
Efficient Implementation of Resource-Constrained
Cyber-Physical Systems Using Multi-Core Parallelism

Dissertation

zur Erlangung des Grades eines

Doktors der Ingenieurwissenschaften

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Olaf Neugebauer

Dortmund

2018

Ort: TU Dortmund
Fakultät: Informatik
Tag der mündlichen Prüfung: 11. Juni 2018
Dekan: Prof. Dr. Gernot Fink
Gutachter: Prof. Dr. Peter Marwedel

Prof. Dr. Heinrich Müller

Acknowledgements

First of all I would like to thank my supervisor Prof. Dr. Peter Marwedel. He provided
me the opportunity to pursue the research path leading to this thesis. His initial advice
and guidance helped me to orientate and to find my research topic. He offered me to
join the ICD to work on the European research project MADNESS where I learned to
collaborate with partners from different countries and domains. I would also like to
thank Prof. Dr. Heinrich Müller for his commitment as a reviewer for this thesis. He
and Prof. Marwedel are responsible for the joint research project between Dr. Pascal
Libuschewski and me. Special thanks goes to Prof. Dr. Michael Engel for his advice and
support over the years.

Additional thanks to ICD and the European research project for the funding in the
beginning of my career. Later parts of this work were performed in cooperation with
the Collaborative Research Center 876 founded by the German Research Foundation
(DFG) in the context of the subprojects A3 and B2. Further, I like to thank Synopsys
for providing the CoMET/Virtualizer simulation platform.

I would also like to thank my colleagues, in particular Dr. Pascal Libuschewski and
Dr. Daniel Cordes for the great collaboration. In addition, Roland Kühn and my fellow
office mate Helena Kotthaus for their support and fruitful discussions. Finally, I like to
thank Hendrik Borghorst, Björn Bönninghoff, Dr. Timon Kelter, Dr. Jan Kleinsorge, Dr.
Andreas Heinig, Prof. Dr. Heiko Falk and all other current and former colleagues.

Above all, I would like to thank my friends and family who supported me well beyond
this thesis. My mother, who gave me the freedom to join the university and her support
during these years. Sebastian and Christoph, friends of my youth, who were always
available for non-technical discussions. Thanks to my dog Gizmo, who forced me to take
regular breaks and get some fresh air especially during the writing of this thesis. Finally,
I would like to thank the most important person in my life, my fiancée and the love of
my life Aleksa-Carina Putinas who supported me for almost 17 years in good and bad
times. Thank you!

iii

Abstract

The quest for more performance of applications and systems became more challenging in
the recent years. Especially in the cyber-physical and mobile domain, the performance re-
quirements increased significantly. Applications, previously found in the high-performance
domain, emerge in the area of resource-constrained domain. Modern heterogeneous high-
performance MPSoCs provide a solid foundation to satisfy the high demand. Such
systems combine general processors with specialized accelerators ranging from GPUs to
machine learning chips. On the other side of the performance spectrum, the demand for
small energy efficient systems exposed by modern IoT applications increased vastly.

Developing efficient software for such resource-constrained multi-core systems is an
error-prone, time-consuming and challenging task. This thesis provides with PA4RES
a holistic semiautomatic approach to parallelize and implement applications for such
platforms efficiently. Our solution supports the developer to find good trade-offs to tackle
the requirements exposed by modern applications and systems. With PICO, we propose
a comprehensive approach to express parallelism in sequential applications. PICO detects
data dependencies and implements required synchronization automatically. Using a
genetic algorithm, PICO optimizes the data synchronization. The evolutionary algorithm
considers channel capacity, memory mapping, channel merging and flexibility offered by
the channel implementation with respect to execution time, energy consumption and
memory footprint. PICO’s communication optimization phase was able to generate a
speedup almost 2 or an energy improvement of 30% for certain benchmarks.

The PAMONO sensor approach enables a fast detection of biological viruses using
optical methods. With a sophisticated virus detection software, a real-time virus detection
running on stationary computers was achieved. Within this thesis, we were able to derive
a soft real-time capable virus detection running on a high-performance embedded system,
commonly found in today’s smart phones. This was accomplished with smart DSE
algorithm which optimizes for execution time, energy consumption and detection quality.
Compared to a baseline implementation, our solution achieved a speedup of 4.1 and 87%
energy savings and satisfied the soft real-time requirements. Accepting a degradation of
the detection quality, which still is usable in medical context, led to a speedup of 11.1.
This work provides the fundamentals for a truly mobile real-time virus detection solution.

v

The growing demand for processing power can no longer satisfied following well-known
approaches like higher frequencies. These so-called performance walls expose a serious
challenge for the growing performance demand. Approximate computing is a promising
approach to overcome or at least shift the performance walls by accepting a degradation
in the output quality to gain improvements in other objectives. Especially for a safe
integration of approximation into existing application or during the development of new
approximation techniques, a method to assess the impact on the output quality is essential.
With QCAPES, we provide a multi-metric assessment framework to analyze the impact
of approximation. Furthermore, QCAPES provides useful insights on the impact of
approximation on execution time and energy consumption. With ApproxPICO we propose
an extension to PICO to consider approximate computing during the parallelization of
sequential applications.

Zusammenfassung

Die Leistungsanforderungen von Anwendungen und Systemen sind in den letzten Jahren
gestiegen. Gerade im Bereich der Cyber-Physikalischen und mobilen Systemen ist der
Bedarf enorm gewachsen. Frühere Hochleistungsanwendungen dringen in den Bereich der
Ressourcen-beschränkten Systeme ein. Moderne, leistungsfähige Mehrprozessorsysteme
(MPSoC) bieten eine solide Basis, um diesen Leistungsanspruch zu befriedigen. Diese
Systeme kombinieren Prozessoren mit speziellen Beschleunigern wie Grafikprozessoren
oder auf maschinelles Lernen optimierte Prozessoren. Andererseits steigt der Bedarf nach
besonders energieeffizienten System im Bereich des Internet of Things oder der Industrie
4.0 spürbar.

Die Entwicklung effizienter Software für diese Ressourcen-beschränkten Mehrkernsys-
teme ist eine fehleranfällige, zeitaufwendige und komplexe Aufgabe. Diese Arbeit bietet
mit PA4RES einen einheitlichen, semiautomatischen Ansatz, um Anwendungen für solche
Plattformen effizient zu parallelisieren und zu implementieren. Unsere Lösung unterstützt
Entwickler in dem Abwägungsprozess zwischen den verschiedenen Zielkriterien der Anwen-
dung im Hinblick auf eine Zielplattform. Mit PICO stellen wir einen umfassenden Ansatz
vor, der es ermöglicht Parallelität in sequentiellen Anwendungen einfach auszudrücken.
Dabei erkennt PICO automatisch Datenabhängigkeiten und fügt notwendige Synchro-
nisierungsoperationen automatisch ein. Die durch PICOs Kommunikationsoptimierung
generierten Lösungen erzielen in einigen Fällen nahezu eine Beschleunigung um den
Faktor 2 und eine Energieeinsparung um 30%. Der evolutionäre Optimierungsalgorithmus
betrachtet die Kapazität, das Speicherlayout, die Zusammenlegung und die Flexibilität in
der Implementierung von Kommunikationskanälen unter Berücksichtigung der Laufzeit,
des Speicherbedarfs und des Energieverbrauchs.

Der PAMONO Sensor ermöglicht eine schnelle Erkennung von biologischen Viren mit
Hilfe eines optischen Verfahrens. Eine hochentwickelte Detektionssoftware ermöglicht
eine echtzeitfähige Viruserkennung auf stationären Computern. In dieser Arbeit konnten
wir eine echtzeitfähige Version der Software generieren, die auf typischen Smartphone-
Prozessoren läuft. Dies wurde unter Zuhilfenahme intelligenter Entwurfsraumexplorations-
methoden unter Berücksichtigung von Laufzeit, Energieverbrauch und Erkennungsgüte
erreicht. Im Vergleich zu der Basisversion erreichte unsere Lösung eine Beschleunigung

vii

viii

um den Faktor 4.1 und eine Energieeinsparung um 87%. Wenn man eine Verringerung
der Erkennungsrate erlaubt, die immer noch ein verwendbares Ergebnis im medizinischen
Kontext bedeutet, erzielt unser Verfahren eine Beschleunigung um den Faktor 11.1. Diese
Arbeit legt damit den Grundstein für einen zukünftigen batteriebetriebenen Einsatz des
Viruserkennungssystems.

Der steigende Bedarf nach noch mehr Leistung kann absehbar nicht mehr mit klassi-
schen Ansätzen wie der Erhöhung der Taktfrequenz befriedigt werden. Diese Beschrän-
kungen bedeuten ein ernsthaftes Problem, um den Bedarf an Leistung zu erfüllen. Appro-
ximate Computing ist ein vielversprechender Ansatz um diese Beschränkung zu umgehen
oder zumindest aufzuweichen. Hier wird bewusst eine Verringerung der Ausgabequalität
in Kauf genommen, um eine Leistungssteigerung zu erzielen. Gerade die Bestimmung
der Auswirkungen durch Approximate Computing verlangt einen zuverlässigen, auto-
matisierten Ansatz. Mit QCAPES haben wir ein mehrkriterielles Analyseframework
geschaffen, um die Auswirkungen von Approximate Computing ganzheitlich zu betrachten.
Weiterhin bietet QCAPES einen zusätzlichen Einblick in die Auswirkungen durch die
approximierte Anwendung auf die Laufzeit und den Energieverbrauch. Mit ApproxPICO
stellen wir unseren Ansatz vor Approximate Computing während der Parallelisierung von
sequentiellen Anwendungen zu betrachten.

Publications

Olaf Neugebauer, Michael Engel, and Peter Marwedel. “A Parallelization Approach
for Resource-Restricted Embedded Heterogeneous MPSoCs Inspired by OpenMP”.
In: Journal of Systems and Software (JSS) 125 (2016), pp. 439–448. ISSN: 0164-
1212. DOI: http://dx.doi.org/10.1016/j.jss.2016.08.069

Olaf Neugebauer, Michael Engel, and Peter Marwedel. “Multi-Objective Aware
Communication Optimization for Resource-Restricted Embedded Systems”. In:
Proceedings of Architecture of Computing Systems (ARCS). 2015

Olaf Neugebauer, Pascal Libuschewski, Michael Engel, Heinrich Müller, and Peter
Marwedel. “Plasmon-based Virus Detection on Heterogeneous Embedded Systems”.
In: Proceedings of Workshop on Software & Compilers for Embedded Systems
(SCOPES). 2015, pp. 48–57. isbn: 978-1-4503-3593-5. doi: 10.1145/2764967.

2764976

Olaf Neugebauer, Michael Engel, and Peter Marwedel. “A Parallelization Approach
for Resource-Restricted Embedded Heterogeneous MPSoCs Inspired by OpenMP”.
In: The 1st ACM SIGPLAN International Workshop on Software Engineering for
Parallel Systems (SEPS). 10/2014

Olaf Neugebauer, Peter Marwedel, Roland Kühn, and Michael Engel. “Quality
Evaluation Strategies for Approximate Computing in Embedded Systems”. In:
Technological Innovation for Smart Systems. Ed. by Luis M. Camarinha-Matos,
Mafalda Parreira-Rocha, and Javaneh Ramezani. Vol. 499. Cham: Springer
International Publishing, 2017, pp. 203–210. isbn: 978-3-319-56077-9

Olaf Neugebauer, Michael Engel, and Peter Marwedel. “Approximate Communica-
tion in Parallel Applications for Resource-Constrained Embedded Systems”. In:
Workshop on Approximate Computing. 10/2015

Daniel Cordes, Michael Engel, Peter Marwedel, and Olaf Neugebauer. “Automatic
extraction of multi-objective aware pipeline parallelism using genetic algorithms”.
In: Proceedings of the eighth IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis (CODES+ISSS). 10/2012

ix

http://dx.doi.org/10.1016/j.jss.2016.08.069
https://doi.org/10.1145/2764967.2764976
https://doi.org/10.1145/2764967.2764976

x

Daniel Cordes, Michael Engel, Olaf Neugebauer, and Peter Marwedel. “Automatic
Extraction of Multi-Objective Aware Parallelism for Heterogeneous MPSoCs”. In:
Proceedings of the Sixth International Workshop on Multi-/Many-core Computing
Systems (MuCoCoS). 09/2013

Daniel Cordes, Michael Engel, Olaf Neugebauer, and Peter Marwedel. “Automatic
Extraction of Task-Level Parallelism for Heterogeneous MPSoCs”. In: Proceed-
ings of the Fourth International Workshop on Parallel Software Tools and Tool
Infrastructures (PSTI). 10/2013

Daniel Cordes, Michael Engel, Olaf Neugebauer, and Peter Marwedel. “Automatic
Extraction of Pipeline Parallelism for Embedded Heterogeneous Multi-Core Plat-
forms”. In: Proceedings of the Sixteenth International Conference on Compilers,
Architectures, and Synthesis for Embedded Systems (CASES). 10/2013

Helena Kotthaus, Andreas Lang, Olaf Neugebauer, and Peter Marwedel. “R goes
Mobile: Efficient Scheduling for Parallel R Programs on Heterogeneous Embedded
Systems”. In: Abstract Booklet of the International R User Conference (UseR!).
07/2017

Peter Marwedel, Heiko Falk, and Olaf Neugebauer. “Memory-Aware Optimization of
Embedded Software for Multiple Objectives”. In: Handbook of Hardware/Software
Codesign. Ed. by Soonhoi Ha and Jürgen Teich. Springer Netherlands, 2017. isbn:
978-94-017-7358-4. doi: 10.1007/978-94-017-7358-4_27-2

Emanuele Cannella, Lorenzo Di Gregorio, Leandro Fiorin, Menno Lindwer, Paolo
Meloni, Olaf Neugebauer, and Andy D. Pimentel. “Towards an ESL Design
Framework for Adaptive and Fault-tolerant MPSoCs: MADNESS or not?” In:
Proceedings of the 9th IEEE/ACM Symposium on Embedded Systems for Real-Time
Multimedia (ESTIMedia). 10/2011

In addition, the author contributed to the yearly graduate school reports of the
Collaborative Research Center 876: [MR13; MR14; MR15; MR16; MR17]

https://doi.org/10.1007/978-94-017-7358-4_27-2

Contents
1 Challenges in Embedded Cyber-Physical Systems 1

1.1 Introduction . 1
1.2 Challenges of Embedded Software Design 3
1.3 Motivating Example: Plasmon-based Virus Detection 4
1.4 Contribution of this Work . 6
1.5 Outline . 7
1.6 Author’s Contribution to this Dissertation 8

2 Utilizing modern MPSoCs - The PA4RES Methodology 11
2.1 System Architecture Overview . 12

2.1.1 Simulator-based Low-Power Systems 13
2.1.2 Real Hardware High-Performance System 14

2.2 Parallelism in Software . 16
2.2.1 Types of Parallelism in Software 16

2.2.1.1 Task-Level Parallelism . 17
2.2.1.2 Data-Level Parallelism 17
2.2.1.3 Pipeline Parallelism . 18

2.2.2 Challenges during the Parallelization 19
2.3 PA4RES - Framework . 20

2.3.1 Performance Estimator . 21
2.3.2 Parallelism Extraction for Embedded Systems 23

2.4 Conclusion . 24

3 PICO-Framework 27
3.1 Introduction . 28
3.2 Application Model . 29

3.2.1 Communication Model . 30
3.2.2 Structure and Components of the Application Model 31
3.2.3 Programming Language Requirements - Parallelizable C 33

3.3 Related Work . 33
3.3.1 General Overview . 34
3.3.2 OpenMP Related Work . 37
3.3.3 Distinction from OpenMP . 38

3.4 PICO - Framework Overview . 40
3.5 PICO Directives . 41

3.5.1 Task-Level Parallelism . 42

xi

Contents xii

3.5.2 Data-Level Parallelism . 43
3.5.3 Pipeline Parallelism . 45
3.5.4 Hybrid Pipeline Parallelism . 47

3.6 Internals of PICO . 49
3.6.1 Analysis Phase . 50

3.6.1.1 Program Dependence Graph Construction 52
3.6.1.2 Parallel Region Extraction 55
3.6.1.3 Task Graph Construction 56

3.6.2 Implementation Phase . 59
3.6.3 Limitations . 61

3.7 Evaluation . 62
3.7.1 Proof of Concept and Implementation 62
3.7.2 Usability Analysis . 63
3.7.3 Performance Analysis . 65

3.7.3.1 Homogeneous Experiments 66
3.7.3.2 Heterogeneous Experiments 68

3.8 Conclusion . 72

4 PICO - Communication Optimization 75
4.1 Introduction . 75
4.2 PICO - Communication Optimization Approach 77
4.3 Related Work . 79
4.4 Internals of the Communication Optimization 82

4.4.1 Genetic Algorithm Implementation 82
4.4.1.1 General Chromosome Structure 83
4.4.1.2 Genetic Operations . 84
4.4.1.3 Fitness evaluation . 86

4.4.2 Execution Model . 88
4.5 Evaluation . 93

4.5.1 Evaluation Setup . 93
4.5.1.1 Applications . 94
4.5.1.2 Target System . 96
4.5.1.3 Genetic Algorithm Configurations 96

4.5.2 Simulation Results . 97
4.5.3 Model-based Optimization Results 104
4.5.4 Discussion . 106

4.6 Conclusion and Future work . 108

5 Emerging Challenges for Embedded Systems -
Real-time Virus Detection 111
5.1 Introduction . 111
5.2 Plasmon-Assisted Microscopy of Nano-Objects 113

Contents xiii

5.3 Design Space Exploration Framework . 116
5.4 Use Case: Automatic Virus Detection Software 117

5.4.1 Implementation and Parameter Details 119
5.4.1.1 Hardware-related Parameters 119
5.4.1.2 Dynamic Frequency Scaling 120

5.4.2 Detection Quality . 121
5.5 Evaluation . 121

5.5.1 Evaluation Setup . 122
5.5.2 Experiments . 123
5.5.3 Results . 124
5.5.4 Discussion . 126

5.6 Related Work . 129
5.7 Conclusion and Future Work . 131

6 New opportunities due to Approximate Computing 133
6.1 Introduction . 133
6.2 Related Work . 135
6.3 Quality Metrics - How to quantify uncertainty? 137

6.3.1 Common Signal Fidelity Metrics 137
6.3.2 Perception Visual Quality Metrics 139
6.3.3 Impact of Metric Selection . 141

6.4 QCAPES-Framework . 141
6.4.1 Integration into PA4RES . 143

6.5 Qualitative Case Studies . 143
6.5.1 Approximated Video Encoding . 144
6.5.2 Approximated Image Compression 147
6.5.3 Discussion . 149

6.6 Approximation in PICO - ApproxPICO 150
6.6.1 Approximate Communication - Case Study 152

6.7 Conclusion and Future Work . 153

7 Conclusion and Future Work 157
7.1 Summary of Contributions . 158
7.2 Future Work . 160

A Appendix 163
A.1 EnergyMetric - CoMET-Systems . 163
A.2 Energy measurement on the Odroid-System 164

A.2.1 EnergyMeter . 164
A.2.2 Energy Relay Reader . 165

A.3 PICO API and Runtime . 165
A.4 Execution Model - Performance Extraction 167

Contents xiv

A.5 Digital and Physical Units . 169

B Results for Communication Optimization Experiments 171

Bibliography 181

List of Figures 199

List of Tables 203

List of Listings 205

List of Algorithms 207

Index 209

List of Abbreviations

API Application Programming Interface

AST Abstract Syntax Tree

CFG Control Flow Graph

CPS Cyber-Physical System

CPU Central Processing Unit

CRC Collaborative Research Center

DAG Directed Acyclic Graph

DFG Data Flow Graph

DFS Dynamic Frequency Scaling

DSE Design Space Exploration

DSP Digital Signal Processor

ECJ Java-based Evolutionary Computation Research System

FEHLER Flexible Error Handling in Embedded Real-Time Systems

FIFO First In First Out

FPGA Field Programmable Gate Array

GA Genetic Algorithm

GPGPU General Purpose Computation on Graphics Processing Unit

GPU Graphics Processing Unit

HPC High-Performance Computing

xv

List of Abbreviations xvi

ILP Integer Linear Programming

IoT Internet of Things

IR Intermediate Representation

ISA Instruction Set Architecture

KPN Kahn Process Network

MADNESS Methods for predictAble DesigN of heterogeneous Embedded Systems
with adaptivity and reliability Support

MAE Mean-Absolute Error

MNEMEE Memory management technology for adaptive and efficient design of
embedded systems

MPSoC Multiprocessor System-on-a-Chip

MSE Mean-Squared Error

MSSIM Mean Structural Similarity Index Metric

NoC Network-on-Chip

PA4RES Parallelization for (4) Resource-restricted Embedded Systems

PAMONO Plasmon-Assisted Microscopy of Nano-Objects

PAXES Parallelism Extraction for Embedded Systems

PDG Program Dependence Graph

PICO Parallelism Implementer and Communication Optimizer

PSNR Peak-Signal-to-Noise Ratio

PQVM Perceptual Visual Quality Metrics

QCAPES Quality Comparison for Approximate Programs on Embedded Systems

QoR Quality of Results

QoS Quality of Service

RAW Read-After-Write

RMSE Root-Mean-Squared Error

RTEMS Real-Time Executive for Multiprocessor Systems

SFM Signal Fidelity Metrics

List of Abbreviations xvii

SLOC Source Lines Of Code

SoC System-on-a-Chip

SPM Scratch Pad Memory

SSIM Structural Similarity Index Metric

UIQI Universal Image Quality Index

WAR Write-After-Read

WAW Write-After-Write

List of Abbreviations xviii

Chapter 1

Challenges in Embedded
Cyber-Physical Systems

1.1 Introduction

Computer systems are an integral part of today’s life. They do various tasks, starting
from basic functions like counting objects passing a light barrier to very complex tasks
like an automatically generated personalized drug therapy. It is almost impossible to find
a domain completely free of computers. Estimations predict that we will see between 30
billion [IDC15] and 50 billion [Eva11] connected Internet of Things (IoT) devices in 2020.
Beside creating new applications from scratch, developers will face the task to adapt
legacy code to these systems. Often, existing sequential software should be reused or
existing algorithms should be adapted to reduce the time to market. Energy consumption
and the trend to green computing are important aspects of today’s computer design. To
tackle these challenges, new approaches are necessary which take the requirements and
restrictions like limited energy consumption into account.

Embedded systems are used in a variety of domains like automotive, avionics, manu-
facturing and health care. Marwedel [Mar17] defines embedded systems as “information
processing systems embedded into enclosing products”. Those systems are covering a wide
range of the available technology. For instance, the compute elements of these systems
range from very simple processors with extremely small memories to heterogeneous
multiprocessor systems. Whereas some systems like those built into airbags are highly
specialized and use special components like Digital Signal Processors (DSPs), others, for
instance smart phones, use more generalized processors. The potential capabilities of
embedded systems are often dictated and limited by the environments they are embedded
in. For example, a mobile usage relies on battery power and thus the system needs to
be very energy efficient. The term Cyber-Physical Systems (CPSs) is used to highlight
the importance of the physical interaction in those systems. According to Lee [Lee07],
“Cyber-Physical Systems are integrations of computation and physical processes”. Despite
the limitations, today’s application’s demands are increasing. For instance, the trend

1

Chapter 1. Challenges in Embedded Cyber-Physical Systems 2

is to combine CPSs with a certain kind of intelligent algorithms like machine learning,
exposing new challenges to the designers. Apple’s Core ML machine learning framework
[App17] enables the usage of sophisticated machine learning models across their entire
product range, leading to billions of machine learning capable mobile phones. In general,
CPSs build the foundation of smart systems and the IoT. Thus, “applications of CPS
arguably have the potential to dwarf the 20-th century IT revolution” and “the most
interesting and revolutionary cyber-physical systems will be networked” [Lee08].

In smart systems, potentially dozens of different sensors are combined and their data
are fused. With this new knowledge, the system analyzes its state and tries to calculate
the next steps e.g. performed by actuators. This is known as hardware in the loop
[Mar17]. Predicting the future can be challenging, thus smart algorithms like machine
learning are emerging into this domain exposing new demands to CPS. In the automotive
or aviation sector, a collision avoidance system needs multiple sensors, providing data
like current speed, direction of travel and radar ranging information. A central compute
instance uses the information to predict the likelihood of a collision with an object. In
case of a potential collision the system reacts to avoid the collision. Possible reactions
vary from simple audible warnings to changing the direction of travel.

The next step in the digital evolution is truly the connection of multiple systems.
Here, not only classic computer systems are used, the vast majority will be CPSs,
leading to an IoT. Kopetz [Kop11] describes this as systems of systems. As mentioned
before, predictions say that we will see between 30 billion [IDC15] and 50 billion [Eva11]
connected IoT devices in 2020. McKinsey [MCB15] predicts a potential impact of $3.9
trillion to $11.1 trillion per year in 2025 from the IoT sector. One example is Industry
4.0 [KRB14], summarizing the trends in factories to combine automation, data exchange
and analysis. According to this paradigm, the modern manufacturing process will make
intensive use of connected CPSs and smart systems building an IoT. An exemplary use
case might be a welding robot reporting its health status to a central computer system.
Maintenance teams can use this data to optimize the maintenance schedule. If each
component of the production process is able to provide data, big data analytics can be
used to extract new knowledge to further optimize the production process or to predict
future failures and thus increase quality. The Airbus Skywise data platform provides
a predictive maintenance system for Airbus airplanes [Air18]. Skywise is a commercial
service which monitors components health and in conjunction with big data analysis
enables engineers to intervene early and replace parts before a failure.

To enable these new trends, this thesis focuses on the fundamental question: how can
we satisfy the increasing demand of today’s applications with current resource-constrained
Cyber-Physical Systems? In particular, we focus on the software development process
for these systems. The definitions of CPS and IoT are very similar and often mixed,
especially when talking about the devices (things). Thus, in this thesis we will use CPS,
IoT and embedded systems similarly but emphasize differences if necessary.

In the following Section 1.2 we discuss some common challenges and requirements

Chapter 1. Challenges in Embedded Cyber-Physical Systems 3

exposed by CPS and applications. A biological virus detector is used as a motivating
example in Section 1.3. Section 1.4 briefly summarizes the contributions of this disserta-
tion, followed by an outline of this thesis is given in Section 1.5. Finally, Section 1.6 lists
all contributing authors to this thesis.

1.2 Challenges of Embedded Software Design

Designers of Cyber-Physical Systems are typically facing a large variety of challenges they
need to solve to meet their requirements. According to [Mar17], CPSs need to be among
others dependable, timing and resource-aware. For example, the availability of a service
might be of high importance and to ensure a certain availability in case of high workload,
the systems might reduce the output quality or consume more energy. Furthermore, users
of CPSs expect the system not to crash since those systems are usually expected to start
once and run forever. In addition, Rajkumar et al. [RLS10] propose several challenges
like the composition of several CPSs, the computational and timing abstraction.

The list of properties and challenges of CPS design is long. Thus, in this thesis we
focus on the following key challenges:

Energy consumption: A huge amount of embedded systems are powered by batteries
or other limited sources of electrical power like solar cells. Even if the systems
have a constant power source, limitations exposed by their embedded nature can
limit the allowed power consumption or the related thermal dissipation. As some
sensors require a cool atmosphere to function properly, integrating a powerful and
potentially hot embedded system will prevent the sensor from working properly.
Finally, power generation causes costs and reducing the overall energy consumption
will reduce the financial expenses.

Execution time: Embedded systems are often subject to timing requirements and need
to finish execution before a certain deadline. For example, a system has to produce
a valid output every second. In general one can distinguish between hard and soft
deadlines. Missing a hard deadline will lead to fatal consequences. Airbags in a car
expose a natural hard deadline. Missing the deadline to inflate the airbag might
lead to loss of life. All other timing constraints are soft deadlines.

Memory consumption: Typical CPSs only provide a very limited amount of memory.
In addition, some embedded systems use special memories that are very small and
energy efficient. Especially during application development, those properties need
to be considered and exploited.

Output quality or Quality of Service: Modern applications of embedded systems
like pattern recognition or multimedia processing allow the relaxation of the
output quality and thus reducing their Quality of Service to improve in other
objectives. For instance, adaptive video compression codecs trade quality with

Chapter 1. Challenges in Embedded Cyber-Physical Systems 4

memory consumption. Other mobile video codecs reduce the output quality in order
to reduce the energy consumption. In general, output quality can be traded against
energy consumption, execution time and memory consumption. Nevertheless,
applications might specify a minimum quality level.

System designers traditionally tackle these challenges from the hardware and software
side. However, in this thesis we focus on approaches aiding the software development
side of CPSs assuming a fixed hardware platform. Here, the overall structure of the
platform like number of processors, available memory, battery capacity is fixed but can be
configured to a certain degree like the frequency and supply voltage. This assumption is
based on the observation that more and more standardized hardware platforms are used.
For example, ARM-based platforms dominate the mobile phone market and thus are
comparatively cheap and often considered in other areas like medical applications as well.
According to ARM [ARM17], ARM owns a market share of 90% in mobile application
processors in 2016. For 2025, ARM sees itself as the leading company enabling the
success of IoT. This thesis will make extensive use of ARM-based systems. However,
most presented approaches are platform agnostic and thus not limited to ARM-based
systems.

Developers are burdened to find the perfect balance between these challenges to meet
the requirements effectively in a cost efficient way. Unfortunately, in most cases, there is
no best solution satisfying all requirements but rather multiple solutions. Some of them
are called Pareto-optimal:

Definition 1.1:
(informal) A solution is called Pareto-optimal if there is no other solution which is
inferior in no objective and is better in at least one objective.

Manual approaches to find these solutions are complex, erroneous and time consuming,
thus new holistic methodologies considering all aspects are required. This thesis provides
methodologies, tools and directions to aid software developers achieving the requirements.

1.3 Motivating Example: Plasmon-based Virus Detection

Cyber-Physical Systems are used in several domains like automotive, aviation or fabrica-
tion, see [Mar17] for more examples. In this section, we present an exemplary application
and future vision of CPSs. Detection of biological viruses is classically done in stationary
facilities like hospitals. In remote locations, samples are usually collected and shipped
to a central laboratory. This leads to a potentially long timespan between incubation,
first symptoms and proper medical treatment. To reduce this gap, new detection tech-
niques and portable solutions are required. Within the Collaborative Research Center
(CRC) 876 “Providing Information by Resource-Constrained Data Analysis”, project
B2 [SFB17a], we developed a virus detection solution achieving a soft real-time capable

Chapter 1. Challenges in Embedded Cyber-Physical Systems 5

mobile battery powered virus detection. Further, we also provide the fundamentals for a
future distributed sensor network usage.

The basic idea of the sensor system is to capture an interaction process of a virus
with a specific environment using a video camera. A software detection pipeline processes
the captured images and returns the number of detected viruses. This process is called
Plasmon-Assisted Microscopy of Nano-Objects (PAMONO). To enable a mobile usage on
a specific hardware platform, the algorithms need to be adapted to meet certain energy
consumption limits. In addition, to ensure a fast virus detection, certain execution time
requirements must be met. Storing images can be beneficial to improve the detection
quality, but due to limited memory capacity this is not always possible. Some parameters
of the detection algorithm can trade execution time with a degradation of the output
quality. This might result in an increased number of wrong virus detections. In cases
where it is not necessary to detect all viruses or where it is acceptable to have some
non-viruses classified as viruses (false positive) this property can be used to tune the
application parameters to fulfill the performance demands. Finding a good configuration
in thousands of different software and hardware configurations is a complex task. Thus,
we used smart algorithms to explore the solution space and find proper configurations.
We exceeded the original expectations by satisfying all requirements without limitations.
In Chapter 5, we give a detailed description of the sensor application and the conducted
optimizations.

The next step towards an aerial virus detection system with dozens of sensors is to
move at least the preprocessing to a low-power embedded system closer to the sensor. For
example, such a system can be deployed at airports to detect and control the outbreak of
an epidemic. This application scenario raises new interesting questions. Most obviously,
the whole sensor system needs to be miniaturized. Further, offloading of computation
might be necessary. In this scenario, the data acquisition is spatially separated from
the actual detection pipeline. Inexpensive low-power embedded systems could be used
for the data acquisition, transmitting data to a high-performance computer system
running the detection application. However, the questions are: How can the existing
processing pipeline be modified in order to be executed on these systems? Which part
of the pipeline can be offloaded? Which part can be efficiently executed on low-power
embedded systems? What data needs to be transmitted?

This example application combines classic embedded system properties like resource-
restriction mixed with new high-demand algorithms like pattern recognition, typical for
modern CPS and IoT applications. Similar systems can be found in autonomous cars,
health care, industry and aviation. In this thesis we conducted our experiments and
evaluations with other applications and algorithms as well but we will often refer to the
presented virus detection example as the overall picture.

Chapter 1. Challenges in Embedded Cyber-Physical Systems 6

1.4 Contribution of this Work

This thesis provides methodologies, tools and directions for software developers facing the
newly exposed requirements of CPSs. Starting with a legacy sequential application, we
provide a semi-automatic parallelizing methodology taking the resource restrictions and
properties of modern heterogeneous embedded platforms into account. This approach
primarily targets low-power embedded systems. Those systems are typically very re-
stricted in their capabilities and for example have no or limited operating system support.
This work is internally summarized in the Parallelization for (4) Resource-restricted
Embedded Systems (PA4RES) project. Two European Union FP7 research projects
contributed to PA4RES. The Memory management technology for adaptive and efficient
design of embedded systems (MNEMEE) [MMB11] project builds the fundamentals
for the parallelization methodology, the model of computation and the simulator-based
platforms. In contrast, technical realizations are partly developed in the Methods for
predictAble DesigN of heterogeneous Embedded Systems with adaptivity and reliability
Support (MADNESS) project [CGF11].

The author of this thesis provides an integral part of the PA4RES framework with
Parallelism Implementer and Communication Optimizer (PICO). It enables an efficient
expression of parallelism in sequential applications. The key aspect is that PICO keeps
the original code which increases maintainability of the application. Complex types
of parallelism can be expressed using abstract high-level methods. In addition, PICO
supports the extraction of pipeline parallelism in loops. This enables the parallelization of
loops which previously could not be parallelized due to data dependencies. Using hybrid
pipeline parallelism, the performance of the parallel application can further be improved.
PICO’s static data analysis extracts data dependencies between parallel regions and adds
communication automatically. The communication model keeps the sequential semantics
of the original application. Using evolutionary algorithms, PICO optimizes these data
exchanges with respect to available memory, energy consumption and execution time.
We propose a high-level abstract execution model which keeps the essential parts of
the parallel application which reduced the evaluation time drastically by still obtaining
usable results.

By using a high-performance embedded system and smart software optimization
techniques, we are able to provide fundamental work enabling a mobile and distributed
biological virus detection. This virus detection was previously only possible on powerful
computers and it was doubtful if it can be executed on a mobile platform. This work was
done in the CRC 876 “Providing Information by Resource-Constrained Data Analysis”,
project B2 [SFB17a]. The optimization algorithm is able to explore software and a real
hardware platform efficiently considering the objectives energy consumption, execution
time and detection quality. We are able to meet the soft real-time requirements without
losing accuracy. However, solutions with a reduced detection quality, which are still
usable in a medical context, achieved a speedup of more than 11 and an energy saving of
94% compared to the baseline. This led us to consider approximate computing as a new

Chapter 1. Challenges in Embedded Cyber-Physical Systems 7

technique to further increase application’s performance.
To analyze the impact of approximate computing on the performance of applications

especially considering resource-constraints exposed by CPSs, we developed the Quality
Comparison for Approximate Programs on Embedded Systems (QCAPES) assessment
framework. Embedded in PA4RES, QCAPES enables a fast and automatic assessment
of approximation techniques regarding execution time, energy consumption, output
quality and other objectives like file size. One key feature is that QCAPES provides
a sophisticated multi-metric and multi-objective assessment. Using multiple metrics
can help to qualify the accuracy loss in detail. In addition, it can give indications of
the error type in the output. With quality case studies we revealed new insights into
approximate computing especially in the CPSs domain. We observed unwanted side
effects like increased file size when using prominent approximation techniques. In cases of
distributed embedded systems, this observation can render the benefits from approximate
computing useless since larger files needs to be transmitted at increased cost. The
QCAPES assessment framework is available under an open source license and provides a
clear interface for extensions.

Adding approximation computing to existing application is a complex and error-prone
task. Done improperly, the benefits of approximation might be overshadowed by unwanted
side effects. This ranges from unacceptable results to application crashes. Therefore,
we provide with ApproxPICO the fundamentals for a holistic approach to integrate
approximation techniques into the parallelization process. Furthermore, this thesis
developed two open source energy measurement applications targeting the Odroid-XU3
platform.

1.5 Outline

This thesis is structured as follows:

Chapter 2 introduces the PA4RES methodology, our approach to parallelize sequential
applications for resource-restricted embedded systems. Furthermore, Chapter 2
provides an overview of supported types of parallelism and the target platforms in
combination with the abstract system model. In addition, this chapter presents
the parallelizer PAXES and Performance Estimator integrated in PA4RES.

Chapter 3 presents our method to identify parallel regions in sequential applications.
Thereby this chapter focuses on the parallelism implementation side of PICO.
Using an application model, PICO automatically generates a parallel version of a
formerly sequential application and takes care of necessary data synchronization.

Chapter 4 introduces the PICO communication optimization approach. Using an evolu-
tionary algorithm, PICO explores various implementation and mapping parameters

Chapter 1. Challenges in Embedded Cyber-Physical Systems 8

to optimize the inevitable data synchronization. This chapter proves the effec-
tiveness of this approach with several benchmarks in a simulation- and hybrid
model-based evaluation.

Chapter 5 presents the PAMONO-based virus detection pipeline and our work to
execute this demanding application on a high-performance embedded system. With
an evolutionary algorithm, we explored several software and hardware-related
parameters in order to obtain an optimized soft real-time capable solution. With
our work, we provided the foundation for a fast and mobile virus detection solution.

Chapter 6 focuses on approximate computing, a method to improve applications’
performance in trade-off with a loss in output quality. With qualitative case studies,
we emphasize the importance of our multi-objective framework QCAPES. Finally,
this chapter presents ApproxPICO, an extended version of PICO to consider
approximation during the parallelization process.

Chapter 7 concludes this thesis and provides directions for future work.

Appendix A provides additional information regarding the energy model used by the
simulator and energy measurement software. Furthermore, the appendix gives
a detailed description of the PICO Application Programming Interface (API).
Finally, this part provides measurement results used during the communication
model tuning.

Appendix B lists additional results for the experiments conducted in Chapter 4.

1.6 Author’s Contribution to this Dissertation

According to §10(2) of the “Promotionsordung der Fakultät für Informatik der Technischen
Universität Dortmund vom 29. August 2011”, a dissertation within the context of doctoral
studies has to contain a separate list that highlights the author’s contributions to research
and results obtained in cooperation with other researchers. In the following, we list all
chapters and contribute all authors:

Chapter 2: The PA4RES framework bases on several tools. The parallelism extraction
tool PAXES was developed by Daniel Cordes [Cor13]. The author of this thesis
provided technical support and with PICO, today’s back-end of the PAXES paral-
lelization flow. Together we published the work in [CEN13c; CEN13b; CEN13a;
CEM12]. The PA4RES framework uses the simulation-based platforms includ-
ing software support developed by Andreas Heinig [Hei10]. All major parts of
PA4RES built upon the MACCv2 framework developed by Robert Pyka [Pyk17].
Florian Schmoll and the author of this thesis created the energy model used by the
simulator.

Chapter 1. Challenges in Embedded Cyber-Physical Systems 9

Chapter 3: PICO uses the ICD-C compiler infrastructure, developed, maintained and
extended by many doctoral students of our department. Together with Florian
Schmoll, the author of this thesis integrated a sophisticated points-to and alias
analysis into the compiler framework. PICO was solely developed by the author
of this thesis. A first draft of the communication API was published in [CGF11].
However, Stefan Noll [Nol14] and Roland Kühn [Küh16] provided with their
Bachelor’s theses, supervised by the author of this thesis, additional test cases.
Results of this chapter were published in [NEM14; NEM16].

Chapter 4: The communication optimization was solely developed by the author of
this thesis. Later, Roland Kühn, as a student employee, helped with evaluation and
tuning of the execution model. Work of this chapter was published in [NEM15a].

Chapter 5: Prof. Marwedel suggested to consider the PAMONO virus detection pipeline
as a benchmark. The resulting collaboration between Pascal Libuschewski and
the author of this thesis is presented in this chapter. Both authors contributed
equally to the published paper [NLE15]. The author of this thesis provided the
initial idea to port the virus detection software to the Odroid-XU3. In addition,
the author provided the system and developed parts of the software support for
the measurement on the real hardware. Pascal Libuschewski provided the interface
to the optimizing algorithm, bug fixes and conducted the experiments. Selected
results from this chapter were also published in textbooks [MFN17; Mar17].

Chapter 6: The technical implementation of QCAPES and the practical evaluation
was conducted by Roland Kühn in his Bachelor’s thesis. The author of this thesis
is responsible for the general idea and guided the development significantly. The
results were published in [NMK17]. The ApproxPICO extension is proposed and
implemented by the author of this thesis.

Appendix A: Florian Schmoll and the other of this thesis created the energy model
used by the simulator. The EnergyMeter was derived from an existing solution
by the author of the thesis, whereas the Energy Relay Reader was developed by
Alexander Lochmann, Roland Kühn and the author of this thesis.

Besides the before mentioned publications, the author of this thesis published parts
of this thesis in the yearly graduate school reports of the Collaborative Research Center
876: [MR13; MR14; MR15; MR16; MR17]. The author of this thesis provided technical
support and the hardware for the joint publication with Helena Kotthaus [KLN17].

Chapter 1. Challenges in Embedded Cyber-Physical Systems 10

Chapter 2

Utilizing modern MPSoCs -
The PA4RES Methodology

Contents
2.1 System Architecture Overview . 12

2.1.1 Simulator-based Low-Power Systems 13

2.1.2 Real Hardware High-Performance System 14

2.2 Parallelism in Software . 16

2.2.1 Types of Parallelism in Software . 16

2.2.1.1 Task-Level Parallelism . 17

2.2.1.2 Data-Level Parallelism . 17

2.2.1.3 Pipeline Parallelism . 18

2.2.2 Challenges during the Parallelization 19

2.3 PA4RES - Framework . 20

2.3.1 Performance Estimator . 21

2.3.2 Parallelism Extraction for Embedded Systems 23

2.4 Conclusion . 24

The quest for more performance was traditionally solved by increasing the frequency
of the processors. Due to energy and thermal restrictions, this strategy reached its
limits and hits the power wall. This is obvious since the breakdown of Dennard’s scaling
[DGR74] around 2006. Thus, to further improve the performance, systems designers added
more, potentially simpler, processors and thus try to increase the overall performance by
exploiting parallelism. If a system is built onto a single chip it is called a Multiprocessor
System-on-a-Chip (MPSoC). An existing, large code base of legacy sequential software
must be adapted to benefit from these new systems. This chapter provides a general
overview of the considered system architectures, especially the systems used in this
thesis. In addition, this chapter presents fundamental principles of parallelism used
to explore the capabilities of modern systems, including a discussion of the challenges
encountered during parallelization of sequential code. Finally, the chapter presents

11

Chapter 2. Utilizing modern MPSoCs - The PA4RES Methodology 12

Communication Infrastructure

MEM 1 ... MEM N

PE 1 PE 2 ... PE N

PE PE

PE

N
O

C N
O

C

MEM

PE

PE

N
O

C

PE

N
O

C

MEM

BUS

MEM

NOC

NOC

MEM

PE 1

PE 3

PE 2

PE 4

MEM

BUS

MEM

PE 1 PE 2 PE 3 PE 4

Abstraction from concrete platforms

NOC

Figure 2.1: Abstract system model of modern embedded systems.

the PA4RES methodology. Our approach tackles the quest for more performance in a
resource constrained multiprocessor environment focusing on parallelization of sequential
(legacy) code.

2.1 System Architecture Overview

Today’s embedded systems combine several processing elements (PE) like general purpose
processors, Graphics Processing Units (GPUs) or DSPs. If all elements are equal these
systems are called homogeneous. Systems with different elements or the same elements
with different configurations are called heterogeneous. Beside the processing elements, a
variety of different memory types like fast and small Scratch Pad Memories (SPMs) or
large DRAMs are used. In addition, some systems provide hardware support for direct
data exchange like hardware First In First Out (FIFO) channels. Others may use a
common bus to connect the elements of the system.

Definition 2.1 (PA4RES System Model):
A system S is composed of a set of processing elements pe ∈ PE and a set of memories
m ∈MEM connected through a set of communication interconnects ci ∈ CI. A memory
or interconnect may be exclusively assigned to a processing element.

For instance, the Texas Instruments Keystone architecture [Tex18] provides multiple
inter- and intra-device communication facilities. In addition, this architecture may
provide multiple memory hierarchy levels which can be exploited for communication
purposes. Figure 2.1 gives a graphical representation of the abstract system model used
in this thesis. Internally, PA4RES abstracts from concrete systems which use buses,
Network-on-Chips (NoCs) or hybrid approaches. However, in the model, a communication

Chapter 2. Utilizing modern MPSoCs - The PA4RES Methodology 13

infrastructure connects processing elements with possible point-to-point connections and
sets of memories. Developing software efficiently for those systems can be challenging.
Especially in the context of CPS, a lot of sequential legacy code exists and should be
reused. In this thesis, we evaluate our methods on exemplary simulator-based and real
hardware systems following this abstract system model.

2.1.1 Simulator-based Low-Power Systems

Simulation-based evaluation offers several benefits compared to real hardware platforms.
Simulators enable the simulation of (not yet existing) prototype hardware platforms or
configurations. Simulators are deterministic, thus every execution leads to the same
behavior which simplifies the evaluation. In real hardware, for instance, variation in
the manufacturing process can lead to slightly different timing behaviors. Simulators
can be cheaper than real hardware, especially in the case of specialized systems with
a small production volume. Traditionally, simulators are orders of magnitudes slower
than real hardware. Parallel execution of multiple simulator instances can speed up the
overall evaluation time. However, several existing approaches increase the simulation
speed of a single instance. For example, using higher abstraction level models will reduce
the simulation time by reducing the precision of the simulation. Hybrid approaches
combine precise and abstract models, for example, a cycle-accurate processor simulator
with a basic memory simulator which just returns the memory values without simulating
the internals of the memory. In addition, the simulation results highly depend on the
correctness of the underlying model. If the model is faulty or imprecise, it will directly
influence the quality of the simulation results.

The simulation-based systems used in this thesis are simulated with Synopsys’ Vir-
tualizer [Syn17]. The system comprises four ARM 1176 processors and several mem-
ories connected through a bus. These platforms have been used within the MNEMEE
[MMB11] and Flexible Error Handling in Embedded Real-Time Systems (FEHLER)
[FEH18] projects and several theses [Cor13; Hei15; Kel15; Pyk17; Hol17]. Andreas
Heinig did most of the adaptation and provision of the platforms. The author of this
thesis refined the energy model used by these systems. Energy values are obtained from
CACTI [MBJ09] for memories. CACTI provides an integrated cache and memory access
time, cycle time, area, leakage, and dynamic power model. Processor values are derived
from a self-developed high-level frequency-dependent energy model based on an existing
model [SKW01]. Appendix A.1 provides detailed information of the energy model and
the integration into the simulation environment. This simplified model is applicable
since in this thesis all optimization techniques are only compared on the same hardware
platform. Thus, inaccuracies should be reflected in the original and optimized version
equally.

On each processor of the simulation-based system, a Real-Time Executive for Multi-
processor Systems (RTEMS) [RTE16] operating system instance is running. Thus, it is
more like a distributed system and not a true multiprocessor operating system managing

Chapter 2. Utilizing modern MPSoCs - The PA4RES Methodology 14

AMBA BUS

ARM

1176

ARM

1176

ARM

1176

ARM

1176

BOOT ROM

(8 MB)

PRIVATE

(64 MB)

SPM

(1 MB)

DRAM

(512 MB)

Figure 2.2: Simulator-based quad core embedded MPSoC.

multiple cores in a single instance. This scenario reflects that sometimes processors
from different manufacturers, with their own operating system, are combined into a
single system. Mixed criticality systems follow a similar approach to isolate critical and
non-critical components. R2G [Hei10] is used as a lightweight library-based middleware,
simplifying, among others, task creation and memory allocation for the target system
with its multiple operating systems. As common in low-power embedded systems, task
mapping and memory allocation is done statically.

All platform versions use the same memory architecture with four different memories.
A 8 MB boot ROM is used for the boot loader exclusively, a 1 MB SPM is partially
used by the operating systems. The remaining space of the scratch memory can be used
by our runtime library or the developer. A partitioned 64 MB DRAM is used to store
processor-dependent data privately. The SPM is connected to the bus and can be utilized
by each processor and thus be used e.g. for communication between the cores. Finally,
a 512 MB DRAM is used for large data objects. The memories and the processors
are connected through a bus. Figure 2.2 shows the overall platform structure. In the
homogeneous case, all cores are running at a frequency of 500 MHz. In the heterogeneous
case the clock frequency varies between 100 and 500 MHz. Later chapters of this thesis,
especially for the experiments, will present details on the specific platform configurations.

2.1.2 Real Hardware High-Performance System

As an exemplary real hardware high-performance system we selected the Odroid-XU3
development board from Hardkernel [Har16]. This board uses an Exynos-5422 MPSoC
which is also used in millions of Samsung S5 smart phones. The Odroid-XU3 uses
the ARM big.LITTLE [Pet13] architecture where processors running at different clock
frequencies, featuring differing pipeline structures, cache sizes, bus systems, or memory
hierarchies are combined into a single chip. By utilizing the different capabilities
efficiently, energy and performance trade-offs can be found to satisfy the requirements of
mobile embedded devices and their applications.

Figure 2.3 gives an overview of the Odroid-XU3 platform. An Exynos-5422 octa-
core processor with four ARM Cortex-A15 and four Cortex-A7 processors is the main
component of the Odroid-XU3. In addition, a Mali-T628 MP6 GPU with full OpenCL

Chapter 2. Utilizing modern MPSoCs - The PA4RES Methodology 15

Odroid-XU3

IN
A

2
3

1
IN

A
2

3
1

IN
A

2
3

1
IN

A
2

3
1

Exynos 5422

Low Power BUS - AMBA ACE

ARM

Mali-T628

MP6

Low Power

DDR3

Cortex-A15

Core Core

Core Core

Cortex-A7

Core Core

Core Core

Figure 2.3: Odroid-XU3 structural overview.

1.1 profile support is integrated onto the chip enabling General Purpose Computation
on Graphics Processing Unit (GPGPU). In addition, a shared 2GB low power DDR3
memory is available. All components are connected through an energy-efficient bus. Four
INA231 [Tex13] sensors are used to measure current and power separately for “big” cores,
“little” cores, the GPU, and the DDR3 memory. The sensors are connected via an I2C

serial bus to the MPSoC. A photo of the used board is shown in Figure 2.4. Already the
prototype board is rather small, the physical dimension are 94mm× 70mm× 18mm.

An Ubuntu Linux 14.04 LTS operating system, with a modified kernel based on kernel
version 3.10.82, is deployed on the system. In contrast to the simulation-based system,
this is a true multiprocessor operating system. The modifications we made to the kernel
were necessary to enable a nearly seamless integration of the energy measurement and
additional governors controlling the frequency of the processors. We created a tool to
control the CPU’s governors efficiently. Subsection 5.4.1.2 provides more details on how
the governors are used. In addition, we developed two measurement applications, namely
EnergyMeter and Energy Relay Reader. All tools and kernel modifications are available
publicly at [SFB17b]. Section A.2 provides more details on the measurement software.

The Odroid-XU3 platform was used by several other researchers. For instance, Gensh
et al. [GAR15] reported energy and performance results for various experiments. Further,
Backes et al. [BRF15] considered the Odroid-XU3 as a platform for computer vision
applications. The SLAMBench was evaluated on the Odroid-XU3 [NBZ15]. In addition,
Prakash et al. [PWI15] exploited the system’s heterogeneity for data parallel applications.

Chapter 2. Utilizing modern MPSoCs - The PA4RES Methodology 16

Figure 2.4: Odroid-XU3 development board.

They identified voltage-frequency scaling as an important parameter to achieve energy
efficiency without large run time impacts. Aalsaud et al. [ASR16] used measurements
results of the Odroid-XU3 to build an abstract system model.

2.2 Parallelism in Software

Traditionally, developers implement embedded software sequentially especially using low-
level languages like C or assembler. To benefit from modern MPSoCs, developers must
exploit parallelism in their software, regardless if they start with an existing sequential
implementation or from scratch.

According to Asanovic et al., ”Software is the main problem in bridging the gap
between users and the parallel IT industry.” Further, ”Asanovic et al. experience teaching
parallelism suggests that not every programmer is able to understand the nitty gritty
of concurrent software and parallel hardware; difficult steps include locks, barriers,
deadlocks, load balancing, scheduling, and memory consistency” [AWW09]. This thesis
targets these challenges, starting from a sequential application, generating a parallel
solution in a well-defined method. To start, we give a brief overview of the different types
of parallelism typically used in software design, followed by a discussion of the challenges
encountered during the parallelization of software, especially targeting embedded systems.

2.2.1 Types of Parallelism in Software

Whereas classical techniques to improve performance of sequential applications, like in-
creasing the frequency of processors, reached thermal and power limits, parallel execution
promises additional performance gains. Parallel execution is already heavily used in
terms of bit-level and instruction-level parallelism. However, these fine-grained types

Chapter 2. Utilizing modern MPSoCs - The PA4RES Methodology 17

of parallelism are very limited and do not benefit from modern multiprocessor systems.
In the following we present task-level, data-level and pipeline parallelism. These coarse-
grained types of parallelism are key for exploiting the capabilities of modern parallel
architectures, especially when following a sequential programming style or parallelizing
sequential applications.

2.2.1.1 Task-Level Parallelism

Task-level parallelism partitions a program into sets of concurrent computations. On a
very high abstraction level these tasks can provide (isolated) services like a web server
serving multiple requests simultaneously. In this thesis we use a lower abstraction level
for the definition of task-level parallelism considering concurrent execution of instructions
and functions. Thus, this type is also often referred as functional parallelism describing
the parallel execution of entire functions. Sometimes, tasks could be arranged in such a
way that one task generates input for another task leading to a functional parallel pipeline.
Benefits of functional parallelism include the fact that parallelism can be extracted from
source code containing uncounted loops or complex data-dependent control flow inside
the functions.

Figure 2.5 illustrates parallel processing on the same data without dependencies
between the operations. Thus, the execution of the ’+’ and ’-’ computation can be
executed in parallel leading to an asynchronous execution of the tasks. Figure 2.6 shows
the parallel computation on different data.

+ -Operation

Data

Figure 2.5: Task-level parallelism on same data.

+

0

-Operation

Data 1

Figure 2.6: Task-level parallelism on independent data.

2.2.1.2 Data-Level Parallelism

The next type of parallelism splits a block of data into subsequences and processes the
same operation on it in parallel. Figure 2.7 illustrates this paradigm. Here, the data is
partitioned into four blocks which are then processed in parallel by the ’+’ operation. In
case of GPUs, with thousands of compute units, data-level parallelism is the preferred
paradigm. In extreme cases, each parallel instruction is executed synchronously across
all processors.

