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1 Introduction

Let T1, . . . , TN be independent nonnegative random variables (lifetime vari-
ables). However, the realizations t1, . . . , tN of T1, . . . , TN are not observed di-
rectly. Only realizations ni of

Ni :=

N∑
n=1

11(τi−1,τi](Tn), i = 1, . . . , I + 1,

are observed, where 0 = τ0 < τ1 < . . . < τI < τI+1 = ∞ are given inspection
times and 11A denotes the indicator function for the set A. In particular, we
have N =

∑I+1
i=1 ni.

Such data are called interval-censored data or grouped data. They appear
in particular in engineering science and medicine where failures of objects or
diseases can only be detected at special inspection times. The analysis of such
data is an old problem and was already treated in the book [11] from 1961.
Nevertheless, it is still a very active research area. There are several new books
on this topic as those of [25] and [4] and many recent papers as those of [3],
[10], [2], [27], [7].

The question how to choose optimal inspection times τ1 < . . . < τI was
also treated already in the sixties of the last century. [11] listed locally op-
timal inspection times for exponential distribution for I = 1, . . . , 6 and [15]
extended these results for I = 1, . . . , 10 for equally spaced inspections and
optimally spaced inspections. [28], [29] provided tables for locally optimal in-
spection times for other distributions and [18], [8] studied a Bayesian approach
to find optimal inspection times. After Aggarwala introduced progressive Type
I interval censoring in 2001 ([1]), several papers as those of [13], [26], [31], [3]
treated optimal inspection times for progressive interval censoring for several
types of distributions. There are also other design considerations for interval-
censored data, as the determination of the sample size for comparing several
groups ([14]) or stress levels in accelerated life tests ([33], [23], [9], [32], [10]).

All these approaches did not provide much theory about the optimal in-
spection times. They only calculated the locally optimal inspection times nu-
merically and provided then tables with the optimal inspection times.

However, as [20] and [17] noted, there is a relationship to optimal spacing
of quantiles for asymptotically best linear estimates (ABLE) based on order
statistics. The treatment of optimal spacing of quantiles started already in the
forties of the last century (see [22], [21], [12], [6], [16]) and concerned several
types of distributions. For the exponential distribution, Saleh provided a recur-
sive formula for the optimal spacing in [21]. But this formula in Theorem 6.2
is not correct. It is probably a misprint of a formula in his Ph.D. thesis [20].
Although the optimal spacing of quantiles and the optimal non-equidistant
inspection times are related, we are not aware that this wrong formula was
corrected or used later for optimal inspection times.

In this paper, we provide a different recursive formula for optimal non-
equidistant inspection times for exponential distribution from which the cor-
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rect form of the formula of Saleh can easily be derived. Moreover, we use this
formula to show that a standardized Fisher information is always less than 1
and is approaching 1 for the optimal inspection times if I tends to infinity.
We prove this upper bound not only for optimally spaced inspection times but
also for optimally equidistantly spaced inspection times. This bound implies
in particular that already I = 5 provides a high efficiency, similarly to a re-
sult found by numerical calculations in [24] for test procedures for exponential
distribution and in [19] for the Weibull distribution.

In Section 2, the maximum likelihood estimator is presented and the cor-
responding Fisher information is given. Section 3 provides the optimal inspec-
tion times for the case of equidistantly spaced inspection times and Section 4
presents the results concerning the optimal non-equidistantly spaced inspec-
tion times. Since the optimal inspection times depend on the unknown pa-
rameter, i.e. they are only locally optimal, we discuss also maximin efficient
designs in both sections. A comparison of locally optimal and maximin effi-
cient equidistant and non-equidistant designs is given in Section 5. Finally,
Section 6 provides a short discussion of the results.

2 Maximum likelihood estimator and the Fisher information

We assume that Tn has an exponential distribution with unknown parame-
ter λ > 0 and corresponding cumulative distribution function Fλ. Then the
likelihood function for an observation ni is given by

lλ(ni) :=

N∏
n=1

Pλ (Tn ∈ (τi−1, τi])
11(τi−1,τi]

(tn)

= (Fλ(τi)− Fλ(τi−1))
ni =

(
e−λτi−1 − e−λτi

)ni
for i = 1, . . . , I and

lλ(nI+1) :=

N∏
n=1

Pλ (Tn ∈ (τI ,∞))
11(τI ,∞)(tn) = (1− Fλ(τI))

nI+1 =
(
e−λτI

)nI+1

so that the common likelihood function of n∗ := (n1, . . . , nI+1) is given by

Lλ(n∗) :=

I∏
i=1

(
e−λτi−1 − e−λτi

)ni (
e−λτI

)nI+1
. (1)

