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Abstract

To obtain a reliable prediction model for a specific cancer subgroup or cohort
is often difficult due to the limited number of samples and, in survival analysis,
even more due to potentially high censoring rates. Sometimes similar datasets
are available for other patient subgroups with the same or a similar disease and
treatment, e.g., from other clinical centers. Simple pooling of all subgroups can
decrease the variance of the predicted parameters of the prediction models, but
also increase the bias due to potential high heterogeneity between the cohorts.

A promising compromise is to identify which subgroups are similar enough to
the specific subgroup of interest and then include only these for model building.
Similarity here refers to the relationship between input and output in the prediction
model, and not necessarily to the distributions of the input and output variables
themselves.

Here, we propose a subgroup-based weighted likelihood approach and evaluate
it on a set of lung cancer cohorts. When interested in a prediction model for a
specific subgroup, then for every other subgroup, an individual weight determines
the strength with which its observations enter into the likelihood-based optimization
of the model parameters. A weight close to 0 indicates that a subgroup should be
discarded, and a weight close to 1 indicates that the subgroup fully enters into the
model building process.

MBO (model based optimization) can be used to quickly find a good prediction
model in the presence of a large number of hyperparameters to be tuned. Here, we
use MBO to identify the best model for survival prediction in lung cancer subgroups,
where besides the parameters of a Cox model additionally the individual values
of the subgroup weights are optimized. Interestingly, often the resulting models
with highest prediction quality are obtained for a mixed weight structure, i.e. both
weights close to 0, weights close to 1, and medium weights are optimal, reflecting
the similarity of the corresponding cancer subgroups.

1 Introduction

Survival analysis is a central aspect in cancer research with the aim of predicting the
survival time of a patient on the basis of his covariates. Often it can be assumed that the
relation between covariates and survival time is not the same across different subgroups
of patients (e.g. cohorts from different clinical centers). Then, the aim is to improve the
prediction of the survival function for a specific subgroup by appropriately adding data
from the other subgroups, in order to benefit from the larger sample size.

In standard subgroup analysis only the patients of the subgroup of interest G are included
in the model. This can lead to unstable results, especially for smaller subgroups. As an
alternative we propose a model that potentially uses all subgroups but assigns them
subgroup-dependent weights. When the relationship between covariates and survival
time in a subgroup is more similar to the model for subgroup G, this subgroup enters
with a higher weight into the model building process.

This idea extends the work of Weyer and Binder [14] who aim at improving stability
and prediction quality of a model for a specific subgroup by including one additional
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weighted subgroup. They study the effects of a set of different fixed weights for the
additional subgroup in a stratified Cox model, with respect to both, model performance
and parameter stability.

In our approach we use multiple additional subgroups and efficiently optimize respective
subgroup-specific weight parameters to improve the prediction quality of a Cox model.
The optimal subgroup weights are determined by optimizing the cross-validated Con-
cordance index through Bayesian optimization [7]. In an adapted version of classical
cross-validation, only the patients of the subgroup G of interest are included in the test
set, while all patients from all subgroups can potentially be used for training. The idea
is to assign large weights exactly to those subgroups that improve the prediction per-
formance of the model for subgroup G. Those subgroups that deteriorate the predictive
performance (mainly due to a different relationship between covariates and survival time)
are assigned lower weights.

In this report we show that with our subgroup weights optimization approach, the pre-
dictive quality can be improved, compared to the two naïve approaches to either fully
include or fully exclude all other subgroups. As an application example we use ten non-
small-cell lung cancer studies as subgroups and optimize the prediction quality for each
subgroup, respectively, using all other subgroups with optimized weights.

2 Model-based Optimization

Sequential model-based optimization (MBO) [7] (also known as Bayesian Optimiza-
tion) is a state-of-the-art [11] technique for expensive black-box optimization problems.
In comparison to other black-box optimization methods, like Genetic Algorithms or Sim-
ulated Annealing, MBO is especially applicable when evaluating a configuration (model
with its parameters and hyperparameters, her denoted by θ) takes a lot of time. MBO
solves the optimization problem within a bounded search space Θ:

θ∗ := argminθ∈Θ f(θ),

where f(θ) denotes the evaluation of the black-box with the input θ. To reduce the
number of evaluations on f the key idea of MBO is to only evaluate values of θ that
are expected to lead to a small value of f(θ). The estimate f̂(θ) is generated by a so
called surrogate model. Typically, this is a regression model that predicts the outcome
of f based on previous evaluations of f . First, an initial design θ of already evaluated
configurations is needed. Then, iteratively the MBO algorithm fits the surrogate on the
previous evaluations, proposes a new configuration θ and evaluates it on f .

