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Abstract 

LS-DYNA is a general purpose explicit and implicit finite element program used to analyse 

the non linear dynamic response of three-dimensional solids and fluids. It is developed by 

Livermore Software Technology Corporation (LSTC). An electromagnetism (EM) module 

has been added to LS-DYNA for coupled mechanical/thermal/electromagnetic simulations, 

which have been extensively performed and benchmarked against experimental results for 

Magnetic Metal Forming (MMF) and Welding (MMW) applications. These simulations are 

done using a Finite Element Method (FEM) for the conductors coupled with a Boundary 

Element Method (BEM) for the surrounding air. 

The BEM has the advantage that it does not require an air mesh, which can be difficult to 

build when the gaps between conductors are very small, and to adapt when the conductors 

are moving, with contact possibly arising. Besides, the BEM does not require the 

introduction of infinite boundary conditions which are somehow artificial and can create 

discrepancies. On another hand, it generates dense matrices which take time to assemble 

and solve, and require a lot of memory. In LS-DYNA, the memory issue is handled by using 

low rank approximations on the off diagonal sub-blocks of the BEM matrices, creating a 

so-called Block Low Rank (BLR) matrix structure. 

The issue of the assembly and solve time is now being studied, and we present the so called 

“Multi-Center” (MC) method where the computation of the far-field submatrices is greatly 

reduced and the solve time somehow reduced. 

We will present the method as well as some first results. 
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1 Introduction 

The Boundary Element Method (BEM) has been widely used for the simulation of many 

physical problems, and in particular for electromagnetics simulations (L’Eplattenier 2009, 

L’Eplattenier 2010, L’Eplattenier 2015, Çaldichoury 2012, Duhovic 2012, Ulacia 2008). It 

presents many advantages over the Finite Element Method (FEM), notably by avoiding an 

air mesh between the conductors, which can be cumbersome to build when the inter-

conductor gaps are very small or when the conductors are deforming. The inter-conductor 

volume also often proves more complicated to mesh than the conductor geometry itself, 

requiring tetrahedral meshes which often give less accurate results than hexahedral ones. 

Also, when using the BEM, no artificial approximations at the boundary are needed. 

The drawback of the BEM is that it generates dense matrices which need large amounts of 

memory to store, and take a long time to assemble and to solve. In order to reduce the 

memory needed to store the matrices, as well as the matrix vector product time, hence the 

solve time, a Block Low Rank (BLR) method has been introduced (L’Eplattenier 2015). In 

this method, low rank approximations are performed on blocks of the BEM matrices 

corresponding to far away domains, which can considerably reduce the storage of the 

block. The only drawback of this method is that it first goes through the assembly of the 

full dense block which takes a lot of computation time. The multicentre (MC) method that 

will be presented in this paper allows computing directly the low rank approximation of the 

block without going through the lengthy dense block assembly.    

2 The multicentre (MC) method 

2.1 Domain decomposition and block matrix 

The BEM mesh is decomposed into domains using an octree. This creates a block structure 

of the BEM matrix, where each block corresponds to a domain versus another one. In the 

BLR method, the diagonal blocks of the BEM matrix are kept dense, whereas low rank 

approximations are performed on the non-diagonal ones. 

 

 

 

Figure 1: Domain decomposition (left) and corresponding BLR structure for a BEM 

matrix (right), where the diagonal blocks are kept dense, whereas low rank 

approximations are performed on the non-diagonal ones. 
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2.2 A few definitions 

We call: 

 B the set of basis functions (or degrees of freedom). 

 I the set of integration points used to compute the BEM integrals, using gaussian 

integration. 

 The octree presented in section 2.1 gives a domain decomposition on the 

integration points which we write as: 

𝐼 = ⋃ 𝐼𝑖𝑖𝜖𝐷  (1) 

 In each domain 𝐼𝑖, we define a set of nodes 𝐶𝑖 𝑐 𝐼𝑖 which are well separated. We can 

find them using the min-max algorithm for example. We suppose moreover that 𝐶𝑖 

is ordered such that each subset of 𝐶𝑖 built by taking the first k nodes of 𝐶𝑖 also 

gives some well separated points.  

