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Part I

The streams Framework
Abstract

In this report, we present the streams library, a generic Java-based library
for designing data stream processes. The streams library defines a simple
abstraction layer for data processing and provides a small set of online algo-
rithms for counting and classification. Moreover it integrates existing libraries
such as MOA. Processes are defined in XML files following the semantics and
ideas of well established tools like Ant, Maven or the Spring Framework.

The streams library can be easily embedded into existing software, used
as a standalone tool or be used to define compute graphs that are executed
on other back end systems such as the Storm stream engine.

This report reflects the status of the streams framework in version 0.9.6.
As the framework is continuously enhanced, the report is extended along. The
most recent version of this report is available online1.

1 Introduction

In toddy’s applications, data is continuously produced in various spots ranging from
network traffic, log file data, monitoring of manufacturing processes or scientific experi-
ments. The applications typically emit data in non-terminating data streams at a high
rate, which imposes demanding challenges on the analysis of such streams.

We illustrate this by projects of our Collaborative Research Center SFB-876. A first
example is given by the FACT telescope that is associated to project C3. This telescope
observes cosmic showers by tracking light that is produced by these showers in the atmo-
sphere with a camera. These showers last about 20 nanoseconds and are recorded with
a camera of 1440 pixels at a sampling rate of 2 GHz. As about 60 of these showers are
currently recorded each second, a 5-minute recording interval quickly produces several
gigabytes of raw data.

Other high-volume data is produced in monitoring system behavior, as performed in
project A1. Here, operating systems are monitored by recording fine grained logs of
system calls to catch typical usage of the system and optimize its resource utilization
(e.g. for energy saving). System calls occur at a high rate and recording produces a
plethora of log entries.

The project B3 focuses on monitoring (distributed) sensors in an automated manufactur-
ing process. These sensors emit detailed information about the furnace heat or milling
pressure of steel production and are recorded at fine grained time intervals. Analysis of
this data focuses on supervision and optimization of the production process.

1The latest version of the report is available at http://www.jwall.org/streams/tr.pdf.
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From Batches to Streams

The traditional batch data processing aims at computations on fixed chunks of data in
one or more passes. Such data is usually stored in files or database systems providing
random access to each record. The results of these computations again form a fixed
outcome that can further be used as input. A simple example is given by the computation
of a prediction model based on some fixed set of training data. After the determination of
a final model, the learning step is finished and the model is applied to deliver predictions
based on the learning phase. Similar situations arise for the computation of statistics,
creation of histograms, plots and the like. From a machine learning perspective, this has
been the predominant approach of the last years.

Two fundamental aspects have changed in the data we are facing today, requiring a
paradigm shift: The size of data sets has grown to amounts intractable by existing batch
approaches, and the rate at which data changes demands for short-term reactions to data
drifts and updates of the models.

The problem of big data has generally been addressed by massive parallelism. With the
drop of hardware prizes and evolving use of large cloud setups, computing farms are
deployed to handle data at a large scale. Though parallelism and concepts for cluster
computing have been studied for long, their applicability was mostly limited to specific
use cases.

One of the most influential works to use computing clusters in data analysis is probably
Google’s revival of the map-and-reduce paradigm [9]. The concept has been around in
functional programming for years and has now been transported to large-scale cluster
systems consisting of thousands of compute nodes. Apache’s open-source Hadoop im-
plementation of a map-and-reduce platform nowadays builds a foundation for various
large-scale systems.

With the revival of map-and-reduce, various machine learning algorithms have been
proven to be adjustable to this new (old) way of computing.

1.1 The Problem of Continuous Data

Whereas the massive parallelism addresses the batch computation of large volumes of
data, it still requires substantial processing time to re-compute prediction models, statis-
tics or indexes once data has changed. Therefore it does not fully reflect the demands for
reacting to short-term drifts of data.

Within this work we will refer to this as the setting of continuous data, i.e. we consider
an unbound source D of data that continuously emits data items di. In the following, we
model that data stream as a sequence

D = 〈d0, d1, . . . , di, . . .〉

with i→∞. The setting to operate on streaming data is generally given by the following
constraints/requirements:

C1 continuously processing single items or small batches of data,
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C2 using only a single pass over the data,

C3 using limited resources (memory, time),

C4 provide anytime services (models, statistics).

To catch up with the requirements of large scale and continuous data, online algorithms
have recently received a lot of attention. The focus of these algorithms is to provide
approximate results while limiting the memory and time resources required for compu-
tation.

Analysis of Continuous Data

Traditional data analysis methods focus on processing fixed size batches of data and often
require the data (or large portions of it) to be available in main memory. This renders
most approaches useless for continuously analyzing data that arrives in steady streams.
Even procedures like preprocessing or feature extraction can quickly become challenging
for continuous data, especially when only limited resources with respect to memory or
computing power are available.

At any time t we want to provide some model that reflects the analysis of the items di
with i ≤ t. Typical analysis tasks to compute on S are

• Given di ∈ N - finding the top-k most frequent values observed until t.

• For di ∈ Np - find the item sets I ⊂ Np which most frequently occurred in the di.

• With di ⊂ X, provide a classifier c : X → Y , that best approximates the real
distribution of labeled data X × Y (classification).

• Provide a clustering C for the data item di observed so far (clustering).

• Find indications on when the overall distribution of the di changes within the stream
(concept drift detection).

Often, these tasks are further refined to models that focus on a recent sliding window of
the last w data items observed, e.g. we are interested in the top-k elements of the last 5
minutes.

Algorithms for solving these tasks on static data sets exists. However, the challenging
requirements in the continuous data setting are the tight limits on the resources available
for computation. This can for example be real-time constraints, such as a fixed limit on
the time available for processing a data item, or a bound on the memory available for
computation.

Various algorithms have been proposed dedicated to computational problems on data
streams. Examples include online quantile computation [12, 3], distinct counting of ele-
ments, frequent item set mining [7, 6, 8], clustering [1, 2] or training of classifiers on a
stream [10].

Here, we want to provide an abstract framework for putting online learning algorithms
to good use on data streams.
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1.2 Designing Stream Processes

Parallel batch processing is addressing the setting of fixed data and is of limited use if
data is non-stationary but continuously produced, for example in monitoring applications
(server log files, sensor networks). A framework that provides online analysis is the MOA
library [4], which is a Java library closely related to the WEKA data mining framework
[13]. MOA provides a collection of online learning algorithms with a focus on evaluation
and benchmarking.

Aiming at processing high-volume data streams two environments have been proposed
by Yahoo! and Twitter. Yahoo!’s S4 [14] as well as Twitter’s Storm [11] framework do
provide online processing and storage by building on large cluster infrastructures such as
Apache’s Zookeeper infrastructure.

The Storm engine relies on executing a computing graph, called a topology in Storm.
The nodes (referred to as Bolts) and the data sources (referred to as Spouts) in this
graph are user written programs defining the data processing and data acquisition steps.
The topology is then provided by the user by implementing a Java program that creates
the desired topology (a topology builder). To start the topology, the custom topology
builder implemented by the user is given to the storm engine, which creating the bolts
and distributing it along the cluster infrastructure.

While the Storm engine is known to be fast and scalable, it requires an in-depth knowledge
of the user on how to create a topology that matches a particular task. Looking from
the perspective of a data analyst, this does not match the higher-level rapid-prototyping
needs as is adequate for domain experts e.g. in projects like telescope data analysis
mentioned above.

In contrast to these frameworks, the streams library focuses on defining a simple ab-
straction layer that allows for the definition of stream processes by means of only a few
basic conceptual elements. The resulting processes can be then be easily executed by the
streams run-time or mapped to different run-time environments such as S4 or Storm.

Our Contributions

In this work we introduce the streams library, a small software framework that provides
an abstract modeling of stream processes. The objective of this framework is to establish
a layer of abstraction that allows for defining stream processes at a high level, while
providing the glue to connect various existing libraries such as MOA [4], WEKA [13] or
the RapidMiner tool.

The set of existing online algorithms provides a valuable collection of algorithms, ideas
and techniques to build upon. Based on these core elements we seek to design a process
environment for implementing stream processes by combining implementations of existing
online algorithms, online feature extraction methods and other preprocessing elements.

Moreover it provides a simple programming API to implement and integrate custom
data processors into the designed stream processes. The level of abstraction of this
programming API is intended to flawlessly integrate into existing run-time environments
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like Storm or the RapidMiner platform [5].

Our proposed framework supports

1. Modeling of continuous stream processes, following the single-pass paradigm,

2. Anytime access to services that are provided by the modeled processes and the
online algorithms deployed in the process setup, and

3. Processing of large data sets using limited memory resources

4. A simple environment to implement custom stream processors and integrate these
into the modeling

5. A collection of online algorithms for counting and classification

6. Incorporation of various existing libraries (e.g. MOA [4]) into the modeled process.

The rest of this report is structured as follows: In Section 2 we derive a set of basic building
blocks for the abstract modeling data stream processes. In Section 3 we present the XML
based definition language and several addition concepts that allow for designing stream
processes within the framework. Based on this we outline two example use-cases for
processing and analyzing streaming data with the streams library. Finally we summarize
the ideas behind the streams library and give an outlook on future work in Section 7. A
comprehensive description of the implementations and guides for setting up a standalone
processing environment provided by our framework is given in the appendix.
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2 An Abstract Stream Processing Model

Processing streaming data can generally be viewed as establishing a data flow graph where
each of the nodes of the graph corresponds to some function that is applied as data is
passed along the edges. This general idea can be found in various existing approaches
built on top of message passing systems and has been adopted by streaming systems such
as SPADE, Kafka or Storm.

