable approximation of the Jacobian corresponding to (16). In this work, we only consider p1 and
p4, which are hereafter referred to as single- and double-well potential functions, respectively.

Remark 3.1.1 (About the different terms). To facilitate further discussion of the proposed method-
ology, we name the terms that appear in equation (15) as follows. The first two terms ∂tSε(φ) and
∇ · (vSε(φ)) correspond to the time derivative and the advection term, respectively. The sum of these
terms models the advection of the volume fraction by the velocity field v. Regardless of whether the
single- or double-well potential is employed in (15), the flux function of the built-in redistancing oper-
ator includes a linear part of the form −∇ · (λ∇φ). This diffusive component ensures non-singularity
of the Jacobian corresponding to (16). Hence, we call it the regularization term. The remaining com-
ponents of the redistancing operator in (15) penalize deviations from the distance function. Therefore,
we refer to them as penalization terms. Note that the exact form of these terms depends on the choice

of the potential function. For the single-well potential, the penalization term is given by ∇ ·
(
λ ∇φ|∇φ|

)
,

while the penalization terms associated with the double-well potential are ∇ ·
[
λ
(
2|∇φ|2 − 3|∇φ|

)
∇φ
]
.

3.2 Time integration and iterative solution

Now that we have defined the potential functions, we can discretize the non-linear problem (16) in
time and use it to evolve the finite element approximation φh ∈ Xh. In all numerical experiments of
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this section, we use first order accurate time discretizations. The fully implicit one is given by

R(φh, w) :=

∫
Ω

[Sε(φ
n+1
h )− Sε(φnh)]wdx

∆t
−
∫

Ω
vn+1Sε(φ

n+1
h ) · ∇wdx +

∫
∂Ω
Sε(φ

n+1
h )wvn+1 · nds

+

∫
Ω
λ[∇φn+1

h − q(φn+1
h )] · ∇wdx = 0, ∀w ∈ Xh, (18)

where q is the penalization term that depends on the choice of the potential function. In Section 4,
we replace it by a C0 reconstruction qh. First and second order accurate time discretizations of the
resulting mixed finite element approximation are presented in §4.2 and §4.3, respectively.

To solve the non-linear system produced by an implicit time discretization of (16), we use a (quasi-)
Newton method. Consequently, we need to provide (an approximation of) the Jacobian containing
the partial derivatives of R(φh, wi). To regularize the term |∇φ| we approximate it by

|∇φ|δ :=
√
∇φ · ∇φ+ δ2,

as proposed by Badia and Bonilla [4], Barrenechea et al. [5]. We use δ2 = 10−15 in all numerical
experiments. Assuming that all terms are treated implicitly as in (18), we consider the following

approximation Jkij ≈
∂R(φkh,wi)

∂Φj
of the Jacobian at the k-th Newton iteration:

Jkij =

∫
Ω
S′ε(φ

k
h)

[
1

∆t
wiwj −∇wi · (vn+1wj)

]
dx +

∫
∂Ω
S′ε(φ

k
h)wiwjv

n+1 · ndx + Lkij , (19a)

where

Lkij =

∫
Ω
λmax

(
10−10, 1− 1

|∇φkh|δ

)
∇wi · ∇wjdx +

∫
Ω
λ

(∇φkh · ∇wi)(∇φkh · ∇wj)dx
|∇φh|3δ

, (19b)

if the single-well potential is employed and

Lkij =

∫
Ω
λmax

(
10−10, 1 + 2|∇φkh|2 − 3|∇φkh|

)
∇wi · ∇wjdx

+

∫
Ω
λmax

(
10−10, 4− 3

|∇φkh|δ

)
(∇φkh · ∇wi)(∇φkh · ∇wj)dx (19c)

otherwise. For time discretizations with some terms treated explicitly, we use reduced versions of (19).
The regularization term must be treated implicitly in the single- and double-well potential version

alike. The advection and the penalization terms can be treated explicitly or implicitly. To explore
the numerical behavior of these alternatives, we consider the periodic vortex problem (see Rider and
Kothe [31]) in the domain Ω = (0, 1)2. The initial condition and velocity field are given by

φ(x, 0) = ±dist(x,Γ0), (20a)

v(x, y, t) =

[
− sin(πx)2 sin(2πy) sin(2πt/8)
sin(2πx) sin(πy)2 sin(2πt/8)

]
, (20b)

where Γ0 := {(x, y) ∈ Ω | (x − xc)
2 + (y − yc)

