Total Synthesis Of Belizentrin Methyl Ester: The Polyhydroxylated Sidechain

Dissertation

zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften
 (Dr. rer. nat.) der Fakultät für Chemie und Chemische Biologie der Technischen Universität Dortmund

vorgelegt von
Sylvester Größl
geboren am 09.04.1989
in Wiesbaden

Die vorliegende Arbeit entstand unter Anleitung von Herrn Prof. Dr. Alois Fürstner in der Zeit von November 2014 bis Juli 2018 am Max-Planck-Institut für Kohlenforschung in Mülheim an der Ruhr. Teile dieser Arbeit wurden in folgendem Beitrag veröffentlicht:
„Total Synthesis of Belizentrin Methyl Ester: Report on a Likely Conquest" F. Anderl*, S. Größl*, C. Wirtz, A. Fürstner, Angew. Chem. Int. Ed. 2018, 57, 10712-10717
*These authors contributed equally to the project.

Die praktischen Arbeiten entstanden teilweise in Zusammenarbeit mit F. Anderl (Kapitel 3.8) und C. Rustemeier (Kapitel 3.3.2.2, 3.5.1.1, 3.7.1.1 und 3.8). Die beschriebenen Ergebnisse bilden eine vollständige Darstellung dieser gemeinsamen Arbeiten. Die von diesen Mitarbeitern alleinverantwortlich erzielten Ergebnisse wurden als solche an entsprechender Stelle gekennzeichnet.

1. Gutachter: Herr Prof. Dr. Alois Fürstner
2. Gutachter: Herr Prof. Dr. Norbert Krause

for Daniel

"The studio was filled with the rich odour of roses, and when the light summer wind stirred amidst the trees of the garden, there came through the open door the heavy scent of the lilac, or the more delicate perfume of the pink-flowering thorn." Oscar Wilde, The Picture of Dorian Gray

Eidesstattliche Versicherung (Affidavit)

Größl, Sylvester
Name, Vorname
(Surname, first name)

182105
Matrikel-Nr.
(Enrolment number)

Belehrung:

Wer vorsätzlich gegen eine die Täuschung über Prüfungsleistungen betreffende Regelung einer Hochschulprüfungsordnung verstößt, handelt ordnungswidrig. Die Ordnungswidrigkeit kann mit einer Geldbuße von bis zu $50.000,00 €$ geahndet werden. Zuständige Verwaltungsbehörde für die Verfolgung und Ahndung von Ordnungswidrigkeiten ist der Kanzler/die Kanzlerin der Technischen Universität Dortmund. Im Falle eines mehrfachen oder sonstigen schwerwiegenden Täuschungsversuches kann der Prüfling zudem exmatrikuliert werden, § 63 Abs. 5 Hochschulgesetz NRW.

Die Abgabe einer falschen Versicherung an Eides statt ist strafbar.

Wer vorsätzlich eine falsche Versicherung an Eides statt abgibt, kann mit einer Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft werden, § 156 StGB. Die fahrlässige Abgabe einer falschen Versicherung an Eides statt kann mit einer Freiheitsstrafe bis zu einem Jahr oder Geldstrafe bestraft werden, § 161 StGB.

Die oben stehende Belehrung habe ich zur Kenntnis genommen:

Mülheim/Ruhr, 27.07.2018
Ort, Datum
(Place, date)

Official notification:
Any person who intentionally breaches any regulation of university examination regulations relating to deception in examination performance is acting improperly. This offence can be punished with a fine of up to EUR $50,000.00$. The competent administrative authority for the pursuit and prosecution of offences of this type is the chancellor of the TU Dortmund University. In the case of multiple or other serious attempts at deception, the candidate can also be unenrolled, Section 63, paragraph 5 of the Universities Act of North Rhine-Westphalia.

The submission of a false affidavit is punishable.

Any person who intentionally submits a false affidavit can be punished with a prison sentence of up to three years or a fine, Section 156 of the Criminal Code. The negligent submission of a false affidavit can be punished with a prison sentence of up to one year or a fine, Section 161 of the Criminal Code.

I have taken note of the above official notification.

Titel der Dissertation:
(Title of the thesis):
Total Synthesis Of Belizentrin Methyl Ester:
The Polyhydroxylated Sidechain

> Ich versichere hiermit an Eides statt, dass ich die vorliegende Dissertation mit dem Titel selbstständig und ohne unzulässige fremde Hilfe angefertigt habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate kenntlich gemacht.
> Die Arbeit hat in gegenwärtiger oder in einer anderen Fassung weder der TU Dortmund noch einer anderen Hochschule im Zusammenhang mit einer staatlichen oder akademischen Prüfung vorgelegen.

I hereby swear that I have completed the present dissertation independently and without inadmissible external support. I have not used any sources or tools other than those indicated and have identified literal and analogous quotations.

The thesis in its current version or another version has not been presented to the TU Dortmund University or another university in connection with a state or academic examination.*
*Please be aware that solely the German version of the affidavit ("Eidesstattliche Versicherung") for the PhD thesis is the official and legally binding version.

Mülheim/Ruhr, 27.07.2018
Ort, Datum
(Place, date)

Sylvester Größl
Unterschrift
(Signature)

Danksagung

Ein besonderer und herzlicher Dank sei insbesondere gerichtet an:

Prof. Dr. Alois Fürstner für die interessante und überaus anspruchsvolle Themenstellung und für die Betreuung während meiner Zeit am altehrwürdigen Max-Planck-Institut für Kohlenforschung.

Prof. Dr. Norbert Krause für die freundliche Übernahme des Zweitgutachtens.

Cornelia Wirtz für die umfassende Hilfe bei der Messung, Interpretation und Auswertung komplexer NMR-Daten zahlreicher Produkte und für die immer angenehmen und lustigen Unterhaltungen als Ausbruch aus dem üblichen Laboralltag.

Dr. Johanna Novacek für ihre Hilfe in misslichen Lagen, zündende Ideen, die unumwunden lustige Zeit und freundschaftliche Atmosphäre im Labor, aber auch außerhalb des Instituts, für ihre tolle Empfehlung, zum Blue Danube Symposium 2017 in ihrer wunderbaren Heimatstadt Linz zu reisen und für ihre umfang- und hilfreichen Korrekturen dieser meiner Arbeit.

Dr. Pol Karier für die umfangreichen Korrekturvorschläge beim Lesen dieser meiner Arbeit, ebenso wie für den immer netten und lustigen Austausch im Laboralltag.

Dr. Lauren Longobardi für ihr rasches und nachdrückliches Korrekturlesen als englische Muttersprachlerin und für den wunderbaren Kontakt.

Christopher Rustemeier für die lehrreiche Erfahrung, einem Auszubildenden weiterzugeben, was man selbst einst lernte und gezeigt bekam und für die zuletzt sehr hilfreiche Darstellung eines wichtigen Intermediats, das mir bei der Fertigstellung der Synthese half.

Petra Philipps, Julia Lignau und Dr. Christophe Farès ebenfalls für die Hilfestellung bei der Messung, umfassenden Interpretation und Auswertung von NMR-Daten und für den freundlichen und überaus angenehmen Kontakt.

Karin Radkowski, Monika Lickfeld, Saskia Schulthoff, Christian Wille, Sebastian Auris, Samira Speicher und allen übrigen Beschäftigten am Max-Planck-Institut für Kohlenforschung für die tüchtige Aufopferung im Alltag und die allzeit vorhandene Bereitschaft zu Hilfestellungen bei technischen und organisatorischen Fragen.

Minh Dao für sein immer kritisches Bewusstsein gegenüber den Dingen, einen wunderbaren und unvergesslichen Urlaub auf Malta, den gemeinsamen Antritt am Institut vor nunmehr etwas über dreieinhalb Jahren und alles, was sich in dieser Zeit daraus Kreatives abseits der Chemie mitunter entwickelt hat.

Dr. Daniel Tindall für die lustigen und zahlreichen Gespräche im und außerhalb vom Labor, für seine nahezu immer beinharte Toleranz gegenüber meinem Gesprächsbedürfnis und für die mitunter nicht immer leichte Zeit, auch miteinander.

Felix Anderl für die nahezu reibungslose Zusammenarbeit an der Totalsynthese von Belizentrin und für den unterhaltsamen Austausch von Simpsons bis hin zur eigenen Sammlung von Laborgeräten daheim.

Dr. Sebastian Schaubach für die gemeinsame Zeit im Büro, die gemeinsamen Stunden beim Squash, in denen wir uns beide etwas abreagieren konnten und die zahlreichen interessanten Gespräche.

Dr. Andreas Ahlers für die lustige Zeit als Büropartner, als unterhaltsamer Begleiter durch den Alltag am Max-Planck-Institut und für die Beratung und Hilfe bei Dingen rund um Arbeit und Privates.

Dr. Takahiro Fukino für die gemeinsame Zeit beim Squash, für die zahlreichen, lustigen Unterhaltungen über Japan und das Leben, und nicht zuletzt für die kleinen Pokémon-Mitbringsel aus diesem einen Land meiner Träume, in dem ich noch nicht war.

Christoph Jansen, Felix Husch, Alexander Rusin, Alva Rücker, Ken Menth, Marcel Henkelmann, Leonard Ziffling und Dominik Greven für die großartigen Freundschaften, die erwuchsen während wir bouldernd und diskutierend, schwitzend oder bitterkalt frierend
in der Boulderhalle bei den Citymonkeys oder der Boulderwelt Zeit miteinander verbringen konnten.

Annegret und Aribert Beck für die tolle Gelegenheit, einen anderen Teil der Familie kennenzulernen, die hervorragende Möglichkeit, den täglichen Weg zur Arbeit zu Fuß zurücklegen und während meiner Zeit in Mülheim eine wunderbare Wohnung mein Zuhause nennen zu können und natürlich für den netten und häufigen Kontakt.

Das Max-Planck-Institut für Kohlenforschung als der Institution, von der ich bereits als Sechsjähriger träumte, nur damals noch nicht wusste, dass es dieses Institut im Speziellen sein würde, das mir so Vieles ermöglichen sollte.

Dr. Lisa Schneider für die wunderbare Freundschaft, die ihren Ausgang in einem Semester an der Freien Universität in Berlin nahm und seitdem immer wieder großartige neue Erfahrungen mit sich brachte.

Wilfried Depnering für seine tiefe freundschaftliche Unterstützung in zahlreichen Momenten großen Zweifels und die nahezu Rund-um-die-Uhr-Beratung in wissenschaftlichen und privaten Belangen.

Daniel Marosevic für seine bedingungslose Unterstützung als liebender Partner und für seinen verständnisvollen Umgang mit den Auswirkungen meiner Arbeit und sein großes Herz.

Und zuguterletzt auch meiner Familie für die immerwährende, beständige Unterstützung in Schule, Studium, allem Folgenden und Anderen.

Abstract

Belizentrin (A) was isolated in 2014 from the marine dinoflagellate Prorocentrum belizeanum as the first member of a group of odd-numbered macrolactamic toxins (Scheme 1). This toxin of marine origin contains a 27-membered macrocycle which bears a high degree of unsaturation. Furthermore, the polyhydroxylated side chain embodies eleven of the 16 stereocentres decorating the core structure of this secondary metabolite.

Belizentrin (A) shows significant neurotoxicity when administered to cerebellar cells with an extrapolated EC_{50} value of 193 nM . Experimentally, belizentrin (A) was found to be unstable, undergoing observable decomposition during the biological assay. Therefore, we aimed for the total synthesis of both belizentrin methyl ester (B) and its congener, belizentrin TMS-ethyl ester (C) (Scheme 1). The synthesis of the latter was proposed for the planned release of the natural product A by global fluoride-based deprotection.

$\mathrm{R}_{1}=\mathrm{CH}_{3} \quad$ belizentrin methyl ester (B)
$\mathrm{R}_{1}=\left(\mathrm{CH}_{2}\right)_{2}$ TMS belizentrin TMS-ethyl ester (C)

western fragment (D)

eastern fragment (E)

Scheme 1: Retrosynthetic analysis of belizentrin (A) and its corresponding esters B and C.
We sought to synthesize belizentrin (A) in a highly convergent manner, with the central E-configured C-C double bond of the natural product A disconnected via a Julia-Kocienski olefination (Scheme 1). This resulted in a western side chain D, bearing a tetrazolylsulfone, and an eastern macrocycle \mathbf{E}, bearing the required aldehyde.

The eastern belizentrin fragment \mathbf{E} was prepared in 13 steps (LLS) with an overall yield of ca. 2.5\% by Ph.D. student F . Anderl, starting from different commercially available C_{3} to C_{5} building blocks (for further details, see projected Ph.D. thesis by F. Anderl).

The western belizentrin fragment \mathbf{D} was accessed in 17 steps (LLS) with an overall yield of 3-5\% (regarding both esters) from the commercially available amino acid L-glutamic acid ((S)-I) and the per-O-acetyl derivative L of α-D-glucose (K) (Scheme 2).

Based on the literature known synthesis of the enantiomer of 2,5-trans-disubstituted ether \mathbf{H}, tetrazolylsulfone G was obtained in 13 steps with an overall yield of 12% (Scheme 2). Key steps included a cyclizing 1,4-addition towards ether \mathbf{H} and a Mitsunobu reaction to introduce a tetrazolylsulfide. Further functional group modifications led to sulfone G.

Scheme 2: Retrosynthetic analysis of western belizentrin fragment D.
Phosphorus ylide J was obtained via an anomeric allylation, an alkene oxidation, and an α-bromination at the C1' terminus of per- O-acetyl- α - D-glucopyranose (L) (Scheme 2). Selective silyl ether deprotection and oxidation followed by Wittig olefination introduced the ester functionality to the C6' terminus of J. Overall, phosphorus ylide J was synthesized in eleven steps with an overall yield in the range of 17-18\% (regarding both esters).

Wittig olefination of aldehyde \mathbf{G} with phosphorus ylide J furnished enone \mathbf{F}, which was subsequently reduced to the corresponding allylic alcohol by a CBS reduction (Scheme 2). The key step of the synthetic route was a Sharpless dihydoxylation of the allylic alcohol, installing the central triol motif of the western belizentrin fragment D. After exhaustive protection with TESOTf, fragment \mathbf{D} was obtained. The absolute configuration was confirmed by a combination of Mosher ester analyses, derivatization into five-membered carbonate derivatives and NMR comparison of constitutionally isomeric triols, obtained via different synthetic routes.

The final steps towards belizentrin methyl ester (B) were carried out by Ph.D. student F. Anderl. The proposed Julia olefination of aldehyde E with tetrazolylsulfone D proved difficult due to significant base sensitivity of the skipped polyene motif (Scheme 1). This transformation was achieved by transmetallation of deprotonated tetrazolylsulfone D from lithium to zinc. Global deprotection with aqueous hydrofluoric acid in acetonitrile finally yielded belizentrin methyl ester (B) (in comparison to 3.1 mg of belizentrin (A) obtained by the isolation team).

Zusammenfassung

2014 wurde Belizentrin (A) aus dem marinen Dinoflagellaten Prorocentrum belizeanum als der erste Vertreter einer neuen Klasse von ungeradzahligen, macrolactamischen Toxinen erhalten (Schema 1). Es enthält einen 27-gliedrigen, hochgradig ungesättigten Macrocyclus. Darüber hinaus weist seine polyhydroxylierte Seitenkette elf der insgesamt 16 Stereozentren auf, die zur Komplexität dieses Sekundärmetaboliten beitragen.

Belizentrin (A) zeigt mit einem, an Kleinhirn-Nervenzellen ermittelten EC_{50} von 193 nM signifikante Neurotoxizität. Im Rahmen des biologischen Assays war experimentell eine gewisse Instabilität und die damit einhergehende Zersetzung von Belizentrin (A) festzustellen. Aus diesem Grund richteten wir unser Augenmerk auf die Totalsynthese von Belizentrin-Methylester (B) und den homologen Belizentrin-TMS-ethylester (C) (Schema 1). Die Synthese von letzterem wurde zwecks Fluorid-basierter, globaler Entschützung unter Freisetzung des Naturstoffs A angestrebt.

West-Fragment (D)

Ost-Fragment (E)
$R=$ nicht näher definierte Schutzgruppen

Schema 1: Retrosynthetische Analyse von Belizentrin (A) und seinen korrespondierenden Estern B und C.
Um Belizentrin (A) dabei möglichst konvergent aufzubauen, entschieden wir uns für ein Julia-Kocienski-Transform der zentralen, E-konfigurierten C-C-Doppelbindung (Schema 1). Dies resultierte in einer westlichen, das Tetrazolsulfon tragenden Seitenkette \mathbf{D} und einem östlichen Macrocyclus E, bestückt mit dem dafür notwendigen Aldehyd.

Das östliche Belizentrin-Fragment E wurde in 13 Stufen (LLS) mit einer Gesamtausbeute von ca. 2.5\%, ausgehend von kommerziell erhältlichen C_{3} - bis C_{5}-Bausteinen von dem Doktoranden F. Anderl synthetisiert (für weiterführende Details, siehe geplante Dissertation von F. Anderl).

Das westliche Belizentrin-Fragment D wurde in 17 Stufen (LLS) mit einer Gesamtausbeute von 3-5\% (je nach Ester) aus den kommerziell erhältlichen Bausteinen L-Glutaminsäure ((S)-I) und dem per-O-Acetyl-Derivat L von α-D-Glucose (K) erhalten (Schema 2).

Gemäß Literatursynthese für das Enantiomer des 2,5-trans-disubstituierten Ethers H wurde das Tetrazolsulfon G in 13 Stufen mit einer Gesamtausbeute von 12% erhalten (Schema 2). Schlüsselschritte waren eine cyclisierende 1,4-Addition zum Ether H und eine Mitsunobu-Reaktion zur Einführung des Tetrazolthiols. Anschließende Funktionalisierungen führten zum Sulfon \mathbf{G}.

Schema 2: Retrosynthetische Analyse des westlichen Belizentrin-Fragments D.
Phosphor-Ylid J wurde nach Allylierung am anomeren Zentrum, Alken-Oxidation und α-Bromierung am C1'-Terminus aus per-O-Acetyl- α-D-glucopyranose (L) erhalten (Schema 2). Mit Hilfe selektiver Funktionalisierungen und nachfolgender Wittig-Olefinierung wurde der Ester am C6'-Terminus von $\alpha-D$-Glucose (K) eingeführt. Somit wurde Phosphor-Ylid J in elf Stufen mit einer Gesamtausbeute von 17-18\% erhalten (je nach Ester).

Wittig-Olefinierung von Aldehyd G mit Phosphor-Ylid J führte zum Enon F, welches anschließend durch CBS-Reduktion in den entsprechenden Allyl-Alkohol überführt wurde (Schema 2). Schlüsselschritt der Synthese war die Sharpless-Dihydroxylierung des Allyl-Alkohols, die zur Einführung des zentralen Triol-Motivs im westlichen Belizentrin-Fragment \mathbf{D} herangezogen wurde. Nach Schützung mit TESOTf wurde das Fragment D erhalten. Die absolute Konfiguration wurde durch eine Kombination von Mosher-Ester-Analysen, Derivatisierung als 5-Ring-Carbonate und NMR-Vergleich konstitutionell isomerer, aus verschiedenen Routen erhaltener Triole bestimmt.

Die abschließenden Schritte zum Belizentrin-Methylester (B) wurden von Hr. F. Anderl durchgeführt. Die Julia-Olefinierung von Aldehyd E mit Tetrazolsulfon D erwies sich in Anbetracht der hohen Basenempfindlichkeit des Polyen-Motivs als schwierig (Schema 1). Die Transformation wurde letztlich durch einen Lithium-Zink-Austausch am deprotonierten Tetrazolsulfon D möglich. Globale Entschützung mit Flusssäure in Acetonitril führte zum Belizentrin-Methylester (B) (zum Vergleich: 3.1 mg von Belizentrin (A) wurden durch das Isolationsteam erhalten).

Table of Contents

Widmung V
Affidavit VII
Danksagung IX
Abstract XIII
Zusammenfassung XV
Table of Contents XVII

1. Introduction 1
1.1. Natural Products \& Total Synthesis 1
2. Aim Of This Thesis 6
3. Total Synthesis Of Belizentrin 7
3.1. Introduction 7
3.1.1. Secondary Metabolites From Marine Dinoflagellates 7
3.1.2. Isolation, Structure \& Biology Of Belizentrin 9
3.2. First Retrosynthetic Analysis 11
3.3. Western Belizentrin Fragment - Route 1 14
3.3.1. Successful Synthetic Route 14
3.3.1.1. The 2,5-trans-Disubstituted Tetrahydrofuran Ring. 14
3.3.1.2. The Sugar-Based Alkyne 18
3.3.1.3. Building Block Coupling \& Elaboration 26
3.3.1.4. Stereochemical Elucidation \& Cyclization Trials 34
3.3.2. Investigations On Alternative Pathways 36
3.3.2.1. The 2,5-trans-Disubstituted Tetrahydrofuran Ring 36
3.3.2.2. The Sugar-Based Alkyne 42
3.3.2.3. Building Block Coupling \& Elaboration 56
3.3.3. Interim Summary 58
3.4. First Retrosynthetic Revision 60
3.5. Western Belizentrin Fragment - Route 2 62
3.5.1. Successful Synthetic Route 62
3.5.1.1. The 2,5-trans-Disubstituted Tetrahydrofuran Ring - A New Synthesis 62
3.5.1.2. Building Block Coupling \& Elaboration 66
3.5.1.3. Stereochemical Elucidation 71
3.5.2. Investigations On Alternative Pathways 79
3.5.2.1. The 2,5-trans-Disubstituted Tetrahydrofuran Ring 79
3.5.2.2. Building Block Coupling \& Elaboration 81
3.5.3. Interim Summary. 83
3.6. Second Retrosynthetic Revision 84
3.7. Western Belizentrin Fragment - Final Route 86
3.7.1. Successful Synthetic Route 86
3.7.1.1. The C-Glucoside Building Block - A New Synthesis. 86
3.7.1.2. Building Block Coupling \& Elaboration. 92
3.7.1.3. Stereochemical Proof 95
3.7.2. Investigations On Alternative Pathways 97
3.7.2.1. Reactivity Differences Between C5'-Epimeric Glucosides 97
3.7.2.2. Cross Metathesis \& TMS-Ethyl Ester Cleavage 98
3.7.3. Interim Summary. 99
3.8. The Belizentrin Esters 101
3.8.1. Final Fragment Coupling \& Elaboration Towards Belizentrin Esters 101
4. Final Summary \& Conclusion 103
5. Experimental Procedures 107
5.1. General Experimental Details 107
5.2. Total Synthesis Of Belizentrin 110
5.2.1. The Western Belizentrin Fragment - Route 1 110
5.2.1.1. The 2,5-trans-Disubstituted Tetrahydrofuran Ring. 110
5.2.1.2. The Sugar-Based Alkyne 116
5.2.1.3. Building Block Coupling \& Elaboration 127
5.2.1.4. Stereochemical Elucidation \& Cyclization Trials 142
5.2.1.5. Investigations On Alternative Pathways 144
5.2.2. The Western Belizentrin Fragment - Route 2 175
5.2.2.1. The 2,5-trans-Disubstituted Tetrahydrofuran Ring - A New Synthesis 175
5.2.2.2. Building Block Coupling \& Elaboration 184
5.2.2.3. Stereochemical Elucidation 196
5.2.2.4. Investigations On Alternative Pathways 214
5.2.3. The Western Belizentrin Fragment - Final Route. 221
5.2.3.1. The C-Glucoside Building Block - A New Synthesis 221
5.2.3.2. Building Block Coupling \& Elaboration 237
5.2.3.3. Stereochemical Proof. 250
5.2.3.4. Alternative Pathways 255
5.2.4. NMR Data Of Belizentrin \& Belizentrin Methyl Ester 262
6. Appendix 265
6.1. Mosher Ester Analyses 265
6.1.1. Stereochemical Assignment Of 151 \& epi-151 265
6.1.2. Stereochemical Assignment Of 152 \& epi-152 266
6.1.3. Stereochemical Assignment Of 153 \& epi-153 267
6.1.4. Stereochemical Assignment Of 154 \& epi-154 268
6.1.5. Stereochemical Assignment Of 198a \& epi-198a. 269
6.1.6. \quad Stereochemical Assignment Of 198b \& epi-198b 270
6.2. GC Data 271
6.2.1. ee Determination Of 84 271
6.3. HPLC Data 273
6.3.1. d.r. Determination Of 147 \& 148 273
6.3.2. d.r. Determination Of 149 \& 150a 275
6.3.3. d.r. Determination Of 150b \& 196a 277
6.4. X-Ray Crystallographic Data 279
6.4.1. Crystallographic Data Of 42 279
6.4.2. Crystallographic Data Of 43 281
6.4.3. Crystallographic Data Of 40a. 283
6.4.4. Crystallographic Data Of 40b. 286
6.4.5. Crystallographic Data Of 57 288
6.4.6. Crystallographic Data Of epi-35a 303
6.4.7. Crystallographic Data Of ent-42 306
6.4.8. Crystallographic Data Of 39c/epi-39c 308
6.4.9. Crystallographic Data Of epi-39b 313
6.4.10. Crystallographic Data Of 104. 318
6.4.11. Crystallographic Data Of 115. 322
6.4.12. Crystallographic Data Of $(S)-132 b$ 329
6.4.13. Crystallographic Data Of 136. 332
6.4.14. Crystallographic Data Of 137 335
6.4.15. Crystallographic Data Of 131a 339
6.4.16. Crystallographic Data Of 165 342
6.5. Abbreviations 345
7. Bibliography 351

1. Introduction

1.1. \quad Natural Products \& Total Synthesis

About 13.8 billion years ago, the Big Bang was the starting point for the creation of carbon as the central and essential element of all known lifeforms. Carbon, with its versatility for unsaturation within bonds (e.g. along with nitrogen and phosphorus) and the potential of bearing stereochemical information as a quarternary centre (in addition to planar and axial chirality) makes life as we know it not only possible, but also enables complex processes.

The first reported isolation of a natural product was that of morphine (1) by F. Sertürner in 1806 (Figure 1.1). ${ }^{1}$ With the preparation of urea (2), F. Wöhler performed the first reported total synthesis in $1828,{ }^{2}$ and thereby made an entry into this new area of chemical research.

Figure 1.1: Morphine (1) and urea (2).
O. Wallach made an abundantly important contribution to natural product synthesis by studying terpenes in the late $19^{\text {th }}$ century (Figure 1.2). ${ }^{3}$ Terpenes and terpenoids are an important, but also very heterogeneous group of secondary metabolites from many different species. They show great structural diversity but all originate from common building blocks, isoprene (3) and i-pentenyl pyrophosphate (IPP) (4).

isoprene (3) i-pentenyl pyrophosphate (4) (+)-camphor (5) (-)- α-pinene (6) (+)- α-thujone (7) (+)- α-terpineol (8)

Figure 1.2: Isoprene (3), i-pentenyl pyrophosphate (IPP) (4) and some representative examples of terpenes.

[^0]Another rich family of natural products can be found in carbohydrates and proteins. Carbohydrates (such as α-D-glucose (9)) ${ }^{4}$ and amino acids (such as L-glutamic acid ((S)-10)), ${ }^{5}$ which were intensively examined and structurally elucidated by E. Fischer in the late $19^{\text {th }}$ century, are probably the most important structures for understanding biomolecular processes such as the primary metabolism (Figure 1.3). Furthermore, they are involved in membrane processes such as cell recognition, and they are also the foundations of proteinogenic molecules, DNA, and RNA (as ribose and deoxyribose), respectively.

Figure 1.3: $\alpha-D$-Glucose (9) and L-glutamic acid ((S)-10).
H. Zahn reported the first total synthesis of the peptide insuline (11), ${ }^{6}$ a hormone regulating cellular carbohydrate uptake (such as of 9), in 1963 (Figure 1.4).

Figure 1.4: Human insuline (11) [left: space filling 3D model ${ }^{7}$ (green: A-chain, blue: B-chain, yellow: disulfide linkages); right: plain AS chains].

[^1]The field of natural product synthesis has seen significant advancements since Wöhler's initial preparation of urea (2). Fascinating and structurally complex molecules have been targeted. R. Woodward, for example, did not only accomplish the total synthesis of cholesterol (12) ${ }^{8}$ (Figure 1.5) simultaneously to R. Robinson, ${ }^{9}$ but also the total synthesis of vitamin $B_{12}(13)^{10}$ with A. Eschenmoser, which are landmark achievements in organic chemistry.

cholesterol (12)

Figure 1.5: Structures of cholesterol (12), vitamin B_{12} (13) and prostaglandine $\mathrm{F}_{2 \alpha}(\mathbf{1 4})$.
By developing the concept of retrosynthesis in the middle of the $20^{\text {th }}$ century, E.J. Corey established one of the most versatile and useful tools in organic chemistry. ${ }^{11}$ Moreover, his total synthesis of prostaglandine $\mathrm{F}_{2 \alpha}$ (14) remains a benchmark in synthetic chemistry and total synthesis (Figure 1.5). ${ }^{12}$

Natural product total synthesis can be seen as artwork by a creative scientist, or as a helpful tool to train students in synthetic chemistry, but perhaps more interestingly is the spirit behind it. When N. Armstrong set foot on the moon on July 21, 1969, he probably had a similiar feeling to J. Piccard and D. Walsh, when they entered the Mariana trench with their submarine Trieste on January 23, 1960. All of them achieved something for the first time in history.

[^2]With this in mind, total synthesis embodies the possibility to be the first of your kind. Besides this very adventurous task, the scientific focus of total synthesis remains on the following three major issues:

- structural elucidation,
- chemical method development and application, and
- accessibility of natural products (e.g. for medicinal use).

Figure 1.6: Palytoxin (15).
Two of the most intriguing total synthesis projects over the past three decades targeted palytoxin (15) (Figure 1.6) and maitotoxin (16) (Figure 1.7). The first one mentioned, was accomplished by Y. Kishi in the late 80 's, ${ }^{13}$ and the latter was started by K. C. Nicolaou and is still an ongoing project to date. ${ }^{14}$

[^3]

Figure 1.7: Maitotoxin (16).
The laboratory synthesis of these extraordinary molecules is a neverending challenge for organic chemists, and once more proves Mother Nature's unfathomable paths. Beyond mere synthetic curiosity, there are natural products of great complexity which are used as drugs, such as paclitaxel (PTX) (17) (Figure 1.8). ${ }^{15}$

Figure 1.8: Paclitaxel (PTX) (17).
Due to the highlighted reasons above, we set out to attempt the synthesis of a highly decorated and challenging, yet very toxic, macrocyclic natural product of marine origin from a tiny dinoflagellate called Prorocentrum belizeanum. Some might consider it as a chemist of great talent, while others might see evolution at work...

[^4]
2. Aim Of This Thesis

Regarding the previously discussed complexity and beauty of Mother Nature's diverse chemistry (Chapter 1.1), our goal was to synthesize the highly functionalized natural product belizentrin (18) (Figure 2.1). Belizentrin (18) is an exciting target to test diverse chemical methodologies such as ring closing alkyne metathesis (RCAM) ${ }^{16}$, trans-hydroelementation reactions ${ }^{17}$ and π-acid catalysis by gold and platinum. ${ }^{18}$

Furthermore, it is very likely that methods like the Nobel Prize winning Sharpless dihydroxylation ${ }^{19}$ or the Wittig olefination reaction ${ }^{20}$ could once again prove their reliability in a demanding total synthesis of such a complex secondary metabolite.

Figure 2.1: Structures of the natural product belizentrin (18) and its ester derivatives 19 and 20.
Major task in this thesis was to synthesize the complete polyhydroxylated western sidechain of belizentrin (18).

The natural product 18 itself was to be synthesized to evaluate its structure and biological activity. The synthesis of ester derivatives such as 19 and 20 was envisioned as well, due to the reported instability observed during the biological testing by the isolation team (Chapter 3.1.2). ${ }^{21}$

[^5]
3. Total Synthesis Of Belizentrin

3.1. Introduction

3.1.1. Secondary Metabolites From Marine Dinoflagellates

Dinoflagellates are an interesting taxon of unicellular eukaryotic organisms: ${ }^{22}$ many produce marine or freshwater toxins as secondary metabolites, while others are completely non-toxic. The dinoflagellate genus Prorocentrum consists of different species. Some of these Prorocentrum species live as free floating organisms (plancton), while others live on the sea floor (benthic). ${ }^{23}$

As observed for many highly functionalized and potent toxic entities, they are not necessarily intended to harm a feeding enemy directly. Instead, the dinoflagellate can live in symbiosis with another life form which itself is non-toxic, but becomes unattractive to its own predators by bearing the algae inside. This, however, remains an issue of current biological debate.

Prorocentrum, as well as Dinophysis (another dinoflagellate genus), produce secondary metabolites like ocadaic acid (OA) (21) and the family of dinophysistoxins (DTX) (22) which contain a lipophilic polyether core (Figure 3.1). These compounds are known to cause a gastrointestinal illness in humans, known as diarrhetic shellfish poisoning (DSP). ${ }^{24}$

Figure 3.1: Natural products (OA and DTX) from some Prorocentrum and Dinophysis species.
Dinoflagellates, such as those of the Prorocentrum genus, are capable of producing odd-numbered macrocyclic lactone secondary metabolites. Only a few examples of such natural products are

[^6]known in the literature, such as formosalides A (23a) and B (23b) from Prorocentrum sp. ${ }^{25}$ which bear 17-membered lactones, and amphidinolide J (24) from Amphidinium sp. ${ }^{26}$ which has a 15-membered lactone (Figure 3.2).

Figure 3.2: Examples for odd-numbered secondary metabolite macrolactones.
Moreover, two complex, yet even-numbered (macrocyclic) natural products were isolated in 2009 by Daranas et al. from an extract of Prorocentrum belizeanum. ${ }^{27}$ Belizeanolide (25a) and its seco acid belizeanoic acid (25b) were found to be very potent neurotoxins with a high density of hydroxy functionalities and exo-methylene unsaturations, as well as three 2,5-trans-disubstituted tetrahydrofuran rings within the polyketide framework (Figure 3.3).

Figure 3.3: Other polyketides from Prorocentrum belizeanum.
Both belizeanolide (25a) and belizeanoic acid (25b) bear no less than 28 stereogenic centres, however the absolute and relative stereochemistry on many centres remained unclear due to the high flexibility and complexicity of these molecules (Figure 3.3). Nevertheless, these two natural products are remarkable examples for highly complex secondary metabolites from dinoflagellates such as Prorocentrum belizeanum.

[^7]
3.1.2. Isolation, Structure \& Biology Of Belizentrin

In 2014, 3.1 mg of belizentrin (18) (Figure 3.4) were isolated from a 1000 L culture broth of the Caribbean marine dinoflagellate Prorocentrum belizeanum (strain PBMA01) by Daranas et al. (Figure 3.5). ${ }^{28}$ The methanolic extract of the obtained cell pellet was fractioned by combined gel permeation and reversed-phase chromatography.

Figure 3.4: Structures of the natural product belizentrin (18) and its ester derivatives 19 and 20.
Belizentrin (18) is the first member of a new class of polyhydroxylated and polyunsaturated macrolactamic toxins. ${ }^{29}$ A unique feature is the 27 -membered macrocycle, which is unusual in view of its origin via the polyketide biosynthesis pathway from acetate and propiolate (C_{2} chain elongations). ${ }^{30}$

Figure 3.5: Prorocentrum belizeanum (optical microscope and SEM). ${ }^{31}$
The isolated natural product 18 exhibits potent neurotoxicity, as it leads to complete disintegration of healthy neurites (in vitro) with increasing concentration (Figure 3.6).

[^8]

Figure 3.6: Results of the biological assay, part A (fluorescence photomicrographs of neurons before and after exposure to belizentrin (18) for 24 h ; bright green: vivid neurons; neurites and dead neurons did not retain any fluorescein; red: nuclei stained with ethidium bromide). ${ }^{32}$

When administered at different concentrations to cultured cerebellar cells, belizentrin (18) led to massive changes within the neuronal network. Concentrations of 100 nM and higher first resulted in neurite weakness and increasing fragmentation. At concentrations of 300 nM cell death was inevitable. These effects required exposure to belizentrin (18) for 24 h . From the corresponding dose-response curve, an EC_{50} value of $193 \pm 7 \mathrm{nM}$ was estimated (Figure 3.7).

Figure 3.7: Results of the biological assay, part B (dose-response curve (mean \pm SD)). ${ }^{33}$
The isolation team reported an intrinsic instability of belizentrin (18), and decomposition was observed during their biological assay on neuronal cells. Therefore, the biological activity of the natural product might actually be higher, and it was deemed necessary to synthesize the belizentrin ester derivatives 19 and $\mathbf{2 0}$ for the ease of isolation instead of the free carboxylic acid 18 (Figure 2.1).

[^9]
3.2. First Retrosynthetic Analysis

As mentioned earlier, some in house-developed methodologies were included in the retrosynthetic analysis of the target molecule 18 such as gold-catalyzed dehydration, methyl-Stille coupling, and alkyne trans-hydrostannation (Scheme 3.1). Applying these disconnections led to macrocyclic propargylic alcohol 26.

belizentrin (18)

western fragment (28)

RCAM precursor (27)
$R=$ unspecified protecting groups

Scheme 3.1: Retrosynthetic analysis of belizentrin (18).
Propargylic alcohol 26 was then disconnected at the central triple bond by ring closing alkyne metathesis (RCAM), leading to open chain precursor 27 (Scheme 3.1). Retron 27 could be obtained by further disconnections such as esterification with carboxylic acid 29 and amidation at its terminus with amine 31. Diastereoselective aldehyde alkynylation led back to aldehyde 30 and desilylated alkyne $\mathbf{2 8}$. The propargylic alcohol obtained by the coupling process of the western and the northern fragment could then be transformed into the corresponding E-configured allylic alcohol by alkyne trans-hydrostannation. This was envisioned either before or after ring closure of the two methyl-capped alkynes via RCAM.

The western fragment $\mathbf{2 8}$ could come from an osmium-catalyzed stereoselective dihydroxylation (Scheme 3.2). The requisite allylic alcohol 32 could be obtained from the corresponding propargylic alcohol 33 via a sequence of ruthenium-catalyzed trans-hydrostannation and subsequent protodestannation. Disconnection of propargylic alcohol 33 via another diastereoselective alkynylation would lead to aldehyde 34 and C-glycosidic alkyne 35.

Scheme 3.2: Retrosynthetic fragmentation of the western belizentrin fragment 28.
Regarding the 2,5-trans-disubstituted ether 34, a disconnection at one of the C-O ether bonds seemed plausible (Scheme 3.3). The 2,5-trans-disubstituted ether $\mathbf{3 4}$ could then be derived from bis-homoallylic alcohol $\mathbf{3 6}$ by a cobalt-catalyzed oxidative Mukaiyama cyclization.

Scheme 3.3: Retrosynthetic fragmentation of the 2,5-trans-disubstituted ether 34.
Bis-homoallylic alcohol 36 could be further disconnected at the α-position, into the aldehyde (S)-37 and pinacolborane $\mathbf{3 8}$ (Scheme 3.3). Both precursors are known to be accessible from commercially available starting materials.

For the retrosynthetic analysis of alkyne $\mathbf{3 5}$, we envisioned a C_{1} homologation by a Wittig olefination for the introduction of the ester functionality (Scheme 3.4). After functional group interconversions, protected tetrol 39 could be reached.

Scheme 3.4: Retrosynthetic fragmentation of the sugar-based alkyne 35.
The alkyne moiety at the $\mathrm{C1}^{\prime}$ terminus could be derived from alkene 40 via ozonolysis and Seyferth-Gilbert homologation (Scheme 3.4). Alkene 40 could then be prepared from $\alpha-D$-glucose (9) via allylation at the anomeric position and further protecting group alterations.

3.3. Western Belizentrin Fragment - Route 1

3.3.1. Successful Synthetic Route

3.3.1.1. The 2,5-trans-Disubstituted Tetrahydrofuran Ring

3.3.1.1.1. An Auxiliary-Based Entry

The synthesis of the 2,5-trans-disubstituted ether 34 (Scheme 3.3) started with an auxiliary-based approach via the stereoselective allylation of pseudoephedrine amides according to Myers et al. (90\% over two steps) (Scheme 3.5, Figure 3.8). ${ }^{34}$

Scheme 3.5: Synthesis of the 2,5-trans-disubstituted ether 34a, part A. Reagents and conditions: (a) propionic anhydride, TEA, DCM, rt, $70 \mathrm{~min}, 95 \%$; (b) i. DIPA, n-BuLi, LiCl, THF, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 45 \mathrm{~min}$, then $42,-78{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 1.5 \mathrm{~h}$; ii . allyl iodide, THF, $-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 95 \%$; (c) i. n-BuLi, TMEDA, TMS-propyne, $\mathrm{Et}_{2} \mathrm{O},-5^{\circ} \mathrm{C}, 25 \mathrm{~min}$; ii. add to $43, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 15 \mathrm{~min}$, inseparable mixture of $(S)-44 \mathrm{a}$ and $(S)-45$; (d) i. n-BuLi, TMEDA, TIPS-propyne, $\mathrm{Et}_{2} \mathrm{O},-5^{\circ} \mathrm{C}, 35 \mathrm{~min}$; ii. add to 43, THF, $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 25 \mathrm{~min}, 76 \%$.

Figure 3.8: X-Ray single crystal structure of pseudoephedrine amides 42 (left) and $\mathbf{4 3}$ (right) (numbering of atoms is arbitrary; colouring of atoms: carbon (grey), hydrogen (white), oxygen (red), nitrogen (blue)).

[^10]The nucleophilic displacement of such an auxiliary has been previously described for different alkyllithium reagents on pseudoephedrine amides such as 43. Therefore, we envisioned obtaining homopropargylic ketone (S)-44a by the displacement of the auxiliary by lithiated TMS-capped propyne according to a procedure reported by Corey et al. (Scheme 3.5). ${ }^{35}$ The authors stated that they observed only small amounts of an allene species. Unfortunately, in our case we isolated an inseparable mixture (ca. 1:1) of TMS-capped homopropargylic ketone (S)-44a and allenyl ketone (S)-45.

We circumvented this problem by using lithiated TIPS-capped propyne for the addition, following another protocol by Corey et al. ${ }^{36}$ where they reported no detection of the allene species. Indeed, we were able to directly obtain homopropargylic ketone (S) - 44 b in 76% yield without allene (S) - 45 being formed. Experimentally, double addition was not observed, which might be explained in analogy to Weinreb amides. ${ }^{37}$

3.3.1.1.2. Ketone Reduction

We sought to reduce homopropargylic ketone (S)-44b to secondary alcohol 36a. Three methods were selected for a more detailed screening: Corey-Bakshi-Shibata reduction (CBS), Midland's Alpine ${ }^{\circledR}$ borane, and Noyori reduction (Scheme 3.6). First, we tried to apply different CBS catalyst systems in analogy to procedures by Trost et al. ${ }^{38}$ (TMS-capped homopropargylic ketone) and Scheidt et al. ${ }^{39}$ (α-methyl-substituted ketone, Scheme 3.6). This resulted in the formation of secondary alcohols $\mathbf{3 6 a}$ and $\mathbf{4 6 a}$ in diastereomeric ratios ranging from 2:1 to 1:3.6, with roughly 10-30\% of unreacted starting material (S)-44b. According to these results, both diastereomers 36a and 46a were accessible with moderate selectivity, but conversion and yield were unsatisfactory.

[^11]

CBS catalyst		recovered SM (S)-44b	yield 36a	yield 46a	d.r. (isolated)
$\mathrm{R}=\mathrm{CH}_{3}$	(S)-47a	27\%	45\%	23\%	1.9:1
	(R)-47a	24\%	20\%	50\%	1:2.5
$\mathrm{R}=0-\mathrm{Tol}$	(S)-47b	23\%	40\%	24\%	1.7:1
	(R)-47b	34\%	11\%	40\%	1:3.6
$\mathrm{R}=n-\mathrm{Bu}$	(S)-47c	7\%	35\%	26\%	1.3:1

Scheme 3.6: Screening of different reduction methods. Reagents and conditions: (a) 1.5 eq. CatBH, 5 mol\% CBS catalyst 47 (see table), DCM, $-78^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}, 21.5 \mathrm{~h}$, yields shown; (b) 4 eq. (R)- or (S)-Midland Alpine ${ }^{\circledR}$ borane, THF , rt, $72 \mathrm{~h}, \mathrm{SM}(S)-44 \mathrm{~b}$ recovered (99\%); (c) H_{2} (balloon), $1 \mathrm{~mol} \% \mathrm{RuCl}_{2}[(R)$-DM-BINAP][(R)-DAIPEN], $3 \mathrm{~mol} \% \mathrm{KOt}$-Bu, i-PrOH, SM (S)-44b recovered (80\%), (d) 1 mol\% RuCl(p-cymen)[(S,S)-Ts-DPEN], i-PrOH, rt, 2 d , no reaction.

The reduction of aliphatic, sterically encumbered ketones with Midland's Alpine ${ }^{\circledR}$ borane was demonstrated by Brown et al..40 and applied to the total synthesis of macrodiolide tartrolon B by Mulzer et al. ${ }^{41}$ Neither Alpine ${ }^{\circledR}$ borane enantiomer reacted with $(S)-44 \mathbf{b}$ to form the diastereomeric products 36a or 46a (Scheme 3.6), and the starting material (S)-44b was fully recovered. Furthermore, a classical Noyori reduction/transfer hydrogenation ${ }^{42}$ did not result in the formation of alcohols 36a and 46a (Scheme 3.6).

Scheme 3.7: Synthesis of 2,5-trans-disubstituted ether 34a, part B. Reagents and conditions: (a) $6 \mathrm{~mol} \%(S)$-methyl-CBS-oxazaborolidine (S)-47a, 2 eq. CatBH, DCM, $-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 22 \mathrm{~h}, 70 \%$ (d.r. $=2.9: 1$).

Based on these results, we chose to use CBS catalyst (S)-47a to reduce ketone (S)-44b on gram scale (Scheme 3.7). Fortunately, we found that an increased reaction time and an excess of borane solution led to an improved 70% yield and resulted in a better diastereoselectivity (d.r. = 2.9:1). Therefore, no further investigations were deemed necessary.

[^12]
3.3.1.1.3. The Mukaiyama Cyclization \& Beyond

After establishing a successful approach to alcohol 36a, we investigated the oxidative Mukaiyama cyclization to give the 2,5-trans-disubstituted ether 48a (Scheme 3.8). In 1990, Mukaiyama et al. ${ }^{43}$ showed that 2,5-trans-disubstituted tetrahydrofuran rings can be obtained under cobalt catalysis from bis-homoallylic alcohols such as 36a (for an overview see Ph.D. thesis of G. Phillips ${ }^{44}$).

Scheme 3.8: Synthesis of 2,5-trans-disubstituted ether 34a, part C. Reagents and conditions: (a) $10 \mathrm{~mol} \%$ [Co(nmp) ${ }_{2}$ 49b, $10 \mathrm{~mol} \% \mathrm{t}$-BuOOH, O_{2} (balloon), $i-\mathrm{PrOH}, 55^{\circ} \mathrm{C}, 15 \mathrm{~h}, 68 \%$; (b) i. $\mathrm{SO}_{3} \cdot \mathrm{py}, \mathrm{DMSO}, \mathrm{DCM},-20^{\circ} \mathrm{C}$, 2.5 h ; ii. DIPEA, 75%, product 34a obtained as a solution in DCM, which was directly used for alkynylation.

This methodology has been extensively used for challenging substrates. Notable examples include the fragment synthesis of amphidinolide C by Pagenkopf et al. ${ }^{45}$ in 2011 and the total synthesis of amphidinolide F in 2013 by our group. ${ }^{46}$ The design of new catalyst systems by Hartung et al. ${ }^{47}$ and Pagenkopf et al. ${ }^{48}$ made this cyclization even more valuable, with improved yields and simplified purifications (Figure 3.9).

Figure 3.9: $1^{\text {st }}$ and $2^{\text {nd }}$ generation of the Mukaiyama catalyst 49.
To our delight, this oxidative cyclization indeed led to the 2,5-trans-disubstituted ether 48a in 68\% yield (Scheme 3.8). ${ }^{49}$ Final Parikh-Doering oxidation ${ }^{50}$ of alcohol 48a yielded the corresponding aldehyde 34a as the completed northern building block. In summary, aldehyde 34a was obtained in six steps with an overall yield of 18%; it was not purified but used directly for the fragment coupling via alkynylation.

[^13]
3.3.1.2. The Sugar-Based Alkyne

3.3.1.2.1. Anomeric Allylation \& Protecting Group Manipulations

As the sugar-based building block 35 has the same stereochemical configuration as α - D-glucose (9) (Scheme 3.2), we started its synthesis from the commercially available per-O-acetyl derivative 50 (Scheme 3.9). Allylation of 50 was performed with allyl-TMS (52) under Lewis acid catalysis as reported by Parkan et al. ${ }^{51}$ (72\% with boron trifluoride diethyletherate), by Deming et al. ${ }^{52}$ (81\% with TMSOTf) and by others ${ }^{53}$ (in lower yields). Alkene 40a was obtained in a comparably good yield and with good stereoselectivity (d.r. $=7: 1$) in favour of the desired α-anomer (X-Ray crystal structure shown in Figure 3.10).

Scheme 3.9: Synthesis of the sugar-based alkyne 35, Part A. Reagents and conditions: (a) allyl-TMS (52), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{MeCN}$, rt to $80{ }^{\circ} \mathrm{C}, 23 \mathrm{~h}, 79 \%(\alpha: \beta=7: 1)$; (b) $10 \mathrm{~mol} \% \mathrm{NaOEt}, \mathrm{MeOH}, \mathrm{rt}, 4 \mathrm{~h}, 98 \%$; (c) TBSCl, $\mathrm{AgNO}_{3}, \mathrm{py}, \mathrm{DMF}, \mathrm{rt}, 16 \mathrm{~h}, 87 \%$.

Figure 3.10: X-Ray single crystal structure of alkene 40a (numbering of atoms is arbitrary; colouring of atoms: carbon (grey), hydrogen (white), oxygen (red)).

[^14]Mechanistically, the Lewis acid promotes the cleavage of the anomeric functional group and leads to the formation of an oxonium ion 51 (Scheme 3.10). This oxonium ion 51 can then react with an allyl anion equivalent (allyl-TMS (52)) in two possible conformations while respecting the trans-diaxial effect, also referred to as the Fürst-Plattner rule. ${ }^{54}$ If all substituents on the tetrahydropyran ring stand equatorial (51a), nucleophilic attack of the allyl anion trans to the C2' hydrogen can proceed unhindered giving α-anomer 40a. If all substituents are axial (51b), the attack proceeds trans to the acetyl group at C2' under steric repulsion leading to β-anomer 53. Regarding the 1,3-diaxial repulsions of the acetyl substituents, pathway A seems to be preferred and agrees with the experimental observations.

Scheme 3.10: Mechanistic explanation via the Fürst-Plattner rule (trans-diaxial effect) and via the interplay of the anchimeric effect (neighboring group participation) with the solvent effect.

Furthermore, in analogy to other glycosylation reactions ${ }^{55}$ an interplay of the anchimeric effect (also referred to as neighboring group participation) towards 53a/53b and the solvent effect (of acetonitrile) via 53c is conceivable. ${ }^{56}$ This double inversion could as well explain the formation of the thermodynamically preferred product 40a. However, this remains an issue of current debate. This theory is supported by the observation that the use of a less polar solvent like nitromethane inverts the stereochemical outcome of the reaction, as described by Ben et al. ${ }^{57}$

[^15]Alkene 40a was then submitted to a complete deprotection with catalytic sodium ethoxide ($10 \mathrm{~mol} \%$), according to a procedure by McGarvey et al., ${ }^{58}$ which formed the free tetrol 40b (Scheme 3.9, Figure 3.11). Tetrol 40b was subsequently submitted to a silver(I) nitrate-promoted global protection with TBSCI, according to a procedure by Kishi et al. ${ }^{59}$ This resulted in literature known alkene 40c. ${ }^{60}$

Figure 3.11: X -Ray single crystal structure of alkene $\mathbf{4 0 b}$ (numbering of atoms is arbitrary; colouring of atoms: carbon (grey), hydrogen (white), oxygen (red)).

[^16]
3.3.1.2.2. Alkene-To-Alkyne-Tranformation

To proceed with the synthesis, a classical ozonolysis of alkene $\mathbf{4 0 c}$ (in analogy to the procedures by Kishi et al. ${ }^{61}$ and Nicolaou et al. ${ }^{62}$ for other hexose derivatives) produced aldehyde 54 in 86% yield (Scheme 3.11). Subsequently, aldehyde 54 was homologated via classical Seyferth-Gilbert conditions with the Ohira-Bestmann reagent 56. The latter was prepared by a two-step procedure described by Pietruszka et al. ${ }^{63}$ and others, ${ }^{64}$ starting from tosyl chloride 55.

Scheme 3.11: Synthesis of the sugar-based alkyne 35, Part B. Reagents and conditions: (a) i. $\mathrm{O}_{3}, \mathrm{DCM},-78{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}$; ii. PPh_{3} 195a, DCM, rt, $16 \mathrm{~h}, 86 \%$; (b) Ohira-Bestmann reagent 56, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \mathrm{rt}, 20 \mathrm{~h}, 89 \%$; (c) $\mathrm{NaN} \mathrm{N}_{3}$, acetone/ $\mathrm{H}_{2} \mathrm{O}$ (3:1), rt, $2 \mathrm{~h} 10 \mathrm{~min}, 98 \%$; (d) dimethyl (2-oxopropyl)phosphonate, $\mathrm{NaH}, \mathrm{PhMe} / \mathrm{THF}(7.5: 1), 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 20 \mathrm{~h}, 86 \%$.

In analogy to the descriptions by Ohira et al., ${ }^{65}$ Bestmann et al. ${ }^{66}$ and Roy et al., ${ }^{67}$ the C_{1} homologation led to the desired fully TBS-protected alkyne 39a in 89\% yield (Scheme 3.11).

3.3.1.2.3. Selective C6' Manipulation

The synthesis of the C-glucoside $\mathbf{3 5}$ continued by the selective cleavage of the C6' TBS group by applying diluted Olah's reagent (hydrogen fluoride/pyridine) to 39a following a literature procedure by Murphy et al. (Scheme 3.12). ${ }^{68}$ After Swern oxidation of the primary alcohol 57 in analogy to a literature procedure by Murai et al., ${ }^{69}$ the corresponding aldehyde $\mathbf{5 8}$ was obtained in 79% yield (over two steps).

[^17]

Scheme 3.12: Synthesis of the sugar-based alkyne 35, Part C. (a) HF-py (12.5%), THF/py ($2.5: 1$), $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 3 \mathrm{~h}, 76 \%$; (b) i. $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{DCM},-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$; ii. DIPEA, DCM, $-78^{\circ} \mathrm{C}$ to $\mathrm{rt}, 2.5 \mathrm{~h}, 98 \%$.

During the selective C6' $^{\prime}$ hydroxy deprotection (Figure 3.12), we observed an unexpected epimerization at the C5' stereocentre (Scheme 3.12). The reason remained unclear. Luckily, 57 and epi-57 were easily separable.

Figure 3.12: X-Ray single crystal structure of primary alcohol 57 (hydrogen atoms not shown for better visibility, numbering of atoms is arbitrary; colouring of atoms: carbon (grey), oxygen (red), silicon (ivory)).

3.3.1.2.4. Wittig Olefination \& E2 Elimination At C4'

A Swern oxidation of the primary alcohol 57 allowed access to the aldehyde $\mathbf{5 8}$, which was to be a central intermediate to our course (Scheme 3.13).

Scheme 3.13: Synthesis of sugar-based alkyne 35, Part D. (a) $\mathrm{KOt}-\mathrm{Bu},\left[\mathrm{R}-\mathrm{OCH}_{2}-\mathrm{PPh}_{3}\right] \mathrm{Cl} 61,5 \AA \mathrm{MS}, \mathrm{THF},-50^{\circ} \mathrm{C}$ to $-78{ }^{\circ} \mathrm{C}$, 2-3.5 h, for $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{TMS}(76 \%)$, for $\mathrm{R}=\mathrm{CH}_{3}(81 \%), E / Z$ mixture not separated; (b) $\mathrm{PPh}_{3} 195 \mathrm{a}, \mathrm{PhH}, \mathrm{rt}$ to $55^{\circ} \mathrm{C}, 1 \mathrm{~d}, 69 \%$.

For the Wittig olefination with commercially available methoxymethyl phosphonium salt 61b, examples could be found from Takano et al. ${ }^{70}$ and Kawai et al. ${ }^{71}$ for sugar-based substrates and from Lazarides et al. ${ }^{72}$ for tetrahydropyran-based aliphatic aldehydes. Zbiral et al. reported a decent example with the TMS-ethoxymethyl phosphonium salt 61a for a homologation on a steroid core structure. ${ }^{73}$ Phosphonium salt 61a was synthesized from chloromethylether 60. Both Wittig reactions led to the corresponding enolether 59 as inseparable E / Z mixtures (Scheme 3.13).

During the first attempts on the performance of the Wittig reaction with aldehyde 58, we observed the base-driven E2 elimination of the C4' OTBS group to α, β-unsaturated aldehyde 62 (Scheme 3.14).

Scheme 3.14: Elimination to α, β-unsaturated aldehyde 62. Reagents and conditions: (a) [$\left.\mathrm{Me}-\mathrm{OCH}_{2}-\mathrm{PPh}_{3}\right] \mathrm{Cl} \mathbf{6 1 b}, \mathrm{KOt}$ - Bu , THF, $-40^{\circ} \mathrm{C}$ to $-78^{\circ} \mathrm{C}, 19 \mathrm{~h}, 85 \%$.

This side reaction could be circumvented by drying the substrate $\mathbf{5 8}$ as well as the other reagents (potassium t-butoxide and the particular phosphonium salt 61) over 5 Åmolecular sieves as solutions/suspensions in toluene prior to the reaction (Scheme 3.13). In doing so, neither elimination nor epimerization was observed.

3.3.1.2.5. PCC Oxidation \& C5'-Epimerization

With enolether 59 in hand, we envisioned the final oxidation to the corresponding ester 35 (Scheme 3.15). The E / Z mixtures of enolether 59 were subjected to pyridinium chlorochromate (PCC) under literature-known conditions. ${ }^{74}$ This reaction is presumed to be mechanistically similiar

[^18]to the osmium-catalyzed oxidation of alkenes proceeding through a cyclic metallate ester such as 63 after [3+2]-cycloaddition. ${ }^{75}$

Scheme 3.15: Synthesis of the sugar-based alkyne 35, Part E. Reagents and conditions: (a) PCC, DCM, rt, 2-3 d, for $R=\left(\mathrm{CH}_{2}\right)_{2}$ TMS 35a $(68 \%$, d.r. $=2.6: 1)$, for $R=\mathrm{CH}_{3} \mathbf{3 5 b}(81 \%$, d.r. $=3: 1)$.

To our discomfort, partial epimerization at the C5' position once more was observed. Both the desired epimer 35 and its undesired congener epi- $\mathbf{3 5}$ were isolated (Scheme 3.15, Figure 3.13). Thereby, $\mathbf{3 5}$ was accessed in nine steps with an overall yield of 13-17\% (referring to each of the ester termini).

Figure 3.13: X-Ray single crystal structure of ester epi-35a (hydrogen atoms not shown for better visibility, numbering of atoms is arbitrary; colouring of atoms: carbon (grey), oxygen (red), silicon (ivory)).

[^19]A possible explanation for the epimerization could be the following (Scheme 3.16): by the reaction of enolether 59 with the acidic pyridinium ion 64 present during the reaction, an oxonium ion 65 could be formed. This open chain oxonium species 65 would explain the loss of stereoinformation at the C5' centre, since it is able to recyclize, to give both enolether 59 and epi-59.

Scheme 3.16: C5' Epimerization occurring during the PCC oxidation of enolether 59 to ester 35.
To gain further insight into the mechanistic details, we conducted a ${ }^{1} \mathrm{H}$ NMR experiment (Scheme 3.17). Since an E / Z mixture of 59 would have been difficult to analyze during the course of a reaction, we decided to investigate the less valuable ester epi-35b instead. Essentially, the observed C5' epimerization could happen either during the oxidation at the stage of the enolether or afterwards with the ester product itself.

For these reasons, pure epi-35b was treated with TBSOTf in deuterated dichloromethane and the solution was kept at ambient temperature for 4 h (Scheme 3.17). Measurements at different times clearly showed the conversion of epi-35b into 35b until an equilibrium was reached. In parallel, however, decomposition ensued. The higher the temperature, the acidity of the medium, or the reaction time, the more epimerization and decomposition were observed.

Scheme 3.17: Epimerization of epi-35b under Lewis acid catalysis. Reagents and conditions: (a) TBSOTf, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 4 \mathrm{~h}$, NMR tube, result: ca. 1:1 mixture of 35b and epi-35b and decomposition.

Based on these observations, we hypothesized that a mechanism took place, which was related to those of either Brønstedt or Lewis acid catalysis (compare Scheme 3.16 vs. Scheme 3.17). Therein, enol tautomer 66 could undergo a ring opening/ring closing sequence via open chain intermediate 67, giving rise to both ester epimers 35b and epi-35b.

Separation of the observed epimers epi-35 from $\mathbf{3 5}$ was possible and the synthesis could proceed.

3.3.1.3. Building Block Coupling \& Elaboration

3.3.1.3.1. Preliminary Studies On The Aldehyde Alkynylation

The attempted aldehyde alkynylation involved zinc(II) trifluoromethanesulfonate promotion in the presence of chiral ligands suchs as N-methylephedrine. It was originally developed and patented by Carreira et al. ${ }^{76}$ and used in several total syntheses such as the one of leucascandrolide A. ${ }^{77}$ This alkynylation was described for a variety of different substrates such as for silyl-protected alkynes by Yang et al. ${ }^{78}$ and for alkynyl C-glycosides by Hale et al. ${ }^{79}$ For 2,5-trans-disubstituted tetrahydrofuran ring aldehydes it was previously described by Tanaka et al. ${ }^{80}$

Prior to the alkynylation ${ }^{81}$ of aldehyde 34 with alkyne 35 , the coupling with simplified model compounds was investigated: racemic alkyne rac-68 was reacted with cyclopentanecarbaldehyde, resulting in the formation of propargylic alcohol 69 in 85% yield as a single diastereomer (Scheme 3.18).

Scheme 3.18: Alkynylation, preliminiary results, Part A. Reagents and conditions: (a) cyclopentanecarbaldehyde, $\mathrm{Zn}(\mathrm{OTf})_{2},(+)$-NME, TEA, PhMe, rt, $45 \mathrm{~h}, 85 \%$ (only one diasteromer observed).

For propargylic alcohol 70, the yield dropped slightly (68%), when alkyne 35b was used for the coupling with cyclopentanecarbaldehyde (again only one diastereomer was observed, Scheme 3.19). In both cases the newly introduced stereocentre was assumed to be of the shown configuration regarding the numerous literature precedents on zinc(II)-mediated alkynylations in the presence of N-methylephedrine.

[^20]

Scheme 3.19: Alkynylation, preliminiary results, Part B. Reagents and conditions: (a) cyclopentanecarbaldehyde, $\mathrm{Zn}(\mathrm{OTf})_{2},(+)$-NME, TEA, $4 \AA \mathrm{MS}, \mathrm{PhMe}, \mathrm{rt}, 53.5 \mathrm{~h}, 68 \%$.

Since both test reactions for the fragment coupling were quite promising, the synthesis was pursued as planned.

3.3.1.3.2. Results Of The Fragment Coupling Via Alkynylation

Based on the literature reports, we submitted our fragments to the reaction with zinc(II) trifluoromethanesulfonate, in the presence of (+)- N-methylephedrine and triethylamine in toluene (Scheme 3.20). Unfortunately, the envisioned zinc-mediated coupling led to the expected products only in 21-25\% yield (alkyne starting material 35b was recovered quantitatively), though the stereoselectivity was very good (d.r. > 9.5:1). The reason for the decrease in reactivity remained unclear.

Scheme 3.20: Fragment coupling, Reagents and conditions: (a) $\mathrm{Zn}(\mathrm{OTf})_{2},(+)$-NME, TEA, $4 \AA \mathrm{MS}$, PhMe, rt, yields as shown, alkyne SM 35b was recovered quantitatively.

Both substrates were predried over $4 \AA$ molecular sieves in toluene and the reaction was carried out in the presence of $4 \AA$ Å molecular sieves as well, in order to diminish an influence of residual water in the reaction mixture.

Nevertheless, we obtained sufficient amounts (> 100 mg scale) of propargylic alcohol 33 and were able to apply the in house-developed methodology of the ruthenium-catalyzed trans-selective hydroelementation of alkynes.

3.3.1.3.3. Alkyne-To-Alkene-Transformation

As demonstrated by our group in 2013, the trans-selective hydroboration of internal alkynes under ruthenium catalysis can be a possible entry to E-configured alkenes. ${ }^{82}$ Based on this precedent, we planned to trans-hydroborate propargylic alcohol 70 with pinacolborane (Scheme 3.21). When submitting simplified propargylic alcohol 70 to the literature known conditions, a mixture of borylated products such as 71 was observed. The use of a higher catalyst loading (6 mol\% instead of $3 \mathrm{~mol} \%$) resulted in a higher conversion, but also in the formation of cyclic boronic acid derivative 72 that lost the pinacol ligand, yet beared an E-configured double bond within its five-membered ring.

70

71

72

cat. loading	HBpin	time	recovered SM 70	yield 71	yield 72
$3 \mathrm{~mol} \%$	1.2 eq.	18 h	40%	51%	-
$6 \mathrm{~mol} \%$	2.4 eq.	24 h	10%	8%	67%

Scheme 3.21: trans-Hydroboration. Reagents and conditions: (a) $\left[\mathrm{Cp}{ }^{*} \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}, 2.4 \mathrm{eq} . \mathrm{HBpin}, \mathrm{DCM}, 0{ }^{\circ} \mathrm{C}$ to rt , catalyst loading and yield as shown.

With these results in hand, the formation of the E-configured allylic alcohol 32 by using the ruthenium-catalyzed trans-hydroboration seemed possible regarding the high degree of functionalization of the sugar core.

[^21]In contrast, the results with bis-alkyne substrate 33a were inconclusive due to the formation of many products and massive decomposition (Scheme 3.22). The use of another borane (4,6,6-trimethyl-1,3,2-dioxaborinane) led to similiar results. Therefore, no further investigations on the trans-selective hydroboration were conducted.

Scheme 3.22: trans-Hydroboration and reduction of bis-alkyne 33a. Reagents and conditions: (a) 2.05-4.8 eq. HBpin, $15-20 \mathrm{~mol} \% \quad\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}$, $\mathrm{DCM}, \quad-40^{\circ} \mathrm{C}$ to $\mathrm{rt}, \quad 22-25.5 \mathrm{~h}$, decomposition; (b) 2.05 eq. 4,6,6-trimethyl-1,3,2-dioxaborinane, $29 \mathrm{~mol} \%\left[\mathrm{Cp}{ }^{*} \mathrm{Ru}\left(\mathrm{MeCN}_{3}\right] \mathrm{PF}_{6}, \mathrm{DCM}, 0^{\circ} \mathrm{C}\right.$ to $\mathrm{rt}, 21 \mathrm{~h}$, decomposition; (c) 6 eq. Red-Al ${ }^{\oplus}, \mathrm{THF},-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, decomposition.

Trost et al. previously reported the selective transformation of propargylic alcohols into their allylic alcohol counterparts in the presence of another TMS-capped terminal alkyne with Red-Al ${ }^{\oplus}$ (sodium bis(2-methoxyethoxy)aluminium hydride). ${ }^{83}$ According to a publication by Koide et al., ${ }^{84}$ the reduction of propargylic alcohols to the corresponding allylic derivatives by Red-Al ${ }^{\circledR}$ is possible also in the presence of a methyl ester. However, administered Red-Al ${ }^{\circledR}$ led to the decomposition of the elaborated substrate 33a (Scheme 3.22).

As previously shown by our group, ${ }^{85}$ the ruthenium-catalyzed trans-hydrostannation of propargylic alcohols can be a viable method for the transformation into the corresponding allylic alcohols. Therefore, propargylic alcohol 33 was submitted to the conditions of such a ruthenium-catalyzed trans-selective hydrostannation (Scheme 3.23). ${ }^{86}$

[^22]

Scheme 3.23: Hydrostannation of bis-alkyne 33. Reagents and conditions as shown.
Unfortunately, TMS-capped substrate 33a led to a mixture of regioisomeric products, such as the bis-stannylated product 74a, as well as to α - and β-isomers on both alkynes (76a, 75a and 77a), which could be separated; the TMS group did not prevent a reaction at its terminal alkyne site. In the case of the much bulkier TIPS-capped bis-alkyne 33b however, a reaction with tributylstannane was only observed at the internal alkyne site of the molecule. A mixture of α - and β-stannanes 76b and 75b was isolated in 44-45\% yield. Additionally, starting material $\mathbf{3 3}$ could be recovered in the range of $44-52 \%$ in both cases (TMS- and TIPS-capped). Neither increasing the catalyst loading (from $5 \mathrm{~mol} \%$ to $30 \mathrm{~mol} \%$) nor adding more equivalents of stannane (1.05-2.1 eq., right from the beginning on or during the course of the reaction) led to a higher conversion. Nevertheless, we were delighted to see that the desired E-configured alkenylstannanes $\mathbf{7 5}$ and $\mathbf{7 6}$ were formed.

One strategy to transform α-hydroxy vinylstannanes into their corresponding allylic alcohols involves the use of copper(I) thiophene-2-carboxylate (CuTC), also used by our group for the total synthesis of 5,6 -dihydrocineromycin B. ${ }^{87}$ Interestingly, only the β-isomer 75b was transformed

[^23]under these conditions; the reaction however, remained incomplete (Scheme 3.24). Decomposition was observed after the addition of a catalytic amount of acetic acid (5 mol\%), but due to a fast work-up most of the α-isomer $\mathbf{7 6 b}$ could be recovered in ca. 33%.

Scheme 3.24: Protodestannation. Reagents and conditions: (a) i. 6 eq. CuTC, DMF, rt, 29 h ; ii. $5 \mathrm{~mol} \% \mathrm{AcOH}, 20 \mathrm{~h}$, decomposition, α-stannane 76b partly recovered (33\%); (b) aq. $\mathrm{HI}(57 \%)$, TBAI, $\mathrm{PhMe}, 0^{\circ} \mathrm{C}, 5.5 \mathrm{~h}, 86 \%$.

A bit more daring for this transformation in the presence of silyl-based protecting groups and an ester though, were conditions reported by Shibasaki et al. ${ }^{88}$ with aqueous hydroiodic acid under phase transfer catalysis (PTC) with tetrabutylammonium iodide (TBAI, Scheme 3.24). This protodestannation with a protic acid in a bisphasic mixture gave the E-configured allylic alcohol 32b in 86% yield.

3.3.1.3.4. Dihydroxylation Strategies \& Global Protection

With allylic alcohol 32b in hand, we investigated the osmium-mediated dihydroxylation to obtain the central triol motif of western belizentrin fragment 28 (Scheme 3.25).

One procedure was the classical ligand-controlled Sharpless dihydroxylation protocol of alkenes, using a catalytic amount of osmate(VI) which is (re)oxidized to osmium(VIII) tetroxide in situ by a stoichiometrically added primary oxidant. ${ }^{89}$

In cases of allylic alcohols, where substrate control is inevitable, the empirical stereochemical rule by Kishi et al. states that the attack of osmium(VIII) tetroxide proceeds preferentially trans to the

[^24]preexisting hydroxy group resulting in a stereochemical outcome which refers to erythro. ${ }^{90}$ Such a behaviour was for example observed in the total synthesis of palytoxin. ${ }^{91}$

Another procedure, reported by Donohoe et al., makes use of stoichiometric amounts of an $\mathrm{OsO}_{4} \cdot$ TMEDA complex which is capable of inverting the Kishi selectivity by altering the course of the attack (Scheme 3.25). ${ }^{92}$ These authors argued that the selectivity changes due to hydrogen bonding of the free hydroxy group to the $\mathrm{OsO}_{4} \cdot \mathrm{TMEDA}$ complex. Therefore, the attack of osmium(VIII) tetroxide takes place on the same side as the preinstalled hydroxy group and leads to the threo product. Based on these options, we hoped to get access to both diastereomers of triol 78.

32b

78

DH	conditions	L* (ligand)	yield	d.r. (isolated)
Sharpless	$\begin{aligned} & \mathrm{K}_{2} \mathrm{OsO}_{4} \\ & \mathrm{MeSO}_{2} \mathrm{NH}_{2} \\ & \mathrm{~K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right], \mathrm{K}_{2} \mathrm{CO}_{3} \\ & t \text { - } \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O} \\ & 0: 2 \\ & 0^{\circ} \mathrm{C} \text { to rt } \end{aligned}$		77\%	$1: 3^{\text {a }}$
		(DHQ) $2_{2} \mathrm{PHAL}$	87\%	$1: 1.2^{\text {b }}$
			28\%	1:2.5 ${ }^{\text {c }}$
		(DHQD) ${ }_{2} \mathrm{PHAL}$	58\%	$1: 4.8{ }^{\text {b }}$
Donohoe	stoich. OsO_{4}	TMEDA	56\%	1:1.3
	DCM			
	$-78^{\circ} \mathrm{C}$ to rt		87\%	1:1.2

${ }^{\text {a }} 9 \mathrm{~mol}-\%[\mathrm{Os}], 24 \mathrm{~mol}-\% \mathrm{~L}^{*}$
${ }^{\text {b }} 10 \mathrm{~mol}$ \% [Os], $25 \mathrm{~mol}-\% \mathrm{~L}^{*}$
c $50 \mathrm{~mol}-\%$ [Os], $100 \mathrm{~mol}-\%$ L*

Scheme 3.25: Os-promoted dihydroxylations (Sharpless and Donohoe conditions). Reagents and conditions as shown.
The Sharpless dihydroxylation of allylic alcohol $\mathbf{3 2 b}$ indeed led to one distinct triol 78a as the major isomer and to $\mathbf{7 8 b}$ as the minor compound with a d.r. in the range of 1:1.2 to 1:4.8 (Scheme 3.25). In all cases investigated, substrate control seemed to be a dominant course of action during the dihydroxylation, since different ligands did not change the course of induction.
${ }^{90}$ J. K. Cha, W. J. Christ, Y. Kishi, Tetrahedron 1984, 40, 2247-2255.
${ }^{91}$ a) E. M. Suh, Y. Kishi, J. Am. Chem. Soc. 1994, 116, 11205-11206. b) Y. Kishi, Pure \& Appl. Chem. 1989, 61, 313-324.
${ }^{92}$ a) T. J. Donohoe, K. Blades, P. R. Moore, M. J. Waring, J. J. G. Winter, M. Helliwell, N. J. Newcombe, G. Stemp, J. Org. Chem. 2002, 67, 7946-7956. b) K. Blades, T. J. Donohoe, J. J. G. Winter, G. Stemp, Tetrahedron Lett. 2000, 41, 4701-4704. c) T. J. Donohoe, R. Garg, P. R. Moore, Tetrahedron Lett. 1996, 37, 3407-3410. d) T. J. Donohoe, N. J. Newcombe, M. J. Waring, Tetrahedron Lett. 1999, 40, 6881-6885. e) T. J. Donohoe, P. R. Moore, M. J. Waring, N. J. Newcombe, Tetrahedron Lett. 1997, 38, 5027-5030. f) T. J. Donohoe, L. Mitchell, M. J. Waring, M. Helliwell, A. Bell, N. J. Newcombe, Org. Biomol. Chem. 2003, 1, 2173-2186.

Unfortunately, it turned out that the same result was obtained when the Donohoe conditions were applied instead. Again, the same distinct isomer was isolated as the major and the other one as the minor compound of the dihydroxylation. The absolute configuration of the newly formed hydroxy groups remained unclear and was subsequently examined as shown in the next chapter.

Both diastereomers of triol 78 were reached separately. By protection with TBSOTf in the presence of 2,6-lutidine, according to McGarvey et al. ${ }^{93}$ and Deming et al. ${ }^{94}$ (for a simple methylglucoside), 79 was obtained in 73\%-quant. yield as the western belizentrin fragment and its diastereomer (Scheme 3.26).

Scheme 3.26: TBS Protection of diastereomeric triols 78. Reagents and conditions: (a) TBSOTf, 2,6-lutidine, DCM, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 24 \mathrm{~h}, 27 \%$, performed with the minor isomer of the dihydroxylation; (b) TBSOTf, 2,6-lutidine, DCM, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 17 \mathrm{~h}$, 73%, performed with the major isomer of the dihydroxylation.

Due to the low yield of the alkynylation, final TIPS cleavage was never conducted, yet envisioned according to the literature reports describing silver-mediated deprotections of silyl-protected terminal alkynes e.g. by Kim et al. ${ }^{95}$ with silver(I) fluoride or by Carreira et al. ${ }^{96}$ and Arens et al. ${ }^{97}$ with silver(I) nitrate.

[^25]
3.3.1.4. Stereochemical Elucidation \& Cyclization Trials

In order to determine the stereochemical outcome of the dihydroxylation (Scheme 3.25), it was planned to derive the absolute configuration of the newly formed stereocentres at C-9 and C-10 via NMR analysis.

For such a NMR-based approach, it was necessary to cyclize one of the hydroxy groups formed during the dihydroxylation with the one at C-11, originating from the alkynylation (Scheme 3.27). The absolute configuration of the latter was assigned based on the tremendous amount of literature examples showing the reliability of this method in terms of stereocontrol. Therefore, the hydroxy groups were assumed to be (R)-configured for 69 and 70, and (S)-configured for 33 due to the use of $(+)-N$-methylephedrine in these reactions (Scheme 3.20). ${ }^{98}$ Based on this assumption for the configuration of $\mathrm{C}-11$, its relative configuration to the other two stereocentres at $\mathrm{C}-9$ and $\mathrm{C}-10$ was investigated.

The major triol isomer 78a was submitted to di-t-butyldichlorosilane in an attempt to synthesize siloxane 80, but this reagent turned out to be sterically too hindered to react at all (Scheme 3.27). Therefore, sterically less hindered di-i-propyldichlorosilane was administered to major triol isomer 78a, which resulted in a cyclized product. Unfortunately, this cyclization gave only siloxane 81, in which both hydroxy groups introduced via the dihydroxylation (at C-9 and C-10) were part of a newly formed 7-membered ring. Regarding this particular attachment and the flexibility of the 7-membered ring, this compound was not suitable for a stereochemical analysis by NMR.

Scheme 3.27: Triol cyclization, part A. Reagents and conditions: (a) 2.4 eq. $\left(t-\mathrm{Bu}_{2}\right)_{2} \mathrm{SiCl}_{2}, 2$ eq. $\mathrm{AgNO}_{3}, 10 \mathrm{eq}$. im, DMF, rt, 2 d , no reaction observed; (b) $(i-\mathrm{Pr})_{2} \mathrm{SiCl}_{2}, \mathrm{AgNO}_{3}, \mathrm{im}, \mathrm{DMF}, \mathrm{rt}, 2 \mathrm{~d}, 32 \%$.

Since these attempts remained unsuccessful, other cyclization methods such as acetalization and phosphorylation were applied (Scheme 3.28). 1,3-Acetalizations are either used as protecting

[^26]groups or for structural elucidation purposes. ${ }^{99}$ Acetalization of the minor triol isomer $\mathbf{7 8 b}$ resulted in the formation of no less than six regio- and stereoisomers such as $8 \mathbf{2}$.

Scheme 3.28: Triol cyclization, part B. Reagents and conditions: (a) 1.2 eq. $\mathrm{Ph}-\mathrm{CH}(\mathrm{OMe})_{2}, 20 \mathrm{~mol} \% \mathrm{CSA}, \mathrm{DCM}, \mathrm{rt}, 17 \mathrm{~h}$, minimum 6 different isomers observed on TLC, not separated or isolated; (b) 1.05 eq. $\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}(\mathrm{HMTP}), 1,4$-dioxane, $90-100^{\circ} \mathrm{C}, 4 \mathrm{~d}$, no reaction observed.

Alternatively, the synthesis of tricyclic phosphite $\mathbf{8 3}$ was examined (Scheme 3.28). A method to obtain such fused and strained polycyclic systems was published by Nifantyev et al. ${ }^{100}$ and was applied to minor triol isomer 78b. Unfortunately, with tris(dimethylamino)phosphine (HMPT) no reaction was observed under the reported conditions.

These results clearly showed the difficulty of determining the absolute configuration of the stereocentres in question. Further attempts for the stereochemical determination by derivatization were not performed due to the lack of material at this stage of the synthesis.

[^27]
3.3.2. Investigations On Alternative Pathways

3.3.2.1. The 2,5-trans-Disubstituted Tetrahydrofuran Ring

Alternative pathways towards the 2,5-trans-disubstituted ether 34 included key steps similiar to the ones of the successful route described earlier (Chapter 3.3.1.1). Differences mostly appeared in the preparation of the starting materials as well as in the substitution pattern of the alkynyl side chain.

3.3.2.1.1. Auxiliary Reduction \& Alternative Alkyne Substitution

We first envisioned a synthesis of northern building block 34 by starting similarly with the known pseudoephedrine amide 43 (Scheme 3.29). In contrast to the auxiliary displacement with a nucleophile (Chapter 3.3.1.1.1), volatile alcohol $(S)-84$ was obtained by a reductive cleavage of the auxiliary with lithium amidoborane. ${ }^{101}$ Subsequent Swern oxidation led to very volatile aldehyde (S)-37. ${ }^{102}$ Both steps were performed according to the reported two-step procedure by De Brabander et al. ${ }^{103}$

Scheme 3.29: Synthesis of the 2,5-trans-disubstituted ether 34b, part A. Reagents and conditions: (a) i. DIPA, n-BuLi, THF, $0^{\circ} \mathrm{C}, 10 \mathrm{~min}$; ii. $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 1 \mathrm{~h}$; iii. add $43, \mathrm{THF}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 2 \mathrm{~h}, 91 \%, 99 \% e e$; (b) i. (COCl) ${ }_{2}$, DMSO, DCM, $-78^{\circ} \mathrm{C}, 35 \mathrm{~min}$; ii. DIPEA, $-78^{\circ} \mathrm{C}$ to $\mathrm{rt}, 1.5 \mathrm{~h}, 97 \%$ (as a solution in MTBE).

In order to determine the enantiomeric excess (ee) of $(S)-84$, it was necessary to prepare the enantiomeric alcohol (R)-84 in an analogous fashion starting with commercially available $(1 S, 2 S)$-pseudoephedrine ent-41 (Scheme 3.30, Figure 3.14). ${ }^{104} \mathrm{GC}$ on chiral stationary phase was used for the determination of the ee, reporting values of 98-99\%. ${ }^{105}$

[^28]

Scheme 3.30: Synthesis of enantiomeric alcohol ent-78. Reagents and conditions: (a) propionic anhydride, TEA, DCM, rt, $1 \mathrm{~h} 10 \mathrm{~min}, 89 \%$; (b) i. DIPA, n-BuLi, LiCl, THF, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 35 \mathrm{~min}$, then ent- $42,-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$; ii. allyl iodide, THF, $-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, $2 \mathrm{~h}, 64 \%$; (c) i. DIPA, n-BuLi, THF, $0^{\circ} \mathrm{C}$ to rt; ii. $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 1 \mathrm{~h}$; iii. add ent-43, THF, $0^{\circ} \mathrm{C}$ to rt, $2 \mathrm{~h}, 80 \%, 98 \% e e ;(\mathrm{d})(\mathrm{COCI})_{2}$, DMSO, DIPEA, DCM, $2 \mathrm{~h},-78^{\circ} \mathrm{C}$ to rt .

Figure 3.14: X -Ray single crystal structure of pseudoephedrine amide ent-42 (numbering of atoms is arbitrary; colouring of atoms: carbon (grey), hydrogen (white), oxygen (red), nitrogen (blue)).

Enantiomerically pure aldehyde (S)-37 was then submitted to a propargylation reported by Fandrick et al. (Scheme 3.31). ${ }^{106}$ This reaction was conducted with TMS-capped pinacolborane 86, which was synthesized according to a procedure by Hoffmann et al. ${ }^{107}$

(S)-37

c) \rightarrow

- 48b X $=\mathrm{H}, \mathrm{OH}$

34b $X=0$
7 steps
overall yield: 14%

85
86

Scheme 3.31: Synthesis of the 2,5-trans-disubstituted ether 34b, part B. Reagents and conditions: (a) TMS-propargyl pinacolborane 86, 20 mol\% Et $2 \mathrm{Zn}, 4 \AA \mathrm{MS}, \mathrm{THF}, \mathrm{PhMe}, \mathrm{rt}, 19 \mathrm{~h}, 83 \%$ (d.r. = 1.2:1); (b) $10 \mathrm{~mol} \%$ [Co(nmp) ${ }_{2}$] $49 \mathrm{~b}, 10 \mathrm{~mol} \%$ $t-\mathrm{BuOOH}, \mathrm{O}_{2}$ (balloon), i - PrOH , rt to $55^{\circ} \mathrm{C}, 15.5 \mathrm{~h}, 62 \%$; (c) i. $\mathrm{SO}_{3} \cdot \mathrm{py}, \mathrm{DMSO}, \mathrm{DCM},-20^{\circ} \mathrm{C}, 25 \mathrm{~min} ; ~ i i$. DIPEA, $2 \mathrm{~h}, 61 \%$, product obtained as a solution in DCM, directly used for alkynylation; (d) i. Mg turnings, $\mathrm{I}_{2}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{rt}$ to $-5^{\circ} \mathrm{C}$, 5.5 h ; ii. i-propoxy pinacolborane, $-70^{\circ} \mathrm{C}$ to $\mathrm{rt}, 16 \mathrm{~h}, 32 \%$.

[^29]Bis-homoallylic alcohol 36b was obtained with a d.r. of 1.2:1 (Scheme 3.31). After separation of the diastereomers, alcohol 36b was submitted to the previously described aerobic oxidative Mukaiyama cyclization, ${ }^{108}$ resulting in the formation of 2,5-trans-disubstituted ether 48b. This primary alcohol 48b was subsequently transformed to the corresponding aldehyde $\mathbf{3 4} \mathbf{b}$ by Parikh-Doering oxidation. ${ }^{109}$ In summary, aldehyde 34b was obtained in seven steps with an overall yield of 14%; it was directly used for the attempted alkynylation as well (Scheme 3.20).

In order to confirm the 2,5-trans-configuration of $\mathbf{4 8 b}$ by NMR comparison, the diastereomeric alcohol 87 was also converted into the corresponding 2,5-trans-disubstituted ether 88 by the oxidative Mukaiyama cyclization (Scheme 3.32). By a combination of coupling constant and nOe signal correlation, NMR analysis confirmed the proposed structures of both 2,5-trans-disubstituted ether diastereomers $\mathbf{4 8}$ b and 88 .

Scheme 3.32: Synthesis of the diastereomeric 2,5-trans-disubstituted ether 88. Reagents and conditions: (a) $10 \mathrm{~mol} \%\left[\mathrm{Co}(\mathrm{nmp})_{2}\right] 49 \mathrm{~b}, 10 \mathrm{~mol} \% \mathrm{t}$-BuOOH, O_{2} (balloon), i-PrOH, $55^{\circ} \mathrm{C}, 18.5 \mathrm{~h}, 76 \%$.

Since the trans-selective hydrostannation had resulted in mixtures of stannane products even at the TMS-alkyne site (Chapter 3.3.1.3.3), we chose the TIPS-capped substrate 33b instead. In terms of step count, yield and manageability (volatile aldehyde (S)-37) to access TIPS-capped alkyne 34a, the direct auxiliary displacement proved more practical. Therefore, the route via aldehyde (S)-37 was not investigated any further.

[^30]
3.3.2.1.2. Mitsunobu Recycling Strategy

Attempts were made to recycle propargylation byproduct 87 (Scheme 3.33). The crude ester 89, obtained from a Mitsunobu reaction of alcohol 87 with p-nitrobenzoic acid, was directly reacted with DIBAL (Scheme 3.33). This one-pot reaction resulted in decomposition.

Scheme 3.33: Recycling via Mitsunobu inversion of homopropargylic alcohol 87. Reagents and conditions: (a) i. 3.6 eq. DIAD, 3.75 eq. PPh_{3} 195a, 3 eq. p-nitro benzoic acid, PhMe , $\mathrm{rt}, 2 \mathrm{~h}$, not isolated; ii. 5 eq. DIBAL, DCM, $-78^{\circ} \mathrm{C}$ to $\mathrm{rt}, 24 \mathrm{~h}$, decomposition; (b) DIAD, PPh_{3} 195a, p-nitro benzoic acid, $\mathrm{PhMe}, \mathrm{rt}, 20 \mathrm{~h}, 24 \%$; (c) DIBAL, DCM, $-78^{\circ} \mathrm{C}$ to rt , $18 \mathrm{~h}, 70 \%$.

Stepwise procedures for such a transformation were described by Trost et al., ${ }^{110}$ McDonald et al. ${ }^{111}$ and Johnson et al. ${ }^{112}$ in the presence of TMS-capped alkynes, or for related ester hydrolyses by McDonald et al. ${ }^{113}$ and Ley et al. ${ }^{114}$ Such a two-step approach led to alcohol 36b, but only in 17% yield (over two steps). Therefore, recycling was deemed inappropriate.

3.3.2.1.3. Other Approaches For The Aldehyde Precursor

In terms of the accessibility of the small chiral building block (S) - 37 , alternative approaches were investigated (Scheme 3.29). Wong et al. for example had reported the use of Candida cylindracea lipase (CCL) to transform rac-90 into enantiomerically enriched carboxylic acid (R)-91 and enantiomerically enriched ester (S)-90 (Scheme 3.34). ${ }^{115}$

Scheme 3.34: Kinetic enzymatic resolution approach. Reagents and conditions: (a) lipase (CRL, PCL or BCL), 200 mM pH 7 aq. phosphate buffer solution, rt to $50^{\circ} \mathrm{C}, 5 \mathrm{~h}$.

[^31]Major drawbacks of this approach included the non-accessibility of CCL and the unknown exact enzyme loading used by Wong et al. Therefore, different lipases were used such as from Candida rugosa, Penicillinum camemberti or Burkholderia cepacia, but these enzymes failed to transform rac-90 into (R)-91 and (S)-90 (Scheme 3.34).

Another approach to enantiomerically pure (S) - $\mathbf{3 7}$ involved cleavage of the auxiliary of pseudoephedrine amide 43 with di-i-butylaluminium hydride (DIBAL) and analogues thereof (Scheme 3.35). These reagents with the general formula $\mathrm{LiAlH}(\mathrm{OR})_{3}$ as reported by Myers et al. are less reactive then DIBAL. ${ }^{116}$

Scheme 3.35: Direct reductive cleavage of the auxiliary. Reagents and conditions: (a) 2.82 eq . DIBAL, DCM, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, 25% alcohol $(S)-84$ and 13% of ether (S)-92; (b) 2.3 eq. $\operatorname{LiAlH}(O R)_{3},(R=E t, t-B u)$, THF, pentane, $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, no reaction observed.

These attempts only resulted in either unreacted starting material 43 or in the formation of (S)-84 along with ethers like (S)-92. For these reasons, no further investigations were undertaken.

3.3.2.1.4. Aldehyde Propargylations

With the propargylation ${ }^{117}$ of aldehyde $(S)-37$, we already had a viable, but unsatisfying (d.r. = 1.6:1) strategy in hand (Scheme 3.29). Alternatively, we planned the introduction of a TMS-capped propargyl group by a Barbier-type reaction with propargyl bromide 85 as reported by Loh et al. with indium/indium(III) bromide on a steroid substrate ${ }^{118}$ and by others on simpler substrates with either indium ${ }^{119}$ or zinc ${ }^{120}$ metal (Scheme 3.36). Unfortunately, no reaction was observed under these conditions.

[^32]

Scheme 3.36: Diastereoselective homopropargylation attempts. Reagents and conditions: (a) 2 eq. TMS-propargylbromide 85, 2 eq. In , $10 \mathrm{~mol} \% \mathrm{InBr}_{3}$, THF, rt to $66^{\circ} \mathrm{C}, 16 \mathrm{~h}$, no reaction observed; (b) 2 eq. allenylpinacolborane, $20 \mathrm{~mol} \% \mathrm{Et}_{2} \mathrm{Zn}$, THF, PhMe, rt, $18 \mathrm{~h}, 6 \%$ (d.r. $=1: 1.3$).

With allenylpinacolborane in the presence of diethylzinc, according to Fandrick et al., ${ }^{121}$ we observed 6% conversion to a 1:1.3 mixture of 93 (Scheme 3.36). Further investigations were not undertaken. For a more comprehensive overview on catalytic asymmetric propargylations see Hou et al. ${ }^{122}$

[^33]
3.3.2.2. The Sugar-Based Alkyne

Alkyne 35 as a central part of route 1 was successfully accessed after intensive investigations. These studies on a variety of functional group modifications, not always directly correlating to the finally successful route, are shown herein.

3.3.2.2.1. Anomeric Allylation \& Propargylation Studies

The anomeric allylation of sugars such as α - D-glucose (9) and its derivatives is extensively described in the literature (Chapter 3.3.1.2). All of these procedures have in common that they make use of allyl-TMS (52) as the pro-nucleophile as well as of a Lewis acid (e.g. boron trifluoride diethyl etherate or TMSOTf) for the activation of the anomeric position. Some of them use our substrate 50, ${ }^{123}$ while others were closely related (such as galactose, ${ }^{124}$ fucose ${ }^{125}$ and other sugars with different protecting groups ${ }^{126}$) or of more general character. ${ }^{127}$ When per-O-acetyl- α-D-glucopyranose (50) was reacted with allyl-TMS (52) and TMSOTf, alkene 40a was isolated in 36% yield (Scheme 3.37). When DCM was added or used as a solvent, the yield massively dropped (7\%) and 94 was isolated as well (1\%). In both cases the reaction mixture became dark brown and some decomposition occurred, which rendered purification problematic.

Using other Lewis acids suchs as tin(IV) chloride or tin(II) chloride (inspired by general investigations on anomeric allylations by Kozikowski et al. ${ }^{128}$), we observed the formation of chloro compound 95a instead (Scheme 3.37).

[^34]

Scheme 3.37: Direct allylation/propargylation strategy. Reagents and conditions: (a) 2 eq. allyl-TMS (52), 1 eq. TMSOTf, MeCN, $0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 23 \mathrm{~h}, 36 \%$ ($\alpha: \beta=12: 1$); (b) 5 eq. allyl-TMS (52), 2 eq. TMSOTf, MeCN, DCM, $0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 7 \mathrm{~d}, 7 \%$ of $\mathbf{4 0 a}$ and 1% of 94 ; (c) 2 eq. allyl-TMS (52), 1 eq. $\mathrm{SnCl}_{2}, \mathrm{MeCN}, \mathrm{rt}, 5 \mathrm{~d}, 42 \%$; (d) 2 eq. allenylpinacolborane, 1 eq. $\mathrm{SnCl}_{4}, \mathrm{DCM}$, rt, $3 \mathrm{~d}, 42 \%$; (e) 2 eq. allenylpinacolborane, 0.5 eq. $9-\mathrm{MeO}-\mathrm{BBN}, 10 \mathrm{~mol} \% \mathrm{InOTf}$, DCM, hexane, decomposition; (f) 2 eq. allenylpinacolborane, 0.5 eq. $9-\mathrm{MeO}-\mathrm{BBN}, 10 \mathrm{~mol} \%$ InOTf $96, \mathrm{DCM}$, rt to $45^{\circ} \mathrm{C}, 4 \mathrm{~d}$, decomposition; (g) 1.46 eq. allenyltributylstannane, 5.3 eq. TMSOTf, DCM, rt, 20 h , decomposition; (h) 1.46 eq. allenyltributylstannane, 1.04 eq. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{DCM},-15^{\circ} \mathrm{C}$ to rt to $140^{\circ} \mathrm{C}(\mathrm{mw}), 2 \mathrm{~d}$, decomposition; (i) $8.7 \mathrm{eq} . \mathrm{HF} \cdot \mathrm{py}, \mathrm{rt}, 24 \mathrm{~h}, 59 \%$.

Next, we envisioned a more direct anomeric propargylation approach. According to a literature report, a propargyl group can be introduced into per-O-acetyl- β-D-glucopyranose (epi-50) with allenylstannane as the nucleophilic reagent and Lewis acids such as TMSOTf or boron trifluoride diethyl etherate as described by Wyatt et al. ${ }^{129}$ Jamison et al. reported a closely related example during the total synthesis of amphidinolides T1 and T4 for the propargylation of five-membered lactols. ${ }^{130}$ Unfortunately, we could not reproduce these results for the α-anomer 50 using allenylstannane, as this resulted in decomposition (Scheme 3.37).

Wyatt et al. stated that glucosyl fluorides like 95b were observed to be even more reactive (Scheme 3.37). Therefore, glucosyl fluoride 95b was prepared according to a procedure by Hayashi et $a l$. for similar galactose substrates ${ }^{131}$ and it was submitted to the conditions with allenylstannane. Again, only decomposition was observed, while propargyl-substituted product 39b was not formed.

[^35]Another approach based on a precedent by Kobayashi et al. ${ }^{132}$ for the propargylation of glycosides with allenylboranes under 9-methoxy-9-borabicyclo[3.3.1]nonane (9-MeO-BBN) co-catalysis either with or without indium(I) trifluoromethanesulfonate 96 as the catalyst only led to decomposition in our hands as well (Scheme 3.37).

According to Dussault et al., it is possible to catalyze the reaction of hemiacetals with C-nucleophiles (as well as other nucleophiles) by rhenium(VII) oxide. ${ }^{133} \alpha$-D-Glucose (9) consists of such a hemiacetal substructure and was reacted under similiar conditions (Scheme 3.38).

Scheme 3.38: Anomeric allylations with $\mathrm{Re}_{2} \mathrm{O}_{7}$. Reagents and conditions: (a) $1 \mathrm{~mol} \% \mathrm{Re}_{2} \mathrm{O}_{7}$, allyl-TMS (52), DCM, rt, 7 d , no reaction observed; (b) 1 mol\% $\mathrm{Re}_{2} \mathrm{O}_{7}$, allyl-TMS (52), DCM, rt, $6 \mathrm{~d}, 49 \%$ ($\alpha: \beta=1.9: 1$).

Unfortunately, both attempts, either with unprotected α-D-glucose (9) or with tetra-O-benzyl- α-D-glucopyranose (97) did not result in the formation of alkenes 40b or 40d (Scheme 3.38). While the unprotected sugar 9 did not react at all, tetra-O-benzylated hemiacetal 97 gave both anomers of derivative 98 in 49% yield ($\alpha: \beta=1.9: 1$).

Furthermore, Bernardi et al. showed that methylglycosides such as α-methylgalactoside could also be activated directly by using N, O-bis(trimethylsilyl)trifluoroacetamide (BSTFA), followed by allyl-TMS (52) and a catalytic amount of a Lewis acid. ${ }^{134} \alpha-D$-Methylglucoside $99 b$ was obtained in analogy to the procedures of McGarvey et al. ${ }^{135}$ and Deming et al. ${ }^{136}$ (Scheme 3.39). For the aimed allylation, we found that an intramolecular reaction to anhydro sugar 100 took place, while alkene 40c was not observed.

[^36]

Scheme 3.39: Allylation on globally TBS-protected $\alpha-D$-methylglucoside 99b and reaction to anhydro sugar 100. Reagents and conditions: (a) TBSOTf, 2,6-lutidine, DCM, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 3.5 \mathrm{~h}, 99 \%$; (b) TMSOTf, allyl-TMS (52), 2,6-lutidine, DCM, $0^{\circ} \mathrm{C}$ to rt, $20 \mathrm{~h}, 39 \%$.

Further investigations on anomeric allylations and propargylations were not undertaken, since boron trifluoride diethyl etherate yielded alkene 40a in 79\% yield and good d.r. ($\alpha: \beta=7: 1$, Scheme 3.9).

3.3.2.2.2. General Functional Group Manipulations At C6'

In parallel to the previously shown C-glucosidation reactions, we investigated the introduction of the required ester functionality at $\mathrm{C6}^{\prime}$ of retron 35 by various strategies.

At first, alkene 40a was submitted to an enzyme-catalyzed selective cleavage of the C6' acetyl group based on literature examples for acetyl-protected methyl glycosides (Scheme 3.40). ${ }^{137}$ This resulted in the formation of primary alcohol 101a in 31\% yield. Other products with cleaved acetyl groups at different positions around the tetrahydropyran ring were also obtained as an inseparable mixture. In terms of selectivity, these enzymatic approaches were not comparable to the C6'-TBS group deprotection with Olah's reagent (hydrofluoric acid/pyridine, Scheme 3.12).

Alkene 40a was transformed into aldehyde 54b by ozonolysis according to Randell et al. ${ }^{138}$ with a subsequent work-up with zinc (Scheme 3.40). Aliphatic aldehyde 54b was then submitted to the classical basic Seyferth-Gilbert conditions ${ }^{139}$ giving rise to alkyne 39c due to complete deprotection of all hydroxy groups. A partial anomerization (ca. 50\%) of the previously α-anomerically pure substrate 54b occurred during the Seyferth-Gilbert homologation as well.

[^37]

Scheme 3.40: First attempts for the synthesis of the sugar-based building block 35. Reagents and conditions: (a) i. O_{3}, $\mathrm{MeOH}, \mathrm{DCM},-78{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}$; ii. $\mathrm{Zn}, \mathrm{AcOH},-78^{\circ} \mathrm{C}$ to rt, $17 \mathrm{~h}, 90 \%$; (b) $182.000 \mathrm{U} \mathrm{CRL}, \mathrm{pH} 7$ aq. phosphate buffer solution, rt , $3 \mathrm{~d}, 31 \%$; (c) 182.000 U CRL, $\mathrm{EtOH} /$ hexane (1:55), rt, 1 month, no reaction observed; (d) Ohira-Bestmann reagent 56, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \mathrm{rt}, 82 \%\left(\alpha: \beta=1: 1\right.$); (e) $\mathrm{ArSO}_{2} \mathrm{Cl}, \mathrm{py}, 0{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}, 38 \%$; (f) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{DCM}, \mathrm{rt}, 1 \mathrm{~h}, 48 \%$; (g) TBSCl, AgNO_{3}, py, DMF, rt, 2 d, 17\%; (h) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{rt}, 1 \mathrm{~h}, 74 \%$ (d.r. $=1.25: 1$); (i) HF-py, THF, $0^{\circ} \mathrm{C}$ to rt, $4 \mathrm{~h}, 28 \%$; (j) $\mathrm{NaCN}, \mathrm{DMSO}, \mathrm{rt}$ to $80^{\circ} \mathrm{C}, 2 \mathrm{~d}$, quant.; (k) NaCN , DMA, rt to $80^{\circ} \mathrm{C}, 2 \mathrm{~d}$, quant.; (I) HCl in $\mathrm{MeOH}, \mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}(1: 1), 0^{\circ} \mathrm{C}$ to reflux, $4 \mathrm{~d}, 67 \%$ (d.r. = 1.5:1); (m) TosCl, TEA, 4-DMAP, DCM, rt, 16 h, $38 \%(\alpha: \beta=3.2: 1)$.

The epimeric mixture of alkyne 39c was the starting point for a number of investigations of different reaction pathways such as sulfonylation, reacetylation and TBS protection (anomers were not separated, Scheme 3.40).

