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Abstract

In this paper we develop methodology for testing relevant hypotheses in a tuning-free

way. Our main focus is on functional time series, but extensions to other settings are also

discussed. Instead of testing for exact equality, for example for the equality of two mean

functions from two independent time series, we propose to test a relevant deviation under

the null hypothesis. In the two sample problem this means that an L2-distance between

the two mean functions is smaller than a pre-specified threshold. For such hypotheses

self-normalization, which was introduced by Shao (2010) and Shao and Zhang (2010) and

is commonly used to avoid the estimation of nuisance parameters, is not directly applica-

ble. We develop new self-normalized procedures for testing relevant hypotheses in the one

sample, two sample and change point problem and investigate their asymptotic properties.

Finite sample properties of the proposed tests are illustrated by means of a simulation study

and a data example.

Keywords: self normalization, functional time series, two sample problems, change point analy-

sis, CUSUM, relevant hypotheses

AMS Subject Classification:

1 Introduction

Statistics for functional data has found considerable interest in the last twenty years as docu-

mented in the various monographs by Ramsay and Silverman (2005), Ferraty and Vieu (2010)
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and Horváth and Kokoszka (2012) among others. The available methodology includes explorative

tools such as shift and feature registration, warping or principal components, and methods for

statistical inference such as testing of hypotheses and change point analysis. In this context a

large portion of the literature attacks the problem of hypotheses testing by considering hypothe-

ses of the form

H0 : d = 0 versus H1 : d 6= 0(1.1)

where d is a real valued parameter such as the norm of the mean function in one sample or

the norm of the difference of two mean functions or two covariance operators from two samples.

For example Hall and Van Keilegom (2007) study the effect of smoothing when converting

discrete observations into functional data, Horváth et al. (2009) compare linear operators in

two functional regression models, Benko et al. (2009) propose functional principal component

analysis (FPCA) for two sample inference while Panaretos et al. (2010) and Fremdt et al. (2013)

consider a test for the equality of covariance operators. More recently Horváth et al. (2013)

suggest tests for the comparison of two mean functions from temporally dependent curves under

model-free assumptions and Pomann et al. (2016) compare the distributions of two samples by

methods which are based on FPCA. Another important research area in functional data analysis

is change point detection and we refer to Berkes et al. (2009), Hörmann and Kokoszka (2010),

Aston and Kirch (2012), Zhang et al. (2011), Horváth et al. (2014), Bucchia and Wendler (2017)

among others who investigate change point problems from various perspectives.

Several authors consider methods for independent data. In this case the quantiles for correspond-

ing tests can be easily obtained by asymptotic theory as the unknown quantities in the limit

distribution of the test statistics can be reliably estimated (for example the asymptotic variance

of a standardized mean). However, for functional samples exhibiting temporal dependence, the

asymptotic distribution of many commonly used tests statistics involves the long-run variance,

which makes the statistical inference substantially more difficult. Several authors propose to

estimate the long-run variance [see Kokoszka (2012) or Horváth et al. (2013) among others], but

the commonly used estimators depend on regularization parameters. As alternative, bootstrap

methods can be applied to obtain critical values and we refer to Benko et al. (2009), Cuevas

et al. (2006), Zhang et al. (2010), Bucchia and Wendler (2017) and Paparoditis and Sapatinas

(2016) among many others. A third method to obtain (asymptotically) pivotal test statistics is

the concept of self-normalization, which was introduced in the seminal papers of Shao (2010) for

the construction of confidence intervals and Shao and Zhang (2010) for change point analysis.

More recently it has been developed further for the specific needs of functional data by Zhang

et al. (2011) and Zhang and Shao (2015) [see also Shao (2015) for a recent review].

This list of references is by no means complete but a common feature of all of these references is

that they usually address hypotheses of the form (1.1), which we call “classical” hypotheses in

the following discussion. However, in many applications one might not be interested in detecting

very small deviations of the parameter d from 0 (often the researcher even knows that d is not

exactly equal to 0, before any experiments have been carried out). For example, in change
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point detection a modification of the statistical analysis for prediction might not be necessary

if the difference between the parameters before and after the change point is rather small. This

discussion may be viewed as a particular case of the common bias variance trade-off in statistics.

Therefore we argue that one should carefully think about the size of the difference in which one

is interested. In particular we propose to replace the hypotheses (1.1) by the hypotheses of a

relevant difference, that is

H0 : d ≤ ∆ versus H1 : d > ∆ ,(1.2)

where ∆ is a pre-specified constant representing the “maximal” value for the parameter d, which

can be accepted as not scientifically significant. This formulation of the testing problem requires

the specification of the threshold ∆ > 0, which depends on the specific application. “Classical”

hypotheses tests simply use ∆ = 0, but we argue that from a practical point of view it might be

very reasonable to think about this choice more carefully and to define the size of the change in

which one is really interested from a scientific viewpoint.

We also note that the formulation of the testing problem in the form (1.2) avoids the consistency

problem mentioned in Berkson (1938), that is: any consistent test will detect any arbitrary small

change in the parameters if the sample size is sufficiently large. Moreover, by interchanging the

hypotheses, that is considering the hypotheses of equivalence

H0 : d > ∆ versus H1 : d ≤ ∆ ,(1.3)

one is able to decide for “small parameter” d at a controlled type I error (for example that the

norm d of the difference between the mean functions of two samples is smaller than a given thresh-

old). Hypotheses of the form (1.2) and (1.3) are called precise hypotheses or relevant hypotheses

in the literature [see Berger and Delampady (1987)] and are frequently used in biostatistics. We

refer to Chow and Liu (1992) and Wellek (2010) for more details and applications.

In this paper we discuss the problem of testing relevant hypotheses in the context of functional

dependent data. We are particularly interested in methods based on self-normalization in order to

avoid estimation of the long-run variance or resampling methods. For this purpose we modify the

classical approaches to self-normalization based testing proposed by Shao (2010) and Shao and

Zhang (2010) in order to make them applicable for testing relevant hypotheses. This modification

is of independent interest besides the field of functional data analysis and applicable in many

other problems. Section 4 contains a discussion of this approach in a general framework. Our

basic idea is explained in Section 2 for the one and two sample case, where it is most transparent.

Roughly speaking, we construct an asymptotic confidence interval for the parameter d to obtain

tests for hypotheses of the form (1.2) and (1.3). In Section 3 we address the problem of relevant

change point analysis by the new way of self-normalization; here an additional challenge arises

from the fact that the change point location is unknown and needs to be estimated. Some finite

sample results are presented in Section 5, where we also illustrate our approach analyzing a small

data example. Finally, all technical details are deferred to the Appendix (see Section 6).

3



2 Relevant hypotheses and self normalization

Let T be a compact set in Rd and let L2(T ) denote the Hilbert space of square integrable functions

on the set T with the usual inner product 〈·, ·〉 and corresponding norm ‖ · ‖.

2.1 One sample problems

Let {Xn}n∈Z denote a strictly stationary functional time series where the random variables Xn

are elements in L2(T ) (with expectation µ := IE[X1] ∈ L2(T ), see Section 2.1 Bücher et al.

(2018) for a detailed discussion of expected values in Hilbert spaces). For the sake of simplicity

we will assume that T = [0, 1], but all methods proposed in this paper can be generalized to

other subsets of Rd. To avoid confusion between the interval [0, 1] corresponding to λ, which

defines the sub-sample X1, . . . , Xbnλc and the interval T = [0, 1] we write T for the interval [0, 1]

belonging to the argument t of Xn. Based on a sample X1, ..., Xn we are interested in relevant

hypotheses regarding the parameter d =
∫
T
µ2(t)dt, that is

(2.1) H0 :

∫
T

µ2(t)dt ≤ ∆ versus H1 :

∫
T

µ2(t)dt > ∆ .

Define the partial sums

Sn(t, λ) :=
1

n

bnλc∑
j=1

Xj(t) , λ ∈ [0, 1] ,

then, under suitable assumptions, the statistic
∫
T
S2
n(t, 1)dt is a consistent estimator of

∫
T
µ2(t)dt.

Consequently a test for the hypotheses (2.1) is obtained by rejecting the null hypothesis for large

values of

T̂n =

∫
T

S2
n(t, 1)dt .(2.2)

It will be shown in the proof of Theorem 2.1 that under some technical assumptions the asymp-

totic distribution of an appropriately standardized version of T̂n takes the form

√
n
(
T̂n −

∫
T

µ2(t)dt
)
D→ N (0, τ 2)

with long-run variance

(2.3) τ 2 = 4

∫
T

∫
T

µ(s)µ(t)C(s, t)ds dt ,

where

C(s, t) = Var(X0(s)) +
∞∑
`=1

Cov(X0(t), X`(s)) +
∞∑
`=1

Cov(X0(s), X−`(t))(2.4)
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99% 95% 90%

1) 18.257 10.998 7.855

2) 16.081 10.530 7.619

3) 16.282 10.583 7.662

Table 1: Quantiles of the distribution of the statistic W defined by (2.8), where ν is the discrete

uniform distribution supported on the points 1) λi = i/5 (i = 1, . . . , 4), 2) λi = i/20 (i =

1, . . . , 19) and 3) λi = i/100 (i = 1, . . . , 99).

is the long-run covariance operator of the process {Xn}n∈Z. Here we note that the above weak

convergence is also true when µ ≡ 0, in which case the limit is a degenerate normal distribution

with a point mass at zero. Unfortunately, the long-run variance τ 2 is difficult to estimate in

practice. This motivates us to adopt a self-normalization approach which avoids direct estimation

of τ 2. To be more precise let ν denote a probability measure on the interval (0, 1) and define

(2.5) V̂n :=
(∫ 1

0

[ ∫
T

S2
n(t, λ)dt− λ2

∫
T

S2
n(t, 1)dt

]2

ν(dλ)
)1/2

.

As we will show later we have

(2.6)
(√

n(T̂n − d),
√
n V̂n

)
D→
(
τB(1), τ

(∫ 1

0

λ2(B(λ)− λB(1))2ν(dλ)
)1/2

)
,

where B denotes a standard Brownian motion on the interval [0, 1]. In particular, this implies

that, in the case τ 6= 0, the ratio (T̂n − d)/V̂n converges to a pivotal distribution. This suggests

that a test for (2.1) can be constructed by rejecting the null hypothesis in (2.1), whenever

T̂n > ∆ + q1−α(W)V̂n ,(2.7)

where q1−α(W) denotes the 1− α quantile of the distribution of the pivotal random variable

(2.8) W :=
B(1)( ∫ 1

0
λ2(B(λ)− λB(1))2ν(dλ)

)1/2
.

It is worthwhile to mention that the distribution of W is not the same as the one in previous

work on self-normalization [see for example Shao (2010) or Shao (2015)] and quantiles of this

distribution need to be simulated first. In Table 2.1 we display quantiles of this distribution,

where ν is the discrete uniform distribution supported on the points λi = i/5 (i = 1, . . . , 4), on

the points λi = i/20 (i = 1, . . . , 19) and on the points λi = i/100 (i = 1, . . . , 99), respectively.

Next we prove that the decision rule in (2.7) indeed provides an asymptotic level α test. For this

purpose we make the following assumptions [see also Berkes et al. (2013); Horváth et al. (2014)]:
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(A1) For all j ∈ Z we have Xj = µ+ ηj, where (ηj)j∈Z is a centered error process which satisfies

(A2)–(A4).

(A2) (ηj)j∈Z is a sequence of Bernoulli shifts, that is: there exists a measurable space, say S and

a function f : S∞ −→ L2([0, 1]) such that

ηj = f(εj, εj−1, . . .) for all j ∈ Z ,

where (εj)j∈Z is a sequence of i.i.d S-valued functions, such that εj(t) = εj(t, ω) is jointly

measurable (j ∈ Z).

(A3) IE‖ηj‖2+δ <∞ for some δ ∈ (0, 1).