Chapter 2. Utilizing modern MPSoCs - The PA4RES Methodology 18

+

0

Operation

Data 1 2 3

+ + +

Figure 2.7: Data-level parallelism

The data-level paradigm is often applied to loops. For instance, a loop where each it-
eration manipulates a different element of an array will benefit from data-level parallelism.
These iterations can be executed concurrently. Thus, this type of parallelism is also
called loop-level, doall or doacross parallelism. Depending on the number of iterations
mapped to a parallel task, loop-level parallelism is able to balance the computational
load for target heterogeneous systems. A load balancing algorithm should take care that
fast processors process a larger part of the iteration space than the slower ones.

2.2.1.3 Pipeline Parallelism

Pipeline parallelism has been used in fabrication for several decades where it’s also called
assembly line. Here, the result of one process stage is processed by a following stage.
In case of software, a task produces the input of another task. Figure 2.8 visualizes an
exemplary pipeline structure. As shown, the pipeline stages could work in parallel if
more data is flowing through the pipeline. Pipeline parallelism is sometimes the only
option to exploit parallelism in case of loop-carried dependencies. For instance, an image
processing application applies a set of filters sequentially to a picture. This process can be
pipelined if a set of pictures needs to be processed with an increased overall performance.

+0

OperationData

1 -

Data Operation

Figure 2.8: Pipeline parallelism.

-

-

-

+0

OperationData Data Operation

1.1

1.2

1.3

Figure 2.9: Hybrid pipeline and data-level parallelism.

To further increase the performance, processing stages can be duplicated to exploit
nested data-level parallelism. Figure 2.9 shows this hybrid pipeline data-level parallelism.
This paradigm can for instance, be applied to the previous image processing example.
Here, each pipeline stage applies an operation like filtering. Some filters allow a parallel
processing of pixels or blocks of pixels inside each image.

Chapter 2. Utilizing modern MPSoCs - The PA4RES Methodology 19

2.2.2 Challenges during the Parallelization

Creating parallel software is a time-consuming, complex and error-prone task. Especially,
thinking in parallel dimensions is one of the major issues for software developer. For
some problems, developers might fall back to existing known parallel algorithms, however,
this is not always possible. Nowadays, a lot of effort is put into implementing parallel
applications from scratch using high-level parallel languages. But, in embedded systems,
applications are often designed sequentially as a sequence of consecutive steps including
low-level languages to program special hardware components. In addition, existing legacy
code must be reused to reduce the time-to-market. Thus, embedded software developers
face the complex task to parallelize sequential applications.

In case of embedded systems, the used operating systems, if any, usually have no
or only limited support for parallel applications. Thus, the developer must implement
and control task creation, scheduling, synchronization etc. manually. One key design
principle for resource-restricted embedded systems is to limit additional runtime overhead.
Thus, decisions are usually taken offline at compile time, leading to a static parallelized
application without or with just very limited dynamic behavior. This means that online
load balancing or runtime mapping of tasks is usually not available and must be decided
offline. Finally, ”perhaps the biggest difference [...] is the traditional emphasis on real-
time computing in embedded, where the computer and the program need to be just fast
enough to meet the deadlines, and there is no benefit to running faster” [ACP06].

In the following we highlight four challenges software developers are facing during
their parallelization work. Besides the question if a parallel implementation performs
better, the developer first needs to identify regions in the applications benefiting from
parallelism. Then, the developer must express the parallelism efficiently, dealing with
data dependencies and efficient implementation for various target platforms.

Parallelism identification: Identifying regions in a sequential application which bene-
fit from parallelization is a complex task. Several decades of research brought up
manual, semi-automatic and automatic approaches. In the context of PA4RES,
the PAXES tool [Cor13] identifies parallel regions in a sequential application.

Parallelism expression: After the identification of interesting regions the developer
needs to express the parallelism. In the most complex way, the developer needs
to rewrite the entire application and thus implement the extracted parallelism
manually. This is obviously a complex and error-prone task. Especially keeping a
good maintainability of the code is important. Thus, high-level approaches exist
where the developer annotates for example loops which are then transformed by a
compiler into a parallel application. This mostly keeps the sequential application
and thus eases maintenance.

Dependency handling: During parallelization, the developer needs to deal with de-
pendencies. Synchronization points and data dependencies must be identified. If

Chapter 2. Utilizing modern MPSoCs - The PA4RES Methodology 20

PA4RES Framework

Performance
Estimator

Misc
Execution
Platform

QCAPES

PAXES PICO

Figure 2.10: PA4RES framework overview.

data synchronization between concurrently running tasks is necessary, the developer
needs to implement an efficient data exchange not wasting the benefits from parallel
execution.

Efficient implementation: Finally, the developer must generate an efficient imple-
mentation of the application taking the characteristics of the target platform into
account.

This overview highlights the complex task of creating parallel embedded applications
utilizing modern embedded platforms. This thesis and the PA4RES approach provide
solutions for these major challenges.

2.3 PA4RES - Framework

The PA4RES approach evolved from two European projects: MADNESS and MNEMEE.
It combines the parallelization identification approaches developed in [Cor13] with the
parallelization implementation and optimization techniques presented in this thesis. The
PA4RES framework consists of a set of tools, libraries and miscellaneous files. Figure 2.10
illustrates major parts of the framework. Colors are used to distinguish work which is
part of this thesis and work done in collaboration with others. Orange and gray are used
for tools which are not developed by the author of this thesis, purple for tools partly
developed by the author of this thesis and blue for tools entirely developed and designed
by the author of this thesis. PAXES was developed in [Cor13], whereas the Performance
Estimator (cf. Subsection 2.3.1), execution platforms (cf. Section 2.1) and miscellaneous
parts have been partly developed or enhanced during this thesis. PICO and QCAPES
were entirely developed during this thesis.

Chapter 2. Utilizing modern MPSoCs - The PA4RES Methodology 21

Performance
Estimator

Host Compiler
Execution
Platform

PAXES PICO

Runtime

Operating
System

Sequential
Code

Figure 2.11: Classic parallelization tool flow.

All available tools of PA4RES are based on the MACCv2 [Pyk17] framework. This
framework offers a standardized interface between tools and provides an abstract repre-
sentation of the target architecture such as the amount of processors, the frequencies or
information about the available memories. Using the MACCv2 framework, several tools
can be connected to a tool flow. In the following, we present the classic parallelization
flow, other tool flows will be introduced later in this thesis.

Figure 2.11 demonstrates the classic PA4RES tool flow to parallelize a sequential
application. Sequential code is passed to PAXES in order to identify regions in the
code benefiting from parallelization. Using smart algorithms in combination with the
performance estimator, PAXES generates a parallel solution. In principle, this solution
consists of the sequential source code instrumented with PICO annotations. Section 3.5
gives a detailed description of the supported annotations. Using MACCv2 internal
interfaces, PICO takes the solution, analyzes the annotations and implements the parallel
version with a source-to-source transformation process. After that, the generated source
code is compiled by the target system’s compiler and linked to a lightweight runtime
library and the operating system. In case of the simulation-based systems, the RTEMS
operating system is linked as a library. Finally, the executable can be executed on the
target system.

2.3.1 Performance Estimator

Knowledge about the performance characteristics of the application is important during
the optimization process. Detailed information like execution time or energy consumption
of each individual instruction are key for sophisticated parallelization algorithms. There
are several methods to obtain these data. The system manufacturer could provide this
information, like an addition of two registers takes three cycles and consumes 5 pJ. With
this information, an estimation algorithm could generate a model and perform a static
performance estimation of the application. However, system manufacturers usually do not
provide these data, at least not for the energy consumption, thus alternative approaches
must be followed. One method is to build such models with extensive tests and reverse
engineering. Here, each possible instruction and their combinations are executed and
measured. Building such a generic model is a very complex and time-consuming task.

Chapter 2. Utilizing modern MPSoCs - The PA4RES Methodology 22

int a = 11;
int b = 22;
int c = a + b;
return c;

Listing 2.1: Example source code.

startRegion ();
int a = 11;
stopRegion (); startRegion ();
int b = 22;
stopRegion (); startRegion ();
int c = a + b;
stopRegion (); startRegion ();
return c;
stopRegion ();

Listing 2.2: Instrumented source code.

startRegion ();
int a = 11; // Similarly class ’assignment of constant ’
stopRegion (); startRegion ();
int c = a + a;
stopRegion (); startRegion ();
return c;
stopRegion ();

Listing 2.3: Instrumented source code with similary classes.

The PA4RES framework, with the Performance Estimator, follows a slightly different
approach by generating such models dynamically. In principle, each C statement of the
application is executed and measured on the target platform. Gathered performance
values are then internally annotated to the C statements, accessible by all tools in the
PA4RES framework. For that, the Performance Estimator instruments all instructions
with appropriate startRegion and stopRegion function calls. These calls signal the target
system, e.g. the simulator, to measure the run time and energy consumption of the
statements between the calls. In the case of heterogeneous systems, the statements have
to be executed on all processor types. Listing 2.1 shows an exemplary sequence of C
statements passed to the Performance Estimator, Listing 2.2 lists the instrumented source
code. The added function calls and the associated overhead can be significant. Therefore,
the Performance Estimator supports the concept of similarity classes of statements to
improve the run time of the analyzes:

Definition 2.2 (Similarity Class):
Two statements s and t belong to the same similarity class C if all introduction types
used and their order in the statements are identical.

In a preprocessing step, the application is analyzed and similar statements are
grouped into similarity classes. Then, only one representative statement of each class
is analyzed. This effectively prunes the statements to be analyzed by trading precision
of the generated model. Listing 2.3 shows that the algorithm detected that the two
assignment statements are similar and thus only one statement needs to be evaluated.
The Performance Estimator keeps track of dependencies and adjusts the statements, thus

Chapter 2. Utilizing modern MPSoCs - The PA4RES Methodology 23

they can be compiled correctly. Therefore, the Performance Estimator must ensure that
the host compiler does not apply any optimizations which might remove the statements
under test.

2.3.2 Parallelism Extraction for Embedded Systems

The Parallelism Extraction for Embedded Systems (PAXES) tool was developed by
Daniel Cordes [Cor13] during his PhD thesis. Together with the author of this thesis,
we published several papers [CEM12; CEN13b; CEN13a; CEN13c; Cor13] covering the
different parallelization approaches included in PAXES. In this subsection, we will give a
brief overview of the algorithms necessary to understand the philosophy driving the initial
development of PICO and the extracted types of parallelism. Figure 2.12 highlights the
important steps of the PAXES tool flow. PAXES starts the parallelization processes
with a sequential application written in C. This source code is then transformed into an
augmented hierarchical task graph. The augmentation includes performance estimations
and data dependencies. The data dependencies result from a dynamic profiling run and
thus might be imprecise. The task graph represents the hierarchical structure of the
source code, for instance, a loop node has nested statement nodes for the loop body. This
hierarchical structure is exploited in a bottom-up approach during the parallelization.
PAXES provides Genetic Algorithm (GA) and Integer Linear Programming (ILP)-
based algorithms to parallelize sequential applications. All approaches start at the
innermost nodes and try to find parallel regions at this hierarchical level. According to
the performance estimations and data dependencies, the sophisticated parallelization
algorithms try to map statements to parallel tasks. PAXES thereby follows the idea that
only one processor can execute one task at the moment. Thus, it limits the extracted
parallelism to the number of available processors. Nevertheless, the user can enable
extraction of more tasks than processors. After the current hierarchy level has been
processed, the algorithms move a hierarchical level up and try to find parallelism at this
level. Here it might be beneficial to combine parallelism found at this hierarchy level with
parallelism found deeper in the hierarchies. At the top hierarchy level, the algorithms stop
and the resulting solution is returned to the user. In case of multi-objective optimizations,
a set of Pareto-optimal solutions is returned to the user who then selects the solution
suiting the requirements best.

Basically, these solutions are the original sequential source code augmented with
PICO annotations (cf. Section 3.5). PAXES uses a simplified data dependency detection
and assumes that PICO identifies bad parallelization decisions. In addition, PAXES
abstracts communication and only considers a fixed cost for the data exchange and thus
might mispredict the performance impacts of the parallelization, as the evaluation in
Section 4.5 revealed. Therefore, PICO is an essential part of the PAXES framework.

Chapter 2. Utilizing modern MPSoCs - The PA4RES Methodology 24

Out

In

Node 1

Node 3

In

Out

Node 2

Node 4

In

Out

Out

In

Node 1

Node 2

Node 3

Node 4

Out

In

...

...

...

Out

In

...

...

...

Out

In

...

...

...

...

In

Out

Optimization

int main() {
 /* … */
 for (int i = 0; i < 10; i++) {
 /* … */
 }
}

int main() {
 /* … */
 #pragma parallel for num_threads(4)
 for (int i = 0; i < 10; i++) {
 /* … */
 }
}

int main() {
 /* … */
 #pragma parallel for num_threads(3)
 for (int i = 0; i < 10; i++) {
 /* … */
 }
}

int main() {
 /* … */
 #pragma parallel for num_threads(2)
 for (int i = 0; i < 10; i++) {
 /* … */
 }
}

Figure 2.12: PAXES tool flow, adapted from [Cor13].

2.4 Conclusion

Parallelization offers additional performance gains not achievable with classical techniques
like higher clock frequencies. In this thesis we focus on two experimental platform types,
simulation-based and real hardware platforms using ARM processors. Both types are
allocated in opposite sides of the performance spectrum. The simulator-based platforms
represent low-power embedded systems with a limited operating system support, complex
memory structure and heterogeneous processors. The real hardware platform uses
a state of the art powerful ARM MPSoC used in millions of mobile phones. This
system represents modern high-performance embedded systems, combined with a fairly
powerful GPU enabling GPGPU computing on embedded systems. With versatile power
sensing capabilities, this development board provides an interesting research platform.
These platforms are represented using an abstract system model internally during the
parallelization process.

Parallel applications are key to exploit the capabilities of modern MPSoCs. Task-level,

Chapter 2. Utilizing modern MPSoCs - The PA4RES Methodology 25

data-level and pipeline parallelism are the key paradigms used in this thesis. The identifi-
cation of potential parallelism in sequential applications is already a very challenging task.
But, expressing parallelism and dependencies efficiently is very important to support
software developers facing the task to parallelize sequential embedded systems. The
PA4RES framework offers a holistic approach to extract parallelism and implement the
parallel application efficiently. Especially for the latter part, this thesis provides solutions,
aiding software developers to create parallel applications running on low-power embedded
systems efficiently.

Chapter 2. Utilizing modern MPSoCs - The PA4RES Methodology 26

Chapter 3

PICO-Framework

Contents
3.1 Introduction . 28

3.2 Application Model . 29

3.2.1 Communication Model . 30

3.2.2 Structure and Components of the Application Model 31

3.2.3 Programming Language Requirements - Parallelizable C 33

3.3 Related Work . 33

3.3.1 General Overview . 34

3.3.2 OpenMP Related Work . 37

3.3.3 Distinction from OpenMP . 38

3.4 PICO - Framework Overview . 40

3.5 PICO Directives . 41

3.5.1 Task-Level Parallelism . 42

3.5.2 Data-Level Parallelism . 43

3.5.3 Pipeline Parallelism . 45

3.5.4 Hybrid Pipeline Parallelism . 47

3.6 Internals of PICO . 49

3.6.1 Analysis Phase . 50

3.6.1.1 Program Dependence Graph Construction 52

3.6.1.2 Parallel Region Extraction 55

3.6.1.3 Task Graph Construction 56

3.6.2 Implementation Phase . 59

3.6.3 Limitations . 61

3.7 Evaluation . 62

3.7.1 Proof of Concept and Implementation 62

3.7.2 Usability Analysis . 63

3.7.3 Performance Analysis . 65

3.7.3.1 Homogeneous Experiments 66

27

Chapter 3. PICO-Framework 28

3.7.3.2 Heterogeneous Experiments 68

3.8 Conclusion . 72

3.1 Introduction

The design of efficient MPSoC systems is a challenging task. Martin [Mar06] provides
a comprehensive overview of challenges developers are facing. One key challenge is
the efficient utilization of multiple processors. Programmers are used for decades to
program their applications sequentially and a lot of legacy code should be reused
for the new platforms. Manual implementation of parallel applications either from
scratch or sequential legacy code is a complex, time-consuming and error-prone task,
thus an automation of these processes or an easy code migration path is preferable.
During the parallelization for embedded systems, bottlenecks like bad load balancing,
bad resource allocation or using more parallelism than necessary must be avoided.
These performance losses result from ignoring the heterogeneity as well as the resource
limitations of embedded processors, memory systems, and communication channels. A
good parallelization approach at the same time enables developers to reuse large libraries
of existing C code. The PA4RES methodology aims to preserve the original sequential
structure of existing application and therefore requires an approach that is able to create
a parallel version from a sequential program with as little modifications as possible.
Simple annotations should be used to express complex types of parallelism and hide
complexity like the detection of data dependencies and their efficient synchronization.
Further, this approach must support an automatic alignment of the implementation
towards the capabilities, like distributed operating systems, of the target low-power
system. This is key to run parallelized applications on such resource-restricted systems
efficiently. To tackle these challenges and meet PA4RES’ requirements, we developed
the Parallelism Implementer and Communication Optimizer (PICO) framework. This
chapter presents the parallelism implementation (PI) part of PICO whereas Chapter 4
focuses on the communication optimization (CO) part.

Today’s existing parallelization techniques mostly target High-Performance Com-
puting (HPC), which tends to be more homogeneous and at the same time much less
resource-constrained compared to typical low-power embedded systems. As a consequence,
using HPC tools is not an ideal solution to generate parallel software for constrained
embedded systems and may waste optimization opportunities and result in overallocation
of resources. A fundamental drawback of existing HPC approaches is that the underlying
assumptions of given software structures do not fit to typical embedded applications, since
embedded software may exhibit different control flow structures and data dependencies
compared to high-performance computing. Whereas many HPC applications can be
executed efficiently using coarse-grained task-level and fine-grained data-level parallelism
originating from large data to process, many embedded applications only operate on small
data sets or streaming data and thus exhibit more complex parallelization requirements.

Chapter 3. PICO-Framework 29

This can lead to a substantial efficiency loss when applying HPC parallelization tools to
embedded MPSoCs. Researchers developed several approaches to parallelize applications
from the embedded systems domains. However, they do not satisfy the requirements
of the PA4RES methodology. A detailed discussion of related approaches is given in
Section 3.3.

In this thesis we developed the PICO methodology which provides a solution to
efficiently create parallel applications for resource-constrained embedded MPSoC plat-
forms running no, one or multiple real-time operating systems in a straightforward way.
PICO is able to automatically detect data dependencies, implement necessary data
synchronization and optimize the communication considering multiple objectives, like
run time, energy consumption and memory requirements. Establishing such a system
requires a large-scale effort, we did not start completely from scratch. Rather, PICO is
in parts inspired by the well-known OpenMP [Ope17] syntax and semantics. We think
this has a number of advantages since the basic parallelization model, API style, and
annotation syntax are familiar to a broad range of developers. Thus, PICO perfectly
suits for an iterative prototype driven parallelization process as well. However, our
implementation is not derived from existing OpenMP variants. The major reason for
this is that PICO tries to apply an established design principle of embedded systems,
namely to accomplish as many decisions as possible at compile time, thereby reducing
the required runtime overhead. As a consequence, decisions for scheduling and resource
allocation are performed statically in PICO. Further, PICO does not require a shared
memory architecture. Due to automatic dependency extraction, PICO can implement
channel-based synchronization automatically. In addition, a port of OpenMP to a system
with potentially multiple real-time operating systems with its limited hardware resources
is a complex and not very promising task. However, the PICO approach inherits some
features from OpenMP and we discuss the differences in Subsection 3.3.3.

This chapter covers work published in several forms. Initial results were presented in
20131. A paper was published at SEPS [NEM14], leading to a journal article [NEM16].
In this thesis we provide detailed insights into PICO as well as extensions and updates
to the existing publications. Section 3.2 introduces the application model and discusses
requirements onto the input language. Related approaches are discussed in Section 3.3
and Section 3.4 describes the general structure of PICO. Section 3.5 presents the PICO
annotations to express parallelism and Section 3.6 gives insights into the internals of
the framework. The evaluation results are presented in Section 3.7 and Section 3.8
summarizes this chapter.

3.2 Application Model

The MNEMEE and MADNESS projects identified the fork-join execution model [Con63]
as suitable for their requirements and PA4RES, as the spiritual successor, inherits this

1Olaf Neugebauer: "Design of an Infrastructure to Support Embedded Application Design for Hetero-
geneous MPSoCs (Research presentation)", M-SCOPES, 2013

Chapter 3. PICO-Framework 30

model. In this model, a sequential task forks multiple concurrent tasks forming parallel
regions. Inside these regions, new parallel tasks can be forked. At a subsequent point,
the parallel tasks join back to a sequential execution. In our variant of the fork-join
model, data exchange from sequential to parallel sections and vice versa as well as data
exchange between parallel sections is possible.

Task 0 Task 0

Task 1

Task 2

fork join

sequential parallel sequential

Task 1.2

Task 1.1

fork join fork

Task 3.1

Task 3.2

Task 3.3

Task 3.4

parallel

Task 0

join

sequential

Figure 3.1: Fork-join execution model.

For clarification, Figure 3.1 illustrates an exemplary behavior of a parallel application
following the fork-join model. Task 0 runs sequentially until the first fork point. Here,
the flow splits into two parallel tasks and the original task suspends until the parallel
region ends. Tasks 1 and 2 can now run in parallel and Task 1 also spawns two new
tasks. Thus, three tasks can now be executed in parallel. After the parallel regions reach
the join points, the sequential execution of Task 0 continues. At some later point, Task 0
spawns four new tasks for concurrent execution. Finally, all parallel tasks are joined and
Task 0 resumes. In our model, this behavior could also be wrapped in a loop typical for
embedded systems. For instance, a data stream is processed and for each element of the
stream, the parallel behavior from Figure 3.1 is applied.

3.2.1 Communication Model

Data access is crucial in every application. Especially for parallel applications, data
access and the accompanying synchronization are an essential, complex and error-prone
job. In the PA4RES methodology, it is important that data is always consistent and
coherent. Thus, PA4RES employs a hybrid communication model using sharing and
message passing-based data exchange. During the parallelization process, the framework
identifies data dependencies and integrates proper synchronization. Starting with a
sequential application, PICO preserves the read and write order of data during the
parallelization. PICO achieves this with dedicated FIFO channels to communicate data
between concurrently running tasks. Here, data is produced by one task, transmitted
through an exclusive channel and consumed by another task. This producer-consumer
paradigm ensures that the data access order is equal in the sequential and parallel
application. This approach is comparable to deterministic message-passing concurrency.
In theory, with unlimited channel sizes, writing to a channel is always possible and

Chapter 3. PICO-Framework 31

reading blocks if no data is available. However, in reality, physical limitations like
available memory needs to be taken into account. PICO can map these channels either
to (shared) memory or dedicated communication hardware and provision the channels
to meet certain requirements like energy budgets. Our methodology allows a manual
relaxation of the concurrency model. Thus, data can be stored unsynchronized in a
shared-memory accessible by all processors globally if available. However, this can violate
the order of memory accesses and produce wrong results. Private data should be stored
in local memories to reduce the pressure on the memory system and communication
infrastructure. Chapter 4 provides details on the communication optimization of PICO.

3.2.2 Structure and Components of the Application Model

Internally, PICO works on a graph representation of the application. This graph contains
the following node types:

Statement Node: This node represents a statement. In the initial stages, these nodes
are constructed from the sequential source code. In later stages, PICO might add
additional statement nodes to model the parallel version correctly.

Fork Node: A fork node splits the (sequential) control flow into concurrent one. A fork
node is connected to one or more task in nodes.

Task In Node: A task in node (taskIn) is the first node of a task and bundles the
incoming control and data flow. A task always starts with a task in node.

Communication Out Node: A communication out (comOut) node models the explicit
data synchronization between concurrently running tasks. Therefore, it knows
the corresponding communication in node, the data to synchronize. To model
the FIFO semantic, the communication out node also keeps track of the concrete
channel parameters like mapping and buffer size.

Communication In Node: The commutation in (comIn) node models the receiving
side of the channel-based synchronization. It is internally connected to the related
communication out node to get access to stored information like the buffer size.
This eases the maintainability since only the comOut nodes store the vital data.

Task Out Node: The task out node (taskOut) bundles the task internal control and
data flow leaving the task. Therefore, a task is always exited at the task out node.

Join Node: The join node bundles the concurrent control flows, thus this node is
directly connected to the task out nodes.

With these basic components we can define the PICO task as follows:

Definition 3.1 (PICO Task):
A PICO task starts with a task in node and ends with a task out node and may contain
all other types of nodes.

Chapter 3. PICO-Framework 32

Therefore, in the context of this thesis, we use the term task in the sense of a PICO
task. Such a PICO task can be executed by an operating system thread or implemented
directly for the target system. Beside the actual node type, the nodes themselves may
contain the following additional information:

Task assignment: This field represents the assignment of the node to a specific task.

Iteration count: In case of counted loops, the nested nodes provide information on the
iteration count.

Costs: Nodes may provide execution costs in terms of run time and energy consumption.

Dependent interations: In case of parallel loops, this field provides data indicating
in which iteration number this node is executed.

Different types of control and data edges are used in the application model:

Control Edge: A control edge represents the normal control flow.

Loop In Edge: The loop in edge models the hierarchical structure of a loop in case of
entering the loop.

Loop Back Edge: The loop back edge models the hierarchical structure of a loop in
case of exiting the loop.

Call Edge: A call edge symbolizes a call to a function.

Return Edge: Leaving a function is modeled with a return edge.

Data Edge: A data edge models the data flow inside the application. Therefore, it
models the dependency type and direction of the data flow.

Section 3.6 gives a detailed description of the internal processing steps to obtain such
application model. There, the entire process starting from a sequential representation
to this parallel model is presented. However, in the following, we give a brief example
of the application model. Figure 3.2 shows a comprehensive visual representation of
the application and communication model used in the PA4RES methodology. In this
graph, the purple circles represent statement nodes, the orange triangles are used for fork
and join nodes, light purple and orange nodes represent communication points, control
flow is shown by solid black lines and data exchange/dependencies are drawn with red
dashed lines. In this example, a sequential task forks two parallel tasks and passes data
through a designated task in node to one child task (task on the left side). During the
implementation, the framework decides with respect to the target platform if the data
needs to be transmitted e.g. in case of distributed memories. Both parallel tasks have a
nested loop. In this example, the computation node in the left parallel task produces
data which is consumed in the other task. Communication nodes, representing FIFO
channels, are used for this data exchange. Finally, the right parallel task produces data
used in the sequential parent task. Section 3.6 gives more details on the actual internal
implementation of this model and the necessary graph transformations.

Chapter 3. PICO-Framework 33

Com In

Task Out

Task In

Com Out

Task Out

Task In

Join

Fork

Figure 3.2: Abstract application model with communication used in PA4RES.

3.2.3 Programming Language Requirements - Parallelizable C

The PA4RES framework processes applications written in C, a widely used programming
language, especially in the embedded systems domain. The language allows direct memory
manipulation and low-level programming, often used to access dedicated hardware
or to ensure timing predictable behavior. However, due to several side effects, like
complex pointer arithmetic analysis, an automatic parallelization approach for C is
quite challenging. Therefore, PA4RES exposes some requirements to the input source
code. In general, the Parallelizable C coding rules [MOK10] are a good starting point.
Beside these rules, PA4RES requires knowledge about the iteration space for the loops
to be parallelized. This is necessary to realize a static scheduling, reducing the runtime
overhead requested by the embedded system nature. This knowledge can be derived
from fixed loop iteration counts. Bounds for simple loops can be analyzed and calculated
by PA4RES automatically. For complex loops, flow facts [KKP11] annotations are
required. However, the user can pass object files to the framework containing low-level
programming or complex memory interaction. In such a case, PICO does not consider
that object file and assumes it does not produce side effects.

3.3 Related Work

So far, researchers developed a number of tools and approaches to parallelize sequential
applications. The first approaches we present target the implementation of parallelism

Chapter 3. PICO-Framework 34

based on annotations in sequential application source code, especially focusing on methods
targeting the embedded domain. The following approaches require more (destructive)
modifications to the original source code. Finally, we present OpenMP related approaches.
Some of the work discussed here will be revisited in Chapter 4 in perspective of the
communication implementation and optimization properties.

3.3.1 General Overview

Generally, parallelizing compilers and automatic parallelization techniques have been
in the focus of research for many decades (cf. [Mid12; BEN93; KA02]). Without a
claim of completeness, a few important inspiring works must be mentioned. The SUIF
parallelizing compiler suite [WFW94] set the foundation for many important publications
like [HAA96] or [LDB99], highlighting the importance of human knowledge during the
parallelization process. An automatic pipeline extraction with Decoupled Software
Pipelining (DSWP) algorithm was presented by Ottoni et al. [ORS05]. Tournavitis et
al. [TWF09] presented interesting approaches where they used machine learning to find
candidate loops benefiting from parallelization. Then, OpenMP was used to parallelize
those loops. Later [TF10] extended their work to pipeline parallelism. According to
the PA4RES methodology, the parallelization proceeds in two phases. PAXES detects
parallelism and PICO implements the parallelism. Therefore, we shift the focus to work
which is more related to PICO.

IMEC’s MPSoC Parallelization Assist (MPA) [IMM10; MBA09; BBW09] provides
an approach to parallelize sequential applications especially targeting MPSoCs. MPA
targets data-dominated applications from the signal processing domain. To parallelize
an application, the user groups C statements into blocks naming them with unique
labels. A separate parspec file is then used to manually specify the type of parallelization
for the labels as well as shared variables and LoopSyncs, describing the interleaving
iterations between data accesses in loops. For example, code block with label A should
be parallelized with data-level parallelism. Using different parspec files, the user can
explore several parallelization solutions without modification of the original source code.
Communication is implemented via FIFO channels. The channel size is derived from
manually specified LoopSyncs and is fixed in size and other implementation details. MPA
was used in the MNEMEE project. In contrast to PICO, MPA does not consider energy
consumption, memory requirements and limitations, as well as utilization of different
memories for communication. Thus, MPA neglects optimization opportunities offered in
the data exchanges of parallel running tasks.

The SPRINT tool [CDV07], MPA’s predecessor, allows the implementation of func-
tional parallelism specified by user directives. Thus, each task implements a different set
of C statements grouped by C functions or labeled statement blocks. It is possible to
map a single function, a single label or multiple consecutive labels to a task. Targeting
streaming applications, the tool generates an executable concurrent SystemC model from
sequential C code, consisting of FIFO-like communication channels and tasks. Similar to

Chapter 3. PICO-Framework 35

MPA, the user specifies parallel functions or statement blocks and shared variables in a
separate file. FIFO channels are inserted for all live variables crossing task boundaries.
For each variable a separate FIFO channel is inserted. Thus, the resulting implementation
is comparable to a Kahn Process Network (KPN). Selection of shared variables, and
the size of the FIFO channels are done manually. Platform portability is achieved by
leaving the implementation of the communication unspecified, instead SPRINT provides
a set of standardized API calls. For each target platform, a library is necessary that
implements the communication specified by the API. In contrast to SPRINT, PICO
supports task-level, data-level and (hybrid) pipeline parallelism with respect to multiple
objectives like run time or energy consumption.

An approach, more related to PAXES’ task-level parallelization and the PA4RES
approach in general, was presented by Ceng et al. in [CCS08] and later refined by
Castrillón Mazo et al. [CL14]. A semi-automatic parallelization technique integrated in
the MPSoC Application Programming Studio (MAPS) produces instrumented source code.
MAPS uses the Tightly-Coupled-Thread framework (TCT) [ILK08] as a backend. TCT
supports task-level and pipeline parallelism and inserts inter-processor communication
automatically. Thread scopes defined by THREAD annotations are used to express the
parallelism. Data exchange between concurrently running threads is implemented via
message passing on dedicated communication hardware, provided by the custom-designed
target hardware. In contrast to PICO, TCT focuses on homogeneous systems and
therefore does not support load balancing of loops, especially important for heterogeneous
architectures. Further, communication requires dedicated hardware modules. A later
MAPS version proposes C for Process Networks [SSO14] allowing an application designer
to describe parallelism manually through a KPN directly in C.

Thies et al. [TCA07] developed a parallelization approach leveraging coarse-grained
pipeline parallelism in C applications. Using a set of annotations, the user expresses
parallel loops with pipeline stage boundaries. Besides plain pipeline stages, this approach
also supports the construction of hybrid pipeline stages. Communication is inserted
automatically between the pipeline stages in case of stage boundary crossing data
dependencies. Thies et al. identified static data dependency analysis for general C
programs as a challenging task. Thus, this approach proposes an unsound dynamic
data dependency analysis based on Valgrind2. Using profiling runs with test data, the
approach records all data dependencies inside the loop and derives from these observations
the necessary data to transmit between the pipeline stages. The authors argue that
this unsafe analysis is acceptable in the domain of streaming applications since the loop
behavior over the entire run time of the application is usually stable. The quality of the
analysis surely depends on good input data during the initial profiling. In the paper,
they conducted six case studies demonstrating the applicability of their approach for
streaming applications. However, in contrast to PICO’s static analysis, this dynamic
approach requires good training data and it is unclear if it is applicable to a wider

2http://valgrind.org/ - instrumentation framework for building dynamic analysis tools

http://valgrind.org/

Chapter 3. PICO-Framework 36

range of application types. Their approach requires strong operating system support and
relies on standard inter-process communication mechanisms offered by the target system.
Further, this approach does not consider heterogeneity or resource-restrictions and only
supports pipeline parallelism.

So far, all presented approaches try to preserve the sequential source code of the
application and just use annotations to express parallelism. In principle, those annotated
codes could also be compiled to a sequential application. Since this thesis also follows this
idea, we only present some exemplary approaches leveraging this requirement, allowing
strong modifications of the code.

SoC-C [RFG08] targets an efficient design of parallel applications for System-on-a-Chip
(SoC) by introducing language extensions for C. Following channel-based decoupling,
SoC-C generates parallel applications according to manually added communication
primitives. SoC-C thereby extracts pipeline and task-level parallelism, but data-level
parallelism is not supported. Parallel versions are extracted by partitioning the source
code according to the synchronization barriers. In contrast to PICO, the user of SoC-C
needs a deep knowledge of the data dependencies to correctly identify and place the
channel synchronization barriers for the necessary data. Since this approach extends the
language and adds new instructions, the code cannot be compiled without the SoC-C
compiler.

Kwon et al. [KKJ08] developed a parallel-programming framework which requires the
programmer to specify the application as common intermediate code (CIC), following
the idea of a separation of algorithms and platform-dependent implementations. Due
to this separation, the application code is retargetable. CIC consists of two parts,
application or task code and an architecture description. The task code uses high-level
non hardware dependent API calls to map code to accelerator hardware as well as to
interact with the system like reading files. Parallel tasks exchange data either through
channels or shared-memory, proper API calls need to be added by the user. Task-level
and pipeline parallelism are specified using task definitions, data-level parallelism can be
expressed using OpenMP directives inside these definitions. Besides hardware features,
the architecture description also specifies task dependencies and constraints like real-time
requirements, energy budgets or memory limitations. Finally, a CIC-translator translates
the task code with respect to the architecture description into platform-dependent C
code. Even if the application development approach differs from PICO’s philosophy,
using architecture knowledge to improve the performance and exploit the capabilities of
the target system is also an integral part of the PA4RES methodology.

Verdoolaege et al. [VNS07] presented a technique which transforms sequential appli-
cations into KPN, which implicitly describes the parallelism of the application. Their
approach requires the application to be specified as a (Static) Affine Nested Loop Program
(SANLP). Unfortunately, all loops in the application have to be affine and consist of a
single main loop which is not always the case in real-life applications. This approach is
also used in the Deadalus framework [NTS08] and the MADNESS project.

Chapter 3. PICO-Framework 37

3.3.2 OpenMP Related Work

OpenMP [Ope17] is the de-facto standard high-level shared memory programming model
for desktop and high-performance computing. Its nondestructive pragma-based design
made OpenMP attractive for developers. When limiting the used directives, the sequen-
tial solution is preserved and this eases the understanding and maintainability of the
underling application. Traditionally, OpenMP compilers translates these directives into
multithreaded applications utilizing runtime libraries. These special runtime libraries
can be very heavyweight and usually do not exist for embedded systems. However,
the accessibility of OpenMP encouraged researchers to investigate its applicability for
embedded systems. In the following, we present related work, discussing OpenMP for
embedded systems, pipeline parallelism and automatic dependency detection. Subsec-
tion 3.3.3 highlights differences between OpenMP and PICO as well as the historical the
approaches.

The Multicore Association (MCA) [Mul17] provides a standardized API for commu-
nication, resource management and task management. Vendors and projects focusing on
embedded multicores implemented these APIs, like for example EMB2 [Sie17]. Wang
et al. [WC13] developed libEOMP, a portable OpenMP runtime library focusing on
embedded systems. This library maps OpenMP constructs onto the MCA APIs with
a source-to-source translation implemented using the OpenUH [LH07] compiler. They
demonstrated that libEOMP does not introduce significant overhead and the perfor-
mance of applications developed with libEOMP perform comparable to vendor-specific
approaches. Sun [SCZ15] later extended the work and presented a runtime library
enabling a mapping of OpenMP task and taskgroup constructs to MCA APIs. The
presented approaches show that OpenMP can be mapped to embedded systems, however,
they still rely on the availability of the MCA libraries.

OpenMP has been ported to embedded systems by either relying on the available
operating system [IAF12] or following a bare-metal approach such as Stotzer et al.
[SJA13]. Using a vendor specific light-weight multi-core library called Open Event
Machine, Stotzer et al. mapped OpenMP to a heterogeneous embedded system. In
addition, they experimented with an early prototype implementation of OpenMP’s
acceleration extension, allowing offloading to DSPs. Further, they stress the importance
of different memory management and cache coherence techniques used in heterogeneous
systems in context of OpenMP’s relaxed synchronization protocol. Jeun et al. [JH07]
implemented OpenMP programs on MPSoC without an operating system support. Their
approach supports just a subset of OpenMP directives. Chapmann et al. [CHB09] also
identified the support of different memory architectures and offloading as a missing part
in OpenMP. They introduce a target clause for OpenMP tasks to execute a task on a
specific target processing unit. Their approach was implemented in a source-to-source
translation using the OpenHU [LH07] compiler. Liu et al. [LC03] also propose extensions
for OpenMP to enable work-sharing across multiple DSPs.

The research group of Luca Benini extensively investigated the usage of OpenMP in

Chapter 3. PICO-Framework 38

the context of complex memory hierarchies typically found in embedded systems. Just
to name a few, Marongiu et al. [MB09] proposed language extensions to OpenMP to
allow programmers to map data to local memories, like SPM. Their approach is able to
utilize explicitly managed memory hierarchies which are often found in embedded devices.
They implemented their extensions in a custom compiler. Later, they extended their
work with a compiler-based semi-automatic array partitioning [MB12] using profiling
information. The framework assists the developer in distributing the memory access to
different memory locations to improve the performance. Burgio et al. [BTM13] developed
a runtime layer for OpenMP tasks targeting embedded shared memory clusters. A work-
queue design is used to distribute the work. For such clusters, Marongiu et al. [MCT15]
developed a programming model based on OpenMP. Their model is intentionally simple
to increase the usability. For the target many-core systems, organized in a multicluster
design, the presented offload directives achieved speedups comparable to hand-optimized
OpenCL code.

Enhancing the execution model of OpenMP promises benefits of combining relaxed
and sequential synchronization. Adding channel-based or message passing data exchange
to OpenMP seems promising to bridge the gap between the shared and distributed
memory world. Especially for the high-performance computing domain this hybrid model
was examined by several researchers. For instance, Rabenseifner et al. [RHJ09] provide
some cases where such a hybrid model led to significant reduction in data exchange,
memory consumption and improved load balancing. Lusk and Chan [LC08] conducted
experiments with a combined OpenMP and MPI [MPI17] approach. Pipeline parallelism
might sometimes be the only option to parallelize an application. Stream programming
allows to explore task-level, data-level and pipeline parallelism. Pop and Cohen [PC11;
PC13] enriched OpenMP 3.0 with stream programming directives. By changing the
execution model, pipeline parallelism can be naturally expressed with their extensions to
OpenMP. Data dependencies between the pipeline stages are specified explicitly by the
developer.

The presented work emphasizes the importance of memory hierarchies, especially
different memory types as well as offloading or task mapping in general to exploit the
capabilities of modern heterogeneous MPSoC. PICO is capable to explore different
memories for data exchange and provides an intuitive way to map computation to
different processing units. In addition, PICO does not rely on vendor specific library
support and due to its source-to-source transformation PICO can easily be adapted to
new platforms. PICO does not follow the user-defined synchronization, relaxed shared-
memory model employed by OpenMP, it uses channel-based communication per default.
Using special directives, PICO can be configured to follow OpenMP’s model.

3.3.3 Distinction from OpenMP

Using OpenMP’s syntax and semantics as the foundation for a parallelization tool for
embedded systems is attractive due to its familiarity and its easy and seamless integration

Chapter 3. PICO-Framework 39

into C code. However, in order to create efficient embedded parallel software especially
targeting low-power systems, in the PA4RES project, we discovered that a number of
additional approaches and extensions to the feature set of OpenMP were required.

A conventional OpenMP runtime environment is often not available for typical low-
power embedded systems, for example, due to restricted APIs, employed process models
or distributed operating systems. While porting an existing OpenMP implementation to
a POSIX-compliant operating system is possible, this obvious approach has a number
of drawbacks. Common OpenMP implementations rely on runtime decisions for task
scheduling and additional resource allocations. For low-power embedded systems, in the
PA4RES methodology, however, the amount of resources as well as the set of tasks are
known at design time. This information are at least available after the parallelization
extraction phase done by PAXES. Accordingly, most resource allocation and scheduling
decisions can already be accomplished at compile time, which reduces the required
runtime overhead significantly. This results in a very lightweight runtime library in
contrast to OpenMP’s standard library.

PICO provides a straightforward method to map tasks to specific processing units. In
addition, offline load balancing of parallel loops is supported. Both aspects are important
to efficiently utilize modern heterogeneous MPSoCs. OpenMP’s target extension, however,
focuses on offloading to accelerators like GPUs. Finally, one of the most relevant
differences between HPC and embedded software is the more complex form of parallelism
in embedded software. While task-level and simple data-level parallelism can be easily
analyzed and annotated by an experienced programmer, pipeline parallelism and its
dependencies are much less obvious and, consequently, much harder to detect and
implement. Hence, PICO offers a well-defined method to express pipelines and provides
data flow analysis enabling an automatic detection of data dependencies. Therefore,
PICO provides automatic insertion of communication and synchronization primitives
as required to guarantee a correct execution of the parallelized application. In order to
adapt this to a large number of possible on- and off-chip communication infrastructures
of different MPSoC, PICO not only supports communication over shared memories, but
also using different communication infrastructures such as hardware FIFOs or NoCs. To
achieve this, we would have to change the default synchronization model of OpenMP
drastically, another reason we decided to develop PICO.

Initial work on PA4RES and PICO especially started in early 2012. In this time
period, the OpenMP committee released first technical reports considering accelerators
and coprocessor devices. With OpenMP 4.0 (end 2013), the support of heterogeneous
systems was standardized. The OpenMP community discussed about support for pipeline
parallelism around this time as well. Overall, PICO is inspired by OpenMP, but during
the development time both approaches were not synchronized.

Chapter 3. PICO-Framework 40

P
a

ra
ll

e
li

sm
 I

m
p

le
m

e
n

te
r

a
n

d
 C

o
m

m
u

n
ic

a
ti

o
n

 O
p

ti
m

iz
e

r
(P

IC
O

)

A
n

a
ly

si
s

C
o

m
m

u
n

ic
a

ti
o

n
 O

p
ti

m
iz

a
ti

o
n

E
va

lu
a

ti
o

n
 &

 I
m

p
le

m
e

n
ta

ti
o

n
Preprocessing

Estimate
Performance

Execution
Estimation

Yes Annotate
Instructions

Build Program
Dependency

Graph

No

Extract Parallel
Regions

Build Task Graph
Build Execution

Model

Finish Pareto-Front
Yes

Evaluate

Evaluate
Execution Model

Execute on Target
Platform

Implement Graph

Analyze
Communication

Build Population

Mutate
Population

No

Evaluate
Population

Online Offline
Implement Graph

Generate Source
Code

Figure 3.3: PICO framework overview.

3.4 PICO - Framework Overview

Figure 3.3 illustrates the internal structure of PICO. A flow diagram is used to highlight
the internal flows and the major parts of the tool. Depending on the configuration,
different parts are connected for a specified tool flow. PICO is split into three phases:
analysis, communication optimization and evaluation and implementation. This chapter
covers the analysis and implementation phases, whereas Chapter 4 is dedicated to the
communication optimization. In the following, a brief overview is given and more details
can be found in the related sections.

PICO is implemented in C++ following the MACCv2 methodology. Thus, PICO can
interact with all available tools in the PA4RES framework through standardized interfaces.
PICO uses the ICD-C compiler framework [Inf18] to generate a high-level abstract
representation of the input code. This representation is called ICD-C Intermediate
Representation (IR) and comparable to a collection of Abstract Syntax Tree (AST).

Chapter 3. PICO-Framework 41

ICD-C also provides methods to manipulate the IR for code generation and basic data
and control flow analysis.

In the analysis phase, PICO starts with annotated C source code (cf. Section 3.5) and
transforms it into an IR. In a preprocessing step, PICO performs several optional program
optimizations like constant and value propagation or constant folding with the intention
to improve later analysis. These program transformations are partially supported by
the integrated ICD-C compiler infrastructure. In an optional performance estimation
process, PICO passes the (optimized) IR to the Performance Estimator. Resulting
performance estimations are attached to the IR accessible by PICO. Using the IR,
PICO then extracts the application model, representing the control and data flow of the
input application. On this graph, PICO performs several graph modifications according
to the selected parallelization strategies annotated by the user. The resulting task
graph represents the parallel structure with added communication and task management.
Section 3.6 provides more details on the internal processing steps. Finally, the analysis
phase is also responsible for the construction of a simplified execution model of the
parallel application. Subsection 4.4.2 shows how this model can be used during the
communication optimization.

During the evaluation and implementation phase, depending on the selected flow,
PICO emits the implemented parallel task graph as C source code and terminates or
conducts a performance evaluation. In the latter case, the user chooses either an offline
or online evaluation. The offline evaluation uses the previously constructed execution
model. More details can be found in Subsection 4.4.2. In case of an online evaluation,
PICO transforms the graph down to C code and then uses host compilers to generate
executable binaries. It then performs evaluation runs and measures the performance of the
application. Performance values, regardless of the origin (offline or online evaluation) can
then be fed back to PICO’s analysis phase, e.g. to steer the communication optimization
process.

3.5 PICO Directives

This section presents the interface between the user, either a developer or PAXES, and
PICO. As discussed above, PICO uses annotations inspired by OpenMP to express
parallelism. We expect that the usability and acceptance of PICO will benefit by adopting
this style, especially for new users. Like OpenMP, PICO uses #pragma directives to
annotate parallel regions. The #pragma pico directive marks regions where PICO
should perform the parallelization. To increase accessibility, OpenMP’s #pragma omp

directive can also be used. Resulting parallel programs use the fork-join application
model presented in Section 3.2. An annotation consists of a directive describing the type
of parallelism, whereas optional clauses add additional information and configurations.
Reusing clause idioms in multiple directives eases the usage of PICO. The following
section explains the available directives and clauses.

Chapter 3. PICO-Framework 42

Parallelization directives partition the sequential source code into parallel regions.
Such a region starts with the keyword pico parallel followed by the type of parallelism.
In a parallel region, multiple tasks are specified which can be executed concurrently.
In the PA4RES terminology, a task is a set of C statements (cf. Section 3.2). Tasks,
for instance, can be executed by operating system threads. According to the PA4RES
methodology, the sequential structure of the application code must be preserved. Thus,
source code modifications, especially rearrangement of instructions, are not allowed. In
our opinion, this eliminates possible pitfalls and thus quickly leads to parallel prototypes.
To group statements to tasks, a clause named taskid is used. Otherwise, each parallel
section will result in a new task. This enables the developer to assign statements to tasks
freely without reordering them. The num_threads clause limits the number of parallel
tasks. If the number of tasks is not specified by the developer, PICO generates as many
tasks as available processing elements. We will use processor as a synonym for processing
units. To designate a task to a specific processor, PICO provides the processor clause.
The processors are identified with a unique id given by the MACCv2 framework. It is
also possible to assign a task to a set of processors and PICO takes care of the final
mapping. If no processor mapping is specified, PICO uses a heuristic to assign tasks to
processors. Here, the algorithm takes the system capabilities reported by the MACCv2
framework into account. According to the employed data analysis, PICO implements
communication to synchronize data between concurrent tasks. Since the implemented
static C data analyses tend to generate conservative results, the user may specify data
as global such that PICO does not implement data synchronization for this data.

3.5.1 Task-Level Parallelism

The pico parallel sections directive expresses regions employing task-level paral-
lelism. The pico section pragmas partition the code inside a region into concurrent
tasks. Listing 3.1 shows a parallel section with two nested tasks. In this example, three
statements are mapped to two different tasks distinguished by numeric identifiers. Task
1 will be executed either on processor 1 or 3. The mapping process later decides which
processor should be used. In this example task 2 is allocated to processor 2. Figure 3.4
shows a possible runtime behavior of this example.

pragma pico parallel sections num_threads (2)
{

pragma pico section taskid =1 processor ={1 ,3}
a = b + c;
pragma pico section taskid =2 processor ={2}
d = func(b, c);
pragma pico section taskid =1 processor ={1 ,3}
e = a + b * 42;

}

Listing 3.1: Parallel sections.

Chapter 3. PICO-Framework 43

Task 0

Task 1

Task 2

t

a = b + c

d = func(b, c)

e = a + b * 42

Figure 3.4: Runtime behavior: Parallel sections, cf. Listing 3.1.

3.5.2 Data-Level Parallelism

PICO provides the pico parallel for directive to parallelize counted loops. This
method executes a loop as multiple concurrent tasks. According to the PA4RES method-
ology, iterations are scheduled statically and thus the allocation must be done during
compile time. The developer can control the mapping behavior with special clauses. If
no scheduling is defined by the user, PICO uses heuristics to generate a valid iteration
schedule. PICO uses either a simple round robin mapping of iterations or a processor-
dependent mapping. In the latter case, PICO assigns more iterations to the processors
with a higher performance reported by the MACCv2 infrastructure.

pragma pico parallel for num_threads (2)
for (int i = 0; i < 10; i++)
{

a[i] = b * i;
}

Listing 3.2: Data-level parallelism - pico parallel for.

Listing 3.2 shows a loop that in each iteration modifies a different array position
(memory location). Such loops offer the opportunity to exploit data-level parallelism.
In this example, we instruct PICO to generate a parallel version of this loop with two
tasks. In the case of a homogeneous system, PICO divides the total iteration space by
the number of tasks and maps these consecutive iteration blocks to them. Figure 3.5
shows a possible runtime behavior.

Task 0

Task 1

Task 2

t

0 1 2 3 4

5 6 7 8 9

Figure 3.5: Runtime behavior: Parallel for, cf. Listing 3.2.

A balanced iteration mapping might not always be ideal. Thus, the developer can
assign continuous iteration blocks to processors using the chunks clauses. A comma
separated list of blocks is then allocated to the processors in a round robin way. For
instance, the developer likes to map 20 iterations. Task 1 processes the first four iterations,

Chapter 3. PICO-Framework 44

then task 2 a block of 10 iterations and then task 1 the remaining six iterations. For
this behavior, the required clause looks like this: chunks = 4, 10, 6. Either the
accumulated block sizes must equal the total number of iterations or the interleaved

clause must be used. The interleaved clause instructs PICO to continue the previously
defined chunk mapping until all iterations are assigned to tasks. Listing 3.3 demonstrates
the use of the chunk and interleaved clauses. In this example, two tasks should be
generated, the first executes iteration blocks with three iterations. The second tasks
processes iteration blocks of size two. Figure 3.6 illustrates the runtime behavior of the
interleaved clause. Task 1 executes iterations 0-2, 5-7 and task 2: 3, 4, 8, 9. Such
static load balancing pays off for heterogeneous target platforms.

pragma pico parallel for num_threads (2) chunks = 3,2 interleaved
for (int i = 0; i < 10; i++)
{

a[i] = b * i;
}

Listing 3.3: Parallel for with chunks clause.

Let us assume that processor 1 and 2 are faster than processor 3. In Listing 3.4 we
instruct PICO to map the large iteration block to either processor 1 or 2 and the smaller
block to the slower processor 3. Figure 3.7 shows how beneficial this load balancing can
be.

pragma pico parallel for num_threads (2) chunks = 3,2 interleaved
↪→ processor = {1,2}, {3}

for (int i = 0; i < 10; i++)
{

a[i] = b * i;
}

Listing 3.4: Parallel for with processor assignment.

PICO provides an even more fine-grained method to map iterations to tasks. With
the iterations clause, individual iterations can be assigned. This seems complicated
for human users of PICO but PAXES can generate such fine-grained iteration mapping.
Listing 3.5 shows such precise iteration mapping to two tasks and Figure 3.8 visualizes the
resulting runtime behavior. To simplify, the developer can use “...” in the iterations

clause to define a range of continuous iterations.

pragma pico parallel for num_threads (2)
↪→ iterations = {0,2,3 ,7 ,8} , {1 ,4 ,... ,6 ,9}

for (int i = 0; i < 10; i++)
{

a[i] = b * i;
}

Listing 3.5: Parallel for with precise iteration mapping.

Chapter 3. PICO-Framework 45

The examples provided in this subsection may result in a slow parallel execution if a
conservative imprecise data analysis does not detect that each loop modifies a different
part of the array (memory) and thus an extensive data synchronization is not necessary.
The developer can prevent PICO to add synchronization by using the global clause
with the parallel for directive.

Task 0

Task 1

Task 2

t

0 1 2 5 6

3 4 8 9

7

Figure 3.6: Timing behavior: Parallel for, cf. Listing 3.3.

Task 0

Task 1

Task 2

t

0 1 2 5 6

3 4 8 9

7

Figure 3.7: Runtime behavior: Parallel for, cf. Listing 3.4.

Task 0

Task 1

Task 2

t

0 2 3 7 8

1 4 5 6 9

Figure 3.8: Runtime behavior: Parallel for, precise iteration mapping, cf. Listing 3.5.

3.5.3 Pipeline Parallelism

Pipeline parallelism might be the only solution to parallelize a loop with loop-carried
dependencies. Listing 3.6 shows the main computation loop of the Spectral analysis
benchmark from the UTDSP benchmark suite [Lee17]. This is a representative embedded
application that calculates a power spectrum of an input speech sample. The Spectral

implementation suffers from loop-carried dependencies preventing the utilization of
data-level parallelism.

In detail, the outer loop contains two inner loops and a call to a fft (Fast Fourier
Transform) function in between both loops. The second inner loop contains a loop-
carried dependency to its previous iteration because it reads mag[j] which was written
in the previous iteration of the outer loop. Due to this dependency, data or task-level
parallelization of this loop is not beneficial.

