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Chapter 1

Introduction

Innovative medicines are patent protected for a limited period of time. After the medicine

goes off patent, any pharmaceutical company may produce their own version of the drug

and apply to a health authority for market authorisation. This concept is very well

established in the context of small molecule drugs (generics), however, it was introduced

much later for biologics. A biologic is formally defined by the European Medicines Agency

(EMA) as a ”medicine that contains one or more active substances made by or derived

from a biological source” (EMA, 2012a). Biologics have revolutionised the treatment

in important disease areas like cancer or diabetes. However, since biologics are very

expensive, the access of patients to these innovative treatment options is often limited,

especially in low-income countries (Putrik et al., 2014). The hope that more competition

on the market will lower these high prices, combined with the fact that the patents of

several biological blockbusters (e.g., etanercept, infliximab, adalimumab) have expired in

the last few years, makes the development of copies of biologics, so-called biosimilars, a

topic of high interest both for the pharmaceutical industry and the general public.

So far, there exists no unified definition for biosimilars worldwide, but the way of think-

ing is comparable in the highly-regulated markets (e.g., European Union (EU), United

States (US)). The EMA states that (EMA, 2012a) a ”biosimilar medicine is a biological

medicine that is developed to be similar to an existing biological medicine (the ”reference

medicine”). [...] When approved, its variability and any differences between it and

its reference medicine will have been shown not to affect safety or effectiveness.” It is

important to note that, while the overarching guideline on biosimilarity of the EMA

is applicable to all types of biological products, all other guidelines published by the

EMA refer to biotechnologically-derived proteins and, so far, the Food and Drug Admin-
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istration (FDA), the regulatory agency in the US, considers biosimilarity for proteins

only. Therefore, we only refer to biotechnologically-derived proteins when we mention bi-

ologics. However, the general concepts might also be applicable to other types of biologics.

It is the responsibility of the developer of the proposed biosimilar (also known as the

sponsor) to convince the regulatory authority that the proposed product (also known

as the test product) is biosimilar, i.e., it is required to show that a patient taking the

biosimilar can expect the same treatment effect and safety profile as with the reference

product. Since the main idea of biosimilars and generics is comparable, one might wonder

if it is possible to use the well-established regulatory pathway for generics (EMA, 2012b)

for showing biosimilarity. However, even though the main idea of biosimilars has some

similarities to the concept of generics, there exist fundamental differences between small

molecule drugs and biologics which are not only related to the product itself, but also to

the manufacturing process. A brief overview of these differences, based on Crommelin

et al. (2005), can be found in the following paragraph.

On the product side, small molecule drugs tend to have a well-defined and stable chem-

ical structure which can be easily identified. Biologics, on the other hand, are more

complex proteins with heterogeneous structures. The primary structure is a sequence

of amino acids which is comparable to the structure of small molecule drugs. This

structure is folded into structural elements which are stabilised by a secondary structure

which is again folded into a three-dimensional tertiary structure. Many proteins are

glycosylated and the pattern of the glycosylation, which depends, among others, on

the condition under which the protein is produced, might impact the clinical outcome.

Also, interactions with other molecules (e.g., cell-surface receptors, binding proteins and

nucleic acids) influence the biological activity. While small molecule drugs can be fully

characterised by their chemical structure, biological proteins can be so complex that

current analytical methods cannot fully characterise them which makes the establishment

of similarity based on chemical attributes very challenging. Also, small molecule drugs

are chemically synthesised while biologics are produced in living cells or organisms. For

the manufacturing of a biologic, a host cell (bacteria or eukaryotic) is created by inserting

into it the chosen DNA sequences of the target protein. Afterwards, cell screening and

selection processes are used for selecting a unique master cell bank. This cell bank

differs between the production of batches, introducing a high amount of variability, even

within different batches of the reference product. Then, the cells are grown on a large

scale. Small changes at this stage (e.g., the physical conditions like temperature) might
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alter the protein. Since the cells also produce other substances apart from the target

protein, it is next necessary to separate out the protein of interest. Finally, the protein

is assessed with analytical methods for purity and potency. Even for the manufacturer

of the reference product that possesses most knowledge about the product, the high

complexity and the sensitive manufacturing process make it impossible to produce an

exact copy of the biologic. That is why, in contrast to generics which are chemically

identical to the original small molecule drug, biosimilars are only required to be similar

to the reference product.

It is important to note that the differences present between small molecule drugs and

biologics do not only complicate the development and production but make the charac-

terisation of the molecules difficult. Also, the natural variability between batches of the

reference product, and the fact that biosimilars are only similar, but not identical to the

reference product, lead to a higher uncertainty as to whether the proposed biosimilar

has the same efficacy and safety as the reference product. Therefore, in contrast to the

approval process for generics which requires the showing of identical chemical properties

and the confirmation that the concentration of the drug in the blood is equivalent after

injection of the proposed generic or the original drug into healthy volunteers (Chow,

2013), this is not sufficient for getting approval as a biosimilar. Indeed, an extensive com-

parability exercise which requires analytical studies (comparison of chemical attributes

of the molecules), non-clinical studies (in vitro studies and in vivo studies in animals)

and clinical studies in healthy volunteers or patients is required. This implies that the

resources and time required for bringing a biosimilar to the market are closer to the

effort needed for an innovative drug than to that for a generic medicine (Blackstone and

Fuhr Jr, 2012).

However, it is important to keep in mind that the objective of a biosimilar development

programme is different to the objective of a development programme for an innovative

drug: when an innovative product is developed, the existing knowledge about the molecule

and its effect on humans is limited. Therefore, as part of the clinical development pro-

gramme, it is, for example, necessary to determine safe and effective doses and treatment

regimens. Sponsors might also aim to find additional indications in which the treatment

is favourable or to identify subgroups which respond better or worse to the treatment

(Friedman et al., 2015). For biosimilar development, all this information is already

available from the research that was undertaken during the development of the reference

product and the goal of the biosimilar development programme is to confirm that a
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patient who takes the biosimilar can expect the same efficacy and safety as if taking the

reference product. This is also emphasised by regulators; for example, the EMA clearly

states that (CHMP, 2014a) ”efficacy trials of biosimilar medicinal products do not aim at

demonstrating efficacy per se since this has already been established with the reference

product. The purpose of the efficacy trials is to confirm comparable clinical performance

of the biosimilar and the reference product.” In summary, the regulatory pathway which

is established for innovative products is not suitable for biosimilar development.

Since neither the approval pathway for generics nor the approval pathway for innovative

drugs is applicable in biosimilar development, regulatory authorities have introduced a

new approval pathway for biosimilars. We focus on the regulatory pathway and important

concepts which are used in the EU, however, it should be emphasised that the approval

pathway in the US shares the same main concepts. For getting approval as a biosimilar in

the EU, ”similarity to the reference medicinal product in terms of quality characteristics,

biological activity, safety and efficacy based on a comprehensive comparability exercise

needs to be established” (CHMP, 2014c). The EMA recommends a step-wise approach

that consists of quality considerations, non-clinical studies and clinical studies. In the fol-

lowing, we introduce the general concepts that are important for biosimilar development.

Since the methodological contributions presented in this thesis relate exclusively to the

clinical studies, we focus our attention on the regulatory requirements for the clinical

part of development. More information on quality and non-clinical studies can be found

in the respective guidelines (CHMP, 2014a,b).

The guiding principle for biosimilar approval in Europe is the idea of the totality of the

data (EMA, 2016). This means that there is not one pivotal step or study in the develop-

ment programme, but all information is considered important and the final decision as to

whether a product is approved or not will be based on all provided data (i.e., on quality,

non-clinical and clinical data). In particular, it is possible to gain approval even in cases

in which a single study or a single analysis failed (CHMP, 2014a) as long as justification

is provided.

The clinical development programme consists in most cases of at least one Phase I

study in which the pharmacokinetics (PK, i.e., what the body does to the drug) and

the pharmacodynamics (PD, i.e., what the drug does to the body) of the biosimilar

are compared to the reference product. The assessment of PK is comparable to the

showing of bioequivalence for generics (Patterson and Jones, 2017) and follows mostly
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a well-established and standardised approach with only a small degree of flexibility for

sponsors: the drug is administered to the subject and the concentration of the drug in

the blood over time is measured. Measures like the area under the drug concentration vs.

time curve (AUC) and the maximum concentration over time (Cmax) are reported for

each subject. If it can be shown that the ratio of the reference product and the proposed

biosimilar for each of these measures as a percentage lies within 80% and 125% with a

pre-specified confidence level 1− α, commonly α = 0.1, bioequivalence is established. In

contrast, the assessment of PD markers (i.e., surrogate markers for efficacy in patients) is

less standardised since the importance of PD markers highly depends on the availability

of biomarkers that are well-accepted surrogates of and are strongly related to the clinical

outcome. The availability of biomarkers clearly depends on the active substance (the

active ingredient) and is therefore product specific. If no PD marker exists that can

be considered relevant to predict the efficacy of the biosimilar, no PD markers may be

included in the Phase I studies. On the other hand, if there is a well-established PD

marker, additional confirmatory clinical trials in patients may be waived. (CHMP, 2014a)

If Phase III studies have to be conducted, these are performed in patients in at least

one indication of the reference product. The chosen indication should be sensitive to

detect potential differences in efficacy and safety. That is why an indication with a large

treatment effect is typically chosen. For that matter, it is not required that the indica-

tion is the one that was studied in the regulatory application of the reference product.

Equivalent efficacy is demonstrated at a pre-specified point in time for a chosen endpoint,

which can, but does not have to be, the one studied for the reference product. From a

statistical point of view, using an equivalence test (Wellek, 2010) with a pre-specified

equivalence margin (the maximum difference in the endpoint between the biosimilar and

the reference product which is not considered to be clinically relevant) is recommended,

but also a non-inferiority approach (Ng, 2014) might be acceptable if justified. In addition

to showing equivalence in efficacy, establishing an equivalent safety and immunogenicity

profile is the main goal of the Phase III studies. Immunogenicity refers to the ability of a

drug to induce an immune response (e.g., anaphylaxis). While a formal statistical testing

procedure is mostly required for showing equivalence on PK, PD and efficacy endpoints,

safety and immunogenicity are only analysed descriptively. (CHMP, 2014a)

Since the drug is typically only studied in patients in one or, at most, two or three indica-

tions while the reference product is usually approved for multiple indications, the concept

of extrapolation plays an important role in biosimilar development: the information

5



that was gathered during analytical and non-clinical development, the knowledge about

the mechanism of action of the drug and the limited clinical data allow the regulatory

approval of the biosimilar in indications which were not explicitly studied by appealing to

scientific judgement (CHMP, 2014a). Sponsors tend to conduct post-marketing studies

in extrapolated indications and, so far, no concerns have been reported concerning the

extrapolated indications (Weise et al., 2014).

