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Abstract

The partition of unity finite element method (PUFEM) proposed in this paper makes it possible
to blend space and time approximations of different orders in a continuous manner. The lack of
abrupt changes in the local mesh size h and polynomial degree p simplifies implementation and
eliminates the need for using sophisticated hierarchical data structures. In contrast to traditional
hp-adaptivity for finite elements, the proposed approach preserves discrete conservation properties
and the continuity of traces at common boundaries of adjacent mesh cells. In the context of space
discretizations, a continuous blending function is used to combine finite element bases corresponding
to high-order polynomials and piecewise-linear approximations based on the same set of nodes.
In a similar vein, spatially partitioned time discretizations can be designed using weights that
depend continuously on the space variable. The design of blending functions may be based on
a priori knowledge (e.g., in applications to problems with singularities or boundary layers), local
error estimates, smoothness indicators, and/or discrete maximum principles. In adaptive methods,
changes of the finite element approximation exhibit continuous dependence on the data. The
presented numerical examples illustrate the typical behavior of local H1 and L2 errors.

Keywords: conservation laws, finite element methods, hp-adaptivity, discrete maximum prin-
ciples, limiting techniques, partitioned time-stepping schemes

1 Introduction

Many advanced methods for numerical solution of partial differential equations vary the local mesh
size h or the order p of polynomial approximations to capture small-scale effects and produce highly
accurate predictions to the quantities of interest in an efficient manner. Prominent representatives of
such high-resolution schemes include hp-adaptive finite element methods [14, 29, 32], flux-corrected
transport (FCT) algorithms [27, 29, 28], and variable-order time integration schemes [16, 34].

In the process of hp-adaptation, local error indicators, smoothness sensors, and/or projections of
reference solutions are employed to determine an optimal combination of h and p for each macrocell
[9, 10]. Then new finite element spaces are generated using refinement or coarsening procedures which
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typically require implementation of certain measures to preserve continuity of finite element shape
functions and/or fluxes across the internal boundaries of mesh cells [5, 33]. The outcome of this
adaptation procedure depends on many binary decisions and small changes of the data may produce
entirely different finite element spaces. Moreover, the large number of ways in which anisotropic
hp-refinement/coarsening can be performed makes it very difficult to identify the best choices.

High-resolution finite element schemes based on the FCT methodology and similar ideas [4, 20,
27, 28, 29] enforce monotonicity preservation using limiters to construct convex combinations of fluxes
or element contributions associated with pairs of alternative approximations. This approach makes
it possible to prove discrete maximum principles and existence of a solution to the nonlinear discrete
problem [4, 6, 7]. In contrast to hp-FEM, algebraic limiting techniques of this kind do not change the
finite element space. The formation of spurious undershoots or overshoots at nodes belonging to trou-
bled cells is prevented by adding some artificial diffusion to a high-order approximation. The discrete
nature of such corrections makes it difficult to design limiter functions that guarantee both mono-
tonicity and optimal accuracy for problems with smooth exact solutions. In addition, the convergence
behavior of iterative solvers for resulting nonlinear systems may be unsatisfactory [4, 27].

In this paper, we explore the possibility of combining pairs of finite element spaces or time-stepping
schemes using globally defined blending functions instead of edge-based or element-based algebraic
limiters defined in terms of nodal correction factors. The proposed approach formally represents a
partition of unity finite element method (cf. [31]). It blends a space of large high-order elements
V H
h = Sph,p, p ≥ 2 with the space V L

h = Sh,1 corresponding to the piecewise-linear approximation
w.r.t. the same nodes. This kind of hp-adaptation preserves not only global continuity of conforming
finite element spaces but also the number of local degrees of freedom per element.