The derivative of the loglikelihood function is then

∂

∂λ
lnLλ(n∗) =

I∑
i=1

ni
τi e
−λτi − τi−1 e−λτi−1

e−λτi−1 − e−λτi
+ nI+1 (−τI) (2)

so that a maximum likelihood estimator for λ can be easily determined by
maximizing (1) or calculating the root of (2).
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To get the Fisher information, note at first that the likelihood function for
a single random variable Tn, although Tn is not observed, is

lλ(Tn) :=

I+1∏
i=1

Pλ (Tn ∈ (τi−1, τi])
11(τi−1,τi]

(Tn)

so that

∂

∂λ
ln lλ(Tn) =

I+1∑
i=1

∂

∂λ
ln (Fλ(τi)− Fλ(τi−1)) 11(τi−1,τi](Tn).

Hence, the Fisher information is given as

Iλ(τ1, . . . , τI) := Eλ

((
∂

∂λ
ln lλ(Tn)

)2
)

=

I+1∑
i=1

(
∂
∂λ (Fλ(τi)− Fλ(τi−1))

)2
(Fλ(τi)− Fλ(τi−1))

2 (Fλ(τi)− Fλ(τi−1))

=

I+1∑
i=1

(
τie
−λτi − τi−1e−λτi−1

)2
e−λτi−1 − e−λτi

=
1

λ2

(
I+1∑
i=1

(
λτie

−λτi − λτi−1e−λτi−1
)2

e−λτi−1 − e−λτi

)

=
1

λ2

(
I∑
i=1

(
λτie

−λτi − λτi−1e−λτi−1
)2

e−λτi−1 − e−λτi
+ (λτI)

2e−λτI

)
. (3)

Thus, to find optimal inspection times τ∗1 , . . . , τ
∗
I so that Iλ(τ1, . . . , τI) is max-

imized, it is sufficient to use the substitution xi := λτi and to find x∗1, . . . , x
∗
I

which maximize

fI(x1, . . . , xI) :=

I∑
i=1

(xie
−xi − xi−1e−xi−1)

2

e−xi−1 − e−xi
+ x2Ie

−xI , (4)

where x0 = x∗0 = 0. Thereby, fI(x1, . . . , xI) is a standardized Fisher informa-
tion. In particular, the optimal x∗1, . . . , x

∗
I satisfy that the quantity

1

Nλ2
fI(x

∗
1, . . . , x

∗
I)
−1

is the asymptotic variance of the asymptotically best linear estimate (ABLE)
for 1

λ based on order statistics for the exponential distribution and x∗1, . . . , x
∗
I

are the quantiles of the so called optimal spacing of quantiles, see [22], [21].
These optimal quantiles have the advantage that they are independent of the
unknown parameter λ while the optimal inspection times depend on λ.

The following lemma provides a representation of fI in (4) which can be
found in Theorem 6.2 in [21] in the context of optimal spacing of quantiles.

Lemma 1 The function fI(x1, . . . , xI) in (4) can be simplified as follows

fI(x1, . . . , xI) =

I∑
i=1

(xi − xi−1)
2

exi − exi−1
. (5)
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3 Optimal equidistant inspection times

At first, let us consider the special case of a design with equidistant inspection
times τ1 = ∆, τ2 = 2∆, . . . , τI = I∆. Equidistant designs are useful in applica-
tions because their implementation and realization is more convenient. In this
case, (3) becomes

Iλ,eq(∆) =
1

λ2

(
I∑
i=1

(
λi∆e−λi∆ − λ(i− 1)∆e−λ(i−1)∆

)2
e−λ(i−1)∆ − e−λi∆

+ (λI∆)2e−λI∆

)
.

Again, with the substitution x := λ∆, the maximization of Iλ,eq(∆) with
respect to ∆ is equivalent to the maximization of

fI,eq(x) :=

I∑
i=1

(
i xe−i x − (i− 1)xe−(i−1) x

)2
e−(i−1 )x − e−i x

+ (I x)2e−I x. (6)

Hence, the maximum ∆∗(λ) := ∆∗(λ, I) of Iλ,eq(∆) is given by ∆∗(λ) =
x∗eq
λ

if fI,eq has a maximum at x∗eq := x∗eq(I). The optimal equidistantly spaced
inspection times are then ∆∗(λ), 2∆∗(λ), . . . , I∆∗(λ).