In this cumulative thesis, several statistical topics in clinical biosimilar development are

presented. Even though the chapters cover a wide spread of statistical methodology,

it is important to emphasise that there are some common features in all topics of this

thesis: first, all results are applicable in the area of clinical biosimilar development, i.e.,

there is a joint field of application. Second, the aim of all presented contributions is to

establish equivalence. Thus, the null hypothesis is that the absolute difference between

two quantities is larger than a pre-specified value and the alternative is that the absolute

difference is smaller than this value. More formally, let γT be a characteristic of interest

of the biosimilar (the test product, T) and γR be the same characteristic of interest of

the reference product (R). Then, we test the hypotheses (Wellek, 2010)

H0 : |γT − γR| ≥ ∆ vs. H1 : |γT − γR| < ∆,

where ∆ ∈ R+ has to be pre-specified and, in the context of biosimilar trials, justified

from a clinical and statistical perspective (CHMP, 2014a). Even though many concepts

which were developed for superiority testing are also applicable to equivalence testing,

it is important to keep in mind that some approaches for superiority testing are not

applicable in this context (e.g., non-parametric permutation tests).

The rest of this thesis is structured as follows: Chapter 2 deals with regulatory require-

ments for clinical biosimilar development in the EU. In the recent past, the EMA has

established itself as the leading regulatory agency for biosimilar approval. It approved

the first biosimilar (Omnitrope, Sandoz) in 2006 and has since then published several

guidelines that support sponsors in conducting appropriate clinical development pro-

grammes. Currently, there exist one overarching guideline, two guidelines focussing on

the development of biotechnology-derived proteins (clinical and non-clinical development

and quality issues), eight product-specific guidelines which give advice for a specific active

substance and four other related guidelines. However, at the start of this research, it

was unclear how these guidelines were put into practice, i.e., how closely sponsors were

following these guidelines and how the regulatory agency was handling deviations from
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the guidelines. In Chapter 2, we present the results of two systematic reviews in which

key characteristics of the clinical development programmes (e.g., sample sizes, endpoints,

study populations) are compared with the aim of providing a comprehensive overview of

biosimilar development in practice in the EU.

One of the results of our systematic reviews (Chapter 2) is that sponsors often conduct

multiple trials in different indications, study several dosing regimens or analyse multiple

endpoints. Therefore, it is necessary to discuss the implication of multiple testing on

the interpretation of the test results. In principle, sponsors aim to demonstrate equiv-

alence in all indications, dosing regimens and endpoints. In that case, the control of

the Type I error rate (the rate of false positive test decision, i.e., the control of the

patient’s risk) is not jeopardised, but the Type II error rate (the rate of false negative

test decisions, i.e., the sponsor’s risk) is high compared to the Type II error rate for a

single test. Consequently, it might be necessary to increase the number of subjects in

the study to have a reasonable chance of claiming equivalence in all indications, dosing

regimens and endpoints. Let m denote the number of hypotheses of interest. In Chapter

3, we first illustrate the impact of multiple hypothesis testing on the required sample

size when all m hypotheses have to be rejected and show that there are scenarios in

which the required sample size is unrealistically high for biosimilar development. Since

we noted in Chapter 2 that biosimilars gained approval in the past even in situations

where equivalence was not shown for all indications, dosing regimens and endpoints

by using the concept of totality of the data, we develop in Chapter 3 a strategy to

test if at least k out of these m tests are successful where k < m. This reduces the

required sample size to a feasible level and has, in contrast to the currently used practice

of deciding post-hoc if the provided evidence is sufficient, the advantage of being a

well-defined formal testing procedure with known operating characteristics. However,

a multiplicity adjustment might be required for limiting the Type I error rate and we

discuss the impact of different types of adjustment both in simulations and in case studies.

Keeping the sample size as low as possible is a key requirement in biosimilar development

because biosimilars are supposed to be sold at a cheaper price than the reference product.

Consequently, the development costs have to be noticeably lower for the biosimilar

compared to the reference product. The approach proposed in Chapter 3 is one way to

limit the burden on the sponsor while providing a high chance of regulatory approval.

A different strategy for reducing the number of subjects involved in the clinical trials,

and therefore to reduce costs, is to make the best use of all available information. Since
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the reference product has already been studied in several trials before the start of the

development of the biosimilar, it seems attractive to include all available knowledge about

the reference product into the analysis of the results of the biosimilar clinical trial that has

been run for show equivalent efficacy. However, it is well-known that the incorporation

of historical information in an analysis can lead to an inflation of the Type I error rate if

the data from the historical studies do not match the results from the new study, i.e., in

the case of a prior-data conflict. Since all biosimilar trials are confirmatory trials, control

of the Type I error rate in all situations which are realistic in practice is expected to be

a regulatory requirement and so making the use of historical data challenging in this

context. In Chapter 4, we first show that the aims of complete Type I error rate control

and a gain in power compared to the standard frequentist approach, which considers

only the data from the new biosimilar trial, are incompatible. To illustrate this, we use

the robustified meta-analytic-predictive (MAP) approach (Schmidli et al., 2014) as an

example methodology which incorporates historical data. Afterwards, we introduce a

novel hybrid Bayesian-frequentist approach for binary endpoints which guarantees partial

Type I error rate control, i.e., Type I error rate control in all situations that are realistic

in practice while providing an advantage in terms of power. We study the performance

of the proposed approach in an extensive simulation study and present a case study for

illustrating the application of the proposed methodology in practice.

The case study discussed in Chapter 4 focusses on the assessment of the treatment effect

under continuous treatment with the biosimilar or the reference product. The associated

analysis provides most information on the direct comparability of the biosimilar and the

reference product for treatment-naive patients who start with one of the treatments and

continue to be treated with this product of choice for the complete duration of their

treatment. In practice, however, biologics are often used for treating chronic diseases

and during the long period of treatment, patients might wish to switch between the

biosimilar and the reference product once or even multiple times for several different

reasons (e.g., change of reimbursement policy of health care provider, introduction of

another biosimilar to the market, change of doctor). But even after more than ten

years of experience with biosimilars in practice in Europe, there is still uncertainty if

patients can switch between a biosimilar and its reference product without impacting

the expected efficacy and safety of the treatment. Regulatory agencies approach this

topic with different strategies (see, for example, Tóthfalusi et al., 2014): while the EMA

states that ”the Agency’s evaluations do not include recommendations on whether a

biosimilar should be used interchangeably with its reference medicine” and recommends
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that ”for questions related to switching from one biological medicine to another, patients

should speak to their doctor or pharmacist” (EMA, 2012a), the FDA has, as stated in

the Biologics Price Competition and Innovation Act (BPCI Act) that was introduced

in 2009, the legal requirement to offer the opportunity to approve a biosimilar as an

interchangeable biosimilar (FDA, 2009). However, so far no interchangeable biosimilars

have been approved in the US. In this thesis, we use the general term switchability to

refer to the property of the biosimilar that switching once or multiple times with the

reference product has no relevant impact on the patient’s response to the treatment.

Very often, no clinical data on patients switching between the biosimilar and its reference

product are available at the time the biosimilar gets to the market, since the large Phase

III studies, which are required prior to market authorisation, are mostly conducted using

parallel groups designs (see Chapter 2). Studies using parallel groups designs cannot

answer the question if patients can switch safely between the biosimilar and its reference

product because no transitions between the biosimilar and the reference product are

included in the study design thus making it impossible to study the effect of switching.

Crossover designs may be more appropriate and we discuss in Chapter 5 efficient study

designs for estimating the so-called mixed and self-carryover effects, which are closely

related to the effect of switching. The model that includes the self and mixed-carryover

effects was first proposed by Afsarinejad and Hedayat (2002). They introduced a model

in which the usual, first-order carryover effect that only depends on the treatment given

in the immediately previous period is replaced by two different carryover effects per

treatment. These carryover effects do not only depend on the treatment given in the

immediately previous period, but also on the treatment given in the current period: if the

treatments in both periods (current and previous) are the same, a potential self-carryover

effect is introduced, if the treatments differ in the two periods, a mixed-carryover effect

may be present. Previously, self and mixed-carryover effects were considered as nuisance

parameters (Kunert and Stufken, 2002, 2008) and the focus was on the estimation of

the direct effects of the treatments, adjusted for self and mixed-carryover effects. In

the assessment of switchability, we can assume that equality of the direct treatment

effects has been established previously and instead the mixed-carryover effects, which

describe the impact of switching, and the self-carryover effects, which relate to continuous

treatment with the biosimilar or the reference product, are of most interest. Therefore, in

Chapter 5, we derive efficient designs for estimating the mixed-carryover effects separately

and for estimating self and mixed-carryover effects simultaneously.
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In Chapter 6, we introduce three statistical tests for formally establishing switchability

based on the data obtained from several periods of treatment, i.e., longitudinal data.

One of these tests uses an idea that is related to the estimation of self and mixed-

carryover effects (which we refer to as the estimation method), even though the details

are slightly different. For all our proposals for testing for switchability, we assume a

study design which is motivated by a study design that has already been used in practice

(the EGALITY study, see Griffiths et al. (2017)) and not the efficient designs derived in

Chapter 5. Therefore, while Chapter 5 gives theoretical results to a fundamental problem

which might also be relevant in other fields of application, in Chapter 6 we tailor the

proposed methodologies to the goal of establishing switchability. This might make the

approaches more attractive for an application in practice. The part of the design of

the EGALITY study which is related to the assessment of switchability consists of four

periods of treatment and four sequences (orders of treatment), which can be split into

switching (switch from the biosimilar to the reference product and back after each period)

and non-switching sequences (continuous treatment with the biosimilar or the reference

product). Generally speaking, the two of the three developed methods which differ

substantially from the one that directly compares the self and mixed-carryover effects,

use the idea of comparing switching with non-switching sequences to assess switchability.

In Chapter 6, we first discuss which patterns in the data have to be visible such that

we would consider a proposed biosimilar to be switchable or not switchable. These

considerations are used for formally defining the null and the alternative hypothesis

that are to be assessed. Afterwards, we describe the three different approaches which

use the longitudinal data from the patients for testing these hypotheses and discuss the

strengths and weaknesses of these tests in a simulation study. We also use the data of

the EGALITY study (Griffiths et al., 2017) to illustrate the performance of the proposed

methods in practice. Lastly, we discuss the efficiency of some study designs for the

estimation method building up upon the results in Chapter 5. We show that the efficient

study design for the estimation of self and mixed-carryover effects which was derived

in Chapter 5 is more efficient for the estimation method than the design used in the

EGALITY study.
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Chapter 2

Clinical biosimilar development in

practice in the European Union

2.1 Contributed material

Mielke, J., Jilma, B., Koenig, F. and Jones, B. (2016): Clinical trials for authorized

biosimilars in the European Union: a systematic review. British Journal of Clinical

Pharmacology, 82 (6), 1444–1457.