The local order of the time discretization can also be adjusted using partition of unity methods.
As shown in [16, 22, 23, 34], the use of space-adaptive time discretizations makes it possible to achieve
stability, monotonicity, optimal accuracy, and/or discrete conservation without sacrificing other favor-
able properties. For example, spatially partitioned embedded Runge-Kutta methods (SPERK) [22, 23]
combine complementary advantages of different time discretizations by using convex combinations of
semi-discrete equations or numerical fluxes. In flux-based formulations, the degree of implicitness and
order of accuracy can be locally adjusted using flux limiters [16, 23, 34]. In the present paper, we
consider continuous finite element approximations in which the fluxes are defined not only on the
boundaries of mesh cells but also inside. Therefore, the design of spatially partitioned time-stepping
schemes calls for the use of modified flux approximations in the variational formulation. The proposed
use of continuous blending functions in this context leads to handy generalizations of partitioned time
integrators for finite difference and finite volume discretizations of conservation laws.

The presented numerical examples indicate that the use of high-order spatial or temporal approx-
imations in smooth regions delivers the optimal order of accuracy in corresponding subdomains.
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2 Partitioned space discretizations

Let Sph,p ⊂ H1
0 (Ω) ∩ C(Ω̄) denote the space of continuous piecewise-polynomial functions such that

uh|K ∈ Pp(K) or uh|K ∈ Qp(K) for each uh ∈ Sph,p, p ∈ N and each element K ∈ Tph of a conforming
finite element mesh Tph. Consider a continuous high-order finite approximation uHh ∈ Sph,p to the

solution u of an initial/boundary value problem. The corresponding shape function ue,Hh can be

expressed in terms of N e
dof Lagrange or Bernstein [1, 2, 24] basis functions ϕe,H1 , . . . , ϕe,HNe

dof
associated

with the nodal points xe1, . . . ,x
e
Ne

dof
. A piecewise-linear or multilinear approximation ue,Lh based on the

same set of nodes can be constructed using the P1 or Q1 Lagrange basis functions ϕe,L1 , . . . , ϕe,LNe
dof

. The

superscripts H and L refer to the basis functions of the high-order and low-order finite element space,
respectively. If ϕH,ei are Lagrange basis functions, then the nodal values of the shape functions ue,Hh
and ue,Lh coincide. In the context of Bernstein polynomial approximations, the local basis functions

ϕL,ei are associated with the nodes of the Bèzier net [18]. The finite element spaces

V H
h = span{ϕH1 , . . . , ϕHNdof

} = Sph,p

and
V L
h = span{ϕL1 , . . . , ϕLNdof

} = Sh,1

are spanned by the same number Ndof of global basis functions and these basis functions are associated
with the same nodes. However, the approximation properties of the spaces V H

h and V L
h are quite

different. Adopting the design philosophy behind hp-FEM and FCT-like algebraic fixes, we would like
to use the high-order approximation ue,Hh in ‘smooth’ cells and the low-order approximation ue,Lh in
‘troubled’ cells. The basis functions spanning an hp-adaptive finite element space

Vh(αh) := span{ϕ1, . . . , ϕNdof
} ⊂ Sh,p+1 (1)

can be defined by

ϕi(x) = αh(x)ϕHi (x) + (1− αh(x))ϕLi (x), x ∈ Ω̄, i = 1, . . . , Ndof , (2)

where αh is a blending function which yields a convex average of ϕHi and ϕLi . The use of a piecewise-
constant basis selector (αeh ≡ 1 or αeh ≡ 0 in Ke ∈ Tph) may produce a discontinuous global approxi-
mation. Instead, we propose the use of continuous piecewise-linear blending functions

αh =

Ndof∑
i=1

αiϕ
L
i ∈ V L

h . (3)

The partition of unity (PU) parameters αi ∈ [0, 1] may be defined using bound-preserving limiters or
smoothness indicators that depend on the solution in a continuous manner, see Section 4.