Chapter 3. PICO-Framework 46

for (int i = 0; i < 16; ++i) {
int index = i*4;
f loat sample_real [64];
f loat sample_imag [64];

for (int j = 0; j < 64; ++j) {
sample_real [j] = input_signal [(index+j)] * hamming [j];
sample_imag [j] = zero;

}

fft(sample_real , sample_imag);

for (int j = 0; j < 64; ++j) {
mag[j] = mag[j] + (sample_real [j] * sample_real [j]

+ sample_imag [j] * sample_imag [j]) / 4096;
}

}

Listing 3.6: Sequential main loop of the Spectral analysis benchmark.

 int index = i * 4;
 float sample_real[64];
 float sample_imag[64];

 for (int j = 0; j < 64; ++j){
 sample_real[j] = input_signal[(index+j)] * hamming[j];
 sample_imag[j] = zero;
 }

 fft(sample_real, sample_imag);

 for (int j = 0; j < 64; ++j) {
 mag[j] = mag[j] + (sample_real[j] * sample_real[j] +
 + sample_imag[j] * sample_imag[j]) / 4096;
 }

for (int i = 0; i < 16; ++i) {

}

T1

T2

sa
m

p
le

_r
ea

l
sa

m
p

le
_i

m
ag

m
ag

Figure 3.9: Main loop of Spectral analysis with pipeline parallelism.

Fortunately, the loop can be split into two stages using pipeline parallelism. Figure 3.9
shows the pipeline structure. Two tasks are generated from the sequential loop and
executed in parallel if all data dependencies are fulfilled. The runtime behavior is
illustrated in Figure 3.10. This graph highlights that Task 2 runs concurrently as soon
as the data has been generated in Task 1.

To express such complex parallelism, PICO provides the pico parallel pipeline

for directive. The directive is added to the loop in the example code and the pipeline

Chapter 3. PICO-Framework 47

Task 0

Task 1

Task 2

t

0 1 2

0 1 2

3 ...

Figure 3.10: Runtime behavior for Spectral analysis with pipeline parallelism.

stages are specified using pico section directives. Similar to the section clause from
Subsection 3.5.1, taskid can be used to group sections to tasks. Listing 3.8 demonstrates
that only a few annotations are required to express this rather complicated parallelism.
During the implementation, PICO automatically takes care that the data from task T1
is forwarded to task T2.

pragma pico parallel pipeline for num_threads (2)
for (int i = 0; i < 16; ++i) {

int index = i*4;
f loat sample_real [64];
f loat sample_imag [64];

pragma pico section taskid =1
{

// for loop + fft ()
}

pragma pico section taskid =2
{

// for loop
}

}

Listing 3.7: Parallelized main loop of the Spectral analysis benchmark.

3.5.4 Hybrid Pipeline Parallelism

With pipeline parallelism, the main computation loop of the Spectral benchmark
can be parallelized successfully, but there is more parallelism nested. As described in
Subsection 2.2.1.3, additional data-level parallelism can be extracted from pipeline stages.
Figure 3.11 illustrates how the first pipeline stage is duplicated and thus the workload is
distributed to two additional tasks. In this case, PICO ensures the data transfer from
these three tasks to the second pipeline stage. In the second pipeline stage, PICO takes
care in which order the communication channels are read such that the parallel behavior
of this loop is equal to the sequential solution and to prevent deadlocks. Figure 3.12(a)
depicts the runtime behavior of this hybrid pipeline.

Chapter 3. PICO-Framework 48

 for (int j = 0; j < 64; ++j) {
 mag[j] = mag[j] + (sample_real[j] * sample_real[j] +
 + sample_imag[j] * sample_imag[j]) / 4096;
 }

for (int i = 0; i < 16; ++i) {

}

 int index = i * 4;
 float sample_real[64];
 float sample_imag[64];

 for (int j = 0; j < 64; ++j){
 sample_real[j] = input_signal[(index+j)] * hamming[j];
 sample_imag[j] = zero;
 }

 fft(sample_real, sample_imag);

T2

T1.3T1.2T1.1

s_
re

al
s_

im
ag

m
ag

s_
re

al
s_

im
ag

s_
re

al
s_

im
ag

Figure 3.11: Spectral analysis with hybrid pipeline parallelism.

pragma pico parallel pipeline for num_threads (4)
for (int i = 0; i < 16; ++i) {

int index = i*4;
f loat sample_real [64];
f loat sample_imag [64];

pragma pico section taskid =1 chunks = 1,1,1 interleaved
{

// for loop ...
}

pragma pico section taskid =2
{

// for loop
}

}

Listing 3.8: Parallelized main function of the Spectral analysis benchmark.

PICO supports chunks, interleaved and iterations clauses for hybrid pipeline
stages. To increase the usability of PICO, these clauses work similar to those used for
data-level parallelism presented in Subsection 3.5.2. Here, each task executes iteration
blocks of size one, as seen in 3.12(a). The taskid clause is not necessary in this example

Chapter 3. PICO-Framework 49

Task 0

Task 1.1

Task 1.2

t

0 3 6

1 4 7

2 5 8

0 1 2 3 4

Task 1.3

Task 2 5 6 7 8

9 12

10 13

11 14

15

9 10 11 12 13 14 15

(a) Homogeneous system

Task 0

Task 1.1

Task 1.2

t

0 3 6

1 4 7

2 5 8

0 1 2 3 4

Task 1.3

Task 2 5 6 7 8

9 12

10 13

11 14

15

9 10 11 12 13 14 15

(b) Heterogeneous system, unbalanced

Task 0

Task 1.1

Task 1.2

t

3 9 15

1 4 7

0 2 5

0 1 2 3 4

Task 1.3

Task 2 5 6 7 8

10 13

6 9

9 10 11 12 13 14 15

11 14

(c) Heterogeneous system, balanced

Figure 3.12: Runtime behavior for Spectral analysis with hybrid pipeline parallelism.

since this pipeline stage only consists of continuous statements. Executing this example
application on a heterogeneous system might result in a poor runtime behavior like shown
in 3.12(b). Therefore, processor clauses and varying chunk sizes or precise iteration
mapping should be used to statically balance the iterations according to the capabilities
of the target architecture. 3.12(c) shows the improved behavior after applying PICO’s
powerful load balancing modifications.

3.6 Internals of PICO

This section presents details of the internal processing steps of PICO. Section 3.2
discusses the overall application model, communication model and requirements to the
input languages. The entire PICO core framework results in roughly 20.000 C++ Source
Lines Of Code (SLOC) and additional 1.000 SLOC for the RTEMS and Odroid runtime
libraries. Test and evaluation scripts, mostly in Bash and Python, accumulate up to
2.000 SLOC. Applications and synthetic test cases are part of PA4RES, however, the
author of this thesis contributed significantly to the application repository.

Embedded in the PA4RES project, PICO utilizes the MACCv2 framework. It can
be executed independently or as part of the entire tool flow. The result of PICO’s
source-to-source transformation is a set of source code files, containing all the necessary

Chapter 3. PICO-Framework 50

code for the parallel execution. At this stage, API details are intentionally left unspecified.
Hence, the runtime library takes care of the platform-dependent implementation. This
combines portability and optimized target specific implementations.

PICO provides detailed information to the user regarding the transformations and
implementation. A comprehensive summary contains, for instance, a list of necessary
data synchronization with variable names and channel details, number of tasks and their
mapping. Besides the textual summary, PICO also provides graphical feedback to the
user. All relevant internal graphs can be exported for a manual inspection using the
GraphML [Gra17] standard. In this thesis, we use yEd from yWorks [yWo17] to generate
the graphical representation of the GraphML files. In the following section we present
the analysis and implementation phases in detail.

3.6.1 Analysis Phase

A
n

a
ly

si
s

Preprocessing

Estimate
Performance

Execution
Estimation

Yes Annotate
Instructions

Build Program
Dependency Graph

No

Extract Parallel
Regions

Build Task Graph
Build Execution

Model

Figure 3.13: Analysis phase of PICO.

The analysis phase transfers the plain C source code into a graph representation
suitable for the parallelization. Figure 3.13 shows the main analysis components and
their interaction. In the following, we focus on the three highlighted components,
the construction of the Program Dependence Graph (PDG), the extraction of the
parallel regions and finally the transformation from the PDG to the task graph which
correspondents to the application model (cf. Section 3.2). Therefore, we introduce some
compiler fundamentals to ease the understanding of the analysis phase. The following
definitions are based on standard compiler literature [ALS06; Muc97; KA02; App97]. In
general, an application can be defined as a sequence of instructions, statements or basic
blocks:

Definition 3.2 (Basic block):
A basic block is a sequence of instructions or statements which is always entered at the
beginning and exited at the end of the sequence.

In this thesis we assume that a graph is always a directed graph:

Chapter 3. PICO-Framework 51

Definition 3.3 (Directed Graph):
A directed graph G = (V,E) is an ordered pair of nodes n ∈ V and edges (ni, nj) ∈ E,
E ⊆ V 2. A directed edge connects two nodes ni, nj ∈ V with an explicit relation, (ni, nj)
represents a directed edge from ni to nj. A graph might contain cycles, a directed graph
without cycles is a Directed Acyclic Graph (DAG).

In cases where the direction of edges is irrelevant, we emphasize this fact. Each node
in a graph has a set of successor and predecessor nodes:

Definition 3.4 (Successor, Predecessor):
Let G = (V,E) be a directed graph. For a node n ∈ V , the set of predecessor nodes is
defined as pred(n) := {u|(u, n) ∈ E} and the successors succ(n) := {v|(n, v) ∈ E}.

A graph, representing all possible sequences of instructions in an application is a
Control Flow Graph (CFG):

Definition 3.5 (Control Flow Graph):
A Control Flow Graph (CFG) is a directed graph representing the execution flow in a
program. A node can represent a single instruction, complex statement or basic block.
Edges represent the execution order of the nodes. A intraprocedural CFG represents the
flow inside a function whereas a interprocedural CFG models the flow across function
boundaries.

A call graph expresses the relation between functions:

Definition 3.6 (Call Graph):
A call graph is a CFG with nodes representing functions and directed edges representing
the caller-callee relations.

Data dependencies between nodes must be modeled:

Definition 3.7 (Data dependency):
A node x has a flow dependency or Read-After-Write (RAW) dependency to node y if x
writes data which is used in y. x has an anti-dependency or Write-After-Read (WAR)
dependency to y if y writes data which is read in x. Nodes x and y have an output
dependency (Write-After-Write (WAW) dependency) if both nodes write to the same
variable.

The collection of all data dependencies and nodes is defined as:

Definition 3.8 (Data Flow Graph):
A Data Flow Graph (DFG) is a directed graph representing the data dependency and
thus the flow of data between nodes. Nodes are typically instructions, statements or basic
blocks. Different edge types are used to distinguish between the dependency types.

PICO works on a Program Dependence Graph during the parallelization process:

Chapter 3. PICO-Framework 52

Algorithm 3.1 Program Dependence Graph Construction
procedure constructPDG(IR ir)

intraCFG ← constructIntraCFG(ir)
callGraph ← constructCallGraph(ir)
cfg ← constructCFG(intraCFG, callGraph)
dfg ← calculateDataFlow(cfg)
pdg ← constructPDG(cfg, dfg)
return pdg

Definition 3.9 (Program Dependence Graph):
A Program Dependence Graph (PDG) is a directed graph with nodes representing state-
ments, instructions or basic blocks and edges representing dependencies between the nodes.
A dependency is either data or control-related. Thus, a PDG combines control and data
flow into a single representation.

PICO uses custom data structures and algorithms for the graph processing. Several
lookup data structures are used to enable a fast access to specific nodes, e.g. all nodes
of a task. In addition, several graph transformation operations are supported e.g. node
duplication or moving nodes in the graph. The graph implementation also provides a
method to calculate distances or relations between nodes. PICO checks the consistency
of the graph after each major transformation and thus ensures a correct parallelization.
In the following section, we present how PICO constructs these graphs in more detail.

3.6.1.1 Program Dependence Graph Construction

The analysis phase starts with plain C code and uses the ICD-C to generate the IR.
This step ignores annotated PICO parallelization directives. The IR basically represents
all statements in the code similar to a collection of ASTs. Algorithm 3.1 provides
a comprehensive algorithmic description of the construction process. PICO connects
the AST into an intra-CFG for each function. According to the application model (cf.
Section 3.2), a node represents a C statement and edges model the control flow. Programs
may contain loops, special edges are used to denote entering and exiting of a loop. These
edges are called loop and back edges respectively. Using ICD-C’s call analysis, PICO
then connects the intra-CFG to a inter-CFG by adding call and return edges.

Listing 3.9 shows a simple program with a loop containing a nested call. Figure 3.14
depicts the resulting inter-CFG generated from PICO’s GraphML output. Nodes repre-
sent IR statements. It is obvious that ICD-C IR is closely related to the original source
code. Each node has a unique identifier and a statement (data) assigned. The first
and last nodes are colored red and normal statement nodes in green. Control flow is
visualized with directed edges. Node 10 is a loophead statement, in the case of static
iteration counts or annotated flow facts, the number of iterations is added. From that
node, a loop edge connects to Node 7 and a back edge from 7 to 10 drawn as dashed and
dotted lines. Node 7 represents the call statement to the sum function. PICO uses yellow
to highlight calling and called nodes. A call edge connects node 7 and 0 whereas node 1

Chapter 3. PICO-Framework 53

is connected with a return edge to node 7. In addition, the results of the preprocessing
can be observed in node 7, variable a was replaced with a constant 3.

int sum(int a, int b)
{

return a+b;
}

int main ()
{

int a = 3;
int result = 0;

for (int i = 0; i < 10; i++)
{

result += sum(a, i);
}

return result ;
}

Listing 3.9: Examplary code to demonstrate PDG construction.

Figure 3.14: Interprocedural Control Flow Graph constructed by PICO for Listing 3.9.

After the CFG is constructed, PICO analyzes data dependencies. The ICD-C provides
static data flow analysis, and here, PICO uses its liveness, def-use, alias and points-
to analysis modules. Especially the employed alias and points-to analysis developed
in collaboration with Daniel Cordes and Florian Schmoll enable PICO to track data
dependencies of pointers. The FEHLER project [FEH18] also utilizes this data flow

Chapter 3. PICO-Framework 54

Figure 3.15: Program Dependence Graph constructed by PICO for Listing 3.9.

analysis. At this point PICO only conducts analysis on a symbolic level, value-based
analysis is not implemented yet. This leads to conservative results especially for the
array (memory) access analysis. In this case, PICO assumes that the complete array is
manipulated or read.

Since interprocedural data flow analysis in combination with alias and points-to
analysis is complex, time-consuming and tends to very conservative results, the user can
select a simplified analysis, relying on the features of Parallelizable C (cf. Subsection 3.2.3).
Then, PICO assumes that only symbols used as reference arguments are modified in
the called function. In all benchmarks used in this thesis, this assumption was safe
and produced valid dataflow analysis results. In addition to ICD-C’s static dataflow
analysis, PICO performs a deep loop analysis to detect loop-carried dependencies using
an iterative work-list algorithm. A good loop-carried dependency detection is crucial to
parallelize loops safely. With the results obtained by the static data flow analysis, PICO
enhances the CFG.

Figure 3.15 shows the resulting PDG. The color of the edges denotes if a data
dependency results from the alias analysis or the loop-carried dependency analysis. A
MAY dependency represents aliasing of pointers that may occur during execution and a
MUST denotes aliasing that must occur during execution and information provided by
MUST edges dominate MAY edges. Different arrowhead and line styles are used to
distinguish between the types of dependency. A white diamond arrowhead with a dotted
line represents a WAW dependency. A solid line and arrow arrowhead shows a RAW

Chapter 3. PICO-Framework 55

dependency whereas WAR dependencies are drawn as dashed lines with a filled diamond
arrowhead. In Figure 3.15 node 10 has loop-carried dependencies to itself through the
symbol i. This stems from the fact that i++ is executed at the end of the loop and
thus creates a loop-carried dependency to the guard i < 10 statement. Node 7 passes
i by value to the sum function thus no data dependency edges exist. In the case that
i is passed by reference, PICO would add necessary data edges. In this example, the
analysis detected that the argument a is constant inside the sum function and thus does
not produce a data dependency between the function load argument statement and the
return node.

3.6.1.2 Parallel Region Extraction

After the PDG is constructed, PICO scans all statements for annotations (cf. Section 3.5)
starting with the innermost statements in the hierarchy. This bottom-up approach
enables nested parallelism. Once PICO encounters such annotation, it extracts the
type of parallelism and the assigned processor mapping. In case of data-level or hybrid
pipeline parallelism, it also extracts the allocation of iterations. If no mapping is specified,
PICO uses a heuristic taking the characteristics of the target platform into account. In
the homogeneous case, PICO uses round-robin scheduling for tasks and iterations and
therefore, PICO partitions the iteration space equally. If the iteration space cannot be
equally divided by the number of available processors, one partition might be smaller
as the others. In case of heterogeneous systems, PICO assigns a parallel region to a
group of similar processors, like same Instruction Set Architecture (ISA) processors. The
MACCv2 framework allows a performance comparison of processors.

With this information, PICO partitions the iteration space and maps larger workloads
to more capable processors. With the extracted allocation knowledge, PICO traverses
the PDG and assigns tasks to the nodes. For faster access, a separate data structure
stores task to processor and iteration to task mappings. In addition, PICO creates a
table of all parallel regions and their relation, like nested regions or which regions may
run in parallel.

The main loop from Listing 3.9 can be parallelized and Listing 3.10 shows the
necessary annotations to instruct PICO to use data-level parallelism. It is obvious that
this parallelization requires synchronization between the parallel tasks. Figure 3.16 shows
the updated PDG with assigned tasks. Data dependence edges are omitted in this graph
for a better visualization. The nodes representing the loop are assigned to task 1 and
2 and the other nodes to the main task 0. Since PICO did not find nested parallelism
in the called function, these nodes are not particularly assigned to a task. The calling
relation determines the mapping to a task and this information is sufficient for the actual
parallelization process. The implementation phase takes care that the function code is
only included in the source code for tasks calling this function.

Chapter 3. PICO-Framework 56

Figure 3.16: Program Dependence Graph with task mapping.

pragma pico parallel for chunks =5 ,3 interleaved
for (int i = 0; i < 10; i++)
{

result += sum(a, i);
}

Listing 3.10: Examplary code with PICO annotations.

3.6.1.3 Task Graph Construction

Finally, after PICO constructed the PDG and identified all parallel regions, PICO can
construct the parallel task graph representing the technical realization of the application
model (cf. Section 3.2). Algorithm 3.2 provides a brief algorithmic description on the
task graph construction. To construct the task graph PICO traverses all parallel regions
and their nodes from the innermost nested region upwards. Around each parallel region,
PICO inserts fork and join nodes. These nodes split and join the sequential control flow
into a parallel flow. Each task starts with a taskIn node and exits with a taskOut node.
These nodes bundle the control flow entering and leaving a task. Data flowing from or
to the parent task are routed through these nodes. In case that several sections belong
to one task, PICO connects these sections with proper edges to construct a connected
task. PICO duplicates nodes assigned to more than one task and adjusts the successor
and predecessor nodes and data flow accordingly. Data flow crossing task boundaries
indicates that a synchronization is necessary.

If the parallel region splits a loop and contains data dependencies crossing task
boundaries, PICO performs an additional data flow analysis. Therefore, to implement

Chapter 3. PICO-Framework 57

Algorithm 3.2 Task Graph Construction
procedure constructTaskGraph(PDG pdg, ParallelRegions parRegions)

taskGraph← pdg
sortedRegions ← sortBottomUp(parRegions)

for all region ∈ sortedRegions do
root← region.getRootNode()
taskGraph.insertForkJoin(root)

// add nodes for tasks
for all task ∈ region do

firstNode← task.getF irstNode()
lastNodes← task.getLastNodes()
taskGraph.insertTaskIn(firstNode)
taskGraph.insertTaskOut(lastNodes)
taskGraph.connectSections(task)

if region.isP ipeline() ∨ region.isParallelLoop() then
taskGraph.insertLoopHead(task, region)

if region.duplicate() then
for all node ∈ pdg.getNodesAssignedToTask(task) do

taskGraph.duplicateNodes(node, task)
end for

end for
end for

// Insert communication
for all ∀e ∈ dataEdges : sourceTask(e) 6= destinationTask(e) do

ts ← sourceTask(e)
td ← destinationTask(e)
if ts.isParentOf(td) then

taskGraph.addDataToTaskIn(e, td)
else if td.isParentOf(ts) then

taskGraph.addDataToTaskOut(e, ts)
else

taskGraph.insertCommunicationNode(e)
end for
return taskGraph

the communication between parallel tasks, PICO calculates the dependent iterations
for each symbol. PICO uses virtual loop unrolling to calculate the set of dependent
iterations for each data dependency crossing task boundaries. A dependent iteration is
defined as follows:

Definition 3.10 (Dependent iteration):
Let l be a loop, I the iteration space of l and ti a task. Iterations i, j ∈ I are dependent
in symbol a if i and j have a data dependency over a and i is mapped to ti and j to tj
with ti 6= tj.

Chapter 3. PICO-Framework 58

Task 0
NodeID:2

Data:Function load argument statement for function main
Task:0

NodeID:3
Data:a=3

Task:0

NodeID:4
Data:result=0

Task:0

NodeID:11
Task:0

ForkedTasks: 1,2

Task 2

NodeID:15
TaskInNode:2

NodeID:14
Data:for(i=0; i<10; i++) {..}

Task:2
Iterations: {5-7}

NodeID:16
TaskOutNode:2

NodeID:13
Data:result+=sum(3, i)

Task:2

NodeID:20
ComInNode

Task:2
Data:result

NodeID:21
ComOutNode

Task:2
Data:result

Task 1

NodeID:17
TaskInNode:1

NodeID:10
Data:for(i=0; i<10; i++) {..}

Task:1
Iterations: {0-4}, {8-9}

NodeID:18
TaskOutNode:1

NodeID:7
Data:result+=sum(3, i)

Task:1,

NodeID:22
ComInNode

Task:1,
Data:result

NodeID:19
ComOutNode

Task:1,
Data:result

NodeID:9
Data:return result

Task:0

NodeID:12
Task:0

JoinedTasks: 1,2

 result

result

result

result

Figure 3.17: Task graph with highlighted data flow of symbol result.

With this knowledge, PICO inserts communication nodes directly after the source and
before the target node of the data dependency edge. Using this strict synchronization,
the parallelism implemented by PICO is correct-by-construction. Each communication
node stores the set of dependent iterations, the symbol as well as the receiving/sending
node (cf. Subsection 3.2.2).

Chapter 3. PICO-Framework 59

Figure 3.17 shows the task graph of the example application from Listing 3.10. For a
compelling visualization, the graph does not contain the nodes of the sum function and
the true data edges. Fork and join nodes are drawn as trapezoid, taskIn and taskOut
as cyan boxes with shared edges and comOut and comIn nodes as yellow boxes. We
artificially added purple dashed lines to visualize the important data flow of the result

symbol. As depicted, result flows from task 0 to task 1 through the taskIn node. Due
to the partitioning of the iteration space, task 1 passes result to task 2 in iteration four.
Task 2 sends result in iteration seven back to task 1. Result flows back through the
taskOut node of the parent task 0. At this stage, PICO only operates on graphs and
implementation details are irrelevant. During the implementation phase, PICO specifies
the type of communication in more detail.

3.6.2 Implementation Phase

E
va

lu
a

ti
o

n
 &

 I
m

p
le

m
e

n
ta

ti
o

n

Evaluate

Evaluate Execution
Model

Execute on Target
Platform

Implement Graph

Online Offline
Implement Graph

Generate Source
Code

Figure 3.18: Implementation phase.

The implementation phase transforms the task graph back to C code. As Figure 3.18
depicts, this step is two-folded. First, the phase configures the graph, generates all
statements internally, configures communication channels and integrates everything into
a parallel IR. Then, ICD-C can generate the actual C code.

PICO starts with a list of tasks and generates an implementation for each task.
Algorithm 3.3 provides a comprehensive representation of the following textual description
regarding the task function generation. Basically, a task represents a subtree of the
task graph and thus PICO can implement them independently. For each task, PICO
generates a C function. PICO uses different implementation strategies depending on the
type of parallelism. For example, if a loop is parallelized, PICO generates a new loop
statement and constructs the loop head according to the iteration space partitioning.
PICO introduces execution guards if the iteration space for a task is irregular in absence
of a common iteration step size. Listing 3.10 shows an example using such irregular
iteration space. PICO then processes the subtree and generates IR statements for all
nodes. Nodes, originally from the sequential application, can be simply duplicated and
assigned to the task function or loop respectively. It might be necessary to create new

Chapter 3. PICO-Framework 60

Algorithm 3.3 Task Function Implementation
procedure implementGraph(IR ir)

for all task ∈ Tasks do
func← ir.generateEntryFunction(task)
if task.isP ipeline() ∨ task.isParallelLoop() then

adjustIterationSpace(task.getRootLoop())
for all n ∈ task.getNodes() do

if node.isCommunicationNode() then
if node.dependentIteration 6= task.dependentIterations then

func.insertGuard(node.dependentIteration)
func.insert(node.generateC())

end for
end for

local copies of the symbols used in the statements. Besides the proper placement of
statements, PICO also takes care that all (new) symbols used in the statements are
assigned to the associated symbol tables.

For communication nodes, PICO inserts proper read_channel and write_channel

API calls to the runtime library. In the PA4RES methodology, we assume that channels
are used exclusively for one symbol. In this chapter, communication optimization is
disabled, thus PICO configures the channel with predefined settings for the capacity
and channel types. Chapter 4 presents PICO’s communication optimization capabilities.
If data synchronization between different loop iterations or pipeline stages is required,
communication API calls must only be executed at dependent iterations. PICO achieves
this by adding iteration guards surrounding these calls. In the default configuration,
PICO implements data exchange between parent and child tasks using global struct

variables. However, this can also be changed to a channel-based implementation by the
user or PICO’s communication optimization.

Task creation and management is outsourced to the lightweight runtime. Thus,
PICO inserts fork and join API calls for corresponding nodes. A runtime library might
generate a task dynamically or execute a previously generated task. The simulator-
based target platform uses the latter approach. PICO instructs MACCv2 with internal
annotations to generate proper linker scripts and target compiler configurations for the
parallel tasks. After PICO generated the parallelized IR, the PA4RES framework emits
actual C files.

Listing 3.11 shows the resulting C source code for task 1 derived from Listing 3.10. In
this case, PICO used a global struct __toTask1 to synchronize data from the parent
task 0 to its child task 1. For systems without a shared memory, channels could be
used. In this example, the iteration space is portioned irregularly thus an execution
guard is required. In the case that the loops were partitioned equally, the loop head
would increase i by the partition size. The execution guard used in this example ensures
that task 1 only executes iterations specified in chunks clauses. As Figure 3.17 reveals,
data must be synchronized between the parallel running tasks. Additional guards are

Chapter 3. PICO-Framework 61

necessary to ensure a correct synchronization. Data needs to be communicated from task
1 to task 2 in the 5th and read back in the 9th iteration. Finally, task 1 returns data to
the parent task using an additional global data structure.

void task_1 () {
int result = __toTask1 . result ;
for (int i=0; i <10; i++) {

i f (i >=0u && i <=4u || i >=8u && i <=9u) {
i f (i == 8u) {

pico_read_channel (2u, (& result));
}
result += sum (3, i);
i f (i == 4u) {

pico_write_channel (1u, (& result));
}

}
}
__fromTask1 . result = result ;

}

Listing 3.11: Implementation of task 1 with PICO API calls.

Section A.3 presents a detailed description of the runtime library and API. In the
following, limitations and possible solutions of the presented approach are discussed.

3.6.3 Limitations

As previously discussed, PICO utilizes several graph structures during the parallelization
process. Those graphs grow with the number of statements in the original source code
and the number of parallel tasks. It is obvious that these graphs can explode and exceed
the available resources. During the implementation of PICO, we thus considered this
and carefully selected very light weight implementations of the graphs. PICO handled
the graphs for the benchmarks analyzed in this thesis without issues. However, PICO
provides a workaround to deal with large applications. Usually PICO processes all C files
of the application even if only one file contains parallelism. To reduce the growth of the
graph, PICO provides methods to only process files with parallel regions and considers
all other files as black box libraries. The PA4RES framework already supports object
files which are linked at the final step to the parallelized application. This approach
has the drawback that the data flow analyses do not know what happens inside the
called functions. As previously discussed (cf. Subsection 3.6.1.1), PICO then assumes
that symbols passed as references are modified inside the function. This might lead to
pessimistic analysis results. In such a case, new annotations could be used to integrate
user knowledge into the analysis process. Finally, PICO relies on safe and precise data
analysis and might mispredict data dependencies in absence of good analysis results.

Chapter 3. PICO-Framework 62

Benchmark Description
Adpcm Adaptive Differential Pulse Code Modulation
Boundary-Value-Problem Differential equation with boundary conditions
Compress Discrete cosine transformation for image compression
Edge Detect Edge detection on gray scale images
Filterbank Pipeline of filter stages, including convolution, down and

up sampling
FIR-Filter Finite Impulse Response filter
Lattice-Filter Digital normalized lattice filter
Matrix Mult. Matrix multiplication
Spectral Calculates the power spectral estimate of speech using

periodogram averaging
JPEG JPEG encoder
PAMONO Preprocessing Preprocessing of the PAMONO virus detection software

Table 3.1: Benchmark description - benchmarks taken from UTDSP benchmark
suite [Lee08], SNU real-time benchmark suite [SNU17] and preprocessing of the PAMONO
virus detection software [Nol14].

3.7 Evaluation

This section evaluates PICO in three different aspects. First, we present how PICO
is tested from the implementation side to ensure it creates valid parallel applications.
Then, we will present an evaluation regarding the usability of our proposed annotations.
Finally, we evaluate the performance of the parallelized application. Besides synthetic
tests, we used applications from the UTDSP benchmark suite [Lee08] and SNU real-time
benchmark suite [SNU17] containing representative real-world embedded applications
and algorithms. In addition, the preprocessing phase of the PAMONO virus detection
software is used [Nol14]. The preprocessing contains several image processing steps like
background elimination or noise reduction and was specifically designed for the PA4RES
framework. Table 3.1 summarizes all used benchmarks.

3.7.1 Proof of Concept and Implementation

As previously described, PICO internally performs several graph transformations to paral-
lelize a sequential application. These graph transformations satisfy the data dependencies
by construction since communication is added after modifying and before accessing
data, following the application model defined in Section 3.2. However, to validate the
implementation of these transformations, PICO undergoes dozens of synthetic and real
world tests. Synthetic test cases are manually written applications aiming to provoke
flaws in PICO’s implementation. Parallelization of synthetic tests usually does not gain
a significant speedup, e.g. due to intense synchronization efforts. For all test cases,
PICO parallelizes the applications and executes them on the target platform. The test
applications produce some kind of result, e.g. debug output between calculations with
intermediate results. These results are then compared with the results from a sequential
(unmodified) execution of the same application. Jenkins [Jen17], a continuous integration

Chapter 3. PICO-Framework 63

server, automatically performs these tests every time code changes are committed to the
code repository.

int a[10] = {0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0};
int b = 0, adder = 0;
pragma pico parallel pipeline for num_threads (4)
for (int i = 0; i < 10; i++)
{

// first inner loop
pragma pico section taskid =1 chunks =1,1 interleaved

↪→ processor ={0} ,{1}
for (int j = 0; j < 10; j++)
{

a[j] = j + adder;
adder ++;

}
// second inner loop
pragma pico section taskid =2 chunks =1,1 interleaved

↪→ processor ={2} ,{3}
for (int k = 0; k < 10; k++)
{

b = b + a[k] + adder;
adder ++;

}
}

Listing 3.12: Synthetic hybrid pipeline benchmark with complex data dependencies.

Listing 3.12 shows one sophisticated synthetic hybrid pipeline test case. Here, the
test specifies two pipeline stages which are then duplicated provoking complex data
dependencies. PICO needs to detect which data dependencies must be satisfied in
which iteration/pipeline stage as well as which tasks exchange data with the parent task.
Figure 3.19 illustrates the complex data flow for the variable adder. As these tests show,
PICO is able to detect and implement complex data dependencies and parallel structures.

Task 1 Task 2

Task 3 Task 4

Task 0

Task 0

Figure 3.19: Data flow for adder in parallelized synthetic hybrid pipeline benchmark.
Task 1 and 2 originate from the first section and Task 3 and 4 accordingly from the
second section.

3.7.2 Usability Analysis

PICO processes either source code with annotations generated by PAXES or user added
directives. In the latter case, a good usability of PICO is important and was the driving

Chapter 3. PICO-Framework 64

Solution Run time (s) Energy (mJ) Speedup Energy factor
Sequential 4.674 175.115 1 1
Manual 2.337 87.558 2 0.5
Parallel for 3.002 110.213 1.56 0.63
Hybrid pipeline 2.945 117.817 1.59 0.67

Table 3.2: PICO-based compared to manual and time-consuming parallelization for
PAMONO preprocessing executed on the homogeneous simulation-based platform.

factor in the development of the application model and directives. In Section 3.5 we
already highlighted the simplicity of the PICO approach especially for hybrid pipeline
parallelism. In Subsection 3.5.3 we discussed that loop-carried dependencies and the
correct synchronization are crucial factors for a parallelization of the Spectral analysis
benchmark. With PICO, only a few directives are necessary to extract such complex
parallelism. The next subsection presents the performance analysis for PICO and with it
provides additional examples using directives.

pragma pico parallel pipeline for num_threads (4)
for (i = 0; i < 8; i++) {

f loat Vect_H [256]; // output of the H
f loat Vect_Dn [32]; // output of the down sampler
f loat Vect_Up [256]; // output of the up sampler
f loat Vect_F [256];
pragma pico section chunks =1,1,1 interleaved
{

// convolving H
...
// Down Sampling
...
//Up Sampling
...
// convolving F
for (j = 0; j < 256; j++) {

Vect_F [j] = 0;
for (k = 0; ((k < 32) & ((j - k) >= 0)); k++) {

Vect_F [j] += F[i][k] * Vect_Up [j - k];
}

}
}
// adding the results to the y matrix
pragma pico section
for (j = 0; j < 256; j++)
{

y[j] += Vect_F [j];
}

}

Listing 3.13: Annotated Filterbank benchmark.

Chapter 3. PICO-Framework 65

Listing 3.13 shows an outline of the instrumented Filterbank benchmark. For
simplicity, Listing 3.13 omits most of the filter implementations. This application applies
a set of filters to an input vector and stores the result in the output vector y and
benefits from pipeline parallelism. Due to extracted data dependencies, PICO will add
communication of Vect_F between the first stage and the second stage. In addition, the
first pipeline stage is duplicated so that three instances share the workload resulting
in four parallel tasks. This example highlights that developers are able to parallelize
complex algorithms successfully with PICO.

Stefan Noll ported the PAMONO virus detection preprocessing pipeline to the
simulation-based platform during his bachelor thesis [Nol14], supervised by the author of
this thesis. In his thesis, he analyzed different parallelization strategies manually in a
time-consuming process. Already the safe implementation of a parallel version took weeks.
However, to demonstrate PICO’s capabilities we successfully parallelized the preprocessing
algorithm with only four annotations. We evaluated loop- and hybrid pipeline-level
parallelism. The parallel solutions were derived within a working day whereas the
majority of the time was spent to understand the preprocessing algorithm implementation.
Table 3.2 shows the results of this experiment. The manual implementation performs best
and achieved a speedup of 2. However, PICO was able to generate a remarkable speedup
of almost 1.6. PICO’s results are not as good as the manual tuned implementation but
were derived much faster, within hours in contrast to weeks.

Listing 3.14 lists a comparison of necessary PICO and OpenMP directives to parallelize
a loop from the Matrix Multiplication benchmark. The developer is in charge of
detecting data dependencies and taking care of correct handling in OpenMP’s relaxed
synchronization model. The advantage of PICO is that data dependencies are detected
automatically and thus, PICO is perfectly suited for rapid prototyping and incremental
parallelization.

pragma pico parallel for num_threads (4)
// versus
pragma omp parallel for num_threads (4) private (sum ,i,j,k)

↪→ firstprivate (a_matrix , b_matrix)
for (int i = 0; i < A_ROW; i++) ...

Listing 3.14: Comparison between PICO and OpenMP clauses.

3.7.3 Performance Analysis

To analyze the performance of the code generated by PICO, we used PAXES to detect
and annotate parallelism in the benchmarks. This results in a set of Pareto-optimal
solutions (cf. Definition 1.1) for each benchmark (cf. Subsection 2.3.2). In this case,
speedup and energy consumption of the benchmarks can be conflicting objectives. These
trade-offs are very important in the design of low-power embedded systems and software.
In the end, the user decides which solution fits best to the scenario. We selected one
solution for each benchmark randomly as input for PICO.

Chapter 3. PICO-Framework 66

The simulation-based platforms (cf. Figure 2.2) act as the main target architecture
in this evaluation. For the homogeneous platform, all cores are set to a frequency of
500MHz. In the heterogeneous case, the first two processors are set at 500MHz, the
third is running at 250MHz and the last with 100MHz. A high-level cost model (cf.
Appendix A.1) was used to calculate the energy consumption PAXES mostly chooses
data-level parallelism but due to loop-carried dependencies for three benchmarks selected
pipeline parallelism. For all experiments, we disabled the communication optimization
part. Therefore, PICO implements all data synchronizations with a default configuration.

3.7.3.1 Homogeneous Experiments

Table 3.3 and Table 3.4 summarize the results of the parallelization process for the
homogeneous system. The results achieved by PICO are en-par with previous results from
the MNEMEE project as reported in [Cor13] using a proprietary solution. Since PICO
detects data dependencies automatically, no manual data dependency management was
necessary. The Matrix Multiplication benchmark is a good example that demonstrates
that PICO is able to achieve a super-linear speedup. Unfortunately, the other benchmarks
are not always parallelizable well. This is not an issue of PICO. It is more an algorithmic
problem, e.g. in Adpcm only one small loop could be found to be parallelized leading
to a small speedup of just 1.12. However, even small improvements might be a win in
some circumstances. PICO achieved noticeable speedups for the benchmarks requiring
communication.

To get an better understanding of the results, we conducted another experiment using
OpenMP to parallelize the benchmarks using the Odroid-XU3 as the target platform.
We followed the same parallelization strategies as in the previous experiment. Since
PICO reported the data dependencies, we were able to model the dependencies in
OpenMP accordingly. Hence, we added necessary private and firstprivate clauses. For
benchmarks where PICO added communication channels, OpenMP dependent task

constructs are used. Compiler optimizations were disabled and the number of threads
was set to four. We executed each benchmark 1000 times, measured run times and energy
consumptions were averaged. We used perf to measure the run time and the EnergyMeter
(cf. Subsection A.2.1) to measure the energy consumption. We analyzed two setups, one
without any scheduling restrictions (cf. Table 3.5 and Table 3.6) and one where the tasks
are restricted to the Cortex-A7 (cf. Table 3.7 and Table 3.8). Without restrictions, the
operating system decides where to execute the threads, usually depending on the current
load. This can be beneficial if execution gets delayed, e.g. due to dependencies. Then,
this task can be scheduled to the energy efficient cores. Limiting the threads to the
Cortex-A7 should result in good energy efficiency but maybe longer execution times.

As the results indicate, the benchmarks do not perform as well as in the previous
experiments. On one hand, the Odroid-XU3 platform is far more powerful than the
simulation-based ones. On the other hand, the benchmarks are the same and thus the
computational load. Thus, OpenMP’s management overhead dominates the run time.

Chapter 3. PICO-Framework 67

Sequential Parallel

Benchmark Com
Channels

Run time
(ms)

Energy
(µJ)

Run time
(ms)

Energy
(µJ)

Adpcm 0 2.55 76.67 2.28 152.72
Boundary-Value-Problem 0 45.49 1242.66 13.75 632.59
Compress 0 120.17 4223.98 33.63 2151.74
Edge Detect 0 147.31 7582.11 105.68 6143.27
Filterbank 3 119.11 4595.60 36.52 1515.77
FIR-Filter 0 8.35 344.30 3.58 233.43
Lattice-Filter 0 3.07 121.12 2.00 144.62
Matrix Mult. 80x80 0 225.69 9709.25 56.35 2967.16
Spectral 6 6.90 214.52 5.84 425.46
JPEG 3 76.75 2696.46 27.95 1548.76

Table 3.3: Results for PICO-based parallelization executed on a homogeneous system
with four ARM cores, simulated with Virtualizer. Identification of parallelizable loops
done by PAXES.

Benchmark Speedup Energy Factor
Adpcm 1.12 1.99
Boundary-Value-Problem 3.31 0.51
Compress 3.57 0.51
Edge Detect 1.39 0.81
Filterbank 3.26 0.33
FIR-Filter 2.33 0.68
Lattice-Filter 1.54 1.19
Matrix Mult. 80x80 4.01 0.31
Spectral 1.18 1.98
JPEG 2.75 0.57

Table 3.4: Comprehensive speedups and energy factors for Table 3.3.

Therefore, we increased the computational workload of the Matrix Multiplication

benchmark. We raised the size of the matrices from 80 × 80 up to 800 × 800. This
changes the ratio of the OpenMP overhead and computational load and the resulting
speedup is as expected.

The enlarged Matrix Multiplication benchmark demonstrates the two different
performance characteristics of the two processor types used in the Odroid-XU3. The run
time of the parallelized version on the Cortex-A15 is roughly 4s and almost 18s on the
Cortex-A7. As expected, the fast core performs better in terms of run time, however,
the energy consumption tells a different story. The Cortex-A7 just consumed 8J whereas
the Cortex-A15 burned almost 18J. This emphasizes the idea of heterogeneous platforms
to trade performance against energy consumption.

In an additional experiment, we ported PICO’s runtime library to the Odroid-XU3
platform and integrated that system into the PA4RES framework. It took us less than
one day to add this new platform to the framework. The integration of the poper
MACCv2 classes and configurations to represent the Odroid-XU3 took the majority of

Chapter 3. PICO-Framework 68

Sequential Parallel

Benchmark Run time
(ms)

Energy
(mJ)

Run time
(ms)

Energy
(mJ)

Adpcm 5.23 16.29 5.05 16.87
Boundary-Value-Problem 6.52 18.57 5.98 19.67
Compress 8.00 24.42 6.87 27.39
Edge Detect 10.01 29.85 8.62 37.80
FIR-Filter 3.6 11.41 4.87 15.55
Filterbank 10.41 33.00 9.94 31.14
Lattice-Filter 3.57 11.34 5.04 16.82
Matrix Multiplication 80x80 9.78 28.12 7.75 31.90
Matrix Multiplication 800x800 15,935.11 62,484.40 4,335.91 17,684.60
Spectral 4.08 13.05 5.29 16.88
JPEG 11.45 32.03 8.79 30.24

Table 3.5: Results for OpenMP-based parallelization executed on the Odroid-XU3 without
scheduling restrictions.

Benchmark Speedup Energy Factor
Adpcm 1.03 1.03
Boundary-Value-Problem 1.09 1.06
Compress 1.16 1.12
Edge Detect 1.18 1.27
FIR-Filter 0.74 1.36
Filterbank 1.05 0.94
Lattice-Filter 0.71 1.48
Matrix Multiplication 80x80 1.26 1.13
Matrix Multiplication 800x800 3.68 0.28
Spectral 0.77 1.29
JPEG 1.30 0.94

Table 3.6: Comprehensive speedups and energy factors for Table 3.5.

the time. Section A.3 gives more details regarding the API and runtime. To further
ease the evaluation process, we added cross compilation and remote execution with
measurement capabilities to PA4RES. Hence, the framework transmits and executes
the cross compiled binary via ssh to the Odroid-XU3. PICO collects the measurement
results and integrates them, thus they can be used in later optimization phases. Since
the used benchmark set is not ideal for the powerful Odroid-XU3, we conducted this
experiment only with the large Matrix Multiplication benchmark. The result was
almost identical to the one reported by the OpenMP experiment. Generally, the runtime
is reduced and therefore the energy consumption. This experiment suggests that PICO
achieves a comparable performance to OpenMP.

3.7.3.2 Heterogeneous Experiments

After we demonstrated PICO’s capabilities on homogeneous systems, we shift the focus
towards heterogeneity. In the following, we show how PICO meets the requirements of

Chapter 3. PICO-Framework 69

Sequential Parallel

Benchmark Run time
(ms)

Energy
(mJ)

Run time
(ms)

Energy
(mJ)

Adpcm 9.61 6.58 9.59 7.50
Boundary-Value-Problem 12.14 8.22 10.79 9.17
Compress 21.38 13.98 13.70 11.59
Edge Detect 27.80 16.81 21.58 18.658
FIR-Filter 7.38 6.52 9.27 13.57
Filterbank 22.5 14.37 22.42 14.37
Lattice-Filter 7.38 6.19 9.34 7.28
Matrix Multiplication 80x80 26.69 16.04 15.33 12.38
Matrix Multiplication 800x800 34,158.54 8,861.61 17,951.20 8,032.08
Spectral 8.53 6.80 8.25 6.85
JPEG 18.99 12.42 18.83 12.52

Table 3.7: Same configuration as in Table 3.5 except, tasks are restricted to the Cortex-A7.

Benchmark Speedup Energy Factor
Adpcm 1.01 1.14
Boundary-Value-Problem 1.13 1.12
Compress 1.56 0.83
Edge Detect 1.29 1.11
FIR-Filter 0.79 2.08
Filterbank 1.01 0.99
Lattice-Filter 0.79 1.18
Matrix Multiplication 80x80 1.74 0.77
Matrix Multiplication 800x800 3.85 0.45
Spectral 1.03 1.01
JPEG 1.01 1.01

Table 3.8: Comprehensive speedups and energy factors for Table 3.7.

heterogeneous low-power embedded systems with three benchmarks in detail. Especially,
we discuss the Spectral, Filterbank and JPEG benchmarks in detail. We selected
these benchmarks as they represent complex parallelization with pipeline parallelism and
communication. As in the previous experiments, the (Pareto-optimal) parallelization
decisions are the result of the automatic parallelization process by PAXES. Besides
the performance of the implementation, we compare PICO’s static iteration mapping
heuristic with PAXES precise mapping.

Listing 3.15 shows the main function of the application annotated with PICO di-
rectives. Only four PICO directives are necessary to describe such a complex pipeline
parallelization. Subsection 3.5.4 and Subsection 3.5.3 also discuss this benchmark. The
statements of the first loop are grouped into two disjoint pipeline stages. The first
pipeline stage is divided into three concurrent tasks, assigned to processors 1 or 2, and
3 and 4. The second pipeline stage is mapped to one of the 500MHz processors (1
or 2). The second parallel region uses the parallel for construct to distribute the
iterations of the loop over three tasks and processors. In this case, the fourth processor

Chapter 3. PICO-Framework 70

is not used and can be power-gated to reduce the energy consumption. This emphasizes
another difference between parallelization for embedded systems compared to HPC with
respect to multiple objectives. For embedded systems, it might be beneficial to not
extract as much parallelism as possible in order to achieve additional, non-functional
objectives such as the reduction of the overall energy consumption. In this case, the
iteration scheduling generated by PICO’s heuristic is identical to the precise mapping
generated by PAXES. We added the iteration mapping clauses (chunks) to Listing 3.15
for visualization purposes. Hence, these clauses are not included in the file passed to
PICO.

pragma pico parallel pipeline for num_threads (4)
for (int i = 0; i < 16; ++i) {

f loat s_real [64]; f loat s_imag [64];
pragma pico section taskid =1 processor ={1 ,2} ,{3} ,{4}

↪→ chunks =5,3 ,1 interleaved
{

int index = i*4;
for (int j = 0; j < 64; ++j) {

s_real [j] = input_signal [(index+j)] * hamming [j];
s_imag [j] = zero;

}
fft(s_real , s_imag);

}
pragma pico section taskid =2 processor ={1 ,2}
{

for (int j = 0; j < 64; ++j) {
mag[j] = mag[j] + (s_real [j] * s_real [j]

+ s_imag [j] * s_imag [j]) / 4096;
}

}
}
pragma pico parallel for num_threads (3) processor ={1 ,2} ,{1 ,2} ,{3}

↪→ chunks =26 ,26 ,12
for (int i = 0; i < 64; i++) {

mag[i] = 10 * log10 ((mag[i] / 16 > 1.0e -14f ?
mag[i] / 16 : 1.0e -14f));

}

Listing 3.15: Parallelized main function of the Spectral Analysis benchmark for a
embedded heterogeneous 4 core system. Iteration mapping was done by PICO’s
schedule heuristic and chunks clauses are just added to show the schedule.

The JPEG benchmark encodes images into jpeg files. Listing 3.16 shows the main
computation loop of the parallelized source code. PAXES sliced the main loop into a
pipeline with two stages and duplicated the first pipeline stage into 3 parallel tasks. The
parallelizer did not split the second pipeline stage into parallel tasks, because only one
processor is left and PA4RES consider systems without runtime scheduling per default.

Chapter 3. PICO-Framework 71

Further, the listing shows PAXES’ precise iteration mapping for the heterogeneous
platform.

pragma pico parallel pipeline for num_threads (4)
for (blk_y = 0; blk_y < RUN_BLK_Y ; blk_y ++) {

for (blk_x = 0; blk_x < JPG_WIDTH /8; blk_x ++) {
UINT8 dctin [64];
INT16 dctout [64];
INT16 qzout [64];
INT16 zzout [64];
pragma pico section taskid =1 iterations

↪→ ={0 ,3 ,5 ,7 ,9 ,... ,15 ,18 ,20 ,22 ,24 ,... ,29} ,
↪→ {1 ,4 ,6 ,8 ,16 ,19 ,21 ,23} ,{2 ,17}
↪→ processor ={1 ,2} ,{3} ,{4}

{
get_block (image + blk_x * 8 + blk_y * 8 * JPG_WIDTH , dctin);
dct(dctin , dctout);
quantize (dctout , qzout);

}
pragma pico section taskid =2 processor ={1 ,2}
{

zigzag (qzout , zzout);
jpgsize = huffman (zzout , jpgsize);

}
}

}

Listing 3.16: Parallelized main function of the JPEG benchmark for an embedded
heterogeneous 4 core system. Precise iteration mapping is generated by PAXES.

PAXES modified the Filterbank benchmark, presented in the usability analysis,
slightly to take the structure of the target platform into account. The overall pipeline
structure (cf. Listing 3.13) is identical but the first stage is now assigned to one of the
two fast cores and the second stage on the other cores. This introduces additional data
dependencies leading to 8 communication channels.

To examine a suboptimal parallelization for a heterogeneous platform, we executed
the homogeneous version of the benchmarks on the heterogeneous platform (cf. Table 3.9
and Table 3.10, hom2het). Here, it is obvious that suboptimal load balancing results in
reduced performance. To take the heterogeneity into account, we conducted experiments
with PICO’s automatic iteration scheduling heuristic and PAXES’ precise iteration
mapping. Overall, the run time could be reduced drastically with static load balancing.
As expected, the energy consumption benefits as well from load balancing. For instance,
the speedup of the Filterbank benchmark increased from 0.68 to 2.37 even with more
communication channels. In addition, for the conducted experiments, the heuristic
achieves almost identical speedups as the precise iteration mapping provided by PAXES.

The experiments shows that the slowdowns of Spectral Analysis and Filterbank

in case of the hom2het experiments are similar but the energy consumption differs

Chapter 3. PICO-Framework 72

Sequential Parallel

Benchmark Com
Channels

Run time
(ms)

Energy
(µJ)

Run time
(ms)

Energy
(µJ)

Spectral hom2het 6 6.79 0.19 13.16 0.75
Spectral heuristic/precise 6 6.79 0.19 6.68 0.57
JPEG hom2het 3 70.76 3.63 73.91 4.53
JPEG heuristic 3 70.76 3.63 46.23 3.72
JPEG precise 3 70.76 3.63 38.86 3.46
Filterbank hom2het 3 108.57 6.10 160.13 4.18
Filterbank heuristic 8 108.57 6.10 46.05 1.81
Filterbank precise 8 108.57 6.10 45.76 1.78

Table 3.9: Results for heterogeneous experiments with different iteration mapping
techniques.

Benchmark Speedup Energy Factor
Spectral hom2het 0.52 4.01
Spectral heuristic/precise 1.07 3.03
JPEG hom2het 0.96 1.25
JPEG heuristic 1.53 1.02
JPEG precise 1.82 0.95
Filterbank hom2het 0.68 0.69
Filterbank heuristic 2.36 0.30
Filterbank precise 2.37 0.29

Table 3.10: Comprehensive speedups and energy factors for Table 3.9.

drastically. Deeper investigations revealed that the different memory utilizations cause
this gap. In case of the Spectral analysis, relatively large data is communicated through
the memory whereas Filterbank is dominated by calculation and thus benefits from
parallelization. This offers optimization opportunities exploited by PICO as presented in
Chapter 4.

3.8 Conclusion

This chapter presented the overall PICO framework, our approach to tackle the tough
challenge to parallelize sequential applications targeting modern multiprocessor systems
with a strong focus on limited resources typical for embedded systems. The design
philosophy allows developers to parallelize their applications with a high-level method.
Embedded in the PA4RES methodology, PICO provides two ways to parallelize legacy
sequential programs. In combination with PAXES, applications can be parallelized in
a (semi) automatic tool flow without manual interaction. The other way provides a
manual annotation-based approach. In this case, the design philosophy of PICO focuses
on simplicity. With straightforward directives, inspired by the de-facto standard for
shared memory parallelization, developers can parallelize their applications without deep
knowledge of data dependencies and control flow.

Chapter 3. PICO-Framework 73

PICO is integrated into the PAXES framework and thus uses MACCv2’s target
platform knowledge and the ICD-C compiler framework for the source-to-source transfor-
mations. Internally, PICO performs all operations on graph structures and thus is able
to derive data dependencies between statements to ensure a safe parallel execution. In
combination with annotations, PICO generates parallel source code including necessary
data synchronization using a platform-independent lightweight runtime library calls. The
evaluation demonstrated the benefits of PICO. Only a few directives were necessary to
implement complex hybrid pipeline parallelism. The performance evaluation on the ho-
mogeneous system showed that PICO performs as expected. Using static load balancing,
PICO successfully exploited the capabilities of the heterogeneous platform. The imple-
mented iteration scheduling heuristic performs comparable to a precise iteration mapping
generated by PAXES. This demonstrates PICO’s strengths not only in combination with
PAXES but also as an iterative development tool for rapid prototyping.

Chapter 3. PICO-Framework 74

Chapter 4

PICO -
Communication Optimization

Contents
4.1 Introduction . 75
4.2 PICO - Communication Optimization Approach 77
4.3 Related Work . 79
4.4 Internals of the Communication Optimization 82

4.4.1 Genetic Algorithm Implementation . 82

4.4.1.1 General Chromosome Structure 83

4.4.1.2 Genetic Operations . 84

4.4.1.3 Fitness evaluation . 86

4.4.2 Execution Model . 88

4.5 Evaluation . 93
4.5.1 Evaluation Setup . 93

4.5.1.1 Applications . 94

4.5.1.2 Target System . 96

4.5.1.3 Genetic Algorithm Configurations 96

4.5.2 Simulation Results . 97

4.5.3 Model-based Optimization Results . 104

4.5.4 Discussion . 106

4.6 Conclusion and Future work . 108

4.1 Introduction

Parallelization is the key technique to improve the performance of applications in modern
multi-core systems. Ideally, the application is partitioned in a way that all parts run
independently. Unfortunately, data dependencies force these parts to synchronize which
may delay the execution until all dependencies are met. This leads to a performance

75

Chapter 4. PICO - Communication Optimization 76

degradation of the parallelized application. The previous chapter revealed that synchro-
nization between parallel running tasks cannot be avoided. Especially pipeline parallelism
indicates that data flows between concurrently running tasks. Despite this drawback,
pipeline parallelism is sometimes the only option to leverage parallelism and improve the
performance of a given application. Therefore, it is important to implement the data
synchronization as efficiently as possible with respect to given resource limitations.