Mielke, J., Jilma, B., Jones, B. and Koenig, F. (2018a): An update on the clinical

evidence that supports biosimilar approvals in Europe. British Journal of Clinical

Pharmacology, 84 (7), 1415–1431.

Co-authors’ contribution: Bernd Jilma proposed the project and gave advice on questions

related to the clinical interpretation of the results. This project was partially completed

during a research stay at the Medical University of Vienna under the supervision of Franz

Koenig. Byron Jones helped with the interpretation of the results and the presentation

of the material.

2.2 Key results

Biosimilars are still a fairly new concept, with the first biosimilar approved in the EU in

2006 (Omnitrope, Sandoz). That is why there is still some uncertainty among sponsors

on the regulatory expectation of the amount and type of evidence that has to be provided

for gaining approval as a biosimilar. The regulatory agency in the EU, the EMA, has

published several guidelines in order to advise sponsors on their biosimilar development

strategies. These guidelines provide non-binding recommendations on scientific questions
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2.2. Key results

of biosimilar development. However, prior to the start of this research, it was not clear

how sponsors and regulators have put these guidelines into practice. In the two con-

tributed papers, we systematically compare the clinical studies of successful biosimilar

development programmes which were submitted to the EMA with the aim of providing a

comprehensive overview of clinical biosimilar development in practice. We focus on two

different aspects. First, we compare the clinical development programmes of biosimilars

and specifically focus on the situation where two or more approved biosimilars contain

the same active substance, i.e., share the same reference product. This analysis aims

to provide insights into the question of whether biosimilar development is, even though

experience with biosimilars is limited, already standardised or if companies are still

discordant in their development strategies. Second, we compare the regulatory guidelines

with the biosimilar development programmes in practice to clarify if there were deviations

from the guidelines. In the case of identified deviations from the guidelines, we analyse

the way regulators dealt with these deviations.

Currently, there are 43 approved biosimilars in Europe (EMA, 2018). The biosimilars

which gained approval prior to August 2016 are discussed in Mielke et al. (2016). In

Mielke et al. (2018a), we discuss special features of biosimilars which were approved

between September 2016 and November 2017 and compare additional key character-

istics for all approved biosimilars. In both contributed papers, we confirm that there

is a high variability in the development strategies. Interestingly, this is also true for

biosimilars with the same active substance (the same reference product): for example, we

report in Mielke et al. (2016) that some companies reduced the size of their studies for

showing equivalent efficacy and safety in patients and provided, as compensation, more

evidence in the pharmacokinetics (PK)/pharmacodynamics (PD) part of the development

programme, while other companies conducted extensive clinical trials in patients. In

Mielke et al. (2018a), we compare the study populations used for the efficacy and safety

assessment and report that these are not necessarily identical even if the biosimilars are

approved for the same reference product. In total, we conclude that there seems to be a

fair amount of flexibility for sponsors to set-up the development programme according to

their preferences.

While comparing the recommendations presented in the guidelines to the studies con-

ducted in practice, we first note that often the product-specific guideline (the guideline

that gives detailed recommendations for a specific class of products) was not available

at the time the development of the first biosimilar within a class started (Mielke et al.,
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2.2. Key results

2018a). This might indicate that these guidelines are, in most cases, not prepared prior to

the first sponsor approaching the regulators with questions regarding a specific product.

In some cases, the companies followed all recommendations, but we report cases in which

companies deviated in a few aspects (e.g., the study design was not the one recommended

as for the biosimilars Epoetin Alfa Hexal/Abseamed/Binocrit, Mielke et al., 2016). In

addition, we also identify cases with major deviations from the guideline that was in

operation during the time of development. For example, in one case a sponsor provided

substantially less evidence than requested in the guideline (biosimilars Inhixa/Thorinane,

Mielke et al., 2018a). In this case, the product-specific guideline was changed after the

approval in order to reflect the development programme of the sponsor. In contrast,

we notice examples in which sponsors provided more evidence than explicitly requested

(insulin biosimilars, Mielke et al., 2018a). We conclude that European regulators are

willing to accept deviations from their guidelines as long as sound scientific justification

is provided.

The main resources for the two systematic reviews are the so-called European public

assessment reports (EPARs) which are publicly available and offer insights into the studies

and analyses presented to the regulators when a sponsor applies for market authorisation.

For example, for the clinical part, details on the planning of the study (e.g., sample sizes,

endpoints, equivalence margins) are stated and the study results are reported. The EPARs

of the first approved biosimilars are mostly short and do not provide detailed information

(Mielke et al., 2016), however, we notice that the quality of the EPARs has improved

recently (Mielke et al., 2018a). Nonetheless, often there is still some information missing

(e.g., justification of the equivalence margins) and we propose in Mielke et al. (2018a)

a checklist with the minimal information that is recommended to be included in an EPAR.

During the review of clinical development programmes, we noted that often multiple

endpoints, treatment regimens and doses or study populations were analysed. These are

all situations in which one needs to decide if multiple testing has to be considered in

the interpretation of the test results. However, we only identified a few EPARs in which

this was explicitly stated (Mielke et al., 2018a). We discuss the implication of multiple

testing and propose solutions for handling multiplicity in a manageable way in biosimilar

development in Chapter 3.
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Chapter 3

Sample size for multiple

hypothesis testing in biosimilar

development

3.1 Contributed material

Mielke, J., Jones, B., Jilma, B. and König, F. (2018b): Sample size for multiple

hypothesis testing in biosimilar development. Statistics in Biopharmaceutical Research,

10 (1), 39–49.

Co-authors’ contribution: Franz Koenig proposed the project and gave advice during a

research stay at the Medical University of Vienna. Bernd Jilma contributed to the case

studies. Byron Jones helped with the interpretation of the results and the presentation

of the material.

3.2 Key results

One of the results of the systematic reviews presented in Chapter 2 was that sponsors

often set-up the clinical development programme of biosimilars in such a way that the

impact of multiple testing needs to be taken into account during the interpretation of

the results. In practice, however, this need is often ignored. For example, we identified

situations in which sponsors considered multiple treatment regimens within one study

(e.g., the pharmacokinetics (PK)/pharmacodynamics (PD)-trial undertaken for the ap-

plication of Tevagrastim (Lubenau et al., 2009) in which several doses and routes of

administration were compared) or situations in which the drug was tested in several
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3.2. Key results

patient populations (e.g., for the application of Abasaglar, the sponsor conducted one

Phase III study in patients with diabetes mellitus type 1 (Blevins et al., 2015) and one

Phase III study in patients with diabetes mellitus type 2 (Rosenstock et al., 2015)). Also,

in the regulatory guideline on non-clinical and clinical issues in biosimilar development

published by the EMA (CHMP, 2014a), it is recommended to show equivalence in PK

studies both for AUC (area under the drug concentration vs. time curve) and Cmax

(maximum concentration of the drug over time). Thus, multiple co-primary endpoints

must be considered.

In all these examples, it is desired that equivalence is shown for all treatment regimens,

endpoints and study populations. Since we need to reject all hypotheses, the Type I

error rate is controlled and no multiplicity adjustment is needed. This is also explic-

itly stated in the European public assessment report (EPAR) for Lusduna (CHMP,

2016): ”It should be noted that within the pharmacodynamics hypothesis and within

the pharmacokinetic hypothesis no multiplicity adjustment is applied, since the mean

treatment ratio for each endpoint needs to lie within (0.8, 1.25) to support the particular

primary hypothesis.” However, the Type II error rate (the sponsor’s risk that a study

fails) may be increased. Obviously, it is possible to reduce the Type II error rate to the

nominal level by increasing the sample size, but this consequence of using multiple tests

seems to be rarely considered in biosimilar development in practice. In what follows,

we use the term test in order to refer to the multiple treatment arms, studies or endpoints.

In the contributed paper, we first show the impact of multiple testing on the sample size

and illustrate that if equivalence on multiple tests has to be confirmed, the sample size

drastically increases. For example, in a situation in which 76 subjects would be required

for 80% power for an individual test, 134 subjects would be necessary for 80% power

for five uncorrelated tests. For details, we refer to the contributed paper. Although a

higher correlation between the tests decreases the required sample size, it is important

to emphasise that the correlation structure of the tests is often not known in practice

and this makes it difficult to make a reasonable assumption a priori. If uncorrelated

tests have to be assumed, the required sample size might be unrealistically high in the

framework of biosimilar development.

That is why we propose in the contributed paper a novel strategy for controlling the

effect of multiple testing in a manageable way in clinical biosimilar development. The

proposed strategy is motivated by an observation that we made in the first systematic
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review which is presented in Chapter 2 (Mielke et al., 2016): we noticed that biosimilars

gained approval, using the concept of totality of the data, even though not all primary

endpoints were successful. This happened, for example, in the case of the application

for Zarzio by Sandoz (CHMP, 2008) which is a biosimilar with the active substance

filgrastim. The sponsor submitted four PK/PD-studies in which four different doses (1,

2.5, 5, and 10 µg/kg) were assessed and one of the doses was studied in two routes of

administration. For the lower doses and after multiple subcutaneous doses, both the

endpoints Cmax and AUC failed to show equivalence of the biosimilar and the reference

product. Nevertheless, the EMA approved the product.

Therefore, in situations in which a very high sample size would be required to achieve a

reasonable probability to claim equivalence for all m multiple tests (m ∈ N), we propose to
claim success on the overarching hypothesis of biosimilarity if at least k (k ∈ {1, . . . ,m})
out of the m tests are successful and the choice of k has to be made during discussions

with the regulatory agency. The idea of rejecting an overarching hypothesis if at least k

out of m tests are successful was first introduced by Rüger (1978), but results on the

operating characteristics of such a test were, to the best of our knowledge, not published.

Formally, we assume that a finite number of statistical hypotheses H(1), . . . ,H(m) are

tested. Then, the overarching null hypothesis for the k-out-of-m-test is defined by

H0 : At least m− k + 1 null hypotheses H(i) are true, i = 1, . . . ,m,

and the overarching alternative hypothesis is given by

H1 : Less than m− k + 1 null hypotheses H(i) are true, i = 1, . . . ,m.