(A4) The sequence (ηj)j∈Z can be approximated by `-dependent sequences (ηj,`)j∈Z in the sense

that for some κ > 2 + δ
∞∑
`=1

(
IE‖η0 − η0,`‖2+δ

)1/κ
<∞ ,

where ηj,` is defined by

ηj,` = f(εj, εj−1, . . . εj−`+1, ε
∗
j,`)

ε∗j,` = (ε∗j,`,j−`, ε
∗
j,`,j−`−1, . . .) ,

and the random variables ε∗j,`,k are i.i.d. copies of ε0, and independent of the sequence

(εj)j∈Z.

Theorem 2.1 Assume that ∆ > 0. Under the assumptions (A1)-(A4) the test decision given

in (2.7) is an asymptotic level α test for the null hypothesis in (2.1), i.e.

lim
n→∞

P
(
T̂n > ∆ + q1−α(W)V̂n

)
=


0 if

∫
T
µ2(t)dt < ∆ ,

α if
∫
T
µ2(t)dt = ∆ ,

1 if
∫
T
µ2(t)dt > ∆ .

A detailed proof of Theorem 2.1 is given in Section 6.1.1. What follows provides an informal

overview of the main steps in the proof. If
∫
µ2(t)dt 6= 0 and assumptions (A1) - (A4) hold, it

can be shown that{√
n
(∫

T

S2
n(t, λ)dt− λ2

∫
T

µ2(t)dt
)}

λ∈[0,1]
 
{
λτB(λ)

}
λ∈[0,1]

,(2.9)

where the symbol  means weak convergence in `∞([0, 1]) and τ 2 is defined in (2.3). Now an

application of the continuous mapping theorem directly yields the joint weak convergence (2.6).

This implies the statement of Theorem 2.1 when
∫
µ2(t)dt > 0 after some simple computations.
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If
∫
µ2(t)dt = 0 it is possible to prove that T̂n = oP(1), V̂n = oP(1). This implies

lim
n→∞

P
(
T̂n > ∆ + q1−α(W)V̂n

)
= lim

n→∞
P
(
oP(1) > ∆

)
= 0 ,

where we used that ∆ > 0 is fixed.

Remark 2.1 A test for the hypotheses of similarity

(2.10) H0 :

∫
T

µ2(t)dt > ∆ versus H1 :

∫
T

µ2(t)dt ≤ ∆

can be obtained by similar arguments. The null hypothesis in (2.10) is rejected, whenever

T̂n ≤ ∆ + qα(W)V̂n ,(2.11)

where T̂n and V̂n are defined in (2.2) and (2.5), respectively and qα(W) is the α-quantile of the

distribution of W defined in (2.8). Similar arguments as given in the proof of Theorem 2.1 show

that this test is an asymptotic level α and consistent test for the hypotheses (2.10), that is

lim
n→∞

P
(
T̂n ≤ ∆ + qα(W)V̂n

)
=


1 if

∫
T
µ2(t)dt < ∆ ,

α if
∫
T
µ2(t)dt = ∆ ,

0 if
∫
T
µ2(t)dt > ∆ .

The details are omitted for the sake of brevity.

2.2 Two sample problems

Throughout this section let {Xn}n∈Z, {Yn}n∈Z denote two strictly stationary functional time series

with values in L2(T ). Assume that we observe finite stretches, say X1, ..., Xm and Y1, ..., Yn from

{Xn}n∈Z and {Yn}n∈Z. Denote by µ1 = IE[X1] and µ2 = IE[Y1] the corresponding mean functions,

by D(t) = µ1(t)− µ2(t) their difference and define the partial sum

Dm,n(t, λ) :=
1

m

bmλc∑
j=1

Xj(t)−
1

n

bnλc∑
j=1

Yj(t) .

From this definition we see that

(2.12) IE[Dm.n(t, λ)] = λD(t) +O((m ∨ n)−1) .

For the sake of brevity we restrict ourselves to the problem of testing the relevant hypotheses

(2.13) H0 :

∫
T

D2(t)dt ≤ ∆ versus H1 :

∫
T

D2(t)dt > ∆ ,
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where ∆ is a pre-specified threshold. A corresponding test for the hypotheses of similarity can be

derived along the lines given in Remark 2.1. Following the discussion in Section 2.1 we propose

to reject the null hypothesis in (2.13), whenever

D̂m,n > ∆ + q1−α(W)V̂m,n ,(2.14)

where q1−α(W) is the (1−α)-quantile of the distribution of the random variable W in (2.8). The

statistics D̂m,n and V̂m,n are defined by

D̂m,n =

∫
T

D2
m,n(t, 1)dt ,(2.15)

V̂m,n =
(∫ 1

0

[ ∫
T

D2
m,n(t, λ)dt− λ2

∫
T

D2
m,n(t, 1)dt

]2

ν(dλ)
)1/2

,(2.16)

respectively, where ν is a probability measure on the interval (0, 1). The asymptotic properties

of this test procedure will be established under the following assumptions.

(B1) The sample sizes satisfy: m→∞ and n→∞ and m/(m+ n)→ ρ ∈ (0, 1).

(B2) The processes {Xn}n∈Z and {Yn}n∈Z are independent and satisfy assumptions (A1) - (A4)

stated in Section 2.1 with IE[X1] = µ1, IE[Y1] = µ2.

Theorem 2.2 Assume that ∆ > 0. Under assumptions (B1)-(B2) the test decision given

in (2.14) is an asymptotic level α test for the null hypothesis in (2.13), i.e.

lim
n→∞

P
(
D̂m,n > ∆ + q1−α(W)Vn,m

)
=


0 if

∫
T
D2(t)dt < ∆ ,

α if
∫
T
D2(t)dt = ∆ ,

1 if
∫
T
D2(t)dt > ∆ .

Remark 2.2 The statement in Theorem 2.2 continues to hold if the observations Xi, Yi are

generated according to Xi = µ1 + f1(εi, εi−1,...), i = 1, ..., n and Yi = µ2 + f2(εn+i, εn+i−1,...), i =

1, ...,m where (εj)j∈Z denotes an i.i.d. sequence of S-valued functions with the property that

εj(t, ω) is jointly measurable as in (A2) and f1, f2 : S∞ → L2([0, 1]) are functions such that

the processes (f1(εi, εi−1,...))i∈Z and (f2(εi, εi−1,...))i∈Z satisfy conditions (A3) and (A4). This

essentially corresponds to the setting discussed in Section 3 when the change point location is

known.

3 Relevant change points in functional time series

In this section we consider data that are generated from the following (triangular array) model

(3.1) Xi =

{
µ+ f1(εi, εi−1,...) if i ≤ Nθ0 ,

µ+ δ + f2(εi, εi−1,...) if i > Nθ0 .
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Here µ, δ denote deterministic but unknown elements in L2(T ) and θ0 ∈ (0, 1) is fixed but

unknown. Moreover, (εj)j∈Z denotes an i.i.d. sequence of S-valued functions with the property

that εj(t, ω) is jointly measurable as in (A2) and f1, f2 : S∞ → L2(T ) are functions such that the

processes (f1(εi, εi−1,...))i∈Z and (f2(εi, εi−1,...))i∈Z satisfy conditions (A3) and (A4). This setting

is general enough to allow for the whole distribution of the observed functional data to change

together with their mean.

We aim to construct a test for the relevant hypothesis

(3.2) H0 :

∫
T

δ2(t)dt ≤ ∆ versus H1 :

∫
T

δ2(t)dt > ∆

where ∆ is a pre-specified threshold. Note that for known θ0 a test for H0 can be constructed in

a similar fashion as in Section 2.2. In this section, we will prove that replacing the known change

point by an estimator also leads to an asymptotic level α test. To this end we fix a trimming

parameter ε ∈ [0, 1/2) and define the estimator of the unknown change point θ0 as

(3.3) θ̂ :=
1

N
argmaxbNεc≤k≤bN(1−ε)cf̂(k) ,

where f̂(0) = f̂(N) = 0 and for k = 1, ..., N − 1

f̂(k) :=
k

N

(
1− k

N

)∫
T

(1

k

k∑
j=1

Xj(t)−
1

N − k

N∑
j=k+1

Xj(t)
)2

dt .(3.4)

Our first result shows that the estimator θ̂ is consistent.

Proposition 3.1 If the data is generated according to model (3.1),
∫
δ2(t)dt > 0, θ0 ∈ (ε, 1−ε),

and the assumptions described right below (3.1) are satisfied, then

(3.5) θ̂ = θ0 + oP(N−1/2) .

Next we introduce the test statistic. For arbitrary θ ∈ [1/N, 1) define

Dcp
N (t, λ, θ) :=

1

bNθc

bλbθNcc∑
j=1

Xj(t)−
1

N − bNθc

bθNc+bλ(N−bθNc)c∑
j=bθNc+1

Xj(t) .

Following the developments in Section 2.2 let

D̂cp
N =

∫
T

D2
N(t, 1, θ̂)dt ,(3.6)

V̂cp
N =

(∫ 1

0

[ ∫
T

Dcp
N (t, λ, θ̂)2dt− λ2

∫
T

Dcp
N (t, 1, θ̂)2dt

]2

ν(dλ)
)1/2

,(3.7)

respectively, where ν is a probability measure on the interval (0, 1). The test for H0 takes the

form

D̂cp
N > ∆ + q1−α(W)V̂cp

N ,(3.8)

where q1−α(W) is the (1−α)-quantile of the distribution of the random variable W in (2.8). This

test decision is justified in the following theorem.
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Theorem 3.1 Assume ∆ > 0. If the data is generated according to model (3.1), θ0 ∈ (ε, 1− ε),

and the assumptions described right below (3.1) are satisfied, then the test decision in (3.8) leads

to a consistent and asymptotic level α test for the relevant hypotheses (3.2), that is

lim
n→∞

P
(
D̂cp
N > ∆ + q1−α(W)V̂cp

N

)
=


0 if

∫
T
δ2(t)dt < ∆ ,

α if
∫
T
δ2(t)dt = ∆ ,

1 if
∫
T
δ2(t)dt > ∆ .

The proof of Proposition 3.1 and Theorem 3.1 is technically difficult and deferred to Section 6.2,

but the main idea is as follows. A straightforward calculation shows that the processes D̂cp
N and

V̂cp
N in (3.6) and (3.7) are continuous functionals of the process

ZN(λ, θ̂) =
√
N

∫
T

(
Dcp
N (t, λ, θ̂)2 − λ2δ(t)2

)
dt .

Using Proposition 3.1 it can be shown that

sup
λ∈[0,1]

|ZN(λ, θ0)− ZN(λ, θ̂)| = oP(1) ,

where θ0 is the true change point. We can then establish the weak convergence{
ZN(λ, θ0)

}
λ∈[0,1]

 
{
λτ 2

δB(λ)
}
λ∈[0,1]

,

where τ 2
δ is a positive constant depending on the dependence structure of the process. Using the

continuous mapping theorem we then find

D̂cp
N

V̂cp
N

D→W ,

where the random variable W is defined in (2.8). When
∫
T
δ2(t)dt > 0 the assertion of Theorem

3.1 now follows directly. In the remaining case
∫
T
δ2(t)dt = 0 one can show D̂cp

N = oP(1), V̂cp
N =

oP(1) and the assertion follows with the same arguments as given in Section 2.1.

4 Extensions beyond functional time series

In this section we briefly discuss how the ideas presented in this paper can be extended beyond

the context of functional time series. We begin by introducing a general setup which will be

used throughout this section. Let X1, ..., Xn denote a sample of (potentially dependent) random

elements in some measurable space S. Assume that we are interested in inference on a parameter

µ = µP that can be assigned to distributions P on S. We will assume that µ takes values inM, a

subset of a real Hilbert space H equipped with an inner product 〈·, ·〉 and induced norm by ‖·‖H.

Further, assume that for each m ∈ N there exists a mapping fm : Sm →M, where fm(X1, ..., Xm)
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is interpreted as estimator for µ based on the observations X1, ..., Xm. The situation considered

in Sections 1 - 3 corresponds to the choice S = L2([0, 1]), H = L2([0, 1]) and µP is the mean

(function) of Xi (see the discussion in Example 4.1 below for more details). Finally, define for

Λ ⊂ [0, 1] the space of functions

B(Λ,H) := {f : Λ→ H : sup
λ∈Λ
‖f(λ)‖H <∞}

equipped with the norm

‖g‖B := sup
λ∈Λ
‖g(λ)‖H .

