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Abstract

This paper considers group-mean fully modified OLS estimation for a panel of cointegrating
polynomial regressions, i. e., regressions that include an integrated process and its powers as
explanatory variables. The stationary errors are allowed to be serially correlated, the regressor
to be endogenous and – as usual in the nonstationary panel literature – we include individu-
al specific fixed effects. We consider a fixed cross-section dimension, asymptotics in the time
dimension only and show that the estimator allows for standard asymptotic inference in this
setting. In both the simulations as well as an illustrative application estimating environmental
Kuznets curves for carbon dioxide emissions we compare our group-mean estimator with the
pooled fully modified OLS estimator of de Jong and Wagner (2018).
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1 Introduction

This paper considers group-mean estimation for a panel of cointegrating polynomial regressions

(CPRs) in a large time and finite cross-section dimension framework. Cointegrating polynomial

regressions include deterministic variables as well as integrated processes and their powers as re-

gressors. The regressors are allowed to be endogenous and the stationary errors are allowed to be

serially correlated. For brevity we focus on a simple cubic specification with only one integrated

regressor and its square and cube – see (1) and (2) – in this paper. All results generalize, with

additional notational complexity only, to the case of multiple integrated regressors and their powers

as well as more general deterministic components like time trends. As is commonly done in the

nonstationary panel cointegration literature we focus on the case of individual specific fixed effects.

Another reason to confine ourselves here to this simple specification is to facilitate comparison with

de Jong and Wagner (2018), who develop pooled modified and fully modified OLS estimators in a

large time and large cross-section dimension setting; also exemplified for the cubic specification. The

group-mean estimator, i. e., the cross-sectional average of the individual specific FM-OLS coefficient

estimators (studied in detail, e. g., in Wagner and Hong, 2016) is, clearly, a natural complement to

pooled estimation.

In our simulations we compare the group-mean estimator and hypothesis tests based upon it with

the pooled FM-OLS estimator of de Jong and Wagner (2018) and tests based upon it as well as with

results obtained when not using the cross-section dimension and using data only from the, without

loss of generality, first cross-section member. The results are to a certain extent as expected in that

the pooled estimator has the smallest bias and root mean squared error (RMSE), followed by the

group-mean estimator and first equation estimator. Tests based upon the group-mean estimator

suffer in a variety of scenarios less from severe size distortions than tests based upon the pooled

estimator. This happens in particular in situations with a large degree of error serial correlation

and regressor endogeneity.

We also briefly illustrate the developed methodology by estimating the environmental Kuznets curve

(EKC) for carbon dioxide emissions using the same – long and wide – data sets as de Jong and

Wagner (2018). The EKC hypothesis postulates an inverse U-shaped relationship between measures

of economic development, typically GDP per capita, and measures of pollution or emissions. The

term EKC refers by analogy to the inverted U-shaped relationship between the level of economic
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development and income inequality postulated by Simon Kuznets (1955) in his 1954 presidential

address to the American Economic Association.1

The paper is organized as follows: Section 2 presents the setting, the assumptions and the theoretical

results. Section 3 contains illustrative results from a simulation study undertaken. Section 4

briefly illustrates the method by estimating EKCs for carbon dioxide emissions using the same

data sets as de Jong and Wagner (2018) and Section 5 briefly summarizes and concludes. The

proofs are relegated to the appendix. Additional simulation results and information is available in

Supplementary Material.

We use the following notation: For sequences we define {·} := {·}t∈Z, bxc denotes the integer part of

x ∈ R and diag(·) denotes a diagonal matrix. With ⇒,
p−→ and

d−→ we denote weak convergence,

convergence in probability and convergence in distribution as T → ∞. Brownian motion with

variance specified in the context is denoted by B(r) and W (r) denotes a standard Wiener process.

2 Theory

As indicated in the introduction, for sake of brevity we only consider the simple case of a cubic

specification with a single unit root regressor, its square and cube as well individual fixed effects in

this paper, i.e.,

yit = αi + xitβ1 + x2itβ2 + x3itβ3 + uit, (1)

xit = xi,t−1 + vit, (2)

where for brevity we assume xi0 = 0.

The cross-sectionally independent error processes {ηit} := {(uit, vit)′} are assumed to be random

linear processes fulfilling a functional central limit theorem similar to Phillips and Moon (1999,

1The empirical EKC literature started in the first half of the 1990s, with early important contributions including
Grossman and Krueger (1993) or Holtz-Eakin and Selden (1995). Early survey papers like Stern (2004) or Yandle et
al. (2004) already count more than 100 refereed publications, with the number growing steadily since then. For more
discussion on the empirical literature and theoretical underpinnings of the EKC see, e. g., Wagner (2015). Inverted
U-shaped relationships also feature prominently in modelling the relationship between energy or material intensity
and GDP per capita (see, e. g., Labson and Crompton, 1993; Malenbaum, 1978). In the exchange rate target zone
literature predictive regressions involving an exchange rate and its powers as explanatory variables are widely used
(see, e. g., Darvas, 2008; Svensson, 1992). In either of these literatures typically only quadratic or cubic polynomials
are considered. Thus, also from this perspective it suffices to describe the estimator in this paper for the cubic
specification.
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Lemma 3), i.e.,

1√
T

brT c∑
t=1

ηit ⇒ Bi(r) =: Ω
1/2
i Wi(r), 0 ≤ r ≤ 1, (3)

where Wi(r) := (Wui(r),Wvi(r))
′, with Bi(r) partitioned analogously, is a bivariate standard

Wiener process. The random long run covariance matrices are partitioned as

Ωi :=

(
Ωuiui Ωuivi

Ωviui Ωvivi

)
. (4)

For later usage we also define the half long run covariance matrices partitioned analogously, i. e.,

∆i :=

(
∆uiui ∆uivi

∆viui ∆vivi

)
, (5)

with consequently Ωi = ∆i + ∆′i−Σi, where Σi is the random contemporaneous covariance matrix.