As the existing systems, the streams framework is based on an abstract definition of such
data flow graphs, following the pipes-and-filters pattern [15]. To that it adds an additional
control flow view, which allows for the implementation of systems fulfilling the anytime
requirement as described in Section 1. Figure 1 outlines a general data flow graph built
from elements like streams (S), processes (P) and queues (Q) and additional control flow
elements represented by services shown in orange color.

In this section we introduce the basic concepts and ideas that we model within the streams
framework. This mainly comprises the data flow), the control flow (anytime services)
and the basic data structures and elements used for data processing. The objective of
the abstraction layer is to provide a simple means for rapid prototyping of data stream
processes and a clean and easy-to-use API to implement against.

The structure of the streams framework builds upon three aspects:

1. A data representation which provides a modeling of the data that is to be processed
by the designed stream processes

2. Elements to model a data flow

3. A notion of services which allow for the implementation of anytime service capa-
bilities.

All of these elements are provided as simple facades (interfaces) which have default im-
plementations. The abstraction layer provided by these facades is intended to cover most
of the use cases with its default assumptions, whereas any special use cases can generally
be modeled using a combination of different building blocks of the API (e.g. queues,
services) or custom implementations of the facades.

Figure 1: The general concept of a data-flow graph. The streams framework provides
means for defining streams (S), connected processes (P), queues (Q) and adds an abstract
orthogonal control flow layer (orange elements).
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Executing Data Flow Graphs

The main objective of the streams framework is to provide an adequate abstraction layer,
which enables users to design streaming processes without the need to write any code.
A user can prototype containers, which are the top-level elements containing a data flow
graph built from the base elements stream, process and queues. The process elements are
the executing instances which need to be enriched with functions (processors) that do
the actual work. The framework provides a large set of such processors that can be used
to add the required functionality into the data flow graph. The containers (graphs) are
defined in XML.

The XML process definitions are designed to be independent of the underlying execution
platform. The streams framework provides its own default runtime implementation, which
is able to execute the XML data flow graphs. This streams runtime is a Java library with
a very small footprint (less than 200 kilobytes) that can be instantly executed on any
Java VM.

In addition, streams provides a compiler to map XML process definitions to Storm topol-
ogy, to execute processes on a Storm cluster. A third execution engine is provided for the
Android platform, which allows for running streams definitions on mobile devices that
are powered by the Android operating system.

Figure 2: The XML is compiled into a data flow graph for different runtime environments.
Currently the streams runtime is supported and a prototype for the Storm compiler exists.

2.1 Data Representation and Streams

A central aspect of data stream processing is the representation of data items that contain
the values which are to be processed. From a message passing system point of view this
is the concrete representation of messages. The abstraction of the streams framework
considers the case of continuous streaming data being modeled as a sequence of data
items which traverse the compute graph.

A data item is a set of (k, v) pairs, where each pair reflects an attribute with a name k
and a value v. The names are required to be of type String whereas the values can be
of any type that implements Java’s Serializable interface. The data item is provided
by the stream.Data interface.

Table 1 shows a sample data item as a table of (key,value) rows. This representation
of data items is provided by hash tables, which are generally provided in almost every
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Key Value

x1 1.3

x2 8.4

source "file:/tmp/test.csv"

Table 1: A data item example with 3 attributes.

modern programming language.

The use of such hash tables was chosen to provide a flexible data structure that allows
for encoding a wide range of record type as well as supporting easy interoperation when
combining different programming languages to implement parts of a streaming process.
This enables the use of languages like Python, Ruby or JavaScript to implement custom
process as we will outline in more detail in Section 5.2.

Streams of Data

A data stream in consequence is an entity that provides access to a (possibly unbounded)
sequence of such data items. Again, the streams abstraction layer defines data streams
as an interface, which essentially provides a method to obtain the next item of a stream.

Figure 3: A data stream as a sequence of data item objects.

The core streams library contains several implementations for data streams that reveal
data items from numerous formats such as CSV data, SQL databases, JSON or XML
formatted data. A list of the available data stream implementations is available in the
appendix B.1.

In addition, application specific implementations for data streams can easily be provided
by custom Java classes, as is the case in the FACT telescope data use-case outlined in
section 6.1.
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2.2 Processes and Processors

The data streams defined above encapsulate the format and reading of data items from
some source. The streams framework defines a process as the consumer of such a source
of items. A process is connected to a stream and will apply a series of processors to each
item that it reads from its attached data stream.

Each processor is a function that is applied to a data item and will return a (modified
or new) data item as a result. The resulting data item then serves as input to the next
processor of the process. This reflects the pipes-and-filters concept mentioned in the
beginning of this section.

The processors are the low-level functional units that actually do the data processing and
transform the data items. There exists a variety of different processors for manipulating
data, extracting or parsing values or computing new attributes that are added to the
data items. From the perspective of a process designer, the stream and process elements
form the basic data flow elements whereas the processors are those that do the work.

Figure 4: A process reading from a stream and applying processors.

The simple setup in Figure 4 shows the general role of a process and its processors. In
the default implementations of the streams library, this forms a pull oriented data flow
pattern as the process reads from the stream one item at a time and will only read the
next item if all the inner processors have completed.

Where this pull strategy forms a computing strategy of lazy evaluation as the data items
are only read as they are processed, the streams library is not limited to a pull oriented
data flow.

Using multiple Processes

In the streams framework, processes are by default the only executing elements. A process
reads from its attached stream and applies all inner processors to each data item. The
process will be running until no more data items can be read from the stream (i.e. the
stream returns null). Multiple streams and processes can be defined and executing in
parallel, making use of multi-core CPUs as each process is run in a separate thread2.

For communication between processes, the streams environment provides the notion of
2This is the default behavior in the reference streams runtime implementation. If streams processes

are executed in other environments, thus behavior might be subject to change.
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queues. Queues can temporarily store a limited number of data items and can be fed by
processors. They do provide stream functionality as well, which allows queues to be read
from by other processes.

Figure 5 shows two processes being connected by a queue. The enlarged processor in
the first process is a simple Enqueue processor that pushes a copy of the current data
item into the queue of the second process. The second process constantly reads from this
queue, blocking while the queue is empty.

Figure 5: Two Processes P1 and P2 communicating via queues.

These five basic elements (stream, data item, processor, process and queue) already allow
for modeling a wide range of data stream processes with a sequential and multi-threaded
data flow. Apart from the continuous nature of the data stream source, this model of
execution matches the same pipelining idea known from tools like RapidMiner, where
each processor (operator) performs some work on a complete set of data (example set).

2.3 Data Flow and Control Flow

A fundamental requirement of data stream processing is given by the anytime paradigm,
which allows for querying processors for their state, prediction model or aggregated statis-
tics at any time. We will refer to this anytime access as the control flow. Within the
streams framework, these anytime available functions are modeled as services. A service
is a set of functions that is usually provided by processors and which can be invoked at
any time. Other processors may consume/call services.

This defines a control flow that is orthogonal to the data flow. Whereas the flow of data
is sequential and determined by the data source, the control flow represents the anytime
property as the functions of services may be called asynchronous to the data flow. Figure
6 shows the flow of data and service access.

Examples for services my be classifiers, which provide functions for predictions based on
their current state (model); static lookup services, which provide additional data to be
merged into the stream or services that can be queried for current statistical information
(mean, average, counts).

Service References and Naming Scheme

In order to define the data flow as well as the control flow, a naming scheme is required.
Each service needs to have an unique identifier assigned to it. This identifier is available
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Figure 6: Orthogonal data and control flow. Processors may use services as well as export
functionality by providing services.

within the scope of the experiment and will be used by service consumers (e.g. other
processors) to reference that service.

At a higher level, when multiple experiments or stream environments are running in
parallel, each experiment is associated with an identifier by itself. This imposes a hierar-
chical namespace of experiments and services that are defined within these experiments.
The streams library constitutes a general naming scheme to allow for referencing ser-
vices within a single experiment as well as referring to services within other (running)
experiments.

A simple local reference to a service or other element (e.g. a queue) is provided by using
the identifier (string) that has been specified along with the service definition. Following
a URL like naming format, services within other experiments can be referenced by using
the experiment identifier and the service/element identifier that is to be referred to within
that experiment, e.g.

//experiment-3/classifier-2.

Such names will be used by the streams library to automatically resolve references to
services and elements like queues.
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3 Designing Stream Processes

The former section introduced the main conceptual elements of the streams library for
creating data flow graphs. Such graphs are contained within a container. A container
can be deployed by compiling the container definition into a data flow graph (or compute
graph) for the runtime environment which is to execute the container.

Each of the basic elements for the process design (i.e. container definition) directly
correspond to an XML element that is used to define a node in the data flow graph. The
following Table 2 lists the base elements provided.

Graph Element XML Element

Stream stream

Process process

Queue queue

Service service

Table 2: The basic XML element used to define a compute graph within the streams
framework.

The definition of stream processes is based on simple XML files that define processes,
streams and queues by XML elements that directly correspond to the elements presented
in Section 2. Figure 1 shows the scheme of mapping the XML process definitions into
data flow graphs of the streams runtime.

In addition there exists mappings for other runtime environments.

3.1 Layout of a Process Environment

As mentioned above, the top-level element of a streams process definition is a container.
A single container may contain multiple processes, streams and services, which are all
executed in parallel. An example for a container definition is provided in Figure 7.

<container id="example">
<stream id="D" url="file:/test-data.csv" />

<process input="D">
<!--

The following ’PrintData’ is a simple processor that outputs each
item to the standard output (console)

-->
<stream.data.PrintData />

</process>
</container>

Figure 7: A simple container, defining a stream that is created from a CSV file.
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The core XML elements used in the simple example of Figure 7 are stream and process,
which correspond to the conceptual elements that have previously been introduced in
Section 2 and which are mapped to XML elements according to Table 2. This example
defines a container with namespace example which corresponds to the simple compute
graph shown in Figure 8.