In the context of PA4RES, we identified important objectives such as energy con-
sumption, run time and memory consumption. Following the PA4RES methodology,
data synchronization between concurrently running tasks is realized with point-to-point
FIFO-channels. In theory, these FIFO-channels have an infinite capacity and do not add
additional delay. However, real systems have resource limitations like a limited memory
capacity defining the maximum channel size or data transmission delay. In addition,
different hardware and software implementations for channel-based communication vary
in their properties and may introduce additional overhead. Further, the communication
infrastructure available on the target platform exposes additional limitations, for instance
bus contention. For systems with complex memory hierarchies, the channel to memory
mapping influences the performance. A specific mapping may influence other channel
parameters, for instance, using a small but fast memory for the communication limits
the maximum capacity of the channel. In some cases a mapping may restrict the use
of a specific channel implementation. On the software side, usually, multiple program
variables must be synchronized across concurrent tasks. Therefore, the order of channel
accesses as well as merging of multiple channels into one influence the performance of the
parallelized application. Manual exploration of all these parameters in order to find an
efficient solution is a complex, time-consuming and error prone process. PICO provides
an easy to use method to explore the capabilities of the target platform and parallel
application using an evolutionary algorithm. PICO creates a set of Pareto-optimal
implementations of the channel-based synchronization where the user can select the best
suiting solution. Thanks to the separation of task and channel implementation using
abstract library calls, PICO can refine the communication independently from the task
implementation.

This chapter is based on methods and results published in [NEM15b]. However, this
thesis extends the evaluation and provides a more detailed description of the algorithmic
and implementation details significantly. In addition, this chapter adds and evaluates a
high-level execution model to speedup the exploration time. To summarize, this chapter
provides a methodology to answer the following questions typically raised during the
implementation of data synchronization following the PA4RES approach:

1. Which hardware or software implementation suits best?

2. Which FIFO-channel capacity prevents blocking?

3. Where to map a channel, e.g. which memory?

4. When to perform the communication in the execution flow?

Chapter 4. PICO - Communication Optimization 77

5. Which channels should be combined?

6. How do different FIFO implementations affect the performance?

This chapter is structured as follows. Section 4.2 provides a brief overview of PICO’s
communication optimization approach. Section 4.3 discusses related work and compares
it to PICO. Section 4.4 presents a detailed description of the internals of the optimization
flow. Section 4.5 highlights the evaluation results and Section 4.6 summarizes this work
and gives an outlook for future improvements.

4.2 PICO - Communication Optimization Approach

An efficient communication implementation is crucial for a parallel application. Thanks
to the separation of task code and communication implementation, PICO can explore the
target specific implementations independently. PICO’s optimization algorithm tackles
the mapping problem (cf. Definition 4.1) with a GA. The optimization phase works on
the abstract application model (cf. Section 3.2). It is able explore various communication
related parameters and automatically derives an optimized solution.

Definition 4.1 (Communication Mapping Problem):
Given a set of communication nodes c ∈ C, a set of channels ch ∈ Ch and a set of
communication infrastructure components ci ∈ CI, the communication mapping problem
is to find an optimal mapping of c→ ch→ ci such that the overall costs are minimal.

communicationCosts =
∑
c∈C

(
∑

ch∈Ch
costs(ch, c) +

∑
ci∈CI

costs(ci, c))

overallCosts = executionCosts+ communicationCosts

Costs can be execution time, energy consumption or memory space and depend on
implementation details, e.g. channel capacity.

A GA belongs to the class of evolutionary algorithms and is inspired by the selection
process observed in nature. They are simple to implement and able to explore complex
solution spaces efficiently. The main components of a GA are the chromosome, the
fitness evaluation and the genetic operations. A chromosome is basically an array of
parameters, thus the genetic representation of the problem space. A individual is a
specific solution and a set of individuals is a population. A fitness function evaluates
how good an individual performs. The GA starts with an (random) initial population
and applies several operations inspired by nature. A selection process chooses promising
individuals from the population. These individuals are then merged in a cross-over
process or mutated forming a new population. This iterative process continues until a
certain termination criterion is met, for example a maximum number of populations,
reaching a certain fitness level or an equilibrium. The main challenges of GA are an
efficient encoding of the problem space into a gene representation, a good selection,

Chapter 4. PICO - Communication Optimization 78

cross-over and mutation process to avoid local optimums and finally, a fast and accurate
fitness evaluation.

Figure 4.1 shows the communication optimization flow using the PA4RES flexible tool
flow (cf. Section 2.3). Starting with an annotated sequential application, either provided
by PAXES (cf. Subsection 2.3.2) or manually instrumented by the user, PICO explores
the solution space using a GA. The GA generates and proposes solution candidates to
PICO for evaluation. PICO performs the fitness evaluation either on the target platform
or using a high-level execution model. Finally, PICO returns a set of Pareto-optimal
solutions to the user.

GA

Host Compiler
Execution
Platform

PICO

Runtime

Operating
System

Annotated
Code

Figure 4.1: Communication optimization flow.

The algorithm is able to explore software FIFO and hardware implementations, if
they follow the PICO communication API (cf. Section A.3). We created several prototype
implementations for the channel-based synchronization which ship with PICO. Each
implementation provides different advantages and disadvantages. We expect, that there
is no FIFO implementation suiting all needs for any application. Therefore, we enabled
the GA-based approach to explore the capabilities of these implementations with respect
to multiple objectives. The set of predefined channels can be extended easily with new
implementations satisfying PICO’s API.

The GA can explore the memory hierarchies of a given system, for instance the SPM
available in the simulation-based low-power embedded system (cf. Section 2.1). Beside
these parameters, the GA also determines the capacity of each FIFO, and if multiple
channels should be bundled to reduce management overhead. Thanks to the PA4RES
framework and MACCv2, the optimization algorithm is aware of resource limitations
like memory capacity. However, the user can restrict the memory usage artificially. This
might be useful to store additional user-defined data into a fast but smaller memory or
to explore different hardware configurations early in the system design exploration phase.

Chapter 4. PICO - Communication Optimization 79

4.3 Related Work

Efficient data exchange between concurrently running tasks is tightly coupled to the
pursued parallelization technique. Section 3.3 highlights the parallelization aspects
of PICO related approaches. Most of these approaches assume fixed communication
implementation or user interaction. However, if the already discussed related work
provides additional insights into the realization of communication, we list them in this
section as well.

FIFO channels are used in several models of computations, e.g. KPN, to synchronize
data between concurrently running entities and to preserve a given execution order of
the application. Therefore, mapping and implementation of FIFO channels onto different
hardware platforms have been researched extensively. Nadezhkin et al. [NMS09] presented
a specialized FIFO implementation to map KPNs onto the Cell BE platform. The
heterogeneous Cell platform provides a PowerPC core and multiple synergistic processing
elements connected though a bus. The system does not provide hardware FIFO facilities.
Therefore, the global shared memory and private processor memory must be used for
the synchronization. In their paper, the authors analyzed two software-based FIFO
implementation strategies. In addition, they investigated how to use the heterogeneous
memory structure efficiently. Key is the efficient packetizing of communication tokens.
Their experimental results emphasize the importance of tailored FIFO channels. However,
their analysis focuses only on execution time. PICO automatically explores several
synchronization implementations to find the optimal configuration regarding several
objectives, including run time and energy consumption.

Traditional FIFO channels introduce additional data copy overhead during read
and write operations. Windowed FIFOs [HGT07] remove this overhead by introducing
additional channel operations for sharing the data between concurrent tasks. In principle,
concurrent processes do not have a local copy of the data, instead they work directly on the
shared buffer. Thus, local operations on the shared data take place in the shared memory
protected by index pointers to prevent collisions and guarantee a correct execution order.
Haid et al. [HSH09] demonstrated that windowed FIFO-based communication in KPNs
using protothreads can be efficiently executed on the Cell platform. Protothreads [DSV06]
realize cooperative multi process execution on a single processor. Their evaluation only
focuses on speed-up and does not consider other objectives important for embedded
systems. In addition, if starting from a sequential application, the approach requires
substantial work from the developer to transform the code.

An efficient KPN mapping to a target platform should not only consider the compu-
tation tasks but also the communication between the nodes. This is especially important
in the case of heterogeneous systems which provide different communication resources.
Castrillón Mazo et al. [CTL12] developed a Group-Based Mapping (GBM) heuristic
using timing information obtained by tracing information and FIFO capacities provided
by the MAPS tool [CLA13]. Section 3.3 provides a more detailed discussion regarding
the parallelization aspects of the MAPS tool. Using a joint process, GBM assigns

Chapter 4. PICO - Communication Optimization 80

communication and process mapping to minimize the execution time of the application.
Therefore, the heuristic maps elements of the KPN to groups of hardware components
first, and then maps the members of each group. All components of a group share similar
capabilities like timing characteristics. This work highlights the importance of consid-
ering communication mapping to different resources as a vital part of the optimization
process to reduce the execution time. In contrast, PICO is able to consider multiple
communication techniques with respect to multiple objectives. The GBM approach has
been refined by using a split-cost communication model by Odendahl et al. [OCV13].
In their work, they analyzed three different channel implementations and mapping to
DRAM and scratch memory and observed that traditional single cost models to calculate
the communication costs are not accurate enough. Therefore, they split the costs into a
receiver and sender value. The enhanced GBM heuristic achieved an improvement of
10%. PICO’s execution model also uses different costs for reading from and writing to a
channel.

Ko and Won [KWB10] analyzed the impact of buffer sizes and synchronization
performance on the overall system’s performance of heterogeneous systems in context of
image processing applications. Their model also considers different communication costs
for sender and receiver. Their results emphasize the impact of buffer synchronization
overhead especially for small buffer sizes.

Ferrandi et al. [FLP10] presented a combined ant colony optimization-based heuristic
for mapping and scheduling of tasks and communication onto heterogeneous multipro-
cessor systems. Their multistage decision process approach decouples scheduling and
mapping. The target platform is modeled using an abstract architecture model. The
main objective is make-span but other important aspects like energy consumption are
not considered. In contrast to PICO, their approach only considers a fixed type of
communication implementation.

Erbas et al. [EEP03] proposed a combined task and FIFO mapping approach using
a genetic algorithm. Applications are modeled as KPNs. Their multi-objective aware
exploration approach is specifically tailored towards the Sesame framework. The approach
considers mapping of channels but not how the channels are implemented. Hence, only
one FIFO channel type is used. Verdoolaege’s [VNS07] pn compiler derives process
networks from Static Affine Nested Loop Programs (SANLP). For these specific loops the
compiler can statically determine a safe lower bound for the FIFO capacity to guarantee
a deadlock free execution. Section 3.3 discusses the parallelization aspects of the pn
compiler and its usage in the MADNESS project.

Determining the optimal communication channel capacity with respect to multiple
objectives under resource limitations is crucial. Therefore, the buffer sizing problem
has been investigated in the last decades. In the process network domain, especially for
Kahn Process Network, Parks [Par95] investigated bounds for buffer sizing theoretically.
The proposed algorithm starts with a limited (small) buffer size and increases uniformly
the capacity for all channels in case of a deadlock. Usually not all channels of the

Chapter 4. PICO - Communication Optimization 81

network are involved in the deadlock. Thus, [GB03] extended Parks’ algorithm so that
only the capacity of FIFOs responsible for the deadlocks are increased. The presented
works resolve the deadlock issue, however, since PICO starts with sequential applications
the resulting parallel application do not suffer from deadlocks produced by wrong
channel capacities. In our case, the FIFO capacity may influence the performance and
therefore a good trade off between multiple objectives must be found. For rate constrained
applications, Cheung et al. [CHB07] proposed an automatic off-line buffer sizing algorithm
to find the minimal FIFO capacities to meet the application constraints. In an iterative
approach their algorithm increases the FIFO sizes to improve the performance in terms
of run time. However, as for many KPN-focused approaches they do not consider
merging of multiple FIFO channels to increase the performance. Gogniat et al. [GAB98]
presented a HW/SW communication synthesis and resource optimization approach. Their
method explores different communication methods like bus-based or hardware FIFO data
exchange. In addition, the algorithm merges communication resources and focuses on
static applications.

Bus and shared memory-based communication infrastructures may not be suitable
for future many core systems. For such systems, (hybrid) NoC interconnects might offer
a good solution to connect large amounts of processors. Hu and Marculescu [JM04]
presented a static scheduling heuristic for tile-based NoC architectures. Their algorithm
takes energy consumption and real-time constraints during the mapping process into
account. Further, the approach supports heterogeneous systems and therefore models
different execution times for each task depending on which processor it is mapped to.
The energy consumption model for transmitting data through the network is basically the
sum of the consumed energy by the switch and link between network tiles. Lee and Choi
[LC12] presented a combined task and communication mapping approach which considers
shared memory and message passing to realize the data exchange in a homogeneous
system. Their communication routing approach is able to optimize execution time
or energy consumption. In contrast, PICO is multi-objective aware and considers all
objectives simultaneously. Their many-core target architectures provide a NoC and
memory communication infrastructure. The communication model of this approach takes
communication delay into account which may come from network contention.

To conclude, various publications highlight the importance of the FIFO mapping
onto the available resources. Mapping of communication is important but most methods
do not consider the flexibility offered by various channel implementations. Most of the
presented approaches only consider execution time as their main objective and thus neglect
important aspects of resource-constrained embedded systems. In addition, FIFO channel
merging, which might reduce overhead, is vastly neglected. In contrast, PICO provides an
automatic multi-objective aware approach to optimize the communication in parallelized
applications which considers multiple communication types, mapping, capacity and
channel merging specifically targeting low-power resource-restricted embedded systems.

Chapter 4. PICO - Communication Optimization 82

4.4 Internals of the Communication Optimization
C

o
m

m
u

n
ic

a
ti

o
n

 O
p

ti
m

iz
a

ti
o

n

Finish Pareto-Front
YesAnalyze

Communication
Build Population

Mutate
Population

No

Evaluate
Population

Figure 4.2: Communication optimization phase.

This section covers details regarding the communication optimization flow imple-
mented in PICO. The optimization algorithm is tightly integrated into PICO’s paral-
lelization process. Figure 4.2 shows the internal steps of this phase. The optimization
approach internally works on the parallel task graph presented in Subsection 3.6.1.3
following the application model presented in Subsection 3.2. The basic idea is that each
data synchronization node provides several parameters building the exploration space for
the optimization algorithm. For instance, the channel type identifier defines which specific
synchronization implementation is to be used for that node. Additional parameters
control the capacity and mapping of the FIFO to the memory. As stated above, PICO’s
communication optimization process is designed to be extensible and thus the user can
add new communication methods to the design space. Accordingly, the user provides
the software implementation and properties implementation parameters to PICO. In a
future extension, the process could be automated in such a way that PICO performs
an analysis to extract information necessary for the optimization process. Here, PICO
generates a new identifier and calculates the memory overhead for this implementation.
Later, the memory overhead in combination with the FIFO size determines if a certain
solution can be mapped to a specific target platform.

PICO’s GA implementation is based on the PISA framework [BLT03]. It takes
care of the selection process and provides additional implementation support. PICO
therefore is responsible for the chromosome structure, fitness evaluation, cross-over
and mutation. The fitness evaluation typically dominates the run time of GA-based
optimization algorithm. Therefore, we schedule multiple evaluations in parallel for a
given generation, which significantly reduces optimization time. The following sections
provide more detailed descriptions of the employed algorithms.

4.4.1 Genetic Algorithm Implementation

This section covers implementation details of PICO’s GA-based optimization process.
First we present the (extensible) chromosome structure used to encode all parameters of
the problem space. Then we describe the cross-over and mutation operations performed
by PICO during the optimization process. Finally, we discuss the fitness evaluation.

Chapter 4. PICO - Communication Optimization 83

Prop 1 ... Prop 1 ... Prop 1 Prop 2 … Prop 2 ...Prop 1

Task IO Genes Communication Node Genes

Node N Node N +1 Node N Node N +1

Figure 4.3: General chromosome structure.

4.4.1.1 General Chromosome Structure

The chromosome structure defines the mapping between the problem space (parameters)
and the genetic optimization algorithm. One gene of the chromosome basically corre-
sponds to one parameter, e.g., capacity. An expressive and evolvable representation is
necessary to guarantee a good and robust optimization process. Internally, the chromo-
some is an array of bits with a variable length. PICO uses integer arrays where each
element represents a different parameter. Thus, all parameters must be encoded into
this array representation.

General Chromosome Structure: The application model used in the PA4RES
framework (cf. Subsection 3.2) and the resulting internal representation generated by
PICO (cf. Subsection 3.6.1.3) contain two types of synchronization nodes. Task in and
out nodes synchronize data between parent and child tasks and they are usually executed
only once. Thus, a channel-based synchronization only makes sense for specific corner
cases. Nodes synchronizing data between concurrently running tasks are processed
multiple times and thus use channel-based synchronization. Figure 4.3 visualizes the
general chromosome structure with respect to the two separate communication node
types. The first part (Task IO Genes) of a chromosome is reserved for taskIn and taskOut
node parameters and the second part is for FIFO communication nodes. Each graph
node can have several parameters (genes). In this approach, synchronization from the
parent task to a child can be implemented different to the communication from the child
to the parent. Thus each taskIn and taskOut node is represented in the chromosome,
whereas data exchange between concurrently running tasks is specified by the comOut.
Accordingly, the chromosome only contains half of the communication nodes. The length
of the chromosome is variable but fixed for a specific parallel application which relates
to the number of synchronization nodes multiplied by the number of parameters. Our
general chromosome layout allows us to specify an arbitrary parameter set nested in the
nodes.

Specialized Chromosome Structure: For this chapter, we use the simulation-based
platform as a testbed to evaluate the GA-based optimization algorithm. Inheriting the
general structure, Figure 4.4 shows the chromosome used to optimize data synchronization
for the simulation-based target platform in this thesis. This system provides a large but

Chapter 4. PICO - Communication Optimization 84

...TI1 TI2 TO1 TO2

0: DRAM
1: SPM

Type: 0: FIFO, 1: RMQ, 2: INTERRUPT, 3: TIMER, 4: TIMER RMQ
 5: Combined FIFO, 6: Combined RMQ,
 7: Combined INTERRUPT, 8: Combined TIMER,
 9: Combined TIMER RMQ
Dev: 0: DRAM, 1: SPM
Size: Number of FIFO elements
ID: FIFO ID if combined queue
Timer: sleep time

Type Dev Size ID Timer Type

Task IO Genes Communication Node Genes

Figure 4.4: Chromosome structure used in this thesis.

slow and energy inefficient DRAM and a fast, energy efficient but rather small SPM which
can be used for data exchange between the processors. The mapping to the memory is
encoded using a Dev gene, where the value 0 represents the DRAM and 1 the SPM. In
this case, each task IO node and com node have this gene. Further, we implemented five
different software FIFO channel implementations which should be explored by the GA.
The Type gene encodes the communication node to implementation mapping. Type 0 is
the standard FIFO implementation based on the busy waiting principle. If no data is
available or the channel is saturated and the access blocked, a loop constantly checks
for data or space availability. This implementation tends to reduce the waiting delay
since it proceeds as soon as possible but wastes energy for the polling mechanism. The
implementation of type 1 uses the queue system provided by the RTEMS operating
system. It can only be used for very small data (380 bytes). In contrast to type 0, type
2 uses an interrupt-based approach. In the case of blocking, this implementation sets the
processor to a sleep mode to reduce the energy consumption. The sleeping task wakes up
on each system interrupt and checks if the channel is still blocked. Thus, the execution
time might increase due to the suspension but the energy savings heavily depend on the
amount of interrupts. Finally, type 3 and 4 use a configurable sleep timer where 4 uses
the RTEMS queue system. Here, the GA configures the sleep period to a fixed value.
In contrast to the interrupt-based approach, this implementation might benefit more
from an undisturbed suspension. For each FIFO type we allowed PICO to implement a
combined version, in this case, they are numbered from 5 to 9 where type 5 is a combined
polling-based queue and 9 a combined sleep timer-based RTEMS queue version.

For completeness, Figure 4.5 shows the structure used in [NEM15b]. In that version,
only 4 different channel types were supported. Most notably in comparison to the
structure used in [NEM15b], the structure used in this thesis provides combined channels
for all FIFO types.

4.4.1.2 Genetic Operations

During the iterative optimization process, the GA performs several genetic operations to
create a new generation from an existing population. Therefore, the algorithm conducts

Chapter 4. PICO - Communication Optimization 85

...
TI1
Dev

TI2
Dev

TO1
Dev

TO2
Dev

Dev: 0: DRAM, 1: SPM Type: 0: FIFO, 1: RMQ, 2: FIFO INTERRUPT, 3: COMBINED FIFO
Dev: 0: DRAM, 1: SPM

Type Dev Size ID Type ...

Task IO Genes Communication Node Genes

Figure 4.5: Chromosome structure used in [NEM15b].

cross-over and mutation operations on the individuals inspired by nature to form a new
generation. These operations might result in an invalid individual, for instance a solution
exceeding the available memory with the newly generated channel capacity. Thus, our
GA-based optimization algorithm repairs those individuals.

TI1 TI2 TO1 T1 D1 S3 D2T1 S4

Parents

Child

TI1 TI2 TO1 T1 D1 S1 D2T2 S2 TI1 TI2 TO1 T2 D1 S3 D2T1 S4

Cross-Over

Figure 4.6: GA cross-over operation: merge two individuals at a random position.

Cross-over: Figure 4.6 visualizes the cross-over operation which combines two indi-
viduals into a new solution. Our chromosome has a variable length depending on the
number of taskIO and comOut nodes. However, the length is fixed during the optimiza-
tion process since the parallel application and thus the graph do not change. PICO’s
cross-over operation randomly selects a gene position for the recombination. For the
new individual, genes located before this cross-over position stem from the first original
individual whereas genes located after that position originate from the second individual.
This combination might result in an invalid solution. In that case a repair process steps
in.

TI1 TI2 TO1 T1 D1 S1 D2T2 S2

TI1 TI2 TO1 T1 D2 S1 D2T2 S2

Mutate gene

Parent

Child

Figure 4.7: GA mutate operation: select random position and change value randomly.

Mutation: Genetic mutation changes the values of genes. Figure 4.7 illustrates this
operation. We implemented single and multi bit mutation. For the single bit mutation,

Chapter 4. PICO - Communication Optimization 86

the algorithm selects one gene randomly. Whereas, in the case of multi bit mutation, the
GA-based approach selects several genes randomly. Then, the algorithm randomly assigns
new values to the genes respecting the value range of this gene. This additional step
does not prevent that the mutation produces invalid individuals. Hence, an additional
repair step is necessary.

Repair: The cross-over or mutation process might produce invalid individuals, thus
our GA applies an additional repair step. In classic GA these individuals get sorted out,
but to improve the overall optimization time, we apply a repair step to generate a valid
solution instead of to timely execute a faulty individual. An invalid solution might be
an impossible combination of channels. In such a case, the repair function reverts the
combination of channels back to separate synchronization. A mismatch between the
FIFO types used by the nodes combined into a channel is solved in the way that the
lowest FIFO type number is used for all channels assigned to this combined channel.
Similar, if the capacity varies among the channels which should be combined, the repair
step sets the capacity to the smallest size used by the involved channels. Another issue is
the memory consumption of a channel configuration. It might be, that a specific software
implementation can not handle the required capacity or resulting size of a combined
FIFO. In such a case, the algorithm tries to lower the number of elements or split
the combined channel. If the resulting individual is still invalid, the following fitness
evaluation will assign a bad fitness value to this individual and it is very unlikely that
this individual will survive the selection process.

4.4.1.3 Fitness evaluation

The fitness evaluation is an essential part of the optimization process. It assigns a fitness
value (performance) to each individual to steer the evaluation process. Individuals with a
high fitness should survive and reproduce and those with lower fitness should vanish. This
optimization process is inspired by nature and mimics survival of the fittest. A fast but
robust fitness evaluation is therefore vital since GA algorithms may evaluate millions of
individuals. We extended the PISA implementation and enabled our GA to evaluate all
individuals of a generation in parallel. This reduces the evaluation time drastically under
the permission that sufficient target systems, simulator instances or computation capacity
are available. To further speed the evaluation process up, a database stores all already
analyzed solutions and their fitness value to avoid re-evaluation. Some parameters can
be evaluated statically which may avoid a possible expensive execution-based evaluation.
The memory consumption of the FIFO-channels of an individual can be calculated
statically. To determine the execution time and energy consumption, the GA either
executes an individual on the target platform or consults a high-level execution model.
A hybrid fitness evaluation model which most of the time prefers the fast model-based
calculation but sometimes a precise detailed evaluation run might be a worthwhile

Chapter 4. PICO - Communication Optimization 87

extension. In the following we will provide more details on the objectives and evaluation
methods.

Objectives: In this chapter, we consider PICO’s fitness evaluation of run time, energy
consumption and memory consumption for all memories separately. The execution time
and energy consumption can either be measured or estimated using a high-level execution
model (cf. Subsection 4.4.2). In case of the memory consumption, the fitness values
can be calculated beforehand and used to sort invalid solutions out to prevent time-
consuming (faulty) evaluations. Therefore, the resulting Pareto-frontier evolves toward
short execution times, low energy consumptions and small memory footprints.

Static Memory Consumption Evaluation: PICO calculates the memory require-
ments for the communication of the individual solution before a potential expensive
long-running measurement. In the following, we provide all necessary equations used by
PICO to evaluate an individual regarding memory consumption and feasibility of the
solution with respect to memory restrictions. In general, the memory occupied (MEM)
by a (software) communication implementation for a given memory m is the sum of the
space occupied by the single and combined FIFO channels assigned to that memory.

MEM(m) = SCOM(m) + CCOM(m) (4.1)

The amount of memory space used by single FIFO channels (SCOM) is the sum
over all single channels sizes. For each channel, the size depends on a type-dependent
overhead and the bytes required to store the data buffer.

SCOM(m) =
∑

n∈COM(m)
Overhead(n) +Bytes(n) (4.2)

In case of a combined channel, the type-dependent overhead only is added once for
each combined FIFO. The memory required to store the data is equivalent to the single
FIFO. Therefore, the size required to implement all combined channels (CCOM) for a
given memory m is:

CCOM(m) =
∑

comb∈COMBINED(m)
(Overhead(comb) +

∑
n∈comb(m)

Bytes(n)) (4.3)

The memory space reserved for the data is the FIFO capacity multiplied by the size
in bytes for one element of the channel:

Bytes(n) = Capacity(n) ∗ SizeOfElement(n) (4.4)

Finally, memory space is limited either physically or artificially restricted by the user.
Thus, we must ensure that only solutions survive which meet these conditions:

Chapter 4. PICO - Communication Optimization 88

∀m ∈Memories : MEM(m) ≤MAXSIZE(m) (4.5)

In case of the simulation-based target system, the channels can be mapped to two
types of memory. The SPM is rather small and therefore, an individual might generate a
channel mapping which exceeds the available capacity. In such a case, the solution is
invalid resulting in a low fitness and no expensive simulation is necessary.

Online Run Time and Energy Evaluation: The GA interfaces with the simulation-
based and with the real hardware platform. The PA4RES framework provides several
internal methods to execute code on the target platform. In case of the simulation-
based systems, the overall execution time as well as the active time of each processor is
measured by the simulator itself and reported to the algorithm. The framework adds start
measurement instructions at the beginning of the application so it excludes operating
system boot time. In addition, it adds proper end measurement instructions to the end of
the application which should be optimized. The energy consumption is calculated using
the EnergyMetric (cf. Section A.1) module and returned to the optimization framework.

In case of the Odroid-XU3, the GA connects via a SSH tunnel to the board. Here, it
can either use the EnergyMeter or the Energy Relay Reader (cf. Section A.2) to measure
the energy consumption and execution time. To improve the precision of the results, the
GA is configurable to repeat these measurements. The results are then reported back to
the optimization algorithm. In either case, the user of PICO can configure a timeout
to stop the execution of unwanted long running individuals to speed up the evaluation
process. In this case, the evolution assigns a poor fitness value to these terminated
individuals.

4.4.2 Execution Model

Simulation-based exploration can be very time-consuming. Therefore, PICO provides
a high-level execution model, capturing the essentials of the parallel application and
target platform. This model is tailored towards a fast evaluation of the communication
optimization task and abstracts several aspects of the application. The execution model
consists of a communication graph CG and a target architecture model. The aim
of this model is to provide guidelines regarding the FIFO channel configuration and
mapping. The model is not meant to provide a precise performance evaluation of the
entire application. It is precise enough to compare different solutions on an abstract
ratio basis. Ideally, the model should be used for a rapid search space pruning followed
by a detailed simulation-based exploration or in a hybrid approach.

The key idea of the model is, that it abstracts computation away such that it is
represented by a fixed cost, e.g., execution time or energy consumption. Instead of data,
the communicating tasks now exchange timestamps for FIFO channel access. With this
information, we can model the blocking time of channels appropriately. To model the
interaction between concurrently running tasks, PICO builds a Communication Graph:

Chapter 4. PICO - Communication Optimization 89

Definition 4.2 (Communication Graph (CG)):
A communication graph is a tuple (P,C) of processing (P) and communication (C) nodes.
Nodes are connected with edges that represent the control flow and define the execution
order. Communication nodes are either of type sending or receiving and model indirectly
the data dependency between parallel tasks.

To consider the specific capabilities, PICO uses an architecture model:

Definition 4.3 (Architecture Model):
An architecture model represents the available processing and communication capabilities
of the target platform. It provides estimated processing and communication costs. In
addition, it models which communication infrastructure can be simultaneously used.

Finally, we can define the execution model as:

Definition 4.4 (PICO Execution Model):
The execution model traverses the CG with information provided by the architecture model
and accumulates the costs of each node. In the case of blocking, the model takes waiting
time and FIFO configurations into account.

Execution Model Construction: To reduce the evaluation time, the CG should only
capture the essentials of the parallel application in context of PICO’s communication
optimization. Hence, the original application is reduced to processing and communication
nodes. Figure 4.8 visualizes this process briefly. Depending on the mapping, PICO can
select the correct values for each task from the architecture model. Therefore, PICO
enriches the task graph (cf. Subsection 3.6.1.3) with data provided by the Performance
Estimator (cf. Subsection 2.3.1). The data consists of run time and energy values for
each statement class mapped to all available processors.

In the next step, PICO folds all execution nodes between communication nodes into
a single processing node. Hence, parts without parallelism or communication are not
considered and removed from the graph. It calculates the longest path between two
communication nodes of the same task. To find the longest path, PICO’s heuristic
traverses the graph in a bottom-up way. Thus, the inner most nested statement nodes are
visited first and their values are summed up. Once PICO reaches a split in the control
flow, e.g. at a loop head or a conditional statement it performs a merge operation. In
case of a loop, PICO multiplies the accumulated values of the nested nodes by a static
loop count. The loop count is either known or derived from flow facts. In the case of a
conditional statement, PICO selects the most expensive path. If a parallel region calls
a function, PICO computes the high-level costs of this function beforehand and stores
this value for a faster lookup. If a called function is too complex for the abstract model,
PICO may require additional user input. The high-level execution model currently does
not support nested parallelism. In the worst case PICO fails to generate a model and
reverts to the simulation-based evaluation for the communication optimization. However,
since the task graph is well-structured, loop bounds are known and the input language is

Chapter 4. PICO - Communication Optimization 90

5

3

Com Out

5

2

11

Com In

7

8

Com Out

5

2

18

Com In

Figure 4.8: Execution model visualization, numbers inside nodes represent costs.

restricted to avoid side effects, PICO is able to approximate the longest path is in most
scenarios used in this thesis.

Modeling the communication including delay and contention is vital for a sufficiently
accurate performance estimation. At this stage, the GA provisioned the channels, so that
channel capacity, mapping and implementation details are known. In this model, the
communication cost is split into a static and a dynamic part. The static part accounts
for the case of non blocking access to the channel whereas the dynamic part represents
the blocking time. Sending and receiving may not cost the same as the model provides
separate costs for these nodes. The model provides byte-based transmission costs and
delays for each of the available FIFO implementations. These values have been manually
measured and calculated for all currently available FIFO types. In addition, the model
considers the data transmission costs between parent and child task. In the future, this
process can easily be automated using predefined measurement routines. The dynamic
communication and overall execution costs are estimated during the execution of the
model. In the following, we provide a detailed description of the actual model execution
and how the dynamic costs are derived.

Model Execution: To estimate the impact of the communication setting, PICO
executes the model by traversing communication graph for each parallel region. The
employed approach is comparable to virtual loop unrolling and mimics the execution
of the entire section without actual data. Therefore, PICO forks a concurrent (Linux)
thread on the host for each parallel task. These threads execute the folded task graph
and simulate the communication in the graph. The model uses a global time and
energy consumption model. In the case of heterogeneous architectures, the run times are
normalized based on the lowest common frequency. Executing a processing node is simply
adding up the processing time values. Modeling the communication is sophisticated.

Chapter 4. PICO - Communication Optimization 91

WRITEProducer

Polling

Sleep

t

READ READ READ READ READ

READ SLEEP READ SLEEP READ

tw tp ts

Figure 4.9: Communication waiting cost modeling.

Instead of actual data, the channels exchange timestamps for read and write accesses.
This enables the model to account waiting for blocked access. Algorithm 4.4 provides a
pseudo code representation of the key components of the communication modeling.

PICO’s execution model internally represents a FIFO with a channel class to model
the blocking nature of a FIFO. This class has two queues, one storing the write times qw
to that channel and one the read times qr. In addition the class also stores the capacity
of the FIFO. Further, this class provides read and write methods.

Channel Access Modeling: In case a communication node sends data, the write
method is called with the current start time ts and the duration d (costs) of a non blocked
write process for this specific FIFO type. The write method first checks if the FIFO
capacity is sufficient to allow a write. If space is available, the write method proceeds
and stores the time stamp the write completes tw + d into qw. Finally, it returns the
start time of the write process (ts) to the caller.

A read works similar as the read method checks if qw contains an entry. If data was
written to that queue and since the PICO application model uses point-to-point channels,
the read is successful. Then, the read method removes that entry from qw and adds the
current read time tr + d to qr.

In case of blocking access, PICO must approximate the waiting time properly. At
this point, the contents of qw and qs play an important role. A blocking write means
that qw is full. Therefore, the execution of this task blocks and waits until a read on
this channel occurs which removes one element in qw and the write method proceeds.
To model the waiting time, the write method now uses the time tr that the previous
read stored in qr as the starting point for the write. Therefore the write method returns
tr + d to the caller.

Communication Cost Modeling: To model the energy consumption and account
for sleep modes for that FIFO access, the model calculates the time span tdelay between
the time passed to the method and the returned value. Each FIFO type has a specific
cost in terms of time and energy for a single waiting event. This models for instance
various sleep modes.

Figure 4.9 visualizes this. Let us assume, a read starts at time 0 but the write at
time tw = 150. In case of a polling FIFO, we would constantly try to read the channel.

Chapter 4. PICO - Communication Optimization 92

Algorithm 4.4 Communication Model
procedure Channel::write(startTime, duration)

writeT ime← startT ime
pop waitTime from qr
if size(qw) + 1 ≤ capacity and waitT ime ≤ startT ime then

push startTime + duration to qw
pop elem from qr

else
while size(qw) + 1 ≥ capacity do wait()
push waitTime + duration to qw
writeT ime← waitT ime

return writeT ime

procedure Channel::read(duration)
while empty(qw) do wait()
pop readTime from qw
push readTime + duration to qr
return readT ime

procedure ComOutNode::execute(procID, globalTime)
costs← singleWriteCosts()
duration← getWriteDuration(procID)
writeT ime← Channel :: write(globalT ime, duration)
if writeT ime 6= globalT ime then

diff ← globalT ime− writeT ime
numberOfWaits← ddiff ÷ singleWaitingT ime()e
costs← costs+ numberOfWaits× singleWaitingCosts()

return costs

procedure ComInNode::execute(procID, globalTime)
costs← singleReadCosts()
duration← getReadDuration(procID)
readT ime← Channel :: read(duration)
if readT ime 6= globalT ime then

diff ← globalT ime− readT ime
numberOfWaits← ddiff ÷ singleWaitingT ime()e
costs← costs+ numberOfWaits× singleWaitingCosts()

return costs

Therefore, the read could read the channel successfully at tp. Let us now assume a wait
FIFO sleeps 100 time units between each check if data can be written. Therefore, the
write could only proceed after ts = 200 time units and we must add twice the waiting
costs. Thus, tp ≤ ts but due to sleep state, energy(ts) ≤ energy(tp). The model accounts
for that and the overall execution and energy consumption of a communication node is
can be approximated with:

ComCost(node) = d+ numberOfWaits ∗ singleWaitCost (4.6)

In the context of PICO, this fairly abstract model works since we can make some
assumptions. The original application was sequential and its transformation rules into

Chapter 4. PICO - Communication Optimization 93

a parallel application are known. In case of a combined channel, PICO only adds the
costs once. Currently this model does not consider contention on the communication
infrastructure. However, this could be added easily with an additional queue modeling
the contention.

Total Cost Calculation: Finally, we estimate the final performance according
to Equation 4.7 and Equation 4.8 The model accumulates the longest of the estimated
execution time for the tasks in each parallel region. This models the fact that the control
flow joins at the end of a parallel region and the execution can only proceed if all tasks
of that region have been terminated. However, for the estimated energy consumption we
must account all concurrently running tasks for each region. For nested regions, PICO
could calculate the estimated performance in a bottom-up approach.

executionT imeest =
∑

region∈parallelRegion
longestTaskT ime(region) (4.7)

enegyConsumptionest =
∑

region∈parallelRegion

∑
task∈Tasks

getEnergyEst(task) (4.8)

4.5 Evaluation

This evaluation section presents results regarding the communication optimization pro-
vided by PICO and particularly answers the following questions. Do the test case
applications benefit from PICO’s communication optimization? Is PICO able to explore
the available channel implementations and various parameters efficiently? How does the
execution model perform and how can it improve the optimization process?

4.5.1 Evaluation Setup

For this evaluation we conducted experiments with various real world and synthetic
applications. PICO optimizes the necessary data synchronization within these test
cases towards the objectives run time, energy and memory consumption, targeting a
homogeneous and a heterogeneous multi-core platform. The optimizing phase uses
a genetic algorithm to perform the parameter exploration. All evaluation runs were
performed on a dual Intel Xeon CPU X5650 (6 cores, 12 threads) server with 54 GB
memory. Parallel evaluation was utilized as much as possible but is limited by the
available licenses for the simulator.

Figure 4.10 visualizes the overall optimization flow. The sequential application with
PICO directives is passed the PICO which then constructs the application model graph.
PICO then creates the chromosome structure according to that graph and starts the
optimization process. Finally, PICO returns a set of Pareto-optimal solutions.

Chapter 4. PICO - Communication Optimization 94

int main() {
 /* … */
 #pragma pico parallel for
 for (int i = 0; i < 10; i++) {
 /* … */
 }
}

Com In

Task Out

Task In

Com Out

Task Out

Task In

Join

Fork

1
.

B
u

ild

A
p

p
lic

a
ti
o

n
 M

o
d

e
l

2. Communication

Optimization

5. Pareto Frontier

3. Create Generation

TI1 TI2 TO1 T1 D1 S3 T1 D2 S4

TI1 TI2 TO1 T1 D1 S1 T2 D2 S2 TI1 TI2 TO1 T2 D1 S3 D2T1 S4

4. Evaluate

8

Com Out

5

2

18

Com In

Execution Model

Simulation

AMBA BUS

ARM

1176

ARM

1176

ARM

1176

ARM

1176

BOOT ROM

(8 MB)

PRIVATE

(64 MB)

SPM

(1MB)

DRAM

(512 MB)

8

Com Out

5

2

18

Com In

Execution Model

Simulation

AMBA BUS

ARM

1176

ARM

1176

ARM

1176

ARM

1176

BOOT ROM

(8 MB)

PRIVATE

(64 MB)

SPM

(1MB)

DRAM

(512 MB)

8

Com Out

5

2

18

Com In

Execution Model

Simulation

AMBA BUS

ARM

1176

ARM

1176

ARM

1176

ARM

1176

BOOT ROM

(8 MB)

PRIVATE

(64 MB)

SPM

(1MB)

DRAM

(512 MB)

Figure 4.10: Communication optimization flow visualization.

4.5.1.1 Applications

To analyze PICO’s capabilities we selected several real world applications and generated
additional synthetic test cases. Table 4.1 summarizes the benchmarks used in the evalua-
tion. The real work applications originate from the UTDSP benchmark suite [Lee08], the
SNU real-time benchmark suite [SNU17]. The PAMONO preprocessing test case applies
several image processing steps (cf. Section 3.7 or Section 5.4). These tests were also
used in previous experiments and Section 3.7 provides additional insights. We selected
these applications since they require data exchange between pipeline stages and thus
should benefit from PICO’s communication optimization. The other programs used
in Section 3.7 might only benefit from optimized taskIn and taskOut communication
and were excluded from this evaluation. As with the evaluation in Section 3.7, we used
the parallelized versions of the application taken from the Pareto frontier generated by
PAXES. In this case, we selected proper solutions for the target hardware platforms. For
this evaluation, we selected a PAMONO preprocessing parallelization which uses FIFO
channels.

Synthetic Pipeline Test Cases: To gain additional insights into PICO’s capabilities
we apply PICO’s communication optimization to a set of synthetic benchmarks. With
these artificial applications we inspect different aspects of the optimization algorithm and

Chapter 4. PICO - Communication Optimization 95

Benchmark Channels Description
Filterbank 3/8 Pipeline of filter stages, including convolution,

down and up sampling
Spectral Analysis 6 Calculates the power spectral estimate of

speech using periodogram averaging
JPEG 3 JPEG encoder
PAMONO Preprocessing 10 PAMONO preprocessing
Synthetic Pipeline 10 Several synthetic pipeline test cases to explore

PICO’s capabilities

Table 4.1: Benchmark description - real world benchmarks taken from UTDSP [Lee08]
and SNU benchmark suite [SNU17] and self-generated synthetic test cases.

pragma pico parallel pipeline for num_threads (NUMTHREADS)
for (i = 0; i < LOOP; i++)
{

pragma pico section T1SLICE
{ // Task 1

for (j = 0; j < T1DUTYCOUNTER ; j++)
{
in1 = 1; // Random write to variable
}

// ...

for (j = 0; j < T1DUTYCOUNTER ; j++)
{

in10 = 10; // Random write to variable
}

} // TASK 1
pragma pico section T2SLICE
{ // Task 2

// define local variables
// ...
for (j = 0; j < T2DUTYCOUNTER ; j++)
{

lin1 = in1; // force read from Task 1
}

// ...

for (j = 0; j < T2DUTYCOUNTER ; j++)
{

lin10 = in10; // force read from Task 1
}
result = lin1 + ... + lin10 ;

} // TASK 2
} // LOOP

Listing 4.1: Synthetic pipeline test case template, configurable parallelism and
complexity.

Chapter 4. PICO - Communication Optimization 96

expect to be able to derive some general rules. We followed a template (cf. Listing 4.1) to
derive the applications. A main loop is split into to two pipeline stages. Configurable loops
are used to simulate workload for each stage. The template also provides hybrid pipeline
parallelism. All test cases synchronize 10 variables across pipeline stage boundaries.
However, we vary the type and size of the variables. Furthermore, the template provides
a mechanism to leverage hybrid pipeline parallelism. To analyze the impact of channel
merging, we modified the receiving part of the template thus all data is required at the
same time. For another experiment we changed to order of the read, thus the first variable
written will be read last. We set the outer loop to an iteration count of 20 and varied
the synthetic work of the two stages: (1000/1000), (1000/100), (1000/10), (100/1000)
and (10/1000). As data types, we used single integers and a slightly modified version
using integer arrays with 64 elements. All synthetic experiments use the homogeneous
platform with a SPM restriction of 512 B.

4.5.1.2 Target System

The evolutionary optimization algorithm employed in PICO explores versatile commu-
nication implementation and mapping-related parameters. Communication channel
mapping is only suitable for systems with multiple memories ideally with different per-
formance characteristics. Therefore, we focus on the simulation-based systems for this
evaluation. Subsection 2.1.1 provides more details regarding these systems. Important
for this section are the available memories. In this setup, PICO uses either the large,
slow and power-inefficient DRAM or the small, fast and energy-efficient SPM for data
exchange between concurrently running parts of the application. In our system, the
operating system roughly consumes 400 KB of the 1 MB SPM, the remaining space can
be freely utilized. PICO can be restricted to only assign certain amounts of memory.
This might be beneficial for manually mapped variables or during prototyping to estimate
the memory requirements for a later hardware product. To analyze how PICO deals with
such limits we varied these memory restrictions in the experiment. Initially, in context of
the considered applications and to stress the resource-restrictions faced by such systems
we limited the available SPM to 512 B, 1024 B and 2048 B. Later, we extended the SPM
to 32 KB for the Filterbank test case and 8 KB for Spectral. The FIFO management
structures and PICO runtime variables are always assigned to the SPM. The four cores
for the homogeneous system run with 500 MHz and on the heterogeneous one they are
clocked with 500 MHz, 500 MHz, 250 MHz and 100 MHz, respectively.

4.5.1.3 Genetic Algorithm Configurations

PICO employs the SPEA2 [ZLT01] evolutionary algorithm provided by the PISA frame-
work [BLT03] for the parameter exploration to find the true or an approximation of the
Pareto frontier. In this evaluation, the fitness function evaluates an individual solution
regarding run time, energy and memory consumption of the SPM and DRAM. The
mutation property is set to 0.5 and a generation comprises 100 individuals. We let

Chapter 4. PICO - Communication Optimization 97

the GA evaluate 100 generations. In case of an invalid or already evaluated solution,
the optimization algorithm performs up to 10 additional genetic operations to generate
a new unknown configuration. Therefore, the total number of evaluated individuals
varies across the experiments. As objectives, the GA considers execution time, energy
consumption, DRAM and SPM footprint. The GA minimizes energy consumption and
execution time whereas SPM usage is maximized since this should improve the energy
consumption. For this evaluation, we did not use an early termination, however, PICO
provides such feature.

4.5.2 Simulation Results

Table 4.2 lists the number of simulations, genetic operations and the evaluation time
for the benchmarks. In general, we observed that for cases were the data which must
be synchronized is close to or exceeds the SPM restrictions, fewer simulations were
performed. In such a case, the GA was unable to find new promising individuals which
might improve the overall performance. Therefore, we extended the SPM limits for some
benchmarks. The GA performs a simulation for all valid unseen solutions. In case of an
invalid or known solution, PICO performs additional genetic operations to create a new
individual. This explains the high number of GA operations. Overall, the evaluation
time heavily depends on the execution time of a single individual and varied between
a few hours to more than a day with up to 10 parallel evaluations. In the following,
we present the results for the experiments. The plots contain execution time in cycles,
energy consumption and the combined memory footprint. It is important to take into
account that the GA considers SPM and DRAM utilization separately, but we chose,
for better visualization, to report a combined value. In the following, we present an
excerpt of the results for a better readability, the remaining result graphs are move
to Appendix B. We compare our results against a baseline experiment, which uses a
predefined FIFO mapping, channel size and type. In principle, this baseline represents
roughly how the PAXES parallelizer internally accounts for data synchronization. This
baseline experiment is visualized with a red diamond.

Filterbank: Figure 4.11 and Figure B.1 to Figure B.3 in Appendix B and show the
results of the Filterbank experiments on the homogeneous system. This benchmark
synchronizes a comparably large amount of data leading to similar results for a SPM
of up to 2 KB. In such case, the GA mainly explored task in and out mappings as well
as implementation types. Therefore, we extended the restriction to 32 KB. Overall, the
results show solutions are grouped into two islands. The left, energy efficient, island used
more sleep- and interrupt-based FIFOs whereas the other used the polling-based FIFO
implementation more. This proves the intuition that waiting is more energy efficient but
slower than polling. For this setting, the results do not contain solutions with merged
FIFO channels or RTEMS queues.

Chapter 4. PICO - Communication Optimization 98

Benchmark SPM (B) Number of
Simulations

Number of
GA Operations

Evaluation
Time (h)

Filterbank (hom) 512 386 46,603 4.0
Filterbank (hom) 1,024 394 47,513 4.2
Filterbank (hom) 2,048 437 46,294 4.2
Filterbank (hom) 32,768 4,362 56,326 19.3

Filterbank (het) 512 250 48,552 3.4
Filterbank (het) 1,024 252 48,620 3.6
Filterbank (het) 2,048 447 52,035 4.2
Filterbank (het) 32,768 3,823 55,550 17.5

JPEG (hom) 512 2,009 46,353 20.4
JPEG (hom) 1,024 2,391 46,976 22.1
JPEG (hom) 2,048 3,461 46,484 26.2

JPEG (het) 512 1,917 45,784 19.6
JPEG (het) 1,024 2,522 47,844 23.8
JPEG (het) 2,048 3,117 49,332 24.1

Spectral (hom) 512 414 43,374 2.5
Spectral (hom) 1,024 913 48,629 3.6
Spectral (hom) 2,048 1,681 45,971 7.3
Spectral (hom) 8,192 2,899 47,478 8.0

Spectral (het) 512 435 45,182 2.5
Spectral (het) 1,024 1,338 46,605 4.6
Spectral (het) 2,048 1,976 41,140 8.1
Spectral (het) 8,192 3,042 46,668 8.8

PAMONO (hom) 512 603 42,685 48.3
PAMONO (hom) 1,024 958 41,120 68.7
PAMONO (hom) 2,048 1,092 43,334 75.6

Table 4.2: GA statistics for communication optimization.

Leveraging the SPM restriction to 32 KB enabled the GA to explore the SPM for
the data synchronization. In this case, the results show that in almost all cases the
FIFO channels were mapped onto the energy efficient SPM. This led to an additional
improvement compared to the other settings. The combined memory footprint indicates
that for this benchmark, the channel size is not an important parameter. We expect that
the overall memory consumption could be reduced if we would adjust the repai function
such that more valid solutions are generated.

The same observation can be made for the heterogeneous platform. Figure 4.12
visualizes the results for this platform. The remaining results for this platform can be
find in Figures B.4 to B.6 in Appendix B. Also, the results indicate that the solutions
are more sensible to which waiting strategy is used. Overall, the results show, that PICO
is able to explore the solution space and generate a broad range of solutions. Compared
to the baseline result, fast and energy efficient solutions with a reduction of 30% could
be found.

Chapter 4. PICO - Communication Optimization 99

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
17

17.2

17.4

17.6

17.8

18

18.2

18.4

18.6

Filterbank

Hom. Platform, SPM=32 KB

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
10
15
20
25
30
35
40
45
50
55
60

Filterbank

Hom. Platform, SPM=32 KB

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure 4.11: Filterbank on the homogeneous system with SPM restricted to 32 KB.

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
22.2

22.25

22.3

22.35

22.4

22.45

22.5

Filterbank

Het. Platform, SPM=1024 B

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
10

20

30

40

50

60

70

Filterbank

Het. Platform, SPM=1024 B

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure 4.12: Filterbank on the heterogeneous system with SPM restricted to 1024 B.

Chapter 4. PICO - Communication Optimization 100

Spectral: The Spectral benchmark suffers from strong data dependencies. As Sec-
tion 3.7 shows, already the improvements due to parallelization are small. Figure 4.13 and
4.14 show the results for the homogeneous and heterogeneous experiments. Additional
results are shown in Figures B.7 to B.12 in Appendix B. In the homogeneous case with a
SPM restriction of 512 B the results show a usage of polling-, interrupt- and sleep-based
version. We could also obverse solutions using combined FIFOs and mapping of up
to one channel to the SPM. Raising the SPM restriction enabled to GA to map more
communication onto this memory. In addition, the results show an increased usage of
combined FIFOs. Furthermore, with more available SPM space the GA maps more task
in data to this memory. We observe that almost all channels were mapped to the SPM
and the majority uses combined channels for the SPM setting of 8 KB. We believe, that
the outliers in the combined memory footprint (cf. Figure 4.13(a)) could be removed if
more individuals where simulated.

0.176 0.178 0.180 0.182 0.184 0.186 0.188 0.190 0.192 0.194
1.84

1.85

1.86

1.87

1.88

1.89

1.9

1.91

Spectral

Hom. Platform, SPM=2048 B

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

0.176 0.178 0.180 0.182 0.184 0.186 0.188 0.190 0.192 0.194
2

7

12

17

22

27

32

37

Spectral

Hom. Platform, SPM=2048 B

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure 4.13: Spectral on the homogeneous system with SPM restricted to 2048 B.

For the heterogeneous case, we observe similar FIFO types and SPM mapping for a
restriction of up to 2 KB. Thus, increasing the number of generations should smoothen the
results. In the 8 KB case, we observe three solution islands. The left island contains more
energy efficient solutions and use mostly polling and sleep-based types for single channel
FIFOs. Most of the channels are merged into polling and interrupt-based channels. The
middle island has only a few solutions which uses sleep-based single channels, all other
prefer combined channels. As for the left island, the merged channels use polling and
interrupts. For the right island, we see that the ratio of polling-based FIFOs increases.

Chapter 4. PICO - Communication Optimization 101

This observation is in line with the fact that polling is faster but energy inefficient. The
Filterbank shows a similar behavior under some conditions.

The results for the combined memory footprint indicate that the Spectral benchmark
does not improve much with larger channel sizes. This was expected due to the very
tight loop-carried dependencies. However, PICO was able to generate a broad range
of solutions which improve the performance in comparison to the baseline. In terms of
energy consumption, the GA found solutions which consumed 31% less energy compared
to the baseline solution. PICO found solutions with a run time improvement of 7%.

0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21
2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

Spectral

Het. Platform, SPM=8192 B

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21
2

4

6

8

10

12

14

Spectral

Het. Platform, SPM=8192 B

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure 4.14: Spectral on the heterogeneous system with SPM restricted to 8 KB.

JPEG: The Filterbank and Spectral results did not clearly indicate that the channel
capacity might have an influence of the overall performance. Figure 4.15 and 4.16 show
the results for JPEG benchmark. Additional results are listed in Figures B.13 to B.16 in
Appendix B. As the results show, already with a small SPM of 512 B, PICO could map
data to this memory. In addition, the test case indicates a relation with run time and
memory footprint. In contrast to Spectral and Filterbank, the JPEG application seems
to profit from larger FIFO sizes. This can be observed in all analyzed SPM configurations
and systems.

For the homogeneous case with a SPM of 512 B (cf. Figure 4.15), the results use
polling-, interrupt- and sleep-based single channel data synchronization. Most of the
solutions mapped one or two FIFOs to the SPM, rare cases used SPM or DRAM

Chapter 4. PICO - Communication Optimization 102

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
10
12
14
16
18
20
22
24
26
28
30

JPEG

Hom. Platform, SPM=512 B

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
0

2

4

6

8

10

12

JPEG

Hom. Platform, SPM=512 B

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure 4.15: JPEG on the homogeneous system with SPM restricted to 512 B.