Sulfonylation with a sterically hindered sulfonyl chloride ($\left.\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{2}(i-\mathrm{Pr})_{3}\right)$ according to a procedure for simple tosylates by Macmillan et al. ${ }^{140}$ and Koskinen et al. ${ }^{141}$ led to product 102a (Scheme 3.40). Sulfonate 102a was reprotected with acetic anhydride in the presence of boron trifluoride diethyl etherate (as reported by Sandoval-Ramírez et al. for alcoholic substrates in general ${ }^{142}$) giving sulfonate $\mathbf{1 0 2 b}$. The $S_{N} 2$ reaction of sulfonate $102 b$ with sodium cyanide in dimethylsulfoxide in analogy to precedents both for sugar derivatives ${ }^{143}$ as well as for sugar-related substrates ${ }^{144}$ resulted in the formation of nitrile 103a. This compound was then submitted to Pinner reaction conditions with hydrochloric acid in methanol reported by Ogawa et

[^38]al. for a glucose derivative with benzyl protecting groups. ${ }^{145}$ In our case, this led to product 103b as a result of cleaving the previously introduced acetyl groups.

Acetyl reprotection of tetrol 39c was possible by using the acetylation protocol with boron trifluoride diethyl etherate as before ${ }^{146}$ resulting in alkyne 39b (Scheme 3.40, Figure 3.15). Since further transformations were originally planned, reintroduction of the acetyl protecting groups was performed. As other synthetic approaches were found to be much more suitable (by the introduction of TBS protecting groups), acetyl-protected sugars (Scheme 3.37, Scheme 3.40) were not investigated any further.

Figure 3.15: X-Ray single crystal structure of alkynes 39c and epi-39b (numbering of atoms is arbitrary; colouring of atoms: carbon (grey), hydrogen (white), oxygen (red)).

In contrast, global TBS protection of tetrol 39c with TBSCI/silver nitrate was possible by the protocol by Kishi et al. ${ }^{147}$ giving rise to alkyne 39a (Scheme 3.40). Selective cleavage of the C6' TBS group by administering diluted Olah's reagent (hydrogen fluoride/pyridine) to 39a according to the procedure by Murphy et al. ${ }^{148}$ gave primary alcohol 57. This alcohol was sulfonylated by the

[^39]previously described protocols ${ }^{149}$ resulting in pure tosylate $\mathbf{1 0 4}$ (at this stage, the epimeric mixture could finally be separated by flash chromatography).

These selective C6' functionalizations led to useful observations either regarding the sulfonylation, the nucleophilic substitution with cyanide or the selective C6' TBS cleavage with Olah's reagent (hydrofluoric acid/pyridine). Based on the repetitive cleavage of the acetyl groups, TBS protection was deemed necessary. Furthermore, tosylate $\mathbf{1 0 4}$ seemed to be an attractive intermediate to access the aimed carboxylic acid (ester) 35 via its nitrile analogue.

3.3.2.2.3. \mathbf{C}_{1} Homologations At The C6' Terminus (Towards Carboxy Derivatives)

C6' tosylate 104 was isolated as a very stable and crystalline intermediate that is easily accessible by tosylation of primary alcohol 57 (Scheme 3.41, Figure 3.16). ${ }^{150}$ Therefore, it was an important entry into different approaches for the introduction of the required carboxy functionality at C6'.

Figure 3.16: X-Ray single crystal structure of tosylate 104 (hydrogen atoms not shown for better visibility, numbering of atoms is arbitrary; colouring of atoms: carbon (grey), oxygen (red), silicon (ivory), sulfur (yellow)).

[^40]2-TMS-thiazole is reported as a viable nucleophile for aldehydes ${ }^{151}$ and other electrophiles. ${ }^{152}$ The introduction of a thiazole unit as formyl anion equivalent ${ }^{153}$ via direct $S_{N} 2$ reaction of tosylate 104 with 2-TMS-thiazole was unsuccessful using conditions reported by Field et al. ${ }^{154}$ (Scheme 3.41).

Scheme 3.41: Attempts for the introduction of the ester functionality. Reagents and conditions: (a) TosCl, 4-DMAP, TEA, DCM, rt, $16 \mathrm{~h}, 98 \%$; (b) 4 eq. 2-TMS-thiazole, DMSO, $80^{\circ} \mathrm{C}$, 22 h , no reaction observed; (c) $10 \mathrm{~mol} \% \mathrm{NiBr}_{2} \cdot \mathrm{glyme}, \mathrm{CO}_{2}$ (balloon), 2.4 eq. Mn, $26 \mathrm{~mol} \%, \mathrm{DMF}, 7{ }^{\circ} \mathrm{C}, 22 \mathrm{~h}, 9 \%$ of 106, SM 104mainly recovered (90\%); (d) HC(SiMe) ${ }_{3}$, n-BuLi, DMPU, THF, $-78^{\circ} \mathrm{C}$ to $-50^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$ to $\mathrm{rt}, 1 \mathrm{~d}, 19 \%$ of 108.

Interestingly, Martin et al. reported the transformation of a simple primary aliphatic tosylate into the corresponding C_{1}-homologated carboxylic acid by a nickel-catalyzed carboxylation. ${ }^{155}$ With this report in mind, we planned to access carboxylic acid $\mathbf{1 0 7}$ directly from tosylate $\mathbf{1 0 4}$ via carbon dioxide insertion, but only observed the undesired formation of small amounts of bromide 106 (9\%) by the reaction of the nickel(II) bromide-based catalyst with tosylate 104 (Scheme 3.41). Most of the unreacted starting material 104 was recovered (90\%).

Another idea was the introduction of an orthothioester functionality resulting in intermediate $\mathbf{1 0 9}$ using methods described by Wipf et al. ${ }^{156}$ and Hiyama et al. ${ }^{157}$ (Scheme 3.41). In both reports, a primary alkyl trifluoromethanesulfonate or even a primary alkyl chloride underwent a $\mathrm{S}_{\mathrm{N}} 2$ reaction

[^41]with lithiated orthothioester 110. Unfortunately, such a nucleophilic substitution did not take place with tosylate 104. Instead, thioether 108 was isolated in 19% yield. This thioether was formed by the reaction of the orthothioester anion to thiomethyl anion 111 and carbene 112 which itself can dimerize to $\mathbf{1 1 3}$ as described by the groups of Seebach ${ }^{158}$ and Fochi. ${ }^{159}$

Knowing that the introduction of enolethers by the Wittig reaction on aldehyde 58 worked quite well (Chapter 3.3.1.2.4), enolether Z-59b was taken to investigate the transformation into aldehyde $\mathbf{1 1 4}$ (Scheme 3.42). Kobayashi et al. reported the reaction of an aromatic enolether into a benzylic aldehyde, making use of TMSCI and sodium iodide. ${ }^{160}$ In our case, this method was unsuccessful. Another method, described for a steroidal substrate by Strnad et al., made use of pyridinium p-toluenesulfonate (PPTS) as a catalyst and directly led from Z-59b to aldehyde $\mathbf{1 1 4}$ in 63% yield. ${ }^{161}$

Scheme 3.42: Further attempts to access the ester 35b. Reagents and conditions: (a) 1.1 eq. Nal, 0.9 eq. TMSCI, 3 Å MS, $\mathrm{MeCN},-18^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 30 \mathrm{~min}$, no reaction observed, SM $\mathrm{Z}-59 \mathrm{~b}$ recovered (quant.); (b) PPTS, acetone $/ \mathrm{H}_{2} \mathrm{O}$ (10:1), rt to $60^{\circ} \mathrm{C}, 17 \mathrm{~h}, 63 \%$; (c) $20 \mathrm{~mol} \%$ 1,4-dimethyl-4H-1,2,4-triazol-1-ium iodide, 5 eq. $\mathrm{MnO}_{2}, 1.1 \mathrm{eq}$. $\mathrm{DBU}, \mathrm{MeOH}, 3$ Å MS, DCM, rt, 17 h , decomposition; (d) i. 5.25 eq. $\mathrm{KOH}, \mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}, 5 \mathrm{~min}$; ii. $\mathrm{I}_{2}, 0^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$, decomposition; (e) $\mathrm{KHSO}_{5} \cdot 0.5 \mathrm{KHSO}_{4} \cdot 0.5 \mathrm{~K}_{2} \mathrm{SO}_{4}\left(\mathrm{OXONE}^{\oplus}\right), \mathrm{MeOH}$, rt, several hours, decomposition.

Our original plan was to convert aldehyde 114 (C_{1}-elongated intermediate) into ester 35b by an oxidation similar to the original Corey-Gilman-Ganem reaction (Scheme 3.42). ${ }^{162}$ Different protocols were tested, such as a modern version of this method published by Scheidt et al. ${ }^{163}$ and Studer et al. ${ }^{164}$ Making use of a triazolinium-based catalyst and maganese dioxide as the oxidant in alcoholic solution, we found that this protocol worked quite well on simple substrates (not shown). In contrast, aldehyde $\mathbf{1 1 4}$ did not undergo the attempted transformation.

[^42]Next, we envisioned to oxidize an in situ formed hemiacetal with iodine, which also did not result in the formation of ester 35b (Scheme 3.42). Another method tested on aldehyde 114, was the oxidation with $\mathrm{OXONE}^{\oplus}\left(\mathrm{KHSO}_{5} \cdot 0.5 \mathrm{KHSO}_{4} \cdot 0.5 \mathrm{~K}_{2} \mathrm{SO}_{4}\right)$ in an alcoholic solution as described by Borhan et al., ${ }^{165}$ but no conversion was observed.

Starting again from alcohol intermediate 57, it was investigated to directly form nitrile 115 (Scheme 3.43, Figure 3.17). This transformation was reported by a TMSCI-facilitated $\mathrm{S}_{\mathrm{N}} 2$ reaction with sodium cyanide or by the Mitsunobu reaction of alcohol 57 with acetone cyanohydrin.

Figure 3.17: X-Ray single crystal structure of nitrile $\mathbf{1 1 5}$ (hydrogen atoms not shown for better visibility, numbering of atoms is arbitrary; colouring of atoms: carbon (grey), oxygen (red), nitrogen (blue), silicon (ivory)).

The first procedure, reported by Untch et al., ${ }^{166}$ involved the in situ formation of a bis-TMS-substituted oxonium ion which then reacts with the cyanide anion. The Mitsunobu variant was reported for a variety of primary, as well as for secondary alcohols by Tsunoda et al. ${ }^{167}$ and Ricci et al. ${ }^{168}$ In fact, both pathways led to the expected product 115, but only in $12-40 \%$ yield (Scheme 3.43).

[^43]

Scheme 3.43: Further attempts to access other sugar-based carboxylic acid derivatives. Reagents and conditions: (a) $\mathrm{NaCN}, \mathrm{TMSCl}, 10 \mathrm{~mol} \% \mathrm{NaI}, \mathrm{DMF} / \mathrm{MeCN}(1: 1)$, rt to $60^{\circ} \mathrm{C}, 5 \mathrm{~h}, 12 \%$; (b) acetone cyanohydrin, DEAD, PPh_{3} 195a, THF/Et 2 O (1:2), $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 20 \mathrm{~h}, 40 \%$; (c) DIBAL, DCM, $-95^{\circ} \mathrm{C}$ to $-90^{\circ} \mathrm{C}, 40 \%$ of 114 , some SM 115 recovered (17\%); (d) 20 eq. $\left(\mathrm{HSiMe}_{2}\right)_{2} \mathrm{O}, 1$ eq. VO(Oi-Pr) $)_{3}, \mathrm{PhMe}, 6{ }^{\circ} \mathrm{C}, 18 \mathrm{~h}$, decomposition; (e) $3 \mathrm{~mol} \% \mathrm{Ru}\left(\mathrm{H}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$, 1,2-DME, $140^{\circ} \mathrm{C}, 22 \mathrm{~h}, 23 \%$; (f) [bmim] HSO_{4} (1-butyl-3-methylimidazolium hydrogensulfate), $70^{\circ} \mathrm{C}, 60 \mathrm{~h}$, no reaction observed, SM 115 not recovered.

Nevertheless, experiments were conducted to transform nitrile 115 into ester 35b either via previously shown aldehyde 114, or by the direct condensation with an alcohol under transition metal catalysis (Scheme 3.43). Applying di-i-butylaluminium hydride (DIBAL) for the reduction of nitrile $115,{ }^{169}$ gave aldehyde 114 in 40% yield, together with some unreacted starting material 115 (17%). Corey et al. had previously shown that DIBAL can be safely used with TBS-protected substrates. ${ }^{170}$ Due to the observed lack in reactivity with DIBAL, tempered analogues, as reported by An et al., ${ }^{171}$ were not used.

The vanadium-catalyzed transfer hydrogenation with a disiloxane according to Lemaire et al. ${ }^{172}$ only led to decomposition (Scheme 3.43).

A ruthenium-catalyzed condenstion of nitrile 115 with methanol, following general solvolysis procedures of nitriles by Murahashi et al. ${ }^{173}$ did not result in the desired ester 35b. Instead, alkyne 115 was reduced and isomerized to the undesired E-configured alkenyl product 116, whereas the nitrile functionality remained intact.

[^44]Moreover, Awasthi et al. had previously shown the transformation of aromatic nitriles into their corresponding carboxylic acids by simply heating them in an ionic liquid such as 1-butyl-3-methylimidazolium hydrogensulfate. ${ }^{174}$ We observed no reaction under these conditions (Scheme 3.43).

3.3.2.2.4. First Viable Introductions Of The Ester Functionality At C6'

We accessed tosylate 104 starting from alcohol 57 by the afore-mentioned methods (Scheme 3.44). ${ }^{175}$ Nitrile 115 was obtained through a subsequent $S_{N} 2$ reaction with sodium cyanide as described above. ${ }^{176}$ As direct reduction and alcoholysis of nitrile 115 did not yield any positive results (Scheme 3.43), we sought another method, such as its basic hydrolysis with aqueous hydrogen peroxide and sodium hydroxide as reported by Montero et al., for a fully unprotected sugar derivative. ${ }^{177}$ This procedure led to the formation of amide 117 in moderate but reproducible 70\% yield (Scheme 3.44).

Scheme 3.44: First successful route towards the alkyne 35b. Reagents and conditions: (a) TosCl, 4-DMAP, TEA, DCM, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 16 \mathrm{~h}, 98 \%$; (b) $\mathrm{NaCN}, \mathrm{DMSO}, \mathrm{rt}$ to $80^{\circ} \mathrm{C}, 16 \mathrm{~h}, 97 \%$; (c) aq. $\mathrm{H}_{2} \mathrm{O}_{2}(35 \%), \mathrm{NaOH}, \mathrm{EtOH}, \mathrm{rt}, 22 \mathrm{~h}, 70 \%$; (d) 1.3 eq. $\left[\mathrm{Me}_{3} \mathrm{OBF}_{4}\right], \mathrm{DCM}, \mathrm{rt}, 6 \mathrm{~h}$, degradation; (e) 5 eq. [$\left.\mathrm{Me}_{3} \mathrm{OBF}_{4}\right]$, 12 eq. PVP (poly(4-vinylpyridine)), DCM, rt, 1.5 h , starting decomposition, SM 117 mostly recovered (77\%); (f) DMF•DMA, MeOH, $65^{\circ} \mathrm{C}, 7 \mathrm{~d}, 30 \%$.

Amide 117 was then submitted to different conditions to perform the transformation into ester 35b (Scheme 3.44). First, we tried to access the corresponding imidoester 118 by

[^45]methylation. The use of Meerwein's salt on its own according to Ogawa et al. ${ }^{178}$ and Kocieński et al., ${ }^{179}$ or in the presence of poly(4-vinylpyridine) (PVP) as an additive according to De Brabander et al., ${ }^{180}$ resulted only in decomposition of our C-glucoside (due to the successive cleavage of its TBS groups).

Only after treatment of amide 117 with N, N-dimethylformamide dimethyl acetal in methanol (according to a precedent by Hansen et al. used for a sugar derivative as well ${ }^{181}$) could we obtain methyl ester 35b (Scheme 3.44). A major drawback was the 30% yield of this reaction, which we were unable to improve.

Nevertheless, this resulted in another pathway to alkyne building block 35b in ten steps starting from per-O-acetyl- α-D-glucopyranose (50) with an overall yield of roughly 3%.

Another way in which we were able to introduce an ester functionality into substrate 35 at its C6' position also started with alcohol 57 that was first submitted to an Appel reaction (Scheme 3.45). In analogy to reports by Isobe et al. ${ }^{182}$ and Jensen et al. ${ }^{183}$ on benzyl-protected sugars, this operation resulted in alkyl iodide 119 in 99% yield. ${ }^{184}$ lodide 119 was then submitted to a nickel-catalyzed reductive coupling of alkyl halides with chloroformates recently reported by Gong et al. ${ }^{185}$ The introduction of an i-butyl ester functionality starting with the corresponding i-butyl chloroformate and ending with 35c succeeded with 25% yield. Therefore, a second pathway to alkyne 35 in eight steps starting from per-O-acetyl- α-D-glucopyranose (50) with an overall yield of roughly 4\% was found.

[^46]

Scheme 3.45: Reductive cross coupling for the introduction of the ester functionality and ligand synthesis. Reagents and conditions: (a) $\mathrm{I}_{2}, \mathrm{PPh}_{3}$ 195a, $\mathrm{PhH}, \mathrm{rt}, 1 \mathrm{~h}, 99 \%$; (b) i-butyl chloroformate, $5 \mathrm{~mol} \% \mathrm{Ni}(\mathrm{COD})_{2}, 5 \mathrm{~mol} \%$ ligand 121, Zn , $50 \mathrm{~mol} \% \mathrm{TBAI}, 4$ Å MS, DMA/THF (7:3), rt, $20.5 \mathrm{~h}, 25 \%$; (c) chloroformate $\mathbf{1 2 3 ,} 5 \mathrm{~mol} \% \mathrm{Ni}(C O D)_{2}, 5 \mathrm{~mol} \%$ ligand 121, Zn , $50 \mathrm{~mol} \% \mathrm{TBAI}, 4 \AA \mathrm{MS}, \mathrm{DMA} / \mathrm{THF}$ (7:3), rt, several hours, decomposition; (d) 1,2-ethylene diamine, t-BuNC, $10 \mathrm{~mol} \% \mathrm{dppp}$ (bis(1,3-diphenylphosphino)-propane), $5 \mathrm{~mol} \% \mathrm{PdCl}_{2}, \mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{PhMe}, 120^{\circ} \mathrm{C}, 3 \mathrm{~d}, 51 \%$; (e) phosgene, PhMe, $0^{\circ} \mathrm{C}, 3 \mathrm{~h}, 48 \%$.

The ligand 121, essential for the nickel-catalyzed reductive coupling, was prepared according to a procedure by Himeda et al., ${ }^{186}$ but proved to be unstable over the course of a few months (Scheme 3.45). Furthermore, the reductive coupling proved to be very dependant on the catalyst loading. A catalyst loading of $5 \mathrm{~mol} \%$ was found to be most useful, since lower amounts ($2 \mathrm{~mol} \%$) did not result in any reductive coupling, while higher catalyst loadings ($10-90 \mathrm{~mol} \%$) led to decomposition of the starting materials. Literature-known chloroformate 123, prepared according to a procedure by Gerlach et al., ${ }^{187}$ finally proved to be unsuitable for the reductive coupling since this resulted in decomposition. In contrast to the i-butyl derivative 35c TMS-ethyl ester 35a was not directly accessible by this method.

In summary, two successful routes to access the sugar-based fragment $\mathbf{3 5}$ are herein described. Because both pathways had specific drawbacks (low yield, undesired i-butyl ester, difficulty with catalyst loading), the direct PCC oxidation of enolether 59 into ester 35 was used to secure material supply as necessary for the total synthesis (Chapter 3.3.1.2.5).

[^47]
3.3.2.3. Building Block Coupling \& Elaboration

Regarding the low yielding alkynylation of the sugar-derived aldehydes described earlier (Chapter 3.3.1.3.2), a different fragment coupling strategy was considered.

3.3.2.3.1. Nozaki-Hiyama-Kishi Coupling \& Related Alkenyl-Zinc Additions

Instead of the addition of alkynes to aldehydes, we envisaged the use of a Nozaki-Hiyama-Kishi coupling (NHK) or a related coupling with an alkenyl-zinc species (Scheme 3.46). This leads back to the exact same aldehyde 34 and a new alkenyl iodide 124 or an alkenyl-zinc species 125.

Scheme 3.46: Alternative disconnection approach by NHK or related B/Zn-mediated cross coupling.
Based on this central NHK disconnection (Scheme 3.46), we planned to synthesize alkenyl iodide 124a starting from alkyne 35b (Scheme 3.47). Alkyne 35b was submitted a hydrozirconation reported by Johnson et $a l$. in the total synthesis of alternaric acid ${ }^{188}$ and by our group in the total synthesis of 16 -epi-latrunculin B^{189} for ester-bearing substrates. In this short sequence, the Schwartz reagent reacts with the alkyne 35b to give an alkenyl-zirconium species. As planned, reaction with iodine gave the desired alkenyl iodide $\mathbf{1 2 4 a}$, although in only 33% yield.

[^48]

Scheme 3.47: Synthesis of the attempted NHK precursor. Reagents and conditions: (a) i. $\mathrm{Cp}_{2} \mathrm{ZrHCl}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$; ii. $\mathrm{I}_{2}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}, 53 \%$; (b) 1 eq. cyclopentanecarbaldehyde, $10 \mathrm{~mol} \% \mathrm{CrCl}_{2} \cdot \mathrm{THF}, 2 \mathrm{~mol} \% \mathrm{NiCl}_{2}, 25 \mathrm{~mol} \% \mathrm{BnBu}_{3} \mathrm{NCl}$, 2 eq.LiCl, 2 eq. Mn, 2 eq. TMSCI, THF, rt, 7 d, no reaction observed, SM 124a mainly recovered (66\%)

The obtained alkenyl iodide 124a was submitted to a ligand-free NHK reaction according to a procedure used by our group during an approach to the higher sugar core of hikizimycin, ${ }^{190}$ but the attempted product 126 could not be obtained (Scheme 3.47). Most of the unreacted starting material 124a was recovered (66\%).

Since the reaction towards alkenyl iodide 124a was low-yielding and a ligand-free version of the NHK reaction did not result in product formation, we did not proceed any further. For the coupling of our fragments, we focused on the alkynylation strategy with zinc(II) trifluoromethanesulfonate and N-methylephedrine, since it was already giving access to the desired material 33 (> 100 mg), and thus was to be optimized.

[^49]
3.3.3. Interim Summary

Auxiliary-based chemistry, in combination with CBS reduction and an aerobic oxidative Mukaiyama cyclization, was used to forge the 2,5-trans-disubstituted tetrahydrofuran ring 34 (Scheme 3.48). Starting from ($1 R, 2 R$)-pseudoephedrine 41, this goal was accomplished in six steps with an overall yield of 18%.

Alkyne 35 was accessed from per-O-acetyl- α-D-glucopyranose (50) in nine steps with an overall yield of $13-17 \%$ (Scheme 3.48). Initial C-glycosidation and a sequence of ozonolysis and Seyferth-Gilbert homologation introduced the alkynyl side chain. A Wittig olefination at the C6' terminus made different esters available such as the TMS-ethyl (35a) and the methyl ester (35b). In contrast, preliminary studies showed, that the corresponding i-butyl ester derivative 35c could be synthesized via a nickel-catalyzed reductive cross coupling with a chloroformate.

Scheme 3.48: First synthetic route to western belizentrin fragment 79. Reagents and conditions: as shown before.
The obtained fragments were coupled by a stereoselective alkynylation giving propargylic alcohol 33 in 21-25\% yield (Scheme 3.48). For the aimed trans-selective hydrostannation, only the TIPS-capped substrate 33b was a useful candidate due to its sterically protected second alkyne moiety. Protodestannation proceeded cleanly to give rise to desired allylic alcohol 32b.

A major drawback arose during the osmium-promoted dihydroxylation. Under all conditions investigated, the same distinct diastereomer of 79 was formed as the major product. Neither Sharpless dihydroxylation nor the conditions described by Donohoe reversed this selectivity. Unfortunately, the stereochemical outcome could not be elucidated at this point, leaving undetermined which of the diastereomers was preferred. Nevertheless, the reaction sequence
(14 steps LLS, ca. 1\%) provided a first tiny crop of both globally protected diastereomers of triol 79.

In light of these results, the originally envisioned central alkynylation of both belizentrin fragments 79 and $\mathbf{3 0}$ seemed unsuitable for the completion of the natural product $\mathbf{1 8}$ or its congeners 19 or 20. Thus we considered a first retrosynthetic revision, while maintaining most of the major transformations for the introduction of the triol motif.

3.4. First Retrosynthetic Revision

In order to synthesize belizentrin (18) in a more convergent manner without major changes to the single parts, the molecule was disconnected at the central E-configured double bond (Scheme 3.49). A Julia-Kocienski olefination retron led back to western side chain 127 bearing the required tetrazolylsulfone and an eastern macrocyclic aldehyde 128.

Scheme 3.49: New retrosynthetic analysis of belizentrin (18).
The western belizentrin fragment $\mathbf{1 2 7}$ should be approached by maintaining an osmium-catalyzed dihydroxylation giving rise to allylic alcohol 128 (Scheme 3.50). In order to obtain the allylic alcohol 128, we wanted to make use of our in house-developed methodology of the ruthenium-catalyzed trans-hydrostannation originating from propargylic alcohol substrate 129. Propargylic alcohol 129 was disconnected at the α-position via an aldehyde alkynylation, requiring aldehyde $\mathbf{1 3 0}$ and the unmodified alkyne $\mathbf{3 5}$.

Scheme 3.50: New retrosynthetic analysis of the western belizentrin fragment 127.
The retrosynthetic analysis of aldehyde $\mathbf{1 3 0}$ started with simple functional group interconversions (Scheme 3.51). It was aimed to introduce the tetrazolylsulfone group by a reduction and Mitsunobu inversion at the terminus, bringing forth the functionalized 2,5-trans-disubstituted
tetrahydrofuran ring 130. The major disconnection of the five-membered ring 131 was a ring-closing Michael addition. The necessary α, β-unsaturated ketone was disconnected by a Wittig olefination, resulting in lactone $\mathbf{1 3 2}$ after a functional group interconversion from the corresponding lactol.

Scheme 3.51: New retrosynthetic analysis of the 2,5-trans-disubstituted ether 130.
A final α-methylation (and the inversion of this methyl group), as well as preliminary diazotization were pointing to L-glutamic acid $((S)$-10) as the commercial starting point of the synthesis (Scheme 3.51).

3.5. Western Belizentrin Fragment - Route 2

3.5.1. Successful Synthetic Route

3.5.1.1. The 2,5-trans-Disubstituted Tetrahydrofuran Ring - A New Synthesis

3.5.1.1.1. From L-Glutamic Acid To The 2,5-trans-Disubstituted Tetrahydrofuran Core

The new synthesis is based on a literature known pathway for the enantiomer of 2,5-trans-disubstituted ether 131a involved in the total synthesis of amphidinolides C and F published by our group (Scheme 3.52). ${ }^{191}$ The sequence started with the diazotization of L-glutamic acid ((S)-10) at low temperature according to a large scale synthesis of (S)-134 reported by Chorghade et al. ${ }^{192}$ and Rouessac et al. ${ }^{193}$

During the reaction, the three-membered lactone $(R)-135$ was first generated by the intramolecular $S_{N} 2$ reaction of in situ formed diazo compound $(S)-133$ with the more proximate carboxylic acid under inversion (Scheme 3.52). After nucleophilic attack of the second carboxylic acid of (R)-135 on its three-membered lactone cycle ($\mathrm{S}_{\mathrm{N}} 2$ again) the new five-membered lactone $(S)-134$ was generated. This sequence explains the overall retention of the configuration at the stereocentre.

Scheme 3.52: Synthesis of the 2,5-trans-disubstituted ether 130, Part A. Reagents and conditions: (a) NaNO_{2}, conc. aq. $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 1 \mathrm{~d}, 79 \%$; (b) $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 18 \mathrm{~h}, 69 \%$; (c) $\mathrm{TrtCl}, \mathrm{py}, \mathrm{rt}, 16 \mathrm{~h}, 73 \%$; (d) DIPA, n-BuLi, Mel, $4 \AA \mathrm{MS}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$ to $-30^{\circ} \mathrm{C}, 4.5 \mathrm{~h}, 99 \%$.

[^50]The synthesis was accomplished according to the procedure by Fürstner et al. for the enantiomer of 131a unless otherwise stated (Scheme 3.52)..194 The carboxylic acid side chain of lactone (S)-134 was reduced with borane dimethylsulfide to generate the corresponding alcohol (S)-132a. Tritylation of (S) - $\mathbf{1 3 2 a}$ led to protected lactone $(S)-\mathbf{1 3 2 b}$, which was α-methylated giving rise to lactone 136 (Figure 3.18).

Figure 3.18: X-Ray single crystal structure of lactones $(S)-132 b$ and 136 (atom numbering is arbitrary; colouring of atoms: carbon (grey), hydrogen (white), oxygen (red)).

The methyl group of intermediate 136 was inverted by deprotonation in α-position with LDA and reprotonation during the work-up (Scheme 3.53, Figure 3.19). The lactone functionality of 137 was reduced, using di-i-butylaluminium hydride (DIBAL) resulting in a diastereomeric mixture of lactol 138. After Wittig olefination of hemiacetal 138, secondary alcohol 139 was obtained. Subsequent intramolecular 1,4-addition of the hydroxy group to the enone functionality of $\mathbf{1 3 9}$ resulted in the 2,5-trans-disubstituted ether 131a (ent-131a is literature known) (Figure 3.19).

Scheme 3.53: Synthesis of the 2,5-trans-disubstituted ether 130, Part B. Reagents and conditions: (a) DIPA, n-BuLi, THF, $-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, $45 \mathrm{~min}, 96 \%$; (b) DIBAL, DCM, $\mathrm{PhMe},-78^{\circ} \mathrm{C}, 3 \mathrm{~h}, 98 \%$; (c) $\mathrm{Ph}{ }_{3} \mathrm{P}=\mathrm{CH}-\mathrm{COOEt}, \mathrm{PhMe}$, rt to $80^{\circ} \mathrm{C}, 17 \mathrm{~h}$, 69%; (d) TBAF $3 \mathrm{H}_{2} \mathrm{O}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 3 \mathrm{~h}, 82 \%$; (e) $\mathrm{LiAlH}_{4}, \mathrm{THF},-20^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 2.25 \mathrm{~h}$, quant.

[^51]The ester group of 131a was reduced to the corresponding alcohol 140 with lithium aluminium hydride according to a literature precedent by Noyori et al. on a tritylated ribose derivative (Scheme 3.53). ${ }^{195}$

Figure 3.19: X-Ray single crystal structure of lactone 137 and 2,5-trans-disubstituted ether 131a (atom numbering is arbitrary; colouring of atoms: carbon (grey), hydrogen (white), oxygen (red)).

[^52]
3.5.1.1.2. Introduction Of The Tetrazolylsulfone

Primary alcohol 140 was submitted to a Mitsunobu reaction with 1-phenyl-1H-tetrazole-5-thiol 168 in analogy to the procedures for similar substitutions by Wicha et al. ${ }^{196}$ and Helmchen et al. ${ }^{197}$ (Scheme 3.54). This resulted in sulfide intermediate 141, ${ }^{198}$ which was subsequently oxidized to the corresponding sulfone 142a based on another literature precedent by Bera et al. for a comparable aliphatic substrate. ${ }^{199}$

Scheme 3.54: Synthesis of the 2,5-trans-disubstituted ether 130, Part C. Reagents and conditions: (a) 1-phenyl-1H-tetrazole-5-thiol 168, DIAD, $\mathrm{PPh}_{3} 195 \mathrm{a}, \mathrm{THF}, \mathrm{O}^{\circ} \mathrm{C}$ to $\mathrm{rt}, 17 \mathrm{~h}, 87 \%$; (b) $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, aq. $\mathrm{H}_{2} \mathrm{O}_{2}(35 \%), \mathrm{EtOH}, \mathrm{rt}, 5 \mathrm{~d}, 71 \%$; (c) m-CPBA, DCM, rt, 1 d , quenched cautiously, 67%; (d) TFA, DCM, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 98 \%$; (e) i. $(\mathrm{COCI})_{2}, \mathrm{DMSO}, \mathrm{DCM},-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$; ii. DIPEA, $-78^{\circ} \mathrm{C}$ to $\mathrm{rt}, 1 \mathrm{~h}, 94 \%$.

Compound 142a was detritylated by the treatment with TFA regarding a procedure by Xie et al. on tritylated sugar derivatives ${ }^{200}$ resulting in primary alcohol 142b (Scheme 3.54). The synthesis sequence was completed by the oxidation of the obtained alcohol 142 b to aldehyde 130 under Swern conditions according to a report by Mohapatra et al. for another 2,5-trans-disubstituted ether derivative. ${ }^{201}$ Thus, the new building block 130 was obtained in 13 steps with an overall yield of 12%.

[^53]
3.5.1.2. Building Block Coupling \& Elaboration

3.5.1.2.1. Aldehyde Akynynlation

For fusing the alkyne 35 with the 2,5-trans-disubstituted ether 130, we still relied on the zinc-mediated aldehyde alkynylation (Scheme 3.55). ${ }^{202}$

* with $4 \AA$ MS in reaction vessel
** $\mathrm{Zn}(\mathrm{OTf})_{2}$ dried for 5 h at $120^{\circ} \mathrm{C}$ at HV ;
no MS in reaction, only for prior drying of SM 35 and 130
*** isolated as a result of incomplete oxidation of thiol 141; enrichment during subsequent transformations

Scheme 3.55: Fragment coupling. Reagents and conditions: (a) $\mathrm{Zn}(\mathrm{OTf})_{2}, \mathrm{~L}^{*}$, TEA or DIPEA, PhMe, rt, yield and reaction time as shown.

The coupling resulted in the stereoselective formation of both diastereomers 129 and epi-129 by using the two different enantiomers of N-methylephedrine (Scheme 3.55). The yields ranged between $18-31 \%$. When zinc(II) trifluoromethanesulfonate was especially dried prior to its use ($200{ }^{\circ} \mathrm{C}$ under high vacuum for 5 h) and molecular sieves was not present during the reaction, the yield did not increase (from 19-26\%). Besides, undesired thioether 144 was isolated as a byproduct, originating from the incomplete oxidation of thioether 141 to sulfone 142 a in small amounts (5-6\%, Scheme 3.54).

[^54]
3.5.1.2.2. Alkene-To-Alkyne-Tranformation

Subsequently, we performed the trans-selective ruthenium-catalyzed hydrostannation on the propargylic alcohol diastereomers 129 and epi-129 (Scheme 3.56). ${ }^{203}$ The main difference to the previous investigation on the trans-hydrostannation (Chapter 3.3.1.3.3) lied within the newly introduced sulfonic side chain instead of a second alkyne moiety. Therefore, we hoped for an intrinsically higher selectivity.

Scheme 3.56: trans-Hydrostannation. Reagents and conditions: (a) $10 \mathrm{~mol} \%\left[\mathrm{Cp}^{*} \mathrm{RuCl}\right]_{4}, n-\mathrm{Bu} 3 \mathrm{SnH}, 4 \AA \mathrm{MS}, \mathrm{DCM},-50^{\circ} \mathrm{C}$ to rt to $-50^{\circ} \mathrm{C}, 30 \mathrm{~min}$, yield and selectivity as shown.

When the trans-hydrostannation was performed on propargylic alcohol $\mathbf{1 2 9}$ with the tetrameric ruthenium catalyst $\left[\mathrm{Cp}^{*} \mathrm{RuCl}_{4}\right.$, we observed the exclusive formation of the stannane $E-145$. When the diastereomeric propargylic alcohol epi-129 was used, epi-E-145 was formed as the major product of the reaction with an E / Z selectivity of $6.6: 1$ (Scheme 3.56). The $\alpha: \beta$ selectivity was not determined, since subsequent protodestannation was planned. In both cases, a complete conversion could not be reached and starting material $\mathbf{1 2 9}$ or epi-129 was partially recovered (18-21\%).

[^55]

Scheme 3.57: Protodestannation in a biphasic mixture under PTC. Reagents and conditions: (a) aq. $\mathrm{HI}(57 \%)$, TBAI, PhMe, $0^{\circ} \mathrm{C}, 4 \mathrm{~h}$, yield as shown; (b) aq. $\mathrm{HI}(57 \%)$, TBAI, PhMe, $0^{\circ} \mathrm{C}, 6 \mathrm{~h}, 98 \%$.

Stannane 145 was submitted to the previously described conditions for the protodestannation with aqueous hydroiodic acid under phase transfer catalysis (PTC, Scheme 3.57) to give the allylic alcohol 146 in 98%-quant. yield. ${ }^{204}$

3.5.1.2.3. Sharpless Dihydroxylation

With allylic alcohol 146 accessible, we were able to perform the osmium-promoted dihydroxylation to install the central triol motif of the western belizentrin fragment $\mathbf{1 2 7}$ (Scheme 3.58, Scheme 3.59).

Sharpless dihydroxylation of allylic alcohol epi-E-146 with different ligands gave both diastereomeric triols 147 and 148 in acceptable selectivities ranging between 2.7:1 and 1:1.7 (Scheme 3.58). ${ }^{205}$ Ligand control was achieved with this particular substrate. This was in stark contrast to the dihydroxylation previously described for the alkyne-bearing substrate 32b, where one diastereomer was preferentially formed in all cases investigated (Scheme 3.25).

[^56]

Scheme 3.58: Ligand screening for the Sharpless dihydroxylation of the allylic alcohol epi-E-146. Reagents and conditions: (a) $40 \mathrm{~mol} \% \mathrm{~K}_{2} \mathrm{OsO}_{4}, 100 \mathrm{~mol} \% \mathrm{~L}^{*}, \mathrm{MeSO}_{2} \mathrm{NH}_{2}, \mathrm{~K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right], \mathrm{K}_{2} \mathrm{CO}_{3}, t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1), 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 21 \mathrm{~h}, 80 \%$ (for both diastereomers) and some recovered SM epi-E-146 (8\%).

In parallel, desired diastereomer E-146 was also prepared and tested in the osmium-promoted Sharpless dihydroxylation ${ }^{206}$ and under Donohoe conditions ${ }^{207}$ (Scheme 3.59).

In this case, however, the use of different chiral ligands resulted in the formation of the same major isomer (Scheme 3.59). No matter which pseudoenantiomeric ligand L* was used, the stereoselectivities ranged between 7:1 and 9.3:1 in favour of the undesired triol 149 (stereochemical assignment shown in Chapter 3.5.1.3 and Chapter 3.7.1.3).

Scheme 3.59: Ligand screening for the Sharpless dihydroxylation of the allylic alcohol $E-146$ and dihydroxylation under Donohoe conditions. Reagents and conditions: (a) $10 \mathrm{~mol}_{\mathrm{K}} \mathrm{K}_{2} \mathrm{OsO}_{4}, 12.5 \mathrm{~mol} \% \mathrm{~L}^{*}, \mathrm{MeSO}_{2} \mathrm{NH}_{2}, \mathrm{~K} 3\left[\mathrm{Fe}(\mathrm{CN})_{6}\right], \mathrm{K}_{2} \mathrm{CO}_{3}$, t - $\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1), 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 1 \mathrm{~d}, 40 \%$ (for both diastereomers) and recovered $\mathrm{SM} E-146$ (47%); (b) i. 2.1 eq. OsO S_{4}, 2.2 eq. TMEDA, $D C M,-78^{\circ} \mathrm{C}, 80 \mathrm{~min}$; ii. 40 eq. 1,2-ethylene diamine, $-78^{\circ} \mathrm{C}$ to $\mathrm{rt}, 2 \mathrm{~d}$, stable adduct was not cleaved; then 96 eq. $\mathrm{NaHSO}_{5}, \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 20 \mathrm{~min}$, decomposition.

An experiment applying the conditions decribed by Donohoe et al. with $\mathrm{OsO}_{4} \cdot \mathrm{TMEDA}$ looked promising, since the thin-layer chromatogram (TLC) clearly showed the formation of a new product and the complete consumption of the starting material $E-146$. The major drawback was

[^57]the unexpectedly high stability of this adduct primarily formed. A typical work-up procedure with 1,2-ethylenediamine did not achieve the cleavage of this intermediate, even after several hours. Administering additional sodium sulfite (typically used for the work-up of Sharpless dihydroxylations) did also not result in any of the desired triols 149 or 150 a, but led to decomposition.

Since such a behavior was not observed with allylic alcohol 32b, we concluded that the tetrazole sulfone moiety present in the molecule could be a problem in the presence of stoichiometric amounts of osmium(VIII) tetroxide due to its coordinating properties. The structure of this very stable adduct remained unclear, and thus no further experimentation was undertaken.

3.5.1.3. Stereochemical Elucidation

Mosher ester analysis ${ }^{208}$ was applied to some of the isolated allylic and propargylic alcohols to determine the absolute configuration of newly introduced stereocentres. All Mosher esters shown herein were prepared and structurally elucidated according to procedures of Kakisawa et al. ${ }^{209}$ and Hoye et al. ${ }^{210}$

Several attempts were undertaken to elucidate the stereochemical configuration of the triol motif by crystallization. Furthermore, cyclic carbonate derivatives of different triols were prepared for the structural elucidation by NMR.

3.5.1.3.1. Mosher Ester Analysis (Propargylic Alcohols)

As briefly mentioned earlier (Chapter 3.5.1.1.2), incomplete oxidation of sulfide 141 to sulfone 142a (Scheme 3.54) led to the enrichment of an undesired thioether byproduct during the subsequent steps. It could be isolated in small amounts as thioether-bearing alcohol 144 at the stage of the alkynylation (Scheme 3.55).

This undesired, yet very elaborated byproduct was submitted to Mosher ester analysis resulting in esters 151 and epi-151 (Scheme 3.60). Thereby, it was a valuable indication of the (S)-configured stereocentre at C-11 correctly installed during the alkynylation in the presence of (+)-N-methylephedrine.

151

144
b)

Scheme 3.60: Preparation of Mosher esters of propargylic alcohol 144a. Reagents and conditions: (a) (R)-Mosher acid chloride, py, DCM, rt, 20.5 h, 97\%; (b) (S)-Mosher acid chloride, py, DCM, rt, 20.5 h, 78\%.

[^58]We also prepared Mosher esters 152 and epi-152 starting from propargylic alcohol 129a (Scheme 3.61). The assumed (S)-configuration of stereocentre $\mathrm{C}-11$ could be confirmed as well by comparative analysis.

Scheme 3.61: Preparation of Mosher esters of propargylic alcohol 129a. Reagents and conditions: (a) (R)-Mosher acid chloride, py, DCM, rt, 3 d, 98%; (b) (S)-Mosher acid chloride, py, DCM, rt, 3 d, 98%.

3.5.1.3.2. Mosher Ester Analysis (Allylic Alcohols)

The allylic alcohol E-146 was converted into the corresponding Mosher esters 153 and epi-153 (Scheme 3.62). Their analysis revealed the correctly installed (S)-configured stereocentre at C-11 of allylic alcohol $E-146$ originating from the alkynylation in the presence of $(+)-N$-methylephedrine.

Scheme 3.62: Preparation of Mosher esters of allylic alcohol E-146. Reagents and conditions: (a) (R)-Mosher acid chloride, py, DCM, rt, $25 \mathrm{~h}, 98 \%$; (b) (S)-Mosher acid chloride, py, DCM, rt, $25 \mathrm{~h}, 98 \%$.

Mosher ester analysis was also performed with the allylic alcohol epi-Z-146, thus confirming the assumed (R)-configuration of its stereocentre at $\mathrm{C}-11$, originating from the use of $(-)-N$-methylephedrine during the alkynylation (Scheme 3.63).

Scheme 3.63: Preparation of Mosher esters of allylic alcohol epi-Z-146. Reagents and conditions: (a) (R)-Mosher acid chloride, py, DCM, rt, 3 d, 90%; (b) (S)-Mosher acid chloride, py, DCM, rt, $2 \mathrm{~d}, 90 \%$.

3.5.1.3.3. Tris-Nitrobenzoic Acid Esters For Crystallization

We wanted to unveal the absolute configuration of triols 147 and 148 by crystallization. It is known in the literature that benzoic acid derivatives often crystallize well due to π-stacking interactions. According to a literature precedent for such an esterification on TBS-protected substrates by Ohfune et al., ${ }^{211}$ we prepared both tris-nitrobenzoic acid esters 155 and 156 (Scheme 3.64).

147

155

Scheme 3.64: Preparation of the tris-nitrobenzoic acid esters of triols 147 and 148. Reagents and Conditions: (a) p-nitrobenzoic acid, EDC•HCl, 4-DMAP, DCM, rt, $4 \mathrm{~d}, 79 \%$; (b) 15 eq. $\mathrm{NaN}_{3}, \mathrm{MeOH}, 40{ }^{\circ} \mathrm{C}, 4 \mathrm{~d}$, triol deprotection and degradation of sulfone side chain, product remained unknown; ${ }^{212}$ (c) p-nitrobenzoic acid, EDC•HCl, 4-DMAP, DCM, rt, 21 h, 95\%.

Crystallization studies using different solvents (pentane, benzene, etc.) at low temperature or by slow solvent evaporation remained unsuccessful.

[^59]
3.5.1.3.4. Cyclic Carbonates \& nOe Signal Correlations

Another attempt to obtain triol derivatives suitable for crystallization led to an unexpected, yet very fortunate result. An attempt to derivatize e.g. triol 148 as its corresponding p-nitrobenzoic acid amide by the use of p-nitrophenyl isocyanate according to Carreira et al., ${ }^{213}$ led to the formation of different regioisomers 157 and 158 of a mixed carbamate/carbonate (Scheme 3.65).

Scheme 3.65: Structure and nOe correlation of cyclic carbonates 157 and 158. Reagents and conditions: (a) p-nitrophenyl isocyanate, TEA, DCM, rt, $5 \mathrm{~d}, 93 \%$ (d.r. = 3:5).

Figure 3.20: Calculated 3D model of cyclic carbonate 158 based on MM2 optimization with Chem3D (total energy: $241 \mathrm{kcal} / \mathrm{mol}$), measured distance between $\mathrm{H}-10$ and $\mathrm{H}-12$: $2.4 \AA$ (atom numbering is arbitrary; colouring of atoms: carbon (grey), hydrogen (white), oxygen (red), nitrogen (blue), silicon (lilac), sulfur (yellow)).

[^60]Reasoning that the new five-membered carbonate ring introduced a certain degree of rigidity into the molecule, analysis of nOe signal correlations should allow the absolute configuration present within the triol motif to be unveiled.

As a result, we synthesized two more mixtures of the regioisomeric carbonates 159 and 160 (Scheme 3.66) and their diastereomeric congeners $\mathbf{1 6 1}$ and $\mathbf{1 6 2}$ (Scheme 3.67).

Scheme 3.66: Structure and nOe correlation of cyclic carbonates 159 and 160. Reagents and conditions: (a) p-nitrophenyl isocyanate, TEA, DCM, rt, $48 \mathrm{~h}, 50 \%$ (d.r. = 14:1).

Figure 3.21: Calculated 3D model of cyclic carbonate 160 based on MM 2 optimization with Chem3D (total energy: $230 \mathrm{kcal} / \mathrm{mol}$), measured distance between $\mathrm{H}-10$ and $\mathrm{H}-12: 3.7 \AA$ (atom numbering is arbitrary; colouring of atoms: carbon (grey), hydrogen (white), oxygen (red), nitrogen (blue), silicon (lilac), sulfur (yellow)).

Scheme 3.67: Structure and nOE correlation of cyclic carbonates 161 and 162. Reagents and conditions: (a) p-nitrophenyl isocyanate, TEA, DCM, rt, $5 \mathrm{~d}, 84 \%$ (d.r. $=2: 5$).

Figure 3.22: Calculated 3D model of cyclic carbonate 162 based on MM 2 optimization with Chem3D (total energy: $349 \mathrm{kcal} / \mathrm{mol}$), measured distance between $\mathrm{H}-10$ and $\mathrm{H}-12$: $2.5 \AA$ (atom numbering is arbitrary; colouring of atoms: carbon (grey), hydrogen (white), oxygen (red), nitrogen (blue), silicon (lilac), sulfur (yellow)).

The substitution patterns of each component of the three regioisomeric mixtures were determined by extensive examination of their 2D NMR spectra. Careful interpretation of ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{COSY},{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HSQC}$ and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$ cross peaks led to the complete assignment of the regioisomers. For example, the HMBC cross peaks of either $\mathrm{H}-9$ and $\mathrm{H}-10$ or $\mathrm{H}-10$ and $\mathrm{H}-11$ to the
carbonate carbon atom and the one of $\mathrm{C}-11$ or $\mathrm{C}-9$ to the carbamate carbon atom (dependant on the distinct regioisomer) were valuable evidence for the assigned connectivity.

3D conformational analysis was mainly based on measured ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{NOESY}$ data. For the carbonates 157, 159 and 161 it did neither make sense to investigate their ${ }^{1} \mathrm{H}$ coupling constants nor their nOe signal correlation due to the fact that the carbonate cycle only attached the two hydroxy groups at C-9 and C-10, simultaneously formed by dihydroxylation. Only ${ }^{1} \mathrm{H}$ coupling constants and nOe signal correlations of carbonates $\mathbf{1 5 8}, \mathbf{1 6 0}$ and $\mathbf{1 6 2}$ were of further interest, due to the connection of the preinstalled hydroxy group at $\mathrm{C}-11$ with the one at $\mathrm{C}-10$, newly introduced during the dihydroxylation.

Unfortunately ${ }^{1} \mathrm{H}$ coupling constants were ambiguous, since their magnitude was neither confirming a cis- nor a trans-configuration. A plausible explanation could be a twisted five-membered ring. Therefore, we were focusing on the nOe signal correlations observed by NMR.

3D models of carbonates 158,160 and 162 (generated by MM2 optimization with Chem3D) show the approximate distances between the hydrogen atoms in question of an observable nOe interaction, such as between $\mathrm{H}-10$ an $\mathrm{H}-12$ (Figure 3.20, Figure 3.21, Figure 3.22).

According to these models, nOe correlations between proton $\mathrm{H}-10$ and $\mathrm{H}-12$ in the cases of carbonates $\mathbf{1 5 8}$ and $\mathbf{1 6 2}$ (Scheme 3.65, Scheme 3.67) were very likely, regarding the calculated approximate proton distances of $2.4 \AA$ Aor carbonate 158 and $2.5 \AA$ for carbonate $\mathbf{1 6 2}$. In fact, such nOe correlations were experimentally observed.

In contrast, a nOe interaction between $\mathrm{H}-10$ and $\mathrm{H}-12$ was unlikely for carbonate $\mathbf{1 6 0}$ regarding the approximated proton distance of $3.7 \AA$ between $\mathrm{H}-10$ and $\mathrm{H}-12$. Indeed, the measured spectra lacked any cross peaks, and thus underlined this assumption.

Based on these results, we had reason to believe in the consistent assignment of the two stereocentres at C-9 and C-10 in question. Later on, this was confirmed by another even more definite approach (Chapter 3.7.1.3).

3.5.2. Investigations On Alternative Pathways

3.5.2.1. The 2,5-trans-Disubstituted Tetrahydrofuran Ring

3.5.2.1.1. Introduction Of The Tetrazolylsulfone Via Alkene Cross Metathesis (CM)

Since the direct auxiliary displacement could be performed with nucleophiles ${ }^{214}$ such as lithiated propyne (Chapter 3.3.1.1.1), we sought to introduce an alkene substituent instead (Scheme 3.68).
α, β-Unsaturated ketone $(S, E)-163$ was accessed by lithiation of (E)-bromopropene according to a procedure by Moeller et al. for a similiar pseudoephedrine amide (Scheme 3.68). ${ }^{215}$ Enone $(S, E)-163$ seemed to be a suitable candidate for further elaboration by subsequent reduction, Mukaiyama cyclization and an alkene cross metathesis (CM).

Scheme 3.68: Attempted Synthesis of the 2,5-trans-disubstituted THF-ring 166 bearing the sulfone. Reagents and conditions: (a) i. n-BuLi, THF, $-78^{\circ} \mathrm{C}, 5 \mathrm{~min}$; ii. (E)-1-bromoprop-1-ene, TMEDA, t-BuLi, $\mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}, 45 \mathrm{~min}$; iii. add propenyl-Li to $43,-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 2.25 \mathrm{~h}, 74 \%$; (b) i. n-BuLi, THF, $-78^{\circ} \mathrm{C}, 5 \mathrm{~min}$; ii. 1-bromoprop-1-ene ($E: Z=1: 1$), TMEDA, t-BuLi, $\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}, 45 \mathrm{~min}$, iii. add propenyl-Li to $43,-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 10 \%$ of (S)-163, SM 43 mostly recovered (74%); (c) i. 1 eq. n - $\mathrm{BuLi}^{\circ} \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}, 5 \mathrm{~min}$; ii. 1.1 eq. propynyl-Li ethylene diamine complex, 1.1 eq. TMEDA, $\mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; iii. $-20^{\circ} \mathrm{C}$, 16 h , solubility issues, SM 43 recovered (quant.).

Whenever an E / Z mixture of 1-bromoprop-1-ene was used, only less than 10% of product (S)-163 were formed. Auxiliary displacement with propinyllithium, according to a procedure by Jacobi et al. for the reaction of alkyne nucleophiles with Weinreb amides, was also performed, but failed to give (S)-167 (Scheme 3.68). ${ }^{216}$

[^61]In parallel, sulfone 165 was synthesized in three steps starting from 1-phenyl-1H-tetrazole-5-thiol 168 according to a procedure by Cid et al. ${ }^{217}$ (Scheme 3.69, Figure 3.23).

Scheme 3.69: Synthesis of the sulfone precursor 165 for cross metathesis. Reagents and conditions: (a) $\mathrm{K}_{2} \mathrm{CO}_{3}, 1,2-\mathrm{DCE}$, $r t$ to $84{ }^{\circ} \mathrm{C}, 4 \mathrm{~d}, 98 \%$; (b) m-CPBA, DCM, rt, 3 d , 76%; (c) TEA, THF, rt, $30 \mathrm{~min}, 38 \%$.

Figure 3.23: X-Ray single crystal structure of tetrazolylvinylsulfone 165 (atom numbering is arbitrary; colouring of atoms: carbon (grey), hydrogen (white), oxygen (red), nitrogen (blue), sulfur (yellow)).

With vinylsulfone 165 in hand, a CM was conducted with vinylnorbornane (171) and Grubbs II catalyst (175) following a procedure by Grela et al. for the CM of various alkenes with comparable vinylsulfones (Scheme 3.70). ${ }^{218}$

Scheme 3.70: Introduction of the sulfone by CM and some of the possible products. Reagents and conditions: (a) 5 mol\% Grubbs-II catalyst $\mathbf{1 7 5}, \mathrm{DCM}, 45^{\circ} \mathrm{C}$, 2 d , complex mixture.

A complex and inseparable mixture of multiple alkenes such as $\mathbf{1 7 2}$ or $\mathbf{1 7 4}$ and the desired $\mathbf{1 7 3}$ was isolated (Scheme 3.70). Based on this experimental result and the poor yielding synthesis of α, β-unsaturated ketone $(S, E)-\mathbf{1 6 3}$, further investigations were not undertaken.

[^62]
3.5.2.2. Building Block Coupling \& Elaboration

3.5.2.2.1. Levulinic Ester Protecting Group

Regarding the all silyl-based protecting groups of fragment 127, we envisioned the use of an orthogonal substituent. According to van Boom et al., levulinic esters can be cleaved selectively with hydrazine hydrate which is intrinsically compatible with the methyl ester of 35b. ${ }^{219}$ The levulinic ester was introduced at the stage of 140 using standard esterification conditions with N, N^{\prime}-dicyclohexylcarbodiimide (DCC) and 4-dimethylaminopyridine (4-DMAP) (Scheme 3.71). ${ }^{220}$

Scheme 3.71: Introduction of the Lev group. Reagents and conditions: (a) levulinic acid, DCC, 4-DMAP, DCM, $0^{\circ} \mathrm{C}$ to rt , $15 \mathrm{~h}, 77 \%$; (b) TFA, DCM, $0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 82 \%$; (c) i. $(\mathrm{COCl})_{2}, ~ D M S O, ~ D C M, ~-78{ }^{\circ} \mathrm{C}, 35 \mathrm{~min}$; ii. DIPEA, $2.5 \mathrm{~h},-78^{\circ} \mathrm{C}$ to $\mathrm{rt}, 67 \%$.
176a was detritylated with trifluoroacetic acid, ${ }^{221}$ leading to alcohol 176b in 82% yield (Scheme 3.71), which was subsequently oxidized to aldehyde 177 under Swern conditions in 67% yield. ${ }^{222}$

Aldehyde $\mathbf{1 7 7}$ was coupled with alkyne $\mathbf{3 5 b}$ in the presence of zinc(II) trifluoromethanesulfonate ${ }^{223}$ giving rise to the propargylic alcohol 178 in only 14% yield (Scheme 3.72). We reasoned that the presence of two additional carbonyl groups rendered the alkynylation more difficult. Therefore, we did not further proceed with this route.

Scheme 3.72: Fragment coupling via alkynylation, with Lev PG. Reagents and conditions: (a) $\mathrm{Zn}(\mathrm{OTf})_{2}, \mathrm{TEA}$; (+)-NME, PhMe, $4 \AA$ MS, rt, 3 d, 14\% of 178, recovered SM 35b (69\%).

[^63]
3.5.2.2.2. TMS-Capped Allylic Alcohol

In the 90's, Koskinen et al. reported a dramatic influence of protecting groups on the selectivity of Sharpless dihydroxylations. ${ }^{224}$ They stated that protecting groups on the allylic alcohol (no matter of their size) were able to shift the selectivity of the dihydroxylation towards an all-syn-triol by surpressing hydrogen bonding between the allylic alcohol and the osmium catalyst.

Regarding the all-syn-triol motif of our target 18, we introduced a TMS group on the alcohol E-146 with TMSOTf (similiarly to previous TBS protections ${ }^{225}$) resulting in alkene 179 (Scheme 3.73).

Scheme 3.73: Preparation of TMS-capped allylic alcohol 179 for an alternative Sharpless dihydroxylation. Reagents and conditions: (a) TMSOTf, 2,6-lutidine, DCM, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 2 \mathrm{~h}, 86 \%$; (b) i. $80 \mathrm{~mol} \% \mathrm{~K}_{2} \mathrm{OsO}_{4}, 200 \mathrm{~mol} \% \mathrm{~L}^{*}$ (corresponds to $(\mathrm{DHQ})_{2} \mathrm{R}$ and (DHQD) ${ }_{2} \mathrm{R}$ with $\mathrm{R}=\mathrm{AQN}, \mathrm{PYR}$ and PHAL), $\mathrm{MeSO}_{2} \mathrm{NH}_{2}, \mathrm{~K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right], \mathrm{K}_{2} \mathrm{CO}_{3}, t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1), 0^{\circ} \mathrm{C}$ to rt, 20 h , (d.r. not determined due to attempted in situ TMS deprotection); ii. 12 eq. $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, rt, decomposition.

According to Koert et al. for a bis-homoallylic alcohol, Sharpless dihydroxylations are possible without loosing a preinstalled TMS group. ${ }^{226}$ Full conversion was not reached during the dihydroxylation with a catalyst loading of $10 \mathrm{~mol} \%$ (as in the case without the TMS group), and could only be obtained with a catalyst loading of 80 mol\% (Scheme 3.73). Unfortunately, a subsequent addition of excess potassium carbonate led to decomposition.

[^64]
3.5.3. Interim Summary

Based on the synthesis of the literature-known enantiomer of 131a, we started the synthesis of tetrazolylsulfone $\mathbf{1 3 0}$ with L-glutamic acid ((S)-10) (Scheme 3.74). After lactonization, opening of the corresponding hemiacetal 138 by a Wittig olefination, and recyclization by an oxa-Michael process, the tetrazolylthiol moiety was introduced via a Mitsunobu reaction. Simple functional group modifications led to aldehyde 130 in 13 steps with an overall yield of 12%.

Scheme 3.74: Second synthetic route to western belizentrin fragment 150a. Reagents and conditions: as shown before.
Coupling of aldehyde $\mathbf{1 3 0}$ with known alkyne 35b mediated by zinc(II) trifluoromethanesulfonate led to propargylic alcohol 129a in poor yield (Scheme 3.74). trans-Selective hydrostannation accessed allylic alcohol E-146 after protodestannation.

The final osmium-catalyzed dihydroxylation proved to be a reluctant transformation, since substrate control was dominant, regardless of the ligands used and for the introduction of a TMS protecting group on the remaining free hydroxy group. A stoichiometric osmylation led to the unfortunate formation of a stable, yet unidentified, adduct.

Triol 150a was isolated in 17 steps (LLS, 1\%o). Alkynylation and dihydroxylation remained problematic bottlenecks to the synthesis. Based on these results, we entered a second retrosynthetic revision mainly focusing on the exchange of the central fragment coupling and the dihydroxylation (Chapter 3.6).

3.6. Second Retrosynthetic Revision

As before, the natural product 18 was disconnected at the central E-configured double bond, by a Julia-Kocienski olefination retron (Scheme 3.75).

Scheme 3.75: Latest retrosynthetic analysis of belizentrin (18).

Since the previous dihydroxylation resulted in the formation of the desired diastereomer 150a as the minor product, the retrosynthetic analysis of belizentrin's western fragment 127 had to be changed (Scheme 3.76).

Scheme 3.76: Latest retrosynthetic analysis of the western belizentrin fragment 127.
To this end an inverse disconnection of triol 127 was envisaged. An osmium-catalyzed dihydroxylation led to the constitutionally isomeric allylic alcohol 180 (Scheme 3.76). The hydroxy group was identified as a possible target originating from the corresponding enone E-181. A central disconnection at the E-configured double bond (Wittig olefination) resulted in the unmodified aldehyde 130 and a new phosphorus ylide 182.

The latter could be assembled by a sequence of phosphorylation, halogenation and oxidation at the α-position of the C1' terminus of alkene 183 (Scheme 3.77).

Scheme 3.77: Retrosynthetic analysis of the phosphorus ylide 182.
The ester was introduced as described before (oxidation and Wittig olefination) starting from unchanged alkene 40 (Scheme 3.77). After a few protecting group alterations, this resulted again in α-D-glucose (9) as the starting point of the reaction sequence.

3.7. Western Belizentrin Fragment - Final Route

3.7.1. Successful Synthetic Route

3.7.1.1. The C-Glucoside Building Block - A New Synthesis

3.7.1.1.1. Introducing The Ester First

The new synthetic route of building block 182 again started with the allylation of commercially available per-O-acetyl- α-D-glucopyranose (50) (Scheme 3.78). ${ }^{227}$ Following previous synthetic approaches, alkene 40a was globally deprotected. Tetrol 40b was then submitted to the protection with TBSOTf instead of the previously used TBSCI, in analogy to procedures by Schmidtmann et al. ${ }^{228}$ and Deming et al., ${ }^{229}$ giving access to alkene 40c in higher yields (96\%, compared to $87 \%) .{ }^{230}$

Scheme 3.78: Synthesis of the phosphorus ylide 182, Part A. Reagents and conditions: (a) allyl-TMS (52), $\mathrm{BF}_{3} . \mathrm{OEt}_{2}, \mathrm{MeCN}$, rt to $80^{\circ} \mathrm{C}, 1 \mathrm{~d}, 79 \%$ ($\alpha: \beta=7: 1$); (b) $10 \mathrm{~mol} \% \mathrm{NaOEt}, \mathrm{MeOH}, \mathrm{rt}, 4 \mathrm{~h}, 98 \%$; (c) TBSOTf, 2,6-lutidine, DCM, $0{ }^{\circ} \mathrm{C}$ to rt, 20 h , 96%; (d) HF•py, 12.5% THF/py (2.5:1), $0^{\circ} \mathrm{C}$ to rt, $16.5 \mathrm{~h}, 97 \%$ (d.r. $=8: 1$); (e) i. (COCl) ${ }_{2}, \mathrm{DMSO}, \mathrm{DCM},-78{ }^{\circ} \mathrm{C}, 25 \mathrm{~min}$; ii. DIPEA, $-78^{\circ} \mathrm{C}$ to $\mathrm{rt}, 40 \mathrm{~min}, 90 \%$.

After selective 06' deprotection of 40c with diluted Olah's reagent (hydrogen fluoride/pyridine), we obtained primary alcohol 184 (Scheme 3.78). ${ }^{231}$ Subsequent Swern oxidation of alcohol 184 furnished aldehyde 185 in 92% yield, ${ }^{232}$ which was the central intermediate for the introduction of both the methyl and the TMS-ethyl ester functionality.

[^65]Aldehyde 185 was submitted to a Wittig olefination with phosphorus ylide $\mathbf{6 1},{ }^{233}$ in analogy to the previous route leading to the formation of inseparable E / Z mixtures of both derivatives of enolether 186 in $84-88 \%$ yield (Scheme 3.79).

Scheme 3.79: Synthesis of the phosphorus ylide 182, Part B. Reagents and conditions: (a) $\left[\mathrm{R}-\mathrm{OCH}_{2}-\mathrm{PPh}_{3}\right] \mathrm{Cl}$ 61, $\mathrm{KOt}-\mathrm{Bu}$, 5 Å MS, THF, $-50^{\circ} \mathrm{C}$ to $-78{ }^{\circ} \mathrm{C}$, for $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{TMS}(16.5 \mathrm{~h}, 83 \%)$, for $\mathrm{R}=\mathrm{CH}_{3}(18.5 \mathrm{~h}, 88 \%), \mathrm{E} / \mathrm{Z}$ mixture not separated; (b) PCC, DCM, rt, for $R=\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{TMS}(17 \mathrm{~h}, 82 \%$, d.r. $=2.7: 1)$, for $\mathrm{R}=\mathrm{CH}_{3}(23 \mathrm{~h}, 79 \%$, d.r. $=3.4: 1)$.

After PCC oxidation of these enolether compounds, ester 183 was isolated with good diastereoselectivity (d.r. = 3.4:1 to 4.1:1, due to epimerization at C5', for a possible explanation see Chapter 3.3.1.2.5) in 79-96\% yield (regarding both ester moieties) (Scheme 3.79).

3.7.1.1.2. Alkene Oxidation

With alkene 183 in hand, we started investigating the oxidation into the corresponding α-hydroxyketone 187 (Scheme 3.80). Murahashi et al. had reported the osmium(III) chloride-catalyzed transformation of simple alkenes into α-hydroxyketones with peracetic acid. ${ }^{234}$ These conditions did not result in the formation of α-hydroxyketone 187a and the unreacted starting material 183a was reisolated.

In contrast, other reports made use of superstoichiometric amounts of potassium permanganate in (un)buffered aqueous acetone solutions. ${ }^{235}$ Based on these procedures, we submitted substrate 183a to the reaction in the presence of sodium acetate (buffer), as reported by Schmid et al. for simple alkene substrates (Scheme 3.80). ${ }^{236}$ We encountered the problem of diol scission and the subsequent oxidation of the corresponding primary alcohol to carboxylic acid 188 in an unacceptably high amount (31\%).

[^66]

Scheme 3.80: Synthesis of the phosphorus ylide 182, Part C. Reagents and conditions: (a) $1 \mathrm{~mol} \% \mathrm{OsCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, 2 eq. $\mathrm{AcOOH}, \mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN} / \mathrm{DCM}(1: 1: 1)$, rt, 7 d , SM recovered (quant., with $\left.\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{TMS}\right)$; (b) KMnO_{4}, aq. acetate buffer (pH 3), acetone $/ \mathrm{H}_{2} \mathrm{O}(4: 1)$, rt to $40^{\circ} \mathrm{C}, 44 \mathrm{~h}, 45 \%$ of $187 \mathrm{a}, 31 \%$ of 188 (with $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{TMS}$); (c) $\mathrm{KMnO} 4, \mathrm{AcOH}$, acetone $/ \mathrm{H}_{2} \mathrm{O}(4: 1)$, rt , for $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{TMS}(4.75 \mathrm{~h}, 72 \%)$, for $\mathrm{R}=\mathrm{CH}_{3}(3.25 \mathrm{~h}, 77 \%)$.

More counterintuitively, without a sodium acetate buffer (according to a procedure by Bonini et al., ${ }^{237}$ also simple alkene substrates), the desired α-hydroxyketone 187 was formed in 72-77\% yield (Scheme 3.80).

3.7.1.1.3. α-Bromination

We wanted to access the α-bromoketone 189 by an Appel reaction according to the reports by Kobayashi et al. ${ }^{238}$ and Aponick et al. ${ }^{239}$ for much simpler substrates (Scheme 3.81).

To this end triphenylphosphine (195a) and tetrabromomethane were added as a solution in dichloromethane to the substrate, resulting in only poor conversion. Therefore, additional triphenylphosphine (195a) and tetrabromomethane (excess) were added as a solid to the reaction mixture which resulted in the formation of the methylketone 190a as a major byproduct which was isolated in 16% yield.

Scheme 3.81: Synthesis of the phosphorus ylide 182, Part D. Reagents and conditions: (a) 1.65 eq. CBr_{4}, 1.65 eq. $\mathrm{PPh}_{3} 195 \mathrm{a}, \mathrm{DCM}, \mathrm{rt}, 2 \mathrm{~h}, 81 \%$ of $189 \mathrm{a}, 16 \%$ of $190 \mathrm{a}, 4 \%$ of 191 , both reagents were added successively ($\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{TMS}$); (b) 2 eq. $\mathrm{CBr}_{4}, 2$ eq. $\mathrm{PPh}_{3} 195 \mathrm{a}, \mathrm{DCM}$, rt, reagents added at once, for $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{TMS}(55 \mathrm{~min}, 99 \%)$, for $R=\mathrm{CH}_{3}$ (40 min, 81\%).

[^67]When all reagents (still in excess) were added as a solid at once to a solution of substrate $\mathbf{1 8 7}$ in dichloromethane, this undesired side reaction was not observed, affording α-bromoketone 189 in 81-99\% yield (Scheme 3.81).

As considerable amounts of ketone 190a were formed, we investigated a possible recycling strategy for this material. To this end, we were following a literature precedent for the transformation of a simple methylketone into an α-bromoketone via its corresponding silyl enolether as reported by Leighton et al. ${ }^{240}$ (Scheme 3.82).

Scheme 3.82: Recycling of the methylketone 190a. Reagents and conditions: (a) TBSOTf, 2,6-lutidine, DCM, $-78^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$ to rt, $28.5 \mathrm{~h}, 87 \%$; (b) NBS, THF, $-78^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}, 1 \mathrm{~h}, 63 \%$ of $\mathbf{1 8 9 a}, 17 \%$ of $\mathbf{1 9 0 a}$.

Methylketone 190a was successfully transformed into silyl enolether 192 in 87% yield (Scheme 3.82). Alkene 192 was submitted to a N-bromosuccinimide solution to give α-bromoketone 189a in 63% yield (together with 17% of 190a).

3.7.1.1.4. The Phosphorus Ylide \& Reactions In Frozen Solutions

The addition of triphenylphosphine (195a) to the alkylbromide 189a under reflux conditions in an aprotic solvent (Scheme 3.83) led to decomposition (via methylketone 190a and other species, at reflux in acetonitrile) or partial degradation (loss of O2' TBS protecting group, at $55^{\circ} \mathrm{C}$ in benzene). ${ }^{241}$

A possible explanation for the instability of phosphonium salt 193a could be the formation of an intermediate enolphosphonium species as postulated by Moorhoff et al. ${ }^{242}$ These authors had made a similiar observation (debromination and formation of the corresponding methylketone) during the reaction of a simple α-bromoketone to its corresponding phosphonium salt under comparable conditions.

[^68]Alternatively, phosphonium salt 193a could be obtained from the α-hydroxyketone 187 a via a Mitsunobu reaction, as previously described by Mazurkiewicz et al. for simple primary alcohols with triphenylphosphonium tetrafluoroborate (195b) (Scheme 3.83). ${ }^{243}$ The latter was prepared from triphenylphosphine (195a) with tetrafluoroboric acid according to Grubbs et al. ${ }^{244}$ An attempted Mitsunobu reaction of alcohol 187a with this salt did not furnish desired phosphonium salt 193a; rather, the starting material 187a was almost completely recovered.

Scheme 3.83: Synthesis of the phosphorus ylide 182, Part E. Reagents and conditions: (a) i. $\mathrm{PPh}_{3} \mathbf{1 9 5 a}, \mathrm{PhH},-20^{\circ} \mathrm{C}$, $4 \AA$ Å , 49-52 h, quant.; ii. DIPEA, PhH, rt, 30 min , quant.; (b) i. PPh ${ }_{3}$ 195a, PhH , rt to $55^{\circ} \mathrm{C}, 5 \mathrm{~d}$, 91% (ca. 1:1 mixture with C2'-deprotected byproduct); ii. KOt-Bu, THF, $5 \AA$ MS, $-50^{\circ} \mathrm{C}, 10 \mathrm{~min}$, quant. ($\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{TMS}$); (c) $\mathrm{PPh}_{3} 195 \mathrm{a}, \mathrm{MeCN}$, rt to $85{ }^{\circ} \mathrm{C}$, 2.5 h , decomposition ($\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{TMS}$); (d) triphenylphosphonium tetrafluoroborate 195b, DEAD, PPh 195 a , THF, $0^{\circ} \mathrm{C}$ to rt, $3 \mathrm{~h}, \mathrm{SM}$ recovered (95\%); (e) aq. $\mathrm{HBF}_{4}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{rt}, 5 \mathrm{~min}, 23 \%$.

Ultimately, both phosphonium salt species 193 and 194 were formed in situ by freezing the reagents in dry benzene at $-20^{\circ} \mathrm{C}$ according to Kiovsky et al. (Scheme 3.83)..245 These authors had reported such counterintuitive conditions for the bimolecular reaction of iodomethane with triethylamine in benzene glass. Such nucleophilic substitutions can be accelerated under these conditions. A plausible explanation for this phenomenon is the following: due to the occurance of microscopic regions of liquid eutectic mixtures of high concentration, an enhancement of the reaction can be observed until a specific minimum temperature below which the whole mixture freezes and reactions are in fact surpressed.

The enolphosphonium species postulated by Moorhoff et al. is closely related to the experimentally observed enolate 194 (Scheme 3.83), which could explain the sensitivity of phosphonium salt 193.

[^69]Deprotonation of readily enolizable phosphonium salt 193 with di-i-propylethylamine led to the formation of phosphorus ylide 182 (Scheme 3.83). ${ }^{246}$ These species were used directly for the Wittig olefination of aldehyde 130. The completion of both reactions (phosphorylation and deprotonation) was confirmed by ${ }^{1} \mathrm{H}$ NMR measurements of aliquots taken from the reaction mixture at different times.

[^70]
3.7.1.2. Building Block Coupling \& Elaboration

3.7.1.2.1. Wittig Olefination \& CBS Reduction

Phosphorus ylide 182 (obtained in benzene glass at $-20^{\circ} \mathrm{C}$) reacted with aldehyde 130 to give enone 181 in 76-79\% yield with high E / Z selectivity $(E / Z>16: 1) .{ }^{247}$

Scheme 3.84: Fragment coupling and elaboration. Reagents and conditions: (a) PhH, rt, $4 \AA \mathrm{MS}$, for $\mathrm{R}=(\mathrm{CH})_{2} \mathrm{TMS}(17 \mathrm{~h}$, $76 \%, E / Z=16: 1$), for $\mathrm{R}=\mathrm{CH}_{3}(19 \mathrm{~h}, 79 \%, E / Z=18: 1)$; (b) $(R)-(+)-2$-Methyl-CBS-oxazaborolidine $(R)-47 \mathrm{a}, \mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$, DCM, $-20^{\circ} \mathrm{C}$, for $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{TMS}(3 \mathrm{~h} 10 \mathrm{~min}, 97 \%)$, for $\mathrm{R}=\mathrm{CH}_{3}(1 \mathrm{~h} 50 \mathrm{~min}, 91 \%)$.

The obtained α, β-unsaturated ketone E - 181 was reduced in a stereoselective manner under CBS conditions (Scheme 3.84). Such transformations were precedented for sulfone-bearing substrates by Sawa et al. ${ }^{248}$ and for different enone substrates, with either TBS-protected alcohols by Sabitha et al. ${ }^{249}$ or with ester moieties by Rao et al. ${ }^{250}$ In analogy to these protocols, we obtained allylic alcohol 180 almost exclusively in 91-97\% yield with $(R)-47$ a as the catalyst.

3.7.1.2.2. Sharpless Dihydroxylation \& Global Protection

Originally, we had envisioned a route involving $E-146$ as a constitutional isomer of allylic alcohol 180 which initially showed substrate control for all dihydroxylation attempts (Chapter 3.3.1.3.4, Chapter 3.5.1.2.3). Our hope was that the constitutional difference between these allylic alcohols would give better access to the desired triols.

[^71]With constitutional isomer 180 in hand (compared to E-146 in Scheme 3.59), we again performed the Sharpless dihydroxylation with a set of different ligands (Scheme 3.85). ${ }^{251}$

Scheme 3.85: Ligand screening for the Sharpless dihydroxylation of the allylic alcohols 180. Reagents and conditions: (a) $20 \mathrm{~mol} \% \mathrm{~K}_{2} \mathrm{OsO}_{4}, 25 \mathrm{~mol} \% \mathrm{~L}^{*}, \mathrm{MeSO}_{2} \mathrm{NH}_{2}, \mathrm{~K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right], \mathrm{K}_{2} \mathrm{CO}_{3}, t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1), 0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 1 \mathrm{~d}, 96 \%$ on small scale ($6 \times 2 \mathrm{mg} \mathrm{SM}$) diastereoselectivity shown; (b) same conditions as before, 78% (d.r. $=1: 7.1$) on larger scale (25 mg SM 180a) for $R=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{TMS}$; (c) same conditions as before, 59% (d.r. $=1: 4.2$) on larger scale (30 mg SM 180 b) for $\mathrm{R}=\mathrm{CH}_{3}$.

We observed ligand control with diastereoselectivities ranging between 3.7:1 and 1:6.7 for the diastereomeric triols 196a and 150b with the TMS-ethyl ester side chain (78%, isolated d.r. $=1: 7.1$, Scheme 3.85). For the allylic alcohol 180b, only the ligands were screened which worked best for its TMS-ethyl ester analogue 180a and found a comparable result in favour of our desired diastereomer 150a (59\%, isolated d.r. = 1:4.2).

However, when the reaction scale was increased, the yield decreased, probably because of diol scission.

Scheme 3.86: Global TES protection. Reagents and conditions: (a) TESOTf, 2,6-lutidine, DCM, $0^{\circ} \mathrm{C}$ to rt , for $\mathrm{R}=(\mathrm{CH})_{2} \mathrm{TMS}$ ($2 \mathrm{~h}, 79 \%$), for $\mathrm{R}=\mathrm{CH}_{3}(1 \mathrm{~h}, 82 \%)$, total amount of isolated material as shown; (b) TESOTf, 2,6-lutidine, DCM, $0^{\circ} \mathrm{C}$ to rt , 2 h, 76\%.

[^72]The final step was the protection of triols 150 and 196a with TESOTf, ${ }^{252}$ resulting in the formation of the fully protected western belizentrin fragment 127 and a diastereomer 197 (Scheme 3.86).

In conclusion, tetrazolylsulfone 127 was synthesized in 17 steps (LLS) and an overall yield of 6\% for the methyl ester 127b and 7\% for the TMS-ethyl ester 127a starting from α-D-glucose (9) and L-glutamic acid ((S)-10).

[^73]
3.7.1.3. Stereochemical Proof

Some intermittently obtained triol isomers (such as 147, 148, 149 and 150a) were previously elucidated by a combination of Mosher ester analysis and nOe correlation experiments on cyclic carbonate derivatives (Chapter 3.5.1.3). We finally established the absolute configuration of triols 196 and 150 by a combination of Mosher ester analysis and NMR comparison with constitutional isomers as following.

3.7.1.3.1. Mosher Ester Analysis

In order to determine the absolute configuration, allylic alcohol 180 was derivatized according to the Mosher ester analysis ${ }^{253}$ resulting in the formation of ester 198 and its diastereomer epi-198 (Scheme 3.87). Both analyses confirmed that the (S)-configured stereocentre at C-9 had been correctly installed.

$$
\begin{array}{ll}
\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{TMS} & \text { 198a } \\
\mathrm{R}=\mathrm{CH}_{3} & \text { 198b }
\end{array}
$$

180a
180b

epi-198a
epi-198b

Scheme 3.87: Preparation of Mosher esters 198 and epi-198. Reagents and conditions: (a) (R)-Mosher acid chloride, py, DCM, rt, for $R=\left(\mathrm{CH}_{2}\right)_{2}$ TMS ($25 \mathrm{~h}, 96 \%$), for $\mathrm{R}=\mathrm{CH}_{3}$ (3 d, 95\%); (b) (S)-Mosher acid chloride, py, DCM, rt, for $R=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{TMS}(24 \mathrm{~h}, 96 \%), \mathrm{R}=\mathrm{CH}_{3}(3 \mathrm{~d}, 95 \%)$.

3.7.1.3.2. Stereochemical Proof Through NMR Comparison Of Constitutional Isomers

In theory, the Sharpless dihydroxylation of allylic alcohol E-146 leads to two possible diastereomers (Scheme 3.88). At the same time, the dihydroxylation of allylic alcohol 180b also leads to two possible diastereomers. Since $E-146$ and $180 b$ are constitutional isomers, ${ }^{254}$ two of the four possible diastereomeric triol products are in fact the same (150a). This particular

[^74]diastereomer 150a should also match the stereochemistry of our desired all-syn-triol motif within the western belizentrin fragment 127.

Scheme 3.88: Constitutionally isomeric allylic alcohols $E-146$ and 180 b and possible diastereomeric dihydroxylation products 149, 150a and 196b.

Finally, the careful comparison of the obtained NMR datasets proved two of the four isolated compounds obtained via different synthetic routes to be identical (compare Chapter 3.3 vs. Chapter 3.5) and led to the shown stereochemical assignment (Scheme 3.88).

The confirmed stereochemistry of diastereomers 149,150 a and $196 b$ also paved the way to the retrospective identification of structures which, until then, remained unclear such as 147 and 148. Importantly, this conclusion was indeed matching the assignment of cyclic carbonate derivatives 158, 160 and 162 earlier obtained by the interpretation of nOe signal correlations (Chapter 3.5.1.3.4).

3.7.2. Investigations On Alternative Pathways

3.7.2.1. Reactivity Differences Between C5'-Epimeric Glucosides

We tried to convert alkyne epi-35a ${ }^{255}$ directly into α-haloketone epi-189a or β-ketophosphonate 200 (Scheme 3.89). A gold-catalyzed one-step approach from epi-35a towards epi-189a, as described by Xing et al. for simple terminal alkynes, ${ }^{256}$ was unsuccessful as was the transformation of epi-35a into 200, following a report by Zhao et al. for aromatically substituted alkynes. ${ }^{257}$

Scheme 3.89: Preliminary C5' epimer modification studies. Reagents and conditions: (a) $3 \mathrm{~mol} \% \mathrm{XPhosAuNTf}_{2}, \mathrm{H}_{2} \mathrm{O}$, 1,2-DCE, $1.5 \mathrm{~h}, \mathrm{rt}, 88 \%$ (with $\mathrm{X}=\mathrm{H}$); (b) NBS, $10 \mathrm{~mol} \% \mathrm{AgNO}_{3}$, acetone, rt, $2.5 \mathrm{~d}, 86 \%$ (with $\mathrm{X}=\mathrm{H}$); (c) $3 \mathrm{~mol} \% \mathrm{XPhosAuNTf}_{2}, \mathrm{H}_{2} \mathrm{O}, 1,2-\mathrm{DCE}, \mathrm{rt}, 2.5 \mathrm{~h}, 41 \%$ (with $\mathrm{X}=\mathrm{Br}$); (d) i. $2.6 \mathrm{~mol} \% \mathrm{AuCl}_{3}, 7.6 \mathrm{~mol} \% \mathrm{AgNTf}_{2}$, $\mathrm{MeOH} / 1,4$-dioxane (1:3), rt to $45^{\circ} \mathrm{C}$, 1 d; ii. 1 eq. NBS, rt, 1 d, mainly decomposition, some recovered SM epi-199a (20%, with $\mathrm{X}=\mathrm{Br}$); (e) diethylphosphite, air, $10 \mathrm{~mol} \% \mathrm{AgNO}_{3}, 20 \mathrm{~mol} \% \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, 12 eq. $\mathrm{KHSO}_{5} \cdot 0.5 \mathrm{KHSO}_{4} \cdot 0.5 \mathrm{~K}_{2} \mathrm{SO}_{4}$ (OXONE ${ }^{\oplus}$), $\mathrm{DCM} / \mathrm{H}_{2} \mathrm{O}(1: 1), \mathrm{rt}, 2 \mathrm{~d}$, no reaction, SM epi-35a recovered (quant., with $\mathrm{X}=\mathrm{H}$).

The gold-catalyzed hydration of alkyne epi-35a resulted in the expected methylketone epi-190a, as described by He et al. (as part of a general two-step procedure from alkynes to α-haloketones) (Scheme 3.89). ${ }^{258}$ Alkyne epi-35a was submitted to a silver-mediated bromination ${ }^{259}$ and resulted in epi-199a in 86% yield. Bromoalkyne epi-199a was subsequently transformed into α-bromoketone epi-189a by the above mentioned gold-catalyzed hydration, yet in only 41% yield.

Based on these results, epimer 35a was submitted to the same bromination conditions and bromoalkyne 199a was successfully obtained in 98% yield (Scheme 3.90). When 199a was submitted to the hydration that had previously worked for epi-199a only decomposition was observed.

[^75]

Scheme 3.90: Alkyne manipulations with the C -glucoside 199. Reagents and conditions: (a) $\mathrm{NBS}, 10 \mathrm{~mol} \% \mathrm{AgNO}_{3}$, acetone, $\mathrm{rt}, 20.5 \mathrm{~h}, 98 \%(\mathrm{X}=\mathrm{Br})$; (b) NIS, $10 \mathrm{~mol} \% \mathrm{AgNO}_{3}$, acetone, $\mathrm{rt}, 5 \mathrm{~d}, 97 \%(\mathrm{X}=\mathrm{I})$; (c) $10 \mathrm{~mol} \% \mathrm{PdCl}_{2}\left(\mathrm{P}(2-\mathrm{furyl})_{3}\right)_{2}$, 8 eq. diethylphosphite, 6 eq. TEA, DMF, $\mathrm{rt}, 7 \mathrm{~d}, 59 \%(\mathrm{X}=\mathrm{I})$; (d) $3 \mathrm{~mol} \% \mathrm{XPhosAuNTf}_{2}, \mathrm{H}_{2} \mathrm{O}, 1,2-\mathrm{DCE}, \mathrm{rt}, 10 \mathrm{~min}$, degradation (successive loss of TBS groups, $X=B r$); (e) 6 mol\% XPhosAuNTf $2, \mathrm{H}_{2} \mathrm{O}, 1,2-\mathrm{DCE}, \mathrm{rt}$ to $0^{\circ} \mathrm{C}, 5.5 \mathrm{~h}, 16 \%$ of 202, 32% of an inseparable mixture of mono-deprotected byproducts, some recovered SM 199b ($10 \%, \mathrm{X}=\mathrm{I}$).
lodoalkyne 199b was prepared analogously from 35a with N-iodosuccinimide and silver(I) in 97\% yield (Scheme 3.90). Submitted to the gold-catalyzed hydration, rapid degradation occurred. A palladium-catalyzed cross coupling only gave protodeiodinated alkyne 35a in 59\% yield. ${ }^{260}$

In stark contrast to the epimeric series (Scheme 3.89), it was impossible to isolate 189a or 201 (Scheme 3.90). The addition of the gold catalyst immediately resulted in the (visible) formation of elemental halogen (colouring: brown with bromoalkyne 199a, purple with iodoalkyne 199b).

3.7.2.2. Cross Metathesis \& TMS-Ethyl Ester Cleavage

The cleavage for a final release of belizentrin (18) from derivative $\mathbf{2 0}$ was tested. Cross metathesis (CM) of epi-183a and styrene with the Grubbs II catalyst (175), as reported by Pohmakotr et al. for simple terminal alkenes, ${ }^{261}$ gave UV-active test substrate 203a in 36% yield (Scheme 3.91).

Scheme 3.91: TMS-ethyl ester functionalization and deprotection. Reagents and conditions: (a) styrene, 5 mol\% Grubbs II catalyst 175, DCM, $4 \AA \mathrm{MS}$, rt to $45^{\circ} \mathrm{C}$, $21 \mathrm{~h}, 36 \%$; (b) TASF, DMF, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 5 \mathrm{~h}, 77 \%$.
epi-183a was submitted to tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF) in N, N^{\prime}-dimethylformamide according to a procedure used in the total synthesis of putative orevactaene reported by our group ${ }^{262}$ to give carboxylic acid 203b in 77\% yield (Scheme 3.91).

Based on these results, we were hoping to release target molecule 18 under similiar conditions.

[^76]
3.7.3. Interim Summary

The C-glucoside moiety 182 was synthesized by a series of events that started again with the allylation of per-O-acetyl- $\alpha-D$-glucopyranose (50) at the anomeric position which was followed by protecting group manipulations. After introduction of the ester functionality, alkene 183 was obtained as a suitable candidate for a sequence of α-oxidation and α-halogenation towards 189. Intriguingly, the substitution of the bromine with triphenylphosphine (195a) was not as straightforward as anticipated, due to the lability of the phosphonium salt 193. Finally, the reaction of α-bromoketone 189 with triphenylphosphine (195a) succeeded smoothly in benzene glass at $-20^{\circ} \mathrm{C}$. Deprotonation of the readily enolizable phosphonium salt 193 resulted in desired phosphorus ylide 182 in nine steps in an estimated (due to the in situ formation of the ylide) overall yield of 17-18\% (Scheme 3.92).

Scheme 3.92: Final synthetic route to the western belizentrin fragment 127. Reagents and conditions: as shown before.
Aldehyde 130 and phosphorus ylide 182 were coupled by a Wittig olefination which proceeded with high E selectivity ($E / Z>16: 1$) in $76-79 \%$ yield (Scheme 3.92). CBS reduction of enone 181 resulted in allylic alcohol 180. Its altered constitution (in comparison to allylic alcohol E-146) finally paved the way to a ligand-controlled Sharpless dihydroxylation. The desired triol 150 was obtained in good diastereoselectivity (d.r. >6.7:1). Final protection with TESOTf resulted in the western belizentrin fragment 127 in 17 steps (LLS) in an overall yield of 6-7\%.

During the course of some preliminary studies, we observed a very interesting difference in the reactivity between alkyne 35a and its C5' epimer epi-35a. Moreover, carboxylic acid deprotection performed on the TMS-ethyl ester-bearing test substrate 203a with tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF) proceeded cleanly.

In summary, we found a suitable route towards western belizentrin fragment 127 available on a 300 mg scale both as the methyl, as well as the TMS-ethyl, ester. The absolute configuration of the triol motif was unambiguously confirmed by the NMR comparison of triols obtained through two different routes, originating from constitutionally isomeric allylic alcohol E-146 and 180b (Chapter 3.7.1.3.2).

3.8. The Belizentrin Esters

3.8.1. Final Fragment Coupling \& Elaboration Towards Belizentrin Esters

During the Julia-Kocienski olefination of western belizentrin fragment 127 and its eastern counterpart 128a, ${ }^{263}$ a severe base-lability of aldehyde 128a in the presence of lithiated 127 was encountered (Scheme 3.93). We were inspired by literature reports to improve the outcome of a Julia-Kocienski olefination for enolizable ketones by transmetalation to cerium(III) chloride, as reported by Sasaki et al. ${ }^{264}$ After different attempts, finally transmetalation to zinc was of great assistance, and prevented the decomposition of aldehyde 128a.

Scheme 3.93: Synthetic pathway to the belizentrin methyl ester (19). Reagents and conditions: (a) 127a, $\mathrm{LiHMDS}, \mathrm{ZnCl}_{2}$, then 128a, DMF/DMPU (3:1), $-40^{\circ} \mathrm{C}$ to $\mathrm{rt}, 3 \mathrm{~d}, 25-30 \%$; (b) excess 127b, LiHMDS, ZnCl_{2}, then 128a, DMF/DMPU (3:1), $-40^{\circ} \mathrm{C}$ to $\mathrm{rt}, 72 \mathrm{~h}, 25-30 \%$; (c) TASF, DMF, rt, decomposition; (d) i. aq. HF, MeCN, rt, 6 h ; ii. Me $\mathrm{SiOH}, \mathrm{rt}, 30 \mathrm{~min}$, 36\%.

The fragments were coupled in a reproducible yield of $25-30 \%$ in DMF/DMPU ($3: 1)^{265}$ yielding globally protected $\mathbf{2 0 4}$ (Scheme 3.93). This was a satisfying result, regarding the targeted chemical

[^77]problem. Lithiated tetrazolylsulfone 127 was used in excess (ca. 3 eq.) due to the free hydroxy group within the aldehyde partner 128a. Fortunately, unreacted sulfone 127 could be recovered almost quantitatively, whereas remaining aldehyde 128a could not be reisolated.

Final deprotection of globally protected substrate 204a led to the cleavage of all silyl-based protecting groups but the TMS-ethyl ester. This ester could neither be cleaved with Olah's reagent (hydrofluoric acid/pyridine) nor with aqueous hydrofluoric acid. Due to the previously observed base-lability of the polyene motif, tetra-n-butylammonium fluoride (TBAF) and other fluoride reagents were not suitable. According to HPLC measurements, tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF) achieved the ester cleavage, but decomposition was taking place as well, making it impossible to isolate belizentrin (18).

Therefore, we prepared methyl ester 204b, which was globally deprotected with aqueous hydrofluoric acid ${ }^{266}$ resulting in belizentrin methyl ester (19) and only volatile byproducts which were removed under vacuum (Scheme 3.93). After final HPLC purification, belizentrin methyl ester (19) was isolated in 36% yield (2.2 mg , in comparison to 3.1 mg obtained by the isolation team).

[^78]
4. Final Summary \& Conclusion

Herein, we present the first total synthesis of belizentrin methyl ester (19) that is concise and convergent in terms of step count and fragment couplings.

In 2014, belizentrin (18) was isolated from the marine dinoflagellate Prorocentrum belizeanum as the first member of a class of odd-numbered, polyunsaturated and polyhydroxylated macrolactamic neurotoxins (EC_{50} value of $193 \pm 7 \mathrm{nM}$) (Figure 4.1). Belizentrin (18) is a target of interest within total synthesis due to the possible application of diverse chemical methodology, the purposes of structural elucidation and biological evaluation. Since belizentrin (18) proved unstable during the biological assay, methyl ester derivative 19 was deemed a suitable target.

Figure 4.1: Structures of the natural product belizentrin (18) and its ester derivatives 19 and 20.
Our first approach to western belizentrin fragment 79a started with auxiliary-based chemistry leading to alkynyl-bearing 2,5-trans-disubstituted ether 34 (Scheme 4.1). Challenging volatile aldehyde (S)-37 paved the way to an oxidative aerobic Mukaiyama cyclization which successfully provided access to the core structure of the 2,5-trans-disubstituted tetrahydrofuran ring 34. The synthetic access to alkyne 35 was guaranteed by C-glycosidation of 50 with allyl-TMS (52) and further transformation into the alkyne substituent of 39a. Enolether formation via Wittig reaction and subsequent oxidation ensured the installation of different esters in $\mathbf{3 5 .}$

Scheme 4.1: Synthesis of western belizentrin fragment 79a, via route 1.
The coupling of both building blocks was performed under zinc(II) mediation and led to the corresponding allylic alcohol in a straightforward sense via the in house-developed methodology of the ruthenium-catalyzed trans-selective hydrostannation (Scheme 4.1). A major drawback was the low-yielding alkynylation in combination with an overall substrate-controlled osmium-mediated dihydroxylation towards triol 78.

As a consequence, a second route was envisioned. Major change was the attempted use of a Julia olefination instead of an alkynylation as the central coupling of belizentrin's western and eastern parts. Therefore, the preparation of a completely new northern 2,5-trans-disubstituted tetrahydrofuran building block 130 was necessary (Scheme 4.2). Starting from L-glutamic acid $((S)-10)$ and based on a literature precedent for the elaborated enantiomer of 2,5-trans-disubstituted tetrahydrofuran system 131a, we achieved the synthesis of the new building block 130, whereas the alkynylation and the Sharpless dihydroxylation were maintained within the western belizentrin fragment 150a, the C-glucoside fragment's synthesis did not change.

Scheme 4.2: Synthesis of western belizentrin fragment 150a, via route 2.

Unfortunately, the alkynylation remained as unsatisfying as before, as it only proceeded in low yield (Scheme 4.2). Even more renitent was the attempted Sharpless dihydroxylation, which remained substrate-controlled. Therefore, we only obtained tiny amounts of the desired diastereomer 150a and had to develop a third synthetic approach.

The final pathway to globally protected western belizentrin fragment $\mathbf{1 2 7}$ involved the previous route to 2,5-trans-disubstituted ether 130 as well as a new route to phosphorus ylide $\mathbf{1 8 2}$ (Scheme 4.3). After anomeric allylation and functional group alterations of 50, we again installed an ester moiety at the C6' terminus of the C-glucoside 40c by Wittig olefination and subsequent oxidation of the corresponding enolether 186. The allyl side chain was α-oxidized by an interesting method with stoichiometric potassium permanganate in acidic medium, followed by an Appel reaction to access the α-bromoketone 189. Most fascinating about the phosphorus ylide synthesis remained the transformation of this α-bromoketone 189 into the corresponding phosphorus salt 193 by freezing a solution of the substrate and triphenylphosphine (195a) in benzene at $-20^{\circ} \mathrm{C}$. Previous attempts to observe the phosphorus salt 193 resulted in degradation and decomposition, probably due to an enolization to 194 which finally could even be characterized by ${ }^{1} \mathrm{H} N \mathrm{NR}$ analysis.

Scheme 4.3: Synthesis of phsphorus ylide 182.
Aldehyde 130 and phosphorus ylide 182 were coupled by a highly E-selective Wittig olefination (Scheme 4.4). After transformation into the corresponding allylic alcohol 180 by CBS reduction, the osmium-catalyzed dihydroxylation proceeded under ligand control (or with a matching effect) and finally yielded the desired triol 127 in acceptable yield after protection with TESOTf.

Scheme 4.4: Synthesis of western belizentrin fragment 127, via (final) route 3.
The most important observation we made was the change from substrate control to ligand control during the Sharpless dihydroxylation by altering the constitution of our central intermediate allylic alcohol $E-146$. Thereby, we did not only manage to isolate desired triol 150 as the major isomer, but we also secured definite proof for the absolute configuration of the stereocentres of the central triol motif.

Moreover, western belizentrin fragment 127 and its eastern counterpart 128a were successfully coupled in a modified Julia-Kocienski olefination, despite the base sensitivity of the skipped polyene motif (Scheme 4.5). Global deprotection led to belizentrin methyl ester (19) as a reasonably stable derivative of the natural product 18. NMR data suggested that the isolated natural product and our own material are likely of the same relative and absolute configuration (an NMR comparison of belizentrin (18) with belizentrin methyl ester (19) can be found in Chapter 5.2.4). Release of the natural product $\mathbf{1 8}$ from its globally protected TMS-ethyl ester $\mathbf{2 0}$ (via fluoride-based chemistry) or (enzymatically) from its methyl ester congener 19 was not achieved.

Scheme 4.5: Final coupling of western and eastern fragment and global deprotection under the release of belizentrin methyl ester (19).

5. Experimental Procedures

5.1. General Experimental Details

All reactions were carried out under Ar in flame-dried glassware dried under vacuum (Schlenk line) using anhydrous solvents, unless water was used as a solvent or it is stated otherwise. The solvents were purified by distillation over the indicated drying agents and were transferred under Ar : THF, $\mathrm{Et}_{2} \mathrm{O}(\mathrm{Mg} /$ anthracene $)$, acetone $\left(\mathrm{B}_{2} \mathrm{O}_{3}\right), \mathrm{DCM}$, hexane, pentane, $\mathrm{PhMe}(\mathrm{Na} / \mathrm{K}), \mathrm{MeOH}(\mathrm{Mg}$, stored over $3 \AA \mathrm{MS}$), ethanol ($3 \AA \mathrm{MS}$), EtOAc ($\mathrm{P}_{2} \mathrm{O}_{5}$, filtered through dry $\mathrm{Al}_{2} \mathrm{O}_{3}$, stored over $4 \AA$ MS); 1,4-dioxane, DMF, MeCN, TEA, py and DMSO were dried by an adsorbtion solvent purification system (SPS) based on MS. DIPEA was distilled over CaH_{2} under Ar prior to its use. Thin layer chromatography (TLC): Macherey-Nagel precoated plates (POLYGRAM ${ }^{\circledR}$ SIL/UV254); Flash chromatography: Merck silica gel 60 ($40-63 \mu \mathrm{~m}$ or $15-40 \mu \mathrm{~m}$ (fine)) or VWR silica gel ($40-64 \mu \mathrm{~m}$) with pre-distilled or HPLC grade solvents. TLC plates were visualized by UV and stained by exposure to either an ethanolic solution of p-anisaldehyde, AcOH and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ or a solution of $\mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{3}\right)_{6}$ and $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ in conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ followed by development with a heat gun ($>300^{\circ} \mathrm{C}$). IR: ALPHA (Bruker) spectrometer, wavenumbers (\tilde{v}) in cm^{-1}. MS (EI): Finnigan MAT 8200 (70 eV), MS (ESI): ESQ 3000 (Bruker), accurate mass determinations: Bruker APEX III FT-MS (7 T magnet) or Mat 95 (Finnigan). Optical rotation ($[\alpha]_{D}^{20}$): A-KRÜSS Optronic Model P8000-t polarimeter. Melting point (m.p.): BÜCHI Melting Point B-540.

NMR: Spectra were recorded on a Bruker DPX 300, AV 400, AV 500 or AV 600 spectrometer in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz . The solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl_{3} at 7.26 and 77.16 ppm for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, respectively; $\mathrm{C}_{6} \mathrm{D}_{6}$ at 7.16 ppm and 128.06 ppm for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, respectively; $\mathrm{CD}_{3} \mathrm{OD}$ at 3.31 ppm and 49.00 ppm for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, respectively; $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 5.32 ppm and 54.00 ppm for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, respectively; $\mathrm{D}_{2} \mathrm{O}$ at 4.79 ppm for ${ }^{1} \mathrm{H}$ and spectroscopy, respectively; DMSO- d_{6} at 2.50 and 39.52 ppm for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, respectively). ${ }^{13} \mathrm{C}$ NMR spectra were recorded with broadband ${ }^{1} \mathrm{H}$ decoupling. Where indicated, the signal assignments in the NMR spectra are unambiguous; the numbering scheme is arbitrary and shown in the inserts. The assignments are based upon 1D and 2D spectra recorded using the following pulse sequences from the Bruker standard pulse program library: DEPT; COSY (cosygpmfphpp);

HSQC (hsqcedetgpsisp2.2) optimized for ${ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{H}}=145 \mathrm{~Hz}$; HMBC (hmbcetgpl3nd) for correlations via ${ }^{n} J_{c, H} ;$ HSQC-TOCSY (invietgsml) using an MLEV17 mixing time of 120 ms ; NOESY (noesygpph).

Important key fragments or complex byproducts were analyzed by the NMR department of our institute, especially by Mrs. Cornelia Wirtz, Mrs. Petra Philipps, Mrs. Julia Lingnau and Dr. Christophe Farès.

LC-MS analyses were conducted with a LC-MS2020 instrument from Shimadzu (pumps LC-20 AD, autosampler SIL-20AC, column oven CTO-20AC, diode array detector SPD-M20A, controller CBM-20A, ESI detector and software LCMS-solution) with an ZORBAX Eclipse Plus C18 $1.8 \mu \mathrm{~m}$, 3.0 mm or 4.6 mm ID $\times 50 \mathrm{~mm}$ (Agilent). A binary gradient of MeCN or MeOH in water or aq. triethylammonium acetate (TEAA) buffer ($10 \mathrm{mmol} . \mathrm{pH} 8$) was used at flow rates of $0.5(3.0 \mathrm{~mm} \mathrm{ID}) \mathrm{mL} / \mathrm{min}$ or $0.8(4.6 \mathrm{~mm} \mathrm{ID}) \mathrm{mL} / \mathrm{min}$. The oven temperature was kept at $35^{\circ} \mathrm{C}$ and a detection wave length of 254 nm was used.