Figure 8: The simple compute graph that is defined by the XML given in Figure 7.

The graph contains a single source of data (stream) and only one process element, which
consumes the data provided by the stream and applies the nested processor PrintData
to each data item obtained from the stream.

3.1.1 Defining a Stream Source

As you can see in the example above, the stream element is used to define a stream
object that can further be processed by some processes. The stream element requires an
id to be specified for referencing that stream as input for a process.

In addition, the url attribute is used to specify the location from which the data items
should be read by the stream. There exists Java implementations for a variety of data
formats that can be read. Most implementations can also handle non-file protocols like
http. The class to use is picked by the extension of the URL (.csv) or by directly
specifying the class name to use:

<stream id="D" class="stream.io.CsvStream"
url="http://download.jwall.org/stuff/test-data.csv" />

Figure 9: Defining a stream that reads from a HTTP resource.

Additional stream implementations for Arff files, JSON-formatted files or for reading from
SQL databases are also part of the streams library. These implementation also differ in
the number of parameters required (e.g. the database driver for SQL streams). A list
of available stream implementations can be found in Appendix B.1. The default stream
implementations also allow for the use of a limit parameter for stopping the stream after
a given amount of data items.

3.1.2 A Stream Process

The process element of an XML definition is associated with a data stream by its input
attribute. This references the stream defined with the corresponding id value. Processes
may contain one or more processors, which are simple functions applied to each data item
as conceptually shown in 2.2.
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A process will be started as a separate thread of work and will read data items from the
associated stream one-by-one until no more data items can be read (i.e. null is returned
by the stream). Processes in the streams framework are following greedy strategy, reading
and processing items as fast as possible.

The processes will apply each of the nested processors to the data items that have been
read from the input. The processors will return a processed data item as result, which is
in turn the input for the next processor embedded into the process. Thus, each process
applies a pipeline of processors to each data item. If any processor of the pipeline returns
null, i.e. no resulting data item, then the pipeline is stopped and the process skips to
reading the next data item from the stream.

The inner processors of a process are generally provided by Java implementations and
are represented by XML elements that reflect their Java class name.

In the example in Figure 10, a processor implemented by the class my.package.MyProcessor
is added to the process. The process in this examples is attached to the stream or queue
defined with ID id-of-input. Any output of that process that is not null, will be in-
serted into the queue with ID queue-id. Connecting the output of a process to a queue
(which can then be the input to another processor) is optional.

<process input="id-of-input" output="queue-id">
<!--

One or more processor elements, referenced
by their class name, provided with attributes

-->
<my.package.MyProcessor param="value" />

</process>

Figure 10: A process references an input (i.e. a stream or a queue) and contains a list of
processor elements. Optionally it feeds results to an associated output (a queue).

3.1.3 Processing Data Items

As mentioned in the previous Section, the elements of a stream are represented by simple
tuples, which are backed by a plain hashmap of keys to values. These items are the
smallest units of data within the streams library.

The smallest functional units of the streams library are provided by simple processors. A
processor is essentially a function that is applied to a data item and which returns a data
item (or null) as result as shown in the identity function example below.

public Data process( Data item ){
return item;

}

Figure 11: The process(Data) method - unit of work within streams.
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Processors are usually implemented as Java classes, but can be provided in other (script-
ing) languages as well. The Java classes are expected to follow the JavaBeans specifica-
tion by providing get- and set-methods for properties. These properties in turn will be
mapped to XML attributes of the corresponding XML element. This allows processors
to be easily provided with parameters wihtin the XML container definitions.

3.2 Parameterising Containers

The general structure of container definitions described in Section 3.1 allows for the
definition of compute graphs and adding processors and parameters. For a convenient
parameterization, the streams framework supports the global definition of properties and
includes a intuitive variable expansion, following the syntax of well known tools like Ant
and Maven.

Variables are specified using the $ symbol and curly bracket wrapped around the property
name, e.g. ${myVar}. This directly allows to access the Java VM system properties within
the container definition. Undefined variables simple resolve to the empty string.

<container>

<!-- define property ’baseUrl’ using the system property ’user.home’ -->
<property name="baseUrl" value="file:${user.home}/data/FACT" />

<stream id="factData" class="fact.io.FactEventStream"
url="${baseUrl}/example-data.gz" />

<process input="factData">
<!-- process the data -->

</process>
</container>

Figure 12: A container definition using simple variables.

As the variable expansion includes the Java system properties, containers can easily
be provided with variables by setting properties when starting the Java system. The
following commands starts the streams runtime with a container definition and adds
addition variables:

java -DbaseUrl="/tmp" -cp stream-runner.jar container.xml

Variables can be used anywhere in the XML attributes, the variables of a container are
expanded at startup time. Therefore any changes of the variables after the container has
been started will not affect the configuration.
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4 Machine Learning with Continuous Data

As the large volumes of data are merely managable with automatic processing of that
data, they are far away from being inspected manually. On the other hand gaining insight
from that data is the key problem in various application domains.

Machine learning and data mining has put forth a plethora of techniques and algorithms
for pattern recognition, learning of prediction model or clustering that all aim at exactly
that key problem: knowledge discovery from data.

For the setting of continuous data, various algorithms have been proposed which solve
basic tasks inherent to the knowledge discovery process as well as complex methods that
allow for training classifiers or finding clusters on steady streams of data. In this section
we will give an overview of how machine learning algorithms are embedded into the
streams framework using a simple Naive Bayes classifier as example.

We first give an overview of the data representation that is used for learning from the
data items that represent the basic data format of streams. Following that, we outline
how learning algorithms are embedded into the framework of continuous processes. Here
we provide an example for online classification and the computation of statistics.

Based on the embedding of online learning schemes for classification, we show the inte-
gration of the MOA library into the streams framework, which allows for directly using
the set of existing classifiers for learning (Section 4.2).

The evaluation of online learning often requires large amounts of data. In Section 4.3 we
show how to generate synthetic data streams for testing online learning algorithms.

4.1 Online Learning from Data Streams

The general definitions of learning tasks in online learning do not differ from the tra-
ditional objectives. Supervised learning such as classification or regression tasks rely
on a source of training data to build models that can then be applied to new data for
prediction.

Learning from unbounded and continuous data imposes demanding challenges to the
designer of machine learning algorithms. Even simple basic building blocks like the
computation of a median or minima/maxima values that might be required in a learning
algorithms tend to become difficult.

4.1.1 Learning from Data Items

Online learning algorithms usually require a data representation similar to batch learning
methods. Typically instances or examples used for learning are tuples of some real-valued
or finite space.

As an example, the task of (binary) classification can be stated as estimating a function
f̂ that best approximates a true (unknown) distribution of instances (x, y) where x ∈M r

and y ∈ {−1, 1}. Usually features are encoded such that M = R in many application
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domains.

In the streams framework we encode each of these tuples as data items by defining a key
ki for each dimension of Mp and a special key for the label y. By convention, special
keys are prefixed with an @ character. These special keys are expected to be ignored as
attributes by any learning algorithm. Figure 13 shows an instance of learning that is
represented by a data item.

(x, y)
e.g.
= (0.3, 0.57, . . . , 0.413,−1) → Key x1 · · · xp @label

Value 0.3 · · · 0.413 -1

Figure 13: Data item representation of an instance for learning, key/value table trans-
posed for brevity.

As the attributes may hold any Serializable values, a proper pre-processing might be
required for applying learning algorithms, e.g. if these algorithms cannot handle arbitrary
data types. Such preprocessing is for example a String-to-Number conversion (provided
by the ParseDouble processor). The streams core classes provide a wide number of
preprocessing processors.

Filtering Attributes

Sometimes it is desirable to train a classifier only on a subset of the features/attributes
that are contained in the data. The WithKeys processor, allows for the execution of
nested processors on filtered data items. As an example, the XML snippet in Figure 14
shows the data preprocessing to apply online learning to the famous Iris data set with
only two of the attributes being selected.

...
<process input="iris">

<!-- Rename the "class" attribute to "@label" as by convention
a learner expects the label in attribute "@label" -->

<Rename from="class" to="@label" />

<!-- select two attributes and the label from the
data items and apply the inner processors />

<WithKeys keys="att1,att2,@label">

<!-- parse the attributes att1 and att2 to Double values -->
<ParseDouble keys="att1,att2" />

<!-- feed the data item to a naive bayes classifier for training -->
<stream.classifier.NaiveBayes id="myNaiveBayes" />

</WithKeys>

</process>

Figure 14: Example XML for training a classifier on a subset of attributes.
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4.1.2 Embedding Classifiers in streams

From a high level viewpoint, an online classifier is able to continuously learn on train-
ing data and give out predictions for instances based on its current model/state. The
following figureshows the division of this behavior into two parts:

This abstract functionality provided by classifiers from the perspective of the streams
framework encapsulates two functions:

1. Training: Incorporate new data items into a prediction model.

2. Application: Provide a prediction for a data item based on the current model.

These two tasks are mapped onto two different aspects of the compute graph that builds
the basis for the streaming processes. The training is considered to be part of the general
data flow, i.e. data items are processed by classifiers and will be used to enhance the
prediction model provided by the classifier.

The model application, i.e. the prediction based on the current model of the classifier, is
regarded as an anytime service that is provided by the classifier. This service provides a
predict(Data) function that is expected to return the prediction of the classifier.