If αh is sufficiently smooth, the partitioned scheme is guaranteed to be at least as accurate as the
V L
h approximation. To show this, we consider a generic boundary value problem of the form

a(u, v) = b(v) ∀v ∈ V, (4)
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where a : V × V → R is a coercive and continuous linear form and b : V → R is a continuous linear
form on V := H1

0 (Ω). Let uh ∈ Vh(αh) be the solution of the discrete problem

a(uh, vh) = b(vh) ∀vh ∈ Vh(αh). (5)

Using the Galerkin orthogonality, coercivity, and continuity, the best approximation property

∃C > 0 ∀wh ∈ Vh(αh) ‖u− uh‖1,Ω ≤ C‖u− wh‖1,Ω (6)

can be shown as in Céa’s lemma. Let wh = αhIph,pu+ (1− αh)Ih,1u ∈ Vh(αh) be defined in terms of
the interpolants Ih,1u ∈ V L

h and Iph,pu ∈ V H
h such that Ih,1u(xi) = u(xi) = Iph,pu(xi) at each node xi

of the submesh Th. Suppose that |∇αh(x)| ≤ Cα ∈ R+ for all h and all x ∈ Ω. For any w ∈ V we have

‖αhw‖21,Ω = (αhw,αhw)0,Ω + (w∇αh + αh∇w,w∇αh + αh∇w)0,Ω

= ‖αhw‖20,Ω + ‖αh∇w‖20,Ω + (w2, |∇αh|2)0,Ω + 2(αh∇αh, w∇w)0,Ω.

The last term can be estimated as follows:

2(αh∇αh, w∇w)0,Ω = 2

∫
Ω
αhw∇αh · ∇wdx ≤ 2

∫
Ω
αh|w| |∇αh| |∇w|dx

≤ 2Cα

∫
Ω
αh

(
1

2
|w|2 +

1

2
|∇w|2

)
dx ≤ Cα‖w‖21,Ω,

where we have used Young’s inequality and the fact that 0 ≤ αh ≤ 1. It follows that

‖αhw‖21,Ω ≤ ‖w‖20,Ω + ‖∇w‖20,Ω + C2
α‖w‖20,Ω + Cα‖w‖21,Ω ≤ (1 + Cα)2‖w‖21,Ω.

Using the triangle inequality, we obtain the worst-case a priori error estimate

‖u− wh‖1,Ω ≤ ‖αh(u− Iph,pu)‖1,Ω + ‖(1− αh)(u− Ih,1u)‖1,Ω
≤ (1 + Cα)(‖u− Iph,pu‖1,Ω + ‖u− Ih,1u‖1,Ω) ≤ (1 + Cα)(C1 + Cph

p−1)h|u|2,Ω (7)

for u ∈ H2(Ω) under usual assumptions regarding the mesh refinement strategy. The optimal order
p of the high-order finite element approximation is preserved for blending functions αh satisfying
‖(1 − αh)(u − Ih,1u)‖1,Ω ≤ C‖αh(u − Iph,pu)‖1,Ω for some C > 0. An a priori estimate of the global
L2 error can be obtained using the Aubin-Nitsche duality argument (see, e.g., [25]). In practice, the
optimal H1 and L2 convergence behavior can be achieved in the core of subdomains where αh equals 1.
A numerical study of local errors for the Poisson equation is presented in Section 5.1.

3 Partitioned time discretizations

Continuous blending functions can also be used to combine time discretizations of different orders.
The Galerkin finite element discretization of the time-dependent scalar conservation law

∂u

∂t
+∇ · f(u) = 0 in Ω ⊂ Rd, d ∈ {1, 2, 3} (8)
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leads a semi-discrete variational problem of the form

d

dt

∫
Ω
ϕiuhdx =

∫
Ω
∇ϕi · f(uh)dx−

∫
∂Ω
ϕif(uh) · nds, i = 1, . . . , Ndof , (9)

where n is the unit outward normal. Summing over i and using the partition of unity property