2 = r2} is a circle of radius r = 0.15 centered at
(xc, yc) = (0.5, 0.75). We select the positive distance in (20a) if x = (x, y) is inside the circle Γ0 and
the negative distance otherwise. In Figure 2, we show the numerical solution at t = 2 obtained using
the single- and double-well potentials. These results indicate that explicit treatment of the advection
term may give rise to significant distortions of evolving level sets, whereas the penalization term may be
treated explicitly without producing such side effects. It is worth mentioning that implicit treatment of
the penalization term is more challenging in the context of Newton-like methods. Indeed, the inclusion
of this term makes the Jacobian more complicated and requires the use of certain approximations to
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avoid the possibility of having negative entries (see (19)). Alternatively, the contribution of the
penalization term to the Jacobian may be omitted, as in the fixed-point iteration method proposed
by Basting and Kuzmin [6]. In our experience, this approximation leads to a large number of Newton
iterations per time step when the residual needs to be zero to machine precision. In the context of
elliptic redistancing, the cost of solving the non-linear system remains acceptable because there is
no need to use very small tolerances for the residuals. As shown by Basting and Kuzmin [6], a few
fixed-point iterations are sufficient to restore the approximate signed distance function property.

Exp/Exp with single-well pot. Exp/Exp with double-well pot. Exp/Imp with double-well pot.

Imp/Exp with single-well pot. Imp/Exp with double-well pot. Imp/Imp with double-well pot.

Figure 2: Solutions of the vortex problem at t = 2 obtained using the monolithic level set formulation
(15) with λ = 0.1 and different potential functions. The advection term is treated explicitly in the first
row and implicitly in the second row. The left panels correspond to the single-well potential with the
penalization term treated explicitly. The panels in the middle and right correspond to the double-well
potential with the penalization term treated explicitly and implicitly, respectively.

4 Monolithic conservative level set method with C0 reconstruction

Instead of using double-well potential functions, numerical difficulties associated with the presence of
local extrema can be avoided by using a mixed finite element approximation of the terms that penalize
deviations from a distance function. In this section, we consider the single-well potential version of the
monolithic conservative level set method (15) and approximate the penalizing flux q using a regularized
lumped-mass L2 projection qh. The proposed approach is based on the methodology developed by
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Chan et al. [12] for iterative solution of the total variation regularization problem

αK∗(Ku− u0)−∇ · ∇φ
|∇φ|

= 0, (21)

where K is a compact operator, α ∈ R is a free parameter, and u0 is a given target function. The
regularized mixed form of this non-linear elliptic problem is given by

αK∗(Ku− u0)−∇ · q = 0, (22)√
|∇φ|2 + δ2q = ∇φ. (23)

Note that the auxiliary flux variable q is a continuous and well-behaved vector field. Moreover, the
finite element discretization of (22) leads to a non-linear problem which can be solved efficiently.

Adapting the above idea to our problem, we write the conservation law (15) of the single-well
potential monolithic level set method in the regularized mixed form

∂tSε(φ) +∇ · [vSε(φ)− λ(∇φ− q)] = 0,√
|∇φ|2 + δ2q = ∇φ

(24a)

(24b)

and impose the following initial and boundary conditions:

Sε(φ(x, 0)) = Sε(φ0(x)), ∀x ∈ Ω, (24c)

(∇φ− q) · n = 0, ∀x ∈ ∂Ω. (24d)

Integrating by parts in the weak form of (24a) and substituting the natural boundary condition (24d)
into the resulting surface integral, we obtain the variational formulation∫

Ω
∂tSε(φh)wdx−

∫
Ω

[vSε(φh)− λ(∇φh − qh)] · ∇wdx +

∫
∂Ω
Sε(φh)wv · ndx = 0 ∀w ∈ Xh. (25)

The variational form of equation (24b) corresponds to the weighted L2 projection∫
Ω

√
|∇φh|2 + δ2qhwdx =

∫
Ω
∇φhwdx ∀w ∈ Xh. (26)

Remark 4.0.1 (Conservation). Substituting w ≡ 1 into equation (25), we find that∫
Ω
∂tSε(φh)dx +

∫
∂Ω
Sε(φh)v · nds = 0, (27)

which implies global conservation in the sense discussed in §2.3. See also remark 3.0.2.

Remark 4.0.2 (Incompressibility). In this paper, we assume that ∇ · v = 0 and the interface Γ(t)
does not intersect the outer boundary ∂Ω at any time. That is, the regularized sign function Sε(φh) is
constant on ∂Ω. Hence,

∫
∂Ω Sε(φh)v · nds = ±

∫
∂Ω v · nds = 0 for incompressible two-phase flows.