 We define a distance between 2 domains (typically, equal to the distance between 

the centers over the max of the radii of the domains). This distance allows to 

partition the couples of domains into near couples 𝑁 , and far couples 𝐹: 

𝐷 ×  𝐷 = 𝑁 ⊕ 𝐹  (2) 

This decomposition is such that the integrations between 2 far domains can be done 

using standard gaussian integration and does not involve any singular integrals. In 

the rest of this paper, we will be interested in the far domains. 

 For each domain 𝑖 ∈ 𝐷, we define the near and far domains of 𝑖 as: 

𝑁𝑖 = {𝑗 ∈ 𝐷 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (𝑖, 𝑗) ∈ 𝑁}  (3) 

and  

𝐹𝑖 = {𝑗 ∈ 𝐷 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (𝑖, 𝑗) ∈ 𝐹}  (4) 

 For each domain 𝑖 ∈ 𝐷, we define a set of ”target'' points 𝑇𝑖 𝑐 𝐼 which is supposed 

to be a good sampling of the points in the far domains 𝐹𝑖. These target points are 

supposed to be well separated. 𝑇𝑖 can be built for example as 

𝑇𝑖 = 𝑅𝑜𝑢𝑛𝑑𝑅𝑜𝑏𝑖𝑛 {𝐶𝑗 , 𝑗 ∈ 𝐹𝑖} 

 

2.3 BEM system 

We consider a BEM matrix 𝑃 on 𝐵. We can write, using the domain decomposition,  

and the separation between near and far domains, 

𝑃𝐵,𝐵 = 𝑃𝐵,𝐵
𝑁 + 𝑃𝐵,𝐵

𝐹  (5) 

         = 𝑃𝐵,𝐵
𝑁 + ∑ 𝑉𝐵,𝐼𝑖

𝑡
(𝑖,𝑗)∈𝐹 𝐾𝐼𝑖,𝐼𝑗

𝑉𝐼𝑗,𝐵 (6) 

         ≔ 𝑃𝐵,𝐵
𝑁 + 𝑉𝐵,𝐼

𝑡 𝐾𝐼,𝐼
𝐹 𝑉𝐼,𝐵 (7) 
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where the last term in the second equation represents, in matrix form, the standard gaussian 

integration: 

The matrix 𝑉𝐼,𝐵 is the matrix of the evaluation of the basis functions at the integration 

points multiplied by the integration weights and face jacobian determinants. 

The matrix 𝐾𝐼,𝐼
𝐹  is the restriction of the kernel matrix, evaluated only between integration 

points in far domains (and equal to zero elsewhere). 

 

Note: in the future, 𝐾𝑎,𝑏 will always represent the evaluation of the kernel, between a set 𝑎 

and a set 𝑏. We also suppose that the evaluation of the kernel is symmetric i.e.  

𝑘(𝑥, 𝑦) = 𝑘(𝑦, 𝑥), ∀ (𝑥, 𝑦). 

2.4 Presentation of the multi-center method 

In order to save memory and CPU time, we are looking for a low rank approximation for 

the submatrices  

𝐾𝐼𝑖,𝐼𝑗
 , (𝑖, 𝑗) ∈ 𝐹  (8) 

We could get one by doing a Singular Value or QR decomposition on 𝐾𝐼𝑖,𝐼𝑗
. 

However, we would like to get such a low rank approximation without having to 

assemble 𝐾𝐼𝑖,𝐼𝑗
, in order to save some assembly time. 

In order to do so, we start from the intuition that: 

 Most (up to a certain tolerance) of the information contained in 𝐾𝐼𝑖,𝐼𝑗
 is actually 

contained only in the intersection  𝐾𝑐𝑖,𝑐𝑗
 of a given subset 𝑐𝑖  𝑐  𝐼𝑖 of the rows with a 

given subset 𝑐𝑗 𝑐  𝐼𝑗 of the columns of the original matrix. We call these subsets of 

the integration points the “centers” of the domains. 