Ndof∑
i=1

ϕi ≡ 1 (10)

of Lagrange and Bernstein basis functions, we find that uh satisfies the integral conservation law

d

dt

∫
Ω
uhdx = −

∫
∂Ω

f(uh) · nds. (11)

Let unh denote the approximation to uh at the discrete time level tn = n∆t, where ∆t is the time
step. Introducing the blending function θnh : Ω→ [0, 1], we define the convex average

un+θ
h := θnhu

n+1
h + (1− θnh)unh (12)

and discretize (9) in time using the following generalization of the two-level θ-scheme∫
Ω
ϕiu

n+1
h dx =

∫
Ω
ϕiu

n
hdx + ∆t

[∫
Ω
∇ϕi · f(un+θ

h )dx−
∫
∂Ω
ϕif(u

n+θ
h ) · nds

]
. (13)

The use of θh ≡ θ ∈ {0, 1
2 , 1} yields the forward Euler, Crank-Nicolson, and backward Euler methods,

respectively. The discrete conservation property is preserved for arbitrary blending functions since∫
Ω
un+1
h dx =

∫
Ω
unhdx−∆t

∫
∂Ω

f(un+θ
h ) · nds. (14)

The proposed approach leads to a continuous finite element version of flux-based partitioned schemes
for finite difference and finite volume discretizations of conservation laws [16, 23, 34]. For a comprehen-
sive review and analysis of such schemes, we refer the reader to Ketcheson et al. [22, 23]. We envisage
that similar ideas can be used to design spatially partitioned Runge-Kutta schemes for finite element
discretizations. The need to invert consistent mass matrices in explicit schemes can be avoided, e.g.,
using deferred correction methods [1] or truncated Neumann series approximations [19, 20].

A typical application which calls for the use of a non-constant blending function θh in the gen-
eralized θ scheme (12),(13) is the small cut cell problem. Explicit schemes based on the embedded
boundary cut cell methodology are subject to time step restrictions depending on the size of the small-
est subcells. As shown by May and Berger [30], an implicit treatment of cut cells makes it possible to
circumvent these severe time restrictions while using computationally efficient explicit time integra-
tion in regular cells. The design of such implicit-explicit (IMEX) methods is generally rather difficult
due to the need to preserve consistency and conservation properties in applications to evolutionary
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problems. The proposed use of continuous blending functions provides a very simple and flexible tool
for combining different time discretizations in a consistent and conservative manner. The numerical
study in Section 5.3 indicates that second-order overall accuracy can be achieved for ∆t = O(h2) using
a spatially partitioned θh scheme. Moreover, the use of θh = 1

2 in subdomains where rapid changes of
the exact solution occur is likely to have the same positive impact on the local accuracy of temporal
discretization as the use of αh = 1 in the context of partitioned space discretizations.

4 Design of blending functions

Optimal design of blending functions for space and time discretizations depends on the local smooth-
ness of the solution and on the adaptation criteria. Many useful error estimation techniques and
refinement strategies can be found in the literature on hp-FEM. The proposed partition of unity ap-
proach can be used to prevent violations of discrete maximum principles which are possible even for
the Poisson equation if high-order finite elements are employed [12, 21]. Since the discrete Laplace
operator of the piecewise-linear discretization is known to be monotone under certain restrictions on
the geometric properties of mesh elements [13, 17], formation of undershoots and overshoots can be
ruled out by setting αi = 0 at nodes of elements containing local extrema. Limiter functions based
on this design criterion can be found, e.g., in [4, 6, 7, 27, 20]. In applications to hyperbolic conserva-
tion laws and anisotropic diffusion problems, discrete maximum principles can be enforced by using
monotonicity-preserving artificial diffusion in P1/Q1 subdomains. The loss of accuracy at smooth local
extrema can be avoided using continuous interpolants of nodal smoothness indicators [9, 26, 28].