Remark 4.0.3 (On the choice of the parameter λ). The parameter λ has units of velocity and can
be non-dimensionalized using scaling by h(x)/∆t, where h(x) is a suitable measure of the local mesh
size. Note that h(x)/∆t ∼ 1 if a CFL condition holds. In the below numerical study, we use

λ = λ̃
h(x)

‖φh − φ̄h‖L∞(Ω)

, (28)

where λ̃ ∼ 1 has units of velocity and φ̄h = 1
|Ω|
∫

Ω φhdx. This definition of λ ensures that the regular-

ization and penalization terms vanish as h(x)→ 0. We use λ̃ = 1.0 in all experiments of §6.
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4.1 Finite element discretization

We discretize (25) and (26) in space using the continuous Galerkin method. Given a finite element
solution φh ∈ Xh of (25), the discrete version of (26) defines an equal-order C0 reconstruction

qh(φh) =
∑
j

Qj(φh)wj(x) (29)

of the globally defined normal. In our present implementation of the monolithic level set method, the
components of Qj ∈ Rd, j ∈ I(Ω) are calculated using the lumped diagonal form of the weighted
mass matrix in the discrete version of (26). This approximation leads to the explicit formula

Q
(k)
i (φh) =

∫
Ω ∂kφhwidx∫

Ω

√
|∇φh|2 + δ2widx

(30)

for the coefficients of q
(k)
h =

∑
j Q

(k)
j wj , k = {1, . . . , d}. We use the parameter setting δ2 = 10−15

in all simulations. Whereas Chan et al. [12] used the mixed form (22) of (21) to speed up the
non-linear solver, their far-reaching idea offers additional advantages in our context. In contrast to
∇φh
|∇φh| , the projected penalization flux qh is continuous and approaches zero smoothly as |∇φh| → 0.
This property implies that penalization is automatically deactivated in the vicinity of local extrema,
where the distance function property is impossible to be enforced by adding anti-diffusive corrections.
Consequently, there is no need to use the double-well potential with this level set formulation.

4.2 First-order time discretization

Given a continuous Galerkin discretization of equation (25), we consider a first-order implicit time
stepping scheme which updates the finite element solution φh ∈ Xh as follows:

R(φh, w) :=

∫
Ω

[Sε(φ
n+1
h )− Sε(φnh)]wdx

∆t
−
∫

Ω
(Sε(φ

n+1
h )vn+1 − λ(∇φn+1

h − qh(φnh))) · ∇wdx

+

∫
∂Ω
Sε(φ

n+1
h )wvn+1 · nds = 0 ∀w ∈ Xh.

(31)

We solve the non-linear system (31) using Newton’s method. The Jacobian corresponding to R(φh, w)
in (31) at the k-th Newton iteration is given by

∂R(φkh, wi)

∂Φj
=: Jkij =

∫
Ω
S′ε(φ

k
h)

[
1

∆t
wiwj −∇wi · (vn+1wj)

]
dx +

∫
Ω
λ∇wi · ∇wjdx

+

∫
∂Ω
S′ε(φ

k
h)wiwjv

n+1 · nds.

In Figure 3, we present numerical solutions of the vortex problem at t = 2. The results shown in
the middle panel were obtained using the proposed discretization (31). The implications of treating
the advection term explicitly and penalization term implicitly are illustrated by the snapshots shown in
the left and right panels, respectively. As expected based on the results of §3.2, the explicit treatment
of the advection term gives rise to spurious distortions of the interface shape. The implicit treatment
of the penalization term has hardly any visible influence on the accuracy of the results but significantly
increases the computational effort associated with solving the non-linear system.

We close this section demonstrating the importance and effect of treating the penalization term
via the C0 reconstruction proposed in §4, opposed to its non-projected counterpart in §3. To do this
we solve the vortex problem at t = 2 and 4 via model (15) and (24). When solving (15) we consider
a single- and a double-well potential, see §3.1. In all cases we use a first-order approximation in time,
treat the advection term implicitly and the penalization term explicitly. The results are shown in
figure 4.
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Exp-advection/Exp-pen. Imp-advection/Exp-pen. Imp-advection/Imp-pen.

Figure 3: Solutions of the vortex problem at t = 2 obtained using the monolithic conservative level set
formulation (31) with λ = 0.1. The advection term is treated explicitly in the left panel and implicitly
elsewhere. The penalization term is treated implicitly in the right panel and explicitly elsewhere.

4.3 Second-order time discretization

To achieve second-order temporal accuracy, we discretize (24) in time using an implicit-explicit Runge-
Kutta scheme proposed by Hundsdorfer and Verwer [18, §4.3]. The two-stage time integrator

Sε(φ
∗)− Sε(φn)

∆t
+∇ ·

{
vnSε(φ

n) + vn+1Sε(φ
n+1)

2
− λ

[
∇φn +∇φn+1

2
− q(φn)

]}
= 0,

(32a)

Sε(φ
n+1)− Sε(φn)

∆t
+∇ ·

{
vnSε(φ

n) + vn+1Sε(φ
n+1)

2
− λ

2

(
∇φn +∇φn+1 − [q(φn) + q(φ∗)]

)}
= 0

(32b)

represents a predictor-corrector version of the second-order accurate Crank-Nicolson method. The
predictor φ∗ ≈ φn+1 is used to approximate q(φn+1) ≈ q(φ∗) at the second stage. The discretization in
space is performed using the continuous Galerkin method as in §4.2. In the context of high-order finite
element approximations, we favor the use of Bernstein basis polynomials (see for instance Ainsworth
et al. [1], Anderson et al. [2], Kirby [21], Lohmann et al. [27]) if the mass matrix is lumped during
L2 projections. In contrast to commonly employed Lagrange elements, the Bernstein basis functions
are non-negative. This property guarantees that the weighted lumped mass matrix of the C0 normal
reconstruction step (30) remains non-singular for polynomial spaces of arbitrary order. We remark
that the use of mass lumping may degrade the accuracy of high-order finite element approximations,
see §5. Numerical results for the two-dimensional vortex problem are presented in §6.1.