This space will be used to characterize the joint behaviour of estimators of µ computed from

several sub-samples (with sub-sample proportion corresponding to the index λ). Note that if the

set Λ contains only finitely many elements, say |Λ|, the normed space (B(Λ,H), ‖ · ‖B) can be

identified with the |Λ|-fold Cartesian product of H (viewed as a normed space).

4.1 The one sample and two sample case

We begin by considering the one sample case since in this setting the relevant conditions are

particularly simple and transparent. The self-normalized statistic is based on a probability

measure ν with support Λν ⊂ (0, 1). Using the notation µ̂1:k := fk(X1, ..., Xk) we define random

elements in B(Λ,H) through gn(λ) := λ
√
n(µ̂1:bλnc − µ). Assume that

(4.1) gn  H in B(Λν ∪ 1,H) .

Note that we do not require measurability of gn and weak convergence is defined in the sense of

Hoffman-Jorgensen, see Section 1.3 in Van der Vaart and Wellner (1996). Further, assume that

the limit H has the following additional properties:{
〈H(λ), µ〉

}
λ∈Λν∪1

D
= σ2

{
λB(λ)

}
λ∈Λν∪1

,(4.2) (∫
Λν

[
‖H(λ)‖2

H − λ2‖H(1)‖2
H

]2

ν(dλ)
)−1

= OP (1) ,(4.3)

where σ2 is a (nonnegative) real-valued parameter that can depend on the distribution P of Xi

and B is a standard Brownian motion on the interval [0, 1]. Moreover, we assume that σ2 6= 0 if

µ 6= 0.

If (4.1) - (4.3) are satisfied, an asymptotic level α and consistent test for the (relevant) hypotheses

H0 : ‖µ‖2
H ≤ ∆ versus H1 : ‖µ‖2

H > ∆

is given by rejecting H0 whenever the inequality (2.7) holds, where the statistic T̂n and V̂n are

now defined by T̂n := ‖µ̂1:n‖2
H and

V̂n :=
(∫

Λν

[
λ2‖µ̂1:bnλc‖2

H − λ4‖µ̂1:n‖2
H

]2

ν(dλ)
)1/2

,

respectively, and q1−α(W) is the (1 − α)-quantile of the distribution of the random variable W
defined in (2.8).
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Example 4.1

(a) In the setting of Section 2.1 the random variables X1, ..., Xn with distribution P take values

in S = L2([0, 1]), µP is the mean (function) of Xi which is an element of H = L2([0, 1]),

and fm(X1, ..., Xm) = m−1(X1 + ... + Xm). The estimators µ̂1:bnλc then take the form

µ̂1:bnλc(t) = 1
bnλc

∑bnλc
i=1 Xi(t). The limit H in (4.1) is given by H(λ) = Γ(·, λ) where the

process Γ is defined in equation (6.4).

(b) When H is R with 〈x, y〉 = xy, the space B(Λ,H) can be identified with `∞(Λ). Condi-

tions (4.1) and (4.2) follow from the functional CLT

(4.4)
{
λ
√
n(µ̂1:bλnc − µ)

}
λ∈Λν ∪1

 τ 2
{
B(λ)

}
λ∈Λν∪1

.

In this case H = τ 2B and σ2 = µ2τ 2. Moreover, condition (4.3) follows from elementary

properties of the multivariate normal distribution and the assumption that ν is a probability

measure on the interval (0, 1).

When µ is the mean of P and µ̂1:bλnc is the sample mean of the first bλnc observations, (4.4)

holds under a wide variety of assumptions on the serial dependence of time series. When

S = Rd and µ is a smooth function of the (multivariate) cdf of X, this condition can

be verified using the general framework developed in Volgushev and Shao (2014). This

includes quantities such as quantiles or Kendall’s τ and other dependence measures.

(c) If H = Rd (with the usual inner product), the space B(Λ,H) can be identified with

[`∞(Λ)]d. The norm ‖f‖B = supλ∈Λ ‖f(λ)‖2 (f ∈ B(Λ,Rd)) is equivalent to the usual norm

‖(g1, ..., gd)‖ := maxj=1,...,d supλ∈Λ |gj(λ)| where (g1, ..., gd) ∈ [`∞(Λ)]d and the weak conver-

gence in (4.1) is interpreted as weak convergence in the product space [`∞(Λ)]d as discussed

in Section 1.4 of Van der Vaart and Wellner (1996). Let, µ̂1:bλnc,j and µj denote the j’th

components of the vectors µ̂1:bλnc and µ, respectively, and let gn,j(λ) := λ
√
n(µ̂1:bλnc,j−µj).

Conditions (4.1) and (4.2) now follow from a multivariate version of the functional CLT,

i.e.

(4.5) (gn,1, ..., gn,d)
>  Σ(B1, ...,Bd)>

in [`∞(Λ)]d, where B1, ...,Bd are independent Brownian motions on the interval [0, 1] and Σ

denotes a matrix which can depend on P and is non-singular when µ 6= 0. The functional

weak convergence in (4.5) can be verified in a similar fashion as discussed in (b) and details

are omitted for the sake of brevity.

Next we briefly discuss the two sample case, where X1, ..., Xm and Y1, ..., Yn are random variables

with Xi ∼ P, Yi ∼ Q. For simplicity we shall further assume that the samples X1, ..., Xm and

Y1, ..., Yn are independent, while dependence within the samples is explicitly allowed. Let µP, µQ

denote the parameters of interest corresponding to P,Q, respectively. Introduce the notation

µ̂X1:k := fk(X1, ..., Xk), µ̂
Y
1:k := fk(Y1, ..., Yk) and let gXm(λ) := λ

√
m(µ̂X1:bλmc − µP), gYn (λ) :=

12



λ
√
n(µ̂Y1:bλnc − µQ). Provided that m/(m + n) → ρ ∈ (0, 1) and gXm  HX and gYn  HY in

B(Λν ∪ 1,H) with limiting processes HX ,HY satisfying (4.2) and (4.3), an asymptotic level α

and consistent test for the (relevant) hypotheses

H0 : ‖µP − µQ‖2
H ≤ ∆ versus H1 : ‖µP − µQ‖2

H > ∆

is given by rejecting H0 whenever T̂m,n > ∆ + q1−α(W)V̂m,n. Here the statistics T̂m,n and V̂m,n

are defined by T̂m,n := ‖µ̂X1:m − µ̂Y1:n‖2
H and

V̂m,n =
(∫

Λν

{
λ2
∥∥∥µ̂X1:bmλc − µ̂Y1:bnλc

∥∥∥2

H
− λ4

∥∥∥µ̂X1:m − µ̂Y1:n

∥∥∥2

H

}2

ν(dλ)
)1/2

,

respectively, and q1−α(W) is the (1 − α)-quantile of the distribution of the random variable

W in (2.8). The discussion in Example 4.1 also applies to the two sample case with obvious

modifications.

4.2 Testing for relevant change points in a general setting

Next we discuss the problem of testing for relevant change points in the general context intro-

duced in the beginning of Section 4. Assume that Xi ∼ P for 1 ≤ i ≤ nθ0 and Xi ∼ Q for

nθ0 < i ≤ n where θ0 ∈ (0, 1). Technically this is a triangular array model, but we will not stress

this in the notation. We explicitly allow P = Q which corresponds to the case of no change point

in the sequence X1, . . . , Xn. Let µP, µQ denote the parameters of interest corresponding to P,Q,

respectively. Our aim is to test the hypotheses of a relevant change in the parameter µ of the

sequence X1, . . . , Xn, that is

(4.6) H0 : ‖µP − µQ‖2
H ≤ ∆ versus H1 : ‖µP − µQ‖2

H > ∆ .

Following the developments in Section 3, we assume that θ̂ is a consistent estimator for θ0

and introduce the notation µ̂j:k := fk−j+1(Xj, ..., Xk). The null hypothesis in (4.6) is rejected if

T̂cp > ∆ + q1−α(W)V̂cp, where the statstics T̂cp and V̂cp are defined by

T̂cp = ‖µ̂1:bnθ̂c − µ̂bnθ̂c+1:n‖
2
H ,

V̂cp =
(∫

Λν

{
λ2
∥∥∥µ̂1:bnλθ̂c − µ̂bnθ̂c+1:bnθ̂c+bnλ(1−θ̂)c

∥∥∥2

H
− λ4

∥∥∥µ̂1:bnθ̂c − µ̂bnθ̂c+1:n

∥∥∥2

H

}2

ν(dλ)
)1/2

,

respectively, and q1−α(W) is the (1 − α)-quantile of the distribution of the random variable W
in (2.8). The asymptotic validity of this test can be verified provided that

(4.7)
{
λ
√
n(µ̂1:bλθ̂nc − µ̂1+bθ̂nc+bλ(1−θ̂)nc:n + µQ − µP)

}
λ∈Λν∪1

 H in B(Λν ∪ 1,H) ,

where the limiting process H satisfies (4.2) and (4.3). This is a non-trivial high-level assumption

since the estimator θ̂ appears on the left-hand side.
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In concrete situations, for example in the situation considered in Section 3, it is possible to

replace (4.7) by more tractable and elementary assumptions. As a further illustration we will

discuss the setting of a real-valued parameter µ that can be represented as smooth functional

of the distribution function F of the random variable X with values in S = Rd. First, we

note that there exists a general and well-developed machinery for establishing convergence rates

of change point estimators [see, for example Carlstein (1988), Dümbgen (1991) or Hariz et al.

(2007), among others], and we assume

(4.8) θ̂ = θ0 + oP(n−1/2) ,

throughout this section, which is satisfied in many cases of practical interest. The following

discussion is a little informal and we refer the interested reader to the work of Volgushev and

Shao (2014) for some of the technical details that are omitted here for the sake of brevity.

Assume that µP = Φ(FP), µQ = Φ(FQ) for some smooth map Φ,where FP, FQ denote the cdf

of P,Q, respectively. Let µ̂i:j = Φ(F̂i:j) where F̂i:j is the empirical CDF of Xi, ..., Xj. Under

suitable assumptions on the temporal dependence structure of X1, ..., Xn it is possible to prove

the weak convergence

({
λ
√
n(F̂1:bnθ0λc(u)−FP(u))

}
λ∈[0,1],u∈Rd

,
{
λ
√
n(F̂bnθ0c+1:bnθ0c+bnλ(1−θ0)c(u)−FQ(u))

}
λ∈[0,1],u∈Rd

)
 
({

G1(λ, u)
}
λ∈[0,1],u∈Rd

,
{
G2(λ, u)

}
λ∈[0,1],u∈Rd

)
in `∞([0, 1] × Rd)2, where G1,G2 denote two independent centered Gaussian processes with

covariance structure of the form IE[Gj(s, u)Gj(t, v)] = (s ∧ t)Kj(u, v) (j = 1, 2). By elementary

calculations we have

sup
λ≥ε

sup
u
|F̂1:bnθ0λc(u)− F̂1:bnθ̂λc(u)| = OP(|θ0 − θ̂|) = oP(n−1/2) ,

(note that two empirical cdf which are based on k and k + l observations with an overlap of k

observations differ by at most l/k). Similarly, it can be shown that for any ε > 0

sup
λ≥ε

sup
u
|F̂bnθ0c+1:bnθ0c+bnλ(1−θ0)c(u)− F̂bnθ̂c+1:bnθ̂c+bnλ(1−θ̂)c(u)| = OP(|θ0 − θ̂|) = oP(n−1/2) ,

and the two displays above imply the weak convergence({
λ
√
n(F̂1:bnθ̂λc(u)− FP(u))

}
λ∈[ε,1],u∈Rd

,
{
λ
√
n(F̂bnθ̂c+1:bnθ̂c+bnλ(1−θ̂)c(u)− FQ(u))

}
λ∈[ε,1],u∈Rd

)
 
({

G1(λ, u)
}
λ∈[ε,1],u∈Rd

,
{
G2(λ, u)

}
λ∈[ε,1],u∈Rd

)
in `∞([ε, 1] × Rd)2. Assume that the mapping Φ is Hadamard differentiable at the points

FP, FQ, tangentially to a vector space V ⊂ `∞(Rd), with linear derivatives dΦFP , dΦGP and that
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G1(λ, ·),G2(λ, ·) ∈ V a.s. Then the results in Section 4 of Volgushev and Shao (2014) combined

with linearity of dΦFP , dΦFQ and some calculations show that the weak convergence in (4.7) holds

for the functional µ = Φ(F ) with µ̂i:j = Φ(F̂i:j) provided that Λν ⊂ [ε, 1]. In particular we have

have H D
= σ2B for some σ2 > 0.