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
15
17
19
21
23
25
27
29
31
33
35

JPEG

Het. Platform, SPM=512 B

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
0

2

4

6

8

10

12

JPEG

Het. Platform, SPM=512 B

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure 4.16: JPEG on the heterogeneous system with SPM restricted to 512 B.

Chapter 4. PICO - Communication Optimization 103

86 88 90 92 94 96 98 100 102 104
1140

1160

1180

1200

1220

1240

1260

PAMONO Preprocessing

Hom. Platform, SPM=2048 B

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

86 88 90 92 94 96 98 100 102 104
0

0.5

1

1.5

2

2.5

3

PAMONO Preprocessing

Hom. Platform, SPM=2048 B

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure 4.17: PAMONO preprocessing on hom. system with restricted SPM to 2048 B.

exclusively. The same mappings could be observed for the other settings. The results
indicate that a SPM of more than 1 KB does not improve the performance significantly.

In general, PICO was able to generate a large variety of solutions if different character-
istics and the user select the solution which fits the needs best. For the JPEG experiments
PICO was able to find solutions which reduce the run time to 54% of the baseline which
is a speedup of 1.84. In addition, for these solutions, the energy consumption could be
reduced by 37%. But, these solutions have a larger memory footprint than the baseline.

PAMONO Preprocessing: The PAMONO preprocessing required by far the longest
evaluation time per individual of all the benchmarks. A single simulation could easily
reach the one-hour mark. We varied the SPM restriction between 512 B to 2048 B but
observed similar results. Figure 4.17 shows the result for a SPM of 2048 B. Figure B.17
and Figure B.18 visualize the other results in Appendix B. Overall, the results show that
there is some potential for improvements and PICO generated a broad solution front.
It seems, that this benchmark profits from larger SPM sizes. This is especially visible
in the FIFO type mapping. In the case of a SPM of 512 B, the solution set contains
almost no RTEMS message queue-based synchronization. Here, the GA used the other
single channel implementations. If the SPM is increased, the results comprises more
RTEMS-based exchange. For all configurations the GA did not use a combined channel.
The results offer solutions with an energy reduction of roughly 15% compared to the
baseline implementation and in terms of execution time an improvement of 7%.

Chapter 4. PICO - Communication Optimization 104

Execution time Energy consumption

Bytes Model Simulation Diff Model Simulation Diff
1 724 743 2.62 % 20.74 21.00 1.25 %
4 729 764 -1.93 % 21.88 21.62 -1.22 %
20 822 887 7.91 % 22.93 25.11 9.49 %
40 1024 1063 3.81 % 28.88 30.02 3.94 %
80 1466 1485 1.30 % 41.02 41.42 0.97 %

160 2748 2618 -4.73 % 72.17 68.42 -5.20 %
316 7566 7298 -3.54 % 214.98 206.20 -4.09 %
1024 29621 30055 1.47 % 848.76 867.28 2.18 %
4096 125234 127824 2.07 % 3592.50 3644.66 1.45 %

16384 523664 514397 -1.77 % 15724.51 15439.94 -1.81 %

Table 4.3: Write to a polling-based FIFO with a capacity of 1 mapped to the SPM.

4.5.3 Model-based Optimization Results

The run time of the optimization is dominated by the fitness evaluation. As the previous
results showed, the optimization can take more then a day. Therefore, we proposed a
high-level estimation (cf. Subsection 4.4.2) which should improve the overall run time.
In the following, we present how we gathered the underlying data used by the model to
estimate the performance. Finally, we present first results of a hybrid GA optimization
run.

Model Evaluation: We created several simple test cases and measured the perfor-
mance with different FIFO configurations to tune the model. Sleep calls were used to
force a blocking FIFO access. The collected execution and energy consumption values
were feed into a regression analysis. Table 4.3 shows the results of the model evaluation
for a polling-based FIFO mapped to the SPM. The model fits well for this setting.
However, in case of DRAM write access the values differed more. In the worst case, the
difference was roughly 30%. This was mostly observed for smaller data. Section A.4
provides a comprehensive overview of the other results and the equations derived from
the regression. We also observe mispredictions for the interrupt-based FIFO. This is
obvious since predicting interrupts is hard. However, the provided FIFO implementations
varied in their performance characteristics. For instance, a one byte write access to a
RTEMS queue takes much longer compared to the polling-based implementations. But,
writing larger data to the RTEMS is more efficient. This fact is captured in our model.
Therefore, we expect that a hybrid GA optimization keeps the induced errors in an
acceptable range. In such a case, a simulation run would from time to time correct these
errors.

Figure 4.18 shows the results of a model-based and simulation-based evaluation for
one of the synthetic test cases. We used the same settings for both experiments. To
compare the results, we simulated the Pareto points from the model-based evaluation.
The evaluation time for the model-based evaluation including the simulation of the

Chapter 4. PICO - Communication Optimization 105

0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
3.45

3.5

3.55

3.6

3.65

3.7

Syn_sym_20_1000_10

Hom. Platform, SPM=2048 B

baseline

model

simulation

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
0

0.5

1

1.5

2

2.5

Syn_sym_20_1000_10

Hom. Platform, SPM=2048 B

baseline

model

simulatation

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure 4.18: Model-based and simulation-based evaluation with SPM restricted to 2 KB.

Pareto-frontier was roughly 27 minutes and for the simulation-based 3 hours and 26
minutes. As the results indicate, the model finds similar solutions. The configurations
on the right side are marginal faster and were not found by the model. We expect that
this comes from the high-level abstraction of the model. Both experiments resulted in
similar combined FIFO channels settings. Therefore, we conclude that the model-based
evaluation evolved in the same direction as the simulation-based.

Hybrid GA Optimization: In this experiment, we configured the GA to use for up
to 50% of the generations the execution model-based fitness evaluation. In addition, we
ensured that for the first and last generation the simulation-based fitness evaluation is used.
The high-level execution model, at the current state, only calculates the performance
for the parallel regions. Therefore, to compare results obtained by the model-based
with the simulation-based we need to re-evaluate the model-based results first. In the
case that a simulation-based generation encounters a stored fitness for a model-based
individual, the individual gets re-evaluated on the simulator. Further, we configured
the GA in such a way that at least two succeeding generations were evaluated with the
execution model. This should ensures that not all individuals get re-evaluated. Finally,
we model the distance since the last simulation-based generation, if the distance increases,
it is more likely that the new generation will be evaluated with the simulator. For this
experiment, we configured the system in such a way, that at least two and at most five
succeeding generation the model-based evaluation use. This should keep the estimation

Chapter 4. PICO - Communication Optimization 106

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
12

17

22

27

32

37

42

JPEG

Hom. Platform + Execution Model, SPM=512 B

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
0

1

2

3

4

5

6

7

8

JPEG

Hom. Platform + Execution Model, SPM=512 B

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure 4.19: JPEG with SPM restricted to 512 B and hybrid GA.

error introduced due to the high-level model and inaccuracy especially for interrupt-based
synchronization in acceptable ranges.

For this evaluation we selected the JPEG test case on the homogeneous platform with
an SPM restriction of 512 B. The pure simulation-based optimization took more than
20 hours whereas the hybrid optimization took roughly 10 hours and 40 minutes. The
algorithm performed 45,798 genetic operations which is similar to the simulation-based
case. In total, the GA evaluated 2098 individuals where 1142 were simulated and the
remaining fitness values were derived from the execution model. Figure 4.19 shows the
results of the hybrid evaluation the solutions are similar to the simulation-based only
approach shown in Figure 4.15.

4.5.4 Discussion

The evaluation highlights the importance of a holistic view on data synchronization
with respect to implementation details, mapping and channel capacity. It must be
emphasized again, that this evaluation focuses on the capabilities of PICO and not on
the prototype FIFO implementations which are considered as a black box. Therefore,
the resulting execution time, energy consumption and memory footprint heavily depend
on the target platform and prototype implementation. For all experiments, the structure
of the resolutions indicate that PICO was able to explore the solution space and find
solutions outperforming the baseline in some objectives. For instance, our optimization

Chapter 4. PICO - Communication Optimization 107

algorithm found in the JPEG experiment solutions with a speedup of 1.84 or a reduction
in energy consumption by 37%. Even in cases which suffer from tight data dependencies,
PICO was able to offer solutions which were more energy efficient. In some scenarios, a
reduction of energy consumption lead to a longer execution time due to the utilization of
sleep states. However, in (soft) real-time this might be acceptable if the application still
meets the deadline.

A comprehensive optimization run takes time, therefore we used a set of synthetic
benchmarks to obtain general rules applicable for fast prototyping. Overall we can say
that the performance of an application usually benefits from larger FIFO capacities.
Ideally, the most used channels should be mapped to the fast and energy efficient SPM.
Merging of channels can be beneficial if the time span between the data, mapped to the
combined FIFO, is written is rather short. The same must be true for reading, otherwise
the execution might be unnecessary delayed. In the case of unbalanced parallelism, a
FIFO implementation which utilizes sleep states might be beneficial.

The detailed measurements to tune the execution model revealed another aspect.
Depending on the element size, we observed a big performance bottleneck for the target
platform if the data is not aligned properly in the memory. This heavily depends on the
target architecture’s memory layout, hierarchy and how the access is realized. Therefore,
it might be beneficial to either add padding data or adjust the FIFO implementation to
respect aligned memory access.

The hybrid model-based optimization produced promising results. This approach was
able to reduce the overall optimization time significantly but was still able to find well
performing solutions. Overall, a holistic model-based approach which does not require a
simulation seems to be a worthwhile goal. Therefore, we need to further tune the model
to improve the estimations. That may be an application for machine learning.

This evaluation showed that the static fitness evaluation of the GA works. The
algorithm sorted out individuals which exceed the memory restriction before a time-
consuming simulation. In addition, PICO’s result data base prevented meaningless
re-evaluations of known configurations. In such a case, the GA performs additional
genetic operations to create new unknown individuals. In the current implementation,
PICO performs up to 10 operations. As the results indicate, especially in the case of
tight memory bounds this might not be sufficient. Therefore, we propose three strategies
to deal with this issue. Firstly, the number of genetic operations performed could easily
be increased. Secondly, a larger number of generations would increase the probability for
new unknown individuals. Finally, an enhanced repair function might be able to modify
problematic individuals in such a way that they are valid and unknown. Therefore, the
repair function needs more context and structural knowledge about the target platform
and capabilities of the provided channel types. Then it might be possible to correct the
genes causing the issue. For instance, in the case of exceeding the memory restriction, a
better suiting capacity might be calculated.

In this evaluation, the fitness evaluation as well as the Pareto dominance function

Chapter 4. PICO - Communication Optimization 108

considered memory consumption for both memories. PICO can be configured such that
it only considers execution time and energy consumption. This setting can be used to
explore the general nature of the target application.

The evaluation revealed the importance of a multi-objective aware communication
optimization for the PA4RES framework. The broad range of solutions and their
improvements must be considered during the parallelization. Currently, PAXES only
accounts with a fixed cost for data synchronization similar to the baseline used in the
experiments. A feedback loop, which provides the results found by PICO back to PAXES
seems a worthwhile extension. Again, a possible application for machine learning.

4.6 Conclusion and Future work

Data synchronization in parallel applications is a vital performance bottleneck. An
efficient data exchange is crucial, and if done improperly, wastes potential benefits
gained through the parallelization. PICO provides a holistic approach to provision the
data communication automatically for a given application towards a target platform
with respect to the objectives execution time, energy and memory consumption. Using
an evolutionary algorithm, PICO explores the capabilities of the target hardware and
software stack efficiently. In this chapter, multiple exemplary FIFO implementations
were utilized to demonstrate the capabilities and benefits of PICO’s communication
optimization approach. The fitness evaluation can either use the (simulated) target
platform to measure the performance or consult a high-level execution model. In general,
this approach considers the offered FIFO implementations as black boxes and thus can
be applied for other systems.

We demonstrated the capabilities of PICO’s communication optimization algorithm
with several real world and synthetic test cases. The GA was able to generate a broad
range of solutions with different performance characteristics. For instance, PICO found
solutions with a speedup of 1.8 or a reduction in energy consumption of 30% compared
to a baseline implementation. In other cases was the GA able to provide more energy
efficient candidates. These results highlight the importance of the actual realization of
the data synchronization. Therefore, we conclude that the simple data exchange mode
used by PAXES hides potential promising solutions. The execution model offered a
promising reduction in overall optimization time. However, the evaluation also revealed
that the underlying data that the model uses could be improved.

The evaluation proves that the questions raised in the introduction have an impact
on the overall execution. Especially, the results show that there is no general rule and
some solutions perform better for some applications than others. Fortunately, the novel
communication optimization approach developed in this thesis supports the developer.
PICO helps to find answers regarding memory mapping, channel size, implementation
details and channel merging.

Chapter 4. PICO - Communication Optimization 109

Additional improvements could be observed with an extension to the optimization
algorithm which moves the communication nodes in the graph. Further, it might be
worthwhile to implement the windowed FIFO [HSH09] semantics into PICO. A more
precise execution model would improve the performance estimations especially modeling
of contention seems promising. Therefore, we expect that adding more data points to
the regression analysis would lead to an improvement. Overall, a holistic model-based
approach which does not require a simulation seems to be a worthwhile goal.

The GA generates new unknown solutions and evaluates them with a costly fitness
evaluation. However, if such a solution is worthwhile to simulate is currently unknown
and thus (costly) evaluated. Fortunately, model-based optimization (MBO) offers a
method to predict if an individual solution should be evaluated to gain new knowledge or
not. We used MBO in the context of the CRC and in [KLN17] to estimate run time and
performance of specific machine learning algorithms. Therefore, to prune the evaluation
time of PICO’s genetic algorithm, a combination with a MBO approach seems promising.

Currently the entire PA4RES parallelization process is split into PAXES and PICO.
PAXES assumes a static FIFO implementation and only uses a fairly abstract high-
level communication cost model. Knowledge discovered by PICO regarding the actual
synchronization impacts could be fed back into PAXES’ parallelization algorithm to
further improve the results. Finally, we would like to analyze PICO’s capabilities
regarding other benchmarks and new hardware platforms.

Chapter 4. PICO - Communication Optimization 110

Chapter 5

Emerging Challenges for
Embedded Systems -
Real-time Virus Detection

Contents
5.1 Introduction . 111

5.2 Plasmon-Assisted Microscopy of Nano-Objects 113

5.3 Design Space Exploration Framework . 116

5.4 Use Case: Automatic Virus Detection Software 117

5.4.1 Implementation and Parameter Details 119

5.4.1.1 Hardware-related Parameters 119

5.4.1.2 Dynamic Frequency Scaling 120

5.4.2 Detection Quality . 121

5.5 Evaluation . 121

5.5.1 Evaluation Setup . 122

5.5.2 Experiments . 123

5.5.3 Results . 124

5.5.4 Discussion . 126

5.6 Related Work . 129

5.7 Conclusion and Future Work . 131

5.1 Introduction

Today’s growing demand for computation power and energy efficiency to realize new
complex mobile applications using high-performance embedded systems require sophisti-
cated solutions. Such applications often stem from the domain of computer vision solving
recognition tasks or machine learning. Exemplary applications are mobile robotics appli-
cations or collision avoidance and autonomous driving systems in modern cars. These

111

Chapter 5. Emerging Challenges for Embedded Systems 112

scenarios expose new challenges to high-performance embedded systems. Despite several
hardware platform parameters, the software might offer huge parameter sets to configure
the application behavior. Determining the performance impact of these parameters is a
complex and time-consuming task. This chapter presents our (automatic) exploration
approach to find reasonable solutions in a large parameter space. With a software-
based biological virus detection, we demonstrate the capabilities of our Design Space
Exploration (DSE) algorithm to explore software and hardware parameters efficiently.
Previously this detection algorithm was executed on desktop computers only. In our
experiments, we achieved soft real-time capable solutions running on a high-performance
embedded system demonstrating the feasibility of a mobile battery-driven application.

In recent years, modern high-performance embedded systems such as the Odroid-XU3
(cf. Subsection 2.1.2) offer improved performance and capabilities. These heterogeneous
systems provide different characteristics combined into a single MPSoC. In case of
the Odroid-XU3, the embedded Mali-T628 GPU offers enough computational power to
enable the usage of this platform for the computer vision domain. However, the large
parameter space offered by these heterogeneous multi-core systems exposes a significant
challenge to embedded system developers in order to find good parameters to obtain
the necessary performance with respect to available energy budgets or peak power
consumptions. Despite the platform parameters, the software which should be executed
on the platform is highly configurable and thus increases the complexity of DSE. Finding
good solutions in a huge parameter space is a complex exploration task. Based on an
existing DSE algorithm [LMS14] we developed a hardware-in-the-loop, multi-objective
aware DSE specialized for embedded systems. Section 5.3 presents more details on the
DSE algorithm. In this thesis, we use a biological virus detection as a driving application.

Today, in our connected world where we can reach remote areas within hours by
plane, viruses and thus diseases can spread easily over the whole planet in a short period
of time. Therefore, a fast and reliable virus detection is crucial to contain the spread of
viruses. Devices which enable such virus detection are more and more demanded. To
analyze samples in remote areas, a mobile solution is desirable.

Most available computer vision-based approaches require complex computations.
Consequently, these systems are large, heavy and immobile. For this reason, they are
typically bound to specific locations like laboratories or hospitals. A portable solution is
preferable since it would drastically increase the versatility of such detection systems
and help to contain virus-caused diseases in remote locations. The Plasmon-Assisted
Microscopy of Nano-Objects (PAMONO) sensor [Za10; SSL17; LSS17] and its software
processing pipeline in combination with the Odroid-XU3 are a promising candidate for a
mobile virus detection solution. This biosensor can detect and count individual viruses
in liquid samples within less than three minutes. Section 5.2 gives details on the sensor
and Section 5.4 discusses the detection software.

For applications from the computer vision domain, adjusting the detection quality
may be possible without loss of expressiveness. Changing the detection quality may

Chapter 5. Emerging Challenges for Embedded Systems 113

improve the run time and energy consumption and thus offers large optimization potential
especially for constrained embedded systems. Chapter 6 discusses these optimization
approaches which are commonly not considered in the embedded domain and so waste
this opportunity. Considering this trade-off enables an additional optimization dimension
for our DSE approach.

To summarize, this chapter presents our enhanced DSE framework which assists in
finding good hardware and software configurations for a given application. We use a
computer vision-based biological virus detection software using the PAMONO sensor as
a use case. The DSE should find hardware and software configurations for the PAMONO
application with low energy consumption, sufficiently fast evaluation speed, and accept-
able virus detection quality. Especially, we are interested what hardware or software
parameters alone contribute to the overall performance and if a combined hardware/-
software codesign achieves better results. Furthermore, what is the improvement if we
accept a degradation in the detection quality?

This chapter is based on work published in [NLE15] and [MFN17]. The author of this
thesis had the initial goal to use an embedded system as a target platform for the virus
detection. However, this work was a collaboration between Pascal Libuschewski and
the author of this thesis. Additional information can be found in [Lib17]. Both authors
contributed equally to this work. Together, we prove that high-performance embedded
systems, combined with powerful detection algorithms, are a promising platform to
enable battery-driven mobile virus detection.

This chapter is structured as follows. Section 5.2 provides the fundamentals of the
PAMONO sensor. Section 5.3 gives a high-level description of the DSE and provides
details on the extensions we made to support embedded systems. Section 5.4 presents the
virus detection software and the parameters that the DSE can explore. Section 5.5 presents
the impressive evaluation results. Section 5.6 presents related work and Section 5.7
concludes this chapter and gives perspectives for future work.

5.2 Plasmon-Assisted Microscopy of Nano-Objects

Classic optical methods fail for the detection of nanometer scale physical structures, like
viruses. Light-based microscopes are limited by the available wave length and the numeri-
cal aperture of the device. The Abbe diffraction limit [Abb73] describes this fundamental
limit. Theoretically, the observation of viruses is possible but requires exceptional good
and thus expensive microscopes. Therefore, such structures are traditionally observed
using indirect approaches. Most methods require a certain incubation time and reaction
of the patients immune system and thus increase the time span to a sufficient treatment.
For instances, the hemagglutination assay of a blood sample can be used to attest the
antibodies of a specific virus. Depending on the virus type, these tests usually require
stationary laboratories and specially trained personal.

Chapter 5. Emerging Challenges for Embedded Systems 114

Figure 5.1: PAMONO sensor overview [NLE15].

The ”Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V.” [Lei18] developed
the Plasmon-Assisted Microscopy of Nano-Objects (PAMONO) sensor which is able to
analyze samples for small particles using indirect optical methods [Za10; SSL17; LSS17].
We have access to a prototype sensor, samples and results through the collaborative
research center 876. In the following, we provide a high-level description of the sensor,
more details can be found in the related publications.

Figure 5.2: Virus adhesion process visualization [NLE15].

Figure 5.1 shows the overall layout and the important components of the PAMONO
sensor. The flow cell is the main part of the sensor system (top most). Inside this cell
is a thin gold layer coated with antibodies. During the analysis phase, the sample is
continuously flowing through this cell and viruses will attach onto the antibodies. After
the adhesion process, attached viruses remain on the gold layer through the analysis
cycle. This implies, that the current sensor is only sensible to a specific virus stem which
reacts with the antibodies and is insensible for other stems. The second component of
the sensor is a laser illuminating the bottom side of the gold layer through a prism. The
reflected light of the gold layer is then recorded by a CCD camera. The laser light excites
so called plasmon waves within the gold layer.

Chapter 5. Emerging Challenges for Embedded Systems 115

Figure 5.3: Virus adhesion process visualization [NLE15].

The excitement of the plasmon waves highly depends on the layer thickness. Thus,
small changes in the layer’s height strongly affect the plasmon waves and accordingly
the strength of the reflected light. Such effect is observable when a virus attaches to the
antibody layer. Therefore, even “if a virus is invisible for the light, the attaching process
can be observed on a micrometer scale as a small, faint spot appearing in the images
recorded by the camera” [NLE15]. Figure 5.2 shows a more detailed view of the flow cell
with the gold layer as well as attached viruses and the changes in the reflectivity of the
layer. Figure 5.3 shows a recorded image, for visualization purposes we marked attached
particles. As the figure shows, the recorded image is very noise and the detection of
viruses is hard, especially if dirt particles additionally distort the image.

Figure 5.4: Odroid-XU3 (front) and the PAMONO prototype sensor (back).

Figure 5.4 shows the Odroid-XU3 in front and the prototype PAMONO sensor setup
in the back. The prototype sensor currently uses exchangeable (large) components like
an actual camera lens. We think that the sensor itself could be drastically shrunk in size
if necessary, e.g., for a real world mobile usage.

Chapter 5. Emerging Challenges for Embedded Systems 116

The PAMONO sensor detects and counts the viruses and does not attest antibodies
as in contrast to rapid tests for virus infections like the flu or HIV. Therefore, the
PAMONO sensor can detect the viruses as soon as they show up in the sample and
therefore it closes the gap between the time the patient is becoming contagious and
the patient’s immune system is developing the first antibodies [NLE15]. Originally, the
collected PAMONO sensor data was analyzed manually in an extensive time-consuming
process. Fortunately, in the context of the Collaborative Research Center (CRC) 876
Siedhoff [Sie16] and Libuschewski [Lib17] developed an automatic computer vision-based
detection software reducing the analysis time significantly. Section 5.4 gives more detail
on the software. However, such complex software offers versatile parameters to tune the
application towards the requirements, Section 5.3 presents our automated approach to
tackle the large parameter space.

5.3 Design Space Exploration Framework

Developers often face the task to configure a complex application and a manifold target
platform to meet certain requirements like run time or energy budget. Complex software
and modern hardware platforms offer a wide variety of parameters. Some parameters
are related to each other and thus changing one parameter might conflict with other
parameters resulting in bad performance. Considering all relations and side effects
is complex and thus an automated holistic approach is necessary to support system
developers. This chapter presents the Design Space Exploration (DSE) framework which
automatically identifies hardware and software parametrization. The DSE is evaluated
with several other applications from a wide variety of domains, although we focus on the
PAMONO sensor application. In this chapter we focus on the necessary extensions to
the DSE to enable embedded systems as a target platform. More details on the DSE
can be found in [Lib17]. However, in the following we provide a brief introduction to our
DSE framework.

Genetic Algorithms (GAs) are often used for parameter exploration especially to
explore a highly non-linear design space. For instance, PICO uses a GA to improve
the data exchange between concurrently running tasks (cf. Subsection 4.4.1). The
DSE presented in this chapter is based on a heavily modified Java-based Evolutionary
Computation Research System (ECJ) [LPB18]. We use NSGA-II [DAP00] for the
multi-objective evaluation provided by ECJ. Previous iterations of the DSE framework
targeted only a GPU (simulator) for the fitness evaluation. However, in this study we use
a complete real (embedded) hardware platform, so we adapted the framework to support
arbitrary target platforms. We generalized the DSE. Hence, it is now able to accept
fitness evaluation results from various sources. To evaluate the energy consumption
and execution time of the application executed on the Odroid-XU3 system, the DSE
interfaces with the EnergyMeter tool (cf. Subsection A.2.1). For this reason, the DSE
framework now considers the energy consumption of the GPU, processors and memory

Chapter 5. Emerging Challenges for Embedded Systems 117

whereas the previous iteration only supported (simulated) GPUs. We enhanced the DSE
to explore additional hardware parameters like processor clock frequencies or applied
governors. Further, we extended the fitness evaluation capabilities into the direction of
approximate computing. It is now possible, that solutions with a degraded result quality
survive due to their better performance in terms of energy consumption or execution
time.

As previously mentioned, parameters can be in a relation to each other or must be
within certain value ranges. For example, if one parameter is set to a specific value, the
related parameter may only use a restricted value range. The DSE framework allows the
user to model such parameter relations as well as value ranges and restrictions with an
input specification file. For instance, the core frequencies of the Odroid-XU3 can only be
changed in 100 MHz steps.

During the optimization process, the DSE runs on a master computer to manage the
exploration. The target system is connected e.g. via network or software socket to the
master. If available, multiple target systems can be utilized to speedup the evaluation
phase. The DSE distributes the individual solution candidates including all necessary
files automatically to the target and starts the evaluation. To increase the accuracy
of the evaluation results on a real (hardware) system, the experiment can be repeated
several times automatically. Finally, the (averaged) fitness values are collected and
reported back to the master system. Once a generation is evaluated, the GA generates a
checkpoint containing all partial results and creates a new generation for the evaluation.
This process is repeated until the termination criterion is met.

5.4 Use Case: Automatic Virus Detection Software

The PAMONO biosensor satisfies all requirements for a fast real-time virus detection.
However, up till recently, the analysis results were evaluated manually which might
take days. Recently, researchers [Sie16; Lib17] developed an automatic virus detection
software for this promising sensor. The VirusDetection with OpenCL (VirusDetectionCL)
software is capable to detect and count viruses in images recorded by the sensor’s camera.
As a computer vision application, VirusDetectionCL has huge performance demands
onto the target platform. We think that such applications are emerging into the domain
of mobile embedded systems and are thus raising interesting research questions. The
combination of sensor, software and hardware is a complex Cyber-Physical System (CPS).
As Section 5.5 shows, this application is a good test cast for the DSE. The DSE is able to
explore and solve problems exposed by emerging applications in the (mobile) embedded
systems domain.

During the analysis phase, the system must process several hundred images to obtain
a reliable result in a short period of time. In addition, it is desired, but not required, to
process the images, recorded by camera in real-time. The used camera records images
with 25 frames per second. By meeting this soft real-time requirement, image buffers

Chapter 5. Emerging Challenges for Embedded Systems 118

3. Feature Extraction 4. Segmentation 5. Classification2. Signal Restauration
1. Data Acquisition &

Preprocessing

Figure 5.5: Virus detection pipeline overview, based on [NLE15].

between the camera and in the succeeding detection software can be removed or at least
scaled-down. Further, this enables a theoretically infinite execution without the risk of
buffer overflows. If buffers are still required, smaller buffer and thus smaller memory
sizes are still beneficial. Since memory is expensive especially for embedded systems, this
might also reduce the cost of the system.

Figure 5.5 visualizes the conceptional work flow of the detection algorithm. The
software works as a five stage pipeline. The first stage acquires the images from the sensor.
The pre-processing step uploads 16-bit gray-scale images to the GPU and converts them
to floating point arrays. The signal restoration step uses the physical signal model of
the PAMONO sensor to restore the signal of the attaching virus particles. Further, this
step removes noise and the constant background signal. Some of the processing works on
series of images. These two presented stages provide the fundamentals for one of the
benchmarks used in the PICO evaluation (cf. Section 3.7). During the feature extraction
phase, different per-pixel and per-polygon features are calculated. The per-pixel features
can be interpreted as a pixel’s degree of membership to a class of pixels corresponding to
a virus adhesion. The per-polygon features represent the degree of membership of the
whole polygon to the class of a virus adhesion. The extracted features are then segmented
by applying the polygon structures around prominent areas. Finally, the classification
step decides if the polygons correspond to viruses or not. In the ideal case, each virus
adhesion in the images is identified by a corresponding polygon and the polygon size
should match the size of the virus adhesion.

The version of the virus detection software used in this thesis is written in C for
the Central Processing Unit (CPU) code and OpenCL for the GPU code. It consists
of 14, 000 SLOC of C code and 4, 000 SLOC of OpenCL code. The virus detection
software also includes OpenCL host code and GStreamer [GSt18] dependencies. The
dependency to OpenCL and thus special hardware support limited the detection software
to desktop computers. However, modern mobile systems like the Odroid-XU3 provide
sufficient OpenCL support to execute the detection pipeline. This section highlights the
parameters of the hardware and software the DSE can explore to optimize the systems’
performance.

Chapter 5. Emerging Challenges for Embedded Systems 119

Preprocessing
Parameters

2 Hardware

Signal Restoration
Parameters

4 Integer
1 Float
6 Hardware

Feature Extraction
Parameters

2 Integer
2 Float
7 Hardware

Segmentation
Parameters

3 Integer
2 Float
7 Hardware

Classification
Parameters

2 Float
1 Hardware

Figure 5.6: Pipeline parameter overview, based on [NLE15].

5.4.1 Implementation and Parameter Details

Figure 5.6 illustrates the detection pipeline and the number of configurable parameters
for each pipeline stage. Subsection 5.4.1.1 provides more details on the configurable
hardware-related parameters. The parameters for the signal restoration phase mainly
influence the noise reduction quality. The virus detection software provides several feature
extraction algorithms. Here, the pipeline parameters determine detection thresholds and
the selection of feature extraction algorithms. The segmentation parameters, mainly
thresholds, influence how the polygons are created and how the extracted features per
pixel are combined to features per polygon. Finally, the classification parameters sort
false detections for the set of polygons out. To conclude, the detection pipeline provides
23 hardware and 16 software parameters. In the following we present a more detailed
description of the hardware parameters since they are in the focus of this thesis. [Lib17]
provides more details regarding the software parameters.

5.4.1.1 Hardware-related Parameters

The virus detection software provides various hardware-related parameters which can
be used to tailor the application towards a specific target hardware. These parameters
mainly focus on OpenCL configurations and thus relate to the GPU. Major parts of the
image processing is implemented in OpenCL and thus effects from these hardware-related
parameters can influence the overall performance heavily. The work group size controls
the parallelism in that way that it defines the number of concurrently running threads
allocated onto the GPU. For instance, if the work group size for the noise reduction is set
to 16× 16, 16× 16 = 256 threads for the calculation. These threads are then scheduled
on the GPU, in case that the GPU can not handle all threads simultaneously they got
executed in multiple steps. Data synchronization between concurrently running threads is
essential, in this case, partial results within the work group are shared through the shared
memory on the GPU itself. In case of the Odroid-XU3, the GPU and processors use the
same memory. The memory partition may influence the detection quality. In these cases,
the algorithm uses knowledge provided by previously processed images for the calculation,
e.g. during noise reduction or feature extraction. For this reason, if more images are
available, the algorithm usually generates more precise results. Therefore, depending
on the memory allocation the detection quality of the virus detection algorithm varies.
More details regarding these hardware-related parameters in the virus detection software
can be found in [Lib17].

Chapter 5. Emerging Challenges for Embedded Systems 120

Despite the hardware-related parameters provided by the algorithm, the Odroid-XU3
platform also provides some configurable hardware parameters. Most important is the
ability to configure the clock frequencies of the A15 and A7 processors. These hardware
parameters are important for code executed on these processors. The following section
provides more details for this platform feature.

5.4.1.2 Dynamic Frequency Scaling

The processors used on the Odroid-XU3 platform can be clocked with configurable
frequencies. Changing the frequency drastically influences the power requirements of the
processor. Thus, Dynamic Frequency Scaling (DFS) is a key technique to reduce the
energy consumption of the system. Fortunately, the Odroid-XU3 platform provides DFS
accessible through the Linux operating system. In general, two strategies are available,
one is running the core at a fixed frequency. The other changes the frequency dynamically
depending on configurable switching policies. The system provides several governors
that control the behavior of the processor. Further, we added additional standard
governors which were previously not available in the Linux distribution shipped with the
Odroid-XU3. The static governors are rather simple and do not add a large additional
overhead. The userspace governor allows a manual specification of the frequency. Using
the powersave governor, the processor runs at the lowest possible frequency. In contrast,
the performance governor sets the processor to the highest frequency.

On the other side, the dynamic governors adjust the frequency during the run time
considering the current workload of the processor. The ondemand governor increases the
frequency if the average work load on the processor exceeds a given threshold and decreases
speed if the average workload drops below that threshold. The governor instantaneously
changes the frequencies and thus should not reduce the overall performance of the
system drastically. The user can configure the governor in terms of sampling rate,
threshold, down-sampling factors, and the power save bias. Frequencies are changed
more aggressively toward the maximum clock rate by the interactive governor. This
governor reacts faster to increasing work loads. Finally, the conservative governor changes
frequencies in smaller steps to avoid peaks in power consumption. The user can define
the step size, default is 5% of the maximum frequency. In addition, the down-sampling
and threshold are configurable.

On typical desktop systems the ondemand governor is the default setting. However, in
the virus detection scenario, a different governor might increase the overall performance
in terms of run time and energy consumption. For instance, a governor which matches
the frequencies according to the rate in which new images are captured might improve
the overall performance. Finding a good solution manually is quite tedious, so we created
a small tool which makes these governors accessible by the DSE.

Chapter 5. Emerging Challenges for Embedded Systems 121

5.4.2 Detection Quality

Pattern recognition applications are traditionally assessed regarding their detection
quality. In this work we used the F1 score (also F-measure), which is defined as the
harmonic mean of precision p and recall r:

F1 := 2 p · r
p+ r

(5.1)

where the precision p is defined as:

p := TP

TP + FP
(5.2)

and the recall r is defined as:
r := TP

TP + FN
. (5.3)

Correctly detected viruses are called true positives TP . False positives FP are particles
which are falsely classified as viruses and missed viruses are false negative FN .

Following these equations, the detection quality indicates how accurately the detection
program counts the number of viruses in the sensor images. For example, an F1 score of 1
says, that all individual virus were found in the images and no dirt particle or distortion
has been falsely classified as a virus. Classic virus detection methods usually only attest
a positive or negative contamination of a sample and do not indicate how strong it is.

Previously, the virus detection software was trained to achieve the highest F1 score.
However, in cases where a reduced detection quality is acceptable, new optimization
opportunities arise. A degraded detection quality is applicable in cases where one is only
interested if the analyzed sample is contaminated or not, in such a case, a detection
quality of F1 ≥ 0.5 might be sufficient. Obviously, the acceptable F1 thresholds heavily
depends on the context in which the application is used. The detection quality can also
be seen as the QoS or Quality of Results (QoR) of the complete system. Accepting a
degradation of QoR is also the key technique of approximate computing (cf. Chapter 6).
The evaluation (cf. Section 5.5) shows that variations in the detection quality can be
traded against energy consumption and execution time.

The virus detection software offers several parameters which influence the QoR. For
instance, the quality of the noise reduction or classification influences the overall QoR.
Furthermore, the application may use input perforation or partial frame processing.
However, the general prediction of the influence of parameters onto the detection quality,
execution time and energy consumption is a complex task. Therefore, the improved DSE
approach integrates these considerations.

5.5 Evaluation

The evaluation answers two questions. First, is the DSE able to explore the parameter
space of the virus detection software for an real embedded platform efficiently? Second,

Chapter 5. Emerging Challenges for Embedded Systems 122

Fitness Evaluation

Energy Meter

Fitness Evaluation

Energy Meter

Odroid-XU3

A7

Mali
T628

RAM

A15

Odroid-XU3

A7

Mali
T628

RAM

A15
Master PC

Genetic
Algorithm

Figure 5.7: Evolution process: a master computer controls exploration and schedules
individuals to the target systems for a parallel evaluation [NLE15].

since the virus detection requires a quite powerful system, can the DSE framework find
promising configurations for a mobile (battery-driven) virus detection system? We con-
ducted several experiments (cf. Subsection 5.5.2) on the Odroid-XU3 (cf. Subsection 5.5.1)
to answer these questions. The promising results (cf. Subsection 5.5.3) indicate that a
mobile real-time virus detection solution is already achievable with current technology
(cf. Subsection 5.5.4). Notably, this was achieved without sacrificing detection quality.

5.5.1 Evaluation Setup

The Odroid-XU3 represents a modern powerful embedded platform. Subsection 2.1.2
provides more details of the system. For this evaluation we used two Odroid-XU3 boards
and one master computer. Figure 5.7 visualizes the evaluation process. The DSE and
GA run on the master computer and interact with the target systems. The experiments
were conducted in a temperature controlled room and the temperatures were logged
to exclude temperature-related effects. For example, in hot environments, the cooling
fan of the board might be unable to cool the system and the system clocks down to
prevent damage. The measured room temperature values were in a range of 22◦C ± 1◦C
and therefore we can exclude the influence of the ambient temperature. In addition, we
configured the cooling fan control to run at maximum speed. To minimize the influence
of other tasks running on the Odroid-XU3, we terminated all unnecessary services and
applications before the evaluation.

Table 5.1 lists the configuration of the INA231 sensors used in the experiments.
Regarding the configuration, the sensor measures shunt and bus voltages in continuous
mode leading to continuous measurements instead of event triggered ones. The sensor
averages over 16 samples for both shunt and bus measurements. Each single measurement
converges over 4.156 ms resulting in an update period of 132.992 ms. Considering the
expected application execution time, we expect that this measurement settings are
sufficient to capture the application performance characteristics.

Chapter 5. Emerging Challenges for Embedded Systems 123

Parameter Configuration
Number Of Averages 16
Bus Voltage Conversion Time 4.156 ms
Shunt Voltage Conversion Time 4.156 ms
Operation Mode continuous
Update Period 132.992 ms

Table 5.1: INA231 [Tex13] configuration.

As described in Subsection A.2.1, the polling-based measurement may influence the
fitness calculation, thus we assigned the EnergyMeter to the Cortex-A7 and excluded the
processor from the DSE exploration and eventually from the final results. The program
that should be measured runs therefore on the Cortex-A15 cores and the Mali-T628.
However, the mapping of the application and EnergyMeter to the processors can be
exchanged if desired.

As the analyzed program may produce some initial (large) overhead, e.g. to build the
OpenCL kernels and fill all the queues, we setup the experiments in such a way, that only
the main computation part is measured. This excludes the (static) initialization phase of
the virus detection software which might otherwise hide the true program performance if
the execution time per frame during the evaluation (e.g. number of processed images) is
not long enough. Using named pipes, the algorithm interacts with the EnergyMeter and
starts and stops the measurements accordingly. Therefore, only the real execution time
of the detection algorithm is returned to the master computer.

5.5.2 Experiments

To explore the capabilities of the DSE and its applicability for our goal of a mobile virus
detection system, we conducted three experiments. With Exp1hw we restricted the DSE
to explore only the hardware-related parameters provided by the Odroid-XU3 platform
and the virus software. Subsection 5.4.1.1 provides additional information regarding
these hardware-related parameters. With Exp2sw we evaluated the potential solution
space for software parameters only. Subsection 5.4.1 and especially [Lib17] provide more
details regarding the software parameters configurable for the virus detection. In the
final experiment Exp3hw&sw, we were interested if the DSE is able to explore a combined
hardware/software codesign approach to gain additional improvements.

For all experiments, we used two data sets with 1,000 16-bit gray scale sensor images
for the training and testing phase. Each image has a resolution of 706 × 167 pixels.
The images are labeled, thus the positions and corresponding polygons of the appearing
viruses within the images are known. The virus detection program generates a result
file containing positions and corresponding polygons for the found viruses. With the
labeled images and detection result data we can calculate the F1 score. It is important
to evaluate the application with previously unseen images to prevent overfitting to the

Chapter 5. Emerging Challenges for Embedded Systems 124

training data. The data sets used in this chapter are publicly available [SZS14] under
the Open Database License.

The GA performs the optimization on integer vector genes. Therefore, we converted all
floating point parameters, for instance, the detection thresholds for the virus classification,
to fixed point number encoded as integers. We adjusted the fix point precision accordingly
to meet the accuracy requirements of the application. This parameter conversion improves
the exploration time. Regarding the configuration for NSGA-II algorithm, the crossover
was set to a tournament selection with a likelihood of 0.9. Further, the mutation rate
was set to 0.1 with a likelihood of 1.0. We let the GA generate 40 generations each with
100 individuals leading to a total of 4,000 solution candidates. For higher accuracy, each
execution and thus measurement was repeated 3 times resulting in 36,000 measurements.
These settings apply for all three experiments. As already mentioned, we used two
Odroid-XU3 boards for a parallel evaluation and the evaluation time for each experiment
was around four days. Thanks to the flexibility of our DSE, additional Odroid-XU3
boards can be used to further reduce the run time of the experiments. Furthermore, we
observed that the DSE already obtained good solutions after 500 evaluations. Therefore,
we derive, that we can further reduce the number of individuals if necessary.

5.5.3 Results

The experiments were assessed regarding the three objectives execution time, energy
consumption and detection quality. Obviously, a short run time with minimal energy
consumption meeting F1 score of 1 in detection quality is a desirable solution. In addition,
we were interested if the DSE is able to generate a broad front of different solutions. In
the following we present the results of the experiments. The figures 5.8 to 5.10 highlight
the Pareto frontiers for a more comprehensive representation. In addition, Table 5.2 lists
interesting Pareto points on the frontiers.

The baseline experiment Exp0, reported in Table 5.2, shows the performance of an
unmodified virus detection software running on the Odroid-XU3. This configuration
reaches an F1 of 1 on the training data and 0.995 on the testing data. The algorithm
required 370 Joule and the execution time was 119.8 seconds corresponding to 7.5 fps and
thus far from meeting the soft real-time requirement. The frame rate is calculated for 900
images of the data set, as 100 of the 1,000 images are used for the initialization phase.
The baseline configuration has been previously optimized on a desktop system regarding
the detection quality and was not further tailored towards the Odroid-XU3. On the
desktop system execution time and energy consumption was neglected. All solutions
already achieved the soft real-time requirements and a (practically) infinite amount of
available energy was assumed.

Figure 5.8 shows the results of Exp1hw where only hardware-related parameters
without influence in the detection quality were explored. Table 5.2 lists an excerpt of
the Pareto frontier. Therefore, the F1 score does not change and is fixed to 1. As the
results show, the execution time ranged from 116.2 seconds (7.7 fps) to 118.9 seconds (7.6

Chapter 5. Emerging Challenges for Embedded Systems 125

Ex
ec

ut
io

n
Ti

m
e

in
 S

ec
on

ds

0

20

40

60

80

100

120

Detection Quality

0

0.2

0.4

0.6

0.8

1
Energy in Joule

0

100

200

300

400

dominated
non-dominated

Figure 5.8: Results from Exp1hw. Only hardware-related parameters were optimized,
with highlighted Pareto frontier.

fps). The energy consumption offers larger improvements and ranges from 7% to 37%
compared to the baseline. Further investigations revealed that the powersave governor
plays a major role for the slowest but most energy efficient solution. In addition, rather
small OpenCL work group and polygon sizes were used. Even though the execution
times are still high, at least a notable reduction in energy consumption was achieved.

Figure 5.9 visualizes the results of Exp2sw. Table 5.2 reports an excerpt of the Pareto
frontier. In this experiment, the DSE explored only the software parameters of the
virus detection software. Already with this experiment we observe that a mobile virus
detection using the PAMONO sensor system is possible. The best solution in terms of
detection quality (F1 = 1 on the training data) processed all images in 29.7 seconds which
corresponds to a frame rate of 30.3 fps. The fastest solution required 10.4 seconds (86.5
fps) with the lowest detection quality on the Pareto frontier. The solution with the best
accuracy (F1 = 1) consumed 87.2 Joule. On the other side of the energy consumption
spectrum, the optimization algorithm generated a configuration which required 34.4
Joule which leads to the lowest detection quality of 41.3% that is still useful for some
detection tasks. As expected, the detection qualities on the testing data set are slightly
lower than on the training data set, but still show good results.

Figure 5.10 plots the results of Exp3hw&sw and Table 5.2 includes an excerpt of the
Pareto frontier. In this experiment we released the limitations of the DSE and let the
algorithm explore both hardware and software parameter simultaneously. Compared

Chapter 5. Emerging Challenges for Embedded Systems 126

140

120

Energy in Joule

100

80

60

401

0.8
Detection Quality

0.6

0.4

0.2

dominated
non-dominated

40

0

30

60

20

10

50

70

Ex
ec

ut
io

n
Ti

m
e

in
 S

ec
on

ds

Figure 5.9: Results from Exp2sw. Only software-related parameters were optimized, with
highlighted Pareto frontier [NLE15].

to the previous experiments, similar results in detection quality are achieved. However,
energy consumption and execution time were further improved. The energy consumption
of the best detection quality solution could be reduced by 84% to 57.5 Joule compared
to the baseline configuration. Considering the solution with a slightly reduced detection
quality of 0.969, in this case, the energy consumption could be reduced by more than
50% compared to the solution from Exp2sw with the detection quality of 0.953 and by
93% compared to the baseline.

5.5.4 Discussion

One indication regarding the quality of the GA and the overall optimization problem is
the spectrum of solutions. As the results show, our GA generates a large diversity in
the solution space. This can be observed in the structure of the broad Pareto frontiers.
Therefore, the user of our framework can select a solution from a set of solutions with
different performance characteristics.

Due to the nature of the application, small changes of the parameters could result
in solutions where no virus could be detected. For example, if the threshold of the
polygon size describing the virus is too high, no viruses are detected. Those results can
be observed in Figure 5.10 on the left side.

Chapter 5. Emerging Challenges for Embedded Systems 127

140
120

Energy in Joule

100
80

60
40

201

0.8
Detection Quality

0.6

0.4

0.2

dominated
non-dominated

40

0

30

60

20

10

50

70

Ex
ec

ut
io

n
Ti

m
e

in
 S

ec
on

ds

Figure 5.10: Results from Exp3hw&sw. Both hardware and software parameters were
optimized, with highlighted Pareto frontier [NLE15].

The evaluation lets us conclude that the simultaneous optimization of software and
hardware parameters (Exp3hw&sw) achieves the best results. The DSE found solutions
achieving an F1 score of 1 on the training data and almost 1 on the testing data
running at a frame rate of almost 31 fps. These notable results attest that the detection
software meets the soft real-time requirements on the Odroid-XU3 and thus lay the
foundation for a mobile virus detection solution. However, for these solutions the energy
consumption is comparably high. Accepting a degradation in the detection quality offers
huge optimization potential. For example, the energy consumption could be reduced
drastically by about 93% if a degradation of F1 = 0.878 is accepted. In addition, this
solution boosts the frames per second up to 60.8 fps which is almost doubled. Similar
observations can be made for the experiments where the DSE only explored the software
parameters in (Exp2sw).

To achieve additional improvements in energy consumption, the degradation of the
detection quality must be quite high. Whether such a decrease is useful in clinical
practice, highly depends on the use case. If it is only of interest if a sample does contain
a certain virus type, then a fairly low detection quality of F1 ≥ 0.5 might be sufficient.
With this setting only a positive or negative result is the output of the virus test and the
result can be accurate even if the actual count of individual viruses is not accurate.

Exp3hw&sw contains several peak shaped solutions on the Pareto frontier. Figure 5.10

Chapter 5. Emerging Challenges for Embedded Systems 128

Experiment F1
Train.

F1
Test. Energy Savings Exec.

Time Speedup Frame Rate

Exp0 1.000 0.995 370.0 J - 119.8 s - 7.5 fps

Exp1hw 1.000 0.995 233.5 J 37% 118.9 s 1 7.6 fps
1.000 0.995 239.8 J 35% 117.1 s 1 7.7 fps
1.000 0.995 246.4 J 33% 116.7 s 1 7.7 fps
1.000 0.995 257.7 J 30% 116.6 s 1 7.7 fps
1.000 0.995 344.6 J 7% 116.2 s 1 7.7 fps

Exp2sw 1.000 0.995 87.2 J 76% 29.7 s 4.0 30.3 fps
0.985 0.931 64.6 J 83% 22.7 s 5.3 39.6 fps
0.953 0.883 59.7 J 84% 20.6 s 5.8 43.7 fps
0.870 0.844 50.5 J 86% 17.4 s 6.9 51.7 fps
0.830 0.734 48.6 J 87% 15.8 s 7.6 57.0 fps
0.753 0.723 43.9 J 88% 17.4 s 6.9 51.7 fps
0.750 0.693 46.3 J 87% 14.7 s 8.1 61.2 fps
0.684 0.612 39.2 J 89% 13.8 s 8.7 65.2 fps
0.519 0.413 36.4 J 90% 12.0 s 10.0 75.0 fps
0.413 0.400 34.4 J 91% 10.4 s 11.5 86.5 fps

Exp3hw&sw 1.000 0.995 57.5 J 84% 29.3 s 4.1 30.7 fps
1.000 0.995 84.5 J 77% 28.9 s 4.1 31.1 fps
0.985 0.974 47.9 J 87% 25.5 s 4.7 35.3 fps
0.974 0.995 69.3 J 81% 23.9 s 5.0 37.7 fps
0.969 0.878 27.7 J 93% 14.8 s 8.1 60.8 fps
0.879 0.766 22.3 J 94% 10.8 s 11.1 83.3 fps
0.842 0.605 20.7 J 94% 11.4 s 10.5 78.9 fps
0.742 0.639 23.5 J 94% 10.7 s 11.2 84.1 fps
0.742 0.647 33.6 J 91% 10.4 s 11.5 86.5 fps
0.519 0.558 33.0 J 91% 10.0 s 12.0 90.0 fps

Table 5.2: Excerpt of the three Pareto frontiers for the objectives virus detection quality
(F1 score), energy consumption and execution time. In addition, the detection quality
(F1 score testing) for the unseen testing data set is shown. As baseline/comparative
measurement an unoptimized run is given in the first row (Exp0), which was measured
with an unmodified system and program [NLE15].

shows these peak points with similar detection quality but with differences in execution
time or energy consumption. Further investigations revealed that different governor
settings led to this behavior. More energy efficient solutions used the userspace governors
with a fixed frequency of 1.1 GHz for the Cortex-A15. Using conservative or performance
governors on the other side resulted in slightly faster solutions that consume more energy.

In general, the results indicate that the energy consumption is not always tightly
coupled to the execution time. For instance, Exp1hw shows that changing only the
hardware parameters can influence the energy consumption in the opposite direction
to the execution time. Exp3hw&sw shows another interesting solution, here, a slightly
faster solution (86.5 fps, 33.6 Joule) consumes 42% more energy than the slightly slower
(84.1 fps, 23.5 Joule) one. Further investigations show that the use of different memory

Chapter 5. Emerging Challenges for Embedded Systems 129

access patterns led to these results. However, in many cases, execution time and energy
consumption are related and thus applying improvements to one of the two often benefits
the other as well.

To summarize, with the experiments we showed that the DSE is able to explore the
parameter space of complex applications efficiently and that it generates good solutions
targeting embedded systems. For the analyzed virus detection software, the optimization
algorithm was able to improve the execution time drastically and still achieved a high
detection quality. In this case, the results showed a speedup of 4.1 with an energy saving
of 77%−84% with an F1 score of 1. We already discussed the capability to accept a slight
degradation in the detection quality under certain circumstances. In such a case, we
observed an impressive speedup of 8.1 and energy savings of 93% by only sacrificing only
small amount of detection quality. This solution still achieved a fairly good detection
quality of 0.969. Leveraging the detection quality even more reveals solutions with a
speedup of 12 and energy savings of up to 94%. To conclude, the results verify that a
real-time mobile virus detection solution using the PAMONO sensor is already feasible
with current very reasonable embedded systems.

5.6 Related Work

The PAMONO sensor setup and the virus detection software are unique, therefore this
section presents related work regarding design space exploration. Our work extends
traditional (hardware-oriented) DSE by considering detection quality as an additional
objective. The evaluation shows that leveraging the detection quality provides additional
improvements. In general, this technique is known as approximate computing and this
thesis dedicates a separate chapter (cf. Chapter 6) to this research field. Hence, we will
present additional related work there.

Embedded systems face new challenges exposed by complex application which should
be executed efficiently on them, desirable in a mobile battery driven system. Even in
stationary applications, the available energy or related thermal budgets might be limited.
For instance if a system produces too much thermal heat (≈ power consumption), the
connected sensor may produce faulty data or fail entirely. Therefore, it is obvious that
energy consumption and computation power are potentially contradicting although they
are key objectives. In this chapter we analyzed an application from the computer vision
and machine learning domain where the GPU plays an important role and contributes
significantly to the overall energy consumption. Mittal and Vetter [MV14] presented a
survey considering GPU energy efficiency. They found that for battery powered devices
the need for performance requires aggressive and sophisticated energy optimizations.
Cebrian et al. [CGG12] analyzed the energy efficiency of desktop GPUs and conclude
that the energy consumption heavily depends on the actual application. Therefore, to
achieve necessary efficiency for mobile usage, energy-aware computing is mandatory. We
support this proposition with our insights gained by this work. In our case, optimizing

Chapter 5. Emerging Challenges for Embedded Systems 130

the hardware-related parameters alone was not sufficient to improve the application in
such dimensions as optimizing them together with the software parameters. Ahmad and
Ranka [AR12] did a survey regarding energy-aware computing in general.

Several Design Space Exploration (DSE) approaches assisting in finding good solutions
in huge parameters spaces have been presented in the last decades. Pimentel [Pim17]
provides an introduction into DSE especially targeting the embedded systems domain.
The evaluation in this chapter required almost four days which highlights that, in this case,
most DSE’s run time is caused by the evaluation time of the solution. Pham et al. [PSK13]
presented a combined energy and throughput aware approach using online and offline
exploration targeting heterogeneous MPSoC. The key idea is that an offline generated
solution is refined during the execution time. Their DSE approach only considers mapping
and no hardware or software parameters and neglects opportunities offered by leveraging
QoS. The hardware/software co-exploration approach of Agosta et al. [APS04] explores
architectural parameters and source-level code transformations concurrently to find
trade-offs between energy consumption and delay (execution time) targeting low-power
embedded applications. Here, hardware parameters are for instance memory hierarchy
levels. Source-level transformations include function inlining and loop unrolling. This
approach does not consider QoS and only uses two software transformations and thus may
waste opportunities exposed by the application parameters. The MADNESS framework
[CGF11] also provides a DSE to explore multiple objectives simultaneously. This approach
is based on the DAEDALUS framework [NTS08] and is able to compose an entire MPSoC
using a library of predefined hardware blocks and software implementations. To prune the
parameter space, application scenarios are used. In such a scenario, multiple applications
are bundled and handled as one entity. In addition, different scenarios can capture
specific implementations of the same application to take, e.g., different QoS into account.