In other words, the aim is to reject the overarching null hypothesis if at least k individual

null hypotheses H(i) are false. The test decision of the k-out-of-m-test for this overarching

null hypothesis is to reject if and only if

m∑
i=1

r(i) ≥ k,

where r(i) gives the test decision for the individual hypothesis H(i) and is therefore the

realisation of a random variable R(i) that represents the test decision for hypothesis H(i)

with

R(i) =

⎧⎨⎩0, if the null hypothesis of test i is not rejected,

1, if the null hypothesis of test i is rejected.
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If multiple tests are conducted and it is not required that all tests are successful, then

the control of the familywise error rate (FWER, see, for example, Bretz et al. (2016)) is

not guaranteed if the significance level is not adjusted to account for multiple testing.

A simple multiplicity adjustment that leads to a controlled FWER is the Bonferroni

adjustment (see, for example, Bretz et al., 2016), where instead of the desired significance

level α, all m tests are conducted with a level α∗. The level α∗ is given by

α∗ =
1

m
· α.

The control of the FWER is very stringent. Therefore, the less stringent, so-called

k-FWER error rate control might be more appropriate for an application in practice.

The k-FWER was introduced by Lehmann and Romano (2005) and is given by

k-FWER = P{reject at least k hypothesis H(i) with i ∈ I},

where I ⊆ {1, . . . ,m} is the set of true null hypotheses. Hommel and Hoffmann (1988)

proposed an adjustment of the significance level that guarantees the control of the k-

FWER. Let α be the desired significance level. Then, the significance level α∗ for the m

individual tests is given by

α∗ =
k

m
· α.

We call this adjustment the k-adjustment in the following. In the contributed paper,

we investigate the performance of the k-out-of-m-test in a simulation study. We show

that this approach noticeably reduces the required sample size. For example, for the

scenario mentioned above for which 76 subjects are required for an individual test and

134 subjects are required for five uncorrelated tests, the sample size is reduced to 90

subjects for 4 out of 5 uncorrelated tests if the k-adjustment is used. A higher correlation

does not necessarily reduce the required sample size if the k-out-of-m-test is used, which

is contradictory to the situation in which equivalence has to be claimed on all hypotheses.

We also compare the different multiplicity adjustments (Bonferroni adjustment, k-

adjustment, no adjustment) in the simulation study and find that the number of additional

subjects, which are required if the k-adjustment is used instead of no adjustment is limited

if k is chosen to be close to m, which is the most relevant situation in practice. It is well-

known that the Bonferroni adjustment is conservative even in the case of k = 1 and even

more conservative for higher values of k. That is why the increase in sample size compared

to the k-adjustment or no adjustment can be extreme if the Bonferroni adjustment is used.
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The contributed paper concludes with case studies to illustrate the increase in sample

size in practice if multiple testing is taken into account. In addition, the advantage of

using the k-out-of-m-test is demonstrated.

3.3 Type I error rate control with the k-out-of-m-test

While the k-adjustment provides, especially in the context of totality of the data (see

Chapter 1), an attractive compromise between the control of false positive decisions on

the individual hypotheses H(i) (i = 1, . . . ,m) and a realistic sample size, it is important

to emphasise that the Type I error rate of the k-out-of-m-test is not controlled with

the k-adjustment: the k-adjustment controls the k-FWER only, i.e., the risk to observe

more than k false positive decisions on the individual hypotheses H(i). It is, however,

not necessary to make k wrong decisions on the individual hypotheses H(i) for making a

wrong decision on the overarching null hypothesis H0. Let us assume that k = 3 and

m = 5 are considered. Then, there could be, for example, three individual hypothe-

ses under the null hypothesis and two individual hypotheses for which the alternative

hypothesis would be the correct decision. In this situation, the correct test decision

on the overarching hypotheses would be for the null hypothesis. However, with just

one false positive decision for an individual hypothesis, we could reject the overarching

null hypothesis. In the multiple testing framework, the control of the FWER under

all possible configurations is called strong control whereas the control of the FWER

under the complete null hypothesis (all individual null hypotheses are true) is called

weak control (Bretz et al., 2016). We will use this terminology in the following even

though the k-out-of-m-test is not a classical multiple testing approach since finally only

one overarching test decision is made.

The k-adjustment controls the Type I error rate for the k-out-of-m-test if all individual

null hypotheses are true, i.e., it offers weak control of the Type I error rate for the

k-out-of-m-test. If strong control of the Type I error rate is required, the k-adjustment

is too liberal. In the following, we discuss a multiplicity adjustment that gives strong

Type I error rate control for the k-out-of-m-test.

More formally, we aim to control the Type I error rate at level α for the k-out-of-m-test.

Let I ⊆ {1, . . . ,m} be the set of true individual null hypotheses and F ⊆ {1, . . . ,m} be
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3.3. Type I error rate control with the k-out-of-m-test

the set of false individual null hypotheses with

I ∩ F = ∅ and I ∪ F = {1, . . . ,m}.

For controlling the Type I error rate with the k-out-of-m-test, it has to hold that

P (Decide for H1|H0 true) = P (Decide for H1| at least m− k + 1 hypotheses are in I)

≤ α.

Therefore, it is necessary to control the Type I error rate for all situations in which at least

m− k+1 individual null hypotheses are true, i.e., in situations in which m− k+1, . . . ,m

individual null hypotheses are true. Thus, it has to hold that

P (Decide for H1| |I| ≥ m− k + 1) =P ((Decide for H1| |I| = m− k + 1, |F | = k − 1)

∪ (Decide for H1| |I| = m− k + 2, |F | = k − 2)

∪ . . . ∪ (Decide for H1| |I| = m, |F | = 0)) ≤ α,

where |A| is the number of elements in a set A. Since one will be in exactly one of these

situations (a specific set of hypotheses will be true or false), it is sufficient to guarantee

that

P (Decide for H1| |I| = m− k + 1, |F | = k − 1) ≤ α,

P (Decide for H1| |I| = m− k + 2, |F | = k − 2) ≤ α,

...

P (Decide for H1| |I| = m, |F | = 0) ≤ α.

Therefore, it is necessary to identify a significance level α∗ that can be used for testing

the individual hypotheses H(1), . . . , H(m) such that these equations hold true. As an

example, let us again consider the situation with m = 5 and k = 3. Then, there are

three different combinations of number of tests under the null and alternative hypotheses

which could potentially lead to a false positive decision with the k-out-of-m-test: it could

be that all five null hypotheses are true or that four null hypotheses are true or that

three null hypotheses are true. Therefore, it is necessary to ensure that

P1 = P (Decide for H1| |I| = 3, |F | = 2) ≤ α,

P2 = P (Decide for H1| |I| = 4, |F | = 1) ≤ α,

P3 = P (Decide for H1| |I| = 5, |F | = 0) ≤ α.
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In the last scenario, all null hypotheses are true. That is why k = 3 wrong decisions on

the individual hypotheses H(1), . . . , H(m) are necessary for making a wrong decision with

the k-out-of-m-test. Thus, this is the situation for which the proposed k-adjustment is the

correct adjustment because it guarantees the control of the k-FWER. The k-adjustment

of the significance level α in this situation is given by

α∗
1 =

k

m
· α =

3

5
· α.

In the second situation, the rejection of two of the four true null hypotheses is required

for making a wrong test decision with the k-out-of-m-test (since one test is already under

the alternative), therefore by using the idea of the k-adjustment, we need to use

α∗
2 =

k − 1

m− 1
· α =

2

4
· α =

1

2
· α.

For the first situation, only one out of the three true null hypotheses has to be rejected

for making a wrong test decision with the k-out-of-m-test (since two tests are already

under the alternative). Therefore, the adjustment is given by

α∗
3 =

k − 2

m− 2
· α =

1

3
· α.

Since we do not know if we are in Situation 1, 2 or 3, we have to use the most conservative

adjustment, i.e., α∗
3 would be the correct multiplicity adjustment if the Type I error rate

of the k-out-of-m-test is to be controlled.

Next, we consider the general case of m tests out of which k have to be successful. Then,

the following potential multiplicity adjustments are obtained using the same strategy as

above:

α∗
1 =

k

m
· α (for |I| = m),

α∗
2 =

k − 1

m− 1
· α (for |I| = m− 1),

...

α∗
k =

1

m− k + 1
· α (for |I| = m− k + 1).

Since

k − l

m− l
≤ k

m

for l = 0, . . . ,k− 1, the adjustment of the significance level that offers strong Type I error

rate control for the k-out-m-test is given by

α∗ =
1

m− k + 1
· α.
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We will call this adjustment the t-adjustment in the following. Compared to the k-

adjustment which was proposed in the contributed paper and used

α∗ =
k

m
· α,

the t-adjustment is more stringent. The more stringent error control leads to a higher

number of subjects which are to be included in the study and this will be explored in the

following.

Figure 1 compares the minimal required sample size if the k-adjustment or the t-

adjustment is used for a target power of 80% for different levels of correlation ρ between

the tests. The results were generated assuming the same setting as the ones used for

Figure 3 in the contributed paper (Mielke et al., 2018b), i.e., we assume that m = 5 tests

are carried out and at least k = 1, . . . ,5 out of these 5 tests have to be successful. For full

details on the hypotheses which are to be tested and the assumed underlying distribution

of the tests, we refer to the contributed paper. The figure shows that the increase in

sample size is moderate if the t-adjustment is used instead of the k-adjustment.

k−adjustment

ρ

●
●

●

●

● ●

●

●
●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
5

0
1

0
0

1
5

0
2

0
0

N

t−adjustment

ρ

●
●

●

●

●
●

●

●
●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

● ●k=1 k=2 k=3 k=4 k=5 

Figure 1: Comparison of the total required sample size for 80% power for the k-out-

of-m-test using the k-adjustment and the t-adjustment. The required sample size is

displayed for m = 5 and k = 1, . . . ,5 for different levels of correlation ρ between the m

tests. The dashed line indicates the required sample size for a single test (m = k = 1).

Full information on the setting and the hypothesis testing can be found in Mielke et al.

(2018b).
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The final decision, which adjustment for multiplicity is to be used, depends on the

required control of false positive decisions and has to be made taking into account the

importance of the studies in the development programme in the context of the totality of

the data (see Chapter 1). If, for example, the concerned analyses are supportive only, one

might be willing to accept the weaker control of the k-FWER. On the other hand, if the

concerned tests are considered the most important piece of evidence, a stricter control as

achieved with the t-adjustment might be required.
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Chapter 4

Incorporating historical

information in biosimilar trials

4.1 Contributed material

Mielke, J., Schmidli, H. and Jones, B. (2018c): Incorporating historical information in

biosimilar trials: challenges and a hybrid Bayesian-frequentist approach. Biometrical

Journal, 60 (3), 564–582.

Co-authors’ contribution: Byron Jones gave advice during the development of the pro-

posed methodology and helped with the presentation of the material. Heinz Schmidli

provided information and advice on Bayesian methodology and commented on the

proposed approach.