Providing Predictions at any time

With the requirements for continuous data that we introduced in the very beginning,
the main concern is, that classifiers need to be able to provide predictions at any time.
With the control flow layer provided by the notion of services, the streams framework
integrates a tool for querying services from “outside”, i.e. not using the data flow. Such
services are registered within the container and can be queried from other containers or
being exported (e.g. via Java RMI).

public interface Classifier extends Service {
/**
* This method returns a simple prediction based on the given
* data item. The prediction is a general serializable value.
*/
public Serializable predict( Data item );

}

Figure 15: The Classifier service interface that needs to be implemented by classifiers
in the streams framework. The return type of the predict method might be a number,
e.g. for regression or a String, Integer or similar for a classification task.
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4.1.3 Using the Classifier service

The example in Figure 14 shows the use of a classifier that is added to the data flow for
constant training. The referenced NaiveBayes class implements the Processor interface
and additional supports the Classifier interfaces shown in 15. The id of the classifier
(processor) specifies the name under which that classifier is registered within the naming
service of the container.

After initialization time, the classifier is registered and can be queried using Java RMI
or by other processors from within the container (or connected containers). This is illus-
trated in the following abstraction (Figure 16): The process within that graph contains a
processor that provides a service (marked in orange) and another process that references
that services, i.e. plays the role of a service consumer.

Figure 16: A processor using a processor that provides a services (e.g. Classification).

Adding Predictions

One of the processors that can be used to add predictions based on classifier services is
the AddPrediction class. This processor references a classifier service by its id and calls
the predict(Data) method for every item it processes.

The prediction of the classifier is then added to the data item with an attribute key
@prediction: followed with the id of the service. An example is given in the XML
snippet shown in Figure 17. The AddPrediction element will use the classifier for pre-
diction and then add the prediction as a special attribute with key @prediction:NB to
the data item. Since special attributes are to be discarded by the learning algorithms by
convention, it will not influence the training.

...
<process input="golf">

<!-- pre-processing left out for brevity -->

<!-- apply a prediction to each data item based
on the specified classifier -->

<stream.learner.AddPrediction classifier="NB" />

<!-- consume the next data item and use it for
learning. -->

<stream.classifier.NaiveBayes id="NB" />
</process>

Figure 17: First predict, then learn on a data item.
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4.2 Integrating MOA

MOA is a software package for online learning tasks. It provides a large set of clustering
and classifier implementations suited for online learning. Its main intend is to serve as
an environment for evaluating online algorithms.

The streams framework provides the stream-analysis artifact, which includes MOA and
allows for integrating MOA classifiers directly into standard stream processes. This is
achieved by wrapping the data item processed in the streams framework into instances
required for MOA. Additionally, a generic class wraps all the MOA classifier implementa-
tions into a processor that implements the Classifier interface. MOA classifiers will be
automatically discovered on the classpath using Java’s reflection API and will be added
to the processors available.

The following example XML snippet shows the use of the Naive Bayes implementation of
MOA within a streams container. The example defines a standard test-then-train process.

<container>
<stream id="stream" class="stream.io.CsvStream"

url="classpath:/multi-golf.csv.gz" limit="100"/>

<process input="stream">
<RenameKey from="play" to="@label" />

<!-- add @prediction:NB based on the classifier "NB" -->
<stream.learner.AddPrediction classifier="NB" />

<!-- compute the loss for all attributes starting with @prediction:
and add a corresponding @error: attribute with the loss -->

<stream.learner.evaluation.PredictionError />

<!-- incorporate the data item in to the model (learning) -->
<moa.classifiers.bayes.NaiveBayes id="NB"/>

<!-- incrementally group the @error:NB -->
<stream.statistics.Sum keys="@error:NB" />

</process>
</container>

Figure 18: Test-then-train evaluation of the MOA Naive Bayes classifier using the
AddPrediction processor and the Sum processor to sum up the prediction error.
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4.3 Synthetic Data Stream Generator

Testing online algorithms often requires a large amount of data that matches a known
distribution or can be designed such that specific test-cases can be created for algorithms.

The streams core package already defines a set of streams for random data generation. In
Combination with the concept of MultiStreams this can easily be used to create tailored
data streams.

4.3.1 Example: A Gaussian Stream

The stream.generator.GaussianStream class implements a data stream that generates
an unlimited sequence of normal distributed data. The default setup focuses on a single
attribute with a mean of 0.0 and a standard deviation of 1.0:

<stream id="gauss" class="stream.generator.GaussianStream" />

Using the attributes parameter allows to specify the mean and standard deviation of
one or more attributes:

<stream id="gauss-2" class="stream.generator.GaussianStream"
attributes="0.0,1.0,2.0,0.25,8.5,2.75" />

The gauss-2 stream above produces a sequence of data items each of which holds at-
tributes x1, x2 and x3 based on the following distributions:

Attribute Mean Standard Deviation
x1 0.0 1.0
x2 2.0 0.25
x3 8.5 2.75

The attributes are named x1, x2 and x3 but can be named according to a preset using
the keys parameter of the GaussianStream class:

<stream id="gauss-2" class="stream.generator.GaussianStream"
attributes="0.0,1.0,2.0,0.25,8.5,2.75"
keys="A,B,C" />

4.3.2 Example: A cluster data-stream

The stream gauss-2 from above will create a sequence of data items which are centered
around (0.0,2.0,8.5) in a 3-dimensional vector space.

By combining the concept of Multistreams with the gaussian streams, we can easily define
a stream that has multiple clusters with pre-defined centers. The RandomMultiStream
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class is of big use, here: It allows for randomly picking a substream upon reading each
item. The picks are uniformly distributed over all substreams.

The following definition specifies a stream with data items of 4 clusters with cluster
centers (0.0,0.0), (1.0,1.0), (2.0,2.0) and (3.0,3.0):

<stream id="clusters" class="stream.io.multi.RandomMultiStream">

<stream id="cluster-1" class="stream.generator.GaussianStream"
attributes="1.0,0.0,1.0,0.0" />

<stream id="cluster-2" class="stream.generator.GaussianStream"
attributes="2.0,0.0,2.0,0.0" />

<stream id="cluster-3" class="stream.generator.GaussianStream"
attributes="3.0,0.0,3.0,0.0" />

<stream id="cluster-4" class="stream.generator.GaussianStream"
attributes="4.0,0.0,4.0,0.0" />

</stream>

4.3.3 Imbalanced Distributions

In some cases a unified distribution among the sub-streams is not what is required. The
weights parameters lets you define a weight for each substream, resulting in a finer
control of the stream. As an example, the weights parameter can be used to create a
stream with a slight fraction of outlier data items:

<stream id="myStream" class="stream.io.multi.RandomMultiStream"
weights="0.99,0.01">

<stream id="normal" class="stream.generator.GaussianStream"
attributes="1.0,0.0,1.0,0.0" />

<stream id="outlier" class="stream.generator.GaussianStream"
attributes="2.0,0.0,2.0,0.0" />

</stream>

In this example, approximately 1% of the data items is drawn from the outlier stream,
whereas the majority is picked from the “normal” stream.
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5 Extending the streams Framework

In the previous sections we outlined how to create data flow graphs for data stream
processing by means of the XML elements that are provided by the streams framework.
We also introduced the processors as the atomic functional units that provide the work
required to do the data processing.

The core streams framework provides a rich set of basic processors that can be used to
aggregate statistics, manipulate data and even incorporates existing libraries such as the
MOA online learning library (see Section 4.2 for details on using MOA with streams ).

In many application use cases, we still face the problem of requiring application specific
pre-processing or functionality that cannot directly be achieved with the existing streams
core processors. Such functionality can easily be added by custom implementations of
processors. The streams framework provides a very simply Java API which encapsulates
the abstract concepts outlined in Section 2.

In this section, we will highlight the general ideas of the streams programming API and
provide a walk-through on how to implement custom processors using the Java language.

As pointed out earlier, the streams framework also provides support for scripting lan-
guages, such as JavaScript, Ruby or Python. In Section 5.2 we will give an overview on
how to implement custom processors using such scripting languages.

5.1 Implementing Custom Processors

Processors in the streams framework can be plugged into the processing chain to perform
a series of operations on the data. A processor is a simple element of work that is executed
for each data item. Essentially it is a simple function:

public Data process( Data item ){
// your code here
return item;

}

The notion of a processor is captured by the Java interface stream.Processor that
simply defines the process(Data) function mentioned above:

public interface Processor {
public Data process( Data item );

}

Figure 19: The interface that all processors need to implement.

Another property required for processors is that they need to provide a no-args construc-
tor, i.e. they need to have a constructor that comes with no arguments.

For a wide range of common preprocessing tasks, this simple method is sufficient enough
to handle data. The processors might also maintain a state over consecutive calls to the
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process(Data) method. This process method will be called from within a single thread
only.

If a processor requires a more sophisticated configuration, e.g. for initializing a database
connection at startup or release a file handle at shutdown, the StatefulProcessor in-
terface can be used. In addition to the simple Processor interface, the stateful version
adds two additional methods:

public interface StatefulProcessor extends Processor {
/**
* Initialize data structures, open connections,...
*/
public void init(ProcessContext ctx) throws Exception;

/**
* Close connections, release resources,...
*/
public void finish() throws Exception;

}

Figure 20: The additional methods of stateful processors.

5.1.1 The Lifecycle of a Processor

As stated above, a processor is expected to follow some basic conventions of the Jav-
aBeans specification. It is expected to provide a constructor with no arguments and
should provide access to attributes that are intended to be configurable via the XML
configuration by providing set- and get-methods.

The general life-cycle of a processor that has been added to a data flow graph is as follows:

1. An object of the processor class is being instantiated at container startup time.

2. The parameters found as the XML attributes are used to call any set-methods that
match the attribute names.

3. If the processor class implements the StatefulProcessor interface, the init(ProcessContext)
method will be called.

4. The process(Data) method is called for all data items that the parent process of
the processor receives.

5. As the container shuts down, the finish() method of the processor is called if the
processor class implements the StatefulProcessor interface.
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5.1.2 Example: A simple custom processor

In the following, we will walk through a very simple example to show the implementation
of a processor in more detail. We will start with a basic class and extend this to have a
complete processor in the end.