5 Finite sample properties

In this section we illustrate the finite sample properties of the new procedures by means of

a simulation study. Note that one has to specify the measure ν used in the definition of the

normalizer (2.5), (2.16) and (3.7) and we use

ν =
1

19

19∑
i=1

δi/20(5.1)

throughout this section if not mentioned otherwise; here δλ denotes the Dirac measure at the

point λ ∈ [0, 1]. For example, for this choice the quantity V̂n defined in (2.5) is given by

V̂n =
[ 1

19

19∑
i=1

(∫
T

S2
n

(
t, i

20

)
dt−

(
i

20

)2
∫
T

S2
n(t, 1)dt

)2]1/2

and the other expressions are obtained similarly. In the following sections we discuss the one

sample case, the two sample case and change point detection separately. All results are based

on 1000 simulation runs.

5.1 One sample problems

We consider a process {Xn}n∈N with expectation function

µ(t) =
√

2δ ∗ sin(2πt)(5.2)

and different error processes, where we investigate a similar scenario as Aue et al. (2015) (see

Sections 6.3 and 6.4 in the latter paper). More precisely, let Xn = µ+ εn and consider B-spline

basis functions b1, . . . , bD (D ∈ N). Define the linear space H = span{b1, . . . , bD} ⊂ L2([0, 1])

and independent processes η1, . . . , ηn ∈ H by

ηj =
D∑
i=1

Ni,jbi (j = 1, . . . , n) ,

where N1,1, N2,1, . . . , ND,n are independent normal distributed random variables with expectation

zero and variance σ2
i =Var(Ni,j) = 1/i2 (i = 1, . . . , D; j = 1, . . . , n). Our first example considers

independent error processes of the form

εj = ηj (j ∈ Z) ,(5.3)
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while the second example investigates a functional moving average fMA(1) process given by

εj = ηj + Θηj−1 (j ∈ Z) .(5.4)

Here the operator Θ : H → H (acting on finite dimensional spaces) is defined by the matrix

Θ = (Θij)
D
i,j=1 ∈ RD×D, where the entries Θij are normally distributed with mean zero and

standard deviation κσiσj and κ is a scaling factor such that the resulting matrix Θ has (induced)

spectral norm equal to 0.7. The operator Θ is newly generated in every simulation run (see

Sections 6.3 and 6.4 in Aue et al. (2015) for a similar approach) and we use D = 21. The third

error structure under consideration are independent Brownian Bridges.

In Figure 1 we display the simulated rejection probabilities of the test (2.7) for the hypotheses

(2.1), where ∆ = 0.02, which corresponds to the value δ = 0.02 in model (5.2). These results

show a pattern which is in line with the theoretical findings in Theorem 2.1. For example at

the boundary of the null hypotheses, i.e. for δ = ∆ = 0.02, the simulated level is close to the

nominal level. In the interior of the null hypothesis (δ < ∆) the simulated rejection probabilities

are strictly smaller than α = 0.05, while they are strictly larger than 0.05 in the interior of the

alternative, i.e. δ > ∆.

Figure 1: Simulated rejection probabilities of the test (2.7) for the relevant hypotheses (2.1) with

∆ = 0.02. The mean function is given by (5.2) and different error processes are considered. First

panel: independent error processes defined by (5.3). Second panel: fMA(1) processes defined by

(5.4). Third panel: independent Brownian Bridges

.

5.2 Two sample problem

We begin considering the case of two independent (stationary) samples, X1, . . . , Xn and Y1, . . . , Ym,

with IE[Xi] = µ1 and IE[Yj] = µ2, where the mean functions are given by

(5.5) µ1 ≡ 0 , µ2(t) = at(1− t)
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[see Section 4 in Horváth et al. (2013)], such that
∫ 1

0
µ2

2(t)dt = a2/30. We are interested in

testing the hypotheses (2.13), that is

H0 :

∫
T

D2(t)dt ≤ ∆ versus H1 :

∫
T

D2(t)dt > ∆ ,

where D = µ1 − µ2 is the (unknown) difference of the two mean functions and the threshold is

given by ∆ = 0.22/30 (note that this corresponds to the choice a = 0.2). In Figure 2 we display

the rejection probabilities of the test (2.14) as a function of parameter a for different sample

sizes m and n. We consider independent samples, fMA(1) processes (generated as described in

Section 5.1) and independent Brownian Bridges as error processes.

We also investigate the important case of dependent samples. In this case we investigate two

scenarios. We generate a fMA(1) process {ηi}i∈Z as described in Section 5.1 and define

Xi = µ1 + ηi , i = 1, . . . ,m ; Yi = µ2 + ηm+i , i = 1, . . . , n(5.6)

as the first and

Xi = µ1 + ηi , i = 1, . . . ,m ; Yi = µ2 +
√

3 ηm+i , i = 1, . . . , n .(5.7)

as the second scenario; in both cases ∆ = 0.32/30. The corresponding rejection probabilities of

the test (2.14) are depicted in Figure 3. Overall the test performs well in all settings considered.

Figure 2: Simulated rejection probabilities of the test (2.14) for the relevant hypotheses (2.13) with

∆ = 0.22/30. The mean functions are given by (5.5) and different independent error processes

are considered. First panel: independent error processes defined by (5.3). Second panel: fMA(1)

processes defined by (5.4). Third panel: Brownian Bridges.
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Figure 3: Simulated rejection probabilities of the test (2.14) for the relevant hypotheses (2.13)

with ∆ = 0.32/30 in the case of dependent samples. The mean functions are given by (5.5). Left

panel: error processes defined by (5.6). Right panel: error processes defined by (5.7).

5.3 Change point problem

We begin by considering the model (3.1) with θ0 = 0.5, µ = 0, δ(t) = at(1 − t), the errors are

i.i.d. from (5.3). The trimming parameter ε for estimating the change point location is set to

0.05. Data are generated with a = 0, 0.02, . . . , 0.5 and then empirical rejection probabilities

are calculated using ∆ = 0.12/30, 0.22/30, 0.32/30, 0.42/30, respectively. These probabilities are

shown in Figure 4. From Theorem 3.1, we expect that the probability of rejection should be

close to α at the boundary of the hypotheses (
∫ 1

0
D2(t)dt = ∆), strictly smaller than α in

the interior of the null hypothesis (
∫ 1

0
D2(t)dt < ∆) and larger than α in the interior of the

alternative (
∫ 1

0
D2(t)dt > ∆). This pattern is clearly observed for relevant hypotheses with

theshold ∆ ≥ 0.22/30. On the other hand the proposed test is oversized if relevant hypotheses

with ∆ = 0.12/30 are tested (see the left upper panel in Figure 4). The reason for this behaviour

consists in the fact that change point tests for relevant hypotheses require a precise estimate of

the change point (see the definition of the statistics D̂cp
N and V̂cp

N in (3.6) and (3.7)). For small

values of a it is extremely difficult to estimate the true change point location, and an imprecise

estimation of the change point results in a less accurate approximation of the nominal level. The

difficulty of estimating the true change point location for small values of a is further illustrated

in Figure 5 where we show the histogram of the corresponding estimator of the change point for

a = 0.1, 0.2, 0.3, 0.4 with sample size is N = 200.
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Figure 4: Simulated rejection probabilities of the test (3.8) for the relevant hypotheses (3.2)

with ∆ = 0.12/30, 0.22/30, 0.32/30, 0.42/30. Data is generated according to model (3.1) with

θ0 = 0.5, µ = 0, δ(t) = at(1 − t), for a = 0, 0.02, . . . , 0.5, and the errors are i.i.d. defined

by (5.3). The tuning parameter is set to ε = 0.05.
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Figure 5: Histogram of the change point estimator θ̂ defined in (3.3). The sample size is N = 200

and data is generated according to model (3.1) with θ0 = 0.5, µ = 0, δ(t) = at(1 − t), for

a = 0, 0.02, . . . , 0.5, and the errors are i.i.d. defined by (5.3). The tuning parameter is set to

ε = 0.05.

Next, we investigate two scenarios similar to those described at the end of Section 5.2, i.e we

generate a fMA(1) process {ηi}i∈Z as described in Section 5.1 and define

Xi = µ+ ηi , i = 1, . . . , bθ0Nc ; Xi = µ+ δ + ηi , i = bθ0Nc+ 1, . . . , N .(5.8)

as the first and

Xi = µ+ ηi , i = 1, . . . , bθ0Nc ; Xi = µ+ δ +
√

3 ηi , i = bθ0Nc+ 1, . . . , N .(5.9)

as the second scenario. The functions µ, δ are as described in the beginning of this section. The

corresponding rejection probabilities of the test (3.8) are depicted in Figure 6 where we restrict

our attention to the case ∆ = 0.32/30 for the sake of brevity. We find that for both error settings

the test performs reasonably well.
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Figure 6: Simulated rejection probabilities of the test (3.8) for the relevant hypotheses (3.2) with

∆ = 0.32/30 in the case of fMA(1) samples. The mean function after the change point is given

by (5.5) and the mean function before the change point is the zero function. Left panel: error

processes defined by (5.6). Right panel: error processes defined by (5.7).

5.4 Data example

In this section we consider an application of the methodology developed in Section 2.2 to Aus-

tralian temperature data. The data consists of daily minimum temperatures collected at different

meteorological stations in Australia. Following Fremdt et al. (2014) we project the daily values

of each year on a Fourier basis consisting of 49 basis functions resulting in annual temperature

curves for each location under consideration. These authors investigate the temperature data to

illustrate methodology designed to choose the dimension of the projection space obtained with

fPCA and in Aue and van Delft (2017) the data is considered in the context of stationarity tests

for functional time series. In what follows, we use ν defined by (5.1), i.e. we use the quantiles of

the distribution of W in (2.8) which are displayed in the second line of Table 2.1.

We investigate annual data curves obtained from the meteorological stations in Cape Otway (1865-

2011) and Sydney (1859-2011). Cape Otway is a location in the south of Australia and Sydney

is a city on the eastern coast of Australia. There is a distance of approximately 1000 km between

the two locations such that differences in the temperature profiles are expected and the task of

the relevant two sample test is now to specify how big the difference might be. The samples

consist of m = 147 and n = 153 temperature curves, respectively.

In order to calculate the test decision in (2.14) for the hypotheses defined in (2.13), we computed

the statistic in (2.15) and the normalizer in (2.16). We obtained D̂m,n = 4.115, V̂m,n = 1.201 and

in Table 2, the test decisions are displayed for several choices of the level α and the threshold

parameter ∆. In Figure 7 we display the two estimated mean functions graphically.

The results in Table 2 provide no evidence for an integrated squared mean difference larger than

∆ = 12.1 but on the other extreme there is strong evidence that it exceeds ∆ = 9.6. Choosing

∆ between 9.7 and 11.2 led to rejecting the null at level α ≥ 5% and for ∆ ∈ [11.3, 12], the test

rejected the null only at level α ≥ 10%, which means weaker support of the alternative.
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∆ 99% 95% 90%

9.6 TRUE TRUE TRUE

9.7 FALSE TRUE TRUE

11.2 FALSE TRUE TRUE

11.3 FALSE FALSE TRUE

12 FALSE FALSE TRUE

12.1 FALSE FALSE FALSE

Table 2: Summary of the two sample test for relevant hypotheses with varying ∆ for the annual

temperature curves. The label TRUE refers to a rejection of the null, the label FALSE to a failure

to reject the null.

Figure 7: Mean functions of the Cape Otway and Sydney series for the two sample case.
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6 Appendix: Proofs

We begin with some technical preliminaries, the notation introduced in this section will be used

throughout all the proofs. Define the set of functions

G :=
{
f : T × [0, 1]→ R : sup

λ∈[0,1]

∫
T

f 2(t, λ)dt <∞
}
.