5 Convergence properties

In this section we explore the convergence properties of the method we propose. We start in §5.1
considering the elliptic part of (24). Then, in §5.2 we consider the full conservation law (24) using the
discretization in §4.3.

5.1 Convergence studies for the elliptic operator

Given a velocity field, the transport equation, in general, does not preserve the distance function
property. Therefore, it is unreasonable to expect full high-order convergence with respect to a distance
function. Moreover, in applications to level-set methods we are mainly interested in the behavior near
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Model (15) via single-well pot. Model (15) via double-well pot. Model (24)

Figure 4: Solution of the vortex problem at (first row) t = 2 and (second row) t = 4. The first two
columns correspond to model (15) using a single- and a double-well potential respectively. In the third
column we consider model (24). In all experiments the advection term is treated implicitly and the
penalization term explicitly.

the interface; i.e., near the zero-level set. Nevertheless, for certain velocity fields the exact solution is
a distance function. In particular, in this section we consider v = 0 and perform a series of numerical
experiments to study the convergence properties of the model we propose in this limited context.

We consider Ω = (0, 1)2 and let φ(x) denote the (exact) signed distance function to a circle with
radius r = 0.15 centered at (xc, yc) = (0.5, 0.75), see (20a). In all experiments we use a first order
approximation in time with ∆t = 1, treat the penalization term explicitly and compute the following
metrics:

||φh
(
x, t1

)
− φ(x)||L2(Ω),

1

|Ω∗|
||φh

(
x, t1

)
− φ(x)||L2(Ω∗), ||Hε

(
φh
(
x, t1

))
−Hε(φ(x))||L2(Ω), (33)

where Ω∗ := {x ∈ Ω |
∣∣φh (x, t1)∣∣ ≤ 2ε} defines a neighborhood around the zero level-set.

We start with model (12); i.e., we solve∫
Ω

[
Sε
(
φ1
h

)
− Sε

(
φ0
h

)]
wdx +

∫
Ω

[
λ

(
∇φ1

h −
∇φ0

h

|∇φ0
h|

)]
· ∇wdx = 0

and obtain the results in table 1 considering linear and quadratic spaces X1
h and X2

h respectively, see
§2.1. Note that the number of elements is adjusted to have the same number of degrees of freedom in
each row of the table. Due to lack of regularity on φ(x), we loose the full high-order accuracy with
respect to the L2(Ω)-norm. However, we recover it in a neighborhood of the zero-level set; i.e., we
get full accuracy in the (normalized) L2(Ω∗)-norm. Also due to lack of regularity on the regularized
Heaviside function we loose full accuracy on ||Hε

(
φh
(
x, t1

))
−Hε(φ(x))||L2(Ω); however, it is clear the

improvement by using high-order spaces.
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||φh
(
x, t1

)
− φ(x)||L2(Ω)

1
|Ω∗| ||φh

(
x, t1

)
− φ(x)||L2(Ω∗) ||Hε

(
φh

(
x, t1

))
−Hε(φ(x))||L2(Ω)

N-DOFs X1
h-space X2

h-space X1
h-space X2

h-space X1
h-space X2

h-space
1681 1.71E-4 - 9.27E-5 - 1.91E-4 - 6.68E-5 - 5.52E-4 - 1.58E-4 -
6561 4.85E-5 1.82 1.04E-5 3.15 3.99E-5 2.26 6.36E-6 3.39 1.90E-4 1.53 2.76E-5 2.51
25921 1.33E-5 1.86 2.60E-6 1.99 9.31E-6 2.09 6.90E-7 3.20 6.67E-5 1.51 4.75E-6 2.53
103041 3.60E-6 1.88 6.49E-7 1.99 2.30E-6 2.01 8.35E-8 3.04 2.35E-5 1.50 8.54E-7 2.47
410881 9.60E-7 1.90 1.62E-7 1.99 5.72E-7 2.00 1.04E-8 3.01 8.31E-6 1.50 1.50E-7 2.50

Table 1: Convergence on static problem with a non-projected penalization.

