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Abstract

The multitude of events and internal data structures in complex modern sys-

tem software are an excellent target for data analysis. The tools to collect the data

range from low-level tracing frameworks to more sophisticated ones with special-

ized data collection and processing languages. However, these lack information on

the relationship between different data sources and between currently and already

collected data. We describe a formal data model that captures the structure of

data streams in the system software as well as the relationships between them.

1 Introduction

Ubiquitous systems are often subject to resource constraints. Due to the complexity
of modern system software, optimization potential regarding resource consumption is
hard to discover without examining the dynamic characteristics, which heavily depend
on application and user behaviour. This comprises specific analyses, intended to find
bottlenecks regarding latency or throughput, but also more general analysis techniques,
like the detection of utilization patterns in order to use them for resource-saving adap-
tations to the system software. [7] Several tools were conceived to extract relevant data
from the system software. Debug output or specific tracing frameworks like LTT(ng)
[2] or ftrace are restricted with respect to the available data or need recompilation to
add additional data sources. More generic dynamic instrumentation tools like kprobes
allow for greater flexibility but are tedious to operate. Finally, there are frameworks that
use extensible event-action languages that allow to specify the trace events in a more
declarative manner, while being generic enough to allow preprocessing (e.g., aggregation)
on the collected trace data. Notable examples for these are dtrace [1] for Solaris and
SystemTap [4] for Linux. Fay [5] extends this idea to clusters of Windows machines,
and uses a variant of language-integrated queries (FayLINQ) to process the data during
collection. MobiDAC [8] is an infrastructure to dynamically collect data from mobile
devices on-demand, utilizing different instrumentation tools (e.g., SystemTap).

However, collected data has only implicit semantics in these cases and contains no infor-
mation on the relationship between the different data sources. Consequentially, there is
also no information that allows to link them to already collected data. PiCO QL [6] can
be seen as a step into that direction. It allows to specify a mapping from UNIX kernel
data structures to a relational view. Using the virtual table mechanism of SQLite, kernel
data can then be queried via actual SQL statements. There is no instrumentation, just
generated helper functions that read existing data structures and convert them into a
relational view. This has the advantage of not imposing any overhead during normal op-
eration, but the disadvantage of restricted data availability. For example, the frequency
or inter-arrival times of system events or data modifications cannot be captured with
PiCO QL if this is not recorded by the kernel itself. In other cases it might be available
by frequent queries (polling), which is clearly less resource-efficient than instrumentation.
Thus, snapshot access to system software data structures is not sufficient.

We describe a way to model the structured data streams of system software as a concise
form of entity-relationship models extended by data streams. We also provide an instance
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of this metamodel that describes the data we collected with our MobiDAC infrastructure.
[8]

The rest of this document is structured as follows: Sections 2 through 4 explain all meta
levels of our data model, this is, the metamodel (M2, Sec. 2), a look on the model (M1,
Sec. 3), with an example for each element defined by the metamodel, and finally an idea
of actual data collected according to the model (M0, Sec. 4). Section 5 concludes this
document.

2 Metamodel (M2)

The basic data-generating model elements are data sources, events, and objects.

Name spaces help to organize the model, which is their only function. They can contain
any other model element, including other namespaces.

Sources have a data value of a certain value type that can be retrieved at any time.
The data value may change over time. This happens either asynchronously or in
conjunction with an event. Events can thus be used to obtain a stream of updates
to a data source. Data sources may also have implicit events that occur exactly
when the data source is updated.

Value types can be simple types like an integer, string or an enumeration. Another
value type is the reference to a data source or object. Finally, there are complex
types, which are simply a composition of other value types. Names may be assigned
to types in order to refer to them when specifying the type for, e.g., a data source.

Events occur at specific points in time and, additionally to updating data sources, they
may have context data of a certain type. Unlike data sources, this context data is
only available for its respective event instance and cannot be retrieved any time.
As such, each event generates a data stream on its own, additionally to the update
streams of data sources.

Implications define the relationship between updates to mutable data sources and
events. An event implies a data source if the occurence of this event implies a
change to the respective data. A data source implies an event if every update to
that data source implies an occurence of the respective event.