Unless stated otherwise, all commercially available compounds (abcr, ACROS, Sigma-Aldrich (Merck), Alfa Aesar, Fluka, Oakwood, Strem, TCI, VWR) were used as received. Conditions for the synthesis of each compound are described in the experimental below.

A supply of catalyst 49b for the Mukaiyama cyclization was kindly provided by Dr. M. Ilg. Both polymeric catalyst $\left[\mathrm{Cp}^{*} \mathrm{RuCl}_{2}\right]_{n}$ and tetrameric catalyst $\left[\mathrm{Cp}^{*} \mathrm{RuCl}\right]_{4}$ for the trans-hydrostannation were kindly provided by either laboratory assistant K. Radkowski, by Dr. D. Roşca or Dr. S. Rummelt. Within the reaction sequence towards the 2,5 -trans-disubstituted ether 130, laboratory apprentice C. Rustemeier helped with the synthesis and purification of thioether 141 (on a scale of ca. 1 g , Scheme 3.54). The first three steps of the reaction sequence towards aldehyde $\mathbf{1 8 5}$ were also carried out by laboratory apprentice C. Rustemeier on a scale above 5 g (Scheme 3.78). Therefore, material supply was always assured, when in parallel the focus lay on the introduction of the subsequent steps of the new synthetic route towards phosphorus ylide 182. Based on the results shown in Chapter 3.3.1.2 and with the aimed phosphorus ylide $\mathbf{1 8 2}$ in mind, Dr. J. Novacek proposed an order of events which in fact helped to pave a way to this important intermediate. A supply of catalyst $\mathrm{PdCl}_{2}\left(\mathrm{P}(2 \text {-fury })_{3}\right)_{2}$ was kindly provided by F . Anderl. All experiments discussed in Chapter 3.8 were conducted and optimized by Ph.D. student F. Anderl. Laboratory assistant P. Ortsack and laboratory assistant apprentice C. Rustemeier contributed to his success. Further details on the total synthesis of belizentrin methyl ester (18)
and the synthesis of the macrocyclic scaffold 128a can be found in the projected Ph.D. thesis of F. Anderl.

Their help and contribution is therefore thankfully acknowledged.

5.2. Total Synthesis Of Belizentrin

5.2.1. The Western Belizentrin Fragment - Route 1

5.2.1.1. The 2,5-trans-Disubstituted Tetrahydrofuran Ring

N-((1R,2R)-1-Hydroxy-1-phenylpropan-2-yl)-N-methylpropionamide (42)

Propionic anhydride ($21.3 \mathrm{~mL}, 165 \mathrm{mmol}$) was added to a stirred solution of $(1 R, 2 R)-(-)$-pseudoephedrine (41) ($25.9 \mathrm{~g}, 154 \mathrm{mmol}$) and TEA ($23.6 \mathrm{~mL}, 169 \mathrm{mmol}$) in DCM (300 mL) at rt over the course of 10 min and stirring was continued for 1 h . The reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$. The organic extract was subsequently washed with aq. $\mathrm{HCl}(1.0 \mathrm{M}, 200 \mathrm{~mL})$ and brine (200 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by recrystallization from boiling PhMe (120 mL) affording compound 42 as a colourless crystalline solid (32.3 g, 95\%).
${ }^{1} \mathrm{H}$ NMR (2.5:1 rotamer ratio, asterisk denotes minor rotamer peaks, $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.37-6.94(\mathrm{~m}, 5 \mathrm{H}), 7.37-6.94^{*}(\mathrm{~m}, 5 \mathrm{H}), 5.02(\mathrm{brs}, 1 \mathrm{H}), 4.53(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{brs}, 1 \mathrm{H})$, 4.21* (dd, J = 8.9, 3.0 Hz, 1H), 3.71* (dq J = 9.1, 6.8 Hz, 1H), 3.44* (br s, 1H), 2.83* (s, 3H), 2.49* (dq, J=15.1, 7.5 Hz, 1H), 2.14-2.09* (m, 1H), 2.08 (s, 3H), 1.84-1.64 (m, 2H), 1.23* (t, J = 7.4 Hz, $\left.3 \mathrm{H}), 1.02(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.55^{*}(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}\right)^{13} \mathrm{C}$ NMR (2.5:1 rotamer ratio, asterisk denotes minor rotamer peaks, $\left.101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=175.3,174.3^{*}, 143.9$, 142.8*, 128.7*, 128.6, 128.4 (2C), 128.2*, 128.0* (2C), 127.5* (2C), 127.4, 126.9 (2C), 76.6, 75.3*, 59.4, 58.5*, 27.5, 27.0*, 15.2*, 14.4, 10.0*, 9.4 ppm ; HRMS (ESI): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Na}^{+}: 244.1308$, found: 244.1307. The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{267}$
(S)-N-((1R,2R)-1-Hydroxy-1-phenylpropan-2-yl)-N,2-dimethylpent-4-enamide (43) (in THF (180 mL) at $0^{\circ} \mathrm{C}$ giving a white suspension, and stirring was continued for 15 min . The reaction mixture was warmed to rt and stirring was continued for 30 min . Propionamide 42

[^79]($30.0 \mathrm{~g}, 136 \mathrm{mmol}$) as a solution in THF (370 mL) was slowly added to the stirred reaction mixture at $-78{ }^{\circ} \mathrm{C}$ over the course of 30 min and stirring was continued for 45 min . Afterwards the reaction mixture was warmed to $0^{\circ} \mathrm{C}$ and stirring was continued for 20 min . Then the reaction mixture was warmed to rt and stirring was continued for 15 min . Allyl iodide ($19.0 \mathrm{~mL}, 203 \mathrm{mmol}$) was added dropwise at $-78^{\circ} \mathrm{C}$ to the reaction mixture and stirring was continued for 1 h . Finally the reaction mixture was warmed to $0^{\circ} \mathrm{C}$ and stirring was continued for 1 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$ and sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(15 \mathrm{~mL})$ and the aq. phase was extracted with EtOAc $(2 \times 400 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $2: 1$ to $1: 1$) affording compound 43 as an orange oil (33.7 g, 95\%).
${ }^{1} \mathrm{H}$ NMR (3.3:1 rotamer ratio, asterisk denotes minor rotamer peaks, $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.37-$ $7.05(\mathrm{~m}, 5 \mathrm{H}), 7.37-7.05^{*}(\mathrm{~m}, 5 \mathrm{H}), 5.98-5.85^{*}(\mathrm{~m}, 1 \mathrm{H}), 5.69-5.56(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.14^{*}(\mathrm{~m}, 1 \mathrm{H})$, 5.09 - 5.04* (m, 1H), $5.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.02-4.91(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 4.27* (dd, J = 8.4, 3.2 Hz, 1H), 3.94-3.85* (m, 1H), 3.39-3.35* (m, 1H), 2.87-2.75* (m, 2H), 2.84* (s, 3H), 2.46 - 2.37 (m, 1H), 2.35 - 2.29* (m, 1H), 2.27 (dd, J = 12.8, 5.9 Hz, 1H), $2.24(\mathrm{~s}, 3 \mathrm{H})$, 2.02 - $1.93(\mathrm{~m}, 1 \mathrm{H}), 1.07^{*}(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.965(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.68^{*}$ ($\mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR (3.3:1 rotamer ratio, asterisk denotes minor rotamer peaks, $\left.101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=177.4,176.5^{*}, 143.7,142.8^{*}, 137.6^{*}, 136.7,128.7^{*}, 128.6,128.4$ (2C), 128.2*, 127.9* (2C), 127.4* (2C), 127.3, 126.9 (2C), 116.41, 116.36*, 76.3, 75.4*, 59.1, 58.2*, 38.7*, 38.5, 36.6, 35.9*, 17.8*, 17.2, 15.5*, 14.4 ppm ; HRMS (ESI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Na}^{+}$: 284.1621, found: 284.1621. The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{268}$

(S)-5-Methyl-1-(triisopropylsilyl)oct-7-en-1-yn-4-one (44b)

n-BuLi (1.6 M in hexane, $6.51 \mathrm{~mL}, 10.4 \mathrm{mmol}$) was slowly added to a stirred solution of 1-(triisopropylsilyl)-1-propyne ($95 \%, 2.62 \mathrm{~mL}, 10.4 \mathrm{mmol}$) and TMEDA ($1.56 \mathrm{~mL}, 10.4 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ at $-5^{\circ} \mathrm{C}$ over the course of 5 min and stirring was continued for 30 min . In parallel n-BuLi (1.6 M in hexane, $5.42 \mathrm{~mL}, 8.67 \mathrm{mmol}$) was slowly added to a stirred solution of amide $43(2.27 \mathrm{~g}, 8.67 \mathrm{mmol})$ as a solution in THF (55 mL) at $-78{ }^{\circ} \mathrm{C}$ over the

[^80]course of 10 min . Afterwards the previously prepared solution of lithiated 1-(triisopropylsilyl)-1-propyne was slowly added to the stirred reaction mixture at $-78{ }^{\circ} \mathrm{C}$ over the course of 10 min . The reaction mixture was warmed to $0^{\circ} \mathrm{C}$ and stirring was continued for 20 min . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ and diluted with EtOAc (100 mL). After phase separation the aq. phase was extracted with EtOAc (50 mL). The combined organic extracts were subsequently washed with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ and water (100 mL), and were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography twice (first column: SiO_{2}, hexane/EtOAc, 75:1; second column: SiO_{2}, hexane/EtOAc $80: 1$) affording both major product 44 b ($1.93 \mathrm{~g}, 76 \%$) and minor byproduct 205 ($60 \mathrm{mg}, 2 \%$, d.r. = 1:1) as a colourless oil.

Analytical and spectral data of the major product 44b: $[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}:+20.9$ (c=1.01, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.77-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.01(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~d}, \mathrm{~J}=22.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.32 (d, J = 22.8 Hz, 1H), 3.11 (sex, J = 7.0 Hz, 1H), 2.46 (dtt, J = 14.2, 6.4, 1.4 Hz, 1H), 2.13 (dtt, $\mathrm{J}=14.5,7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-1.05(\mathrm{~m}, 21 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=207.6,135.5,117.2,100.2,85.8,43.9,36.9,34.7,18.7$ (6C), 16.1, 11.4 (3C) ppm; IR (film): $\tilde{v}=3079,2942,2892,2865,2175,1920,1719,1642,1461,1382,1270,1242,1197,1073$, 1034, 1017, 993, 916, $882,675,660,621,528,502,452,417 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{OSiNa}^{+}$: 315.2116, found: 315.2115 .

Analytical and spectral data of the minor byproduct $205:{ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.84-5.62$

$(\mathrm{m}, 1 \mathrm{H}), 5.10-4.94(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.39(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.43-$
$1.20(\mathrm{~m}, 4 \mathrm{H}), 1.17-0.96(\mathrm{~m}, 23 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}$, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=138.5,138.4^{*}, 115.92^{*}, 115.89,105.1^{*}, 105.0,84.4^{*}$, 84.3, 75.5, 75.4*, 40.4, 39.7*, 37.0*, 36.1, 35.9*, 35.7, 29.6, 29.1*, 25.7, 25.5*, 23.6, 23.5*, 18.79 (6C), 18.78* (6C), 14.24, 14.23*, 13.9, 13.7*, 11.4 (3C), 11.4* (3C) ppm; IR (film): $\tilde{v}=3433,3076$, $2942,2892,2865,2171,1713,1640,1462,1382,1367,1242,1071,1017,993,912,882,738,675$, 494, 460, $412 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{OSiNa}^{+}$: 373.2897, found: 373.2900.

(4R,5S)-5-Methyl-1-(triisopropyIsilyl)oct-7-en-1-yn-4-ol (36a)

Representative Procedure A (CBS Reduction)

$\mathrm{L}^{*}(0.5 \mathrm{M}$ in $\mathrm{PhMe}, 5 \mathrm{~mol} \%, 34.2 \mu \mathrm{~L}, 17.1 \mu \mathrm{~mol})$ was added to a stirred solution of ketone 44 b ($100 \mathrm{mg}, 342 \mu \mathrm{~mol}$) in DCM (2.5 mL) at $-78^{\circ} \mathrm{C}$ and stirring was continued for 20 min . Then, catecholborane ($72.9 \mu \mathrm{~L}, 684 \mu \mathrm{~mol}$) as added to the reaction mixture and stirring was continued at $-78^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was warmed to $5^{\circ} \mathrm{C}$ and stirring was continued for 17 h . The reaction was quenched with aq. $\mathrm{NaH}_{2} \mathrm{PO}_{4}(1.0 \mathrm{M}$, 10 mL) at $0^{\circ} \mathrm{C}$ and the aq. phase was extracted with EtOAc ($2 \times 10 \mathrm{~mL}$), and the combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, $75: 1$) affording desired anti-isomer 36a, syn-isomer 46a and some unreacted starting material 44b as a colourless oil.

Herein, L^{*} corresponds to: (R) - or (S)-CBS-oxazaborolidine 47 with $\mathrm{R}=\mathrm{CH}_{3}$, tolyl and n-butyl. The reaction was conducted on a 300 mg scale for $\mathrm{R}=\mathrm{CH}_{3}$ following the conditions as described. Yields and corresponding d.r. are shown in Scheme 3.6.

Analytical and spectral data of the anti-diastereomer 36a: $[\alpha]_{\mathrm{D}}^{20}$: +8.3 ($\mathrm{c}=1.02, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.80$ (dddd, J = 16.8, 10.1, $7.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), $5.08-5.00(\mathrm{~m}, 2 \mathrm{H}), 3.53$ (tt, J = 7.1, 4.5 Hz, 1H), $2.55(\mathrm{dd}, \mathrm{J}=16.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, \mathrm{J}=16.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.34(\mathrm{~m}$, 1H), 2.06 (d, J = $4.9 \mathrm{~Hz}, 1 \mathrm{H}$), $1.99-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.10-1.01(\mathrm{~m}, 21 \mathrm{H}), 0.89(\mathrm{~d}$, $\mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=137.2,116.4,105.0,83.9,73.6,37.9,36.9,26.4$, 18.8 (6C), 15.4, 11.3 (3C) ppm; IR (film): $\tilde{v}=3419,3077,2942,2892,2865,2172,1727,1641,1462$, 1382, 1242, 1117, 1045, 1017, 989, 913, 882, 663, 607, 527, 490, 460, $417 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{OSiNa}^{+}$: 317.2271, found: 317.2269.

Analytical and spectral data of the syn-diastereomer 46a: [$\alpha]_{\mathrm{D}}^{20}$: -11.5 ($\mathrm{c}=0.97, \mathrm{CHCl}_{3}$);

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.78$ (ddt, J = 17.0, $10.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.09-$
$4.99(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{tt}, \mathrm{J}=6.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (d, J = $6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.24 (dddt, $J=13.8,6.9,5.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.00-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.78$ (ddqd, J=10.1, 8.3, $6.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.10-1.01(\mathrm{~m}, 21 \mathrm{H}), 0.94(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=137.1,116.4,105.1,83.6,72.9,38.0,37.3,26.6,18.8$ (6C), 13.8, 11.3 (3C) ppm; IR (film): $\tilde{v}=3435,3077,2942,2892,2865,2171,1726,1641,1462,1382,1242,1123,1018,993,911,882$,

675, 663, 528, 491, 460, $416 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{OSiNa}^{+}$: 317.2271, found: 317.2271.

Procedure B

(S)-2-Methyl-CBS-oxazaborolidine (S)-47a (1.0 M in PhMe, $5 \mathrm{~mol} \%, 239 \mu \mathrm{~L}, 239 \mu \mathrm{~mol}$) was added to a stirred solution of ketone 44b (1.40 g, 4.79 mmol) in DCM (35.3 mL) at $-78^{\circ} \mathrm{C}$ and stirring continued for 20 min . Then, catecholborane ($765 \mu \mathrm{~L}, 7.18 \mathrm{mmol}$) was added to the reaction mixture and stirring was continued at $-78^{\circ} \mathrm{C}$ for 6.5 h . (S)-2-methyl-CBS-oxazaborolidine (S)-47a (1.0 M in PhMe, $1 \mathrm{~mol} \%, 47.9 \mu \mathrm{~L}, 47.9 \mu \mathrm{~mol}$) and catecholborane ($255 \mu \mathrm{~L}, 2.39 \mathrm{mmol}$) were again added to the stirred reaction mixture at $-78^{\circ} \mathrm{C}$ and stirring was continued for 1 h . The reaction mixture was warmed to $5^{\circ} \mathrm{C}$ and stirring was continued for 14 h . The reaction was quenched with aq. $\mathrm{NaH}_{2} \mathrm{PO}_{4}(1.0 \mathrm{M}, 50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the aq. phase was extracted with EtOAc ($2 \times 50 \mathrm{~mL}$), and the combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $80: 1$ to $50: 1$) affording both desired major anti-isomer 36 a ($735 \mathrm{mg}, 52 \%$) and minor syn-isomer 46 a ($247 \mathrm{mg}, 18 \%$) as a colourless oil. The analytical and spectroscopic data of the isolated compounds were identical with those shown above.
((2S,4S,5R)-4-Methyl-5-(3-(triisopropylsilyl)prop-2-yn-1-yl)tetrahydrofuran-2-yl)methanol (48a)

Alcohol 36a ($700 \mathrm{mg}, 2.38 \mathrm{mmol}$) as a solution in $i-\mathrm{PrOH}(23.7 \mathrm{~mL})$ was added to $\mathrm{Co}(\mathrm{nmp})_{2} 49 \mathrm{~b}$ ($10 \mathrm{~mol} \%, 134 \mathrm{mg}, 238 \mu \mathrm{~mol}$) and O_{2} was bubbled through the stirred solution for $10 \mathrm{~min} . t-\mathrm{BuOOH}$ (5.5 M in decane, $43.2 \mu \mathrm{~L}, 23.8 \mu \mathrm{~mol}$) was added to the stirred reaction mixture at rt . The resulting reaction mixture was warmed to $55^{\circ} \mathrm{C}$ resulting in a colour change from orange to green and stirring was continued for 15 h under an atmosphere of O_{2} (balloon). The solvent was evaporated and the residue was dissolved in hexane (60 mL). The resulting solution was washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7$, 30 mL) and the aq. phase was extracted with hexane ($3 \times 30 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc 7:1 to 3:1) affording compound 48a as a colourless oil ($503 \mathrm{mg}, 68 \%$).
$[\alpha]_{\mathrm{D}}^{20}:+0.4\left(\mathrm{c}=1.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.18-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{ddd}, \mathrm{J}=11.6$, $6.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.60(\mathrm{dt}, \mathrm{J}=8.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.49(\mathrm{dt}, \mathrm{J}=11.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.57 ($\mathrm{dd}, \mathrm{J}=17.0$, $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, \mathrm{J}=17.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{ddd}, \mathrm{J}=12.3,7.2,6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.91(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{ddd}, \mathrm{J}=12.2,10.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-1.00(\mathrm{~m}$, $21 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=104.9,83.4,82.5,79.1,65.1,39.4,36.8,25.2,18.8$ (6 C), 17.3, 11.4 (3C) ppm; IR (film): $\tilde{v}=3425,2958,2942,2892,2865,2174,1781,1732,1462,1422$, $1382,1366,1328,1243,1169,1113,1031,1017,996,971,919,883,840,822,676,661,632,605$, $527,460 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{SiNa}^{+}$: 333.2220, found: 333.2221.

5.2.1.2. The Sugar-Based Alkyne

(2R,3R,4R,5S,6R)-2-(Acetoxymethyl)-6-allyltetrahydro-2H-pyran-3,4,5-triyl triacetate (40a)

Procedure $\mathrm{A}\left(\mathrm{MeCN}, \mathrm{BF}_{3} \mathrm{OEt}_{2}\right)$

Allyl-TMS (52) ($30.5 \mathrm{~mL}, 192 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(23.7 \mathrm{~mL}, 192 \mathrm{mmol})$ were subsequently added to a stirred solution of per-O-acetyl- α-D-glucopyranose (50) $(15.0 \mathrm{~g}, 38.4 \mathrm{mmol})$ in $\mathrm{MeCN}(250 \mathrm{~mL})$ at rt . The resulting reaction mixture was stirred for 23 h at $80^{\circ} \mathrm{C}$. Then the reaction mixture was cooled to rt and the solvent was evaporated. The crude product was dissolved in $\mathrm{CHCl}_{3}(150 \mathrm{~mL})$ and the organic phase was subsequently washed with water ($2 \times 100 \mathrm{~mL}$), sat. aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and brine (100 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography twice (first column: SiO_{2}, hexane/EtOAc, 4:1 to 2:1; second column: SiO_{2}, $\mathrm{PhMe} / \mathrm{EtOAc}, 20: 1$ to $5: 1$) affording compound 40 a as an anomeric mixture ($11.3 \mathrm{~g}, 79 \%, \alpha: \beta=7: 1$). The anomers 40 a and 53 were separated by recrystallization from boiling $\mathrm{CHCl}_{3}(7.8 \mathrm{~mL})$ and forced precipitation with hexane (130 mL) affording the major α-anomer 40a as precipitate whereas the minor β-anomer 53 remained in solution. The crystalline precipitate was washed with ice-cold hexane and dried under vacuum, the solution was evaporated and yielded a light yellow solid.

Analytical and spectral data of the major α-anomer 40a: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.75$ (dddd, $J=17.5,10.2,7.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.37-5.31(\mathrm{~m}, 1 \mathrm{H}), 5.19-5.05(\mathrm{~m}, 3 \mathrm{H}), 4.98(\mathrm{dd}, \mathrm{J}=9.5,8.8 \mathrm{~Hz}$, 1 H), 4.28 (ddd, J = 10.7, 5.6, $4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.21 (dd, J = 12.2, $5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.08 ($\mathrm{dd}, \mathrm{J}=12.2,2.6 \mathrm{~Hz}$, 1H), 3.86 (ddd, J = 9.5, 5.4, $2.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.61-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.05$ ($\mathrm{s}, 3 \mathrm{H}$), $2.04(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.9,170.3,169.8,169.7$, 133.1, 118.0, 72.0, 70.5, 70.4, 68.92, 68.90, 62.4, 30.7, 20.9, 20.89, 20.87, 20.8 ppm; HRMS (ESI): m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{9} \mathrm{Na}^{+}$: 395.1313 , found: 395.1313.

Analytical and spectral data of the minor β-anomer 53 : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.86-5.74$
 (m, 1H), $5.16(\mathrm{t}, \mathrm{J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.01(\mathrm{~m}, 3 \mathrm{H}), 4.91(\mathrm{t}, \mathrm{J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.23$ (dd, J=12.3, 5.0 Hz, 1H), 4.08 (dd, J = 12.2, 2.3 Hz, 1H), 3.62 (ddd, J=10.0, 5.0, $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.49 (ddd, J = 9.7, 7.0, $4.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.35-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H})$, 2.02 (s, 3H), $2.01(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.9,170.6,169.73$, 169.66, 133.1, 117.9, 77.3, 75.7, 74.5, 71.7, 68.6, 62.4, 36.0, 20.93, 20.89, 20.82, 20.79 ppm; HRMS (ESI): m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{9} \mathrm{Na}^{+}: 395.1313$, found: 395.1316 . For both anomers the
analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{269}$

(2R,3R,4R,5S,6R)-2-Allyl-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (40b)

NaOEt ($165 \mathrm{mg}, 2.42 \mathrm{mmol}$) was added to a stirred solution of C-glucoside 40a $(9.00 \mathrm{~g}, 24.2 \mathrm{mmol})$ in $\mathrm{MeOH}(110 \mathrm{~mL})$ at rt and the resulting reaction mixture was stirred for 4 h . The reaction was quenched and neutralized with the weakly acidic ion exchange resin Amberlite ${ }^{\oplus}$. The resin was filtered off and washed with MeOH , the filtrate was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated affording crude compound 40b as a colourless crystalline solid (4.84 g, 98\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=5.88$ (ddt, J = 17.1, 10.2, $6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.12 (dq, J = 17.1, 1.5 Hz, 1H), 5.04 (ddt, J = 10.2, 2.2, 1.1 Hz, 1H), 3.95 (ddd, J = 10.5, 5.6, $4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.74 (dd, J = 11.8, 2.5 Hz , 1 H), 3.64 (dd, J = 11.7, $5.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.60(\mathrm{dd}, \mathrm{J}=9.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.53(\mathrm{dd}, \mathrm{J}=9.5,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.45 (ddd, J=9.6, 5.3, $2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.28 (dd, J=9.6, $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2-53-2.36 (m, 2H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=136.6,116.9,77.1,75.1,74.4,72.9,72.2,62.9,30.5 \mathrm{ppm}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=5.78-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{dq}, \mathrm{J}=17.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-5.00(\mathrm{~m}$, 1 H), 3.97 (ddd, J = 11.5, 5.8, 4.0 Hz, 1H), 3.69 (dd, J = 12.3, $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.62(\mathrm{dd}, \mathrm{J}=9.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.58 (dd, J = 11.9, 5.2 Hz, 1H), 3.55 (dd, J = 9.8, 8.7 Hz, 1H), 3.47 (ddd, J = 10.1, 5.3, $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.25 (dd, J = 10.0, 8.7 Hz, 1H), $2.45-2.26(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=134.3,117.4$, 75.2, 73.0, 72.2, 70.9, 70.0, 60.6, 28.7 ppm ; HRMS (ESI): m / z calcd. for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Na}^{+}: 227.0890$, found: 227.0891. The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{270}$

[^81]
(((2R,3S,4R,5R,6R)-2-Allyl-6-()(tert-butyldimethylsilyl)oxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl)tris(oxy))tris(tert-butyldimethylsilane) (40c)

Procedure A (TBSCl, AgNO_{3})

$\operatorname{TBSCl}(32.8 \mathrm{~g}, 218 \mathrm{mmol})$ as a solution in DMF (60 mL), py ($31.3 \mathrm{~mL}, 387 \mathrm{mmol}$) and $\mathrm{AgNO}_{3}(32.8 \mathrm{~g}, 193 \mathrm{mmol})$ were subsequently added to a stirred solution of C-glucoside 40b ($5.10 \mathrm{~g}, 23.7 \mathrm{mmol}$) in DMF (60 mL) at rt . The resulting reaction mixture was stirred for 16 h under protection of light. The reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and diluted with MTBE (150 mL). The resulting mixture was filtered through a plug of Celite ${ }^{\circledR}$ to remove all insoluble materials, and washed with MTBE ($3 \times 50 \mathrm{~mL}$). The organic extract was subsequently washed with water $(2 \times 75 \mathrm{~mL})$ and brine (75 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 100:1 to 20:1) affording compound 40c as a colourless oil (13.6 g, 87\%).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=5.88$ (dddd, J = 17.5, 10.2, $7.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.10(\mathrm{dq}, \mathrm{J}=17.3,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.05-5.01(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.70(\mathrm{~m}, 5 \mathrm{H}), 3.69-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.44$ (dddt, $J=11.9,7.8,5.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dddt}, \mathrm{J}=14.1,7.6,5.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$, $0.88(\mathrm{~s}, 18 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.065(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.025(\mathrm{~s}$, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=136.1,116.3,78.2,74.3,71.5,70.6,69.4,62.5,36.0,26.34$ (3C), 26.2 (3C), 26.1 (3C), 25.9 (3C), 18.5, 18.5, 18.3, 18.0, -3.3, -4.0, -4.2, -4.48, -4.50, -4.9, -5.0, 5.2 ppm; HRMS (ESI): m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{72} \mathrm{O}_{5} \mathrm{Si}_{4} \mathrm{Na}^{+}$: 683.4349, found: 683.4352. The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{271}$

2-((2R,3S,4R,5R,6R)-3,4,5-Tris((tert-butyldimethylsilyl)oxy)-6-(((tert-

 butyldimethylsilyl)oxy)methyl)tetrahydro-2H-pyran-2-yl)acetaldehyde (54a) (195a) ($9.51 \mathrm{~g}, 36.3 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach rt over 1 h and stirring was continued for 15 h . The solvent was evaporated and the crude product was

[^82]purified by flash chromatography ($\mathrm{SiO}_{2}, \mathrm{PhMe}$) affording compound 54a as a glassy colourless solid (12.6 g, 86\%).
$[\alpha]_{\mathrm{D}}^{20}:+26.9\left(\mathrm{c}=1.17, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.85(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32$ (ddd, $\mathrm{J}=9.0,4.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.75(\mathrm{~m}, 4 \mathrm{H}), 3.72-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{tt}, \mathrm{J}=2.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.81$ (ddd, J = 16.6, 9.0, 2.0 Hz, 1H), 2.34 (ddd, J = 16.6, 4.3, 2.3 Hz, 1H), $0.91(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 18 \mathrm{H}), 0.87$ $(\mathrm{s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $)^{2}$: $\delta=202.9,78.2,74.0,71.6,70.2,65.6,62.1,45.8,26.3$ (3C), 26.2 (3C), 26.0 (3C), 25.8 (3C), 18.50, 18.45, 18.3, 18.0, $-3.6,-4.0,-4.2,-4.51,-4.54,-5.0(2 C),-5.2 \mathrm{ppm} ; \operatorname{IR}(f i l m): \tilde{v}=2953,2929,2887$, $2857,2712,1728,1472,1463,1407,1389,1361,1325,1253,1217,1187,1139,1085,1033,1005$, 981, $938,879,834,812,790,729,669,617,574,531,476,418 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{32} \mathrm{H}_{70} \mathrm{O}_{6} \mathrm{Si}_{4} \mathrm{Na}^{+}$: 685.4141, found: 685.4142 .

4-Methylbenzenesulfonyl azide (206)

隹
TosCl (55) (26.0 g, 136 mmol$)$ as a solution in acetone $(70 \mathrm{~mL})$ was slowly added to a stirred solution of $\mathrm{NaN}_{3}(9.75 \mathrm{~g}, 150 \mathrm{mmol})$ in a mixture of acetone (70 mL) and water (46 mL) at rt over the course of 10 min and stirring was continued for 2 h . The solvent was evaporated, the aq. phase was diluted with water $(10 \mathrm{~mL})$ and extracted with DCM ($3 \times 50 \mathrm{~mL}$). The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated affording compound 206 as a colourless crystalline solid ($26.2 \mathrm{~g}, 98 \%$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6} : $\delta=7.91-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR (101 MHz, \quad DMSO- d_{6}): $\quad \delta=146.5, \quad 134.6, \quad 130.6$ (2C), 127.3 (2C), $21.1 \mathrm{ppm} ;$ ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.80-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=146.4,135.6,130.4$ (2C), 127.7 (2C), 21.9 ppm ; HRMS (ESI): m / z calcd. for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{SNa}^{+}$: 220.0151, found: 220.0151. The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{272}$

[^83]
Dimethyl (1-diazo-2-oxopropyl)phosphonate (Ohira-Bestmann reagent) (56)

$\mathrm{NaH}(3.03 \mathrm{~g}, 126 \mathrm{mmol})$ was added portionwise to a stirred solution of dimethyl-2-oxopropylphosphonate ($20 \mathrm{~g}, 0.120 \mathrm{~mol}$) in a mixture of THF (70 mL) and PhMe (430 mL) at $0^{\circ} \mathrm{C}$ regarding the evolution of gas, and stirring of the resulting suspension was continued for $1 \mathrm{~h} . \operatorname{Tos}_{3}(24.9 \mathrm{~g}, 126 \mathrm{mmol})$ as a solution in PhMe (120 mL) was slowly added at $0^{\circ} \mathrm{C}$ to the reaction mixture. The reaction mixture was warmed to rt and stirring was continued for 19 h . The reaction mixture was filtered through Celite ${ }^{\circledR}$ and the filter cake was washed with EtOAc $(2 \times 400 \mathrm{~mL})$. The solvent was evaporated and the crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 1:1 to $1: 3$) affording compound 56 as a yellow oil (20.0 g , 86\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.81(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=181.0,180.8,53.63,53.57,27.2 \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.91 \mathrm{ppm} ;$ IR (film): $\tilde{v}=2959,2855,2223,2116,1654,1450,1364,1264,1241,1178,1010,969,928,833$, 801, 780, 647, 612, 577, 548, 475, $452 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{PNa}^{+}$: 215.0192, found: 215.0192. The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{273}$

(((2R,3R,4R,5S,6R)-2-(((Tert-butyldimethylsilyl)oxy)methyl)-6-(prop-2-yn-1-yl)tetrahydro-2H-

 pyran-3,4,5-triyl)tris(oxy))tris(tert-butyldimethylsilane) (39a) OTBS in $\mathrm{MeOH}(190 \mathrm{~mL})$ at rt resulting in a colour change from colourless to yellow, and stirring was continued for 20 h . The reaction was neutralized with Amberlite ${ }^{\circledR}$ (weakly acidic cation exchange resin). The resin was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography ($\mathrm{SiO}_{2}, \mathrm{PhMe}$) affording compound 39a as a colourless oil (7.43 g, 89\%).$[\alpha]_{\mathrm{D}}^{20}:+15.0\left(\mathrm{c}=1.19, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.92(\mathrm{ddd}, \mathrm{J}=9.0,5.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ $-3.69(\mathrm{~m}, 6 \mathrm{H}), 2.50(\mathrm{ddd}, \mathrm{J}=16.3,9.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (ddd, J=16.4, 5.8, $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.95 (t, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.885(\mathrm{~s}, 9 \mathrm{H}), 0.875(\mathrm{~s}, 9 \mathrm{H}), 0.125(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.11$ (s, 3H), $0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$): $\delta=81.6$,

[^84]$78.2,74.6,71.0,70.2,70.0,69.0,62.6,26.3$ (3C), 26.2 (3C), 26.1 (3C), 25.9 (3C), 21.4, 18.50, 18.48, 18.3, 18.0, -3.5, -3.9, -4.1, -4.5, -4.6, -4.9 (2C), -5.2 ppm; IR (film): $\tilde{v}=3314,2953,2929,2896$, $2857,1472,1463,1430,1407,1389,1361,1320,1252,1219,1187,1140,1084,1057,1024,1005$, 983, 939, 881, 832, 813, 788, 729, 671, 637, 627, 572, 529, $475 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{70} \mathrm{O}_{5} \mathrm{Si}_{4} \mathrm{Na}^{+}$: 681.4189 , found: 681.4193 .
((2R,3R,4R,5S,6R)-3,4,5-Tris((tert-butyldimethylsilyl)oxy)-6-(prop-2-yn-1-yl)tetrahydro-2H-pyran-2-yl)methanol (57)

HF.py (12.5\% in THF/py 2.5:1, $28.7 \mathrm{~mL}, 39.8 \mathrm{mmol}$) was added to a stirred solution of TBS-protected alcohol 39a ($7.00 \mathrm{~g}, 10.6 \mathrm{mmol}$) in THF (57.4 mL) at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was allowed to reach rt over 30 min and stirring was continued for 2.5 h . The reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$ and the aq. phase was extracted with MTBE ($3 x 200 \mathrm{~mL}$). The combined extracts were washed with brine (200 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, $30: 1)$ affording compound 57 as a colourless oil which crystallized upon storage at $-20^{\circ} \mathrm{C}(4.39 \mathrm{~g}$, 76\%).
m.p.: $38-39^{\circ} \mathrm{C} ;[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}:+11.8\left(\mathrm{c}=1.07, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.03(\mathrm{td}, \mathrm{J}=7.3,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.96$ (ddd, J = 8.4, 5.1, $3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.82 (dd, J = 11.4, $8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.81 (dd, J = 3.3, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.72(\mathrm{tt}, \mathrm{J}=2.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, \mathrm{J}=11.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dt}, \mathrm{J}=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53$ (ddd, $\mathrm{J}=16.5,7.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{ddd}, \mathrm{J}=16.4,7.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.99(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $0.92(\mathrm{~s}, 9 \mathrm{H}), 0.885(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}$, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=81.5,77.1,74.5,72.0,70.7,70.1,68.8,61.5,26.2$ (3C), 26.1 (3C), 25.9 (3C), 21.5, 18.4, 18.3, 18.0, -3.6, -3.9, -4.0, -4.6, -4.8, -5.0 ppm; IR (film): $\tilde{v}=3474$, 3314, 2953, 2929, 2896, 2858, 1743, 1472, 1463, 1389, 1373, 1361, 1319, 1252, 1188, 1134, 1088, 1006, $977,939,923,879,851,812,772,671,636,574,529,477 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{56} \mathrm{O}_{5} \mathrm{Si}_{3} \mathrm{Na}^{+}: 567.3326$, found: 567.3328 .
(2S,3R,4R,5S,6R)-3,4,5-Tris((tert-butyldimethylsilyl)oxy)-6-(prop-2-yn-1-yl)tetrahydro-2H-pyran-

2-carbaldehyde (58)

DMSO ($1.43 \mathrm{~mL}, 20.2 \mathrm{mmol})$ was added dropwise to a stirred solution of $(\mathrm{COCl})_{2}$ ($867 \mu \mathrm{~L}, 10.1 \mathrm{mmol}$) in $\mathrm{DCM}(35 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 5 min . Then alcohol $57(2.50 \mathrm{~g}, 4.59 \mathrm{mmol})$ as a solution in DCM $(8 \mathrm{~mL}$, rinsed with $2 \times 8 \mathrm{~mL}$) was added dropwise and stirring was continued for 20 min . DIPEA ($7.99 \mathrm{~mL}, 45.9 \mathrm{mmol}$) was slowly added over the course of 5 min and stirring was continued for 5 min . Then the reaction mixture was allowed to reach r t and stirring was again continued for 2.5 h . The reaction was quenched with water (50 mL) and the organic extract was subsequently washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,2 \times 40 \mathrm{~mL}$) and with brine (35 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $\left.50: 1\right)$ affording compound 58 as a colourless oil ($2.44 \mathrm{~g}, 98 \%$).
$[\alpha]_{\mathrm{D}}^{20}:+47.4\left(\mathrm{c}=1.58, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.80(\mathrm{~s}, 1 \mathrm{H}), 4.19-4.13(\mathrm{~m}, 2 \mathrm{H}), 4.03$ ($\mathrm{dt}, \mathrm{J}=2.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.85(\mathrm{t}, \mathrm{J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dt} \mathrm{J}=2.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{ddd}, \mathrm{J}=16.3,6.1$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.55(\mathrm{ddd}, \mathrm{J}=16.4,8.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H})$, $0.85(\mathrm{~s}, 9 \mathrm{H}), 0.135(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.075(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=200.8,84.0,80.8,71.2,70.4,70.3,70.2,68.5,26.5$ (3C), 26.2 (3C), 25.7 (3C), 21.4, 18.8, 18.4, 17.9, -3.3, -4.2, -4.57, -4.63, -4.7, -4.9 ppm; IR (film): $\tilde{v}=3314,2953$, 2929, 2896, 2858, 1735, 1472, 1470, 1390, 1375, 1362, 1303, 1252, 1190, 1138, 1087, 1053, 1003, 975, 939, 918, 884, 835, 813, 785, 673, 638, 536, $466 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{54} \mathrm{O}_{5} \mathrm{Si}_{3} \mathrm{Na}^{+}: 565.3178$, found: 565.3171.

(2R,3S,4S)-3,4-Bis((tert-butyldimethylsilyl)oxy)-2-(prop-2-yn-1-yl)-3,4-dihydro-2H-pyran-6-

 carbaldehyde (62)

KOt-Bu ($22 \mathrm{mg}, \quad 0.20 \mathrm{mmol}$) was added to a stirred suspension of (methoxymethyl)triphenylphosphonium chloride (61b) ($67 \mathrm{mg}, 0.20 \mu \mathrm{~mol}$) in THF $(0.25 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$ and stirring was continued for 45 min . Then the reaction mixture was cooled to $-70^{\circ} \mathrm{C}$ and aldehyde $58(53 \mathrm{mg}, 98 \mu \mathrm{~mol})$ as a solution in THF ($146 \mu \mathrm{~L}$, rinsed with $146 \mu \mathrm{~L}$) was slowly added over the course of 5 min . The resulting reaction mixture was allowed to reach rt and stirring was continued for 18 h . The reaction was quenched with ice (10 g)
and the aq. phase was extracted with MTBE ($2 \times 20 \mathrm{~mL}$). The combined extracts were washed with brine (10 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 50:1) affording compound 62 as a colourless oil ($34 \mathrm{mg}, 85 \%$).
$[\alpha]_{\mathrm{D}}^{20}:+31.0\left(\mathrm{c}=0.98, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.20(\mathrm{~s}, 1 \mathrm{H}), 5.75(\mathrm{dd}, \mathrm{J}=5.2,1.6 \mathrm{~Hz}$, 1H), $4.09-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.92$ (ddd, J = 2.7, 1.6, $1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.76 (ddd, J = 16.5, $5.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.66 (ddd, J = 16.4, 9.9, $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.04(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H})$, $0.14(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=187.3,152.2,117.9,79.5$, 73.0, 71.0, 68.7, 65.1, 25.84 (3C), 25.79 (3C), 20.4, 18.10, 18.07, -4.0, -4.37, -4.40, -4.7 ppm ; IR (film): $\tilde{v}=2954,2930,2896,2858,1741,1641,1472,1464,1432,1408,1390,1362,1309,1254$, 1216, 1085, 1005, 978, 939, 904, 834, 812, 776, 756, 667, 629, 443, $431 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}^{+}$: 433.2207, found: 433.2201.

Triphenyl((2-(trimethylsilyl)ethoxy)methyl)phosphonium chloride (61a)

$\left[\underset{\mathrm{Ph}_{3} \stackrel{+}{\mathrm{P}} \widehat{\mathrm{Cl}}^{-} \mathrm{OTSE}}{ }\right] \mathrm{PPh}_{3}(195 \mathrm{a})(3.00 \mathrm{~g}, 11.4 \mathrm{mmol})$ was added to a stirred solution of $(21 \mathrm{~mL})$ at rt . The resulting reaction mixture was stirred for 24 h at $55^{\circ} \mathrm{C}$ resulting in a white precipitate. The precipitate was filtered off and washed with EtOAc ($3 \times 25 \mathrm{~mL}$), and dried under vacuum affording compound 61a as a white solid (3.40 g, 69\%).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3): $\delta=7.90-7.83(\mathrm{~m}, 6 \mathrm{H}), 7.82-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.72-7.64(\mathrm{~m}, 6 \mathrm{H}), 5.98(\mathrm{~d}$, $\left.\mathrm{J}_{31 \mathrm{p}, 1 \mathrm{H}}=3.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.01-3.93(\mathrm{~m}, 2 \mathrm{H}), 0.96-0.88(\mathrm{~m}, 2 \mathrm{H}),-0.09(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=135.3\left(\mathrm{~d}, \mathrm{~J}_{31 \mathrm{P}, 13 \mathrm{C}}=3.0 \mathrm{~Hz}, 3 \mathrm{C}\right), 134.4\left(\mathrm{~d}, \mathrm{~J}_{31 \mathrm{P}, 13 \mathrm{C}}=10.0 \mathrm{~Hz}, 6 \mathrm{C}\right), 130.4\left(\mathrm{~d}, \mathrm{~J}_{31 \mathrm{P}, 13 \mathrm{C}}=12.2 \mathrm{~Hz}\right.$, $6 C), 117.2\left(d, J_{31 P, 13 C}=85.3 \mathrm{~Hz}, 3 C\right), 73.2\left(d, J_{31 P, 13 c}=12.2 \mathrm{~Hz}\right), 64.1\left(d, J_{31 \mathrm{P}, 13 \mathrm{C}}=67.7 \mathrm{~Hz}\right), 18.4,-1.3$ (3C) ppm; $\quad{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}$): $\quad \delta=18.1 \mathrm{ppm} ; \quad$ HRMS (ESI): m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{1} \mathrm{P}_{1} \mathrm{Si}_{1}{ }^{+}$: 393.1798, found: 393.1795. The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{274}$

[^85]
2-(Trimethylsilyl)ethyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(prop-2-yn-1-yl)tetrahydro-2H-pyran-2-yl)acetate (35a)

Procedure A (Wittig reaction)

 A solution of $\mathrm{KOt}-\mathrm{Bu}(504 \mathrm{mg}, 4.49 \mathrm{mmol})$ in THF (4 mL , rinsed with 4 mL) was dried over $5 \AA$ MS before it was slowly added to a stirred suspension of phosphonium chloride 61a ($1.89 \mathrm{~g}, 4.40 \mathrm{mmol}$) in THF (8 mL) with $5 \AA \mathrm{MS}$ at $-50^{\circ} \mathrm{C}$ over the course of 5 min resulting in a fast colour change from colourless to deep red. Stirring was continued for 15 min . Then the reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and aldehyde 58 ($1.22 \mathrm{~g}, 2.25 \mathrm{mmol}$) as a solution in THF (4 mL , rinsed with 4 mL) over $5 \AA \mathrm{MS}$ was slowly added over the course of 5 min . The resulting reaction mixture was allowed to reach rt and stirring was continued for 3 h . The reaction was quenched with water (20 mL) and the aq. phase was extracted with MTBE ($2 \times 45 \mathrm{~mL}$). The combined extracts were washed with brine (45 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $50: 1$ to 20:1) affording intermediate 59a as a yellow oil ($95 \%, 1.18 \mathrm{~g}, 76 \%, E / Z=1: 1$).

PCC ($728 \mathrm{mg}, 3.38 \mathrm{mmol}$) was added to a stirred solution of the E / Z mixture of enolether 59a $(95 \%, 1.17 \mathrm{~g}, 1.69 \mathrm{mmol})$ in DCM $(100 \mathrm{~mL})$ at rt and the reaction mixture was stirred for 4 d . Celite ${ }^{\circledR}$ was added and the solvent was evaporated. The loaded Celite ${ }^{\circledR}$ was added on top of a silica gel column and the crude product was purified by flash chromatography (fine SiO_{2}, hexane/EtOAc, 100:1 to 50:1) affording minor isomer epi-35a ($209 \mathrm{mg}, 18 \%$), a mixture of both isomers ($27 \mathrm{mg}, 2 \%$, d.r. $=2: 1$) and major isomer 35a (541 mg, 48\%) as a colourless oil.

Analytical and spectral data of the major epimer 35a: $[\alpha]_{\mathrm{D}}^{20}:+15.5$ (c=1.04, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.33$ (ddd, J=8.6, $5.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), $4.20-4.13(\mathrm{~m}, 2 \mathrm{H}), 4.02$ (ddd, $J=8.5,6.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.85-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.75$ (ddd, J = 3.2, 2.2, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.50(\mathrm{ddd}, \mathrm{J}=4.3$, $1.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.72 - $2.60(\mathrm{~m}, 2 \mathrm{H}$), 2.49 (ddd, J = 16.4, 8.6, $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.41 (ddd, J = 16.4, 6.1, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.01-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.13$ (s, 6H), 0.11 (s, 6H), $0.10(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.6,81.4,74.5,74.2,74.1,70.1,69.9,68.8,62.8,37.9,26.3$ (3C), 26.2 (3C), 25.9 (3C), 21.1, 18.5, 18.3, 18.0, 17.5, -1.4 (3C), -3.4, -3.9, $-4.1,-4.58,-4.61,-5.0 \mathrm{ppm}$; IR (film): $\tilde{v}=2953,2929$, 2896, 2858, 1735, 1472, 1463, 1389, 1361, 1250, 1167, 1128, 1083, 1056, 1005, 977, 939, 831,

813, 773, 694, 672, 637, 547, 469, $449 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{68} \mathrm{O}_{6} \mathrm{Si}_{4} \mathrm{Na}^{+}: 695.3985$, found: 695.3982.

Analytical and spectral data of the minor epimer epi-35a: $[\alpha]_{\mathrm{D}}^{20}:+2.9$ ($\mathrm{c}=1.04, \mathrm{CHCl}_{3}$); $\begin{array}{ll}\text { TSEO } & { }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.20-4.09(\mathrm{~m}, 3 \mathrm{H}), 3.84-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.54- \\ 3.50(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{dd}, \mathrm{J}=16.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.44(\mathrm{~m}, \\ \text { TBSO }\end{array}$ $0.923(\mathrm{~s}, 9 \mathrm{H}), 0.921(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.115(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}$, 3H) ppm; ${ }^{13}$ C NMR (101 MHz, CDCl_{3}): $\delta=171.9,81.6,75.7,73.8,73.0,71.4,70.1,69.9,62.7,37.1$, 26.50 (3C), 26.47 (3C), 25.8 (3C), 21.3, 18.53, 18.47, 18.0, 17.4, -1.3 (3C), -2.7, -3.1, -4.3, -4.4, -4.9, 5.1 ppm; IR (film): $\tilde{v}=2953,2929,2896,2858,1735,1472,1463,1406,1389,1361,1348,1285$, 1251, 1175, 1144, 1083, 1058, 1006, 985, 938, 892, 858, 831, 812, 771, 694, 674, 637, 553, 457 cm ${ }^{1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{68} \mathrm{O}_{6} \mathrm{Si}_{4} \mathrm{Na}^{+}$: 695.3985, found: 695.3983.

Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(prop-2-yn-1-yl)tetrahydro-2H-pyran-2-yl)acetate (35b)

Procedure A (Wittig Reaction)

A solution of KOt-Bu ($909 \mathrm{mg}, 8.10 \mathrm{mmol}$) in THF (6 mL , rinsed with 6 mL) was dried over $5 \AA$ MS before it was slowly added to a stirred suspension of (methoxymethyl)triphenylphosphonium chloride (61 b) $(2.78 \mathrm{~g}, 8.10 \mathrm{mmol})$ in THF (12 mL) over $5 \AA \mathrm{MS}$ at $-50^{\circ} \mathrm{C}$ over the course of 5 min resulting in a fast colour change from colourless to bright orange, and stirring was continued for 15 min . Then the reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and aldehyde $58(2.20 \mathrm{~g}, 4.05 \mathrm{mmol})$ as a solution in THF (6 mL , rinsed with 6 mL) over 5 Å MS was slowly added over the course of 5 min . The resulting reaction mixture was allowed to reach rt and stirring was continued for 50 min . The reaction was quenched with water $(25 \mathrm{~mL})$ and the aq. phase was extracted with MTBE ($2 \times 50 \mathrm{~mL}$). The combined extracts were washed with brine (50 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 50:1 to $40: 1$) affording intermediate $\mathbf{5 9 b}$ as a colourless oil $(1.88 \mathrm{~g}, 81 \%, E / Z=1: 1)$.

$\operatorname{PCC}(1.36 \mathrm{~g}, 6.30 \mathrm{mmol})$ was added to a stirred solution of the E / Z mixture of enolether 59b ($1.80 \mathrm{~g}, 3.15 \mathrm{mmol}$) in DCM (200 mL) at rt and the reaction mixture was stirred for 20 h . PCC ($1.36 \mathrm{~g}, 6.30 \mathrm{mmol})$ was again added to the reaction mixture and stirring was continued for 24 h . Celite ${ }^{\circledR}$ was added and the solvent was evaporated. The loaded Celite ${ }^{\circledR}$ was added on top of a silica gel column and the crude product was purified by flash chromatography twice (first column: SiO_{2}, hexane/EtOAc, 100:1 to 75:1, second column: fine SiO_{2}, hexane/EtOAc, 100:1) affording minor isomer epi-35b ($316 \mathrm{mg}, 17 \%$), a mixture of both isomers (d.r. $=1: 2,199 \mathrm{mg}, 11 \%$) and major isomer $\mathbf{3 5 b}$ ($980 \mathrm{mg}, 53 \%$) as a colourless oil.

Analytical and spectral data of the major epimer 35b: $[\alpha]_{\mathrm{D}}^{20}$: +14.9 ($\mathrm{c}=1.04, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.33(\mathrm{td}, \mathrm{J}=7.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{ddd}, \mathrm{J}=8.3,6.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85$ - $3.81(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{dt}, \mathrm{J}=4.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.66(\mathrm{~m}, 2 \mathrm{H})$, 2.47 (ddd, J = 16.3, 8.0, 2.6 Hz, 1H), 2.41 (ddd, J = 16.2, 6.4, 2.7 Hz, 1H), $1.94(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.93$ (s, 9H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.9,81.4,74.4,74.2,74.0,70.1,69.9,68.7,51.8,37.5,26.3$ (3C), 26.2 (3C), 25.9 (3C), 21.1, 18.5, 18.3, 18.0, -3.4, -3.9, -4.1, $-4.60,-4.63,-5.0 \mathrm{ppm}$; IR (film): $\tilde{v}=3314$, 2953, 2929, 2896, 2858, 1743, 1472, 1463, 1436, 1389, 1361, 1253, 1168, 1128, 1083, 1056, 1005, 976, 939, 878, 831, 813, 773, 672, 636, 545, $467 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{58} \mathrm{O}_{6} \mathrm{Si}_{3} \mathrm{Na}^{+}: 609.3434$, found: 609.3434 .

Analytical and spectral data of the minor epimer epi-35b: $[\alpha]_{\mathrm{D}}^{20}$: +2.4 ($\mathrm{c}=1.10, \mathrm{CHCl}_{3}$);

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.13$ (ddd, J = 8.3, $5.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $3.83-$
$3.79(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5$ and $\mathrm{H}-7), 3.67(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-11), 3.52-3.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 3.43-$ 3.42 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$), 2.70 (dd, J = 16.2, $8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), $2.51-2.40(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-$ 2 b and $\mathrm{H}-8), 1.94(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10), 0.92(\mathrm{~s}, 18 \mathrm{H}, t-\mathrm{Bu}), 0.91(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.11(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Si}-\mathrm{Me})$, 0.09 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Si}-\mathrm{Me}$), $0.01(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}-\mathrm{Me})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.2$ (C-1), 81.6 (C-9), 75.8 (C-7), 73.7 (C-3), 73.0 (C-5), 71.3 (C-4), 70.2 (C-6), 69.8 (C-10), 51.7 (C-11), 36.7 (C-2), 26.5 (6 C , $t-\mathrm{Bu}), 25.8(3 \mathrm{C}, t-\mathrm{Bu}), 21.3,18.5(t-\mathrm{Bu}), 18.4(t-\mathrm{Bu}), 18.0(t-\mathrm{Bu}),-2.7(\mathrm{Me}),-3.1(\mathrm{Me}),-4.36(\mathrm{Me})$, 4.41 (Me), -4.9 (Me), -5.2 (Me) ppm; IR (film): $\tilde{v}=3315,2952,2930,2894,2858,1741,1472,1463$, $1436,1361,1287,1254,1175,1143,1082,1056,1006,984,963,938,917,904,829,812,771$, 674, 636, 553, 464, $417 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{58} \mathrm{O}_{6} \mathrm{Si}_{3} \mathrm{Na}^{+}: 609.3438$, found: 425.2087.

5.2.1.3. Building Block Coupling \& Elaboration

(1R)-1-Cyclopentyl-5-((tetrahydro-2H-pyran-2-yl)oxy)pent-2-yn-1-ol (69)

TEA ($78.3 \mu \mathrm{~L}, 562 \mu \mathrm{~mol}$) was added to a stirred suspension of $\mathrm{Zn}(\mathrm{OTf})_{2}$ (187 mg , $515 \mu \mathrm{~mol})$ and (+)-N-methylephedrine ($101 \mathrm{mg}, 562 \mu \mathrm{~mol}$) in $\mathrm{PhMe}(0.8 \mathrm{~mL})$ at rt and stirring was continued for 2 h . Then 2-(but-3-yn-1-yloxy)tetrahydro-2H-pyran (rac-68) ($88.0 \mu \mathrm{~L}, 562 \mu \mathrm{~mol}$) was added to the reaction mixture at rt and stirring was continued for 1 h . Then cyclopentanecarbaldehyde ($50.0 \mu \mathrm{~L}, 468 \mu \mathrm{~mol}$) was added to the stirred reaction mixture at rt and stirring was continued for 18 h . Cyclopentanecarbaldehyde ($20.0 \mu \mathrm{~L}, 187 \mu \mathrm{~mol}$) was added again to the stirred reaction mixture at rt and stirring was continued for 24 h . The reaction was quenched with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,15 \mathrm{~mL}$) and the aq. phase was extracted with MTBE ($3 \times 20 \mathrm{~mL}$). The combined extracts were subsequently washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,15 \mathrm{~mL}$) and brine (15 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 100:1 to $10: 1$) affording compound 69 as a colourless oil ($121 \mathrm{mg}, 85 \%$).
$[\alpha]_{\mathrm{D}}^{20}:+2.9\left(\mathrm{c}=1.11, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.64(\mathrm{dd}, \mathrm{J}=4.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{br} \mathrm{s}$, 1 H), 3.88 (ddd, J = 11.2, 8.3, 3.2 Hz, 1H), 3.81 (dt, J = 9.6, 7.1 Hz, 1H), $3.55-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{dt}$, J = 9.6, $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.51 (td, J = 7.1, $2.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.20-2.08$ (m, 1H), $1.88-1.34$ (m, 15H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=98.9,82.4,81.8,66.6,65.9,62.3,46.530 .7,28.9,28.4,25.83,25.82$, 25.6, 20.4, 19.5 ppm; IR (film): $\tilde{v}=3427,2944,2868,2214,1732,1670,1453,1442,1385,1352$, 1323, 1260, 1201, 1182, 1158, 1135, 1121, 1069, 1031, 984, 906, 869, 846, 813, 572, 542, 462, $433,414 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}^{+}:$275.1620, found: 275.1618.

Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((R)-4-cyclopentyl-4-hydroxybut-2-yn-1-yl)tetrahydro-2H-pyran-2-yl)acetate (70)

TEA ($54.1 \mu \mathrm{~L}, 388 \mu \mathrm{~mol})$ was added to a stirred suspension of $\mathrm{Zn}(\mathrm{OTf})_{2}(129 \mathrm{mg}$, $356 \mu \mathrm{~mol})$ and (+)-N-methylephedrine ($70 \mathrm{mg}, 0.39 \mathrm{mmol}$) over $4 \AA \mathrm{MS}$ in PhMe ($300 \mu \mathrm{~L}$) at rt and stirring was continued for 4 h . Then alkyne $\mathbf{3 5 b}$ (76 mg , $0.13 \mathrm{mmol})$ as a solution in $\mathrm{PhMe}(150 \mu \mathrm{~L}$, rinsed with $2 \times 150 \mu \mathrm{~L}$) over $4 \AA \mathrm{MS}$ was added to the reaction mixture at rt and stirring was continued for 1.5 h . Then cyclopentanecarbaldehyde ($13.8 \mu \mathrm{~L}, 130 \mu \mathrm{~mol}$) was added to the stirred
reaction mixture at rt and stirring was continued for 2 h . Afterwards cyclopentanecarbaldehyde ($5.5 \mu \mathrm{~L}, 52 \mu \mathrm{~mol})$ was added again to the stirred reaction mixture at rt and stirring was continued for 46 h . The reaction was quenched with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,10 \mathrm{~mL}$) and the aq. phase was extracted with MTBE ($3 \times 15 \mathrm{~mL}$). The combined extracts were subsequently washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,10 \mathrm{~mL}$) and brine (10 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 20:1 to 10:1) affording both compound 70 ($60 \mathrm{mg}, 68 \%$) and some unreacted starting material 35 b ($9 \mathrm{mg}, 12 \%$) as a colourless oil.
$[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}:+1.9\left(\mathrm{c}=1.12, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.33(\mathrm{ddd}, \mathrm{J}=9.1,5.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ (ddt, J = 7.4, 5.4, 2.0 Hz, 1H), 3.97 (td, J = 7.2, 2.0 Hz, 1H), 3.82 (t, J = 2.5 Hz, 1H), 3.69 (s, 3H), 3.66 $-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.49$ (ddd, J = 3.0, 1.9, 1.0 Hz, 1H), 2.77 (dd, J = 14.6, 9.5 Hz, 1H), 2.67 (dd, J = 14.6, $5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.46 (dd, J = 7.2, $2.1 \mathrm{~Hz}, 2 \mathrm{H}$), $2.11(\mathrm{~h}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.69$ $(\mathrm{m}, 2 \mathrm{H}), 1.66-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89$ $(\mathrm{s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=171.9,82.4,82.3,74.6,74.1,73.5,70.3,68.5,66.6,51.9,46.6,37.3,29.0,28.7,26.3$ (3C), 26.2 (3C), 25.9 (3C), 25.8 (2C), 21.6, 18.5, 18.3, 18.0, -3.4, -4.0, -4.2, -4.6 (2C), -4.9 ppm; IR (film): $\tilde{v}=3467,2952,2929,2896,2858,1740,1472,1463,1437,1389,1361,1322,1253,1168$, 1128, 1083, 1054, 1005, 973, 938, 925, 888, 831, 813, 774, 671, 545, $467 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{35} \mathrm{H}_{68} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}^{+}$: 707.4171, found: 707.4165.

Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((S)-4-hydroxy-4-((2S,4S,5R)-

 4-methyl-5-(3-(trimethylsilyl)prop-2-yn-1-yl)tetrahydrofuran-2-yl)but-2-yn-1-yl)tetrahydro-2H-pyran-2-yl)acetate (33a)

DMSO (157 $\mu \mathrm{L}, 2.21 \mathrm{mmol})$ was added dropwise to a stirred solution of $\mathrm{SO}_{3} \cdot$ py $(88 \mathrm{mg}, 0.55 \mathrm{mmol})$ in DCM $(0.75 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ and stirring was continued for 5 min . Then alcohol 48b ($50 \mathrm{mg}, 0.22 \mathrm{mmol}$) as a solution in DCM (0.75 mL , rinsed with $2 \times 0.75 \mathrm{~mL}$) was added dropwise to the reaction mixture at $-20^{\circ} \mathrm{C}$ and stirring was continued for 20 min . Afterwards DIPEA ($192 \mu \mathrm{~L}, 1.10 \mathrm{mmol}$) was slowly added to the reaction mixture at $-20^{\circ} \mathrm{C}$ over the course of 5 min and stirring was continued for 2 h . The reaction was quenched with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,10 \mathrm{~mL}$) at $-20^{\circ} \mathrm{C}$ and the aq. phase was extracted with MTBE ($3 \times 15 \mathrm{~mL}$). The combined organic extracts were subsequently washed with
aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,10 \mathrm{~mL}$) and brine (10 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated affording compound $\mathbf{3 4 b}$ as a yellow oil ($30 \mathrm{mg}, 61 \%$) which was used in the next step without further purification.

TEA ($93.2 \mu \mathrm{~L}, 669 \mu \mathrm{~mol}$) was added to a stirred suspension of $\mathrm{Zn}(\mathrm{OTf})_{2}$ ($223 \mathrm{mg}, 613 \mu \mathrm{~mol}$) and (+)-N-methylephedrine ($110 \mathrm{mg}, 613 \mu \mathrm{~mol}$) over $4 \AA$ MS in PhMe $(400 \mu \mathrm{~L})$ at rt and stirring was continued for 4 h . Then alkyne 35b ($109 \mathrm{mg}, 186 \mu \mathrm{~mol}$) as a solution in PhMe ($200 \mu \mathrm{~L}$, rinsed with $2 \times 150 \mu \mathrm{~L}$) was dried over $4 \AA \mathrm{MS}$ before it was added to the reaction mixture at rt and stirring was continued for 1 h . Then crude aldehyde 34b $(30 \mathrm{mg}, 0.13 \mathrm{mmol})$ as a solution in PhMe ($200 \mu \mathrm{~L}$, rinsed with $2 \times 150 \mu \mathrm{~L}$) was dried over $4 \AA \mathrm{MS}$ before it was added to the stirred reaction mixture at rt and stirring was continued for 65 h . The reaction was quenched with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,10 \mathrm{~mL}$) and the aq. phase was extracted with MTBE ($3 \times 15 \mathrm{~mL}$). The combined extracts were subsequently washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,10 \mathrm{~mL}$) and brine (10 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 20:1 to 10:1) affording both compound $\mathbf{3 3 a}$ (37 mg , 25%) and some unreacted starting material $\mathbf{3 5 b}$ ($79 \mathrm{mg}, 73 \%$) as a colourless oil.
$[\alpha]_{\mathrm{D}}^{20}:-1.4\left(\mathrm{c}=0.80, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.32(\mathrm{ddd}, \mathrm{J}=9.1,5.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3)$, 4.18 (td, J = 4.3, 2.0 Hz, 1H, H-11), 4.05-3.95 (m, 2H, H-7 and H-12), 3.82 (ddd, J = 2.9, 1.8, 0.8 Hz , 1H, H-5), 3.68 (s, 3H, H-19), $3.67-3.62$ (m, 1H, H-6), 3.59 (ddd, J = 8.6, 6.5, 4.6 Hz, 1H, H-15), 3.49 (ddd, J = 3.5, 1.8, $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 2.74 (dd, J = 14.7, $9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.68 (dd, J = 14.7, 5.4 Hz , $1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 2.55 (dd, J = 17.1, $4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), 2.53 (d, J = $4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), 2.48 (dd, J = 17.0, $6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}$), $2.49-2.44$ (m, 2H, H-8), 2.24 (ddd, J = 12.4, 7.4, 6.2 Hz, 1H, H-13a), 2.19-2.08 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-14$), 1.45 (ddd, J = 12.5, 10.6, $9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{~b}$), 1.11 (d, J = $6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-33$), 0.92 (s, $9 \mathrm{H}, t-\mathrm{Bu}-6$), $0.90(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}-5), 0.89(\mathrm{~s}, 9 \mathrm{H}, \mathrm{t}$-Bu-4), $0.14(\mathrm{~s}, 9 \mathrm{H}, \mathrm{TMS}), 0.12(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.11(\mathrm{~s}, 3 \mathrm{H}$, Me), 0.11 (s, 3H, Me), 0.11 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.09 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-4$), 0.07 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-4$) ppm; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.7$ (C-1), 103.1 (C-17), 86.6 (C-18), 83.3 (C-9), 83.2 (C-15), 81.6 (C-12), 79.5 (C-10), 74.3 (C-3), 74.0 (C-5), 73.5 (C-4), 70.1 (C-6), 68.3 (C-7), 66.0 (C-11), 51.7 (C-19), 39.6 (C-14), 37.8 (C-13), 37.2 (C-2), 26.2 (3C, t-Bu-4), 26.0 ($3 \mathrm{C}, t-\mathrm{Bu}-6$), 25.7 ($3 \mathrm{C}, t-\mathrm{Bu}-5$), 25.1 (C-16), 21.4 (C-8), 18.4 ($t-B u-4$), 18.2 ($t-B u-6$), 17.9 ($t-B u-5$), 17.1 (C-33), 0.0 (3C, TMS), -3.5 (Me), 4.1 (Me-4), -4.3 (Me), -4.7 (2C, Me-4 and Me), -5.0 (Me) ppm; IR (film): $\tilde{v}=3492,2954,2929$, 2897, 2858, 2177, 1741, 1472, 1463, 1436, 1408, 1389, 1361, 1250, 1168, 1128, 1083, 1055, 1005,

972, 938, 924, 832, 814, 775, 759, 698, 671, 645, 544, $468 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{41} \mathrm{H}_{78} \mathrm{O}_{8} \mathrm{Si}_{4} \mathrm{Na}^{+}$: 833.4674, found: 833.4666.

Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((S)-4-hydroxy-4-((2S,4S,5R)-4-methyl-5-(3-(triisopropylsilyl)prop-2-yn-1-yl)tetrahydrofuran-2-yl)but-2-yn-1-yl)tetrahydro-2H-pyran-2-yl)acetate (33b)

DMSO ($1.03 \mathrm{~mL}, 14.5 \mathrm{mmol}$) was added dropwise to a stirred solution of $\mathrm{SO}_{3} \cdot \mathrm{py}$ ($577 \mathrm{mg}, 3.62 \mathrm{mmol}$) in DCM (14 mL) at $-20^{\circ} \mathrm{C}$ and stirring was continued for 5 min . Then alcohol 48a ($450 \mathrm{mg}, 1.45 \mathrm{mmol}$) as a solution in DCM (2 mL , rinsed with $2 \times 2 \mathrm{~mL}$) was added dropwise to the reaction mixture at $-20^{\circ} \mathrm{C}$ and stirring was continued for 20 min . Afterwards DIPEA ($1.26 \mathrm{~mL}, 7.25 \mathrm{mmol}$) was slowly added to the reaction mixture at $-20^{\circ} \mathrm{C}$ over the course of 5 min and stirring was continued for 2 h . The reaction was quenched with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,45 \mathrm{~mL}$) at $-20^{\circ} \mathrm{C}$ and the aq. phase was extracted with MTBE $(3 \times 60 \mathrm{~mL})$. The combined organic extracts were subsequently washed with aq. phosphate buffer $(200 \mathrm{mM}, \mathrm{pH} 7,45 \mathrm{~mL})$ and brine (45 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated affording compound 34a as a yellow oil (ca. 60\%, $562 \mathrm{mg}, 75 \%)$ which was used in the next step without further purification.

TEA ($470 \mu \mathrm{~L}, 3.37 \mathrm{mmol}$) was added to a stirred suspension of $\mathrm{Zn}(\mathrm{OTf})_{2}$ ($1.12 \mathrm{~g}, 3.09 \mathrm{mmol}$) and (+)-N-methylephedrine ($554 \mathrm{mg}, 3.09 \mathrm{mmol}$) was dried over $4 \AA \mathrm{MS}$ in PhMe (2.7 mL) at rt and stirring was continued for 4.25 h . Then alkyne 35b ($550 \mathrm{mg}, 937 \mu \mathrm{~mol}$) as a solution in PhMe (1 mL , rinsed with $2 \times 0.6 \mathrm{~mL}$) was dried over $4 \AA \mathrm{MS}$ before it was added to the reaction mixture at r and stirring was continued for 1 h . Then crude aldehyde 34a (ca. $60 \%, 562 \mathrm{mg}, 1.09 \mathrm{mmol}$) as a solution in $\mathrm{PhMe}(1 \mathrm{~mL}$, rinsed with $2 \times 0.6 \mathrm{~mL}$) was dried over $4 \AA \mathrm{MS}$ before it was added to the stirred reaction mixture at r t and stirring was continued for 65 h . The reaction was quenched with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7$, 30.0 mL) and the aq. phase was extracted with MTBE ($3 \times 45 \mathrm{~mL}$). The combined extracts were subsequently washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,30 \mathrm{~mL}$) and brine (30 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $20: 1$ to $5: 1$)
affording minor isomer epi-33b (14 mg, 2\%), major isomer 33b (156 mg, 19\%) and some unreacted starting material 35b ($429 \mathrm{mg}, 78 \%$) as a colourless oil.

Analytical and spectral data of the major diastereomer 33b: $[\alpha]_{\mathrm{D}}^{20}$: -4.5 ($\mathrm{c}=1.01, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.32$ (ddd, J = 9.2, $5.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.17 (ddd, J = 7.1, 4.1, 2.0 Hz, $1 \mathrm{H}), 4.01(\mathrm{dt}, \mathrm{J}=8.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{td}, \mathrm{J}=7.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$, $3.64(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.59$ (ddd, J = 8.2, 6.0, $4.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.51-3.48$ (m, 1H), 2.74 (dd, J = 14.7, $9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.68 (dd, J = 14.8, 5.7 Hz, 1H), 2.56 (dd, J = 17.0, $4.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.55(\mathrm{dd}, \mathrm{J}=17.0,6.0 \mathrm{~Hz}$, 1H), 2.52 (d, J = $4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.46 (dd, J = 7.3, $2.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.28-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.39(\mathrm{~m}, 1 \mathrm{H})$, $1.11(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-0.99(\mathrm{~m}, 21 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H})$, $0.11(\mathrm{~s}, 6 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.9$, $104.7,83.6,83.4,82.6,81.7,79.6,74.5,74.1,73.6,70.2,68.5,66.2,51.9,39.4,37.8,37.3,26.3$ (3C), 26.2 (3C), 25.9 (3C), 25.0, 21.6, 18.8 (6C), 18.5, 18.3, 18.0, 17.1, 11.4 (3C), -3.4, -4.0, -4.1, -4.6 (2C), -4.9 ppm; IR (film): $\tilde{v}=3469,2929,2893,2861,2174,1742,1463,1436,1383,1361,1254$, $1168,1128,1083,1057,1038,1005,973,938,919,883,833,813,775,675,607,547,530,459$, $422 \mathrm{~cm}^{-1} ;$ HRMS (ESI): m / z calcd. for $\mathrm{C}_{47} \mathrm{H}_{90} \mathrm{O}_{8} \mathrm{Si}_{4} \mathrm{Na}^{+}: 917.5605$, found: 917.5608.

Analytical and spectral data of the minor diastereomer epi-33b: $[\alpha]_{\mathrm{D}}^{20}:+17.1\left(\mathrm{c}=1.40, \mathrm{CHCl}_{3}\right)$;

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.50-4.45(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{td}, \mathrm{J}=7.4,3.8 \mathrm{~Hz}$, 1 H), 4.08 (ddd, J = 8.3, $4.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), $4.01-3.94$ (m, 1H), 3.82 (t, $\mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.51-$ 3.47 (m, 1H), 2.76-2.68(m,2H), 2.68-2.56(m, 2H), $2.54(\mathrm{~s}, 1 \mathrm{H}), 2.51-$ $2.40(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.12-0.98(\mathrm{~m}, 24 \mathrm{H})$, 0.92 (s, 9H), 0.90 (s, 9H), 0.89 (s, 9H), 0.12 (s, 3H), $0.11(\mathrm{~s}, 6 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H})$, $0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.9,104.8,84.1,83.3,83.2,81.0$, $79.6,74.4,74.3,73.7,70.1,68.5,64.8,51.8,37.6,37.4,34.7,26.3$ (3C), 26.2 (3C), 25.9 (3C), 24.7, 21.5, 18.8 (6C), 18.5, 18.3, 18.0, 17.4, 11.4 (3C), $-3.4,-4.0,-4.2,-4.59,-4.60,-4.9 \mathrm{ppm}$; IR (film): $\tilde{v}=3501,2952,2929,2893,2861,2175,1742,1471,1463,1436,1382,1361,1323,1253,1171$, 1129, 1083, 1056, 1040, 1018, 1005, 996, 973, 939, 921, 883, 833, 813, 775, 675, 663, 606, 583, 541, 524, 466, 441, 428, $419 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{47} \mathrm{H}_{90} \mathrm{O}_{8} \mathrm{Si}_{4} \mathrm{Na}^{+}: 917.5605$, found: 917.5612.

Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(((R)-5-cyclopentyl-2-hydroxy-2,5-dihydro-1,2-oxaborol-3-yl)methyl)tetrahydro-2H-pyran-2-yl)acetate (72)

Pinacolborane ($5.1 \mu \mathrm{~L}, 35 \mu \mathrm{~mol})$ was slowly added to a stirred solution of propargylic alcohol 70 ($10 \mathrm{mg}, 15 \mu \mathrm{~mol}$) and $\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}(6 \mathrm{~mol} \%$, $0.4 \mathrm{mg}, 0.8 \mu \mathrm{~mol})$ in DCM $(200 \mu \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$ over the course of 5 min and stirring was continued. The reaction mixture was allowed to reach rt and stirring was continued for 24 h . The solvent was evaporated and the crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 50:1 to 10:1) affording compound 72 ($7 \mathrm{mg}, 67 \%$), an inseparable mixture of borylation products ($1 \mathrm{mg}, 8 \%$) and some unreacted starting material 70 ($1 \mathrm{mg}, 10 \%$) as a colourless oil.
$[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}:+16.1\left(\mathrm{c}=0.70, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-9), 6.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.46$ (dt, J = 7.4, 1.3 Hz, 1H, H-11), 4.42 (ddd, J = 8.7, 5.5, 5.0 Hz, 1H, H-3), 3.86 (dt, J = 10.6, 2.2 Hz, 1H, $\mathrm{H}-7$), 3.79 (dd, J = 3.1, $1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 3.67 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-16$), 3.54 ($\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 3.53 (dd, $\mathrm{J}=2.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 2.78 (dd, J=15.4, $8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.67 (dd, J = 15.4, $5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 2.63 (ddt, J = 15.2, 10.6, $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), 2.15 (dd, J = 15.2, $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{~b}$), $1.88(\mathrm{~h}, \mathrm{~J}=8.0 \mathrm{~Hz}$, 1H, H-12), $1.79-1.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-13 \mathrm{a}$ and $\mathrm{H}-17 \mathrm{a}$), $1.64-1.46$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-14$ and $\mathrm{H}-15$), $1.45-1.30$ (m, 2H, H-13b and H-17b), 0.94 (s, 9H, t-Bu-6), $0.90(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}-4), 0.87$ (s,9H,t-Bu-5), 0.11 (s, 3 H , Me), 0.11 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.10 (s, $3 \mathrm{H}, \mathrm{Me}$), 0.09 (s, 3H, Me), 0.08 (s, $3 \mathrm{H}, \mathrm{Me}$), 0.07 (s, $3 \mathrm{H}, \mathrm{Me}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.7(\mathrm{C}-1), 153.3(\mathrm{C}-10), 136.3(\mathrm{C}-9), 85.1(\mathrm{C}-11), 74.4$ (C-5), 73.7 (C-4), 73.6 (C-3), 72.3 (C-6), 71.4 (C-7), 51.8 (C-16), 44.3 (C-12), 36.9 (C-2), 32.3 (C-8), 28.6 (C-13), 28.4 (C-17), 26.10 (3C, t-Bu), 26.06 (3C, t-Bu), 25.74 (C-14), 25.70 (3C, $t-B u$), 25.5 (C-15), 18.3 ($t-\mathrm{Bu}$), $18.2(t-\mathrm{Bu}), 17.8(t-\mathrm{Bu}),-3.7(\mathrm{Me}),-4.0(\mathrm{Me}),-4.3(\mathrm{Me}),-4.7(\mathrm{Me}),-4.8(\mathrm{Me}),-5.0(\mathrm{Me}) \mathrm{ppm} ;$ ${ }^{11}$ B NMR (160 MHz, CDCl $)_{3}$: $\delta=32.0$ ppm; IR (film): $\tilde{v}=3354,2852,2929,2896,2857,1741,1631$, 1472, 1463, 1434, 1389, 1361, 1253, 1169, 1124, 1086, 1005, 972, 926, 867, 832, 812, 774, 672, 540, 473, 452, $419 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{35} \mathrm{H}_{69} \mathrm{O}_{8} \mathrm{BSi}_{3} \mathrm{Na}^{+}$: 735.4286, found: 735.4287.

A solution of $n-\mathrm{Bu}_{3} \mathrm{SnH}(10.3 \mu \mathrm{~L}, 38.3 \mu \mathrm{~mol})$ in DCM $(350 \mu \mathrm{~L})$ was slowly added to a stirred solution of bis-alkyne 33a ($27 \mathrm{mg}, 33 \mu \mathrm{~mol}$) and $\left[\mathrm{Cp}^{*} \mathrm{RuCl}_{2}\right]_{\mathrm{n}}(5 \mathrm{~mol} \%, 1 \mathrm{mg}, 2 \mu \mathrm{~mol})$ in $\mathrm{DCM}(0.9 \mathrm{~mL})$ at rt over the course of 40 min resulting in a colour change from brown to rose. Stirring was continued for 2 h , the solvent was evaporated and the crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 50:1 to 10:1) affording affording bis-stannane 74 ($7 \mathrm{mg}, 15 \%$), minor β-stannane 75a ($1 \mathrm{mg}, 3 \%$), major α-stannane 76 a ($8 \mathrm{mg}, 22 \%$), an inseparable mixture of TMS-alkenyl-stannanes ($6 \mathrm{mg}, 16 \%$) and some unreacted starting material $\mathbf{3 3 a}$ ($5 \mathrm{mg}, 19 \%$) as a colourless oil.

Analytical and spectral data of the major α-regioisomer 76a: $[\alpha]_{\mathrm{D}}^{20}:+16.8$ ($\mathrm{c}=0.80, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.33$ (dd, $\mathrm{J}_{\mathrm{H}, \mathrm{H}}=8.4,5.8 \mathrm{~Hz}, \mathrm{~J}_{119-\mathrm{S}, \mathrm{H}-10}=133 \mathrm{~Hz}, \mathrm{~J}_{117-\mathrm{sn}, \mathrm{H}-10}=116 \mathrm{~Hz}, 1 \mathrm{H}$, H-9), 4.33 - 4.29 (m, 1H, H-3), 3.95 (d, J = 8.0 Hz, 1H, H-11), $3.84-3.81$ (m, 1H, H-12), 3.81 - 3.78 (m, 1H, H-5), $3.71-3.68$ (m, 1H, H-7), 3.67 (s, 3H, H-19), $3.58-3.54$ (m, 1H, H-15), 3.54-3.52 (m, $1 \mathrm{H}, \mathrm{H}-4), 3.48-3.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 2.80(\mathrm{dd}, \mathrm{J}=14.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}), 2.64(\mathrm{dd}, \mathrm{J}=14.8,8.3 \mathrm{~Hz}$, 1H, H-2b), 2.54 (dd, J = 16.9, 4.9 Hz, 1H, H-16a), 2.52 (s, 1H, OH), 2.52 - 2.49 (m, 1H, H-8a), 2.47 (dd, J = 16.9, 6.6 Hz, 1H, H-16b), $2.11-2 .-05$ (m, 1H, H-14), 1.98 - 1.91 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-13 \mathrm{a}$ and $\mathrm{H}-8 \mathrm{~b}$), $1.54-1.39\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.37-1.24\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.35-1.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{~b}), 1.09(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{H}-33$), $1.00-0.93\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{SnCH}_{2}\right), 0.93(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.90(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.89(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.88$ ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}$), $0.87(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.15(\mathrm{~s}, 9 \mathrm{H}, \mathrm{TMS}), 0.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$, 0.09 (s, 3H, Me), 0.08 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), $0.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.7$ (C-1), 144.7 (C-10), 140.8 (C-9), 103.4 (C-17), 86.4 (C-18), 84.0 (C-11), 82.7 (C-15), 81.7 (C-12), 74.2 (C-3), 74.0 (C-5), 73.0 (C-4), 71.6 (C-6), 69.7 (C-7), 51.6 (C-19), 39.9 (C-14), 38.0 (C-13), 37.1 (C-2), 35.8 (C8), $29.4\left(3 \mathrm{C}, \mathrm{CH}_{2}\right.$), $27.4\left(3 \mathrm{C}, \mathrm{CH}_{2}\right.$), $26.20(3 \mathrm{C}, t-\mathrm{Bu}), 26.16(3 \mathrm{C}, t-\mathrm{Bu}), 25.7$ (3C, $\left.t-\mathrm{Bu}\right), 25.2(\mathrm{C}-16), 18.4$ ($t-\mathrm{Bu}$), 18.2 ($t-\mathrm{Bu}$), 17.8 ($t-\mathrm{Bu}$), 17.1 (C-33), 13.7 (3C, Me), 11.2 (3C, SnCH $)_{2}$), -0.1 (3C, TMS), -3.4 (Me), -4.2 (Me), -4.4 (Me), -4.66 (Me), -4.68 (Me), -4.73 (Me) ppm; ${ }^{119}$ Sn NMR ($149 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-55.3 \mathrm{ppm}$; IR (film): $\tilde{v}=3467,2954,2928,2857,2178,1741,1620,1463,1437,1376,1361$, $1250,1169,1125,1081,1038,1006,971,938,911,833,813,774,672,593,494,466,419 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{53} \mathrm{H}_{106} \mathrm{O}_{8} \mathrm{Si}_{4} \mathrm{SnNa}^{+}: 1125.5896$, found: 1125.5878 .

Analytical and spectral data of the minor β-regioisomer 75a: $[\alpha]_{\mathrm{D}}^{20}:+9.0\left(\mathrm{c}=0.10, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.01$ ($\mathrm{dd}, \mathrm{J}_{\mathrm{H}, \mathrm{H}}=8.3,5.8 \mathrm{~Hz}, \mathrm{~J}_{119-\mathrm{Sn}, \mathrm{H}-10}=136 \mathrm{~Hz}, \mathrm{~J}_{117-\mathrm{Sn}, \mathrm{H}-10}=120 \mathrm{~Hz}$, $1 \mathrm{H}), 4.24(\mathrm{td}, \mathrm{J}=6.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dt}, \mathrm{J}=9.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.65$ $-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.42(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{dd}, \mathrm{J}=15.1$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.54(\mathrm{~m}, 3 \mathrm{H}), 2.52(\mathrm{dd}, \mathrm{J}=15.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, \mathrm{J}=17.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-$ $2.05(\mathrm{~m}, 3 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 6 \mathrm{H}), 1.36-1.25(\mathrm{~m}, 7 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.96-0.90(\mathrm{~m}, 6 \mathrm{H})$ $0.93(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 18 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}), 0.105(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}$, $3 \mathrm{H}), 0.075(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{119} \mathrm{Sn} \operatorname{NMR}\left(149 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-54.1 \mathrm{ppm}$; IR (film): $\tilde{v}=3359,2955,2925,2854,2176,2124,1740,1659,1463,1376,1362,1251,1175,1125,1082$, 1033, 971, 923, 834, 811, 774, 671, 646, 582, 543, 448, $417 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{53} \mathrm{H}_{106} \mathrm{O}_{8} \mathrm{Si}_{4} \mathrm{SnNa}^{+}: 1125.5892$, found: 1125.5878 .

Analytical and spectral data of the major byproduct 74: $[\alpha]_{\mathrm{D}}^{20}:+16.1$ ($\mathrm{c}=0.70, \mathrm{CHCl}_{3}$);

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.80\left(\mathrm{t}, \mathrm{J}_{\mathrm{H}, \mathrm{H}}=6.3 \mathrm{~Hz}, \mathrm{~J}_{119-\mathrm{Sn}, \mathrm{H}-2}=179 \mathrm{~Hz}\right.$, $J_{117-S n, H-2}=171 \mathrm{~Hz}, \quad 1 \mathrm{H}, \mathrm{H}-17$), 6.33 (dd, $\mathrm{J}_{\mathrm{H}, \mathrm{H}}=8.4,5.8 \mathrm{~Hz}, \mathrm{~J}_{119-\mathrm{Sn}, \mathrm{H}-}$ $\left.{ }_{10}=133 \mathrm{~Hz}, \mathrm{~J}_{117-\mathrm{Sn}, \mathrm{H}-10}=117 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9\right), 4.34-4.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 3.94$ (d, $\mathrm{J}_{\mathrm{H}, \mathrm{H}}=8.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{Sn}, \mathrm{H}}=61 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), $3.82-3.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.80-$ 3.77 (m, 1H, H-12), 3.69 (ddd, J = 9.6, $3.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 3.67 (s, 3H, $\mathrm{H}-19), 3.55-3.53$ (m, 1H, H-4), 3.50 (dt, J = 8.7, $5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15$), 3.48 3.47 (m, 1H, H-6), 2.82 (dd, J = 14.8, 6.5 Hz, 1H, H-2a), 2.63 (dd, J = 14.8, 8.2 Hz, 1H, H-2b), 2.63 (s, $1 \mathrm{H}, \mathrm{OH}$), 2.51 (ddd, J = 14.4, 9.6, $5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), $2.40-2.36$ (m, 2H, H-16), $1.99-1.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 8b), $1.95-1.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{a}), 1.90-1.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-14), 1.53-1.39\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 1.35-1.27$ $\left(\mathrm{m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 1.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{~b}), 1.00(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-33), 1.00-0.91\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{SnCH}_{2}\right), 0.93$ ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$), $0.90(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.89(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.89(\mathrm{~s}, 12 \mathrm{H}, t-\mathrm{Bu}$ and Me$), 0.885(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.88$ (s, 3H, Me), 0.875 (s, 3H, Me), 0.87 (s, 3H, Me), 0.12 (s, $3 \mathrm{H}, \mathrm{Me}$), 0.11 (s, 3H, Me), 0.10 (s, $3 \mathrm{H}, \mathrm{Me}$), 0.10 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.09 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Si}-\mathrm{CH}_{3}$), 0.08 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Si}-\mathrm{CH}_{3}$), 0.05 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{TMS}$) ppm; ${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}): $\delta=171.7$ (C-1), 151.6 (C-17), 145.2 (C-18), 144.7 (C-10), 140.7 (C-9), 84.24 (C-15), 84.15 (C-11), 81.3 (C-12), 74.2 (C-3), 74.0 (C-5), 73.0 (C-4), 71.6 (C-6), 69.7 (C-7), 51.6 (C-19), 43.2 ($\mathrm{C}-16$), 40.2 ($\mathrm{C}-14$), 37.8 (C-13), 37.1 (C-2), $35.7(\mathrm{C}-8), 29.3\left(3 \mathrm{C}, \mathrm{CH}_{2}\right), 29.2\left(3 \mathrm{C}, \mathrm{CH}_{2}\right)$, $27.43\left(3 \mathrm{C}, \mathrm{CH}_{2}\right), 27.37\left(3 \mathrm{C}, \mathrm{CH}_{2}\right), 27.0(3 \mathrm{C}, t-\mathrm{Bu}), 26.1(3 \mathrm{C}, t-\mathrm{Bu}), 25.7(3 \mathrm{C}, t-\mathrm{Bu}), 18.4(t-\mathrm{Bu}), 18.2(t-$ $\mathrm{Bu}), 17.8(t-\mathrm{Bu}), 16.5(\mathrm{C}-33), 13.8(3 \mathrm{C}, \mathrm{Me}), 13.7(3, \mathrm{Me}), 11.4\left(3 \mathrm{C}, \mathrm{SnCH}_{2}\right), 11.2\left(3 \mathrm{C}, \mathrm{SnCH}_{2}\right),-0.2$ (3C, TMS), -3.4 (Me), -4.1 (Me), -4.4 (Me), -4.66 (Me), -4.68 (Me), -5.0 (Me) ppm; ${ }^{119}$ Sn NMR (149 MHz, CDCl 3): $\delta=-54.2,-55.1 \mathrm{ppm} ; \operatorname{IR}(f i l m): \tilde{v}=3469,2954,2928,2856,1787$,

1742, 1572, 1463, 1417, 1376, 1361, 1340, 1286, 1252, 1170, 1125, 1082, 1005, 884, 861, 833, 814, 775, 746, 673, 621, 593, 534, 466, $412 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{65} \mathrm{H}_{134} \mathrm{O}_{8} \mathrm{Si}_{4} \mathrm{Sn}_{2} \mathrm{Na}^{+}$: 1417.7106, found: 1417.7091.

Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((S,E)-4-hydroxy-4-((2S,4S,5R)-4-methyl-5-(3-(triisopropylsilyl)prop-2-yn-1-yl)tetrahydrofuran-2-yl)but-2-en-1-yl)tetrahydro-2H-pyran-2-yl)acetate (32b)

A solution of $n-\mathrm{Bu}_{3} \mathrm{SnH}(31.1 \mu \mathrm{~L}, 116 \mu \mathrm{~mol})$ in pentane (1.7 mL) was slowly added to a stirred solution of bis-alkyne 33b ($94 \mathrm{mg}, 105 \mu \mathrm{~mol}$), $\left[\mathrm{Cp}^{*} \mathrm{RuCl}_{2}\right]_{\mathrm{n}}(10 \mathrm{~mol} \%, 3 \mathrm{mg}, 11 \mu \mathrm{~mol})$ and $4 \AA \mathrm{MS}$ in pentane $(3.5 \mathrm{~mL})$ at rt over the course of 1 h resulting in a colour change from rose to yellow, and stirring was continued for 20 min . The solvent was evaporated and the crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 20:1 to 5:1) both affording a mixture of intermediates 75b and 76b ($52 \mathrm{mg}, 42 \%$) and some unreacted starting material 33b ($42 \mathrm{mg}, 45 \%$) as a colourless oil. The mixture of stannanes $\mathbf{7 5 b}$ and $\mathbf{7 6 b}$ was used in the next step without further purification.

Aq. $\mathrm{HI}(57 \%, 28.9 \mu \mathrm{~L}, 219 \mu \mathrm{~mol})$ was added to a stirred suspension of the mixture of stannanes $\mathbf{7 5 b} / \mathbf{7 6 b}(52 \mathrm{mg}, 22 \mu \mathrm{~mol})$ and TBAI (8 mg , $22 \mu \mathrm{~mol})$ in $\mathrm{PhMe}(1.4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and stirring was continued for 2 h . Then aq. $\mathrm{HI}(57 \%, 28.9 \mu \mathrm{~L}, 219 \mu \mathrm{~mol})$ was added to the stirred reaction mixture at $0^{\circ} \mathrm{C}$ and stirring was continued for 1 h . Afterwards TBAI ($8 \mathrm{mg}, 22 \mu \mathrm{~mol}$) was added to the stirred reaction mixture at $0^{\circ} \mathrm{C}$ and stirring was continued for 30 min . Then aq. $\mathrm{HI}(57 \%, 28.9 \mu \mathrm{~L}, 219 \mu \mathrm{~mol})$ was added again to the stirred reaction mixture at $0^{\circ} \mathrm{C}$ and stirring was continued for 2 h . The reaction mixture was quenched with sat. aq. $\mathrm{NaHCO}_{3}(2.5 \mathrm{~mL})$ and the aq. phase was extracted with $\mathrm{EtOAc}(2 \times 5 \mathrm{~mL})$. The combined extracts were washed with aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \%, 2.5 \mathrm{~mL})$ and brine (2.5 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 20:1 to 5:1) affording compound 32b as a colourless oil ($34 \mathrm{mg}, 86 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.79$ (dt, J = 15.6, $6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $5.48(\mathrm{dd}, \mathrm{J}=15.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-$ $4.28(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{dt}$,
$J=8.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.46(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{dd}, \mathrm{J}=7.4,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{dd}, \mathrm{J}=5.4,1.3 \mathrm{~Hz}, 2 \mathrm{H})$, $2.47(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.97(\mathrm{~m}$, $1 \mathrm{H}), 1.43-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-0.99(\mathrm{~m}, 21 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $)_{3}$: $\delta=172.0,131.2,130.4,105.1,83.4,82.4,81.7,76.0,74.5,74.0,73.9,71.8,69.6,51.8,39.7,37.8$, 37.6, 34.4, 26.3 (3C), 26.2 (3C), 25.9 (3C), 25.2, 18.8 (6C), 18.5, 18.3, 18.0, 17.2, 11.4 (3C), -3.4, 3.9, $-4.1,-4.5(2 \mathrm{C}), \quad-4.9 \mathrm{ppm} ; \quad$ HRMS (ESI): m / z calcd. for $\mathrm{C}_{47} \mathrm{H}_{92} \mathrm{O}_{8} \mathrm{Si}_{4} \mathrm{Na}^{+}$: 919.5762, found: 919.5764.

Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((4S)-2,3,4-trihydroxy-4-

 ((2S,4S,5R)-4-methyl-5-(3-(triisopropylsilyl)prop-2-yn-1-yl)tetrahydrofuran-2-yl)butyl)tetrahydro-2H-pyran-2-yl)acetate (78)
Representative Procedure A (Sharpless Dihydroxylation)

Aq. $\mathrm{Me}_{5} \mathrm{O}_{2} \mathrm{NH}_{2}(0.05 \mathrm{M}, 228.8 \mu \mathrm{~L}, \quad 11.1 \mu \mathrm{~mol}), \mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \quad(0.15 \mathrm{M}$, $33.4 \mu \mathrm{~mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.15 \mathrm{M}, 33.4 \mu \mathrm{~mol})$ and aq. $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}(0.01 \mathrm{M}$, $5 \mathrm{~mol} \%, 55.7 \mu \mathrm{~L}, 557 \mathrm{nmol})$ were subsequently added to a stirred solution of allylic alcohol 32b ($10 \mathrm{mg}, 11 \mu \mathrm{~mol}$) and (DHQ) ${ }_{2}$ PHAL ($12.5 \mathrm{~mol} \%, 1 \mathrm{mg}, 1.4 \mu \mathrm{~mol})$ in $t-\mathrm{BuOH}(0.6 \mathrm{~mL})$ and water $(50 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach rt and stirring was ($12.5 \mathrm{~mol} \%, 1 \mathrm{mg}, 1.4 \mu \mathrm{~mol})$ were again subsequently added to the reaction mixture, and stirring was continued for 2 d . The reaction mixture was diluted with water (1 mL) and the reaction was quenched with EtOAc (1 mL) and $\mathrm{NaHSO}_{3}(14 \mathrm{mg}, 134 \mu \mathrm{~mol})$. The aq. phase was extracted with EtOAc ($10 \times 2.5 \mathrm{~mL}$), and the combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 10:1 to $5: 1$) affording a major isomer 78 a ($4 \mathrm{mg}, 39 \%$), a mixture of both isomers ($2 \mathrm{mg}, 19 \%$, d.r. $=1: 1$) and a minor isomer $78 \mathrm{~b}(3 \mathrm{mg}, 29 \%)$ as a colourless oil.

For other ligands and different loadings, the procedure was conducted in a similiar fashion with one half of the ligand/catalyst loading added in the beginning, and the other half added after 19 h .

Analytical and spectral data of the major isomer 78a (the sample contained traces of the minor diastereomer 78b): $[\alpha]_{\mathrm{D}}^{20}$: $+21.0\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.31-4.22(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-3$ and $\mathrm{H}-12$), 4.15 (dt, J = 11.0, 1.9 Hz, $1 \mathrm{H}, \mathrm{H}-7$), 4.06 (dddd, J = 10.3, 8.0, 5.2, $2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), $3.80-3.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.69(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-19), 3.63-3.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-15), 3.54-2.49(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-11)$, 3.51 (d, J = 5.2 Hz, 1H, OH-9), $3.47-3.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.42-3.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 3.36$ (ddd, J = 9.1, 6.7, 2.4 Hz, 1H, H-10), 3.03 (dd, J = 14.1, 11.1 Hz, 1H, H-2a), 2.67 (d, J = 9.0 Hz, 1H, OH-10), 2.61 (d, $\mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}-11), 2.59-2.46(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-16$ and $\mathrm{H}-2 \mathrm{~b}), 2.22-2.09(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-13 \mathrm{a}$ and $\mathrm{H}-14)$, 1.88 (ddd, J = 14.0, 11.0, $2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 1.74-1.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{~b}), 1.55-1.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{~b})$, $1.12(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-33), 1.09-1.00(\mathrm{~m}, 21 \mathrm{H}, \mathrm{TIPS}), 0.92(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.90(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.89$ $(\mathrm{s}, 9 \mathrm{H}, \mathrm{t}-\mathrm{Bu}), 0.10(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 0.092(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.089(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.07(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Me}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.1$ (C-1), 105.1 (C-17), 84.0 (C-15), 82.4 (C-18), 78.5 (C-12), 75.2 (C-10), 75.1 (C-3), 74.0 (C-11), 73.8 (C-5), 73.1 (C-4), 72.4 (C-6), 67.0 (C-9), 64.7 (C-7), 52.2 (C-19), 40.0 (C-14), 37.9 ($\mathrm{C}-13$), 37.1 (C-2), 35.9 (C-8), 26.4 ($3 \mathrm{C}, t-\mathrm{Bu}$), 26.3 ($3 \mathrm{C}, t-\mathrm{Bu}$), 25.9 (3 C , $t-\mathrm{Bu}), 25.6$ (C-16), 18.8 (6C, TIPS), 18.7 ($t-\mathrm{Bu}$), 18.4 ($t-\mathrm{Bu}$), 18.0 (t-Bu), 17.2 (C-33), 11.4 (3C, TIPS), 3.6 (Me), -4.1 (Me), -4.2 (Me), -4.48 (Me), -4.54 (Me), -4.8 (Me) ppm; IR (film): $\tilde{v}=3357,2953$, 2929, 2892, 2860, 2174, 1741, 1635, 1463, 1388, 1361, 1343, 1255, 1170, 1125, 1084, 1037, 1005, $970,920,882,833,812,774,674,457 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{47} \mathrm{H}_{94} \mathrm{O}_{10} \mathrm{Si}_{4} \mathrm{Na}^{+}: 953.5816$, found: 953.5825 .

Analytical and spectral data of the minor isomer 78b (the sample contained traces of the major diastereomer 78a): $[\alpha]_{\mathrm{D}}^{20}:+11.5$ ($\mathrm{c}=0.2, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.32(\mathrm{dt}, \mathrm{J}=10.2$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 4.17 (ddd, J = 10.1, 6.0, 5.3 Hz, 1H, H-12), 4.09 (dt, J = 10.7, 1.9 Hz, 1H, H-7), 3.96 (dtd, J = 9.0, 3.3, 2.0 Hz, 1H, H-9), 3.78 (d, J = 2.6 Hz, 1H, H-5), 3.75 (d, J = $1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}-9), 3.69(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{H}-19), 3.65-3.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-11$ and $\mathrm{H}-15), 3.49-3.47(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-10$ and $\mathrm{H}-4), 3.47-3.45(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-6), 3.13(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}-11), 3.12(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}-10), 2.82(\mathrm{dd}, \mathrm{J}=15.0,9.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.65 (dd, J = 15.0, $4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), $2.58-2.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-16), 2.23-2.11(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-14$ and $\mathrm{H}-13 \mathrm{a}$ and $\mathrm{H}-8 \mathrm{a}$), $1.61-1.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{~b}), 1.45$ (ddd, $\mathrm{J}=14.9,3.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{~b}), 1.12$ (d, $\mathrm{J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-33), 1.08-0.99(\mathrm{~m}, 21 \mathrm{H}, \mathrm{TIPS}), 0.93(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.90(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.895(\mathrm{~s}, 9 \mathrm{H}, t-$ $\mathrm{Bu}), 0.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.095(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.075$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.9$ (C-1), 104.9 (C-17), 83.6 (C-15), 82.2 (C-18), 80.0 (C-12), 74.1 (C-11), 73.91 (C-3), 73.89 (C-5), 73.44 (C-10), 73.41 (C-4), 73.1 (C-9), 72.1 (C-6), 69.3 (C-7), 51.8 (C-19), 39.3 (C-14), 37.2 (C-13), 37.0 (C-2), 34.3 (C-8), 26.12 (3C, $t-B u$), 26.06 ($3 \mathrm{C}, t-$ $\mathrm{Bu}), 25.8$ ($3 \mathrm{C}, t-\mathrm{Bu}$), 25.1 ($\mathrm{C}-16$), 18.6 ($6 \mathrm{C}, \mathrm{TIPS}$), 18.3 ($t-\mathrm{Bu}$), 18.2 ($t-\mathrm{Bu}$), 17.8 (t-Bu), 16.9 (C-33),
11.3 (3C, TIPS), -3.7 (Me), -4.0(Me), -4.3(Me), -4.7 (Me), -4.8 (Me), $-5.0(\mathrm{Me}) \mathrm{ppm}$; IR (film): $\tilde{v}=3397,2953,2928,2895,2859,2172,1737,1644,1463,1438,1387,1362,1255,1172,1124$, 1081, 1037, 1006, 920, 883, 833, 813, 774, 674, 461, $428 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{47} \mathrm{H}_{94} \mathrm{O}_{10} \mathrm{Si}_{4} \mathrm{Na}^{+}$: 953.5816, found: 953.5828.

Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((2S,3R,4S)-2,3,4-trihydroxy-

 4-((2S,4S,5R)-4-methyl-5-(3-(triisopropylsilyl)prop-2-yn-1-yl)tetrahydrofuran-2-yl)butyl)tetrahydro-2H-pyran-2-yl)acetate (78)
Procedure B (Donohoe Conditions)

TMEDA (0.2 M in DCM, $61.3 \mu \mathrm{~L}, 53.1 \mu \mathrm{~mol}$) was added to a stirred solution of allylic alcohol 32b $(10 \mathrm{mg}, 11 \mu \mathrm{~mol})$ in $\mathrm{DCM}(1.0 \mathrm{~mL})$ at rt . The stirred reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and OsO_{4} (0.22 M in $\mathrm{DCM}, 53.2 \mu \mathrm{~L}, 11.7 \mu \mathrm{~mol}$) was added resulting in an immediate colour change to orange, and stirring was continued for 1 h . Then, TMEDA (0.2 M in DCM, $61.3 \mu \mathrm{~L}, 53.1 \mu \mathrm{~mol}$) and $\mathrm{OsO}_{4}(0.22 \mathrm{M}$ in $\mathrm{DCM}, 53.2 \mu \mathrm{~L}, 11.7 \mu \mathrm{~mol})$ were subsequently added once again to the stirred reaction mixture at $-78^{\circ} \mathrm{C}$ resulting in an immediate colour change to red, and stirring was continued for 30 min . The reaction was quenched with 1,2-ethylenediamine ($7.4 \mu \mathrm{~L}, 111 \mu \mathrm{~mol}$) at $-78^{\circ} \mathrm{C}$ and the reaction mixture was allowed to reach rt , and stirring was continued for 4 d . The solvent was evaporated and the crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 10:1 to 5:1) affording both the major isomer 78 a ($5 \mathrm{mg}, 48 \%$) and the minor isomer 78b ($4 \mathrm{mg}, 39 \%$) as a colourless oil. The analytical and spectroscopic data of the isolated compounds were identical with those shown above.

Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((2S,3R,4R)-2,3,4-tris((tert-butyldimethylsilyl)oxy)-4-((2S,4S,5R)-4-methyl-5-(3-(triisopropylsilyl)prop-2-yn-1-

 yl)tetrahydrofuran-2-yl)butyl)tetrahydro-2H-pyran-2-yl)acetate (79a)

TBSOTf ($12.2 \mu \mathrm{~L}, 53.1 \mu \mathrm{~mol}$) was added to a stirred solution of major triol 78a ($11 \mathrm{mg}, 12 \mu \mathrm{~mol}$) and 2,6-lutidine ($8.3 \mu \mathrm{~L}, 71 \mu \mathrm{~mol}$) in DCM $(0.6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach rt and stirring was continued for 4 h . Then 2,6 -lutidine ($0.9 \mu \mathrm{~L}, 8 \mu \mathrm{~mol}$) and TBSOTf ($1.4 \mu \mathrm{~L}, 5.9 \mu \mathrm{~mol}$) were subsequently added at rt and stirring was continued for 20 h . The reaction was diluted with MTBE (10 mL) and quenched with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,10 \mathrm{~mL}$). The organic extract was washed with water (5 mL) and brine (5 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 100:1 to 50:1) affording compound 79a as a colourless oil ($4 \mathrm{mg}, 27 \%$).
$[\alpha]_{\mathrm{D}}^{20}:+24.0\left(\mathrm{c}=0.40, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.23(\mathrm{td}, \mathrm{J}=6.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.08$ (dt, J = 10.0, $4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), 3.99 (ddd, J = 9.5, 4.4, 2.5 Hz, 1H, H-9), 3.90 (dt, J = 11.4, 1.7 Hz, 1H, $\mathrm{H}-7$), 3.79 (dd, J = 2.9, 2.0 Hz, 1H, H-5), 3.76 - 3.73 (m, $2 \mathrm{H}, \mathrm{H}-10$ and $\mathrm{H}-11$), 3.70 (ddd, J = 6.2, 2.0, $0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.63(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-19), 3.54$ (td, J = 7.7, 4.4 Hz, 1H, H-15), 3.51-3.47 (m, 1H, H-6), 2.87 (dd, J = 14.8, 6.8 Hz, 1H, H-2a), 2.59 (dd, J = 16.9, 4.5 Hz, 1H, H-16a), 2.46 (dd, J = 14.8, 5.2 Hz, 1H, H-2b), 2.38 (dd, J = 16.9, $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}$), 2.07 (ddd, J = 13.9, 11.2, $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), 2.04 - 1.95 (m, 2H, H-13a and H-14), 1.50-1.47 (m, 1H, H-13b), $1.21-1.18$ (m, 1H, H-8b), 1.13 (d, J = 6.2 Hz , 3H, H-33), $1.07-1.03$ (m, 18H, TIPS), $1.03-0.99$ (m, 3H, TIPS), 0.92 ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$), 0.90 (s, $9 \mathrm{H}, \mathrm{t}$-Bu), $0.895(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.89(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.88(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.875(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.12(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.12(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{Me}), 0.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.08$ (s, 3H, Me), 0.08 (s, $3 \mathrm{H}, \mathrm{Me}$), 0.08 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.07 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.07 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.0$ (C-1), 105.8 (C-17), 82.6 (C-15), 81.8 (C-18), 78.5 (C-10), 78.1 (C-12), 76.1 (C-5), 75.7 (C-11), 74.6 (C-4), 74.1 (C-6), 72.0 (C-3), 71.4 (C-9), 66.8 (C-7), 51.4 (C-19), 40.7 (C-14), 38.9 (C-13), 37.7 (C-2), 36.0 (C-8), 26.7 (3C, $t-B u$), 26.6 (3C, $t-B u$), 26.5 (3C, t-Bu), 26.3 (3C, $t-\mathrm{Bu}$), 26.2 (3C, $t-\mathrm{Bu}$), 26.1 (3C, $t-\mathrm{Bu}$), 26.0 (C-16), 18.78 ($6 \mathrm{C}, \mathrm{TIPS}$), 18.77 ($t-\mathrm{Bu}$), 18.6 ($t-\mathrm{Bu}$), 18.4 ($t-\mathrm{Bu}$), 18.28 ($t-\mathrm{Bu}$), 18.26 ($t-\mathrm{Bu}), 18.1$ ($t-\mathrm{Bu}$), 17.2 (C-33), 11.5 (3C, TIPS), -2.9 (Me), -3.0 (Me), -3.1 (Me), -3.4 (2C, Me), -3.5 (Me), -3.6 (Me), -3.8 (Me), -4.2 (Me), -4.5 (Me), -4.6 (Me), -4.7 (Me) ppm; IR (film): $\tilde{v}=2953,2928,2894,2857,2177,1742,1646,1472,1463,1437,1408,1388$,

1361, 1252, 1123, 1084, 1041, 1005, 938, 882, 831, 812, 773, 674, 663, 585, 486, 473, 465, 459, 449, $430 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{65} \mathrm{H}_{136} \mathrm{O}_{10} \mathrm{Si}_{7} \mathrm{Na}^{+}$: 1295.8411 , found: 1295.8407 .

Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((2R,3S,4R)-2,3,4-tris((tert-butyldimethylsilyl)oxy)-4-((2S,4S,5R)-4-methyl-5-(3-(triisopropylsilyl)prop-2-yn-1-yl)tetrahydrofuran-2-yl)butyl)tetrahydro-2H-pyran-2-yl)acetate (79b)

TBSOTf ($6.2 \mu \mathrm{~L}, 27 \mu \mathrm{~mol}$) was added to a stirred solution of minor triol 78b ($5 \mathrm{mg}, 5 \mu \mathrm{~mol}$) and 2,6-lutidine ($4.4 \mu \mathrm{~L}, 37.6 \mu \mathrm{~mol}$) in DCM (0.5 mL) at rt and stirring was continued for 1 h . Then 2,6 -lutidine ($4.4 \mu \mathrm{~L}$, $38 \mu \mathrm{~mol})$ and TBSOTf ($6.2 \mu \mathrm{~L}, 27 \mu \mathrm{~mol}$) were subsequently added at rt and stirring was continued for 16 h . The reaction was diluted with MTBE $(10 \mathrm{~mL})$ and quenched with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7$, 10 mL). The extract was washed with water (5 mL) and brine (5 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 100:1 to 50:1) affording compound $\mathbf{7 9 b}$ as a colourless oil ($5 \mathrm{mg}, 73 \%$).
$[\alpha]_{\mathrm{D}}^{20}:+8.8\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.28-4.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-9$ and $\mathrm{H}-3), 4.01$ (ddd, J = 9.9, 8.5, 5.3 Hz, 1H, H-12), 3.80-3.77 (m, 1H, H-7), 3.76 (t, J = $2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $3.65(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{H}-19$), 3.62 (d, J = $8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), 3.57 (dd, J = $8.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 3.53 (ddd, J = 4.7, 1.8, $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.45$ (td, J = 7.7, $4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15$), 3.41 (t, J = $2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.03 (dd, J = 15.1, $7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.54 (dd, J = 16.8, 4.6 Hz, 1H, H-16a), $2.42-2.36$ (m, 2H, H-16b and H-2b), $2.30-$ $2.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{a}), 2.04-1.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-14), 1.93-1.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 1.53-1.49(\mathrm{~m}, 1 \mathrm{H}, 8 \mathrm{~b})$, $1.40-1.33$ (m, 1H, H-13b), 1.08 (d, J = $6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-33$), $1.07-1.00(\mathrm{~m}, 21 \mathrm{H}, \mathrm{TIPS}), 0.92(\mathrm{~s}, 9 \mathrm{H}$, $\mathrm{t}-\mathrm{Bu}), 0.91(\mathrm{~s}, 9 \mathrm{H}, \mathrm{t}-\mathrm{Bu}), 0.89(\mathrm{~s}, 9 \mathrm{H}, \mathrm{t}-\mathrm{Bu}), 0.88(\mathrm{~s}, 9 \mathrm{H}, \mathrm{t}-\mathrm{Bu}), 0.875(\mathrm{~s}, 9 \mathrm{H}, \mathrm{t}-\mathrm{Bu}), 0.86(\mathrm{~s}, 9 \mathrm{H}, \mathrm{t}-\mathrm{Bu})$, 0.13 (s, 3H, Me), 0.11 (s, 3H, Me), $0.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.08$ (s, 3H, Me), 0.075 (s, 3H, Me), 0.07 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}$), 0.065 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.055 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.05 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.03 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.0(\mathrm{C}-1), 105.7(\mathrm{C}-17), 81.9$ (C-15), 81.4 (C-18), 79.8 (C-12), 77.2 (C-11), 75.2 (C-5), 74.6 (C-10), 73.8 (C-4), 73.3 (C-6), 72.6 (C-3), 68.1 (C-9), 66.4 (C-7), 51.3 (C-19), 40.3 (C-14), 38.9 (C-13), 37.8 (C-2), 36.4 (C-8), 26.3 (3C, t-Bu), 26.22 (3C, t-Bu), 26.16 (3C, t-Bu), 26.13 (3C, t-Bu), 26.08 (3C, t-Bu), 25.9 ($4 \mathrm{C}, \mathrm{t}-\mathrm{Bu}$ and C-16), 18.6 ($6 \mathrm{C}, \mathrm{TIPS}$), 18.2 (t-Bu), 18.16 (t-Bu), 18.15 (t-Bu), 18.12 (2C, t-Bu), 18.11 (t-Bu), 17.7 (C-33), 11.3 (3C, TIPS), -3.0 (Me), $-3.52(\mathrm{Me}),-3.54$
(Me), -3.60 (Me), -3.61 (Me), -3.7 (Me), -3.8 (Me), -4.0 (Me), -4.5 (Me), -4.7 (Me), -4.8 (Me), -4.9 (Me) ppm; IR (film): $\tilde{v}=2953,2927,2856,2173,1742,1463,1438,1407,1388,1361,1253,1216$, 1084, 1039, 1006, 974, 937, 921, 885, 833, 810, 773, 673, 628, 462, $438 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{65} \mathrm{H}_{136} \mathrm{O}_{10} \mathrm{Si}_{7} \mathrm{Na}^{+}: 1295.8411$, found: 1295.8404 .

5.2.1.4. Stereochemical Elucidation \& Cyclization Trials

Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((7-((R)-hydroxy((2S,4S,5R)-4-methyl-5-(3-(triisopropylsilyl)prop-2-yn-1-yl)tetrahydrofuran-2-yl)methyl)-2,2,4,4-tetraisopropyl-1,3,5,2,4-trioxadisilepan-6-yl)methyl)tetrahydro-2H-pyran-2-yl)acetate (81)

$t-\mathrm{Bu}_{2} \mathrm{SiCl}_{2}(2.8 \mu \mathrm{~L}, 13 \mu \mathrm{~mol})$ was added to a stirred solution of triol 78a ($10 \mathrm{mg}, 11 \mu \mathrm{~mol}$) and imidazole ($3.7 \mathrm{mg}, 54 \mu \mathrm{~mol}$) in DMF (0.5 mL) at rt and stirring was continued for 17 h . Then imidazole (3.7 mg , $54 \mu \mathrm{~mol})$ and $t-\mathrm{Bu}_{2} \mathrm{SiCl}_{2}(2.8 \mu \mathrm{~L}, 13 \mu \mathrm{~mol})$ were subsequently added at rt and stirring was continued for 2 h . The $\mathrm{AgNO}_{3}(3.7 \mathrm{mg}, 22 \mu \mathrm{~mol})$ was added to the stirred reaction mixture at rt immediately resulting in a white precipitate, and stirring was continued for 1.5 h . Then $i-\mathrm{Pr}_{2} \mathrm{SiCl}_{2}(2.3 \mu \mathrm{~L}, 13 \mu \mathrm{~mol})$ was added at rt with the precipitate dissolving again and stirring was continued for 2 h . Then imidazole $(7 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $i-\mathrm{Pr}_{2} \mathrm{SiCl}_{2}(2.3 \mu \mathrm{~L}, 13 \mu \mathrm{~mol})$ were subsequently added at rt and stirring was continued for 10 h . Then $i-\mathrm{Pr}_{2} \mathrm{SiCl}_{2}(2.3 \mu \mathrm{~L}, 13 \mu \mathrm{~mol})$ and $\mathrm{AgNO}_{3}(3.7 \mathrm{mg}, 22 \mu \mathrm{~mol})$ were subsequently added at rt resulting in a white precipitate again and stirring was continued for 1 h . The reaction was diluted with MTBE (10 mL) and quenched with aq. phosphate buffer (200 mM , $\mathrm{pH} 7,10 \mathrm{~mL})$. The aq. phase was extracted with MTBE ($2 \times 5 \mathrm{~mL}$) and the combined extracts were washed with water (5 mL) and brine (5 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 100:1 to 50:1) affording compound 81 as a colourless oil ($4 \mathrm{mg}, 32 \%$).
$[\alpha]_{\mathrm{D}}^{20}:+6.2\left(\mathrm{c}=0.40, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (OH not visible, $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.36-4.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-9$ and $\mathrm{H}-12$), $4.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 4.23$ (ddd, J = 9.0, 6.1, 3.3 Hz, $1 \mathrm{H}, \mathrm{H}-10$), 4.17 (dt, J = 11.4, 1.7 Hz, 1H, H-7), 3.81 - 3.75 (m, 1H, H-5), 3.66 (s, 3H, H-19), $3.64-3.59(m, 1 H, H-15), 3.59$ (dd, J = 9.1, 1.6 Hz, $1 \mathrm{H}, \mathrm{H}-11$), 3.54 (ddd J = 3.0, 1.9, $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), $3.45-3.41$ (m, 1H, H-6), 2.84 (dd, J = 15.4, $6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.76 (dd, J = 15.4, $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}), 2.57$ (dd, J = 17.0, 4.7 Hz, 1H, H-16a), 2.49 (dd, J = 17.0, 6.3 Hz, 1H, H-16b), 2.28 (ddd, J=14.4, 11.1, 1.7 Hz, 1H, H-8a), $2.20-2.08$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-$ 14), 2.03 (dt, J = 11.6, $7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{a}$), 1.88 (ddd, J $=11.8,10.5,8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{~b}$), 1.16 (dd, $\mathrm{J}=14.1,11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{~b}$), 1.12 ($\mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-33$), $1.07-1.04$ ($\mathrm{m}, 18 \mathrm{H}, \mathrm{TIPS}$), $1.03-0.95$ (m, 27H, $i-\mathrm{Pr}$ and TIPS), $0.96-0.86(\mathrm{~m}, 4 \mathrm{H}, i-\mathrm{Pr}), 0.90(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.89(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.88(\mathrm{~s}, 9 \mathrm{H}, t-$ $\mathrm{Bu}), 0.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.06(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.03(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{Me}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.2(\mathrm{C}-1), 104.7$ (C-17), 84.1 (C-15), $82.0(\mathrm{C}-18)$,
76.9 (C-12), 74.3 (C-5), 73.9 (C-11), 73.6 (C-3), 72.9 (C-4), 72.8 (C-6), 71.6 (C-9), 69.7 (C-10), 65.1 (C7), 51.4 (C-19), 39.6 (C-14), 36.7 (C-2), 34.9 (C-13), 33.0 (C-8), 26.07 (3C, $t-B u$), 26.06 (3C, $t-B u$), 25.7 (3C, t-Bu), 25.2 (C-16), 18.6 (6C, TIPS), 18.21 ($t-B u$), 18.19 ($t-\mathrm{Bu}$), 17.8 ($t-\mathrm{Bu}$), 17.23 ($i-\mathrm{Pr}$), 17.18 (i-Pr), 17.16 (2C, i-Pr), 17.15 (i-Pr), 17.1 (i-Pr), 16.84 (2C, $i-\operatorname{Pr}$), 16.83 (C-33), 13.4 (i-Pr), 13.2 (i-Pr), 12.9 (i-Pr), 12.3 (i-Pr), 11.3 (3C, TIPS) -3.7 (Me), -4.0 (Me), -4.5 (Me), -4.8 (Me), -4.9 (Me), 5.1 (Me) ppm; IR (film): $\tilde{v}=3325,2954,2926,2894,2857,2178,1740,1630,1464,1383,1363$, 1259, 1082, 1039, 1011, 938, 920, 884, 834, 801, 775, 677, 624, 596, 532, $525 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{59} \mathrm{H}_{120} \mathrm{O}_{11} \mathrm{Si}_{6} \mathrm{Na}^{+}$: 1195.7339, found: 1195.7350 .

5.2.1.5. Investigations On Alternative Pathways

5.2.1.5.1. The 2,5 -trans-Disubstituted Tetrahydrofuran Ring

(S)-2-Methylpent-4-en-1-ol ((S)-84)

n-BuLi (1.6 M in hexane, $66.5 \mathrm{~mL}, 106 \mathrm{mmol}$) was slowly added to a stirred solution of DIPA ($15.7 \mathrm{~mL}, 112 \mathrm{mmol}$) in THF (39 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed to rt and stirring was continued for 10 min . Then the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(90 \%, 3.83 \mathrm{~g}, 112 \mathrm{mmol})$ was added portionwise at such a rate as to the development of gas. Then the reaction mixture was warmed to rt and stirring was continued for 1 h . The reaction mixture was again cooled to $0^{\circ} \mathrm{C}$. Amide 43 ($6.95 \mathrm{~g}, 26.6 \mathrm{mmol}$) as a solution in THF $(39 \mathrm{~mL})$ was added dropwise to the reaction mixture. Finally the reaction mixture was allowed to reach rt and stirring was continued for 2 h . The reaction was quenched at $0^{\circ} \mathrm{C}$ with aq. $\mathrm{HCl}(2.0 \mathrm{M}$, 250 mL) and the aq. phase was extracted with MTBE ($3 \times 200 \mathrm{~mL}$). The combined organic extracts were washed with aq. $\mathrm{HCl}(1.5 \mathrm{M}, 200 \mathrm{~mL})$ and brine $(200 \mathrm{~mL})$, and were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated until 400 mbar at $40^{\circ} \mathrm{C}$ bath temperature. Aq. $\mathrm{KOH}(1.0 \mathrm{M}, 200 \mathrm{~mL})$ was added to the stirred solution of the crude at rt and stirring was continued for 1 h . The resulting mixture was neutralized with aq. $\mathrm{HCl}(2.0 \mathrm{M})$ and the aq. phase was extracted with MTBE $(3 \times 150 \mathrm{~mL})$. The combined organic extracts were washed with brine (150 mL) and were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated affording compound (S) - 84 as a yellow oil ($2.44 \mathrm{~g}, 91 \%, 99 \% e e$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.80(\mathrm{ddt}, \mathrm{J}=17.2,10.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{dd}$, $\mathrm{J}=10.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.44(\mathrm{dd}, \mathrm{J}=10.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dddt}, \mathrm{J}=14.2,7.1,5.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.92$ (dtt, J = 13.8, 7.3, 1.2 Hz, 1H), 1.73 (dp, J = 13.4, 6.7 Hz, 1H), 1.67 (br s, 1H), 0.91 (d, J = 6.7 Hz , $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=131.1,116.2,68.0,38.0,35.7,16.5 \mathrm{ppm} ;$ HRMS (CI): m / z calcd. for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{O}^{+}: 101.0966$, found: 101.0966. The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{275}$

[^86]
(S)-2-Methylpent-4-enal ((S)-37)

DMSO ($312 \mu \mathrm{~L}, 4.39 \mathrm{mmol}$) was added dropwise to a stirred solution of $(\mathrm{COCl})_{2}$ $(189 \mu \mathrm{~L}, 2.20 \mathrm{mmol})$ in $\mathrm{DCM}(6 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 5 min . Then alcohol $(S)-84(200 \mathrm{mg}, 2.00 \mathrm{mmol})$ as a solution in DCM (1 mL , rinsed with 1 mL) was added dropwise and stirring was continued for 20 min . DIPEA ($1.74 \mathrm{~mL}, 9.98 \mathrm{mmol}$) was slowly added over the course of 5 min and stirring was continued for 5 min . Then the reaction mixture was allowed to reach rt and stirring was again continued for 1.5 h . The reaction was quenched with water (15 mL) and the organic extract was subsequently washed with aq. phosphate buffer $(200 \mathrm{mM}, \mathrm{pH} 7,4 \times 10 \mathrm{~mL})$ and with brine $(10 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/MTBE, 20:1) affording compound (S) - 37 as solution in MTBE/pentane (38\%, $500 \mathrm{mg}, 97 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.64(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{ddt}, \mathrm{J}=17.0,10.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-$ $5.04(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=204.8,135.0,117.4,45.9,34.9,13.1 \mathrm{ppm}$; The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{276}$

N-((1S,2S)-1-Hydroxy-1-phenylpropan-2-yl)-N-methylpropionamide (ent-42)

) OH Propionic anhydride $(2.08 \mathrm{~mL}, 16.2 \mathrm{mmol})$ was added to a stirred solution of $(1 S, 2 S)-(+)$-pseudoephedrine (ent-41) $(2.50 \mathrm{~g}, 15.1 \mathrm{mmol})$ and TEA $(2.32 \mathrm{~mL}$, $16.6 \mathrm{mmol})$ in DCM (27.5 mL) at rt over the course of 10 min and stirring was continued for 1 h . The reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The organic extract was washed with aq. $\mathrm{HCl}(1.0 \mathrm{M}, 20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by recrystallization from boiling PhMe (14 mL) affording compound ent-42 as a colourless crystalline solid (2.99 g, 89\%).
${ }^{1} \mathrm{H}$ NMR (3:1 rotamer ratio, asterisk denotes minor rotamer peaks, $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.37-6.95$ $(\mathrm{m}, 5 \mathrm{H}), 7.37-6.95^{*}(\mathrm{~m}, 5 \mathrm{H}), 4.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.52(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.07(\mathrm{~m}, 1 \mathrm{H}), 4.06^{*}(\mathrm{~d}$, $\mathrm{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.62^{*}(\mathrm{~m}, 1 \mathrm{H}), 2.78^{*}(\mathrm{~s}, 3 \mathrm{H}), 2.41^{*}(\mathrm{dq}, \mathrm{J}=14.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.17^{*}(\mathrm{~s}, 1 \mathrm{H})$, 2.07 ($\mathrm{s}, 3 \mathrm{H}$), $2.05-1.99^{*}(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.24^{*}(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$,
$3 \mathrm{H}), 0.98$ ($\mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), $0.54^{*}(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (3:1 rotamer ratio, asterisk denotes minor rotamer peaks, $\left.101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=175.3,174.1^{*}, 144.0,142.6^{*}, 128.7^{*}, 128.6$, 128.4 (2C), 128.2*, 127.9* (2C), 127.4* (2C), 127.3, 126.8 (2C), 76.8, 75.5*, 60.1, 58.1*, 27.5, 26.9*, 15.1*, 14.5, 10.0*, $9.4 \mathrm{ppm} ;$ HRMS (ESI): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Na}^{+}: 244.1308$, found: 244.1307. The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{277}$

(R)-N-((1S,2S)-1-Hydroxy-1-phenylpropan-2-yl)-N,2-dimethylpent-4-enamide (ent-43)

n-BuLi (1.6 M in hexane, $16.2 \mathrm{~mL}, 25.8 \mathrm{mmol}$) was slowly added to a stirred solution of flame-dried $\mathrm{LiCl}(3.16 \mathrm{~g}, 74.6 \mathrm{mmol})$ and DIPA ($3.92 \mathrm{~mL}, 28.0 \mathrm{mmol}$) in THF (14 mL) at $0^{\circ} \mathrm{C}$ giving a white suspension, and stirring was continued for 15 min . The reaction mixture was warmed to r t and stirring was continued for 20 min . A solution of propionamide ent-42 ($2.75 \mathrm{~g}, 12.4 \mathrm{mmol}$) in THF (36 mL) was slowly added to the stirred reaction mixture at $-78^{\circ} \mathrm{C}$ over the course of 30 min and stirring was continued for 45 min . The reaction mixture was warmed to $0^{\circ} \mathrm{C}$ and stirring was continued for 15 min . Then the reaction mixture was warmed to rt and stirring was continued for 15 min . Allyl iodide ($1.71 \mathrm{~mL}, 18.6 \mathrm{mmol}$) was added dropwise at $-78^{\circ} \mathrm{C}$ to the reaction mixture and stirring was continued for 1 h . Finally the reaction mixture was warmed to $0^{\circ} \mathrm{C}$ and stirring was continued for 1 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(35 \mathrm{~mL})$ and sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$ and the aq. phase was extracted with EtOAc $(2 \times 35 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 2:1) affording compound ent-43 as a colourless oil $(2.07 \mathrm{~g}$, 64\%).
${ }^{1} \mathrm{H}$ NMR (3.5:1 rotamer ratio, asterisk denotes minor rotamer peaks, $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.37-$ $7.05(\mathrm{~m}, 5 \mathrm{H}), 7.37-7.05^{*}(\mathrm{~m}, 5 \mathrm{H}), 5.98-5.84^{*}(\mathrm{~m}, 1 \mathrm{H}), 5.64$ (dddd, J=16.7,10.2,7.6,6.3Hz,1H), $5.22-5.13^{*}(\mathrm{~m}, 1 \mathrm{H}), 5.09-5.03^{*}(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.91(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.55(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$, 1H), 4.29 (br s, 1H), 4.23* (dd, J = 8.4, 3.2 Hz, 1H), 3.93-3.84* (m, 1H), 3.00* (br s, 1H), 2.82* (s, $3 \mathrm{H}), 2.85-2.74^{*}(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.29^{*}(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{dd}, \mathrm{J}=13.0,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.25(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.07^{*}(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.975(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.68^{*}(\mathrm{dd}, \mathrm{J}=6.9,1.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (3.5:1 rotamer ratio, asterisk denotes

[^87]minor rotamer peaks, $\left.101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=177.5,176.4^{*}, 143.8,142.7^{*}, 137.6^{*}, 136.7,128.7^{*}$, 128.6, 128.4 (2C), 128.2*, 127.9* (2C), 127.4* (2C), 127.3, 126.8 (2C), 116.4, 116.3*, 76.4, 75.5*, 59.3, 58.2*, 38.7*, 38.5, 36.7, 35.9*, 17.8*, 17.2, 15.5*, 14.4 ppm; HRMS (ESI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Na}^{+}$: 284.1621 , found: 284.1619 . The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{278}$

(R)-2-Methylpent-4-en-1-ol ((R)-84)

n-BuLi (1.6 M in hexane, $18.5 \mathrm{~mL}, 29.5 \mathrm{mmol}$) was slowly added to a stirred solution of DIPA ($4.35 \mathrm{~mL}, 31.0 \mathrm{mmol}$) in THF $(11 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed to rt and stirring was continued for 10 min . Then the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}(90 \%, 1.06 \mathrm{~g}, 31.0 \mathrm{mmol})$ was added portionwise regarding the development of gas. Then the reaction mixture was warmed to rt and stirring was continued for 1 h . The reaction mixture was again cooled to $0^{\circ} \mathrm{C}$. Amide ent-43 (1.93 g, 7.38 mmol) as a solution in THF (11 mL) was added dropwise to the reaction mixture. Finally the reaction mixture was allowed to reach rt and stirring was continued for 2 h . The reaction was quenched at $0^{\circ} \mathrm{C}$ with aq. $\mathrm{HCl}(2.0 \mathrm{M}, 80 \mathrm{~mL})$ and the aq. phase was extracted with MTBE ($3 \times 70 \mathrm{~mL}$). The combined organic extracts were washed with aq. $\mathrm{HCl}(1.5 \mathrm{M}, 70 \mathrm{~mL})$ and brine $(70 \mathrm{~mL})$, and were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated until 400 mbar at $40^{\circ} \mathrm{C}$ bath temperature. $\mathrm{KOH}(1.0 \mathrm{M}, 50.0 \mathrm{~mL})$ was added to the stirred solution of the crude at rt and stirring was continued for 1 h . The resulting mixture was neutralized with aq. $\mathrm{HCl}(2.0 \mathrm{M})$ and the aq. phase was extracted with MTBE ($3 \times 50 \mathrm{~mL}$). The combined organic extracts were washed with brine (50 mL) and were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated affording compound (R)-84 as a yellow oil ($592 \mathrm{mg}, 80 \%, 98 \%$ ee).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.81$ (ddt, J = 17.2, 10.1, $7.1 \mathrm{~Hz}, 1 \mathrm{H}$), $5.08-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.51$ (dd, $J=10.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.45 (dd, J = 10.6, $6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.17 (dddt, J = 14.2, 7.2, 5.9, $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.94 (dtt, J = 13.9, $7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $1.74(\mathrm{dp}, \mathrm{J}=13.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{brs}, 1 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}$, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=137.1,116.3,68.0,38.0,35.7,16.5 \mathrm{ppm} ;$ HRMS (EI): m / z calcd. for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}: 100.0888$, found: 100.0888 . The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{279}$

[^88]
Trimethyl(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-yn-1-yl)silane (86)

Bpin
A solution of $\mathrm{I}_{2}(311 \mathrm{mg}, 1.22 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ was added to a stirred suspension of Mg turnings $(15.3 \mathrm{~g}, 627 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(42 \mathrm{~mL})$ at rt . Then a few drops of 3-(TMS)-propargylbromide (85) ($11.5 \mathrm{~mL}, 70.4 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ were added to the stirred suspension. As soon as the reaction started the reaction mixture was cooled to $-5^{\circ} \mathrm{C}$ and the residual solution of 3-(TMS)-propargylbromide (85) was added dropwise to the stirred suspension over the course of 5.5 h . Then the resulting suspension was cooled to $-70{ }^{\circ} \mathrm{C}$ and was slowly added to 2-isopropoxyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($12.0 \mathrm{~mL}, 58.8 \mathrm{mmol}$) as a solution in $\mathrm{Et}_{2} \mathrm{O}(14 \mathrm{~mL})$ at $-70^{\circ} \mathrm{C}$. Then the reaction mixture was allowed to reach rt and stirring was continued for 16 h . The reaction was quenched at $-60^{\circ} \mathrm{C}$ by slow addition of $\mathrm{HCl}(2.0 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}, 35 \mathrm{~mL}$). After reaching rt the mixture was filtered and the filtrate washed with water $(2 \times 15 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by distillation (4.3•10 ${ }^{-2}$ mbar, bath: $85-115^{\circ} \mathrm{C}$, head: $44-56^{\circ} \mathrm{C}$) affording compound 86 as a yellow oil ($7.61 \mathrm{~g}, 32 \%$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $\left.)_{3}\right): \delta=1.88(\mathrm{~s}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 12 \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=103.3,84.2(2 \mathrm{C}), 83.3,24.8(4 \mathrm{C}), 24.70,0.35$ (3C) ppm; ${ }^{11} \mathbf{B}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.3 ; \mathrm{C}_{12} \mathrm{H}_{23} \mathrm{BO}_{2} \mathrm{Si}$. The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{280}$

(4S,5S)-5-Methyl-1-(trimethylsilyl)oct-7-en-1-yn-4-ol (36b)

Procedure B (Propargylation)

DMSO ($3.84 \mathrm{~mL}, 54.0 \mathrm{mmol}$) was added dropwise to a stirred solution of $(\mathrm{COCl})_{2}$
($2.32 \mathrm{~mL}, 27.0 \mathrm{mmol}$) in DCM (36 mL) at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 5 min . A solution of alcohol $(S)-84(1.23 \mathrm{~g}, 12.3 \mathrm{mmol})$ in DCM (6 mL , rinsed with 6 mL) was added dropwise and stirring was continued for 20 min . DIPEA ($21.4 \mathrm{~mL}, 123 \mathrm{mmol}$) was slowly added over the course of 5 min and stirring was continued for 5 min . Then the reaction mixture was allowed to reach rt and stirring was again continued for 1.5 h . The reaction was quenched with water (50 mL) and the organic extract was subsequently washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,4 \times 50 \mathrm{~mL}$) and with brine (50 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying

[^89]agent was filtered off and the solvent was evaporated yielding the crude product $(S)-37$ as a solution in DCM (6.3\%, 15.9g, 83\%) which was used in the next step without further purification.

A solution of boronic acid ester 86 ($70 \%, 4.51 \mathrm{~mL}, 12.2 \mathrm{mmol}$) in THF $(8.75 \mathrm{~mL}$, rinsed with 8.75 mL) was added to a stirred solution of aldehyde $(S)-37(6.3 \%$ in DCM, $15.9 \mathrm{~g}, 10.2 \mathrm{mmol})$ in THF (50 mL) with $4 \AA \mathrm{MS}$ at $\mathrm{rt.}^{\mathrm{Et}} \mathrm{Etn}^{2}(15 \% \mathrm{in} \mathrm{PhMe}$, $1.67 \mathrm{~mL}, 2.45 \mathrm{mmol}$) was added to the stirred reaction mixture at rt and stirring was continued for 19 h . The reaction was quenched with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,100 \mathrm{~mL}$) and the aq. phase was extracted with MTBE ($3 \times 150 \mathrm{~mL}$). The combined extracts were washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,100 \mathrm{~mL}$) and brine (100 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography twice (first column: fine SiO_{2}, pentane/ $\mathrm{Et}_{2} \mathrm{O}, 75: 1$ to $20: 1$; second column: fine SiO_{2}, pentane/ $\mathrm{Et}_{2} \mathrm{O}, 80: 1$) affording both desired minor isomer $\mathbf{3 6 b}$ ($755 \mathrm{mg}, 35 \%$), a mixture of both isomers ($88 \mathrm{mg}, 4 \%$, d.r. $=1: 1$) and undesired major isomer $87(950 \mathrm{mg}, 44 \%$) as a colourless oil.

Analytical and spectral data of the minor diastereomer 36b: $[\alpha]_{\mathrm{D}}^{20}:+14.4$ ($c=1.08, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.80$ (dddd, J = 16.8, 10.1, $7.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.10-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.54$ (ddd, J = 7.7, 6.5, 4.3 Hz, 1H), 2.50 (dd, J = 16.8, 4.1 Hz, 1H), 2.40-2.27 (m, 1H), 2.37 (dd, J = 16.9, $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.96$ (dddt, J = 14.0, 8.8, 7.7, 1.2 Hz, 1H), $1.81-1.64(\mathrm{~m}, 1 \mathrm{H})$, $0.89(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=137.2,116.4,103.6,87.9$, 73.4, 38.0, 36.9, 26.2, 15.4, 0.2 (3C) ppm; IR (film): $\tilde{v}=3412,3077,2961,2934,2902,2880,2175$, 1641, 1458, 1446, 1420, 1380, 1340, 1203, 1124, 1037, 994, 959, 912, 841, 760, 699, 651, 637, 588, $522 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{OSiNa}^{+}$: 233.1332, found: 233.1331.

$5.01(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{td}, \mathrm{J}=6.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.23$ (dddt, J=13.9, 7.0, 5.7, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.99-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 1 \mathrm{H}), 1.72$ (dqdd, J = 8.1, 6.8, 5.6, $4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 0.92 (d, $\mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}$), $0.15(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=137.1,116.4,103.8,87.6,72.7$, 37.9, 37.4, 26.5, 13.8, 0.2 (3C) ppm; IR (film): $\tilde{v}=3413,3078,2962,2934,2901,2879,2175,1641$, 1460, 1443, 1419, 1379, 1250, 1118, 1040, 1020, 990, 958, 913, 841, 760, 699, 651, 638, 556, $518 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{OSiNa}^{+}$: 233.1332, found: 233.1333.
((2S,4S,5R)-4-Methyl-5-(3-(trimethylsilyl)prop-2-yn-1-yl)tetrahydrofuran-2-yl)methanol (48b)

A solution of alcohol 36b ($733 \mathrm{mg}, 3.48 \mathrm{mmol}$) in $i-\mathrm{PrOH}(35 \mathrm{~mL})$ was added to $\mathrm{Co}(\mathrm{nmp})_{2}(49 \mathrm{~b})(10 \mathrm{~mol} \%, 197 \mathrm{mg}, 348 \mu \mathrm{~mol})$ and O_{2} was bubbled through the stirred solution for $10 \mathrm{~min} . t$ - BuOOH (5.5 M in decane, $63.3 \mu \mathrm{~L}, 348 \mu \mathrm{~mol}$) was added at rt and stirring was continued for 15 min resulting in a colour change from orange to green. The resulting reaction mixture was warmed to $55^{\circ} \mathrm{C}$ and stirring was continued for 15 h under an atmosphere of O_{2} (balloon). The solvent was evaporated and the resulting residue was dissolved in hexane (50 mL). The resulting solution was washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,25 \mathrm{~mL}$) and the aq. phase was extracted with hexane ($3 \times 15 \mathrm{~mL}$). The combined organic extracts were washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,25 \mathrm{~mL}$) and brine (25 mL), and were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated after filtration through Celite ${ }^{\circledR}$. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc 7:1 to $5: 1$) affording compound $\mathbf{4 8}$ b as a colourless oil ($490 \mathrm{mg}, 62 \%$).
$[\alpha]_{\mathrm{D}}^{20}:+4.0\left(\mathrm{c}=1.10, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.13$ (dddd, $\mathrm{J}=9.7,5.8,5.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-12$), 3.69 (dd, J = 11.6, $3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11 \mathrm{a}$), 3.60 ($\mathrm{dt}, \mathrm{J}=8.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15$), 3.50 (dd, J = 11.6, $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11 \mathrm{~b}$), 2.51 (d, J = 5.5 Hz, 2H, H-16), 2.18 (dddq, J = 10.6, 8.3, 7.2, $6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-14$), 2.10 (ddd, J = 12.0, 7.2, 5.8 Hz, 1H, H-13a), 2.0 (s, 1H, OH), 1.44 (ddd, J=12.0, 10.6, 9.7 Hz, $1 \mathrm{H}, \mathrm{H}-$ 13b), 1.11 (d, J = 6.5 Hz, 3H, H-33), $0.15(\mathrm{~s}, 9 \mathrm{H}, \mathrm{TMS}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=103.5$ (C17), 86.7 (C-18), 83.3 (C-15), 79.3 (C-12), 65.0 (C-11), 39.7 (C-14), 36.9 (C-13), 25.4 (C-16), 17.3 (C33), 0.20 (3C, TMS) ppm; IR (film): $\tilde{v}=3444,2960,2933,2901,2876,2177,1781,1728,1602$, 1456, 1418, 1381, 1331, 1249, 1199, 1167, 1114, 1080, 1019, 934, 912, 838, 759, 698, 642, 527, $476 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{SiNa}^{+}: 249.1281$, found: 249.1280.
((2R,4S,5S)-4-Methyl-5-(3-(trimethylsilyl)prop-2-yn-1-yl)tetrahydrofuran-2-yl)methanol (88)
 A solution of alcohol $87(50 \mathrm{mg}, 0.24 \mathrm{mmol})$ in $i-\mathrm{PrOH}(2.38 \mathrm{~mL})$ was added to $\mathrm{Co}(\mathrm{nmp})_{2}(49 \mathrm{~b})(10 \mathrm{~mol} \%, 13 \mathrm{mg}, 24 \mu \mathrm{~mol})$ and O_{2} was bubbled through the stirred solution for 10 min . t-BuOOH (5.5 M in decane, $4.3 \mu \mathrm{~L}, 24 \mu \mathrm{~mol}$) was added to the stirred reaction mixture at rt and stirring was continued for 15 min resulting in a colour change from orange to green. The resulting reaction mixture was warmed to $55^{\circ} \mathrm{C}$ and stirring was continued for 18 h under an atmosphere of O_{2} (balloon). The solvent was evaporated
and the resulting residue was dissolved in hexane $(20 \mathrm{~mL})$. The resulting solution was washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,10 \mathrm{~mL}$) and the aq. phase was extracted with hexane $(3 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7$, 10 mL) and brine (10 mL), and were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated after filtration through Celite ${ }^{\circledR}$. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc 5:1) affording compound 88 as a colourless oil (41 mg, 76\%).
$[\alpha]_{\mathrm{D}}^{20}:-5.8\left(\mathrm{c}=1.07, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.28-4.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-12), 4.09(\mathrm{dt}$, $\mathrm{J}=8.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15), 3.62$ (dd, J = 11.5, $3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11 \mathrm{a}$), 3.47 (dd, J = 11.5, $6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 11b), 2.49 (dd, J = 16.7, $5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), $2.48-2.37$ (m, $1 \mathrm{H}, \mathrm{H}-14$), 2.36 (dd, J = 16.7, $8.1 \mathrm{~Hz}, 1 \mathrm{H}$, H-16b), 1.88 (dt, J = 12.4, 7.3 Hz, 1H, H-13a), 1.87 (s, 1H, OH), 1.73 (ddd, J = 12.4, 7.3, $4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 13b), 1.02 (d, J = $7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-33$), $0.14(\mathrm{~s}, 9 \mathrm{H}, \mathrm{TMS}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=103.9$ (C17), 86.1 (C-18), 80.2 (C-15), 78.4 (C-12), 65.7 (C-11), 36.1 (C-14), 35.3 (C-13), 22.4 (C-16), 14.0 (C33), 0.2 (3C, TMS) ppm; IR (film): $\tilde{v}=3425,2961,2937,2901,2878,2177,1777,1730,1634,1596$, 1455, 1423, 1383, 1364, 1341, 1249, 1203, 1171, 1090, 1072, 1029, 982, 949, 927, 903, 838, 759, 698, 642, 569, 530, $478 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{SiNa}^{+}$: 249.1281, found: 249.1281 .

(4R,5S)-5-Methyl-1-(trimethylsilyl)oct-7-en-1-yn-4-yl 4-nitrobenzoate (89)

 PPh_{3} (195a) ($1.16 \mathrm{~g}, 4.40 \mathrm{mmol}$) and p-nitrobenzoic acid ($589 \mathrm{mg}, 3.52 \mathrm{mmol}$) were subsequently added to a stirred solution of alcohol 87 (247 mg , $1.17 \mathrm{mmol})$ in PhMe (23 mL) at rt. Then, DIAD (94\%, $0.89 \mathrm{~mL}, 4.22 \mathrm{mmol}$) was added to the stirred reaction mixture at rt , and stirring was continued for 20 h . The solvent was evaporated and the crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 4:1) affording compound 89 as a colourless oil (100 mg, 24\%).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.33-8.20(\mathrm{~m}, 4 \mathrm{H}), 5.84-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{dt}, \mathrm{J}=6.1,6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.08-5.00(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.95(\mathrm{~m}$, $1 \mathrm{H}), 1.00(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.2,150.7,136.1$, $135.9,130.9$ (2C), 123.7 (2C), 117.0, 101.9, 87.6, 76.8, 36.8, 35.8, 23.1, 15.5, 0.0 (3C) ppm; $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{Si}$.
(4S,5S)-5-Methyl-1-(trimethylsilyl)oct-7-en-1-yn-4-ol (36b)

Procedure B (Recycling)

DIBAL (1.0 M in DCM, $14 \mathrm{~mL}, 14 \mathrm{mmol}$) was added to a stirred solution of ester $89(330 \mathrm{mg}, 918 \mu \mathrm{~mol})$ in DCM $(13.4 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and stirring was continued for 2 h . Then, the reaction mixture was warmed to rt and stirring was continued for 16 h . The reaction was cooled to $-78^{\circ} \mathrm{C}$ and quenched with EtOAc $(20 \mathrm{~mL})$. Then, the mixture was warmed to rt, diluted with sat. aq. Na / K tartrate solution (40 mL) and stirring was continued for 15 min . After dilution with water (15 mL), the aq. phase was extracted with MTBE ($2 \times 50 \mathrm{~mL}$). The combined extracts were washed with brine (100 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/MTBE, 20:1) affording compound $\mathbf{3 6 b}$ as a colourless oil (136 mg , $70 \%)$. The analytical and spectroscopic data of the isolated compound were identical with those shown above.

5.2.1.5.2. The Sugar-Based Alkyne

(2R,3R,4R,5S,6R)-2-(Acetoxymethyl)-6-methyltetrahydro-2H-pyran-3,4,5-triyl triacetate (40a)

Procedure B (DCM, TMSOTf)

OAc per-O-Acetyl- α-D-glucopyranose (50) ($20.2 \mathrm{~g}, 51.7 \mathrm{mmol}$) was reacted with
 allyl-TMS (52) ($41.1 \mathrm{~mL}, 258 \mathrm{mmol}$) in a similiar fashion as before (Chapter 5.2.1.2), but with TMSOTf ($18.7 \mathrm{~mL}, 103 \mathrm{mmol}$) in MeCN/DCM (1:1, 200 mL) as the solvent. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc 3:1 to 2:1) affording major compound 40a as an anomeric mixture ($1.36 \mathrm{~g}, 7 \%, \alpha: \beta=7: 1$) and minor byproduct 94 ($130 \mathrm{mg}, 1 \%$). After recrystallization, the analytical and spectroscopic data of the isolated major compound were identical with those shown above.

Analytical and spectral data of the minor byproduct 94: $[\alpha]_{\mathrm{D}}^{20}:+52.6$ (c=1.10, CHCl_{3});
 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.34(\mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dd}, \mathrm{J}=9.7,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.99(\mathrm{dd}, \mathrm{J}=9.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{dd}, \mathrm{J}=12.2,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.09 (dd, J = 12.2, 2.5 Hz, 1H), 3.90 (ddd, J = 9.6, 4.8, 2.5 Hz, 1H), 2.10 (s, 3H), 2.05 ($\mathrm{s}, 3 \mathrm{H}$), $2.035(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $)^{2}$: $\delta=171.0,170.5,169.9,169.8,70.6,70.3,69.0,68.9,68.7,62.4,21.0,20.9$ (2C), 20.8, $12.6 \mathrm{ppm} ;$ IR (film): $\tilde{v}=2958,1741,1433,1368,1218,1145,1106,1033,976,909,757,718,633,602,526$, 500, 484, 444, $422 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{9} \mathrm{Na}^{+}: 369.1156$, found: 369.1157. The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{281}$

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-chlorotetrahydro-2H-pyran-3,4,5-triyl triacetate (95a)

$4,4,5,5-$ Tetramethyl-2-(propa-1,2-dien-1-yl)-1,3,2-dioxaborolane
$12.2 \mathrm{mmol})$ was added to a stirred solution of per-O-acetyl- α-D-glucopyranose (50)
$(2.20 \mathrm{~mL}$, stirring was continued for 3 d . The reaction mixture was cautiously quenched with aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(1.0 \mathrm{M}, 50 \mathrm{~mL})$ and water (17.5 mL). The aq. phase was extracted with DCM ($2 \times 105 \mathrm{~mL}$) and the combined extracts were washed with water (70 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash

[^90]chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 3:1) affording compound 95 a as a yellow crystalline solid (950 mg, 42\%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.29(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{t}, \mathrm{J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{t}, \mathrm{J}=9.7 \mathrm{~Hz}$, 1H), 5.00 (dd, J = 10.1, 4.0 Hz, 1H), $4.34-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.08(\mathrm{~m}, 1 \mathrm{H}), 2.098(\mathrm{~s}, 3 \mathrm{H}), 2.096(\mathrm{~s}$, 3 H), 2.04 (s, 3H), $2.03(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.7,170.07,170.05,169.6$ 90.2, $70.8,70.4,69.5,67.4,61.2,20.9,20.79,20.76,20.7 \mathrm{ppm}$; IR (film): $\tilde{v}=1738,1430,1365$, $1328,1220,1164,1115,1075,1032,976,923,910,891,847,768,675,646,597,514,485,447$, $420 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ClO}_{9} \mathrm{Na}^{+}: 389.0610$, found: 389.0610. The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{282}$

Indium(I) trifluoromethanesulfonate (96)

TfOH ($0.62 \mathrm{~mL}, 6.98 \mathrm{mmol}$) was added to a stirred suspension of $\mathrm{InCl}(1.0 \mathrm{~g}, 6.7 \mathrm{mmol})$ in PhMe $(30 \mathrm{~mL})$ at rt and stirring was continued for 2 h , first resulting in a clear colourless solution and later on in a white precipitate. The crude precipitate was filtered under Ar and washed with pentane ($5 \times 20 \mathrm{~mL}$). The solvent was removed under vacuum affording compound 96 as a white amorphous solid (1.54 g, 88\%).
${ }^{19}$ F-NMR (377 MHz, PhMe-d ${ }_{8}$): $\delta=-77.6 \mathrm{ppm}(3 \mathrm{~F}) ; \mathrm{CF}_{3} \mathrm{InO}_{3} \mathrm{~S}$. The analytical and spectroscopic data is in agreement with those previously reported in the literature. ${ }^{283}$

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-fluorotetrahydro-2H-pyran-3,4,5-triyl triacetate (95b)

per-O-Acetyl- α-D-glucopyranose (50) ($5.00 \mathrm{~g}, 12.8 \mathrm{mmol}$) was added to stirred HF-py ($10.0 \mathrm{~mL}, 111 \mathrm{mmol}$) at rt and stirring was continued for 24 h . The reaction mixture was diluted with $\operatorname{DCM}(80 \mathrm{~mL})$ and water $(80 \mathrm{~mL})$, and neutralized with solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The aq. phase was extracted with $\mathrm{DCM}(3 \times 50 \mathrm{~mL})$. The combined extracts were washed with water (50 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 4:1 to $3: 1$) affording compound 95 b as a colourless crystalline solid ($2.67 \mathrm{~g}, 59 \%$).

[^91]${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.76$ (dd, $\left.\mathrm{J}_{\mathrm{H}, \mathrm{F}}=52.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.50(\mathrm{t}, \mathrm{J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (t, J = $9.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.96 (ddd, J $\mathrm{J}_{\mathrm{H}, \mathrm{F}}=24.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=10.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.29 (dd, J = 12.3, 3.9 Hz, 1H), 4.19 (ddd, J = 10.4, 4.1, 2.1 Hz, 1H), 4.15 (dd, J = 12.3, $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.111 (s, 3H), 2.108 (s, 3H), 2.05 (s, 3H), 2.03 (s, 3H) ppm; ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.8,170.19,170.16,169.6,103.9(\mathrm{~d}$, $\mathrm{J}_{\mathrm{C}, \mathrm{F}}=229.6 \mathrm{~Hz}$), $70.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=24.4 \mathrm{~Hz}\right), 69.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=4.5 \mathrm{~Hz}\right), 69.5,67.4,61.3,20.9,20.8,20.74$, $20.73 \mathrm{ppm} ;{ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-149.7 \mathrm{ppm}$; IR (film): $\tilde{v}=1732,1433,1376,1220,1166$, 1108, 1064, 1034, 984, 919, 902, 886, 835, 773, 672, 654, 611, 572, 553, 532, 488, 476, 454, $439 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{9} \mathrm{FNa}^{+}: 373.0905$, found: 373.0902. The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{284}$

Trimethyl(((2S,3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2yl)oxy)silane (98a)

Allyl-TMS (52) ($147 \mu \mathrm{~L}, 925 \mu \mathrm{~mol})$ was added to a stirred solution of 2,3,4,6-tetra-O-benzyl- α-D-glucopyranose (97) ($100 \mathrm{mg}, 185 \mu \mathrm{~mol}$) and $\mathrm{Re}_{2} \mathrm{O}_{7}$ ($1 \mathrm{~mol} \%, 1 \mathrm{mg}, 2 \mu \mathrm{~mol}$) in DCM (5 mL) at rt and the resulting reaction mixture was stirred for 6 d . The solvent was evaporated and the crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc 20:1) affording both minor β-anomer epi-98a ($19 \mathrm{mg}, 17 \%$) and major α-isomer 98a ($36 \mathrm{mg}, 32 \%$) as a colourless solid.

Analytical and spectral data of the major α-anomer 98a: m.p.: $135-136^{\circ}{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}:+28.3$ (c $=1.27$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.38-7.23$ (m, 18H, Ph), $7.15-7.09$ (m, 2H, Ph), 5.17 (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 4.98 (d, J = $10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.83 (d, J = 10.5 Hz, 1H, CH2Ph), 4.82 (d, $\mathrm{J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.74\left(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.65\left(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.64$ (d, $\mathrm{J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.45 ($\mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.44 (d, J = $12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.00 (t, $\mathrm{J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.90(\mathrm{dt}, \mathrm{J}=9.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 3.77 (dd, J = 10.5, 3.2 Hz, 1H, H-2a), 3.69 (dd, $J=10.1,9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 3.59 (dd, J = 10.5, $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 3.51 (dd, J = 9.6, $3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 0.16 (s, 9H, TMS) ppm; ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.9$ ($i-\mathrm{Ph}$), 138.3 (i-Ph), 138.2 ($i-\mathrm{Ph}$), 137.9 (i-Ph), 128.4 (6C, m-Ph), 128.3 (2C, m-Ph), 128.01 (2C, o-Ph), 127.97 (2C, o-Ph), 127.93 (2C, o-Ph), 127.91 (2C, o-Ph), 127.8 ($p-\mathrm{Ph}$), 127.71 ($p-\mathrm{Ph}$), 127.65 ($p-\mathrm{Ph}$), 127.5 ($p-\mathrm{Ph}), 91.7$ (C-7), 81.8 (C-5), 80.8 (C-6), 77.7 (C-4), 75.6 ($\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 75.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.0\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 69.9(\mathrm{H}-3), 68.4(\mathrm{C}-2)$, -0.0 (3C, TMS) ppm; IR (film): $\tilde{v}=3089,3062,3031,2920,2869,1723,1713,1603,1584,1497$,
${ }^{284}$ M. H. E. Griffith, O. Hindsgaul, Carbohydr. Res. 1991, 211, 163-166.

1453, 1362, 1315, 1271, 1267, 1207, 1150, 1090, 1070, 1028, 909, 878, 846, 739, 736, 701, 697, 648, 609, 578, 532, 481, 461, $413 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{37} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{SiNa}^{+}$: 635.2799, found: 635.2799. The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{285}$

Analytical and spectral data of the minor β-anomer epi-98a: m.p.: $142-143^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}:+20.1$
 (c = 0.49, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37-7.25(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Ph}), 7.21-$ 7.16 (m, 2H, Ph), 4.94 (d, J = $10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.92 (d, J = $10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.82 ($d, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.78\left(\mathrm{~d}, \mathrm{~J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right.$), 4.73 (d , $\left.\mathrm{J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.66(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 4.61\left(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.55(\mathrm{~d}$, $\left.\mathrm{J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.54\left(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.73-3.66(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 3.65-3.56(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-4$ and $\mathrm{H}-5$), 3.47 (ddd, J = 9.4, 4.4, 2.2 Hz, 1H, H-3), $3.43-3.37$ (m, 1H, H-6), 0.22 (s, 9H, TMS) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=138.8$ ($i-\mathrm{Ph}$), 138.6 ($i-\mathrm{Ph}$), 138.4 ($i-\mathrm{Ph}$), 138.3 ($\left.i-\mathrm{Ph}\right)$, 128.53 (2C, m-Ph), 128.51 (4C, m-Ph), 128.46 (2C, m-Ph), 128.3 (2C, o-Ph), 128.1 (2C,o-Ph), 128.0 (2C, o-Ph), 127.9 ($p-\mathrm{Ph}$), 127.8 (3C, $p-\mathrm{Ph}$ and $o-\mathrm{Ph}$), 127.73 ($p-\mathrm{Ph}$), 127.65 ($p-\mathrm{Ph}$), 98.2 (C-7), 84.8 (C-5), $84.1(\mathrm{C}-6), 78.1(\mathrm{C}-4), 75.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.11\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.06\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.0(\mathrm{C}-3), 73.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, 69.2 (C-2), 0.4 (3C, TMS) ppm; IR (film): $\tilde{v}=3087,3063,3030,2918,2861,1725,1603,1584,1496$, 1452, 1399, 1361, 1326, 1274, 1269, 1213, 1147, 1086, 1073, 1045, 1027, 1001, 940, 905, 858, 830, 743, 695, 626, 608, 547, 463, 438, 429, 416, $406 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{37} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{SiNa}^{+}$: 635.2799, found: 635.2797.

(((2R,3R,4S,5R,6S)-2-(((Tert-butyldimethylsilyl)oxy)methyl)-6-methoxytetrahydro-2H-pyran-3,4,5-

 triyl)tris(oxy))tris(tert-butyldimethylsilane) (99b)

TBSOTf $(17.7 \mathrm{~mL}, 77.2 \mathrm{mmol})$ was added to a stirred suspension of α-D-methylglucoside (99a) ($2.50 \mathrm{~g}, 12.9 \mathrm{mmol}$) and 2,6-lutidine (12.1 mL , $104 \mathrm{mmol})$ in $\mathrm{DCM}(64.4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach rt and stirring was continued for 3.5 h . The reaction was diluted with MTBE (100 mL) and poured into aq. $\mathrm{HCl}(1.0 \mathrm{M}, 100 \mathrm{~mL})$. The organic extract was washed with water $(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography ($\mathrm{SiO}_{2}, \mathrm{PhMe}$) affording compound 99b as a colourless oil ($8.27 \mathrm{~g}, 99 \%$).
${ }^{285}$ L. F. Tietze, R. Fischer, H.-J. Guder, Synthesis 1982, 11, 946-948.
$[\alpha]_{\mathrm{D}}^{20}:+55.9\left(\mathrm{c}=1.09, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.62(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.78(\mathrm{~m}$, 3 H), 3.75 (dd, J = 5.4, 3.4 Hz, 1H), 3.67-3.61 (m, 1H), 3.58 (dd, J = 8.5, 3.2 Hz, 1H), $3.38(\mathrm{~s}, 3 \mathrm{H})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.885(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 18 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.054(\mathrm{~s}$, 6 H), $0.048(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=97.8,76.1,74.3,72.8,72.5,63.4,54.7,26.3$ (3C), 26.21 (3C), 26.17 (3C), 26.0 (3C), 18.6, 18.5, 18.2, 18.1, -2.8, -3.0, -3.5, -3.6, -4.3, -4.4, -4.8, 5.2 ppm; IR (film): $\tilde{v}=2953,2929,2895,2857,1472,1463,1407,1389,1361,1252,1216,1190$, $1163,1087,1073,1003,981,938,914,883,831,814,773,758,668,626,572,491,442 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{31} \mathrm{H}_{70} \mathrm{O}_{6} \mathrm{Si}_{4} \mathrm{Na}^{+}: 673.4142$, found: 673.4144 . The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{286}$

(((1R,2R,3S,4R,5R)-6,8-Dioxabicyclo[3.2.1]octane-2,3,4-triyl)tris(oxy))tris(tert-

butyldimethylsilane) (100)

Allyl-TMS (52) ($244 \mu \mathrm{~L}, 1.54 \mathrm{mmol}$) and TMSOTf ($167 \mu \mathrm{~L}, 921 \mu \mathrm{~mol}$) were subsequently added to a stirred solution of methylglucoside 99b (0.50 g , $768 \mu \mathrm{~mol}$) and 2,6 -lutidine ($143 \mu \mathrm{~L}, 1.23 \mu \mathrm{~mol}$) in $\mathrm{DCM}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed to rt and stirring was continued for 20 h . The reaction was diluted with MTBE $(20 \mathrm{~mL})$ and poured into aq. $\mathrm{HCl}(1.0 \mathrm{M}, 20 \mathrm{~mL})$. The organic extract was washed with water (20 mL) and brine (20 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography ($\mathrm{SiO}_{2}, \mathrm{PhMe}$) affording compound $\mathbf{1 0 0}$ as a colourless oil ($150 \mathrm{mg}, 39 \%$).
m.p.: $57-58^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}$: $-24.7\left(\mathrm{c}=1.18, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.25(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.36-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{dd}, \mathrm{J}=6.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{p}, \mathrm{J}=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.47 (td, J = 2.0, 1.1 Hz, 1H), 3.42 (dq, J = 1.6, 1.0 Hz, 1H), 0.92 (s, 9H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$, $0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.074(\mathrm{~s}, 3 \mathrm{H}), 0.071(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=102.2,76.5,75.4,72.9,71.9,64.6,26.0$ (3C), 25.9 (3C), 25.8 (3C), 18.3, 18.2, 17.9, -4.3, -4.4 (3C), -4.5, -4.6 ppm; IR (film): $\tilde{v}=2953,2928,2894,2857,1634,1472,1463,1389,1361,1328$, 1252, 1189, 1100, 1083, 1031, 1006, 991, 964, 946, 918, 892, 869, 831, 813, 772, 705, 669, 569, 513, $458 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{52} \mathrm{O}_{5} \mathrm{Si}_{3} \mathrm{Na}^{+}: 527.3015$, found: 527.3018. The
analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{287}$
(2R,3R,4R,5S,6R)-2-(Acetoxymethyl)-6-(2-oxoethyl)tetrahydro-2H-pyran-3,4,5-triyl

triacetate

 (54b)
O_{3} was bubbled through a stirred solution of alkene $40 \mathrm{a}(2.73 \mathrm{~g}, 7.33 \mathrm{mmol})$ in DCM (39 mL) at $-78{ }^{\circ} \mathrm{C}$ until the solution became blue after 6 h . Then Ar was bubbled through the solution until it turned colourless again. Zn dust (8.0 g) and AcOH (8 mL) were added at $-78^{\circ} \mathrm{C}$ and the reaction mixture was warmed to rt and stirring was continued for 17 h . The suspension was filtered through Celite ${ }^{\circledR}$ and the filter cake was washed with DCM ($2 \times 25 \mathrm{~mL}$). The solvent was evaporated and the crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 2:1 to 1:1) affording compound 54b as a glassy colourless solid ($2.48 \mathrm{~g}, 90 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.73(\mathrm{dd}, \mathrm{J}=2.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, \mathrm{J}=9.0$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{dt}, \mathrm{J}=8.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, \mathrm{J}=12.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$ (dd, J = 12.1, $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.87 (ddd, J = 8.6, 5.5, $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (ddd, J = 16.6, 8.0, $2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.78 (ddd, J = 16.6, 6.1, 1.4 Hz, 1H), 2.08 (s, 3H), $2.044(\mathrm{~s}, 3 \mathrm{H}), 2.041(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.1,170.8,170.1,169.61,169.60,70.3,70.0,69.4,68.2,67.5$, 61.9, 41.8, 20.9, 20.83, 20.79, 20.77 ppm; IR (film): $\tilde{v}=2972,1738,1432,1367,1212,1090,1031$, 982, 901, 846, 723, 644, 601, 537, 484, 457, $416 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{10} \mathrm{Na}^{+}: 397.1105$, found: 397.1105. The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{288}$

(2R,3R,4S,5R,6R)-6-(Hydroxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl tetraacetate (101a)

CRL ($>700 \mathrm{U} / \mathrm{mg}, 260 \mathrm{mg}, 182.000 \mathrm{U}$) was added to a stirred suspension of per-O-acetyl- $\alpha-D$-glucopyranose (50) ($1.00 \mathrm{~g}, 2.56 \mathrm{mmol}$) in aq. phosphate buffer $(100 \mathrm{mM}, \mathrm{pH} 7,50 \mathrm{~mL})$ at rt and stirring was continued for 3 d . The reaction mixture was filtered through Celite ${ }^{\circledR}$ and the filter cake was washed with water ($2 \times 30 \mathrm{~mL}$). The aq. phase was extracted with EtOAc ($4 \times 50 \mathrm{~mL}$) and the combined extracts were dried over

[^92]anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography ($\mathrm{SiO}_{2}, \mathrm{EtOAc}$) affording compound 101a as a colourless solid ($279 \mathrm{mg}, 31 \%$)
$[\alpha]_{\mathrm{D}}^{20}:+55.5\left(\mathrm{c}=0.95, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.33(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.52$ (dd, $J=10.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, \mathrm{J}=10.0,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.06$ (dd, J=10.2, $3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.91 (ddd, $\mathrm{J}=10.2,3.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, \mathrm{J}=12.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, \mathrm{J}=12.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 1 \mathrm{H})$, 2.17 ($\mathrm{s}, 3 \mathrm{H}$), $2.07(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.5$, 170.4, 169.9, 169.1, 89.2, 72.1, 69.6, 69.4, 68.3, 60.8, 21.1, 20.9, 20.8, 20.6 ppm ; IR (film): $\tilde{v}=3444,2927,1739,1433,1369,1217,1151,1072,1034,939,917,854,775,746,689,603,544$, 523, $483 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{10} \mathrm{Na}^{+}$: 371.0949, found: 371.0948. The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{289}$

(2R,3S,4R,5R,6R)-2-(Hydroxymethyl)-6-(prop-2-yn-1-yl)tetrahydro-2H-pyran-3,4,5-triol (39c)

Ohira Bestmann reagent (56) ($1.32 \mathrm{~g}, 6.88 \mathrm{mmol}$) was added to a stirred suspension of aldehyde $54 \mathrm{~b}(2.15 \mathrm{~g}, 5.73 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.58 \mathrm{~g}, 11.5 \mathrm{mmol})$ in $\mathrm{MeOH}(86 \mathrm{~mL})$ at rt resulting in a colour change from colourless to yellow, and stirring was continued for 8 h . The reaction was quenched and neutralized with aq. $\mathrm{NaHCO}_{3}(5 \%$, 28 mL) and water was evaporated. The resulting residue was washed with $\mathrm{MeCN}(5 \times 50 \mathrm{~mL})$ and $\mathrm{MeOH}(5 \times 50 \mathrm{~mL})$, and the combined organic filtrates were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH}, 3: 1\right)$ affording compound 39 c as a colourless oil (1.14 g, 98%, d.r. = 1:1).
${ }^{1} \mathrm{H}$ NMR (signal set corresponds to the anomeric mixture, $400 \mathrm{MHz}, \mathrm{CD}_{4} \mathrm{OD}$): $\delta=3.98$ (ddd, $\mathrm{J}=8.1$, $6.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.60(\mathrm{~m}, 7 \mathrm{H}), 3.59-3.48(\mathrm{~m}, 3 \mathrm{H}), 3.44-3.34(\mathrm{~m}, 3 \mathrm{H}), 3.29-3.24(\mathrm{~m}, 4 \mathrm{H})$, $3.20-3.13(\mathrm{~m}, 4 \mathrm{H}), 2.60(\mathrm{dt}, \mathrm{J}=17.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, \mathrm{J}=2.7,1.4 \mathrm{~Hz}$, 1H), 2.39 (ddd, J = 17.0, 5.7, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.19 (t, J = 2.7 Hz, 1H), 2.17 (t, J = 2.7 Hz, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR (signal set corresponds to the anomeric mixture, $101 \mathrm{MHz}, \mathrm{CD}_{4} \mathrm{OD}$): $\delta=82.0,81.8,81.7$, $79.6,79.0,75.9,75.1,74.7,74.0,72.4,71.8,71.6,70.9,70.8,63.0,62.5,22.5,16.8 \mathrm{ppm}$; IR (film): $\tilde{v}=3432,3389,3275,2944,2933,2904,2888,1645,1458,1441,1422,1337,1360,1304,1257$,

1224, 1214, 1120, 1099, 1063, 1040, 1026, 932, 911, 887, 831, 704, 686, 651, 631, 610, 539, $491 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{Na}^{+}$: 225.0733 , found: 225.0734.
((2R,3S,4R,5R,6R)-3,4,5-Trihydroxy-6-(prop-2-yn-1-yl)tetrahydro-2H-pyran-2-yl)methyl 2,4,6triisopropylbenzenesulfonate (102a)

2,4,6-Triisopropylbenzenesulfonyl chloride ($165 \mathrm{mg}, 544 \mu \mathrm{~mol}$) was added to a stirred solution of tetrol 39c ($100 \mathrm{mg}, 495 \mu \mathrm{~mol}$) in py $(1.1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and stirring was continued for 5 h . The solvent was evaporated and the crude product was purified by flash chromatography ($\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH}, 20: 1$) affording compound 102a as a colourless oil ($89 \mathrm{mg}, 38 \%$).
$[\alpha]_{\mathrm{D}}^{20}:-0.5\left(\mathrm{c}=0.60, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (signal set corresponds to the anomeric mixture, 400 MHz , $\left.\mathrm{CD}_{4} \mathrm{OD}\right): \delta=7.29(\mathrm{~s}, 4 \mathrm{H}), 4.31(\mathrm{dd}, \mathrm{J}=10.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, \mathrm{J}=10.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.16$ (dd, $J=10.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, \mathrm{J}=13.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, \mathrm{J}=13.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, \mathrm{J}=13.5$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, \mathrm{J}=10.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dt}, \mathrm{J}=9.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, \mathrm{J}=11.2,3.6 \mathrm{~Hz}$, 1 H), 3.77 (dd, J = 10.8, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.70 (ddd, J = 8.4, 6.2, $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.54(\mathrm{dd}, \mathrm{J}=8.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.49 (dd, J = 8.8, $7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.40 (ddd, J = 9.8, 6.6, $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.26-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.18-3.09(\mathrm{~m}$, $2 H), 2.97-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{dd}, \mathrm{J}=17.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{ddd}, \mathrm{J}=17.4,4.9$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.41-1.05(\mathrm{~m}, 6 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 36 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (signal set corresponds to the anomeric mixture, $101 \mathrm{MHz}, \mathrm{CD}_{4} \mathrm{OD}$): $\delta=155.4$ (2C), 152.3 (2C), 152.2 (2C), 130.7, 130.6, 125.0 (4C), 81.5, 81.3, 79.4, 78.98, 78.96, 74.8, 73.8, 73.61, 73.57, $71.8,71.5,71.4,71.3,71.03,70.97,70.8,70.5,69.7,35.5(2 \mathrm{C}), 30.81$ (2C), 30.78 (2C), 25.12 (4C), 25.07 (2C), 24.0 (4C), 22.4, $17.4 \mathrm{ppm} ; \operatorname{IR}$ (film): $\tilde{v}=3336,2954,2929,2898,2857,1733,1678$, 1641, 1499, 1471, 1463, 1408, 1389, 1348, 1286, 1252, 1152, 1092, 1042, 1006, 979, 937, 834, 813, 776, 762, 689, 674, 635, 542, 504, 468, 440, $429 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{SNa}^{+}: 491.2074$, found: 491.2074 .

(2R,3S,4R,5R,6R)-2-(Prop-2-yn-1-yl)-6-(((12,4,6-

triisopropylphenyl)sulfonyl)oxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (102b)

$\mathrm{Ac}_{2} \mathrm{O}(182 \mu \mathrm{~L}, 1.92 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(50 \mu \mathrm{~L}, 405 \mu \mathrm{~mol})$ were subsequently added to a stirred solution of triol 102 a (80 mg , $170 \mu \mathrm{~mol})$ in DCM $(0.5 \mathrm{~mL})$ at rt and stirring was continued for 1 h . The solvent was evaporated and the crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 7:3) affording compound 102b as a colourless amorphous solid ($75 \mathrm{mg}, 74 \%$, d.r. $=1.25: 1$).
${ }^{1} \mathrm{H}$ NMR (1.25:1 anomer ratio, asterisk denotes minor anomer, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.18$ (br s, 2 H), 7.18* (br s, 2H), 5.31* (t, J = 8.1 Hz, 1H), 5.18 (t, J = 9.4 Hz, 1H), 5.03* (dd, J = 8.3, 5.2 Hz, 1H), 5.01 (t, J = 9.6 Hz, 1H), 4.93 (dd, J = 10.1, 9.4 Hz, 1H), 4.86* (dd, J = 8.5, 7.9 Hz, 1H), 4.29* (td, J = 7.2, $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.00(\mathrm{~m}, 4 \mathrm{H}), 4.17-4.00^{*}(\mathrm{~m}, 5 \mathrm{H}), 3.77$ (ddd, J = 10.1, 5.8, 3.1 Hz, 1H), $3.55(\mathrm{dt}$, J = 9.9, 5.1 Hz, 1H), $2.97-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.84^{*}(\mathrm{~m}, 1 \mathrm{H}), 2.53^{*}(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.51^{*}(\mathrm{dd}$, $\mathrm{J}=2.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.45 (ddd, J = 17.5, 5.2, 2.8 Hz, 1H), 2.39 (ddd, J = 17.2, 5.3, $2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.06* $(\mathrm{s}, 3 \mathrm{H}), 2.03^{*}(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.02^{*}(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.00^{*}(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H})$, 1.97 (t, J = $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.28-1.26^{*}(\mathrm{~m}, 18 \mathrm{H}), 1.26-1.22(\mathrm{~m}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (signal set corresponds to the anomeric mixture, $101 \mathrm{MHz}, \mathrm{CD}_{4} \mathrm{OD}$): $\delta=170.5,170.0,169.8,169.6$ (3C), 154.1 (2C), 151.1 (2C), 148.3 (2C), 129.3, 129.2, 124.0 (4C), 78.7, 78.6, 75.9, 75.7, 74.0, 71.3, 70.9 (2C), $70.5,70.2,70.12,70.10,69.51,69.47,68.9,68.6,67.4,66.8,34.4$ (2C), 29.81 (2C), 29.78 (2C), 24.9 (4C), 23.7 (4C), 22.2 (2C), 20.9, 20.84 (2C), 20.78 (2C), 20.7, 20.5, 18.5 ppm; HRMS (ESI): m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{10} \mathrm{SNa}^{+}: 617.2391$, found: 617.2391.
(2R,3R,4R,5S)-2-(Cyanomethyl)-6-(prop-2-yn-1-yl)tetrahydro-2H-pyran-3,4,5-triyl
triacetate (103a)
 $\mathrm{NaCN}(6 \mathrm{mg}, 126 \mu \mathrm{~mol})$ was added to a stirred solution of sulfonate $\mathbf{1 0 2 b}$ (50 mg , $84 \mu \mathrm{~mol})$ in DMA or DMSO $(200 \mu \mathrm{~L})$ at rt and stirring was continued for 8 h . Then, the reaction mixture was heated to $80^{\circ} \mathrm{C}$ and stirring was again continued for 8 h . The crude reaction mixture was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 3:1) affording compound 103a as a colourless amorphous solid ($23 \mathrm{mg}, 81 \%$, d.r. $=2: 1$).
${ }^{1} \mathrm{H}$ NMR (2:1 anomer ratio, asterisk denotes minor anomer, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.34^{*}(\mathrm{t}$, J = 8.7 Hz, 1H), 5.20 (t, J = 9.4 Hz, 1H), 5.13* (dd, J = 9.1, 5.6 Hz, 1H), 5.05 (t, J = 9.6 Hz, 1H), $4.04(\mathrm{t}$,
$J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.88^{*}(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38^{*}(\mathrm{dt}, \mathrm{J}=9.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00^{*}(\mathrm{dt}, \mathrm{J}=9.1,5.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.75 (dt, J = 9.8, 5.9 Hz, 1H), 3.65 (ddd, J = 10.1, 5.7, $4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.71-2.58 (m, 2H), 2.71 - 2.58* (m, 4H), 2.55 (ddd, J = 17.4, 4.6, 2.7 Hz, 1H), 2.48 (ddd, J = 17.3, 5.7, 2.7 Hz, 1H), 2.10* (t, J = 2.6 Hz, 1H), $2.08(\mathrm{~s}, 3 \mathrm{H}), 2.08^{*}(\mathrm{~s}, 3 \mathrm{H}), 2.07^{*}(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.04^{*}(\mathrm{~s}, 3 \mathrm{H}), 2.01$ ($\mathrm{s}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR (signal set corresponds to the anomeric mixture, $101 \mathrm{MHz}, \mathrm{CD}_{4} \mathrm{OD}$): $\delta=170.4,170.0,169.90,169.85,169.63,169.60,128.5,126.5,78.5,78.3,77.5,77.4,76.8,76.0$, $73.5,73.4,71.73,71.68,71.2,71.1,69.7,69.6,67.5,38.2,36.7,22.2,21.5$ (2C), 20.9, 20.8 (2C), 20.7 ppm; HRMS (ESI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{7} \mathrm{Na}^{+}$: 360.1052, found: 360.1054.

2-((2R,3S,4R,5R)-3,4,5-Trihydroxy-6-(prop-2-yn-1-yl)tetrahydro-2H-pyran-2-yl)acetonitrile (103b)

 Nitrile 103a ($21 \mathrm{mg}, 61 \mu \mathrm{~mol}$) was suspended in methanolic $\mathrm{HCl}(1.25 \mathrm{M}, 1.25 \mathrm{~mL}$) at $0^{\circ} \mathrm{C}$ and stirring was continued for 4 d . Then, $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}(1: 1,2 \mathrm{~mL})$ was added and the reaction mixture was heated to $35{ }^{\circ} \mathrm{C}$ and stirring was again continued for 1 d . The solvents were evaporated and the crude was dissolved in MTBE (5 mL). The organic phase was washed with water (5 mL) and brine (5 mL), and was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH}, 20: 1\right)$ affording compound 103 b as a colourless oil (9 mg , 67%, d.r. $=1.5: 1$).
${ }^{1} \mathrm{H}$ NMR (1.5:1 anomer ratio, asterisk denotes minor anomer, OH not visible, $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=3.99^{*}(\mathrm{dt}, \mathrm{J}=8.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.56^{*}(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.40^{*}(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.34 (ddd, J = 9.7, 6.4, 3.4 Hz, 1H), $3.27-3.23(\mathrm{~m}, 2 \mathrm{H}), 3.18^{*}(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.10^{*}(\mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.82$ (dd, J=17.1, $3.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.77^{*}(\mathrm{dd}, \mathrm{J}=17.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.70^{*}$ (dd, J = 17.0, 5.9 Hz, 1H), 2.64 (dd, J=16.9, 6.2 Hz, 1H), 2.59 (dt, J=17.2, 2.8 Hz, 1H), 2.52* (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.50^{*}(\mathrm{dd}, \mathrm{J}=2.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (ddd, J=17.4, 6.2, $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.19* (t, $\mathrm{J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (1.5:1 anomer ratio, asterisk denotes minor anomer, $\left.101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=118.6,118.5^{*}, ~ 81.3^{*}, ~ 81.2,79.3^{*}, 78.9,76.4,76.2^{*}, 74.4^{*}, 74.3$, 74.2*, 73.9, 72.3, 71.2*, 70.9, 70.4*, 22.4, 21.6*, 21.5, 16.9* ppm; IR (film): $\tilde{v}=3358,3284,2974$, 2903, 2258, 1693, 1663, 1576, 1415, 1368, 1298, 1255, 1219, 1190, 1079, 1047, 1008, 928, 878, 806, 636, 595, 556, $526 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}_{4}{ }^{-}: 210.0772$, found: 210.0772.
(2R,3R,4R,5S,6R)-2-(Acetoxymethyl)-6-(prop-2-yn-1-yl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (39b)

$\mathrm{Ac}_{2} \mathrm{O}(468 \mu \mathrm{~L}, 4.95 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(50 \mu \mathrm{~L}, 405 \mu \mathrm{~mol})$ were subsequently added to a stirred solution of tetrol $\mathbf{3 9 c}(50 \mathrm{mg}, 247 \mu \mathrm{~mol})$ in DCM $(0.5 \mathrm{~mL})$ at rt and stirring was continued for 1 h . The solvent was evaporated and the crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 7:3) affording compound 39b as a colourless amorphous oil ($44 \mathrm{mg}, 48 \%$, d.r. $=1.25: 1$).
(The sample contained traces of $\mathrm{Ac}_{2} \mathrm{O}$) ${ }^{1} \mathrm{H}$ NMR (1.25:1 anomer ratio, asterisk denotes minor anomer, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.30(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.18^{*}(\mathrm{t}, \mathrm{J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-5.05(\mathrm{~m}, 1 \mathrm{H})$, $5.15-5.05^{*}(\mathrm{~m}, 1 \mathrm{H}), 5.03^{*}(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dd}, \mathrm{J}=9.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dt}, \mathrm{J}=9.0,5.7 \mathrm{~Hz}$, 1H), 4.26* (dd, J = 12.3, 5.4 Hz, 1H), 4.23 (dd, J = 13.3, 5.2 Hz, 1H), 4.12 (dd, J = 5.2, 2.6 Hz, 1H), 4.09* (dd, J = 5.2, $2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.91 (ddd, J = 9.1, 5.4, 2.7 Hz, 1H), 3.67* (ddd, J = 9.9, 4.9, 2.3 Hz, 1H), 3.60* (ddd, J = 9.7, 5.8, $4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.65 (ddd, J = 17.4, 9.0, $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.54 (ddd, J = 17.1, 5.7, 2.6 Hz, 1H), 2.52* (ddd, J=17.2, 4.6, 2.4 Hz, 1H), 2.46* (ddd, J = 17.3, 5.7, 2.7 Hz, 1H), 2.21 (s, $3 \mathrm{H}), 2.21(\mathrm{t}, \mathrm{J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.21^{*}(\mathrm{t}, \mathrm{J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.07^{*}(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.03^{*}(\mathrm{~s}$, 3H), $2.025(\mathrm{~s}, 3 \mathrm{H}), 2.01^{*}(\mathrm{~s}, 3 \mathrm{H}), 1.99^{*}(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (1.25:1 anomer ratio, asterisk denotes minor anomer, $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.92^{*}, 170.89,170.6^{*}, 170.2,169.8,169.8^{*}, 169.7,169.6^{*}$, 78.9, 78.81, 78.79*, 78.2*, 75.84*, 75.78*, 74.1*, 71.4*, 71.1, 70.8, 70.7*, 69.9, 69.8, 69.6, 68.4*, 68.3, 62.2*, 62.0, 22.33*, 22.28, $20.89(2 \mathrm{C}), 20.85^{*}, 20.83,20.8^{*}, 20.7^{*} \mathrm{ppm}$; IR (film): $\tilde{v}=3281$, $2956,1738,1432,1367,1201,1142,1093,1031,980,907,735,651,602,541,485,457,425 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{9} \mathrm{Na}^{+}: 393.1155$, found: 393.1156.

((2R,3R,4R,5S,6R)-3,4,5-Tris((tert-butyldimethylsilyl)oxy)-6-(prop-2-yn-1-yl)tetrahydro-2H-pyran-

2-yl)methyl 4-methylbenzenesulfonate (104)

Procedure A (only α)

TosCl ($136 \mathrm{mg}, 716 \mu \mathrm{~mol}$) was added to a stirred solution of alcohol 57 (300 mg, $551 \mu \mathrm{~mol})$, TEA ($92.1 \mu \mathrm{~L}, 661 \mu \mathrm{~mol}$) and 4-DMAP ($67.3 \mathrm{mg}, 551 \mu \mathrm{~mol}$) in DCM $(1.77 \mathrm{~mL})$ at rt and stirring was continued for 16 h . The solvent was evaporated and the crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 50:1 to 20:1) affording compound 104 as a colourless crystalline solid ($377 \mathrm{mg}, 98 \%$).

Procedure B (anomeric mixture)

TosCl (161 mg, $845 \mu \mathrm{~mol}$) was added to a stirred solution of an anomeric mixture of alcohol 57 ($355 \mathrm{mg}, 651 \mu \mathrm{~mol}$), TEA ($109 \mu \mathrm{~L}, 782 \mu \mathrm{~mol}$) and 4-DMAP ($79.6 \mathrm{mg}, 651 \mu \mathrm{~mol}$) in DCM (2.1 mL) at $r t$ and stirring was continued for 16 h resulting in a colour change from colourless to brown. The solvent was evaporated and the crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 50:1 to 30:1) affording both major α-anomer 104 ($132 \mathrm{mg}, 29 \%$) and minor β-anomer epi-104 (39 mg, 9\%) as a colourless crystalline solid.

Analytical and spectral data of the major α-anomer 104: m.p.: $90-91^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}:+17.9$ (c $=1.06$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.81-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 4.30-4.25(\mathrm{~m}, 1 \mathrm{H})$, $4.07-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{dd}, \mathrm{J}=3.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{ddd}, \mathrm{J}=9.9,5.0,2.0 \mathrm{~Hz}$, 1H), 3.45 (ddd, J = 3.0, 2.0, 1.0 Hz, 1H), 2.44 (s, 3H), 2.43 (ddd, J = 16.3, 9.7, 2.7 Hz, 1H), 2.16 (ddd, $J=16.2,5.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H})$, $0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.063(\mathrm{~s}, 3 \mathrm{H}), 0.057(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $)^{2}$: $\delta=144.9,133.1,130.0(2 \mathrm{C}), 128.1(2 \mathrm{C}), 80.8,75.4,73.3,70.9,70.3,69.4,68.2,68.1,26.2(3 C), 26.1$ (3C), 25.8 (3C), 21.8, 20.9, 18.5, 18.3, 17.9, -3.5, -4.0, -4.3, -4.6, $-4.8,-5.0 \mathrm{ppm}$; IR (film): $\tilde{v}=3313$, 2953, 2929, 2896, 2857, 1599, 1471, 1468, 1362, 1254, 1189, 1177, 1139, 1110, 1087, 1055, 1021, 1005, 978, 931, 901, 878, 830, 812, 785, 665, 636, 553, 529, $466 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{34} \mathrm{H}_{62} \mathrm{O}_{7} \mathrm{SSi}_{3} \mathrm{Na}^{+}$: 721.3416, found: 721.3424.

Analytical and spectral data of the minor β-anomer epi-104: $[\alpha]_{\mathrm{D}}^{20}:+15.7\left(\mathrm{c}=1.12, \mathrm{CHCl}_{3}\right)$;

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=7.83-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 4.17$ (dd, $\mathrm{J}=10.2, \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, \mathrm{J}=10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{t}$, $\mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (ddd, J = 8.5, 5.5, $3.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.59(\mathrm{dt}, \mathrm{J}=6.1,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.50 (ddd, J = 17.0, $8.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.43(\mathrm{~s}, 3 \mathrm{H}), 2.33$ (ddd, J=16.8, 5.5, $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.96 (t , $\mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.085(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}$, $3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3): $\delta=144.7,133.3,129.9$ (2C), 128.2 (2C), 81.1, 78.0, 76.0, 72.6, 72.2, 71.0, 70.3, 27.1, 25.91 (3C), 25.87 (3C), 25.86 (3C), 23.8, 21.8, 18.0 (3C), $-3.7,-3.99,-4.03,-4.4,-4.5,-5.0 \mathrm{ppm} ; \operatorname{IR}$ (film): $\tilde{v}=3314,2954,2929,2887,2857,1599$, $1472,1362,1253,1189,1177,1117,1086,1006,982,931,880,835,811,770,664,627,572,554$, $535,502,452,413 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{34} \mathrm{H}_{62} \mathrm{O}_{7} \mathrm{SSi}_{3} \mathrm{Na}^{+}$: 721.3416, found: 721.3417.

(((2S,3R,4R,5S,6R)-2-(Bromomethyl)-6-(prop-2-yn-1-yl)tetrahydro-2H-pyran-3,4,5-

 triyl)tris(oxy))tris(tert-butyldimethylsilane) (106)
CO_{2} (wet, evolved from dry ice) was bubbled through a stirred suspension of tosylate 104 ($25 \mathrm{mg}, 36 \mu \mathrm{~mol}$), NiBr_{2}.glyme ($10 \mathrm{~mol} \%, 1 \mathrm{mg}, 4 \mu \mathrm{~mol}$), Mn dust ($5 \mathrm{mg}, 86 \mu \mathrm{~mol}$) and neocuproine ($26 \mathrm{~mol} \%, 2 \mathrm{mg}, 9 \mu \mathrm{~mol}$) in DMF ($142 \mu \mathrm{~L}$) at rt. The reaction mixture was warmed to $70^{\circ} \mathrm{C}$ and stirring was continued for 22 h under an atmosphere of CO_{2}. The crude reaction mixture was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 50:1) affording both compound 106 ($2 \mathrm{mg}, 9 \%$) and some unreacted starting material $\mathbf{1 0 4}$ ($23 \mathrm{mg}, 90 \%$) as a colourless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.04$ (ddd, J = 12.8, $6.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.99 (ddd, J = 8.3, 6.6, 2.0 Hz , 1 H), $3.88-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{dd}, \mathrm{J}=10.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$ (dd, J = 10.4, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{t}, \mathrm{J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, \mathrm{J}=2.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H})$, $0.91(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 6 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.125(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=81.2,74.5,72.2,70.2,70.1,68.9,33.2,26.3$ (3C), 26.2 (3C), 25.9 (3C), 22.5, 21.3, 18.5, 18.3, 18.0, 14.2, -3.7, -4.1, -4.5, -4.8, -4.9 ppm; $\mathrm{C}_{27} \mathrm{H}_{55} \mathrm{BrO}_{4} \mathrm{Si}_{3}$.
(((2S,3R,4R,5S,6R)-2-((Methylthio)methyl)-6-(prop-2-yn-1-yl)tetrahydro-2H-pyran-3,4,5-triyl)tris(oxy))tris(tert-butyldimethylsilane) (108)

n-BuLi (1.6 M in hexane, $69.3 \mu \mathrm{~L}, 111 \mu \mathrm{~mol}$) was slowly added to a stirred solution of tris(methylthio)methane (110) ($15.2 \mu \mathrm{~L}, 114 \mu \mathrm{~mol})$ in THF (0.5 mL) at $-78^{\circ} \mathrm{C}$ over the course of 5 min and stirring was continued for 20 min . In parallel tosylate $\mathbf{1 0 4}(50 \mathrm{mg}, 72 \mu \mathrm{~mol})$ was dissolved in THF (1.25 mL) and the solution was cooled to $-78^{\circ} \mathrm{C}$. The previously prepared solution of lithiated tris(methylthio)methane (110) in THF (rinsed with 0.25 mL) was slowly added to the stirred reaction mixture at $-78^{\circ} \mathrm{C}$ over the course of 5 min and stirring was continued for 1 h . Then the reaction mixture was warmed to $-50^{\circ} \mathrm{C}$ and stirring was continued for 1.5 h . Then DMPU ($13.4 \mu \mathrm{~L}, 111 \mu \mathrm{~mol}$) were added to the stirred reaction mixture at $-50^{\circ} \mathrm{C}$ and stirring was continued for 5 min . The reaction mixture was warmed to $-40^{\circ} \mathrm{C}$ and stirring was continued for 1 h . In parallel n-BuLi (1.6 M in hexane, $69.3 \mu \mathrm{~L}, 111 \mu \mathrm{~mol}$) was slowly added to a stirred solution of tris(methylthio)methane (110) ($15.2 \mu \mathrm{~L}, 114 \mu \mathrm{~mol}$) and DMPU ($13.4 \mu \mathrm{~L}, 111 \mu \mathrm{~mol}$) in THF (0.5 mL) at $-78^{\circ} \mathrm{C}$ over the course of 5 min and stirring was continued for 20 min . This solution of lithiated tris(methylthio)methane (110) in THF was added to
the stirred reaction mixture at $-40^{\circ} \mathrm{C}$. The reaction mixture was warmed to rt and stirring was continued for 16 h . In parallel n-BuLi (1.6 M in hexane, $434 \mu \mathrm{~L}, 694 \mu \mathrm{~mol}$) was slowly added to a stirred solution of tris(methylthio)methane (110) (95.1 $\mu \mathrm{L}, 715 \mu \mathrm{~mol}$) and DMPU ($83.9 \mu \mathrm{~L}$, $694 \mu \mathrm{~mol}$) in THF (5 mL) at $-78^{\circ} \mathrm{C}$ over the course of 5 min and stirring was continued for 20 min . This solution of lithiated tris(methylthio)methane (110) in THF was added to the stirred reaction mixture at rt and stirring was continued for 5 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ $(5 \mathrm{~mL})$ and the aq. phase was extracted with MTBE ($2 \times 10 \mathrm{~mL}$). The combined organic extracts were subsequently washed with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and brine (5 mL), and were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 75:1) affording compound 108 as a colourless oil ($8 \mathrm{mg}, 19 \%$).
$[\alpha]_{\mathrm{D}}^{20}:+6.1\left(\mathrm{c}=0.80, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.00-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.86-3.82(\mathrm{~m}, 1 \mathrm{H})$, $3.71-3.67(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{dd}, \mathrm{J}=13.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, \mathrm{J}=13.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.51$ (ddd, $\mathrm{J}=16.4,8.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{ddd}, \mathrm{J}=16.3,6.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, 0.93 (s, 9H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 6 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=81.4,76.9,74.2,72.4,70.1,69.9,68.3,35.8,26.4$ (3C), 26.2 (3C), 25.9 (3C), 21.3, 18.6, 18.3, 18.0, 16.1, -3.4, -3.8, -4.2, -4.5, -4.6, -4.9 ppm; IR (film): $\tilde{v}=3312,2954$, 2929, 2896, 2857, 1471, 1463, 1430, 1389, 1361, 1317, 1257, 1216, 1189, 1125, 1089, 1053, 1006, 976, 939, 882, 831, 812, 773, 753, 666, 637, 571, 546, $466 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{58} \mathrm{O}_{4} \mathrm{SSi}_{3} \mathrm{Na}^{+}$: 597.3256 , found: 597.3262.

2-((2R,3R,4R,5S,6R)-3,4,5-Tris((tert-butyldimethyIsilyl)oxy)-6-(prop-2-yn-1-yl)tetrahydro-2H-pyran-2-yl)acetaldehyde (114)

Procedure A

PPTS ($31 \mathrm{mg}, 0.12 \mu \mathrm{~mol}$) was added to a stirred solution of enolether Z-59b $(26 \mathrm{mg}, 46 \mu \mathrm{~mol})$ in a mixture of acetone $(1.5 \mathrm{~mL})$ and water $(150 \mu \mathrm{~L})$ at rt . The reaction mixture was warmed to $60^{\circ} \mathrm{C}$ and stirring was continued for 17 h . The solvent was evaporated and the crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 50:1) affording compound 114 as a colourless oil ($16 \mathrm{mg}, 63 \%$).

Procedure B

DIBAL (1.0 M in DCM, $75.8 \mu \mathrm{~L}, 75.8 \mu \mathrm{~mol}$) was slowly added to a stirred solution of nitrile $\mathbf{1 1 5}$ ($30 \mathrm{mg}, 54 \mu \mathrm{~mol}$) in DCM ($520 \mu \mathrm{~L}$) at $-95^{\circ} \mathrm{C} /-90^{\circ} \mathrm{C}$ and stirring was continued for 30 min . The reaction was cautiously quenched with $\mathrm{MeOH}(0.5 \mathrm{~mL})$ and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(0.5 \mathrm{~mL})$, and the resulting mixture was diluted with MTBE (15 mL) and warmed to rt . The resulting gelatinous mixture was filtered through Celite ${ }^{\circledR}$ and the filter cake was washed with MTBE ($2 \times 15 \mathrm{~mL}$). The combined filtrates were washed with brine (15 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 50:1) affording both compound 114 ($12 \mathrm{mg}, 40 \%$) and some unreacted starting material $\mathbf{1 1 5}$ ($5 \mathrm{mg}, 17 \%$) as a colourless oil.
$[\alpha]_{\mathrm{D}}^{20}:+18.4\left(\mathrm{c}=0.65, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.75(\mathrm{dd}, \mathrm{J}=3.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{dt}$, J = 9.6, $4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.02 (td, J = 7.3, $2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.83(\mathrm{dd}, \mathrm{J}=3.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{tt}, \mathrm{J}=2.3$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.48 (dt, J = 4.8, 1.2 Hz, 1H), 2.78 (ddd, J = 16.2, 9.7, 3.2 Hz, 1H), 2.64 (ddd, J = 16.2, $4.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.892(\mathrm{~s}, 9 \mathrm{H}), 0.885(\mathrm{~s}, 9 \mathrm{H})$, $0.128(\mathrm{~s}, 3 \mathrm{H}), 0.125(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.7,81.1,74.7,74.5,72.2,70.3,70.2,68.9,46.0,26.2$ (3C), 26.1 (3C), 25.9 (3C), 21.2, 18.4, 18.3, 18.0, -3.5, -3.8, -4.0, -4.6, -4.7, -5.0 ppm; IR (film): $\tilde{v}=3314,2954,2929,2896,2858,1713$, $1472,1463,1409,1390,1362,1253,1131,1087,1056,1005,975,939,875,832,813,774,668$, 666, 636, 633, 546, $467 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{56} \mathrm{O}_{5} \mathrm{Si}_{3} \mathrm{Na}^{+}: 579.3327$, found: 579.3328.

2-((2R,3R,4R,5S,6R)-3,4,5-Tris((tert-butyldimethylsilyl)oxy)-6-(prop-2-yn-1-yl)tetrahydro-2H-pyran-2-yl)acetonitrile (115)

Procedure A

 TMSCl ($46.6 \mu \mathrm{~L}, 367 \mu \mathrm{~mol}$) was added to a stirred solution of alcohol 57 (100 mg , $184 \mu \mathrm{~mol}), \mathrm{NaCN}(18 \mathrm{mg}, 0.37 \mathrm{mmol})$ and $\mathrm{NaI}(3 \mathrm{mg}, 0.02 \mathrm{mmol})$ in a mixture of DMF (1 mL) and MeCN (1 mL) at rt resulting in a colour change from colourless to yellow. The reaction mixture was warmed to $60^{\circ} \mathrm{C}$ and stirring was continued for 6 h . Then the reaction mixture was allowed to reach rt and stirring was continued for 16 h . MeCN was evaporated and the remaining crude was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 40:1) affording compound 115 as a colourless crystalline solid ($12 \mathrm{mg}, 12 \%$).

Procedure B

$\mathrm{NaCN}(13 \mathrm{mg}, 0.26 \mathrm{mmol})$ was added to a stirred solution of tosylate 104 ($120 \mathrm{mg}, 172 \mu \mathrm{~mol})$ in DMSO (0.35 mL) at rt . The reaction mixture was warmed to $80^{\circ} \mathrm{C}$ and stirring was continued for 16 h . The crude reaction mixture was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 40:1) affording compound 115 as a colourless crystalline solid ($92 \mathrm{mg}, 97 \%$).

Procedure C (Mitsunobu)

PPh_{3} (195a) ($193 \mathrm{mg}, 734 \mu \mathrm{~mol}$) and DEAD ($134 \mu \mathrm{~L}, 734 \mu \mathrm{~mol}$) were subsequently added to a stirred solution of alcohol $57(100 \mathrm{mg}, 184 \mu \mathrm{~mol})$ in $\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}(1: 2,2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and stirring was continued for 15 min . Then, acetone cyanhydrine ($83.8 \mu \mathrm{~L}, 917 \mu \mathrm{~mol}$) was added to the stirred reaction mixture at $0^{\circ} \mathrm{C}$ and stirring was continued for 5 min . The reaction mixture was allowed to reach rt and stirring was continued for 21.5 h . The solvents were evaporated and the crude reaction mixture was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 50:1 to 30:1) affording compound 115 as a colourless crystalline solid (41 mg, 40\%).
m.p.: $75-76^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}:+16.9\left(\mathrm{c}=1.14, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.15(\mathrm{td}, \mathrm{J}=6.6,5.1 \mathrm{~Hz}$, 1 H), 3.98 (ddd, J = 8.4, $6.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.85(\mathrm{dd}, \mathrm{J}=3.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{tt}, \mathrm{J}=2.1,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.61 (dq, J = 5.0, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.85 (dd, J = 16.5, $6.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.65(\mathrm{dd}, \mathrm{J}=16.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.52$ (ddd, J = 16.4, 8.5, 2.7 Hz, 1H), 2.47 (ddd, J = 16.5, 6.4, 2.8 Hz, 1H), $1.98(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $0.92(\mathrm{~s}$, 9H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 6 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.125(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=117.7,80.8,74.4,73.8,72.5,70.5,70.0,69.2,26.2$ (3C), 26.1 (3C), 25.9 (3C), 21.23, 21.17, 18.4, 18.3, 18.0, -3.6, -3.8, -4.0, -4.6, -4.7, -4.9 ppm; IR (film): $\tilde{v}=3283$, 2956, 2929, 2900, 2857, 1472, 1463, 1412, 1390, 1361, 1330, 1254, 1189, 1133, 1085, 1052, 1007, 966, 880, 800, 790, 750, 700, 673, 553, 537, 464, $433 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{55} \mathrm{NO}_{4} \mathrm{Si}_{3} \mathrm{Na}^{+}: 576.3336$, found: 576.3331 .

2-((2R,3R,4S,5S,6R)-3,4,5-Tris((tert-butyldimethylsilyl)oxy)-6-((E)-prop-1-en-1-yl)tetrahydro-2H-pyran-2-yl)acetonitrile (116)

$\mathrm{MeOH}(13.7 \mu \mathrm{~L}, 339 \mu \mathrm{~mol})$ was added to a stirred solution of nitrile $115(47 \mathrm{mg}$, $85 \mu \mathrm{~mol})$, water ($3.05 \mu \mathrm{~L}, 170 \mu \mathrm{~mol}$) and $\mathrm{RuH}_{2}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%, 3 \mathrm{mg}, 3 \mu \mathrm{~mol})$ as a solution in 1,2-DME (0.5 mL) at rt. The resulting reaction mixture was warmed to $140^{\circ} \mathrm{C}$ in a sealed Schlenk tube and stirring was continued for 22 h . Then the reaction mixture was warmed to $160^{\circ} \mathrm{C}$ and stirring for continued for 3 h . The solvent was evaporated and the crude
product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $50: 1$ to $2: 1$) affording compound 116 as a colourless oil (11 mg, 23\%).
$[\alpha]_{\mathrm{D}}^{20}:+15.7\left(\mathrm{c}=1.10, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.77-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.63-5.53(\mathrm{~m}$, $1 \mathrm{H}), 4.28(\mathrm{dd}, \mathrm{J}=6.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{dd}, \mathrm{J}=3.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.57(\mathrm{~m}$, $2 H$), 2.84 (dd, J = 16.5, 5.7 Hz, 1H), 2.59 (dd, J = 16.5, 6.7 Hz, 1H), 1.71 (dd, J = 6.3, 1.2 Hz, 3 H), 0.91 $(\mathrm{s}, 18 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=129.4,127.8,117.8,75.3,74.6,73.4,72.3,71.9,26.11$ (3C), 26.05 (3C), 25.9 (3C), 21.8, 18.28, 18.25, 18.0, 17.9, -3.7, -3.99, -4.02, -4.5, -4.7, -4.8 ppm ; IR (film): $\tilde{v}=2954,2930,2895,2858,1729,1616,1472,1464,1410,1389,1362,1254,1187,1092,1006$, 967, 938, 874, 832, 812, 775, 672, 572, $472 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{57} \mathrm{NO}_{4} \mathrm{Si}_{3} \mathrm{Na}^{+}: 578.3488$, found: 578.3489 .