We denote the time-demeaned variables and the averages over time by, e.g., ỹit and ȳi., i.e.,

ỹit := yit − ȳi. = yit −
1

T

T∑
t=1

yit, (6)

with analogous quantities defined for xit (and its powers), uit and vit. In addition, we write

X̃it :=

 xit − xi.
x2it − x2i.
x3it − x3i.

 . (7)

To state our assumptions and results we need to define some additional quantities, i. e., GT :=

diag(T−1, T−3/2, T−2), Di := diag(Ω
1/2
vivi ,Ωvivi ,Ω

3/2
vivi) and Ai :=

(
1, 2

∫ 1
0 Bvi(r)dr, 3

∫ 1
0 B

2
vi(r)dr

)′
.

Assumption 1 The random processes {ηit} are independent across i = 1, . . . , N , the random

matrices (∆i,Σi) are independent of the Wiener processes Wi(r) for i = 1, . . . , N and Ωi is positive

definite almost surely for i = 1, . . . , N . Furthermore, it holds for i = 1, . . . , N and 0 ≤ r ≤ 1 that:

(a) T 1/2GT X̃ibrT c⇒

Bvi(r)−
∫ 1
0 Bvi(s)ds

B2
vi(r)−

∫ 1
0 B

2
vi(s)ds

B3
vi(r)−

∫ 1
0 B

3
vi(s)ds

 = Di

(
Wvi(r)−

∫ 1
0 Wvi(s)ds

)
=: B̃vi(r),

(b) GT
∑T

t=1 X̃itũit
d−→
∫ 1
0 B̃vi(r)dBui(r) + ∆viuiAi,

(c) GT
∑T

t=1 X̃itvit
d−→
∫ 1
0 B̃vi(r)dBvi(r) + ∆viviAi,

with all quantities converging jointly.
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As always in fully modified type estimation, consistent estimators of long run covariances and half

long run covariances – based on the OLS residuals ûit and vit = ∆xit – are required. This implies

restrictions on kernels and bandwidths used. For brevity we simply formulate:

Assumption 2 The estimators ∆̂i and Σ̂i satisfy ∆̂i
p−→ ∆i and Σ̂i

p−→ Σi for i = 1, . . . , N . By

definition this implies consistency of Ω̂i := ∆̂i + ∆̂′i − Σ̂i for i = 1, . . . , N .

We abstain from formulating primitive assumptions that generate our Assumptions 1 and 2. The

literature provides several by now well-understood routes to derive these results from primitive

assumptions using near epoch dependence concepts, martingale difference sequences or linear pro-

cesses (see, e. g., de Jong, 2002; Ibragimov and Phillips, 2008; Park and Phillips, 2001). Our

formulations and assumptions are similar to de Jong and Wagner (2018) who in turn build upon

Phillips and Moon (1999). However, in a finite N setting one can replace the random linear process

framework without any substantial loss with more classical assumptions as used, e. g., in Wagner

and Hong (2016) in a pure time series setting. As discussed below in Remark 3, the random lin-

ear process framework provides fundamental value added only in case of N → ∞. See also the

discussion in de Jong and Wagner (2018).

We are now ready to define the group-mean fully modified OLS estimator, i. e., the cross-sectional

average of individual specific fully modified OLS estimators (as developed in Wagner and Hong,

2016) of the coefficient vector β := (β1, β2, β3)
′. More precisely, we define for i = 1, . . . , N the FM-

OLS estimator of β from the i-th cross-section member – computed from individual specifically

demeaned data – as

β̂+(i) :=

(
T∑
t=1

X̃itX̃
′
it

)−1( T∑
t=1

X̃itỹ
+
it − Ci

)
, (8)

with ỹ+it := ỹit − ∆xitΩ̂
−1
viviΩ̂viui , Ci := ∆̂+

viui

(
T, 2

∑T
t=1 xit, 3

∑T
t=1 x

2
it

)′
and ∆̂+

viui
:= ∆̂viui −

∆̂viviΩ̂
−1
viviΩ̂viui . This allows to define the group-mean fully modified OLS estimator as

β̂+GM :=
1

N

N∑
i=1

β̂+(i). (9)

Proposition 1 Let the data be generated by (1) and (2) and let Assumptions 1 and 2 be in place.