Objects are closely related to objects known from programming languages. They are
meant to represent operating system objects like processes or external context like
WiFi access points. In the model, they are basically instantiable namespaces. As
such, they can contain own data sources and events, or even objects, with, again,
their own data sources. An example would be the processes in the system, mul-
tiple instances of the same object type. They contain non-mutable data like the
command line, but also mutable data sources like its execution time. Furthermore,
each process can have multiple open files, which are again represented as objects.
Objects may have an identifier that is unique during their lifetime (e.g., the process
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Listing 1: Concrete syntax (Xtext).
Model: members+=Element (’;’ members+=Element)∗ ’;’?;
Element: "const" ConstSource | Mutable | Event | PureImplication | Namespace | "type"

NamedType;
Mutable: Object | Source;

/∗
∗ model elements
∗/

Namespace: name=QualifiedName (’{’ members+=Element (’;’ members+=Element)∗ ’;’? ’}’)?;
Event: name=QualifiedName ’(’ implications+=Implication∗ ’)’ (’: ’ type = Type)?;
ConstSource: name=QualifiedName ’:’ type=Type;
Source: name=QualifiedName (implicitEvent?=’!’)? ’:’ type=Type;
Object: name=QualifiedName ’[’ (reftype = Type)? ’]’ ( ’ : ’ general = [Object | QualifiedName])? (’{ ’

members+=Element (’;’ members+=Element)∗ ’;’? ’}’)? implications+=Implication∗;
PureImplication: events+=[Event | QualifiedName] (’,’ events+=[Event | QualifiedName])∗

implications+=Implication+;

// implications
Implication: type=ImplType right=[Mutable | QualifiedName];
enum ImplType: Implied="<=" | Implies="=>" | Iff="<=>";

/∗
∗ type system
∗/

Type: "enum" Enum | Simple | ’{’ Complex ’}’ | ’&’ Reference | TypeRef;
Reference: referred = [Mutable | QualifiedName];

// simple types
Simple: type = SimpleType;
enum SimpleType: Int="int" | Str="str" | Float=" float " | Bool="bool" | Void="void";

// enums
Enum: values+=EnumValue (’,’ values+=EnumValue)∗;
EnumValue: name=ID;

// complex types
Complex: members+=MultiTyped (’;’ members+=MultiTyped)∗ ’;’?;
MultiTyped: names+=QualifiedName (’,’ names+=QualifiedName)∗ ’:’ type=Type;

// named types
NamedType: name=QualifiedName ’:’ type=Type;
TypeRef: ref = [NamedType];
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ID). If they are part of another object, they are only unique inside their parent
instance (e.g., file descriptors). In that case, a unique identifier consists of the own
identifier and the unique idenfier of the parent instance. For many types of oper-
ating system objects there are more specialized subtypes. For example, directories
are a special type of file. This is covered by a generalization relation that allows to
specify subtypes of objects (e.g., the directory). These subtypes may extend their
generalized version (e.g., the file), by additional content.

Listing 1 shows the concrete syntax of the modeling language we used to describe the data
model in the following section and the appendix. The notation of the concrete syntax is
based on Xtext [3], a textual modeling framework for the Eclipse IDE.

3 Model (M1)

Listing 2 shows an example data model that covers all of the metamodel’s elements
and relations between them. An example for a simple integer source is battery.level in
the namespace battery. It has an implicit event, which is just a shorter notation for
an event that is implied by battery.level and can be used to capture every change to
the battery level. A source with a reference as data type is process.current. The data
consists of a reference to the currently running process, a processes.process object. Each
process instance contains its own data: A constant data source (its command line cmdline)
and a mutable data source (the time spent in usermode utime). It also contains own
objects, namely references to open files. The event context_switch updates (implies)
processes.current and also is always invoked when processes.current is updated (is implied
by current). A directory (fs.dir) is a special type of fs.file, which contains fileref entries
that consist of a name and a reference to a file. Since there is more than one event that
updates the content of directories, all events necessary to get every change to directory
contents (create, unlink, rename, . . . ), are denoted by a multi-implication.

The appendix contains a model of the data we captured with MobiDAC. [8]

4 Relational and Stream Interpretation (M0)

The purpose of this section is to provide an idea of what collected data looks like when
collected according to the model. The data model encompasses both a static relational
snapshot view on the data as well as a dynamic stream view.

The current state of objects and sources can be interpreted as a relational database,
similar to PiCO QL. [6] Table 1 shows relational snapshots for three OS object types.
A table for an object contains its ID, and the current values of its data sources. If it is
a subordinate object (i.e., contained in another object), there is also a reference to its
parent instance, which might be the unique ID for the parent.