2-((2R,3R,4R,5S,6R)-3,4,5-Tris((tert-butyldimethylsilyl)oxy)-6-(prop-2-yn-1-yl)tetrahydro-2H-pyran-2-yl)acetamide (117)

$\mathrm{NaOH}(25 \mathrm{mg}, 630 \mu \mathrm{~mol})$ was added to a stirred solution of nitrile $115(50 \mathrm{mg}$, $90 \mu \mathrm{~mol})$ in aq. $\mathrm{H}_{2} \mathrm{O}_{2}(35 \%, 230 \mu \mathrm{~L}, 6.77 \mathrm{mmol})$ and $\mathrm{EtOH}(685 \mu \mathrm{~L})$ at rt resulting in an emulsion, and stirring was continued for 22 h . The reaction mixture was diluted with $\mathrm{EtOH}(10 \mathrm{~mL})$ and neutralized with Dowex ${ }^{\circledR}$ (acidic cation exchange resin). The resin was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 4:1) affording compound 117 as a colourless oil (36 mg, 70\%).
$[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}:+30.1\left(\mathrm{c}=0.71, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.93(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}$, $\mathrm{J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{ddd}, \mathrm{J}=10.9,4.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~J}=8.4,5.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, \mathrm{J}=3.3$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{tt}, \mathrm{J}=2.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dt}, \mathrm{J}=4.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, \mathrm{J}=16.4,10.9 \mathrm{~Hz}$, 1 H), 2.61 (ddd, J = 16.6, 8.3, $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.38 (dd, J = 16.4, $2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.34 (ddd, J = 16.7, 5.7, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.893(\mathrm{~s}, 9 \mathrm{H}), 0.885(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.10(\mathrm{~s}$, $3 \mathrm{H}), 0.095(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=173.7,81.6,74.9$, $74.0,73.9,70.7,70.5,69.0,38.2,26.3$ (3C), 26.1 (3C), 25.9 (3C), 21.5, 18.5, 18.3, 18.0, $-3.6,-3.8,-$ 4.1, -4.5, -4.7, -5.0 ppm; IR (film): $\tilde{v}=3433,3310,3170,3053,2954,2930,2896,2858,1681,1604$, 1472, 1464, 1389, 1362, 1329, 1257, 1131, 1089, 1055, 1006, 972, 939, 830, 812, 774, 736, 703,

672, 639, 561, 543, $468 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{57} \mathrm{NO}_{5} \mathrm{Si}_{3} \mathrm{Na}^{+}: 594.3444$, found: 594.3437.

Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(prop-2-yn-1-yl)tetrahydro-2H-pyran-2-yl)acetate (35b)

Procedure B (DMF.DMA)

 added to the stirred reaction mixture at rt and the reaction mixture was warmed to $65^{\circ} \mathrm{C}$, and stirring was continued for 5 h . The reaction was quenched with aq. phosphate buffer (200 mM , $\mathrm{pH} 7,10 \mathrm{~mL}$) and the aq. phase was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic extracts were subsequently washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,15 \mathrm{~mL}$) and brine (15 mL), and were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 50:1) affording compound 35b as a colourless oil ($8 \mathrm{mg}, 30 \%$). The analytical and spectroscopic data of the isolated compound were identical with those shown above.

(((2S,3R,4R,5S,6R)-2-(lodomethyl)-6-(prop-2-yn-1-yl)tetrahydro-2H-pyran-3,4,5-

 triyl)tris(oxy))tris(tert-butyldimethylsilane) (119)
PPh_{3} (195a) ($120 \mathrm{mg}, 459 \mu \mathrm{~mol}$) and $\mathrm{I}_{2}(93 \mathrm{mg}, 370 \mu \mathrm{~mol})$ were subsequently added to a stirred solution of alcohol $57(100 \mathrm{mg}, 184 \mu \mathrm{~mol})$ in $\mathrm{PhH}(2 \mathrm{~mL})$ at rt and stirring was continued for 1 h . The reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(5 \mathrm{~mL})$, the aq. phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 90:1) affording compound 119 as a colourless oil ($119 \mathrm{mg}, 99 \%$).
$[\alpha]_{\mathrm{D}}^{20}:+14.1\left(\mathrm{c}=1.07, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.00(\mathrm{ddd}, \mathrm{J}=8.3,6.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88$ (ddd, J = 7.2, 5.8, $4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.84 (dd, J = 3.2, 1.7 Hz, 1H), 3.74 (ddd, J = 3.0, 2.1, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.70 (ddd, J = 4.0, 1.7, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.54 (dd, J = 10.2, $5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.40 (dd, J = 10.2, $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.53
(ddd, J = 16.5, 8.1, $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.48 (ddd, J = 16.3, $6.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.97(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 0.92 (s, $9 H$), 0.90 (s, 9H), 0.895 ($s, 9 H$), 0.13 (s, 6H), $0.125(\mathrm{~s}, 3 \mathrm{H}), 0.120(\mathrm{~s}, 3 \mathrm{H}), 0.115(\mathrm{~s}, 3 \mathrm{H}), 0.110(\mathrm{~s}$, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=81.2,77.0,74.5,73.2,70.3,70.0,68.6,26.3$ (3C), 26.2 (3C), 25.9 (3C), 21.3, 18.5, 18.3, 18.0, 7.9, -3.4, -3.6, -4.1, $-4.3,-4.5,-4.9 \mathrm{ppm}$; IR (film): $\tilde{v}=2854$, 2929, 2896, 2858, 1472, 1408, 1389, 1361, 1258, 1186, 1140, 1124, 1093, 1054, 1005, 977, 938, 914, 877, 834, 813, 776, 674, 631, 550, 539, 474, 444, $407 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{55} \mathrm{O}_{4} \mathrm{Si}_{3} \mathrm{INa}^{+}$: 677.2345, found: 677.2345.

2-(4,5-Dihydro-1H-imidazol-2-yl)pyridine (121)

t-BuNC $(1.07 \mathrm{~mL}, 94.9 \mathrm{mmol})$ was added to a stirred suspension of 2-bromopyridine (120) (1.00 g, 6.33 mmol$), \mathrm{Cs}_{2} \mathrm{CO}_{3} \quad(2.68 \mathrm{~g}, \quad 8.23 \mathrm{mmol})$, 1,2-ethylene diamine ($2.12 \mathrm{~mL}, 31.6 \mathrm{mmol}$), dppp ($10 \mathrm{~mol} \%, 261 \mathrm{mg}, 633 \mu \mathrm{~mol}$) and PdCl_{2} ($5 \mathrm{~mol} \%$, $56 \mathrm{mg}, 0.32 \mathrm{mmol})$ in $\mathrm{PhMe}(35 \mathrm{~mL})$ at rt and the resulting reaction mixture was warmed to $120^{\circ} \mathrm{C}$ and stirring was continued for 3 d . The reaction mixture was cooled to rt and filtered through Celite ${ }^{\circledR}$. The filter cake was washed with $\operatorname{PhMe}(2 \times 10 \mathrm{~mL})$ and the organic phase was washed with water ($3 \times 25 \mathrm{~mL}$). The aq. phase was extracted with DCM $(3 \times 50 \mathrm{~mL})$ and the combined extracts were washed with brine ($3 \times 50 \mathrm{~mL}$), and were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH}, 10: 1\right)$ affording compound 121 as a colourless solid (476 mg, 51\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.59(\mathrm{ddd}, \mathrm{J}=4.9,1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{dt}, \mathrm{J}=7.9,1.1, \mathrm{~Hz}, 1 \mathrm{H}), 7.79$ (td, J = 7.7, $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.37 (ddd, J = 7.6, 4.9, $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.07 (br s, 1H), 3.87 (br s, 4H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}$): $\delta=164.5,148.8,148.7,136.7,125.2,122.4,49.1$ (2C) ppm; HRMS (ESI): m / z calcd. for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{3}{ }^{+}: 148.0869$, found: 148.0869. The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{290}$
${ }^{290}$ S. Xu, N. Onishi, A. Tsurusaki, Y. Manaka, W.-H. Wang, J. T. Muckerman, E. Fujita, Y. Himeda, Eur. J. Inorg. Chem. 2015, 34, 55915594.

2-(Trimethylsilyl)ethyl carbonochloridate (123)

 $\begin{array}{ll}\text { O } & \text { TMS-ethanol (122) (} 5.00 \mathrm{~mL}, 34.9 \mathrm{mmol}) \text { was added to a stirred solution of phosgene } \\ (20 \% \text { in PhMe, } 1.00 \mathrm{~g}, 6.33 \mathrm{mmol}) \text { at } 0^{\circ} \mathrm{C} \text { and stirring was continued for } 3 \mathrm{~h} \text {. The }\end{array}$ solvent and unreacted phosgene were removed under vacuum with an extra cooling trap. The crude product was purified by distillation at HV affording compound 123 as a colourless oil (3.01 g, 48\%).${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.45-4.38(\mathrm{~m}, 2 \mathrm{H}), 1.17-1.10(\mathrm{~m}, 2 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=150.7,71.5,17.6,-1.5$ (3C) ppm; HRMS (ESI): m / z calcd. for $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{ClSi}^{+}$: 181.0452 , found: 181.0451. The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{291}$

Isobutyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(prop-2-yn-1-yl)tetrahydro-2H-pyran-2-yl)acetate (35c)

2-(4,5-Dihydro-1H-imidazol-2-yl)pyridine (121) ($47 \mathrm{mg}, 0.32 \mathrm{mmol}$) was added to a stirred solution of $\mathrm{Ni}(C O D)_{2}(82 \mathrm{mg}, 298 \mu \mathrm{~mol})$ in DMA/THF $(7: 3,2.5 \mathrm{~mL})$ at rt resulting in a deep blue mixture which had to be freshly prepared prior to its use.

Catalyst 207 ($0.12 \mathrm{M}, 5 \mathrm{~mol} \%, 15.9 \mu \mathrm{~L}, 1.91 \mu \mathrm{~mol})$ was added to a stirred suspension of alkyl iodide 119 ($25 \mathrm{mg}, 38 \mu \mathrm{~mol}$), Zn dust ($8 \mathrm{mg}, 115 \mu \mathrm{~mol}$) and TBAI ($50 \mathrm{~mol} \%, 7 \mathrm{mg}, 19 \mu \mathrm{~mol}$) in DMA/THF ($7: 3,395 \mu \mathrm{~L}$) at rt, and stirring was continued for 5 min . Then, isobutylchloroformate ($10.0 \mu \mathrm{~L}$, $76.3 \mu \mathrm{~mol})$ was added to the stirred reaction mixture at rt and stirring was continued for 20.5 h . The reaction was quenched with aq. $\mathrm{KHSO}_{4}(1.0 \mathrm{M}, 2 \mathrm{~mL})$ and the aq. phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and the combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $100: 1$) affording compound 35 c as a colourless oil (6 mg , 25\%).
$[\alpha]_{\mathrm{D}}^{20}:+14.7\left(\mathrm{c}=0.60, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.34(\mathrm{dt}, \mathrm{J}=9.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.02$ (ddd, $J=8.6,5.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{dd}, \mathrm{J}=3.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.75(\mathrm{~m}, 1 \mathrm{H})$, $3.51(\mathrm{dt}, \mathrm{J}=4.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, \mathrm{J}=14.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, \mathrm{J}=14.8,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ (ddd,

[^93]$\mathrm{J}=16.3,8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.40 (ddd, J = 16.3, $6.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.98-1.86(\mathrm{~m}, 2 \mathrm{H}), 0.935(\mathrm{~s}, 3 \mathrm{H})$, $0.930(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 6 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}$, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=171.6,81.4,74.6,74.4,74.0,70.8,70.2,70.0,68.9,38.0$, 27.8, 26.3 (3C), 26.2 (3C), 25.9 (3C), 21.1, 19.30, 19.28, 18.5, 18.3, 18.0, -3.4, -3.8, -4.1, -4.56, -4.63, -4.9 ppm; IR (film): $\tilde{v}=3314,2955,2929,2895,2858,1737,1472,1463,1389,1378,1361,1252$, $1167,1128,1083,1056,1005,977,939,877,832,813,774,672,638,634,572,547,471,447$, $425 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{32} \mathrm{H}_{65} \mathrm{O}_{6} \mathrm{Si}_{3}{ }^{+}: 629.4084$, found: 629.4084.

5.2.1.5.3. Building Block Coupling \& Elaboration

Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((E)-3-iodoallyl)tetrahydro-2H-pyran-2-yl)acetate (124a)

$\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}(15 \mathrm{mg}, 59 \mu \mathrm{~mol})$ was added to a stirred solution of alkyne $\mathbf{3 5 b}$ $(30 \mathrm{mg}, 51 \mu \mathrm{~mol})$ in $\mathrm{THF}(0.25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ resulting in a white suspension. The reaction mixture was stirred for 30 min . before a solution of $\mathrm{I}_{2}(15 \mathrm{mg}$, $59 \mu \mathrm{~mol})$ in THF $(125 \mu \mathrm{~L})$ was added dropwise at $0^{\circ} \mathrm{C}$ and stirring was continued for 30 min . The resulting reaction mixture was allowed to reach rt and stirring was continued for 17 h . The reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(0.5 \mathrm{~mL})$ and water (5 mL). The aq. phase was extracted with MTBE ($2 \times 10 \mathrm{~mL}$) and the combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 100:1) affording both compound 124 a (12.0 mg, 33%) and some unreacted starting material 35 ($16 \mathrm{mg}, 53 \%$) as a colourless oil.
$[\alpha]_{\mathrm{D}}^{20}:+14.2\left(\mathrm{c}=0.80, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.53(\mathrm{dt}, \mathrm{J}=14.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dt}$, $J=14.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dt}, \mathrm{J}=9.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}$, $3 H$), $3.50-3.45(\mathrm{~m}, 2 \mathrm{H}), 2.74$ (dd, J = 14.6, 10.0 Hz, 1H), 2.61 (dd, J = 14.6, 4.8 Hz, 1H), 2.50 (dddd, $J=14.7,9.8,7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.98 (dddd, J = 14.6, $7.4,3.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 18 \mathrm{H})$, $0.10(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$): $\delta=171.9,143.6,76.5,74.4,74.0,73.9,71.7,68.6,52.1,37.9,37.5,26.3$ (3C), 26.2 (3C), 25.9 (3C), 18.5, 18.3, 18.0, -3.4, -4.0, -4.1, $-4.5,-4.6,-5.0 \mathrm{ppm}$; IR (film): $\tilde{v}=2952,2929,2894,2857,1742$, $1646,1472,1463,1436,1389,1361,1327,1253,1168,1127,1085,1005,972,939,919,891,864$, 832, 812, 773, 666, 563, 487, 459, $426 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{59} \mathrm{O}_{6} \mathrm{ISi}_{3} \mathrm{Na}^{+}$: 737.2559, found: 737.2556.

5.2.2. The Western Belizentrin Fragment - Route 2

5.2.2.1. The 2,5-trans-Disubstituted Tetrahydrofuran Ring - A New Synthesis

(S)-5-(Hydroxymethyl)dihydrofuran-2(3H)-one ((S)-132a)

Conc. aq. $\mathrm{HCl}(25 \mathrm{~mL})$ was slowly added to a stirred solution of L-glutamic acid ((S)-10) ($25.0 \mathrm{~g}, 170 \mathrm{mmol}$) in water $(60 \mathrm{~mL})$ at rt . The resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of $\mathrm{NaNO}_{2}(15.2 \mathrm{~g}, 221 \mathrm{mmol})$ in water (80 mL) was added dropwise over the course 45 min causing a gentle evolution of N_{2} gas. Once the addition of NaNO_{2} was complete the colourless reaction mixture was warmed to rt and stirring was continued for 23 h . The solvents were evaporated and the resulting white solid was washed with EtOAc $(100 \mathrm{~mL})$, and filtered. The filter cake was washed with EtOAc ($2 \times 100 \mathrm{~mL}$) and the combined filtrates were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated affording intermediate (S)-134 as a white solid ($17.5 \mathrm{~g}, 79 \%$) which was used in the next step without further purification.

$\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}(15.2 \mathrm{~mL}, 170 \mathrm{mmol})$ was slowly added to a stirred solution of crude carboxylic acid (S)-134 (17.5 g, 170 mmol$)$ in THF (280 mL) at $0^{\circ} \mathrm{C}$ over the course of 15 min . Once the addition of $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ was complete the resulting reaction mixture was allowed to reach rt and stirring was continued for 18 h . Then the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and the reaction was quenched with $\mathrm{MeOH}(70 \mathrm{~mL})$. The solvents were evaporated and the resulting oil was filtered through a plug of Celite ${ }^{\oplus}$, and washed with EtOAc. Evaporation of the solvent afforded compound (S)-132a as a white solid ($10.8 \mathrm{~g}, 69 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.63$ (ddd, J = 7.5, $6.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.91 ($\mathrm{dd}, \mathrm{J}=12.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.66 (dd, J = 12.5, 4.7 Hz, 1H), 2.67-2.50 (m, 2H), 2.27 (dddd, J = 13.2, 9.6, 7.6, 5.8 Hz, 1H), 2.15 (dddd, J = 12.9, 10.0, 8.4, 7.0 Hz, 1H), $2.03(\mathrm{~s}, 1 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=177.4,80.7$, 64.4, 28.8, 23.3 ppm ; HRMS (ESI): m/z calcd. for $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{3} \mathrm{Na}^{+}: 139.0366$, found: 139.0365. The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{292}$

[^94]
(S)-5-((Trityloxy)methyl)dihydrofuran-2(3H)-one ((S)-132b)

TrtCl ($8.48 \mathrm{~g}, 30.4 \mathrm{mmol}$) was added to a stirred solution of alcohol (S)-132a $(2.94 \mathrm{~g}, 25.4 \mathrm{mmol})$ in py $(13.5 \mathrm{~mL}, 167 \mathrm{mmol})$ at rt and the resulting reaction mixture was stirred for 16 h . The reaction was quenched with water (110 mL), the aq. phase was extracted with EtOAc $(3 \times 45 \mathrm{~mL})$. The combined extracts were subsequently washed with water $(45 \mathrm{~mL})$ and brine (45 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 9:1 to $2: 1$), followed by recrystallization from boiling hexane/EtOAc (5:1) to give compound (S)-132b as a colourless crystalline solid (6.62 g, 73\%).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.47-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.27-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.25-$ 7.22 (m, 2H), 4.65 (dddd, J = 7.9, 5.8, $4.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.42 (dd, J = 10.4, $3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.16 (dd, $J=10.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.69$ (ddd, J = 17.9, $10.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.51 (ddd, J = 17.8, 10.1, $6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.25 (dddd, J = 12.8, 10.1, 7.9, $6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.04 (dddd, J = 12.8, 10.1, $6.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}$) ppm; ${ }^{13}$ C NMR (101 MHz, CDCl_{3}): $\delta=177.6,143.6$ (3C), 128.8 (6C), 128.1 (6H), 127.3 (3C), 87.1, 79.2, 65.4, 28.6, 24.4 ppm ; HRMS (ESI): m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}^{+}: 381.1461$, found: 381.1459. The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{293}$

(3R,5S)-3-Methyl-5-((trityloxy)methyl)dihydrofuran-2(3H)-one (136)

 was complete the resulting reaction mixture was warmed to $0^{\circ} \mathrm{C}$ and stirring was continued for 15 min . The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and a solution of lactone $(S)-\mathbf{1 3 2 b}$ in THF (65 mL) predried over $4 \AA \mathrm{MS}$ was slowly added. Stirring was continued for 15 min before Mel ($2.08 \mathrm{~mL}, 33.5 \mathrm{mmol}$) as a solution in THF (30 mL) was slowly added to the reaction mixture, which was allowed to reach $-30^{\circ} \mathrm{C}$ over the course of 4 h . The reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{4}(100 \mathrm{~mL})$ and the aq. phase was extracted with MTBE ($4 \times 100 \mathrm{~mL}$). The combined extracts were washed with water (75 mL) and brine (75 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated affording compound 136 as a colourless crystalline solid (10.2 g, 99\%).

[^95]${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.47-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.27-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.25-$ 7.22 (m, 2H), $4.60(\mathrm{dq}, \mathrm{J}=8.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, \mathrm{J}=10.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, \mathrm{J}=10.4,4.1 \mathrm{~Hz}$, 1 H), 2.87 (tq, J = 9.2, 7.3 Hz, 1H), 2.26 (ddd, J = 12.8, 9.4, $3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.93 (dt, J = 12.9, 8.8 Hz, 1H), $1.28(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=180.5,143.6$ (3C), 128.8 (6 C), 128.1 (6C), 127.3 (3C), 87.2, 76.8, 65.4, 34.3, 32.7, 16.5 ppm ; HRMS (ESI): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}^{+}: 395.1618$; found: 395.1616 . The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{294}$

(3S,5S)-3-Methyl-5-((trityloxy)methyl)dihydrofuran-2(3H)-one (137)

n-BuLi (1.6 M in hexane, $42.3 \mathrm{~mL}, 67.6 \mathrm{mmol}$) was slowly added to a stirred solution of DIPA ($11.1 \mathrm{~mL}, 78.9 \mathrm{mmol}$) in THF $(260 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. Once the addition of n-BuLi was complete the resulting reaction mixture was warmed to $0^{\circ} \mathrm{C}$ and stirring was continued for 15 min . The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and a solution of lactone $\mathbf{1 3 6} \mathrm{in}$ THF (155 mL) was slowly added, and stirring was continued for 30 min . The reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{4}(200 \mathrm{~mL})$ and the aq. phase was extracted with MTBE ($4 \times 125 \mathrm{~mL}$). The combined extracts were washed with water (150 mL) and brine (150 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 9:1 to 2:1) affording compound 137 as a colourless crystalline solid (20.1 g, 96\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.48-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 3 \mathrm{H}), 4.52$ (dddd, J = 10.1, 6.0, 5.3, $3.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.30(\mathrm{dd}, \mathrm{J}=10.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, \mathrm{J}=10.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.68 (ddq, J = 11.7, 8.9, 7.0 Hz, 1H), 2.37 (ddd, J = 12.6, 9.0, $6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.69 (ddd, J = 12.6, 11.8, $10.2 \mathrm{~Hz}, 1 \mathrm{H}$), $1.28(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=179.5,143.7(3 \mathrm{C}), 128.8$ (6C), 128.0 (6C), 127.3 (3C), 86.9, 77.3, 65.2, 35.5, 33.2, 15.5 ppm ; HRMS (ESI): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}^{+}: 395.1618$, found: 395.1617 . The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{295}$

Ethyl (4S,6S,E)-6-hydroxy-4-methyl-7-(trityloxy)hept-2-enoate (139)

DIBAL (1.2 M in PhMe, $48.0 \mathrm{~mL}, 57.6 \mathrm{mmol}$) was slowly added to a stirred solution of lactone $137(18.7 \mathrm{~g}, 50.1 \mathrm{mmol})$ in DCM (200 mL) at $-78^{\circ} \mathrm{C}$ over the course of 15 min and the resulting reaction mixture was stirred for 3 h . The reaction was quenched with $\mathrm{MeOH}(40 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The resulting mixture was transferred into an Erlenmeyer flask with sat. aq. Rochelle (200 mL) and was vigorously stirred for 16 h at rt . The resulting biphasic mixture was diluted with water (400 mL) and the aq. phase was extracted with DCM ($3 \times 200 \mathrm{~mL}$). The combined extracts were subsequently washed with water (200 mL) and brine (200 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated affording compound 138 as a mixture of diastereomers as a colourless oil $(18.4 \mathrm{~g}, 98 \%)$ which was used in the next step without further purification.

Ethyl (triphenylphosphoranylidene)acetate ($18.1 \mathrm{~g}, 50.8 \mathrm{mmol}$) was added to a stirred solution of crude lactol 138 ($18.2 \mathrm{~g}, 48.7 \mathrm{mmol})$ in $\mathrm{PhMe}(250 \mathrm{~mL})$ at rt. The resulting reaction mixture was stirred for 17 h at $80^{\circ} \mathrm{C}$. Then the reaction mixture was cooled to rt and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 20:1 to 9:1) affording compound 139 as a colourless oil ($15.0 \mathrm{~g}, 69 \%$).
$[\alpha]_{\mathrm{D}}^{20}:+24.8\left(\mathrm{c}=1.21, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.46-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.35-7.29(\mathrm{~m}$, $6 \mathrm{H}), 7.28-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.86$ (dd, J=15.7, 7.7 Hz, 1H), 5.70 (dd, J = 15.7, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{tq}, \mathrm{J}=8.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, \mathrm{J}=9.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.02$ (dd, J = 9.4, $7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.44 (dtd, J = 8.0, 6.6, $5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.28 (d, J = $3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.58 (ddd, $\mathrm{J}=13.6,8.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.35-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.9,154.2,143.9$ (3C), 128.8 (6 C), 128.1 (6C), 127.3 (3C), 119,7, 86.9, 68.7, 67.8, 60.4, 39.3, 32.9, 19.0, 14.4 ppm; IR (film): $\tilde{v}=3486,3058,3022,2962,2930,2871$, $1714,1651,1597,1490,1448,1368,1302,1277,1211,1180,1153,1072,1033,985,948,900$, 869, $775,763,747,706,703,667,649,633,618,528,407 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Na}^{+}: 467.2193$, found: 467.2189.

Ethyl 2-((2R,3S,5S)-3-methyl-5-((trityloxy)methyl)tetrahydrofuran-2-yl)acetate (131a)

A solution of TBAF $3 \mathrm{H}_{2} \mathrm{O}(14.5 \mathrm{~g}, 45.8 \mathrm{mmol})$ in THF (45 mL) was slowly added to a stirred solution of α, β-unsaturated ester $139(13.6 \mathrm{~g}, 30.5 \mathrm{mmol})$ in THF $(155 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred for 3 h , the solvent was evaporated and the crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 10:1) affording compound 131a as a colourless crystalline solid (11.2 g, 82\%).
m.p.: $113-114{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}:+5.0\left(\mathrm{c}=1.01, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.48-7.44(\mathrm{~m}, 6 \mathrm{H})$, $7.32-7.26$ (m, 6H), $7.25-7.19(\mathrm{~m}, 3 \mathrm{H}), 4.27-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.18$ (qd, J = 7.1, 1.6 Hz, 2H), 3.90 (ddd, J = 9.0, 8.1, $4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.16 (dd, J = 9.4, $5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.02 (dd, J = 9.4, $4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.57 (dd, $J=14.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.49(\mathrm{dd}, \mathrm{J}=14.8,8.1 \mathrm{z}, 1 \mathrm{H}), 2.19(\mathrm{dt}, \mathrm{J}=12.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.88(\mathrm{~m}, 1 \mathrm{H})$, 1.43 (ddd, J = 12.3, 10.8, $8.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.25 (t, J = $7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.03 (d, J = $6.5 \mathrm{~Hz}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.7,144.3$ (3C), 128.9 (6C), 127.9, (6C), 127.0 (3C), 86.5, 81.6, 77.4, 66.8, 60.6, 40.0, 39.6, 37.9, 16.3, 14.4 ppm; IR (film): $\tilde{v}=3059,3022,2961,2928,2871,1733$, $1597,1490,1448,1382,1318,1276,1250,1196,1152,1091,1074,1031,1002,991,946,914$, 899, 850, 816, 746, 697, 667, 646, 632, 561, 537, $493 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd. for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Na}^{+}: 467.2193$, found: 467.2193.

2-((2R,3S,5S)-3-Methyl-5-((trityloxy)methyl)tetrahydrofuran-2-yl)ethan-1-ol (140)

A solution of $\mathrm{LiAlH}_{4}(1.0 \mathrm{M}$ in THF, $23.4 \mathrm{~mL}, 23.4 \mathrm{mmol}$) was slowly added to a stirred solution of ester 131a ($9.91 \mathrm{~g}, 22.3 \mathrm{mmol}$) in THF (27 mL) at $-20^{\circ} \mathrm{C}$ over the course of 15 min and the resulting reaction mixture was stirred for 1 h . The reaction mixture was warmed to rt and stirring was continued for 1 h . Then the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The resulting mixture was filtered through a plug of Celite ${ }^{\circledR}$ and washed with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined filtrates were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated affording compound 140 as a colourless oil (8.96 g , quant.).
$[\alpha]_{\mathrm{D}}^{20}:+0.8\left(\mathrm{c}=1.02, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.49-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 6 \mathrm{H})$, $7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 4.25$ (dddd, J = 9.3, 6.7, 5.4, $4.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.88-3.82$ (m, 2H), 3.62 (td, J = 9.3, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.11$ (dd, J = 9.6, 5.3 Hz, 1H), 3.06 (dd, J = 9.6, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.13$ (dt, J = 12.2, 6.9 Hz, 1H), $1.97-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.41$ (ddd, J = 12.3, 11.0, 9.1 Hz , $1 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=144.3$ (3C), 128.9 (6 C), 127.9 (6 C),
127.1 (3C), 86.5, 86.0, 77.6, 66.9, 62.3, 40.3, 37.2, 35.4, 16.0 ppm; IR (film): $\tilde{v}=3416,3086,3059$, 3031, 2959, 2927, 2870, 1596, 1491, 1449, 1380, 1321, 1221, 1182, 1154, 1092, 1067, 1034, 1002, $990,947,899,872,776,765,747,702,646,633,619,557,536,513,493,478,462,454,443,425$, 420, 413, $404 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Na}^{+}: 425.2087$, found: 425.2087.

5-((2-((2R,3S,5S)-3-Methyl-5-((trityloxy)methyl)tetrahydrofuran-2-yl)ethyl)thio)-1-phenyl-1Htetrazole (141)

1-Phenyl-1H-tetrazole-5-thiol (168) (0.76 g, 4.29 mmol) and PPh_{3} (195a) $(1.24 \mathrm{~g}, 4.71 \mathrm{mmol})$ were added to a stirred solution of alcohol $140(1.15 \mathrm{~g}$, $2.86 \mathrm{mmol})$ in THF (23 mL) at rt . The resulting reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and a solution of DIAD ($0.84 \mathrm{~mL}, 4.29 \mathrm{mmol}$) in THF (7 mL) was slowly added over the course of 15 min , and stirring was continued for 1 h . Then the reaction mixture was allowed to reach rt and stirring was continued for 16 h . The solvent was evaporated and the crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 10:1) affording compound 141 as a colourless oil (1.39 g, 87\%).
$[\alpha]_{\mathrm{D}}^{20}:+5.0\left(\mathrm{c}=1.15, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.57-7.44(\mathrm{~m}, 11 \mathrm{H}), 7.31-7.18(\mathrm{~m}$, 9 H), 4.21 (dddd, J = 9.0, 6.6, 5.3, 4.1 Hz, 1H), 3.69-3.50 (m, 3H), 3.11 (dd, J = 9.6, 5.4 Hz, 1H), 3.04 (dd, J = 9.6, $4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.24 (dddd, J = 14.0, $8.5,7.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.16 (dt, J = 12.2, $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.97 - 1.83 (m, 2H), 1.42 (ddd, J=12.4, $10.9,9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.02 (d, J=6.5 Hz, 3 H) ppm; ${ }^{13}$ C NMR (101 MHz, CDCl_{3}): $\delta=154.7,144.3$ (3C), 133.9, 130.1, 129.9 (2C), 128.9 (6C), 127.9 (6C), 127.1 (3C), 124.0 (2C), $86.5,83.5,77.3,67.0,39.9,37.8,33.5,30.8,16.2 \mathrm{ppm}$; IR (film): $\tilde{v}=3058$, $3023,2957,2927,2871,1739,1596,1499,1448,1412,1386,1318,1277,1243,1221,1183,1156$, 1089, 1074, 1044, 1016, 988, 942, 900, 841, 760, 689, 667, 645, 632, 551, $495 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{1} \mathrm{Na}^{+}$: 585.2295, found: 585.2289.

5-((2-((2R,3S,5S)-3-Methyl-5-((trityloxy)methyl)tetrahydrofuran-2-yl)ethyl)sulfonyl)-1-phenyl-1Htetrazole (142a)

Procedure A (molybdate)

A mixture of $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}(175 \mathrm{mg}, 141 \mu \mathrm{~mol})$ and conc. aq. $\mathrm{H}_{2} \mathrm{O}_{2}$ (35\% in water, $481 \mu \mathrm{~L}, 14.1 \mathrm{mmol}$) was added to a stirred solution of thioether 141 ($795 \mathrm{mg}, 1.41 \mathrm{mmol}$) in EtOH (10.3 mL) at rt and the reaction mixture was stirred for 5 d . The reaction was quenched with water (50 mL) and the aq. phase was extracted with EtOAc ($5 \times 50 \mathrm{~mL}$). The combined extracts were subsequently washed with water $(150 \mathrm{~mL})$ and brine (150 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 10:1 to 6:1) affording compound 142a as a colourless oil ($593 \mathrm{mg}, 71 \%$).
$[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}$: $-1.9\left(\mathrm{c}=1.06, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.71-7.43(\mathrm{~m}, 11 \mathrm{H}), 7.34-7.27(\mathrm{~m}$, $6 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 4.19$ (ddd, J = 11.5, 9.2, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.01$ (ddd, J = 14.6, 11.3, 3.8 Hz, 1H), 3.83 (ddd, J = 14.6, 11.1, $4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.55 (td, J = 8.9, $2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.12 (dd, J = 9.7, $5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.05 (dd, J = 9.6, 4.3 Hz, 1H), 2.30 (dddd, J = 14.0, 11.3, 4.8, 2.9 Hz, 1H), 2.19 (dt, J = 12.4, 7.0 Hz, 1H), 2.01 (dddd, J = 13.6, 11.1, $8.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.96-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.46$ (ddd, J = 12.4, 10.9, 9.0 Hz , 1H), 1.04 (d, J = 6.5 Hz, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=153.7$, 144.2 (3C), 133.2, 131.6, 129.9 (2C), 128.9 (6C), 127.9 (6C), 127.1 (3C), 125.3 (2C), 86.6, 82.8, 77.6, 66.9, 53.9, 40.0, 37.8, 26.4, 16.2 ppm; IR (film): $\tilde{v}=3060,3023,2959,2927,2871,1735,1596,1495,1448,1382,1342$, $1270,1219,1151,1093,1075,1039,1002,989,941,916,900,825,760,749,701,667,633,561$, 536, 509, $423 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{1} \mathrm{Na}^{+}$: 617.2193, found: 617.2197.

Procedure B (m-CPBA)

A solution of m-CPBA ($72.5 \%, 1.23 \mathrm{~g}, 5.15 \mathrm{mmol}$) in DCM (3 mL) was added to a stirred solution of the thioether 141 ($580 \mathrm{mg}, 1.03 \mathrm{mmol}$) in DCM (2 mL) at rt, and stirring was continued for 1 d . The reaction mixture was filtered and the filter cake was washed with DCM ($2 \times 10 \mathrm{~mL}$). The combined organic phases were subsequently (cautious, mind the very strong gas evolution!) washed with aq. $\mathrm{NaHSO}_{3}(40 \%, 15 \mathrm{~mL})$ and additional water (10 mL), sat. aq. $\mathrm{NaHCO}_{3}(3 \times 15 \mathrm{~mL})$ and brine $(15 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 10:1 to $6: 1$) affording compound 142a as a colourless oil ($412 \mathrm{mg}, 67 \%$). The analytical and spectroscopic data of the isolated compound were identical with those shown above.
((2S,4S,5R)-4-Methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2yl)methanol (142b)

TFA ($2.41 \mathrm{~mL}, 31.5 \mathrm{mmol}$) was added to a stirred solution of protected alcohol 142a ($750 \mathrm{mg}, 1.26 \mathrm{mmol}$) in DCM $(26.7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the resulting neutralized with sat. aq. NaHCO_{3} (ca. 26 mL) and the aq. phase was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined extracts were washed with brine (15 mL) and the solvent was evaporated. The crude product was dissolved in EtOAc (60 mL), sat. aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(25 \mathrm{~mL})$ was added and the resulting mixture was stirred at rt for 15 min . The aq. phase was extracted with EtOAc $(20 \mathrm{~mL})$. The organic extract was subsequently washed with water $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 2:1 to 1:3) affording compound $\mathbf{1 4 2 b}$ as a colourless oil ($435 \mathrm{mg}, 98 \%$).
$[\alpha]_{\mathrm{D}}^{20}:+22.3\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.72-7.56(\mathrm{~m}, 5 \mathrm{H}), 4.10(\mathrm{dtd}, \mathrm{J}=9.3$, $6.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.97 (ddd, J = 14.6, 10.7, $4.90 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 (ddd, J = 14.7, 10.5, $5.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.70-$ 3.63 ($\mathrm{m}, 1 \mathrm{H}$), 3.56 (td, J = 8.7, $3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.48 (dd, J = 11.7, $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.30 (dddd, J = 13.8, 10.7, $5.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.12 (ddd, J = 12.2, $7.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.06-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 1 \mathrm{H}), 1.43$ (ddd, $\mathrm{J}=12.2,10.7,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $\left.)_{3}\right): \delta=153.7,133.2$, 131.6, 129.9 (2C), 125.3 (2C), 82.9, 79.1, 65.1, 53.7, 40.1, $36.5,26.6,16.3 \mathrm{ppm}$; IR (film): $\tilde{v}=3426$, 3068, 2960, 2929, 2873, 1595, 1498, 1461, 1399, 1339, 1295, 1236, 1153, 1112, 1078, 1041, 1015, 982, 917, 874, 826, 764, 689, 633, 536, 508, 437, $420 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{1} \mathrm{Na}^{+}$: 375.1098 , found: 375.1098.

(2S,4S,5R)-4-Methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-

carbaldehyde (130)
DMSO ($279 \mu \mathrm{~L}, 3.93 \mathrm{mmol}$) was added dropwise to a stirred solution of
 $(\mathrm{COCl})_{2}(169 \mu \mathrm{~L}, 1.97 \mathrm{mmol})$ in $\mathrm{DCM}(8.2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the reaction $\mathrm{Ph}^{-} \mathrm{N}_{\mathrm{N}^{\prime}}=\mathrm{N}$ mixture was stirred for 5 min . Then alcohol 142b (315 mg, $894 \mu \mathrm{~mol}$) as a solution in DCM (3.3 mL) was added dropwise and stirring was continued for 20 min . DIPEA ($1.56 \mathrm{~mL}, 8.94 \mathrm{mmol}$) was slowly added over the course of 5 min and stirring was continued for 5 min . Then the reaction mixture was allowed to reach rt and stirring was again continued for 1 h .

The reaction was quenched with water (50 mL) and the organic extract was subsequently washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,2 \times 50 \mathrm{~mL}$) and with brine (50 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, $2: 1$ to $1: 1$) affording compound $\mathbf{1 3 0}$ as a colourless oil ($295 \mathrm{mg}, 94 \%$).
$[\alpha]_{\mathrm{D}}^{20:}$ - $-12.4\left(\mathrm{c}=1.01, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.63(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.57(\mathrm{~m}$, 5 H), 4.33 (ddd, J = 8.6, 7.8, 2.0 Hz, 1H), 4.02 (ddd, J = 14.7, 10.8, $4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.85 (ddd, J = 14.7, $10.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{td}, \mathrm{J}=8.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.93$ ($\mathrm{m}, 1 \mathrm{H}$), 1.64 (ddd, J=12.8, $9.7,8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.07 ($\mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}): $\delta=202.0,153.6,133.1,131.7,129.9$ (2C), 125.2 (2C), 84.5, 82.0, 53.6, 39.4, 35.9, 26.7, 16.2 ppm; IR (film): $\tilde{v}=3701,2962,2928,2875,2814,1730,1659,1595,1497,1461,1440,1385$, 1340, 1295, 1236, 1150, 1105, 1087, 1077, 1040, 1015, 982, 918, 903, 762, 688, 666, 633, 532, 508, 473, $408 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{1}^{-}: 349.0976$, found: 349.0980 .

5.2.2.2. Building Block Coupling \& Elaboration

Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((S)-4-hydroxy-4-((2S,4S,5R)-
4-methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)but-2-yn-1-yl)tetrahydro-2H-pyran-2-yl)acetate (129a)

Procedure A (TEA, only MS)

TEA ($256 \mu \mathrm{~L}, 1.84 \mathrm{mmol}$) was added to a stirred suspension of $\mathrm{Zn}(\mathrm{OTf})_{2}$ ($613 \mathrm{mg}, 1.69 \mathrm{mmol}$) and (+)-N-methylephedrine ($302 \mathrm{mg}, 1.69 \mathrm{mmol}$) with $4 \AA \mathrm{MS}$ in $\mathrm{PhMe}(1.35 \mathrm{~mL})$ at rt and stirring was continued for 3 h . A solution of alkyne 35b ($360 \mathrm{mg}, 613 \mu \mathrm{~mol}$) in PhMe (0.5 mL , rinsed with $2 \times 0.4 \mathrm{~mL}$) was dried over $4 \AA \mathrm{MS}$ before it was added to the reaction mixture at rt and stirring was continued for 1.5 h . A solution of aldehyde $130(290 \mathrm{mg}, 828 \mu \mathrm{~mol})$ in $\mathrm{PhMe}(0.5 \mathrm{~mL}$, rinsed with $2 \times 0.4 \mathrm{~mL}$) was dried over $4 \AA \mathrm{MS}$ before ot was added to the stirred reaction mixture at r t and stirring was continued for 64 h . The reaction was quenched with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,20 \mathrm{~mL}$) and the aq. phase was extracted with MTBE $(3 \times 30 \mathrm{~mL})$ and EtOAc $(3 \times 20 \mathrm{~mL})$. The combined extracts were subsequently washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,20 \mathrm{~mL}$) and brine (20 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $5: 1$ to $\left.3: 1\right)$ affording the desired major product 129a ($109 \mathrm{mg}, 19 \%$), minor byproduct 144 ($25 \mathrm{mg}, 5 \%$) and some unreacted starting material 35b (183 mg, 51\%) as a colourless oil.

Analytical and spectral data of the major product 129a: $[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}:+9.6$ (c=1.05, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=7.72-7.57(\mathrm{~m}, 5 \mathrm{H}), 4.32(\mathrm{dt}, \mathrm{J}=9.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dt}, \mathrm{J}=7.0$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-3.90(\mathrm{~m}, 3 \mathrm{H}), 3.87-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{td}$, $\mathrm{J}=8.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.49 (ddd, J = 3.7, 1.8, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.76 (dd, J = 14.6, $9.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.67 (dd, $\mathrm{J}=14.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{ddd}, \mathrm{J}=16.5,6.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{ddd}, \mathrm{J}=16.5,7.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-$ 2.27 (m, 1H), 2.27 (ddd, J = 19.2, 12.3, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.48$ (ddd, J = 12.7, 10.9, $9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.28 (dd, J = 12.4, $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.05 (d, J = $6.5 \mathrm{~Hz}, 3 \mathrm{H}$), 0.92 (s, 9H), 0.90 (s, 9H), 0.89 (s, 9H), $0.12(\mathrm{~s}, 3 \mathrm{H}), 0.115(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13}$ C NMR (101 MHz, CDCl_{3}): $\delta=171.9,152.5,133.5,131.6,129.9$ (2C), 125.3 (2C), 83.8, 83.1, 81.7, $79.4,74.5,74.2,73.6,70.4,68.5,66.1,53.5,51.9,39.8,37.5,37.4,26.31$ (3C), 26.26, 26.2 (3C), 25.9 (3C), 21.6, 18.5, 18.3, 18.0, 16.1, -3.4, -4.0, -4.1, -4.57, -4.58, -4.9 ppm; IR (film): $\tilde{v}=3569$,

2954, 2929, 2895, 2857, 1738, 1498, 1467, 1463, 1437, 1389, 1348, 1345, 1255, 1149, 1129, 1088, 1055, 1006, 974, 860, 813, 776, 688, 673, 634, 537, 508, $474 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{44} \mathrm{H}_{76} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{SSi}_{3} \mathrm{Na}^{+}$: 959.4482, found: 959.4481.

Analytical and spectral data of the minor byproduct $144:[\alpha]_{\mathrm{D}}^{20}:+15.7$ (c $=0.85, \mathrm{CHCl}_{3}$);

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.71-7.50(\mathrm{~m}, 5 \mathrm{H}), 4.32$ (ddd, J = 9.2, 5.6, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.12(\mathrm{~m}, 1 \mathrm{H}), 4.03-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.79(\mathrm{~m}, 1 \mathrm{H})$, $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.40(\mathrm{~m}, 4 \mathrm{H}), 2.74(\mathrm{dd}, \mathrm{J}=14.7$, $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.68$ (dd, J = 14.8, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.48-$ $2.42(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{ddd}, \mathrm{J}=12.5$, $10.8,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.88$ (s, 9H), 0.12 (s, 3H), 0.11 (s, 6H), $0.105(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=171.9,154.5,133.9,130.2,129.9(2 \mathrm{C}), 124.0(2 \mathrm{C}), 84.0,83.5,81.6,79.6,74.5,74.2$, $73.6,70.3,68.5,66.2,51.9,39.7,37.7,37.4,33.4,30.3,26.3$ (3C), 26.2 (3C), 25.9 (3C), 21.6, 18.5, 18.3, 18.0, 16.2, -3.4, -4.0, -4.1, -4.6 (2C), -4.9 ppm; IR (film): $\tilde{v}=3466,2954,2930,2882,2857$, 1738, 1597, 1500, 1466, 1463, 1444, 1409, 1389, 1361, 1254, 1128, 1092, 1055, 1007, 980, 865, 815, 789, 777, 694, 525, 501, 474, 448, $428 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{44} \mathrm{H}_{76} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{SSi}_{3} \mathrm{Na}^{+}$: 927.4584, found: 927.4588.

Procedure B (DIPEA, MS and Zn(OTf) ${ }_{2}$ predried at HV)

DIPEA ($96.9 \mu \mathrm{~L}, 557 \mu \mathrm{~mol}$) and (+)-N-methylephedrine ($86.5 \mathrm{mg}, 482 \mu \mathrm{~mol}$) dried over $4 \AA \mathrm{MS}$ in PhMe (0.4 mL , rinsed with $2 \times 0.4 \mathrm{~mL}$) were subsequently added to $\mathrm{Zn}(\mathrm{OTf})_{2}(155 \mathrm{mg}, 427 \mu \mathrm{~mol}$, predried at $120^{\circ} \mathrm{C}$ at HV for 5 h) at rt , and the reaction mixture was stirred for 1.5 h . A solution of alkyne 35b ($270 \mathrm{mg}, 460 \mu \mathrm{~mol}$) in PhMe (0.4 mL , rinsed with $2 \times 0.4 \mathrm{~mL}$) was dried over $4 \AA \mathrm{MS}$ before it was added to the reaction mixture at rt and stirring was continued for 30 min . A solution of aldehyde 130 ($100 \mathrm{mg}, 285 \mu \mathrm{~mol}$) in $\mathrm{PhMe}(0.4 \mathrm{~mL}$, rinsed with $2 \times 0.4 \mathrm{~mL}$) was dried over $4 \AA \mathrm{MS}$ before it was added to the stirred reaction mixture at r, and stirring was continued for 64 h . The reaction was quenched with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,20 \mathrm{~mL}$) and the aq. phase was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined extracts were subsequently washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,20 \mathrm{~mL}$) and brine (20 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $5: 1$ to $\left.3: 1\right)$ affording desired major product 129a (110 mg, 26\%), minor byproduct 144 ($23 \mathrm{mg}, 6 \%$) and some unreacted starting material 35b
($183 \mathrm{mg}, 68 \%$) as a colourless oil. The analytical and spectroscopic data of the isolated compounds were identical with those shown above.

Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((R)-4-hydroxy-4-((2S,4S,5R)-4-methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)but-2-yn-1-yl)tetrahydro-2H-pyran-2-yl)acetate (epi-129a)

TEA $(71.6 \mu \mathrm{~L}, 514 \mu \mathrm{~mol})$ was added to a stirred suspension of $\mathrm{Zn}(\mathrm{OTf})_{2}$ ($176 \mathrm{mg}, 484 \mu \mathrm{~mol}$) and (-)-N-methylephedrine ($88 \mathrm{mg}, 0.49 \mathrm{mmol}$) over $4 \AA \mathrm{MS}$ in PhMe (0.7 mL) at rt and stirring was continued for 3.25 h . A solution of alkyne 35b ($274 \mathrm{mg}, 467 \mu \mathrm{~mol}$) in $\mathrm{PhMe}(300 \mu \mathrm{~L}$, rinsed with $2 \times 300 \mu \mathrm{~L}$) was dried over $4 \AA \mathrm{MS}$ before it was added to the reaction mixture at rt and stirring was continued for 1 h . A solution of aldehyde 130 ($180 \mathrm{mg}, 514 \mu \mathrm{~mol}$) in PhMe ($300 \mu \mathrm{~L}$, rinsed with $2 \times 300 \mu \mathrm{~L}$) was dried over $4 \AA \mathrm{MS}$ before it was added to the stirred reaction mixture at $r t$ and stirring was continued for 5 d . The reaction was quenched with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,10 \mathrm{~mL}$) and the aq. phase was extracted with MTBE ($3 \times 15 \mathrm{~mL}$) and EtOAc ($2 \times 15 \mathrm{~mL}$). The combined extracts were subsequently washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,10 \mathrm{~mL}$) and brine (10 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $5: 1$ to $2: 1$) and preparative TLC ($\mathrm{DCM} / \mathrm{MeOH}$, 100:1) affording both compound epi-129a ($134 \mathrm{mg}, 31 \%$) and some unreacted starting material 35b (155 mg, 57\%) as a colourless oil.
$[\alpha]_{\mathrm{D}}^{20}:+5.1\left(\mathrm{c}=0.88, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.72-7.57(\mathrm{~m}, 5 \mathrm{H}), 4.40(\mathrm{ddt}, \mathrm{J}=5.5$, $3.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dt}, \mathrm{J}=9.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$ (ddd, J = 9.6, 6.3, $3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.98 (td, J = 7.0, $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.94(\mathrm{dd}, \mathrm{J}=11.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{td}, \mathrm{J}=8.8,3.1 \mathrm{~Hz}$, 1 H), $3.60(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{ddd}, \mathrm{J}=3.7,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, \mathrm{J}=14.6,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65$ (dd, J = 14.6, $5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.52 (d, J = $5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.50 (ddd, J = 16.6, 7.2, $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.39 (ddd, $J=16.6,6.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{tdd}, \mathrm{J}=10.9,5.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{dt}, \mathrm{J}=12.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-$ $1.96(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.75$ (ddd, J=12.3, 11.1, $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.92$ (s, 9H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07$ (s, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=171.9,153.6,133.2,131.6,129.9$ (2C), 125.3 (2C), 84.1, $83.8,81.0,79.3,74.6,74.2,73.6,70.5,68.5,64.5,53.7,51.9,39.9,37.4,35.3,26.5,26.3$ (3C), 26.2
(3C), 25.9 (3C), 21.7, 18.5, 18.3, 18.0, 16.0, -3.4, -4.0, -4.2, $-4.55,-4.57,-4.9 \mathrm{ppm} ;$ IR (film): $\tilde{v}=3464,2954,2929,2894,2857,1737,1596,1498,1471,1463,1437,1389,1344,1254,1148$, $1130,1085,1054,1006,974,938,920,889,833,813,775,756,688,668,631,533,507,469,438$, 424, $407 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{44} \mathrm{H}_{76} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{SSi}_{3} \mathrm{Na}^{+}$: 959.4482, found: 959.4490.

2-(Trimethylsilyl)ethyl
 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((R)-4-hydroxy-4-((2S,4S,5R)-4-methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-

 2-yl)but-2-yn-1-yl)tetrahydro-2H-pyran-2-yl)acetate (epi-129b)

TEA ($70.6 \mu \mathrm{~L}, 507 \mu \mathrm{~mol}$) was added to a stirred suspension of $\mathrm{Zn}(\mathrm{OTf})_{2}$ ($176 \mathrm{mg}, 484 \mu \mathrm{~mol}$) and (-)- N -methylephedrine ($87 \mathrm{mg}, 0.48 \mathrm{mmol}$) over $4 \AA \mathrm{MS}$ in $\mathrm{PhMe}(0.7 \mathrm{~mL})$ at rt and stirring was continued for 3.25 h . A solution of alkyne 35 a ($310 \mathrm{mg}, 461 \mu \mathrm{~mol}$) in PhMe ($300 \mu \mathrm{~L}$, rinsed with $2 \times 300 \mu \mathrm{~L}$) was dried over $4 \AA \mathrm{MS}$ before it was added to the reaction mixture at rt and stirring was continued for 1 h . A solution of aldehyde $130(178 \mathrm{mg}, 507 \mu \mathrm{~mol})$ in PhMe ($300 \mu \mathrm{~L}$, rinsed with $2 \times 300 \mu \mathrm{~L}$) was dried over $4 \AA \mathrm{MS}$ before it was added to the stirred reaction mixture at rt and stirring was continued for 5 d . The reaction was quenched with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,10 \mathrm{~mL}$) and the aq. phase was extracted with MTBE ($3 \times 15 \mathrm{~mL}$) and EtOAc ($2 \times 15 \mathrm{~mL}$). The combined extracts were subsequently washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,10 \mathrm{~mL}$) and brine (10 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, $5: 1$ to $2: 1$) and preparative TLC (DCM/MeOH, 100:1) affording both compound epi-129b ($73 \mathrm{mg}, 16 \%$) and some unreacted starting material $\mathbf{3 5 a}$ ($241 \mathrm{mg}, 78 \%$) as a colourless oil.
$[\alpha]_{\mathrm{D}}^{20}:+5.8\left(\mathrm{c}=0.97, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.96-7.42(\mathrm{~m}, 5 \mathrm{H}), 4.43-4.36(\mathrm{~m}, 1 \mathrm{H})$, $4.32(\mathrm{dt}, \mathrm{J}=9.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.11(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{ddd}, \mathrm{J}=9.6,6.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.96(\mathrm{~m}$, $1 \mathrm{H}), 3.93(\mathrm{dd}, \mathrm{J}=11.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.71 (dd, J = 14.5, 9.6 Hz, 1H), 2.62 (dd, J = 14.5, 5.0 Hz, 1H), $2.56-2.36(\mathrm{~m}, 3 \mathrm{H}), 2.28$ (dddd, $\mathrm{J}=12.5,9.5,4.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dt}, \mathrm{J}=12.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 1 \mathrm{H})$, 1.75 (td, J = 11.6, $9.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.06 (d, J = $6.5 \mathrm{~Hz}, 3 \mathrm{H}$), 0.98 (dd, J = 9.6, $7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 0.92 ($\mathrm{s}, 9 \mathrm{H}$), $0.895(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}$, 9H) ppm; ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.6,153.6,133.2,131.6,129.8$ (2C), 125.3 (2C), 84.0,
$83.8,80.9,79.4,74.5,74.2,73.8,70.4,68.5,64.4,62.9,53.7,39.9,37.8,35.3,26.5,26.3$ (3C), 26.2 (3C), 25.9 (3C), 21.6, 18.5, 18.3, 18.0, 17.4, 15.9, -1.3 (3C), -3.4, -4.0, -4.2, -4.55, -4.59, -4.9 ppm; IR (film): $\tilde{v}=3480,2954,2929,2896,2858,1733,1596,1499,1469,1463,1389,1345,1252,1145$, 1130, 1093, 1056, 1006, 976, 841, 835, 828, 776, 689, 631, 530, 506, $469 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{48} \mathrm{H}_{86} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{SSi}_{4} \mathrm{Na}^{+}: 1045.5034$, found: 1045.5043.

Methyl
2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((S,E)-4-hydroxy-4-((2S,4S,5R)-4-methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)but-2-en-1-yl)tetrahydro-2H-pyran-2-yl)acetate (E-146)

A solution of $\left[C p^{*} \text { RuCl }\right]_{4}(10 \mathrm{~mol} \%, 3 \mathrm{mg}, 11 \mu \mathrm{~mol})$ in DCM (0.6 mL) was added to a stirred solution of propargylic alcohol 129a (100 mg , $107 \mu \mathrm{~mol})$ in DCM (6 mL) was dried over $4 \AA \mathrm{MS}$ at $-50^{\circ} \mathrm{C}$. The reaction mixture was warmed to rt and stirring was continued for 2 min . A solution of $n-\mathrm{Bu}_{3} \mathrm{SnH}(31.6 \mu \mathrm{~L}, 117 \mu \mathrm{~mol})$ in DCM (6 mL) was slowly added to the reaction mixture at $-50^{\circ} \mathrm{C}$ over the course of 30 min resulting in a colour change from brown to yellow. The solvent was evaporated and the crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 7:1) affording both a mixture of stannanes 145 ($88 \mathrm{mg}, 67 \%$) and some unreacted starting material 129 a ($18 \mathrm{mg}, 18 \%$) as a colourless oil. The mixture of stannanes $E-145$ was used in the next step without further purification.

Aq. $\mathrm{HI}(57 \%, 47.3 \mu \mathrm{~L}, 358 \mu \mathrm{~mol})$ was added to a stirred suspension of the mixture of stannanes $E-145$ ($88 \mathrm{mg}, 36 \mu \mathrm{~mol}$) and TBAI (27 mg , $72 \mu \mathrm{~mol})$ in $\mathrm{PhMe}(2.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and stirring was continued for 2.5 h . Then aq. $\mathrm{HI}(57 \%, 47.3 \mu \mathrm{~L}, 358 \mu \mathrm{~mol})$ was added to the stirred reaction mixture at $0{ }^{\circ} \mathrm{C}$ and stirring was continued for 1 h . The reaction mixture was quenched with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and the aq. phase was extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). The combined extracts were washed with aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \%$, 5 mL) and brine (5 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 5:1 to 3:1) affording compound E-146 as a colourless oil (67 mg , quant.).

Analytical and spectral data of the allylic alcohol $E-146:[\alpha]_{\mathrm{D}}^{20}:+23.5\left(\mathrm{c}=0.93, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=7.72-7.57(\mathrm{~m}, 5 \mathrm{H}), 5.80(\mathrm{dt}, \mathrm{J}=15.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{dd}, \mathrm{J}=15.5$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dt}, \mathrm{J}=9.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.76(\mathrm{~m}, 6 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{td}, \mathrm{J}=8.6,3.1 \mathrm{~Hz}$, 1 H), $3.50-3.45(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{dd}, \mathrm{J}=14.6,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, \mathrm{J}=14.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.43$ $(\mathrm{m}, 1 \mathrm{H}), 2.42(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ (dddd, $\mathrm{J}=16.4,10.8,5.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 1 \mathrm{H})$, $2.06-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H})$, $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}), 0.075(\mathrm{~s}, 3 \mathrm{H}), 0.065(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.0,153.7,133.2,131.7,131.6,130.1,129.9$ (2C), 125.3 (2C), $82.8,81.8,76.1,74.4,74.1,73.9,71.8,69.5,53.6,51.9,40.0,37.6,37.5,34.4,26.4,26.3$ (3C), 26.2 (3C), 25.9 (3C), 18.5, 18.4, 18.0, 16.2, -3.4, -4.0, -4.1, -4.50, -4.51, -4.9 ppm; IR (film): $\tilde{v}=3470$, 2954, 2929, 2893, 2857, 1739, 1596, 1498, 1471, 1463, 1437, 1389, 1344, 1254, 1149, 1126, 1085, 1043, 1006, $972,924,833,813,774,688,673,634,535,507,474 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{44} \mathrm{H}_{78} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{SSi}_{3} \mathrm{Na}^{+}$: 961.4639, found: 961.4624.
trans-Hydrostannation to stannanes epi-145

A solution of $\left[\mathrm{Cp}^{* R u C l}\right]_{4}(10 \mathrm{~mol} \%, 3 \mathrm{mg}, 11 \mu \mathrm{~mol})$ in $\mathrm{DCM}(1 \mathrm{~mL})$ was added to a stirred solution of propargylic alcohol epi-129a (100 mg, $107 \mu \mathrm{~mol})$ in DCM (9 mL) with $4 \AA \mathrm{MS}$ at $-50^{\circ} \mathrm{C}$. The reaction mixture was warmed to rt and stirring was continued for 2 min . Then $n-\mathrm{Bu}_{3} \mathrm{SnH}$ ($33.0 \mu \mathrm{~L}, 123 \mu \mathrm{~mol}$) as a solution in DCM (9 mL) was slowly added to the reaction mixture at $-50^{\circ} \mathrm{C}$ over the course of 30 min resulting in a colour change from brown to green. The solvent was evaporated and the crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $7: 1$ to $\left.2: 1\right)$ affording both a mixture of stannanes epi-Z-145 (12 mg, 12\%) and a mixture of stannanes epi-E-145 ($77 \mathrm{mg}, 74 \%$) as a colourless oil which was used in the next step without further purification.

Procedure A (E-isomer)
Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((R,E)-4-hydroxy-4-((2S,4S,5R)-4-methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)but-2-en-1-yl)tetrahydro-2H-pyran-2-yl)acetate (epi-E-146)

Aq. $\mathrm{HI}(57 \%, 41.3 \mu \mathrm{~L}, 313 \mu \mathrm{~mol})$ was added to a stirred suspension of the mixture of stannanes epi-E-145 ($77 \mathrm{mg}, 31 \mu \mathrm{~mol}$) and TBAI (23 mg , $63 \mu \mathrm{~mol})$ in $\mathrm{PhMe}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and stirring was continued for 1 h . Then aq. $\mathrm{HI}(57 \%, 41.3 \mu \mathrm{~L}, 313 \mu \mathrm{~mol})$ was again added to the stirred reaction mixture at $0^{\circ} \mathrm{C}$ and stirring was continued for 3 h . By that time aq. $\mathrm{HI}(57 \%, 41.3 \mu \mathrm{~L}, 313 \mu \mathrm{~mol})$ was once more added to the stirred reaction mixture at $0^{\circ} \mathrm{C}$ and stirring was continued for 1.5 h . The reaction mixture was quenched with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and the aq. phase was extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). The combined extracts were washed with aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \%, 5 \mathrm{~mL})$ and brine (5 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, $5: 1$ to $3: 1$) affording compound epi-E-146 as a colourless oil ($59 \mathrm{mg}, 99 \%$).
$[\alpha]_{\mathrm{D}}^{20}:+10.7\left(\mathrm{c}=0.94, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.72-7.57(\mathrm{~m}, 5 \mathrm{H}), 5.79(\mathrm{dt}, \mathrm{J}=15.5$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{dd}, \mathrm{J}=15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{dt}, \mathrm{J}=6.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-$ $3.91(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{td}, \mathrm{J}=8.6,3.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.49-3.43(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{dd}, \mathrm{J}=14.5,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, \mathrm{J}=14.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.46$ (ddd, J = 15.5, 9.7, 6.3 Hz, 1H), 2.35 (d, J = 2.9 Hz, 1H), 2.28 (dddd, J = 13.8, 10.9, 5.2, 3.0 Hz, 1H), 2.07 1.95 (m, 3H), 1.92 (ddt, J = 10.9, 8.9, $6.5 \mathrm{~Hz}, 1 \mathrm{H}$), $1.67-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.93$ (s, 9H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.105(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.095(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H})$, $0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.9,153.7,133.2,131.6$ (2C), 130.0, 129.9 (2C), 125.3 (2C), 83.5, 81.5, 74.6, 74.2, 73.7, 73.3, 71.8, 69.4, 53.7, 51.8, 39.9, 37.3, 34.8, 34.4, 26.7, 26.4 (3C), 26.2 (3C), 25.9 (3C), 18.6, 18.4, 18.0, 16.2, -3.4, -4.0, -4.2, -4.49, -4.53, -4.9 ppm; IR (film): $\tilde{v}=3520,2954,2930,2888,2857,1739,1596,1498,1463,1437,1389,1345,1254,1151,1127$, 1085, 1042, 1006, 972, 921, 833, 813, 774, 688, 671, 632, 535, 507, 422 cm $^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{44} \mathrm{H}_{78} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{SSi}_{3} \mathrm{Na}^{+}: 961.4639$, found: 961.4645.

Procedure B (Z-isomer)

Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((R,Z)-4-hydroxy-4-((2S,4S,5R)-4-methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)but-2-en-1-yl)tetrahydro-2H-pyran-2-yl)acetate (Z-146)

Aq. $\mathrm{HI}(57 \%, 12.9 \mu \mathrm{~L}, 97.7 \mu \mathrm{~mol})$ was added to a stirred suspension of the mixture of stannanes epi-Z-145 ($12 \mathrm{mg}, 5 \mu \mathrm{~mol}$) and TBAI ($4 \mathrm{mg}, 10 \mu \mathrm{~mol}$) in PhMe (1 mL) at $0^{\circ} \mathrm{C}$ and stirring was continued for 2.5 h . Then aq. $\mathrm{HI}(57 \%, 6.4 \mu \mathrm{~L}, 49 \mu \mathrm{~mol})$ was added to the stirred reaction mixture at $0^{\circ} \mathrm{C}$ and stirring was continued for 5 h . Then aq. $\mathrm{HI}(57 \%, 6.4 \mu \mathrm{~L}, 49 \mu \mathrm{~mol})$ was added again to the stirred reaction mixture at $0^{\circ} \mathrm{C}$ and stirring was continued for 1 h . The reaction mixture was quenched with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and the aq. phase was extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). The combined extracts were washed with aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \%, 5 \mathrm{~mL})$ and brine (5 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, $5: 1$ to $3: 1$) affording compound Z-146 as a colourless oil ($9 \mathrm{mg}, 98 \%$).
$[\alpha]_{\mathrm{D}}^{20}:-2.4\left(\mathrm{c}=0.66, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.72-7.56(\mathrm{~m}, 5 \mathrm{H}), 5.64(\mathrm{td}, \mathrm{J}=10.9$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.53 (dd, J = 11.1, $8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.42 (ddd, J = 7.8, 4.2, 2.4 Hz, 1H), 4.27 (dt, J = 9.5, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.76(\mathrm{~m}, 3 \mathrm{H}), 3.55(\mathrm{td}, \mathrm{J}=8.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}$, 1 H), $3.46(\mathrm{dt}, \mathrm{J}=4.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.02(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.76(\mathrm{dt}, \mathrm{J}=14.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}$, $J=15.1,9.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.63 (dd, J = 15.1, $5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.28 (tdd, J = 14.3, 6.5, $4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.13 (dt, $\mathrm{J}=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.00 (dddd, J = 14.1, 8.5, 5.7, $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.92 (tdd, J = 10.9, 7.5, 5.3 Hz, 1H), 1.83 (ddt, J = 13.9, 4.3, $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.56 (ddd, J = 12.4, $10.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.05 (d, J = $6.5 \mathrm{~Hz}, 3 \mathrm{H}$), 0.94 (s, 9H), 0.895 (s, 9H), 0.89 (s, 9H), 0.105 (s, 6H), 0.095 (s, 3H), 0.08 (s, 3H), $0.07(\mathrm{~s}, 3 \mathrm{H}), 0.065$ ($\mathrm{s}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.2,153.7,133.2,131.6,131.2,130.7,129.9$ (2C), 125.3 (2C), 83.4, 81.2, 74.6, 74.0, 73.7, 72.1, 69.3, 68.9, 53.7, 52.0, 39.7, 37.4, 36.3, 30.1, 26.5, 26.3 (3C), 26.2 (3C), 25.9 (3C), 18.5, 18.4, 18.0, 16.3, $-3.5,-3.9,-4.2,-4.5,-4.6,-5.0 \mathrm{ppm}$; IR (film): $\tilde{v}=3455,2954,2929,2895,2857,1739,1597,1499,1462,1449,1388,1345,1254,1152,1102$, 1089, 1044, 1006, 918, 835, 814, 776, 695, 633, 534, $507 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{44} \mathrm{H}_{78} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{SSi}_{3} \mathrm{Na}^{+}: 961.4639$, found: 961.4642.

Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((2R,3S,4R)-2,3,4-trihydroxy-4-((2S,4S,5R)-4-methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-

yl)butyl)tetrahydro-2H-pyran-2-yl)acetate (148)

Representative Procedure (Sharpless Dihydroxylation)

Aq. $\mathrm{Me}_{5} \mathrm{O}_{2} \mathrm{NH}_{2}(0.1 \mathrm{M}, \quad 106 \mu \mathrm{~L}, \quad 10.6 \mu \mathrm{~mol}), \mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \quad(0.3 \mathrm{M}$, $31.9 \mu \mathrm{~mol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.3 \mathrm{M}, 31.9 \mu \mathrm{~mol})$ and aq. $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}(0.05 \mathrm{M}$, $5 \mathrm{~mol} \%, 10.6 \mu \mathrm{~L}, 532 \mathrm{nmol})$ were subsequently added to a stirred solution of allylic alcohol epi-E-146 ($10 \mathrm{mg}, 11 \mu \mathrm{~mol}$) and L^{*} ($12.5 \mathrm{~mol} \%, 1 \mathrm{mg}, 1.3 \mu \mathrm{~mol})$ in $t-\mathrm{BuOH}(250 \mu \mathrm{~L})$ and water $(133 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$, and stirring was continued for 15 min . The reaction mixture was warmed to rt and stirring was continued for 17 h . Then, aq. $\mathrm{Me}_{5} \mathrm{O}_{2} \mathrm{NH}_{2}(0.1 \mathrm{M}, 106 \mu \mathrm{~L}, 10.6 \mu \mathrm{~mol})$, $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right](0.3 \mathrm{M}, 31.9 \mu \mathrm{~mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.3 \mathrm{M}, 31.9 \mu \mathrm{~mol})$, $t-\mathrm{BuOH}(181 \mu \mathrm{~L})$, aq. $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}$ ($0.05 \mathrm{M}, 35 \mathrm{~mol} \%, 74.5 \mu \mathrm{~L}, 3.73 \mu \mathrm{~mol}$) and $\mathrm{L}^{*}(87.5 \mathrm{~mol} \%, 9 \mathrm{mg}, 10 \mu \mathrm{~mol})$ were again subsequently added to the reaction mixture, and stirring was continued for 3.5 h .

Herein, L^{*} corresponds to: $(D H Q)_{2} R$ and $(D H Q D)_{2} R$ with $R=A Q N, P H A L$ and PYR. HPLC analyses to determine the d.r. were carried out on each of the six reactions (Chapter 6.3.1), the work-up and purificiation was conducted with the mixture of all six reaction setups as following:

The mixture was diluted with water (5 mL) and the reaction was quenched with EtOAc (5 mL) and NaHSO_{3} ($200 \mathrm{mg}, 1.92 \mathrm{mmol}$). The aq. phase was extracted with EtOAc ($10 \times 5 \mathrm{~mL}$), and the combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 5:1 to 4:3) affording the syn,anti-isomer 147 ($19 \mathrm{mg}, 31 \%$), a mixture of both isomers ($11 \mathrm{mg}, 18 \%$), the all-syn-isomer 148 ($19 \mathrm{mg}, 31 \%$) and some unreacted starting material epi-E-146 ($5 \mathrm{mg}, 8 \%$) as a colourless oil each.

Analytical and spectral data of the syn,anti-isomer 147: $[\alpha]_{\mathrm{D}}^{20}:-5.0$ ($\mathrm{c}=0.1, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.72-7.56(\mathrm{~m}, 5 \mathrm{H}), 4.34$ (dt, J = 10.1, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.10(\mathrm{~m}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{dt}$, $J=9.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.82 ($\mathrm{dt}, \mathrm{J}=9.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.77 (dd, J=3.2, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{td}, \mathrm{J}=8.6,2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.50-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.41$ (td, J=7.4, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.15 (d, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.06 (d, J = $7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.85 (dd, J = 15.1, 10.2 Hz, 1H), 2.63 (dd, J = 15.1, 4.4 Hz ,

1H), $2.34-2.19(\mathrm{~m}, 3 \mathrm{H}), 2.08-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.64$ (ddd, J=12.4, 10.9, $9.5 \mathrm{~Hz}, 1 \mathrm{H}$), $1.43(\mathrm{dt}$, $\mathrm{J}=14.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10$ ($\mathrm{s}, 6 \mathrm{H}$) , $0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.0,153.6,133.2,131.6$, 129.9 (2C), 125.3 (2C), 83.5, 80.4, 74.1, 74.1, 74.0, 73.7, 73.6, 72.3, 71.9, 70.4, 53.7, 52.0, 39.7, 37.1, 36.6, 34.3, 26.7, 26.3 (3C), 26.2 (3C), 25.9 (3C), 18.5, 18.4, 18.0, 16.5, -3.6, -3.9, -4.1, -4.55, 4.60, -4.8 ppm; IR (film): $\tilde{v}=3461,2954,2930,2894,2858,1738,1596,1499,1463,1438,1390$, 1345, 1257, 1151, 1129, 1088, 1007, 921, 835, 814, 776, 688, 633, 539, 506, 461, $422 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{44} \mathrm{H}_{80} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{SSi}_{3} \mathrm{Na}^{+}$: 995.4694, found: 995.4694.

Analytical and spectral data of the all-syn-isomer 148: $[\alpha]_{\mathrm{D}}^{20}:-7.0$ (c = 0.1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.72-7.57(\mathrm{~m}, 5 \mathrm{H}), 4.24(\mathrm{dt}, \mathrm{J}=12.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dt}, \mathrm{J}=11.0$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dt}, \mathrm{J}=9.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.78$ (m, 1H), 3.78 (ddd, J = 15.0, 11.1, $5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.61$ (ddd, J = 6.9, 3.5, 1.1 Hz, 1H), 3.58 $(\mathrm{d}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{td}, \mathrm{J}=8.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dt}, \mathrm{J}=2.8,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.42(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, \mathrm{J}=13.8,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ (dd, J=13.8, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.58(\mathrm{ddd}, \mathrm{J}=12.0,10.9,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-$ 1.47 (m, 1H), 1.06 (d, J = $6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}), 0.095(\mathrm{~s}$, $3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.085(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.6,153.6$, $133.2,131.6,129.9(2 \mathrm{C}), 125.3$ (2C), 83.0, 78.3, 75.8, 75.2, 73.6, 73.0, 72.7, 72.1, 70.2, 64.2, 53.7, $52.4,40.1,38.1,36.9,35.5,26.6,26.4$ (3C), 26.3 (3C), 25.9 (3C), 18.7, 18.4, 18.0, 16.4, $-3.6,-4.1,-$ 4.2, -4.5, -4.6, -4.8 ppm; IR (film): $\tilde{v}=3472,2954,2930,2896,2857,1736,1596,1498,1471,1463$, $1438,1389,1345,1256,1151,1086,1042,1006,918,894,835,813,774,759,688,668,633,537$, 507, 458, 433, 421, $407 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{44} \mathrm{H}_{80} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{SSi}_{3} \mathrm{Na}^{+}$: 995.4694, found: 995.4694.

Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((2S,3R,4S)-2,3,4-trihydroxy-4-((2S,4S,5R)-4-methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)butyl)tetrahydro-2H-pyran-2-yl)acetate (150a)

Representative Procedure (Sharpless Dihydroxylation)

Aq. $\mathrm{Me}_{5} \mathrm{O}_{2} \mathrm{NH}_{2}(0.1 \mathrm{M}, 79.8 \mu \mathrm{~L}, 7.98 \mu \mathrm{~mol}), \mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \quad(0.3 \mathrm{M}$, $24.0 \mu \mathrm{~mol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.3 \mathrm{M}, 24.0 \mu \mathrm{~mol})$ and aq. $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}(0.05 \mathrm{M}$, $5 \mathrm{~mol} \%, 8.0 \mu \mathrm{~L}, 399 \mathrm{nmol})$ were subsequently added to a stirred solution of allylic alcohol $E-146(7.5 \mathrm{mg}, 8 \mu \mathrm{~mol})$ and $\mathrm{L}^{*}(12.5 \mathrm{~mol} \%$, $1 \mathrm{mg}, 1.0 \mu \mathrm{~mol})$ in $t-\mathrm{BuOH}(250 \mu \mathrm{~L})$ and water $(140 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$, and stirring was continued for 15 min . The reaction mixture was warmed to rt and stirring was continued for 24 h . Then, aq. $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}(0.05 \mathrm{M}, 5 \mathrm{~mol} \%, 8.0 \mu \mathrm{~L}, 399 \mathrm{nmol})$ was again added to the reaction mixture, and stirring was continued for 4 d .

Herein, L^{*} corresponds to: $(D H Q)_{2} R$ and $(D H Q D)_{2} R$ with $R=A Q N, P H A L$ and PYR. HPLC analyses to determine the d.r. were carried out on each of the six reactions (Chapter 6.3.2), the work-up and purificiation was conducted with the mixture of all six reaction setups as following:

The mixture was diluted with water (5 mL) and the reaction was quenched with EtOAc (5 mL) and $\mathrm{NaHSO}_{3}(60 \mathrm{mg}, 574 \mu \mathrm{~mol})$. The aq. phase was extracted with EtOAc ($10 \times 5 \mathrm{~mL}$), and the combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 5:1 to 4:3) affording the major syn,anti-isomer 149 ($15 \mathrm{mg}, 32 \%$), a mixture of both isomers ($1 \mathrm{mg}, 2 \%$), the desired minor all-syn-isomer 150a ($3 \mathrm{mg}, 6 \%$) and some unreacted starting material E-146 (21 mg, 47\%) as a colourless oil each.

Analytical and spectral data of the minor all-syn-isomer 150a: $[\alpha]_{\mathrm{D}}^{20}:+16.4$ (c = 1.00, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.71-7.57(\mathrm{~m}, 5 \mathrm{H}), 4.32(\mathrm{dt}, \mathrm{J}=10.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dt}, \mathrm{J}=9.6$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dt}, \mathrm{J}=10.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{dd}, \mathrm{J}=10.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-$ $3.84(\mathrm{~m}, 1 \mathrm{H}), 3.83$ (ddd, J = 14.8, 10.6, 5.4 Hz, 1H), $3.79-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.62(\mathrm{~m}$, $1 \mathrm{H}), 3.60(\mathrm{td}, \mathrm{J}=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.42(\mathrm{~m}, 3 \mathrm{H}), 3.29(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}$, 1 H), 2.85 (dd, J = 15.0, $10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.63 (dd, J = 15.0, $4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.30 (tdd, J=10.8, 5.2, 3.1 Hz , 1 H), 2.24 - 2.12 (m, 2H), 2.02 (dddd, J = 13.2, 10.4, 8.1, $4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.94 (dtd, J = 10.4, 8.8, 6.6 Hz , $1 \mathrm{H}), 1.61-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{dt}, \mathrm{J}=14.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}$, $18 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=172.0$,
153.6, 133.2, 131.6, 129.9 (2C), 125.3 (2C), 83.1, 80.2, 74.9, 74.1, 74.0, 73.7, 73.6, 73.4, 72.3, 69.6, 53.6, 52.0, 39.8, 37.14, 37.11, 34.5, 26.5, 26.3 (3C), 26.2 (3C), 25.9 (3C), 18.5, 18.4, 18.0, 16.1, -3.6, -3.9, -4.2, -4.5, -4.6, -4.8 ppm; IR (film): $\tilde{v}=3480,2954,2930,2893,2858,1737,1597,1499,1463$, $1438,1389,1339,1256,1150,1130,1087,1044,1006,916,834,813,775,689,667,632,529$, 507, 452, $420 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{44} \mathrm{H}_{80} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{Si}_{3} \mathrm{SNa}^{+}$: 995.4694, found: 995.4700.

Analytical and spectral data of the major syn,anti-isomer 149: $[\alpha]_{\mathrm{D}}^{20}:+13.9$ (c $=1.42, \mathrm{CHCl}_{3}$);

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.73-7.56(\mathrm{~m}, 5 \mathrm{H}), 4.35-4.22(\mathrm{~m}, 2 \mathrm{H})$, $4.19-4.12(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.95$ (ddd, J = 15.3, 10.5, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ (ddd, J = 15.3, 10.2, 5.2 Hz, 1H), $3.80-3.76(\mathrm{~m}, 1 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{td}, \mathrm{J}=8.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-$ $3.47(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.33$ (m, 1H), 3.07 (dd, J = 14.0, 11.4 Hz, 1H), 2.64 (d, J = 9.1 Hz, 1H), 2.57 (d, $\mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.49(\mathrm{dd}, \mathrm{J}=14.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dddd}, \mathrm{J}=13.5,10.5,5.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dt}$, $J=12.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{ddd}, \mathrm{J}=14.1,11.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.59(\mathrm{~m}, 1 \mathrm{H})$, 1.55 (ddd, J = 14.1, 10.1, 1.9 Hz, 1H), 1.06 (d, J = $6.5 \mathrm{~Hz}, 3 \mathrm{H}$), $0.92(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$, $0.10(\mathrm{~s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$): $\delta=173.2$, 153.6, 133.2, 131.6, 129.9 (2C), 125.3 (2C), $83.4,78.6,75.2,74.9,74.2,73.7,73.0,72.3,66.8,64.5$, $53.6,52.3,40.1,37.6,37.0,36.0,26.7,26.4$ (3C), 26.3 (3C), 25.9 (3C), 18.7, 18.4, 18.0, 16.1, -3.6, 4.1, -4.2, -4.48, -4.54, -4.7 ppm; IR (film): $\tilde{v}=3459,2954,2929,2895,2857,1736,1596,1499$, 1463, 1438, 1390, 1342, 1255, 1150, 1100, 1084, 1040, 1006, 921, 894, 863, 833, 813, 774, 761, 688, 669, 632, 540, 507, $477 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{44} \mathrm{H}_{80} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{SSi}_{3} \mathrm{Na}^{+}$: 995.4694, found: 995.4696.

5.2.2.3. Stereochemical Elucidation

(S)-1-((2S,4S,5R)-4-Methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)thio)ethyl)tetrahydrofuran-2-yl)-4-
((2R,3S,4R,5R,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(2-methoxy-2-oxoethyl)tetrahydro-2H-pyran-2-yl)but-2-yn-1-yl (S)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (151)

(R)-Mosher acid chloride ($10.3 \mu \mathrm{~L}, 55.2 \mu \mathrm{~mol})$ was added to a stirred solution of propargylic alcohol $144(13 \mathrm{mg}, 14 \mu \mathrm{~mol})$ and py ($5.6 \mu \mathrm{~L}$, $69 \mu \mathrm{~mol})$ in DCM (0.5 mL) at rt and the reaction mixture was stirred for 1.5 h . Then, py $(2.2 \mu \mathrm{~L}, 28 \mu \mathrm{~mol})$ and (R)-Mosher acid chloride $(2.6 \mu \mathrm{~L}, 14 \mu \mathrm{~mol})$ were subsequently added to the reaction mixture at $r t$ and stirring was continued for 19 h . The reaction was quenched with water $(2 \mathrm{~mL})$ and the aq. phase was extracted with DCM $(3 \times 3 \mathrm{~mL})$. The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 5:1) affording compound 151 as a colourless oil ($15 \mathrm{mg}, 97 \%$). ${ }^{296}$
$[\alpha]_{\mathrm{D}}^{20}:+9.4\left(\mathrm{c}=1.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.63-7.50(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ph}), 7.40-7.34(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{Ph}$), 5.53 (ddd, J = 8.6, 2.3, $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 4.29 (ddd, J = 8.8, 5.6, 4.0 Hz, $1 \mathrm{H}, \mathrm{H}-3$), 4.18 (td, $J=8.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), 3.93 (ddd, J = 8.4, $6.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 3.81 (dd, J=3.0, $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 3.66 (s, 3H, H-19), 3.63 (ddd, J = 3.0, 2.2, $1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.59 (s, $3 \mathrm{H}, \mathrm{H}-23$), 3.56 (td, J = 9.2, $2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15$), 3.50 (ddd, J = 4.0, 1.7, $1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 3.48 (ddd, J = 13.4, 8.7, $4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 17a), 3.30 (ddd, J = 13.4, $8.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-17 \mathrm{~b}$), 2.75 (dd, J = 14.9, $5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.64 (dd, $\mathrm{J}=14.9,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 2.50 (ddd, J = 16.6, $8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), 2.41 (ddd, J = 16.5, 5.9, 2.4 Hz, $1 \mathrm{H}, \mathrm{H}-8 \mathrm{~b}$), 2.31 (ddd, J=12.9, $7.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{a}$), 2.20 (dddd, J = 14.0, 8.7, $7.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 16a), 1.96 - 1.84 (m, 2H, H-14 and H-16b), 1.48 (ddd, J = 13.0, 10.8, 8.2 Hz, 1H, H-13b), 1.04 (d, $\mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-33), 0.89(\mathrm{~s}, 18 \mathrm{H}, t-\mathrm{Bu}), 0.885(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.095(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$, 0.09 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.085 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.07 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.03 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$) ppm; ${ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}): $\delta=171.6(\mathrm{C}-1), 165.8(\mathrm{C}-20), 154.4$ (C-18), 133.9 ($i-\mathrm{Ph}$), 132.4 ($i-\mathrm{Ph}$), 130.2 (p-Ph), 129.9 (2C, m-Ph), 129.7 ($p-\mathrm{Ph}$), 128.4 (2C, o-Ph), 127.6 (2C, m-Ph), 123.9 (2C,o-Ph), 123.4 (q, J = 289 Hz , C-22), 85.4 (C-9), 85.0 ($q, J=25.7 \mathrm{~Hz}, \mathrm{C}-21$), 83.6 (C-15), 78.8 (C-12), 75.1 (C-10), 74.23 (C-5), 74.15 (C-3), 73.7 (C-4), 70.1 (C-6), 68.9 (C-11), 68.6 (C-7), 55.7 (C-23), 51.8 (C-19), 39.7 (C-14), 38.0 (C-13), 37.4 (C-2), 33.3 (C-16), 30.1 (C-17), 26.3 (3C, $t-B u$), 26.1 (3C, $t-B u$), 25.9 (3C, $t-B u$), 21.4 (C-8), 18.5 ($t-\mathrm{Bu}$), $18.3(t-\mathrm{Bu}), 18.0(t-\mathrm{Bu}), 16.0$ (C-33), -3.4 (Me), -3.9 (Me), -4.2 (Me), -4.6 (2C, Me), -5.0

[^96](Me) ppm; ${ }^{19}$ F NMR (282 MHz, CDCl $_{3}$): $\delta=-71.5$ (3F) ppm; IR (film): $\tilde{v}=2953,2929,2896,2857$, $1745,1598,1500,1472,1463,1436,1388,1361,1335,1251,1186,1168,1126,1082,1055,1015$, 993, 939, 832, 813, 775, 759, 722, 695, 667, 547, 508, 454, 432, $419 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{54} \mathrm{H}_{83} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~F}_{3} \mathrm{SSi}_{3} \mathrm{Na}^{+}$: 1143.4982, found: 1143.4991.

(S)-1-((2S,4S,5R)-4-Methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)thio)ethyl)tetrahydrofuran-2-yl)-4-

 ((2R,3S,4R,5R,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(2-methoxy-2-oxoethyl)tetrahydro-2H-pyran-2-yl)but-2-yn-1-yl (R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (epi-151)
(S)-Mosher acid chloride ($10.3 \mu \mathrm{~L}, 55.2 \mu \mathrm{~mol})$ was added to a stirred solution of propargylic alcohol $144(13 \mathrm{mg}, 14 \mu \mathrm{~mol})$ and py $(5.6 \mu \mathrm{~L}$, $69 \mu \mathrm{~mol})$ in $\mathrm{DCM}(0.5 \mathrm{~mL})$ at rt and the reaction mixture was stirred for 1.5 h . Then, py ($2.2 \mu \mathrm{~L}, 28 \mu \mathrm{~mol}$) and (S)-Mosher acid chloride $(2.6 \mu \mathrm{~L}, 14 \mu \mathrm{~mol})$ were subsequently added to the reaction mixture at rt and stirring was continued for 19 h . The reaction was quenched with water (2 mL) and the aq. phase was extracted with DCM $(3 \times 3 \mathrm{~mL})$. The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 5:1) affording compound epi-151as a colourless oil (12 mg, $78 \%) .{ }^{297}$
$[\alpha]_{\mathrm{D}}^{20}:+24.2\left(\mathrm{c}=1.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.60-7.51(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ph}), 7.41-7.33(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{Ph}$), 5.54 (ddd, J = 7.6, 2.4, 1.9 Hz, 1H, H-11), 4.30 (ddd, J = 9.1, 5.5, 4.2 Hz, 1H, H-3), 4.11 (ddd, $\mathrm{J}=8.3,7.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), 3.94 (ddd, J = 8.5, 6.3, $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 3.82 (dd, J = 2.9, 1.7 Hz, 1 H , $\mathrm{H}-5), 3.66$ (s, 3H, H-19), $3.65-3.63$ (m, 1H, H-6), 3.55 (s, $3 \mathrm{H}, \mathrm{H}-23$), $3.54-3.49$ (m, 2H, H-15 and H4), 3.44 (ddd, J = 13.4, $8.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-17 \mathrm{a}$), 3.29 (ddd, J = $13.4,8.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-17 \mathrm{~b}$), 2.75 (dd, $\mathrm{J}=14.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.63 (dd, J = 14.9, $9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 2.52 (ddd, J = 16.6, 8.1, $1.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-8 \mathrm{a}$), 2.46 (ddd, J = 16.6, 6.3, 2.4 Hz, 1H, H-8b), 2.23 (dt, J=12.9, 7.3 Hz, 1H, H-13a), 2.16 (dddd, $\mathrm{J}=13.9,8.7,7.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), $1.93-1.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-14), 1.83$ (ddd, J = 13.7, 8.6, $4.8 \mathrm{~Hz}, 1 \mathrm{H}$, H-16b), 1.44 (ddd, J = 12.7, 10.7, $8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{~b}$), 0.99 (d, J = $6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-33$), 0.92 (s, $9 \mathrm{H}, t-\mathrm{Bu}$), 0.89 (s, 9H, t-Bu), 0.88 (s, 9H, t-Bu), 0.115 (s, 3H, Me), 0.105 (s, 3H, Me), 0.095 (s, 3H, Me), 0.09 (s, $3 \mathrm{H}, \mathrm{Me}), 0.085(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.07(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl ${ }_{3}$): $\delta=171.8(\mathrm{C}-1), 165.7$

[^97](C-21), 154.5 (C-18), 133.9 (i-Ph), 132.4 (i-Ph), 130.2 ($p-\mathrm{Ph}$), 129.9 (2C, m-Ph), 129.7 ($p-\mathrm{Ph}$), 128.4 (2C, o-Ph), 127.7 (2C, m-Ph), 123.9 (2C, o-Ph), 123.4 (q, J $=289 \mathrm{~Hz}, \mathrm{C}-22$), 85.5 (C-9), 84.5 (q, $\mathrm{J}=28.3 \mathrm{~Hz}, \mathrm{C}-21$), 83.6 (C-15), 78.6 (C-12), 75.4 (C-10), 74.3 (C-5), 74.1 (C-3), 73.8 (C-4), 70.3 (C-6), 68.8 (C-7), 68.6 (C-11), 55.6 (C-23), 51.8 (C-19), 39.6 (C-14), 37.7 (C-13), 37.4 (C-2), 33.3 (C-16), 30.1 (C-17), 26.3 (3C, $t-\mathrm{Bu}$), 26.2 (3C, $t-\mathrm{Bu}$), 25.8 (3C, $t-\mathrm{Bu}$), 21.5 (C-8), 18.5 ($t-\mathrm{Bu}$), 18.3 ($t-\mathrm{Bu}$), 18.0 ($t-\mathrm{Bu}$), 15.9 (C-33), -3.3 (Me), -3.9 (Me), -4.1 (Me), -4.60 (Me), -4.61 (Me), -4.9 (Me$) \mathrm{ppm}$; ${ }^{19}$ F NMR (282 MHz, CDCl 3): $\delta=-71.9$ (3F) ppm; IR (film): $\tilde{v}=2953,2929,2897,2857,1749,1598$, $1500,1472,1463,1410,1388,1361,1333,1251,1185,1169,1126,1083,1056,1015,994,973$, 938, $891,833,813,776,762,719,695,672,552,460,406 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{54} \mathrm{H}_{83} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~F}_{3} \mathrm{SSi}_{3} \mathrm{Na}^{+}: 1143.4982$, found: 1143.4988.

(S)-1-((2S,4S,5R)-4-Methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)-

 4-((2R,3S,4R,5R,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(2-methoxy-2-oxoethyl)tetrahydro-2H-pyran-2-yl)but-2-yn-1-yl (S)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (152)
(R)-Mosher acid chloride ($1.5 \mu \mathrm{~L}, 8.0 \mu \mathrm{~mol})$ was added to a stirred solution of propargylic alcohol 129a ($5 \mathrm{mg}, 5 \mu \mathrm{~mol}$) and py ($1.3 \mu \mathrm{~L}$, $16 \mu \mathrm{~mol})$ in DCM $(200 \mu \mathrm{~L})$ at rt and the reaction mixture was stirred for 1 h . By that time py ($0.9 \mu \mathrm{~L}, 11 \mu \mathrm{~mol})$ and (R)-Mosher acid chloride ($2.5 \mu \mathrm{~L}, 13 \mu \mathrm{~mol}$) were again subsequently added to the reaction mixture at rt and stirring was continued for 3 h . Then py $(2.2 \mu \mathrm{~L}$, $27 \mu \mathrm{~mol})$ and (R)-Mosher acid chloride ($4.0 \mu \mathrm{~L}, 21 \mu \mathrm{~mol}$) were once more subsequently added to the reaction mixture at rt and stirring was continued for 3 d . The reaction was quenched with water (2 mL) and the aq. phase was extracted with DCM ($3 \times 3 \mathrm{~mL}$). The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 6:1) affording compound 152 as a colourless oil ($6 \mathrm{mg}, 98 \%$). ${ }^{298}$
$[\alpha]_{\mathrm{D}}^{20}:+7.1\left(\mathrm{c}=0.80, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.71-7.50(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ph}), 7.44-7.34(\mathrm{~m}$, $3 H, P h), 5.54$ (dt, J = 8.4, $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 4.29 (dt, J = 9.3, $5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 4.19 (td, J = 8.3, $6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), 3.93 (ddd, J = 8.2, $6.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $3.83-3.78$ (m, 1H, H-5), 3.77 (dd, $\mathrm{J}=11.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-17 \mathrm{a}), 3.68$ (dd, J = 11.4, 4.7 Hz, 1H, H-17b), 3.66 (s, 3H, H-19), 3.64-3.62 (m,

[^98]1H, H-6), 3.61 (s, 3H, H-23), 3.58 - 3.52 (m, 1H, H-15), 3.51 - 3.49 (m, 1H, H-4), 2.75 (dd, J = 14.9, $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}), 2.63$ (dd, J = 14.9, $8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 2.49 (ddd, J=16.6, 8.2, 1.7 Hz, 1H, H-8a), 2.42 (ddd, J = 16.6, 6.2, 2.3 Hz, 1H, H-8b), 2.34 (dt, J = 12.7, 7.2 Hz, 1H, H-13a), 2.28 (dddd, J = 12.7, 11.3, 4.7, $2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), $2.05-1.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}), 1.95-1.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-14), 1.52$ (ddd, $\mathrm{J}=12.9,10.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{~b}), 1.07(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-33$), $0.895(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.89(\mathrm{~s}, 9 \mathrm{H}, t-$ $\mathrm{Bu}), 0.885$ ($\mathrm{s}, 9 \mathrm{H}, \mathrm{t}-\mathrm{Bu}$), 0.11 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.095 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}$), 0.09 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.07 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.04 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=171.8$ (C-1), 165.8 (C-20), 153.5 (C-18), 133.2, 132.3 (Ph), 131.6 (Ph), 129.9 (2C, Ph), 129.8 (Ph), 128.5 (2C, Ph), 127.6 (2C, Ph), 125.2 (2C, Ph), 122.7 ($q, J=283 \mathrm{~Hz}, \mathrm{C}-22$), 85.7 (C-9), 84.8 ($\mathrm{q}, \mathrm{J}=27.3 \mathrm{~Hz}, \mathrm{C}-21$), 82.8 (C-15), $79.0(\mathrm{C}-12)$, 74.8 (C10), 74.3 (C-5), 74.1 (C-3), 73.8 (C-4), 70.2 (C-6), 68.7 (C-7), 68.6 (C-11), 55.7 (C-23), 53.7 (C-17), 51.8 (C-19), 39.9 (C-14), 37.8 (C-13), 37.4 (C-2), 26.3 (4C, C-16 and $t-B u$), 26.1 (3C, $t-B u$), 25.9 (3C, $t-$ $\mathrm{Bu}), 21.4(\mathrm{C}-8), 18.5(t-\mathrm{Bu}), 18.3(t-\mathrm{Bu}), 18.0(t-\mathrm{Bu}), 15.8$ (C-33), -3.4(Me), -3.9(Me), -4.2(Si-Me), 4.59 (Me), -4.61 (Me), -5.0 (Me) ppm; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-71.4$ (3F) ppm; IR (film): $\tilde{v}=2955,2930,2895,2857,1747,1499,1469,1463,1344,1257,1180,1169,1160,1096,1088$, 1069, 1015, 834, 777, 688, 543, 505, 460, $411 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{54} \mathrm{H}_{83} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~F}_{3} \mathrm{SSi}_{3} \mathrm{Na}^{+}$: 1175.4880, found: 1175.4893.

(S)-1-((2S,4S,5R)-4-Methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)-

 4-((2R,3S,4R,5R,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(2-methoxy-2-oxoethyl)tetrahydro-
2H-pyran-2-yl)but-2-yn-1-yl (R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (epi-152)

(S)-Mosher acid chloride ($1.5 \mu \mathrm{~L}, 8.0 \mu \mathrm{~mol})$ was added to a stirred solution of propargylic alcohol 129a ($5 \mathrm{mg}, 5 \mu \mathrm{~mol}$) and py $(1.3 \mu \mathrm{~L}$, $16 \mu \mathrm{~mol})$ in DCM $(200 \mu \mathrm{~L})$ at rt and the reaction mixture was stirred for 1 h . Then py ($0.9 \mu \mathrm{~L}, 11 \mu \mathrm{~mol}$) and (S)-Mosher acid chloride ($2.5 \mu \mathrm{~L}, 13 \mu \mathrm{~mol}$) were subsequently added to the reaction mixture at rt and stirring was continued for 3 h . Then py ($2.2 \mu \mathrm{~L}, 27 \mu \mathrm{~mol}$) and (S)-Mosher acid chloride ($4.0 \mu \mathrm{~L}, 21 \mu \mathrm{~mol}$) were subsequently added to the reaction mixture at rt and stirring was continued for 3 d . The reaction was quenched with water (2 mL) and the aq. phase was extracted with DCM ($3 \times 3 \mathrm{~mL}$). The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was
purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 6:1) affording compound epi-152 as a colourless oil ($6 \mathrm{mg}, 98 \%$). ${ }^{299}$
$[\alpha]_{\mathrm{D}}^{20}:+24.9\left(\mathrm{c}=0.80, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.71-7.51(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ph}), 7.44-7.35(\mathrm{~m}$, $3 H, P h), 5.55(d t, J=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11), 4.30(\mathrm{dt}, \mathrm{J}=9.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.11$ (dt, J=8.4, $7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), 3.95 (td, J = 7.1, $2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 3.82 (dd, J = 3.3, $1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 3.77 (ddd, $J=14.7,11.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-17 \mathrm{a}), 3.70-3.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-17 \mathrm{~b}$ and $\mathrm{H}-6), 3.66$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-19$), 3.57 (s , $3 H, H-23), 3.53-3.47(m, 2 H, H-4$ and $\mathrm{H}-15), 2.75$ (dd, J = 14.9, $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.62 (dd, J = 14.9, $8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}), 2.49(\mathrm{dt}, \mathrm{J}=6.8,1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-8), 2.30-2.19(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$ and $\mathrm{H}-13 \mathrm{a}), 2.00-$ 1.91 (m, 1H, H-16b), $1.91-1.82$ (m, 1H, H-14), 1.49 (ddd, J = 12.8, 10.8, 8.6 Hz, 1H, H-13b), 1.01 (d, $\mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-33$), $0.92(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.89(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.88(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.12(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.11$ (s, 3H, Me), 0.10 (s, 3H, Me), 0.095 (s, 3H, Si-Me), 0.09 (s, 3H, Me), 0.07 (s, 3H, Me) ppm; ${ }^{13}$ C NMR (101 MHz, CDCl $)_{3}$) $\delta=171.8(\mathrm{C}-1), 165.8(\mathrm{C}-20), 153.5(\mathrm{C}-18), 133.2(\mathrm{Ph}), 132.3(\mathrm{Ph}), 131.6$ (Ph), 129.87 (2C, Ph), 129.85 (Ph), 128.5 (2C, Ph), 127.6 (2C, Ph), 125.2 (2C, Ph), 123.3 (q, $J=304 \mathrm{~Hz}, \mathrm{C}-22), 85.8(\mathrm{C}-9), 85.6(\mathrm{q}, \mathrm{J}=28.1 \mathrm{~Hz}, \mathrm{C}-21), 82.9(\mathrm{C}-15), 78.7(\mathrm{C}-12), 75.2(\mathrm{C}-10), 74.3$ (C-5), 74.0 (C-3), 73.9 (C-4), 70.3 (C-6), 68.9 (C-7), 68.4 (C-11), 55.7 (C-23), 53.6 (C-17), 51.8 (C-19), 39.7 (C-14), 37.5 (C-13), 37.4 (C-2), 26.3 (4C, C-16 and t-Bu), 26.2 (3C, t-Bu), 25.8 (3C, t-Bu), 21.5 (C-8), 18.5 (t-Bu), 18.3 (t-Bu), 18.0 (t-Bu), 15.8 (C-33), -3.4 (Me), -3.9 (Me), -4.1 (Me), -4.59 (Me), 4.61 (Me), -4.9 (Me) ppm; ${ }^{19}$ F NMR (282 MHz, CDCl ${ }_{3}$): $\delta=-71.8$ (3F) ppm; IR (film): $\tilde{v}=2954,2929$, $2895,2857,1747,1498,1469,1463,1347,1256,1178,1170,1160,1097,1086,1076,1015,917$, 834, 776, 770, 720, 687, 528, 503, 482, 460, 427, $411 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{54} \mathrm{H}_{83} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~F}_{3} \mathrm{SSi}_{3} \mathrm{Na}^{+}$: 1175.4880 , found: 1175.4877.
${ }^{299}$ A detailed graphical evaluation (complete Mosher ester analysis) can be found in chapter 6.1.2.
(S,E)-1-((2S,4S,5R)-4-Methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)-4-((2R,3S,4R,5R,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(2-methoxy-2-
oxoethyl)tetrahydro-2H-pyran-2-yl)but-2-en-1-yl
(S)-3,3,3-trifluoro-2-methoxy-2phenylpropanoate (153)

(R)-Mosher acid chloride ($4.0 \mu \mathrm{~L}, 21 \mu \mathrm{~mol}$) was added to a stirred solution of allylic alcohol $E-146(5 \mathrm{mg}, 5 \mu \mathrm{~mol})$ and py ($2.2 \mu \mathrm{~L}$, $27 \mu \mathrm{~mol})$ in DCM $(200 \mu \mathrm{~L})$ at rt and the reaction mixture was stirred for 6 h . Then py ($0.4 \mu \mathrm{~L}, 5.3 \mu \mathrm{~mol}$) and (R)-Mosher acid chloride ($1.0 \mu \mathrm{~L}, 5.3 \mu \mathrm{~mol}$) were subsequently added to the reaction mixture at rt and stirring was continued for 19 h . The reaction was quenched with water (2 mL) and the aq. phase was extracted with DCM ($3 \times 3 \mathrm{~mL}$). The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 10:1) affording compound $\mathbf{1 5 3}$ as a colourless oil ($6 \mathrm{mg}, 98 \%$). ${ }^{300}$
$[\alpha]_{\mathrm{D}}^{20}:+7.9\left(\mathrm{c}=0.81, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.71-7.48(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ph}), 7.42-7.32(\mathrm{~m}$, 3H, Ph), 5.88 (dtd, J = 18.7, 7.2, 4.7 Hz, 1H, H-9), 5.43-5.31 (m, 2H, H-10 and H-11), 4.29 (ddd, $\mathrm{J}=9.3,5.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.14-4.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-12), 3.86-3.74(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-17 \mathrm{a}$ and $\mathrm{H}-5$ and $\mathrm{H}-7$), $3.73-3.67$ (m, 1H, H-17b), 3.66 (s, 3H, H-19), 3.61 (s, 3H, H-23), $3.58-3.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-15), 3.51-$ 3.48 (m, 1H, H-4), 3.47 (t, J = $2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 2.74 (dd, J = 14.9, $5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.60 (dd, $\mathrm{J}=14.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 2.45 (ddd, J = 15.2, 8.7, $6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), 2.27 (dddd, J = 14.0, 11.4, 4.6, $2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), 2.16 (dt, J = 12.6, $7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{a}$), $2.05-1.94$ (m, 2H, H-8b and H-16b), 1.93 - 1.84 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-14$), 1.36 (ddd, J = 12.6, $10.8,8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{~b}$), 1.04 ($\mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-33$), $0.92(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.895(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.885(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.105(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.09(\mathrm{~s}$, 3H, Me), 0.085 (s, 3H, Me), 0.07 (s, 3H, Me), 0.05 (s, 3H, Me) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.8$ (C-1), 165.9 (C-20), 153.5 (C-18), 135.7 (C-9), 133.2 (Ph), 132.7 (Ph), 131.6 (Ph), 129.9 (2C, Ph), 129.6 (Ph), 128.4 (2C, Ph), 127.6 (2C, Ph), 125.3 (2C, Ph), 124.7 (C-10), 124.3 (q, $\mathrm{J}=286 \mathrm{~Hz}, \mathrm{C}-22$), 84.5 (q, J = 27.0 Hz, C-21), 82.6 (C-15), 79.4 (C-11), 78.8 (C-12), 74.4 (C-5), 73.8 (C-3), 73.7 (C-4), 71.8 (C-6), 69.3 (C-7), 55.7 (H-23), 53.7 (C-17), 51.8 (H-19), 40.0 (C-14), 37.7 (C13), 37.4 (C-2), 34.4 (C-8), 26.34 (C-16), 26.31 ($3 \mathrm{C}, t-\mathrm{Bu}$), 26.2 ($3 \mathrm{C}, t-\mathrm{Bu}$), 25.9 ($3 \mathrm{C}, t-\mathrm{Bu}$), 18.5 ($t-\mathrm{Bu}$), 18.3 ($t-\mathrm{Bu}$), 18.0 ($t-\mathrm{Bu}$), 15.9 (C-33), -3.4 (Me), -3.9 (Me), -4.2 (Me), -4.51 (Me), -4.54 (Me), -4.9 (Me) ppm; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-71.4$ (3F) ppm; IR (film): $\tilde{v}=2954,2930,2895,2857$,
${ }^{300}$ A detailed graphical evaluation (complete Mosher ester analysis) can be found in chapter 6.1.3.