Then it holds for T →∞, conditional upon ∆i, Σi and Wvi(r) for i = 1, . . . , N , that

G−1T (β̂+GM − β)
d−→ Z ∼ N (0, VGM) , (10)
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with N (0, VGM) denoting a normal distribution with expectation zero and covariance matrix

VGM :=
1

N2

N∑
i=1

Ωui·vi

(∫ 1

0
B̃vi(r)B̃vi(r)

′dr

)−1
=

1

N2

N∑
i=1

Ωui·viM̃
−1
ii , (11)

with Ωui·vi := Ωuiui−ΩuiviΩ
−1
viviΩviui the conditional variance of Bui·vi(r) := Bui(r)−ΩuiviΩ

−1
viviBvi(r)

and M̃ii defined by the last equality.

Under our assumptions, a consistent estimator of VGM is naturally given by

V̂GM :=
1

N2

N∑
i=1

Ω̂ui·vi

(
GT

T∑
t=1

X̃itX̃
′
itGT

)−1
, (12)

= G−1T ŜGMG
−1
T ,

with Ω̂ui·vi := Ω̂uiui − Ω̂uiviΩ̂
−1
viviΩ̂viui and ŜGM defined by the last equality.

The conditional normal limit in conjunction with the availability of a consistent estimator of the

covariance matrix as given in (12) leads to standard asymptotic inference. To obtain standard

asymptotic behavior of hypothesis tests, we have to take into account that the components of the

vector β̂+GM converge at different rates, an issue discussed, e. g., in Sims et al. (1990, Section 4) or

Wagner and Hong (2016, Section 2.2, p. 1297). A sufficient condition to ensure standard asymptotic

behavior is to assume that the constraint matrix fulfills the (asymptotic) restriction posited in the

following lemma.

Lemma 1 Let the data be generated by (1) and (2) and let Assumptions 1 and 2 be in place.

Consider s linearly independent restrictions collected in

H0 : Rβ = r, (13)

with R ∈ Rs×3, r ∈ Rs and assume that there exists a non-singular matrix GR ∈ Rs×s such that

limT→∞GRRGT = R∗, with R∗ ∈ Rs×3 of rank s. Then it holds under the null hypothesis that the

Wald-type statistic

W :=
(
Rβ̂+GM − r

)′ (
RŜGMR

′
)−1 (

Rβ̂+GM − r
)

(14)

is asymptotically chi-squared distributed with s degrees of freedom.

Remark 1 The group-mean estimator is robust to cross-section dependence in the sense that it

remains consistent with a zero mean Gaussian mixture limiting distribution even in the presence of

6



cross-section dependence. However, the covariance matrix of the asymptotic distribution is different,

reflecting the cross-section dependence. Modifying the assumptions to ensure joint convergence

for i = 1, . . . , N of all quantities including cross-products that appear in the limiting covariance

matrix leads straightforwardly to “robust” inference in case of cross-section dependence. Denote

with M̃ij :=
∫ 1
0 B̃vi(r)B̃vj (r)

′dr and with Ωui·vi;uj ·vj the quadratic covariation (over the interval

zero to one) of the processes Bui·vi(r) and Buj ·vj (r). Then the asymptotic covariance matrix of the

group-mean estimator given in (9) changes from the expression given in (11) to2

V rob
GM :=

1

N2

N∑
i,j=1

Ω̂ui·vi;uj ·vjM̃
−1
ii M̃ijM̃

−1
jj . (15)

Remark 2 Time effects, either put in place instead of individual effects or – more commonly used –

in a two-way effects specification with individual and time effects also do not invalidate consistency

of the group-mean estimator. However, the limiting distribution is in this case contaminated by

second order bias terms related to the presence of cross-section averages of time series limits. In

the two-way case the transformed regressor vector, e. g., is given by X̌it := X̃it − 1
N

∑N
j=1 X̃jt,

which leads to a partial sum limit (compare Assumption 1) of the form T 1/2GT X̌ibrT c ⇒ B̃vi(r)−
1
N

∑N
j=1 B̃vj (r) =: B̌vi(r). Thus, the cross-section dependence induced by two-way demeaning shows

up in the limit partial sum processes, which in turn leads to second order bias terms also in the

limit of GT
∑T

t=1 X̌itǔ
+
it , with ǔ+it := ǔit − ∆xitΩ̂

−1
viviΩ̂viui and ǔit := ũit − 1

N

∑N
j=1 ũjt. With a

large cross-section dimension, under appropriate assumptions, 1
N

∑N
j=1 B̃vj (r) fulfills a law of large

numbers. This is exploited in the derivation of the large N and large T asymptotic distribution of

the pooled estimator in de Jong and Wagner (2018).

In the cross-sectionally homogenous case, with ∆i = ∆ and Σi = Σ for i = 1, . . . , N , the group-

mean estimator can be modified to lead to a nuisance parameter free limiting distribution by using

y̌+it := y̌it −∆x̌itΩ̂
−1
vv Ω̂vu, with y̌it := ỹit − 1

N

∑N
j=1 ỹjt, as transformed dependent variable and

Či := ∆̂+
vu

(N − 1

N

)2
(
T, 2

T∑
t=1

xit, 3

T∑
t=1

x2it

)′
+

1

N2

∑
j 6=i

(
T, 2

T∑
t=1

xjt, 3

T∑
t=1

x2jt

)′
as additive correction term when estimating the parameters of the i-th equation with FM-OLS. In

this case, e. g., the homogenous long run covariance matrix Ω can be estimated by the cross-section

2The quadratic covariation Ωui·vi;uj ·vj is equal to the covariance between Bui·vi(r) and Buj ·vj (r) in our setting,
i. e.,

Ωui·vi;uj ·vj = Ωuiuj − ΩuiviΩ
−1
viviΩviuj − Ωujvj Ω−1

vjvj Ωvjui + ΩuiviΩ
−1
viviΩvivj Ω−1

vjvj Ωvjuj .