Palesi and Givargis [PG02] developed a multi-objective aware approach to map
software onto configurable SoC. Their GA-based DSE considers timing requirements
and power budgets. Using model-based DSE promise to reduce the exploration time.
The Octopus toolset [BVG10] maps tasks to processors, GPU, memories and Field
Programmable Gate Array (FPGA) components with the objective to maximize the
throughput of the application. Their approach only uses abstract models and requires a
profound interaction of the user.

Exploring heterogeneous embedded systems with a hierarchical approach was pre-
sented by Mohanty et al. [MPN02]. Their rapid search algorithm starts at a high
abstraction level and uses functional simulators to verify the functional correctness. High-
level performance and power estimators prune the design space. Promising solutions are
then evaluated with a precise cycle accurate simulator.

Keinert and Teich [KT11] designed a DSE focusing on image processing applications.
Their approach targets embedded system and their composition. Starting with a data
flow description of the application, the approach leads to a synthesized embedded system.
However, their approach neglects GPUs although they are well suited for image processing.

Chapter 5. Emerging Challenges for Embedded Systems 131

An energy-aware measurement-based DSE targeting GPGPU applications was pre-
sented by Park et al. [PKS13]. Their approach explores task mapping onto the target
GPU. The DSE as only considered two hardware related parameters.

5.7 Conclusion and Future Work

Traditional methods to detect nano-sized objects, especially viruses, are time-consuming
and require special equipment and trained personal. In cases of disease control, the
time between contamination and the ability to detect the virus is crucial and should be
short. The PAMONO sensor method uses an indirect optical method and provides the
fundamentals for a real-time virus detection. A virus detection software detects and counts
viruses in images captured by the sensor using sophisticated image processing algorithms.
With the Odroid-XU3, we investigated the possibility to run such sophisticated application
on an embedded system.

We extended an existing DSE towards embedded systems and used the Odroid-XU3
as an exemplary target platform. The DSE framework is now able to explore hardware
and software parameters simultaneously and evaluate solution’s performance on a wide
variety of systems. Despite previous version of the DSE algorithm, execution time and
energy consumption as well as detection quality were considered by the DSE which
should provide additional optimization opportunities especially for resource restricted
embedded systems.

With three experiments, we evaluated the performance influences of hardware and
software parameters and applicability of the enhanced DSE for these scenarios. We were
able to find solutions meeting the real-time requirements without leveraging the detection
quality. This impressive result was initially not expected and proves the capabilities
of modern embedded systems combined with our advanced optimization framework.
Compared to the baseline, the combined hardware/software exploration found solutions
with a speedup of 4.1 leading to a frame rate of 30.7 fps and an energy consumption
of 57.5 Joule which translates to a saving of 84%. Accepting a small degradation in
the detection quality, which can still be usable in several medical contexts, leads to
solutions with speedups between 8.1 and 11.1. Thus, the frame rate exceeds the real-time
requirements almost three times. Therefore, we conclude that accepting inaccurate
results can help to improve the performance.

In the current state, the PAMONO sensor only allows to detect a stem of viruses
which attach to the same type of antibody. To increase the detection range, a (larger)
gold layer can be partitioned and coated with different antibodies. The detection process
gets complicated with each additional virus type but we showed that some performance
headroom is available. In this case, the image resolution must be adapted to the new gold
layer size leading to a higher computational demand. Instead of leveraging the detection
quality, the DSE framework could be extended to support independent optimization
for separate regions in the recorded image. In such case, the optimization algorithm

Chapter 5. Emerging Challenges for Embedded Systems 132

might increase the detection quality in some areas whereas reducing the quality in others.
Instead of detecting multiple virus types simultaneously, the available headroom can be
used to increase the resolution of the images and still meet the real time and energy
requirements. Finally, a cheaper hardware system might be sufficient to achieve the virus
detection task.

The insights obtained in this chapter especially regarding the detection quality trade-
offs lead us to an interesting research question: can techniques of approximate computing
further improve PICO?

Chapter 6

New opportunities due to
Approximate Computing

Contents
6.1 Introduction . 133

6.2 Related Work . 135

6.3 Quality Metrics - How to quantify uncertainty? 137

6.3.1 Common Signal Fidelity Metrics . 137

6.3.2 Perception Visual Quality Metrics . 139

6.3.3 Impact of Metric Selection . 141

6.4 QCAPES-Framework . 141

6.4.1 Integration into PA4RES . 143

6.5 Qualitative Case Studies . 143

6.5.1 Approximated Video Encoding . 144

6.5.2 Approximated Image Compression . 147

6.5.3 Discussion . 149

6.6 Approximation in PICO - ApproxPICO . 150

6.6.1 Approximate Communication - Case Study 152

6.7 Conclusion and Future Work . 153

6.1 Introduction

Growing demand for processing power, especially in the high-performance embedded sys-
tems application domain such as autonomous cars and media signal processing, increases
the pressure on hardware and software developers to create well performing systems
which are also power and energy efficient. Traditionally, hardware manufacturers tackled
the performance challenge by increasing the frequencies of processors and memories,
whereas the reduction of power and energy consumption was mostly achieved by shrinking
semiconductor structure sizes. However, frequency increase is limited by thermal and

133

Chapter 6. New opportunities due to Approximate Computing 134

energy constraints and parallelism suffers from synchronization overhead (cf. Chapter 4).
These so called performance and power walls expose a serious challenge for the growing
performance demand. Several techniques have been developed to push these walls away
such as the resource-aware parallelization methods developed in the context of this thesis.
To deal with dark silicon [EBA11], other approaches try to integrate deep sleep states or
power gating of entire parts of modern processors into their software algorithms in order
to keep energy and thermal budgets within certain limits.

One increasingly popular method to mitigate the rising impact of these performance
and power walls is to use approximate computations. This paradigm softens the QoS
requirements of an application by accepting solutions which are not bit-perfect. Tradi-
tionally, recognition, data mining and search (RMS) algorithms use this paradigm to
stop their calculations if certain termination thresholds are met. However, the main idea
behind approximate computing is to use less accurate computations in hard- or software
to gain improvements in energy consumption or performance. Unfortunately, there is no
free lunch, so the resulting output usually is less accurate. The lossy encoding technique
follows a similar idea and is exploited especially in the media domain to reduce file sizes
and throughput requirements. We define approximate computing as follows:

Definition 6.1 (Approximate Computing):
Approximate computing allows a certain deviation from the perfect result in order to
improve in other performance objectives.

In this thesis, we focus on software approximation techniques. A common approach is
to provide several implementations of the same algorithm with different accuracy levels.
Other examples are the reduction of the precision of data types, computation loops may
skip iteration steps or parallel applications may relinquish of certain synchronization
points. The user then selects the suiting implementation. However, in various cases the
selection criteria and the impact onto the entire application and the overall performance
is unclear.

Resource constraints are always a key concern of embedded systems by nature, thus
approximate computing could be a very promising way to gain additional performance
improvements. In addition, another important advantage is the fact that approximation
techniques enable applications to be executed on embedded systems which otherwise
lack of sufficient computation power. In Chapter 5, we successfully demonstrated that
leveraging the detection quality of the PAMONO virus detection pipeline offers huge
performance benefits whereas it is still usable for mobile medical applications. With
that work we successfully mapped the virus detection software onto a mobile embedded
system.

The next step is to move towards an areal monitoring system with multiple sensors
placed at public locations like airports. To achieve a certain cost-effectiveness, it might
be necessary to split the data sampling and processing task. In such a case, fairly
inexpensive low-power embedded systems take the sample images and send them to a
central powerful computer to evaluate the data streams. To achieve this, parts of the

Chapter 6. New opportunities due to Approximate Computing 135

virus detection pipeline must be adapted to these low-power systems and approximation
might be key to achieve this.

Finally, in the traditional CPS domain the interaction with noisy sensors and actuators
has always been an important aspect. Internally these algorithms map those inherently
noisy inputs onto high-precision data types to perform a costly but precise calculation.
Consequently, working with uncertainty inside applications of CPS might improve overall
performance.

An efficient parallelization of a sequential application with respect to resource restric-
tions is the goal of the PA4RES project. Therefore, approximate computing might offer
additional benefits. The quantification of the impact of approximation onto applications
is a complex task and done improperly might lead to false conclusions. Hence, this
chapter presents a (semi) automatic assessment framework to analyze the influence of
approximation techniques onto the application performance and output quality.

The Quality Comparison for Approximate Programs on Embedded Systems (QCAPES)
enables an automatic evaluation of source code level approximation techniques with
respect to various quality metrics. This is particular useful for a safe introduction of
approximation on a software level into existing applications and the development of new
software approximation techniques. In addition, using multiple metrics might provide a
deeper understanding of the applied approximation impacts. With two case studies, we
demonstrate that the selection of the correct quality metrics and objectives is crucial
especially in the embedded domain. The studies revealed that a popular approxima-
tion technique applied carelessly to the embedded domain renders all benefits useless.
With this knowledge, we extended PICO and the entire PA4RES methodology towards
approximation computing techniques.

This chapter includes work published in [NMK17], [Küh16] and [NEM15a]. Approxi-
mate computing has been used in several applications and Section 6.2 presents important
related works. Quality metrics are used to quantify the impact of approximation on the
output. Section 6.3 presents commonly used metrics and highlights some pitfalls using
them improperly. The Quality Comparison for Approximate Programs on Embedded
Systems (QCAPES) framework is presented in Section 6.4. With two case studies, we
demonstrate in Section 6.5 the capabilities of QCAPES to support the developer during
the introduction of approximation techniques into their applications and reveal unknown
side effects of a careless usage of approximation with respect to embedded systems. With
this knowledge Section 6.6 presents extensions introduced to PICO in order to support
approximation. Finally, Section 6.7 concludes this chapter and provides directions for
future work.

6.2 Related Work

Approximate computing promises to be a worthwhile approach to overcome or at least
shift the influence of the performance and power walls. In recent years, related techniques

Chapter 6. New opportunities due to Approximate Computing 136

have seen significant adoption [Kug15; XMK16; HO13; VCR15b; VCR15a; Mit16].
Starting with examples of hardware-based approaches, we focus on the relevance of
applying quality metrics during the development of software-based approaches.

On the hardware side, approximate computing can be applied to almost all com-
ponents involved in the calculation. For instance, approximate adders trade accuracy
with execution speed by accepting inaccuracies in the least significant digits of a calcula-
tion [KMM10]. Several techniques, e.g. reduction of the supply voltage and sub-threshold
operation were developed to reduce the energy consumption by sacrificing numerical
precision. Reducing the supply voltage for the inaccurate part will reduce the energy
consumption by accepting calculation errors in this part. Another way is the logic
complexity reduction at the transistor level [GMP11]. Reducing the refresh rate of
memories reduces the energy consumption, but stored data might be erroneous [LJV12;
LPM11]. The MACACO project [VAR11] focuses on an efficient modeling and analysis
of approximate hardware.

Software approaches are usually more flexible than hardware ones since they can be
adapted to specific scenarios or dynamically adjusted at run-time. Application knowledge
can be introduced, exploring the specific requirements and capabilities of a given piece of
software. In principle, software approximation techniques can be executed on commodity
hardware and added to existing systems. In addition, a software approach avoids the
problem of obtaining unexpected results from inaccurate hardware computations and
the problem of verification of inaccurate hardware components.

Software approximation in general can be applied to programs where a result is
refined using loops. As an example, iterative calculation can be stopped after the
result meets certain requirements. Omitting iterations is the basic idea behind loop
perforation [MSH10; SMH11]. Changing the precision of numeric values, e.g. from float
to int can also lead to performance improvements. Using approximate data types and
operations are the key features of EnerJ [SDF11]. Through source annotations, EnerJ
declares data or operations to be subject to approximations.

The GREEN system [BC10] uses controlled approximation to reduce energy con-
sumption by meeting a certain QoS. The user provides multiple implementation of an
algorithm with different precision and e.g. energy consumption. Then, the GREEN
system builds a QoS model to determine the impact of the provided implementations on
the QoS. Afterwards, a solution is selected which meets the user-specified QoS require-
ments. Thus, a trade-off between energy consumption/performance and QoS is made.
Nevertheless, the user has to provide several inputs like implementation or QoS which is
complex and not always possible. The SAGE approach [SLJ14] combines automatic code
generation, to generate various levels of approximation, with a runtime system to achieve
speedups under user-defined output quality requirements. This approach concentrates
on GPUs only as target platform and trade-offs between speedup and output quality.

The Dynamic Knobs approach [HSC11] includes a feedback loop and adjusts the
internal approximation algorithms regarding the output precision during the execution

Chapter 6. New opportunities due to Approximate Computing 137

time. Parallel applications can suffer from large synchronization overhead. To reduce the
waiting time, [RSN12] proposed a relaxation of the synchronization barriers by keeping
the output quality in an acceptable range.

The presented approaches either rely on user-defined or heavily application-dependent
quality metrics. In most cases, only one metric is considered. Akturk et al. [AKK15]
presented hints on metric selection for different domains. However, in general, choosing
the appropriate metric during the development process is a sophisticated task. The
following sections present details on metric selection and demonstrates pitfalls of a
careless utilization of approximate computing.

6.3 Quality Metrics - How to quantify uncertainty?

Quality metrics quantify the impact of approximations on the output’s accuracy or
applications’ QoS. In the last decades, various metrics to quantify the output quality
have been proposed. Each domain has a set of preferred metrics. Therefore, a good
metric selection can be complex and error-prone, especially during the development of
application-agnostic software approximation approaches.

In general, metrics can be partitioned in two classes. The first class evaluates the
output regarding mathematical properties. These metrics solely use the output signal
and neglect the final application usage to quantify the result quality. Therefore, this class
is called Signal Fidelity Metrics (SFM). These metrics are generally fast to calculate and
thus useful for an online QoS management and they saw a broad adoption in various
domains.

The second metric class takes the application scenario into account and might be better
suited to quantify the quality for a given application. The F1 measure (cf. Subsection 5.4.2)
calculates the ratio between training and test data and is very application specific. In
general this class of perception-based metrics takes the receiver into account and thus
provides a perception model. In this chapter we focus on applications from the image
processing domain. Accordingly, the class is called Perceptual Visual Quality Metrics
(PQVM).

6.3.1 Common Signal Fidelity Metrics

Signal Fidelity Metrics (SFM) solely rely on the signal itself to calculate the quality.
SFM are typically fast to calculate and applicable in many domains. In the context of
approximate computing, we are interested in the difference between the approximated
and the original (perfect) result. Let x0, ..., xn and y0, ..., yn be series of (discrete) signal
samples whereas yi is the result of the approximated version and xi represents the perfect
or best version. To compute the quality of the approximated version compared to the
original value, we introduce in the following some commonly used metrics.

The most simple metric is the Mean-Squared Error (MSE):

Chapter 6. New opportunities due to Approximate Computing 138

Definition 6.2 (Mean-Squared Error (MSE)):

MSE(x, y) = 1
n

n∑
i=0

(xi − yi)2 (6.1)

Ideally, the MSE should be zero or close to zero. The Root-Mean-Squared Error
(RMSE) extends the MSE:

Definition 6.3 (Root-Mean-Squared Error (RMSE)):

RMSE(x, y) =

√√√√ 1
n

n∑
i=0

(xi − yi)2 (6.2)

Similar to the previous metrics, Mean-Absolute Error (MAE) calculates the true
mean error:

Definition 6.4 (Mean-Absolute Error (MAE)):

MAE(x, y) = 1
n

n∑
i=0
|xi − yi| (6.3)

The presented metrics are able to calculate a relative deviation. If the errors of each
sample are nearly equal the RMSE and the MAE will produce a similar result. But
in contrast to the MAE, the RMSE is more sensitive to big outliers [CD14]. Since the
RMSE is limited downwards by the MAE and upwards by

√
number of samples ·MAE

[WM05] both metrics can be used to obtain a better understanding of the errors.
The Peak-Signal-to-Noise Ratio (PSNR) makes results better comparable, due to the

inclusion of the maximum signal range xmax. Furthermore, this enables the comparison
of signals with different value ranges like bit-depths:

Definition 6.5 (Peak-Signal-to-Noise Ratio (PSNR)):

PSNR(x, y) = 10 log10

(
x2
max

MSE(x, y)

)
(6.4)

= 20 log10

(
xmax

RMSE(x, y)

)
(6.5)

The SFM are usually fast to compute and describe the mathematical deviation from
the given (perfect) result. However, these metrics do not provide any information what
effect such deviation has on the final application. Furthermore, in many cases, the nature
of the errors can not be detected [WB09]. Therefore, the following subsection presents
two perception-based metrics.

Chapter 6. New opportunities due to Approximate Computing 139

6.3.2 Perception Visual Quality Metrics

Perception-based metrics are constructed in such a way that the impact on the receiver
side is modeled. Humans are usually more sensible to errors in specific value ranges. This
effect is exploited in lossy encodings which remove parts of information humans usually
do not perceive or at least are very insensitive to. For instance, the prominent MP3
audio encoder removes very high frequencies from the audio sample to reduce the file
size, as most people can not hear them. In the context of image processing application,
the usual recipient is the human visual system (HVS). Therfore, the Perceptual Visual
Quality Metrics (PQVM) incorporates HVS characteristics in the evaluation of images.

The HVS is very sensitive to structural changes and metrics should consider for this.
In contrast to SFM, the Universal Image Quality Index (UIQI) [WB02] is designed to
work on grayscale images or the Y-component of a color image. The UIQI consists of
three different factors, which examine different characteristics of an image. The luminance
component l compares the luminance of two images:

µx = 1
n

n∑
0
xi (6.6)

µy = 1
n

n∑
0
yi (6.7)

l(x, y) = 2µxµy
µ2
x + µ2

y

(6.8)

The second component measures the difference in contrast c of two images:

σx =

√√√√ 1
n− i

n∑
i=0

(xi − µx)2 (6.9)

σy =

√√√√ 1
n− i

n∑
i=0

(yi − µy)2 (6.10)

c(x, y) = 2σxσy
σ2
x + σ2

y

(6.11)

and the third component determines the loss of correlation s between the two examined
pictures:

σx,y = 1
n− 1

n∑
i=0

(xi − µx)(yi − µy) (6.12)

s(x, y) = σx,y
σxσy

(6.13)

Finally, the UIQI is the product of l, c and s.

Chapter 6. New opportunities due to Approximate Computing 140

Definition 6.6 (Universal Image Quality Index (UIQI)):

Q(x, y) = l(x, y)× c(x, y)× s(x, y) (6.14)

The value range of UIQI lies within an interval of [−1, 1]; higher values represent a
better quality. Since details lose their significance if the UIQI is applied globally, it is
just applied on small local windows, typically 8×8 pixels. Normally, a sliding window
approach where the window moves pixel by pixel across the entire image is used to
calculate the overall quality.

Due to the fact that the UIQI is based on statistical procedures like arithmetic mean,
standard deviation and correlation coefficient, the UIQI tends to be unstable if all values
in a window are nearly equal. The Structural Similarity Index Metric (SSIM) [WBS04]
differs in the three single components from the UIQI and adds constants Ci to each
factor to obtain stable results. In addition, each component can be weighted with the
exponents α, β and γ. The SSIM for a pixel block is defined as:

Definition 6.7 (Structural Similarity Index Metric (SSIM)):

l(x, y) = 2µxµy + C1
µ2
x + µ2

y + C1
, c(x, y) = 2σxσy + C2

σ2
x + σ2

y + C2
, s(x, y) = σx,y + C3

σxσy + C3

SSIM(x, y) = l(x, y)αc(x, y)βs(x, y)γ (6.15)

The Mean Structural Similarity Index Metric (MSSIM) across the entire image is
defined as:

Definition 6.8 (Mean Structural Similarity Index Metric (MSSIM)):

MSSIM(x, y) = 1
n

n∑
i=0

SSIM(xi, yi) (6.16)

To improve the expressiveness of the metric if blocking artifacts occur (e.g. JPEG
compression) a 11×11 sliding window with a Gaussian filter is proposed. One reason why
we use the UIQI as well is pointed out e.g. by Egiazarian et al. [EAP06]. In their paper,
they demonstrated that the SSIM value of heavily distorted images can be misleading
while the UIQI reports useful information. It has been shown in [HZ10] that the SSIM is
more sensitive to JPEG compression errors, while the PSNR is more sensitive to Gaussian
noise.

Chapter 6. New opportunities due to Approximate Computing 141

6.3.3 Impact of Metric Selection

So far, we presented six different metrics to quantify the quality of the applied approxima-
tion technique. In the following, we stress the importance of the metric selection for a safe
introduction of approximate computing into existing applications. The metric selection
is even more important during the development of new approximation techniques to get
early insights into the consequences on the quality.

(a) Original (b) MSE = 460, SSIM = 0.95 (c) MSE = 459, SSIM = 0.50

Figure 6.1: Quality Comparison according to MSE and SSIM [NMK17].

Figure 6.1 shows three versions of the same images whereas 6.1(a) is the original
image. We brightened the image in 6.1(b) and added a Gaussian blur to 6.1(c). With a
SFM like MSE it is almost impossible to distinguish which images of the two modified
is better since the values are almost identical. Fortunately, PQVM like SSIM provide
more insights and let us conclude that 6.1(b) is better then 6.1(c) for human receivers.
This observation can also be applied to pattern recognition algorithms, for instance, an
edge detection algorithm should perform better on the image shown in 6.1(b) since it
preserves the sharp edges. To conclude, this example highlights the importance of the
metric selection, and that for a safe introduction of approximate computing, multiple
metrics should be considered.

6.4 QCAPES-Framework

The QCAPES assessment framework supports developers during the introduction of
approximate computing into their application. In addition, QCAPES provides additional
insights into the structure and impact on the quality degradation and performance
improvements caused by approximation. The key idea of QCAPES is to execute (multiple)
approximated versions and the original application and calculate the impact onto output
and performance. The framework already provides several metrics and input decoders like
a PNG, JPEG or video decoder focusing on the image processing domain. Furthermore,
QCAPES provides decoders for numeric values. In addition, the framework provides
support to consider energy consumption, run time and user-defined objectives like file size.
The framework is implemented in C++ and comprises roughly 15.000 SLOC including
code the for the input decoders. A clear interface design hides complexity and thus

Chapter 6. New opportunities due to Approximate Computing 142

QCAPES - Framework

Energy
(e.g. Odroid XU-3)

Original Application

Execution Time

Configuration

Results
(Database, graphs

etc.)

Approximate
ApplicationApproximate

ApplicationMetrics
(PSNR, SSIM, UIQI, …)

Approximate
ApplicationApproximate

ApplicationApproximated
Application

Quality
User-Defined

Objectives

Approximate
ApplicationApproximate

Application
Testdata

(Pictures, videos,
audio, …)

Figure 6.2: QCAPES overview.

enables easy integration of new metrics into the system. The QCAPES framework is
available under an open source license [SFB17b].

Figure 6.2 illustrates the internals of QCAPES. The user provides an executable
without modifications which output is considered as the reference. Further, the user
passes one or several inaccurate versions of the application to the framework. With a
configuration file, the user selects metrics, objectives and data sets which are considered
for the evaluation. Evaluation results are stored in a database and the framework
generates graphs to visualize the execution time, energy consumption and quality results.

Metrics Class Metric

Signal Fidelity Metrics (SFM)

Mean Squared Error (MSE)
Mean Absolute Error (MAE)
Root Mean Squared Error (RMSE)
Peak-Signal-To-Noise-Ratio (PSNR)

Perceptual Visual
Quality Metrics (PVQM)

Universal Image Quality Index (UIQI)
Structural Similarity Index (SSIM)

Table 6.1: Overview of included metrics. Several PQVM metrics implementations are
provided, e.g. different block size.

QCAPES includes several metrics and Table 6.1 lists them. For SSIM and UIQI,
the framework provides several configurations regarding the block size and the sliding
window steps. It provides implementations for a block size of 4×4, 8×8 or 16×16 pixels
used for the local quality evaluation. During the evaluation process the window is moved

Chapter 6. New opportunities due to Approximate Computing 143

QCAPESHost Compiler
Execution
Platform

Runtime

Operating
System

Approximated
Code

Figure 6.3: PA4RES manual QCAPES flow.

across the input image and the results are combined to indicate the global quality. The
window moves across the image either overlapping pixel by pixel or non-overlapping
using blockwise steps. Finally, for the SSIM, a Gaussian filter can be used to reduce the
influence of pixels at the edges. Thus, in total QCAPES currently includes four SFM
and 13 PQVM. In addition, the framework considers color components separately, hence
it is also possible to analyze color components as proposed in [WLB04].

6.4.1 Integration into PA4RES

The QCAPES framework can either be used as a standalone application or as an
integrated part of the PA4RES tool flow. The standalone version is tailored towards
the Odroid-XU3 (cf. Figure 2.3) and uses the EnergyMeter or Energy Relay Reader (cf.
Section A.2). QCAPES is either running on the device under test or on a separate host.
In the second case, QCAPES issues a remote execution and collects the output data
from the test device and performs the output analysis on the host.

QCAPES also provides interfaces to the PA4RES tool flow and thus integrates seam-
lessly following the MACCv2 approach. Figure 6.3 illustrates the manual approximation
flow provided in the PA4RES framework. In this case, the user provides the approximated
source code to the framework. The integration into PA4RES allows QCAPES to access
the simulation-based platforms as well as additional capabilities offered by the seamless
interaction between other MACCv2 tools. Consequently, other tools in the PA4RES
framework can access the results of QCAPES.

6.5 Qualitative Case Studies

This section presents two case studies to emphasize the importance of metric and objective
selection especially for resource-restricted systems. Furthermore, the studies demonstrate
QCAPES’s capabilities to support developers during the evaluation of approximate
computing techniques and the advantage of a multi-metric assessment. The studies cover
two representative applications typically found in the mobile systems domain and various

Chapter 6. New opportunities due to Approximate Computing 144

approximation techniques. The first study applies loop perforation to a video encoding
algorithm. The second study considers algorithmic choice to leverage output quality in
order to gain performance improvements during image compression. All experiments were
executed on the Odroid-XU3. To observe the effect of the heterogeneous architecture, we
repeated each experiment on the Cortex-A15 and Cortex-A7.

6.5.1 Approximated Video Encoding

In this case study we investigate the loop perforation technique applied on the x264-

encoder1 [Vid16] as presented by Misailovic et al. [MSH10; SMH11]. This study replicates
the original one but focuses on a multi-metric evaluation, the original study used PSNR
as the main metric. In addition, our study enhances the original results with energy
consumption values and applicability for embedded systems.

We used perf, a Linux performance measurement tool, to validate the loop selection
of the original paper since an older version of the x264-encoder was used in that study.
We identified two functions (x264_pixel_sad_x3_8x8 and x264_pixel_sad_x3_16x16)
with run time critical loops which might benefit from loop perforation. According to the
original study, we choose to perforate the loops with a rate of 50% and 75%. This results
in an execution of every second (50%) or forth iteration (75%) respectively. Four videos
were used to evaluate the approximated video encoding. Table 6.2 lists the properties
of the test videos taken from the PARSEC benchmark suite [BKS08] and the Xiph.Org
Foundation [Xip18].

Video Frames Dimension Size
eledream 32 32 640×360 11 MB
eledream 128 128 640×360 43 MB
coastguard 300 352×288 44 MB
crew 300 352×288 44 MB

Table 6.2: Input videos for approximated video encoding case study.

All experiments were executed on the Odroid-XU3. QCAPES managed the entire
evaluation process. Figure 6.4 reports the execution time and energy consumption. The
values show the percentage run time and energy consumption compared to the original
encoding run, thus, lower values are better. As expected, the execution time reduces
with an increased perforation rate. These results indicate that approximation indeed
reduces the run time and consequently improves the energy consumption.

QCAPES supports the developer during the assessment of the output quality with a
multi-metric evaluation. In the following, we focus on the Y-component of the YCbCr
color coded video signal since humans are most sensible to this channel. However,
QCAPES can also be applied to the other components. Table 6.3 lists the averaged SFM
values for all video encoding experiments. The averaged SFM values are similar for both
perforation rates, therefore, Figure 6.5 depicts the results of the frame-by-frame analysis

1x264-snapshot-20160203-2245

Chapter 6. New opportunities due to Approximate Computing 145

Figure 6.4: Run time and energy consumption for the approximated video encoder.

Benchmark Perforation MSE RMSE MAE PSNR
eledream 32 50% 5.33 2.05 1.39 41.58
eledream 32 75% 5.15 2.03 1.37 41.53
eledream 128 50% 4.84 2.05 1.26 42.22
eledream 128 75% 4.64 2.00 1.23 42.47
coastguard 50% 8.17 2.83 2.15 39.03
coastguard 75% 8.80 2.94 2.25 38.69
crew 50% 5.93 2.41 1.76 40.44
crew 75% 6.06 2.44 1.79 40.33

Table 6.3: Average signal fidelity for the approximated video encoder.

for the eledream 128 testcase with a perforation rate of 50%. The user can use these
data provided by QCAPES for a precise analysis of the impact of the approximation.
For PQVM and PSNR, higher values are better, whereas for all other SFMs, smaller
values are better. Especially striking are the values of UIQI where the window size has a
large influence on the results. The outcome of UIQI on smaller windows is slightly worse
than on bigger windows. This is due to a weakness of UIQI that if a window contains
identical values the standard deviation of the observed window is zero. Consequently, the
correlation coefficient can not be calculated and the window is omitted for determining
the overall image quality. If the observed window is larger (e.g. 16×16 pixels) this effect
is more unlikely to arise.

The results indicate that loop perforation indeed increases the performance by keeping
the deviation from the original in a acceptable range. In addition, the results let us
derive that the PQVM with smaller block sizes also provide meaningful information. In
general, a larger block size reduces the effect of local distortions and therefore results in
more precise metric values. If larger blocks produce more precise results, which benefit
offer smaller block sizes?

Figure 6.6 visualizes the execution time of the metrics applied to the 128 frame
eledream test video. The results verify that SFM and PQVM with smaller block sizes
are faster to evaluate. Furthermore, the sliding window implementations that move
blockwise (entries succeeded with a b) are also fast to evaluate. The execution time
results let us conclude that even on the Odroid-XU3 a run time monitoring of the output

Chapter 6. New opportunities due to Approximate Computing 146

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120

Frames

UIQI4x4
UIQI8x8

UIQI16x16
SSIM4x4
SSIM8x8

SSIM16x16
SSIM_filter

(a) PVQM

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 20 40 60 80 100 120

Frames

MAE

MSE

RMSE

(b) SFM

 38

 40

 42

 44

 46

 48

 50

 52

 54

 56

 0 20 40 60 80 100 120

Frames

PSNR

(c) PSNR

Figure 6.5: Frame-by-frame analysis of the Y channel for eledream 128. Higher values in
6.5(a) and 6.5(c) are better, and in 6.5(b) lower values are better [NMK17].

1
10

100
1000

10000
Cortex-A7 Cortex-A15

R
un

 T
im

e
(s

)

Figure 6.6: Run time for metrics evaluation on eledream 128.

quality is feasible. This enables a future run time adaption of the approximation.
For resource-restricted embedded systems, the resulting file size is of crucial impor-

tance. Therefore, either for storing the data or, in case the data must be transmitted
over wireless radio channel, an increased file size might render all achieved run time
and energy improvements useless. Table 6.4 lists the resulting file sizes of the video
compression algorithm. The file size increased across all experiments between 3.1% and
20.1% compared to the resulting size of the reference encoder.

To get an understanding why the file size increased, Table 6.5 shows the resulting
frame types of the different perforated versions. A detailed analysis of the frame types for
the eledream 128 video shows that increasing the perforation rate increases the amount

Chapter 6. New opportunities due to Approximate Computing 147

Scenario eledream 32 eledream 128 coastguard crew
Reference 0.92 MB 2.76 MB 3.26 MB 2.72 MB

50% perforated 0.96 MB
(+4.2%)

2.89 MB
(+ 4.6%)

3.41 MB
(+ 4.6%)

2.81 MB
(+ 3.1%)

75% perforated 1.11 MB
(+20.1%)

3.17 MB
(+ 15%)

3.50 MB
(+ 7.4%)

3.08 MB
(+ 13.1)

Table 6.4: File size of encoded videos with a perforation rate of 50% and 75%.

of P- and decreases B-frames. P-frames contain more information compared to B-frames
leading to the increased file size. Further investigation revealed that by applying loop
perforation to this compression algorithm the actual compression is partially skipped.
This observation is important for distributed embedded systems. For instance, the TelosB
RF transceiver requires 23mA to operate the receiving mode whereas the processor just
uses 1.8mA [MEM04]. In such a scenario, the run time improvements gets overshadowed
by the longer and more expensive data transmission time.

Scenario I-Frames P-Frames B-Frames
eledream 128 3 60 65
eledream 128 (50% perforated) 3 65 60
eledream 128 (75% perforated) 3 82 43

Table 6.5: Frame types of encoded x264 videos.

Finally, we emphasize that QCAPES compares the output of a reference imple-
mentation with the output of the approximated version. Therefore, in the case of the
approximated video encoder, it is possible to produce better approximated output com-
pared to the reference implementation if all compression steps are skipped. This explains
the rather good output quality of the approximated video encoder in this case study.
QCAPES follows this method, since it is not always possible to obtain access to the
source material. Furthermore, the framework analyses the impact of the approximation
and in the case of the video encoder, not the performance of the compression.

6.5.2 Approximated Image Compression

In the approximated image compression case study, the goal is to evaluate QCAPES
capabilties to analyze the impact of algorithmic choice and reduced data type precision.
We choose the cjpeg encoder from the jpeg-9b package [Ind18] for this use case. The
encoder performs a JPEG compression and provides three different DCT algorithm
(float, int, fast) implementations. Furthermore, the application provides an adjustable
compression quality.

Table 6.6 lists the test input pictures for the compression algorithm. The test set
comprises three standard test pictures (512 × 512 pixel) [Ima18], and a large picture
(4000×4500 pixel) [Xip18]. In addition, test images from the PAMONO data set [SZS14]

Chapter 6. New opportunities due to Approximate Computing 148

were used. In a preprocessing step, the pictures were manually converted into the ppm-
format or pgm-format expected by cjpeg as input. In the evaluation, we analyzed the
impact of different DCT algorithms on the output quality, execution time and energy
consumption. Further, the effect of different compression quality levels was analyzed.

Image Depth Dimension Size
bigbuckbunny (bbb) 8-bit 4000×4500 52 MB
lena_color 8-bit 512×512 769 kB
lena_grey 8-bit 512×512 257 kB
monkey_color 8-bit 512×512 759 kB
pamono 8-bit 1024×350 701 kB

Table 6.6: Input data for approximated image compression case study.

Table 6.7 shows the results of the SFM analysis for the lena_color test input. The
DCT float algorithm is used as the reference for the quality assessment. The results
confirm that with reduced target compression quality the overall output quality reduces
as well. In addition, the int DCT version produces according to the SFM values the better
images. Table 6.8 and Table 6.9 show the result of the PQVM evaluation. QCAPES
multi-metric evaluation revealed that the MAE decreases with lower quality settings,
while the MSE and RMSE increase. A possible explanation is that small errors vanish,
while larger errors increase. The cjpeg documentation supports this hypothesis. It says
that the fast implementation tends to produce worse results on higher quality settings
than on lower settings. This shows that it is always advisable and recommended not
to rely on just one specific metric or metric family, but to involve multiple metrics
in the evaluation. Similar results were obtained for the other inputs. Therefore, we
conclude, that all DCT algorithm implementations and the different data types achieve
a comparable output quality. However, do the different algorithms provide an additional
benefit in file size or run time and energy consumption?

DCT Quality MSE RMSE MAE PSNR
int 100 0.12 0.34 0.12 57.48
int 80 0.24 0.49 0.15 54.40
int 50 0.27 0.52 0.08 53.76
int 30 0.22 0.47 0.06 54.69
int 10 0.28 0.53 0.02 53.67

fast 100 0.72 0.85 0.56 49.55
fast 80 1.05 1.02 0.55 47.92
fast 50 1.09 1.04 0.40 47.75
fast 30 1.21 1.10 0.33 47.32
fast 10 1.48 1.22 0.18 46.41

Table 6.7: Impact of quality settings for lena_color on the luminescence component.

Table 6.10 lists the resulting file sizes. As expected, the file size decreases with the
target quality. However, in this case study, the deviation in file size is small compared to
the approximated video encoder use case. Finally, Figure 6.7 shows the run time and

Chapter 6. New opportunities due to Approximate Computing 149

DCT Quality 4x4 4x4b 8x8 8x8b 16x16 16x16b
int 100 0.99428 0.99419 0.99672 0.99663 0.99828 0.99823
int 80 0.98791 0.98727 0.99359 0.99345 0.99695 0.99671
int 50 0.99239 0.99325 0.99527 0.99668 0.99777 0.99792
int 30 0.99547 0.99664 0.99682 0.99861 0.99814 0.99856
int 10 0.99839 0.99849 0.99864 0.99945 0.99892 0.99907

fast 100 0.97488 0.97631 0.98529 0.98512 0.99229 0.99218
fast 80 0.95390 0.95303 0.97649 0.97502 0.98901 0.98873
fast 50 0.95693 0.96328 0.97195 0.98091 0.98735 0.98671
fast 30 0.97205 0.97994 0.97948 0.99029 0.98880 0.99687
fast 10 0.98721 0.99245 0.98806 0.99592 0.99192 0.99399

Table 6.8: UIQI values for Y-component of lena_color with different window settings.

DCT Quality 4x4 4x4b 8x8 8x8b 16x16 16x16b filter
int 100 0.99894 0.99893 0.99918 0.99916 0.99944 0.99943 0.99910
int 80 0.99835 0.99835 0.99874 0.99877 0.99915 0.99913 0.99859
int 50 0.99860 0.99870 0.99890 0.99896 0.99927 0.99936 0.99877
int 30 0.99899 0.99913 0.99913 0.99926 0.99938 0.99939 0.99908
int 10 0.99923 0.99939 0.99932 0.99952 0.99947 0.99954 0.99929

fast 100 0.99478 0.99517 0.99600 0.99601 0.99730 0.99729 0.99558
fast 80 0.99350 0.99379 0.99504 0.99506 0.99667 0.99664 0.99449
fast 50 0.99376 0.99444 0.99473 0.99452 0.99646 0.99652 0.99440
fast 30 0.99437 0.99538 0.99519 0.99515 0.99676 0.99682 0.99497
fast 10 0.99461 0.99650 0.99452 0.99439 0.99607 0.99618 0.99464

Table 6.9: SSIM values for Y-component of lena_color with different window settings.

energy consumption for processing the large bigbuckbunny (bbb) image. The results are
similar, thus using different algorithms and data types in this use case study did not
provide large improvements.

Quality

DCT 100 80 50 30 10
float 229.053 kB 44.013 kB 24.288 kB 17.629 kB 9.683 kB

int 230.211 kB
(+0.5%)

44.200 kB
(+0.4%)

24.340 kB
(+0.2%)

17.656 kB
(+0.2%)

9.692 kB
(+0.15%)

fast 232.047 kB
(+1.3%)

44.175 kB
(+0.3%)

24.316 kB
(+0.1%)

17.645 kB
(+0.09%)

9.683 kB
(+0%)

Table 6.10: File size for approximated image compression case study for lena_color.

6.5.3 Discussion

The case studies demonstrated the capabilities of QCAPES and highlight the importance
of a good metric and objective selection. Furthermore, these experiments emphasize the
usefulness of an automatic, multi-metric assessment framework to discover previously
unexpected effects of the naïve application of approximation techniques. The studies
revealed that in cases where approximation techniques interfere with application-specific
inherent optimizations, e.g., the application of psychoacoustic or visual models for
lossy data compression, the consideration of additional metrics, such as file size (and,
consequently, energy consumption for transfer or storage) need to be considered to
efficiently apply approximation techniques without introducing undesirable side effects.

Chapter 6. New opportunities due to Approximate Computing 150

bb
b_

flo
at

bb
b_

int

bb
b_

fa
st

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

Time (A15) Time (A7) Energy (A15) Energy (A7)
E

ne
rg

y(
J)

/T
im

e(
s)

Figure 6.7: Run time and energy consumption for the cjpeg use case using different
DCT implementations for compression of the big buck bunny image measured on an
Odroid-XU3.

To conclude, we expect similar effects to show up especially in applications which are
supposed to benefit most from approximation, thus multi-criterial assessment will be
required for holistically building of efficient approximate systems.

6.6 Approximation in PICO - ApproxPICO

The case studies as well as the PAMONO virus detection optimization, presented in
Chapter 5, show the potential of approximate computing. Major run time and energy
consumption improvements can be achieved by leveraging the requirements on the
output quality. However, implementing approximations safely is a complex and time-
consuming task. With QCAPES, the PA4RES framework has access to a multi-metric
assessment for the output quality. Consequently, a high-level specification of code regions
which are sensible for approximation in combination with an automatic source-to-source
transformations, transparent to the user, is a worthwhile goal. In the best case, a holistic
approach should explore several approximation techniques automatically to find the
optimal configuration for a given application targeting a specific hardware platform.

With ApproxPICO, we introduce the fundamentals for approximate computing into
PA4RES. This enhancement opens the way for an automatic approximation during the
parallelization process. Therefore, we extended PICO and the supported pragma set to
annotate parallel regions which might benefit from approximation. The user annotates
such parallel region with the approximate clause. This clause can either be added to
parallel loops globally or pipeline stages locally. In both cases, the user must provide a

Chapter 6. New opportunities due to Approximate Computing 151

QCAPESHost Compiler
Execution
Platform

PICO

Runtime

Operating
System

Future Extension

Annotated
Code

Figure 6.8: Automatic PICO approximation flow with QCAPES backend.

perforation rate such that PICO can employ loop perforation. A high perforation rate
might resolve in the fact that some tasks are discarded. Tasks skipping was also proposed
by [Rin07; Rin06]. PICO’s data and control flow analysis keeps track of the perforation
and takes care for the possible changed data dependencies during the parallelization
process. Listing 6.1 shows exemplarily how to apply loop perforation to the first pipeline
stage of the parallel pipeline. The perfrate clause controls the perforation and describes
which iterations this section should process. Consequently, a perfrate of one means no
approximation, a rate of two that every other iteration should be skipped. In case of a
hybrid pipeline stage, the perforation rate must be specified for each parallel task similar
to the chunks clause (cf. Subsection 3.5.1).

pragma pico parallel pipeline for num_threads (2)
for (int i = 0; i < 10; ++i) {

pragma pico section taskid =1 approximate perfrate =2
{

// for loop ...
}

pragma pico section taskid =2
{

// for loop
}

}

Listing 6.1: ApproxPICO: Exemplary section perforation. Every other iteration is
skipped for the first section.

Figure 6.8 visualizes the currently available tool flow provided by PA4RES to apply
approximate computing techniques with PICO to sequential applications. The user
provides the annotated application code to the framework. PICO parses the code and
performs the instructed parallelization and applies the approximation. The modified
parallel code and the reference version are then passed to the host compiler. QCAPES

Chapter 6. New opportunities due to Approximate Computing 152

Base Waiting Read random Read last
Execution time (s) 0.446 7.438 3.570 3.559

Energy consumption (J) 0.868 30.846 14.482 14.927

Table 6.11: Performance results for approximate communication experiment.

then performs a multi-metric evaluation on the target platform and the results are
reported to the user. This manual approximation process offers some potential for future
extensions.

6.6.1 Approximate Communication - Case Study

Parallelization is limited by synchronization. Especially for future many-core systems
with dozens of processors, this will be a serious concern. The fact exaggerates in cases
where multiple parallel applications are executed simultaneously on the same system.
Relaxed synchronization [RSN12] provides an interesting approach to leverage the waiting
time on synchronization barriers. However, we propose to allow approximation during
the data exchange [NEM15a]. In case of the FIFO-based data synchronization used by
PICO, this approach applies approximation in case of a blocking FIFO access. In such an
event, we propose several strategies. The first strategy re-uses the previously transmitted
data, therefore, the FIFO semantic must be enhanced to deal with these circumstances.
The second approach would use a predefined value and the last strategy would generate
the data randomly.

In general, we expect that the approximate communication proposal can either be
applied statically or during run time dynamically. In the static case, the user or PICO
adds a waiting threshold to the approximated FIFO channels. Once that limit is reached,
the data synchronization is approximated. Therefore, this approach adapts to a certain
extent to the current workload during run time. The dynamic approach would extend
QCAPES towards a runtime quality assessment to monitor the current output quality.
If the quality is still good enough, some data synchronization points might be relaxed.

To evaluate the potential of such an approximate communication technique, we added
new directives to ApproxPICO. The wait(time) clause instructs ApproxPICO to use
approximate polling-based FIFOs with a given waiting threshold. With the clause reuse,
ApproxPICO reused the previous data, otherwise it will generate random data.

We selected the JPEG benchmark and the Odroid-XU3 platform to evaluate the
capabilities offered by approximate communication. For this preliminary case study,
we introduced (random) artificial delays between 1 and 1000 µs in the FIFO read
function and set the threshold to 100 µs. We conducted 100 repetitions for each setting
and averaged the values. Table 6.11 shows the resulting execution times and energy
consumption for the different strategies. As expected, we observe an improvement in run
time and consequently energy consumption with approximate communication. However,
the resulting images show some major distortions (cf. Figure 6.9). In some cases the
errors are acceptable, but in others, we observed a shift in the entire picture. Therefore,

Chapter 6. New opportunities due to Approximate Computing 153

(a) Original (b) (c)

(d) (e) (f)

Figure 6.9: Impacts of approximate communication.

we conclude, that a deeper analysis is necessary to understand the side effects and benefits
of approximate communication. In addition, an automatic exploration of approximate
communication seems promising.

6.7 Conclusion and Future Work

The performance and energy walls expose a serious challenge for system designers and
software developers. Traditional techniques like higher frequencies or multi-core designs
are unable to break these walls. Leveraging the requirements onto the output quality to
gain run time or energy improvements might be able to overcome these walls. At least,
shifting these walls might provide additional time to develop new techniques. Approximate
computing is a promising approach especially in the resource-restricted mobile systems
domain which faces new challenges due to increased performance requirements. However,

Chapter 6. New opportunities due to Approximate Computing 154

an estimation of the impact on the final result of specific approximation techniques is
still unclear. Several quality metrics can be used to analyze the results. Finding the
correct metric in a set of dozen metrics which might be to some extent contradicting is a
challenging, time-consuming and error-prone task.

The Quality Comparison for Approximate Programs on Embedded Systems (QCAPES)
assessment framework provides a multi-metric evaluation and supports the user to in-
troduce approximation into existing application safely. Furthermore, this framework
enables an early analysis of the impact on the output quality and other performance
characteristics during the development of new approximation techniques. With two case
studies, we demonstrate QCAPES capabilities and the benefits of a mutli-metric evalua-
tion. Although the results show that approximate computing can lead to an increase in
performance, they also revealed that a careless usage of approximation techniques may
interfere with application-specific inherent optimizations.

With ApproxPICO, we provide the fundamental work to consider approximation
during the parallelization of sequential applications within PA4RES. Based on PICO’s
control and data flow analysis, ApproxPICO provides a simple way to annotate parallel
regions which may benefit from approximation. ApproxPICO then automatically applies
loop perforation to the annotated regions and takes care of changed dependencies, task
skipping and necessary data synchronization. Parallel application might suffer from
blocking data synchronization. With a preliminary case study, we investigated the
opportunities offered by approximate communication where the application proceeds in
the case of blocking FIFO read with random or previously received data. However, this
promising approach offers several directions for future extensions.

Future Work The impact of approximations on other application from various domains
may reveal additional interesting insights. Furthermore, it might be worthwhile to
investigate the side effects of other commonly used approximation techniques. However,
in the following, we present possible future extensions to ApproxPICO and PA4RES
towards an automatic approximation exploration framework.

Feedback Loop: In the current state, the approximation flow provided by Approx-
PICO and PA4RES does not include a feedback loop. Figure 6.8 indicates how such a
feedback loop might interact with the processing flow. Results are then feed back to
PICO which then integrates the new knowledge into the transformation process.

Additional Approximation Techniques: The current framework only provides
loop perforation and consequently task skipping. Therefore, the integration of additional
approximation methods into the framework might be useful. Many iterative algorithms
can be approximated using an early loop termination. In such a case, the user could
provide a threshold quality and PICO calculates the iteration range of that computation
loop statically. Another promising technique is the support for algorithmic choice, here,
the user would provide several implementations of the same algorithm. With special

Chapter 6. New opportunities due to Approximate Computing 155

annotations, the user would made PICO aware of these choices. Finally, PICO’s tight
integration with the ICD-C compiler framework allows an easy exchange of data types
with a reduced precision. This technique is commonly used to map floating-point numbers
to fix-point or even integers in order to improve the overall performance. With Florian
Schmoll’s PropCC approach that provides a deep analysis of reliable and unreliable
data, we already have the fundamentals available to determine the impact of such data
approximation statically.

Approximate Communication: The preliminary case study showed that, ap-
proximate communication can improve the performance of an application suffering from
long blocking times. However, the impact on the output quality must be analyzed in
more detail. In this case study, the approximation was manually applied to all FIFO
channels, a more sophisticated selection might improve the output quality. In general,
which strategy should be applied in which case is still unclear and offers interesting
research opportunities. An automatic exploration of approximate communication done
by ApproxPICO with a detailed mutli-metric assessment is a worthwhile goal.

Automatic Approximation Exploration: Finding a good trade-off between the
available parallelization and approximation to achieve a certain quality and performance
is a complex and time-consuming task. If this is done improperly, the benefits gained
due to approximation might by overshadowed by drawbacks exposed by other objectives.
Therefore, we suppose that an automatic approximation exploration considering the
limitation of embedded systems and the target application is a worthwhile goal.

Chapter 6. New opportunities due to Approximate Computing 156

Chapter 7

Conclusion and Future Work

Contents
7.1 Summary of Contributions . 158

7.2 Future Work . 160

The quest for more performance of applications and systems became more challenging
in the recent years. Especially in the cyber-physical and mobile domain, the performance
requirements increased significantly. Former high-performance applications emerge in the
area of resource-constrained mobile systems. Modern heterogeneous high-performance
Multiprocessor System-on-a-Chip (MPSoC) provide a solid foundation to satisfy the high
demand. Such systems combine general processors with specialized accelerators. Today’s
systems provide accelerators ranging from Graphics Processing Units (GPUs) to chips
focusing on machine learning applications.

On the other side of the performance spectrum, the demand for small energy efficient
systems exposed by modern Internet of Things (IoT) applications increased vastly. Such
battery-driven systems may operate on remote places to take samples. In extreme cases,
these systems are charged by unsteady power sources like solar panels. Others may
be integrated in machines or smart homes. Several predictions say that these class of
systems will easily outnumber the number of today’s existing computers.

Developing efficient software for such resource-constrained multi-core systems is an
error-prone, time-consuming and challenging task. To reduce the time-to-market, the
developers must adapt existing sequential software to these new systems. To further
improve the execution time or energy consumption, the developer might leverage the
requirements on the output quality. Developers are forced to find good configurations
with respect to execution time, energy and memory consumption and output quality.
This thesis provides with PA4RES a holistic semiautomatic approach to parallelize and
implement applications for such platforms efficiently. Our solution supports the developer
to find good trade-offs to tackle the requirements exposed by modern applications and
systems.

157

Chapter 7. Conclusion and Future Work 158

7.1 Summary of Contributions

The initial challenges discussed in Chapter 1 revealed many aspects today’s developer must
take into account to utilize the capabilities of modern embedded MPSoCs. In this thesis,
we propose several solutions to tackle the exposed challenges. Our approaches consider
energy consumption, execution time, memory consumption and output quality. In the
following, we provide a comprehensive summary of the goals which were accomplished.

PA4RES: The Parallelization for (4) Resource-restricted Embedded Systems (PA4RES)
methodology provides a holistic approach to parallelize sequential application with respect
to several objectives. The framework provides a seamless interaction of various tools.
Besides the approaches developed in this thesis, it contains the Parallelism Extraction
for Embedded Systems (PAXES) parallelizer, a Performance Estimator and several other
useful tools. PA4RES abstracts from concrete target platform with an internal high-level
system model. However, in this thesis, we present several backends to generate code for
simulators and real hardware. Furthermore, we developed two energy and performance
measurement applications for the real hardware platform.

PICO: The Parallelism Implementer and Communication Optimizer (PICO) approach
enables developer to express complex parallelism with simple, high-level directives added
to the sequential code. Following the PA4RES philosophy, our approach preserves the
sequential source code which improves the understandability and maintainability of
parallel software. The developer can express complex parallelism, like hybrid pipeline
parallelism, with only a few annotations to the code. In combination with the ICD-C
compiler framework, PICO automatically takes care of necessary data synchronization
and implements required data exchanges. Therefore, it performs several data flow
analysis to detect data dependencies. In addition, PICO offers manual and automatic
load balancing for heterogeneous architectures.

Parallel software often suffer from data synchronization, therefore, an efficient data
exchange is essential to achieve the required performance. PICO provides a sophisticated
approach to explore a large communication-related parameter space. The evolutionary
optimization algoritm provisions the FIFO channel size, the mapping, selects imple-
mentation details and merges channels to reduce overhead. During this process, PICO
considers execution time, energy consumption and memory footprint. We demonstrated
the importance of our approach with an extensive evaluation where we found solutions
with a speedup of 1.8 or a reduction in energy consumption of 30%. Using a high-level
execution model we could reduce the overall optimization time significantly by still
achieving useful results.

PAMONO Virus Detection: Traditionally, biological virus detection was a time-
consuming task and usually bound to large laboratories. The Plasmon-Assisted Mi-
croscopy of Nano-Objects (PAMONO) sensor approach enables a fast virus detection

Chapter 7. Conclusion and Future Work 159

using optical methods. With a sophisticated virus detection software, a real-time virus
detection was achieved. Within this thesis, we accomplished a mobile virus detection
solution. Using a Design Space Exploration (DSE) algorithm exploring various software-
and hardware-related parameters we were able to derive a soft real-time capable virus
detection running on a high-performance embedded system, commonly found in today’s
smart phones. Compared to a baseline implementation, our solution achieved a speedup
of 4.1 and 87% energy savings satisfying the soft real-time requirements. Accepting a
degradation of the detection quality, which still is usable in a medical context, led to a
speedup of 11.1. This work provides the fundamentals for a truly mobile real-time virus
detection solution.

Approximate Computing and ApproxPICO: Today’s system designers and soft-
ware developers face serious challenges exposed by the performance and power walls.
Traditional techniques to tackle these walls fail. Approximate computing is a promising
approach to overcome or at least shift these walls. By accepting a degradation in the
output quality, developer can achieve additional improvements in terms of execution time
or energy consumption. Finding a good trade-off is a complex task. Various existing
quality metrics might predict a contradicting impact on the output quality. Especially for
a safe integration of approximation into existing application or during the development
of new approximation techniques, a method to assess the impact on the output quality is
essential. With Quality Comparison for Approximate Programs on Embedded Systems
(QCAPES), we provide a multi-metric assessment framework to analyze the impact of
approximation. Qualitative case studies demonstrated the usefulness of our approach
and reveled side effects of a careless usage of approximation techniques.