5 Numerical experiments

In this section, we perform numerical studies illustrating the use of continuous blending functions as
a tool for the design of adaptive finite element spaces and explicit-implicit time discretizations. In
appendix A we briefly describe some details of the numerical implementation.

5.1 Poisson’s equation in 2D

In the first numerical example, we study the local convergence behavior of a variable-order finite
element approximation uh to the solution of the 2D elliptic boundary value problem

−∆u = f, in Ω,

u = 0, on ∂Ω.

The domain of interest is Ω = (0, 1)2. The right-hand side

f(x, y) = 8π2 sin(2πx) sin(2πy)

of the Poisson equation is obtained by differentiating the exact solution

u(x, y) = sin(2πx) sin(2πy).
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Let uHh = u2h,2 denote the Q2 approximation on a uniform Cartesian mesh T2h. Then uLh = uh,1 is
the Q1 approximation on the submesh Th. The corresponding finite element spaces V H

h = S2h,2 and
V L
h = Sh,1 are combined using a blending function αh ∈ V L

h , as defined by (3) and shown in Fig. 1(a).
In this test, we use αi = H (xi − 0.5), where H : [0, 1]→ [0, 1] is the Heaviside function defined by

H(x) :=


1 if x > 0.5,
1
2 if x = 0.5,

0 if x < 0.5.

(15)

The total number of degrees of freedom is Ndof = Nx ×Ny, where Nx = 1
h + 1 = Ny is the number of

grid lines parallel to the x- and y-axes. In Figs 1(b,c), we show the distribution of the pointwise error

e(x, y) = u(x, y)− uh(x, y)

for the partitioned finite element approximation uh ∈ Vh(αh) on meshes corresponding to 3212 and
6412 DOFs. As expected, smaller errors are observed in the subdomain discretized using Q2 elements.

(a) Blending function αh (b) Error |e|, Ndof = 3212 (c) Error |e|, Ndof = 6412

Figure 1: Blending function and error for the 2D Poisson test.

For a quantitative assessment of local errors, we compute the L2 and H1 norms ‖e‖0,D and ‖e‖1,D
of the absolute error for D = {Ω,Ω1,Ω2}, where Ω1 = {(x, y) ∈ Ω | x < 0.5 − h} and Ω2 = {(x, y) ∈
Ω | x > 0.5 + h}. By definition of αi, the Q1 approximation on small cells of the submesh Th is used
in Ω1, whereas the Q2 approximation on large cells of the mesh T2h is employed in Ω2. A continuous
transition between the corresponding finite element spaces occurs in the buffer zone Ω\(Ω1∪Ω2). The
results of a grid convergence study are shown in Table 1. Note that the optimal Q2 convergence rates
are obtained in the subdomain Ω2. The errors in Ω and Ω1 exhibit the Q1 convergence behavior.

5.2 Steady advection-diffusion in 2D

In the second numerical example, we solve the 2D stationary advection-diffusion equation

v · ∇u− ε∆u = 0 in Ω = (0, 1)2 (16)
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Domain: Ω Domain: Ω1 Domain: Ω2

Nx ×Ny ||e||0,Ω ||e||1,Ω ||e||0,Ω1
||e||1,Ω1

||e||0,Ω2
||e||1,Ω2

212 3.49E-3 – 2.87E-1 – 3.42E-3 – 2.83E-1 – 6.55E-4 – 4.35E-2 –
412 8.63E-4 2.01 1.42E-1 1.01 8.59E-4 1.99 1.42E-1 0.99 8.56E-5 2.93 1.12E-2 1.95
812 2.15E-4 2.00 7.12E-2 1.00 2.14E-4 1.99 7.12E-2 0.99 1.09E-5 2.97 2.84E-3 1.97
1612 5.38E-5 2.00 3.56E-2 1.00 5.38E-5 1.99 3.56E-2 0.99 1.38E-6 2.98 7.17E-4 1.98
3212 1.34E-5 2.00 1.78E-2 1.00 1.34E-5 1.99 1.78E-2 0.99 1.73E-7 2.99 1.79E-4 1.99
6412 3.36E-6 2.00 8.90E-3 1.00 3.36E-6 1.99 8.90E-3 0.99 2.17E-8 2.99 4.51E-5 1.99

Table 1: Grid convergence history for the 2D Poisson test.