A robust covariance matrix estimator, V̂ rob
GM say, is thus immediately available.
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average of individual specific long run covariance matrix estimators, i. e., Ω̂ := 1
N

∑N
i=1 Ω̂i; and

similarly for the other required matrices.

Remark 3 To close the theory section note that under (additional) assumptions that ensure the

existence of required moments, in particular of E(Ωui·viM̃
−1
ii ), it follows that

√
NG−1T

(
β̂+GM − β

)
d−→ N

(
0,E(Ωui·viM̃

−1
ii )
)
,

as N → ∞ after T → ∞. An estimator of the covariance matrix of this limiting distribution is

given by

1

N

N∑
i=1

Ω̂ui·vi

(
GT

T∑
i=1

X̃itX̃
′
itGT

)−1
,

which – by definition – is equal to NV̂GM, with V̂GM the “finite N” covariance matrix estimator

given below Proposition 1 in (12).

3 Finite Sample Performance

We generate data using exactly the same setting as de Jong and Wagner (2018), i. e., data are

generated according to the cubic model with fixed effects as given in (1) and (2), with the errors

generated from

uit = ρ1iui,t−1 + εit + ρ2iνit, (16)

vit = νit + 0.5νit,t−1, (17)

with (εit, νit)
′ ∼ N (0, I2) cross-sectionally independent. The parameters ρ1i control the level of

serial correlation in the error terms uit, and ρ2i control the extent of regressor endogeneity. The

parameters ρi1, ρi2 are cross-sectionally i.i.d. and independent of (εit, νit)
′. In particular we consider

ρ1i = ρ1 + U1i and ρ2i = ρ2 + U2i with U1i,U2i i.i.d. uniform random variables over the interval

[−0.05, 0.05], with ρ1, ρ2 ∈ {0, 0.3, 0.6, 0.8}.3 The slope parameters are chosen as β1 = 5, β2 = −3

and β3 = 0.3. The individual effects αi are i.i.d. N (0, 1). Long-run covariance estimation is

performed using the Bartlett kernel in conjunction with the bandwidth selection rule of Andrews

(1991). The sample sizes considered are all combinations of T = 50, 100, 200 and N = 5, 10, 25, 50.

3The addition of cross-sectionally i.i.d. random variables to the coefficients ρ1 and ρ2 is obviously a simple way of
generating data in a random linear process fashion. Considering non-random ρ1i and ρ2i leads to very similar results
in the simulations.
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For each setting the number of replications is 5,000 and all test decisions are performed at the

nominal 5% level. The results obtained with the group-mean estimator, labelled β̂+GM below, are

compared with the results obtained from estimating β from the first equation or cross-section

member using the FM-CPR estimator of Wagner and Hong (2016), labelled β̂+(1) below, and with

the pooled estimator of de Jong and Wagner (2018), labelled β̂+P below.

We start with assessing estimator performance measured by bias and RMSE and display the results

for β2 in Table 1, with qualitatively similar results for the other coefficients available in Supplemen-

tary Material. Almost throughout the pooled estimator has the smallest bias and RMSE, followed

by the group-mean estimator and – as expected – the first equation estimator coming in third place.

Clearly, more data are beneficial for estimator performance and this advantage is more pronounced

for pooled estimation, where only three slope parameters are estimated, than for group-mean esti-

mation, where three times N slope coefficients are estimated first and then averaged. The relative

performance of the group-mean estimator compared to the other two estimators depends upon the

exact setting considered. In some cases, when N = 5, the first equation estimator even has a

slightly smaller bias than the group-mean estimator. Its RMSE is, however, always larger than the

RMSE of the group-mean estimator.

We next turn to null rejection probabilities, where we display the results for two null hypotheses.

The first is given by H0 : β2 = −3, with the results given in Table 2, and the second is given

by H0 : β1 = 5, β2 = −3, β3 = 0.3, with the results given in Table 3. The single null hypothesis

concerning β2 is tested via a two-sided t-type test using standard normal critical values and the

second one via a Wald-type test using chi-squared critical values with three degrees of freedom.

The following main observations emerge: First, the smallest size distortions occur for either the tests

based on the pooled or the group-mean estimator. By and large the former leads to the smallest size

distortions in case ρ1, ρ2 = 0 or 0.3 and the latter to the best performance for the larger values of

ρ1, ρ2. Second, for some configurations the tests based on the pooled estimator lead to the (by far)

biggest size distortions in case of large values of ρ1, ρ2, with the relative performance disadvantage

aggravating with increasing cross-section dimension. This phenomenon of size divergence has been

found to be widespread for panel unit root and cointegration tests, see, e. g., Hlouskova and Wagner

(2006) and Wagner and Hlouskova (2009). As expected, with the exception of the cases where the

size distortions of the tests based on the pooled estimator are very large, the tests based on the

first equation estimator lead to the largest size distortions. The group-mean estimator based tests