Equip this set with the norm

‖f − g‖G := sup
λ∈[0,1]

{∫
T

[f(t, λ)− g(t, λ)]2dt
}1/2

to obtain a normed vector space. We will frequently work with random elements with values

in this space. Here, random elements need not be measurable and we will make use of the

general theory of outer probabilities (see Chapter 1 in Van der Vaart and Wellner (1996)) where

appropriate without explicitly mentioning this.

6.1 Proofs of the results in Section 2

First, we state some preliminary results that will be useful throughout the proofs. Define

(6.1) S̃n(t, λ) =
1

n

bnλc∑
j=1

(Xj(t)− µ(t)) , λ ∈ [0, 1] .

Then it follows from Theorem 1.1 in Berkes et al. (2013), that there exists a sequence of mea-

surable random elements in G, say {Γn(t, λ)}λ,t∈[0,1], such that

sup
λ∈[0,1]

∫
T

(√
n S̃n(t, λ)− Γn(t, λ)

)2
dt = oP(1)(6.2)

{Γn(t, λ)}λ,t∈[0,1]
D
= {Γ(t, λ)}λ,t∈[0,1] ,(6.3)

where Γ is defined by

Γ(t, λ) =
∞∑
i=1

√
λiφi(t)Wi(λ) .(6.4)

{Wi}i∈N is a sequence of independent Brownian motions and λi, φi are the eigenvalues and

(orthonormal) eigenfunctions of the integral operator corresponding to the covariance kernel

C(s, t) =
∞∑
i=1

λiφi(s)φi(t)(6.5)

defined in (2.4), that is

λiφi(s) =

∫
T

C(t, s)φi(t)dt (i ∈ N) .(6.6)

25



Note that Berkes et al. (2013) also prove that
∑

k λk <∞ (see their Lemma 2.2) and that

(6.7) sup
0≤λ≤1

∫
T

Γ2(t, λ)dt <∞ a.s.

The latter implies that for any square integrable function ζ : [0, 1]→ R the process{∫
T

ζ(t)Γ(t, λ)dt

}
λ∈[0,1]

can be viewed as an element of `∞([0, 1]) and that the same is true for the process {
∫
T

Γ2(t, λ)dt}λ∈[0,1].

Moreover, summability of the sequence (λk)k∈N together with properties of the modulus of con-

tinuity of Brownian motions implies that for any positive sequence (κk)k∈N such that κn → 0, it

follows

sup
ν,λ∈[0,1]:
|ν−λ|≤κn

∫
T

{Γ(t, λ)− Γ(t, ν)}2dt

= sup
ν,λ∈[0,1]:
|ν−λ|≤κn

∫
T

∞∑
i=1

∞∑
j=1

√
λiλj{Wi(λ)−Wi(ν)}{Wj(λ)−Wj(ν)}φi(t)φj(y)dt

= sup
ν,λ∈[0,1]:
|ν−λ|≤κn

∞∑
i=1

∞∑
j=1

√
λiλj{Wi(λ)−Wi(ν)}{Wj(λ)−Wj(ν)}

∫
T

φi(t)φj(y)dt

= sup
ν,λ∈[0,1]:
|ν−λ|≤κn

∞∑
i=1

λi{Wi(λ)−Wi(ν)}2

≤
∞∑
i=1

λi sup
ν,λ∈[0,1]:
|ν−λ|≤κn

{Wi(λ)−Wi(ν)}2 = oP(1)

where the last line follows since by Fubini’s Theorem

IE
[ ∞∑
i=1

λi sup
ν,λ∈[0,1]:
|ν−λ|≤κn

{Wi(λ)−Wi(ν)}2
]

= IE
[

sup
ν,λ∈[0,1]:
|ν−λ|≤κn

{W1(λ)−W1(ν)}2
] ∞∑
i=1

λi = o(1).

This implies

(6.8) sup
ν,λ∈[0,1]:
|ν−λ|≤κn

∫
T

{Γ2(t, λ)− Γ2(t, ν)}2dt = oP(1) κn → 0.

6.1.1 Proof of Theorem 2.1

The main ingredients of the proof are the convergence result stated in (2.9) when
∫
T
µ2(t)dt > 0

and the bounds T̂n = oP(1), V̂n = oP(1) when
∫
T
µ2(t)dt = 0. We begin by considering
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the case
∫
T
µ2(t)dt = 0. In that case we have S̃n(t, λ) ≡ Sn(t, λ) for and hence by (6.2)

supλ∈[0,1]

∫
T
S2
n(t, λ)dt = oP(1) which implies T̂n = oP(1), V̂n = oP(1).

For the case
∫
T
µ2(t)dt > 0 note that a straightforward calculation shows

√
n

∫
T

(
S2
n(t, λ)− λ2µ2(t)

)
dt =

√
n

∫
T

(
Sn(t, λ)− λµ(t)

)2
dt+ 2

√
n

∫
T

λµ(t)
(
Sn(t, λ)− λµ(t)

)
dt

=
√
n

∫
T

S̃2
n(t, λ)dt+ 2

√
n

∫
T

λµ(t)S̃n(t, λ)dt+ oP(1)

=
1√
n

∫
T

(√
nS̃n(t, λ)− Γn(t, λ)

)2
dt+

1√
n

∫
T

Γ2
n(t, λ)dt

− 2√
n

∫
T

(√
nS̃n(t, λ)− Γn(t, λ)

)
Γn(t, λ)dt

+2

∫
T

λµ(t)
(√

nS̃n(t, λ)− Γn(t, λ)
)
dt+ 2

∫
T

λµ(t)Γn(t, λ)dt+ oP(1)

= 2

∫
T

λµ(t)Γn(t, λ)dt+ oP(1)

uniformly with respect to λ ∈ [0, 1], where we repeatedly used (6.2) and the Cauchy-Schwarz

inequality. Therefore we obtain from (6.3) and Slutsky’s Lemma that{√
n
(∫

T

S2
n(t, λ)dt− λ2

∫
T

µ2(t)dt
)}

λ∈[0,1]
 
{

2λ

∫
T

µ(t)Γ(t, λ)dt
}
λ∈[0,1]

(6.9)

in `∞([0, 1]) (recall that by the discussion at the beginning of this section the process on the

right hand side is an element of `∞([0, 1])), and observing (6.4), (6.5) and (6.6) it follows by a

straightforward calculation that

Cov
(∫

T

µ(t)Γ(t, λ)dt,

∫
T

µ(t)Γ(t, λ′)dt
)

=
(
λ ∧ λ′

) ∫
T

∫
T

µ(t)µ(s)C(s, t)dsdt.

Therefore {
2λ

∫
T

µ(t)Γ(t, λ)dt
}
λ∈[0,1]

D
=
{
λτB(λ)

}
λ∈[0,1]

,

where B denotes a standard Brownian motion on the interval [0, 1] and τ 2 is defined in (2.3).

Consequently the statement (2.9) in Section 2 follows from (6.9) and an application of the

continuous mapping theorem observing that the mapping

Z 7→ Z(1)( ∫ 1

0
(Z(λ)− λ2Z(1))2ν(dλ)

)1/2

from the measurable functions in `∞([0, 1]) onto R is continuous at points f ∈ `∞([0, 1]) with∫ 1

0
(f(λ)− λ2f(1))2ν(dλ) 6= 0. This yields

T̂n − d
V̂n

D→ B(1)( ∫ 1

0
λ2(B(λ)− λB(1))2ν(dλ)

)1/2
= W .(6.10)
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In the discussion following Theorem 2.1 we already argued that

lim
n→∞

P
(
T̂n > ∆ + q1−α(W)V̂n

)
= 0 ,

whenever
∫
T
µ2(t)dt = 0. When 0 <

∫
T
µ2(t)dt < ∆, we have

lim
n→∞

P
(
T̂n > ∆ + q1−α(W)V̂n

)
= lim

n→∞
P
( T̂n − d

V̂n

>

√
n(∆− d)
√
n V̂n

+ q1−α(W)
)

= 0

since
√
n V̂n = OP(1), T̂n−dV̂n

= OP(1), V̂n ≥ 0 a.s. and
√
n(∆ − d) → +∞. In the case d =∫

T
µ2(t)dt = ∆ we conclude

lim
n→∞

P
(
T̂n > ∆ + q1−α(W)V̂n

)
= lim

n→∞
P
( T̂n − d

V̂n

> q1−α(W)
)

= α

and, if d > ∆, we have

lim
n→∞

P
(
T̂n > ∆ + q1−α(W)V̂n

)
= lim

n→∞
P
(T̂n − d

V̂n

>

√
n(∆− d)
√
n V̂n

+ q1−α(W)
)

= 1

since
√
n V̂n = OP(1), V̂n ≥ 0 a.s. and

√
n(∆− d)→ −∞. 2

6.1.2 Proof of Theorem 2.2

The processes {Xm}m∈Z and {Yn}n∈Z satisfy assumptions (B2) and thus admit the representation

Xj = µ1 +ηXj , Yj = µ2 +ηYj where (ηXj )j∈Z and (ηYj )j∈Z denote centered error processes that both

satisfy (A2)-(A4). Define

D̃m,n(t, λ) := SXm(t, λ)− SYn (t, λ) ,

where the processes SXm and SYn are given by

SXm(t, λ) =
1

m

bmλc∑
j=1

(
Xj(t)− µ1(t)

)
=

1

m

bmλc∑
j=1

ηXj (t) ,

SYn (t, λ) =
1

n

bnλc∑
j=1

(
Yj(t)− µ2(t)

)
=

1

n

bnλc∑
j=1

ηYj (t) ,

respectively. A similar calculation as given in Section 6.1.1 shows that

Zm,n(λ) :=
√
n+m

∫
T

(
D2
m,n(t, λ)− λ2D2(t)

)
dt

= 2
√
n+m

∫
T

λD(t)
(
Dm,n(t, λ)− λD(t)

)
dt+ oP(1)

= 2
√
n+m

∫
T

λD(t)D̃m,n(t, λ)dt+ oP(1) = ZXm(λ)− ZYn (λ) + oP(1) ,

28



where we use the fact that λµ1 = 1
m

∑bmλc
i=1 µ1 + o(1) uniformly in λ in the third equality and the

processes {ZXm(λ)}λ∈[0,1] and {ZYn (λ)}λ∈[0,1] are given by

ZXm(λ) := 2
√
n+m

∫
T

λD(t)SXm(t, λ)dt ,(6.11)

ZYn (λ) := 2
√
n+m

∫
T

λD(t)SYn (t, λ)dt ,(6.12)

respectively. As the times series {Xn}n∈Z and {Yn}n∈Z satisfy assumptions (A1) - (A4) it follows

from the proof of Theorem 2.1 that the processes {ZXm(λ)}λ∈[0,1] and {ZYn (λ)}λ∈[0,1] converge

weakly in `∞([0, 1]) with both limits corresponding to scaled Brownian motions. Furthermore,

both processes are independent and therefore

{Zm,n(λ)}λ∈[0,1]  
{
λτDB(λ)

}
λ∈[0,1]

in `∞([0, 1]), where {B(λ)}λ∈[0,1] is a Brownian motion and τD is a real number depending on the

auto-covariance structures of {Xm}m∈Z and {Yn}n∈Z.

The assertion now follows exactly in the same way as in the proof of Theorem 2.1 and the details

are omitted for the sake of brevity. 2

6.2 Proofs of the results in Section 3

6.2.1 A technical result

In this section we prove a useful intermediate result. Now consider the situation which is de-

scribed in model (3.1) (see also Remark 2.2). Set

η
(1)
i = f1(εi, εi−1,...), i = 1, . . . , N

η
(2)
i = f2(εi, εi−1,...), i = 1, . . . , N

where f1, f2, (εj)j∈Z satisfy the conditions in (A2), IE[η
(1)
1 ] = IE[η

(2)
1 ] = 0, and η

(1)
i , η

(2)
i satisfy

assumptions (A3), (A4).