Lemma 2 The function fI,eq(x) in (6) can be simplified as follows

fI,eq(x) =
exx2(1− e−Ix)

(ex − 1)2
, in particular f1,eq(x) =

x2

ex − 1
. (7)

Proof Note that fI,eq(x) is a special case of the function fI(x1, . . . , xI) from (4)
with xi = ix for i = 1, . . . , I. Lemma 1 yields then the assertion. ut

The values x∗eq can be found numerically. Table 1 contains the first inspection
point x∗eq, the last inspection point Ix∗eq and the maximum of the function
fI,eq for some values of I. Moreover, Figure 1 shows the functions fI,eq for
I = 1, 5, 10, 20, 50 and the corresponding maximum points.

Table 1 Equidistant case: x∗eq , Ix∗eq and fI,eq(x∗eq)

I x∗eq Ix∗eq fI,eq(x∗eq)

1 1.5936 1.5936 0.6476
5 0.7456 3.7280 0.9320
10 0.4833 4.8330 0.9730
15 0.3672 5.5080 0.9848
20 0.2998 5.9960 0.9901
25 0.2552 6.3800 0.9929
30 0.2232 6.6960 0.9946
40 0.1799 7.1960 0.9966
50 0.1518 7.5900 0.9976
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Fig. 1 The functions fI,eq for I = 1, 5, 10, 20, 50 and the corresponding maximum points

Theorem 1 For the function fI,eq(x) in (6), the following holds:

(i) fI,eq(x) ≤ 1 for all I ∈ N and x > 0.

(ii) max{fI,eq(x); x > 0} → 1 as I →∞.

(iii) fI,eq is a unimodal function for each I ∈ N.

Proof (i) Since fI,eq(x) is a special case of the function fI(x1, . . . , xI) from (4)
with xi = ix for i = 1, . . . , I, the statement (i) follows from Theorem 2 (i) in
Section 4. Hence, we show here only (ii) and (iii).

(ii) Since 1− e−I1x < 1− e−I2x for I1 < I2 and x > 0, we have

max{fI1,eq(x); x > 0} < max{fI2,eq(x); x > 0}

so that aI := max{fI,eq(x); x > 0}, I ∈ N, is an increasing sequence. From (i)
it follows that aI ≤ 1 for all I ∈ N. This yields

lim
I→∞

aI = a∞ ≤ 1.

Consider the function fI,eq(x) with x = 1/
√
I:

fI,eq

(
1/
√
I
)

=
e1/
√
I(1− e−

√
I)

I (e1/
√
I − 1)2

.

Using the substitution y := 1/
√
I and L’Hospital’s rule, we obtain

lim
I→∞

fI,eq

(
1/
√
I
)

= lim
y→0

eyy2(1− e−1/y)

(ey − 1)2
= 1.
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Since fI,eq

(
1/
√
I
)
≤ aI by definition, we obtain

a∞ ≥ lim
I→∞

fI,eq

(
1/
√
I
)

= 1.

Therefore, a∞ = 1.

(iii) For unimodality it is sufficient to show that fI,eq has only one extremum
and this extremum is maximum point. The first derivative of fI,eq is

f ′I,eq(x) =
xex

(
2ex − 2− x− xex + e−Ix(2 + x+ xex − 2ex + Ix(ex − 1))

)
(ex − 1)3

.

Define q(x) := 2 +x+xex−2ex for x ≥ 0. Note that q(0) = 0 and that q(x) is
strictly increasing since q′(x) = 1+ex(x−1) and ex < 1/(1−x) for 0 < x < 1.
So, q′(x) > 0 for all x > 0. Therefore, q(x) > 0 for x > 0. Using this fact, we
rewrite f ′I,eq(x) as follows:

f ′I,eq(x) =
xex q(x) e−Ix(Ix)

(ex − 1)3

(
1− eIx

Ix
+

1
x(ex+1)
ex−1 − 2

)
.

Since x > 0, f ′I,eq(x) = 0 is equivalent to

p(x) :=
1− eIx

Ix
+

1
x(ex+1)
ex−1 − 2

= 0.

Note that the function 1−eIx
Ix is decreasing for x > 0:

d

dx

(
1− eIx

Ix

)
=
eIx(1− Ix)− 1

Ix2
< 0, since ex <

1

1− x
for 0 < x < 1.