With ApproxPICO we propose an extension to PICO to consider approximate
computing during the parallelization of sequential applications. Embedded in the PA4RES
framework, the tool applies a source-to-source approximation technique to perforate the
iteration space of loops. Under certain conditions, this might lead to task skipping. The
transformed application can automatically be assessed by QCAPES to get insights into
the impact of the approximation. This work built the base for an automatic exploration of
several approximation techniques. In addition, we propose approximate communication
to improve the performance of applications suffering from long blocking times. Especially
for future many-core systems with dozens of processors, this will be a serious concern. The
fact exaggerates in cases where multiple parallel applications are executed simultaneously.
In case of the FIFO-based data synchronization, this approach applies approximation
in case of a blocking FIFO access. In such an event, we propose several strategies. The
first strategy re-uses the previously transmitted data, therefore, the FIFO semantics
was enhanced to deal with these circumstances. The second would use a predefined
value and the last would generate the data randomly. With a preliminary case study, we
investigated the opportunities offered by approximate communication. This promising
approach offers several directions for future extensions.

Chapter 7. Conclusion and Future Work 160

7.2 Future Work

The goals accomplished within this thesis opened various directions for improvements
and future work. In the following, we provide a comprehensive overview of possible
future extensions and improvements.

PICO and PAXES: PICO demonstrated in this thesis its importance during the
parallelization of sequential application and for the optimization of necessary data
synchronization. However, there is some room for improvements. On the technical side, a
more precise data analysis would reduce the risk of too conservative data synchronization.
Furthermore, a more precise analysis might help to remove some restrictions exposed to
the source code.

Efficient data synchronization is vital for the overall performance of parallel applica-
tions and PICO provides an approach to implement this efficiently. However, we identified
several ways for a future extension of our approach. The GA generates new unknown
solutions and evaluates them with a costly fitness evaluation. If such a solution that is
worthwhile to evaluate is currently unknown and thus (costly) evaluated. Fortunately,
model-based optimization (MBO) offers a method to predict if an individual solution
should be evaluated to gain new knowledge or not. We used MBO in the context of the
CRC and in [KLN17] to estimate run time and performance of specific machine learning
algorithms on the Odroid-XU3 platform. Therefore, to prune the evaluation time of
PICO’s genetic algorithm, a combination with a MBO approach seems promising.

Overall, a holistic model-based approach, which does not require a simulation, seems
to be a worthwhile goal. Therefore, we need to fine-tune the underlying data that the
execution model uses to improve the estimations.

This thesis demonstrates the importance of data synchronization and its implemen-
tation. At the current state, PAXES assumes a static FIFO implementation and only
uses a fairly abstract high-level communication cost model. Knowledge discovered by
PICO regarding the actual synchronization impacts could be fed back into PAXES’
parallelization algorithm. Thus, knowledge gathered by PICO could be used during the
parallelization process to further improve the results. Finally, we would like analyze
PICO’s capabilities regarding other benchmark and new hardware platforms.

PAMONO Virus Detection: In the current state, the PAMONO sensor only allows
to detect a stem of viruses which attach to the same type of antibody. To increase
the detection range, a (larger) gold layer can be partitioned and coated with different
antibodies. The detection process gets complicated with each additional virus type but
we showed that some headroom is available. In this case, the image resolution must be
adapted to the new gold layer size leading to a higher computational demand. Instead
of leveraging the detection quality, the DSE framework could be extended to support
independent optimization for separate regions in the recorded image. In such case, the
optimization algorithm might increase the detection quality in some areas while reducing

Chapter 7. Conclusion and Future Work 161

the quality in others. Instead of detecting multiple virus types simultaneously, the
available headroom can be used to increase the resolution of the images and still meet
the real time and energy requirements. Finally, a cheaper hardware system might be
sufficient to achieve the virus detection task.

The next step is to move towards an areal monitoring system with multiple sensors
placed at public locations like airports. To achieve a certain cost-effectiveness, it might
be necessary to split the data sampling and processing task. In such a case, inexpensive
low-power embedded systems take the sample images and send them to a central powerful
computer to evaluate the data streams.

Approximate Computing and ApproxPICO: The impact of approximations on
other applications from various domains may reveal additional interesting insights.
Furthermore, it might be worthwhile to investigate the side effects of other commonly
used approximation techniques.

In the current state, the approximation flow provided by ApproxPICO and PA4RES
does not include a feedback loop. We think that such a feedback loop enables an
automatic approximation exploration considering the resource limitation of embedded
systems.

ApproxPICO only provides loop perforation and consequently task skipping. There-
fore, the integration of additional approximation methods into the framework might
be beneficial. Many iterative algorithms can be approximated using an early loop ter-
mination. Another promising technique is the support for algorithmic choice. With
special annotations, the user would made PICO aware of these choices. Finally, PICO’s
tight integration with the ICD-C compiler framework allows an easy exchange of data
types with a reduced precision. This technique is commonly used to map floating-point
numbers to fix-point or even integers in order to improve the overall performance.

Parallelization is limited by synchronization. The preliminary case study showed that,
approximate communication can improve the performance of an application suffering
from long blocking times. However, the impact on the output quality must be analyzed
in more detail. In this case study, the approximation was manually applied to all FIFO
channels, a more sophisticated selection might improve the output quality. This approach
adapts to a certain extent to the current workload during run time. A dynamic approach
would extend QCAPES towards a runtime quality assessment to monitor the current
output quality. If the quality is still good enough, some data synchronization points might
be relaxed. In general, which strategy should be applied in which case is still unclear
and offers interesting research opportunities. An automatic exploration of approximate
communication done by ApproxPICO with a detailed mutli-metric assessment is a
worthwhile goal.

Chapter . Conclusion and Future Work 162

Appendix A

Appendix

Contents
A.1 EnergyMetric - CoMET-Systems . 163

A.2 Energy measurement on the Odroid-System 164

A.2.1 EnergyMeter . 164

A.2.2 Energy Relay Reader . 165

A.3 PICO API and Runtime . 165

A.4 Execution Model - Performance Extraction . 167

A.5 Digital and Physical Units . 169

A.1 EnergyMetric - CoMET-Systems

Energy measurement for a simulator-based platform (cf. Section 2.1) requires an energy
model. The Virtualizer CoMET simulator platform provides a method for user-defined
metric modules. These modules enable monitoring and manipulation of the simulator,
e.g. for debugging. We implemented an energy metric module named EnergyMetric to
model the energy consumption of our platforms. Florian Schmoll and the author of this
thesis developed in collaboration the EnergyMetric module. Other theses [Cor13; Hol17]
used EnergyMetric as well. In general, the EnergyMetric module tracks important event
of the processors, memories and interconnects. Each event is associated with an energy
budget and accumulated to the total energy consumption. The measurement can be
started and stopped with issuing a read of special memory locations. Applications can
control the measurement through API calls.

The energy model and access times for the memories rely on data derived from CACTI
[MBJ09], a state-of-the-art integrated cache and memory access time, cycle time, area,
leakage, and dynamic power model. CACTI has been verified with real memories. We
modeled on/off chip memory both as DRAM and scratch memory. EnergyMetric therefore
uses the corresponding values for the different memories in our systems. Stefan Steinke
developed at our department an energy model for ARM7TDMI processors [SKW01]. The

163

Appendix 164

Frequency

State 100 MHz 250 MHz 500 MHz

Active Cycle 917.007 fJ 918.127 fJ 921.729 fJ
Stall Cycle 605.340 fJ 606.460 fJ 610.063 fJ
Idle Cycle 92.007 fJ 93.127 fJ 96.729 fJ

Table A.1: Frequency-dependent high-level processor energy model.

simulation-based platforms used in this thesis uses ARM1176 processors, thus we adjusted
the energy values by comparing both processor capabilities as well as trends in structure
size and overall energy consumption. Since we do not compare different platforms
itself, we argue that these energy values allow a comparison of the performance of
different application implementations on the same platform. Currently, the EnergyMetric
accumulates active, stall and idle cycles for the processors. EnergyMetric uses frequency
dependent energy values for the heterogeneous platform. Table A.1 lists the energy values
for all processor states and frequencies used in this thesis.

A.2 Energy measurement on the Odroid-System

During this thesis, we developed two energy measurement applications for the Odroid-
XU3 platform. The platform uses four INA 231 [Tex13] to sense voltage, current and
power. A standardized I2C interface connects the sensors are with the processor. The
sensor provides configurable averaging and conversion times. The platform ships with
predefined and fixed parameters in the original driver and Linux implementation. We
extended the driver provided by the manufacturer to enable a configuration of the sensors
dynamically during runtime. This enables a rapid analysis with different settings without
rebooting the target platform. Our driver extensions are available at [SFB17b]. We
developed two applications, the EnergyMeter and the Energy Relay Reader to make the
measured sensor values easily accessible. In both applications, the systems measures the
energy consumption in situ and stores the results time coded in a CSV file. This enables
a straightforward graph generation e.g. with gnuplot. The measurement applications
use standardized methods to access the sensor, thus, we think that our applications are
usable for other sensors.

A.2.1 EnergyMeter

We derived the EnergyMeter implementation from the original energy measurement
application provided by the manufacturer of the Odroid-XU3 platform. The original
application provides a graphical user interface and the measurement could not be
controlled externally. A graphical user interface does not fit into our remote evaluation
concept. Thus, our implementation removes these limitations and extends the application
to meet our requirements. The EnergyMeter uses polling to read out sensor values. Thus,
it is able to sense dynamic changes with high resolution but produces therefore a high

Appendix 165

CPU workload. External user-controlled events steer the sensing process. In this case,
Linux named pipes trigger the measurement. This feature enables a measurement of
specific parts of an application. We used EnergyMeter during the optimization of the
PAMONO virus detection software [NLE15]. Here, we used this feature to exclude the
initial setup phase of the virus detection.

A.2.2 Energy Relay Reader

A time precise readout of the sensor data is not always required, thus, we developed the
Energy Relay Reader, which allows a relaxed, and CPU load friendly energy assessment.
This application uses the relay feature of the Linux operating system. The basic idea
is to create threads reading the energy sensor at specific points in time. These threads
are then either scheduled to the worker or kernel thread queue. The queues differ in
the priority they are processed. After the operating system processes the measurement
elements in the queue, the application stores the results in files. This approach does
not produce a high CPU load since the CPU could idle between the measurements. A
drawback of this approach is the possibility that due to queue processing, some readouts
get delayed drastically. It is also possible, that one measures longer as the runtime of the
experiments. This happens if measurement tasks remain in the queues and are executed
after the termination of the experiment. However, these drawbacks are acceptable for
long running applications or average measurements.

A.3 PICO API and Runtime

This section presents a technical overview of the PICO API and runtime. All functions of
the pico.h header file are listed and briefly described. A target runtime must implement
all functions defined by the API. For some cases, we highlight differences between the
RTEMS and POSIX implementation. The simulator-based platforms with the RTEMS
operating system influenced the initial development of the PICO runtime strongly. Thus,
for the POSIX implementation some methods are not required and therefore can be left
empty. During this thesis, we ported the PICO runtime to the Odroid-XU3 system. The
well-structured API allowed a fast implementation within hours.

void pico_init ();
void pico_init_tasks (unsigned int numTasks);
void pico_init_barriers (unsigned int numBarriers);
void pico_init_semaphores (unsigned int numSemaphores);
void pico_init_channel_lookup (unsigned int numChannels);

Listing A.1: PICO API - Initialization Methods.

Listing A.1 lists the methods that the PICO runtime uses to initialize all necessary
management data. It defines the number of tasks, initializes barrier and semaphores.
Further, a lookup table for the used communication channels is created. These methods

Appendix 166

are required if the underlying operating system, if any, does not provide built-in barriers,
semaphores and task management.

void pico_register_task (void* functionptr , t_TaskID taskID);
void pico_create_task (t_TaskID taskID , t_ProcessorID processorID);
void pico_fork (t_TaskID taskID);
void pico_join (t_TaskID taskID);

Listing A.2: PICO API - Task Methods.

The RTEMS implementation used in this thesis uses a slightly different task handling.
More details regarding this can be found in [Hei10]. In this implementation, tasks need
to be created and registered before they can be executed. Listing A.3 shows PICO’s task
management interface functions. For a true POSIX compliant operating system, these
methods just call their POSIX equivalent.

void pico_create_barrier (t_BarrierID barrierID);
void pico_wait_barrier (t_BarrierID barrierID);
void pico_create_semaphore (t_SemaphoreID semaphoreID);
void pico_wait_semaphore (t_SemaphoreID semaphoreID);
void pico_release_semaphore (t_SemaphoreID semaphoreID);

Listing A.3: PICO API - Synchronization Methods.

We defined the PICO runtime with platform independence in mind, thus, we provide
a set of abstract synchronization primitives. Listing A.3 provides a basic set of methods
to synchronize data access and execution. In the case that the target operating system
supports native synchronization, the PICO function might use these methods.

void pico_init_channeltypes (unsigned int numChannels , t_ChannelType
↪→ type);

void pico_init_channel (t_ChannelID channelID , t_ChannelType type ,
↪→ t_ChannelDevice device , unsigned int numelement ,
↪→ t_ElementSize elementsize);

void pico_init_channel_wait (t_ChannelID channelID , t_ChannelType
↪→ type , t_ChannelDevice device , unsigned int numelement ,
↪→ t_ElementSize elementsize , unsigned int waitUS);

void pico_write_channel (t_ChannelID channelID , void* data);
void pico_read_channel (t_ChannelID channelID , void* data);

Listing A.4: PICO API - Communication Methods.

Beside task management and synchronization, the main job of the PICO runtime
is to implement data exchange between parallel running tasks. Therefore, we provide
a collection of API calls. Listing A.4 lists the communication channel functions. The
basic idea of PICO is to decide between channel types and channel devices. A channel
type might be an interrupt-based queue or a queue using busy waiting for blocking. A
channel device describes the allocation to a communication infrastructure, for instance

Appendix 167

a queue mapped to a SPM. The available devices and types are defined by the actual
library implementation.

void pico_memcpy (void *dest , void *src , unsigned int size);
void* pico_malloc_dram (unsigned int size);
int pico_free_dram (void * mem);
void* pico_malloc_spm (unsigned int size);
int pico_free_spm (void * mem);

Listing A.5: PICO API - Miscellaneous Methods.

Some operating systems, like the employed RTEMS implementation, do not provide
a dynamic memory (heap) management. Thus, PICO provides methods to either use a
simple allocator, like buddy allocation, or use operating system methods. Listing A.5
lists the interfaces used to allocate data to the memory.

A.4 Execution Model - Performance Extraction

The execution model requires run time and energy data of the modeled FIFO implemen-
tation to calculate the estimated performance. Especially, the communication model
needs a precise knowledge about what a successful FIFO and a blocking access costs.
Therefore, we implemented simple parallel test cases which communicate data. We
performed several measurements with different channel configurations with and without
blocking. For instance, we varied the FIFO capacity and element size. We used as
payloads for a channel 1 B,4 B,20 B,40 B,80 B,160 B,316 B,1024 B,4096 B and 16384 B.
The FIFO capacity was 1, 10, 20 and 255.

The measured values were fed into a regression analysis to estimate the parame-
ters of each implementation. The parameters p2CyclesNumBytes, p1CyclesNumBytes,
p2CyclesFIFOSize, p1CyclesFIFOSize, p3CyclesBoth and bCycles were derived with R
and led to the following model:

unifiedCycles =p2CyclesNumBytes ∗ numDataBytes ∗ numDataBytes

+ p2CyclesFIFOSize ∗ channelSize ∗ channelSize

+ p1CyclesNumBytes ∗ numDataBytes

+ p1CyclesFIFOSize ∗ channelSize

+ p3CyclesBoth ∗ (channelSize ∗ numDataBytes)

+ bCycles

Appendix 168

Execution time Energy consumption

Bytes Model Simulation Diff Model Simulation Diff
1 13488 13411 0.57 % 1197.13 1142.97 4.52 %
4 13096 13536 -3.36 % 912.59 1157.05 -26.79 %
20 15153.5 14196 6.32 % 1415.13 1230.80 13.03 %
40 15739 15004 4.67 % 1477.92 1319.08 10.75 %
80 16808 16562 1.46 % 1480.05 1479.37 0.05 %

160 18554.5 19451 -4.83 % 1616.57 1711.93 -5.90 %
316 23531.5 24208 -2.87 % 1680.77 1686.52 -0.34 %

Table A.2: Read from a RTEMS-based FIFO with a capacity of 10.

Execution time Energy consumption

Bytes Model Simulation Diff Model Simulation Diff
1 4921 4897 -0.49 % 30.89 31.80 2.96 %
4 4921 4889 -0.65 % 30.89 32.08 3.87 %

20 4896 4854 -0.86 % 32.33 33.61 3.98 %
40 4894 4830 -1.31 % 35.55 35.62 0.18 %
80 4894 4842 -1.06 % 41.60 40.03 -3.78 %
160 4894 5115 4.52 % 54.25 51.27 -5.50 %
316 9894 6601 -33.28 % 141.70 88.00 -37.89 %

1024 34905 35512 1.74 % 592.09 544.53 -8.03 %
4096 124902 127116 1.77 % 2509.70 1999.78 -20.32 %
16384 519776 507177 -2.42 % 11219.46 11341.04 1.08 %

Table A.3: Read from an interrupt-based FIFO with a capacity of 1.

unifiedEnergy =(p2EnergyNumBytes ∗ numDataBytes ∗ numDataBytes+

+ p2EnergyFIFOSize ∗ channelSize ∗ channelSize

+ p1EnergyNumBytes ∗ numDataBytes

+ p1EnergyFIFOSize ∗ channelSize

+ p3EnergyBoth ∗ (channelSize ∗ numDataBytes)

+ bEnergy) ∗ unifiedCycles

The unified cycles and energy values are used to model a successful, without blocking,
FIFO access. In case of blocking the execution model uses averaged values of the
measured blocking time for the interrupt and RTEMS channel implementation. In case
of a sleep implementation, the model calculates the waiting time with respect to the
configurable timer value. Tables A.2 and A.3 list additional results regarding the model
and simulation comparison.

Appendix 169

A.5 Digital and Physical Units

Within this thesis we use the following digital and physical units:

• Second: s

• Millisecond: ms

• Microsecond: µs

• Hour: h

• Joule: J

• Millijoule: mJ

• Femtojoule: fJ

• Byte: B

• Kilobyte: KB ∧= 1024 B

• Megabyte: MB ∧= 1024 KB

• Gigabyte: GB ∧= 1024 MB

Appendix 170

Appendix B

Results for Communication
Optimization Experiments

In the following, we list the remaining results for the communication optimization
experiments shown in Section 4.5. The order is: Filterbank, Spectral, JPEG and
PAMONO Preprocessing.

1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
17

17.2

17.4

17.6

17.8

18

18.2

18.4

18.6

Filterbank

Hom. Platform, SPM=512 B

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s 1.055 1.060 1.065 1.070

18.2

18.3

18.4

18.5

Filterbank (excerpt)

Energy in mJ

M
ill

io
n

C
yc

le
s

1.1770 1.1775 1.1780 1.1785 1.1790
17

17.5

18

Energy in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
10

15

20

25

30

35

40

45

50

55

Filterbank

Hom. Platform, SPM=512 B

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure B.1: Filterbank on the homogeneous system with SPM restricted to 512 B.

171

Appendix B. Results for Communication Optimization Experiments 172

1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
17

17.2

17.4

17.6

17.8

18

18.2

18.4

18.6

Filterbank

Hom. Platform, SPM=1024b

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s 1.055 1.060 1.065 1.070

18.3

18.35

18.4

18.45

Filterbank (excerpt)

Energy in mJ

M
ill

io
n

C
yc

le
s

1.1784 1.1786 1.1788 1.1790
17.570

17.571

17.572

Energy in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
10

15

20

25

30

35

40

45

Filterbank

Hom. Platform, SPM=1024 B

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure B.2: Filterbank on the homogeneous system with SPM restricted to 1024 B.

1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
17

17.2

17.4

17.6

17.8

18

18.2

18.4

18.6

Filterbank

Hom. Platform, SPM=2048 B

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s 1.040 1.045 1.050 1.055

18.25
18.3

18.35
18.4

18.45

Filterbank (excerpt)

Energy in mJ

M
ill

io
n

C
yc

le
s

1.168 1.172 1.176 1.180
17.45

17.5

17.55

17.6

Energy in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
10

12

14

16

18

20

22

24

26

Filterbank

Hom. Platform, SPM=2048 B

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure B.3: Filterbank on the homogeneous system with SPM restricted to 2048 B.

Appendix B. Results for Communication Optimization Experiments 173

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
22.2

22.25

22.3

22.35

22.4

22.45

22.5

Filterbank

Het. Platform, SPM=512 B

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
0

20

40

60

80

100

120

Filterbank

Het. Platform, SPM=512 B

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure B.4: Filterbank on the heterogeneous system with SPM restricted to 512 B.

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
22.2

22.25

22.3

22.35

22.4

22.45

22.5

Filterbank

Het. Platform, SPM=2048 B

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
0

20

40

60

80

100

120

Filterbank

Het. Platform, SPM=2048 B

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure B.5: Filterbank on the heterogeneous system with SPM restricted to 2048 B.

Appendix B. Results for Communication Optimization Experiments 174

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
21.6

21.8

22

22.2

22.4

22.6

22.8

23

23.2

Filterbank

Het. Platform, SPM=32 KB

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
10
15
20
25
30
35
40
45
50
55
60

Filterbank

Het. Platform, SPM=32 KB

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure B.6: Filterbank on the heterogeneous system with SPM restricted to 32 KB.

0.1890 0.1895 0.1900 0.1905 0.1910 0.1915 0.1920 0.1925 0.1930 0.1935 0.1940
1.84

1.85

1.86

1.87

1.88

1.89

1.9

1.91

1.92

1.93

Spectral

Hom. Platform, SPM=512 B

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

0.1890 0.1895 0.1900 0.1905 0.1910 0.1915 0.1920 0.1925 0.1930 0.1935 0.1940
2

3

4

5

6

7

8

9

10

Spectral

Hom. Platform, SPM=512 B

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure B.7: Spectral on the homogeneous system with SPM restricted to 512 B.

Appendix B. Results for Communication Optimization Experiments 175

0.180 0.182 0.184 0.186 0.188 0.190 0.192 0.194
1.84

1.85

1.86

1.87

1.88

1.89

1.9

1.91

1.92

1.93

Spectral

Hom. Platform, SPM=1024 B

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

0.180 0.182 0.184 0.186 0.188 0.190 0.192 0.194
2
3
4
5
6
7
8
9

10
11
12

Spectral

Hom. Platform, SPM=1024 B

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure B.8: Spectral on the homogeneous system with SPM restricted to 1024 B.

0.176 0.178 0.180 0.182 0.184 0.186 0.188 0.190 0.192 0.194
1.83

1.84

1.85

1.86

1.87

1.88

1.89

1.9

1.91

Spectral

Hom. Platform, SPM=8192 B

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

0.176 0.178 0.180 0.182 0.184 0.186 0.188 0.190 0.192 0.194
2

4

6

8

10

12

14

16

Spectral

Hom. Platform, SPM=8192 B

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure B.9: Spectral on the homogeneous system with SPM restricted to 8 KB.

Appendix B. Results for Communication Optimization Experiments 176

0.150 0.155 0.160 0.165 0.170 0.175 0.180 0.185 0.190 0.195 0.200
2

2.5

3

3.5

4

4.5

5

5.5

6

Spectral

Het. Platform, SPM=512 B

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

0.150 0.155 0.160 0.165 0.170 0.175 0.180 0.185 0.190 0.195 0.200
2

12

22

32

42

52

62

72

Spectral

Het. Platform, SPM=512 B

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure B.10: Spectral on the heterogeneous system with SPM restricted to 512 B.

0.15 0.16 0.17 0.18 0.19 0.2 0.21
2

2.5

3

3.5

4

4.5

Spectral

Het. Platform, SPM=1024 B

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

0.15 0.16 0.17 0.18 0.19 0.2 0.21
2

4

6

8

10

12

14

16

18

20

Spectral

Het. Platform, SPM=1024 B

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure B.11: Spectral on the heterogeneous system with SPM restricted to 1024 B.

Appendix B. Results for Communication Optimization Experiments 177

0.14 0.15 0.16 0.17 0.18 0.19 0.2
2

4

6

8

10

12

14

16

18

Spectral

Het. Platform, SPM=2048 B

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(a) Run time and energy consumption

0.14 0.15 0.16 0.17 0.18 0.19 0.2
2

4

6

8

10

12

14

16

18

Spectral

Het. Platform, SPM=2048 B

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
kB

(b) Combined memory footprint and energy consumption

Figure B.12: Spectral on the heterogeneous system with SPM restricted to 2048 B.

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
14

19

24

29

34

39

JPEG

Hom. Platform, SPM=1024 B

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
0

1

2

3

4

5

6

7

8

9

JPEG

Hom. Platform, SPM=1024 B

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure B.13: JPEG on the homogeneous system with SPM restricted to 1024 B.

Appendix B. Results for Communication Optimization Experiments 178

1.2 1.4 1.6 1.8 2 2.2 2.4
12

17

22

27

32

37

42

JPEG

Hom. Platform, SPM=2048 B

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

1.2 1.4 1.6 1.8 2 2.2 2.4
0

1

2

3

4

5

6

7

8

9

JPEG

Hom. Platform, SPM=2048 B

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure B.14: JPEG on the homogeneous system with SPM restricted to 2048 B.

1.2 1.4 1.6 1.8 2 2.2 2.4
14

19

24

29

34

39

44

49

54

59

JPEG

Het. Platform, SPM=1024 B

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

1.2 1.4 1.6 1.8 2 2.2 2.4
0

1

2

3

4

5

6

7

8

9

JPEG

Het. Platform, SPM=1024 B

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure B.15: JPEG on the heterogeneous system with SPM restricted to 1024 B.

Appendix B. Results for Communication Optimization Experiments 179

1.2 1.4 1.6 1.8 2 2.2 2.4
12

17

22

27

32

37

42

JPEG

Het. Platform, SPM=2048 B

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

1.2 1.4 1.6 1.8 2 2.2 2.4
0

1

2

3

4

5

6

7

8

9

JPEG

Het. Platform, SPM=2048 B

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure B.16: JPEG on the heterogeneous system with SPM restricted to 2048 B.

86 88 90 92 94 96 98 100 102 104
1140

1160

1180

1200

1220

1240

1260

PAMONO Preprocessing

Hom. Platform, SPM=512 B

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

86 88 90 92 94 96 98 100 102 104
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

PAMONO Preprocessing

Hom. Platform, SPM=512 B

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure B.17: PAMONO preprocessing on hom. system with SPM restricted to 512 B.

Appendix B. Results for Communication Optimization Experiments 180

86 88 90 92 94 96 98 100 102 104
1140

1160

1180

1200

1220

1240

1260

PAMONO Preprocessing

Hom. Platform, SPM=1024 B

Energy Consumption in mJ

M
ill

io
n

C
yc

le
s

(a) Run time and energy consumption

86 88 90 92 94 96 98 100 102 104
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

PAMONO Preprocessing

Hom. Platform, SPM=1024 B

Energy Consumption in mJ

C
om

bi
ne

d
M

em
or

y
F

oo
tp

rin
t i

n
K

B

(b) Combined memory footprint and energy consumption

Figure B.18: PAMONO preprocessing on hom. system with SPM restricted to 1024 B.

Bibliography

[Abb73] Ernst Abbe. “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahr-
nehmung”. In: Archiv für mikroskopische Anatomie 9.1 (12/1873), pp. 413–418. issn:
0176-7364. doi: 10.1007/BF02956173 (Cited on page 113).

[ACP06] Krste Asanovic, Bryan Christopher Catanzaro, David a Patterson, and Katherine a
Yelick. The Landscape of Parallel Computing Research : A View from Berkeley. Tech.
rep. University of California Berkeley, 2006, p. 19. doi: 10.1145/1562764.1562783
(Cited on page 19).

[Air18] Airbus. Skywise - Predictive Maintenance. https://www.airbus.com. 04/2018
(Cited on page 2).

[AKK15] Ismail Akturk, Karen Khatamifard, and Ulya R Karpuzcu. “On Quantification of
Accuracy Loss in Approximate Computing”. In: Proceedings of the Workshop on
Duplicating, Deconstructing and Debunking. 2015 (Cited on page 137).

[ALS06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools (2nd Edition). Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2006. isbn: 0321486811 (Cited on page 50).

[App17] Apple. Core ML Framework. 2017. url: https://developer.apple.com/documen
tation/coreml (Cited on page 2).

[App97] Andrew W. Appel. Modern Compiler Implementation in C: Basic Techniques. New
York, NY, USA: Cambridge University Press, 1997. isbn: 0521583896 (Cited on
page 50).

[APS04] Giovanni Agosta, Gianluca Palermo, and Cristina Silvano. “Multi-objective co-
exploration of source code transformations and design space architectures for low-
power embedded systems”. In: Proceedings of the 2004 ACM Symposium on Applied
Computing (SAC). 2004. isbn: 1581138121 (Cited on page 130).

[AR12] Ishfaq Ahmad and Sanjay Ranka. Handbook of Energy-Aware and Green Computing.
Chapman & Hall/CRC, 2012. isbn: 1466501162, 9781466501164 (Cited on page 130).

[ARM17] ARM. Q3 2016 Roadshow Slides. 2017. url: https://www.arm.com/-/media/arm-
com/company/Investors/Quarterly%20Results%20-%20PDFs/ARM_SB_Q3_2016_
Roadshow_Slides_FINAL.pdf?la=en (Cited on page 4).

181

https://doi.org/10.1007/BF02956173
https://doi.org/10.1145/1562764.1562783
https://www.airbus.com
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://www.arm.com/-/media/arm-com/company/Investors/Quarterly%20Results%20-%20PDFs/ARM_SB_Q3_2016_Roadshow_Slides_FINAL.pdf?la=en
https://www.arm.com/-/media/arm-com/company/Investors/Quarterly%20Results%20-%20PDFs/ARM_SB_Q3_2016_Roadshow_Slides_FINAL.pdf?la=en
https://www.arm.com/-/media/arm-com/company/Investors/Quarterly%20Results%20-%20PDFs/ARM_SB_Q3_2016_Roadshow_Slides_FINAL.pdf?la=en

Bibliography 182

[ASR16] Ali Aalsaud, Rishad Shafik, Ashur Rafiev, Fie Xia, Sheng Yang, and Alex Yakovlev.
“Power–Aware Performance Adaptation of Concurrent Applications in Heterogeneous
Many-Core Systems”. In: Proceedings of the 2016 International Symposium on Low
Power Electronics and Design (ISLPED). New York, New York, USA: ACM Press,
2016, pp. 368–373. isbn: 9781450341851. doi: 10.1145/2934583.2934612 (Cited
on page 16).

[AWW09] Krste Asanovic, John Wawrzynek, Katherine Wessel David and Yelick, Rastislav
Bodik, James Demmel, Tony Keaveny, Kurt Keutzer, John Kubiatowicz, David
Morgan Nelson andPatterson, and Koushik Sen. “A view of the parallel computing
landscape”. In: Communications of the ACM 52.10 (2009), p. 56. issn: 00010782.
doi: 10.1145/1562764.1562783 (Cited on page 16).

[BBW09] R. Baert, E. Brockmeyer, S. Wuytack, and T.J. Ashby. “Exploring parallelizations
of applications for MPSoC platforms using MPA”. In: Proceedings of the Conference
on Design, Automation and Test in Europe (DATE). 2009 (Cited on page 34).

[BC10] Woongki Baek and Trishul M. Chilimbi. “Green: A Framework for Supporting Energy-
Conscious Programming using Controlled Approximation”. In: Proceedings of the 31st
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). 2010. isbn: 9781450300193. doi: 10.1145/1806596.1806620 (Cited on
page 136).

[BEN93] Utpal Banerjee, Rudolf Eigenmann, N. Nicolau, David A. Padua, and A. Alexandru.
“Automatic Program Parallelization”. In: Proceedings of the IEEE 81.2 (1993),
pp. 211–243. issn: 15582256. doi: 10.1109/5.214548 (Cited on page 34).

[BKS08] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. “The PARSEC
Benchmark Suite: Characterization and Architectural Implications”. In: Proceedings
of the 17th international conference on Parallel architectures and compilation tech-
niques (PACT). 2008, p. 72. isbn: 9781605582825. doi: 10.1145/1454115.1454128
(Cited on page 144).

[BLT03] Stefan Bleuler, Marco Laumanns, Lothar Thiele, and Eckart Zitzler. “PISA — A
Platform and Programming Language Independent Interface for Search Algorithms”.
In: Evolutionary multi-criterion Optimization. Vol. 2632. 2003, pp. 494–508. isbn:
978-3-540-01869-8. doi: 10.1007/3-540-36970-8_35 (Cited on pages 82, 96).

[BRF15] Luna Backes, Alejandro Rico, and Bjorn Franke. “Experiences in speeding up
computer vision applications on mobile computing platforms”. In: Proceedings of the
International Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS). 2015, pp. 1–8. isbn: 978-1-4673-7311-1. doi: 10.1109/
SAMOS.2015.7363653 (Cited on page 15).

[BTM13] Paolo Burgio, Giuseppe Tagliavini, Andrea Marongiu, and Luca Benini. “Enabling
Fine-Grained OpenMP Tasking on Tightly-Coupled Shared Memory Clusters”. In:
Proceedings of the Conference on Design, Automation and Test in Europe (DATE).
2013, pp. 1504–1509. isbn: 9781467350716. doi: 10.7873/DATE.2013.306 (Cited on
page 38).

https://doi.org/10.1145/2934583.2934612
https://doi.org/10.1145/1562764.1562783
https://doi.org/10.1145/1806596.1806620
https://doi.org/10.1109/5.214548
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1007/3-540-36970-8_35
https://doi.org/10.1109/SAMOS.2015.7363653
https://doi.org/10.1109/SAMOS.2015.7363653
https://doi.org/10.7873/DATE.2013.306

Bibliography 183

[BVG10] Twan Basten, Emiel Van Benthum, Marc Geilen, Martijn Hendriks, Fred Houben,
Georgeta Igna, Frans Reckers, Sebastian De Smet, Lou Somers, Egbert Teeselink,
Nikola Trčka, Frits Vaandrager, Jacques Verriet, Marc Voorhoeve, and Yang Yang.
“Model-driven design-space exploration for embedded systems: The octopus toolset”.
In: Leveraging Applications of Formal Methods, Verification, and Validation. Vol. 6415
LNCS. PART 1. 2010, pp. 90–105. isbn: 3642165575. doi: 10.1007/978-3-642-
16558-0_10 (Cited on page 130).

[CCS08] J. Ceng, J. Castrillon, W. Sheng, H. Scharwächter, R. Leupers, G. Ascheid, H.
Meyr, T. Isshiki, and H. Kunieda. “MAPS: An Integrated Framework for MPSoC
Application Parallelization”. In: Proceedings of the 45th annual conference on Design
automation (DAC). New York, New York, USA: ACM Press, 06/2008, pp. 754–759.
isbn: 9781605581156. doi: 10.1145/1391469.1391663 (Cited on page 35).

[CD14] Tianfeng Chai and Roland R Draxler. “Root mean square error (RMSE) or mean
absolute error (MAE)?–Arguments against avoiding RMSE in the literature”. In:
Geoscientific Model Development 7.3 (2014) (Cited on page 138).

[CDV07] Johan Cockx, Kristof Denolf, Bart Vanhoof, and Richard Stahl. “SPRINT: A tool
to generate concurrent transaction-level models from sequential code”. In: Eurasip
Journal on Advances in Signal Processing 2007 (2007). issn: 16876172. doi: 10.
1155/2007/75373 (Cited on page 34).

[CEM12] Daniel Cordes, Michael Engel, Peter Marwedel, and Olaf Neugebauer. “Automatic
extraction of multi-objective aware pipeline parallelism using genetic algorithms”.
In: Proceedings of the eighth IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis (CODES+ISSS). 10/2012 (Cited on
pages 8, 23).

[CEN13a] Daniel Cordes, Michael Engel, Olaf Neugebauer, and Peter Marwedel. “Automatic
Extraction of Multi-Objective Aware Parallelism for Heterogeneous MPSoCs”. In:
Proceedings of the Sixth International Workshop on Multi-/Many-core Computing
Systems (MuCoCoS). 09/2013 (Cited on pages 8, 23).

[CEN13b] Daniel Cordes, Michael Engel, Olaf Neugebauer, and Peter Marwedel. “Automatic
Extraction of Pipeline Parallelism for Embedded Heterogeneous Multi-Core Plat-
forms”. In: Proceedings of the Sixteenth International Conference on Compilers,
Architectures, and Synthesis for Embedded Systems (CASES). 10/2013 (Cited on
pages 8, 23).

[CEN13c] Daniel Cordes, Michael Engel, Olaf Neugebauer, and Peter Marwedel. “Automatic Ex-
traction of Task-Level Parallelism for Heterogeneous MPSoCs”. In: Proceedings of the
Fourth International Workshop on Parallel Software Tools and Tool Infrastructures
(PSTI). 10/2013 (Cited on pages 8, 23).

[CGF11] Emanuele Cannella, Lorenzo Di Gregorio, Leandro Fiorin, Menno Lindwer, Paolo
Meloni, Olaf Neugebauer, and Andy D. Pimentel. “Towards an ESL Design Frame-
work for Adaptive and Fault-tolerant MPSoCs: MADNESS or not?” In: Proceedings
of the 9th IEEE/ACM Symposium on Embedded Systems for Real-Time Multimedia
(ESTIMedia). 10/2011 (Cited on pages 6, 9, 130).

https://doi.org/10.1007/978-3-642-16558-0_10
https://doi.org/10.1007/978-3-642-16558-0_10
https://doi.org/10.1145/1391469.1391663
https://doi.org/10.1155/2007/75373
https://doi.org/10.1155/2007/75373

Bibliography 184

[CGG12] J.M. Cebrian, G.D. Guerrero, and J.M. Garcia. “Energy Efficiency Analysis of
GPUs”. In: Proceedings of the 2012 IEEE 26th International Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW). 2012. doi: 10.1109/
IPDPSW.2012.124 (Cited on page 129).

[CHB07] Eric Cheung, Harry Hsieh, and Felice Balarin. “Automatic buffer sizing for rate-
constrained KPN applications on multiprocessor system-on-chip”. English. In: Pro-
ceedings of the IEEE International High-Level Design Validation and Test Workshop
(HLDVT). IEEE, 2007, pp. 37–44. isbn: 1424414806. doi: 10.1109/HLDVT.2007.
4392782 (Cited on page 81).

[CHB09] B. Chapman, Lei Huang, E. Biscondi, E. Stotzer, et al. “Implementing OpenMP on
a high performance embedded multicore MPSoC”. In: Proceedings of International
Symposium on Parallel and Distributed Processing (IPDPS). 2009 (Cited on page 37).

[CL14] Jerónimo Castrillón Mazo and Rainer Leupers. Programming heterogeneous MPSoCs:
Tool flows to close the software productivity gap. Springer, 2014, pp. 1–232. isbn:
9783319006758. doi: 10.1007/978-3-319-00675-8 (Cited on page 35).

[CLA13] Jeronimo Castrillon, Rainer Leupers, and Gerd Ascheid. “MAPS: Mapping concur-
rent dataflow applications to heterogeneous MPSoCs”. In: IEEE Transactions on
Industrial Informatics 9.1 (2013), pp. 527–545. issn: 15513203. doi: 10.1109/TII.
2011.2173941 (Cited on page 79).

[Con63] Melvin E. Conway. “A multiprocessor system design”. In: Proceedings of the November
12-14, 1963, Fall Joint Computer Conference (AFIPS). 1963, p. 139. doi: 10.1145/
1463822.1463838 (Cited on page 29).

[Cor13] Daniel Alexander Cordes. “Automatic Parallelization for Embedded Multi-Core
Systems using High-Level Cost Models”. PhD thesis. TU Dortmund, 2013 (Cited on
pages 8, 13, 19 sq., 23 sq., 66, 163).

[CTL12] Jeronimo Castrillon, Andreas Tretter, Rainer Leupers, and Gerd Ascheid. “Communi-
cation-aware mapping of KPN applications onto heterogeneous MPSoCs”. In: Pro-
ceedings of the 49th Annual Design Automation Conference on (DAC). 06/2012,
pp. 1266–1271. isbn: 9781450311991. doi: 10.1145/2228360.2228597 (Cited on
page 79).

[DAP00] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. “A Fast Elitist Non-Dominated
Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II”. In: Parallel
Problem Solving from Nature PPSN VI. Berlin, 2000 (Cited on page 116).

[DGR74] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc.
“Design of ion-implanted MOSFET’s with very small physical dimensions”. In: IEEE
Journal of Solid-State Circuits 9.5 (10/1974), pp. 256–268. issn: 0018-9200. doi:
10.1109/JSSC.1974.1050511 (Cited on page 11).

[DSV06] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali. “Protothreads”. In:
Proceedings of the 4th international conference on Embedded networked sensor systems
(SenSys). June. 2006, p. 29. isbn: 1595933433. doi: 10.1145/1182807.1182811
(Cited on page 79).

https://doi.org/10.1109/IPDPSW.2012.124
https://doi.org/10.1109/IPDPSW.2012.124
https://doi.org/10.1109/HLDVT.2007.4392782
https://doi.org/10.1109/HLDVT.2007.4392782
https://doi.org/10.1007/978-3-319-00675-8
https://doi.org/10.1109/TII.2011.2173941
https://doi.org/10.1109/TII.2011.2173941
https://doi.org/10.1145/1463822.1463838
https://doi.org/10.1145/1463822.1463838
https://doi.org/10.1145/2228360.2228597
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1145/1182807.1182811

Bibliography 185

[EAP06] Karen Egiazarian, Jaakko Astola, Nikolay Ponomarenko, Vladimir Lukin, Federica
Battisti, and Marco Carli. “Two New Full-Reference Quality Metrics based on HVS”.
In: Proceedings of the Second International Workshop on Video Processing and
Quality Metrics. 2006, pp. 2–5 (Cited on page 140).

[EBA11] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. “Dark
silicon and the end of multicore scaling”. In: Proceedings of the 38th Annual Interna-
tional Symposium on Computer Architecture (ISCA). 06/2011, pp. 365–376 (Cited
on page 134).

[EEP03] C. Erbas, S.C. Erbas, and A.D. Pimentel. “A multiobjective optimization model for
exploring multiprocessor mappings of process networks”. In: Proceedings of the First
IEEE/ACM/IFIP International Conference on Hardware/ Software Codesign and
Systems Synthesis. 2003. isbn: 1-58113-742-7. doi: 10.1109/CODESS.2003.1275280
(Cited on page 80).

[Eva11] Dave Evans. The Internet of Things - How the Next Evolution of the Internet Is
Changing Everything. Cisco Internet Business Solutions Group (IBSG), 2011 (Cited
on pages 1 sq.).

[FEH18] FEHLER. Software-based Fault Tolerance for Embedded Real-time Systems. http:
//ls12-www.cs.tu-dortmund.de/daes/en/forschung/dependable-embedded-
real-time-systems.html. 05/2018 (Cited on pages 13, 53).

[FLP10] Fabrizio Ferrandi, Pier Luca Lanzi, Christian Pilato, Donatella Sciuto, and Antonino
Tumeo. “Ant Colony Heuristic for Mapping and Scheduling Tasks and Commu-
nications on Heterogeneous Embedded Systems”. English. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems. Vol. 29. 6. 06/2010,
pp. 911–924. doi: 10.1109/TCAD.2010.2048354 (Cited on page 80).

[GAB98] G. Gogniat, M. Auguin, L. Bianco, and A. Pegatoquet. “Communication synthesis
and HW/SW integration for embedded system design”. In: Proceedings of the Sixth
International Workshop on Hardware/Software Codesign. (CODES/CASHE). 1998,
pp. 49–53. isbn: 0-8186-8442-9. doi: 10.1109/HSC.1998.666237 (Cited on page 81).

[GAR15] Rem Gensh, Ali Aalsaud, Ashur Rafiev, Fei Xia, Alexei Iliasov, Alexander Ro-
manovsky, and Alex Xakovlev. Experiments with Odroid-XU3 Board. Tech. rep. No.
CS-TR-1471. Newcastle, 2015 (Cited on page 15).

[GB03] Marc Geilen and Twan Basten. “Requirements on the execution of Kahn process net-
works”. In: Programming languages and systems (2003), pp. 319–334. issn: 03029743.
doi: 10.1007/3-540-36575-3_22 (Cited on page 81).

[GMP11] Vaibhav Gupta, Debabrata Mohapatra, Sang Phill Park, Anand Raghunathan, and
Kaushik Roy. “IMPACT: IMPrecise adders for low-power approximate computing”.
In: Proceedings of the International Symposium on Low Power Electronics and Design.
2011, pp. 409–414. isbn: 9781612846590. doi: 10.1109/ISLPED.2011.5993675 (Ci-
ted on page 136).

[Gra17] GraphML. http://graphml.graphdrawing.org/. 2017 (Cited on page 50).

[GSt18] GStreamer - open source multimedia framework. https://gstreamer.freedesktop.
org/. 04/2018 (Cited on page 118).

https://doi.org/10.1109/CODESS.2003.1275280
http://ls12-www.cs.tu-dortmund.de/daes/en/forschung/dependable-embedded-real-time-systems.html
http://ls12-www.cs.tu-dortmund.de/daes/en/forschung/dependable-embedded-real-time-systems.html
http://ls12-www.cs.tu-dortmund.de/daes/en/forschung/dependable-embedded-real-time-systems.html
https://doi.org/10.1109/TCAD.2010.2048354
https://doi.org/10.1109/HSC.1998.666237
https://doi.org/10.1007/3-540-36575-3_22
https://doi.org/10.1109/ISLPED.2011.5993675
http://graphml.graphdrawing.org/
https://gstreamer.freedesktop.org/
https://gstreamer.freedesktop.org/

Bibliography 186

[HAA96] Mary W. Hall, Jennifer M. Anderson, Saman P. Amarasinghe, Brian R. Murphy,
Shih Wei Liao, Edouard Bugnion, and Monica S. Lam. “Maximizing multiprocessor
performance with the SUIF compiler”. In: Computer 29.12 (1996), pp. 84–89. issn:
00189162. doi: 10.1109/2.546613 (Cited on page 34).

[Har16] Hardkernel. Odroid-XU3. http://www.hardkernel.com/main/products/prdt_
info.php?g_code=G140448267127. 06/2016 (Cited on page 14).

[Hei10] Andreas Heinig. R2G: Supporting POSIX like semantics in a distributed RTEMS
system. Tech. rep. 836. TU Dortmund, Faculty of Computer Science 12, 12/2010
(Cited on pages 8, 14, 166).

[Hei15] Andreas Heinig. “Flexible Error Handling for Embedded Real-Time Systems - Oper-
ating System and Run-Time Aspects -”. PhD thesis. TU Dortmund, 2015 (Cited on
page 13).

[HGT07] Kai Huang Kai Huang, David Grunert, and Lothar Thiele. “Windowed FIFOs for
FPGA-based Multiprocessor Systems”. In: Proceedings of the IEEE International
Conference on Application-specific Systems, Architectures and Processors (ASAP).
2007, pp. 36–41. isbn: 978-1-4244-1027-9. doi: 10.1109/ASAP.2007.4429955 (Cited
on page 79).

[HO13] Jie Han and Michael Orshansky. “Approximate Computing: An Emerging Paradigm
For Energy-Efficient Design”. In: Proceedings of the European Test Symposium.
05/2013, pp. 1–6. isbn: 978-1-4673-6377-8. doi: 10.1109/ETS.2013.6569370 (Cited
on page 136).

[Hol17] Olivera Holzkamp. “Memory-Aware Mapping Strategies for Heterogeneous MPSoC
Systems”. PhD thesis. TU Dortmund, 2017 (Cited on pages 13, 163).

[HSC11] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant Agarwal,
and Martin Rinard. “Dynamic knobs for responsive power-aware computing”. In:
Proceedings of the sixteenth international conference on Architectural support for
programming languages and operating systems (ASPLOS). Vol. 47. 4. New York, New
York, USA, 06/2011, pp. 199–212. isbn: 9781450302661. doi: 10.1145/1950365.
1950390 (Cited on page 136).

[HSH09] Wolfgang Haid, Lars Schor, Kai Huang, Iuliana Bacivarov, and Lothar Thiele.
“Efficient execution of Kahn process networks on multi-processor systems using
protothreads and windowed FIFOs”. English. In: Proceedings of the Workshop on
Embedded Systems for Real-Time Multimedia. 10/2009, pp. 35–44. isbn: 978-1-4244-
5169-2. doi: 10.1109/ESTMED.2009.5336828 (Cited on pages 79, 109).

[HZ10] Alain Horé and Djemel Ziou. “Image quality metrics: PSNR vs. SSIM”. In: Proceedings
of the International Conference on Pattern Recognition. 2010, pp. 2366–2369. isbn:
9780769541099. doi: 10.1109/ICPR.2010.579 (Cited on page 140).

[IAF12] Francisco D Igual, Murtaza Ali, Arnon Friedmann, Eric Stotzer, and Timothy Wentz.
“Unleashing the high-performance and low-power of multi-core DSPs for general-
purpose HPC”. In: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC). 2012 (Cited on page 37).

[IDC15] IDC. Worldwide Internet of Things Forecast, 2015-2020. IDC#256397. 2015 (Cited
on pages 1 sq.).

https://doi.org/10.1109/2.546613
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127
https://doi.org/10.1109/ASAP.2007.4429955
https://doi.org/10.1109/ETS.2013.6569370
https://doi.org/10.1145/1950365.1950390
https://doi.org/10.1145/1950365.1950390
https://doi.org/10.1109/ESTMED.2009.5336828
https://doi.org/10.1109/ICPR.2010.579

Bibliography 187

[ILK08] Tsuyoshi Isshiki, Dongju Li, and Hiroaki Kunieda. “Multiprocessor SoC Design
Framework on Tightly-Coupled Thread Model”. In: Proceedings of the International
SoC Design Conference (ISOCC). Vol. 1. 2008. isbn: 9781424425990. doi: 10.1109/
SOCDC.2008.4815572 (Cited on page 35).

[Ima18] Image Processing Place. http://www.imageprocessingplace.com. 04/2018 (Cited
on page 147).

[IMM10] Yiannis Iosifidis, Arindam Mallik, Stylianos Mamagkakis, Eddy De Greef, Alexandros
Bartzas, Dimitrios Soudris, and Francky Catthoor. “A framework for automatic
parallelization, static and dynamic memory optimization in MPSoC platforms”. In:
Proceedings of the 47th Design Automation Conference (DAC). 2010, p. 549. isbn:
9781450300025. doi: 10.1145/1837274.1837410 (Cited on page 34).

[Ind18] Independent JPEG Group. http://www.ijp.org. 04/2018 (Cited on page 147).

[Inf18] Informatik Centrum Dortmund e.V. ICD-C Compiler framework. https://icd.
de/en/embedded-systems/compiler-tool-development/icd-c. 2018 (Cited on
page 40).

[Jen17] Jenkins. https://jenkins.io/. 2017 (Cited on page 62).

[JH07] Woo-Chul Jeun and Soonhoi Ha. “Effective OpenMP Implementation and Translation
For Multiprocessor System-On-Chip without Using OS”. In: Proceeding of the Asia
and South Pacific Design Automation Conference (ASP-DAC). 2007 (Cited on
page 37).

[JM04] Jingcao Hu and R. Marculescu. “Energy-aware communication and task scheduling
for network-on-chip architectures under real-time constraints”. In: Proceedings of
the Design, Automation and Test in Europe Conference and Exhibition (DATE).
2004, pp. 234–239. isbn: 0-7695-2085-5. doi: 10.1109/DATE.2004.1268854 (Cited
on page 81).

[KA02] Ken Kennedy and John R. Allen. Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2002. isbn: 1-55860-286-0 (Cited on pages 34, 50).

[Kel15] Timon Kelter. “WCET Analysis and Optimization for Multi-Core Real-Time Sys-
tems”. PhD thesis. TU Dortmund, 2015 (Cited on page 13).

[KKJ08] Seongnam Kwon, Yongjoo Kim, Woo-Chul Jeun, Soonhoi Ha, and Yunheung Paek.
“A retargetable parallel-programming framework for MPSoC”. In: ACM Transactions
on Design Automation of Electronic Systems 13.3 (07/2008), pp. 1–18. issn: 10844309.
doi: 10.1145/1367045.1367048 (Cited on page 36).

[KKP11] Raimund Kirner, Jens Knoop, Adrian Prantl, Markus Schordan, and Albrecht Kadlec.
“Beyond loop bounds: comparing annotation languages for worst-case execution time
analysis”. In: Software & Systems Modeling 10.3 (07/2011), pp. 411–437. issn:
1619-1374. doi: 10.1007/s10270-010-0161-0 (Cited on page 33).

[KLN17] Helena Kotthaus, Andreas Lang, Olaf Neugebauer, and Peter Marwedel. “R goes
Mobile: Efficient Scheduling for Parallel R Programs on Heterogeneous Embedded
Systems”. In: Abstract Booklet of the International R User Conference (UseR!)
07/2017 (Cited on pages 9, 109, 160).

https://doi.org/10.1109/SOCDC.2008.4815572
https://doi.org/10.1109/SOCDC.2008.4815572
http://www.imageprocessingplace.com
https://doi.org/10.1145/1837274.1837410
http://www.ijp.org
https://icd.de/en/embedded-systems/compiler-tool-development/icd-c
https://icd.de/en/embedded-systems/compiler-tool-development/icd-c
https://jenkins.io/
https://doi.org/10.1109/DATE.2004.1268854
https://doi.org/10.1145/1367045.1367048
https://doi.org/10.1007/s10270-010-0161-0

Bibliography 188

[KMM10] Zvi Kedem, Vincent J Mooney, Kirthi Krishna Muntimadugu, Krishna V. Palem,
Avani Devarasetty, and Phani Deepak Parasuramuni. “Optimizing energy to minimize
errors in dataflow graphs using approximate adders”. In: Proceedings of the 2010
international conference on Compilers, architectures and synthesis for embedded
systems (CASES). 2010, p. 177. isbn: 9781605589039. doi: 10.1145/1878921.
1878948 (Cited on page 136).

[Kop11] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embed-
ded Applications. 2nd. Springer Publishing Company, Incorporated, 2011. isbn:
1441982361 (Cited on page 2).

[KRB14] Michael Keller, Marius Rosenberg, Malte Brettel, and Niklas Friederichsen. “How
Virtualization, Decentrazliation and Network Building Change the Manufacturing
Landscape: An Industry 4.0 Perspective”. In: 8.1 (2014), pp. 37–44. issn: 22128271.
doi: 10.1016/j.procir.2015.02.213. eprint: arXiv:1011.1669v3 (Cited on
page 2).

[KT11] Joachim Keinert and Jürgen Teich. Design of Image Processing Embedded Systems
Using Multidimensional Data Flow. Embedded Systems. Springer, 2011. isbn: 978-1-
4419-7181-4. doi: 10.1007/978-1-4419-7182-1 (Cited on page 130).