9



Table 1: Bias and RMSE for the three considered estimators of β2

N = 5 N = 10 N = 25 N = 50

ρ1 = ρ2 β̂+2 (1) β̂+P,2 β̂+GM,2 β̂+2 (1) β̂+P,2 β̂+GM,2 β̂+2 (1) β̂+P,2 β̂+GM,2 β̂+2 (1) β̂+P,2 β̂+GM,2

Bias (×1, 000)

T = 50 0 0.581 -0.061 0.084 -1.207 -0.012 0.178 1.587 0.009 0.081 -0.274 0.011 0.027

0.3 0.310 -0.071 -0.018 -1.492 -0.009 0.357 2.299 0.013 0.072 -0.132 0.016 0.014

0.6 -0.880 -0.082 -0.316 -2.605 0.007 0.589 3.256 0.026 0.064 1.376 0.027 -0.059

0.8 -3.603 -0.093 -1.098 -4.542 0.051 0.485 3.631 0.054 -0.147 5.393 0.050 0.061

T = 100 0 0.053 -0.018 0.135 -0.187 -0.004 -0.088 0.325 0.001 0.096 0.299 0.003 -0.011

0.3 0.048 -0.024 0.129 -0.406 -0.004 -0.141 0.198 0.001 0.110 0.342 0.003 -0.032

0.6 0.032 -0.031 0.143 -0.558 -0.000 -0.209 -0.044 -0.000 0.115 0.364 0.005 -0.062

0.8 0.023 -0.007 0.394 -0.268 0.019 -0.357 -0.723 -0.010 0.098 0.273 0.010 -0.133

T = 200 0 0.083 -0.002 0.117 -0.007 -0.001 0.014 0.188 0.001 -0.023 -0.070 -0.000 0.008

0.3 0.104 -0.002 0.140 0.013 -0.002 0.012 0.240 0.001 -0.021 -0.112 -0.000 0.005

0.6 0.074 -0.001 0.119 0.027 -0.002 0.008 0.326 0.002 -0.006 -0.154 -0.001 -0.002

0.8 -0.050 0.004 0.055 -0.155 -0.005 0.071 0.369 0.005 0.003 -0.164 -0.001 -0.001

RMSE (×10)

T = 50 0 0.747 0.034 0.341 0.810 0.013 0.249 0.727 0.005 0.153 0.746 0.003 0.108

0.3 0.898 0.046 0.402 0.940 0.018 0.292 0.860 0.008 0.179 0.854 0.005 0.128

0.6 1.243 0.072 0.536 1.277 0.030 0.391 1.164 0.013 0.241 1.218 0.008 0.171

0.8 1.936 0.118 0.797 2.122 0.052 0.577 1.782 0.023 0.358 2.017 0.014 0.252

T = 100 0 0.242 0.011 0.101 0.217 0.005 0.071 0.221 0.002 0.044 0.208 0.001 0.032

0.3 0.303 0.016 0.128 0.276 0.007 0.089 0.281 0.003 0.056 0.266 0.002 0.040

0.6 0.441 0.026 0.186 0.395 0.011 0.128 0.415 0.005 0.082 0.402 0.003 0.057

0.8 0.699 0.048 0.296 0.622 0.021 0.205 0.680 0.009 0.132 0.648 0.006 0.091

T = 200 0 0.070 0.004 0.032 0.071 0.002 0.023 0.071 0.001 0.014 0.072 0.000 0.010

0.3 0.093 0.006 0.043 0.094 0.002 0.031 0.095 0.001 0.019 0.095 0.001 0.014

0.6 0.145 0.010 0.066 0.149 0.004 0.047 0.149 0.002 0.030 0.149 0.001 0.021

0.8 0.252 0.019 0.115 0.261 0.008 0.082 0.253 0.003 0.051 0.260 0.002 0.037
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Table 2: Empirical null rejection probabilities of t-type tests for H0 : β2 = −3 based on the three
considered estimators

N = 5 N = 10 N = 25 N = 50

ρ1 = ρ2 β̂+2 (1) β̂+P,2 β̂+GM,2 β̂+2 (1) β̂+P,2 β̂+GM,2 β̂+2 (1) β̂+P,2 β̂+GM,2 β̂+2 (1) β̂+P,2 β̂+GM,2

T = 50 0 0.146 0.085 0.126 0.143 0.072 0.126 0.138 0.066 0.121 0.148 0.075 0.116

0.3 0.145 0.100 0.112 0.131 0.087 0.102 0.136 0.087 0.097 0.135 0.092 0.091

0.6 0.140 0.116 0.095 0.123 0.113 0.079 0.134 0.110 0.071 0.132 0.109 0.068

0.8 0.139 0.140 0.088 0.135 0.136 0.067 0.143 0.142 0.062 0.143 0.137 0.052

T = 100 0 0.106 0.066 0.097 0.096 0.067 0.094 0.109 0.066 0.094 0.097 0.059 0.093

0.3 0.107 0.080 0.091 0.100 0.081 0.083 0.109 0.079 0.084 0.100 0.075 0.079

0.6 0.110 0.097 0.087 0.104 0.094 0.067 0.118 0.096 0.062 0.110 0.093 0.057

0.8 0.117 0.112 0.071 0.116 0.108 0.054 0.117 0.113 0.051 0.116 0.104 0.038

T = 200 0 0.084 0.060 0.076 0.084 0.058 0.075 0.083 0.061 0.067 0.083 0.057 0.073

0.3 0.088 0.073 0.075 0.085 0.069 0.074 0.085 0.074 0.066 0.089 0.069 0.071

0.6 0.098 0.086 0.074 0.093 0.082 0.067 0.093 0.086 0.059 0.097 0.081 0.061

0.8 0.107 0.098 0.067 0.096 0.092 0.051 0.101 0.091 0.046 0.108 0.085 0.047

Note: For the pooled FM-OLS estimator, the so-called “standard” covariance matrix estimator is used, see
de Jong and Wagner (2018) for details.