Following Brezzi et al. [11], we use the constant velocity field v = (1, 3) and the diffusion coefficient
ε = 0.01. The Dirichlet boundary conditions for this test problem are given by [11]

u(0, y) = 1, ∀ y ∈ [0, 1],

u(x, 1) = 0, ∀ x ∈ [0, 1],

u(1, y) = 0, ∀ y ∈ [0, 1],

u(x, 0) = 1, ∀ x ∈
[
0,

1

3

)
,

u(x, 0) = 0, ∀ x ∈
(

1

3
, 1

]
.

The exact solution exhibits a boundary layer and an internal layer. Once again, we combine the finite
element spaces V H

h = S2h,2 and V L
h = Sh,1 using a blending function αh ∈ V L

h such that uh|K ∈ Q2(K)
if αh|K ≡ 1 and uh|K ∈ Q1(K) if αh|K ≡ 0. The Q2 approximation is well suited for resolving the
smooth part of the parabolic internal layer but may produce undershoots or overshoots near the
discontinuity point

(
1
3 , 0
)

or along the boundary y = 1. If the Q1 approximation is employed in these
regions, violations of discrete maximum principles can be prevented using algebraic correction of finite
element matrices [8, 27]. To show the potential benefit of using adaptive finite element spaces in this
context, we define the nodal values αi of the piecewise-linear blending function (3) as follows:

αi(x, y) =

{
1, if 2h ≤ y ≤ 0.8,

0, otherwise.
(17)

This definition produces a thin layer of pure Q1 elements along the inflow boundary y = 0 and a larger
Q1 subdomain along the outflow boundary y = 1. Additionally, the Q1 Galerkin discretization of the
advective term v · ∇u is stabilized by adding a discrete diffusion operator defined as in [8, 27]. The
modified form of the equation corresponding to the test function ϕi ∈ H1

0 (Ω) reads∑
j

(kij − dij + lij)uj = 0,
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where uj = uh(xj) is the nodal value at the point xj ∈ Ω̄,

kij =

∫
Ω
ϕi(v · ∇ϕj)dx, lij = ε

∫
Ω
∇ϕi · ∇ϕjdx

are the coefficients of the Galerkin discretization and

dij =

{
max((αi − 1)kij , 0, (αj − 1)kji) if j 6= i,

−
∑

k 6=i dik if j = i

are the coefficients of the artificial diffusion operator (cf. [3, 8]). For each xi ∈ ∂Ω, the value of
ui = uh(xi) is determined by the strongly imposed Dirichlet boundary conditions.

V L
h = Sh,1 V H

h = S2h,2 Vh(αh)

uLh ∈ [0, 1] uHh ∈ [−6.82× 10−6, 1.096] uh ∈ [0, 1]

Figure 2: Solutions of the stationary advection-diffusion equation (16) obtained using finite element
spaces V H

h = Vh(0), V L
h = Vh(1), and Vh(αh), where αh is the blending function defined by (17).