 We also would like to find the subset 𝑐𝑖  𝑐  𝐼𝑖 independently of the domains 𝑗. 

2.4.1 Finding the centers 

In order to find the best possible centers 𝑐𝑖 of a domain 𝑖 in an automatic way, taking into 

account a given tolerance ε, we try to optimize them using the target points 𝑇𝑖 of domain 𝑖, 

which should be a good representation of all the integration points in the far domains of 𝑖. 

We thus form the kernel matrix 𝐾𝑇𝑖,𝐼𝑖
 and do a rank revealing QR factorization with 

column pivoting on this matrix: 

𝐾𝑇𝑖,𝐼𝑖
𝑃𝐼𝑖,𝐼𝑖

= 𝑄𝑇𝑖,𝑇𝑖 𝑅𝑇𝑖,𝐼𝑖  (9) 

We then check the successive norms 𝑅𝑘  of the lines of 𝑅𝑇𝑖,𝐼𝑖 , and decide to stop when 

||R_k||  <  ε ||R_1||. The permutation matrix 𝑃𝐼𝑖,𝐼𝑖 then gives the subset 𝑐𝑖  𝑐 𝐼𝑖 of size 𝑘. 
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Figure 2: Schematics of the construction of the centers of a domain using the target points 

2.4.2 Construction of the barycentric matrices 

We now try to find the best linear correlations between the centers 𝑐𝑖 and the integration 

points 𝐼𝑖. In order to do so, we form the matrix 𝐾𝑇𝑖,𝑐𝑖
 (kernel between the target points and 

centers) and solve (in the least square sense): 

𝐾𝑇𝑖,𝐼𝑖
= 𝐾𝑇𝑖,𝑐𝑖 𝐵𝑐𝑖,𝐼𝑖  (10) 

which gives the barycentric matrix 𝐵𝑐𝑖,𝐼𝑖 . 

 

Figure 3: Schematics of the construction of the barycentric matrices. 

2.4.3 Low rank approximation of a subblock 

The low rank approximation of a subblock 𝐾𝐼𝑗,𝐼𝑖
 can be found in 2 steps: 

 We first consider 𝐼𝑖  as the far away points from domain 𝑖 (similar to the previous 

target points of domain 𝑖), and using the centers and barycentric matrix of domain 

𝑖, and can write: 

𝐾𝐼𝑗,𝐼𝑖
= 𝐾𝐼𝑗,𝑐𝑖 𝐵𝑐𝑖,𝐼𝑖  (11) 

 We then consider the centers 𝑐𝑖 as the far away points from domain 𝑗 and use the 

centers 𝑐𝑗 and barycentric matrix of domain 𝑗 to write: 

𝐾𝑐𝑖,𝐼𝑗
= 𝐾𝑐𝑖,𝑐𝑗 𝐵𝑐𝑗,𝐼𝑗  (12) 
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 By combining equations (11) and (12), and using the fact that the evaluation of the 

kernel is symmetric, we find  

𝐾𝐼𝑗,𝐼𝑖
= 𝐵𝐼𝑗,𝑐𝑗

𝑡 𝐾𝑐𝑗,𝑐𝑖 𝐵𝑐𝑖,𝐼𝑖  (13) 

which represents the low rank approximation we were looking for. 