Table 3: Empirical null rejection probabilities of Wald-type tests for H0 : β1 = 5, β2 = −3, β3 = 0.3
based on the three considered estimators

N = 5 N = 10 N = 25 N = 50

ρ1 = ρ2 β̂+(1) β̂+P β̂+GM β̂+(1) β̂+P β̂+GM β̂+(1) β̂+P β̂+GM β̂+(1) β̂+P β̂+GM

T = 50 0 0.220 0.114 0.209 0.205 0.097 0.202 0.218 0.090 0.187 0.224 0.093 0.177

0.3 0.244 0.156 0.192 0.238 0.137 0.168 0.248 0.127 0.156 0.245 0.141 0.158

0.6 0.316 0.259 0.203 0.314 0.267 0.167 0.325 0.365 0.157 0.320 0.511 0.184

0.8 0.451 0.488 0.255 0.451 0.606 0.212 0.468 0.844 0.203 0.466 0.976 0.256

T = 100 0 0.142 0.083 0.134 0.139 0.076 0.133 0.145 0.079 0.116 0.136 0.070 0.124

0.3 0.168 0.107 0.131 0.164 0.109 0.120 0.171 0.113 0.106 0.165 0.101 0.111

0.6 0.225 0.168 0.146 0.227 0.186 0.128 0.228 0.249 0.118 0.223 0.318 0.134

0.8 0.336 0.332 0.182 0.356 0.408 0.147 0.356 0.627 0.147 0.338 0.854 0.188

T = 200 0 0.110 0.068 0.100 0.110 0.067 0.092 0.106 0.068 0.098 0.100 0.065 0.085

0.3 0.133 0.093 0.105 0.127 0.090 0.094 0.130 0.089 0.092 0.123 0.083 0.088

0.6 0.174 0.131 0.122 0.176 0.135 0.111 0.170 0.164 0.104 0.165 0.195 0.121

0.8 0.257 0.224 0.152 0.249 0.262 0.130 0.246 0.413 0.115 0.237 0.615 0.172

Note: See note to Table 2.
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Figure 1: Size-corrected power of t-type tests for H0 : β2 = −3 for T = 200, ρ1, ρ2 = 0.3 and all
values of N
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Note: The caption “Eq.1” refers to the test based on the estimator from the first equation, “P” refers to the test

based on the pooled estimator and “GM” refers to the test based on the group-mean estimator.

are not prone to size divergence and their size distortions are smaller than those of the tests based

on the first equation estimator.

We close this section with a brief look on size-corrected power, considering again the single hy-

pothesis on the coefficient β2 as well as the multiple hypothesis involving all three coefficients. The

rejection probabilities under the alternatives are calculated using an equidistant grid of 21 points

for the parameter values (including also the null parameter values) based on the empirical critical

values from the null hypothesis simulations. Reflecting the different convergence rates we consider

for β1 the interval [5, 5.08], for β2 the interval [−3,−2.996] and for β3 the interval [0.3, 0.3002].

Figure 1 shows the results for the t-type tests for β2 for T = 200, ρ1, ρ2 = 0.3 and all values of N .

Figure 2 shows the results for the same configurations for the Wald-type tests involving all three

parameters.

Size-corrected power is throughout highest for the tests based on the pooled estimator, which is

in line with the superior bias and RMSE performance of this estimator. The second rank depends

upon test considered. For the t-type tests typically the tests based on the group-mean estimator

12



Figure 2: Size-corrected power of Wald-type tests for H0 : β1 = 5, β2 = −3, β3 = 0.3 for T = 200,
ρ1, ρ2 = 0.3 and all values of N
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Note: See note to Figure 1.

have second highest power, whereas for the Wald-type tests the tests based on the estimator for

the first equation have second highest power. In many configurations the power of the tests based

on the group-mean and the first equation estimators is very similar, and distinctly lower than the

power of the tests based on the pooled estimator.

Altogether, the simulation evidence is mixed. The pooled estimator exhibits the best performance

in terms of bias and RMSE. The group-mean estimator partly leads to tests with the smallest size

distortions (in particular in case of large ρ1, ρ2) that are – unlike the tests based on the pooled

estimator – not susceptible to size divergence as the cross-section dimension increases. However,

(size-corrected) power performance of the group-mean based tests is low when compared to the

size-corrected power of the tests based on the pooled estimator of de Jong and Wagner (2018).
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Table 4: Group-mean EKC estimation results

Quadratic Cubic

N = 6 N = 19 N = 89 N = 6 N = 19 N = 89

β1 7.510 7.763 8.609 -24.199 4.439 1043.039
(9.474) (14.178) (2.999) (-1.513) (0.375) (2.485)