Computations are performed on uniform Cartesian meshes. In Figure 2, we present numerical
solutions to (16) obtained using three finite element spaces of equal dimensions corresponding to
Ndof = Nx ×Ny = 1012 degrees of freedom. The pure Q2 approximation (uHh , middle panel) exhibits
spurious undershoots and overshoots. A proof of the discrete maximum principle (DMP) for the pure
Q1 approximation (uLh , left panel) can be found in [8]. The solution uh shown in the right panel
was calculated using the space Vh(αh) with αh defined by (17). It looks similar to uLh and is also
bounded by the Dirichlet boundary values. This indicates that the use of Q1 elements and artificial
diffusion operators may be restricted to small subdomains containing small-scale features that cannot
be resolved properly on a given mesh. In a fully adaptive version of the proposed methodology, the
nodal values of the blending function αh may be adjusted to maximize the size of Q2 subdomains sub-
ject to DMP-like constraints. The development of property-preserving high-resolution finite element
schemes that select appropriate values of the tuning parameters αi ∈ [0, 1] automatically was the main
motivation for preliminary numerical studies of the partition of unity method in this section.
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5.3 Unsteady diffusion in 1D

To study the numerical behavior of the partitioned θh scheme (12),(13) in the context of embedded
boundary / cut cell finite element methods, we consider the one-dimensional diffusion equation

∂u

∂t
− d∂

2u

∂x2
= 0 in Ω = (0, 1) (18)

with the diffusion coefficient d = 10−2. The exact solution is the Gaussian hill (cf. [15], p. 243)

u(x, t) =
5

7σ(t)
exp

{
−
(
x− 0.5

lσ(t)

)2
}
, l =

7
√

2

300
, σ(t) =

√
1 +

4dt

l2
. (19)

The initial data and boundary conditions for the numerical experiment are also defined by this formula.
We discretize (18) in space using linear finite elements. Given a uniform mesh with the grid points

xi = ih, h =
1

2N
, i = 0, . . . , 2N,

we subdivide the two elements containing the midpoint xN = 0.5 into [0.5− h, 0.5− ε] ∪ [0.5− ε, 0.5]
and [0.5, 0.5 + ε] ∪ [0.5 + ε, 0.5 + h], where ε = 10−4 � h is the size of the small cut cells.

The time step ∆t is selected so that the ratio λ = ∆t
h2 = 1

4 remains constant in the process of
mesh refinement. On a uniform mesh with spacing h, the forward Euler time discretization (θh ≡ 0) is
stable for λ ≤ 1

2 and second-order accurate due to the fact that ∆t = λh2. However, the introduction
of small cut cells makes it unstable and the code crashes for ∆t > 1

2ε
2. To remedy this instability, we

employ the partitioned θ scheme defined by the continuous piecewise-linear blending function

θh(x) :=


1 if |x− 0.5| ≤ h,
2− 1

h |x− 0.5| if h ≤ |x− 0.5| ≤ 2h,

0 if |x− 0.5| ≥ 2h.

(20)

That is, we use the unconditionally stable backward Euler scheme in cut cells, the forward Euler
scheme in regular cells that are not adjacent to a cut cell, and a semi-implicit blend in-between.

The numerical solution presented in Fig. 3 was calculated using h = 1
50 and the final time T = 0.5.

A zoom of the cut cell subdomain is included to show how strongly the mesh size varies in this test.
The errors w.r.t. the maximum norm ‖u− uh‖C([0,1]) = maxx∈[0,1] |u(x)− uh(x)| are listed in Table 2.
The partitioned θh scheme is stable and second-order accurate under the same time step restriction
as forward Euler. At the same time, it is more efficient than backward Euler since just a few nodes
are treated implicitly and the matrix of the linear system to be solved is a block-diagonal matrix.

6 Conclusions

This work indicates that the partition of unity (PU) approach to blending finite element spaces and
time discretizations has significant merit in the context of hp-adaptation for conforming finite element
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Figure 3: Diffusion of a 1D Gaussian hill: (a) numerical solution at T = 0.5 and (b) a zoom of the
small cut cell region. P1 Galerkin θh discretization with h = 1

50 , ∆t = 1
4h

2.

h ‖u− uh‖C([0,1]) EOC

1/100 3.2765E-04
1/200 8.6262E-05 1.93
1/400 2.2416E-05 1.94
1/800 5.5032E-06 2.03

Table 2: Diffusion of a 1D Gaussian hill: numerical errors w.r.t. the maximum norm and the experi-
mental order of convergence for the P1 Galerkin θh discretization with ∆t = 0.25h2.