4.2 Key results

Drug development is very expensive (DiMasi et al., 2003). Keeping the costs as low as

possible is important and especially essential in biosimilar development because biosim-

ilars are expected to be sold at a cheaper price than the reference product (Haustein

et al., 2012). One way to reduce the costs of development is to make the best use of all

available information. Since biosimilars are developed as copies of previously approved

products and these products have already been studied several times both prior to market

authorisation and in post-marketing trials, it seems natural to include the knowledge

gathered in these studies into the showing of equivalent efficacy of the biosimilar and its

reference product.
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However, it is well-known that the incorporation of historical information can lead to an

inflation of the Type I error rate in situations in which the data from the historical studies

do not match the data from the new trial (the so-called prior-data conflict, see Schmidli

et al., 2014). Since all studies in biosimilar development are confirmatory studies, we

expect that an inflation of the Type I error rate will not be acceptable – especially if this

inflation occurs in situations which are realistic in practice. In the contributed paper, we

focus on binary endpoints (e.g., responders vs. non-responders). Let pT and pR be the

true response rates of the biosimilar (test, T) and the reference product (R), respectively.

We test the hypotheses

H0 : |pR − pT | ≥ ∆ vs. H1 : |pR − pT | < ∆,

where ∆ ∈ R+ is a pre-specified value (the equivalence margin) and is the maximum differ-

ence such that the response rates are not considered different from a clinical point of view.

In the contributed paper (Mielke et al., 2018c), we assume a parallel groups design with n

subjects per sequence. Then, we first show that the goals of complete control of the Type

I error rate and a gain in power are incompatible if historical information is incorporated.

We use the robustified Meta-Analytic-Predictive (MAP) approach which was introduced

by Schmidli et al. (2014) as an example methodology. The MAP approach is one of

the frequently used methodologies for incorporating historical data. It falls into the

framework of Bayesian approaches and combines the information from the historical

trials into a prior distribution by taking the between-trial variation into account. The

main assumption for the approach is that the parameters of interest of the studies are

not identical but similar and the degree of similarity is quantified with a random-effects

meta-analytical model. The prior and the observed data in the study are combined using

Bayes’ theorem. As historical information is available for the reference product only, we

use the informative prior derived with the MAP approach for the reference product, but

assume a non-informative (uniform) distribution for the biosimilar. The decision whether

the biosimilar and the reference product are equivalent is made using a Bayesian success

criterion: let XT and XR be random variables that follow the posterior distributions of

the test and the reference products, respectively. Equivalence is claimed if

B := P (|XR −XT | < ∆) > c,

where c ∈ [0,1] has to be chosen such that the desired Type I error rate profile is achieved.

We first derive the Type I error rates of the MAP approach for several degrees of prior-

data conflict ranging from a perfect match between historical data and data in the new
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trial to a complete mismatch. We show that while the Type I error rate is controlled

in the case of no prior-data conflict, the Type I error rate is substantially inflated if

the mean value of the prior does not match the true response rate in the new study. It

is most concerning that this inflation also occurs in situations with a minor prior-data

conflict, i.e., in situations which are relevant in practice. That is why we conclude that

the Type I error rate profile which we obtain with the MAP approach is unlikely to be

accepted for regulatory approval in biosimilar development.
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Figure 2: Desired Type I error rate and power profile (black curve). The operating

characteristics of an (hypothetical) approach which is used as the benchmark are shown in

red (horizontal lines). The solid vertical line gives the mean value of the prior distribution

and the dotted vertical line indicate the boundaries of the interval C.

Figure 2 shows a Type I error rate and power profile that we would consider acceptable:

the Type I error rate (left panel) is controlled in a neighbourhood of the mean value

of the prior distribution. An inflation of the Type I error rate outside of this area is

acceptable since we are highly confident that the true response rate will lie inside of the

chosen neighbourhood of the mean value of the prior distribution. More formally, let p̄H

be the mean value of the prior distribution and δ ∈ R+ be the parameter that defines

the width of the controlled interval. Then, our aim is to control the Type I error rate for

all response rates of the reference product pR in the new study in the interval C:

C = [p̄H − δ, p̄H + δ].
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4.2. Key results

A gain in power is essential in the interval C. Outside of the interval, we accept a lower

power compared to the benchmark approach (see right panel in Figure 2).

We propose a novel hybrid Bayes-frequentist approach for incorporating the historical

data into the test decision on equivalent efficacy. This approach has an advantage in

terms of power against a standard frequentist approach that considers the data from the

new trial only while controlling the Type I error rate in the interval C. This is achieved

by the introduction of two switching rules and so-called response rate-dependent critical

values. For the first switching rule, we check if the observed response rate of the reference

product is very different from that of the historical data. As using historical data in the

case of a strong prior-data conflict is not desirable both in terms of power and in terms

of the Type I error rate, the historical data are ignored in this case. More formally, let

p̂R be the observed response rate of the reference product in the new study and p̄H be

the mean value of the prior distribution. If

|p̄H − p̂R| > γ1,

we ignore the historical data. The tuning parameter γ1 ∈ [0,1] has to be pre-specified.

The second switching rule aims to give an advantage in situations in which the response

rates of the biosimilar and the reference product are very similar in the new study: in

these situations, the estimate of the response rate of the reference product might be

pulled away from the estimated response rate of the biosimilar by the historical data

making the biosimilar and the reference product appear to be more different than they

actually are. We compare the Bayesian success criterion with a lower critical value

making it easier to reject in these situations. Let p̂T be the observed response rate of the

biosimilar in the new study and let γ2 ∈ [0,1] be a tuning parameter. Then, if

|p̂T − p̂R| < γ2,

we compare the Bayesian success criterion with a fixed value c̄ ∈ [0,1] which is also a

tuning parameter that has to be pre-specified. The response rate-dependent critical

values are motivated by the following: if an informative prior is used and combined with

the observed data using Bayes’ theorem, the Type I error rate is not constant for all

response rates of the reference product in the new study. There are situations in which

the approach is too liberal and situations in which the approach is too conservative. By

using different critical values for different response rates, we aim to flatten the Type I

error rate profile and to make it as constant as possible over the complete parameter
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space. The response rate-dependent critical values are determined by functions c1 and c2

which map the estimated response rate of the reference product to the critical value, i.e.,

c1, c2 : [0,1] → [0,1].

Choosing the functions c1 and c2 without any assumptions on the functional form is not

feasible. Therefore, we assume a logistic function with the parameters L (the minimal

value of the function), U (the difference between the minimal and maximal value of the

function), x0 (the sigmoid’s midpoint on the x-axis) and k (the steepness of the curve).

In addition, we assume that c1 and c2 are complements of each other, i.e.,

c1(x) = L+
U

1 + exp(−k(x− x0))
and c2(x) = L+

U

1 + exp(k(x− x0))
.

The main technical challenge of the proposed approach is the determination of the optimal

parameters of the functions c1 and c2 (L, U, x0, k) and the optimal tuning parameters

γ1,γ2 and c̄. A major simplification of this task is possible due to the discrete nature of

the problem which allows the calculation of the exact Type I error rates and the exact

values for power without using simulation. For that, we calculate the test decision for

all combinations of numbers of responders under reference and test treatment, rR and

rT , that can be observed in the new study. The test decision assuming the observed

values rR and rT are denoted by drT ,rR which is a binary variable with the value 1

if the test decision is for the alternative and 0 otherwise. For example, for n = 150

subjects per group in the new study, it is necessary to evaluate the test decision drT ,rR

for 1512 = 22801 scenarios. Finally, we combine the test decision with the probabilities

that a specific number of responders under reference and test treatment is observed and

these probabilities are denoted by P (X = rR) and P (Y = rT ), respectively. A binomial

distribution with the parameters pR or pT and the sample size of n subjects per group is

used for calculating the probabilities P (X = rR) and P (Y = rT ) for a specific scenario.

This leads to the exact rejection rate:

r =

n∑
rR=0

n∑
rT=0

P (X = rR)P (Y = rT )drT ,rR .

However, the determination of the optimal parameters is challenging even if the exact

rejection rates are used. In the contributed paper, we propose an algorithm that can be

used for identifying a reasonable set of parameters. We also explain how the approach

can be manually fine-tuned using a case study.
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In a simulation study, we confirm that this approach leads to the desired profiles of the

Type I error rate and power that are displayed in Figure 2. This is shown for one example

in Figure 3: the Type I error rate is controlled within the interval C which is indicated

by the vertical dotted lines. Outside of the interval, we observe an inflation of the Type I

error rate, but this is acceptable. In terms of power, we gain in the interval C more than

5% power compared to the so-called two-one-sided-test (TOST) approach (Schuirmann,

1987) which is the standard frequentist approach in this setting and considers the data

in the new study only (for details, see the contributed paper). Most power is gained in

the situation with no prior-data conflict.
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Figure 3: Operating characteristics for the novel hybrid approach and the TOST approach

(the frequentist approach which considers the data in the new study only). The mean

value of the prior distribution is indicated by the vertical solid line, the vertical dotted

lines indicate the boundaries of the interval C. The displayed Type I error rate is the

maximum of the two limiting scenarios of the null hypothesis: in one situation, the

response rate of the reference product is larger than the response rate of the test product

and in the other situation, it is the opposite. The absolute difference of the response

rates under test and reference treatment is ∆ (the equivalence margin) under the null

hypothesis (left panel) and 0 under the alternative hypothesis (right panel).
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Chapter 5

Efficient designs for the

estimation of self and

mixed-carryover effects

5.1 Contributed material

Mielke, J. and Kunert, J. (2018): Universally optimal crossover designs for the

estimation of mixed-carryover effects with an application to biosimilar development.

SFB 823, Discussion paper, 18 (3). DOI: 10.17877/DE290R-18786.

Kunert, J. and Mielke, J. (2018): Efficient designs for the estimation of mixed and self

carryover effects. SFB 823, Discussion paper, 18 (8). DOI: 10.17877/DE290R-18820.

Co-author’s contribution: Joachim Kunert supervised the research and gave advice on

the presentation of the material. In Kunert and Mielke (2018), Joachim Kunert derived

the adaptation of the Kushner method and the efficient designs for numbers of periods

p which can be written as p = 1 mod 4. The derivation of the upper bound for the

A-criterion was joint work.