β2 -0.377 -0.390 -0.409 3.190 -0.033 -146.152
(-8.475) (-12.782) (-2.256) (1.772) (-0.025) (-2.669)

β3 -0.133 -0.013 6.685
(-1.980) (-0.261) (2.800)

TP 21,225 21,024 36,912 17,087 21,595 4,174
497 0 512

de J&W 22,771 20,240 531,250 – – 127,784 43,231
28,054 443

Note: The turning points (TP) are computed as exp
(
− β̂1

2β̂2

)
in the quadratic case and if real valued as

exp
(

(±1)(− β̂1

3β̂3
+ ( β̂2

3β̂3
)2)1/2 − β̂2

3β̂3

)
in the cubic case. The row labelled de J&W presents the turning

points obtained in de Jong and Wagner (2018, Tables 7 and 8) using pooled FM-OLS estimation for the
same specifications and data sets. The numbers in brackets are t-statistics.

4 The Environmental Kuznets Curve for Carbon Dioxide Emis-
sions

In this section we briefly illustrate the developed estimator by estimating the EKC for carbon

dioxide (CO2) emissions. The dependent variable is the logarithm of CO2 emissions per capita and

the explanatory variables are the logarithm of GDP per capita and its powers. We consider both

the quadratic and the cubic specification and include country fixed effects. As in the simulation

section we use the Bartlett kernel and the Andrews (1991) bandwidth selection rule for long run

covariance estimation.

We use the same data sets as de Jong and Wagner (2018). These are the long data set with N = 19

countries for T = 135 years and the wide data set with N = 89 countries and T = 54. The long

data set has originally been used in Wagner et al. (2018) and ranges from 1878 − 2013 for 19

early industrialized countries.4 We also consider the subset of six of these 19 countries with data

4The 19 countries are given by Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Italy,
Japan, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom and USA. Note
that the data are in fact available from 1870 onwards, with the exception of CO2 emissions for New Zealand.
Considering all 19 countries with 1878 as starting point is merely done to use exactly the same balanced panel
data set as de Jong and Wagner (2018). Of course, whether the panel is balanced or not is irrelevant even from a
computational perspective for group-mean estimation. A detailed description of the data including the sources is
contained in Wagner et al. (2018).
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available for 1870−2013 analyzed in more detail in a seemingly unrelated regressions (SUR) setting

in Wagner et al. (2018). These six countries are Austria (AT), Belgium (BE), Finland (FI), the

Netherlands (NL), Switzerland (CH) and the United Kingdom (UK). The country list for the wide

data set, with time span 1960− 2013 is available as Table 5 in the Supplementary Material.

Table 4 displays the estimation results including the estimated turning points. For comparison

the last row of the table displays the turning points obtained in de Jong and Wagner (2018) using

pooled FM-OLS estimation. Let us start with the quadratic specification, which strictly speaking

may be too simple given that the third order coefficient is significant (marginally) for N = 6 and

N = 89. For all three cross-section dimensions, the coefficient to squared ln(GDP) is significantly

different from zero and negative, implying an inverted U-shape. The turning points are well within

the sample range for all three data sets. For the long data set the estimated turning points are quite

similar, for N = 6 and N = 19, for both group-mean and pooled estimation. However, whereas de

Jong and Wagner (2018) find an extremely large out of sample turning point at about 531,000 for

the wide data set in the quadratic specification, group-mean estimation leads to a more standard

(in-sample) estimate of the turning point at about 37,000 also when N = 89.5

For the long data set, group-mean estimation leads to very similar results as for the quadratic

specification also for the cubic specification. This is not the case for the pooled estimator, where

the estimated turning points (or even the presence of a turning point) are sensitive to the polynomial

degree considered – despite the fact that the coefficient to the third power is insignificant for the

long data set throughout when using the pooled estimator. The results obtained with the group-

mean estimator for the wide data set and the cubic specification are less satisfactory. The third

order coefficient is significant but positive, indicating a U-shaped rather than an inverted U-shaped

behavior around the larger turning point. The larger turning point is estimated at the very low

level of 4, 174 when using the group-mean estimator. For the wide N = 89 data set the results

obtained with the pooled estimator are more plausible than those obtained with the group-mean

estimator, with an inverted U-shaped behavior around the larger turning point estimated at about

43,000.

We close this section with a graphical inspection of the estimation results obtained for the quadratic

specification with country fixed effects for N = 6 in Figure 3.6 The figure shows both scatterplots of

5The sample ranges are 794 to 31, 393 (measured in 1990 Geary-Khamis Dollars) for the long data set and 340 to
100, 959 (in 2015 US-Dollars) for the wide data set.

6We plot the results for the simpler quadratic specification since the third order coefficient is only marginally
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Figure 3: Scatter plot and estimated EKC relationship for CO2 emissions for the N = 6 countries
over the period 1870–2013
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Note: The lines display the results of inserting equidistant points from the sample range of ln(GDP) in the estimated

quadratic relationship with the individual effects estimated by α̂i := yi. − (xi., x2i.)β̂
+
GM.

the data as well as the fitted lines (using equidistant points from the sample range of the logarithm of

GDP per capita). The country fixed effects are found to be essentially identical for Austria and the

Netherlands, for Belgium and the United Kingdom, and very similar for Finland and Switzerland.