1743, 1596, 1498, 1472, 1463, 1438, 1390, 1346, 1256, 1184, 1167, 1124, 1084, 1040, 1014, 993, 923, 866, 835, 813, 775, 721, 689, 673, 637, 534, 508, 471, 453, 438, $406 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{54} \mathrm{H}_{85} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~F}_{3} \mathrm{SSi}_{3} \mathrm{Na}^{+}$: 1177.5037, found: 1177.5044.

(S,E)-1-((2S,4S,5R)-4-Methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-

 yl)-4-((2R,3S,4R,5R,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(2-methoxy-2-oxoethyl)tetrahydro-2H-pyran-2-yl)but-2-en-1-yl
(R)-3,3,3-trifluoro-2-methoxy-2phenylpropanoate (epi-153)

(S)-Mosher acid chloride ($4 \mu \mathrm{~L}, 21 \mu \mathrm{~mol}$) was added to a stirred solution of allylic alcohol $E-146(5 \mathrm{mg}, 5 \mu \mathrm{~mol})$ and py $(2.2 \mu \mathrm{~L}$, $27 \mu \mathrm{~mol})$ in DCM $(200 \mu \mathrm{~L})$ at rt and the reaction mixture was stirred for 6 h . Then py $(0.4 \mu \mathrm{~L}, 5.3 \mu \mathrm{~mol})$ and (S)-Mosher acid chloride $(1.0 \mu \mathrm{~L}, 5.3 \mu \mathrm{~mol})$ were subsequently added to the reaction mixture at rt and stirring was continued for 19 h . The reaction was quenched with water (2 mL) and the aq. phase was extracted with DCM $(3 \times 3 \mathrm{~mL})$. The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 10:1) affording compound epi-153 as a colourless oil ($6 \mathrm{mg}, 98 \%$). ${ }^{301}$
$[\alpha]_{\mathrm{D}}^{20}:+25.9\left(\mathrm{c}=0.82, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.72-7.48(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ph}), 7.42-7.32(\mathrm{~m}$, $3 H, P h$), 5.96 (dt, J = 15.4, $7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 5.55 (ddt, J = 15.7, 8.5, 1.4 Hz, 1H, H-10), 5.39 (dd, $J=8.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11), 4.29(\mathrm{dt}, \mathrm{J}=9.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.06(\mathrm{dt}, \mathrm{J}=9.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12), 3.84$ $-3.75(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-17 \mathrm{a}$ and $\mathrm{H}-5$ and $\mathrm{H}-7), 3.70-3.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-17 \mathrm{~b}), 3.64(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-19), 3.54(\mathrm{~s}, 3 \mathrm{H}$, H-23), $3.52-3.47$ (m, 2H, H-6 and H-4), 3.43 (td, J = 9.0, $3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15$), 2.75 (dd, J=14.9, $5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.59 (dd, J = 14.9, $8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), $2.54-2.44$ (m, 1H, H-8a), 2.22 (dddd, $J=14.1,11.6,4.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}), 2.08(\mathrm{dt}, \mathrm{J}=12.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{a}), 2.06-1.99(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 8b), $1.98-1.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}), 1.88-1.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-14), 1.30(\mathrm{ddd}, \mathrm{J}=12.6,10.9,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 13b), 0.95 (d, J = $6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-33$), 0.93 ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$), 0.90 ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$), 0.88 (s, $9 \mathrm{H}, t-\mathrm{Bu}$), 0.11 (s , $3 \mathrm{H}, \mathrm{Me}$), 0.10 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.09 (s, $3 \mathrm{H}, \mathrm{Me}$), 0.085 (s, 3H, Me), 0.075 (s, $3 \mathrm{H}, \mathrm{Me}$), 0.07 (s, 3H, $\mathrm{Me}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=171.9$ (C-1), 166.0 (C-20), 153.5 (C-18), 136.0 (C-9), 133.2 (Ph), 132.6 (Ph), 131.6 (Ph), 129.9 (2C, Ph), 129.7 (Ph), 128.5 (2C, Ph), 127.7 (2C, Ph), 125.4 (C-10),

[^99]125.3 (2C, Ph), 123.8 (q, J = $291 \mathrm{~Hz}, \mathrm{C}-22$), 84.6 (J = $27.4 \mathrm{~Hz}, \mathrm{C}-21$), 82.6 (C-15), 79.1 (C-11), 78.8 (C12), 74.5 (C-5), 73.9 (C-3), 73.7 (C-4), 71.9 (C-6), 69.6 (C-7), 55.6 (C-23), 53.7 (C-17), 51.8 (C-19), 39.8 (C-14), 37.5 (C-2), 37.2 (C-13), 34.4 (C-8), 26.5 (C-16), 26.3 (3C, $t-B u$), 26.2 ($3 \mathrm{C}, t-\mathrm{Bu}$), 25.9 (3C, $t-\mathrm{Bu}), 18.5(t-\mathrm{Bu}), 18.4(t-\mathrm{Bu}), 18.0(t-\mathrm{Bu}), 15.7$ (C-33), -3.4(Me), -3.9(Me), -4.2(Me), -4.5(Me), 4.6 (Me), -4.9 (Me) ppm; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-71.5$ (3F) ppm; IR (film): $\tilde{v}=2954,2930$, 2894, 2857, 1743, 1596, 1498, 1472, 1463, 1438, 1390, 1346, 1254, 1168, 1162, 1123, 1083, 1040, 1015, 992, 923, 866, 834, 813, 774, 763, 720, 689, 669, 635, 533, 507, 470, $424 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{54} \mathrm{H}_{85} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~F}_{3} \mathrm{SSi}_{3} \mathrm{Na}^{+}$: 1177.5037, found: 1177.5045.
(R,Z)-1-((2S,4S,5R)-4-Methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)-4-((2R,3S,4R,5R,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(2-methoxy-2-oxoethyl)tetrahydro-2H-pyran-2-yl)but-2-en-1-yl
(S)-3,3,3-trifluoro-2-methoxy-2phenylpropanoate (154)

(R)-Mosher acid chloride ($3.6 \mu \mathrm{~L}, 19 \mu \mathrm{~mol}$) was added to a stirred solution of allylic alcohol epi-Z-146 (5 mg, $5 \mu \mathrm{~mol})$ and py $(1.9 \mu \mathrm{~L}$, $24 \mu \mathrm{~mol})$ in DCM $(200 \mu \mathrm{~L})$ at rt and the reaction mixture was stirred for 3 d . The reaction was quenched with water (2 mL) and the aq. phase was extracted with DCM $(3 \times 3 \mathrm{~mL})$. The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 10:1) affording compound 154 as a colourless oil ($5 \mathrm{mg}, 90 \%$). ${ }^{302}$
(the sample contained some cleaved off 2,5-trans-disubstituted ether) $[\alpha]_{\mathrm{D}}^{20}$: +9.0 ($\mathrm{c}=0.63, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.31-7.44(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ph}), 7.42-7.35(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 5.99-5.81(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-9$ and $\mathrm{H}-11$), $5.42-5.28$ (m, 1H, H-10), 4.34 (ddd, J = 9.2, 5.6, 3.6 Hz, 1H, H-3), 4.02 (ddd, J = 9.6, $6.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), $3.83-3.73$ (m, $3 \mathrm{H}, \mathrm{H}-7$ and $\mathrm{H}-5$ and $\mathrm{H}-17 \mathrm{a}$), 3.65 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-19$), $3.64-3.56$ (m, 2H, H-17b and H-15), $3.55(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-23), 3.54-3.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 3.51-3.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 2.74$ (dd, J = 14.7, $9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.67 (dd, J = 14.8, $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 2.59 (ddd, J = 15.8, 10.1, $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), $2.34-2.03(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-8 \mathrm{~b}$ and $\mathrm{H}-16 \mathrm{a}$ and $\mathrm{H}-13 \mathrm{a}$), $1.96-1.77$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}$ and $\mathrm{H}-$ 14), $1.59-1.52$ (m, 1H, H-13b), 1.02 (d, J = $6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-33$), 0.93 ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$), 0.90 ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$), 0.88 (s, 9H, t-Bu), 0.12 (s, 6H, Me), 0.11 (s, 3H, Me), 0.10 (s, 3H, Me), 0.09 (s, 3H, Me), 0.08 (s, 3H, Me) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=171.9$ (C-1), 165.4 (C-20), 153.6 (C-18), 135.3 (C-9), 133.2 (Ph), 132.7 (Ph), 131.6 (Ph), 129.9 (2C, Ph), 129.7 (Ph), 128.5 (2C, Ph), 127.4 (2C, Ph), 125.3 (2C, Ph), 123.6 (C-10), 123.0 ($q, J=287 \mathrm{~Hz}, \mathrm{C}-22$), $86.5(\mathrm{C}-15), 84.4$ ($\mathrm{q}, \mathrm{J}=24.8 \mathrm{~Hz}, \mathrm{C}-21$), 79.1 (C-12), 74.3 (C-5), 74.2 (C-3), 73.7 (C-4), 73.0 (C-11), 71.8 (C-6), 69.6 (C-7), 55.6 (C-23), 53.6 (C-17), 51.7 (C19), 39.9 (C-14), 37.4 (C-2), 35.2 (C-13), 33.5 (C-16), 30.2 (C-8), 26.3 (3C, $t-B u$), 26.2 (3C, $t-B u$), 25.9
 Me), -4.9 (Me) ppm; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-71.5$ (3F) ppm; IR (film): $\tilde{v}=2954,2929,2895$, $2856,1744,1636,1597,1499,1472,1463,1450,1409,1389,1360,1347,1253,1169,1154,1121$, $1085,1041,1015,993,964,938,918,865,834,813,775,762,709,695,688,670,666,633,550$,

[^100]535, 507, 493, 474, 461, $415 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{54} \mathrm{H}_{85} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{SSi}_{3} \mathrm{~F}_{3} \mathrm{Na}^{+}: 1177.5037$, found: 1177.5039.

(R,Z)-1-((2S,4S,5R)-4-Methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-

 yl)-4-((2R,3S,4R,5R,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(2-methoxy-2-oxoethyl)tetrahydro-2H-pyran-2-yl)but-2-en-1-yl
(R)-3,3,3-trifluoro-2-methoxy-2phenylpropanoate (epi-154)

(S)-Mosher acid chloride ($3.6 \mu \mathrm{~L}, 19 \mu \mathrm{~mol}$) was added to a stirred solution of allylic alcohol epi-Z-146 ($5 \mathrm{mg}, 5 \mu \mathrm{~mol}$) and py ($1.9 \mu \mathrm{~L}$, $24 \mu \mathrm{~mol})$ in DCM $(200 \mu \mathrm{~L})$ at rt and the reaction mixture was stirred for 1 d . Then py ($0.4 \mu \mathrm{~L}, 5 \mu \mathrm{~mol})$ and (S)-Mosher acid chloride ($0.9 \mu \mathrm{~L}, 5 \mu \mathrm{~mol}$) were subsequently added to the reaction mixture at rt and stirring was continued for 2 d . The reaction was quenched with water (2 mL) and the aq. phase was extracted with DCM ($3 \times 3 \mathrm{~mL}$). The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 10:1) affording compound epi-154 as a colourless oil ($5 \mathrm{mg}, 90 \%$). ${ }^{303}$
(the sample contained some cleaved off 2,5-trans-disubstituted ether) $[\alpha]_{\mathrm{D}}^{20}$: +12.8 ($\mathrm{c}=0.58$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.72-7.45(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ph}), 7.44-7.34(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 5.90-5.80$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-9$ and $\mathrm{H}-11$), 5.27 (dd, J = 11.2, $9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), 4.34 (ddd, J = 9.2, 5.4, $3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 4.09 (ddd, J = 9.5, 6.1, 3.0 Hz, 1H, H-12), 3.91 (ddd, J = 15.5, 11.5, $4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-17 \mathrm{a}$), $3.83-3.77$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-7$ and $\mathrm{H}-5$), $3.74-3.67(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-17 \mathrm{~b})$, $3.65(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-19), 3.63-3.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-15), 3.57$ - 3.53 (m, 1H, H-6), 3.52 - 3.48 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$), 3.50 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-23$), 2.73 (dd, J = 14.8, $9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.67 (dd, J = 15.0, 5.9 Hz, 1H, H-2b), 2.59 (ddd, J = 14.6, 10.3, 5.7 Hz, 1H, H-8a), 2.34-2.08 (m, 3H, $\mathrm{H}-8 \mathrm{~b}$ and $\mathrm{H}-16 \mathrm{a}$ and $\mathrm{H}-13 \mathrm{a}$), $2.00-1.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}$ and $\mathrm{H}-14), 1.67-1.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{~b}), 1.02$ (d, J = $6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-33$), $0.93(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.90(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.89(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.12(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me})$, 0.11 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.105 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), $0.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}): $\delta=171.9$ (C-1), 165.9 (C-20), 153.6 (C-18), 134.7 (C-9), 133.2 (Ph), 132.5 (Ph), 131.6 (Ph), 129.9 (2C, Ph), 129.8 (Ph), 128.6 (2C, Ph), 127.8 (2C, Ph), 125.3 (2C, Ph), 123.5 (C-10), 123.4 (q, $\mathrm{J}=290 \mathrm{~Hz}, \mathrm{C}-22$), 86.5 (C-15), 84.5 ($\mathrm{q}, \mathrm{J}=28.3 \mathrm{~Hz}, \mathrm{C}-21$), 79.1 (C-12), 74.4 (C-5), 74.1 (C-3), 73.8 (C-

[^101]4), 73.5 (C-11), 71.8 (C-6), 69.8 (C-7), 55.4 (C-23), 53.7 (C-17), 51.7 (C-19), 39.9 (C-14), 37.5 (C-2), 35.3 (C-13), 33.5 (C-16), 30.2 (C-8), 26.3 (3C, $t-B u), 26.2$ (3C, $t-B u), 25.9$ (3C, $t-B u), 18.5$ ($t-B u), 18.3$ (t-Bu), 18.0 (t-Bu), 16.2 (C-33), -3.5 (Me), -4.0 (Me), -4.2 (Me), -4.5 (2C, Me), -4.8 (Me) ppm; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-71.3$ (3F) ppm; IR (film): $\tilde{v}=2954,2928,2895,2856,1742,1597$, 1499, 1471, 1463, 1450, 1410, 1388, 1360, 1347, 1252, 1183, 1169, 1123, 1085, 1040, 1015, 1006, $964,939,916,865,834,813,775,762,709,696,688,672,668,633,539,506,473,412 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{54} \mathrm{H}_{85} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{SSi}_{3} \mathrm{~F}_{3} \mathrm{Na}^{+}: 1177.5037$, found: 1177.5038 .

(1S,2R,3S)-1-((2S,4S,5R)-4-Methyl-5-(2-((1-phenyl-1H-tetrazol-5-

 $y l) s u l f o n y l) e t h y l) t e t r a h y d r o f u r a n-2-y l)-4-((2 R, 3 S, 4 R, 5 R, 6 R)-3,4,5-t r i s((t e r t-$butyldimethylsilyl)oxy)-6-(2-methoxy-2-oxoethyl)tetrahydro-2H-pyran-2-yl)butane-1,2,3-triyl tris(4-nitrobenzoate) (155)

EDC $\cdot \mathrm{HCl}(45 \mathrm{mg}, 234 \mu \mathrm{~mol})$ was added to a stirred solution of p-nitrobenzoic acid ($22 \mathrm{mg}, 129 \mu \mathrm{~mol}$), 4-DMAP ($4 \mathrm{mg}, 29 \mu \mathrm{~mol}$) and triol 147 ($19 \mathrm{mg}, 20 \mu \mathrm{~mol})$ in DCM (1 mL) at rt and stirring was continued for 4 d . The solvent was evaporated and the crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc 9:2) affording compound 155 as a colourless oil
$[\alpha]_{\mathrm{D}}^{20}:+6.1\left(\mathrm{c}=1.37, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.37-8.23(\mathrm{~m}, 8 \mathrm{H}), 8.15-8.08(\mathrm{~m}, 4 \mathrm{H})$, $7.69-7.65(\mathrm{~m}, 5 \mathrm{H}), 5.88(\mathrm{dd}, \mathrm{J}=7.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{td}, \mathrm{J}=6.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{dd}, \mathrm{J}=7.4$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}$) , $4.33(\mathrm{dt}, \mathrm{J}=9.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{ddd}, \mathrm{J}=9.0,5.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dt}, \mathrm{J}=9.1,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.76-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.43$ (td, J = 8.9, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.37(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, \mathrm{J}=14.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, \mathrm{J}=14.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-$ $2.19(\mathrm{~m}, 2 \mathrm{H}), 2.14$ (tdd, J = 10.6, 5.0, $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $1.97-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.62(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{~d}$, $\mathrm{J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}$, $3 \mathrm{H}),-0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.7,164.0,163.9,163.5,153.4,151.1$, $150.9,150.7,135.6,135.0,134.5,133.1,131.6,131.2$ (2C), 131.0 (2C), 130.8 (2C), 129.9 (2C), 125.1 (2C), 124.1 (2C), 123.8 (2C), 123.7 (2C), 83.8, 76.8, 74.1, 74.0, 73.8, 73.0, 72.6, 71.6, 70.6, 65.8, $53.3,51.7,39.6,37.4,36.9,32.9,26.7,26.2$ (3C), 26.1 (3C), 25.8 (3C), 18.4, 18.2, 17.9, 16.2, -3.3, 4.0, -4.4, -4.6 (2C), -5.1 ppm; IR (film): $\tilde{v}=2954,2929,2896,2857,1730,1608,1528,1498,1463$,

1438, 1410, 1389, 1346, 1320, 1266, 1257, 1151, 1096, 1042, 1014, 915, 872, 834, 813, 776, 758, 718, 688, 668, 632, $538,507 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{65} \mathrm{H}_{89} \mathrm{~N}_{7} \mathrm{O}_{21} \mathrm{SSi}_{3} \mathrm{Na}^{+}: 1442.5032$, found: 1442.5026.

(1S,2S,3R)-1-((2S,4S,5R)-4-Methyl-5-(2-((1-phenyl-1H-tetrazol-5-

 $y l) s u l f o n y l) e t h y l) t e t r a h y d r o f u r a n-2-y l)-4-((2 R, 3 S, 4 R, 5 R, 6 R)-3,4,5-t r i s((t e r t-$ butyldimethylsilyl)oxy)-6-(2-methoxy-2-oxoethyl)tetrahydro-2H-pyran-2-yl)butane-1,2,3-triyl tris(4-nitrobenzoate) (156)

EDC. $\mathrm{HCl}(11 \mathrm{mg}, 56 \mu \mathrm{~mol})$ was added to a stirred solution of p-nitrobenzoic acid ($5 \mathrm{mg}, 31 \mu \mathrm{~mol}$), 4-DMAP ($1 \mathrm{mg}, 7 \mu \mathrm{~mol}$) and triol $148(9 \mathrm{mg}, 9 \mu \mathrm{~mol})$ in $\mathrm{DCM}(0.5 \mathrm{~mL})$ at rt and stirring was continued for 17 h . Then p-nitrobenzoic acid ($5 \mathrm{mg}, 31 \mu \mathrm{~mol}$), 4-DMAP ($1 \mathrm{mg}, 7 \mu \mathrm{~mol}$) and EDC•HCl ($11 \mathrm{mg}, 56 \mu \mathrm{~mol})$ were subsequently added to the stirred reaction mixture at $r t$ and stirring was continued for 4 h . The solvent was evaporated and the crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc 9:2) affording compound 156 as a colourless oil (13 mg , 95\%).
$[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}:+31.7\left(\mathrm{c}=1.25, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.35-8.03(\mathrm{~m}, 12 \mathrm{H}), 7.73-7.54(\mathrm{~m}$, 5 H), 5.88 (ddd, J = 10.2, 4.4, 2.3 Hz, 1H), 5.81 (dd, J = 6.4, $4.3 \mathrm{~Hz}, 1 \mathrm{H}$), $5.61(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36$ (dt, J = 9.5, 6.0 Hz, 1H), 4.08 (td, J = 7.2, 3.5 Hz, 1H), 3.87 (ddd, J = 15.2, 10.8, 4.7 Hz, 1H), 3.78 (dt, $\mathrm{J}=11.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.75 (dd, J = 15.5, $7.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.50(\mathrm{dd}, \mathrm{J}=15.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{tdd}, \mathrm{J}=10.8$, 5.1, $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $1.98-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{dd}, \mathrm{J}=13.7,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~d}$, $\mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.855(\mathrm{~s}, 9 \mathrm{H}), 0.66(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}$, $3 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H}),-0.09(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=171.9,164.1,163.9,163.7$, $153.5,150.92,150.85,150.8,135.0,134.8,134.5,133.2,131.6,131.0$ (2C), 130.94 (2C), 130.87 (2C), 129.9 (2C), 125.2 (2C), 123.9 (2C), 123.79 (2C), 123.76 (2C), 83.7, 76.7, 74.7, 74.2, 73.9, 73.6, 72.9, 72.2, 71.1, 65.3, 53.5, 51.6, 40.1, 37.5, 36.7, 34.3, 26.8, 26.3 (3C), 26.2 (3C), 25.6 (3C), 18.4, 18.3, 17.7, 16.2, -3.6, -4.0, -4.5, -4.6, -4.7, -5.0 ppm ; IR (film): $\tilde{v}=2959,2929,2896,2857,1733$, $1608,1528,1498,1471,1463,1437,1411,1390,1347,1320,1283,1258,1217,1150,1092,1014$,

921, $871,832,800,776,753,717,688,667,633,539,532,506,473,447 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{65} \mathrm{H}_{89} \mathrm{~N}_{7} \mathrm{O}_{21} \mathrm{SSi}_{3} \mathrm{Na}^{+}$: 1442.5032, found: 1442.5030 .

Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(((4R,5S)-5-((S)-((2S,4S,5R)-4-methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)(((4-nitrophenyl)carbamoyl)oxy)methyl)-2-oxo-1,3-dioxolan-4-yl)methyl)tetrahydro-2H-pyran-2-
yl)acetate (157) and Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((R)-2-((4S,5S)-5-((2S,4S,5R)-4-methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)-2-oxo-1,3-dioxolan-4-yl)-2-(((4-nitrophenyl)carbamoyl)oxy)ethyl)tetrahydro-2H-pyran-2yl)acetate (158)

p-Nitrophenyl isocyanate (6 mg, $33 \mu \mathrm{~mol})$ was added to a stirred solution of triol 148 ($9 \mathrm{mg}, 9 \mu \mathrm{~mol}$) and TEA ($4.1 \mu \mathrm{~L}, 29 \mu \mathrm{~mol}$) in DCM $(0.5 \mathrm{~mL})$ at rt resulting in the formation of a yellow precipitate. Stirring was continued for 5 d , the solvent was evaporated and the crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 4:1 to 3:1) affording a mixture of regioisomeric cyclic carbonates 157 and 158 as a colourless oil (10 mg, 93\%, d.r. = 3:5).
(the sample contained some 1,3-bis(4-nitrophenyl)urea) ${ }^{1} \mathrm{H}$ NMR (3:5 regioisomer ratio, asterisk denotes minor regioisomer peaks, ${ }^{304} 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.24-8.19(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 8.24-8.19^{*}(\mathrm{~m}$, 2H, Ph), 8.04* (br s, 1H, NH), 7.72 - 7.67 (m, 2H, Ph), 7.72 - 7.67* (m, 2H, Ph), $7.65-7.58^{*}(\mathrm{~m}, 5 \mathrm{H}$, Ph), $7.65-7.54(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 7.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 5.28$ (dt, J = 9.6, 2.7 Hz, 1H, H-9), 5.13* (dd, J = 6.8, $2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 4.86* (dt, J = 9.5, 4.0 Hz, 1H, H-9), 4.65 (dd, J = 4.3, 2.2 Hz, 1H, H-10), 4.61* (dd, $\mathrm{J}=4.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10), 4.46(\mathrm{dd}, \mathrm{J}=5.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11), 4.31-4.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 4.31-4.26^{*}$ (m, 1H, H-3), 4.24* (dt, J = 9.6, 6.3 Hz, 1H, H-12), 4.14 (dt, J = 9.6, 5.8 Hz, 1H, H-12), 4.09* (dt, $J=11.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 3.96-3.87(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-17 \mathrm{a}$ and $\mathrm{H}-7), 3.96-3.87^{*}(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-17 \mathrm{a}), 3.85-$ $3.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-17 \mathrm{~b}), 3.80-3.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.80-3.7^{*}(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-17 \mathrm{~b}$ and $\mathrm{H}-5), 3.68^{*}(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-$ 19), 3.65 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-19$), $3.64-3.60$ (m, 1H, H-15), $3.64-3.60^{*}(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-15), 3.60-3.58^{*}(\mathrm{~m}, 1 \mathrm{H}$,

[^102]H-6), $3.53-3.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.50-3.48^{*}(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.47-3.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 2.76$ (dd, J = 15.8, 6.1 Hz, 1H, H-2a), 2.72* (dd, J = 15.6, $3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.64 (dd, J = 15.8, 8.3 Hz, 1H, H2b), 2.57* (dd, J=15.6, 9.9 Hz, 1H, H-2b), 2.37-2.26 (m, 2H, H-13a and H-16a), 2.37-2.26* (m, $2 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$ and $\mathrm{H}-13 \mathrm{a}$), 2.22 (ddd, $\mathrm{J}=14.4,11.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), 2.15* (ddd, J=14.5, 11.0, 3.9 Hz, $1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), $2.07-1.99$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}$ and $\mathrm{H}-14$), $2.07-1.99^{*}(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}), 1.98-1.93^{*}(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-14), 1.72-1.65$ (m, 1H, H-8b), 1.72 - 1.65* (m, 1H, H-13b), 1.56 - 1.51* (m, 1H, H-8b), 1.47 (ddd, J = 12.5, 11.0, $9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{~b}$), 1.10 (d, J = $6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-33$), 1.08* (d, J = $6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-33$), $0.94(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.895^{*}(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.89(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.885^{*}(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.84^{*}(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu})$, $0.77(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.12^{*}(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.10^{*}(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.095(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.09(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{Me}), 0.085(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.08^{*}(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.075^{*}(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.065^{*}(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.06(\mathrm{~s}, 3 \mathrm{H}$, Me), 0.055 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.04* ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$) ppm; ${ }^{13} \mathrm{C}$ NMR (3:5 regioisomer ratio, asterisk denotes minor regioisomer peaks, $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.1^{*}(\mathrm{C}-1)$, 172.1 ($\mathrm{C}-1$), 154.6* (C-20), 154.3 (C20), 153.59 (C-18), 153.57* (C-18), 152.2 (C-21), 151.7* (C-21), 143.8* (i-Ph), 143.6 (p-Ph), 143.5* ($p-\mathrm{Ph}$), 143.4 ($i-\mathrm{Ph}$), 133.21* ($i-\mathrm{Ph}$), 133.17 ($i-\mathrm{Ph}$), 131.7 ($p-\mathrm{Ph}$), 131.6* ($p-\mathrm{Ph}$), 129.91 (2C, m-Ph), 129.87* (2C, m-Ph), 125.4 (2C, m-Ph), 125.33* (2C, o-Ph), 125.32* (2C, m-Ph), 125.32 (2C, o-Ph), 118.23 (2C, o-Ph), 118.21* (2C, o-Ph), 84.1 (C-15), 83.7* (C-15), 80.0 (C-10), 79.69 (C-11), 79.69* (C-10), 77.6 (C-12), 76.6* (C-12), 76.2* (C-9), 75.4* (C-4), 75.1* (C-5), 74.1 (C-5), 74.0* (C-11), 73.53 (C-3), 73.47 (C-4), 72.6 (C-9), 72.3 (C-6), 72.23* (C-3), 72.20* (C-6), 67.2* (C-7), 65.8 (C-7), 53.58* (C-17), 53.55 (C-17), 52.0* (C-19), 51.8 (C-19), 40.0 (C-14), 39.9* (C-14), 38.5* (C-13), 37.6* (C-2), 37.2* (C-8), 36.72 (C-13), 36.69 (C-2), 33.4 (C-8), 26.9* (C-16), 26.8 (C-16), 26.3 (3C, $t-B u$), 26.23 (3C, $t-\mathrm{Bu}$), 26.17* (3C, $t-\mathrm{Bu}$), 26.0* (3C, $t-\mathrm{Bu}$), 25.9* (3C, $t-\mathrm{Bu}$), 25.7 ($3 \mathrm{C}, t-\mathrm{Bu}$), 18.5 ($t-\mathrm{Bu}$), 18.4 ($t-\mathrm{Bu}$), 18.3* ($t-\mathrm{Bu}$), 18.2* ($t-\mathrm{Bu}$), 18.0* ($t-\mathrm{Bu}$), 17.8 ($t-\mathrm{Bu}$), 16.06 (C-33), 16.05* (C-33), -3.57* (Me), -3.58 (Me), $-3.7^{*}(\mathrm{Me}),-3.92^{*}(\mathrm{Me}),-3.93(\mathrm{Me}),-4.4(\mathrm{Me}),-4.47(\mathrm{Me}),-4.47^{*}(\mathrm{Me}),-4.53$ (Me), -4.7* (Me), -4.8 (Me), -5.0* (Me) ppm; IR (film): $\tilde{v}=3311,2956,2929,2857,1799,1737$, $1614,1599,1554,1512,1463,1438,1413,1334,1305,1259,1215,1177,1151,1083,1038,1008$, 917, 833, 797, 775, 736, 688, 632, 504, $459 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{52} \mathrm{H}_{82} \mathrm{~N}_{6} \mathrm{O}_{16} \mathrm{SSi}_{3} \mathrm{Na}^{+}: 1185.4708$, found: 1185.4725.

Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(((4R,5S)-5-((R)-((2S,4S,5R)-4-methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)(((4-nitrophenyl)carbamoyl)oxy)methyl)-2-oxo-1,3-dioxolan-4-yl)methyl)tetrahydro-2H-pyran-2-
 ((4S,5R)-5-((2S,4S,5R)-4-methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)-2-oxo-1,3-dioxolan-4-yl)-2-(((4-nitrophenyl)carbamoyl)oxy)ethyl)tetrahydro-2H-pyran-2yl)acetate (160)

p-Nitrophenyl isocyanate (9 mg, $56 \mu \mathrm{~mol})$ was added to a stirred solution of triol 149 (15 mg , $15 \mu \mathrm{~mol})$ and TEA $(6.8 \mu \mathrm{~L}, 49 \mu \mathrm{~mol})$ in DCM (0.8 mL) at rt resulting in the formation of a yellow precipitate. Stirring was continued for 24 h, TEA ($2.3 \mu \mathrm{~L}, 16 \mu \mathrm{~mol}$) and p-nitrophenyl isocyanate ($3 \mathrm{mg}, 19 \mu \mathrm{~mol}$) were subsequently added to the stirred reaction mixture at rt and stirring was continued for 24 h . The solvent was evaporated and the crude product was purified by flash chromatography twice (SiO_{2}, hexane/EtOAc, $5: 1$) affording a mixture of regioisomeric cyclic carbonates 159 and 160 as a colourless oil (9 mg , 50\%, d.r. $=14: 1$).
${ }^{1} \mathrm{H}$ NMR (14:1 regioisomer ratio, asterisk denotes minor regioisomer peaks, ${ }^{305} 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 8.21-8.17(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 8.21-8.17^{*}(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.84^{*}(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.79$ - 7.74 (m, 2H, Ph), $7.70-7.58$ (m, 5H, Ph), $7.70-7.58^{*}$ (m, 7H, Ph), 5.31 (ddd, J = 10.3, 4.8, 2.0 Hz, $1 \mathrm{H}, \mathrm{H}-9), 5.22$ (t, J = 3.1 Hz, 1H, H-11), 5.11* (dd, J = 7.8, 2.5 Hz, 1H, H-11), 5.04* (ddd, J = 9.7, 6.5, $2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 4.75^{*}$ (dd, J = 6.5, $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), 4.50 (ddd, J=15.2, 9.0, 5.4 Hz, 1H, H-17a), 4.43 (dd, J = 6.4, 3.3 Hz, 1H, H-10), 4.31 (ddd, J = 9.7, 5.0, 2.3 Hz, 1H, H-3), $4.32-4.28^{*}(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 3), 4.17 (ddd, J = 9.7, 7.0, 3.0 Hz, 1H, H-12), $4.18-4.14^{*}$ (m, 1H, H-12), $4.12-4.09^{*}(m, 1 H, H-7)$, 4.07 (dt, J = 11.2, $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $3.82-3.80^{*}(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.79(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.75-$ 3.67 (m, 2H, H-17b and H-15), 3.66* (s, 3H, H-19), 3.59 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-19$), $3.56-3.54^{*}(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-17 \mathrm{a})$ $3.55-3.53^{*}(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-15), 3.53-3.51^{*}(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-17 \mathrm{~b}), 3.52-3.50^{*}(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4$ and $\mathrm{H}-6), 3.48(\mathrm{t}$, $\mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.37(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 2.88$ (dd, J=15.3, 9.9Hz,1H,H-2a),2.81* (dd, $J=15.0,9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}), 2.74^{*}$ (dd, J = 15.1, $5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 b$), 2.51 (dd, J = 15.3, $5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$

[^103]2b), $2.43-2.33$ (m, 2H, H-16a and H-8a), $2.34-2.31^{*}(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}), 2.28(\mathrm{dt}, \mathrm{J}=12.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}$, H-13a), 2.20* (ddd, J = 14.5, 11.3, $3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), 2.15* (ddd, J = 13.2, 8.0, $4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{a}$), 2.06 - 2.00* (m, 1H, H-16b), 2.03 - 1.96* (m, 1H, H-14), 1.86 (ddt, J = 15.8, 10.9, $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 16b), $1.82-1.72$ (m, 1H, H-14), $1.82-1.72^{*}$ (m, 1H, H-13b), $1.69-1.62^{*}(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{~b}), 1.55-$ 1.45 (m, 2H, H-13b and H-8b), 1.06* (d, J = 6.6 Hz, 3H, H-33), 0.99 (d, J = $6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-33$), 0.92 (s , $9 \mathrm{H}, t-\mathrm{Bu}), 0.90^{*}(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.89(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.885^{*}(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.88(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.87^{*}(\mathrm{~s}, 9 \mathrm{H}$, $t-\mathrm{Bu}), 0.115(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.115^{*}(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.11^{*}(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.10^{*}(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$, 0.095 (s, 3H, Me), 0.095* (s, 3H, Me), 0.09 (s, 3H, Me), 0.08 (s, 3H, Me), 0.07* (s, 6H, Me), 0.06 (s, $3 \mathrm{H}, \mathrm{Me}$) ppm; ${ }^{13} \mathrm{C}$ NMR (some carbons of the minor compound are missing and carbon shifts were partially taken from 2D spectra, 14:1 regioisomer ratio, asterisk denotes minor regioisomer peaks, $\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.0(\mathrm{C}-1), 154.4(\mathrm{C}-18), 154.1(\mathrm{C}-20), 152.4$ (C-21), 144.2 (i-Ph), 143.3 (pPh), 133.3 ($i-\mathrm{Ph}$), 131.6 ($p-\mathrm{Ph}$), 129.8 (2C, m-Ph), 125.7 (2C, o-Ph), 125.3 (2C, m-Ph), 118.1 (2C, oPh), 84.3* (C-15), 82.9 (C-15), 82.2 (C-10), 80.2* (C-10), 75.37 (C-9), 75.35* (C-9), 75.22 (C-12), 75.22* (C-12), 74.5 (C-3), 74.3* (C-11), 74.1* (C-5), 74.0* (C-3), 73.7* (C-4), 73.5 (C-5), 73.1 (C-11), 72.6 (C-4), 71.9* (C-6), 71.7 (C-6), 65.8* (C-7), 64.4 (C-7), 53.7 (C-17), 51.9* (C-19), 51.8 (C-19), 40.0 (C-14), $38.1^{*}(\mathrm{C}-14), 37.43$ (C-13), 37.35 (C-8), $37.1^{*}(\mathrm{C}-2), 36.8^{*}(\mathrm{C}-13), 36.5^{*}(\mathrm{C}-8), 36.3$ (C2), 27.4* (C-16), 27.1 (C-16), 26.4 (3C, $t-B u), 26.2$ (3C, $t-B u), 25.8$ (3C, $t-B u), 18.6(t-B u), 18.3(t-B u)$, 17.9 (t-Bu), 16.4* (C-33), 15.0 (C-33), -3.3 (Me), -4.2 (Me), -4.4 (Me), -4.55 (Me), -4.56 (Me), -5.0 (Me) ppm; IR (film): $\tilde{v}=3317,2955,2929,2897,2857,1803,1741,1614,1599,1553,1512,1499$, $1471,1463,1439,1413,1389,1376,1342,1332,1305,1259,1212,1178,1150,1087,1066,1036$, $1005,936,913,865,831,813,774,762,751,735,703,688,672,668,664,633,552,530,504$, 462, 438, $406 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{52} \mathrm{H}_{82} \mathrm{~N}_{6} \mathrm{O}_{16} \mathrm{SSi}_{3} \mathrm{Na}^{+}$: 1185.4708, found: 1185.4713.

Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(((4S,5R)-5-((R)-((2S,4S,5R)-4-methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)(((4-nitrophenyl)carbamoyl)oxy)methyl)-2-oxo-1,3-dioxolan-4-yl)methyl)tetrahydro-2H-pyran-2-
yl)acetate (161) and Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((S)-2-((4R,5R)-5-((2S,4S,5R)-4-methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)-2-oxo-1,3-dioxolan-4-yl)-2-(((4-nitrophenyl)carbamoyl)oxy)ethyl)tetrahydro-2H-pyran-2yl)acetate (162)

p-Nitrophenyl isocyanate (2 mg, $11 \mu \mathrm{~mol})$ was added to a stirred solution of triol 150a ($3 \mathrm{mg}, 3 \mu \mathrm{~mol}$) and TEA (1.4 $\mu \mathrm{L}, 9.7 \mu \mathrm{~mol})$ in DCM $(200 \mu \mathrm{~L})$ at rt resulting in the formation of a yellow precipitate, and stirring was continued for 24 h .

Then TEA ($0.5 \mu \mathrm{~L}, 3 \mu \mathrm{~mol}$) and p-nitrophenyl isocyanate ($1 \mathrm{mg}, 4 \mu \mathrm{~mol}$) were subsequently added to the stirred reaction mixture at rt and stirring was continued for 24 h . The solvent was evaporated and the crude product was purified by flash chromatography twice (both columns: SiO_{2}, hexane/EtOAc, 5:1) affording a mixture of regioisomeric cyclic carbonates 161 and 162 as a colourless oil (3 mg, 84\%, d.r. = 2:5).
${ }^{1} \mathbf{H}$ NMR (2:5 regioisomer ratio, asterisk denotes minor regioisomer peaks, ${ }^{306} 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 8.23-8.18(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 8.23-8.18^{*}(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.70-$ 7.68 (m, 2H, Ph), 7.67 - 7.65* (m, 2H, Ph), 7.64 - 7.58 (m, 5H, Ph), $7.64-7.58^{*}(m, 5 H, P h), 5.16-$ 5.12 (m, 1H, H-9), 5.06 (dd, J = 5.6, 4.7 Hz, 1H, H-10), 5.01* (dd, J = 7.4, 2.4 Hz, 1H, H-11), 4.86* (dt, $J=8.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 4.7^{*}(\mathrm{dd}, \mathrm{J}=4.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10), 4.39$ (dd, J = 4.7, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), $4.38-4.35$ (m, 1H, H-3), 4.34-4.32* (m, 1H, H-3), 4.31-4.27 (m, 1H, H-12), 4.31-4.27* (m, 1H, H-12), $4.04-4.02^{*}(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 4.00(\mathrm{dt}, \mathrm{J}=10.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 3.96$ (ddd, J = 14.6, 11.8, $4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-17 \mathrm{a}), 3.83-3.81^{*}(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-17 \mathrm{a}), 3.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-19), 3.79-3.77^{*}(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.77-$ 3.75 (m, 2H, H-17b and H-5), $3.75-3.72^{*}(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-17 \mathrm{~b}), 3.70^{*}(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-19), 3.59-3.58^{*}(\mathrm{~m}, 1 \mathrm{H}$, H-15), 3.58 (td, J = 8.8, $2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15$), $3.48-3.46^{*}(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.45-3.44^{*}(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 3.39$ - 3.37 (m, 2H, H-4 and H-6), 3.04 (dd, J = 14.9, 11.9 Hz, 1H, H-2a), 2.73* (dd, J = 15.4, 9.4 Hz, 1H, H2a), 2.66* (dd, J = 15.4, 4.8 Hz, 1H, H-2b), 2.52 (dd, J = 14.9, 3.8 Hz, 1H, H-2b), $2.38-2.34^{*}(\mathrm{~m}, 1 \mathrm{H}$,

[^104]H-13a), 2.33 - 2.29 (m, 1H, H-16a), 2.33 - 2.29* (m, 1H, H-8a), 2.28 - 2.25* (m, 1H, H-16a), 2.18 (dt, J = 12.3, 6.9 Hz, 1H, H-13a), 2.10 (ddd, J = 15.0, 10.5, 4.4 Hz, 1H, H-8a), $2.03-2.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 16b), $1.99-1.93$ (m, 1H, H-14), $1.99-1.93^{*}(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}$ and $\mathrm{H}-14), 1.78-1.72$ (m, 2H, H-13b and H-8b), $1.67-1.64^{*}(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{~b}), 1.50-1.46^{*}(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{~b}), 1.08(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-33)$, $1.08^{*}(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-33), 0.92(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.91^{*}(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.90^{*}(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.89(\mathrm{~s}, 9 \mathrm{H}$, $t-\mathrm{Bu}), 0.86^{*}(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.80(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.11^{*}(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.10$ (s,3H, Me), 0.09* (s,3H, Me), $0.085^{*}(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.0$ * $^{*}(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.075$ (s, 3H, Me), 0.07 (s, 3H, Me), 0.07* (s, 3H, Me), 0.065* ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), $0.06(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.055(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.05$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Si}-\mathrm{Me}$) ppm; ${ }^{13} \mathrm{C}$ NMR (2:5 regioisomer ratio, asterisk denotes minor regioisomer peaks, $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.1$ ($\mathrm{C}-1$), $172.1^{*}(\mathrm{C}-1)$, $145.5^{*}(\mathrm{C}-20), 154.4(\mathrm{C}-20), 152.5$ (C-21), 152.2* (C-21), 144.3 ($\left.i-\mathrm{Ph}\right), 143.7^{*}(i-\mathrm{Ph}), 143.5^{*}(p-\mathrm{Ph})$, 143.2 ($p-\mathrm{Ph}$), 133.18 ($i-\mathrm{Ph}$), 133.16* ($i-\mathrm{Ph}$), 131.64 ($p-\mathrm{Ph}$), 131.61* ($p-\mathrm{Ph}$), 129.90 (2C, m-Ph), 129.86* (2C, m-Ph), 125.4* (2C, m-Ph), 125.3 (2C, m-Ph), 125.2 (4C, o-Ph), 125.2* (4C, o-Ph), 118.13* (2C, m-Ph), 118.07 (2C, $m-\mathrm{Ph}$), 83.9 (C-15), $82.6^{*}(\mathrm{C}-15), 79.4$ (C-10), 78.7 (C-11), 78.2* (C10), 76.6* (C-9), 76.0* (C-12), 75.1* (C-11), 74.7 (C-3), 73.9* (C-5), 73.71* (C-3), 73.65* (C-4), 73.5 (C-5), 73.1 (C-9), 72.74 (C-4), 72.67* (C-6), 71.5 (C-6), 65.2 (C-7), 64.7* (C-7), 53.6 (C-17), 53.6* (C17), 52.7 (C-19), $52.1^{*}(\mathrm{C}-19), 40.3$ (C-14), $40.2^{*}(\mathrm{C}-14), 37.5$ (C-2), 37.0* (C-13), 36.9* (C-2), 35.8 (C-13), 35.0* (C-8), 30.6 (C-8), 25.5 (C-16), 26.24 (3C, $t-B u), 26.23^{*}(C-16), 26.19(3 C, t-B u), 26.17^{*}$ (3C, t-Bu), 26.0* (3C, $t-B u$), 25.8* (3C, t-Bu), 25.7 (3C, $t-B u), 18.4^{*}(t-B u), 18.3(t-B u), 18.1$ ($\left.t-B u\right)$, 18.1* (t-Bu), 17.8* ($t-\mathrm{Bu}$), 17.7 ($t-\mathrm{Bu}$), 15.9* (C-33), 15.5 (C-33), -3.3 (Me), -3.5* (Me), -3.9* (Me), 4.0 (Me), $-4.3^{*}(\mathrm{Me}),-4.41^{*}(\mathrm{Me}),-4.43(\mathrm{Me}),-4.5(\mathrm{Me}),-4.60(\mathrm{Me}),-4.61^{*}(\mathrm{Me}),-4.9 *(\mathrm{Me}),-5.0$ (Me) ppm; IR (film): $\tilde{v}=3362,2955,2923,2853,1798,1737,1640,1599,1555,1510,1463,1412$, 1377, 1332, 1308, 1259, 1218, 1178, 1084, 1021, 833, 799, 775, 752, 495, $443 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{52} \mathrm{H}_{82} \mathrm{~N}_{6} \mathrm{O}_{16} \mathrm{SSi}_{3} \mathrm{Na}^{+}$: 1185.4708, found: 1185.4714.

5.2.2.4. Investigations On Alternative Pathways

5.2.2.4.1. The 2,5-trans-Disubstituted Tetrahydrofuran Ring

(S,E)-5-Methylocta-2,7-dien-4-one (E-163)

t-BuLi (1.7 M in pentane, $11.8 \mathrm{~mL}, 20.0 \mathrm{mmol}$) was slowly added to a stirred solution of trans-1-bromo-1-propene ($1.76 \mathrm{~mL}, 20.5 \mathrm{mmol}$) and TMEDA (3.0 mL , $20.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and stirring was continued for 45 min . In parallel, n-BuLi ($1.6 \mathrm{M}, 11.6 \mathrm{~mL}, 18.6 \mathrm{mmol}$) was slowly added to a stirred solution of amide 43 in THF (105 mL) at $-78^{\circ} \mathrm{C}$ over the course of 5 min . Then, the previously prepared solution of propenyllithium was slowly added to the stirred solution of deprotonated amide 43 via cannula at $-78^{\circ} \mathrm{C}$ over the course of 15 min . When the addition was complete, the reaction mixture was warmed to $0^{\circ} \mathrm{C}$ and stirring was continued for 2 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The aq. phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and the combined extracts were washed with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$ and water $(200 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc 4:1) affording compound $E-163$ as a colourless oil (ca. $90 \%, 2.12 \mathrm{~g}, 74 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.89(\mathrm{dq}, \mathrm{J}=15.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.19$ (dq, J = 15.6, $1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.72 (dddd, J = 16.8, 10.1, 7.5, 6.6 Hz, 1H), $5.06-4.98$ (m, 2H), $2.80(\mathrm{~h}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.42 (dtt, $J=14.3,6.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.13-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{dd}, \mathrm{J}=6.9,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}$, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.1,142.8,136.0,130.6,116.7,43.6,37.3,18.4$, 16.4 ppm; HRMS (ESI): m / z calcd. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}: 138.1045$, found: 138.1046 .

5-((2-Chloroethyl)thio)-1-phenyl-1H-tetrazole (169)

 The reaction was quenched with water (60 mL) and the aq. phase was extracted with DCM $(2 \times 70 \mathrm{~mL})$. The combined organic extracts were washed with water (60 mL) and brine (60 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was
evaporated affording intermediate 169 as a yellow solid (ca. $90 \%, 3.66 \mathrm{~g}, 98 \%$) which was used in the next step without further purification.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.61-7.53(\mathrm{~m}, 5 \mathrm{H}), 3.96(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}$, $2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=153.4,133.6,130.5,130.1$ (2C), 123.9 (2C), 42.3, 35.4 ppm; IR (film): $\tilde{v}=3058,2958,2222,1805,1775,1731,1596,1498,1462,1439,1413,1386$, $1316,1299,1274,1242,1224,1176,1159,1090,1074,1056,1041,1014,980,952,915,863,759$, 734, 686, 614, 551, $500,465 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{4} \mathrm{ClSNa}^{+}: 263.0129$, found: 263.0129. The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{307}$

5-((2-Chloroethyl)sulfonyl)-1-phenyl-1H-tetrazole (170)

 filter cake was washed with DCM ($2 \times 25 \mathrm{~mL}$). The combined organic phases were subsequently (cautious, mind the very strong gas evolution!) washed with aq. $\mathrm{NaHSO}_{3}(40 \%, 40 \mathrm{~mL}$), sat. aq. $\mathrm{NaHCO}_{3}(3 \times 40 \mathrm{~mL})$ and brine $(40 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated affording intermediate 170 as a yellow solid (ca. $90 \%, 2.83 \mathrm{~g}, 76 \%$) which was used in the next step without further purification.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.71-7.59(\mathrm{~m}, 5 \mathrm{H}), 4.16$ (ddd, J=7.8, 6.7, $0.9 \mathrm{~Hz}, 2 \mathrm{H}$), 4.03 (ddd, $\mathrm{J}=7.8,6.8,0.9 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=153.4,132.9,131.8,130.0$ (2C), 125.2 (2C), 58.0, 35.1 ppm; IR (film): $\tilde{v}=3065,2982,2928,2223,1805,1728,1595,1497,1462,1422$, $1385,1349,1314,1266,1234,1201,1154,1136,1106,1076,1046,1015,984,920,870,762,733$, $687,662,610,568,539,512,460,431 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{CISNa}$: 295.0027, found: 295.0024.

[^105]
1-Phenyl-5-(vinylsulfonyl)-1H-tetrazole (165)

TEA ($2.93 \mathrm{~mL}, 21.0 \mathrm{mmol}$) was added to a stirred solution of the crude alkyl chloride $\mathbf{1 7 0}$ (ca. $90 \%, 2.83 \mathrm{~g}, 9.34 \mathrm{mmol}$) as a solution in THF (75 mL) at rt and stirring was continued for 30 min . The reaction mixture was filtered and the filter cake was washed with THF ($2 \times 25 \mathrm{~mL}$). The solvent was evaporated and the crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc $4: 1$) affording compound $\mathbf{1 6 5}$ as a crystalline solid ($845 \mathrm{mg}, 38 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.72-7.59(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{dd}, \mathrm{J}=16.5,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.68$ (dd, J = 16.5, $1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $6.50(\mathrm{dd}, \mathrm{J}=9.9,1.1 \mathrm{~Hz}, 1 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=154.3,135.4,134.7$, 133.2, 131.7, 129.9 (2C), 125.3 (2C) ppm; IR (film): $\tilde{v}=3109,3068,2985,2939,1727,1713,1597$, $1551,1498,1462,1444,1376,1346,1295,1243,1152,1076,1044,1015,948,921,847,762,746$, 689, 661, 627, 607, 567, 521, 508, $485 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{SNa}^{+}: 237.0441$, found: 237.0439. The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{308}$

2-((2R,3S,5S)-3-Methyl-5-((trityloxy)methyl)tetrahydrofuran-2-yl)ethyl 4-oxopentanoate (176a)

DCC ($1.03 \mathrm{~g}, 4.97 \mathrm{mmol}$) was added to a stirred solution of levulinic acid ($577 \mathrm{mg}, 4.97 \mathrm{mmol}$), 4-DMAP ($10 \mathrm{~mol} \%, 30.4 \mathrm{mg}, 249 \mu \mathrm{~mol}$) and alcohol 140 $(1.00 \mathrm{~g}, 2.48 \mathrm{mmol})$ as a solution in $\mathrm{DCM}(25 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and stirring was continued for 5 min . The reaction mixture was warmed to rt and stirring was continued for 15 h yielding a suspension. The reaction mixture was filtered and the filtrate was washed with aq. phosphate buffer (200 mM , $\mathrm{pH} 7,2 \times 15 \mathrm{~mL}$) and brine (15 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc 4:1) affording compound 176a as a colourless oil (963 mg , 77\%).
$[\alpha]_{\mathrm{D}}^{20}:+13.5\left(\mathrm{c}=1.10, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.50-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.32-7.26(\mathrm{~m}$, 6 H), $7.25-7.19$ (m, 3H), 4.35 (ddd, J = 10.8, 7.5, 5.1 Hz, 1H), 4.29-4.16 (m, 2H), 3.55 (td, J = 9.2, $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.11-3.03(m,2H), 2.76-2.61(m,2H), 2.60-2.43(m,2H), 2.15(dt, J=12.1, 7.0 Hz, 1 H), 2.10 ($\mathrm{s}, 3 \mathrm{H}$), 1.97 (dtd, J=13.8, $7.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.87 (ddt, J = 10.7, $9.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.74 (dddd, J = 14.2, 9.1, 6.8, $5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.44 (ddd, J = 12.2, 10.9, $8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.03 (d, J = 6.5 Hz ,

[^106]3H) ppm; ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.8,172.9,144.4$ (3C), 128.9 (6 C), 127.9 (6 C), 127.0 (3C), 86.5, 81.9, 77.2, 67.1, 62.7, 40.2, 38.1, 37.7, 33.0, 29.9, 28.2, 16.1 ppm; IR (film): $\tilde{v}=3085$, 3058, 3023, 2958, 2923, 2871, 1732, 1719, 1597, 1491, 1448, 1409, 1356, 1318, 1209, 1181, 1156, 1116, 1103, 1072, 1026, 990, 969, 927, 900, 869, 748, 700, 667, 645, 632, 606, 563, 534, 486, 444, $424 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Na}^{+}: 523.2455$, found: 523.2456.

2-((2R,3S,5S)-5-(Hydroxymethyl)-3-methyltetrahydrofuran-2-yl)ethyl 4-oxopentanoate (176b)

TFA ($2.81 \mathrm{~mL}, 36.7 \mathrm{mmol}$) was added to a stirred solution of protected alcohol 176a ($735 \mathrm{mg}, 1.47 \mathrm{mmol}$) in $\mathrm{DCM}(31 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and stirring was continued for 1 h . The reaction was quenched and neutralized with sat. aq. NaHCO_{3} and the aq. phase was extracted with EtOAc ($3 \times 25 \mathrm{~mL}$). The combined extracts were washed with brine $(25 \mathrm{~mL})$ and the solvent was evaporated. The crude product was dissolved in EtOAc (100 mL), sat. aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(25 \mathrm{~mL})$ was added and the resulting mixture was stirred at rt for 15 min . The aq. phase was extracted with EtOAc (50 mL). The organic extract was subsequently washed with water (50 mL) and brine (50 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 1:1 to 1:3) affording compound $\mathbf{1 7 6 b}$ as a colourless oil ($310 \mathrm{mg}, 82 \%$).
$[\alpha]_{\mathrm{D}}^{20}:+38.6\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.29-4.18(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{dtd}, \mathrm{J}=9.3$, $6.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{ddd}, \mathrm{J}=11.6,6.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.60-$ $2.53(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.76-$ $1.66(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{ddd}, \mathrm{J}=12.2,10.7,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=207.0,173.0,82.1,78.6,65.2,62.4,40.3,38.1,36.5,33.1,30.0,28.2,16.3 \mathrm{ppm} ;$ IR (film): $\tilde{v}=3384,2965,2926,1715,1637,1460,1405,1362,1304,1212,1161,1114,1064,1025$, 946, 764, 611, $571 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}^{+}$: 281.1359, found: 281.1355.

2-((2R,3S,5S)-5-Formyl-3-methyltetrahydrofuran-2-yl)ethyl 4-oxopentanoate (177)

DMSO ($50.8 \mu \mathrm{~L}, 715 \mu \mathrm{~mol})$ was added dropwise to a stirred solution of (COCl) ${ }_{2}$ ($30.7 \mu \mathrm{~L}, 358 \mu \mathrm{~mol}$) in DCM (1.1 mL) at $-78^{\circ} \mathrm{C}$ and stirring was continued for 5 min . Then alcohol 176b ($42 \mathrm{mg}, 0.16 \mathrm{mmol}$) as a solution in DCM (0.5 mL , rinsed with 0.5 mL) was added dropwise and stirring was continued for 30 min . DIPEA ($283 \mu \mathrm{~L}, 1.63 \mathrm{mmol}$) was slowly
added over the course of 5 min and stirring was continued for 5 min . Then the reaction mixture was allowed to reach rt and stirring was again continued for 2.5 h . The reaction was quenched with water (10 mL) and the organic extract was subsequently washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,2 \times 10 \mathrm{~mL}$) and with brine (10 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $3: 1$ to $2: 1$) affording compound 177 as a colourless oil ($28 \mathrm{mg}, 67 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.65(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.25(\mathrm{~m}, 2 \mathrm{H}), 4.24-4.17(\mathrm{~m}, 1 \mathrm{H}), 3.58$ (td, J = 8.6, 3.1 Hz, 1H), 2.78-2.73 (m, 2H), 2.60-2.55 (m, 2H), 2.36 (dt, J = 12.6, 7.6 Hz, 1H), 2.19 (s, 3H), 2.01-1.90 (m, 2H), $1.82-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{ddd}, \mathrm{J}=12.7,9.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~d}$, $\mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.8,203.0,172.8,83.9,81.9,62.1,39.4,38.1$, 36.1, 32.9, 30.0, 28.1, 16.3 ppm ; HRMS (ESI): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Na}^{+}: 279.1203$, found: 279.1202.

5.2.2.4.2. Building Block Coupling \& Elaboration

2-((2R,3S,5S)-5-((S)-1-Hydroxy-4-((2R,3S,4R,5R,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(2-methoxy-2-oxoethyl)tetrahydro-2H-pyran-2-yl)but-2-yn-1-yl)-3-methyltetrahydrofuran-2-yl)ethyl

 4-oxopentanoate (178)

TEA ($43.5 \mu \mathrm{~L}, 312 \mu \mathrm{~mol}$) was added to a stirred suspension of $\mathrm{Zn}(\mathrm{OTf})_{2}$ ($104 \mathrm{mg}, 286 \mu \mathrm{~mol}$) and (+) -N -methylephedrine ($51 \mathrm{mg}, 0.29 \mathrm{mmol}$) with $4 \AA$ MS in PhMe $(250 \mu \mathrm{~L})$ at rt and stirring was continued for 3 h . Then alkyne 35b ($61 \mathrm{mg}, 0.10 \mathrm{mmol}$) as a solution in $\mathrm{PhMe}(200 \mu \mathrm{~L}$, rinsed with $150 \mu \mathrm{~L}$) was dried over $4 \AA$ MS before it was added to the reaction mixture at rt and stirring was continued for 1.5 h . Then aldehyde 177 (28 mg , 0.11 mmol) as a solution in PhMe ($200 \mu \mathrm{~L}$, rinsed with $150 \mu \mathrm{~L}$) over $4 \AA \mathrm{MS}$ was added to the stirred reaction mixture at rt and stirring was continued for 3 d . The reaction was quenched with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,10 \mathrm{~mL}$) and the aq. phase was extracted with MTBE $(3 \times 10 \mathrm{~mL})$ and EtOAc ($3 \times 15 \mathrm{~mL}$). The combined extracts were subsequently washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,10 \mathrm{~mL}$) and brine (10 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by
flash chromatography (SiO_{2}, hexane/EtOAc, 5:1 to 2:1) affording both compound 178 ($12 \mathrm{mg}, 14 \%$) and some unreacted starting material $\mathbf{3 5 b}$ ($42 \mathrm{mg}, 69 \%$) as a colourless oil.
$[\alpha]_{\mathrm{D}}^{20}:+8.3\left(\mathrm{c}=1.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.32$ (ddd, J = 9.1, $6.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.28 - $4.17(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{t}$, $\mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{td}, \mathrm{J}=9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.66(\mathrm{~m}, 5 \mathrm{H}), 2.59-2.54$ $(\mathrm{m}, 2 \mathrm{H}), 2.48-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.72$ (ddt, J = 14.3, 8.5, 5.9 Hz, 1H), 1.39 (ddd, J = 12.6, 10.7, 8.6 Hz, 1H), 1.02 (d, J = $6.5 \mathrm{~Hz}, 3 \mathrm{H}$), $0.92(\mathrm{~s}, 9 \mathrm{H})$, $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}), 0.115(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.9,173.0,171.9,83.2,82.3,81.5,79.7,74.5,74.2,73.6,70.2$, $68.5,66.1,62.3,51.9,40.1,38.1,37.6,37.4,32.9,30.0,28.2,26.3$ (3C), 26.2 (3C), 25.9 (3C), 21.6, 18.5, 18.3, 18.0, 16.1, -3.4, -4.0, -4.1, -4.6 (2C), -4.9 ppm; IR (film): $\tilde{v}=3499,2954,2929,2896$, $2857,1737,1726,1472,1463,1436,1400,1360,1256,1159,1128,1093,1056,1006,974,925$, 890, 849, 813, 776, 674, 471, 438, 420, $408 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{42} \mathrm{H}_{78} \mathrm{O}_{11} \mathrm{Si}_{3} \mathrm{Na}^{+}: 865.4744$, found: 865.4744 .

Methyl

2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((S,E)-4-((2S,4S,5R)-4-methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)-4-

((trimethylsilyl)oxy)but-2-en-1-yl)tetrahydro-2H-pyran-2-yl)acetate (179)

TMSOTf ($7.5 \mu \mathrm{~L}, 42 \mu \mathrm{~mol}$) was added to a stirred solution of allylic alcohol $E-146$ ($26 \mathrm{mg}, 28 \mu \mathrm{~mol}$) and 2,6-lutidine ($6.5 \mu \mathrm{~L}, 55 \mu \mathrm{~mol}$) in DCM $(0.6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach rt and stirring was continued for 2 h . The reaction was diluted with MTBE $(10 \mathrm{~mL})$ and quenched with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7$, 10 mL). The organic extract was subsequently washed with water (5 mL) and brine (5 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 10:1) affording compound $\mathbf{1 7 9}$ as a colourless oil ($24 \mathrm{mg}, 86 \%$).
$[\alpha]_{\mathrm{D}}^{20}:+20.4\left(\mathrm{c}=1.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.72-7.56(\mathrm{~m}, 5 \mathrm{H}), 5.67(\mathrm{dt}, \mathrm{J}=15.5$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.48$ (dd, J = 15.7, $6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.31 (ddd, J = 9.2, 5.7, 3.7 Hz, 1H), $3.99-3.90(\mathrm{~m}, 2 \mathrm{H})$, $3.89-3.74(\mathrm{~m}, 4 \mathrm{H}), 3.66$ (s, 3H), $3.53-3.45$ (m, 3H), 2.77 (dd, J = 14.8, $5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.63 (dd, $\mathrm{J}=14.8,8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.39 (dt, J = 14.1, 6.7 Hz, 1H), 2.25 (dddd, J = 14.0, 11.3, 4.8, 3.0 Hz, 1H), 2.12
(dt, J = 13.7, 6.7 Hz, 1H), 2.07-1.91 (m, 2H), 1.85 (ddt, J=10.7, 8.8, 6.7 Hz, 1H), 1.37 (ddd, $J=12.2,10.9,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}$, $3 \mathrm{H}), 0.10(\mathrm{~s}, 12 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.075(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=172.0,153.6,133.2,131.6,131.1,129.8(2 \mathrm{C}), 129.6,125.3$ (2C), 82.8, 81.9, 76.4, 74.4, $73.9,73.8,71.5,69.9,53.8,51.7,39.8,37.5,37.2,34.3,26.4,26.3$ (3C), 26.2 (3C), 25.9 (3C), 18.5, 18.4, 18.0, 16.0, 0.6 (3C), -3.2, -3.9, $-4.2,-4.51,-4.54,-4.8 \mathrm{ppm}$; IR (film): $\tilde{v}=2954,2929,2888$, $2857,1741,1596,1498,1472,1463,1437,1389,1362,1346,1250,1157,1126,1084,1044,1006$, 975, 869, 832, 813, $774,688,673,634,532,507,475,423 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{47} \mathrm{H}_{86} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{Si}_{4} \mathrm{SNa}^{+}: 1033.5034$, found: 1033.5047 .

5.2.3. The Western Belizentrin Fragment - Final Route

5.2.3.1. The C-Glucoside Building Block - A New Synthesis

(((2R,3S,4R,5R,6R)-2-Allyl-6-(((tert-butyldimethylsilyl)oxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl)tris(oxy))tris(tert-butyldimethylsilane) (40c)

Procedure B (TBSOTf, 2,6-lutidine)

TBSOTf ($36.7 \mathrm{~mL}, 160 \mathrm{mmol}$) was slowly added to a stirred suspension of C-glucoside 40 b ($5.44 \mathrm{~g}, 26.6 \mathrm{mmol}$) and 2,6-lutidine ($24.8 \mathrm{~mL}, 213 \mathrm{mmol}$) in DCM (135 mL) at $0^{\circ} \mathrm{C}$ over the course of 30 min . The reaction mixture was allowed to reach rt and stirring was continued for 2.25 h . Then 2,6 -lutidine ($6.20 \mathrm{~mL}, 53.2 \mathrm{mmol}$) and TBSOTf ($6.11 \mathrm{~mL}, 26.6 \mathrm{mmol}$) were subsequently added to the stirred reaction mixture at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach rt and stirring was continued for 17 h . The reaction was diluted with MTBE (200 mL) and cautiously poured into aq. $\mathrm{HCl}(1.0 \mathrm{M}, 100 \mathrm{~mL}$). The extract was washed with water $(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 100:1 to 20:1) affording compound 40c as a colourless oil (16.9 g, 96\%). The analytical and spectroscopic data of the isolated compound were identical with those shown above.

((2R,3R,4R,5S,6R)-6-Allyl-3,4,5-tris((tert-butyldimethylsilyl)oxy)tetrahydro-2H-pyran-2-

yl)methanol (184)

HF.py (12.5\% in THF/py $2.5: 1,13.8 \mathrm{~mL}, 19.2 \mathrm{mmol}$) was added to a stirred solution of TBS-protected alcohol 40c ($911 \mathrm{mg}, 1.38 \mathrm{mmol}$) in THF (29 mL) at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was allowed to reach rt over 30 min and stirring was continued for 16 h . The reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and the aq. phase was extracted with MTBE ($3 \times 75 \mathrm{~mL}$). The combined extracts were washed with brine (75 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $40: 1$ to 20:1) affording both minor isomer epi-184 (81 mg, 11\%) and desired major isomer 184 (647 mg, $86 \%)$ as a colourless oil.

Analytical and spectral data of the major epimer 184: $[\alpha]_{\mathrm{D}}^{20}:+18.5\left(\mathrm{c}=1.23, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=5.87$ (ddt, J = 17.1, 10.2, $6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $5.14(\mathrm{dq}, \mathrm{J}=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.09$ (ddt, $J=10.3,2.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{ddd}, \mathrm{J}=8.6,5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{ddd}, \mathrm{J}=9.1,4.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ $-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.78$ (ddd, J = 11.5, $8.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.60-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.55$ (ddd, J = 11.4, 8.6, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dt}, \mathrm{J}=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dddt}, \mathrm{J}=14.3,8.7,7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$ (dddt, $J=14.2,7.0,4.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.04 (dd, J = 8.6, $3.5 \mathrm{~Hz}, 1 \mathrm{H}$), $0.93(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$, $0.115(\mathrm{~s}, 3 \mathrm{H}), 0.105(\mathrm{~s}, 3 \mathrm{H}), 0.085(\mathrm{~s}, 6 \mathrm{H}), 0.075(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=135.8,117.2,76.6,74.8,72.3,72.0,69.7,61.9,35.8,26.2$ (3C), 26.2 (3C), 25.9 (3C), 18.4, 18.3, 18.0, -3.5, -3.9, -4.0, -4.5, -4.7, -4.9 ppm; IR (film): $\tilde{v}=3485,2953,2929,2886,2858,1642$, 1472, 1463, 1433, 1406, 1389, 1361, 1322, 1253, 1187, 1130, 1088, 1005, 963, 939, 911, 881, 858, 833, $813,774,670,666,568,494,479,466,448,434,426,413 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{58} \mathrm{O}_{5} \mathrm{Si}_{3} \mathrm{Na}^{+}$: 569.3484 , found: 569.3487.

Analytical and spectral data of the minor epimer epi-184: $[\alpha]_{\mathrm{D}}^{20}:-1.5\left(\mathrm{c}=1.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}$

$\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=5.99$ (ddt, J = 17.2, 10.3, $6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 5.18 (ddt, J = 17.2, 2.2, 1.5 Hz, 1H, H-10a), 5.08 (ddt, J = 10.3, 2.3, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{~b}$), 3.99 (ddd, $J=5.0,2.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.94(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.88-3.82(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-7$ and H-3 and H-1a), 3.80 (ddd, J=4.7, 2.1, $1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), $3.76-3.70$ (m, $1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}$), $2.62-2.56$ (m, 1H, H-8a), $2.53-2.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{~b}), 1.86(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 0.98(\mathrm{~s}, 9 \mathrm{H}, \mathrm{t}-\mathrm{Bu}), 0.97(\mathrm{~s}, 9 \mathrm{H}$, t-Bu), 0.96 ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$), 0.17 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.155 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.15 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.14 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.10 (s, 3H, Me), 0.09 (s, 3H, Me) ppm; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=135.6$ (C-9), 117.1 (C-10), 80.8 (C3), 80.0 (C-7), 78.2 (C-5), 75.1 (C-6), 72.3 (C-4), $64.0(\mathrm{C}-2), 39.2$ (C-8), 26.1 ($6 \mathrm{C} t-\mathrm{Bu}$), 26.0 (3C $t-\mathrm{Bu}$), 18.2 (2C t-Bu), 18.1 ($t-\mathrm{Bu}$), -3.6 (Me), -3.8 (Me), -4.0(Me), -4.1 (Me), -4.4 (Me), -4.6 (Me) ppm; IR (film): $\tilde{v}=3484,2953,2929,2894,2857,1642,1472,1463,1389,1361,1342,1251,1085,1005$, 938, $914,880,853,831,813,772,670,576,520,472,418 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{58} \mathrm{O}_{5} \mathrm{Si}_{3} \mathrm{Na}^{+}$: 569.3484 , found: 569.3488 .

(2S,3R,4R,5S,6R)-6-Allyl-3,4,5-tris((tert-butyldimethylsilyl)oxy)tetrahydro-2H-pyran-2-

 carbaldehyde (185)

DMSO ($377 \mu \mathrm{~L}, 5.31 \mathrm{mmol})$ was added dropwise to a stirred solution of $(\mathrm{COCl})_{2}$ $(228 \mu \mathrm{~L}, 2.65 \mathrm{mmol})$ in $\mathrm{DCM}(8.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 5 min . A solution of alcohol $184(660 \mathrm{mg}, 1.21 \mathrm{mmol})$ in DCM (2.5 mL ,
rinsed with $2 \times 2.5 \mathrm{~mL}$) was added dropwise and stirring was continued for 20 min . DIPEA (2.10 mL , 12.1 mmol) was slowly added over the course of 5 min and stirring was continued for 5 min . Then the reaction mixture was allowed to reach rt and stirring was again continued for 30 min . The reaction was quenched with water $(20 \mathrm{~mL})$ and the organic extract was subsequently washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,2 \times 15 \mathrm{~mL}$) and with brine (15 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 50:1) affording compound 185 as a colourless oil ($589 \mathrm{mg}, 90 \%$).
$[\alpha]_{\mathrm{D}}^{20}:+67.9$ (c = 1.11, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.78(\mathrm{~s}, 1 \mathrm{H}), 5.95$ (ddt, J=17.1, 10.3, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dq}, \mathrm{J}=17.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dq}, \mathrm{J}=10.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.14(\mathrm{~m}, 1 \mathrm{H}), 4.05-$ $3.99(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{t}, \mathrm{J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.33(\mathrm{~m}, 1 \mathrm{H}), 2.57$ (dddt, J = 14.8, 8.2, 6.4, 1.5 Hz, 1H), 2.19 (dddt, J = 14.7, 7.3, 4.9, 1.4 Hz, 1H), 0.94 (s, 9H), 0.93 (s, 9H), $0.84(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.115$ (s, 3H), $0.11(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.3,135.4,116.9,84.0,71.4,71.1,70.2,70.1,36.0,26.5(3 C), 26.3(3 C), 25.7$ (3C), 18.8, 18.4, 17.9, -3.2, -4.2, -4.5, -4.6, -4.7, -4.9 ppm ; IR (film): $\tilde{v}=2952,2929,2886,2858,1734,1643,1472$, 1463, 1390, 1362, 1305, 1252, 1131, 1086, 1041, 1005, 968, 939, 914, 882, 831, 812, 773, 673, 666, 600, 573, 538, $466 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{56} \mathrm{O}_{5} \mathrm{Si}_{3} \mathrm{Na}^{+}: 567.3328$, found: 567.3331.

2-(Trimethylsilyl)ethyl

2-((2R,3R,4R,5S,6R)-6-allyl-3,4,5-tris((tert-

butyldimethylsilyl)oxy)tetrahydro-2H-pyran-2-yl)acetate (183a)

A solution of KOt-Bu ($206 \mathrm{mg}, 1.84 \mathrm{mmol}$) in THF (1.0 mL , rinsed with 1.0 mL) was dried over 5 Å MS before it was slowly added to a stirred suspension of phosphonium salt 61a ($787 \mathrm{mg}, 1.84 \mathrm{mmol}$) in THF (3.5 mL) with $5 \AA \mathrm{MS}$ at $-50^{\circ} \mathrm{C}$ over the course of 5 min resulting in a fast colour change from colourless to deep red. Stirring was continued for 15 min . Then the reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and a solution of aldehyde 185 ($500 \mathrm{mg}, 917 \mu \mathrm{~mol}$) in THF (1.5 mL , rinsed with $2 \times 1.5 \mathrm{~mL}$) with $5 \AA \mathrm{MS}$ was slowly added over the course of 5 min . The resulting reaction mixture was allowed to reach $r t$ and stirring was continued for 16 h . The reaction was quenched with water $(20 \mathrm{~mL})$ and the aq. phase was extracted with MTBE ($3 \times 30 \mathrm{~mL}$). The combined extracts were washed with brine $(2 \times 5.0 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated.

The crude product was purified by flash chromatography (fine SiO_{2}, hexane/EtOAc, 100:1 to 75:1) affording intermediate 186a as an inseparable mixture of E / Z isomers ($502 \mathrm{mg}, 83 \%$).

PCC ($315 \mathrm{mg}, 1.46 \mathrm{mmol}$) was added to a stirred solution of the E / Z mixture of enolether 186a ($502 \mathrm{mg}, 731 \mu \mathrm{~mol}$) in DCM (42 mL) at rt and the reaction mixture was stirred for 16 h . PCC ($78.8 \mathrm{mg}, 366 \mu \mathrm{~mol}$) was added to the reaction mixture and stirring was continued for 1 h . Celite ${ }^{\circledR}$ was added and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 100:1) affording both minor isomer epi-183a (109 mg, 22\%) and desired major isomer 183a (298 mg, 60\%) as a colourless oil.

Analytical and spectral data of the major epimer 183a: $[\alpha]_{\mathrm{D}}^{20}:+24.6$ (c=1.08, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.83$ (dddd, J = 17.4, 10.2, $7.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.07 (dq, J = $17.2,1.6 \mathrm{~Hz}$, 1 H), 5.01 (ddt, J = 10.2, 2.3, 1.2 Hz, 1H), $4.34(\mathrm{td}, \mathrm{J}=7.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.85$ (ddd, $J=8.8,4.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, \mathrm{J}=2.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.45$ (m, 2H), 2.45 (dddt, J = 14.9, 9.1, 6.3, 1.6 Hz, 1H), 2.09 (dddt, J = 14.5, 7.2, 4.6, 1.2 Hz, 1H), $1.01-$ $0.96(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}), 0.095(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.075(\mathrm{~s}$, $3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.7,136.0,116.4,74.6,74.1$, $74.0,71.7,69.5,62.7,37.9,35.7,26.3$ (3C), 26.2 (3C), 25.9 (3C), 18.5, 18.4, 18.0, 17.5, -1.4 (3C), 3.3, -3.9, -4.1, -4.5 (2C), -4.9 ppm; IR (film): $\tilde{v}=2953,2929,2895,2858,1735,1642,1472,1463$, $1408,1389,1361,1324,1250,1168,1120,1080,1005,972,939,910,859,830,813,772,694$, 672, 669, 608, 559, 472, 428, $419 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{70} \mathrm{O}_{6} \mathrm{Si}_{4} \mathrm{Na}^{+}$: 697.4142, found: 697.4145.

Analytical and spectral data of the minor epimer epi-183a: $[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}:+17.4$ (c=1.04, CHCl_{3});

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.88$ (dddd, J = 17.4, 10.2, $7.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.07 (dq, J = 17.3, 1.8 Hz, 1H), 4.99 (dq, J = 10.2, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.12(\mathrm{~m}, 2 \mathrm{H})$, 4.09 (ddd, J = 8.4, 5.0, $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.78(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65 (ddd, J = 9.4, 3.9, $1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.43-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{dd}, \mathrm{J}=15.9,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (dddt, $\mathrm{J}=11.3,9.3,5.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, \mathrm{J}=15.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.02$ (ddd, J = 14.9, $7.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), $1.01-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.095(\mathrm{~s}, 3 \mathrm{H})$, $0.09(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.035(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$): $\delta=172.0$, $136.3,115.8,76.7,73.5,73.9,72.0,71.6,62.6,37.3,35.9,26.52$ (3C), 26.50 (3C), 25.9 (3C), 18.6, 18.5, 18.0, 17.5, -1.3 (3C), -2.9, -3.1, -4.31, $-4.34,-4.8,-5.0 \mathrm{ppm}$; $\operatorname{IR}($ film $): \tilde{v}=2953,2929,2895$,

2858, 1735, 1642, 1545, 1472, 1463, 1407, 1389, 1361, 1347, 1285, 1251, 1217, 1174, 1086, 1079, 1019, 1005, 983, 938, 913, 892, 858, 830, 813, 770, 694, 674, 611, 586, 563, 503, 463, $408 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{70} \mathrm{O}_{6} \mathrm{Si}_{4} \mathrm{Na}^{+}$: 697.4142, found: 697.4145.

Methyl 2-((2R,3R,4R,5S,6R)-6-allyl-3,4,5-tris((tert-butyldimethylsilyl)oxy)tetrahydro-2H-pyran-2yl)acetate (183b)

A solution of KOt -Bu ($824 \mathrm{mg}, 7.34 \mathrm{mmol}$) in THF (4.0 mL , rinsed with 4.0 mL) was dried over $5 \AA$ MS before it was slowly added to a stirred suspension of phosphonium salt $61 \mathrm{~b}(2.52 \mathrm{~g}, 7.34 \mathrm{mmol})$ in THF (17 mL) with $5 \AA \mathrm{MS}$ at $-50^{\circ} \mathrm{C}$ over the course of 25 min resulting in a fast colour change from colourless to deep orange. Stirring was continued for 10 min . Then the reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and after 10 min aldehyde 185 ($2.00 \mathrm{~g}, 3.67 \mathrm{mmol}$) as a solution in THF (4.0 mL , rinsed with 4.0 mL) over $5 \AA \mathrm{MS}$ was slowly added over the course of 15 min . The resulting reaction mixture was allowed to reach rt and stirring was continued for 17.5 h . The reaction was quenched with water (25 mL) and the aq. phase was extracted with MTBE ($2 \times 50 \mathrm{~mL}$). The combined extracts were washed with brine $\left(50 \mathrm{~mL}\right.$), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 50:1 to 20:1) affording intermediate 186 b as an inseparable mixture of E / Z isomers ($1.85 \mathrm{~g}, 88 \%$).

PCC ($1.39 \mathrm{~g}, 6.44 \mathrm{mmol}$) was added to a stirred solution of the E / Z mixture of enolether 186b ($1.85 \mathrm{~g}, 3.22 \mathrm{mmol}$) in DCM (185 mL) at rt and the reaction mixture was stirred for 6 h . PCC ($347 \mathrm{mg}, 1.61 \mathrm{mmol}$) was added to the reaction mixture and stirring was continued for 17 h . PCC ($347 \mathrm{mg}, 1.61 \mathrm{mmol}$) was added to the reaction mixture and stirring was continued for 30 min . Celite ${ }^{\circledR}$ was added and the solvent was evaporated. The crude product was purified by flash chromatography (fine SiO_{2}, hexane/EtOAc, 100:1 to $40: 1$) affording both minor isomer epi-183b ($340 \mathrm{mg}, 18 \%$) and desired major isomer 183b (1.16 g, 61\%) as a colourless oil each.

Analytical and spectral data of the major epimer 183b: $[\alpha]_{\mathrm{D}}^{20}$: +22.9 ($\mathrm{c}=1.02, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=5.82$ (ddt, J = 17.1, 10.2, $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.08(\mathrm{dq}, \mathrm{J}=17.2,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.03 (ddt, J = 10.2, 2.2, 1.2 Hz, 1H), 4.33 (ddd, J = 9.2, $5.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.85 (ddd, J = 9.0, 4.5, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.47(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{dd}, \mathrm{J}=14.6,8.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.68 (dd, J = 14.5, $5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.45 (dddt, J = 14.5, 9.3, 6.4, 1.5 Hz, 1H), 2.07 (dddt, J = 14.3, 7.2,
$4.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}), 0.075(\mathrm{~s}, 3 \mathrm{H}), 0.07$ (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=172.0,135.9,116.4,74.5,74.1,73.9,71.7,69.5,51.7$, 37.5, 35.8, 26.3 (3C), 26.2 (3C), 25.9 (3C), 18.5, 18.4, 18.0, -3.3, -4.0, -4.1, -4.5 (2C), -4.9 ppm ; IR (film): $\tilde{v}=2952,2929,2886,2858,1743,1472,1463,1436,1409,1390,1361,1339,1253,1124$, 1082, 1005, 939, 911, 833, 813, 774, 673, 666, 559, 486, $427 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{60} \mathrm{O}_{6} \mathrm{Si}_{3} \mathrm{Na}^{+}$: 611.3590, found: 611.3593.

Analytical and spectral data of the minor epimer epi-183b: $[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}:+10.5$ (c=1.03, CHCl_{3});
 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.87$ (dddd, $\mathrm{J}=17.5,10.3,7.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.07 (dq, J = 17.3, 1.8 Hz, 1H), $5.01(d q, J=10.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (ddd, J = 8.5, 5.1, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.65$ (ddd, J = 9.7, $3.9,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.43-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, \mathrm{J}=15.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.48$ (dddt, J=15.0, 9.2, 5.6, 1.7 Hz, 1H), 2.43 (dd, J = 15.9, $5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.02 (dddt, J = 15.0, 7.3, 4.0, 1.2 Hz, 1H), 0.925 $(\mathrm{s}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.095(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$, 0.02 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=172.4,136.2,115.8,76.7,73.5,73.3,72.0,71.5$, 51.6, 36.9, 35.8, 26.51 (3C), 26.48 (3C), 25.9 (3C), 18.6, 18.5, 18.0, -2.9, -3.1, $-4.32,-4.34,-4.8,-$ 5.1 ppm; IR (film): $\tilde{v}=2952,2929,2887,2858,1742,1473,1463,1436,1406,1390,1379,1361$, $1349,1288,1252,1195,1162,1137,1121,1085,1071,1005,982,939,914,869,830,813,770$, 674, 593, 564, 509, $463 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{60} \mathrm{O}_{6} \mathrm{Si}_{3} \mathrm{Na}^{+}$: 611.3590, found: 611.3593.

2-(Trimethylsilyl)ethyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(3-hydroxy-2-oxopropyl)tetrahydro-2H-pyran-2-yl)acetate (187a)

Procedure A

A solution of $\mathrm{KMnO}_{4}(47 \mathrm{mg}, 0.30 \mathrm{mmol})$ as a solution in acetone $(0.75 \mathrm{~mL})$ and aq. acetate buffer ($1.0 \mathrm{M}, \mathrm{pH} 3,0.75 \mathrm{~mL}$) was added to a stirred solution of alkene 183a ($100 \mathrm{mg}, 148 \mu \mathrm{~mol}$) in acetone (1.5 mL) and aq. acetate buffer ($1.0 \mathrm{M}, \mathrm{pH} 3,1.5 \mathrm{~mL}$) at rt . The reaction mixture was warmed to $40{ }^{\circ} \mathrm{C}$ and stirring was continued for 20 h . A solution of KMnO_{4} ($47 \mathrm{mg}, 0.30 \mathrm{mmol}$) in acetone $(0.75 \mathrm{~mL})$ and aq. acetate buffer ($1.0 \mathrm{M}, \mathrm{pH} 3,0.75 \mathrm{~mL}$) was added to the reaction mixture at $40^{\circ} \mathrm{C}$ and stirring was continued for 1 d . The reaction mixture was filtered through a plug of SiO_{2} which was washed with acetone. The solvent was evaporated and the crude product was purified by flash chromatography twice (first column: SiO_{2}, hexane/EtOAc, 20:1 to $10: 1$, second column:
SiO_{2}, hexane/EtOAc, 20:1 to 7:1) affording both the desired major compound 187 a ($47 \mathrm{mg}, 45 \%$) and a minor byproduct 188 ($32 \mathrm{mg}, 31 \%$) as a colourless oil.

Procedure B

A solution of $\mathrm{KMnO}_{4}(187 \mathrm{mg}, 1.18 \mathrm{mmol})$ in acetone $(2.45 \mathrm{~mL})$ and water $(0.8 \mathrm{~mL})$ was added to a stirred solution of alkene 183a ($500 \mathrm{mg}, 741 \mu \mathrm{~mol}$) in acetone (6.25 mL), water (1.4 mL) and AcOH $(302 \mu \mathrm{~L})$ at rt and the reaction mixture was stirred for 3.5 h . $\mathrm{KMnO}_{4}(23 \mathrm{mg}, 0.15 \mathrm{mmol})$ was added to the reaction mixture and stirring was continued for 1.25 h . The reaction was quenched with $\mathrm{EtOH}(1.0 \mathrm{~mL})$ and the resulting mixture was filtered through a plug of SiO_{2} which was washed with MTBE. The filtrate was washed with sat. aq. $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{~mL})$ and the aq. phase was extracted with MTBE ($2 \times 30 \mathrm{~mL}$). The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 10:1) affording the desired compound 187a as a colourless oil ($375 \mathrm{mg}, 72 \%$).

Analytical and spectral data of the major product 187 a : $[\alpha]_{\mathrm{D}}^{20}:+33.2\left(\mathrm{c}=1.13, \mathrm{CHCl}_{3}\right)$;
 ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=4.36-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{dd}, \mathrm{J}=9.0,4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.30(\mathrm{dd}, \mathrm{J}=19.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, \mathrm{J}=19.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.12$ (m, 2H), 3.80 (dd, J = 3.2, 1.5 Hz, 1H), 3.62 (td, J = 3.0, 1.0 Hz, 1H), 3.48 (dt, $J=4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, \mathrm{J}=15.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, \mathrm{J}=15.3,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.58(\mathrm{dd}, \mathrm{J}=15.3,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dd}, \mathrm{J}=15.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.00-0.95(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H})$, $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.115(\mathrm{~s}, 6 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}$, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=209.5,171.7,74.5,74.1,73.4,71.8,69.3,67.2,62.9,40.7$, 37.6, 26.3 (3C), 26.2 (3C), 25.9 (3C), 18.4, 18.3, 18.0, 17.4, -1.4 (3C), -3.5, -3.8, -4.1, -4.5, -4.6, 5.1 ppm; IR (film): $\tilde{v}=3496,2954,2929,2896,2858,1731,1472,1463,1407,1389,1361,1325$, $1251,1171,1122,1087,1042,1005,977,938,883,860,833,813,775,694,671,633,611,576$, 551, 545, 508, 499, 466, 459, 440, 433, 425, 418, $403 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{70} \mathrm{O}_{8} \mathrm{Si}_{4} \mathrm{Na}^{+}$: 729.4040, found: 729.4040.

Analytical and spectral data of the minor byproduct 188: $[\alpha]_{\mathrm{D}}^{20}:+31.6\left(\mathrm{c}=0.82, \mathrm{CHCl}_{3}\right)$;
 H-6), 3.51 (dt, J = 5.5, 1.2 Hz, 1H, H-4), 2.85 (dd, J = 15.6, 9.7 Hz, 1H, H-8a), 2.74 (dd, J = 16.0,
4.2 Hz, 1H, H-2a), 2.61 (dd, J = 16.0, $9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 2.35 (dd, J = 15.6, 3.5 Hz, 1H, H-8b), $1.01-$ 0.97 (m, 2H, H-12), 0.93 (s, 9H, t-Bu), 0.89 (s, 18H, t-Bu), 0.12 (s, 3H, Me), 0.11 (s, 3H, Me), 0.105 (s, 3H, Me), 0.10 (s, 3H, Me), 0.09 (s, 3H, Me), 0.06 (s, 3H, Me), 0.03 (s, 9H, TMS) ppm; ${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}): $\delta=173.6(\mathrm{C}-9), 172.2(\mathrm{C}-1), 74.8(\mathrm{C}-4), 74.5(\mathrm{C}-5), 72.8(\mathrm{C}-3), 71.6(\mathrm{C}-6)$, 67.8 (C-7), 63.4 (C-11), 37.4 (C-2), 36.7 (C-8), 26.2 (3C $t-B u$), 26.2 (3C $t-B u), 25.9$ (3C $t-B u), 18.4(t-$ $\mathrm{Bu}), 18.3(t-\mathrm{Bu}), 18.0(t-\mathrm{Bu}), 17.4(\mathrm{C}-12),-1.4(3 \mathrm{C}, \mathrm{TMS}),-3.6(\mathrm{Me}),-3.7(\mathrm{Me}),-4.1(\mathrm{Me}),-4.5(\mathrm{Me}),-$ $4.7(\mathrm{Me}),-5.2(\mathrm{Me}) \mathrm{ppm} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=10.27$ (br s, 1H), 4.69 (ddd, J = 8.1, 5.9, $4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 4.62 (ddd, J = 7.5, 6.0, 2.5 Hz, 1H, H-7), $4.26-4.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-11), 4.01$ (dd, J = 3.2, $1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.88-3.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 3.82$ (ddd, J=4.5, 1.6, $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-4$), 3.07 (dd, $J=15.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.91 (dd, J = 16.4, 7.5 Hz, 1H, H-8a), 2.86 (dd, J = 15.4, 8.1 Hz, 1H, H-2b), 2.70 (dd, J = 16.5, $6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{~b}$), 1.02 ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$), 0.99 ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$), 0.98 ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$), $0.96-$ 0.93 (m, 2H, H-12), 0.20 (s, 3H, Me), 0.19 (s, 3H, Me), 0.17 (s, 3H, Me), 0.16 (s, 6H, Me), 0.07 (s, 3H, Me), -0.07 (s, 9H, TMS) ppm; ${ }^{13}$ C NMR (151 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=175.4$ (C-9), 171.4 (C-1), 75.1 (C-5), 74.3 (C-4), 73.9 (C-3), 71.5 (C-6), 67.1 (C-7), 62.7 (C-11), 37.7 (C-2), 36.5 (C-8), 26.4 (3C $t-B u), 26.3$ (3C $t-$ $B u), 26.0(3 C t-B u), 18.5$ ($t-B u$), 18.4 ($t-B u$), 18.1 ($t-B u$), 17.6 (C-12), -1.4 (3C, TMS), -3.3 (Me), -3.7 (Me), -4.2 (Me), -4.48 (Me), -4.50 (Me), -5.2 (Me) ppm; IR (film): $\tilde{v}=2953,2929,2896,2858,1733$, 1711, 1472, 1463, 1407, 1390, 1362, 1251, 1170, 1126, 1084, 1063, 1005, 977, 938, 858, 831, 813, 773, 756, 693, 666, 553, $471 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{32} \mathrm{H}_{68} \mathrm{O}_{8} \mathrm{Si}_{4} \mathrm{Na}^{+}: 715.3884$, found: 715.3886.

Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(3-hydroxy-2-oxopropyl)tetrahydro-2H-pyran-2-yl)acetate (187b)

TBSOO	A solution of $\mathrm{KMnO}_{4}(159 \mathrm{mg}, 1.01 \mathrm{mmol})$ in acetone $(2.45 \mathrm{~mL})$ and water
$(0.8 \mathrm{~mL})$ was added to a stirred solution of alkene $\mathbf{1 8 3 b}(370 \mathrm{mg}, 628 \mu \mathrm{~mol})$ in	
acetone $(6.25 \mathrm{~mL})$, water $(1.4 \mathrm{~mL})$ and $\mathrm{AcOH}(302 \mu \mathrm{~L})$ at rt and the reaction	

$[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}$: $+34.5\left(\mathrm{c}=1.10, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=4.36-4.25(\mathrm{~m}, 3 \mathrm{H}), 4.21$ (dd, J=19.3, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, \mathrm{J}=3.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{dt}, \mathrm{J}=4.4,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.09(\mathrm{t}, \mathrm{J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, \mathrm{J}=15.2,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, \mathrm{J}=15.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63$ (dd, $\mathrm{J}=15.3,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dd}, \mathrm{J}=15.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.115(\mathrm{~s}$, $3 H), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.105(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=209.5,172.0,74.4,73.9,73.5,71.8,69.4,67.1,51.8,40.7,37.2,26.3$ (3C), 26.2 (3C), 25.9 (3C), 18.4, 18.3, 18.0, -3.5, -3.9, -4.1, -4.5, -4.6, -5.1 ppm; IR (film): $\tilde{v}=3505,2953,2929$, 2896, 2858, 1739, 1472, 1463, 1437, 1390, 1361, 1341, 1253, 1171, 1122, 1083, 1005, 938, 893, 867, 831, 812, 773, 672, 547, $475 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{60} \mathrm{O}_{8} \mathrm{Si}_{3} \mathrm{Na}^{+}$: 643.3488, found: 643.3489.

2-(Trimethylsilyl)ethyl 2-((2R,3R,4R,5S,6R)-6-(3-bromo-2-oxopropyl)-3,4,5-tris((tert-butyldimethylsilyl)oxy)tetrahydro-2H-pyran-2-yl)acetate (189a)

Procedure A (PPh ${ }_{3}$ (195a) as solution, successive addition and excess of reagents)

A solution of $\mathrm{PPh}_{3}(195 \mathrm{a})(82 \mathrm{mg}, 312 \mu \mathrm{~mol})$ in $\mathrm{DCM}(0.81 \mathrm{~mL})$ was added to a stirred solution of α-hydroxyketone 187a ($210 \mathrm{mg}, 297 \mu \mathrm{~mol}$) and $\mathrm{CBr}_{4}(103 \mathrm{mg}, 312 \mu \mathrm{~mol})$ in DCM $(3.0 \mathrm{~mL})$ at rt over the course of 15 min , and stirring was continued for 30 min . Then $\mathrm{CBr}_{4}(49 \mathrm{mg}, 149 \mu \mathrm{~mol})$ and PPh_{3} (195a) ($39 \mathrm{mg}, 149 \mu \mathrm{~mol}$) were subsequently added to the reaction mixture and stirring was continued for 30 min . Then, $\mathrm{CBr}_{4}(10 \mathrm{mg}, 30 \mu \mathrm{~mol})$ and $\mathrm{PPh}_{3}(195 \mathrm{a})(8 \mathrm{mg}, 30 \mu \mathrm{~mol})$ were subsequently added to the reaction mixture and stirring was continued for 15 min . The reaction mixture was filtered through a plug of silica gel, and washed with MTBE. The solvent was evaporated and the crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 50:1) affording the desired major compound 189 a ($185 \mathrm{mg}, 81 \%$) and both a major byproduct 190a ($32 \mathrm{mg}, 16 \%$) and a minor byproduct 191 ($7 \mathrm{mg}, 4 \%$) as a colourless oil.

Procedure B (2 eq. of both reagents right from the start)

PPh_{3} (195a) ($15 \mathrm{mg}, 0.06 \mathrm{mmol}$) was added to a stirred solution of α-hydroxyketone 187 a (38 mg , $54 \mu \mathrm{~mol})$ and $\mathrm{CBr}_{4}(19 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{DCM}(0.7 \mathrm{~mL})$ at rt and the reaction mixture was stirred for 35 min . Then $\mathrm{CBr}_{4}(9 \mathrm{mg}, 27 \mu \mathrm{~mol})$ and PPh_{3} (195a) ($7 \mathrm{mg}, 27 \mu \mathrm{~mol}$) were subsequently added to the reaction mixture and stirring was continued for 20 min . The reaction mixture was filtered through a plug of silica gel, and washed with MTBE. The solvent was evaporated and the crude
product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 50:1) affording compound 189a as a colourless oil ($41 \mathrm{mg}, 99 \%$).

Analytical and spectral data of the major product 189a: $[\alpha]_{\mathrm{D}}^{20}$: +51.0 ($\mathrm{c}=0.96, \mathrm{CHCl}_{3}$);
 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.35-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.19-4.12(\mathrm{~m}, 2 \mathrm{H}), 4.06-$ $3.98(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{dd}, \mathrm{J}=3.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{td}, \mathrm{J}=2.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48$ (dt, J = 4.9, 1.9 Hz, 1H), 3.13 (dd, J = 15.7, $8.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.70(\mathrm{dd}, \mathrm{J}=15.3$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.58$ (dd, J = 15.3, $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.51$ (dd, J = 15.8, $4.1 \mathrm{~Hz}, 1 \mathrm{H}$), $1.01-0.96$ (m, 2H), 0.94 (s, 9H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.105(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}$, 12H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.05,171.77,74.52,74.22,73.32,71.71,67.54,62.91$, $42.12,37.62,36.31,26.26$ (3C), 26.18 (3C), 25.90 (3C), 18.42, 18.31, 18.00, 17.47, -1.34 (3C), -3.51, $-3.82,-4.09,-4.52,-4.60,-5.04 \mathrm{ppm} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=4.68$ (ddd, J = 8.5, 5.5, 4.2 Hz, 1H), 4.63 (ddd, J = 7.8, 4.8, 2.4 Hz, 1H), $4.29-4.21(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{dd}, \mathrm{J}=3.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-$ $3.76(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, \mathrm{J}=16.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.99$ (dd, J = 15.5, 5.7 Hz, 1H), 2.89 (dd, J = 15.5, 8.5 Hz, 1H), 2.52 (dd, J = 16.3, 4.8 Hz, 1H), $1.05(\mathrm{~s}, 9 \mathrm{H})$, $0.99(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.97-0.92(\mathrm{~m}, 2 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.165(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H})$, $0.15(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}),-0.06(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=199.5,171.3,75.0,74.3$, 73.9, 72.0, 67.4, 62.7, 41.8, 37.6, 36.0, 26.4 (3C), 26.4 (3C), 26.0 (3C), 18.6, 18.5, 18.1, 17.6, -1.5 (3C), -3.3, -3.7, -4.2, -4.46, -4.47, -5.0 ppm; IR (film): $\tilde{v}=2953,2929,2896,2858,1731,1472,1463$, 1390, 1361, 1327, 1250, 1171, 1084, 1040, 1006, 973, 938, 859, 831, 812, 773, 694, 672, 608, 573, 551, $473 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{69} \mathrm{O}_{7} \mathrm{Br}_{1} \mathrm{Si}_{4} \mathrm{Na}^{+}: 791.3196$, found: 791.3197.

Analytical and spectral data of the major byproduct 190a: $[\alpha]_{\mathrm{D}}^{20}:+25.9$ ($\mathrm{c}=1.01, \mathrm{CHCl}_{3}$);
 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.34-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.17-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.79$ (dd, J = 3.2, 1.6 Hz, 1H), 3.67-3.64 (m, 1H), 3.50 (dt, J=4.5, 1.3 Hz, 1H), 2.82 (dd, J = 16.8, $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.74 (dd, J = 15.2, $5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.61 ($\mathrm{dd}, \mathrm{J}=15.2$, $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, \mathrm{J}=16.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.00-0.95(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}$, 9 H), 0.89 (s, 9H), 0.13 (s, 3H), $0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}), 0.01$ ($\mathrm{s}, 3 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=207.7,171.8,74.5,74.1,73.6,71.4,66.6,62.7,45.3$, 37.7, 31.0, 26.3 (3C), 26.2 (3C), 25.9 (3C), 18.5, 18.3, 18.0, 17.5, -1.4 (3C), -3.4, -3.9, -4.1, -4.5, -4.6, -5.1 ppm ; IR (film): $\tilde{v}=2954,2929,2896,2857,1733,1472,1463,1389,1361,1250,1168,1125$, 1086, 1006, 980, 939, 859, 831, 812, 773, 694, 672, 606, $468 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{70} \mathrm{O}_{7} \mathrm{Si}_{4} \mathrm{Na}^{+}$: 713.4091, found: 713.4089.

Analytical and spectral data of the minor byproduct 191: $[\alpha]_{\mathrm{D}}^{20}$: +20.8 ($\mathrm{c}=0.95, \mathrm{CHCl}_{3}$);
 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.43-4.35(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{~s}$, 2 H), $3.93-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.45-$ $3.39(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{dd}, \mathrm{J}=15.8,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, \mathrm{J}=15.6,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ (dd, J = 15.6, 5.5 Hz, 1H), 2.57 (dd, J = 15.8, $4.2 \mathrm{~Hz}, 1 \mathrm{H}$), $1.01-0.96$ (m, 2H), $0.95(\mathrm{~s}, 9 \mathrm{H}), 0.91$ (s, $9 \mathrm{H}), 0.16$ (s, 3H), 0.12 (s, 3H), $0.11(\mathrm{~s}, 3 \mathrm{H}), 0.09$ (s, 3H), $0.04(\mathrm{~s}, 9 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=200.4,171.4,75.8,72.1,70.6,70.4,65.2,63.0,42.0,35.6,29.9,25.94$ (3C), 25.90 (3C), 18.2, 18.1, 17.4, -1.3 (3C), -4.2, -4.7 (2C), -4.9 ppm; IR (film): $\tilde{v}=3523,2954,2929,2898,2858$, 1731, 1472, 1463, 1408, 1390, 1362, 1251, 1219, 1168, 1091, 1037, 1006, 964, 938, 858, 835, 777, 693, 670, 607, 540, 472, 428, $418 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{55} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{BrNa}^{+}$: 677.2331, found: 677.2333.