The main construct is a Java class within a package my.package that implements the
identity function is given as:

package my.package;

public class Multiplier implements Processor {
public Data process( Data item ){

return item;
}

}

This class implements a processor that simply passes through each data item to be further
processed by all subsequent processors. Once compiled, this simple processor is ready to
be used within a simple stream processing chain. To use it, we can directly use the XML
syntax of the streams framework to include it in to the process:

<container>
<process input="...">

<!-- simply add an XML element for the new processor -->
<my.package.Multiplier />

</process>
</container>

Figure 21: The processors are added to the XML process definition by simply adding
an XML element with the name of the implementing class into the process that should
contain the processor.

Processing data

The simple example shows the direct correspondence between the XML definition of a
container and the associated Java implemented processors. The data items are repre-
sented as simple Hashmaps with String keys and Serializable values.

The code in Figure 22 extends the empty data processor from above by checking for the
attribute with key x and adding a new attribute with key y by multiplying x by 2. This
simple multiplier relies on parsing the double value from its string representation. If the
double is available as Double object already in the item, then we could also directly cast
the value into a Double:

// directly cast the serializable value to a Double object:
Double x = (Double) item.get( "x" );
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The multiplier will be created at the startup of the experiment and will be called (i.e.
the process(..) method) for each event of the data stream.

package my.package;
import stream.*;

public class Multiplier implements Processor {
public Data process( Data item ){

Serializable value = item.get( "x" );

if( value != null ){
Double x = new Double( value.toString() ); // parse value to double
data.put( "y", new Double( 2 * x ) ); // multiply+add result

}
return item;

}
}

Figure 22: A simple custom processor that multiplies an attribute x in each data item
by a constant factor of 2. If the attribute x is not present, this processor will leave the
data item unchanged.

5.1.3 Adding Parameters to Processors

In most cases, we want to add a simple method for parameterizing our Processor im-
plementation. This can easily be done by following the Convention-over-Configuration
paradigm: By convention, all setX(...) and getY()methods are automatically regarded
as parameters for the data processors and directly available as XML attributes.

In the example from above, we want to add two parameters: key and factor to our
Multiplier implementation. The key parameter will be used to select the attribute used
instead of x and the factor will be a value used for multiplying (instead of the constant
2 as above).

To add these two parameters to our Multiplier, we only need to provide corresponding
getters and setters as shown in Figure 24.

After compiling this class, we can directly use the new parameters key and factor as
XML attributes. For example, to multiply all attributes z by 3.1415, we can use the
following XML setup:

<container>
...
<process input="...">

<my.package.Multiplier key="z" factor="3.1415" />
</process>

</container>

Figure 23:
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Upon startup, the getters and setters of the Multiplier class will be checked and if the
argument is a Double (or Integer, Float,...) it will be automatically converted to that
type.

In the example of our extended Multiplier, the factor parameter will be created to a
Double object of value 3.1415 and used as argument in the setFactor(..) method.

// imports left out for truncation
//
public class Multiplier implements Processor {

String key = "x"; // by default we still use ’x’
Double factor = 2; // by default we multiply with 2

// getter/setter for parameter "key"
//
public void setKey( String key ){

this.key = key;
}

public String getKey()(
return key;

}

// getter/setter for parameter "factor"
//
public void setFactor( Double fact ){

this.factor = fact;
}

public Double getFactor(){
return factor;

}
}

Figure 24: The Multiplier processor with added parameters.

5.2 Using Scripting Languages in streams

Scripting languages provide a convenient way to integrate ad-hoc functionality into stream
processes. Based on the Java Scripting Engine that is provided within the Java virtual
machine, the streams library includes support for several scripting languages, most no-
tably the JavaScript language.

Additional scripting languages are being supported by the ScriptingEngine interfaces of
the Java virtual machine. This requires the corresponding Java implementations (Java
archives) to be available on the classpath when starting the streams runtime.

Currently the following scripting languages are supported:

• JavaScript (built into the Java VM)
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• JRuby (requires jruby-library in classpath).

Further support for integrating additional languages like Python is planned.

5.2.1 Using JavaScript for Processing

The JavaScript language has been part of the Java API for some time. The streams
framework provides a simple JavaScript processor, that can be used to run JavaScript
functions on data items as shown in Figure 25.

<container>
...
<process input="...">

<!-- Execute a process(data) function defined in the
specified JavaScript file -->

<JavaScript file="/path/to/myScript.js" />
</process>

</container>

Figure 25: The JavaScript processor applies process() functions defined in JavaScript.

Within the JavaScript environment, the data items are accessible at data. Figure 26
shows an example for the JavaScript code which implements a processor within the file
myScript.js.

function process(data){
var id = data.get( "@id" );
if( id != null ){

println( "ID of item is: " + id );
}
return data;

}

Figure 26: JavaScript code that implements a processor.
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6 Example Applications

In this section we will give a more detailed walk-through of some applications and use-
cases that the streams library is used for. These examples come from various domains,
such as pre-processing of scientific data, log-file processing or online-learning by integrat-
ing the MOA library.

Most of the use-cases require additional classes for reading and processing streams, e.g.
stream implementations for parsing domain-specific data formats. Due to the modularity
of the streams library, domain-specific code can easily be added and directly used within
the process design.

6.1 FACT Data Analysis

The first use-case we focus on is data pre-processing in the domain of scientific data
obtained from a radio telescope. The FACT project maintains a telescope for recording
cosmic showers in a fine grained resolution. The telescope consists of a mirror area which
has a 1440-pixel camera mounted on top as shown in Figure 27. This camera is recording
electric energy-impulses which in turn is measured by sampling each pixel at a rate of 2
GHz.

Figure 27: The FACT telescope on La Palma.

Based on trigger-signals, small sequences (a few nanoseconds) of these energy-impulses
are recorded and stored into files. Each sequence is regarded as a single event. The
electronics of the telescope are capable of recording about 60 events per second, resulting
in a data volume of up to 10 GB of raw data that is recorded over a 5 minute runtime.
The captured data of those 5-minute runs is stored in files.

The long-term objective of analyzing the FACT data comprises several tasks:

1. Identify events that represent showers.

2. Classify these events as Gamma or Hadron showers.

3. Use the Gamma events for further analysis with regard to physical analysis methods.
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Besides the pure analysis the data has to be pre-processed in order to filter out noisy
events, calibrate the data according to the state of the telescope electronic (e.g. stratify
voltages over all camera pixels).

Figure 28: Stream-lined processing of events.

6.1.1 Reading FACT Data

The fact-tools library is an extension of the streams framework that adds domain specific
implementations such as stream-sources and specific processors to process FACT data
stored in FITS files. These processors provide the code for calibrating the data according
to previously observed parameters, allow for camera image analysis (image cleaning) or
for extracting features for subsequent analysis.

The XML snippet in Figure 29 defines a simple process to read raw data from a FITS
file and apply a calibration step to transform that data into correct values based upon
previously recorded calibration parameters.

<container>
<stream id="factData" url="file:/data/2011-09-13-004.fits.gz"

class="fact.io.FACTEventStream" />

<process input="factData">
<fact.io.DrsCalibration file="/data/2011-09-13-001.fits.drs.gz" />
<!-- add further processors here -->

</process>
</container>

Figure 29: Basic process definition for reading raw FACT data and calibrating that data.

Each single event that is read from the event stream, contains the full raw, calibrated
measurements of the telescope. The attributes of the data items reflect the image data,
event meta information and all other data that has been recorded during the obser-
vation. Table 3 lists all the attributes of an event that are currently provided by the
FACTEventStream class.

The @id and @source attributes provide meta-information that is added by the FACT-
stream implementation itself, all the other attributes are provided within the FITS data
files. The @id attribute’s value is created from the EventNum and date when the event
was recorded, e.g. 2011/11/27/42/8, denoting the event 8 in run 42 on the 27th of
November 2011.
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Name (key) Description

EventNum The event number in the stream
TriggerNum The trigger number in the stream
TriggerType The trigger type that caused recording of the event
NumBoards

Errors

SoftTrig

UnixTimeUTC

BoardTime

StartCellData

StartCellTimeMarker

Data The raw data array (1440 · 300 = 432000 float values)
TimeMarker

@id A simple identifier providing date, run and event IDs
@source The file or URL the event has been read from

Table 3: The elements available for each event.

6.1.2 Processors for FACT Data

Any of the existing core processors of the streams library can directly be applied to data
items of the FACT event stream. This already allows for general applications such as
adding additional data (e.g. whether data from a database).

The fact-tools library provides several domain specific processors that focus on the han-
dling of FACT events. The DrsCalibration processor for calibrating the raw data has
already been mentioned above.

Other processors included are more specifically addressing the image-analysis task:

• fact.data.CutSlices
Which can be used to select a subset of the raw data array for only a excerpt of
the region-of-interest3 (ROI).

• fact.data.SliceNormalization
As there is a single-valued series of floats provided for each pixel, this processor
allows for normalizing the values for these series to [0, 1].

• fact.data.MaxAmplitude
This processor extracts a float-array of length 1440, which contains the maximum
amplitude for each pixel.

• fact.image.DetectCorePixel
This class implements a heuristic strategy to select the possible core-pixels of a
shower, that may be contained within the event.

3The region of interest is the length of the recorded time for each event, usually 300 nanoseconds, at
most 1024 nanoseconds
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7 Summary and Future Work

In this report we introduced the streams framework, which provides means for abstracting
the definition of data flow graphs for data stream processing. The level of abstraction
provided by the streams framework enables a rapid prototyping of compute graphs for
process design as well as providing a simple programming API to include custom func-
tionality into the designed processes.

The use of XML for process/graph definitions supports a simple exchange of designed pro-
cesses between users and lifts the level of detail for data analysists to hide implementation
details where they may be distracting from the process design task.