5.2 Key results

This chapter deals with design considerations for the estimation of so-called mixed and

self-carryover effects. This term was first introduced by Afsarinejad and Hedayat (2002):

they suggested replacing the usual, first-order carryover effect which only depends on

the treatment in the immediately previous period by two different carryover effects per
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5.2. Key results

treatment. These effects depend both on the treatment in the immediately previous

period and on the treatment in the current period. A so-called mixed-carryover effect

occurs if the treatments in periods k and k − 1 differ and a self-carryover effect occurs

if the treatments in periods k and k − 1 are the same. The results presented in this

chapter build up upon work of Kunert and Stufken (2002, 2008) who studied optimal

designs for the estimation of the direct treatment effects in the presence of mixed and

self-carryover effects which were considered by the authors to be nuisance parameters.

Here, we aim to estimate mixed and self-carryover effects with the highest precision and

now the treatment effect serves as one of the nuisance parameters.

For introducing the idea of self and mixed-carryover effects more formally, we assume

that the response yu,r of subject u (u = 1, . . . ,n) in period r (r = 1, . . . ,p) can be written

as (Kunert and Stufken, 2002)

yu,r =

⎧⎨⎩αu + βr + τd(u,r) + ρd(u,r−1) + eu,r , if d(u,r) ̸= d(u,r − 1)

αu + βr + τd(u,r) + χd(u,r−1) + eu,r , if d(u,r) = d(u,r − 1)
, (5.1)

where d(u,r) gives the treatment applied to subject u in period r, αu is the subject

effect of subject u, βr is the period effect in period r, τi is the direct treatment effect of

treatment i (i = 1, . . . ,t), ρi is the mixed-carryover effect of treatment i and χi is the

self-carryover effect of treatment i. No carryover effect occurs in the first period, i.e.,

ρd(u,0) = χd(u,0) = 0. The residual error eu,r is assumed to be independent and identically

distributed with expectation 0 and variance σ2. We focus on the case in which two

treatments are considered (Test – T, Reference – R; t = 2) and assume at least 3 periods.

For determining efficient designs, we denote the set of all designs d with t treatments,

n subjects and p periods as Ωt,n,p. Using the notation of Kunert and Stufken (2002),

we define the matrices U = In ⊗ 1p (subject effect), P = 1n ⊗ Ip (period effect), Td

(treatment effect), Md (mixed-carryover effect) and Sd (self-carryover effect), where ⊗
denotes the Kronecker product, Im is the identity matrix of dimension m and 1m is a

vector of length m that only contains the entries 1. The model in vector notation can be

written as

y = Tdτ + Sdχ+Mdρ+Uα+Pβ + e,
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5.2. Key results

where τ is the vector of treatment effects, χ is the vector of self-carryover effects and ρ is

the vector of mixed-carryover effects. Also, α, β and e are the vectors of subject effects,

period effects and residual errors, respectively.

In the two contributed papers, we discuss efficient designs for the estimation of mixed

and/or self-carryover effects. In Mielke and Kunert (2018) (Section 5.2.1), we focus on the

determination of universally optimal designs for the estimation of mixed-carryover effects.

Universally optimal is a term introduced by Kiefer (1975). If all information matrices Cd

have row sums and column sums equal to 0, then a design d∗ is universally optimal if its

information matrix Cd∗ is completely symmetric and the design d∗ maximises the trace

of Cd over all d ∈ Ωt,n,p. A matrix A is called completely symmetric if it can be written

in the form

A = aI+ b11T ,

where a and b are real numbers. The information matrix for the estimation of the

mixed-carryover effects, which uses, amongst others, the self-carryover effects as nuisance

parameters, is given by

C̃
(1)
d = MT

d ω
⊥([P,U,Td,Sd])Md,

where ω⊥(A) = I−A(ATA)−AT is the projection on the space of all vectors that are

orthogonal to the columns of A and where AT is the transpose and A− is a g-inverse of A.

In Kunert and Mielke (2018) (Section 5.2.2), we focus on the simultaneous estimation of

all carryover effects,

δ =

(
χ

ρ

)
.

The information matrix for the joint estimation of mixed and self-carryover effects is

given by

C̃
(2)
d = [Sd,Md]

Tω⊥([P,U,Td])[Sd,Md].

The performance of the designs for the joint estimation of self and mixed-carryover

effects is assessed using the A-criterion. A design d∗ is called A-optimal, if the trace of

the inverse of the information matrix is minimal. An A-optimal design is therefore the

design with the minimal average variance of the estimators (Rodrigues and Iemma, 2014).

The trace of a matrix A is the sum of its eigenvalues. Therefore, if λ1, . . . ,λk are the k

non-zero eigenvalues of the matrix C̃
(2)
d , the A-criterion can be equivalently expressed as

φ̃A =

k∑
i=1

1

λi
,
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or, as we prefer to maximise the criterion instead of minimising it, as

φA =
1∑k

i=1
1
λi

. (5.2)

In both contributed papers, we realise that the information matrices have row and column

sums equal to 0 which allows the multiplication with a matrix Bq = ω⊥(1q) without

changing the result:

C̃
(1)
d = B2C̃

(1)
d B2,

C̃
(2)
d = B4C̃

(2)
d B4.

5.2.1 Mielke and Kunert (2018)

Since the row and column sums of C̃
(1)
d are 0, the concept of universally optimal is

applicable here. For identifying a design which is universally optimal, we need to

maximise the trace of the information matrix C̃
(1)
d . The strategy presented in this

contributed paper for identifying the universally optimal designs follows the ideas of

Kunert and Stufken (2002, 2008) and consists of two main steps: first, a matrix C
(1)
d

that is larger in the Loewner sense than the information matrix C̃
(1)
d is derived. For that,

we use Proposition 2 of Kunert (1983) which claims that

C̃
(1)
d = B2M

T
d ω

⊥([P,U,Td,Sd])MdB2 ≤ B2M
T
d ω

⊥([U,Td,Sd])MdB2 = C
(1)
d , say,

with equality if and only if

(MdB2)
Tω⊥([U,Td,Sd])P = 0. (5.3)

Since we can show that the condition stated in Equation (5.3) holds, an upper bound

for the trace of C
(1)
d is determined next and a class of designs is identified that reaches

this bound. It is important to note that there is always a dual-balanced design among

the optimal designs. A sequence s is called dual to a sequence s′ if sequence s can be

changed to sequence s′ by interchanging the two treatments (e.g., TRTR, dual sequence:

RTRT). A design d is dual-balanced if it uses sequence s exactly as often as sequence

s′. Therefore, without loss of generality, we focus on dual-balanced designs. Let x,y ∈ R
and l be an equivalence class of sequences which consists of a specific sequence s and its

dual-balanced sequence s′. The set of all equivalence classes l is denoted by L. We are

in the two-treatment case and we consider only dual-balanced designs and that is why

there are exactly 2p−1 different equivalence classes. We define

πd = (πd(1), . . . ,πd(2
p−1))T
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as a vector of length 2p−1 which gives the proportion of sequences of the design d that

belong to the lth equivalence class with

πd(l) ≥ 0 and
2p−1∑
l=1

πd(l) = 1.

Then, we use from Kunert and Stufken (2008) that for any design d ∈ Ω2,n,p,

tr
(
C

(1)
d

)
≤ n ·min

x,y

2p−1∑
l=1

πd(l)hl(x,y),

with

hl(x,y) = c11(l) + 2xc12(l) + x2c22(l) + 2yc13(l) + y2c33(l) + 2xyc23(l),

where the terms cij are derived in the contributed paper (Mielke and Kunert, 2018). Due

to the properties of πd (non-negative,
∑2p−1

l=1 πd(l) = 1), it is clear that

2p−1∑
l=1

πd(l)hl(x,y) ≤ max
l∈L

hl(x,y),

and therefore

tr
(
C

(1)
d

)
≤ nmin

x,y
max
l∈L

hl(x,y).

The main technical difficulty is the identification of numbers x∗ and y∗ and optimal

classes of sequences l∗ ∈ L such that

hl∗(x
∗,y∗) = min

x,y
max
l∈L

hl(x,y).

Calculations shown in the contributed paper lead to the conclusion that for sequences

with an even number of periods p, it is optimal to use different treatments in the first

and in the last period and to switch after each period, e.g., for six periods, it is optimal

to include the sequences TRTRTR and RTRTRT. For an odd number of periods, it is

optimal to end with the same treatment that was used in the first period and to switch

after each period, e.g., for five periods, it is optimal to include the sequences TRTRT

and RTRTR. Since the study design has to be dual-balanced, the number of subjects in

both sequences has to be the same.

We also discuss the inclusion of dummy treatments (periods with no treatment or placebo

treatment). This investigation is motivated by a finding by Kunert and Stufken (2008)

who showed that adding additional periods does not improve the design in a relevant
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way, but the inclusion of dummy treatments increases the precision of the estimators.

We achieve comparable results also in our cases. However, it is important to emphasise

that these findings highly depend on the model assumptions, e.g., the assumption that

only the treatment in period k − 1 is relevant in period k and earlier treatments have

already been washed out.

5.2.2 Kunert and Mielke (2018)

For the joint estimation of self and mixed-carryover effects, it is not possible to determine

universally optimal designs because the information matrix C̃
(2)
d is, even for efficient

designs, not completely symmetric. This is why we focus on A-optimality instead. Since

the optimality criterion used in Kunert and Stufken (2002) as well as in Kunert and

Stufken (2008) is universal optimality and not A-optimality, it is not possible to use

the same ideas and simply adjust their strategy to our scenario. This makes the task

presented in Kunert and Mielke (2018) more challenging than the one in Mielke and

Kunert (2018).

It is well-known that the information matrix C̃
(2)
d is in general not linear in its sequences,

i.e.,

C̃
(2)
d ̸= n

∑
s

πd(s)C̃
(2)
d,s,

where πd(s) is the proportion of subjects allocated to sequence s and C̃
(2)
d,s is the design

matrix of sequence s. Kushner (1997) proposed a methodology that splits the information

matrix into matrices C̃
(2)
dij which are linear in the sequences and used this decomposition for

deriving optimal designs. However, we note that the assumptions for the Kushner method

are not fulfilled in our setting (not all matrices C̃
(2)
dij are square matrices). Therefore,

in the first step of the paper, an adaptation of the Kushner method to our setting is

derived. With this result, it is possible to prove that an upper bound for the A-criterion

is given by

φA(d) ≤ n
(p− 1)(2p2 + 2p− 1)

4p(2p2 + 6p+ 3)
.

We determine efficient designs for p = 3 and p = 1 mod 4. For p = 3, there are only eight

possible sequences and since there is always a dual-balanced design among the optimal

designs, we only need to consider four out of these eight sequences. Then, it is possible
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to determine terms a, . . . ,f such that

1

n
C̃

(2)
d =

⎛⎜⎜⎜⎜⎝
a b e f

b a f e

e f c d

f e d c

⎞⎟⎟⎟⎟⎠ ,

and the non-zero eigenvalues of 1
nB4C̃

(2)
d B4 are then given by

λ1 =
a− b+ c− d

2
+

√
(e− f)2 +

(
c− d− a+ b

2

)2

,

λ2 =
a− b+ c− d

2
−

√
(e− f)2 +

(
c− d− a+ b

2

)2

,

λ3 =
a+ b+ c+ d

2
− e− f.