Events and updates to objects and data sources can be interpreted as a data stream.
Table 2 shows data streams for an object, a source, and an event. Every tuple of a
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Listing 2: Example model.
battery {

level! : int;
};

fs {
file[int]; // files
regular[] : file { // regular files

lcount : int; /∗ number of hard links to this file ∗/
};
dir[] : file { // directories

fileref[] { // directory entry
name : str;
file : &file;

}
};

create( /∗ File is created ∗/
=> dir.fileref /∗ Directory ∗/

);

open( /∗ A process opens a file ∗/
=> processes.process.of /∗ modifies the list of open files of a process ∗/

) : &fs.dir.fileref; // the file reference used for access

hlink(
=> dir.fileref /∗ the newly created file reference ∗/

) : &dir.fileref; /∗ an existing file reference ∗/

/∗ ... ∗/

hlink, unlink, create, rename, mkdir, rmdir // multi−implication
<=> file
<=> dir.fileref;

};

processes {
current: &process; // currently running process

process[int] {
const cmdline : str; // command line
utime : int; // time spent in user mode
of[int] { /∗ files currently opened by the process ∗/

file : &fs.file;
};

};

context_switch ( // switch between processes
<=> current
<=> process.utime

) : {from, to : &process};
}
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processes.process

ID tcomm utime stime . . .

1 init 1 5 . . .

5 loopd 1000 10 . . .

6 nc 20 20 . . .

. . . . . . . . . . . . . . .

fs.file

ID size lcount . . .

1232 12132 2 . . .

45721 935 1 . . .

213 128 1 . . .

. . . . . . . . . . . .

processes.process.of

&process ID file pos . . .

2 3 1232 4096 . . .

5 3 45721 0 . . .

6 3 20 132 . . .

. . . . . . . . . . . . . . .

Table 1: Relational snapshots of objects processes.process, fs.file, and pro-
cesses.process.of.

processes.process

time &process exists

0.271 5 true

0.281 2 false

0.425 6 true

. . . . . . ...

processes.process.utime

time &process utime

0.125 1 220

0.281 2 110

0.301 5 18

. . . . . . . . .

processes.context_switch

time &process from to

0.125 1 1 2

0.281 2 2 5

0.301 5 5 9

. . . . . . . . . . . .

Table 2: Streams of object processes.process, data source processes.process.utime, and
event processes.context_switch.

source, object or event stream contains a timestamp and, if it is contained in an object,
a reference to its parent instance. Streams for sources additionally contain the new data
values. Streams for object types additionally contain information about the appearance
and disappearance of instances instead (i.e., processes that are started and terminated).
Finally, the tuples of event streams additionally contain the event’s context data as well
as references to the modified data sources’ and objects’ parent instances.

5 Conclusion

We described our model of the structure and relationships of dynamic system software
data. As future work, we intend to extend it by a query language that allows to declar-
atively collect, filter, join, and aggregate the data defined by the model. One purpose
would be to easily create feature vectors that are amenable for data analysis. Whether
relational snapshots are sufficient for information retrieval scenarios set aside, we plan
to not only extract and analyze data, but to use it directly in the system software for
context- and utilization-aware adaptation. This demands reaction to events, rather than
evaluating periodic snapshots.
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Appendix: MobiDAC Data Model

This model describes the dataset collected with the MobiDAC infrastructure. While
MobiDAC as well as the data model are extensible, this one corresponds to the dataset
described in [8]. It is split into parts for Linux-specific (Kernel-internal data structures),
mobile-device-specific (sensors, connectivity and communication peers), and Android-
specific data.

/∗
∗ Linux−specific
∗/

net {
device[str ] {

rx_bytes : int ; // number of bytes received
rx_dropped : int ; // number of dropped incoming packets
rx_packets : int ; // number of received packets
rx_errors : int ;
tx_bytes : int ; // number of transferred bytes
tx_dropped : int ; // number of dropped outgoing packets
tx_packets : int ; // number of outgoing packet
tx_errors : int ;

};
};

processes[int] { // currently running processes (from /proc/[PID])
cmdline : str ; // the full command line that was used to start the process
tcomm : str; // the executable, truncated to 15 characters
state : enum sleeping, sleeping_nonint, running, zombie, stopped; // the current process state
utime : int ; // the number of jiffies ( time unit ) the process spent in user mode
stime : int ; // the number of jiffies ( time unit ) the process spent in kernel mode
cutime : int ; // the number of jiffies ( time unit ) the childs of this process spent in user
mode
cstime : int ; // the number of jiffies ( time unit ) the childs of this process spent in kernel
mode
priority : int ; // the process’s priority

nice : int ; // the process’s nice value (effects the priority )
num_threads : int; // the number of threads belonging to the process
start_time : int ; // the time the process started (UNIX timestamp)
vsize : int ; // virtual memory size

};

cpu {
load {

onemin : float ; // CPU load averaged over 1 minute
fivemin : float ; // CPU load averaged over 5 minutes

}
};

memory {
buffers : int ; /∗ size of currently allocated buffer memory (kB) ∗/
cached : int ; /∗ size of currently allocated cache memory. (kB) ∗/
dirty : int ; /∗ size of dirty cache pages ∗/
free : int ; /∗ free random access memory (kB) ∗/
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total : int ; /∗ total size of available memory (kB) ∗/
writeback : int ; /∗ total size of pages currently being written back (kB) ∗/