spaces and explicit-implicit partitioned time discretizations of evolutionary problems. The proposed
PU hybridization of high-order basis functions with their piecewise-linear counterparts preserves global
continuity of the finite element approximation as well as the number of degrees of freedom and the
sparsity pattern of discrete operators. Partitioned time discretizations are well-suited for applications
in which the optimal time step size (determined by stability and accuracy considerations) exhibits
strong spatial variations. The use of adaptive and possibly time-dependent blending functions based
on discrete maximum principles and/or local error indicators would lead to a new generation of high-
resolution finite element schemes combining complementary advantages of existing hp-FEM, limiting
techniques, IMEX time integrators, and local time stepping schemes. It is hoped that the present
paper provides sufficient motivation for further development and analysis of such methods.
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A Numerical implementation

In this Appendix, we provide brief details about the numerical implementation of the adaptive space
discretization proposed in §2. The space Vh(αh) is easy to implement in a standard finite element
code if the same data structures are employed for all spaces. This natural implementation strategy
implies that the contributions of S2h,2 and Sh,1 use the same mappings, the same numbering of degrees
of freedom etc. Note that the sparsity patterns of finite element matrices corresponding to the S2h,2

and Sh,1 approximations are different. Indeed, the S2h,2 matrices have more non-zero entries than
their Sh,1 counterparts. For any nontrivial choice of the blending function αh, the sparsity pattern of
the space Vh(αh) is the same as that of S2h,2. Therefore, it is worthwhile to use the extended S2h,2

connectivity matrix for the contribution of the space Sh,1 as well. Then the size of the Vh(αh) element
matrices and the data structures for indirect addressing will be the same as in the case of a pure S2h,2

approximation even if the compact-stencil Sh,1 subcell approximation is employed in some cells.

14



The use of common data structures facilitates blending of the two spaces and makes it possible
to perform operations with global degrees of freedom directly without any kind of index mapping. In
the present 2D implementation, we use quadrilateral elements. The local basis functions for Sh,1 and
S2h,2 are defined as tensor products of piecewise-linear and quadratic polynomials on the common
one-dimensional reference element, see Fig. 4. Using standard mappings from the reference element
to physical cells, we construct 9 biquadratic functions ϕe,Hi and 9 piecewise-bilinear basis functions

ϕe,Li on each quadrilateral cell of the mesh T2h. Then standard finite element procedures are invoked
to generate element matrices/vectors and perform element-by-element assembly.

When it comes to combining the spaces V H
h = S2h,2 and V L

h = Sh,1 using a blending function

αh ∈ V L
h , we need to evaluate the partitioned basis functions ϕei = αhϕ

e,H
i + (1 − αh)ϕe,Li and their

derivatives at the quadrature points. Note that the value of ϕei (x) is an easily computable convex

combination of ϕe,Hi (x) and ϕe,Li (x). However, the partial derivatives of ϕi depend on the gradient of
αh which is defined only on subcells, i.e., on elements of the submesh Th on which the basis functions
ϕLi are continuous bilinear polynomials. To avoid a loss of accuracy due to numerical integration of
discontinuous functions on elements of the mesh T2h, we map each subcell to a subcell of the reference
element, perform numerical integration on subcells using standard quadrature and the Jacobian of
the subcell mapping, and add the resulting subcell contribution to the element matrix/vector in
the same way in which element contributions are inserted into global matrices/vectors. The use of
composite quadrature on subcells makes it possible to integrate the gradients of ϕi(αh) exactly and is
a prerequisite for achieving optimal convergence with partitioned Vh(αh) spaces.

(a) (b)

Figure 4: Definition of (a) piecewise-linear and (b) quadratic basis functions on the same one-
dimensional reference element.
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