 

2.4.4 Rewriting the BEM matrix 

 

Using equations (7) and (13), we can now write 

𝑃𝐵,𝐵 = 𝑃𝐵,𝐵
𝑁 + 𝑃𝐵,𝐵

𝐹  (14) 

         = 𝑃𝐵,𝐵
𝑁 + ∑ 𝑉𝐵,𝐼𝑖

𝑡
(𝑖,𝑗)∈𝐹 𝐵𝐼𝑖,𝑐𝑖

𝑡 𝐾𝑐𝑖 ,𝑐𝑗 𝐵𝑐𝑗,𝐼𝑗 𝑉𝐼𝑗,𝐵  (15) 

         = 𝑃𝐵,𝐵
𝑁 + ∑ 𝑀𝐵,𝑐𝑖

𝑡 𝐾𝑐𝑖,𝑐𝑗 𝑀𝑐𝑗,𝐵 (𝑖,𝑗)∈𝐹  (16) 

         ≔ 𝑃𝐵,𝐵
𝑁 + 𝑀𝐵,𝑐

𝑡 𝐾𝑐,𝑐
𝐹 𝑀𝑐,𝐵 (17) 

 

with, as before, 𝐾𝑐𝑖,𝑐𝑗
𝐹 = 0 if (𝑖, 𝑗) ∈ 𝑁(near domains), and where  

𝑀𝑐,𝐵 ≔ 𝐵𝑐,𝐼𝑉𝐼,𝐵 (18) 

combines the basis evaluation (+integration weights + face jacobian determinants) with the 

barycentric matrix. It represents the basis evaluation directly at the centers. The matrix 

𝑀𝑐,𝐵 is sparse, block diagonal and is assembled using (18). The matrix 𝐾𝑐,𝑐
𝐹  is dense and 

stored in a BLR format (further low rank approximations are performed on the different 

blocks), but the size of 𝑐 (total number of centers) is much smaller than the size of 𝐵 

(number of basis functions). 

3 Examples 

We will now show the benefit of the multicentre method on an example. We consider a 

torus with a circular cross section, and will consider different mesh densities. The first 3 

mesh densities are shown of figure (4), and table (1) details the sizes of the BEM mesh. 

 

case 1 2 3 4 5 6 

# elem 900 7,200 57,600 230,400 460,800 921,600 

nrow P 1,202 4,802 19,202 38,402 76,802 153,602 

#domain 32 64 128 128 256 256 

Table 1: Sizes of the different meshes 
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Figure 4: The first 3 torus meshes used in the comparisons 

For the timings, we consider one BEM matrices assembly, followed by 10 time steps 

advances using the coupled FEM-BEM algorithm used for the electromagnetics in LS-

DYNA (L’Eplattenier 2009). All the runs were performed on the same (Xeon E5506, 2.13 

GHz) machine using 8 CPU’s. 

Figure (5) shows a comparison between the memory needed by the BLR method and 

the MC one, for the assembly of one of the BEM matrices used in the solver, so called “P” 

matrix (L’Eplattenier 2009). One can see that as the models get larger, the savings of the 

MC method get larger and larger. 

 

 

Figure 5: Comparison of the memory needed to store the BEM P matrix, between BLR 

(blue) and MC (red) 

Figure (6) shows a comparison between the BLR and MC methods for the timing of the 

matrix assembly, system solves, and total computation time. It shows a fairly large gain in 

the matrix assembly time, but not that much in the solve time. Further work in under way 

to also improve the solve time. 
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Figure 6: Comparison of the run time between the BLR (blue) and MC (red) methods. The 

total run time is decomposed in matrix build time and system solve time (using a 

Preconditioned Gradient Method (PCG)). 

4 Conclusion 

The BEM method is attractive for many reasons, and most notably because it does not need 

an air mesh which can be cumbersome to build when the geometry of the conductors is 

complicated, or when the gaps between conductors are small. It also dispenses with all the 

remeshing issues when the conductors are moving. Its main drawback, though, is the 

generation of dense matrices which take a lot of memory to store, and a long time to 

assemble and to solve. We already worked in the past on the memory issue by introducing 

the BLR representation. In this paper, we presented a method to shorten the assembly time, 

the multicentre (or MC) method. We showed on a test case that this method allows 

significant computation time reductions without losses in the accuracy of the solution. 

Further studies will be done on this method in the future, and other method will be 

introduced to lower the solve time, notably a MPP factorization of the BEM matrices.  
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