A so called infill criterion guides the proposal of new configurations θ based on f̂ . It
balances between exploration of not yet evaluated regions in Θ and exploitation, i.e. the
search on regions that promise best outcomes. As infill criterion we use the augmented
expected improvement [6] that is well suited for noisy functions. The steps are repeated
until a budget is exhausted. The setting θ∗ that leads to the best outcome is returned as
the result.
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2.1 Surrogate Model

We apply Kriging (also called Gaussian process Regression) to fit the surrogate model
that predicts the outcome of f for unknown values of θ. We use the implementation in
the DiceKriging package and configure it to apply the Mattern3

2
kernel with an estimated

nugget effect [10] to account for the noisy response of f . Due to numerical instabilities
in some situations the maximum likelihood estimation of the covariance matrix can fail
which results in a constant mean prediction. This leads to randomly proposed points for
the next MBO step. To avoid this case we implemented a fallback model: If the prediction
is constant, then the noisy response values f(θ) for a specific θ are aggregated by their
means. These simplified data usually lead to models without constant predictions.

3 Gene Expression Data

Ten lung cancer cohorts, with overall survival and censoring information, Affymetrix
microarray gene expression data of the tumor material, and several clinicopathologic
information, were downloaded from the Gene Expression Omnibus (GEO) data repository
[4] and manually curated as follows. Raw gene expression data (CEL-files), measured on
the Affymetrix HG-U133 Plus 2.0 and HGU-133A array, were normalized using frozen
robust multiarray analysis (fRMA) [9], except for GSE3141 and GSE4573, where only
MAS5-normalized data were available. All cohorts were checked for duplicates by looking
at correlations of the expression value vectors. Duplicates, small cell cancer samples, and
normal (non-tumorous) samples, as well as samples with missing survival endpoint were
removed. More details on the data curation process can be found in [5].

The resulting ten non-small cell lung cancer (NSCLC) cohorts comprise n = 1779 patients
with available overall survival endpoint and gene expression data. These data, as well
as the ADENOS subset containing only adenocarcinoma samples (n = 1142), are used for
analysis. Estimated survival functions of each cohort are plotted in Figure 1. A summary
of the clinicopathologic variables is provided in Table 1.

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

NSCLC

Survival time [years]

S
ur

vi
va

l r
at

e

0 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0

ADENOS

Survival time [years]

S
ur

vi
va

l r
at

e

Target Cohort
GSE14814
GSE19188
GSE29013
GSE30219
GSE31210
GSE3141
GSE37745
GSE4573
GSE50081
Shedden

Figure 1: Kaplan-Meier plots of the estimated survival functions for all ten lung cancer
cohorts.
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Table 1: Overview of clinical variables for each lung cancer cohort in the complete NSCLC dataset.
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Sample size 90 82 55 269 226 110 194 130 181 442

min. 38 32 15 30 39 42 40 33
mean 62 64 61 60 64 67 68 64Age (years)
max. 81 76 84 76 84 91 87 87

male 67 59 38 228 105 0 105 82 98 223
female 23 23 17 40 121 0 89 47 83 219Sex
NA 0 0 0 1 0 110 0 1 0 0

I 45 0 24 183 168 0 128 73 127 0
II 45 0 14 35 58 0 35 34 54 0
III 0 0 17 42 0 0 27 23 0 0
IV 0 0 0 4 0 0 4 0 0 0

pTNM stage

NA 0 82 0 5 0 110 0 0 0 442

SQC 52 24 25 61 0 52 64 130 43 0
ADC 28 40 30 85 226 58 106 0 127 442
LCC 10 18 0 55 0 0 24 0 7 0
other NSCLC 0 0 0 68 0 0 0 0 4 0

Histology

NA 0 0 0 0 0 0 0 0 0 0

never-smoker 0 0 2 0 115 0 15 0 24 49
current-/ex-smoker 0 0 53 0 111 0 179 123 136 300Smoking status
NA 90 82 0 269 0 110 0 7 21 93

censoring 52 32 37 99 191 52 51 63 106 206Survival status event 38 50 18 170 35 58 143 67 75 236
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4 Weighted Cox model

Let S be the number of subgroups in the dataset. Assume that the observed data consists
of the tuples (ti, δi), the covariate vectors xi = (xi1, . . . , xip)