};

/∗
∗ Mobile device specific
∗/

type mac_address : int;

battery {
health : enum unknown, good, overheat, dead, overvoltage, failure;
level : int ; /∗ charge level ∗/
plugged : bool; // plugged in to A/C charger?
present : bool; // whether a battery is present
status : enum unknown, charging, discharging, not_charging, full;
temperature : float ;
const technology : str; // usualli Li−Ion
voltage : float ;

};

bluetooth {
active : bool;
visible : bool;
device[mac_address] {

name : str; // the name of this device
class : int ; // the class of this device
bondstate : int ; // a numerical value telling whether this device is currently paired with

us
prev_bondstate : int ; // the previous bondstate

};
connected[mac_address]; // Currently connected devices

};

device {
id : str ; // the IMEI of the device
type devicetype: enum GSM, CDMA, SIP, unknown; // the phone type (GSM, CDMA, SIP,
unknown)

};

type location_provider : str ; // the location provider (gps, network, passive, ...)

positioning [ location_provider ] {
location : {

accuracy : float ; // accuracy of the given position data in meters
altitude : float ; // altitude in meters
latitude : float ; // latitude in degrees
longitude : float ; // longitude in degrees
bearing : float ; // heading in degrees off true north
speed : float ; // estimated speed in m/s
time : float ; // time supplied by GPS or network

};
update(<=> location);

};
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network {
cells { /∗ information about network cells ∗/

cid : int ;
lac : int ;
neighbors[] { /∗ list of neighbor cells and their signal strenghts ∗/

cid : int ;
rssi : float ; /∗ signal strength of this cell ∗/

};
};
operator { /∗ details about the current network operator ∗/

id : int ; /∗ ID (mobile country code + mobile network code) ∗/
name : str; /∗ operator name ∗/

};
signal {

cdma_dbm : float;
cdma_ecio : float;
evdo_dbm : float;
evdo_ecio : float ;
gsm_bit_error_rate : float ;
gsm_signal_strength : float;

};
roaming : bool; /∗ whether the phone is roaming ∗/
ntype : int ; /∗ current network type (e.g. EDGE, GSM, UMTS, ...) ∗/

};

phone {
const incomingNumber: str; // the phone is currently being called from that number
line1Number : str; // the phone’s first own number (usually, there is only one)
state : enum idle, ringing , offhook; // the current phone state (idle , ringing , offhook)

};

screen {
on! : bool; /∗ is it on? ∗/

};

sim {
state : enum absent, locked, pin_required, puk_required, ready, unknown;
subscriber_id : str ; /∗ the IMSI of the subscriber ∗/

};

sensors {
type vector : {x, y, z : float };
acceleration : vector;
mag : vector;
orientation : {pitch , yaw, roll : float };

};

wifi {
connection { /∗ information about the current wifi connection ∗/

bssid : str ;
hidden_ssid : str ; /∗ a hidden SSID, if available ∗/
ip_address : int ; /∗ the current IP address of the device in the network it is connected to

∗/
link_speed : int ; /∗ the current connection speed ∗/
rssi : float ; /∗ signal strength ∗/
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ssid : str ; /∗ name of the network ∗/
};
supplicant_state : int ; // Current state of the supplicant’ s negotiations
scan[] { // List of scanned WiFi access points

bssid : str ;
capabilities : str ; // list of capabilities ( regarding wireless security )
frequency : float ; // WiFi channel frequency for that AP
level : float ; // signal strength
ssid : str ; // SSID of the AP’s network (Anm.: BezÃ1

4
gl. hashen gilt das gleiche wie oben)

};
};

/∗
∗ Android specific
∗/

packages {
type name : str;
launchable[name] { // installed packages

visible_name : str ; // the visible name of that application
};
running[name] : launchable { // running packages

process : &processes;
}

};

settings {
airplanemode : bool; // whether the phone is in airplane mode
screen {

brightness : int ;
timeout : int ; /∗ time between last user interaction and automatic screen turnoff ∗/

};
media {

const maxvolume : int; // maximum possible volume for media
volume : int ; // current media volume

};
notifications {

vibrate : bool; // whether the phone vibrates on new notifications
};
ringer {

const maxvolume : int; // maximum possible volume of the ring sound
silent : bool; // whether the phone is set to silent mode
vibrate : bool; // whether the phone is set to vibrate
volume : int ; // current volume of the telephone ring sound

}
};

11


	Introduction
	Metamodel (M2)
	Model (M1)
	Relational and Stream Interpretation (M0)
	Conclusion