Since ex > 1 + x+ x2/2 and, consequently, (ex − x)2 > (1 + x2/2)2 for x > 0,

we show that x(ex+1)
ex−1 is increasing for x > 0:

d

dx

(
x(ex + 1)

ex − 1

)
=
e2x − 2xex − 1

(ex − 1)2
=

(ex − x)2 − x2 − 1

(ex − 1)2
>

x4

4(ex − 1)2
> 0.

This makes the function p(x) decreasing for x > 0. Moreover, it is easy to
check that the function p(x) is a continuous function with lim

x→0
p(x) = +∞ and

lim
x→+∞

p(x) = −∞. Hence, there exists only one x0 > 0 such that p(x0) = 0

with p(x) < 0 for x > x0 and p(x) > 0 for x < x0. ut

Remark 1 From Theorem 1 and from Table 1, it follows that already with
I = 5 equidistant inspections we obtain more than 93% of the maximum in-
formation. Note that the maximum information coincides with the information
of the maximum likelihood estimator for non-censored lifetimes.
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The efficiency of a given equidistant partition∆, 2∆, . . . , I∆ with respect to
the locally optimal equidistantly spaced inspections∆∗(λ), 2∆∗(λ), . . . , I∆∗(λ)
with ∆∗(λ) = x∗eq/λ is given by

Iλ,eq(∆)

Iλ,eq(∆∗(λ))
=

1
λ2 fI,eq(λ∆)
1
λ2 fI,eq(x∗eq)

=
fI,eq(λ∆)

fI,eq(x∗eq)
.

Lemma 2 yields

Iλ,eq(∆)

Iλ,eq(∆∗(λ))
=
eλ∆(λ∆)2(1− e−Iλ∆)

fI,eq(x∗eq)(e
λ∆ − 1)2

.

Since ∆ > 0, it follows

lim
λ→∞

eλ∆(λ∆)2(1− e−Iλ∆)

(eλ∆ − 1)2
= lim
λ→∞

(λ∆)2

eλ∆
(1− e−Iλ∆)

(1− 1
eλ∆

)2
= 0.

Using L’Hospital’s rule, we obtain

lim
λ→0

eλ∆(λ∆)2(1− e−Iλ∆)

(eλ∆ − 1)2
= lim
x→0

exx2(1− e−Ix)

(ex − 1)2
= 0.

Hence, we have

lim
λ→0

Iλ,eq(∆)

Iλ,eq(∆∗(λ))
= 0 = lim

λ→∞

Iλ,eq(∆)

Iλ,eq(∆∗(λ))

so that λ must be restricted by a lower bound L and an upper bound U to get
maximin efficient inspection times.
Since

fI,eq(x) =
exx2(1− e−Ix)

(ex − 1)2

is a unimodal function for each I ∈ N (see Theorem 1), a maximin efficient
inspection distance ∆∗L,U for λ ∈ [L,U ] is defined by

∆∗L,U := ∆∗([L,U ]) := arg max
∆>0

min
λ∈[L,U ]

Iλ,eq(∆)

Iλ,eq(∆∗(λ))

= arg max
∆>0

min

{
eL∆(L∆)2(1− e−IL∆)

(eL∆ − 1)2
,
eU∆(U∆)2(1− e−IU∆)

(eU∆ − 1)2

}
1

fI,eq(x∗eq)
.

This means that the maximin efficient ∆∗L,U must satisfy

eL∆
∗
L,U (L∆∗L,U )2(1− e−IL∆

∗
L,U )

(eL∆
∗
L,U − 1)2

=
eU∆

∗
L,U (U∆∗L,U )2(1− e−IU∆

∗
L,U )

(eU∆
∗
L,U − 1)2

,

or equivalently
fI,eq(L∆

∗
L,U ) = fI,eq(U∆

∗
L,U ).

Hence, the following lemma is obvious.

Lemma 3 If ∆∗L,U is maximin efficient for λ ∈ [L,U ] then α∆∗L,U is maximin

efficient for λ ∈
[
L
α ,

U
α

]
for any α > 0.
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4 Optimal non-equidistant inspection times

The aim of this section is to determine an optimal choice of the inspec-
tion times τ1, . . . , τI for a fixed number I of inspections. We want to find
τ∗1 (λ) := τ∗1,I(λ),. . . , τ∗I (λ) := τ∗I,I(λ) so that the information Iλ(τ1, . . . , τI)
in (3) is maximized. According to Section 2, it is sufficient to find x∗1 := x∗1,I ,
. . ., x∗I := x∗I,I which maximize fI(x1, . . . , xI) given by (4) or (5). Then (3)

is maximized by τ∗1 (λ) =
x∗1
λ , . . . , τ

∗
I (λ) =

x∗I
λ , where x∗1, . . . , x

∗
I can be de-

termined numerically. For the optimal spacing of quantiles of asymptotically
best linear estimates based on order statistics, this was done already in [22]
for I = 1, . . . , 15. For optimal inspection times, this was done in [11] for
I = 1, . . . , 6 and in [15] for I = 1, . . . , 10. Table 2 provides some values for I
up to 50 which were calculated with Wolfram Mathematica [30].