Apart from the vertical differences due to the country fixed effects, the figure also displays that

group-mean estimation results into an “average shape” of the fitted lines that is potentially a bit

too steep for Belgium and the UK, and maybe too flat for Finland and Switzerland. For Austria

and the Netherlands the shape of the estimated EKC fits the data quite nicely.7

5 Summary and Conclusions

This paper extends the set of fully modified OLS estimators available for panel cointegrating poly-

nomial regressions by considering a group-mean fully modified OLS estimator that complements the

significant with a t-statistic of 1.98. The results are very similar for the cubic specification, with the corresponding
figures available upon request.

7Note for completeness that the poolability tests of Wagner et al. (2018), commencing from a seemingly unrelated
regressions framework, reject the null hypothesis that the EKC can be fully pooled across these six countries. Figures 7
and 8 in the Supplementary Material display the results obtained when estimating the EKCs separately for Austria,
Belgium, the Netherlands and the UK on the one hand and for Finland and Switzerland on the other.
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pooled modified and fully modified OLS estimators of de Jong and Wagner (2018). For brevity the

results are illustrated for the simple case of a cubic specification with only one integrated regressor

and individual fixed effects, which is the most widely-used specification in applications. The results

extend with notational complications only to the more general specifications considered in the time

series case in Wagner and Hong (2016).

Our assumptions are similar to Phillips and Moon (1999), i. e., we consider a random linear process

framework, which also allows for comparability with de Jong and Wagner (2018) who use similar

assumptions too. One difference to these two papers is that we consider asymptotics only in

the time dimension and consider a fixed cross-section dimension. We show that the group-mean

estimator in this setting not only allows for standard asymptotic inference, but is also robust

to cross-section dependence. In the presence of cross-section dependence, as expected, only the

covariance matrix of the group-mean estimator changes. Using a cross-section dependence robust

estimator of the covariance matrix leads to valid inference also in this case. Considering a finite

cross-section dimension simplifies the analysis in case of cross-section dependence substantially, as

one does not need to specify a more or less restrictive precise form of cross-section dependence

that allows to utilize cross-section limit theory. In the presence of time effects the group-mean

estimator remains consistent, however, its asymptotic distribution is contaminated by second order

bias terms rendering valid inference in general difficult. It is an open question for future research

to investigate the asymptotic behavior of the group-mean estimator in the two-way fixed effects

case in a large cross-section setting.

The simulation results are to a certain extent as expected with the pooled estimator leading to

smaller bias and RMSE than the group-mean estimator. However, hypothesis tests based upon

the group-mean estimator often lead to the smallest size distortions in case of large error serial

correlation and regressor endogeneity. Furthermore, they are not susceptible to size divergence,

which is partly found to be a problem for the pooled estimator of de Jong and Wagner (2018).

In our small illustrative application the group-mean estimator leads to plausible results for all three

data sets considered and both the quadratic and the cubic specification with only one exception.

The exception occurs for the wide data set and the cubic specification, where the estimated larger

turning point is around a U-shape and unreasonably small. For the data sets used the pooled

estimator appears to be a bit more sensitive, leading to unreasonably large turning points in two

cases and no turning points at all in one case.
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Appendix: Proofs

Proof of Proposition 1.

Assumptions 1 and 2 directly imply that

GT

T∑
t=1

X̃itX̃
′
itGT

d−→
∫ 1

0
B̃vi(r)B̃vi(r)

′dr (18)

GT

T∑
t=1

X̃itũ
+
it

d−→
∫ 1

0
B̃vi(r)dBui·vi(r) + ∆+

viui
Ai, (19)

converge jointly, with ũ+it := ũit − vitΩ̂−1viviΩ̂viui , ∆+
viui

:= ∆viui −∆viviΩ
−1
viviΩviui and Ai as given in

the main text.

This immediately implies – for the parameter estimator from the i-th equation – that

G−1T

(
β̂+(i)− β

)
=

(
GT

T∑
t=1

X̃itX̃
′
itGT

)−1(
GT

T∑
t=1

X̃itũ
+
it −GTCi

)
(20)

d−→
(∫ 1

0
B̃vi(r)B̃vi(r)

′dr

)−1 ∫ 1

0
B̃vi(r)dBui·vi(r).

Conditional upon ∆i, Σi and Wvi(r) the limiting distribution given in (20) is normal with ex-

pectation zero and covariance matrix Ωui·vi

(∫ 1
0 B̃vi(r)B̃vi(r)

′dr
)−1

. This in turn implies the –

conditional upon ∆i, Σi and Wvi(r) for i = 1, . . . , N – asymptotic normality result for the group-

mean estimator given in the main text in (10) and (11). �

Proof of Lemma 1.

Under the null hypothesis, with the assumptions on the restriction matrix R in place, the Wald-type

statistic given in (14) can be written as

W =
(

(GRRGT )G−1T (β̂+GM − β)
)′ (

(GRRGT )G−1T ŜGMG
−1
T (GRRGT )′

)−1 (
(GRRGT )G−1T (β̂+GM − β)

)
d−→ (R∗ ×Z)′

(
R∗VGMR

∗′)−1 (R∗ ×Z) , (21)

with Z, as shown in Proposition 1, conditionally N (0, VGM) distributed. This shows the conditional

– and hence unconditional – asymptotic chi-squared null distribution of the Wald-type statistic. �
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