Now we consider model (24); i.e.,∫
Ω

[
Sε
(
φ1
h

)
− Sε

(
φ0
h

)]
wdx +

∫
Ω

[
λ
(
∇φ1

h − q0
h

)]
· ∇wdx = 0

and compute q0
h via a (weighted) lumped and consistent L2 projection. The results are shown in

tables 2 and 3 respectively. It is clear that using the lumped L2 projection decreases the accuracy
when high-order spaces are used.

||φh
(
x, t1

)
− φ(x)||L2(Ω)

1
|Ω∗| ||φh

(
x, t1

)
− φ(x)||L2(Ω∗) ||Hε

(
φh

(
x, t1

))
−Hε(φ(x))||L2(Ω)

N-DOFs X1
h-space X2

h-space X1
h-space X2

h-space X1
h-space X2

h-space
1681 8.58E-4 - 1.01E-3 - 7.14E-4 - 6.90E-4 - 6.23E-4 - 4.51E-4 -
6561 2.39E-4 1.84 2.75E-4 1.88 7.07E-5 3.33 6.85E-5 3.33 1.91E-4 1.70 1.00E-4 2.17
25921 6.50E-5 1.87 7.44E-5 1.88 1.14E-5 2.63 8.67E-6 2.98 6.42E-5 1.57 2.56E-5 1.96
103041 1.74E-5 1.90 1.98E-5 1.90 2.36E-6 2.27 1.27E-6 2.76 2.24E-5 1.51 8.22E-6 1.64
410881 4.61E-6 1.91 5.24E-6 1.92 5.55E-7 2.08 2.35E-7 2.43 7.90E-6 1.50 2.80E-6 1.55

Table 2: Convergence on static problem with a lumped L2-projected penalization.

||φh
(
x, t1

)
− φ(x)||L2(Ω)

1
|Ω∗| ||φh

(
x, t1

)
− φ(x)||L2(Ω∗) ||Hε

(
φh

(
x, t1

))
−Hε(φ(x))||L2(Ω)

N-DOFs X1
h-space X2

h-space X1
h-space X2

h-space X1
h-space X2

h-space
1681 3.89E-4 - 1.48E-4 - 2.78E-4 - 1.18E-4 - 5.46E-4 - 2.00E-4 -
6561 1.08E-4 1.84 3.52E-5 2.06 4.51E-5 2.62 7.97E-6 3.89 1.83E-4 1.57 3.41E-5 2.54
25921 2.93E-5 1.88 8.81E-6 1.99 9.36E-6 2.26 8.68E-7 3.19 6.35E-5 1.52 5.89E-6 2.53
103041 7.82E-6 1.90 2.20E-6 1.99 2.22E-6 2.07 1.06E-7 3.04 2.23E-5 1.50 1.06E-6 2.47
410881 2.07E-6 1.91 5.50E-7 1.99 5.46E-7 2.02 1.31E-8 3.01 7.89E-6 1.50 1.87E-7 2.50

Table 3: Convergence on static problem with a consistent L2-projected penalization.

5.2 Convergence studies for the conservation law

We consider now the conservation law (24) with a full discretization given by (32) with continuous
Galerkin finite elements and perform a convergence study, based on the metrics (33), using linear and
quadratic spaces. This study is based on the vortex problem, see (20). The penalization term qh is
treated explicitly and is computed via a lumped and a consistent L2 projection. In figure 5 we show
the results at t = 4 and in tables 4 and 5 we show the metrics for different refinement levels. The
use of the consistent mass matrix in the weighted L2 projection of ∇φh leads to oscillations near the
peak that propagate to the interface, distorting its shape and producing large numerical errors. This
problem can be cured by lumping the mass matrix; however, as seen in §5.1, doing so degrades the
convergence behavior of high-order finite element discretizations. The consistent-mass L2 projection
can be constrained to satisfy discrete maximum principles using the methodology presented by Kuzmin
et al. [23]. The underlying limiting strategy was originally developed by Löhner [28] (pp. 257-260)
building on the flux-corrected transport (FCT) algorithm of Boris and Book [10], Zalesak [42]. More
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advanced frame-invariant limiters specifically designed for continuous finite element approximations to
vector fields can be found in Zeng and Scovazzi [43]. We do not explore these sophisticated approaches
in the present work. In the context of level set methods, the simplest way to preserve high-order
accuracy without violating discrete maximum principles is to use the consistent weighted element
mass matrix in the narrow band Ω∗ and its lumped counterpart elsewhere. In the rest of this work,
we use linear finite elements and, therefore, compute the penalization term qh using the fully lumped
version of the weighted L2 projection.

We close this section emphasizing that despite the problem discussed here, formulation (24) with
the full discretization given by a continuous Galerkin finite element approximation to (32) recovers the
expected accuracy of linear spaces and can be used with high-order spaces, provided the penalization
qh is computed via a lumped or constrained L2 projection.