Table 2 Optimal values x∗1, x
∗
2, . . . , x

∗
I and fI(x∗1, ..., x

∗
I )

I x∗1 x∗2 x∗3 ... x∗I−2 x∗I−1 x∗I fI(x∗1, ..., x
∗
I )

1 1.594 0.6476
5 0.499 1.100 1.854 1.854 2.871 4.465 0.9476
10 0.272 0.571 0.903 ... 3.559 4.576 6.170 0.9832
15 0.187 0.386 0.600 ... 4.638 5.655 7.249 0.9918
20 0.143 0.292 0.450 ... 5.430 6.447 8.041 0.9952
25 0.115 0.235 0.360 ... 6.056 7.073 8.667 0.9968
30 0.097 0.196 0.300 ... 6.573 7.590 9.184 0.9977
40 0.073 0.148 0.225 ... 7.398 8.415 10.007 0.9987
50 0.059 0.119 0.180 ... 8.046 9.063 10.657 0.9992

After analyzing the values in Table 2, we notice that the distances between
the last x∗I and the second last x∗I−1 are the same for all I ∈ N. The same
holds for other distances d∗i := d∗i,I = x∗i − x∗i−1, i = 1, . . . , I (see Table 3).

Table 3 Optimal distances d∗1, d
∗
2, . . . , d

∗
I

I d∗1 d∗2 d∗3 ... d∗I−2 d∗I−1 d∗I

1 1.594
5 0.499 0.601 0.754 0.754 1.017 1.594
10 0.272 0.299 0.332 ... 0.754 1.017 1.594
15 0.187 0.199 0.214 ... 0.754 1.017 1.594
20 0.143 0.149 0.158 ... 0.754 1.017 1.594
25 0.115 0.120 0.125 ... 0.754 1.017 1.594
... ... ...

The expression for fI in (5) was maximized in Theorem 6.2 in [21]. In [21],
the recursion

x∗i+1,I = x∗i,I−1 + x∗i,I , i = 1, . . . , I − 1, (8)
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was given where x∗1,I−1, . . . , x
∗
I−1,I−1 and x∗1,I , . . . , x

∗
I,I are the solutions for

I−1 and I, respectively. However, this seems to be a misprint when comparing
it with the Ph.D. thesis [20] of Saleh, where he proved in Theorem 4.2

x∗i+1,I = x∗i,I−1 + x∗1,I , i = 1, . . . , I − 1.

According to our observation that the last distances are always the same, (8)
can be corrected alternatively to

x∗i+1,I = x∗i,I−1 − x∗i−1,I−1 + x∗i,I , i = 1, . . . , I − 1.

This follows immediately from the following theorem.

Theorem 2 For the function fI(x1, . . . , xI) in (4), the following holds:

(i) fI(x1, . . . , xI) ≤ 1 for all I ∈ N and x1, ..., xI > 0.

(ii) Let

(x∗1,I , . . . , x
∗
I,I) := arg max{fI(x1, . . . , xI); x1, ..., xI > 0}

and

d∗i,I := x∗i,I − x∗i−1,I , i = 1, . . . , I.

Then the distances d∗i,I have the following property:

d∗I1−k,I1 = d∗I2−k,I2 for all I1, I2 ∈ N, k = 0, ...,min{I1, I2} − 1.

(iii) max{fI(x1, . . . , xI); x1, ..., xI > 0} → 1 as I →∞.

Proof (i) Let di := xi − xi−1 for i = 1, . . . , I, where x0 := d0 := 0. Then (5)
yields

fI(x1, ..., xI) =

I∑
i=1

d2i
exi−1(edi − 1)

=

I∑
i=1

d2i
ed1+···+di−1(edi − 1)

=: f̃I(d1, ..., dI).