The streams framework also provides a reference implementation for running compute
graphs on a single Java virtual machine as well as a compiler for mapping graphs to
topologies that execute on the Storm stream engine.

The integration of the MOA library adds various online learning schemes to the streams
framework. This shows the applicability of the proposed abstraction layer for the field
of online learning. In addition the streams library proved to be useful in application
use-cases like pre-processing of the FACT telescope data or the coffee machine video
processing.

Ongoing work currently focuses on a more extensive integration of additional algorithms
provided by MOA (e.g. clustering). The adaption of the streams runtime for the Android
platform has revealed a prototype for running XML process definitions on mobile devices.
This is another direction that will be integrated into the next release of the streams
framework.

For a more convenient design of streams process definitions, we will investigate differ-
ent XML or process editors that can assist users in rapid prototyping of data stream
processes.
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Part II

API Documentation
The intention of the streams framework is to start from a minimal set of core concepts
and allow for building solutions for more complex problems on top of that. The main
part of this report is a description of the concepts that mainly focus on establishing a
data-flow definition language.

For running data flow experiments defined with the streams we provide an introduction
into the streams runtime environment in Section A.

The remainder of this document includes a comprehensive documentation of a set of
processors that constitute the streams API. These elements provide a toolbox for handling
various processing steps and are described in Section B.
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A The streams Runtime

Along with the streams API, that is provided for implementing custom streams or pro-
cessors, the streams framework provides a runtime environment for running stream con-
tainers.

A.1 Running Streams - Quickstart

Designing a simple stream process does not require more than writing some XML decla-
ration and executing that XML with the stream-runner as shown in the following figure:

Figure 30: Conceptual way of executing a data flow graph that is defined in XML.

The simple example presented below, defines a single process that reads from a CSV
stream and prints out the data items to standard output:

<container>
<stream id="firstStream" class="stream.io.CsvStream"

url="http://www.jwall.org/streams/sample-stream.csv" />

<process input="firstStream">
<PrintData />

</process>
</container>

The stream-runner required to execute this stream is a simple executable Java archive
available for download:

http://download.jwall.org/streams/stream-runner.jar

A.1.1 Running a streams Process

The simple process defined above can be run by

# java -jar stream-runner.jar first-process.xml

The process will simply read the stream in CSV-format and execute the processor PrintData
for each item obtained from the stream.
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A.1.2 Including additional Libraries

There exists a set pre-packaged libraries such as streams-analysis or streams-video, which
are provided at

http://download.jwall.org/streams/libs/

These add additional processors and stream implementations to the streams runtime
for different domain specific intentions. To start the streams runtime with additional
libraries, these need to be provided on the classpath.

The following example uses the MJpegImageStream to process a stream of video data
from some URL. This stream implementation is provided in the streams-video package.

<container>
<stream id="video"

class="stream.io.MJpegImageStream"
url="http://download.jwall.org/streams/coffee.mjpeg.gz" />

<process input="video" >

<stream.image.DisplayImage key="data" />
<stream.image.AverageRGB />

<WithKeys keys="frame:*">
<stream.plotter.Plotter

history="1000"
keepOpen="true"
keys="frame:red:avg,frame:green:avg,frame:blue:avg" />

</WithKeys>
</process>

</container>

Figure 31: Displaying an MJPEG video stream and plotting the average RGB channels.

For the libraries to be included in the path, the following command needs to be issued
to start the streams run-time:

# java -cp stream-runner.jar:streams-video-0.0.1.jar \
stream.run video.xml

A.2 Installing the streams Runtime package

For a more convenient use of the streams framework, we created packages for the major
Linux systems, such as Debian and RedHat based systems. These packages install into a
proper directory structure and allow for a convenient use of streams .

The packages provide an streams.run command that automatically uses all libraries
found in /opt/streams/lib. With the streams package installed, any container XML
file can be started by running
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# streams.run my-container.xml

To add additional libraries or custom processors, these simply need to be packaged into
a Jar file and added to the /opt/streams/lib directory.

The following sections will give a more detailed instructions on how to install the streams
packages on the different platforms.

A.2.1 Installing the streams Runtime on Debian/RedHat

For Debian and RPM based systems, there exists a package repository, that provides De-
bian and RPM packages that can easily be installed using the system’s package managers.
A step-by-step guide for setting up the package manager on Debian and Ubuntu systems
is provided in Section A.2.1. Instructions for RedHat based systems such as RedHat,
CentOS or Scientific Linux are provided in A.2.2.

Signatures for Packages

The repositories and all packages within the repository are cryptographically signed with
a GPG key with ID 0x13443F4A to ensure their consistency. The key is available at

http://download.jwall.org/software.gpg

The key is associated with the following information:

User ID: Christian Bockermann <chris@jwall.org>
Fingerprint: 4324 5FA1 EA37 1C3E EFE3 0730 A5CE 7F45 C5C3 953C

This key needs to be added to the package management key ring of the system (e.g. apt
on Debian or yum on RedHat systems).

Installing streams on Debian/Ubuntu

There exists a Debian/Ubuntu repository at jwall.org4 which provides access to the
latest release versions of the streams library.

To access this repository from within your Debian system, you’ll need create a new file
/etc/apt/sources.list.d/jwall.list with the following content:

deb http://download.jwall.org/debian/ jwall main

The repositories and all packages within the repository are cryptographically signed with
a GPG key. Please see Section A.2.1 above for details on how to verify the correctness
of this key.

This key needs to be added to the APT key ring of the Debian/Ubuntu system by running
the following commands (the # denotes the shell prompt):

4The site http://www.jwall.org/streams/ is the base web-site of the streams framework.
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# sudo wget http://download.jwall.org/debian/software.gpg
# sudo apt-key add software.gpg

After the key and the repository have been added to the APT package management, all
that is left is to update the package list and install the streams environment with the
following commands:

# sudo apt-get update
# sudo apt-get install streams

The first command will update the package lists, the second will install the lastest version
of the streams package. After installation, the system should be equipped with a new
stream.run command to run XML stream processes:

# stream.run my-process.xml

A.2.2 Installing streams on RedHat/CentOS/Fedora

There exists a YUM repository at the jwall.org site, which provides access to the latest
release versions of the streams framework for RedHat based systems.

To access this repository from within your CentOS/RedHat system, you’ll need to create
a file /etc/yum.repos.d/jwall.repo with the following contents:

[jwall]
name=CentOS-jwall - jwall.org packages for noarch
baseurl=http://download.jwall.org/yum/jwall
enabled=1
gpgcheck=1
protect=1

The RPM packages are signed with a GPG key, please see Section A.2.1 for information
how to validate this key.

To import the GPG key into your system’s key ring, run the following command as super
user:

# rpm –import http://download.jwall.org/software.gpg

After the key has been imported your system is ready to install the streams package using
the system’s package manager, e.g. by running

# yum install streams

This will download the required packages and set up the system to provide the stream.run
command to execute XML stream processes.
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B The streams Core Classes

The streams framework provides a wide range of implementations for data streams and
processors. These are useful for reading application data and defining a complete data
flow.

In this section we provide a comprehensive overview of the classes and implementations
already available in the streams library. These can directly be used to design stream
processes for various application domains.

B.1 Data Stream Implementations

Reading data is usually the first step in data processing. The package stream.io provides
a set of data stream implementations for data files/resources in various formats.

All of the streams provided by this package do read from URLs, which allows reading
from files as well as from network URLs such as HTTP urls or plain input streams (e.g.
standard input).

The streams provide an iterative access to the data and use the default DataFactory for
creating data. They do usually share some common parameters supported by most of
the streams such as limit or username and password.

Defining a Stream

As discussed in Section 3, a stream is defined within a container using the XML stream
element, providing a url and class attribute which determines the source to read from
and the class that should be used for reading from that source. In addition, the definition
requires a third attribute id, which assigns the stream with a (unique) identifier. This
identifier is then used to reference the stream as input to a process.

As a simple example, the following XML snippet defines a data stream that reads data
items in CSV format from some file URL:

<stream id="csv-data" class="stream.io.CsvStream"
url="file:/tmp/example.csv" />

Figure 32: Defining a CSV stream from a file.

Streaming Data from various URLs

The streams runtime supports a list of different URL schemes which are provided by all
Java virtual machines, e.g. http URLs or file URLs. Custom URL schemes can also
be registered within the Java VM. As of this, the streams runtime additionally offers a
classpath: and a system: URL scheme.
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The classpath: URLs can be used to create data streams that read from resources
which are available on the classpath. This is useful for providing example sources within
custom JAR files or the like. The following example shows how to create a stream that
reads data in JSON format from a resource example.json that is searched for in the
default classpath:

<stream id="json-stream" class="stream.io.JSONStream"
url="classpath:/example.json" />

Figure 33: Defining a JSON stream from a classpath resource.

To support streams that read data from standard input or standard error, the library
provides the system: URL schema. This schema provides access to the system input
and error streams and are useful when piping data to a stream via the command line, e.g.
by running a command like: To define a stream that reads from standard input, simply

# cat data.csv | stream.run my-process.xml

specify system:input as the streams URL as shown in figure

<stream id="example" class="stream.io.CsvStream"
url="system:input" />

Figure 34: Defining a CSV stream that reads data from the system’s standard input.
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B.1.1 ArffStream

This stream implementation provides access to reading ARFF files and processing them
in a stream based fashion. ARFF is a standard format for data in the machine learning
community which has its root in the WEKA project [13].

Parameter Type Description Required

id String The identifier to reference this stream in the container true

password String The password for the stream URL (see username param-
eter)

false

prefix String An optional prefix string to prepend to all attribute names false

limit Long The maximum number of items that this stream should de-
liver

false

username String The username required to connect to the stream URL (e.g
web-user, database user)

false

Table 4: Parameters of class stream.io.ArffStream

B.1.2 CsvStream

This data stream source reads simple comma separated values from a file/url. Each line
is split using a separator (regular expression).