(a) Linear space X1
h (b) Quadratic space X2

h

Figure 5: Solution of the vortex problem at t = 4 considering (a) linear and (b) quadratic spaces.
For each space we consider the penalization term qh via (left) a lumped and (right) a consistent L2

projection. The number of cells is adjusted to have 6561 DOFs in all experiments.

||φh
(
x, t1

)
− φ(x)||L2(Ω)

1
|Ω∗| ||φh

(
x, t1

)
− φ(x)||L2(Ω∗) ||Hε

(
φh

(
x, t1

))
−Hε(φ(x))||L2(Ω)

N-DOFs X1
h-space X2

h-space X1
h-space X2

h-space X1
h-space X2

h-space
1681 9.37E-2 – 1.12E-1 – 1.03E-1 – 1.22E-1 – 2.31E-1 – 2.48E-1 –
6561 1.98E-2 2.24 2.25E-2 2.31 2.16E-2 2.25 2.42E-2 2.33 9.92E-2 1.21 1.07E-1 1.21
25921 5.05E-3 1.96 5.36E-3 2.06 5.10E-3 2.08 5.46E-3 2.14 3.63E-2 1.44 3.87E-2 1.46

Table 4: Convergence with a lumped L2-projected penalization.

||φh
(
x, t1

)
− φ(x)||L2(Ω)

1
|Ω∗| ||φh

(
x, t1

)
− φ(x)||L2(Ω∗) ||Hε

(
φh

(
x, t1

))
−Hε(φ(x))||L2(Ω)

N-DOFs X1
h-space X2

h-space X1
h-space X2

h-space X1
h-space X2

h-space
1681 1.06E-1 – 9.98E-2 – 8.49E-2 – 7.09E-2 – 1.85E-1 – 1.50E-1 –
6561 6.91E-2 0.61 1.23E-1 -0.30 4.06E-2 1.06 7.58E-2 -0.09 8.08E-2 1.19 6.06E-2 1.30
25921 9.81E-2 -0.50 1.01E-1 0.28 6.24E-2 -0.62 6.28E-2 0.27 3.39E-2 1.25 2.13E-2 1.50

Table 5: Convergence with a consistent L2-projected penalization.

6 Numerical experiments

In this section, we assess the numerical behavior of the two-step level set algorithm (32) in two and
three space dimensions. We use linear finite elements and compute the penalization term qh via a
weighted lumped L2 projection. Let φ be the exact solution to a given problem. For each experiment,
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we measure numerical errors using the following metrics:

LSerr(φh) =
1

|Ω∗|
||φ(x)− φh

(
x, tn+1

)
||L2(Ω∗), (34a)

VOFerr(φh) =
1

L
||Hε(φ(x))−Hε

(
φh
(
x, tn+1

))
||L2(Ω), (34b)

Ierr(φh) =
1

L
||Hε(φ(x))−Hε

(
φh
(
x, tn+1

))
||L1(Ω), (34c)

Verr(φh) =
1∫

ΩH(φh(x, 0))dx

∣∣∣∣∫
Ω

[H(φh(x, 0))−H(φh(x, t))] dx

∣∣∣∣ , (34d)

Vε
err(φh) =

1∫
ΩHε(φh(x, 0))dx

∣∣∣∣∫
Ω

[Hε(φh(x, 0))−Hε(φh(x, t))] dx

∣∣∣∣ , (34e)

Derr(φh) =
1

2

∫
Ω

(|∇φh| − 1)2dx, (34f)

where Ω∗ := {x ∈ Ω |
∣∣φh (x, tn+1

)∣∣ ≤ 2ε}, L is the (d− 1)-dimensional measure of the zero level set
Γ(0); i.e., length in 2D and area in 3D, Hε(·) is the smoothed Heaviside function defined in §2.2, and
H(·) is the sharp Heaviside function

H(z) =


0, if z < 0,

0.5, if z = 0,

1, if z > 0.

The quantity LSerr(φh) measures the L2 error in a neighborhood around the zero level set and
VOFerr(φh) measures the L2 error of the volume fraction. The quantities Ierr(φh) and Verr(φh) measure
the extent of interface displacements and area/volume losses, see Enright et al. [14], Olsson and Kreiss
[29]. The metric Derr(φh) measures the deviation of φh from a distance function. In all experiments
of this section, we define λ using (28) with λ̃ = 1.0. In addition, we set the tolerance of the non-linear
solvers to 10−12 unless stated otherwise. When reporting the metrics we indicate the number of degrees
of freedom as N-DOFs along with a characteristic mesh size denoted as h. All experiments in this
section were performed and are available within the Proteus toolkit (http://proteustoolkit.org).

6.1 Two-dimensional periodic vortex

In the first two-dimensional test, we consider the periodic vortex problem (see Rider and Kothe [31])
again. The initial condition and the velocity field are given by (20). The domain of interest is the
unit square Ω = (0, 1)2. In Figure 6, we show the numerical solutions and zero level sets obtained at
t = 0, 2, 4, 6, and 8 using linear finite elements and 25,921 DOFs. The number of Newton iterations
per stage (in (32)) is plotted in Figure 7 for three different tolerances in the stopping criteria of the
non-linear solver. The error metrics defined by (34) are listed in Table 6. The initial length of the
interface is L ≈ 9.42× 10−1 in this test.