Lemma 6.1 In the setting above consider a fixed (but arbitrary) function ζ in L2(T ). For

λ ∈ [0, 1] define the processes

Z̃
(k)
N (λ) :=

1√
N

bNλc∑
i=1

∫
T

η
(k)
i (t)ζ(t)dt, k = 1, 2 ,

then

(Z̃
(1)
N , Z̃

(2)
N )>  Σ1/2(B1,B2)> in `∞([0, 1])2 ,

where B1,B2 are two independent standard Brownian motions on the interval [0, 1] and Σ is a

symmetric 2× 2 matrix with finite entries given by

Σij =
∑
h∈Z

∫
T

∫
T

Cov(η
(i)
0 (s), η

(j)
h (t))ζ(s)ζ(t)dsdt .
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Proof It suffices to prove tightness of the processes Z̃
(1)
N , Z̃

(2)
N individually and joint finite-

dimensional convergence. Tightness of Z̃
(k)
N follows from weak convergence of Z̃

(k)
N , which can be

established by an application of Theorem 2.1 in Berkes et al. (2013) and similar arguments as

given in Section 6.1.1. Thus it remains to prove that for arbitrary s1, ..., sL ∈ [0, 1] we have

(Z̃
(1)
N (s1), Z̃

(2)
N (s1), ..., Z̃

(1)
N (sL), Z̃

(2)
N (sL)) N (0,Σ(s1, ..., sL))

where Σ(s1, ..., sL) denotes the covariance matrix of the vector (G1(s1),G2(s1), ...,G1(sL),G2(sL))

and (G1,G2)> := Σ(B1,B2)>. Following Berkes et al. (2013) we define the random variables

η
(k)
j,m := fk(εj, εj−1, . . . εj−m+1, ε

∗
j,m), k = 1, 2,m ∈ N ,

where ε∗j,m = (ε∗j,m,j−m, ε
∗
j,m,j−m−1, . . .) is given in Assumption (A4). Let Σm denote matrices

with entries (below we shall prove that all entries are finite for any m ≥ 1)

(Σm)ij :=
∑
|h|≤m

∫
T

∫
T

Cov(η
(i)
0,m(s), η

(j)
h,m(t))ζ(s)ζ(t)dsdt ,

define (G1,m,G2,m)> := Σ
1/2
m (B1,B2)> and

Z̃
(k)
N,m(λ) :=

1√
N

bNλc∑
i=1

∫
T

η
(k)
i,m(t)ζ(t)dt, k = 1, 2 .

By an application of Example 11 in Chapter IV of Pollard (1984) it suffices to prove that

(i) Σm → Σ as m→∞.

(ii) For any δ > 0, k ∈ {1, 2}, ` ∈ {1, ..., L} we have

lim
m→∞

lim sup
N→∞

P
(
|Z̃(k)

N,m(s`)− Z̃(k)
N (s`)| > δ

)
= 0 .

(iii) For any fixed m we have

(Z̃
(1)
N,m(s1), Z̃

(2)
N,m(s1), ..., Z̃

(1)
N,m(sL), Z̃

(2)
N,m(sL)) N (0,Σm(s1, ..., sL)) .

In order to show the claim in (i), we prove (Σm)ij → Σij as m → ∞ for i, j = 1, 2. For i = j

this assertion directly follows from Lemma 2.2 in Berkes et al. (2013). For i 6= j, one can use

similar arguments as in the proof of the latter Lemma. More precisely, assume without loss of

generality that i = 1, j = 2 and show that

|Σ12| <∞ ,(6.13)

|(Σm)12| <∞ , m ≥ 1 ,(6.14)

(Σm)12 → Σ12, as m→∞ .(6.15)
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From the estimate

|Σ12| ≤
∣∣∣∣ ∫

T

∫
T

IE[η
(1)
0 (s)η

(2)
0 (t)]ζ(s)ζ(t)dsdt

∣∣∣∣+ 2

∣∣∣∣ ∞∑
h=1

∫
T

∫
T

IE[η
(1)
0 (s)η

(2)
h (t)]ζ(s)ζ(t)dsdt

∣∣∣∣ ,
(6.16)

(6.13) follows if each of the terms above is finite. For the first term, we apply the Cauchy-Schwarz

inequality to obtain by (A3)∣∣∣∣ ∫
T

∫
T

IE[η
(1)
0 (s)η

(2)
0 (t)]ζ(s)ζ(t)dsdt

∣∣∣∣ ≤ ‖ζ‖2

(∫
T

∫
T

IE[η
(1)
0 (s)η

(2)
0 (t)]2dsdt

)1/2

≤ ‖ζ‖2

(∫
T

∫
T

IE[η
(1)
0 (s)2]IE[η

(2)
0 (t)2]dsdt

)1/2

= ‖ζ‖2
(
IE‖η(1)

0 ‖2IE‖η(2)
0 ‖2

)1/2
<∞ .

We proceed with the second term in (6.16) and drop the constant 2. For any i ≥ 1, IE[η
(1)
0 η

(2)
i,i ] =

IE[η
(1)
0 ]IE[η

(2)
i,i ] = 0 since η

(1)
0 and η

(2)
i,i are independent. Applying the triangle inequality and the

Cauchy-Schwarz inequality yields∣∣∣∣ ∞∑
h=1

∫
T

∫
T

IE[η
(1)
0 (s)η

(2)
h (t)]ζ(s)ζ(t)dsdt

∣∣∣∣
≤

∞∑
h=1

‖ζ‖2

(∫
T

∫
T

IE[η
(1)
0 (s)η

(2)
h (t)]2dsdt

)1/2

=
∞∑
h=1

‖ζ‖2

(∫
T

∫
T

IE[η
(1)
0 (s)(η

(2)
h (t)− η(2)

h,h(t))]
2dsdt

)1/2

≤
∞∑
h=1

‖ζ‖2

(∫
T

∫
T

IE[η
(1)
0 (s)2]IE[(η

(2)
h (t)− η(2)

h,h(t))
2]dsdt

)1/2

= ‖ζ‖2IE
[
‖η(1)

0 ‖2
]1/2 ∞∑

h=1

IE
[
‖η(2)

0 − η
(2)
0,h‖

2
]1/2

.

(6.17)

Due to condition (A3) we have IE
[
‖η(1)

0 (s)‖2
]1/2

< ∞ and by an application of the Hölder

inequality we get

∞∑
h=1

IE
[
‖η(2)

h − η
(2)
h,h‖

2
]1/2 ≤ ∞∑

h=1

IE
[
‖η(2)

0 − η
(2)
0,h‖

2+δ
]1/(2+δ)

which is finite by (A4). This completes the proof of (6.13).

For (Σm)12, we proceed similarly. We have IE[η
(1)
0 (s)η

(2)
0 (t)] = IE[η

(1)
0,m(s)η

(2)
0,m(t)] and therefore∣∣∣∣ ∫

T

∫
T

IE[η
(1)
0,m(s)η

(2)
0,m(t)]ζ(s)ζ(t)dsdt

∣∣∣∣ <∞ .
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Note that the vectors (η
(1)
0,m, η

(2)
h,m) and (η

(1)
0 , η

(2)
h,m) have the same distribution for all h = 1, . . . ,m.

Furthermore, the vectors (η
(1)
h,m, η

(2)
h,h) and (η

(1)
0 , η

(2)
0,h) have the same distribution for all h = 1, . . . ,m

(this follows from the definition of all quantities involved and the i.i.d. structure of the ε∗i,j,m).

Thus, using similar arguments as in (6.17), we obtain∣∣∣∣ m∑
h=1

∫
T

∫
T

IE[η
(1)
0,m(s)η

(2)
h,m(t)]ζ(s)ζ(t)dsdt

∣∣∣∣ ≤ ‖ζ‖2

m∑
h=1

(∫
T

∫
T

IE[η
(1)
0,m(s)η

(2)
h,m(t)]2dsdt

)1/2

=‖ζ‖2

m∑
h=1

(∫
T

∫
T

IE[η
(1)
0 (s)η

(2)
h,m(t)]2dsdt

)1/2

≤ ‖ζ‖2IE
[
‖η(1)

0 ‖2
]1/2 m∑

h=1

IE
[
‖η(2)

h,m − η
(2)
h,h‖

2
]1/2

≤‖ζ‖2IE
[
‖η(1)

0 ‖2
]1/2 ∞∑

h=1

IE
[
‖η(2)

0 − η
(2)
0,h‖

2
]1/2

<∞

which proves (6.14).

In order to establish (6.15), we begin by observing that

∣∣∣∣ ∞∑
h=0

∫
T

∫
T

IE[η
(1)
0 (s)η

(2)
h (t)]ζ(s)ζ(t)dsdt−

m∑
h=0

∫
T

∫
T

IE[η
(1)
0,m(s)η

(2)
h,m(t)]ζ(s)ζ(t)dsdt

∣∣∣∣
≤
∣∣∣∣ m∑
h=1

∫
T

∫
T

{IE[η
(1)
0 (s)η

(2)
h (t)]− IE[η

(1)
0,m(s)η

(2)
h,m(t)]}ζ(s)ζ(t)dsdt

∣∣∣∣
+

∞∑
h=m+1

∣∣∣∣ ∫
T

∫
T

IE[η
(1)
0 (s)η

(2)
h (t)]ζ(s)ζ(t)dsdt

∣∣∣∣
≤

m∑
h=1

∣∣∣∣ ∫
T

∫
T

IE
[
η

(1)
0 (s){η(2)

h (t)− η(2)
h,m(t)}

]
ζ(s)ζ(t)dsdt

∣∣∣∣
+ ‖ζ‖2IE

[
‖η(1)

0 ‖2
]1/2 ∞∑

h=m+1

IE
[
‖η(2)

0 − η
(2)
0,h‖

2
]1/2

,

where the last inequality follows by similar arguments as (6.17). Now the second term converges

to zero as m→∞ and for the first term we obtain
m∑
h=1

∣∣∣∣ ∫
T

∫
T

IE
[
η

(1)
0 (s){η(2)

h (t)− η(2)
h,m(t)}

]
ζ(s)ζ(t)dsdt

∣∣∣∣
≤ ‖ζ‖2

m∑
h=1

(∫
T

∫
T

IE
[
η

(1)
0 (s){η(2)

h (t)− η(2)
h,m(t)}

]2

dsdt
)1/2

.

Now by (A4) we have for any fixed h(∫
T

∫
T

IE
[
η

(1)
0 (s){η(2)

h (t)− η(2)
h,m(t)}

]2

dsdt
)1/2

≤ IE
[
‖η(1)

0 ‖2
]1/2

IE
[
‖η(2)

h − η
(2)
h,m‖

2
]1/2

= IE
[
‖η(1)

0 ‖2
]1/2

IE
[
‖η(2)

0 − η
(2)
0,m‖2

]1/2 → 0 .
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Since also by similar arguments as in (6.17) and in the proof of (6.14)(∫
T

∫
T

IE
[
η

(1)
0 (s){η(2)

h (t)− η(2)
h,m(t)}

]2

dsdt
)1/2

≤ 2
{(∫

T

∫
T

IE
[
η

(1)
0 (s)η

(2)
h (t)

]2

dsdt
)1/2

+
(∫

T

∫
T

IE
[
η

(1)
0 (s)η

(2)
h,m(t)

]2

dsdt
)1/2}

≤ 4 IE
[
‖η(1)

0 ‖2
]1/2

IE
[
‖η(2)

0 − η
(2)
0,h‖

2
]1/2

and since the right-hand side is summable over h ≥ 1 it follows that

m∑
h=1

∣∣∣∣ ∫
T

∫
T

IE
[
η

(1)
0 (s){η(2)

h (t)− η(2)
h,m(t)}

]
ζ(s)ζ(t)dsdt

∣∣∣∣→ 0 , m→∞

by the dominated convergence theorem for series.

The assertion in (6.15) follows and this also completes the proof of (i).

The claim in (ii) follows by a direct application of Lemma 2.1 in Berkes et al. (2013).