Using these results, it is possible to identify with a numerical search the optimal allocation

ratios to the four sequences. We find that it is optimal to allocate 9.51% of the subjects to

sequence TTT and its dual-balanced sequence RRR, 10.33% of the subjects to sequence

RTT and TRR, 16.84% of the subjects to RTR and TRT and 13.32% of the subjects to

RRT and TTR. The A-criterion for this design d1 is for n subjects in the study is given

by

φA(d1) = 0.0636n.

In practice, design d1 is not attractive because it takes a high number of subjects to

construct a design with these proportions. A design d2 with equal allocations to the

sequences has an A-criterion of

φA(d2) = 0.0628n,

and is therefore close to the A-criterion of the optimal design and might be preferred in

practice.

For p = 1 mod 4, we find that a study design with the sequences

s1 = [T R R T T R R . . .],

s2 = [R T T R R T T . . .],

s3 = [T T R R T T R . . .],

s4 = [R R T T R R T . . .],
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and an equal number of subjects allocated to each of these sequences achieves an efficiency

of at least

E(p) =
2p3 + 6p2 + 3p

2p3 + 8p2 + 5p− 3
,

where p is the number of periods. For p = 5, the efficiency is 0.88, for p = 10 it is already

0.92 and E(p) converges to 1 if p → ∞.

The analysis of mixed and self-carryover effects is closely related to the assessment of

switchability (i.e., can patients switch between the biosimilar and its reference product

without any impact on the treatment success) which is discussed in Chapter 6. In Section

6.3, we discuss in detail the performance of the study designs which were derived in Kunert

and Mielke (2018) for one of the proposed methodologies for testing for switchability and

confirm that the derived study designs have good characteristics for the assessment of

switchability in practice.
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Chapter 6

The assessment of switchability of

biosimilars

6.1 Contributed Material

Mielke, J., Woehling, H. and Jones, B. (2018d): Longitudinal assessment of the impact

of multiple switches between a biosimilar and its reference product on efficacy

parameters. Pharmaceutical Statistics, 17 (3), 231–247.

Co-authors’ contribution: Byron Jones gave advice during the development of the pro-

posed methodologies and helped with the presentation of the material. Heike Woehling

gave advice on practical considerations and on the case study.

6.2 Key results

Patients, physicians and health care providers in Europe have more than ten years of

experience with the use of biosimilars in practice. Nonetheless, there is still uncertainty if

patients who were already taking the reference product at the time when the biosimilar is

approved should switch to the biosimilar or if even multiple switches between a biosimilar

and its reference product are acceptable. That would allow a substitution of the reference

product with the biosimilar at pharmacy level without the approval of the prescribing

doctor which is accepted for generics in many countries already. The higher complexity

of biologics and the limited experience with biosimilars raise doubts if this should be

introduced for biosimilars as well. One way to reduce the uncertainty would be to conduct

a study specifically focussing on the question if switching influences the efficacy. To date,

there are only a few proposals for a statistical methodology for assessing switchability
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published (e.g., Zheng et al., 2017; Chow et al., 2013; Belleli et al., 2015) and none of these

methodologies is tailored to assess the impact of multiple switches on normally distributed

efficacy endpoints with a formal statistical testing procedure. In the contributed paper,

we develop three statistical tests for switchability and assess their properties in simulation

studies.

Before any statistical test can be developed, it is necessary to define the null and alternative

hypothesis that are to be tested. In the considered setting, the null hypothesis refers to

situations in which switching between the biosimilar and its reference product reduces

the efficacy of the treatment whereas the alternative hypothesis relates to situations in

which switching does not have any relevant negative impact on the treatment efficacy.

For translating these ideas into statistical terms, we use a linear mixed-effects model

yi,j,k = pk + ta(i,j,k) + Ia(i,j,k−1),a(i,j,k) + κi,j + ϵi,j,k, (6.1)

where the response of the ith subject (i = 1, . . . ,n) in period k (k = 1, . . . ,p) and sequence

j (j = 1, . . . ,q) is denoted by yi,j,k. We assume that the response depends on the period

effect pk, the effect of the treatment ta(i,j,k) (with a(i,j,k) = T if the test treatment, T,

was given to subject i in sequence j and period k and a(i,j,k) = R defined analogously

for the reference treatment, R), a switching effect Ia(i,j,k−1),a(i,j,k) (see below), the subject

specific effect κi,j which is constant over time and the residual error ϵi,j,k. The subject

effect and the residual error each follow a normal distribution with mean value equal

to 0 and variance σ2
s and σ2

e , respectively. The switching effect Ia(i,j,k−1),a(i,j,k) depends

only on the treatment in the immediately previous period and in the current period, i.e.,

we assume that the length of the periods is long enough such that the effects of earlier

treatments have already been washed out. In addition, we assume that a switch from T

to R leads to the same switching effect ITR as a switch from R to T which is denoted

by IRT . If subjects do not switch, i.e., the treatment in period k − 1 is the same as the

treatment in period k, the switching effect is set to 0. We aim to test for switchability

with the hypotheses

H0 : |ITR| = |IRT | ≥ ∆ vs H1 : |ITR| = |IRT | < ∆,

where ∆ ∈ R+ is the pre-specified equivalence margin.

In the contributed paper, we propose three statistical tests with significance level α for

assessing switchability. The first one (the estimation method) is based on estimating the

effect of switching and is therefore related to the estimation of mixed and self-carryover

38



6.2. Key results

effects that was discussed in Chapter 5. However, we make some changes so that the

methodology is fully tailored for the test for switchability and discuss the differences

between the models and its implications on the choice of the design in Section 6.3. For

the estimation method, we fit the linear mixed-effects model

yi,j,k = pk + ta(i,j,k) + c(j,k,k−1) + κi,j + ϵi,j,k, (6.2)

which uses the same notation as the model stated in Equation (6.1). The only difference

is that the switching effect in Equation (6.1), Ia(i,j,k−1),a(i,j,k), is replaced by a carryover

effect, c(j,k,k−1), which is a categorical factor with three levels (c0, c1, c2): we use the first

level c0 for all observations in the first period in which no switching effect is expected

and for subjects who do not change treatment from period k − 1 to period k (continuous

treatment with T or R). For subjects who are switching from T to R, the second level c1

is used and for subjects switching from R to T, the third level c2 is used. In total, the

carryover effect in the proposed model distinguishes between ”no switch”, ”switch R to

T” and ”switch T to R”.

Compared to the model stated in Equation (6.1) which is used for defining the null and

alternative hypothesis, we therefore allow in the estimation method for different effects

for a switch from T to R and for a switch from R to T. Thus, we make the estimation

method more flexible and in particular robust against deviation from the assumption

that a switch from R to T leads to the same effect as a switch from T to R. We use c0

as the reference level, i.e., c1 represents the effect of a switch from T to R compared

to continuous treatment and c2 gives the effect of a switch from R to T also compared

to continuous treatment (linear contrasts). As c0 is used as the reference category, this

effect is set to 0. The test decision is made based on comparing the estimated effects c1

and c2 to the α-quantiles of a multivariate normal distribution. The mean value and the

variance-covariance matrix of the distribution under the null hypothesis are derived in

the contributed paper.

The two other proposed methodologies are based on the idea of comparing predictions

and observations. For that, we assume a study design in which the sequences can be

split into switching sequences (subjects switch multiple times between the reference

product (R) and the biosimilar (T), e.g., treatment sequence TRTRTR, denoted by s)

and non-switching sequences (continuous treatment with the biosimilar or the reference

product, denoted by ns). Then, the longitudinal observations are split into two datasets

where the first dataset (the modelling dataset, M) consists only of one observation per
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subject which is known to be free of any switching effects and the second dataset (the

evaluation dataset, E) consists of all other observations. We fit a linear model to the

modelling dataset,

yi,j,k = pk + ta(i,j,k) + ϵi,j,k,

where the same notation as introduced above is used. Next, the responses for the

observations in the evaluation dataset are predicted using this model. The prediction

error for each observation, which is given by the difference between the observed response,

yi,j,k, and the predicted response, ŷi,j,k, is calculated:

ỹi,j,k = yi,j,k − ŷi,j,k, (i,j,k) ∈ E.

Both approaches compare the prediction errors of subjects in the switching sequences

with the prediction errors of subjects in the non-switching sequences. The so-called

quadratic prediction method is based on the mean squared differences (MSDs) of the

prediction errors in the switching and non-switching sequences which is given by

MSDns =
1

qns · n · (p− 1)

∑
(i,j,k)∈E,ns

ỹ2i,j,k and MSDs =
1

qs · n · (p− 1)

∑
(i,j,k)∈E,s

ỹ2i,j,k.

The parameters qns and qs denote the number of non-switching and switching sequences,

respectively. The test statistic uses the difference of the MSDs:

TMSD := MSDs −MSDns.

Small values indicate that the prediction errors are not larger for the switching sequences

than for the non-switching sequences and this is the situation in which the null hypothesis

is to be rejected and switchability can be claimed. Therefore, we reject the null hypothesis

if tMSD, the observed value of TMSD, is smaller than the α-quantile of the distribution

of TMSD under the null hypothesis. The derivation of this distribution is discussed in

the contributed paper.

The third proposed methodology (distribution prediction method) compares the dis-

tribution of the prediction errors in the switching and non-switching sequences with

the Kolmogorov-Smirnov distance (Massey Jr., 1951) which is given for two empirical

distribution functions F
(1)
n and F

(2)
n by

D = max
z∈R

|F (1)
n (z)− F (2)

n (z)|.

For a vector of observations, x = (x1, . . . ,xn), the empirical distribution function is

defined as

Fn(z) =
1

n

n∑
i=1

1xi≤z,
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with 1xi≤z being the indicator function. For the distribution prediction method, we

estimate the functions Fn for the switching and non-switching sequences. It is important

to emphasise that these are not ordinary distribution functions in our setting because the

prediction errors are not independent and also do not follow the same distribution. This

is why we call them estimated functions in the following. Let the estimated function for

the switching arms be denoted by F
(s)
n and the estimated function for the non-switching

arms be denoted by F
(ns)
n . Then, the test statistic is defined as

TDP = max
z∈R

|F (s)
n (z)− F (ns)

n (z)|.