Lines starting with a hash character (#) are regarded to be headers which define the
names of the columns.

The default split expression is (;|,), but this can changed to whatever is required using
the separator parameter.

Parameter Type Description Required

keys String[] ?

separator String true

id String ?

password String The password for the stream URL (see username param-
eter)

false

prefix String An optional prefix string to prepend to all attribute names false

limit Long The maximum number of items that this stream should de-
liver

false

username String The username required to connect to the stream URL (e.g
web-user, database user)

false

Figure 35: Parameters of class stream.io.CsvStream.
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B.1.3 JSONStream

This data stream reads JSON objects from the source (file/url) and returns the corre-
sponding Data items. The stream implementation expects each line of the file/url to
provide a single object in JSON format.

B.1.4 LineStream

This class provides a very flexible stream implementations that essentially reads from a
URL line-by-line. The content of the complete line is stored in the attribute determined
by the key parameter. By default the key LINE is used.

It also supports the specification of a simple format/grammar string that can be used
to create a generic parser to populate additional fields of the data item read from the
stream.

The grammar is a string containing %(name) elements, where name is the name of the
attribute that should be created at that specific portion of the line. An example, for such
a simple grammar is given as follows:

%(IP) [%(DATE)] "%(URL)"

The %(name) elements are extracted from the grammar and all remaining elements in
between are regarded as boundary strings that separate the elements.

The simple grammar above will create a parser that is able to read lines in the format of
the following:

127.0.0.1 [2012/03/14 12:03:48 +0100] "http://example.com/index.html"

The outcoming data item will have four attributes LINE, IP, DATE and URL. The attribute
IP set to 127.0.0.1 and the DATE attribute set to 2012/03/14 12:03:48 +0100. The
URL attribute will be set to http://example.com/index.html. The LINE attribute will
contain the complete line string.
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Parameter Type Description Required

id String The ID of the stream with which it is assicated to proceses. true

key String The name of the attribute holding the complete line, de-
faults to LINE.

false

format String The format how to parse each line. Elements like %(KEY)
will be detected and automatically populated in the result-
ing items.

false

password String The password for the stream URL (see username param-
eter)

false

prefix String An optional prefix string to prepend to all attribute names false

limit Long The maximum number of items that this stream should de-
liver

false

username String The username required to connect to the stream URL (e.g
web-user, database user)

false

Table 5: Parameters of class stream.io.LineStream
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B.1.5 ProcessStream

This processor executes an external process (programm/script) that produces data and
writes that data to standard output. This can be used to use external programs that can
read files and stream those files in any of the formats provided by the stream API.

The default format for external processes is expected to be CSV. In the following example,
the Unix command cat is used as an example, producing lines of some CSV file:

<stream class="stream.io.ProcessStream"
command="/bin/cat␣/tmp/test.csv"
format="stream.io.CsvStream" />

The process is started at initialization time and the output will be read from standard
input.

Parameter Type Description Required

id String The ID of the stream with which it is assicated to proceses. true

format String The format of the input (standard input), defaults to CSV true

command String The command to execute. This command will be spawned
and is assumed to output data to standard output.

true

Table 6: Parameters of class stream.io.ProcessStream.

B.1.6 SQLStream

This class implements a DataStream that reads items from a SQL database table. The
class requires a jdbc URL string, a username and password as well as a select parameter
that will select the data from the database.

The following XML snippet demonstrates the definition of a SQL stream from a database
table called TEST_TABLE: The database connection is established using the user SA and

<stream class="stream.io.SQLStream"
url="jdbc:mysql://localhost:3306/TestDB"

username="SA" password=""
select="SELECT␣*␣FROM␣TEST_TABLE" />

Figure 36: Example SQL streams, reading from a database.

no password (empty string). The above example connects to a MySQL database.

As the SQL database drivers are not part of the streams library, you will need to provide
the database driver library for your database on the class path.
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Parameter Type Description Required

id String The ID of the stream with which it is assicated to proceses. true

url String The JDBC database url to connect to. true

select String The select statement to select items from the database. true

password String The password for the stream URL (see username param-
eter)

false

prefix String An optional prefix string to prepend to all attribute names. false

limit Long The maximum number of items that this stream should de-
liver.

false

username String The username required to connect to the stream URL (e.g
web-user, database user)

false

Table 7: Parameters of class stream.io.SQLStream.
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B.1.7 SvmLightStream

This stream implementation provides a data stream for the SVMlight format. The SVM-
light format is a simple key:value format for compact storage of high dimensional sparse
labeled data. It is a line oriented format where each line is laid out as shown in Figure
37. The keys are usually indexes, but this stream implementation also supports string
keys. The # character starts a comment that can be provided to each line.

-1.0 4:3.3 10:0.342 44:9.834 # some comment

Figure 37: A sample line of a SVMLight file.

Parameter Type Description Required

sparseKey String ?

id String The ID of this string for associating it with processes. true

password String The password for the stream URL (see username param-
eter)

false

prefix String An optional prefix string to prepend to all attribute names. false

limit Long The maximum number of items that this stream should de-
liver.

false

username String The username required to connect to the stream URL (e.g
web-user, database user)

false

Table 8: Parameters of class stream.io.SvmLightStream.

B.1.8 TimeStream

This is a very simple stream that emits a single data item upon every read. The data
item contains a single attribute @timestamp that contains the current timestamp (time
in milliseconds).

The name of the attribute can be changed with the key parameter, e.g. to obtain the
timestamp in attribute @clock:

<Stream class="stream.io.TimeStream" key="@clock" />
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Parameter Type Description Required

id String The ID of this string for associating it with processes. true

key String The name of the attribute that should hold the timestamp,
defaults to @timestamp

false

interval String The time gap/rate at which this stream should provide
items.

true

prefix String An optional prefix string to prepend to all attribute names. false

limit Long The maximum number of items that this stream should de-
liver.

false

Table 9: Parameters of class stream.io.TimeStream.
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B.2 Queue Implementations

The notion of queues is similar to the definition of streams within the streams framework.
Queues provide can be attached as sources to processes while also allowing to be fed with
data items from other places. This allows for simple inter-process communication by
forwarding data items from one process to the queue that is read by another different
process.

B.2.1 BlockingQueue

The class stream.io.BlockingQueue provides a simple DataStream that items can be
enqueued into and read from. This allows inter-process communication between multiple
active processes to be designed using data items as messages.

As the name already suggests, this queue is a blocking queue, resulting in any process
that reads from this queue to block if the queue is empty. Likewise, any processor that
adds items to the queue (e.g. stream.flow.Enqueue) will be blocking if the queue is full.

By default the size of the queue is unbounded (i.e. bound by the available memory only),
but can be fixed by using the size parameter.

Parameter Type Description Required

size Integer The maximum number of elements that can be held in the
queue.

id String The ID of this queue for associating it with processes. true

password String The password for the stream URL (see username param-
eter)

false

prefix String An optional prefix string to prepend to all attribute names. false

limit Long The maximum number of items that this stream should de-
liver.

false

username String The username required to connect to the stream URL (e.g
web-user, database user)

false

Table 10: Parameters of class stream.io.BlockingQueue.

B.3 The stream-core Processor Classes

The core packages of the streams framework provide a set of processor implementations
that cover a lot of general stream processing tasks. These processors serve as basic
building blocks to design a stream process. A processor can simply be added to a process
by adding an XML element with the name of the processor to the process element as
shown in Figure 38.

Based on their purpose, the processors are organized into packages. To shorten the XML
declaration, several packages are automatically checked for when resolve a processor. For
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<process input="my-stream">
<!-- convert the string of attribute x1 to a double value -->
<stream.parser.ParseDouble key="x1" />

</process>

Figure 38: The processor stream.parser.ParseDouble added to a process.

example the stream.parser package is among the default base packages. This allows for
leaving out the package name, when adding the processor. Thus, the XML from Figure
38 is equivalent to the following XML snippet:

<process input="my-stream">
<!-- convert the string of attribute x1 to a double value -->
<ParseDouble key="x1" />

</process>

The default packages that are automatically checked for when resolving processor names
are:

• stream.data

• stream.flow

• stream.parser

• stream.script.

B.3.1 Processors in Package stream.flow

The stream.flow package contains processors that allow for data flow control within a
process setup. Processors in this package are usually processor-lists, i.e. they may provide
nested processors that are executed based on conditions.

A typical example for control flow is given with the following If processor, which executes
the PrintData processor only, if the value of attribute x1 is larger than 0.5. Other flow

<If condition="\%{data.x1}␣@gt␣0.5">
<PrintData />

</If>

control processors provide control of data queues such as enqueuing events into other
processes’ queues.

B.3.1.1 Processor Delay

This simple processor puts a delay into the data processing. The delay can be specified
in various units with the simple time format being specified like “40ms” for specifying a
delay of 40 milliseconds. Other units for day, hour, minute and so on work as well.
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The units can also be combined as in 1 second 30ms.

Parameter Type Description Required

time String The time that the data flow should be delayed. true

condition String The condition parameter allows to specify a boolean ex-
pression that is matched against each item. The processor
only processes items matching that expression.

false

Table 11: Parameters of class stream.flow.Delay.

B.3.1.2 Processor Enqueue

This processor will enqueue data items into specified queues. To ensure mutual access
to the data, the items are copied and copies are sent to the queues. This may lead to a
multiplication of data.

The processor is a conditioned processor, i.e. it supports the use of condition expressions.
As an example, the XML snippet in Figure 39 will enqueue all events with a color value
equal to blue into the queue blue-items.

<process ...>
<Enqueue queues="blue-items" condition="%{data.color}␣==␣blue" />

</process>

Figure 39: The Enqueue processor combined with a condition.