For a proof of claim (iii) note that for each fixed m the sequence(∫
T

η
(1)
i,m(t)ζ(t)dt ,

∫
T

η
(2)
i,m(t)ζ(t)dt

)
i∈Z

form a collection of stationary, m-dependent random vectors with finite variance. Now (iii)

follows by a straightforward application of the Cramer-Wold device and the CLT for m-dependent

random variables, see for instance Theorem 9.1 in DasGupta (2008). 2

6.2.2 Proof of Proposition 3.1

Step 1: Recall the definition of f̂ in (3.4). We begin by proving the following preliminary result{
GN(θ)

}
θ∈[0,1]

:=
{√

N(f̂(bNθc)− d(θ))
}
θ∈[0,1]

 
{
G(θ)

}
θ∈[0,1]

(6.18)

in `∞([0, 1]) as N →∞, where

d(θ) := d̃(θ)

∫
T

δ(t)2dt , d̃(θ) = θ(1− θ)

{
(θ0/θ)

2, 1 > θ > θ0

((1− θ0)/(1− θ))2, 0 < θ ≤ θ0

(6.19)

d̃(0) = d̃(1) = 0, and the process G is a random element in `∞([0, 1]) with a.s. continuous sample

paths. To this end define for k = 1, ..., N − 1

AN(t, k) :=
1

k

k∑
j=1

(Xj(t)− IE[Xj(t)])−
1

N − k

N∑
j=k+1

(Xj(t)− IE[Xj(t)])

BN(t, k) :=
1

k

k∑
j=1

IE[Xj(t)]−
1

N − k

N∑
j=k+1

IE[Xj(t)]
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and let AN(t, N) = AN(t, 0) = BN(t, N) = BN(t, 0) ≡ 0. With those definitions we can write

f̂(k) =

∫
T

(AN(t, k) +BN(t, k))2dt
k

N

(
1− k

N

)
=
{∫

T

AN(t, k)2dt+ 2

∫
T

AN(t, k)BN(t, k)dt+

∫
T

BN(t, k)2dt
} k

N

(
1− k

N

)
.

(6.20)

From Theorem 1.1 in Berkes et al. (2013) it follows that

(6.21)
k

N

(
1− k

N

)∫
T

AN(t, k)2dt = oP(N−1/2) ,

uniformly with respect to k. For 1 ≤ k ≤ k0 := bNθ0c, straightforward calculations yield

BN(t, k) =
1

k

k∑
j=1

µ(t)− 1

N − k

k0∑
j=k+1

µ(t)− 1

N − k

N∑
j=k0+1

(µ(t) + δ(t))

= µ(t)

(
1− k0 − k

N − k

)
− (µ(t) + δ(t))

N − k0

N − k

= µ(t)

(
1− θ0 − k/N

1− k/N

)
− (µ(t) + δ(t))

1− θ0

1− k/N
+O(N−1)

= − 1− θ0

1− k/N
δ(t) +O(N−1)

and in the case N > k > k0 we have (again uniformly in k)

BN(t, k) =
1

k

k0∑
j=1

µ(t) +
1

k

k∑
j=k0+1

(µ(t) + δ(t))− 1

N − k

N∑
j=k+1

(µ(t) + δ(t))

=
θ0

k/N
µ(t) +

k/N − θ0

k/N
(µ(t) + δ(t))− 1− k/N

1− k/N
(µ(t) + δ(t)) +O(N−1)

= − θ0

k/N
δ(t) +O(N−1) .

Hence we obtain

k

N

(
1− k

N

)∫
T

BN(t, k)2dt = d(k/N) +O(N−1) ,(6.22)

uniformly with respect to k and

k

N

(
1− k

N

)∫
T

AN(t, k)BN(t, k)dt =

∫
T

AN(t, k)δ(t)dt d̃(k/N) + oP(N−1/2) .

Therefore we obtain from (6.20), (6.21), (6.22), Lipschitz continuity of θ 7→ d(θ), θ 7→ d̃(θ) and

the line above

(6.23) GN(θ) = 2
√
N

{∫
T

AN(t, bNθc)δ(t)dt d̃(θ)

}
+ oP(1)
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uniformly with respect to θ ∈ [0, 1]. In order to investigate the leading term on the right hand

side observe for any θ ∈ [1/N, 1) the representation

AN(t, bθNc) =
1

bθNc

( b(θ∧θ0)Nc∑
j=1

η
(1)
j (t) + 1{θ0 < θ}

bθNc∑
j=bθ0Nc+1

η
(2)
j (t)

)

− 1

N − bθNc

(
1{θ0 ≥ θ}

bθ0Nc∑
j=bθNc+1

η
(1)
j (t) +

N∑
j=b(θ∨θ0)Nc+1

η
(2)
j (t)

)

=
1

bθNc

b(θ∧θ0)Nc∑
j=1

η
(1)
j (t)− 1{θ0 ≥ θ}

N − bθNc

bθ0Nc∑
j=bθNc+1

η
(1)
j (t)

+
1{θ0 < θ}
bθNc

bθNc∑
j=bθ0Nc+1

η
(2)
j (t)− 1

N − bθNc

N∑
j=b(θ∨θ0)Nc+1

η
(2)
j (t),

which yields

2
√
N

∫
T

AN(t, bNθc)δ(t)dt

=
N

bθNc
Z̃(1)
N (θ ∧ θ0)− 1{θ0 ≥ θ} N

N − bθNc
(Z̃(1)

N (θ0)− Z̃(1)
N (θ))

+ 1{θ0 < θ} N

bθNc
(Z̃(2)

N (θ)− Z̃(2)
N (θ0))− N

N − bθNc
(Z̃(2)

N (1)− Z̃(2)
N (θ0 ∨ θ)) ,

where

Z̃(i)
N (λ) =

1√
N

bλNc∑
j=1

∫
T

η
(i)
j (t)δ(t)dt .(6.24)

Finally, note that we have

sup
θ∈[1/N,1)

∣∣∣d̃(θ)
N

bθNc
− d̃(θ)

θ

∣∣∣ = o(1), sup
θ∈[1/N,1)

∣∣∣d̃(θ)
N

N − bθNc
− d̃(θ)

1− θ

∣∣∣ = o(1) .

Hence Lemma 6.1, Slutskys Lemma and the continuous mapping theorem yield

2
√
N

{∫
T

AN(t, bNθc)δ(t)dt d̃(θ)

}
θ∈[0,1]

 
{
G(θ)

}
θ∈[0,1]

.(6.25)

Combing (6.25) with (6.23) gives us the weak convergence in (6.18).

Step 2: Given the weak convergence in (6.18) we are ready to prove (3.5). The proof will

proceed in three steps. First, we show that θ̂ = θ0 + oP(1). In the second step we show that

(6.26) θ̂ = θ0 + oP(N−1/4).
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In the final step we derive (3.5).

Observe that the function θ 7→ d(θ), defined in (6.19), is strictly increasing in [0, θ0] and strictly

decreasing in (θ0, 1]. Therefore, for any δ > 0, there is an ε > 0 such that |θ − θ0| > δ implies

d(θ0) − d(θ) > ε. Now let δ > 0 be arbitrary and assume |θ̂ − θ| > δ. Using that k̂ := Nθ̂ is

the maximizer of the function k 7→ f(k), the result from Step 1 and the previously mentioned

monotonicity property, we obtain

0 ≥ f̂(k0)− f̂(k̂) = f̂(k0)− d(θ0)− (f̂(k̂)− d(θ̂)) + d(θ0)− d(θ̂)

= OP(N−1/2) + d(θ0)− d(θ̂) > OP(N−1/2) + ε
(6.27)

for some ε > 0, where k0 := bNθ0c. This means that

P(|θ̂ − θ0| > δ) ≤ P(OP(N−1/2) < −ε)→ 0

as N →∞ and therefore, θ̂ converges to the true change point θ0 in probability.

Next we show that |θ̂ − θ0| = OP(N−1/2). Making a Taylor expansion of d at the point θ0, we

obtain, as θ → θ0,

d(θ) = d(θ0) + c
(
− (θ − θ0)1{θ > θ0}+ (θ − θ0)1{θ ≤ θ0}

)
+O

(
(θ − θ0)2

)
for some constant c > 0. Therefore, as θ → θ0, we can find a constant δ > 0 such that

d(θ0)− d(θ) ≥ δ|θ − θ0|+O((θ − θ0)2) .(6.28)

Since θ̂ is a consistent estimator of θ0 (by the discussion in the previous paragraph), we can use

this property and similar arguments as in (6.27) to obtain

0 ≤ f̂(k̂)− f̂(k0) = OP(N−1/2) + d(θ̂)− d(θ0) ≤ OP(N−1/2)− δ|θ̂ − θ0|

which means that |θ̂ − θ0| = OP(N−1/2).

Thus, with probability converging to 1, we have θ̂ ∈ argmaxθ:|θ−θ0|≤N−1/4 f̂(bNθc). Since the

process GN in (6.18) is stochastically equicontinuous, we get

|f̂(k̂)− f̂(k0)− (d(θ̂)− d(θ0))| ≤ sup
θ:|θ−θ0|≤N−1/4

|f̂(bNθc)− f̂(k0)− (d(θ)− d(θ0))|

≤ sup
θ,θ′:|θ−θ′|≤N−1/4

N−1/2|GN(θ)−GN(θ′)|

= oP(N−1/2) .

Using this rate and the bound in (6.28) yields

0 ≤ f̂(k̂)− f̂(k0) ≤ d(θ̂)− d(θ0) + |f̂(k̂)− f̂(k0)− (d(θ̂)− d(θ0))|
≤ d(θ̂)− d(θ0) + oP(N−1/2)

≤ −δ|θ0 − θ̂|+ oP(N−1/2)

which finally implies |θ̂ − θ0| = oP(N−1/2). 2
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6.2.3 Proof of Theorem 3.1

We begin by stating some useful technical results and notations. Define

S̃
(k)
N (t, λ) =

1

N

bλNc∑
j=1

η
(k)
j (t), k = 1, 2(6.29)

where η
(1)
j := f1(εj, εj−1,...), η

(2)
j := f2(εj, εj−1,...) for j ∈ Z. Since f1, f2 satisfy assumptions (A3),

(A4), it follows from Theorem 1.1 in Berkes et al. (2013) that there exist random elements in G
(recall the beginning of Section 6), say Γ

(i)
N , with

(6.30) sup
λ∈[0,1]

∫
T

(
√
NS̃

(i)
N (t, λ)− Γ

(i)
N (t, λ))2dt = oP (1) , i = 1, 2 ,

where each Γ
(i)
N satisfies the analogue of (6.3)-(6.8) with covariance kernels corresponding to η

(1)
i

and η
(2)
i , respectively.

First consider the case
∫
δ2(t)dt 6= 0. Recalling that θ̂ = θ0 + oP(N−1/2) by Proposition 3.1 we

proceed in several steps. First, we show that for the process

ZN(λ, θ) =
√
N

∫
T

(
Dcp
N (t, λ, θ)2 − λ2δ(t)2

)
dt ,

we have {
ZN(λ, θ0)

}
λ∈[0,1]

 
{
λτ 2

δB(λ)
}
λ∈[0,1]

(6.31)

in `∞([0, 1]), where {B(λ)}λ∈[0,1] is a Brownian motion and τδ is a parameter depending on the

covariance structure of {(η(1)
j , η

(2)
j )}j∈Z. Second we prove

sup
λ∈[0,1]

|ZN(λ, θ0)− ZN(λ, θ̂)| = oP(1) ,(6.32)

where θ̂ is the estimator of θ0 defined in (3.3). Finally we can again use the same arguments as

in the proof of Theorem 2.1 to obtain the assertion.

Next, consider the case
∫
T
δ2(t)dt = 0. It suffices to show that D̂cp

N = oP(1), V̂cp
N = oP(1). To this

end define the partial sum process

WN(t, λ) :=
1

N

{ bN(λ∧θ0)c∑
i=1

η
(1)
i (t) +

bN(λ∨θ0)c∑
i=bNθ0c+1

η
(2)
i (t)

}
and observe that by (6.30) and some elementary computations we have

sup
λ∈[0,1]

∫
T

W 2
N(t, λ)dt = oP(1) .
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Next, observing that

Dcp
N (t, λ, θ)

=
N

bNθc
WN

(
t,
bλbNθcc

N

)
− N

N − bNθc

{
WN

(
t,
bNθc+ bλ(N − bNθc)c

N

)
−WN

(
t,
bNθc
N

)}
,

some elementary calculations taking into account that by definition θ̂ ∈ [ε, 1− ε] show that

V̂cp
N ≤ 4 sup

λ∈[0,1],θ∈[ε,1−ε]

∫
T

{Dcp
N (t, λ, θ)}2dt .