Notice that f̃I(d1, . . . , dI) can be represented as

f̃I(d1, . . . , dI) =
d21

ed1 − 1
+

1

ed1

(
d22

ed2 − 1
+

1

ed2

(
d23

ed3 − 1
+

1

ed3

(
...

...

(
d2I−1

edI−1 − 1
+

1

edI−1

(
d2I

edI − 1

))
...

)))
= g(d1, g(d2, g(d3, g(...g(dI−1, g(dI , 0))...)))), (9)

where

g(t, c) :=
t2

et − 1
+

1

et
c, t ≥ 0, c ≥ 0.
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Note that g(t, 0) = f1,eq(t) in (7). The function g(t, c) is increasing with respect
to c for each t ≥ 0. In particular,

g(t, c) ≤ g(t, 1) for c ≤ 1.

Note that g(t, 1) is decreasing function with respect to t:

d

dt
g(t, 1) = − (et(t− 1) + 1)2

et(et − 1)2
< 0,

and reaches its maximum at t = 0, so that g(t, 1) ≤ g(0, 1) = 1. Therefore, for
all t ≥ 0 it holds

g(t, c) ≤ 1 for c ≤ 1,

which implies that g(dI , 0) < 1 in (9) and, consequently, f̃I(d1, . . . , dI) ≤ 1 for
all d1, . . . , dI > 0.

(ii) Consider the representation (9) of fI(x1, . . . , xI). Since g(t, c) is an in-
creasing function with respect to c for each t ≥ 0, it holds:

The function f̃I(d1, . . . , dI) is maximized at

d∗I := d∗I,I = arg max{g(t, 0); t > 0},

d∗I−1 := d∗I−1,I = arg max{g(t, g(d∗I , 0)); t > 0}, (10)

d∗i := d∗i,I = arg max{g(t, g(d∗i+1, g(...g(d∗I , 0)...))); t > 0}, i = 1, ..., I − 2.

Hence, the last optimal distance d∗I,I does not depend on I and can be found
numerically: d∗I,I ≈ 1.594 for all I ∈ N (see Figure 1 or Tables 1, 2, 3
for the case I = 1). The same holds for the second last distance d∗I−1,I ≈
arg max{g(t, 0.6476); t > 0} ≈ 1.017 (see Table 3) and so on. Hence, for all
I1, I2 ∈ N, we have

d∗I1−k,I1 = d∗I2−k,I2 , k = 0, ...,min{I1, I2} − 1.

(iii) We divide the proof into two parts. In the first step we show that
max{fI(x1, . . . , xI); x1, ..., xI > 0} → c∞ ≤ 1 as I → ∞ and in the sec-
ond step we prove that c∞ = 1.

Step 1. Note that representation (9) yields

max{fI(x1, . . . , xI); x1, ..., xI > 0} = max{f̃I(d1, . . . , dI); d1, ..., dI > 0}.

Let us show that max{f̃I(d1, . . . , dI); d1, ..., dI > 0} → c∞ ≤ 1 as I → ∞. It
follows from (ii) that

max{f̃I(d1, . . . , dI); d1, ..., dI > 0} = f̃I(d
∗
1, . . . , d

∗
I)

= g(d∗1, g(d∗2, g(d∗3, g(...g(d∗I−1, g(d∗I , 0))...)))),

where d∗1, . . . , d
∗
I are given by (10).



12 Nadja Malevich, Christine H. Müller

Let c0, c1, c2, . . . be defined inductively via

ci := max{g(t, ci−1); t ≥ 0}, i = 1, . . . , I, c0 := 0. (11)

Note that (10) implies

g(d∗I , 0) = c1, g(d∗I−1, g(d∗I , 0)) = c2, . . . ,

g(d∗i , g(...g(d∗I−1, g(d∗I , 0))...) = cI+1−i, i = 1, ..., I − 2.

Hence, max{f̃I(d1, . . . , dI); d1, ..., dI > 0} = f̃I(d
∗
1, . . . , d

∗
I) = cI . Therefore, it

is sufficient to show that ci → c∞ ≤ 1 as i → ∞. Since the function g(t, c) is
increasing with respect to c for each t ≥ 0, we obtain

c′ < c′′ =⇒ max{g(t, c′); t ≥ 0} < max{g(t, c′′); t ≥ 0}. (12)

Note that (12) and the recursive definition (11) imply by induction that (ci)i≥1
is an increasing sequence provided we establish the induction basis c0 < c1.
This base case can be shown numerically (see Figure 1 or Tables 1, 2 for I = 1):

c1 = max{g(t, 0); t ≥ 0} ≈ 0.6476 > 0 = c0.