N-DOFs h LSerr VOFerr Ierr Verr Vε
err Derr

1,681 2.50E-2 1.03E-1 2.45E-1 8.03E-2 4.16E-2 6.99E-12 3.48E-3

6,561 1.25E-2 2.16E-2 1.05E-1 1.97E-2 8.48E-3 6.41E-13 4.00E-4

25,921 6.25E-3 5.10E-3 3.85E-2 4.52E-3 1.76E-3 2.02E-12 1.43E-4

Table 6: Error metrics (34) for the vortex problem solved using linear finite elements. The initial
length of the interface is L ≈ 9.42× 10−1.
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Figure 6: Approximate distance function φh and zero level set {φh = 0} of the vortex problem at
t = 0, 2, 4, 6, and 8. Solutions obtained using linear finite elements and 25,921 DOFs.

Figure 7: Number of Newton iterations for each stage in algorithm (32) discretized using linear finite
elements with 6,561 DOFs. The iteration process is terminated when the tolerances (red) tol = 10−4,
(cyan) tol = 10−8 and (blue) tol = 10−12 are satisfied.

6.2 Solid body rotation of Zalesak’s disk

Another standard 2D benchmark is the slotted disc test proposed by Zalesak [42]. The computational
domain is Ω = (0, 1)2 again. The initial condition is given by the signed distance function

φ(x, 0) = ±dist(x,Γ0) (35)

corresponding to the boundary Γ0 = ∂Z of the set Z = D\{(x, y) ∈ Ω | |x−xc| < 0.025, y− yc < 0.1},
where D is a disk of radius r = 0.15 centered at (xc, yc) = (0.5, 0.75). We choose the positive distance
in (35) if x = (x, y) is inside Γ0 and the negative distance otherwise. The velocity field

v(x, y) =

[
−2π(y − 0.5)
2π(x− 0.5)

]
produces a solid body rotation around (0.5, 0.5). The exact solution of this problem preserves the
shape of the interface and coincides with the initial condition after each full revolution.

In Figure 8, we show the solution and the zero level set at t = 0, 0.2, 0.4, 0.6, 0.8, 1 obtained using
25,921 DOFs. Figure 9 displays the zero level set at t = 1 for three different refinement levels. The
error metrics corresponding to the numerical results in Figure 9 are shown in Table 7. The initial
length of the interface is L ≈ 1.4380 in this test.
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Figure 8: Approximate distance function φh and zero level set {φh = 0} of Zalesak’s disc at t =
0, 0.2, 0.4, 0.6, 0.8, and 1.0. Solutions obtained using linear finite elements with 25,921 DOFs.

Figure 9: Zero level set {φh = 0} of Zalesak’s disk at t = 1. Solutions obtained using linear finite
elements. We consider three levels of refinement with (blue) 1,681, (orange) 6,561 and (green) 25,921
DOFs.
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N-DOFs h LSerr VOFerr Ierr Verr Vε
err Derr

1,681 2.50E-2 7.77E-3 2.94E-2 8.26E-3 6.89E-2 4.68E-16 5.60E-3

6,561 1.25E-2 2.88E-3 1.20E-2 1.42E-3 4.39E-3 1.33E-13 2.75E-3

25,921 6.25E-3 1.27E-3 6.13E-3 6.12E-4 7.87E-4 4.49E-13 1.55E-3

Table 7: Error metrics (34) for Zalesak’s disk problem solved using linear finite elements. The initial
length of the interface is L ≈ 1.4380.

6.3 Three-dimensional solid body rotation

Let us now consider a three-dimensional solid body rotation problem. The domain of interest is
Ω = (0, 1)× (0, 1)× (0, 0.5) and the initial condition is given by the signed distance function

φ(x, 0) = ±dist(x, 0), (36)

where Γ0 = {(x, y, z) ∈ R3 : (x − xc)2 + (y − yc)2 + (z − zc)2 = r2} is the surface of the sphere with
radius r = 0.15 centered at (xc, yc, zc) = (0.5, 0.75, 0.25). We choose the positive distance in (36) if
x = (x, y, z) is inside the sphere and the negative distance otherwise. The velocity field

v(x, y, z) =

−2π(y − 0.5)
2π(x− 0.5)

0

 ,
corresponds to solid body rotation in the xy plane. The exact solution coincides with the initial
condition after each revolution. Computations are performed using linear finite elements with 67, 626
DOFs. In Figure 10, we show the contour plots of the zero level sets at t = 0, 0.2, 0.4, 0.6, 0.8, and 1.
The error metrics for three levels of mesh refinement are presented in Table 8.

Figure 10: Zero level set {φh = 0} representing the surface of the rotating sphere at t =
0, 0.2, 0.4, 0.6, 0.8, and 1. Solutions obtained using linear finite elements with 67, 626 DOFs.