If the biosimilar and its reference product are switchable, the observed test statistic

will be small because the distributions of the prediction errors will be comparable (the

alternative hypothesis). Therefore, the null hypothesis is rejected if the observed value

tDP of the test statistic TDP is smaller than the α-quantile of the distribution of the test

statistic under the null hypothesis. The distribution of the test statistic is approximated

by simulations and details are provided in the contributed paper.

We compare the three proposed methodologies in a simulation study assuming the model

which is given in Equation (6.1) for the simulation of the datasets. It is shown that

all three methods preserve the desired Type I error rate. The estimation method has

the highest power in all settings. However, that was expected because the estimation

method directly targets the change in mean and we use the same model for the simu-

lation of the datasets that is also used for the estimation of the switching effects. The

distribution prediction method has also high power, especially in situations in which

the true effect of IRT = ITR is small. These are the situations we consider most impor-

tant in practice. The quadratic prediction method has substantially lower power if the

variance of the subject effect and of the residual error are high and the sample size is

small. Therefore, it would be necessary to enroll more subjects if this method is to be used.

As a sensitivity analysis, we also consider a situation in which the switching effects IRT

and ITR are not fixed, but random effects with mean equal to 0 and variance σ2
I . This

setting refers to a situation in which switching has on average no impact on the efficacy of

the treatment, but patients who are switching experience an unstable treatment response

which might be disadvantageous for the patient and therefore a situation in which the

null hypothesis should not be rejected (i.e., switchability should not be claimed). In

simulations, we show that the estimation method is not sensitive to this deviation from

switchability. The quadratic prediction method can detect this setting easily while the
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distribution prediction method is less sensitive than the quadratic prediction method but

more sensitive than the estimation method. In total, we conclude that the preference for a

specific method depends on the expectation and experience with the impact of switching.

If, for example, it is clear that the only impact could be on the mean value, it would

be best to choose the estimation method. However, if there is uncertainty whether also

other deviations from switchability can occur, it might be better to choose the quadratic

prediction method which can detect various deviations from the switchable setting. As

the sample size for the quadratic prediction method has to be much higher compared to

the other methods in some situations, and the high sample size might not be feasible due

to practical reasons, the distribution prediction method might be a good compromise.

6.3 Design considerations for the estimation method and

the performance of designs used in practice for the

joint estimation of self and mixed-carryover effects

In Chapter 5, we derived efficient designs for the joint estimation of mixed and self-

carryover effects (Kunert and Mielke, 2018) using the linear model (see Equation (5.1),

Section 5.2)

yu,r =

⎧⎨⎩αu + βr + τd(u,r) + ρd(u,r−1) + eu,r if d(u,r) ̸= d(u,r − 1)

αu + βr + τd(u,r) + χd(u,r−1) + eu,r if d(u,r) = d(u,r − 1)
,

where d(u,r) gives the treatment of subject u (u = 1, . . . ,n) in period r (r = 1, . . . ,p), αu

is the subject effect of subject u, βr is the period effect in period r, τi is the treatment

effect of treatment i (i = 1, . . . ,t), ρi is the mixed-carryover effect of treatment i, χi is

the self-carryover effect of treatment i and eu,r is the residual error of subject u in period

r. The estimates of the mixed and self-carryover effects can be used for the assessment

of switchability since these quantities give the effect of continuous treatment with the

biosimilar or the reference product (self-carryover effects) and the effect of switching

from the biosimilar to its reference product or vice versa (mixed-carryover effects).

The estimation method proposed in Section 6.2 (Mielke et al., 2018d) implicitly uses

the idea of comparing the mixed and the self-carryover effects by estimating the effect

of switching (the mixed-carryover effects) compared to continuous treatment with test

or reference (the self-carryover effects). However, it is important to note that the
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model used for the estimation method (Equation (6.2), see Section 6.2) differs from the

model with self and mixed-carryover effects (Equation (5.1), see Section 5.2) in several

aspects: (1) the fixed subject effect is replaced with a random subject effect, (2) the two

self-carryover effects are combined into one effect and there is no distinction between

continuous treatment with T or with R, (3) it is assumed in the estimation method

that the carryover effect in the first period is the same as the self-carryover effect of T

or R. In order to show the close relationship between the two models, we first neglect

the differences (1) and (3) and assume that all self and mixed-carryover effects appear

equally often in the study design. Then, the coefficients c1 and c2 (the effect of switching

from R to T and from T to R, respectively, compared to continuous treatment with T or

R) which are used in the estimation method can be written as linear contrasts of the

self-carryover effects χi and mixed-carryover effects ρi:

c1 = ρT − 1

2
(χR + χT ),

c2 = ρR − 1

2
(χR + χT ).

Therefore, due to the close relationship between the estimation method and the self and

mixed-carryover effects, one might wonder if the efficient designs for the estimation of

the mixed and self-carryover effects that were derived in Chapter 5 are also useful if

the planned analysis of the study is conducted with the estimation method. This will

be explored in the following. For that, we assume the model of the estimation method

which is introduced in Equation (6.2) in Section 6.2 (Mielke et al., 2018d), but replace

the random subject effects with fixed subject effects.

Using the notation introduced in Kunert and Mielke (2018), we define the design matrices

U (fixed subject effect), P (period effect) and Td (treatment effect). Instead of defining

the mixed and self-carryover effects as in Chapter 5, we introduce the design matrix of a

carryover effect c̃(j,k,k−1) and denote it with Co. This carryover effect has three levels,

i.e.,

c̃(j,k,k−1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c̃0 , if the treatments in period k and k − 1 is the same or k = 1,

c̃1 , if the treatment in period k was R and in period k − 1 was T,

c̃2 , if the treatment in period k was T and in period k − 1 was R.

Then, the information matrix of the carryover effect c̃(j,k,k−1), which is taking into account

the nuisance parameters period, subject and treatment, is given by

Ce = CT
o ω

⊥([U,P,Td])Co,
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where ω⊥(A) is a projection matrix as introduced in Chapter 5. Since the estimation

method considers the linear contrasts between c̃1 and c̃0 and between c̃2 and c̃0, we define

c1 = c̃1 − c̃0,

c2 = c̃2 − c̃0.

For deriving the A-criterion of optimality (see Equation (5.2)) of the estimation method,

it is necessary to define a matrix that gives these linear contrasts, i.e., a matrix L ∈ R2×3

such that (
c1

c2

)
= L

⎛⎜⎜⎝
c̃0

c̃1

c̃2

⎞⎟⎟⎠ ,

and this matrix L is given by

L =

(
−1 1 0

−1 0 1

)
.

Then, the A-criterion can be calculated based on the information matrix

C∗
d = (LC−

e L
T )−,

where A− is a g-inverse of a matrix A.

As examples, we consider designs with five periods and four sequences and compare the

A-criterion for the efficient design that was derived in Kunert and Mielke (2018) to the

study design of the EGALITY study (Griffiths et al., 2017) and the design where the

sequences can be split into switching and non-switching sequences (switching design)

which is the study design that is the foundation for the work in this chapter. The

sequences of the study designs are displayed in Table 1. The design used by Griffiths et al.

(2017) differs from the switching design only in the last period where patients in Griffiths

et al. (2017) stay on the previous treatment while patients in the switching design switch

once more. Table 1 also give the A-criteria (see Equation (5.2)) assuming one subject per

sequence. It is shown that the design proposed by Kunert and Mielke (2018) is not only

efficient for the estimation of self and mixed-carryover effects but has also good properties

for the estimation method. In contrast, the design used by Griffiths et al. (2017) and the

switching design have a much lower A-criterion. Therefore, if a study is planned that is

to be analysed with the estimation method, using the study design proposed by Kunert

and Mielke (2018) is preferred over the study design by Griffiths et al. (2017) which is

the design that was already used in practice. It should be noted that the results obtained
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in Mielke and Kunert (2018) are not directly applicable to this scenario because the

optimal designs derived in Mielke and Kunert (2018) did not allow for the estimation of

the self-carryover effects and this is required for the estimation method (see Section 6.2).

Table 1: Three study designs and their A-criteria (see Equation (5.2)) for the estimation

method (Mielke et al., 2018d, assuming a fixed subject effect). A high value of the

A-criterion is desirable.

Study design Seq. 1 Seq. 2 Seq. 3 Seq. 4 A-criterion

Kunert and Mielke (2018) RRTTR TTRRT TRRTT RTTRR 1.0769

Griffiths et al. (2017) RTRTT TRTRR TTTTT RRRRR 0.3962

Switching design RTRTR TRTRT TTTTT RRRRR 0.25

Finally, one might wonder how the design proposed by Griffiths et al. (2017) performs in

terms of the A-criterion if the goal of the study is to estimate the self and mixed-carryover

effects in the model discussed in Kunert and Mielke (2018) (see Equation (5.1)). For

that, we compare the A-criteria using the information matrix

C̃
(2)
d = [Sd,Md]

Tω⊥([P,U,Td])[Sd,Md],

where Md is the design matrix of the mixed-carryover effects, Sd is the design matrix

of the self-carryover effects and all other notation is as introduced above. For further

details, we refer to Chapter 5.

Table 2 shows the results: the design derived in Kunert and Mielke (2018) outperforms

the design proposed by Griffiths et al. (2017) and the switching design. However, the

absolute difference in the A-criterion between the designs is smaller for the estimation of

the self and mixed-carryover effects (information matrix C̃
(2)
d , see Table 2) than for the

estimation method (information matrix C∗
d, see Table 1).

It is important to acknowledge that the study design used by Griffiths et al. (2017) was

not optimised for the estimation method or the estimation of self and mixed-carryover

effects. In addition, study designs in practice are not purely chosen due to an optimality

criterion, but also for operational characteristics (e.g., is the required treatment sequence

feasible in patients) or regulatory considerations (e.g., is there a recommended study

design by regulatory authorities). However, if focussing on the A-criterion only, we point
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out that the design proposed in Kunert and Mielke (2018) has a higher efficiency than

the design used by Griffiths et al. (2017) both if the estimation method is used or if the

self and mixed-carryover effects are estimated. Therefore, the derived design might be a

candidate which is worth considering if an analysis related to the estimation of self and

mixed-carryover effects is planned.

Table 2: Three study designs and their A-criteria (see Equation (5.2)) for the estimation

of self and mixed-carryover effects using the model which is stated in Equation (5.1)

(Kunert and Mielke, 2018). A high value of the A-criterion is desirable.

Study design Seq. 1 Seq. 2 Seq. 3 Seq. 4 A-criterion

Kunert and Mielke (2018) RRTTR TTRRT TRRTT RTTRR 0.5

Griffiths et al. (2017) RTRTT TRTRR TTTTT RRRRR 0.3434

Switching design RTRTR TRTRT TTTTT RRRRR 0.25
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