In (i) we showed that g(t, c) ≤ 1 for c ≤ 1. Therefore, ci ≤ 1 for all i ∈ N. This
means that the sequence c0, c1, . . . is an increasing sequence, which is bounded
by 1. Hence, ci → c∞ ≤ 1 as i→∞.

Step 2. Define h(c) := max{g(t, c); t ≥ 0} for c ≥ 0. We will prove that c∞ = 1
by showing the following: (a) c∞ = h(c∞); (b) c < h(c) for c ∈ (0, 1).
(a) At first let us show that h is a continuous function on [0,∞). By definition,
we have to show: for any ε > 0, there exists some δ > 0 such that for all c′, c′′

with |c′ − c′′| ≤ δ, the following holds

|h(c′)− h(c′′)| ≤ ε.

By symmetry, we may assume that c′ ≥ c′′. Let t′ := arg max{g(t, c′); t ≥ 0},
t′′ := arg max{g(t, c′′); t ≥ 0} and δ := ε. Then using the fact that g(t, c) and,
consequently, h(c) is non-decreasing in c, we obtain:

|h(c′)− h(c′′)| = h(c′)− h(c′′) = g(t′, c′)− g(t′′, c′′)

≤ g(t′, c′)− g(t′, c′′) =
1

et′
(c′ − c′′) ≤ ε.

Thus, h is continuous. In Step 1 we showed that ci → c∞ as i → ∞, where
ci = h(ci−1) with c0 = 0. The continuity of h yields c∞ = h(c∞).
(b) Let us show that c < h(c) for c ∈ (0, 1). Consider

g(t, c)− c =
t2

et − 1
+

1

et
c− c =

t2

et − 1
+

1− et

et
c =

t2et − c(et − 1)2

et(et − 1)
.

The fact that et ≤ 1/(1 − t) for any t ∈ [0, 1) yields (et − 1)2 ≤ (t/(1 − t))2
and

g(t, c)− c ≥
t2et − ct2

(1−t)2

et(et − 1)
=
t2
(
et − c

(1−t)2

)
et(et − 1)
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for t ∈ (0, 1). Let t0 = 1−
√
c. Note that t0 ∈ (0, 1), since c ∈ (0, 1). Then

g(t0, c)− c ≥
(1−

√
c)2
(
e1−
√
c − 1

)
e1−
√
c(e1−

√
c − 1)

> 0

and, consequently, h(c) ≥ g(t0, c) > c for all c ∈ (0, 1).
Suppose that c∞ < 1. Then it follows that c∞ < h(c∞) which contradicts the
fact that c∞ = h(c∞) (see above). So, c∞ = 1. ut

Remark 2 From Theorem 2 and from Tables 2, it follows that already with
I = 5 inspections we obtain more than 94% of the maximum information.

The efficiency of a given partition τ1, . . . , τI with respect to the locally

optimal inspections τ∗1 (λ) =
x∗1
λ , . . . , τ

∗
I (λ) =

x∗I
λ is given by

Iλ(τ1, . . . , τI)

Iλ(τ∗1 (λ), . . . , τ∗I (λ))
(13)

=

1
λ2

∑I+1
i=1

(λτie−λτi−λτi−1e
−λτi−1)

2

e−λτi−1−e−λτi
1
λ2 fI(x∗1, . . . , x

∗
I)

=

∑I+1
i=1

(λτie−λτi−λτi−1e
−λτi−1)

2

e−λτi−1−e−λτi

fI(x∗1, . . . , x
∗
I)

.

In particular, we have for i = 1, . . . , I + 1

lim
λ→∞

(
λτie

−λτi − λτi−1e−λτi−1
)2

e−λτi−1 − e−λτi

= lim
λ→∞

e−λτi−1
(
λτie

−λ(τi−τi−1) − λτi−1
)2

1− e−λ(τi−τi−1)
= 0.

Also, using the L’Hospital’s rule, we obtain for i = 1, . . . , I + 1

lim
λ→0

e−λτi−1
(
λτie

−λ(τi−τi−1) − λτi−1
)2

1− e−λ(τi−τi−1)
= 0.