N-DOFs h LSerr VOFerr Ierr Verr Vε
err Derr

1,183 8.33E-2 1.70E-2 7.02E-2 7.38E-3 9.68E-2 6.95E-13 1.95E-3

8,788 4.00E-2 3.54E-3 2.08E-2 2.06E-3 1.76E-3 2.82E-14 4.01E-4

67,626 2.00E-2 8.25E-4 7.43E-3 5.19E-4 1.13E-3 2.32E-15 1.75E-4

Table 8: Error metrics (34) for the 3D solid body rotation problem solved using linear finite elements
on three different meshes. The initial interface area is L ≈ 2.82× 10−1.
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6.4 Three-dimensional swirling flow

In the last test, we consider the three-dimensional swirling flow problem proposed by LeVeque [25].
The computational domain is Ω = (0, 1)3. The time-dependent velocity field is given by

v(x, y, z, t) =

2 sin2(πx) sin(2πy) sin(2πz) cos(πt/T )
− sin(2πx) sin2(πy) sin(2πz) cos(πt/T )
− sin(2πx) sin(2πy) sin2(πz) cos(πt/T )

 ,
where T = 3 is the time corresponding to one cycle of swirling deformation. The initial condition

φ(x, 0) = ±dist(x,Γ0) (37)

is the signed distance function of Γ0 = {(x, y, z) ∈ R3 : (x − xc)
2 + (y − yc)

2 + (z − zc)
2 = r2},

where r = 0.15 as in our first 3D test. The center of the sphere enclosed by the interface Γ0 is now
placed at (xc, yc, zc) = (0.5, 0.75, 0.25). We choose the positive distance in (37) if x = (x, y, z) is
inside the so-defined sphere and the negative distance otherwise. This problem is similar in nature to
the 2D vortex problem considered in §6.1. The initial condition is deformed under the action of the
periodically changing velocity field. At the time t = T/2, the zero level set undergoes its maximum
deformation producing thin filaments that are difficult to resolve unless local mesh refinement is
performed in the interface region. As simulation continues, the interface flows back to its original
position and the exact solution coincides with the initial data at the final time t = T . In Figure 11,
we present numerical solutions obtained using linear finite elements on a uniform mesh with spacing
h = ∆x = ∆y = ∆z = 10−2, and in table 9 we list the metrics (34) for three levels of refinement.
For this particular problem we use ε = 1

2h(x), see §2.2. The reason is to improve the representation
of the Heaviside and sign functions near the zones of maximum deformation where the thin filaments
are likely to be under resolved.

Figure 11: Zero level set {φh = 0} representing the surface of the distorted sphere at t =
0, 0.7, 1.5, 2.3, and 3. Solutions obtained using linear finite elements with 1, 030, 301 DOFs.

N-DOFs h LSerr VOFerr Ierr Verr Vε
err Derr

17,576 4.00E-2 1.48E-1 3.55E-1 5.08E-2 5.86E-2 3.27E-12 4.26E-3

132,651 2.00E-2 9.53E-2 2.27E-1 2.27E-2 1.09E-2 2.57E-11 1.69E-3

1,030,301 1.00E-2 2.61E-2 1.16E-1 6.87E-3 1.05E-3 5.34E-11 1.26E-3

Table 9: Error metrics (34) for the 3D swirling flow solved using linear finite elements on three different
meshes. The initial interface area is L ≈ 2.82× 10−1.
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7 Conclusions

The main result of this work is the monolithic level set method (24) with the normal reconstruction qh
computed via the lumped L2 projection (29) and (30). The proposed level set algorithm incorporates an
elliptic redistancing term into a local conservation law leading to a non-linear transport equation for an
approximate distance function. In contrast to most existing level set methods and their combinations
with volume of fluid approaches, no additional post-processing or stabilization of advective terms is
required. Moreover, the use of C0 normal reconstructions eliminates convergence problems caused
by the presence of local extrema or flat regions. The presented numerical studies indicate that the
approximation of level set functions using high-order finite elements does not offer any significant
benefits compared to the use of linear elements. The main reason is loss of accuracy due to mass
lumping during the C0 normal reconstruction. This problem can be cured via the use of a consistent
L2 projection and flux limiting strategies. In addition, the use of regularized Heaviside functions
and/or piecewise-linear interface reconstructions imposes an order barrier on the overall accuracy w.r.t.
interface shape and mass conservation properties. This drawback can be cured using different kinds of
local mesh adaptation or enrichment of finite element spaces in elements containing the interface. In
particular, level-set-aligned meshes can be generated using the mesh optimization procedures developed
by Basting and Weismann [8].

Potential research directions to improve the results presented in this work include the use of lim-
iting strategies to obtain non-oscillatory, high-order C0 reconstructions of the penalization term for
redistancing; use of composite quadratures, see for instance Tornberg [37, §4.2], or more advance inte-
gration techniques for surface integrals, see for instance Engquist et al. [13], to improve the numerical
integration of characteristic-like functions; use of optimal control methods, as in Basting and Kuzmin
[7], to automatically select the parameter λ and use of higher-order time integration techniques.
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