[Kug15] Logan Kugler. “Is "Good Enough" Computing Good Enough?” In: Communications
of the ACM 58.5 (04/2015), pp. 12–14. issn: 00010782. doi: 10.1145/2742482
(Cited on page 136).

[Küh16] Roland Kühn. “Analysis and evaluation of quality metrics for approximate source-
to-source transformations (in German)”. Bachelor Thesis. Department of Computer
Science, TU Dortmund, 03/2016 (Cited on pages 9, 135).

[KWB10] D. I. Ko, N. Won, and S. S. Bhattacharyya. “Buffer management for multi-application
image processing on multi-core platforms: Analysis and case study”. In: Proceeding
of the IEEE International Conference on Acoustics, Speech and Signal Processing.
03/2010, pp. 1662–1665. doi: 10.1109/ICASSP.2010.5495515 (Cited on page 80).

[LC03] Feng Liu and Vipin Chaudhary. “A practical OpenMP compiler for system on
chips”. In: Proceedings of International Workshop on OpenMP Applications and
Tools (WOMPAT). 2003. isbn: 3-540-40435-X (Cited on page 37).

[LC08] Ewing Lusk and Anthony Chan. “Early Experiments with the OpenMP/MPI Hybrid
Programming Model”. In: Proceedings of 4th International Workshop on OpenMP in
a New Era of Parallelism (IWOMP). 2008, pp. 36–47. isbn: 978-3-540-79561-2. doi:
10.1007/978-3-540-79561-2_4 (Cited on page 38).

[LC12] Jinho Lee and Kiyoung Choi. “Memory-aware mapping and scheduling of tasks and
communications on many-core SoC”. In: Proceedings of the Asia and South Pacific
Design Automation Conference (ASP-DAC). 2012, pp. 419–424. isbn: 9781467307727.
doi: 10.1109/ASPDAC.2012.6164985 (Cited on page 81).

[LDB99] Shih-Wei Liao, Amer Diwan, Robert P. Bosch, Anwar Ghuloum, and Monica S. Lam.
“SUIF Explorer: An Interactive and Interprocedural Parallelizer”. In: Proceedings
of the seventh ACM SIGPLAN symposium on Principles and practice of parallel
programming (PPoPP). Vol. 34. 8. 1999, pp. 37–48. isbn: 1581131003. doi: 10.1145/
301104.301108 (Cited on page 34).

https://doi.org/10.1145/1878921.1878948
https://doi.org/10.1145/1878921.1878948
https://doi.org/10.1016/j.procir.2015.02.213
arXiv:1011.1669v3
https://doi.org/10.1007/978-1-4419-7182-1
https://doi.org/10.1145/2742482
https://doi.org/10.1109/ICASSP.2010.5495515
https://doi.org/10.1007/978-3-540-79561-2_4
https://doi.org/10.1109/ASPDAC.2012.6164985
https://doi.org/10.1145/301104.301108
https://doi.org/10.1145/301104.301108

Bibliography 189

[Lee07] Edward A. Lee. “Computing Foundations and Practice for Cyber- Physical Systems
: A Preliminary Report”. In: (2007), pp. 1–27 (Cited on page 1).

[Lee08] Edward A. Lee. “Cyber Physical Systems: Design Challenges”. In: 2008 11th IEEE
International Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC). 05/2008, pp. 363–369. doi: 10.1109/ISORC.2008.25 (Cited
on pages 2, 62, 94 sq.).

[Lee17] C. G. Lee. UTDSP Benchmark Suite. http://www.eecg.toronto.edu/~corinna/
DSP/infrastructure/UTDSP.html. 2017 (Cited on page 45).

[Lei18] Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V. https://www.isas.
de/. 04/2018 (Cited on page 114).

[LH07] Chunhua Liao and Oscar Hernandez. “OpenUH: An optimizing, portable OpenMP
compiler”. In: Concurrency and Computation Practice and Experience April (2007),
pp. 2317–2332. doi: 10.1002/cpe (Cited on page 37).

[Lib17] Pascal Libuschewski. “Exploration of Cyber-Physical Systems for GPGPU Computer
Vision-Based Detection of Biological Viruses”. PhD thesis. 2017 (Cited on pages 113,
116 sq., 119, 123).

[LJV12] Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu. “RAIDR: Retention-Aware
Intelligent DRAM Refresh”. In: Proceedings of the 39th Annual International Sym-
posium on Computer Architecture (ISCA). Vol. 40. 3. 09/2012, p. 1. isbn: 978-1-
4503-1642-2. doi: 10.1145/2366231.2337161 (Cited on page 136).

[LMS14] Pascal Libuschewski, Peter Marwedel, Dominic Siedhoff, and Heinrich Müller. “Multi-
Objective Energy-Aware GPGPU Design Space Exploration for Medical or Industrial
Applications”. In: Proceedings of the Tenth International Conference on Signal-Image
Technology and Internet-Based Systems. 2014 (Cited on page 112).

[LPB18] Sean Luke, Liviu Panait, Gabriel Balan, Sean Paus, Zbigniew Skolicki, Jeff Bassett,
Robert Hubley, and A Chircop. ECJ: A java-based evolutionary computation research
system. https://cs.gmu.edu/~eclab/projects/ecj/. 2018 (Cited on page 116).

[LPM11] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G Zorn.
“Flikker: saving DRAM refresh-power through critical data partitioning”. In: Pro-
ceedings of the sixteenth international conference on Architectural support for pro-
gramming languages and operating systems (ASPLOS). October. 2011, p. 213. isbn:
9781450302661. doi: 10.1145/1950365.1950391 (Cited on page 136).

[LSS17] Jan Eric Lenssen, Victoria Shpacovitch, Dominic Siedhoff, Pascal Libuschewski,
Roland Hergenröder, and Frank Weichert. “A Review of Nano-Particle Analysis with
the PAMONO-Sensor”. In: Biosensors: Advances and Reviews, IFSA Publishing,
2017, pp. 81–100 (Cited on pages 112, 114).

[Mar06] Grant Martin. “Overview of the MPSoC design challenge”. In: Proceedings of the
43rd ACM/IEEE Design Automation Conference (DAC). 2006, pp. 274–279. isbn:
1408327732 (Cited on page 28).

[Mar17] Peter Marwedel. Embedded System Design - Embedded Systems Foundations of
Cyber-Physical Systems and the Internet of Things. 3rd. ISBN 978-94-007-0256-1.
Springer, 2017 (Cited on pages 1–4, 9).

https://doi.org/10.1109/ISORC.2008.25
http://www.eecg.toronto.edu/~corinna/DSP/infrastructure/UTDSP.html
http://www.eecg.toronto.edu/~corinna/DSP/infrastructure/UTDSP.html
https://www.isas.de/
https://www.isas.de/
https://doi.org/10.1002/cpe
https://doi.org/10.1145/2366231.2337161
https://cs.gmu.edu/~eclab/projects/ecj/
https://doi.org/10.1145/1950365.1950391

Bibliography 190

[MB09] A. Marongiu and L. Benini. “Efficient OpenMP support and extensions for MPSoCs
with explicitly managed memory hierarchy”. In: Proceedings of the Conference on
Design, Automation and Test in Europe (DATE). 2009 (Cited on page 38).

[MB12] A. Marongiu and L. Benini. “An OpenMP Compiler for Efficient Use of Distributed
Scratchpad Memory in MPSoCs”. In: IEEE Transactions on Computers 61.2 (2012).
issn: 0018-9340 (Cited on page 38).

[MBA09] Jean Yves Mignolet, Rogier Baert, Thomas J. Ashby, Prabhat Avasare, Hye On
Jang, and Jae Cheol Son. “MPA: Parallelizing an application onto a multicore
platform made easy”. In: IEEE Micro 29.3 (2009), pp. 31–39. issn: 02721732. doi:
10.1109/MM.2009.46 (Cited on page 34).

[MBJ09] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. CACTI
6.0: A Tool to Model Large Caches. Tech. rep. HP Laboratories, 2009. url: http:
//www.hpl.hp.com/techreports/2009/HPL-2009-85.html (Cited on pages 13,
163).

[MCB15] James Manyika, Michael Chui, Peter Bisson, Jonathan Woetzel, Richard Dobbs,
Jacques Bughin, and Dan Aharon. “The Internet of Things: Mapping the value
beyond the hype”. In: June (2015), p. 144. issn: 1860949X. doi: 10.1007/978-3-
319-05029-4_7 (Cited on page 2).

[MCT15] Andrea Marongiu, Alessandro Capotondi, Giuseppe Tagliavini, and Luca Benini.
“Simplifying Many-Core-Based Heterogeneous SoC Programming With Offload Di-
rectives”. In: IEEE Transactions on Industrial Informatics 11.4 (2015) (Cited on
page 38).

[MEM04] MEMSIC Inc. TelosB datasheet: 6020-0094-03 rev. Tech. rep. 2004, pp. 1–2 (Cited
on page 147).

[MFN17] Peter Marwedel, Heiko Falk, and Olaf Neugebauer. “Memory-Aware Optimization of
Embedded Software for Multiple Objectives”. In: Handbook of Hardware/Software
Codesign. Ed. by Soonhoi Ha and Jürgen Teich. Springer Netherlands, 2017. isbn:
978-94-017-7358-4. doi: 10.1007/978-94-017-7358-4_27-2 (Cited on pages 9,
113).

[Mid12] Samuel P. Midkiff. Automatic Parallelization: An Overview of Fundamental Compiler
Techniques. Vol. 7. 2012, pp. 1–169. isbn: 9781608458417. doi: 10.2200/S00340ED
1V01Y201201CAC019 (Cited on page 34).

[Mit16] Sparsh Mittal. “A Survey of Techniques for Approximate Computing”. In: ACM
Computing Surveys 48.4 (03/2016), pp. 1–33. issn: 03600300. doi: 10.1145/2893356.
arXiv: arXiv:1011.1669v3 (Cited on page 136).

[MMB11] Arindam Mallik, Stylianos Mamagkakis, Christos Baloukas, Lazaros Papadopoulos,
Dimitrios Soudris, Sander Stuijk, Olivera Jovanovic, Florian Schmoll, Daniel Cordes,
Robert Pyka, Peter Marwedel, et al. “MNEMEE – An automated toolflow for
parallelization and memory management in MPSoC platforms”. In: (06/2011) (Cited
on pages 6, 13).

[MOK10] Masayoshi Mase, Yuto Onozaki, Keiji Kimura, and Hironori Kasahara. “Parallelizable
C and Its Performance on Low Power High Performance Multicore Processors”. In:
Proceedings of the 15th Workshop on Compilers for Parallel Computing. 2010 (Cited
on page 33).

https://doi.org/10.1109/MM.2009.46
http://www.hpl.hp.com/techreports/2009/HPL-2009-85.html
http://www.hpl.hp.com/techreports/2009/HPL-2009-85.html
https://doi.org/10.1007/978-3-319-05029-4_7
https://doi.org/10.1007/978-3-319-05029-4_7
https://doi.org/10.1007/978-94-017-7358-4_27-2
https://doi.org/10.2200/S00340ED1V01Y201201CAC019
https://doi.org/10.2200/S00340ED1V01Y201201CAC019
https://doi.org/10.1145/2893356
http://arxiv.org/abs/arXiv:1011.1669v3

Bibliography 191

[MPI17] MPI Forum. Standardization Forum for the Message Passing Interface (MPI). http:
//mpi-forum.org/. 2017 (Cited on page 38).

[MPN02] S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis. “Rapid design space explo-
ration of heterogeneous embedded systems using symbolic search and multi-granular
simulation”. In: Proceedings of the joint conference on Languages, compilers and
tools for embedded systems software and compilers for embedded systems (LCTES/S-
COPES). 2002, p. 18. isbn: 1581135270. doi: 10.1145/513829.513835 (Cited on
page 130).

[MR13] Katharina Morik and Wolfgang Rhode (Editors). Technical report for Collaborative
Research Center SFB 876 - Graduate School. Tech. rep. 4. TU Dortmund University,
10/2013 (Cited on page 9).

[MR14] Katharina Morik and Wolfgang Rhode (Editors). Technical report for Collaborative
Research Center SFB 876 - Graduate School. Tech. rep. 10. TU Dortmund University,
12/2014 (Cited on page 9).

[MR15] Katharina Morik and Wolfgang Rhode (Editors). Technical report for Collaborative
Research Center SFB 876 - Graduate School. Tech. rep. 3. TU Dortmund University,
12/2015 (Cited on page 9).

[MR16] Katharina Morik and Wolfgang Rhode (Editors). Technical report for Collaborative
Research Center SFB 876 - Graduate School. Tech. rep. 7. TU Dortmund University,
12/2016 (Cited on page 9).

[MR17] Katharina Morik and Wolfgang Rhode (Editors). Technical report for Collaborative
Research Center SFB 876 - Graduate School. Tech. rep. 2. TU Dortmund University,
12/2017 (Cited on page 9).

[MSH10] Sasa Misailovic, Stelios Sidiroglou, Henry Hoffmann, and Martin Rinard. “Quality
of service profiling”. In: Proceedings of the International Conference on Software
Engineering. Vol. 1. 2010, pp. 25–34. isbn: 978-1-60558-719-6. doi: 10.1145/1806799.
1806808 (Cited on pages 136, 144).

[Muc97] Steven S. Muchnick. Advanced Compiler Design and Implementation. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1997. isbn: 1-55860-320-4 (Cited on
page 50).

[Mul17] Multicore Association. https://www.multicore-association.org/. 2017 (Cited
on page 37).

[MV14] Sparsh Mittal and Jeffrey S Vetter. “A Survey of Methods For Analyzing and
Improving GPU Energy Efficiency”. In: ACM Comput. Surv. 47.2 (2014), pp. 1–22.
issn: 03600300. doi: 10.1145/2636342. arXiv: 1404.4629 (Cited on page 129).

[NBZ15] Luigi Nardi, Bruno Bodin, M. Zeeshan Zia, John Mawer, Andy Nisbet, Paul H.J.
Kelly, Andrew J. Davison, Mikel Luján, Michael F.P. O’Boyle, Graham Riley, Nigel
Topham, and Steve Furber. “Introducing SLAMBench, a performance and accuracy
benchmarking methodology for SLAM”. In: Proceedings of the IEEE International
Conference on Robotics and Automation. Vol. 2015-June. June. 2015, pp. 5783–5790.
isbn: 9781479969234. doi: 10.1109/ICRA.2015.7140009. arXiv: 1410.2167 (Cited
on page 15).

http://mpi-forum.org/
http://mpi-forum.org/
https://doi.org/10.1145/513829.513835
https://doi.org/10.1145/1806799.1806808
https://doi.org/10.1145/1806799.1806808
https://www.multicore-association.org/
https://doi.org/10.1145/2636342
http://arxiv.org/abs/1404.4629
https://doi.org/10.1109/ICRA.2015.7140009
http://arxiv.org/abs/1410.2167

Bibliography 192

[NEM14] Olaf Neugebauer, Michael Engel, and Peter Marwedel. “A Parallelization Approach
for Resource-Restricted Embedded Heterogeneous MPSoCs Inspired by OpenMP”.
In: The 1st ACM SIGPLAN International Workshop on Software Engineering for
Parallel Systems (SEPS). 10/2014 (Cited on pages 9, 29).

[NEM15a] Olaf Neugebauer, Michael Engel, and Peter Marwedel. “Approximate Communication
in Parallel Applications for Resource-Constrained Embedded Systems”. In: Workshop
on Approximate Computing. 10/2015 (Cited on pages 9, 135, 152).

[NEM15b] Olaf Neugebauer, Michael Engel, and Peter Marwedel. “Multi-Objective Aware
Communication Optimization for Resource-Restricted Embedded Systems”. In:
Proceedings of Architecture of Computing Systems (ARCS). 2015 (Cited on pages 76,
84 sq.).

[NEM16] Olaf Neugebauer, Michael Engel, and Peter Marwedel. “A Parallelization Approach
for Resource-Restricted Embedded Heterogeneous MPSoCs Inspired by OpenMP”.
In: Journal of Systems and Software (JSS) 125 (2016), pp. 439–448. issn: 0164-1212.
doi: http://dx.doi.org/10.1016/j.jss.2016.08.069 (Cited on pages 9, 29).

[NLE15] Olaf Neugebauer, Pascal Libuschewski, Michael Engel, Heinrich Müller, and Pe-
ter Marwedel. “Plasmon-based Virus Detection on Heterogeneous Embedded Sys-
tems”. In: Proceedings of Workshop on Software & Compilers for Embedded Systems
(SCOPES). 2015, pp. 48–57. isbn: 978-1-4503-3593-5. doi: 10 . 1145 / 2764967 .
2764976 (Cited on pages 9, 113–116, 118 sq., 122, 126 sqq., 165).

[NMK17] Olaf Neugebauer, Peter Marwedel, Roland Kühn, and Michael Engel. “Quality
Evaluation Strategies for Approximate Computing in Embedded Systems”. In: Tech-
nological Innovation for Smart Systems. Ed. by Luis M. Camarinha-Matos, Mafalda
Parreira-Rocha, and Javaneh Ramezani. Vol. 499. Cham: Springer International
Publishing, 2017, pp. 203–210. isbn: 978-3-319-56077-9 (Cited on pages 9, 135, 141,
146).

[NMS09] Dmitry Nadezhkin, Sjoerd Meijer, Todor Stefanov, and Ed Deprettere. “Realizing
FIFO communication when mapping kahn process networks onto the cell”. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). Vol. 5657 LNCS. 2009, pp. 308–
317. isbn: 3642031374. doi: 10.1007/978-3-642-03138-0_34 (Cited on page 79).

[Nol14] Stefan Noll. “Exploration of the usability of embedded multi-core platforms for
virus detection software with the PAMONO sensor (in German)”. Bachelor Thesis.
Department of Computer Science, TU Dortmund, 09/2014 (Cited on pages 9, 62,
65).

[NTS08] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose, C. Zissulescu,
and E. Deprettere. “Daedalus: Toward composable multimedia MP-SoC design”. In:
Proceedings of the 45th Design Automation Conference (DAC). 2008, pp. 574–579.
isbn: 9781605581156. doi: 10.1109/DAC.2008.4555882 (Cited on pages 36, 130).

[OCV13] Maximilian Odendahl, Jeronimo Castrillon, Vitaliy Volevach, Rainer Leupers, and
Gerd Ascheid. “Split-cost communication model for improved MPSoC application
mapping”. In: Proceedings of the International Symposium on System on Chip (SoC).
10/2013, pp. 1–8. isbn: 978-1-4799-1191-2. doi: 10.1109/ISSoC.2013.6675280
(Cited on page 80).

https://doi.org/http://dx.doi.org/10.1016/j.jss.2016.08.069
https://doi.org/10.1145/2764967.2764976
https://doi.org/10.1145/2764967.2764976
https://doi.org/10.1007/978-3-642-03138-0_34
https://doi.org/10.1109/DAC.2008.4555882
https://doi.org/10.1109/ISSoC.2013.6675280

Bibliography 193

[Ope17] OpenMP. The OpenMP API specification for parallel programming. http://www.
openmp.org/. 2017 (Cited on pages 29, 37).

[ORS05] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. August. “Automatic
Thread Extraction with Decoupled Software Pipelining”. In: Proceedings of the
Annual International Symposium on Microarchitecture (MICRO). 2005, pp. 105–116.
isbn: 0769524400. doi: 10.1109/MICRO.2005.13 (Cited on page 34).

[Par95] Thomas M. Parks. “Bounded Scheduling of Process Networks”. PhD thesis. University
of California at Berkeley, 1995. url: http :/ /ptolemy. eecs. berkeley. edu /
publications/papers/95/parksThesis/ (Cited on page 80).

[PC11] Antoniu Pop and Albert Cohen. “A stream-computing extension to OpenMP”. In:
Proceedings of the 6th International Conference on High Performance and Embedded
Architectures and Compilers (HiPEAC). 2011, p. 5. isbn: 9781450302418. doi:
10.1145/1944862.1944867 (Cited on page 38).

[PC13] Antoniu Pop and Albert Cohen. “OpenStream: Expressiveness and data-flow compi-
lation of OpenMP streaming programs”. In: ACM Transactions on Architecture and
Code Optimization (TACO) 9.4 (01/2013). issn: 1544-3566 (Cited on page 38).

[Pet13] Peter Greenhalgh, ARM. Big.LITTLE Processing with ARM Cortex-A15 & Cortex-
A7. http://www.arm.com/files/downloads/big_LITTLE_Final_Final.pdf.
2013 (Cited on page 14).

[PG02] M. Palesi and T. Givargis. “Multi-objective Design Space Exploration using Ge-
netic Algorithms”. In: Proceedings of the Tenth International Symposium on Hard-
ware/Software Codesign. (CODES). 2002, pp. 67–72. isbn: 1-58113-542-4. doi:
10.1109/CODES.2002.1003603 (Cited on page 130).

[Pim17] Andy D Pimentel. “Exploring Exploration: A Tutorial Introduction to Embedded
Systems Design Space Exploration”. In: IEEE Design & Test 34.1 (02/2017), pp. 77–
90. issn: 2168-2356. doi: 10.1109/MDAT.2016.2626445 (Cited on page 130).

[PKS13] Hana Park, Young Woong Ko, Jungmin So, and Jeong-Gun Lee. “Performance/Power
Design Space Exploration and Analysis for GPU Based Software”. In: International
Journal of Control and Automation 6.6 (2013), pp. 371–380. issn: 20054297. doi:
10.14257/ijca.2013.6.6.35 (Cited on page 131).

[PSK13] Nam Khanh Pham, Amit Kumar Singh, Akash Kumar, and Khin Mi Mi Aung.
“Incorporating Energy and Throughput Awareness in Design Space Exploration and
Run-Time Mapping for Heterogeneous MPSoCs”. In: Proceedings of the Euromicro
Conference on Digital System Design. 09/2013, pp. 513–521. doi: 10.1109/DSD.
2013.61 (Cited on page 130).

[PWI15] Alok Prakash, Siqi Wang, Alexandru Eugen Irimiea, and Tulika Mitra. “Energy-
efficient execution of data-parallel applications on heterogeneous mobile platforms”.
In: Proceedings of the 33rd IEEE International Conference on Computer Design
(ICCD). 10/2015, pp. 208–215. isbn: 978-1-4673-7166-7. doi: 10.1109/ICCD.2015.
7357105 (Cited on page 15).

[Pyk17] Robert Pyka. “Memory-aware platform description and framework for source-level
embedded MPSoC software optimization”. PhD thesis. 2017 (Cited on pages 8, 13,
21).

http://www.openmp.org/
http://www.openmp.org/
https://doi.org/10.1109/MICRO.2005.13
http://ptolemy.eecs.berkeley.edu/publications/papers/95/parksThesis/
http://ptolemy.eecs.berkeley.edu/publications/papers/95/parksThesis/
https://doi.org/10.1145/1944862.1944867
http://www.arm.com/files/downloads/big_LITTLE_Final_Final.pdf
https://doi.org/10.1109/CODES.2002.1003603
https://doi.org/10.1109/MDAT.2016.2626445
https://doi.org/10.14257/ijca.2013.6.6.35
https://doi.org/10.1109/DSD.2013.61
https://doi.org/10.1109/DSD.2013.61
https://doi.org/10.1109/ICCD.2015.7357105
https://doi.org/10.1109/ICCD.2015.7357105

Bibliography 194

[RFG08] Alastair D. Reid, Krisztian Flautner, Edmund Grimley-Evans, and Yuan Lin. “SoC-C:
Efficient Programming Abstractions for Heterogeneous Multicore Systems on Chip”.
In: Compilers, Architectures and Synthesis for Embedded Systems. 2008, pp. 95–104.
isbn: 9781605584690. doi: 10.1145/1450095.1450112 (Cited on page 36).

[RHJ09] Rolf Rabenseifner, Georg Hager, and Gabriele Jost. “Hybrid MPI/OpenMP Parallel
Programming on Clusters of Multi-Core SMP Nodes”. In: Proceedings of 17th
Euromicro International Conference on Parallel, Distributed and Network-based
Processing. 2009, pp. 427–436. doi: 10.1109/PDP.2009.43 (Cited on page 38).

[Rin06] Martin Rinard. “Probabilistic Accuracy Bounds for Fault-Tolerant Computations that
Discard Tasks”. In: Proceedings of the International Conference on Supercomputing.
2006, pp. 324–334. isbn: 1595932828. doi: 10.1145/1183401.1183447 (Cited on
page 151).

[Rin07] Martin C. Rinard. “Using early phase termination to eliminate load imbalances at
barrier synchronization points”. In: Proceedings of the International Conference on
Object-Oriented Programming Systems Languages & Applications. Vol. 42. 10. 2007,
p. 369. isbn: 9781595937865. doi: 10.1145/1297105.1297055 (Cited on page 151).

[RLS10] Ragunathan (Raj) Rajkumar, Insup Lee, Lui Sha, and John Stankovic. “Cyber-
physical systems: The Next Computing Revolution”. In: Proceedings of the 47th
Design Automation Conference (DAC). 2010, pp. 731–736. isbn: 9781450300025.
doi: 10.1145/1837274.1837461 (Cited on page 3).

[RSN12] Lakshminarayanan Renganarayana, Vijayalakshmi Srinivasan, Ravi Nair, and Daniel
Prener. “Programming with relaxed synchronization”. In: Proceedings of the Work-
shop on Relaxing Synchronization for Multicore and Manycore Scalability. 2012, p. 41.
isbn: 9781450316323. doi: 10.1145/2414729.2414737 (Cited on pages 137, 152).

[RTE16] RTEMS. RTEMS Operating System | Real-Time and Real Free. http://www.rtems.
com/. 2016 (Cited on page 13).

[SCZ15] Peng Sun, Sunita Chandrasekaran, Suyang Zhu, and Barbara Chapman. “Deploying
OpenMP task parallelism on multicore embedded systems with MCA task APIs”. In:
Proceedings of the 17th International Conference on High Performance Computing
and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety
and Security and 2015 IEEE 12th International Conference on Embedded Software
and Systems, (HPCC-CSS-ICESS). 2015, pp. 843–847. isbn: 9781479989362. doi:
10.1109/HPCC-CSS-ICESS.2015.88 (Cited on page 37).

[SDF11] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis
Ceze, and Dan Grossman. “EnerJ”. In: Proceedings of the 32nd ACM SIGPLAN
conference on Programming language design and implementation (PLDI). 2011,
p. 164. isbn: 9781450306638. doi: 10.1145/1993498.1993518 (Cited on page 136).

[SFB17a] SFB 876 - B2. Resource optimizing real time analysis of artifactious image sequences
for the detection of nano objects. 2017. url: http://sfb876.tu-dortmund.de/
SPP/sfb876-b2.html (Cited on pages 4, 6).

[SFB17b] SFB 876 - Software. Resource optimizing real time analysis of artifactious image
sequences for the detection of nano objects. 2017. url: http://sfb876.tu-dortmund.
de/auto?self=Software (Cited on pages 15, 142, 164).

https://doi.org/10.1145/1450095.1450112
https://doi.org/10.1109/PDP.2009.43
https://doi.org/10.1145/1183401.1183447
https://doi.org/10.1145/1297105.1297055
https://doi.org/10.1145/1837274.1837461
https://doi.org/10.1145/2414729.2414737
http://www.rtems.com/
http://www.rtems.com/
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.88
https://doi.org/10.1145/1993498.1993518
http://sfb876.tu-dortmund.de/SPP/sfb876-b2.html
http://sfb876.tu-dortmund.de/SPP/sfb876-b2.html
http://sfb876.tu-dortmund.de/auto?self=Software
http://sfb876.tu-dortmund.de/auto?self=Software

Bibliography 195

[Sie16] Dominic Siedhoff. “A Parameter-Optimizing Model-Based Approach to the Analysis
of Low-SNR Image Sequences for Biological Virus Detection”. PhD thesis. TU
Dortmund, 2016 (Cited on pages 116 sq.).

[Sie17] Siemens. Embedded Multicore Building Blocks (EMB2). https://github.com/
siemens/embb. 2017 (Cited on page 37).

[SJA13] Eric Stotzer, Ajay Jayaraj, Murtaza Ali, Arnon Friedmann, Gaurav Mitra, Alistair P.
Rendell, and Ian Lintault. “OpenMP on the low-power TI keystone II ARM/DSP
system-on-chip”. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 8122 LNCS.
6. 2013, pp. 114–127. isbn: 9783642406973. doi: 10.1007/978-3-642-40698-0_9.
arXiv: arXiv:1302.5679v1 (Cited on page 37).

[SKW01] Stefan Steinke, Markus Knauer, Lars Wehmeyer, and Peter Marwedel. “An Accurate
and Fine Grain Instruction-Level Energy Model Supporting Software Optimizations”.
In: Proceedings of the 11th International Workshop on Power and Timing Modeling,
Optimization and Simulation (PATMOS). 2001. doi: 10.1.1.115.3528 (Cited on
pages 13, 163).

[SLJ14] Mehrzad Samadi, Janghaeng Lee, D. Anoushe Jamshidi, Amir Hormati, and Scott
Mahlke. “Scaling Performance via Self-Tuning Approximation for Graphics En-
gines”. In: ACM Transactions on Computer Systems (TOCS) 32.3 (2014) (Cited on
page 136).

[SMH11] Stelios Sidiroglou, Sasa Misailovic, Henry Hoffmann, and Martin Rinard. “Managing
performance vs. accuracy trade-offs with loop perforation”. In: Proceedings of the
Foundations of Software Engineering. 2011, pp. 124–134. isbn: 9781450304436. doi:
10.1145/2025113.2025133 (Cited on pages 136, 144).

[SNU17] SNU Real-time Benchmark Suite. http://www.cprover.org/goto-cc/examples/
snu.html. 2017 (Cited on pages 62, 94 sq.).

[SSL17] Victoria Shpacovitch, Irina Sidorenko, Jan Eric Lenssen, Vladimir Temchura, Frank
Weichert, Heinrich Müller, Klaus Überla, Alexander Zybin, Alexander Schramm,
and Roland Hergenröder. “Application of the PAMONO-sensor for quantification
of microvesicles and determination of nano-particle size distribution”. In: Sensors
(Switzerland) 17.2 (2017). issn: 14248220. doi: 10.3390/s17020244 (Cited on
pages 112, 114).

[SSO14] Weihua Sheng, Stefan Schürmans, Maximilian Odendahl, Mark Bertsch, Vitaliy
Volevach, Rainer Leupers, and Gerd Ascheid. “A compiler infrastructure for embed-
ded heterogeneous MPSoCs”. In: Parallel Computing 40.2 (2014), pp. 51–68. issn:
01678191. doi: 10.1016/j.parco.2013.11.007 (Cited on page 35).

[Syn17] Synopsys. Virtualizer, Virtual Prototyping Solution. http://www.synopsys.com.
2017 (Cited on page 13).

[SZS14] Dominic Siedhoff, Alexander Zybin, Victoria Shpacovitch, and Pascal Libuschewski.
PAMONO Sensor Data. 2014. doi: 10.15467/e9ofylrdvk (Cited on pages 124,
147).

https://github.com/siemens/embb
https://github.com/siemens/embb
https://doi.org/10.1007/978-3-642-40698-0_9
http://arxiv.org/abs/arXiv:1302.5679v1
https://doi.org/10.1.1.115.3528
https://doi.org/10.1145/2025113.2025133
http://www.cprover.org/goto-cc/examples/snu.html
http://www.cprover.org/goto-cc/examples/snu.html
https://doi.org/10.3390/s17020244
https://doi.org/10.1016/j.parco.2013.11.007
http://www.synopsys.com
https://doi.org/10.15467/e9ofylrdvk

Bibliography 196

[TCA07] W. Thies, V. Chandrasekhar, and S. Amarasinghe. “A Practical Approach to Ex-
ploiting Coarse-Grained Pipeline Parallelism in C Programs”. In: Proceedings of the
40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
2007 (Cited on page 35).

[Tex13] Texas Instruments Incorporated. High- or Low-Side Measurement, Bidirectional
CURRENT/POWER MONITOR with 1.8-V I2C Interface. SBOS644-FEBRUARY
2013. Texas Instruments Incorporated. 02/2013 (Cited on pages 15, 123, 164).

[Tex18] Texas Instruments. Keystone Device Architecture. http://processors.wiki.ti.
com/index.php/Keystone_Device_Architecture. 2018 (Cited on page 12).

[TF10] Georgios Tournavitis and Björn Franke. “Semi-Automatic Extraction and Exploita-
tion of Hierarchical Pipeline Parallelism Using Profiling Information”. In: Proceedings
of the 19th international conference on Parallel architectures and compilation tech-
niques (PACT). 2010, pp. 377–388. isbn: 978-1-4503-0178-7. doi: 10.1145/1854273.
1854321 (Cited on page 34).

[TWF09] Georgios Tournavitis, Zheng Wang, Björn Franke, and Michael FP MFP O’Boyle.
“Towards a holistic approach to auto-parallelization: integrating profile-driven par-
allelism detection and machine-learning based mapping”. In: Proceedings of the
International Conference on Programming Language Design and Implementation
(PLDI). 2009, pp. 177–187. isbn: 9781605583921. doi: 10.1145/1543135.1542496
(Cited on page 34).

[VAR11] Rangharajan Venkatesan, Amit Agarwal, Kaushik Roy, and Anand Raghunathan.
“MACACO: Modeling and analysis of circuits for approximate computing”. In:
Proceedings of the IEEE/ACM International Conference on Computer-Aided Design,
Digest of Technical Papers (ICCAD). 2011, pp. 667–673. isbn: 9781457713989. doi:
10.1109/ICCAD.2011.6105401 (Cited on page 136).

[VCR15a] Swagath Venkataramani, Srimat T. Chakradhar, Kaushik Roy, and Anand Raghu-
nathan. “Approximate computing and the quest for computing efficiency”. In: Pro-
ceedings of the 52nd Annual Design Automation Conference on (DAC). 2015, pp. 1–6.
isbn: 9781450335201. doi: 10.1145/2744769.2751163 (Cited on page 136).

[VCR15b] Swagath Venkataramani, Srimat T Chakradhar, Kaushik Roy, and Anand Raghu-
nathan. “Computing approximately, and efficiently”. In: Proceedings of the Design,
Automation Test in Europe Conference Exhibition (DATE). 2015, pp. 748–751. isbn:
9783981537048 (Cited on page 136).

[Vid16] VideoLAN. x264,the best H.264/AVC encoder. http://www.videolan.org/develo
pers/x264.html. 06/2016 (Cited on page 144).

[VNS07] Sven Verdoolaege, Hristo Nikolov, and Todor Stefanov. “pn: A Tool for Improved
Derivation of Process Networks”. In: EURASIP Journal on Embedded Systems 2007.1
(01/2007), pp. 1–13. issn: 1687-3955. doi: 10.1155/2007/75947 (Cited on pages 36,
80).

[WB02] Zhou Wang and Alan C Bovik. “A universal image quality index”. In: Signal
Processing Letters, IEEE 9.3 (2002) (Cited on page 139).

[WB09] Zhou Wang and Alan C Bovik. “Error : Love It or Leave It ?” In: IEEE Signal
Processing Magazine 26.January (2009), pp. 98–117. issn: 1053-5888. doi: 10.1109/
MSP.2008.930649 (Cited on page 138).

http://processors.wiki.ti.com/index.php/Keystone_Device_Architecture
http://processors.wiki.ti.com/index.php/Keystone_Device_Architecture
https://doi.org/10.1145/1854273.1854321
https://doi.org/10.1145/1854273.1854321
https://doi.org/10.1145/1543135.1542496
https://doi.org/10.1109/ICCAD.2011.6105401
https://doi.org/10.1145/2744769.2751163
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
https://doi.org/10.1155/2007/75947
https://doi.org/10.1109/MSP.2008.930649
https://doi.org/10.1109/MSP.2008.930649

Bibliography 197

[WBS04] Zhou Wang, Alan C Bovik, Hamid Rahim Sheikh, and Eero P. Simoncelli. “Im-
age quality assessment: From error visibility to structural similarity”. In: IEEE
Transaction on Image Processing 13.4 (2004). issn: 10577149 (Cited on page 140).

[WC13] Cheng Wang and Sunita Chandrasekaran. “libEOMP: a portable OpenMP runtime
library based on MCA APIs for embedded systems”. In: Proceedings of International
Workshop on Programming Models and Applications for Multicores and Manycores
(PMAM). 2013 (Cited on page 37).

[WFW94] Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P. Amarasinghe,
Jennifer M. Anderson, Steve W. K. Tjiang, Shih-Wei Liao, Chau-Wen Tseng, Mary
W. Hall, Monica S. Lam, and John L. Hennessy. “SUIF: An Infrastructure for
Research on Parallelizing and Optimizing Compilers”. In: ACM SIGPLAN Notices
29.12 (1994), pp. 31–37. issn: 03621340. doi: 10.1145/193209.193217 (Cited on
page 34).

[WLB04] Zhou Wang, Ligang Lu, and Alan C Bovik. “Video quality assessment based on
structural distortion measurement”. In: Signal processing: Image communication
19.2 (2004) (Cited on page 143).

[WM05] Cort J Willmott and Kenji Matsuura. “Advantages of the mean absolute error (MAE)
over the root mean square error (RMSE) in assessing average model performance”.
In: Climate research 30.1 (2005) (Cited on page 138).

[Xip18] Xiph.Org Foundation. http://www.xiph.org. 05/2018 (Cited on pages 144, 147).

[XMK16] Qiang Xu, Todd Mytkowicz, and Nam Sung Kim. “Approximate Computing: A
Survey”. In: IEEE Design & Test 33.1 (02/2016), pp. 8–22. issn: 2168-2356. doi:
10.1109/MDAT.2015.2505723 (Cited on page 136).

[yWo17] yWorks. yEd Graph Editor. https://www.yworks.com/products/yed. 2017 (Cited
on page 50).

[Za10] A Zybin and et al. “Real-time Detection of Single Immobilized Nanoparticles by
Surface Plasmon Resonance Imaging”. In: Plasmonics 5 (2010), pp. 31–35 (Cited on
pages 112, 114).

[ZLT01] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. “SPEA2: Improving the
Strength Pareto Evolutionary Algorithm”. In: Evolutionary Methods for Design
Optimization and Control with Applications to Industrial Problems (2001), pp. 95–
100. issn: 03772217. doi: 10.1.1.28.7571. arXiv: arXiv:1011.1669v3 (Cited on
page 96).

https://doi.org/10.1145/193209.193217
http://www.xiph.org
https://doi.org/10.1109/MDAT.2015.2505723
https://www.yworks.com/products/yed
https://doi.org/10.1.1.28.7571
http://arxiv.org/abs/arXiv:1011.1669v3

Bibliography 198

List of Figures

2.1 Abstract system model of modern embedded systems. 12
2.2 Simulator-based quad core embedded MPSoC. 14
2.3 Odroid-XU3 structural overview. 15
2.4 Odroid-XU3 development board. 16
2.5 Task-level parallelism on same data. 17
2.6 Task-level parallelism on independent data. 17
2.7 Data-level parallelism . 18
2.8 Pipeline parallelism. 18
2.9 Hybrid pipeline and data-level parallelism. 18
2.10 PA4RES framework overview. 20
2.11 Classic parallelization tool flow. 21
2.12 PAXES tool flow . 24

3.1 Fork-join execution model. 30
3.2 Abstract application model with communication used in PA4RES. 33
3.3 PICO framework overview. 40
3.4 Runtime behavior: Parallel sections, cf. Listing 3.1. 43
3.5 Runtime behavior: Parallel for, cf. Listing 3.2. 43
3.6 Timing behavior: Parallel for, cf. Listing 3.3. 45
3.7 Runtime behavior: Parallel for, cf. Listing 3.4. 45
3.8 Runtime behavior: Parallel for, precise iteration mapping, cf. Listing 3.5. 45
3.9 Main loop of Spectral analysis with pipeline parallelism. 46
3.10 Runtime behavior for Spectral analysis with pipeline parallelism. 47
3.11 Spectral analysis with hybrid pipeline parallelism. 48
3.12 Runtime behavior for Spectral analysis with hybrid pipeline parallelism . 49
3.13 Analysis phase of PICO. 50
3.14 Interprocedural Control Flow Graph constructed by PICO for Listing 3.9. 53
3.15 Program Dependence Graph constructed by PICO for Listing 3.9. 54
3.16 Program Dependence Graph with task mapping. 56
3.17 Task graph with highlighted data flow of symbol result. 58
3.18 Implementation phase. 59
3.19 Data flow visualization for synthetic test 63

4.1 Communication optimization flow. 78
4.2 Communication optimization phase. 82

199

List of Figures 200

4.3 General chromosome structure. 83
4.4 Chromosome structure used in this thesis. 84
4.5 Chromosome structure used in [NEM15b]. 85
4.6 GA cross-over operation: merge two individuals at a random position. . . 85
4.7 GA mutate operation: select random position and change value randomly. 85
4.8 Illustration of execution model generation 90
4.9 Communication waiting cost modeling. 91
4.10 Communication optimization flow visualization 94
4.11 Results for Filterbank benchmark on the hom. system, SPM= 32 KB . . 99
4.12 Results for Filterbank benchmark on the het. system, SPM=1 KB 99
4.13 Results for Spectral benchmark on the hom. system, SPM=2048b 100
4.14 Results for Spectral benchmark on the het. system, SPM=8 KB 101
4.15 Results for JPEG benchmark on the hom. system, SPM=512 B 102
4.16 Results for JPEG benchmark on the het. system, SPM=512 B 102
4.17 Results for PAMONO preprocessing on the hom. system, SPM=2 KB . . 103
4.18 Results synthetic test model vs. simulation, SPM=2048 B 105
4.19 Results for JPEG on the hom. system with model, SPM=512 B 106

5.1 PAMONO sensor overview [NLE15]. 114
5.2 Virus adhesion process visualization [NLE15]. 114
5.3 Virus adhesion process visualization [NLE15]. 115
5.4 Odroid-XU3 (front) and the PAMONO prototype sensor (back). 115
5.5 Virus detection pipeline overview . 118
5.6 Pipeline parameter overview . 119
5.7 Evolution process overview . 122
5.8 PAMONO results: hardware parameter exploration 125
5.9 PAMONO results: software parameter exploration 126
5.10 PAMONO results: hardware/software parameter exploration 127

6.1 Quality Comparison according to MSE and SSIM [NMK17]. 141
6.2 QCAPES overview. 142
6.3 PA4RES manual QCAPES flow. 143
6.4 Run time and energy consumption for the approximated video encoder. . 145
6.5 Frame-by-frame analysis results . 146
6.6 Run time for metrics evaluation on eledream 128. 146
6.7 Run time and energy consumption for the cjpeg case 150
6.8 Automatic PICO approximation flow with QCAPES backend. 151
6.9 Impacts of approximate communication. 153

B.1 Results for Filterbank benchmark on the hom. system, SPM=512 B . . . 171
B.2 Results for Filterbank benchmark on the hom. system, SPM=1 KB . . . 172
B.3 Results for Filterbank benchmark on the hom. system, SPM=2 KB . . . 172
B.4 Results for Filterbank benchmark on the het. system, SPM=512 B 173

List of Figures 201

B.5 Results for Filterbank benchmark on the het. system, SPM=2 KB 173
B.6 Results for Filterbank benchmark on the het. system, SPM=32 KB . . . 174
B.7 Results for Spectral benchmark on the hom. system, SPM=512 B 174
B.8 Results for Spectral benchmark on the hom. system, SPM=1 KB 175
B.9 Results for Spectral benchmark on the hom. system, SPM=8 KB 175
B.10 Results for Spectral benchmark on the het. system, SPM=512 B 176
B.11 Results for Spectral benchmark on the het. system, SPM=1 KB 176
B.12 Results for Spectral benchmark on the het. system, SPM=2 KB 177
B.13 Results for JPEG benchmark on the hom. system, SPM=1 KB 177
B.14 Results for JPEG benchmark on the hom. system, SPM=2 KB 178
B.15 Results for JPEG benchmark on the het. system, SPM=1 KB 178
B.16 Results for JPEG benchmark on the het. system, SPM=2 KB 179
B.17 Results for PAMONO preprocessing on the hom. system, SPM=512 B . . 179
B.18 Results for PAMONO preprocessing on the hom. system, SPM=1 KB . . 180

List of Figures 202

List of Tables

3.1 Benchmark description for parallelization evaluation 62
3.2 PICO-based compared to manual time-consuming parallelization for PA-

MONO preprocessing . 64
3.3 Results for PICO-based parallelization executed on a homogeneous system 67
3.4 Comprehensive speedups and energy factors for Table 3.3. 67
3.5 Results for OpenMP-based parallelization 68
3.6 Comprehensive speedups and energy factors for Table 3.5. 68
3.7 Configuration as in Table 3.5, tasks are restricted to the Cortex-A7. . . . 69
3.8 Comprehensive speedups and energy factors for Table 3.7. 69
3.9 Results for heterogeneous experiments with iteration mapping 72
3.10 Comprehensive speedups and energy factors for Table 3.9. 72

4.1 Communication optimization benchmark description 95
4.2 GA statistics for communication optimization. 98
4.3 Model results for a write to a polling-based FIFO 104

5.1 INA231 [Tex13] configuration. 123
5.2 Excerpt of the three Pareto frontiers . 128

6.1 Overview of included metrics . 142
6.2 Input videos for approximated video encoding case study. 144
6.3 Average signal fidelity for the approximated video encoder. 145
6.4 File size of encoded videos . 147
6.5 Frame types of encoded x264 videos. 147
6.6 Input data for approximated image compression case study. 148
6.7 Impact of quality settings for lena_color on the luminescence component. 148
6.8 UIQI values for Y-component of lena_color with different window settings.149
6.9 SSIM values for Y-component of lena_color with different window settings.149
6.10 File size for approximated image compression case study for lena_color. . 149
6.11 Performance results for approximate communication experiment. 152

A.1 Frequency-dependent high-level processor energy model. 164
A.2 Model results for a read from a RTEMS-based FIFO 168
A.3 Model results for a read from an interrupt-based FIFO 168

203

List of Tables 204

List of Listings

2.1 Performane Estimator: Example source code 22

3.1 PICO: Parallel sections . 42
3.2 PICO: Data-level parallelism - pico parallel for 43
3.3 PICO: Parallel for with chunks clause . 44
3.4 Parallel for with processor assignment. 44
3.5 PICO: Parallel for with precise iteration mapping 44
3.6 Sequential main loop of the Spectral analysis benchmark. 46
3.7 Parallelized main loop of the Spectral analysis benchmark. 47
3.8 Parallelized main function of the Spectral analysis benchmark. 48
3.9 Examplary code to demonstrate PDG construction. 53
3.10 PDG: Examplary code with PICO annotations. 56
3.11 Implementation of task 1 with PICO API calls. 61
3.12 Synthetic hybrid pipeline benchmark with complex data dependencies. . . 63
3.13 Annotated Filterbank benchmark. 64
3.14 Comparison between PICO and OpenMP clauses. 65
3.15 Parallelized main function of the Spectral analysis benchmark 70
3.16 Parallelized main function of the JPEG benchmark 71

4.1 Synthetic pipeline test case template . 95

6.1 ApproxPICO: Exemplary section perforatio 151

A.1 PICO API - Initialization Methods. 165
A.2 PICO API - Task Methods. 166
A.3 PICO API - Synchronization Methods. 166
A.4 PICO API - Communication Methods. 166
A.5 PICO API - Miscellaneous Methods. 167

205

List of Listings 206

List of Algorithms

3.1 Program Dependence Graph Construction 52
3.2 Task Graph Construction . 57
3.3 Task Function Implementation . 60
4.4 Communication Model . 92

207

List of Algorithms 208

Index

Abstract Syntax Tree, 40, 52
Application model, 29

Structure and Components, 31
Appoximate Computing, 134
Architecture model, 89
ARMr, 13, 14

Basic block, 50
Big.Littler, 14

CACTI, 13
CoMETr, 13, 66, 96
Communication Graph, 89
Communication Mapping Problem, 77
Communication model, 30
Control Flow Graph, 51
Cyber-physical systems, 1

Data dependency
Anti dependency, 51
Flow dependency, 51
Loop-carried dependency, 45, 54
Output dependency, 51

Dependent iteration, 57
Dynamic Frequency Scaling, DFS, 120

Embedded systems, 1
Energy consumption, 3, 87
Evolutionary algorithm, 82, 116
Execution time, 3, 87

False negative (FN), 121
False positive (FP), 121
FIFO channel, 30, 84

Genetic Algorithm, GA, 77, 82, 116
Cross-over, 85
Fitness evaluation, 86
Mutation, 85
Objectives, 87
Repair, 86

Governor, 120
Graph

Call Graph, 51
Control Flow Graph, 51, 53
Data Flow Graph, 51
Directed Acyclic Graph, 50
Predecessor, 51
Program Dependence Graph, 52, 54
Sucessor, 51
Task Graph, 56

Heterogenity, 12
Homogeneous system, 12

Intermediate Representation, IR, 40, 52
Internet of Things (IoT), 2

Loop perforation, 144

Machine learning, 107
May-analysis, 54
Memory consumption, 3, 87
Model-based Optimization (MBO), 109
Multiprocessor System-on-a-Chip (MPSoC),

11
Must-analysis, 54

Odroid-XU3, 14, 66, 122, 144
OpenMP, 29, 37, 38, 65

209

Index 210

PAMONO, 114
PAMONO virus detection software, 117
Parallel region, 30
Paralleliable C, 33
Parallelism

Data-Level Parallelism, 17
Hybrid Pipeline Parallelism, 18
Pipeline Parallelism, 18
Task-Level Parallelism, 17

Pareto-optimal, 4, 78, 97, 124
Performance Estimator, 21, 89
Performance wall, 133
PICO Directives, 41

parallel for, 43
parallel section, 42, 47
pipeline for, 46

PICO Execution Model, 89
PICO Task, 31
Pointer-analysis, 53
Power wall, 133
Program Dependence Graph, 52

Quality Metrics, 137
F1 score, F–measure, 121
Mean Structual Similarity Index, 140
Mean–Absolute Error, 138
Mean–Squared Error, 137
Peask–Signal–to–Noise Ratio, 138
Root–Mean–Squared Error, 138
Structual Similarity Index, 140
Universal Image Quality Index, 139

Quality of Service (QoS), 3, 113, 117, 121,
137

Real-time, 3, 117, 122
Real-Time Operating System (RTOS), 13
RTEMS, 13, 97

Scratch Pad Memory (SPM), 12, 14, 78, 84,
88, 96

Similarity Class, 22
Simulator, 13
Simulator-based Low-Power System, 13

Smart systems, 2
System model, 12

Thermal budget, 129
True positive (TP), 121

Virtualizerr, 13, 66, 96
VirusDetectionCL, 117

Index 211

	1 Challenges in Embedded Cyber-Physical Systems
	1.1 Introduction
	1.2 Challenges of Embedded Software Design
	1.3 Motivating Example: Plasmon-based Virus Detection
	1.4 Contribution of this Work
	1.5 Outline
	1.6 Author's Contribution to this Dissertation

	2 Utilizing modern MPSoCs - The PA4RES Methodology
	2.1 System Architecture Overview
	2.1.1 Simulator-based Low-Power Systems
	2.1.2 Real Hardware High-Performance System

	2.2 Parallelism in Software
	2.2.1 Types of Parallelism in Software
	2.2.1.1 Task-Level Parallelism
	2.2.1.2 Data-Level Parallelism
	2.2.1.3 Pipeline Parallelism

	2.2.2 Challenges during the Parallelization

	2.3 PA4RES - Framework
	2.3.1 Performance Estimator
	2.3.2 Parallelism Extraction for Embedded Systems

	2.4 Conclusion

	3 PICO-Framework
	3.1 Introduction
	3.2 Application Model
	3.2.1 Communication Model
	3.2.2 Structure and Components of the Application Model
	3.2.3 Programming Language Requirements - Parallelizable C

	3.3 Related Work
	3.3.1 General Overview
	3.3.2 OpenMP Related Work
	3.3.3 Distinction from OpenMP

	3.4 PICO - Framework Overview
	3.5 PICO Directives
	3.5.1 Task-Level Parallelism
	3.5.2 Data-Level Parallelism
	3.5.3 Pipeline Parallelism
	3.5.4 Hybrid Pipeline Parallelism

	3.6 Internals of PICO
	3.6.1 Analysis Phase
	3.6.1.1 Program Dependence Graph Construction
	3.6.1.2 Parallel Region Extraction
	3.6.1.3 Task Graph Construction

	3.6.2 Implementation Phase
	3.6.3 Limitations

	3.7 Evaluation
	3.7.1 Proof of Concept and Implementation
	3.7.2 Usability Analysis
	3.7.3 Performance Analysis
	3.7.3.1 Homogeneous Experiments
	3.7.3.2 Heterogeneous Experiments

	3.8 Conclusion

	4 PICO - Communication Optimization
	4.1 Introduction
	4.2 PICO - Communication Optimization Approach
	4.3 Related Work
	4.4 Internals of the Communication Optimization
	4.4.1 Genetic Algorithm Implementation
	4.4.1.1 General Chromosome Structure
	4.4.1.2 Genetic Operations
	4.4.1.3 Fitness evaluation

	4.4.2 Execution Model

	4.5 Evaluation
	4.5.1 Evaluation Setup
	4.5.1.1 Applications
	4.5.1.2 Target System
	4.5.1.3 Genetic Algorithm Configurations

	4.5.2 Simulation Results
	4.5.3 Model-based Optimization Results
	4.5.4 Discussion

	4.6 Conclusion and Future work

	5 Emerging Challenges for Embedded Systems - Real-time Virus Detection
	5.1 Introduction
	5.2 Plasmon-Assisted Microscopy of Nano-Objects
	5.3 Design Space Exploration Framework
	5.4 Use Case: Automatic Virus Detection Software
	5.4.1 Implementation and Parameter Details
	5.4.1.1 Hardware-related Parameters
	5.4.1.2 Dynamic Frequency Scaling

	5.4.2 Detection Quality

	5.5 Evaluation
	5.5.1 Evaluation Setup
	5.5.2 Experiments
	5.5.3 Results
	5.5.4 Discussion

	5.6 Related Work
	5.7 Conclusion and Future Work

	6 New opportunities due to Approximate Computing
	6.1 Introduction
	6.2 Related Work
	6.3 Quality Metrics - How to quantify uncertainty?
	6.3.1 Common Signal Fidelity Metrics
	6.3.2 Perception Visual Quality Metrics
	6.3.3 Impact of Metric Selection

	6.4 QCAPES-Framework
	6.4.1 Integration into PA4RES

	6.5 Qualitative Case Studies
	6.5.1 Approximated Video Encoding
	6.5.2 Approximated Image Compression
	6.5.3 Discussion

	6.6 Approximation in PICO - ApproxPICO
	6.6.1 Approximate Communication - Case Study

	6.7 Conclusion and Future Work

	7 Conclusion and Future Work
	7.1 Summary of Contributions
	7.2 Future Work

	A Appendix
	A.1 EnergyMetric - CoMET-Systems
	A.2 Energy measurement on the Odroid-System
	A.2.1 EnergyMeter
	A.2.2 Energy Relay Reader

	A.3 PICO API and Runtime
	A.4 Execution Model - Performance Extraction
	A.5 Digital and Physical Units

	B Results for Communication Optimization Experiments
	Bibliography
	List of Figures
	List of Tables
	List of Listings
	List of Algorithms
	Index