Parameter Type Description Required

queues ServiceRef[] A list of names that reference the target queues. true

condition Condition A condition that is required to evaluate to true for this pro-
cessor to be executed. If no condition is specified, then the
processor is executed for every data item.

false

Table 12: Parameters of class stream.data.Enqueue.
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B.3.1.3 Processor Every

This processor requires a parameter n and will then execute all inner processors every n
data items, i.e. if the number of observed items modulo n equals 0.

In all other cases, the inner processors will simply be skipped.

Parameter Type Description Required

n Long ?

Table 13: Parameters of class stream.flow.Every.

B.3.1.4 Processor If

This processor provides conditioned execution of nested processors. By specifying a
condition, all nested processors are only executed if that condition is fulfilled.

As an example, the following will only print data items if the attribute x is larger than
3.1415:

<If condition="%{data.x} @gt 3.1415">
<PrintData />

</If>

Parameter Type Description Required

condition String false

Table 14: Parameters of class stream.flow.If.

B.3.1.5 Processor OnChange

The OnChange processor is a processor list that executes all nested processors if some
state has changed. This is similar to the If processor, but provides support for a process
state check.

In the following example, the Message processor is only executed if the context variable
status changes from green to yellow:

...
<OnChange from=‘green‘ to=‘yellow‘>

<Message message="Status change detected!" />
</OnChange>
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Parameter Type Description Required

key String true

from String false

to String false

condition String false

Table 15: Parameters of class stream.flow.OnChange.

B.3.1.6 Processor Skip

This processor will simply skip all events matching a given condition. If no condition is
specified, the processor will skip all events.

The condition must be a bool expression created from numerical operators like @eq, @gt,
@ge, @lt or @le. In addition to those numerical tests the @rx operator followed by a
regular expression can be used.

The general syntax is

variable operator argument

For example, the following expression will check the value of attribute x1 against the 0.5
threshold:

%{data.x1} @gt 0.5

Parameter Type Description Required

condition String The condition parameter allows to specify a boolean ex-
pression that is matched against each item. The processor
only processes items matching that expression.

false

Table 16: Parameters of class stream.flow.Skip.

B.3.1.7 Processor Collect

This processor requires a count parameter and a key to be specified. The implementation
will wait for a number of count data items and collect these in a list. As soon as count
items have been collected, a new, empty item will be created which holds an array of the
collected items in the attribute specified by key.

While waiting for count items to arrive, the processor will return null for each collected
data item, such that no subsequent processors will be executed in a process.

After emitting the collected data items, the counter is reset and the processor starts
collecting the next count items.

55



Parameter Type Description Required

key String The key (name) of the attribute into which the collection
(array) of items will be put, defaults to ’@items’

false

count Integer The number of items that should be collected before the
processing continues.

true

Table 17: Parameters of class stream.flow.Collect.

B.3.1.8 Processor ForEach

This class implements a processor list. It can be used if the current data item provides
an attribute that holds a collection (list, set, array) of data items, which need to be
processed.

The ForEach class extracts the nested collection of data items and applies each of the
inner processors to each data item found in the collection. The key parameter needs to
be specified to define the attribute which holds the collection of items.

If no key is specified or the data item itself does not provide a collection of items in this
key, then this processor will simply return the current data item.

Parameter Type Description Required

key String The name of the attribute containing the collection of items
that should be processed.

false

Table 18: Parameters of class stream.flow.ForEach.

B.3.2 Processors in Package stream.data

This package provides processors that perform transformations or mangling of the data
items themselves. Examples for such processors are CreateID, which adds a sequential ID
attribute to each processed item or the RemoveKeys processor which removes attributes
by name.

Other useful processors provide numerical binning (NumericalBinning), setting of values
in various scopes (SetValue) and the like.

B.3.2.1 Processor AddTimestamp

This processor simply adds the current time as a UNIX timestamp to the current data
item. The default attribute/key to add is @timestamp.

The value is the number of milliseconds since the epoch date, usually 1.1.1970. Using the
key parameter, the name of the attribute to add can be changed:

<stream.data.AddTimestamp key="@current-time" />
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Parameter Type Description Required

key String The key of the timestamp attribute to add false

Table 19: Parameters of class stream.data.AddTimestamp.

B.3.2.2 Processor WithKeys

This processor is a processor list that executes one or more inner processors. It creates
a copy of the current data item with all attributes matching the list of specified keys.
Then all nested processors are applied to that copy and the copy is merged back into the
original data item.

If any of the nested data items returns null, this processor will also return null.

The keys parameter of this processor allows for specifying a comma separated list of
keys and key-patterns using simple wildcards * and ? as shown in Figure 40. If the keys
parameter is not provided, then the inner processors will be provided with a complete
copy of the current data item.

<process ...>
<WithKeys keys="x1,user:*,!user:id">

<PrintData />
</WithKeys>

</process>

Figure 40: Selects only attribute x1, all attributes starting with user: but not attribute
user:id and executes the PrintData processor for this selection of attributes.

Parameter Type Description Required

keys String[] A list of filter keys selecting the attributes that should be
provided to the inner processors.

false

merge Boolean Indicates whether the outcome of the inner processors
should be merged into the input data item, defaults to true.

false

Table 20: Parameters of class stream.data.WithKeys.

B.3.2.3 Processor SetValue

This processors allows for setting a feature to a single, constant value:

<SetValue key="attribute1" value="abc" />
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Parameter Type Description Required

value String ?

key String The name of the attribute to set. true

scope String[] The scope determines where the variable will be set. Valid
scopes are process, data. The default scope is data.

false

condition String The condition parameter allows to specify a boolean ex-
pression that is matched against each item. The processor
only processes items matching that expression.

false

Table 21: Parameters of class stream.data.SetValue.

B.3.3 Processors in Package stream.parser

When processing streams of data each single data item may contain additional informa-
tion that needs to be extracted into more detailed attributes or into other value types.

The stream.parser package provides a set of parsing processors, that usually act upon
on or more keys and extract information from the attributes denoted by those keys.

For example the ParseDouble processor will parse double values from all strings that
are denoted in its keys parameter. Other parsers in this package are for example the
ParseJSON, Timestamp or the NGrams processor.

B.3.3.1 Processor NGrams

This parser processor will create n-grams from a specified attribute of the processed item
and will add all the n-grams and their frequency to the item. By default the processor
creates n-grams of length 3.

To not overwrite any existing keys, the n-gram frequencies can be prefixed with a user-
defined string using the prefix parameter.

The following example shows an NGram processor that will create 5-grams of the string
found in key text and add their frequency to the items with a prefix of 5gram:

<NGrams n="5" key="text" prefix="5gram" />

Parameter Type Description Required

key String The attribute which is to be split into n-grams true

n Integer The length of the n-grams that are to be created true

prefix String An optional prefix that is to be prepended for all n-gram
names before these are added to the data item

false

Table 22: Parameters of class stream.parser.NGrams.
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B.3.3.2 Processor ParseDouble

This simple processor parses all specified keys into double values. If a key cannot be
parsed to a double it will be replaced by Double.NaN.

The processor will be applied for all keys of an item unless the keys parameter is used
to specify the keys/attributes that should be transformed into double values.

The following example shows a ParseDouble processor that converts the attributes x1
and x2 into double values:

<stream.parser.ParseDouble keys="x1,x2" />

The default parameter allows for specifying a different value than the default Dou-
ble.NaN value. The following example converts all values to their double representation
and defaults to 0.0 if parsing as double fails:

<stream.parser.ParseDouble default="0.0" />

Parameter Type Description Required

default Double The default value to set if parsing fails false

keys String[] The keys/attributes to perform parsing on true

Table 23: Parameters of class stream.parser.ParseDouble.

B.3.3.3 Processor ParseTimestamp

This processor parses the date time from an attribute using a specified format string and
stores the parsed time as a long value into the @timestamp key by default.

The processor requires at least a format and a from parameter. The format specifies a
date format to parse the time from. The from parameter determines the key attribute
from which the date is to be parsed.

The following example shows a timestamp parser that parses the DATE key using the
format yyyy-MM-dd-hh:mm:ss. The resulting timestamp (milliseconds UNIX time) is
stored under key @time:

<stream.parser.ParseTimestamp key="@time" format="yyyy-MM-dd-hh:mm:ss"
from="DATE" />

B.3.4 Processors in Package stream.script

B.3.4.1 Processor JRuby

This processor executes JRuby (Ruby) scripts using the Java ScriptingEngine interface.
To use this processor, the JRuby implementation needs to be available in the classpath.
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Parameter Type Description Required

key String false

format String The date format string used for parsing. true

from String The key/attribute from which the timestamp should be
parsed.

true

timezone String The timezone that the processed data is assumed to refer
to.

false

Table 24: Parameters of class stream.parser.ParseTimestamp.

The script is evaluated for each processed item and will be provided to the script as
variable $data.

Parameter Type Description Required

file File false

script BodyContent false

Table 25: Parameters of class stream.script.JRuby.

B.3.5 JavaScript

This processor can be used to execute simple JavaScript snippets using the Java-6 ECMA
scripting engine.

The processor binds the data item as data object to the script context to allow for
accessing the item. The following snippet prints out the message “Test” and stores the
string test with key @tag in the data object:

println( "Test" );
data.put( "@tag", "Test" );

B.3.5.1 External Scripts

The processor can also be used to run JavaScript snippets from external files, by simply
specifying the file attribute:

<JavaScript file="/path/to/script.js" />
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Parameter Type Description Required

file File false

script BodyContent false

Table 26: Parameters of class stream.script.JavaScript.

B.3.6 Processors in Package stream.image

B.3.6.1 Processor stream.image.AverageRGB

This processor extracts RGB colors from a given image and computes the average RGB
values over all pixels of that image.
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