′ ∈ Rp, and the subgroup
membership si ∈ {1, . . . , S}, i = 1, . . . , n. ti = min(Ti, Ci) denotes the observed time of
patient i, with Ti the event time and Ci the censoring time. δi = 1(Ti ≤ Ci) indicates
whether a patient experienced an event (δi = 1) or was (right-)censored (δi = 0). The
most popular regression model in survival analysis is the Cox proportional hazards model
[3]. It models the hazard rate h(t|xi) of an individual at time t as

h(t|xi) = h0(t) · exp(β′xi) = h0(t) · exp

(
p∑
j=1

βjxij

)
,

where h0(t) is the baseline hazard rate, and β = (β1, . . . , βp)
′ is the unknown parame-

ter vector. The parameters are estimated by maximizing the partial log-likelihood ([8],
chapter 8.3).
In order to take subgroups into account, a weighted version of the partial log-likelihood
as in [14] is used:

l(β) =
n∑
i=1

δiwi

(
β′xi − ln

[ n∑
k=1

1(ti ≤ tk)wk exp (β′xk)
])
. (1)

In the subgroup-specific model for subgroup s∗, the individual weights are given by

wi =

{
1, if si = s∗

w(g), if si = g, g ∈ {1, . . . , S} \ s∗
(2)

where w(g) ∈ [0, 1] is the specific weight for subgroup g. Standard subgroup analysis
is based only on the patients in the subgroup of interest (target subgroup s∗), which
corresponds to w = 0 for all patients not belonging to s∗. A combined model that pools
patients from all subgroups corresponds to w = 1 for all patients.

In high-dimensional settings where the number of covariates p is typically much larger
than the sample size n, standard maximum likelihood cannot be used for parameter
estimation. Therefore, we add a lasso penalty [12, 13] to the partial log-likelihood. Lasso
regression performs variable selection and yields a sparse model solution. The resulting
maximization problem of the penalized partial log-likelihood is given by

β̂ = argmax
β

{
l(β)− λ ·

p∑
j=1

|βj|

}
.

The parameter λ controls the strength of penalization and is optimized by 10-fold cross-
validation.

5 Evaluation

We apply the methods described above to estimate a model separately for each of the
ten cancer cohorts. We use the weighted Cox model to predict the survival function of
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each patient in the respective target subgroup s∗. The unknown parameter vector β is
estimated by maximizing the partial log-likelihood in (1). Subgroup specific weights (2)
are optimized using MBO, with budget 300 evaluations (Cox model parameters plus
weight vector). The initial design for MBO consists of 2 · (S − 1) randomly sampled
subgroup weights and additional specific extreme cases: Exactly one other subgroup has
weight 1 and all others weight 0, all other subgroups have weight 0, all other subgroups
have weight 1 (full model). The target subgroup always has weight 1. The objective is
to maximize the predictive performance by adapting the weights for all other subgroups.

The predictive performance of the weighted Cox model is evaluated using the C-index.
To assess the performance of one weight configuration, the C-index is averaged using a
modified 10-fold cross-validation: The target subgroup is divided into 10 chunks, and to
obtain the prediction for one chunk all remaining 9 chunks plus all observations from the
additional subgroups are combined to the training data set. The C-index is only calcu-
lated on the one chunk of the target subgroup that was not used for model building. To
judge the stability of the optimization results the whole optimization process is repeated
5 times, with different random samples for the initial design and different cross-validation
splits of the target subgroup.

Optimization of subgroup weights is carried out twice: Once all patients are included
(dataset NSCLC) and once only patients with tumor type adenocarcinoma (dataset ADENOS,
with patients from only eight out of the ten cohorts). Each cohort is treated once as target
subgroup, respectively. Only gene expression data are used as covariates and the number
of genes included in analyses is initially reduced to the 1000 features with highest variance
across all ten subgroups.

The algorithms for this work are implemented in R, for the model-based optimization the
R-package mlrMBO [1] is used, and survival analysis is performed using the R-package
mlr [2].

We evaluate the effectiveness of the optimization by comparing the C-index resulting
from four different strategies.

Subgroup uses only the observations of the target subgroup to train the Cox model (all
weights 0, expect for target subgroup).

All uses all subgroups to train the Cox model (all weights 1).

Init uses the subgroup weights that led to the best performance in the initial design
(includes the above cases).

MBO uses the weights that led to the best performance during the model-based opti-
mization process (does not include weights tried in the initial design).