2-(Trimethylsilyl)ethyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(2-((tert-butyldimethylsilyl)oxy)allyl)tetrahydro-2H-pyran-2-yl)acetate (192)

TSEO $_{Y} Y^{\text {OTBS }}$ TBSOTf $(31.4 \mu \mathrm{~L}, 137 \mu \mathrm{~mol})$ was added dropwise to a stirred solution of methylketone 190a ($86 \mathrm{mg}, 0.12 \mathrm{mmol}$) and 2,6-lutidine ($31.9 \mu \mathrm{~L}, 274 \mu \mathrm{~mol}$) in DCM (1 mL) at $-78^{\circ} \mathrm{C}$ and stirring was continued for 5 min . The reaction mixture was allowed to warm to $-20^{\circ} \mathrm{C}$ and stirring was continued for 7 h . Then 2,6-lutidine ($5.8 \mu \mathrm{~L}, 49.8 \mu \mathrm{~mol}$) and TBSOTf ($5.7 \mu \mathrm{~L}, 25 \mu \mathrm{~mol}$) were again subsequently added to the stirred reaction mixture at $-20^{\circ} \mathrm{C}$ and stirring was continued for 16 h . Then 2,6-lutidine $(15.9 \mu \mathrm{~L}$, $137 \mu \mathrm{~mol})$ and TBSOTf ($15.7 \mu \mathrm{~L}, 68.4 \mu \mathrm{~mol}$) were again subsequently added to the stirred reaction mixture at $-20^{\circ} \mathrm{C}$ and stirring was continued for 3.5 h . The reaction mixture was warmed to rt and stirring was continued for 1.5 h . Then 2,6-lutidine ($15.9 \mu \mathrm{~L}, 137 \mu \mathrm{~mol}$) and TBSOTf ($15.7 \mu \mathrm{~L}$, $68.4 \mu \mathrm{~mol}$) were again subsequently added to the stirred reaction mixture at rt and stirring was continued for 30 min . The reaction was diluted with MTBE (10 mL) and quenched with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,10 \mathrm{~mL}$). The aq. phase was extracted with MTBE (10 mL) and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/TEA, 75:1) affording compound 192 as a colourless oil ($87 \mathrm{mg}, 87 \%$).
$[\alpha]_{\mathrm{D}}^{20}:+11.6\left(\mathrm{c}=1.14, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.36-4.27(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.06(\mathrm{~m}$, 5 H), 3.82 - $3.77(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.48(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{dd}, \mathrm{J}=14.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, \mathrm{J}=14.8$,
$7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, \mathrm{J}=14.6,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{dd}, \mathrm{J}=14.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.01-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.93$ (s, 9H), $0.91(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 18 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H})$, $0.085(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.065(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $\left.)_{3}\right): \delta=171.9$, $156.4,91.8,74.8,73.9,73.7,72.1,66.8,62.6,39.1,38.0,26.32$ (3C), 26.25 (3C), 25.92 (3C), 25.87 (3C), 25.85, 18.5, 18.4, 18.1, 18.0, 17.4, -1.4 (3C), -3.3, -3.9, -4.1, -4.4, -4.5, -4.6, -4.7, -5.1 ppm; IR (film): $\tilde{v}=2954,2929,2896,2858,1735,1639,1472,1463,1408,1389,1361,1324,1298,1250$, $1208,1167,1126,1082,1062,1019,1005,975,939,919,860,830,812,772,695,672,665,609$, 570, 543, 518, 472, 424, $412 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{39} \mathrm{H}_{84} \mathrm{O}_{7} \mathrm{Si}_{5} \mathrm{Na}^{+}: 827.4956$, found: 827.4961.

2-(Trimethylsilyl)ethyl 2-((2R,3R,4R,5S,6R)-6-(3-bromo-2-oxopropyl)-3,4,5-tris((tert-butyldimethylsilyl)oxy)tetrahydro-2H-pyran-2-yl)acetate (189a)

Procedure C

A solution of NBS ($23 \mathrm{mg}, 130 \mu \mathrm{~mol}$) in THF (0.25 mL , rinsed with 0.25 mL) was slowly added to a stirred solution of silyl enolether 192 (87 mg , $108 \mu \mathrm{~mol})$ in THF (0.5 mL) at $-78^{\circ} \mathrm{C}$ over the course of 10 min resulting in a colour change from colourless to dark brown, and stirring was continued for 50 min . The mixture was diluted with $\operatorname{DCM}(5 \mathrm{~mL})$ and the reaction quenched with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The aq. phase was extracted with DCM ($2 \times 5 \mathrm{~mL}$) and the combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $50: 1$ to $\left.10: 1\right)$ affording both desired compound 189a ($52 \mathrm{mg}, 63 \%$) and minor byproduct 190a ($13 \mathrm{mg}, 17 \%$) as a colourless oil. The analytical and spectroscopic data of the isolated compounds were identical with those shown above.

Methyl

2-((2R,3R,4R,5S,6R)-6-(3-bromo-2-oxopropyl)-3,4,5-tris((tert-

butyldimethylsilyl)oxy)tetrahydro-2H-pyran-2-yl)acetate (189b)

PPh_{3} (195a) (129 mg, $\left.490 \mu \mathrm{~mol}\right)$ was added to a stirred solution of α-hydroxyketone 187b ($290 \mathrm{mg}, 467 \mu \mathrm{~mol}$) and $\mathrm{CBr}_{4}(163 \mathrm{mg}, 490 \mu \mathrm{~mol})$ in DCM (6.0 mL) at rt and the reaction mixture was stirred for 40 min . Then CBr_{4}
($77 \mathrm{mg}, 234 \mu \mathrm{~mol}$) and PPh_{3} (195a) ($61 \mathrm{mg}, 234 \mu \mathrm{~mol}$) were subsequently added to the reaction mixture and stirring was continued for 40 min . The reaction mixture was filtered through a plug of SiO_{2} which was washed with MTBE. The solvent was evaporated and the crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, $40: 1$ to $30: 1$) affording compound $\mathbf{1 8 9}$ b as a colourless oil ($257 \mathrm{mg}, 81 \%$).
$[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}:+43.7\left(\mathrm{c}=1.07, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.35-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 3.80$ (dd, J = 3.2, 1.6 Hz, 1H), 3.67 (s, 3H), 3.62-3.59 (m, 1H), 3.49 (dt, J = 4.5, 1.3 Hz, 1H), 3.13 (dd, $J=15.8,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, \mathrm{J}=15.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, \mathrm{J}=15.3,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, \mathrm{J}=15.8$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.105(\mathrm{~s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}$, $3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=201.0,172.0,74.4,73.9,73.5,71.6,67.3$, 51.8, 42.1, 37.1, 36.2, 26.3 (3C), 26.2 (3C), 25.9 (3C), 18.4, 18.3, 18.0, -3.5, -3.9, -4.1, -4.5, -4.6, $5.0 \mathrm{ppm} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=4.63-4.55(\mathrm{~m}, 2 \mathrm{H}) 3.98-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.74(\mathrm{~m}, 1 \mathrm{H})$, 3.72 (ddd, J = 4.0, 1.8, 1.0 Hz, 1H), $3.51(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H})$, 3.05 ($\mathrm{dd}, \mathrm{J}=16.2,8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.92 ($\mathrm{dd}, \mathrm{J}=15.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.81(\mathrm{dd}, \mathrm{J}=15.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (dd, J = 16.3, $4.8 \mathrm{~Hz}, 1 \mathrm{H}$), $1.04(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}$, $3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=199.4,171.6,74.8$, 74.0, 73.9, 71.9, 67.2, 51.3, 41.8, 37.1, 35.9, 26.4 (3C), 26.3 (3C), 25.9 (3C), 18.53, 18.45, 18.1, -3.4, $-3.8,-4.3,-4.5(2 C),-5.0 \mathrm{ppm}$; IR (film): $\tilde{v}=2952,2929,2895,2857,1739,1472,1463,1437,1390$, $1361,1253,1172,1124,1084,1042,1005,970,938,893,870,832,813,774,673,575,551$, $475 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{59} \mathrm{O}_{7} \mathrm{Br}_{1} \mathrm{Si}_{3} \mathrm{Na}^{+}$: 705.2644, found: 705.2650.
(2-Oxо-3-((2R,3S,4R,5R,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(2-oxo-2-(2-
(trimethylsilyl)ethoxy)ethyl)tetrahydro-2H-pyran-2-yl)propyl)triphenylphosphonium bromide (193a) and ((Z)-2-Hydroxy-3-((2R,3S,4R,5R,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(2-oxo-2-(2-(trimethylsilyl)ethoxy)ethyl)tetrahydro-2H-pyran-2-yl)prop-1-en-1-yl)triphenylphosphonium bromide (194a)

A solution of PPh_{3} (195a) (122 mg, $464 \mu \mathrm{~mol})$ in $\mathrm{PhH}(2.0 \mathrm{~mL}$, rinsed with 2.0 mL) was dried for 1.5 h over $4 \AA \mathrm{MS}$ at $r t$ before it was combined with a solution of α-bromoketone 189a ($340 \mathrm{mg}, 442 \mu \mathrm{~mol}$) in $\mathrm{PhH}(4.0 \mathrm{~mL})$ which was dried for 1.5 h
over $4 \AA \mathrm{MS}$ at rt. The reaction mixture was stirred for 5 min before it was stored as a frozen solid at $-20^{\circ} \mathrm{C}$ for 52 h . Then the reaction mixture was allowed to reach rt and the afforded mixture of intermediates 193a and 194a was used in the next step without purification or removal of the solvent.
(the sample contained some unreacted $\mathrm{PPh}_{3}(195 \mathrm{a})$) ${ }^{1} \mathrm{H}$ NMR (4:1 tautomer ratio, asterisk denotes minor tautomer peaks, $600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=14.03^{*}(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 7.94 (dd, J=18.4, 10.4 Hz, 1H, H-10a), $7.86-7.80$ (m, 6H, o-Ph), 7.41 - 7.35* (m, 6H, o-Ph), $7.10-7.06$ (m, 6H, mPh), $7.05-7.02$ (m, 3H, p-Ph), $7.05-7.02^{*}(\mathrm{~m}, 3 \mathrm{H}, p-\mathrm{Ph}), 7.01$-6.96* (m, 6H, m-Ph) 6.07 (dd, $\mathrm{J}=18.0,12.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{~b}$), 5.44 (dt, J = 11.3, $2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 5.36^{*} (ddd, J = 10.5, 3.3, 1.4 Hz , $1 \mathrm{H}, \mathrm{H}-7), 4.86^{*}(\mathrm{dt}, \mathrm{J}=7.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.80^{*}$ (dd, J=20.9, $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), 4.72 (ddd, $J=10.2,6.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.69^{*}(\mathrm{dd}, \mathrm{J}=3.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 4.37(\mathrm{td}, \mathrm{J}=3.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6)$, 4.19* (dd, J = 3.2, 1.1 Hz, 1H, H-5), 4.15* (dt, J = 13.6, $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), $4.12-4.07$ (m, 3H, H-5 and H-12), $4.07-4.02^{*}(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-12 \mathrm{a}), 3.96^{*}(\mathrm{dt}, \mathrm{J}=6.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.90(\mathrm{dd}, \mathrm{J}=15.2,2.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), 3.78 (dt, J = 6.2, $1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), $3.77-3.73^{*}$ (m, $1 \mathrm{H}, \mathrm{H}-12 \mathrm{~b}$), 3.45 (ddd, J = 14.9, 11.2, $3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{~b}$), 3.39* (dd, J = 15.7, 5.3 Hz, 1H, H-2a), 3.26* (ddd, J = 12.7, 10.5, 1.5 Hz, 1H, H8b), 3.00 (dd, J = 14.4, 3.7 Hz, 1H, H-2a), 2.85 (dd, J = 14.4, 10.1 Hz, 1H, H-2b), 2.73* (dd, J = 15.6, $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}), 1.15^{*}(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 1.125^{*}(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 1.12$ ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$), 1.07 ($\left.\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}\right), 1.00^{*}$ ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$) , $0.98(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.94-0.87(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-13), 0.82^{*}$ (ddd, J=9.8, 6.5, 4.8 Hz, 2H,H-13), $0.67^{*}(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.58$ (s,3H, Me), 0.51* (s, 3H, Me), 0.36* (s, 3H, Me), 0.33* (s, 3H, Me), 0.32 (s, $3 \mathrm{H}, \mathrm{Me}), 0.30^{*}(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.26$ (s, 3H, Me), 0.25 (s, 3H, Me), 0.19 (s, 3H, Me), 0.18^{*} (s, 3H, Me), 0.10 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), -0.06 (s,9H, TMS), $-0.13^{*}(\mathrm{~s}, 9 \mathrm{H}, \mathrm{TMS}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (4:1 tautomer ratio, asterisk denotes minor tautomer peaks, $151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=203.4$ ($\mathrm{d}, \mathrm{J}_{31 \mathrm{p}, 13 \mathrm{C}}=7.1 \mathrm{~Hz}, \mathrm{C}-9$), 184.8^{*} (d , $\left.J_{31 \mathrm{P}, 13 \mathrm{C}}=2.2 \mathrm{~Hz}, \mathrm{C}-9\right), 172.1^{*}(\mathrm{C}-1), 171.9(\mathrm{C}-1), 134.5\left(\mathrm{~d}, \mathrm{~J}_{31 \mathrm{P}, 13 \mathrm{C}}=10.7 \mathrm{~Hz}, 6 \mathrm{C}, 0-\mathrm{Ph}\right), 134.0(\mathrm{~d}$, $\left.J_{31 p, 13 C}=3.1 \mathrm{~Hz}, 3 \mathrm{C}, p-\mathrm{Ph}\right), 133.5^{*}\left(\mathrm{~d}, \mathrm{~J}_{31 \mathrm{P}, 13 \mathrm{C}}=10.7 \mathrm{~Hz}, 6 \mathrm{C}, o-\mathrm{Ph}\right.$), $133.5^{*}\left(\mathrm{~d}, \mathrm{~J}_{31 \mathrm{p}, 13 \mathrm{C}}=3.1 \mathrm{~Hz}, 3 \mathrm{C}, p-\right.$ Ph), $129.8\left(d, J_{31 P, 13 C}=12.9 \mathrm{~Hz}, 6 \mathrm{C}, m-\mathrm{Ph}\right), 129.6^{*}\left(\mathrm{~d}, \mathrm{~J}_{31 \mathrm{P}, 13 \mathrm{C}}=12.8 \mathrm{~Hz}, 6 \mathrm{C}, m-\mathrm{Ph}\right), 122.6^{*}(\mathrm{~d}$, $J_{31 P, 13 C}=91.6 \mathrm{~Hz}, 3 \mathrm{C}, i-\mathrm{Ph}$), $119.8(\mathrm{~d}, \mathrm{~J}=88.6 \mathrm{~Hz}, 3 \mathrm{C}, i-\mathrm{Ph}), 76.8$ (C-4), 76.3* (C-4), 76.0* (C-5), 75.9 (C-5), 73.2 (C-3), 72.8* (C-3), 71.9* (C-6), 71.6 (C-6), 71.4* (C-7), 71.1* (d, $\mathrm{J}_{31 \mathrm{P}, 13 \mathrm{C}}=96.2 \mathrm{~Hz}, \mathrm{C}-10$), 69.4 (C-7), $62.7(\mathrm{C}-12), 62.1^{*}(\mathrm{C}-12), 47.9\left(\mathrm{~d}, \mathrm{~J}_{31 \mathrm{P}, 13 \mathrm{C}}=5.8 \mathrm{~Hz}, \mathrm{C}-8\right), 40.1\left(\mathrm{~d}, \mathrm{~J}_{31 \mathrm{P}, 13 \mathrm{C}}=57.9 \mathrm{~Hz}, \mathrm{C}-10\right)$, 39.8* ($\mathrm{d}, \mathrm{J}_{31 \mathrm{P}, 13 \mathrm{c}}=12.1 \mathrm{~Hz}, \mathrm{C}-8$), $39.7(\mathrm{C}-2), 39.0^{*}(\mathrm{C}-2), 26.60^{*}(3 \mathrm{C}, \mathrm{t}-\mathrm{Bu}), 26.58^{*}(3 \mathrm{C}, \mathrm{t}-\mathrm{Bu}), 26.53$ (3C, t-Bu), 26.50 (3C, t-Bu), 26.4* (3C, t-Bu), 26.3 (3C, t-Bu), 18.6* (t-Bu), 18.50* (2C, t-Bu), 18.46 (t-Bu), 18.44 (t-Bu), 18.42 (t-Bu), 17.5* (C-13), 17.4 (C-13), -1.4 (3C, Me), -1.5* (3C, Me), -2.6* (Me), $-2.7(\mathrm{Me}),-3.36^{*}(\mathrm{Me}),-3.44^{*}(\mathrm{Me}),-3.60(\mathrm{Me}),-3.61(\mathrm{Me}),-4.1^{*}(\mathrm{Me}),-4.3^{*}(\mathrm{Me}),-4.47$
(Me), $-4.50^{*}(\mathrm{Me}),-4.53(\mathrm{Me}),-4.6(\mathrm{Me}) \mathrm{ppm} ;{ }^{31}$ P NMR (4:1 tautomer ratio, asterisk denotes minor tautomer peak, $162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=21.0,13.4^{*} \mathrm{ppm} ; \quad$ HRMS (ESI): m / z calcd. for $\mathrm{C}_{51} \mathrm{H}_{84} \mathrm{O}_{7} \mathrm{P}_{1} \mathrm{Si}_{4}^{+}: 951.5026$, found: 951.5036.

(2-Oxo-3-((2R,3S,4R,5R,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(2-methoxy-2-

 oxoethyl)tetrahydro-2H-pyran-2-yl)propyl)triphenylphosphonium bromide (193b) and ((Z)-2-Hydroxy-3-((2R,3S,4R,5R,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(2-methoxy-2-oxoethyl)tetrahydro-2H-pyran-2-yl)prop-1-en-1-yl)triphenylphosphonium bromide (194b)

A solution of PPh_{3} (195a) ($101 \mathrm{mg}, 384 \mu \mathrm{~mol}$) as a solution in $\mathrm{PhH}(2.0 \mathrm{~mL}$, rinsed with 2.0 mL) was dried for 1 h over $4 \AA \mathrm{MS}$ before it was combined with a solution of α-bromoketone 189b (250 mg , $366 \mu \mathrm{~mol})$ in PhH (4.0 mL) which was dried for 1 h over $4 \AA \mathrm{MS}$ at rt . The reaction mixture was stirred for 5 min before it was stored as a frozen solid at $-20^{\circ} \mathrm{C}$ for 49 h . Then the reaction mixture was allowed to reach rt and the afforded mixture of intermediates 193b and 194b was used in the next step without purification or removal of the solvent.
(the sample contained some unreacted $\left.\mathrm{PPh}_{3}(\mathbf{1 9 5 a})\right)^{1} \mathrm{H}$ NMR (4:1 tautomer ratio, asterisk denotes minor tautomer peaks, $600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=14.16^{*}(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 7.88 ($\mathrm{dd}, \mathrm{J}=18.1$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{a}), 7.85-7.80$ (m, 6H, o-Ph), $7.33-7.26^{*}$ (m, 6H, o-Ph), $7.04-6.98$ (m, 6H, mPh), 6.97 - 6.93 (m, 3H, p-Ph), $6.97-6.93^{*}$ (m, 3H, p-Ph), 6.91-6.87* (m, 6H, m-Ph), 6.21 (dd, J = 18.0, $12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{~b}), 5.40$ (dt, J = 11.1, $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 5.33* ($\mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 4.82* (dt, J = 8.4, 5.7 Hz, 1H, H-3), 4.72* (dd, J = 21.1, $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), 4.72* ($\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 6), 4.66 (dt, J = 8.4, 5.6 Hz, 1H, H-3), 4.34-4.31 (m, 1H, H-6), 4.17* (d, J = $12.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), 4.17* (d, J = $3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 4.07 (dd, J = 3.3, $1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 3.92 - 3.90^{*} (m, 1H, H-4), 3.92 (dd, $\mathrm{J}=15.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), 3.74 (dt, J = 5.5, 1.0 Hz, 1H, H-4), 3.46 (ddd, J = 14.8, 11.1, 3.4 Hz, 1H, H8b), 3.30* (dd, J = 15.7, 5.2 Hz, 1H, H-2a), 3.25 (s, 3H, Me), 3.25* (dd, J = 12.9, $10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{~b}$), 3.00* (s, 3H, Me), 2.92-2.86 (m, 2H, H-2), 2.67* (dd, J=15.7, 8.2 Hz, 1H, H-2b), 1.13* (s, 9H, t$\mathrm{Bu}), 1.11^{*}(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 1.09(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 1.05(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.97^{*}(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.95(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu})$, $0.67^{*}(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.54(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.52^{*}(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.5^{*}(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.34$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.31* (s, $3 \mathrm{H}, \mathrm{Me}), 0.24(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.23$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), $0.22^{*}(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.16$ ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}\right), 0.13^{*}(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$, 0.07 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$) ppm; ${ }^{13} \mathrm{C}$ NMR (4:1 tautomer ratio, asterisk denotes minor tautomer peaks,
$\left.151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=203.5\left(\mathrm{~d}, \mathrm{~J}_{31 \mathrm{P}, 13 \mathrm{C}}=7.2 \mathrm{~Hz}, \mathrm{C}-9\right), 185.0^{*}(\mathrm{C}-9), 172.4^{*}(\mathrm{C}-1), 172.3(\mathrm{C}-1), 134.5(\mathrm{~d}$, $\left.\mathrm{J}_{31 \mathrm{P}, 13 \mathrm{C}}=10.9 \mathrm{~Hz}, 6 \mathrm{C}, o-\mathrm{Ph}\right), 133.9\left(\mathrm{~d}, \mathrm{~J}_{31 \mathrm{P}, 13 \mathrm{C}}=2.9 \mathrm{~Hz}, 3 \mathrm{C}, p-\mathrm{Ph}\right), 133.5^{*}\left(\mathrm{~d}, \mathrm{~J}_{31 \mathrm{P}, 13 \mathrm{C}}=10.7 \mathrm{~Hz}, 6 \mathrm{C}, o-\right.$ Ph), 133.4* (d, J $\mathrm{J}_{31 \mathrm{P}, 13 \mathrm{C}}=2.2 \mathrm{~Hz}, 3 \mathrm{C}, p-\mathrm{Ph}$), $129.7\left(\mathrm{~d}, \mathrm{~J}_{31 \mathrm{P}, 13 \mathrm{C}}=13.0 \mathrm{~Hz}, 6 \mathrm{C}, m-\mathrm{Ph}\right), 129.5^{*}(\mathrm{~d}$, $\left.J_{31 \mathrm{P}, 13 \mathrm{C}}=12.9 \mathrm{~Hz}, 6 \mathrm{C}, m-\mathrm{Ph}\right), 122.6^{*}\left(\mathrm{~d}, \mathrm{~J}_{31 \mathrm{P}, 13 \mathrm{C}}=91.4 \mathrm{~Hz}, 3 \mathrm{C}, i-\mathrm{Ph}\right), 119.8\left(\mathrm{~d}, \mathrm{~J}_{31 \mathrm{P}, 13 \mathrm{C}}=88.7 \mathrm{~Hz}, 3 \mathrm{C}, i-\right.$ Ph), 76.4* (C-4), 76.2 (C-4), 76.0* (C-5), 75.6 (C-5), 73.5 (C-3), 72.6* (C-3), 71.9* (C-6), 71.6* (C-7), $71.5(\mathrm{C}-6), 71.1^{*}\left(\mathrm{~d}, \mathrm{~J}_{31 \mathrm{p}, 13 \mathrm{C}}=97.1 \mathrm{~Hz}, \mathrm{C}-10\right), 68.9(\mathrm{C}-7), 51.3(\mathrm{C}-12), 50.6^{*}(\mathrm{C}-12), 48.0(\mathrm{~d}$, $\left.\mathrm{J}_{31 \mathrm{P}, 13 \mathrm{C}}=5.7 \mathrm{~Hz}, \mathrm{C}-8\right), 40.2\left(\mathrm{~d}, \mathrm{~J}_{31 \mathrm{P}, 13 \mathrm{C}}=58.0 \mathrm{~Hz}, \mathrm{C}-10\right), 39.6^{*}\left(\mathrm{~d}, \mathrm{~J}_{31 \mathrm{P}, 13 \mathrm{C}}=11.8 \mathrm{~Hz}, \mathrm{C}-8\right), 39.0(\mathrm{C}-2)$, 38.6* (C-2), 26.6* (3C, t-Bu), 26.53* (3C, t-Bu), 26.50 (3C, $t-B u$), 26.45 (3C, $t-B u$), 26.4^{*} (3C, $t-B u$), 26.3 (3C, $t-\mathrm{Bu}), 18.6^{*}(t-\mathrm{Bu}), 18.47^{*}(2 \mathrm{C}, t-\mathrm{Bu}), 18.47(t-\mathrm{Bu}), 18.45(t-\mathrm{Bu}), 18.4(t-\mathrm{Bu}),-2.6^{*}(\mathrm{Me}),-$ $2.8(\mathrm{Me}),-3.4^{*}(\mathrm{Me}),-3.5^{*}(\mathrm{Me}),-3.6(\mathrm{Me}),-3.7(\mathrm{Me}),-4.1^{*}(\mathrm{Me}),-4.36^{*}(\mathrm{Me}),-4.39(\mathrm{Me}),-4.56^{*}$ (Me), -4.57 (Me), -4.59 (Me) ppm; ${ }^{31}$ P NMR (4:1 tautomer ratio, asterisk denotes minor tautomer peak, $162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=20.9,13.4^{*} \mathrm{ppm} ;$ HRMS (ESI): m / z calcd. for $\mathrm{C}_{47} \mathrm{H}_{74} \mathrm{O}_{7} \mathrm{PSi}_{3}{ }^{+}: 865.4475$, found: 865.4472.

5.2.3.2. Building Block Coupling \& Elaboration

2-(Trimethylsilyl)ethyl 2-((2S,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((E)-4-((2S,4S,5R)-4-methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)-2-oxobut-3-en-1-yl)tetrahydro-2H-pyran-2-yl)acetate (E-181a)

$R=H, T B S$
PPh_{3} (195a) ($7 \mathrm{mg}, 26 \mu \mathrm{~mol}$) was added to a stirred solution of α-bromoketone 189a ($20 \mathrm{mg}, 26 \mu \mathrm{~mol}$) in $\mathrm{PhH}(200 \mu \mathrm{~L})$ at rt . The reaction mixture was warmed to $55^{\circ} \mathrm{C}$ and stirring was continued for 5 d . The solvent was evaporated and the crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH}, 20: 1\right)$ affording a mixture of phosphonium salts 193a/194a and 208 as a colourless oil ($23 \mathrm{mg}, 91 \%$, ca. 1:1).

A solution of $\mathrm{KOt}-\mathrm{Bu}(3 \mathrm{mg}, 22 \mu \mathrm{~mol})$ in THF ($200 \mu \mathrm{~L}$, rinsed with $200 \mu \mathrm{~L}$) was dried over $5 \AA \mathrm{MS}$ before it was added to a stirred solution of phosphonium salts 193a/194a and 208 ($23 \mathrm{mg}, 24 \mu \mathrm{~mol}$) in THF $(400 \mu \mathrm{~L})$ over $5 \AA \mathrm{MS}$ at $-50^{\circ} \mathrm{C}$ and stirring was continued for 10 min . Then the reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and a solution of aldehyde $130(21 \mathrm{mg}, 60 \mu \mathrm{~mol})$ in THF ($200 \mu \mathrm{~L}$, rinsed with $200 \mu \mathrm{~L}$) which had been dried over 5 Å MS was slowly added to the reaction mixture. The resulting reaction mixture was allowed to reach rt and stirring was continued for 1.25 h . The reaction was quenched with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,5 \mathrm{~mL}$) and the aq. phase was extracted with MTBE ($2 \times 10 \mathrm{~mL}$). The combined extracts were washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,5 \mathrm{~mL}$) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 10:1 to 5:1) affording both desired compound E-181a $(8 \mathrm{mg}, 33 \%)$ and byproduct $209(9 \mathrm{mg}, 42 \%)$ as a colourless oil each. Yields are based on the ratios of the phosphonium salt starting materials 193a/194a and 208.

Analytical and spectral data of the desired compound E-181a: $[\alpha]_{\mathrm{D}}^{20}$: -3.9 ($\mathrm{c}=0.67, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.71-7.67(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.65-7.58(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 6.70(\mathrm{dd}, \mathrm{J}=15.9$, $5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 6.21 (dd, J = 15.9, $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), 4.57 (dddd, J = 9.4, 6.7, 5.5, $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 12), 4.19 (ddd, J = 7.5, 6.1, $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $4.15-4.10(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3$ and $\mathrm{H}-20$), 3.97 (ddd, J = 14.6, $11.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-17 \mathrm{a}$), 3.81 (ddd, J=14.7, 11.0, 5.0 Hz, $1 \mathrm{H}, \mathrm{H}-17 \mathrm{~b}$), $3.80-3.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.61$ (td, J = 8.7, 2.9 Hz, 1H, H-15), $3.49-3.47$ (m, 1H, H-6), $3.46-3.43$ (m, 1H, H-4), 2.98 (dd, J = 16.7,
$7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), 2.65 (dd, J = 16.8, $5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{~b}$), 2.59 (dd, J = 16.1, $7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.43 (dd, J = 16.1, 5.6 Hz, 1H, H-2b), 2.36 (dt, J = 12.9, $6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{a}$), 2.30 (dddd, J = 12.4, 9.4, 7.8, $4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), 2.04 (dddd, J = 11.9, $9.3,7.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}$), 1.98 (ddt, J = $10.4,8.5,5.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-14$), 1.41 (ddd, J=12.6, 10.6, $9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{~b}$), 1.06 (d, J = $6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-33$), $0.98-0.94$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-19$) , $0.93(\mathrm{~s}, 18 \mathrm{H}, t-\mathrm{Bu}), 0.92(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.13(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.12(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.095(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Me}), 0.09$ (s, 3H, Me), 0.03 (s, 9H, TMS), 0.025 (s, 3H, Me), -0.01 (s, 3H, Me) ppm; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.6$ (C-9), 171.6 (C-1), 153.6 (C-18), 146.3 (C-11), 133.2 ($i-\mathrm{Ph}$), 131.6 ($p-\mathrm{Ph}$), 129.88 (2C, m-Ph), 129.87 (C-10), 125.3 (2C, o-Ph), 83.3 (C-15), 77.4 (C-12), 73.3 (C3), 73.1 (C-7), 73.0 (C-5), 71.34 (C-6), 71.30 (C-4), 62.7 (C-20), 53.7 (C-17), 42.2 (C-8), 41.3 (C-13), 40.3 (C-14), 37.2 (C-2), 26.7 (C-16), 26.54 (3C, $t-\mathrm{Bu}$), 26.52 (3C, $t-\mathrm{Bu}$), 25.9 (3C, $t-\mathrm{Bu}), 18.54$ ($t-\mathrm{Bu}$), 18.51 ($t-\mathrm{Bu}$), 18.0 ($t-\mathrm{Bu}$), 17.4 (C-19), 16.3 (C-33), -1.3 (3C, TMS), -3.0 (Me), -3.1 (Me), -4.3 (Me), 4.4 (Me), -4.9 (Me), -5.1 (Me) ppm; IR (film): $\tilde{v}=2954,2928,2896,2857,1733,1679,1641,1596$, 1499, 1472, 1463, 1407, 1381, 1361, 1348, 1286, 1252, 1175, 1151, 1088, 1045, 1006, 984, 934, $924,859,834,813,773,731,688,675,632,542,523,508,488,481,475,466,458,432,430,423$, $415 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{48} \mathrm{H}_{86} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{Si}_{4} \mathrm{SNa}^{+}: 1045.5034$, found: 1045.5041 .

Analytical and spectral data of the byproduct 209: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.71$ - 7.67 (m ,
 2H, Ph), 7.65 - 7.58 (m, 3H, Ph), 6.74 (dd, J = 15.8, $5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 6.23 (dd, J = 15.9, 1.5 Hz, 1H, H-10), 4.56 (dt, J = 10.0, $6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), $4.35-4.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 4.28-4.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 4.18-4.10(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-20$), $4.00-3.91$ (m, 2H, H-17a and $\mathrm{H}-5$), 3.80 (ddd, J = 15.2, 10.9, $4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-17 \mathrm{~b}$), 3.61 (td, J = 8.8, 3.0 Hz, 1H, H-15), $3.58-3.55$ (m, $1 \mathrm{H}, \mathrm{H}-4$), 3.39 (d, J = $11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), 3.35 (dd, J = 11.9, $2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 6), 2.93 (dd, J = 17.0, 6.5 Hz, 1H, H-8a), 2.88 (dd, J = 16.9, 6.6 Hz, 1H, H8 b), 2.56 (dd, J = 16.0, $7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.44 (dd, J = 16.0, $6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 2.35 (dt, J = 12.5, $6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{a}$), 2.30 (dddd, J = 18.8, 12.5, 5.7, 3.0 Hz, 1H, H-16a), $2.07-1.95$ (m, 2H, H-16b and H-14), 1.46 - 1.38 (m, 1H, H-13b), 1.06 (d, J = 6.6 Hz, 3H, H-33), $0.99-0.96$ (m, 2H, H-19), 0.94 (s, $9 \mathrm{H}, t-\mathrm{Bu}), 0.92(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.15(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.12(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.07(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$, 0.04 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{TMS}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.2$ (C-9), 171.1 (C-1), 153.6 (C-18), 146.2 (C-11), 133.2 (i-Ph), 131.6 ($p-\mathrm{Ph}$), 129.9 (2C, m-Ph), 128.8 (C-10), 125.3 (2C, o-Ph), 83.3 (C-15), 77.4 (C-12), 72.2 (C-3), 70.1 (C-7), 71.9 (C-4), 70.8 (C-6), 69.7 (C-5), 62.9 (C-20), 53.7 (C-17), 41.7 (C-8), 41.4 (C-13), 40.4 (C-14), 36.9 (C-2), 26.8 (C-16), 26.0 (3C, t-Bu), 25.9 (3C, $t-\mathrm{Bu}$), 18.2 (t-Bu), 18.1 ($t-$
$\mathrm{Bu}), 17.5$ (C-19), 16.3 (C-33), -1.3 (3C, TMS), -4.4 (Me), -4.67 (Me), -4.72 (Me), -5.1 (Me) ppm; HRMS (ESI): m / z calcd. for $\mathrm{C}_{42} \mathrm{H}_{72} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{Si}_{3} \mathrm{SNa}^{+}$: 931.4169, found: 931.4173.

2-(Trimethylsilyl)ethyl
2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((E)-4-((2S,4S,5R)-4-methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)-2-oxobut-3-en-1-yl)tetrahydro-2H-pyran-2-yl)acetate (E-181a)

DIPEA ($169 \mu \mathrm{~L}, 971 \mu \mathrm{~mol}$) was added to a solution of the crude mixture of phosphonium salts 193a and 194a ($456 \mathrm{mg}, 442 \mu \mathrm{~mol}$) in $\mathrm{PhH}(8.0 \mathrm{~mL})$ at rt and the reaction mixture was stirred for 1 h resulting in the formation of a white precipitate. The afforded intermediate 182a was used in the next step without purification or removal of the solvent.

A solution of aldehyde $\mathbf{1 3 0}(170 \mathrm{mg}, 486 \mu \mathrm{~mol})$ in $\mathrm{PhH}(2.0 \mathrm{~mL}$, rinsed with 2.0 mL) was dried for 1 h over $4 \AA \mathrm{MS}$ before it was added to the crude phosphorus ylide 182a ($420 \mathrm{mg}, 442 \mu \mathrm{~mol}$) as a solution in PhH $(8.0 \mathrm{~mL})$ at rt and the reaction mixture was stirred for 16 h . The mixture was diluted with MTBE (50 mL) and the resulting mixture was washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,2 \times 25 \mathrm{~mL}$). The combined aq. phases were extracted with MTBE ($2 \times 25 \mathrm{~mL}$) and the combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 10:1 to 5:1) affording both the minor isomer Z-181a ($20 \mathrm{mg}, 4 \%$) and the desired major isomer E-181a ($322 \mathrm{mg}, 71 \%$) as a colourless oil. The analytical and spectroscopic data of the isolated major compound E-181a were identical with those shown above.

Analytical and spectral data of the minor isomer Z-181a: $[\alpha]_{\mathrm{D}}^{20}$: +5.8 ($\mathrm{c}=1.30, \mathrm{CHCl}_{3}$);

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.71-7.56$ (m, 5H), 6.17 (dd, J=11.5, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.05 (dd, J = 11.6, $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.26-5.18$ (m, 1H), 4.34 (ddd, $\mathrm{J}=7.7,5.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dt}, \mathrm{J}=9.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.10(\mathrm{~m}, 2 \mathrm{H})$, 3.94 (ddd, J = 15.3, 10.7, $4.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.82-3.77$ (m, 1H), 3.79 (ddd, $J=15.3,10.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.48(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{dd}$, $J=16.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.80(\mathrm{dd}, \mathrm{J}=15.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.52$ (dd, J = 16.7, 5.0 Hz, 1H), 2.27 (tdd, J = 10.8, 5.1, 3.0 Hz, 1H), 2.05-1.92 (m, 2H), 1.34-1.28 (m,

1H), 1.04 (d, J = $6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.99-0.94(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H})$, 0.11 (s, 3H), $0.09(\mathrm{~s}, 6 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $)^{2}$: $\delta=199.1,171.8,153.7,148.8,133.2,131.6,129.9$ (2C), 126.7, 125.3 (2C), 83.3, 76.1, 74.5, 73.9, $73.6,71.6,66.8,62.7,53.7,45.4,41.1,40.0,37.6,26.6,26.3$ (3C), 26.2 (3C), 25.9 (3C), 18.4, 18.3, 18.0, 17.5, 16.4, -1.3 (3C), -3.4, -3.9, -4.1, $-4.56,-4.58,-5.1 \mathrm{ppm} ; \operatorname{IR}(f i l m): \tilde{v}=2953,2928,2898$, 2856, 1731, 1691, 1619, 1498, 1472, 1463, 1408, 1389, 1346, 1251, 1153, 1084, 1038, 1005, 973, 938, 859, 832, 812, 774, 759, 688, 667, 628, 536, 507, 472, 441, $424 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{48} \mathrm{H}_{86} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{Si}_{4} \mathrm{~S}_{1} \mathrm{Na}^{+}$: 1045.5034, found: 1045.5038.

Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((E)-4-((2S,4S,5R)-4-methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)-2-oxobut-3-en-1-yl)tetrahydro-2H-pyran-2-yl)acetate (E-181b)

DIPEA ($140 \mu \mathrm{~L}, 804 \mu \mathrm{~mol}$) was added to a solution of the crude mixture of phosphonium salts 193b and 194b ($346 \mathrm{mg}, 366 \mu \mathrm{~mol}$) in $\mathrm{PhH}(8.0 \mathrm{~mL})$ at rt and the reaction mixture was stirred for 1 h resulting in the formation of a white precipitate. The afforded intermediate 182b was used in the next step without purification or removal of the solvent.

A solution of aldehyde 130 ($141 \mathrm{mg}, 402 \mu \mathrm{~mol})$ in $\mathrm{PhH}(2.0 \mathrm{~mL}$, rinsed with 1.0 mL) was dried for 1 h over $4 \AA \mathrm{MS}$ before it was added to the crude phosphorus ylide 182b ($316 \mathrm{mg}, 366 \mu \mathrm{~mol}$) as a solution in PhH $(8.0 \mathrm{~mL})$ at rt and the reaction mixture was stirred for 18 h . The mixture was diluted with MTBE (50 mL) and the resulting mixture was washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,2 \times 25 \mathrm{~mL}$). The combined aq. phases were extracted with MTBE ($2 \times 25 \mathrm{~mL}$) and the combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 7:1 to $3: 1$) affording both the minor isomer Z-181b ($14 \mathrm{mg}, 4 \%$) and the desired major isomer $E-181 \mathrm{~b}$ ($256 \mathrm{mg}, 75 \%$) as a colourless oil.

Analytical and spectral data of the major isomer $E-181 \mathbf{b}$: $[\alpha]_{\mathbf{D}}^{20}:+3.3$ ($\mathrm{c}=0.95, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.72-7.57(\mathrm{~m}, 5 \mathrm{H}), 6.71(\mathrm{dd}, \mathrm{J}=15.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.23$ (dd, J=15.9, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.57$ (dddd, J = 9.5, 6.7, 5.2, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $4.39(\mathrm{td}, \mathrm{J}=6.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28$ (ddd, J = 9.3,
$5.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.97 (ddd, J = 14.7, 11.1, $4.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.82-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.81$ (ddd, J = 14.8, 11.0, $5.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.70-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{td}, \mathrm{J}=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{ddd}, \mathrm{J}=4.0,1.8$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.94(\mathrm{dd}, \mathrm{J}=17.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, \mathrm{J}=15.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, \mathrm{J}=17.0,6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.69(\mathrm{dd}, \mathrm{J}=15.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.42$ (ddd, J=12.4, $10.5,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}$, $3 H), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$): $\delta=198.6$, 172.1, 153.6, 146.2, 133.2, 131.6, 129.9 (2C), 128.6, 125.3 (2C), 83.3, 77.3, 74.3, 73.9, 73.73, 71.2, $66.2,53.7,51.7,42.0,41.3,40.3,37.2,26.8,26.3$ (3C), 26.3 (3C), 25.9 (3C), 18.5, 18.3, 18.0, 16.3, 3.4, -3.9, -4.2, -4.58, -4.60, -5.0 ppm ; IR (film): $\tilde{v}=2955,2929,2894,2857,1737,1673,1632,1596$, 1498, 1472, 1463, 1437, 1407, 1389, 1344, 1258, 1216, 1153, 1124, 1083, 1043, 1005, 973, 938, 894, 866, 832, 812, 773, 752, 688, 667, 633, 536, 506, 467, 448, 436, $418 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{44} \mathrm{H}_{76} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{Si}_{3} \mathrm{SNa}^{+}$: 959.4482, found: 959.4487.

Analytical and spectral data of the minor isomer Z-181b: $[\alpha]_{\mathrm{D}}^{20}:+5.3$ (c=1.11, CHCl_{3});

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=7.72-7.56(\mathrm{~m}, 5 \mathrm{H}), 6.17(\mathrm{dd}, \mathrm{J}=11.5,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.06$ (dd, J = 11.6, 7.0 Hz, 1H), $5.27-5.18(\mathrm{~m}, 1 \mathrm{H}), 4.34$ (ddd, J=7.6, $4.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.28 (ddd, J = 9.4, 5.7, $3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.94 (ddd, J = 14.7, 10.8, $5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.81-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.80$ (ddd, J = 14.6, 10.4, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65$ (s, 3 H), $3.64-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.50$ (ddd, J = 4.1, 1.7, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, \mathrm{J}=16.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81$ (dd, J = 15.2, $5.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.66(\mathrm{dd}, \mathrm{J}=15.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dt}, \mathrm{J}=12.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, \mathrm{J}=16.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.27$ (tdd, J = 10.7, 5.2, 3.0 Hz, 1H), 2.06 - 1.92 (m, 2H), 1.29 (ddd, J = 12.5, 10.6, 9.5 Hz, 1H), 1.04 (d, $\mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.095(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}$, $3 \mathrm{H}), 0.07$ ($\mathrm{s}, 3 \mathrm{H}$), $0.01(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.1,172.1,153.7,148.8$, $133.2,131.6,129.9$ (2C), 126.8, 125.3 (2C), 83.3, 76.1, 74.4, 73.74, 73.66, 71.6, 66.7, 53.7, 51.7, 45.4, 41.1, 40.0, 37.2, 26.7, 26.3 (3C), 26.2 (3C), 25.9 (3C), 18.5, 18.3, 18.0, 16.4, -3.4, -3.9, -4.1, 4.57, -4.58, -5.1 ppm; IR (film): $\tilde{v}=2953,2929,2894,2857,1739,1690,1618,1498,1472,1463$, $1437,1409,1389,1346,1257,1154,1125,1084,1038,1005,971,938,889,868,833,813,774$, 762, 688, 673, 630, 536, 508, 473, 466, 438, 429, $420 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{44} \mathrm{H}_{76} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{Si}_{3} \mathrm{SNa}^{+}$: 959.4482, found: 959.4487.

2-(Trimethylsilyl)ethyl
2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((S,E)-2-hydroxy-4-((2S,4S,5R)-4-methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-

2-yl)but-3-en-1-yl)tetrahydro-2H-pyran-2-yl)acetate (180a)

$(R)-(+)-2-M e t h y l-C B S-o x a z a b o r o l i d i n e ~((R)-47 a)(68 \mathrm{mg}, 246 \mu \mathrm{~mol})$ was added to a stirred solution of α, β-unsaturated ketone $E-181$ (240 mg , $235 \mu \mathrm{~mol})$ in THF (3.8 mL) at $-20^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 30 min . Then $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}(31.4 \mu \mathrm{~L}, 352 \mu \mathrm{~mol})$ was added to the reaction mixture and stirring was continued for 2 h 40 min at $-20^{\circ} \mathrm{C}$. The reaction was quenched with aq. $\mathrm{NaH}_{2} \mathrm{PO}_{4}(1.0 \mathrm{M}, 20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the aq. phase was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined extracts were washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,2 \times 10 \mathrm{~mL}$) and the aq. phase was extracted with EtOAc $(10 \mathrm{~mL})$, and the combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (fine SiO_{2}, hexane/EtOAc, 10:1 to 4:1) affording compound 180a as a colourless oil (232 mg, 97\%).
$[\alpha]_{\mathrm{D}}^{20}:+8.6\left(\mathrm{c}=1.09, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.73-7.54(\mathrm{~m}, 5 \mathrm{H}), 5.72-5.63(\mathrm{~m}, 2 \mathrm{H})$, $4.42-4.28(\mathrm{~m}, 3 \mathrm{H}), 4.23-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{dt}, \mathrm{J}=10.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ (ddd, J=14.8, 11.0, $4.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.78-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.77$ (ddd, J = 14.7, 10.8, $5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.57(\mathrm{td}, \mathrm{J}=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.49 (ddd, J = 4.1, 1.8, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.46-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 1 \mathrm{H}), 2.72(\mathrm{dd}, \mathrm{J}=15.1,8.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.66 (dd, J = 15.1, $5.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.37-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.44-$ $1.84(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.01-0.95(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 18 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H})$, $0.095(\mathrm{~s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $)_{3}$: $\delta=171.6,153.6,134.1,133.2,131.6,130.9,129.8(2 \mathrm{C}), 125.4$ (2C), 82.9, 78.8, 74.2, 73.8 (2C), 72.4, $71.6,70.0,63.1,53.9,42.0,40.3,38.6,37.7,26.9,26.3$ (3C), 26.2 (3C), 25.9 (3C), 18.5, 18.4, 18.0, 17.4, 16.5, -1.3 (3C), -3.5, -3.9, -4.2, $-4.5,-4.6,-4.8 \mathrm{ppm}$; IR (film): $\tilde{v}=3501,2954,2928,2896$, $2857,1731,1596,1499,1472,1463,1408,1389,1360,1345,1251,1151,1125,1086,1040,1006$, 973, $938,916,859,833,813,774,689,673,634,506,464,427 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{48} \mathrm{H}_{88} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{Si}_{4} \mathrm{~S}_{1} \mathrm{Na}^{+}$: 1047.5191, found: 1047.5196 . en-1-yl)tetrahydro-2H-pyran-2-yl)acetate (180b)

$(R)-(+)-2-M e t h y l-C B S-o x a z a b o r o l i d i n e \quad((R)-47 a) \quad(68 \mathrm{mg}, \quad 0.25 \mathrm{mmol})$ was added to a stirred solution of α, β-unsaturated ketone $E-181 b$ $(220 \mathrm{mg}, 235 \mu \mathrm{~mol})$ in THF $(3.8 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 20 min . Then $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}(31.5 \mu \mathrm{~L}, 352 \mu \mathrm{~mol})$ was added to the reaction mixture and stirring was continued for 1.5 h at $-20^{\circ} \mathrm{C}$. The reaction was quenched with aq. $\mathrm{NaH}_{2} \mathrm{PO}_{4}(1.0 \mathrm{M}, 20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the aq. phase was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined extracts were washed with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,2 \times 10 \mathrm{~mL}$) and the aq. phase was extracted with EtOAc $(10 \mathrm{~mL})$, and the combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $4: 1$ to $\left.2: 1\right)$ affording compound $\mathbf{1 8 0 b}$ as a colourless oil (200 mg, 91\%).
$[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}:+6.2\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.73-7.56(\mathrm{~m}, 5 \mathrm{H}), 5.73-5.62(\mathrm{~m}, 2 \mathrm{H})$, $4.42-4.27(\mathrm{~m}, 3 \mathrm{H}), 4.04(\mathrm{dt}, \mathrm{J}=10.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ (ddd, J=14.8, 10.9, 4.9 Hz, 1H), 3.78-3.76 $(\mathrm{m}, 1 \mathrm{H}), 3.77$ (ddd, J = 14.7, 10.7, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{td}, \mathrm{J}=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49$ (ddd, $\mathrm{J}=3.9,1.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, \mathrm{J}=15.0,9.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.67 (dd, J = 15.0, 5.0 Hz, 1H), 2.31 - $2.18(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.44-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~d}$, $\mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 18 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=171.9,153.7,134.0,133.2,131.6,131.0,129.9$ (2C), 125.4 (2C), 82.9, 78.8, 74.1, 74.0, 73.6, 72.4, 71.6, 69.8, 53.9, 52.0, 42.0, 40.3, 38.6, 37.3, 26.9, 26.3 (3C), 26.2 (3C), 25.9 (3C), 18.5, 18.4, 18.0, 16.5, -3.5, $-3.9,-4.2,-4.5,-4.6,-4.8 \mathrm{ppm}$; IR (film): $\tilde{v}=3502,2953$, 2929, 2887, 2857, 1738, 1596, 1498, 1472, 1463, 1437, 1389, 1345, 1253, 1150, 1127, 1083, 1006, 972, 939, 916, 833, 813, 774, 761, 688, 668, 633, 506, 466, $424 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{44} \mathrm{H}_{78} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{Si}_{3} \mathrm{SNa}^{+}: 961.4639$, found: 961.4645.

2-(Trimethylsilyl)ethyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((2S,3R,4S)-
2,3,4-trihydroxy-4-((2S,4S,5R)-4-methyl-5-(2-((1-phenyl-1H-tetrazol-5-
yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)butyl)tetrahydro-2H-pyran-2-yl)acetate (150b)

Representative Procedure A (Sharpless Dihydroxylation)

Aq. $\mathrm{Me}_{5} \mathrm{O}_{2} \mathrm{NH}_{2} \quad(0.1 \mathrm{M}, \quad 39.0 \mu \mathrm{~L}, \quad 3.90 \mu \mathrm{~mol}), \quad \mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \quad(0.3 \mathrm{M}$, $11.7 \mu \mathrm{~mol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.3 \mathrm{M}, 11.7 \mu \mathrm{~mol})$ and aq. $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}(0.05 \mathrm{M}$, $20 \mathrm{~mol} \%, 7.8 \mu \mathrm{~L}, 390 \mathrm{nmol})$ were subsequently added to a stirred solution of allylic alcohol 180a ($2 \mathrm{mg}, 2 \mu \mathrm{~mol}$) and L* ($25 \mathrm{~mol} \%, 0.5 \mathrm{mg}$, $488 \mathrm{nmol})$ in $t-\mathrm{BuOH}(125 \mu \mathrm{~L})$ and water $(70 \mu \mathrm{~L})$ at rt , and stirring was continued for 23 h .

Herein, L^{*} corresponds to: $(D H Q)_{2} R$ and $(D H Q D)_{2} R$ with $R=A Q N, P H A L$ and PYR. HPLC analyses to determine the d.r. were carried out on each of the six reactions (Chapter 6.3.3), the work-up and purificiation was conducted with the mixture of all six reaction setups as following:

The mixture was filtered through a pad of SiO_{2} which was washed with EtOAc (5 mL). After removal of the solvent, the crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 5:1 to 2:1) affording both the syn,anti-isomer 196a ($6 \mathrm{mg}, 48 \%$) and the desired all-syn-isomer 150b ($6 \mathrm{mg}, 48 \%$) as a colourless oil.

Analytical and spectral data of the major all-syn-isomer 150b: $[\alpha]_{\mathrm{D}}^{20}:+9.2\left(\mathrm{c}=0.78, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.72-7.57(\mathrm{~m}, 5 \mathrm{H}), 4.32(\mathrm{dt}, \mathrm{J}=9.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.14(\mathrm{~m}, 3 \mathrm{H})$, $4.13-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.95-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 1 \mathrm{H}), 3.87-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.79$ - $3.75(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{td}, \mathrm{J}=8.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.46(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.42$ (m, 1H), 3.25 (d, J = $3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.04 (d, J = $6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.77 (dd, J = 15.0, 10.0 Hz, 1H), 2.61 (dd, $\mathrm{J}=15.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.87(\mathrm{~m}$, $1 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{dt}, \mathrm{J}=14.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.01-0.96(\mathrm{~m}, 2 \mathrm{H})$, 0.93 (s, 9H), $0.89(\mathrm{~s}, 18 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.8,153.6,133.2,131.6,129.9$ (2C), 125.3 (2C), 83.1, 80.2, 74.8, $74.1,73.9,73.8,73.7,73.4,72.4,69.8,63.2,53.6,39.8,37.5,37.1,34.5,26.4,26.3$ (3C), 26.2 (3C), 25.9 (3C), 18.5, 18.4, 18.0, 17.4, 16.1, -1.3 (3C), -3.6, -3.9, -4.1, -4.5, -4.6, -4.8 ppm; IR (film): $\tilde{v}=3488,2954,2928,2897,2857,1731,1596,1498,1472,1463,1389,1344,1251,1149,1129$, 1085, 1041, 1006, 979, 917, 859, 834, 813, 775, 688, 670, 635, 507, 472, $420 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{48} \mathrm{H}_{90} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{Si}_{4} \mathrm{SNa}^{+}$: 1081.5245 , found: 1081.5255.

Analytical and spectral data of the minor syn,anti-isomer $196 \mathrm{a}:[\alpha]_{\mathrm{D}}^{20}:+6.3$ ($\mathrm{c}=0.71, \mathrm{CHCl}_{3}$);
 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.73-7.53(\mathrm{~m}, 5 \mathrm{H}), 4.33(\mathrm{dt}, \mathrm{J}=9.4$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.04(\mathrm{~m}, 5 \mathrm{H}), 4.04(\mathrm{dd}, \mathrm{J}=9.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90$ (ddd, $\mathrm{J}=15.7,10.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.79 (ddd, J = 15.7, 10.7, 5.0 Hz, 1H), $3.79-$ $3.76(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.45(\mathrm{~m}$, $2 \mathrm{H}), 3.36(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, \mathrm{J}=15.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.61(\mathrm{dd}, \mathrm{J}=15.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.21(\mathrm{~m}$, $1 \mathrm{H}), 2.09-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~d}$, $\mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.01-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 18 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.105(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}$, $6 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.8,153.6,133.2$, 131.6, 129.9 (2C), 125.3 (2C), 83.2, 78.8, 75.5, 74.01, 73.95, 73.9, 73.7, 73.2, 72.4, 70.9, 63.2, 53.6, $39.9,38.7,37.4,34.9,26.6,26.3$ (3C), 26.2 (3C), 25.9 (3C), 18.5, 18.4, 18.0, 17.4, 16.5, -1.3 (3C), 3.6, -3.9, -4.1, -4.5, -4.6, -4.8 ppm; IR (film): $\tilde{v}=3339,2954,2928,2896,2856,1731,1631,1596$, 1499, 1472, 1463, 1389, 1345, 1251, 1148, 1130, 1089, 1042, 1006, 977, 920, 857, 834, 812, 775, 689, 673, 632, 512, 471, $413 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{48} \mathrm{H}_{90} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{Si}_{4} \mathrm{SNa}^{+}$: 1081.5245, found: 1081.5258.

Procedure B (large scale)

Aq. $\mathrm{Me}_{5} \mathrm{O}_{2} \mathrm{NH}_{2}(0.1 \mathrm{M}, 488 \mu \mathrm{~L}, 48.8 \mu \mathrm{~mol}), \mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right](0.3 \mathrm{M}, 146 \mu \mathrm{~mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.3 \mathrm{M}$, $146 \mu \mathrm{~mol})$ and aq. $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}(0.05 \mathrm{M}, 20 \mathrm{~mol} \%, 4.87 \mu \mathrm{~mol}, 97.5 \mu \mathrm{~L})$ were subsequently added to a stirred solution of allylic alcohol 180a ($25 \mathrm{mg}, 24 \mu \mathrm{~mol}$) and (DHQD) ${ }_{2}$ AQN ($25 \mathrm{~mol} \%, 6 \mathrm{mg}$, $6 \mu \mathrm{~mol})$ in $t-\mathrm{BuOH}(1.54 \mathrm{~mL})$ and water $(954 \mu \mathrm{~L})$ at rt and the reaction mixture was stirred for 18 h . The reaction mixture was filtered through a plug of SiO_{2}, and the mixture washed with EtOAc $(10 \mathrm{~mL})$. Then a solution of $\mathrm{NaHSO}_{3}(30 \mathrm{mg}, 0.29 \mathrm{mmol})$ in water $(10 \mathrm{~mL})$ was added. The aq. phase was extracted with EtOAc ($10 \times 10 \mathrm{~mL}$), and the combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $5: 1$ to $2: 1$) affording both the minor syn, anti-isomer 196a ($3 \mathrm{mg}, 10 \%$) and the desired major all-syn-isomer 150b ($18 \mathrm{mg}, 68 \%$) as a colourless oil each. The analytical and spectroscopic data of the isolated compounds 196a and 150b were identical with those shown above.

Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((2S,3R,4S)-2,3,4-trihydroxy-4-((2S,4S,5R)-4-methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)butyl)tetrahydro-2H-pyran-2-yl)acetate (150a)

Aq. $\mathrm{MeSO}_{2} \mathrm{NH}_{2}(0.1 \mathrm{M}, 639 \mu \mathrm{~L}, 64 \mu \mathrm{~mol}), \mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right](0.3 \mathrm{M}, 192 \mu \mathrm{~mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.3 \mathrm{M}, 192 \mu \mathrm{~mol})$ and aq. $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}(0.05 \mathrm{M}, 20 \mathrm{~mol} \%$, $6.4 \mu \mathrm{~mol}, 128 \mu \mathrm{~L}$) were subsequently added to a stirred solution of allylic alcohol 180b ($30 \mathrm{mg}, 32 \mu \mathrm{~mol}$) and (DHQD) ${ }_{2} A Q N(0.05 \mathrm{M}$ in t-BuOH, $160 \mu \mathrm{~L}, 8 \mu \mathrm{~mol}$) in $t-\mathrm{BuOH}(1.85 \mathrm{~mL})$ and water (1.27 mL) at rt , and the reaction mixture was stirred for 21 h . The reaction mixture was diluted with EtOAc (2.5 mL) and water $(2.5 \mathrm{~mL})$ and the reaction was quenched with aq. NaHSO_{3} $(2.5 \mathrm{M}, 153 \mu \mathrm{~L})$. The aq. phase was extracted with EtOAc ($8 \times 2.5 \mathrm{~mL}$), and the combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 3:1 to 1:1) to give both the minor syn, anti-isomer 196 b ($4 \mathrm{mg}, 11 \%$) and the desired major all-syn-isomer 150a ($15 \mathrm{mg}, 48 \%$) as a colourless oil. The analytical and spectroscopic data of the major compound 150a were identical with those shown above.

Analytical and spectral data of the minor syn,anti-isomer 196b (the sample contained traces of
 (DHQD) $\left.{ }_{2} \mathrm{AQN}\right):{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.71-7.54(\mathrm{~m}, 5 \mathrm{H}), 4.34$ (dt, J = 9.7, 4.1 Hz, 1H), 4.21-4.09 (m, 2H), 4.08-3.97 (m, 2H), 3.96$3.85(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.72-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.62$ $(\mathrm{s}, 1 \mathrm{H}), 3.59-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.44(\mathrm{~m}, 3 \mathrm{H}), 2.88(\mathrm{dd}, \mathrm{J}=15.0,10.2$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, \mathrm{J}=15.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.13(\mathrm{~m}, 3 \mathrm{H}), 2.07-$ $1.84(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}$, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 18 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.105(\mathrm{~s}, 3 \mathrm{H}), 0.095(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08$ (s, 3H), $0.075(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=172.0,153.7,133.2,131.6,129.9$ (2C), 125.3 (2C), 83.2, 78.9, 75.3, 74.2 (2C), 73.9, 73.5, 73.2, 72.2, 70.4, 53.9, 52.0, 39.9, 38.4, 37.1, 34.8, $26.3(3 C), 26.2(3 C), 25.93,25.90(3 C), 18.5,18.4,18.0,16.5,-3.6,-3.9,-4.1,-4.5,-4.56,-4.59 \mathrm{ppm} ;$ IR (film): $\tilde{v}=3433,2953,2929,2894,2857,1736,1598,1501,1462,1438,1388,1345,1256,1149$, $1128,1083,1043,1006,964,938,917,833,813,775,737,689,673,634,567,536,506,466 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{44} \mathrm{H}_{80} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{Si}_{3} \mathrm{SNa}^{+}$: 995.4694 , found: 995.4700 .

2-(Trimethylsilyl)ethyl 2-((2S,3R,4R,5S,6S)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((2S,3R,4S)-4-((2S,4S,5R)-4-methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)-2,3,4-tris((triethylsilyl)oxy)butyl)tetrahydro-2H-pyran-2-yl)acetate (197)

TESOTf ($4.8 \mu \mathrm{~L}, 21 \mu \mathrm{~mol}$) was added to a stirred solution of triol 196a ($5 \mathrm{mg}, 5 \mu \mathrm{~mol}$) and 2,6-lutidine ($3.3 \mu \mathrm{~L}, 28 \mu \mathrm{~mol}$) in DCM $(160 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach rt and stirring was continued for 2 h . The reaction was diluted with EtOAc $(3.0 \mathrm{~mL})$ and the reaction was quenched with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7$, $3.0 \mathrm{~mL})$. The organic extract was washed with brine (3.0 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 30:1) affording compound 197 as a colourless oil ($5 \mathrm{mg}, 76 \%$).
$[\alpha]_{\mathrm{D}}^{20}:+3.2\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.71-7.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.64-7.57(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{Ph}), 4.24-4.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-12$ and $\mathrm{H}-3), 4.13-4.09(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-19), 3.91$ (ddd, $\mathrm{J}=15.0,11.5$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-17 \mathrm{a}), 3.88-3.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9), 3.83-3.75(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-17 \mathrm{~b}$ and $\mathrm{H}-11$ and $\mathrm{H}-5), 3.70(\mathrm{t}$, $\mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 3.57-3.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.51-3.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10), 3.49(\mathrm{td}, \mathrm{J}=9.3,8.6,2.8 \mathrm{~Hz}$, 1H, H-15), $3.35-3.33$ (m, 1H, H-6), 2.98 (dd, J = 15.2, 7.7 Hz, 1H, H-2a), 2.47 (dd, J = 15.2, 6.0 Hz , 1H, H-2b), 2.23 - 2.17 (m, 1H, H-16a), $2.00-1.90$ (m, 3H, H-16b and H-14 and H-13a), 1.83 (dd, $\mathrm{J}=8.3,4.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-8$), 1.76 (d, J = $10.3 \mathrm{~Hz}, 1 \mathrm{H}, 13 \mathrm{~b}$), 1.03 (d, J = $6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-33$), 0.98 (s, 3 H , Me), 0.96 (s, 6H, Me), 0.95 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}$), 0.945 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.93 (s, 6H, Me), 0.92 (s, 3H, Me), 0.915 (s, 9H, t-Bu), 0.89 (s, 18H, t-Bu), $0.68-0.56\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{CH}_{2}\right), 0.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}-\mathrm{Me}), 0.085(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}-\mathrm{Me})$, 0.08 ($s, 3 H, ~ S i-M e), ~ 0.07$ ($s, 6 \mathrm{H}, \mathrm{Si}-\mathrm{Me}$), 0.05 (s, 3H, Si-Me), 0.01 (s, 9H, TMS) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3): $\delta=171.8$ (C-1), 153.7 (C-18), 133.3 ($i-\mathrm{Ph}$), 131.5 ($p-\mathrm{Ph}$), 129.8 (2C, mPh), 125.3 (2C, o-Ph), 82.7 (C-15), 79.5 (C-12), 77.6 (C-10), 74.8 (C-11), 74.4 (C-5), 73.8 (C-3), 72.5 (C-6), 72.2 (C-4), 71.7 (C-9), 66.3 (C-7), 62.6 (C-19), 53.9 (C-17), 40.1 (C-14), 37.2 (C-2), 36.0 (C-8), 34.2 (C-13), 26.9 (C-16), 26.3 (3C, $t-B u), 26.2$ (3C, $t-B u), 26.0(3 C, t-B u), 18.4$ ($t-B u), 18.3(t-B u), 18.1$ ($t-\mathrm{Bu}$), 17.5 (C-20), 16.5 (C-33), 7.4 (3C, Me), 7.23 (3C, Me), 7.15 (3C, Me), $5.5\left(3 \mathrm{C}, \mathrm{CH}_{2}\right), 5.2$ (3C, CH_{2}), $5.0\left(3 \mathrm{C}, \mathrm{CH}_{2}\right),-1.4(3 \mathrm{C}, \mathrm{TMS}),-3.4$ (Si-Me), -3.7(Si-Me), -4.3 (Si-Me), -4.6 (Si-Me), -4.8 (Si-Me), -4.9 (Si-Me) ppm; IR (film): $\tilde{v}=2954,2928,2877,2857,1733,1661,1634,1499,1463,1416,1379$, 1344, 1251, 1154, 1082, 1044, 1005, 976, 940, 834, 813, 775, 761, 742, 739, 687, 670, 666, 635, 610, 535, 507, $468 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{66} \mathrm{H}_{132} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{Si}_{7} \mathrm{SNa}^{+}$: 1423.7840, found: 1423.7858.

2-(Trimethylsilyl)ethyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((2S,3R,4R)-4-
((2S,4S,5R)-4-methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)-2,3,4-tris((triethylsilyl)oxy)butyl)tetrahydro-2H-pyran-2-yl)acetate (127a)

TESOTf ($346 \mu \mathrm{~L}, 1.53 \mathrm{mmol}$) was added to a stirred solution of triol 150b ($360 \mathrm{mg}, 340 \mu \mathrm{~mol}$) and 2,6-lutidine ($237 \mu \mathrm{~L}, 2.04 \mathrm{mmol}$) in DCM (13 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach rt and stirring was continued for 2 h . The reaction was diluted with MTBE $(25 \mathrm{~mL})$ and the reaction was quenched with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,25 \mathrm{~mL}$). The organic extract was washed with water $(10 \mathrm{~mL})$ and brine (10 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 50:1) affording compound 127 a as a colourless oil (376 mg, 79\%).
$[\alpha]_{\mathrm{D}}^{20}:+12.5\left(\mathrm{c}=1.10, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.71-7.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.64-7.58(\mathrm{~m}$, 3H, Ph), $4.20-4.15$ (m, 2H, H-9 and H-3), $4.14-4.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-19), 4.06$ (ddd, J = 9.9, 8.0, 5.6 Hz, $1 \mathrm{H}, \mathrm{H}-12$), 3.94 (ddd, J = 14.5, 11.7, $4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-17 \mathrm{a}$), $3.83-3.76$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-17 \mathrm{~b}$ and $\mathrm{H}-7$ and $\mathrm{H}-5$), $3.69-3.61$ (m, 2H, H-10 and H-11), $3.60-3.58$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$), 3.45 (td, J = $8.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15$), $3.36-3.33$ (m, 1H, H-6), 3.25 (dd, J = 15.5, 9.9 Hz, 1H, H-2a), 2.38 (dd, J = 15.4, 3.8 Hz, 1H, H-2b), 2.25 (dddd, J = 13.5, 11.8, 4.5, 3.2 Hz, 1H, H-16a), 2.21 (dd, J = 12.4, 6.2 Hz, 1H, H-13a), 1.99 (dddd, $\mathrm{J}=13.2,11.4,8.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}), 1.92(\mathrm{dd}, \mathrm{J}=14.9,10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 1.83$ (ddt, J = 11.2, 8.9, $6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-14$), 1.51 (dd, J = 14.4, $8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{~b}$), 1.39 ($\mathrm{dt}, \mathrm{J}=12.8,11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{~b}$), 1.02 (d, J = 6.5 Hz, 3H, H-33), 0.99 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.98 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.97 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.96 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.95 $(\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}), 0.945(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 0.935(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 0.93(\mathrm{~s}, 9 \mathrm{H}, \mathrm{t}-\mathrm{Bu}), 0.92(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 0.895(\mathrm{~s}, 9 \mathrm{H}, \mathrm{t}$ $\mathrm{Bu}), 0.89(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.66-0.55\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{CH}_{2}\right), 0.105(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}-\mathrm{Me}), 0.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}-\mathrm{Me}), 0.09(\mathrm{~s}$, 3H, Si-Me), 0.075 (s, 3H, Si-Me), 0.07 (s, 3H, Si-Me), 0.06 (s, 3H, Si-Me), 0.03 (s, 9H, TMS) ppm; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.9$ (C-1), 153.7 (C-18), 133.3 ($i-\mathrm{Ph}$), 131.6 ($p-\mathrm{Ph}$), 129.8 ($2 \mathrm{C}, \mathrm{m}-$ Ph), 125.3 (2C, o-Ph), 81.9 (C-15), 81.1 (C-12), 77.0 (C-11), 75.4 (C-10), 74.4 (C-5), 73.8 (C-3), 73.1 (C-6), 71.6 (C-4), 70.0 (C-9), 65.3 (C-7), 62.6 (C-19), 53.9 (C-17), 40.0 (C-14), 37.9 (C-13), 37.2 (C-2), 36.2 (C-8), 26.4 (C-16), 26.33 (3C, $t-\mathrm{Bu}$), 26.30 (3C, $t-\mathrm{Bu}$), 25.9 (3C, $t-\mathrm{Bu}$), 18.39 ($t-\mathrm{Bu}$), 18.36 ($t-\mathrm{Bu}$), 18.0 ($t-\mathrm{Bu}$), 17.5 (C-20), 16.4 (C-33), 7.29 (3C, Me), 7.25 (3C, Me), 7.2 (3C, Me), $5.68\left(3 \mathrm{C}, \mathrm{CH}_{2}\right), 5.66$ (3C, CH2), $5.5\left(3 \mathrm{C}, \mathrm{CH}_{2}\right),-1.4(3 \mathrm{C}, \mathrm{TMS}),-3.3(\mathrm{Si}-\mathrm{Me}),-3.6(\mathrm{Si}-\mathrm{Me}),-4.4(\mathrm{Si}-\mathrm{Me}),-4.6(\mathrm{Si}-\mathrm{Me}),-4.7$ (SiMe), -4.8 (Si-Me) ppm; IR (film): $\tilde{v}=2953,2930,2877,2858,1732,1597,1500,1463,1414,1389$,
$1363,1346,1251,1150,1115,1088,1043,1005,974,918,900,861,834,813,775,761,740,730$, 687, 673, 634, 532, 507, 465, 443, 430, $407 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{66} \mathrm{H}_{132} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{Si}_{7} \mathrm{SNa}^{+}: 1423.7840$, found: 1423.7849 .

Methyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-((2S,3R,4R)-4-((2S,4S,5R)-4-methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)-2,3,4-tris((triethylsilyl)oxy)butyl)tetrahydro-2H-pyran-2-yl)acetate (127b)

TESOTf ($293 \mu \mathrm{~L}, 1.29 \mathrm{mmol}$) was added to a stirred solution of triol 150a ($280 \mathrm{mg}, 288 \mu \mathrm{~mol}$) and 2,6-lutidine ($201 \mu \mathrm{~L}, 1.73 \mathrm{mmol}$) in DCM (11 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach rt and stirring was continued for 1 h . The reaction was diluted with MTBE $(25 \mathrm{~mL})$ and the reaction was quenched with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,25 \mathrm{~mL}$). The organic extract was washed with water $(10 \mathrm{~mL})$ and brine (10 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 30:1) affording compound 127b as a colourless oil ($310 \mathrm{mg}, 82 \%$).
$[\alpha]_{\mathrm{D}}^{20}:+24.3\left(\mathrm{c}=0.98, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.74-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.57(\mathrm{~m}$, 3 H), $4.22-4.13(\mathrm{~m}, 2 \mathrm{H}), 4.06$ (ddd, J = 9.8, $7.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.95 (ddd, J = $14.5,11.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.85-3.74(\mathrm{~m}, 3 \mathrm{H}), 3.68-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.45$ (td, J = 8.5, 3.1 Hz, 1H), $3.38-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{dd}, \mathrm{J}=15.4,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, \mathrm{J}=15.4,4.1 \mathrm{~Hz}$, 1H), $2.31-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.92$ (ddd, J=14.8, 10.7, $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.83 (ddt, $J=11.1,8.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{dd}, \mathrm{J}=14.5,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.45-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, $0.99(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 6 \mathrm{H}), 0.955(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 6 \mathrm{H}), 0.935(\mathrm{~s}, 6 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.895(\mathrm{~s}$, $9 \mathrm{H}), 0.89$ (s, 9H), $0.67-0.54(\mathrm{~m}, ~ 18 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}), 0.09$ (s, 3H), 0.07 (s, 9H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.2,153.7,133.3,131.6,129.8$ (2C), 125.3 (2C), 81.9, 81.1, 77.0, $75.4,74.5,73.6,73.1,71.8,69.8,65.5,53.9,51.5,40.0,38.0,36.9,36.2,26.5,26.30$ (3C), 26.27 (3C), 25.8 (3C), 18.36, 18.35, 18.0, 16.3, 7.3 (3C), 7.2 (6C), 5.7 (6 C$), 5.5$ (3C), -3.3, -3.6, -4.3, -4.6, 4.8 (2C) ppm; IR (film): $\tilde{v}=2953,2931,2910,2877,2858,1740,1597,1499,1462,1437,1414$, 1389, 1345, 1252, 1149, 1126, 1078, 1044, 1005, 972, 919, 899, 872, 833, 813, 774, 760, 738, 726, 687, 673, 636, 536, 507, 465, $434 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{62} \mathrm{H}_{122} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{Si}_{6} \mathrm{SNa}^{+}: 1337.7288$, found: 1337.7290.

5.2.3.3. Stereochemical Proof

(S,E)-4-((2S,4S,5R)-4-Methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)-1-((2R,3S,4R,5R,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(2-oxo-2-(2-
(trimethylsilyl)ethoxy)ethyl)tetrahydro-2H-pyran-2-yl)but-3-en-2-yl
(S)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (198a)

(R)-Mosher acid chloride ($3.3 \mu \mathrm{~L}, 18 \mu \mathrm{~mol}$) was added to a stirred solution of allylic alcohol 180a ($6 \mathrm{mg}, 6 \mu \mathrm{~mol}$) and py $(2.4 \mu \mathrm{~L}$, $30 \mu \mathrm{~mol})$ in DCM $(200 \mu \mathrm{~L})$ at rt and the reaction mixture was stirred for 1 h . Then py $(2.4 \mu \mathrm{~L}, 30 \mu \mathrm{~mol})$ and (R)-Mosher acid chloride ($3.3 \mu \mathrm{~L}, 18 \mu \mathrm{~mol}$) were subsequently added to the reaction mixture and stirring was continued for 5 h . Afterwards py ($2.4 \mu \mathrm{~L}, 30 \mu \mathrm{~mol}$) and (R)-Mosher acid chloride $(3.3 \mu \mathrm{~L}, 18 \mu \mathrm{~mol})$ were again subsequently added to the reaction mixture and stirring was continued for 18 h . The reaction was quenched with water $(2.0 \mathrm{~mL})$ and the aq. phase was extracted with MTBE ($3 \times 3.0 \mathrm{~mL}$). The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 10:1) affording compound 198a as a colourless oil ($7 \mathrm{mg}, 96 \%$). ${ }^{309}$
$[\alpha]_{\mathrm{D}}^{20}$: $+3.9\left(\mathrm{c}=0.71, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.71-7.50(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ph}), 7.41-7.33(\mathrm{~m}$, $3 H, P h$), 5.89 (dd, J = 14.6, $6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 5.67 (ddd, J = 15.2, 8.0, 1.1 Hz, 1H, H-10), $5.65-5.59$ (m, 1H, H-9), 4.39 (dt, J = 9.2, 6.1 Hz, 1H, H-12), 4.32 (ddd, J = 8.8, 5.7, 3.6 Hz, 1H, H-3), $4.23-4.16$ (m, 2H, H-19), 3.93 (ddd, J = 14.7, 11.2, $4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-17 \mathrm{a}$), $3.83-3.73$ (m, 3H, H-17b and $\mathrm{H}-5$ and $\mathrm{H}-7$), 3.55 (td, J = 8.6, $3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15$), $3.52-3.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.50(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-24), 3.40(\mathrm{t}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 2.76 (dd, J = 15.0, 5.9 Hz, 1H, H-2a), 2.51 (dd, J = 15.0, 8.3 Hz, 1H, H-2b), $2.32-$ 2.16 (m, 3H, H-16a and H-8a and H-13a), $2.06-1.89(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}$ and $\mathrm{H}-14$), 1.47 (ddd, J=13.5, 9.7, $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{~b}$), 1.36 (ddd, J = 12.3, $10.7,9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{~b}$), 1.03 (d, J = $6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-33$), $1.02-0.97$ (m, 2H, H-20), 0.89 ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$), $0.88(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.86(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.09(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}-\mathrm{Me})$, 0.08 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Si}-\mathrm{Me}$), 0.06 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Si}-\mathrm{Me}$), 0.03 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{TMS}$), 0.01 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Si}-\mathrm{Me}$) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=171.6,165.2,153.6,137.3,133.2,132.6,131.6,129.9$ (2C), 129.6, 128.5 (2C), 127.7 (2C), 126.9, 125.3 (2C), 123.5 ($q, \mathrm{~J}_{13 \mathrm{c}, 19 \mathrm{~F}}=290 \mathrm{~Hz}$), 84.4, 83.0, 78.2, 74.9, 74.2, $73.9,73.6,72.3,65.8,62.9,55.4,53.8,42.1,40.2,37.8,36.4,26.8,26.3$ (3C), 26.2 (3C), 25.9 (3C), $18.5,18.3,18.0,17.5,16.5,-1.4(3 C),-3.5,-4.0,-4.3,-4.5(2 C),-5.0 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (282 MHz ,

[^107]CDCl_{3}): $\delta=-71.6$ (3F) ppm; IR (film): $\tilde{v}=2954,2929,2896,2857,1733,1596,1498,1472,1463$, 1408, 1390, 1361, 1345, 1251, 1217, 1169, 1156, 1121, 1081, 1038, 1024, 1006, 993, 973, 938, 917, 901, 881, 859, 833, 812, 773, 757, 720, 695, 688, 666, 669, 635, 537, 525, $506 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{58} \mathrm{H}_{95} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~F}_{3} \mathrm{Si}_{4} \mathrm{~S}_{1} \mathrm{Na}^{+}$: 1263.5589 , found: 1263.5597 .

(S,E)-4-((2S,4S,5R)-4-Methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-

 yl)-1-((2R,3S,4R,5R,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(2-oxo-2-(2-(trimethylsilyl)ethoxy)ethyl)tetrahydro-2H-pyran-2-yl)but-3-en-2-yl(R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (epi-198a)
 (S)-Mosher acid chloride ($3.3 \mu \mathrm{~L}, 18 \mu \mathrm{~mol}$) was added to a stirred solution of allylic alcohol 180a ($6 \mathrm{mg}, 6 \mu \mathrm{~mol}$) and py ($2.4 \mu \mathrm{~L}, 29 \mu \mathrm{~mol}$) in DCM $(200 \mu \mathrm{~L})$ at rt and the reaction mixture was stirred for 1 h . Then py $(2.4 \mu \mathrm{~L}, 29 \mu \mathrm{~mol})$ and (S)-Mosher acid chloride $(3.3 \mu \mathrm{~L}$, $18 \mu \mathrm{~mol})$ were subsequently added to the reaction mixture and stirring was continued for 5 h . Afterwards py ($2.4 \mu \mathrm{~L}, 29 \mu \mathrm{~mol}$) and (S)-Mosher acid chloride ($3.3 \mu \mathrm{~L}, 18 \mu \mathrm{~mol}$) were again subsequently added to the reaction mixture and stirring was continued for 15 h . Then py ($2.4 \mu \mathrm{~L}, 29 \mu \mathrm{~mol}$) and (S)-Mosher acid chloride ($33 \mu \mathrm{~L}, 18 \mu \mathrm{~mol}$) were again subsequently added to the reaction mixture and stirring was continued for 3 h . The reaction was quenched with water (2.0 mL) and the aq. phase was extracted with MTBE ($3 \times 3.0 \mathrm{~mL}$). The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 10:1) affording compound epi-198a as a colourless oil (7 mg, 96\%). ${ }^{310}$
$[\alpha]_{\mathrm{D}}^{20}:+30.0\left(\mathrm{c}=0.68, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.71-7.50(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ph}), 7.45-7.33(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{Ph}$), 5.77 (dd, J = 15.2, $6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 5.62 (ddd, J = 9.7, 7.7, $4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 5.54 (ddd, $J=15.2,7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10), 4.38-4.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-12$ and $\mathrm{H}-3), 4.22-4.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-19), 3.91$ (ddd, J = 14.7, 11.3, 4.7 Hz, 1H, H-17a), $3.80(d t, J=10.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.79-3.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7)$, 3.74 (ddd, J = 14.6, 11.1, $4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-17 \mathrm{~b}$), 3.57 (s, $3 \mathrm{H}, \mathrm{H}-24$), $3.52-3.47$ (m, 2H, H-15 and H-4), 3.42 (t, J = $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 2.74 (dd, J = 15.1, $5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.55 (dd, J = 15.1, $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 2b), $2.36-2.16$ (m, 3H, H-8a and $\mathrm{H}-16 \mathrm{a}$ and $\mathrm{H}-13 \mathrm{a}$), $2.06-1.86$ (m, $2 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}$ and $\mathrm{H}-14$), 1.53

[^108](ddd, J = 19.6, 9.8, $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{~b}$), 1.31 (ddd, J = 12.3, 10.7, $9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{~b}$), 1.03 (d, $\mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-33$), $1.02-0.97(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-20), 0.91(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.90(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.86(\mathrm{~s}, 9 \mathrm{H}, \mathrm{t}-$ Bu), 0.09 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{Si}-\mathrm{Me}$), 0.08 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Si}-\mathrm{Me}$), 0.07 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Si}-\mathrm{Me}$), 0.05 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Si}-\mathrm{Me}$), 0.02 ($\mathrm{s}, 9 \mathrm{H}$, TMS) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.6,165.1,153.6,136.6,133.2,132.7,131.6,129.9$ (2C), 129.6, 128.4 (2C), 127.6 (2C), 126.9, $125.3(2 \mathrm{C}), 124.2$ ($\mathrm{q}, \mathrm{J}_{13 \mathrm{C}, 19 \mathrm{~F}}=285 \mathrm{~Hz}$), 84.5, 82.9, 78.1, $74.5,74.2,73.9,73.5,72.2,65.9,63.0,55.7,53.8,42.0,40.2,37.7,36.5,26.7,26.3$ (3C), 26.2 (3C), 25.9 (3C), 18.5, 18.3, 18.0, 17.5, 16.4, -1.4 (3C), -3.4, -4.0, -4.3, -4.50, -4.51, -5.0 ppm; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-71.5$ (3F) ppm; IR (film): $\tilde{v}=2954,2929,2898,2857$ 1746, 1632, $1597,1498,1472,1463,1452,1390,1360,1346,1251,1167,1122,1081,1038,1023,1015,1006$, $991,938,917,902,884,859,833,812,774,760,720,695,688,667,636,575,525,506,469 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{58} \mathrm{H}_{95} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~F}_{3} \mathrm{Si}_{4} \mathrm{~S}_{1} \mathrm{Na}^{+}: 1263.5589$, found: 1263.5594 .

(S,E)-4-((2S,4S,5R)-4-Methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-

 yl)-1-((2R,3S,4R,5R,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(2-methoxy-2-oxoethyl)tetrahydro-2H-pyran-2-yl)but-3-en-2-yl (S)-3,3,3-trifluoro-2-methoxy-2phenylpropanoate (198b)
(R)-Mosher acid chloride ($3.6 \mu \mathrm{~L}, 19 \mu \mathrm{~mol}$) was added to a stirred solution of allylic alcohol $180 \mathrm{~b}(6 \mathrm{mg}, 6 \mu \mathrm{~mol})$ and py ($2.6 \mu \mathrm{~L}$, $32 \mu \mathrm{~mol})$ in DCM $(200 \mu \mathrm{~L})$ at rt and the reaction mixture was stirred for 4 h . Then py ($2.6 \mu \mathrm{~L}, 32 \mu \mathrm{~mol}$) and (R)-Mosher acid chloride ($3.6 \mu \mathrm{~L}, 19 \mu \mathrm{~mol}$) were subsequently added to the reaction mixture and stirring was continued for 3 d . The reaction was quenched with water (2.0 mL) and the aq. phase was extracted with MTBE ($3 \times 3.0 \mathrm{~mL}$). The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 7:1) affording compound 198b as a colourless oil ($7 \mathrm{mg}, 95 \%$). ${ }^{311}$
$[\alpha]_{\mathrm{D}}^{20}:+0.9\left(\mathrm{c}=0.71, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.72-7.34(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 5.88$ (dd, $J=14.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 5.66 (ddd, J = 12.2, 8.1, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), 5.62 (ddd, J = 14.5, 8.0, 4.0 Hz , $1 \mathrm{H}, \mathrm{H}-9$), 4.39 (dt, J = 9.4, 6.1 Hz, 1H, H-12), 4.32 (ddd, J = 9.1, 5.7, 3.7 Hz, 1H, H-3), 3.93 (ddd, $\mathrm{J}=14.6,11.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-17 \mathrm{a})$, $3.83-3.72(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-17 \mathrm{~b}$ and $\mathrm{H}-7$ and $\mathrm{H}-5)$, $3.70(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-19)$,

[^109]3.55 (td, J = 8.7, 3.0 Hz, 1H, H-15), 3.53 (s, 3H, H-23), $3.51-3.49$ (m, 1H, H-4), $3.43-3.39$ (m, 1H, H-6), 2.78 (dd, J = 15.1, 5.7 Hz, 1H, H-2a), 2.57 (dd, J = 15.1, 8.6 Hz, 1H, H-2b), 2.29 (ddd, J = 13.7, 8.1, 3.1 Hz, 1H, H-16a), 2.28-2.22 (m, 1H, H-8a), 2.23 (dd, J = 12.5, 6.2 Hz, 1H, H-13a), 2.01 (dddd, J = 12.2, 9.7, 7.8, 4.1 Hz, 1H, H-16b), 1.94 (ddt, J = 10.5, $8.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-14$), 1.47 (ddd, J = 13.5, 9.9, 2.5 Hz, 1H, H-8b), 1.36 (ddd, J = 12.4, 10.6, $9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{~b}$), 1.03 (d, J = $6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-33$), 0.89 ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$), 0.88 ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$), 0.86 ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$), 0.09 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Si}-\mathrm{Me}$), 0.08 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Si}-\mathrm{Me}$), 0.07 (s, 3H, Si-Me), 0.06 (s, 3H, Si-Me), 0.01 ($3 \mathrm{H}, \mathrm{Si}-\mathrm{Me}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.9$, 165.3, 153.6, 137.4, 133.2, 132.6, 131.6, 129.9 (2C), 129.6, 128.5 (2C), 127.7 (2C), 126.8, 125.3 (2C), 124.6 ($q, \mathrm{~J}_{13 \mathrm{c}, 19 \mathrm{~F}}=288 \mathrm{~Hz}$), 84.6, 83.0, 78.1, 75.0, 74.2, 73.74, 73.65, 72.2, 65.9, 55.4, 53.8, 51.9, 42.0, 40.2, 37.4, 36.3, 26.8, 26.3 (3C), 26.1 (3C), 25.9 (3C), 18.5, 18.3, 18.0, 16.4, -3.5, -4.0, 4.3, -4.52, -4.53, -5.0 ppm; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-71.6$ (3F) ppm; IR (film): $\tilde{v}=2954,2929$, 2896, 2857, 1743, 1596, 1498, 1463, 1439, 1390, 1346, 1254, 1167, 1121, 1082, 1015, 938, 917, 897, 833, 813, 774, 761, 720, 696, 668, 636, 524, 506, $466 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{54} \mathrm{H}_{85} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~F}_{3} \mathrm{Si}_{3} \mathrm{SNa}^{+}: 1177.5037$, found: 1177.5047.
(S,E)-4-((2S,4S,5R)-4-Methyl-5-(2-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)ethyl)tetrahydrofuran-2-yl)-1-((2R,3S,4R,5R,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(2-methoxy-2-oxoethyl)tetrahydro-2H-pyran-2-yl)but-3-en-2-yl
(R)-3,3,3-trifluoro-2-methoxy-2phenylpropanoate (epi-198b)

(S)-Mosher acid chloride ($3.6 \mu \mathrm{~L}, 19 \mu \mathrm{~mol}$) was added to a stirred solution of allylic alcohol 180b ($6 \mathrm{mg}, 6 \mu \mathrm{~mol}$) and py ($2.6 \mu \mathrm{~L}$, $32 \mu \mathrm{~mol})$ in DCM $(200 \mu \mathrm{~L})$ at rt and the reaction mixture was stirred for 4 h . Then py ($2.6 \mu \mathrm{~L}, 32 \mu \mathrm{~mol}$) and (S)-Mosher acid chloride ($3.6 \mu \mathrm{~L}, 19 \mu \mathrm{~mol}$) were subsequently added to the reaction mixture and stirring was continued for 3 d . The reaction was quenched with water (2.0 mL) and the aq. phase was extracted with MTBE ($3 \times 3.0 \mathrm{~mL}$). The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 7:1) affording compound epi-198b as a colourless oil ($7 \mathrm{mg}, 95 \%$). ${ }^{312}$

[^110]$[\alpha]_{\mathrm{D}}^{20}:+33.9\left(\mathrm{c}=0.70, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.70-7.35(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 5.77$ (dd, $J=15.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 5.61 (ddd, J = 9.8, $7.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 5.54 (ddd, J = 15.1, $7.7,1.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-10$), $4.39-4.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-12$ and $\mathrm{H}-3), 3.91$ (ddd, J = 14.7, 11.3, 4.7 Hz, 1H, H-17a), 3.81 (dt, $J=11.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 3.79-3.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.74$ (ddd, J=14.8, 9.8, 4.9 Hz, 1H, H-17b), 3.69 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-19$), 3.57 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-23$), $3.53-3.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.50(\mathrm{dd}, \mathrm{J}=9.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15), 3.45-$ 3.41 (m, 1H, H-6), 2.75 (dd, J = 15.1, $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.60 (dd, J = 15.1, $8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$), 2.31 (ddd, J = 13.6, 10.6, $4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}$), 2.26 (ddd, J = 11.4, 8.7, $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{a}$), 2.21 (dt, J = 12.5, $6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{a}$), 2.00 (dddd, J=14.1, 11.7, $9.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16 \mathrm{~b}$), 1.92 (ddt, J=10.5, 8.6, $6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-14$), 1.52 (ddd, J = 13.6, $9.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{~b}$), 1.32 (ddd, J = 12.3, 10.7, $9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 13b), 1.04 (d, J = 6.6 Hz, 3H, H-33), 0.91 ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$), 0.89 ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$), 0.86 ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$), 0.09 (s , 9H, Si-Me), 0.08 (s, 3H, Si-Me), 0.07 (s, 3H, Si-Me), 0.05 (s, 3H, Si-Me) ppm; ${ }^{13}$ C NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=171.9,165.2,153.6,136.8,133.2,132.7,131.6,129.9$ (2C), 129.6, 128.4 (2C), 127.6 (2C), 126.7, 125.3 (2C), 123.3 (q, $\mathrm{J}_{13 \mathrm{C}, 19 \mathrm{~F}}=289 \mathrm{~Hz}$), 84.5, 82.9, 78.1, 74.6, 74.2, 73.8, 73.6, 72.2, $66.1,55.7,53.8,51.9,42.0,40.2,37.3,36.5,26.7,26.3$ (3C), 26.1 (3C), 25.9 (3C), 18.5, 18.3, 18.0, 16.4, -3.4, -4.0, -4.3, -4.51, -4.54, -5.0 ppm; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-71.5$ (3F) ppm; IR (film): $\tilde{v}=2954,2929,2896,2857,1745,1597,1498,1463,1452,1390,1346,1257,1167,1122,1081$, $1015,992,939,917,897,833,813,775,762,720,703,635,526,506,466,445,432 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{54} \mathrm{H}_{85} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~F}_{3} \mathrm{Si}_{3} \mathrm{SNa}^{+}$: 1177.5037 , found: 1177.5046.

5.2.3.4. Alternative Pathways

5.2.3.4.1. Reactivity Differences Between C5'-Epimeric Glucosides

2-(Trimethylsilyl)ethyl 2-((2S,3R,4R,5S,6R)-6-(3-bromoprop-2-yn-1-yl)-3,4,5-tris((tert-butyldimethylsilyl)oxy)tetrahydro-2H-pyran-2-yl)acetate (epi-199a)
 $\mathrm{AgNO}_{3}(10 \mathrm{~mol}, 1 \mathrm{mg}, 7 \mu \mathrm{~mol})$ and $\operatorname{NBS}(15 \mathrm{mg}, 82 \mu \mathrm{~mol})$ were subsequently added to a stirred solution of alkyne epi-35a ($50 \mathrm{mg}, 74 \mu \mathrm{~mol}$) in acetone (0.45 mL) at rt and stirring was continued for 2.5 d . The reaction mixture was filtered through a pad of SiO_{2} and the filtrate was diluted with water (5 mL). The aq. phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$ and the combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $100: 1$ to $\left.50: 1\right)$ affording compound epi-199a as a colourless oil ($48 \mathrm{mg}, 86 \%$).
$[\alpha]_{\mathrm{D}}^{20}:+1.7\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.21-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.13$ (ddd, J = 8.3, $4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.84-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{dd}, \mathrm{J}=16.1$, $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{dd}, \mathrm{J}=16.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.02-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H})$, 0.915 (s, 9H), 0.91 (s, 9H), 0.12 (s, 3H), 0.115 (s, 6H), 0.11 (s, 3H), 0.09 (s, 3H), 0.04 (s, 9H), 0.02 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.8,77.4,75.4,73.8,73.0,71.4,70.2,62.8,39.5,37.2$, 26.5 (3C), 26.4 (3C), 25.8 (3C), 22.4, 18.53, 18.46, 18.0, 17.4, -1.3 (3C), -2.7, -3.1, -4.3, -4.4, -5.0, 5.08 ppm; IR (film): $\tilde{v}=2953,2929,2896,2858,1735,1472,1463,1406,1382,1361,1348,1285$, 1251, 1216, 1174, 1143, 1083, 1006, 983, 923, 985, 831, 812, 770, 693, 674, 562, 518, $462 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{67} \mathrm{O}_{6} \mathrm{Si}_{4} \mathrm{BrNa}^{+}$: 773.3091, found: 773.3096.

2-(Trimethylsilyl)ethyl
2-((2S,3R,4R,5S,6R)-6-(3-bromo-2-oxopropyl)-3,4,5-tris((tert-butyldimethylsilyl)oxy)tetrahydro-2H-pyran-2-yl)acetate (epi-189a)

Water ($3.45 \mu \mathrm{~L}, 192 \mu \mathrm{~mol}$) and XPhosAuNTf $2(3 \mathrm{~mol}, 2 \mathrm{mg}, 2 \mu \mathrm{~mol}$) were subsequently added to a stirred solution of bromo alkyne epi-199a (48 mg , $84 \mu \mathrm{~mol}$) in 1,2-DCE (0.5 mL) at rt and stirring was continued for 2.5 h . The solvent was evaporated and the crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 100:1 to 30:1) affording compound epi-189a as a colourless oil ($20 \mathrm{mg}, 41 \%$).
$[\alpha]_{\mathrm{D}}^{20}:+18.1\left(\mathrm{c}=0.97, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.22-4.11(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.06(\mathrm{~m}$, $2 \mathrm{H}), 4.08(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.39(\mathrm{~m}, 1 \mathrm{H})$, $3.38-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{dd}, \mathrm{J}=15.0,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, \mathrm{J}=15.9,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, \mathrm{J}=15.1$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.33 (dd, J = 15.9, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.01-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~s}, 18 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}$, $6 \mathrm{H}), 0.095(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}), 0.035(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.2,171.7,73.7,73.4,72.9,71.7,71.3,63.0,42.9,37.3,36.4,26.49$ (3C), 26.47 (3C), 25.9 (3C), 18.53, 18.51, 18.0, 17.4, -1.3 (3C), -3.10, -3.14, -4.3 (2C), -4.9, -5.0 ppm; IR (film): $\tilde{v}=2954$, 2929, 2895, 2858, 1734, 1472, 1463, 1389, 1362, 1345, 1251, 1173, 1141, 1084, 1006, 984, 924, 833, 813, 773, 675, 666, 535, 470, 424, $411 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{69} \mathrm{O}_{7} \mathrm{Si}_{4} \mathrm{BrNa}^{+}$: 791.3196, found: 791.3199.

2-(Trimethylsilyl)ethyl 2-((2S,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(2-

 oxopropyl)tetrahydro-2H-pyran-2-yl)acetate (epi-190a) evaporated and the crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 20:1) affording compound epi-190a as a colourless oil (9 mg, 88\%).
$[\alpha]_{\mathrm{D}}^{20}:+3.6\left(\mathrm{c}=0.90, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.17-4.10(\mathrm{~m}, 3 \mathrm{H}), 4.09(\mathrm{ddd}, \mathrm{J}=8.5$, $4.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.37(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{dd}, \mathrm{J}=15.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}$, $J=16.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dd}, \mathrm{J}=16.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, \mathrm{J}=16.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.00$ $-0.95(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.085(\mathrm{~s}$, $3 \mathrm{H}), 0.035(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=208.1,171.8$, $73.35,73.34,73.0,71.6,71.4,62.7,45.9,37.3,30.8,26.5$ (6C), 25.9 (3C), 18.54, 18.51, 18.0, 17.4, 1.3 (3C), -3.0, -3.1, -4.3 (2C), -4.95, -5.03 ppm; IR (film): $\tilde{v}=2953,2930,2896,2858,1735,1730$, $1473,1463,1409,1381,1361,1251,1171,1141,1087,1062,1023,1006,983,924,833,813,772$, 675, 532, $466 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{70} \mathrm{O}_{7} \mathrm{Si}_{4} \mathrm{Na}^{+}$: 713.4091, found: 713.4094.

2-(Trimethylsilyl)ethyl 2-((2R,3R,4R,5S,6R)-6-(3-bromoprop-2-yn-1-yl)-3,4,5-tris((tert-butyldimethylsilyl)oxy)tetrahydro-2H-pyran-2-yl)acetate (199a)

AgNO_{3} ($10 \mathrm{~mol} \%, 3 \mathrm{mg}, 0.02 \mathrm{mmol}$) and NBS ($29 \mathrm{mg}, 0.16 \mathrm{mmol}$) were subsequently added to a stirred solution of alkyne 35a ($100 \mathrm{mg}, 149 \mu \mathrm{~mol}$) in acetone $(0.9 \mathrm{~mL})$ at rt and stirring was continued for 20.5 h . The reaction mixture was filtered through a pad of SiO_{2} and the filtrate was diluted with water (5 mL). The aq. phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$ and the combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 100:1) affording compound 199a as a colourless oil (109 mg, 98\%).
$[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}:+12.7\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.33(\mathrm{td}, \mathrm{J}=7.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-$ 4.11 (m, 2H), 4.01 (ddd, J = 8.6, 6.1, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ (dd, J = 3.2, 1.6 Hz, 1H), $3.75-3.71(\mathrm{~m}, 1 \mathrm{H})$, $3.52-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{dd}, \mathrm{J}=16.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, \mathrm{J}=16.3,6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.02-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}), 0.11(\mathrm{~s}$, $3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=171.6,77.3,74.5$, $74.3,74.0,70.2,68.6,62.8,39.7,37.9,26.3$ (3C), 26.2 (3C), 25.9 (3C), 22.2, 18.5, 18.3, 18.0, 17.5, 1.3 (3C), -3.4, -3.9, -4.1, -4.5, -4.6, -5.1 ppm; IR (film): $\tilde{v}=2954,2929,2897,2858,1735,1472$, $1463,1389,1361,1251,1167,1130,1092,1057,1006,974,939,827,832,813,774,694,670$, 666, 549, 500, $469 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{67} \mathrm{O}_{6} \mathrm{BrSi}_{4} \mathrm{Na}^{+}$: 773.3091, found: 773.3096.

2-(Trimethylsilyl)ethyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(3-iodoprop-2-yn-1-yl)tetrahydro-2H-pyran-2-yl)acetate (199b)

AgNO_{3} ($10 \mathrm{~mol} \%, 3 \mathrm{mg}, 0.02 \mathrm{mmol}$) and NIS ($37 \mathrm{mg}, 0.16 \mathrm{mmol}$) were subsequently added to a stirred solution of alkyne 35a (100 mg, $149 \mu \mathrm{~mol}$) in acetone $(0.9 \mathrm{~mL})$ at rt and stirring was continued for 5 d . The reaction mixture was filtered through a pad of SiO_{2} and the filtrate was diluted with water (5 mL). The aq. phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$ and the combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 100:1 to 50:1) affording compound 199b as a colourless oil (115 mg, 97\%).
$[\alpha]_{\mathrm{D}}^{20}:+14.9\left(\mathrm{c}=1.02, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.33(\mathrm{ddd}, \mathrm{J}=8.9,6.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.22$ - $4.11(\mathrm{~m}, 2 \mathrm{H}), 4.01$ (ddd, J = 8.7, 5.9, 2.2 Hz, 1H), $3.83(\mathrm{dd}, \mathrm{J}=3.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.72(\mathrm{~m}, 1 \mathrm{H})$, $3.51-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{dd}, \mathrm{J}=16.4,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{dd}, \mathrm{J}=16.4,5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.01-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}), 0.11(\mathrm{~s}$, $3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.6,91.4,74.5$, $74.3,74.1,70.1,68.8,62.8,37.9,26.3$ (3C), 26.2 (3C), 25.9 (3C), 23.3, 18.5, 18.3, 18.0, 17.5, -1.3 (3C), -3.4, -3.9, -4.1, -4.5, -4.6, -4.9, -5.0 ppm; IR (film): $\tilde{v}=2953,2929,2896,2857,1734,1472$, 1463, 1389, 1361, 1250, 1167, 1139, 1091, 1056, 1005, 973, 939, 854, 841, 831, 813, 773, 694, $673,547,491,472 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{67} \mathrm{O}_{6} \mathrm{Si}_{4} \mathrm{Na}^{+}: 821.2952$, found: 821.2957.

2-(Trimethylsilyl)ethyl 2-((2R,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(prop-2-yn-1-yl)tetrahydro-2H-pyran-2-yl)acetate (35a)

Procedure B (Protodeiodination)

${ }^{\text {TSEO }} \quad \begin{aligned} & \text { A solution of iodo alkyne } 199 b(10 \mathrm{mg}, 13 \mu \mathrm{~mol}) \text { in DMF }(100 \mu \mathrm{~L}) \text { was added to } \\ & \text { TBSO }\end{aligned}$ 5 min . Then, diethylphosphite ($3.2 \mu \mathrm{~L}, 25 \mu \mathrm{~mol}$) was added to the stirred reaction mixture at rt and stirring was continued for 2.5 h . Diethylphosphite ($9.7 \mu \mathrm{~L}, 75 \mu \mathrm{~mol}), \mathrm{PdCl}_{2}\left(\mathrm{P}(2-\mathrm{furyl})_{3}\right)_{2}(5 \mathrm{~mol} \%$, $0.4 \mathrm{mg}, 0.6 \mu \mathrm{~mol})$ and TEA ($5.2 \mu \mathrm{~L}, 37.5 \mu \mathrm{~mol}$) were again subsequently added to the stirred reaction mixture at rt , and stirring was continued for 7 d . The reaction was quenched with aq. phosphate buffer ($200 \mathrm{mM}, \mathrm{pH} 7,5 \mathrm{~mL}$). The aq. phase was extracted with MTBE (5 mL) and the combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated affording compound 35a as a colourless oil ($5 \mathrm{mg}, 59 \%$) which was not further purified. The analytical and spectroscopic data of the isolated compound 35a were identical with those shown above.