Hence, we have again

lim
λ→0

Iλ(τ1, . . . , τI)

Iλ(τ∗1 (λ), . . . , τ∗I (λ))
= 0 = lim

λ→∞

Iλ(τ1, . . . , τI)

Iλ(τ∗1 (λ), . . . , τ∗I (λ))

so that λ must be restricted by a lower bound L and an upper bound U to get
maximin efficient inspection times τ ∗L,U := (τ∗1 ([L,U ]), . . . , τ∗I ([L,U ])) defined
by

τ ∗L,U := arg max
(τ1,...,τI)∈(0,∞)I

min
λ∈[L,U ]

Iλ(τ1, . . . , τI)

Iλ(τ∗1 (λ), . . . , τ∗I (λ))
.

Analogously to Lemma 3 we have with (13) the following lemma.

Lemma 4 If τ ∗L,U is maximin efficient for λ ∈ [L,U ] then ατ ∗L,U is maximin

efficient for λ ∈
[
L
α ,

U
α

]
for any α > 0.
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5 Comparison of the optimal and optimal equidistantly spaced
inspection times

Let us compare the equidistant and the non-equidistant cases. In Figure 2, we
see how the design points are spread and how fast the maxima of the functions
fI and fI,eq converge to 1.
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Fig. 2 Maximum points of the functions fI and fI,eq (on the left) and the optimal
(x∗1, . . . , x

∗
I ) and the optimal equidistant (x∗eq , . . . , Ix

∗
eq) (on the right) for some values of I

Let us calculate the efficiency of the locally optimal equidistantly spaced
inspections ∆∗(λ), 2∆∗(λ), . . . , I∆∗(λ) with respect to the locally optimal non-
equidistant inspections τ∗1 (λ), . . . , τ∗I (λ). Sections 3 and 4 yield

Iλ(∆∗(λ), . . . , I∆∗(λ))

Iλ(τ∗1 (λ), . . . , τ∗I (λ))
=

fI,eq(x
∗
eq)

fI(x∗1, . . . , x
∗
I)

=: g(I),

i.e. the efficiency does not depend on parameter λ. Table 4 provides the effi-
ciency of the equidistant design for some values of I. We see that the equidis-
tant design yields nearly the same information as the optimal design, but the
optimization of (6) is much easier than the optimization of (4).

Moreover, Table 5 provides the maximin efficient equidistant and non-
equidistant designs, their maximin efficiencies and the relative efficiency of the
maximin efficient equidistant designs with respect to the maximin efficient non-
equidistant designs for I = 2 and some given lower and upper bounds. Here it
becomes apparent that the advantage of a maximin efficient non-equidistant
design is higher when the interval [L,U ] gets larger.

Table 4 The efficiency of the optimal equidistant design with respect to the optimal non-
equidistant design

I 1 5 10 15 20 25 40 50

g(I) 1.0000 0.9835 0.9896 0.9930 0.9949 0.9961 0.9979 0.9984
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Table 5 Maximin efficient equidistant and non-equidistant designs for I = 2 with their
maximin efficiencies and the relative efficiency

Non-equidistant Equidistant Relative
Maximin Maximin efficiency

L U τ∗1 ([L,U ]) τ∗2 ([L,U ]) efficiency ∆∗
L,U efficiency

2 5 0.2854 0.8416 0.7658 0.3706 0.7384 0.9643
1 5 0.3169 1.2800 0.6864 0.4919 0.6137 0.8940

0.5 5 0.3189 2.3693 0.6484 0.6298 0.4635 0.7148
0.1 5 0.5947 6.7282 0.4764 0.9851 0.1787 0.3751
0.05 5 0.6816 10.3798 0.3977 1.1439 0.1081 0.2718

6 Discussion

We characterized locally optimal and maximin efficient equidistant and non-
equidistant inspection times. In particular, we showed that locally optimal
equidistant inspection times are almost as efficient as locally optimal non-
equidistant inspection times. However, this does not hold for maximin efficient
designs when the parameter space is large. This is due to a much larger inspec-
tion region in the non-equidistant case (see Table 5). However, large inspection
regions can cause problems in practical applications.

For example, our research was motivated by a cooperation with mechanical
engineers who were interested in the lifetime of diamonds on a drilling tool.
Thereby, at given inspection times, it was checked whether the diamonds on
the drilling tool were broken out or not. The broken diamonds were detected
by analyzing the surface of the tool with a microscope. This is time consuming
so that not too many inspection times should be used. Moreover, an additional
requirement was a very small inspection region [0, τ ]. Then, not only the in-
spection times but also the number I of inspections must be optimized so that
τ∗I ≤ τ . The analysis of the dependence of an optimal number I and optimal
inspection times on the time horizon τ will be treated in another paper.
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