Figure 2 shows for ADENOS (left) and NSCLC (right) the predictive performance of the so
far best model during the MBO optimization process. For some cohorts the predictive
performance increases strongly over time, while for others no improvement is observed.
A strong increase can be seen especially for GSE14814 (ADENOS) and GSE29013 (NSCLC).
The latter is also the smallest subgroup, with only 55 patients.
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Figure 2: Progress of the MBO optimization over time, averaged over 5 replications. The
shaded area indicates the range of all replications. Iteration 0 corresponds to the best
performance from the initial design.

Figure 3 shows the optimal weight vectors for Init and MBO, for ADENOS (left) and
NSCLC (right). Rows correspond to target subgroups and columns per plot indicate the
subgroups to be used for model building. The line denotes the mean optimal weights
over 5 repetitions. Overall, we see different patterns with weights close to 0 and close to
1, but sometimes also medium weights.

Consider the two examples highlighted above with substantially improved prediction per-
formance due to MBO. For GSE29013 (NSCLC) as target subgroup, most other subgroups
obtain weights close to 0.5. Interestingly, the optimal weights from the initial design
look similar. For GSE14814 (ADENOS), with only 90 patients, the other subgroups obtain
larger weights after running the MBO optimization.

An immediate question is if weighting values are bidirectional, meaning that an additional
subgroup that is weighted highly for predicting the target subgroup also uses the latter
with a high weight if it is the target subgroup itself. In Figure 3 we can especially notice
that for some additional subgroups a weight near 0 or 1 is clearly chosen by MBO. For ex-
ample GSE14814 (NSCLC) clearly benefits most from GSE30219 and GSE50081 as highly
weighted additional subgroups. The other way round, for GSE30219 and GSE50081
as target subgroup, also GSE14814 is a highly weighted additional subgroup. One can
suspect that these datasets are similar w.r.t. to good models and thus having a larger
training dataset helps to increase the predictive performance.

A different scenario can be observed for the target subgroup GSE31210 (NSCLC). There
is no clear preference for additional subgroups, but GSE3141, GSE4573 and GSE50081
benefit from including GSE31210 with a high weight as additional subgroup. One reason
could be that GSE31210 has a fairly large sample size with 226 observations, while the
other cohorts are a bit smaller.
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Figure 3: Subgroup weights corresponding to the best predictive performance within the
initial design and after optimization with MBO. The row indicates the target subgroup,
the columns per figure indicate the subgroups to be used for model building. Each dot
represents the optimal weight for the respective subgroup obtained in one repetition of
the optimization run. The line denotes the mean over the 5 repetitions. If the dots per
subgroup scatter heavily this indicates an unstable result.
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The C-index for predictions of the GSE29013 target cohort could not be validated for the
ADENOS subset because sample size is too low (30 observations with 8 events). Cohort
GSE4583 has no observations in the ADENOS subset. Therefore it is also not included in
the weights.

Figure 4 shows the predictive performance of the best weight configuration identified with
the four different weighting strategies. Overall, we observe that for almost all cases the
C-index obtained with MBO is in average the highest, compared to the other weighting
strategies. The only exceptions are the results for the target subgroups GSE3141 and
GSE31210 (NSCLC). Using only the target subgroup to train the Cox model yields the
worst C-index for the majority of cases, except for GSE31210, GSE19188 in the ADENOS
dataset and GSE19188 and GSE14814 in the NSCLC dataset.
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Figure 4: The predictive performance of the best weight configuration found using the
different strategies. Each box plot includes the C-indices measured for the best weight
setting of the 10-fold cross-validation and the 5 repetitions.

6 Summary

When multiple patient cohorts with a similar disease and treatment are available, it is
tempting to pool the cohorts to one overall cohort to increase sample size and therefore
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the stability of conclusions drawn from the data. However, heterogeneity between the
cohorts can heavily distort these conclusions. We considered the situation in which one
is interested in a good prediction model for one specific cohort out of a set of potentially
similar cohorts. We analyzed a weighted likelihood strategy that is intended to only add
those cohorts to the prediction model building process that represent a similar feature-
outcome relationship. For optimizing the weights of the other cohorts we used MBO
(model base optimization). It turned out in a lung cancer survival study this strategy
often leads to an improved C-index as performance criterion, in a cross-validation setting.

Two important aspects for future research remain. The implementation of a nested
cross-validation setting will avoid overfitting of the optimization process. Further it will
be interesting to analyze in which way the size of the weight for a subgroup can be related
to other properties of the corresponding patient subgroup, especially regarding sample
size and the distributions of clinical covariates.
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