1

ε2
sup
λ∈[0,1]

∫
T

W 2
N(t, λ)dt = oP(1) .

Similar but simpler arguments show that D̂cp
N = oP(1) and this completes the proof in the case∫

T
δ2(t)dt = 0.

Proof of (6.31). Define the processes

S
(1)
N (t, λ, θ) =

1

bθNc

bλbθNcc∑
j=1

(Xj(t)− µ(t))

S
(2)
N (t, λ, θ) =

1

N − bθNc

bθNc+bλ(N−bθNc)c∑
j=bθNc+1

(Xj(t)− µ(t)− δ(t))

and similar to the calculations in Section 6.1.1 we can write

ZN(λ, θ) =
√
N

∫
T

(
Dcp
N (t, λ, θ)− λδ(t)

)2
dt+ 2

√
N

∫
T

λδ(t)
(
Dcp
N (t, λ, θ)− λδ(t)

)
dt

=
√
N

∫
T

(
S

(1)
N (t, λ, θ)− S(2)

N (t, λ, θ)
)2
dt

+ 2
√
N

∫
T

λδ(t)
(
S

(1)
N (t, λ, θ)− S(2)

N (t, λ, θ)
)
dt+ oP(1)

(6.33)

uniformly in λ ∈ [0, 1], θ ∈ (ε, 1 − ε) for any ε > 0. For θ = θ0, the first term at the end of

the calculation above converges to zero (as in the two sample case) and the second term can be

rewritten such that Lemma 6.1 can be applied

ZN(λ, θ0) = 2
√
N

∫
T

λδ(t)
(
S

(1)
N (t, λ, θ0)− S(2)

N (t, λ, θ0)
)
dt+ oP(1)

= Z(1)
N (λ, θ0)− Z(2)

N (λ, θ0) + oP(1) ,

(6.34)

where

Z(i)
N (λ, θ) = 2

√
N

∫
T

λδ(t)S
(i)
N (t, λ, θ)dt , i = 1, 2 .(6.35)
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We can rewrite the processes in (6.34) as

Z(1)
N (λ, θ0)− Z(2)

N (λ, θ0) = 2
N

bθ0Nc
λ

1√
N

bλbθ0Ncc∑
j=1

∫
T

η
(1)
j (t)δ(t)dt

− 2
N

N − bθ0Nc
λ

1√
N

bθ0Nc+bλ(N−bθ0Nc)c∑
j=bθ0Nc+1

∫
T

η
(2)
j (t)δ(t)dt

=
2λ

θ0

Z̃(1)
N (bλbθ0Ncc/N)

− 2λ

1− θ0

{
Z̃(2)
N ((bθ0Nc+ bλ(N − bθ0Nc)c)/N)− Z̃(2)

N (θ0)
}

+ oP(1) ,

where the remainder is uniform in λ ∈ [0, 1] and the processes Z̃(1)
N and Z̃(2)

N are defined in (6.24).

An application of Lemma 6.1 with ζ = δ, asymptotic equicontinuity of the sample paths of Z̃(i)
N ,

and the continuous mapping theorem yield the assertion in (6.31). To see that the limit has the

right structure, observe that

Z(1)
N (λ, θ0)− Z(2)

N (λ, θ0) 
2λ

θ0

Z̃(1)(λθ0)− 2λ

1− θ0

{
Z̃(2)(θ0 + λ(1− θ0))− Z̃(2)(θ0)

}
(6.36)

where

Z̃(1) = Σ̃11B1 + Σ̃12B2; Z̃(2) = Σ̃21B1 + Σ̃22B2 ,

and Σ̃ij denotes the ij-th entry of Σ1/2. By straightforward calculations one obtains

Cov
(
Z̃(1)(λ1θ0), Z̃(2)(θ0 + λ2(1− θ0))− Z̃(2)(θ0)

)
= 0 ,

Cov(Z̃(1)(λ1θ0), Z̃(1)(λ2θ0)) = (λ1 ∧ λ2)θ0(Σ̃2
11 + Σ̃2

12) .

Furthermore, Z̃(2)(θ0 + λ(1− θ0))− Z̃(2)(θ0) has the same distribution as Z̃(2)(λ(1− θ0)) and

Cov(Z̃(2)(λ1(1− θ0)), Z̃(2)(λ2(1− θ0))) = (λ1 ∧ λ2)(1− θ0)(Σ̃2
21 + Σ̃2

22) .

Combining the calculations above, we can conclude that the limit process in (6.36) is of the form

as claimed in (6.31).

Proof of (6.32). For θ = θ̂, we show that the first term at the end of the calculation in (6.33)

vanishes by proving

N1/4 sup
λ∈[0,1]

‖S(i)
N ( · , λ, θ̂)‖ = oP(1)(6.37)

for i = 1, 2. Since both cases are similar we only consider the case i = 1. Write

N1/4S
(1)
N (t, λ, θ̂) =

1

N1/4

N

bθ̂Nc
(
Q

(1)
N (t, λ, θ̂) +Q

(2)
N (t, λ, θ̂)

)
(6.38)
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where

Q
(1)
N (t, λ, θ̂) =

1√
N

bλbθ̂Ncc∧bθ0Nc∑
j=1

(Xj(t)− µ(t)) =
1√
N

bλbθ̂Ncc∧bθ0Nc∑
j=1

η
(1)
j (t)

Q
(2)
N (t, λ, θ̂) =

1√
N

bλbθ̂Ncc∑
j=bλbθ̂Ncc∧bθ0Nc+1

(Xj(t)− µ(t)) .

(6.39)

We have by (6.30) and the properties of Γ
(i)
N

lim
p→∞

lim sup
N→∞

P
(

sup
λ∈[0,1]

‖Q(1)
N ( · , λ, θ̂)‖ > p

)
≤ lim

p→∞
lim sup
N→∞

P
(

sup
λ∈[0,1]

√
N‖S̃(1)

N (·, λ)‖ > p
)

= lim
p→∞

lim sup
N→∞

P
(

sup
λ∈[0,1]

∫
T

{Γ(1)
N (t, λ)}2dt > p2

)
+ o(1) = 0

where S̃
(1)
N is defined in (6.29). Therefore supλ∈[0,1] ‖Q

(1)
N ( · , λ, θ̂)‖ = OP(1). The second term in

(6.39) is zero if bλbθ̂Ncc ≤ bθ0Nc or, if bλbθ̂Ncc > bθ0Nc, we can write

sup
λ∈[0,1]

‖Q(2)
N ( · , λ, θ̂)‖ = sup

λ∈[0,1]

∥∥∥ 1√
N

bλbθ̂Ncc∑
j=bθ0Nc+1

(η
(2)
j + δ)

∥∥∥ .
The number of terms in the sum above is bounded by the distance between θ0 and θ̂ in the sense

that

sup
λ∈[0,1]

∥∥∥ 1√
N

bλbθ̂Ncc∑
j=bθ0Nc+1

(η
(2)
j + δ)

∥∥∥
. sup

ν,λ∈[0,1]:

|ν−λ|≤|θ0−θ̂|

√
N
∥∥S̃(2)

N ( · , ν)− S̃(2)
N ( · , λ)

∥∥+
bθ̂Nc − bθ0Nc√

N
‖δ‖

= sup
ν,λ∈[0,1]:

|ν−λ|≤|θ0−θ̂|

√∫
T

{Γ(2)
N (t, ν)− Γ

(2)
N (t, λ)}2dt+

bθ̂Nc − bθ0Nc√
N

‖δ‖+ oP(1) ,

(6.40)

where the last equality follows by (6.30) and the definition of ‖ · ‖. The first term in (6.40)

converges to zero in probability since (6.8) holds with Γ
(2)
N instead of Γ and since by (3.5)

|θ0−θ̂| = oP(1/
√
N). The latter also implies that the second term converges to zero in probability.

Therefore we have supλ∈[0,1] ‖Q
(2)
N ( · , λ, θ̂)‖ = oP(1). Recalling (6.38), we conclude that (6.37)

holds in the case i = 1 and similar arguments yield the statement for i = 2. This means that we
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can continue the calculations in (6.33) for θ = θ̂ and obtain

√
N

∫
T

(
S

(1)
N (t, λ, θ̂)− S(2)

N (t, λ, θ̂)
)2
dt+ 2

√
N

∫
T

λδ(t)
(
S

(1)
N (t, λ, θ̂)− S(2)

N (t, λ, θ̂)
)
dt

= 2
√
N

∫
T

λDcp(t)
(
S

(1)
N (t, λ, θ̂)− S(2)

N (t, λ, θ̂)
)
dt+ oP(1)

= Z(1)
N (λ, θ̂)− Z(2)

N (λ, θ̂) + oP(1) ,

where Z(i)
N , for i = 1, 2, is defined by (6.35). In order to prove (6.32) it consequently remains to

show

sup
λ∈[0,1]

|Z(i)
N (λ, θ̂)− Z(i)

N (λ, θ0)| = oP(1)

for i = 1, 2. For that purpose we write

sup
λ∈[0,1]

|Z(1)
N (λ, θ̂)− Z(1)

N (λ, θ0)|

= sup
λ∈[0,1]

∣∣∣∣2√N ∫
T

λδ(t)

{(
1

bθ̂Nc
− 1

bθ0Nc

) bλb(θ̂∧θ0)Ncc∑
j=1

(
Xj(t)− µ(t)

)
+
(
1{θ̂ ≥ θ0} − 1{θ̂ < θ0}

) 1

b(θ̂ ∨ θ0)Nc

bλb(θ̂∨θ0)Ncc∑
j=bλb(θ̂∧θ0)Ncc+1

(
Xj(t)− µ(t)

)}
dt

∣∣∣∣
≤ 2‖δ‖λ

{
N

bθ0Nc
|bθ0Nc − bθ̂Nc|

bθ̂Nc
sup
λ∈[0,1]

∥∥∥∥ 1√
N

bλb(θ̂∧θ0)Ncc∑
j=1

(Xj − µ)

∥∥∥∥
+

N

b(θ̂ ∨ θ0)Nc
sup
λ∈[0,1]

∥∥∥∥ 1√
N

bλb(θ̂∨θ0)Ncc∑
j=bλb(θ̂∧θ0)Ncc+1

(Xj − IE[Xj])

∥∥∥∥
+

N

b(θ̂ ∨ θ0)Nc
sup
λ∈[0,1]

1√
N

bλb(θ̂∨θ0)Ncc∑
j=bλb(θ̂∧θ0)Ncc+1

‖δ‖
}

.
|θ0 − θ̂|
θ0θ̂

sup
λ∈[0,1]

√
N‖S̃(1)

N ( · , λ)‖

+
1

θ̂ ∨ θ0

( 2∑
i=1

sup
ν,λ∈[0,1]:

|ν−λ|≤|θ0−θ̂|

√
N
∥∥S̃(i)

N ( · , ν)− S̃(i)
N ( · , λ)

∥∥+
|bθ̂Nc − bθ0Nc|√

N
‖δ‖
)

+ o(1)

= oP(1) .

The last equality holds since |θ0 − θ̂| = oP(1/
√
N), supλ∈[0,1]

√
N‖S̃(1)

N ( · , λ)‖ = OP(1) and since

sup
ν,λ∈[0,1]:

|ν−λ|≤|θ0−θ̂|

√
N
∥∥S̃(i)

N ( · , ν)− S̃(i)
N ( · , λ)

∥∥ = sup
ν,λ∈[0,1]:

|ν−λ|≤|θ0−θ̂|

√∫
T

{Γ(i)
N (t, ν)− Γ

(i)
N (t, λ)}2dt+ oP(1)
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which is oP(1) by similar arguments as given right after (6.40). Similar arguments prove

sup
λ∈[0,1]

|Z(2)
N (λ, θ̂)− Z(2)

N (λ, θ0)| = oP(1)

which finally implies (6.32). 2
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