2-(Trimethylsilyl)ethyl 2-((2R,3R,4R,5S,6R)-3,4-bis((tert-butyldimethylsilyl)oxy)-5-hydroxy-6-(3-iodoprop-2-yn-1-yl)tetrahydro-2H-pyran-2-yl)acetate (202)

Water ($7.8 \mu \mathrm{~L}, 0.43 \mathrm{mmol}$) and $\mathrm{XPhosAuNTf}_{2}$ ($3 \mathrm{~mol} \%, 4 \mathrm{mg}, 4 \mu \mathrm{~mol}$) were subsequently added to a stirred solution of iodo alkyne 199b (115 mg, $144 \mu \mathrm{~mol}$) in 1,2-DCE (1.15 mL) at rt resulting in a fast colour change from colourless to deep violet. The reaction mixture was immediately cooled to $0^{\circ} \mathrm{C}$ and stirring was continued for 3.25 h . Then water ($7.8 \mu \mathrm{~L}, 0.43 \mathrm{mmol}$) and $\mathrm{XPhosAuNTf}_{2}(1.5 \mathrm{~mol} \%, 2 \mathrm{mg}, 2 \mu \mathrm{~mol})$ were subsequently added to the stirred reaction mixture at $0^{\circ} \mathrm{C}$ and stirring was continued for 2 h . Then XPhosAuNTf $_{2}(1.5 \mathrm{~mol} \%, 2 \mathrm{mg}, 2 \mu \mathrm{~mol})$ was added again to the stirred reaction mixture at $0^{\circ} \mathrm{C}$ and stirring was continued for 15 min . The solvent was evaporated and the crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $50: 1$ to $\left.5: 1\right)$ affording both major compound 202 ($16 \mathrm{mg}, 16 \%$), a mixture of other inseparable mono-deprotected byproducts ($31 \mathrm{mg}, 32 \%$) and some unreacted starting material 199b ($9 \mathrm{mg}, 10 \%$) as a colourless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.43(\mathrm{dd}, \mathrm{J}=9.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.12(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.04(\mathrm{~m}$, $1 \mathrm{H}), 3.99-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{ddt}, \mathrm{J}=11.8,3.0$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.08 (dd, J = 15.1, $9.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.63(\mathrm{dd}, \mathrm{J}=15.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, \mathrm{J}=16.4,8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.57$ (dd, J = 16.3, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.03-0.97(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.16$ $(\mathrm{s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$): $\delta=171.3,90.5,76.5$, $70.6,70.4,70.2,66.6,63.0,35.8,25.93$ (3C), 25.86 (3C), 23.4, 18.2, 18.1, 17.5, -1.3 (3C), -4.1, -4.7, 4.8, -4.9 ppm; HRMS (ESI): m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{53} \mathrm{IO}_{6} \mathrm{Si}_{3} \mathrm{Na}^{+}$: 707.2087, found: 707.2089.

Triphenylphosphonium tetrafluoroborate (195b)

Aq. $\mathrm{HBF}_{4}(48 \%, 2.00 \mathrm{~mL}, 15.4 \mathrm{mmol})$ was slowly added to a stirred solution of $\mathrm{PPh}_{3}(195 \mathrm{a})(4.45 \mathrm{~g}$, $17.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(22 \mathrm{~mL})$ at rt and stirring was continued for 5 min resulting in the formation of a white precipitate. The precipitate was filtered off and the crude product was purified by recrystallization from boiling $\mathrm{CHCl}_{3}(3.6 \mathrm{~mL})$ affording compound 195 b as a white crystalline solid (1.22 g, 23\%).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \quad \delta=9.24 \quad(\mathrm{~d}, \quad \mathrm{~J}=537.1 \mathrm{~Hz}, \quad 1 \mathrm{H}), \quad 7.93-7.54 \quad(\mathrm{~m}, \quad 15 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=135.6$ (d, J=3.0 Hz, 3C), 134.2 (d, J=11.6 Hz, 6C), 130.6 (d, $\mathrm{J}=13.4 \mathrm{~Hz}, \quad 6 \mathrm{C}), \quad 115.9(\mathrm{~d}, \quad \mathrm{~J}=83.9 \mathrm{~Hz}, \quad 3 \mathrm{C}) \mathrm{ppm} ;{ }^{11} \mathrm{~B} \mathbf{N M R}\left(96 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \quad \delta=-0.7 \mathrm{ppm} ;$ ${ }^{19}$ F NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=-150.2 \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl_{3}): $\delta=3.3 \mathrm{ppm} ;$ HRMS (ESI):
m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{P}^{+}: 263.0984$, found: 263.0984. The analytical and spectroscopic data are in agreement with those previously reported in the literature. ${ }^{313}$

5.2.3.4.2. Cross Metathesis and TMS-ethyl Ester Cleavage

2-(Trimethylsilyl)ethyl 2-((2S,3R,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-cinnamyltetrahydro-2H-pyran-2-yl)acetate (203a)

Grubbs II catalyst (175) ($5 \mathrm{~mol} \%, 3 \mathrm{mg}, 4 \mu \mathrm{~mol}$) was added to a stirred solution of alkene epi-183a ($50 \mathrm{mg}, 74 \mu \mathrm{~mol}$), styrene ($42.6 \mu \mathrm{~L}, 370 \mu \mathrm{~mol}$) and $4 \AA \mathrm{MS}$ in DCM $(1 \mathrm{~mL})$ at rt . The resulting reaction mixture was warmed to $45^{\circ} \mathrm{C}$ under an atmosphere of Ar and stirring was continued for 21 h . The solvent was evaporated and the crude product was purified by flash chromatography (SiO_{2}, hexane/EtOAc, 125:1) affording compound 203a as a colourless oil ($20 \mathrm{mg}, 36 \%$).
$[\alpha]_{\mathrm{D}}^{20}:+15.9\left(\mathrm{c}=0.95, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.24(\mathrm{~m}$, $2 H), 7.19-7.14(m, 1 H), 6.45(d, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.29$ (ddd, J = 16.0, $7.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.16-4.06$ $(\mathrm{m}, 3 \mathrm{H}), 3.80(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{ddd}, \mathrm{J}=9.6,3.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.36$ (m, 1H), 2.70 (dd, J = 16.0, 8.4 Hz, 1H), 2.64 (dddd, J = 15.1, 9.7, 5.5, 1.7 Hz, 1H), 2.42 (dd, J=16.0, $5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.16 (dddd, J = 15.2, $7.5,3.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $0.94(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$, $0.89-0.86(\mathrm{~m}, 2 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}$, 9H) ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=171.9,138.1,131.1,128.6$ (2C), 128.2, 126.9, 126.1 (2C), $76.8,73.5,73.3,72.1,71.6,62.6,37.3,35.1,26.54$ (3C), 26.51 (3C), 25.9 (3C), 18.6, 18.5, 18.0, 17.4, -1.4 (3C), -2.9, -3.1, -4.30, -4.31, -4.8, -5.0 ppm; IR (film): $\tilde{v}=3025,2953,2929,2895,2857,1735$, $1599,1495,1472,1463,1449,1406,1382,1361,1347,1283,1251,1217,1172,1142,1084,1006$, $984,965,922,858,832,811,771,692,674,666,562,542,526,493,462,431,421,406 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{39} \mathrm{H}_{74} \mathrm{O}_{6} \mathrm{Si}_{4} \mathrm{Na}^{+}$: 773.4455, found: 773.4459.

[^111]
2-((2S,3R,4R,5S,6R)-3,4,5-Tris((tert-butyldimethylsilyl)oxy)-6-cinnamyltetrahydro-2H-pyran-2yl)acetic acid (203b)

A solution of TASF ($19 \mathrm{mg}, 70 \mu \mathrm{~mol}$) in DMF ($125 \mu \mathrm{~L}$) was slowly added to a stirred solution of ester 203a ($6 \mathrm{mg}, 8 \mu \mathrm{~mol}$) in DMF ($125 \mu \mathrm{~L}$) at $0^{\circ} \mathrm{C}$ and the resulting reaction mixture was allowed to reach rt , and stirring was continued for 5 h . The reaction mixture was purified by preparative thin layer chromatography (SiO_{2}, hexane/EtOAc, 10:1) affording compound 203b as a colourless oil (4 mg, 77\%).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.50$ (dd, J = 38.7, $15.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.18 (dt, J = 15.9, $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.99 (ddd, J = 8.2, 5.6, $4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 ($\mathrm{dt}, \mathrm{J}=8.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.80(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.74 (ddd, J = 3.8, 2.5, 1.3 Hz, 1H), 3.62 (dt, J = 5.6, $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.74(\mathrm{dd}, \mathrm{J}=16.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, \mathrm{J}=16.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.54$ (dddd, J = 14.3, 8.5, 7.3, 1.3 Hz, 1H), 0.92 (s, 9H), 0.89 (s, 9H), 0.88 (s, 9H), $0.135(\mathrm{~s}, 3 \mathrm{H}), 0.13$ (s, $3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl $)_{3}$): $\delta=189.9$, $137.3,133.2,128.7$ (2C), 127.4, 126.3 (2C), 125.9, 81.0, 75.5, 74.3, 72.6, 71.7, 39.1, 38.1, 25.98 (6C), 25.96 (3C), 18.10, 18.08, 18.07, -3.7, -3.8, -3.9, -4.2, -4.6, -4.7 ppm; HRMS (ESI): m / z calcd. for $\mathrm{C}_{34} \mathrm{H}_{61} \mathrm{O}_{6} \mathrm{Si}_{3}{ }^{+}: 649.3782$, found: 649.3784 .

5.2.4. NMR Data Of Belizentrin \& Belizentrin Methyl Ester

Herein, the NMR datasets of the isolated natural product 18 and of our synthesized sample of belizentrin methyl ester (19) can be found. Aside from a systematic shift, the NMR data matches reasonably good, and thus the absolute as well as the relative stereochemical assignment of the isolation team could be confirmed.

Table 5.1: Comparison of ${ }^{1} \mathrm{H} N M R\left(C D_{3} O D\right)$ shifts of belizentrin (18) with belizentrin methyl ester (19) in ppm.

Position	Natural product Belizentrin (18)	Belizentrin Methyl Ester (19)	Belizentrin Methyl Ester (19) (after correction)	Deviation $\Delta \delta$ (before Correction)
2a	2.67	2.87	2.68	0.19
2b	2.16	2.42	2.17	0.25
3	3.85	3.92	3.86	0.06
4	2.97	3.10	2.98	0.12
5	3.43	3.54	3.44	0.10
6	3.48	3.57	3.49	0.08
7	3.94	4.05	3.95	0.10
8 a	1.89	2.04	1.90	0.14
8 b	1.89	1.92	1.90	0.02
9	3.83	3.99	3.84	0.15
10	3.48	3.52	3.49	0.03
11	3.56	3.57	3.57	0.00
12	3.97	4.12	3.98	0.14
13a	2.09	2.10	2.10	0.00
13b	1.45	1.56	1.46	0.10
14	1.83	1.91	1.84	0.07
15	3.38	3.50	3.39	0.11
16a	2.23	2.35	2.24	0.11
16b	2.14	2.20	2.15	0.05
17	5.71	5.81	5.72	0.09
18	5.51	5.59	5.52	0.07
19	5.36	5.45	5.37	0.08
20a	2.64	2.69	2.65	0.04
20 b	1.92	2.09	1.93	0.16
22	5.12	5.28	5.13	0.15
23a	2.10	2.13	2.11	0.02
23b	1.96	2.10	1.97	0.13
24a	1.42	1.52	1.43	0.09
24b	1.26	1.45	1.27	0.18
25	3.78	3.90	3.79	0.11
26a	1.64	1.73	1.65	0.08

26b	1.30	1.45	1.31	0.14
28	3.18	3.28	3.19	0.09
30a	1.93	2.09	1.94	0.15
30b	1.82	1.88	1.83	0.05
31a	2.42	2.52	2.43	0.09
31b	2.26	2.35	2.27	0.08
33	0.92	1.02	0.93	0.09
34	1.61	1.71	1.62	0.09
35	1.29	1.38	1.30	0.08
36 (Me)		3.67		
$2 '$	5.72	5.79	5.73	0.06
$3 '$	7.17	7.27	7.18	0.09
5^{\prime}	5.83	5.93	5.84	0.09
6'a	2.86	3.04	2.87	0.17
$6{ }^{\prime} \mathrm{b}$	2.86	2.92	2.87	0.05
$8{ }^{\prime}$	2.66	2.77	2.67	0.10
$9 '$	5.45	5.53	5.46	0.07
10'	5.39	5.46	5.40	0.06
11'a	3.84	3.75	3.85	-0.10
$11^{\prime} \mathrm{b}$	3.41	3.65	3.42	0.23
12^{\prime}	1.67	1.78	1.68	0.10
13 'a	4.75	4.84	4.76	0.08
13 b	4.72		4.73	

Table 5.2: Comparison of ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} O D\right)$ shifts of belizentrin (18) with belizentrin methyl ester (19) in ppm.

Position	Natural product Belizentrin (18)	Belizentrin Methyl Ester (19)	Belizentrin Methyl Ester (19) (after correction)	Deviation $\Delta \boldsymbol{\delta}$ (before Correction)
1	179.4	173.9	179.4	-5.5
2	41.7	38.4	41.7	-3.3
3	71.4	71.4	71.4	0.0
4	75.6	75.3	75.6	-0.3
5	74.5	74.7	74.5	0.2
6	72.8	73.0	72.8	0.2
7	76.2	74.8	76.2	-1.4
8	29.8	30.4	29.8	0.6
9	73.3	71.5	73.3	-1.8
10	72.8	73.6	72.8	0.8
11	76.0	75.8	76.0	-0.2
12	78.9	80.2	78.9	1.3
13	38.2	38.3	38.2	0.1
14	40.0	40.5	40.0	0.5
15	85.5	86.2	85.5	0.7

16	85.5	86.2	85.5	0.7
17	130.6	131.1	130.6	0.5
18	131.2	132.1	131.2	0.9
19	73.0	73.7	73.0	0.7
20	38.0	38.4	38.0	0.4
21	131.5	131.9	131.5	0.4
22	129.2	129.2	129.2	0.0
23	25.5	24.8	25.5	-0.7
24	37.0	37.0	37.0	0.0
25	68.4	68.0	68.4	-0.4
26	46.5	46.5	46.5	0.0
27	72.2	72.8	72.2	0.6
28	78.8	79.4	78.8	0.6
29	97.9	98.5	97.9	0.6
30	35.8	36.6	35.8	0.8
31	30.5	31.0	30.5	0.5
32	175.7	176.3	175.7	0.6
33	16.4	16.7	16.4	0.3
34	23.2	23.9	23.2	0.7
35	21.4	21.8	21.4	0.4
36 (Me)		52.3		
1 '	167.8	168.3	167.8	0.5
$2 '$	116.8	117.2	116.8	0.4
$3 '$	150.1	170.7	150.1	0.6
4'	134.9	135.1	134.9	0.2
5 '	139.8	140.9	139.8	1.1
6	35.2	36.2	35.2	1.0
7	146.7	147.3	146.7	0.6
8	40.1	40.6	40.1	0.5
$9 \times$	130.8	131.3	130.8	0.5
10'	129.1	129.4	129.1	0.3
11^{\prime}	41.3	41.9	41.3	0.6
12^{\prime}	12.4	12.8	12.4	0.4
13^{\prime}	112.4	113.1	112.4	0.7

6. Appendix

6.1. Mosher Ester Analyses

6.1.1. Stereochemical Assignment Of 151 \& epi-151

Figure 6.1: Molecular structure of 151 and epi-151 and graphical representation of the deviation necessary for the assignment (lilac).

Table 6.1: Comparison of ${ }^{1} \mathrm{H} N M R\left(\mathrm{CDCl}_{3}\right)$ shifts of 151 and epi-151 in ppm (lilac: important shifts for the assignment).

Position	S-configured Ester $\mathbf{1 5 1}$	\boldsymbol{R}-configured Ester epi-151	Deviation $\boldsymbol{\Delta} \boldsymbol{\delta}$ $(\boldsymbol{S}-\boldsymbol{R})$
2a	2.75	2.75	0.00
2b	2.64	2.63	0.01
3	4.29	4.30	-0.01
4	$3.57-3.42$	$3.60-3.48$	<0
5	$3.84-3.79$	$3.84-3.79$	0.00
6	$3.64-3.61$	$3.67-3.63$	<0
7	3.93	3.94	-0.01
8a	2.50	2.53	-0.03
8b	2.41	2.46	-0.05
11	5.53	5.54	-0.01
12	4.18	$4.15-4.07$	>0
13a	2.31	$2.28-2.20$	>0
13b	1.48	1.44	0.04
14	$1.96-1.83$	$1.91-1.78$	>0
15	$3.57-3.42$	$3.60-3.48$	<0
16a	2.20	$2.19-2.12$	>0
16b	$1.96-1.83$	$1.91-1.78$	>0
17a	$3.57-3.42$	3.44	>0
17b	3.30	3.29	0.01
19	3.66	3.66	0.00
33	1.04	0.99	0.05

6.1.2. Stereochemical Assignment Of 152 \& epi-152

Figure 6.2: Molecular structure of $\mathbf{1 5 2}$ and epi-152 and graphical representation of the deviation necessary for the assignment (lilac).

Table 6.2: Comparison of ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) shifts of $\mathbf{1 5 2}$ and epi-152 in ppm (lilac: important shifts for the assignment).

Position	\boldsymbol{S}-configured Ester $\mathbf{1 5 2}$	\boldsymbol{R}-configured Ester $\boldsymbol{e p i - 1 5 2}$	Deviation $\boldsymbol{\Delta} \boldsymbol{\delta}$ $(\boldsymbol{S} \boldsymbol{-} \boldsymbol{R})$
2a	2.75	2.75	0.00
2b	2.63	2.62	0.01
3	4.29	4.30	-0.01
4	$3.51-3.49$	$3.53-3.47$	0.00
5	$3.83-3.78$	3.82	$-0.02(\varnothing)$
6	$3.64-3.62$	$3.70-3.61$	$-0.05(\varnothing)$
7	3.93	3.95	-0.02
8a	2.49	2.49	0.00
8b	2.42	2.49	-0.07
11	5.54	5.55	-0.01
12	4.19	4.11	0.08
13a	2.34	$2.30-2.19$	$0.10(\varnothing)$
13b	1.52	1.49	0.03
14	$1.95-1.85$	$1.91-1.82$	$0.04(\varnothing)$
15	$3.58-3.52$	$3.53-3.47$	$0.05(\varnothing)$
16a	2.28	$2.30-2.19$	$0.04(\varnothing)$
16b	$2.05-1.95$	$2.00-1.91$	$0.05(\varnothing)$
17a	3.77	3.77	0.00
17b	3.68	$3.70-3.61$	$0.03(\varnothing)$
19	3.66	3.66	0.00
33	1.07	1.01	0.06

6.1.3. Stereochemical Assignment Of 153 \& epi-153

Figure 6.3: Molecular structure of 153 and epi-153 and graphical representation of the deviation necessary for the assignment (lilac).

Table 6.3: Comparison of ${ }^{1} \mathrm{H} N \mathrm{NR}\left(\mathrm{CDCl}_{3}\right)$ shifts of 153 and epi-153 in ppm (lilac: important shifts for the assignment).

Position	S-configured Ester 153	R-configured Ester epi-153	$\begin{aligned} & \text { Deviation } \Delta \delta \\ & (S-R) \end{aligned}$
2a	2.74	2.75	-0.01
2b	2.60	2.59	0.01
3	4.29	4.29	0.00
4	3.51-3.48	3.52-3.47	<0
5	3.86-3.74	3.84-3.75	>0
6	3.47	3.52-3.47	<0
7	3.86-3.74	3.84-3.75	>0
8 a	2.45	2.54-2.44	<0
8 b	2.05-1.94	2.06-1.99	<0
9	5.88	5.96	-0.08
10	5.43-5.31	5.55	<0
11	5.43-5.31	5.39	<0
12	4.14-4.07	4.06	>0
13a	2.16	2.08	0.08
13b	1.36	1.30	0.06
14	1.93-184	1.88-1.78	>0
15	3.58-3.51	3.43	>0
16a	2.27	2.22	0.05
16b	2.05-1.94	1.98-1.89	>0
17a	3.86-3.74	3.84-3.75	>0
17b	3.73-3.67	3.70-3.64	>0
19	3.66	2.64	0.02
33	1.04	0.95	0.09

6.1.4. Stereochemical Assignment Of 154 \& epi-154

Figure 6.4: Molecular structure of 154 and epi-154 and graphical representation of the deviation necessary for the assignment (lilac).

Table 6.4: Comparison of ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) shifts of 154 and epi-154 in ppm (lilac: important shifts for the assignment).

Position	\boldsymbol{S}-configured Ester $\mathbf{1 5 4}$	\boldsymbol{R}-configured Ester $\boldsymbol{e p i - 1 5 4}$	Deviation $\boldsymbol{\Delta} \boldsymbol{\delta}$ $(\boldsymbol{S} \boldsymbol{-} \boldsymbol{R})$
2a	2.74	2.73	0.01
2b	2.67	2.67	0.00
3	4.34	4.34	0.00
4	$3.51-3.48$	$3.52-3.48$	$-0.01(\varnothing)$
5	$3.83-3.73$	$3.83-3.77$	$-0.02(\varnothing)$
6	$3.64-3.56$	$3.57-3.53$	$0.05(\varnothing)$
7	$3.83-3.73$	$3.83-3.77$	$-0.02(\varnothing)$
8a	2.59	2.59	0.00
8b	$2.34-2.03$	$2.34-2.08$	$-0.03(\varnothing)$
9	$5.99-5.81$	$5.90-5.80$	$0.05(\varnothing)$
10	$5.42-5.28$	5.27	$0.08(\varnothing)$
11	$5.99-5.81$	$5.90-5.80$	$0.05(\varnothing)$
12	4.02	4.09	$-0.07(\varnothing)$
13a	$2.34-2.03$	$2.34-2.08$	$-0.03(\varnothing)$
13b	$1.59-1.52$	1.62	$-0.07(\varnothing)$
14	$1.96-1.77$	$2.00-1.82$	$-0.05(\varnothing)$
15	$3.64-3.56$	$3.63-3.57$	0.00
16a	$2.34-2.03$	$2.34-2.08$	$-0.03(\varnothing)$
16b	$1.96-1.77$	$2.00-1.82$	$-0.05(\varnothing)$
17a	$3.83-3.73$	3.91	$-0.03(\varnothing)$
17b	$3.64-3.56$	$3.74-3.67$	$-0.11(\varnothing)$
19	3.65	3.65	0.00
33	1.02	1.02	0.00

6.1.5. Stereochemical Assignment Of 198a \& epi-198a

Figure 6.5: Molecular structure of 198a and epi-198a and graphical representation of the deviation necessary for the assignment (lilac).

Table 6.5: Comparison of ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ shifts of 198a and epi-198a in ppm (lilac: important shifts for the assignment).

Position	$\begin{gathered} S \text {-configured Ester } \\ 198 a \end{gathered}$	R-configured Ester epi-198a	$\begin{aligned} & \text { Deviation } \Delta \delta \\ & \quad(S-R) \end{aligned}$
2a	2.76	2.74	0.02
2 b	2.51	2.55	-0.04
3	4.32	4.38-4.29	-0.02 (\varnothing)
4	3.52-3.48	3.52-3.47	0.01 (\varnothing)
5	3.83-3.73	3.80	-0.02 (\varnothing)
6	3.40	3.42	-0.02
7	3.83-3.73	3.79-3.75	0.01 (\varnothing)
8 a	2.32-2.16	2.36-2.16	-0.02 (\varnothing)
8 b	1.47	1.53	-0.06
9	5.65-5.59	5.62	0.00
10	5.67	5.54	0.13
11	5.89	5.77	0.12
12	4.39	4.38-4.29	0.06
13a	2.32-2.16	2.36-2.16	-0.02 (\varnothing)
13b	1.36	1.31	0.05
14	2.06-1.89	2.06-1.86	0.02 (\varnothing)
15	3.55	3.52-3.47	0.06 (\varnothing)
16a	2.32-2.16	2.36-2.16	-0.02 (\varnothing)
16b	2.06-1.89	2.06-1.86	0.02 (\varnothing)
17a	3.93	3.91	0.02
17b	3.83-3.72	3.74	0.04 (\varnothing)
19	4.23-4.16	4.22-4.15	0.01 (\varnothing)
20	1.02-0.97	1.02-0.97	0.00 (\varnothing)
33	1.03	1.03	0.00

6.1.6. Stereochemical Assignment Of 198b \& epi-198b

Figure 6.6: Molecular structure of 198b and epi-198b and graphical representation of the deviation necessary for the assignment (lilac).

Table 6.6: Comparison of ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) shifts of 198b and epi-198b in ppm (lilac: important shifts for the assignment).

Position	\boldsymbol{S}-configured Ester $\mathbf{1 9 8 b}$	\boldsymbol{R}-configured Ester $\boldsymbol{e p i - 1 9 8 b}$	Deviation $\boldsymbol{\Delta} \boldsymbol{\delta}$ $(\boldsymbol{S}-\boldsymbol{R})$
2a	2.78	2.75	0.03
2b	2.57	2.60	-0.03
3	4.32	$4.38-4.30$	$-0.02(\varnothing)$
4	$3.51-3.49$	$3.53-3.50$	$-0.01(\varnothing)$
5	$3.83-3.72$	$3.79-3.76$	$0.00(\varnothing)$
6	$3.43-3.39$	$3.45-3.41$	$-0.02(\varnothing)$
7	$3.83-3.72$	3.81	$-0.04(\varnothing)$
8a	$2.28-2.22$	2.31	$-0.06(\varnothing)$
8b	1.47	1.52	-0.05
9	5.62	5.61	0.01
10	5.66	5.54	0.12
11	5.88	5.77	0.11
12	4.39	$4.38-4.30$	$0.05(\varnothing)$
13a	2.23	2.21	0.02
13b	1.36	1.32	0.04
14	1.94	1.92	0.02
15	3.55	3.50	0.05
16a	2.29	2.26	0.03
16b	2.01	2.00	0.01
17a	3.93	3.91	0.02
17b	$3.83-3.72$	3.74	$0.04(\varnothing)$
19	3.70	3.69	0.01
33	1.03	1.04	-0.01

6.2. GC Data

6.2.1. ee Determination Of 84

Figure 6.7: GC-MS chromatogram of the measurement of the racemic mixture of alcohol rac-84 (chiral stationary phase).

Figure 6.8: Chiral GC-MS chromatograms of the measurements of the enantio-enriched alcohol (R)-84 (chiral stationary phase).

Page 1-1

Figure 6.9: GC-MS chromatograms of the measurements of the enantio-enriched alcohol (S) - 84 (chiral stationary phase).

6.3. HPLC Data

6.3.1. d.r. Determination Of 147 \& 148

Figure 6.10: HPLC-MS chromatograms of the isolated diastereo-enriched triols from the Sharpless dihydroxylation of allylic alcohol epi-E-146 with different ligands (left: diastereomer 147, right: diastereomer 148).

Figure 6.11: HPLC-MS chromatograms of the reaction mixtures of the Sharpless dihydroxylation of allylic alcohol epi-E-146 with different ligands resulting in diastereomeric triols 147 and 148 (left: (DHQ) ${ }_{2} \mathrm{PHAL}$, right: (DHQD) ${ }_{2} \mathrm{PHAL}$).

Figure 6.12: HPLC-MS chromatograms of the reaction mixtures of the Sharpless dihydroxylation of allylic alcohol epi-E-146 with different ligands resulting resulting in diastereomeric triols 147 and 148 (left: (DHQ) ${ }_{2}$ PYR, right: (DHQD) ${ }_{2} \mathrm{PYR}$).

Figure 6.13: HPLC-MS chromatograms of the reaction mixtures of the Sharpless dihydroxylation of allylic alcohol epi-E-146 with different ligands resulting in diastereomeric triols 147 and 148 (left: (DHQ) ${ }_{2} A Q N$, right: (DHQD) $2 A Q N$).

6.3.2. d.r. Determination Of 149 \& 150a

L*	d.r. (anti:syn)
(DHQ) ${ }_{2}$ PHAL	$7: 1$
$(\mathrm{DHQD})_{2} \mathrm{PHAL}$	$9.3: 1$
$(\mathrm{DHQ})_{2} \mathrm{PYR}$	$9.3: 1$
$(\mathrm{DHQD})_{2} \mathrm{PYR}$	$7.4: 1$
$(\mathrm{DHQ})_{2} \mathrm{AQN}$	$8: 1$
$(\mathrm{DHQD})_{2} \mathrm{AQN}$	$8.1: 1$

Figure 6.14: HPLC-MS chromatograms of the reaction mixtures of the Sharpless dihydroxylation of allylic alcohol E - 146 with different ligands resulting in diastereomeric triols 149 and 150a (left: (DHQ) ${ }_{2}$ PHAL, right: (DHQD) ${ }_{2}$ PHAL).

Figure 6.15: HPLC-MS chromatograms of the reaction mixtures of the Sharpless dihydroxylation of allylic alcohol E - 146 with different ligands resulting resulting in diastereomeric triols 149 and 150a (left: (DHQ) ${ }_{2}$ PYR, right: (DHQD) $)_{2}$ PYR).

Figure 6.16: HPLC-MS chromatograms of the reaction mixtures of the Sharpless dihydroxylation of allylic alcohol $E-146$ with different ligands resulting in diastereomeric triols 149 and 150a (left: (DHQ) ${ }_{2} A Q N$, right: (DHQD) $2 A Q N$).

6.3.3. d.r. Determination Of 150b \& 196a

L^{*}	d.r. (anti:syn)
$(\mathrm{DHQ})_{2} \mathrm{PHAL}$	$3.2: 1$
$(\mathrm{DHQD})_{2} \mathrm{PHAL}$	$1: 1.8$
$(\mathrm{DHQ})_{2} \mathrm{PYR}$	$3.7: 1$
$(\mathrm{DHQD})_{2} \mathrm{PYR}$	$1: 3.3$
$(\mathrm{DHQ})_{2} \mathrm{AQN}$	$3.5: 1$
$(\mathrm{DHQD})_{2} \mathrm{AQN}$	$1: 6.7$

Figure 6.17: HPLC-MS chromatograms of the isolated diastereo-enriched triols from the Sharpless dihydroxylation of allylic alcohol 180a with different ligands (left: diastereomer 196a, right: diastereomer 150b).

Figure 6.18: HPLC-MS chromatograms of the reaction mixtures of the Sharpless dihydroxylation of allylic alcohol 180a with different ligands resulting in diastereomeric triols 150b and 196a (left: (DHQ) ${ }_{2}$ PHAL, right: (DHQD) ${ }_{2} \mathrm{PHAL}$).

Acquired by Sample Name	System Administrator GRX-GA-524-01
Vial \#	
Injection Volume	
Data File Name	ESI-GRX-GA-524-01-25.1.cd

Data Acquires
mAU

1205 nm .4 nm

Figure 6.19: HPLC-MS chromatograms of the reaction mixtures of the Sharpless dihydroxylation of allylic alcohol 180a with different ligands resulting resulting in diastereomeric triols 150 b and 196 (left: (DHQ) ${ }_{2}$ PYR, right: (DHQD) ${ }_{2}$ PYR).

Figure 6.20: HPLC-MS chromatograms of the reaction mixtures of the Sharpless dihydroxylation of allylic alcohol 180a with different ligands resulting in diastereomeric triols 150 b and 196a (left: (DHQ) ${ }_{2} A Q N$, right: (DHQD) ${ }_{2} A Q N$).

6.4. X-Ray Crystallographic Data

6.4.1. Crystallographic Data Of 42

Crystal Data \& Structure Refinement

Figure 6.21: X-Ray single crystal structure and molecular structure of pseudoephedrine amide $\mathbf{4 2}$ (numbering of atoms is arbitrary).

Identification code	9847	
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2}$	
Color	colorless	
Formula weight	$221.29 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$	
Temperature	100 K	
Wavelength	$1.54178 \AA$	
Crystal system	Monoclinic	
Space group	$\mathrm{P} 2_{1}(\mathrm{No}. \mathrm{4)}$	
Unit cell dimensions	$\mathrm{a}=5.4556(2) \AA$	
	$\mathrm{b}=13.0941(4) \AA=90^{\circ}$.	
	$\mathrm{c}=8.5866(3) \AA$	$\mathrm{Y}=90^{\circ}$.
Volume	$606.98(4) \AA^{3}$	
Z	2	
Density (calculated)	$1.211{\mathrm{Mg} \cdot \mathrm{m}^{-3}}$Absorption coefficient	$0.647 \mathrm{~mm}^{-1}$
F(000)	240 e	
Crystal size	$0.550 \times 0.249 \times 0.070 \mathrm{~mm}^{3}$	

θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $1>2 \sigma(\mathrm{I})$
Completeness to $\theta=67.372^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indices [$1>2 \sigma(I)$]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
5.205 to 67.372°.
$-6 \leq h \leq 6,-15 \leq k \leq 15,-10 \leq \mathrm{l} \leq 10$
14323
$2033\left[R_{\text {int }}=0.0391\right]$
1936
100.0\%

Gaussian
0.96 and 0.84

Full-matrix least-squares on F^{2}
2033/1/153
1.074
$\mathrm{R}_{1}=0.0357$

$$
w R^{2}=0.0870
$$

$\mathrm{R}_{1}=0.0384$
$w R^{2}=0.0888$
0.04(14)
0.014(2)
0.162 and $-0.141 \mathrm{e} \cdot \mathrm{A}^{-3}$

Bond Lengths [Å] \& Angles [${ }^{\circ}$]

$\mathrm{O}(2)-\mathrm{C}(5)$	$1.426(3)$
$\mathrm{N}(1)-\mathrm{C}(3)$	$1.353(3)$
$\mathrm{N}(1)-\mathrm{C}(6)$	$1.467(3)$
$\mathrm{C}(8)-\mathrm{C}(13)$	$1.392(3)$
$\mathrm{C}(3)-\mathrm{C}(2)$	$1.511(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.543(3)$
$\mathrm{C}(13)-\mathrm{C}(12)$	$1.386(3)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.386(4)$
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(4)$	$124.11(19)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(4)$	$119.27(19)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(5)$	$119.9(2)$
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{N}(1)$	$119.5(2)$
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$120.7(2)$
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$112.24(17)$
$\mathrm{C}(7)-\mathrm{C}(4)-\mathrm{C}(5)$	$111.1(2)$
$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(8)$	$112.72(19)$
$\mathrm{C}(8)-\mathrm{C}(5)-\mathrm{C}(4)$	$112.22(19)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$120.2(2)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$119.5(2)$

$\mathrm{O}(1)-\mathrm{C}(3)$	$1.244(3)$
$\mathrm{N}(1)-\mathrm{C}(4)$	$1.469(3)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.392(3)$
$\mathrm{C}(8)-\mathrm{C}(5)$	$1.505(3)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.387(3)$
$\mathrm{C}(4)-\mathrm{C}(7)$	$1.529(3)$
$\mathrm{C}(2)-\mathrm{C}(1)$	$1.515(4)$
$\mathrm{C}(12)-\mathrm{C}(11)$	$1.388(4)$
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(6)$	$116.6(2)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	$118.6(2)$
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(5)$	$121.4(2)$
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$119.8(2)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$120.8(2)$
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(7)$	$111.9(2)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$	$120.7(2)$
$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(4)$	$107.80(19)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$112.8(2)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$120.2(2)$

6.4.2. Crystallographic Data Of 43

Crystal Data \& Structure Refinement

Figure 6.22: X-Ray single crystal structure and molecular structure of pseudoephedrine amide 43 (numbering of atoms is arbitrary).

Identification code
Empirical formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges

9834
$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{2}$
colorless
$261.35 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100.15 K
0.71073 Å

Orthorhombic
P2 $1_{1} 2_{1} 2_{1}$ (No. 19)

$$
\begin{array}{ll}
a=6.2777(3) \AA & \alpha=90^{\circ} . \\
b=15.0357(11) \AA & \beta=90^{\circ} . \\
c=15.1634(10) \AA & \gamma=90^{\circ} .
\end{array}
$$

$$
1431.27(16) \AA^{3}
$$

4
$1.213 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$0.079 \mathrm{~mm}^{-1}$
568 e
$0.41 \times 0.16 \times 0.06 \mathrm{~mm}^{3}$
3.765 to 36.093°.
$-10 \leq h \leq 10,-24 \leq k \leq 24,-24 \leq \mathrm{l} \leq 25$

Reflections collected
Independent reflections
Reflections with $1>2 \sigma(\mathrm{I})$
Completeness to $\theta=27.500^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indices [$1>2 \sigma(1)$]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole

50631
$6804\left[\mathrm{R}_{\text {int }}=0.0278\right]$
6525
99.2\%

Gaussian
0.7471 and 0.6765

Full-matrix least-squares on F^{2}
6804/0/185
1.105
$\begin{array}{ll}R_{1}=0.0287 & w R^{2}=0.0775 \\ R_{1}=0.0312 & w R^{2}=0.0794\end{array}$
0.1(6)
0.315 and $-0.188 \mathrm{e} \cdot \mathrm{A}^{-3}$

Bond Lengths [Å] \& Angles [${ }{ }^{\circ}$]

$\mathrm{O}(1)-\mathrm{C}(1)$	$1.4174(10)$
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.4730(9)$
$\mathrm{N}(1)-\mathrm{C}(9)$	$1.4666(10)$
$\mathrm{C}(1)-\mathrm{C}(11)$	$1.5156(11)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.5270(11)$
$\mathrm{C}(4)-\mathrm{C}(10)$	$1.5369(12)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.3262(13)$
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	$0.998(18)$
$\mathrm{C}(11)-\mathrm{C}(16)$	$1.3984(11)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.3900(13)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.3932(12)$
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(9)$	$115.88(6)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$108.97(6)$
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2)$	$111.05(6)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(8)$	$111.91(6)$
$\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{N}(1)$	$119.61(7)$
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$119.34(6)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(10)$	$107.52(6)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$113.44(7)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	$120.3(9)$
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	$119.0(14)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	$118.80(7)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$120.49(7)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$119.62(8)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	$120.80(7)$

$\mathrm{O}(2)-\mathrm{C}(3)$	$1.2408(9)$
$\mathrm{N}(1)-\mathrm{C}(3)$	$1.3535(9)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.5470(11)$
$\mathrm{C}(2)-\mathrm{C}(8)$	$1.5282(11)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.5315(11)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.4975(12)$
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	$1.002(16)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.3947(11)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.3927(12)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.3939(13)$
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(2)$	$124.96(6)$
$\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{C}(2)$	$118.91(6)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(11)$	$112.38(7)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$112.42(6)$
$\mathrm{C}(8)-\mathrm{C}(2)-\mathrm{C}(1)$	$111.55(6)$
$\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$120.82(7)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$112.55(6)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(10)$	$110.70(6)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$124.84(8)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	$120.4(11)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(1)$	$121.41(7)$
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(1)$	$119.77(7)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$120.40(8)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	$119.88(8)$

6.4.3. Crystallographic Data Of 40a

Crystal Data \& Structure Refinement

Figure 6.23: X-Ray single crystal structure and molecular structure of alkene 40a (numbering of atoms is arbitrary).

Identification code	9875	
Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{9}$	
colorless		
Color	$372.36 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$	
Formula weight	100 K	
Temperature	$1.54178 \AA$	
Wavelength	Orthorhombic	$\mathrm{P} 2_{1} 2_{1} 2_{1}(\mathrm{No.19)}$
Crystal system	$a=5.4396(2) \AA$	
Space group	$\mathrm{b}=14.3397(6) \AA$	$\alpha=90^{\circ}$.
Unit cell dimensions	$\mathrm{c}=24.1983(10) \AA$	$\beta=90^{\circ}$.
	$1887.52(13) \AA^{3}$	
	4	
Volume		
Z	$1.310 \mathrm{Mg} \cdot \mathrm{m}^{-3}$	
Density (calculated)		

Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $1>2 \sigma$ (I)
Completeness to $\theta=67.487^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indices $[1>2 \sigma(1)]$
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
$0.907 \mathrm{~mm}^{-1}$
792 e
$0.640 \times 0.130 \times 0.070 \mathrm{~mm}^{3}$
3.583 to 67.487°.
$-6 \leq h \leq 6,-17 \leq k \leq 17,-28 \leq \mathrm{l} \leq 28$
85906
$3403\left[R_{\text {int }}=0.0458\right]$
3321
100.0\%

Gaussian
0.94 and 0.76

Full-matrix least-squares on F^{2}
3403/0/239
1.065
$R_{1}=0.0270 \quad w R^{2}=0.0685$
$R_{1}=0.0278 \quad w R^{2}=0.0692$
-0.01(4)
0.1 and $-0.2 \mathrm{e} \cdot \AA^{-3}$

Bond Lengths [Å] \& Angles [${ }{ }^{\circ}$]

$\mathrm{O}(1)-\mathrm{C}(4)$	$1.433(2)$
$\mathrm{O}(2)-\mathrm{C}(9)$	$1.444(2)$
$\mathrm{O}(3)-\mathrm{C}(10)$	$1.204(3)$
$\mathrm{O}(4)-\mathrm{C}(12)$	$1.358(2)$
$\mathrm{O}(6)-\mathrm{C}(6)$	$1.4448(19)$
$\mathrm{O}(7)-\mathrm{C}(14)$	$1.200(2)$
$\mathrm{O}(8)-\mathrm{C}(16)$	$1.353(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.310(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.532(3)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.516(2)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.534(2)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.499(3)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.495(2)$
$\mathrm{C}(8)-\mathrm{O}(1)-\mathrm{C}(4)$	$113.88(12)$
$\mathrm{C}(12)-\mathrm{O}(4)-\mathrm{C}(7)$	$118.52(14)$
$\mathrm{C}(16)-\mathrm{O}(8)-\mathrm{C}(5)$	$117.08(14)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$113.52(18)$
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$107.96(14)$
$\mathrm{O}(8)-\mathrm{C}(5)-\mathrm{C}(4)$	$109.65(14)$

$\mathrm{O}(1)-\mathrm{C}(8)$	$1.427(2)$
$\mathrm{O}(2)-\mathrm{C}(10)$	$1.342(2)$
$\mathrm{O}(4)-\mathrm{C}(7)$	$1.447(2)$
$\mathrm{O}(5)-\mathrm{C}(12)$	$1.206(2)$
$\mathrm{O}(6)-\mathrm{C}(14)$	$1.353(2)$
$\mathrm{O}(8)-\mathrm{C}(5)$	$1.450(2)$
$\mathrm{O}(9)-\mathrm{C}(16)$	$1.204(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.500(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.532(2)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.519(2)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.505(2)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.488(3)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.494(3)$
$\mathrm{C}(10)-\mathrm{O}(2)-\mathrm{C}(9)$	$114.91(14)$
$\mathrm{C}(14)-\mathrm{O}(6)-\mathrm{C}(6)$	$118.11(12)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$124.0(2)$
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$114.36(14)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$112.71(16)$
$\mathrm{O}(8)-\mathrm{C}(5)-\mathrm{C}(6)$	$105.37(13)$

$C(6)-C(5)-C(4)$	$110.95(13)$	$O(6)-C(6)-C(5)$	$107.61(13)$
$O(6)-C(6)-C(7)$	$107.51(13)$	$C(5)-C(6)-C(7)$	$111.81(13)$
$O(4)-C(7)-C(6)$	$105.34(14)$	$O(4)-C(7)-C(8)$	$108.81(13)$
$C(6)-C(7)-C(8)$	$112.32(13)$	$O(1)-C(8)-C(7)$	$109.77(13)$
$O(1)-C(8)-C(9)$	$106.59(14)$	$C(9)-C(8)-C(7)$	$109.92(14)$
$O(2)-C(9)-C(8)$	$108.14(14)$	$O(2)-C(10)-C(11)$	$111.65(17)$
$O(3)-C(10)-O(2)$	$123.12(17)$	$O(3)-C(10)-C(11)$	$125.23(18)$
$O(4)-C(12)-C(13)$	$110.72(15)$	$O(5)-C(12)-O(4)$	$123.07(16)$
$O(5)-C(12)-C(13)$	$126.20(16)$	$O(6)-C(14)-C(15)$	$109.98(14)$
$O(7)-C(14)-O(6)$	$124.11(15)$	$O(7)-C(14)-C(15)$	$125.91(16)$
$O(8)-C(16)-C(17)$	$111.19(15)$	$O(9)-C(16)-O(8)$	$123.20(16)$
$O(9)-C(16)-C(17)$	$125.57(17)$		

6.4.4. Crystallographic Data Of 40b

Crystal Data \& Structure Refinement

Figure 6.24: X-Ray single crystal structure and molecular structure of alkene 40b (numbering of atoms is arbitrary).

Identification code
Empirical formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections

9888sadabs
$\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{5}$
colourless
$204.22 \mathrm{~g} \cdot \mathrm{~mol}-1$
100.15 K
0.71073 Å

Orthorhombic
P2 $1_{1} 2_{1} 2_{1}$ (No. 19)
$a=6.1229(3) \AA$
$\alpha=90^{\circ}$.
$b=11.0919(7) \AA$
$\beta=90^{\circ}$.
c $=14.4098(8) \AA$
$\gamma=90^{\circ}$.
978.64(10) \AA^{3}

4
$1.386 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$0.113 \mathrm{~mm}^{-1}$
440 e
$0.26 \times 0.10 \times 0.05 \mathrm{~mm}^{3}$
2.827 to 33.092°.
$-9 \leq h \leq 9,-17 \leq k \leq 17,-22 \leq \mathrm{l} \leq 22$
21965
3674 [$\mathrm{R}_{\text {int }}=0.0337$]
Reflections with $I>2 \sigma(I)$
Completeness to $\theta=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
Bond lengths [Å] \& Angles [${ }^{\circ}$]

$\mathrm{O}(1)-\mathrm{C}(4)$	$1.4421(19)$	$\mathrm{O}(1)-\mathrm{C}(8)$	$1.4351(19)$
$\mathrm{O}(2)-\mathrm{H}(2)$	$0.78(3)$	$\mathrm{O}(2)-\mathrm{C}(5)$	$1.4318(19)$
$\mathrm{O}(3)-\mathrm{H}(3)$	$0.78(3)$	$\mathrm{O}(3)-\mathrm{C}(6)$	$1.4247(19)$
$\mathrm{O}(4)-\mathrm{H}(4)$	$0.85(3)$	$\mathrm{O}(4)-\mathrm{C}(7)$	$1.4308(19)$
$\mathrm{O}(5)-\mathrm{H}(5)$	$0.80(3)$	$\mathrm{O}(5)-\mathrm{C}(9)$	$1.434(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.501(2)$	
$\mathrm{C}(3)-\mathrm{C}(4)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.539(2)$	
$\mathrm{C}(5)-\mathrm{C}(6)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.531(2)$	
$\mathrm{C}(7)-\mathrm{C}(8)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.521(2)$	
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	$1.525(2)$	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{P})$	$1.01(2)$
$\mathrm{C}(8)-\mathrm{O}(1)-\mathrm{C}(4)$	$1.525(2)$	$\mathrm{C}(6)-\mathrm{O}(3)-\mathrm{H}(3)$	$108(2)$
$\mathrm{C}(7)-\mathrm{O}(4)-\mathrm{H}(4)$	$0.98(2)$	$\mathrm{C}(9)-\mathrm{O}(5)-\mathrm{H}(5)$	$108.3(18)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$114.99(12)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$109.93(14)$
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$111.3(19)$	$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$108.86(12)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$111.72(17)$	$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(4)$	$109.28(13)$
$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	$115.76(13)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$112.29(13)$
$\mathrm{O}(3)-\mathrm{C}(6)-\mathrm{C}(5)$	$110.65(13)$	$\mathrm{O}(3)-\mathrm{C}(6)-\mathrm{C}(7)$	$109.86(13)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$107.84(13)$	$\mathrm{O}(4)-\mathrm{C}(7)-\mathrm{C}(6)$	$111.45(13)$
$\mathrm{O}(4)-\mathrm{C}(7)-\mathrm{C}(8)$	$109.89(12)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$110.79(13)$
$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(7)$	$106.85(12)$	$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$106.30(12)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$108.94(12)$	$\mathrm{O}(5)-\mathrm{C}(9)-\mathrm{C}(8)$	$111.23(12)$
$\mathrm{O}(5)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	$114.59(13)$	$\mathrm{O}(5)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	$111.7(14)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{PA})$	$105.7(14)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	$110.3(14)$
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	$111.3(14)$		

6.4.5. Crystallographic Data Of 57

Crystal Data \& Structure Refinement

Figure 6.25: X-Ray single crystal structure and molecular structure of primary alcohol 57 (hydrogen atoms not shown for better visibility, numbering of atoms is arbitrary).

Identification code	9540 sadabs
Empirical formula	$\mathrm{C}_{27} \mathrm{H}_{56} \mathrm{O}_{5} \mathrm{Si}_{3}$
Color	colourless
Formula weight	$544.98 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
Temperature	100 K
Wavelength	$1.54178 \AA$

Bond Lengths [Å] \& Angles [${ }^{\circ}$]

$\mathrm{Si}(11)-\mathrm{O}(17)$	$1.610(6)$
$\mathrm{Si}(11)-\mathrm{C}(64 \mathrm{~B})$	$1.704(17)$
$\mathrm{Si}(10)-\mathrm{O}(17)$	$1.705(7)$
$\mathrm{Si}(10)-\mathrm{C}(64 \mathrm{~A})$	$1.691(17)$
$\mathrm{Si}(12)-\mathrm{O}(19)$	$1.642(5)$
$\mathrm{Si}(12)-\mathrm{C}(71)$	$1.888(8)$
$\mathrm{Si}(1)-\mathrm{O}(18)$	$1.647(5)$

$\mathrm{Si}(11)-\mathrm{C}(63 \mathrm{~B})$	$1.909(18)$
$\mathrm{Si}(11)-\mathrm{C}(64)$	$1.798(9)$
$\mathrm{Si}(10)-\mathrm{C}(63 \mathrm{~A})$	$1.89(2)$
$\mathrm{Si}(10)-\mathrm{C}(64)$	$2.027(9)$
$\mathrm{Si}(12)-\mathrm{C}(70)$	$1.839(9)$
$\mathrm{Si}(12)-\mathrm{C}(69)$	$1.840(9)$
$\mathrm{Si}(1)-\mathrm{C}(105)$	$1.884(9)$

$\mathrm{Si}(1)-\mathrm{C}(104)$
O(16)-C(59)
$\mathrm{O}(20)-\mathrm{H}(20)$
O(17)-C(56)
O(19)-C(58)
$\mathrm{C}(70)-\mathrm{H}(70 \mathrm{~B})$
C(105)-C(107)
C(105)-C(108)
C(71)-C(73)
$\mathrm{C}(72)-\mathrm{H}(72 \mathrm{~A})$
$\mathrm{C}(72)-\mathrm{H}(72 \mathrm{C})$
C(59)-C(75)
$\mathrm{C}(73)-\mathrm{H}(73 \mathrm{~A})$
$\mathrm{C}(73)-\mathrm{H}(73 \mathrm{C})$
$\mathrm{C}(74)-\mathrm{H}(74 \mathrm{~B})$
C(75)-H(75A)
C(63B)-H(63A)
C(63B)-H(63C)
$\mathrm{C}(63 \mathrm{~A})-\mathrm{H}(63 \mathrm{E})$
C(60B) $-\mathrm{H}(60 \mathrm{~A})$
C(60B)-C(61B)
C(61B)-C(62B)
C(107)-H(10A)
$\mathrm{C}(107)-\mathrm{H}(10 \mathrm{C})$
C(64B)-C(65B)
$C(64 A)-C(65 A)$
C(64A)-C(66A)
$\mathrm{C}(106)-\mathrm{H}(10 \mathrm{E})$
C(57)-H(57)
C(57)-C(56)
$\mathrm{C}(65 \mathrm{~A})-\mathrm{H}(65 \mathrm{~B})$
C(61A)-C(60A)
C(108)-H(10G)
$\mathrm{C}(108)-\mathrm{H}(10 \mathrm{I})$
C(67A)-H(67B)
C(104)-H(10J)
C(104)-H(10L)
C(66A)-H(66B)
C(103)-H(10M)
C(103)-H(100)
C(66B)-H(66E)
C(58)-H(58)
C(60A)-H(60D)
$\mathrm{C}(62 \mathrm{~A})-\mathrm{H}(62 \mathrm{~A})$
$\mathrm{C}(64)-\mathrm{H}(64 \mathrm{E})$
$\mathrm{C}(64)-\mathrm{H}(64 \mathrm{~A})$
$\mathrm{C}(64)-\mathrm{H}(64 \mathrm{C})$
$\mathrm{C}(55)-\mathrm{H}(55)$
C(56)-H(56)
$1.860(8)$
$1.459(8)$
0.8400
$1.413(9)$
$1.418(7)$
0.9800
1.541(11)
1.539(11)
1.554(11)
0.9800
0.9800
1.503(9)
0.9800
0.9800
0.9800
0.9900
0.9800
0.9800
0.9800
0.9900
1.47(2)
1.17(3)
0.9800
0.9800
1.61(2)
1.53(2)
1.56(2)
0.9800
1.0000
1.515(8)
0.9800
1.48(2)
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
1.0000
0.9900
0.9500
0.9800
0.9800
0.9800
1.0000
1.0000

$\mathrm{Si}(1)-\mathrm{C}(103)$	$1.862(9)$
$\mathrm{O}(16)-\mathrm{C}(55)$	$1.436(8)$
$\mathrm{O}(20)-\mathrm{C}(75)$	$1.427(8)$
$\mathrm{O}(18)-\mathrm{C}(57)$	$1.425(8)$
$\mathrm{C}(70)-\mathrm{H}(70 \mathrm{~A})$	0.9800
$\mathrm{C}(70)-\mathrm{H}(70 \mathrm{C})$	0.9800
$\mathrm{C}(105)-\mathrm{C}(106)$	$1.526(11)$
$\mathrm{C}(71)-\mathrm{C}(72)$	$1.550(12)$
$\mathrm{C}(71)-\mathrm{C}(74)$	$1.517(10)$
$\mathrm{C}(72)-\mathrm{H}(72 \mathrm{~B})$	0.9800
$\mathrm{C}(59)-\mathrm{H}(59)$	1.0000
$\mathrm{C}(59)-\mathrm{C}(58)$	$1.520(9)$
$\mathrm{C}(73)-\mathrm{H}(73 \mathrm{~B})$	0.9800
$\mathrm{C}(74)-\mathrm{H}(74 \mathrm{~A})$	0.9800
$\mathrm{C}(74)-\mathrm{H}(74 \mathrm{C})$	0.9800
$\mathrm{C}(75)-\mathrm{H}(75 \mathrm{~B})$	0.9900
$\mathrm{C}(63 \mathrm{~B})-\mathrm{H}(63 \mathrm{~B})$	0.9800
$\mathrm{C}(63 \mathrm{~A})-\mathrm{H}(63 \mathrm{D})$	0.9800
$\mathrm{C}(63 \mathrm{~A})-\mathrm{H}(63 \mathrm{~F})$	0.9800
$\mathrm{C}(60 \mathrm{~B})-\mathrm{H}(60 \mathrm{~B})$	0.9900
$\mathrm{C}(60 \mathrm{~B})-\mathrm{C}(55)$	$1.516(15)$
$\mathrm{C}(62 \mathrm{~B})-\mathrm{H}(62 \mathrm{~B})$	0.9500
$\mathrm{C}(107)-\mathrm{H}(10 \mathrm{~B})$	0.9800
$\mathrm{C}(64 \mathrm{~B})-\mathrm{C}(66 \mathrm{~B})$	$1.64(2)$
$\mathrm{C}(64 \mathrm{~B})-\mathrm{C}(67 \mathrm{~B})$	$1.49(2)$
$\mathrm{C}(64 \mathrm{~A})-\mathrm{C}(67 \mathrm{~A})$	$1.60(2)$
$\mathrm{C}(106)-\mathrm{H}(10 \mathrm{D})$	0.9800
$\mathrm{C}(106)-\mathrm{H}(10 \mathrm{~F})$	0.9800
$\mathrm{C}(57)-\mathrm{C}(58)$	$1.549(9)$
$\mathrm{C}(65 \mathrm{~A})-\mathrm{H}(65 \mathrm{~A})$	0.9800
$\mathrm{C}(65 \mathrm{~A})-\mathrm{H}(65 \mathrm{C})$	0.9800
$\mathrm{C}(61 \mathrm{~A})-\mathrm{C}(62 \mathrm{~A})$	$1.19(3)$
$\mathrm{C}(108)-\mathrm{H}(10 \mathrm{H})$	0.9800
$\mathrm{C}(67 \mathrm{~A})-\mathrm{H}(67 \mathrm{~A})$	0.9800
$\mathrm{C}(67 \mathrm{~A})-\mathrm{H}(67 \mathrm{C})$	0.9800
$\mathrm{C}(104)-\mathrm{H}(10 \mathrm{~K})$	0.9800
$\mathrm{C}(66 \mathrm{~A})-\mathrm{H}(66 \mathrm{~A})$	0.9800
$\mathrm{C}(66 \mathrm{~A})-\mathrm{H}(66 \mathrm{C})$	0.9800
$\mathrm{C}(103)-\mathrm{H}(10 \mathrm{~N})$	0.9800
$\mathrm{C}(66 \mathrm{~B})-\mathrm{H}(66 \mathrm{D})$	0.9800
$\mathrm{C}(66 \mathrm{~B})-\mathrm{H}(66 \mathrm{~F})$	0.9800
$\mathrm{C}(60 \mathrm{~A})-\mathrm{H}(60 \mathrm{C})$	0.9900
$\mathrm{C}(60 \mathrm{~A})-\mathrm{C}(55)$	$1.569(15)$
$\mathrm{C}(64)-\mathrm{H}(64 \mathrm{D})$	0.9800
$\mathrm{C}(64)-\mathrm{H}(64 \mathrm{~F})$	0.9800
$\mathrm{C}(64)-\mathrm{H}(64 \mathrm{~B})$	0.900
$\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~A})$	C
$\mathrm{C}(55)-\mathrm{C}(56)$	Cl
$\mathrm{C}(65 \mathrm{~B})-\mathrm{H}(65 \mathrm{D})$	

C(65B)-H(65E)	0.9800	C(65B)-H(65F)	0.9800
C(67B)-H(67D)	0.9800	C(67B)-H(67E)	0.9800
C(67B)-H(67F)	0.9800	C(69)-H(69A)	0.9800
$\mathrm{C}(69)$ - $\mathrm{H}(69 \mathrm{~B})$	0.9800	$\mathrm{C}(69)-\mathrm{H}(69 \mathrm{C})$	0.9800
$\mathrm{Si}(6 \mathrm{~B})$-O(9)	1.777(6)	$\mathrm{Si}(6 \mathrm{~B})-\mathrm{C}(49 \mathrm{~B})$	1.85(2)
Si(6B)-C(50B)	1.89(3)	$\mathrm{Si}(6 \mathrm{~B})-\mathrm{C}(48 \mathrm{~B})$	1.76(2)
$\mathrm{Si}(5)-\mathrm{O}(8)$	1.643(4)	$\mathrm{Si}(5)-\mathrm{C}(42)$	1.868(8)
$\mathrm{Si}(5)-\mathrm{C}(43)$	1.862(7)	$\mathrm{Si}(5)-\mathrm{C}(44)$	1.878(7)
$\mathrm{Si}(4)-\mathrm{O}(7)$	1.636(4)	$\mathrm{Si}(4)-\mathrm{C}(36)$	1.859(8)
$\mathrm{Si}(4)-\mathrm{C}(37)$	1.841(8)	$\mathrm{Si}(4)-\mathrm{C}(38)$	1.874(7)
$\mathrm{Si}(6 \mathrm{~A})$-O(9)	1.639(4)	Si(6A)-C(50A)	1.924(17)
Si(6A)-C(48A)	1.845(10)	Si(6A)-C(49A)	1.844(12)
$\mathrm{O}(10)-\mathrm{H}(10)$	0.8400	$\mathrm{O}(10)-\mathrm{C}(54)$	$1.442(8)$
$\mathrm{O}(7)-\mathrm{C}(29)$	1.437(7)	$\mathrm{O}(6)-\mathrm{C}(28)$	1.443(7)
$\mathrm{O}(6)-\mathrm{C}(32)$	1.439(6)	$\mathrm{O}(9)-\mathrm{C}(31)$	1.428(6)
$\mathrm{O}(8)-\mathrm{C}(30)$	1.435(7)	C(49B)-H(49A)	0.9800
C(49B)-H(49B)	0.9800	C(49B)-H(49C)	0.9800
$\mathrm{C}(53 \mathrm{~A})$ - $\mathrm{H}(53 \mathrm{~A})$	0.9800	$\mathrm{C}(53 \mathrm{~A})$ - $\mathrm{H}(53 \mathrm{~B})$	0.9800
$\mathrm{C}(53 \mathrm{~A})-\mathrm{H}(53 \mathrm{C})$	0.9800	C(53A)-C(50A)	1.50(2)
$\mathrm{C}(28)-\mathrm{H}(28)$	1.0000	C(28)-C(29)	1.525(7)
C(28)-C(33)	1.522(8)	$\mathrm{C}(29)-\mathrm{H}(29)$	1.0000
C(29)-C(30)	1.529(8)	$\mathrm{C}(30)-\mathrm{H}(30)$	1.0000
C(30)-C(31)	1.544(8)	$\mathrm{C}(31)-\mathrm{H}(31)$	1.0000
$\mathrm{C}(31)-\mathrm{C}(32)$	1.517(8)	$\mathrm{C}(32)-\mathrm{H}(32)$	1.0000
$\mathrm{C}(32)-\mathrm{C}(54)$	1.518(8)	$\mathrm{C}(52 \mathrm{~A}) \mathrm{H}(52 \mathrm{~A})$	0.9800
$\mathrm{C}(52 \mathrm{~A})-\mathrm{H}(52 \mathrm{~B})$	0.9800	$\mathrm{C}(52 \mathrm{~A})-\mathrm{H}(52 \mathrm{C})$	0.9800
C(52A)-C(50A)	1.43(2)	$\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~A})$	0.9900
$\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~B})$	0.9900	$\mathrm{C}(33)-\mathrm{C}(34)$	1.466(8)
$\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~A})$	0.9900	$\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~B})$	0.9900
C(34)-C(35)	1.184(9)	$\mathrm{C}(52 \mathrm{~B})-\mathrm{H}(52 \mathrm{D})$	0.9800
$\mathrm{C}(52 \mathrm{~B})-\mathrm{H}(52 \mathrm{E})$	0.9800	C(52B)-H(52F)	0.9800
C(52B)-C(50B)	1.49(4)	$\mathrm{C}(40 \mathrm{~B})-\mathrm{H}(40 \mathrm{~A})$	0.9800
C(40B)-H(40B)	0.9800	C(40B)-H(40C)	0.9800
$\mathrm{C}(40 \mathrm{~B})-\mathrm{C}(38)$	1.61(5)	$\mathrm{C}(35)-\mathrm{H}(35)$	0.9500
$\mathrm{C}(41 \mathrm{~B})-\mathrm{H}(41 \mathrm{~A})$	0.9800	$\mathrm{C}(41 \mathrm{~B})-\mathrm{H}(41 \mathrm{~B})$	0.9800
$\mathrm{C}(41 \mathrm{~B})-\mathrm{H}(41 \mathrm{C})$	0.9800	C(41B)-C(38)	1.60(4)
$\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~A})$	0.9800	$\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~B})$	0.9800
$\mathrm{C}(36)-\mathrm{H}(36 \mathrm{C})$	0.9800	$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~A})$	0.9800
$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	0.9800	$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{C})$	0.9800
C(50A)-C(51A)	1.68(2)	$\mathrm{C}(51 \mathrm{~A})$ - $\mathrm{H}(51 \mathrm{~A})$	0.9800
$\mathrm{C}(51 \mathrm{~A})-\mathrm{H}(51 \mathrm{~B})$	0.9800	$\mathrm{C}(51 \mathrm{~A})-\mathrm{H}(51 \mathrm{C})$	0.9800
$\mathrm{C}(38)-\mathrm{C}(39)$	1.528(10)	C(38)-C(40A)	1.50(3)
C(38)-C(41A)	1.526(17)	C(39)-H(39A)	0.9800
$\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~B})$	0.9800	$\mathrm{C}(39)-\mathrm{H}(39 \mathrm{C})$	0.9800
C(50B)-C(51B)	1.39(4)	C(50B)-C(53B)	1.68(4)
$\mathrm{C}(40 \mathrm{~A})$ - $\mathrm{H}(40 \mathrm{D})$	0.9800	$\mathrm{C}(40 \mathrm{~A})-\mathrm{H}(40 \mathrm{E})$	0.9800
C(40A)-H(40F)	0.9800	$\mathrm{C}(41 \mathrm{~A})$ - $\mathrm{H}(41 \mathrm{D})$	0.9800
$\mathrm{C}(41 \mathrm{~A})-\mathrm{H}(41 \mathrm{E})$	0.9800	$\mathrm{C}(41 \mathrm{~A})-\mathrm{H}(41 \mathrm{~F})$	0.9800
$\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~A})$	0.9800	$\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~B})$	0.9800

$\mathrm{C}(42)-\mathrm{H}(42 \mathrm{C})$	0.9800
$\mathrm{C}(51 \mathrm{~B})-\mathrm{H}(51 \mathrm{E})$	0.9800
$\mathrm{C}(53 \mathrm{~B})-\mathrm{H}(53 \mathrm{D})$	0.9800
$\mathrm{C}(53 \mathrm{~B})-\mathrm{H}(53 \mathrm{~F})$	0.9800
$\mathrm{C}(43)-\mathrm{H}(43 \mathrm{~B})$	0.9800
$\mathrm{C}(48 \mathrm{~B})-\mathrm{H}(48 \mathrm{~A})$	0.9800
$\mathrm{C}(48 \mathrm{~B})-\mathrm{H}(48 \mathrm{C})$	0.9800
$\mathrm{C}(44)-\mathrm{C}(46)$	1.527(9)
$\mathrm{C}(45)-\mathrm{H}(45 \mathrm{~A})$	0.9800
$\mathrm{C}(45)-\mathrm{H}(45 \mathrm{C})$	0.9800
$\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~B})$	0.9800
$\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~A})$	0.9800
$\mathrm{C}(47)-\mathrm{H}(47 \mathrm{C})$	0.9800
C(48A)-H(48E)	0.9800
C(49A)-H(49D)	0.9800
C(49A)-H(49F)	0.9800
Si(9)-C(97)	1.846(6)
Si(9)-C(98)	1.886(6)
$\mathrm{Si}(7)-\mathrm{C}(85)$	1.861(7)
Si(7)-C(86)	1.887(7)
$\mathrm{Si}(8)-\mathrm{C}(91)$	1.842(7)
$\mathrm{Si}(8)-\mathrm{C}(90)$	1.855(6)
O(12)-C(77)	1.432(6)
$\mathrm{O}(15)-\mathrm{C}(102)$	1.427(7)
$\mathrm{O}(11)-\mathrm{C}(76)$	1.441(6)
$\mathrm{C}(78)-\mathrm{H}(78)$	1.0000
$\mathrm{C}(78)-\mathrm{C}(77)$	1.530(7)
C(91)-H(91B)	0.9800
C(83A)-H(83A)	0.9500
C(99)-H(99A)	0.9800
C(99)-H(99C)	0.9800
C(82B)-C(81B)	1.47(3)
C(87)-H(87A)	0.9800
C(87)-H(87C)	0.9800
C(95)-H(95A)	0.9800
C(95)-H(95C)	0.9800
$\mathrm{C}(76)-\mathrm{H}(76 \mathrm{~A})$	1.0000
C(76)-C(81A)	1.47(2)
C(76)-C(81B)	1.58(2)
$\mathrm{C}(79)-\mathrm{C}(80)$	1.523(7)
C(81A)-H(81B)	0.9900
C(85)-H(85A)	0.9800
C(85)-H(85C)	0.9800
C(89)-H(89B)	0.9800
C(89)-C(86)	1.526(9)
C(93)-C(94)	1.540(9)
C(97)-H(97B)	0.9800
$\mathrm{C}(101)-\mathrm{H}(10 \mathrm{P})$	0.9800
C(101)-H(10R)	0.9800

C(51B)-H(51D)	0.9800
C(51B)-H(51F)	0.9800
C(53B)-H(53E)	0.9800
$\mathrm{C}(43)-\mathrm{H}(43 \mathrm{~A})$	0.9800
$\mathrm{C}(43)-\mathrm{H}(43 \mathrm{C})$	0.9800
C(48B)-H(48B)	0.9800
C(44)-C(45)	1.541(11)
$\mathrm{C}(44)-\mathrm{C}(47)$	1.549(10)
$\mathrm{C}(45)-\mathrm{H}(45 \mathrm{~B})$	0.9800
$\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~A})$	0.9800
$\mathrm{C}(46)-\mathrm{H}(46 \mathrm{C})$	0.9800
$\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~B})$	0.9800
$\mathrm{C}(48 \mathrm{~A})-\mathrm{H}(48 \mathrm{D})$	0.9800
C(48A)-H(48F)	0.9800
C(49A)-H(49E)	0.9800
$\mathrm{Si}(9)-\mathrm{O}(14)$	1.655(4)
$\mathrm{Si}(9)-\mathrm{C}(96)$	1.862(6)
$\mathrm{Si}(7)-\mathrm{O}(12)$	1.643(4)
$\mathrm{Si}(7)-\mathrm{C}(84)$	1.850(7)
$\mathrm{Si}(8)-\mathrm{O}(13)$	1.643(4)
$\mathrm{Si}(8)-\mathrm{C}(93)$	1.872(6)
O(13)-C(78)	1.433(6)
$\mathrm{O}(15)-\mathrm{H}(15)$	0.8400
O(14)-C(79)	1.427(6)
O(11)-C(80)	1.446(6)
C(78)-C(79)	1.545(7)
C(91)-H(91A)	0.9800
C(91)-H(91C)	0.9800
C(83A)-C(82A)	1.21(2)
C(99)-H(99B)	0.9800
C(99)-C(98)	1.539(8)
C(82B)-C(83B)	1.18(2)
C(87)-H(87B)	0.9800
C(87)-C(86)	1.522(9)
C(95)-H(95B)	0.9800
C(95)-C(93)	1.524(9)
$\mathrm{C}(76)-\mathrm{H}(76)$	1.0000
C(76)-C(77)	1.524(7)
$\mathrm{C}(79)-\mathrm{H}(79)$	1.0000
C(81A)-H(81A)	0.9900
C(81A)-C(82A)	1.46(2)
$\mathrm{C}(85)-\mathrm{H}(85 \mathrm{~B})$	0.9800
C(89)-H(89A)	0.9800
C(89)-H(89C)	0.9800
C(93)-C(92)	1.537(8)
C(97)-H(97A)	0.9800
C(97)-H(97C)	0.9800
C(101)-H(10Q)	0.9800
C(101)-C(98)	1.547(8)

$\mathrm{C}(77)-\mathrm{H}(77)$	1.0000	$\mathrm{C}(81 \mathrm{~B})-\mathrm{H}(81 \mathrm{C})$	0.9900
C(81B)-H(81D)	0.9900	$\mathrm{C}(80)-\mathrm{H}(80)$	1.0000
C(80)-C(102)	1.515(7)	$\mathrm{C}(83 \mathrm{~B})-\mathrm{H}(83 \mathrm{~B})$	0.9500
$\mathrm{C}(84)-\mathrm{H}(84 \mathrm{~A})$	0.9800	$\mathrm{C}(84)-\mathrm{H}(84 \mathrm{~B})$	0.9800
$\mathrm{C}(84)-\mathrm{H}(84 \mathrm{C})$	0.9800	C(86)-C(88)	1.538(8)
$\mathrm{C}(88)-\mathrm{H}(88 \mathrm{~A})$	0.9800	$\mathrm{C}(88)-\mathrm{H}(88 \mathrm{~B})$	0.9800
$\mathrm{C}(88)-\mathrm{H}(88 \mathrm{C})$	0.9800	$\mathrm{C}(90)-\mathrm{H}(90 \mathrm{~A})$	0.9800
$\mathrm{C}(90)-\mathrm{H}(90 \mathrm{~B})$	0.9800	$\mathrm{C}(90)-\mathrm{H}(90 \mathrm{C})$	0.9800
$\mathrm{C}(92)-\mathrm{H}(92 \mathrm{~A})$	0.9800	C(92)-H(92B)	0.9800
$\mathrm{C}(92) \mathrm{H}(92 \mathrm{C})$	0.9800	$\mathrm{C}(94)-\mathrm{H}(94 \mathrm{~A})$	0.9800
$\mathrm{C}(94)-\mathrm{H}(94 \mathrm{~B})$	0.9800	$\mathrm{C}(94)-\mathrm{H}(94 \mathrm{C})$	0.9800
C(96)-H(96A)	0.9800	$\mathrm{C}(96)-\mathrm{H}(96 \mathrm{~B})$	0.9800
$\mathrm{C}(96)-\mathrm{H}(96 \mathrm{C})$	0.9800	C(98)-C(100)	1.527(8)
C(100)-H(10S)	0.9800	C(100)-H(10T)	0.9800
$\mathrm{C}(100)-\mathrm{H}(10 \mathrm{U})$	0.9800	$\mathrm{C}(102)-\mathrm{H}(10 \mathrm{~V})$	0.9900
$\mathrm{C}(102)-\mathrm{H}(10 \mathrm{~W})$	0.9900	$\mathrm{Si}(2)-\mathrm{O}(2)$	1.650(3)
$\mathrm{Si}(2)-\mathrm{C}(9)$	1.855(6)	$\mathrm{Si}(2)-\mathrm{C}(11)$	1.863(6)
$\mathrm{Si}(2)-\mathrm{C}(10)$	1.857(7)	$\mathrm{Si}(3)-\mathrm{O}(4)$	1.648(4)
$\mathrm{Si}(3)-\mathrm{C}(21)$	1.859(8)	$\mathrm{Si}(3)-\mathrm{C}(23)$	1.885(6)
$\mathrm{Si}(3)-\mathrm{C}(22)$	1.838(7)	$\mathrm{Si}(6)-\mathrm{O}(3)$	1.636(4)
Si(6)-C(15)	1.850(7)	$\mathrm{Si}(6)-\mathrm{C}(17)$	1.884(7)
$\mathrm{Si}(6)-\mathrm{C}(16)$	1.851(7)	$\mathrm{O}(5)-\mathrm{H}(5)$	0.8400
$\mathrm{O}(5)-\mathrm{C}(27)$	1.423(7)	$\mathrm{O}(4)-\mathrm{C}(4)$	1.429(6)
$\mathrm{O}(1)-\mathrm{C}(1)$	1.430(6)	$\mathrm{O}(1)-\mathrm{C}(5)$	1.449(6)
$\mathrm{O}(3)-\mathrm{C}(3)$	1.433(6)	$\mathrm{O}(2)-\mathrm{C}(2)$	1.432(6)
$\mathrm{C}(1)-\mathrm{H}(1)$	1.0000	$\mathrm{C}(1)-\mathrm{C}(2)$	1.513(7)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.536(7)	$\mathrm{C}(3)-\mathrm{H}(3)$	1.0000
$\mathrm{C}(3)-\mathrm{C}(2)$	1.533(7)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.535(7)
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	1.0000	$\mathrm{C}(5)-\mathrm{C}(27)$	1.525(7)
$\mathrm{C}(5)-\mathrm{C}(4)$	1.515(7)	$\mathrm{C}(7)-\mathrm{C}(6)$	1.462(8)
C(7)-C(8)	1.188(9)	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9800
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.9800	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	0.9800
$\mathrm{C}(11)-\mathrm{C}(13)$	1.542(8)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.549(9)
$\mathrm{C}(11)-\mathrm{C}(14)$	1.544(8)	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9800
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.9800	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	0.9800
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9800	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	0.9800
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	0.9800	$\mathrm{C}(17)-\mathrm{C}(19)$	1.509(9)
$\mathrm{C}(17)-\mathrm{C}(18)$	1.515(10)	$\mathrm{C}(17)-\mathrm{C}(20)$	1.521(9)
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9800	C(19)-H(19B)	0.9800
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	0.9800	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9800
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	0.9800	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	0.9800
C(23)-C(25)	1.510(8)	$\mathrm{C}(23)-\mathrm{C}(24)$	1.534(9)
$\mathrm{C}(23)-\mathrm{C}(26)$	1.530(9)	$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	0.9800
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	0.9800	$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	0.9800
$\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~A})$	0.9900	$\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	0.9900
$\mathrm{C}(2)-\mathrm{H}(2)$	1.0000	$\mathrm{C}(4)-\mathrm{H}(4)$	1.0000
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9900	$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9900
$\mathrm{C}(8)-\mathrm{H}(8)$	0.9500	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{X})$	0.9800
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{Y})$	0.9800	$\mathrm{C}(10)-\mathrm{H}$	0.9800

$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9800	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9800
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	0.9800	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9800
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9800	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	0.9800
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9800	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9800
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	0.9800	C(18)-H(18A)	0.9800
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9800	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	0.9800
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9800	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9800
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	0.9800	$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9800
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	0.9800	$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	0.9800
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	0.9800	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	0.9800
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	0.9800	$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	0.9800
$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	0.9800	$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	0.9800
$\mathrm{O}(17)-\mathrm{Si}(11)-\mathrm{C}(63 \mathrm{~B})$	112.0(6)	$\mathrm{O}(17)-\mathrm{Si}(11)-\mathrm{C}(64 \mathrm{~B})$	97.7(7)
$\mathrm{O}(17)-\mathrm{Si}(11)-\mathrm{C}(64)$	115.9(4)	C(64B)-Si(11)-C(63B)	112.0(9)
C(64B)-Si(11)-C(64)	110.5(7)	$\mathrm{C}(64)-\mathrm{Si}(11)-\mathrm{C}(63 \mathrm{~B})$	108.5(7)
O(17)-Si(10)-C(63A)	104.0(7)	O(17)-Si(10)-C(64)	101.2(4)
C(63A)-Si(10)-C(64)	101.6(8)	$\mathrm{C}(64 \mathrm{~A})-\mathrm{Si}(10)-\mathrm{O}(17)$	114.9(6)
C(64A)-Si(10)-C(63A)	117.1(10)	C(64A)-Si(10)-C(64)	115.8(6)
$\mathrm{O}(19)-\mathrm{Si}(12)-\mathrm{C}(70)$	111.4(3)	$\mathrm{O}(19)-\mathrm{Si}(12)-\mathrm{C}(71)$	104.8(3)
O(19)-Si(12)-C(69)	108.8(3)	$\mathrm{C}(70)-\mathrm{Si}(12)-\mathrm{C}(71)$	112.4(4)
C(70)-Si(12)-C(69)	109.6(4)	C(69)-Si(12)-C(71)	109.8(4)
O(18)-Si(1)-C(105)	103.2(3)	$\mathrm{O}(18)-\mathrm{Si}(1)-\mathrm{C}(104)$	110.0(3)
$\mathrm{O}(18)-\mathrm{Si}(1)-\mathrm{C}(103)$	112.5(3)	$\mathrm{C}(104)-\mathrm{Si}(1)-\mathrm{C}(105)$	111.8(4)
$\mathrm{C}(104)-\mathrm{Si}(1)-\mathrm{C}(103)$	109.2(4)	$\mathrm{C}(103)-\mathrm{Si}(1)-\mathrm{C}(105)$	110.2(4)
C(55)-O(16)-C(59)	116.1(4)	$\mathrm{C}(75)-\mathrm{O}(20)-\mathrm{H}(20)$	109.5
$\mathrm{C}(56)-\mathrm{O}(17)-\mathrm{Si}(11)$	122.8(5)	$\mathrm{C}(56)-\mathrm{O}(17)-\mathrm{Si}(10)$	139.6(5)
C(57)-O(18)-Si(1)	130.2(4)	$\mathrm{C}(58)-\mathrm{O}(19)-\mathrm{Si}(12)$	130.6(4)
$\mathrm{Si}(12)-\mathrm{C}(70)-\mathrm{H}(70 \mathrm{~A})$	109.5	$\mathrm{Si}(12)-\mathrm{C}(70)-\mathrm{H}(70 \mathrm{~B})$	109.5
$\mathrm{Si}(12)-\mathrm{C}(70)-\mathrm{H}(70 \mathrm{C})$	109.5	H(70A)-C(70)-H(70B)	109.5
H(70A)-C(70)-H(70C)	109.5	$\mathrm{H}(70 \mathrm{~B})-\mathrm{C}(70)-\mathrm{H}(70 \mathrm{C})$	109.5
C(107)-C(105)-Si(1)	109.4(6)	$\mathrm{C}(106)-\mathrm{C}(105)-\mathrm{Si}(1)$	109.9(5)
C(106)-C(105)-C(107)	109.2(7)	C(106)-C(105)-C(108)	109.0(7)
C(108)-C(105)-Si(1)	111.3(6)	C(108)-C(105)-C(107)	108.1(7)
$\mathrm{C}(72)-\mathrm{C}(71)-\mathrm{Si}(12)$	110.2(5)	$\mathrm{C}(72)-\mathrm{C}(71)-\mathrm{C}(73)$	107.7(7)
$\mathrm{C}(73)-\mathrm{C}(71)-\mathrm{Si}(12)$	109.2(6)	$\mathrm{C}(74)-\mathrm{C}(71)-\mathrm{Si}(12)$	111.4(6)
$\mathrm{C}(74)-\mathrm{C}(71)-\mathrm{C}(72)$	108.6(7)	$\mathrm{C}(74)-\mathrm{C}(71)-\mathrm{C}(73)$	109.7(6)
$\mathrm{C}(71)-\mathrm{C}(72)-\mathrm{H}(72 \mathrm{~A})$	109.5	$\mathrm{C}(71)-\mathrm{C}(72)-\mathrm{H}(72 \mathrm{~B})$	109.5
$\mathrm{C}(71)-\mathrm{C}(72)-\mathrm{H}(72 \mathrm{C})$	109.5	H(72A)-C(72)-H(72B)	109.5
$\mathrm{H}(72 \mathrm{~A})-\mathrm{C}(72)-\mathrm{H}(72 \mathrm{C})$	109.5	$\mathrm{H}(72 \mathrm{~B})-\mathrm{C}(72)-\mathrm{H}(72 \mathrm{C})$	109.5
$\mathrm{O}(16)-\mathrm{C}(59)-\mathrm{H}(59)$	108.8	$\mathrm{O}(16)-\mathrm{C}(59)-\mathrm{C}(75)$	106.7(5)
O(16)-C(59)-C(58)	108.2(5)	$\mathrm{C}(75)-\mathrm{C}(59)-\mathrm{H}(59)$	108.8
C(75)-C(59)-C(58)	115.5(5)	$\mathrm{C}(58)-\mathrm{C}(59)-\mathrm{H}(59)$	108.8
$\mathrm{C}(71)-\mathrm{C}(73)-\mathrm{H}(73 \mathrm{~A})$	109.5	$\mathrm{C}(71)-\mathrm{C}(73)-\mathrm{H}(73 \mathrm{~B})$	109.5
$\mathrm{C}(71)-\mathrm{C}(73)-\mathrm{H}(73 \mathrm{C})$	109.5	H(73A)-C(73)-H(73B)	109.5
$\mathrm{H}(73 \mathrm{~A})-\mathrm{C}(73)-\mathrm{H}(73 \mathrm{C})$	109.5	$\mathrm{H}(73 \mathrm{~B})-\mathrm{C}(73)-\mathrm{H}(73 \mathrm{C})$	109.5
$\mathrm{C}(71)-\mathrm{C}(74)-\mathrm{H}(74 \mathrm{~A})$	109.5	$\mathrm{C}(71)-\mathrm{C}(74)-\mathrm{H}(74 \mathrm{~B})$	109.5
$\mathrm{C}(71)-\mathrm{C}(74)-\mathrm{H}(74 \mathrm{C})$	109.5	H(74A)-C(74)-H(74B)	109.5
$\mathrm{H}(74 \mathrm{~A})-\mathrm{C}(74)-\mathrm{H}(74 \mathrm{C})$	109.5	H(74B)-C(74)-H(74C)	109.5
$\mathrm{O}(20)-\mathrm{C}(75)-\mathrm{C}(59)$	113.7(6)	$\mathrm{O}(20)-\mathrm{C}(75)-\mathrm{H}(75 \mathrm{~A})$	108.8

$\mathrm{O}(20)-\mathrm{C}(75)-\mathrm{H}(75 \mathrm{~B})$	108.8	$\mathrm{C}(59)-\mathrm{C}(75)-\mathrm{H}(75 \mathrm{~A})$	108.8
C(59)-C(75)-H(75B)	108.8	$\mathrm{H}(75 \mathrm{~A})-\mathrm{C}(75)-\mathrm{H}(75 \mathrm{~B})$	107.7
$\mathrm{Si}(11)-\mathrm{C}(63 \mathrm{~B})-\mathrm{H}(63 \mathrm{~A})$	109.5	$\mathrm{Si}(11)-\mathrm{C}(63 \mathrm{~B})-\mathrm{H}(63 \mathrm{~B})$	109.5
$\mathrm{Si}(11)-\mathrm{C}(63 \mathrm{~B})-\mathrm{H}(63 \mathrm{C})$	109.5	H(63A)-C(63B)-H(63B)	109.5
H(63A)-C(63B)-H(63C)	109.5	H(63B)-C(63B)-H(63C)	109.5
$\mathrm{Si}(10)-\mathrm{C}(63 \mathrm{~A})-\mathrm{H}(63 \mathrm{D})$	109.5	$\mathrm{Si}(10)-\mathrm{C}(63 \mathrm{~A})-\mathrm{H}(63 \mathrm{E})$	109.5
$\mathrm{Si}(10)-\mathrm{C}(63 \mathrm{~A})-\mathrm{H}(63 \mathrm{~F})$	109.5	H(63D)-C(63A)-H(63E)	109.5
H(63D)-C(63A)-H(63F)	109.5	H(63E)-C(63A)-H(63F)	109.5
H(60A)-C(60B)-H(60B)	107.1	C(61B)-C(60B)-H(60A)	107.8
C(61B)-C(60B)-H(60B)	107.8	C(61B)-C(60B)-C(55)	118.2(12)
C(55)-C(60B)-H(60A)	107.8	C(55)-C(60B)-H(60B)	107.8
C(62B)-C(61B)-C(60B)	176(2)	$\mathrm{C}(61 \mathrm{~B})-\mathrm{C}(62 \mathrm{~B})-\mathrm{H}(62 \mathrm{~B})$	180.0
$\mathrm{C}(105)-\mathrm{C}(107)-\mathrm{H}(10 \mathrm{~A})$	109.5	$\mathrm{C}(105)-\mathrm{C}(107)-\mathrm{H}(10 \mathrm{~B})$	109.5
$\mathrm{C}(105)-\mathrm{C}(107)-\mathrm{H}(10 \mathrm{C})$	109.5	$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(107)-\mathrm{H}(10 \mathrm{~B})$	109.5
$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(107)-\mathrm{H}(10 \mathrm{C})$	109.5	$\mathrm{H}(10 \mathrm{~B})-\mathrm{C}(107)-\mathrm{H}(10 \mathrm{C})$	109.5
$\mathrm{C}(66 \mathrm{~B})-\mathrm{C}(64 \mathrm{~B})-\mathrm{Si}(11)$	115.3(12)	C(65B)-C(64B)-Si(11)	116.7(14)
C(65B)-C(64B)-C(66B)	101.1(13)	C(67B)-C(64B)-Si(11)	118.9(12)
C(67B)-C(64B)-C(66B)	96.1(14)	C(67B)-C(64B)-C(65B)	105.6(15)
C(65A)-C(64A)-Si(10)	107.1(12)	C(65A)-C(64A)-C(67A)	107.9(13)
C(65A)-C(64A)-C(66A)	112.9(12)	C(67A)-C(64A)-Si(10)	107.8(10)
C(66A)-C(64A)-Si(10)	116.9(11)	C(66A)-C(64A)-C(67A)	103.9(14)
$\mathrm{C}(105)-\mathrm{C}(106)-\mathrm{H}(10 \mathrm{D})$	109.5	$\mathrm{C}(105)-\mathrm{C}(106)-\mathrm{H}(10 \mathrm{E})$	109.5
$\mathrm{C}(105)-\mathrm{C}(106)-\mathrm{H}(10 \mathrm{~F})$	109.5	H(10D)-C(106)-H(10E)	109.5
$\mathrm{H}(10 \mathrm{D})-\mathrm{C}(106)-\mathrm{H}(10 \mathrm{~F})$	109.5	H(10E)-C(106)-H(10F)	109.5
$\mathrm{O}(18)-\mathrm{C}(57)-\mathrm{H}(57)$	108.6	$\mathrm{O}(18)-\mathrm{C}(57)-\mathrm{C}(58)$	109.5(5)
$\mathrm{O}(18)-\mathrm{C}(57)-\mathrm{C}(56)$	109.2(6)	$\mathrm{C}(58)-\mathrm{C}(57)-\mathrm{H}(57)$	108.6
$\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{H}(57)$	108.6	$\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{C}(58)$	112.3(5)
$\mathrm{C}(64 \mathrm{~A})-\mathrm{C}(65 \mathrm{~A})-\mathrm{H}(65 \mathrm{~A})$	109.5	C(64A)-C(65A)-H(65B)	109.5
$\mathrm{C}(64 \mathrm{~A})-\mathrm{C}(65 \mathrm{~A})-\mathrm{H}(65 \mathrm{C})$	109.5	H(65A)-C(65A)-H(65B)	109.5
$\mathrm{H}(65 \mathrm{~A})-\mathrm{C}(65 \mathrm{~A})-\mathrm{H}(65 \mathrm{C})$	109.5	H(65B)-C(65A)-H(65C)	109.5
C(62A)-C(61A)-C(60A)	177.3(16)	C(105)-C(108)-H(10G)	109.5
$\mathrm{C}(105)-\mathrm{C}(108)-\mathrm{H}(10 \mathrm{H})$	109.5	$\mathrm{C}(105)-\mathrm{C}(108)-\mathrm{H}(10 \mathrm{I})$	109.5
H(10G)-C(108)-H(10H)	109.5	H(10G)-C(108)-H(10I)	109.5
$\mathrm{H}(10 \mathrm{H})-\mathrm{C}(108)-\mathrm{H}(10 \mathrm{I})$	109.5	C(64A)-C(67A)-H(67A)	109.5
C(64A)-C(67A)-H(67B)	109.5	C(64A)-C(67A)-H(67C)	109.5
H(67A)-C(67A)-H(67B)	109.5	H(67A)-C(67A)-H(67C)	109.5
H(67B)-C(67A)-H(67C)	109.5	$\mathrm{Si}(1)-\mathrm{C}(104)-\mathrm{H}(10 \mathrm{~J})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(104)-\mathrm{H}(10 \mathrm{~K})$	109.5	$\mathrm{Si}(1)-\mathrm{C}(104)-\mathrm{H}(10 \mathrm{~L})$	109.5
H(10J)-C(104)-H(10K)	109.5	$\mathrm{H}(10 \mathrm{~J})-\mathrm{C}(104)-\mathrm{H}(10 \mathrm{~L})$	109.5
$\mathrm{H}(10 \mathrm{~K})-\mathrm{C}(104)-\mathrm{H}(10 \mathrm{~L})$	109.5	C(64A)-C(66A)-H(66A)	109.5
C(64A)-C(66A)-H(66B)	109.5	C(64A)-C(66A)-H(66C)	109.5
H(66A)-C(66A)-H(66B)	109.5	H(66A)-C(66A)-H(66C)	109.5
H(66B)-C(66A)-H(66C)	109.5	$\mathrm{Si}(1)-\mathrm{C}(103)-\mathrm{H}(10 \mathrm{M})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(103)-\mathrm{H}(10 \mathrm{~N})$	109.5	$\mathrm{Si}(1)-\mathrm{C}(103)-\mathrm{H}(100)$	109.5
$\mathrm{H}(10 \mathrm{M})-\mathrm{C}(103)-\mathrm{H}(10 \mathrm{~N})$	109.5	H(10M)-C(103)-H(100)	109.5
$\mathrm{H}(10 \mathrm{~N})-\mathrm{C}(103)-\mathrm{H}(100)$	109.5	$\mathrm{C}(64 \mathrm{~B})-\mathrm{C}(66 \mathrm{~B})-\mathrm{H}(66 \mathrm{D})$	109.5
C(64B)-C(66B)-H(66E)	109.5	C(64B)-C(66B)-H(66F)	109.5
H(66D)-C(66B)-H(66E)	109.5	H(66D)-C(66B)-H(66F)	109.5
H(66E)-C(66B)-H(66F)	109.5	$\mathrm{O}(19)-\mathrm{C}(58)-\mathrm{C}(59)$	110.6(5)

$\mathrm{O}(19)-\mathrm{C}(58)-\mathrm{C}(57)$	110.6(5)	$\mathrm{O}(19)-\mathrm{C}(58)-\mathrm{H}(58)$	108.3
C(59)-C(58)-C(57)	110.5(5)	$\mathrm{C}(59)-\mathrm{C}(58)-\mathrm{H}(58)$	108.3
$\mathrm{C}(57)-\mathrm{C}(58)-\mathrm{H}(58)$	108.3	C(61A)-C(60A)-H(60C)	110.1
C(61A)-C(60A)-H(60D)	110.1	C(61A)-C(60A)-C(55)	107.9(11)
H(60C)-C(60A)-H(60D)	108.4	$\mathrm{C}(55)-\mathrm{C}(60 \mathrm{~A})-\mathrm{H}(60 \mathrm{C})$	110.1
C(55)-C(60A)-H(60D)	110.1	$\mathrm{C}(61 \mathrm{~A})-\mathrm{C}(62 \mathrm{~A})-\mathrm{H}(62 \mathrm{~A})$	180.0
$\mathrm{Si}(11)-\mathrm{C}(64)-\mathrm{H}(64 \mathrm{~A})$	109.5	$\mathrm{Si}(11)-\mathrm{C}(64)-\mathrm{H}(64 \mathrm{~B})$	109.5
$\mathrm{Si}(11)-\mathrm{C}(64)-\mathrm{H}(64 \mathrm{C})$	109.5	$\mathrm{Si}(10)-\mathrm{C}(64)-\mathrm{H}(64 \mathrm{D})$	109.5
Si(10)-C(64)-H(64E)	109.5	Si(10)-C(64)-H(64F)	109.5
H(64D)-C(64)-H(64E)	109.5	H(64D)-C(64)-H(64F)	109.5
H(64E)-C(64)-H(64F)	109.5	H(64A)-C(64)-H(64B)	109.5
H(64A)-C(64)-H(64C)	109.5	$\mathrm{H}(64 \mathrm{~B})-\mathrm{C}(64)-\mathrm{H}(64 \mathrm{C})$	109.5
O(16)-C(55)-C(60B)	110.1(7)	O(16)-C(55)-C(60A)	102.4(7)
$\mathrm{O}(16)-\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~A})$	110.1	$\mathrm{O}(16)-\mathrm{C}(55)-\mathrm{H}(55)$	105.2
$\mathrm{O}(16)-\mathrm{C}(55)-\mathrm{C}(56)$	112.6(6)	$\mathrm{C}(60 \mathrm{~B})-\mathrm{C}(55)-\mathrm{H}(55)$	105.2
C(60B)-C(55)-C(56)	117.4(8)	$\mathrm{C}(60 \mathrm{~A})-\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~A})$	110.1
C(56)-C(55)-C(60A)	111.2(7)	$\mathrm{C}(56)-\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~A})$	110.1
$\mathrm{C}(56)-\mathrm{C}(55)-\mathrm{H}(55)$	105.2	$\mathrm{O}(17)-\mathrm{C}(56)-\mathrm{C}(57)$	110.9(6)
$\mathrm{O}(17)-\mathrm{C}(56)-\mathrm{C}(55)$	109.1(5)	$\mathrm{O}(17)-\mathrm{C}(56)-\mathrm{H}(56)$	109.2
C(57)-C(56)-C(55)	109.3(5)	$\mathrm{C}(57)-\mathrm{C}(56)-\mathrm{H}(56)$	109.2
$\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{H}(56)$	109.2	C(64B)-C(65B)-H(65D)	109.5
C(64B)-C(65B)-H(65E)	109.5	C(64B)-C(65B)-H(65F)	109.5
H(65D)-C(65B)-H(65E)	109.5	H(65D)-C(65B)-H(65F)	109.5
H(65E)-C(65B)-H(65F)	109.5	C(64B)-C(67B)-H(67D)	109.5
C(64B)-C(67B)-H(67E)	109.5	C(64B)-C(67B)-H(67F)	109.5
H(67D)-C(67B)-H(67E)	109.5	H(67D)-C(67B)-H(67F)	109.5
H(67E)-C(67B)-H(67F)	109.5	$\mathrm{Si}(12)-\mathrm{C}(69)-\mathrm{H}(69 \mathrm{~A})$	109.5
Si(12)-C(69)-H(69B)	109.5	$\mathrm{Si}(12)-\mathrm{C}(69)-\mathrm{H}(69 \mathrm{C})$	109.5
H(69A)-C(69)-H(69B)	109.5	H(69A)-C(69)-H(69C)	109.5
H(69B)-C(69)-H(69C)	109.5	O(9)-Si(6B)-C(49B)	116.0(8)
O(9)-Si(6B)-C(50B)	95.9(9)	C(49B)-Si(6B)-C(50B)	111.8(11)
$\mathrm{C}(48 \mathrm{~B})-\mathrm{Si}(6 \mathrm{~B})-\mathrm{O}(9)$	110.0(7)	C(48B)-Si(6B)-C(49B)	107.5(11)
C(48B)-Si(6B)-C(50B)	115.6(11)	$\mathrm{O}(8)-\mathrm{Si}(5)-\mathrm{C}(42)$	110.6(3)
$\mathrm{O}(8)-\mathrm{Si}(5)-\mathrm{C}(43)$	109.9(3)	$\mathrm{O}(8)-\mathrm{Si}(5)-\mathrm{C}(44)$	105.1(2)
$\mathrm{C}(42)-\mathrm{Si}(5)-\mathrm{C}(44)$	111.8(3)	$\mathrm{C}(43)-\mathrm{Si}(5)-\mathrm{C}(42)$	108.2(3)
$\mathrm{C}(43)-\mathrm{Si}(5)-\mathrm{C}(44)$	111.3(3)	$\mathrm{O}(7)-\mathrm{Si}(4)-\mathrm{C}(36)$	110.9(3)
$\mathrm{O}(7)-\mathrm{Si}(4)-\mathrm{C}(37)$	110.3(3)	$\mathrm{O}(7)-\mathrm{Si}(4)-\mathrm{C}(38)$	105.2(3)
$\mathrm{C}(36)-\mathrm{Si}(4)-\mathrm{C}(38)$	111.6(3)	C(37)-Si(4)-C(36)	108.6(4)
$\mathrm{C}(37)-\mathrm{Si}(4)-\mathrm{C}(38)$	110.2(4)	O(9)-Si(6A)-C(50A)	105.1(5)
O(9)-Si(6A)-C(48A)	107.1(4)	O(9)-Si(6A)-C(49A)	114.5(4)
C(48A)-Si(6A)-C(50A)	108.5(7)	C(49A)-Si(6A)-C(50A)	112.2(7)
C(49A)-Si(6A)-C(48A)	109.1(5)	$\mathrm{C}(54)-\mathrm{O}(10)-\mathrm{H}(10)$	109.5
$\mathrm{C}(29)-\mathrm{O}(7)-\mathrm{Si}(4)$	128.3(4)	$\mathrm{C}(32)-\mathrm{O}(6)-\mathrm{C}(28)$	115.1(4)
$\mathrm{C}(31)-\mathrm{O}(9)-\mathrm{Si}(6 \mathrm{~B})$	117.7(4)	$\mathrm{C}(31)-\mathrm{O}(9)-\mathrm{Si}(6 \mathrm{~A})$	129.0(4)
$\mathrm{C}(30)-\mathrm{O}(8)-\mathrm{Si}(5)$	128.2(4)	$\mathrm{Si}(6 \mathrm{~B})-\mathrm{C}(49 \mathrm{~B})-\mathrm{H}(49 \mathrm{~A})$	109.5
$\mathrm{Si}(6 \mathrm{~B})-\mathrm{C}(49 \mathrm{~B})-\mathrm{H}(49 \mathrm{~B})$	109.5	$\mathrm{Si}(6 \mathrm{~B})-\mathrm{C}(49 \mathrm{~B})-\mathrm{H}(49 \mathrm{C})$	109.5
H(49A)-C(49B)-H(49B)	109.5	H(49A)-C(49B)-H(49C)	109.5
H(49B)-C(49B)-H(49C)	109.5	H(53A)-C(53A)-H(53B)	109.5
H(53A)-C(53A)-H(53C)	109.5	$\mathrm{H}(53 \mathrm{~B})-\mathrm{C}(53 \mathrm{~A})-\mathrm{H}(53 \mathrm{C})$	109.5

$\mathrm{C}(50 \mathrm{~A})-\mathrm{C}(53 \mathrm{~A})-\mathrm{H}(53 \mathrm{~A})$	109.5	$\mathrm{C}(50 \mathrm{~A})-\mathrm{C}(53 \mathrm{~A})-\mathrm{H}(53 \mathrm{~B})$	109.5
$\mathrm{C}(50 \mathrm{~A})-\mathrm{C}(53 \mathrm{~A})-\mathrm{H}(53 \mathrm{C})$	109.5	$\mathrm{O}(6)-\mathrm{C}(28)-\mathrm{H}(28)$	107.4
$\mathrm{O}(6)-\mathrm{C}(28)-\mathrm{C}(29)$	113.4(4)	$\mathrm{O}(6)-\mathrm{C}(28)-\mathrm{C}(33)$	108.0(4)
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{H}(28)$	107.4	$\mathrm{C}(33)-\mathrm{C}(28)-\mathrm{H}(28)$	107.4
$\mathrm{C}(33)-\mathrm{C}(28)-\mathrm{C}(29)$	112.9(5)	O (7)-C(29)-C(28)	111.1(5)
$\mathrm{O}(7)-\mathrm{C}(29)-\mathrm{H}(29)$	108.7	O(7)-C(29)-C(30)	110.2(4)
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{H}(29)$	108.7	C(28)-C(29)-C(30)	109.4(5)
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{H}(29)$	108.7	O (8)-C(30)-C(29)	107.2(4)
$\mathrm{O}(8)-\mathrm{C}(30)-\mathrm{H}(30)$	109.3	$\mathrm{O}(8)-\mathrm{C}(30)-\mathrm{C}(31)$	109.4(5)
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{H}(30)$	109.3	C(29)-C(30)-C(31)	112.4(5)
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{H}(30)$	109.3	O(9)-C(31)-C(30)	110.5(5)
$\mathrm{O}(9)-\mathrm{C}(31)-\mathrm{H}(31)$	109.2	O(9)-C(31)-C(32)	107.2(4)
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{H}(31)$	109.2	C(32)-C(31)-C(30)	111.5(4)
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{H}(31)$	109.2	O(6)-C(32)-C(31)	109.2(4)
$\mathrm{O}(6)-\mathrm{C}(32)-\mathrm{H}(32)$	109.4	O(6)-C(32)-C(54)	105.8(4)
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{H}(32)$	109.4	C(31)-C(32)-C(54)	113.5(5)
$\mathrm{C}(54)-\mathrm{C}(32)-\mathrm{H}(32)$	109.4	$\mathrm{H}(52 \mathrm{~A})-\mathrm{C}(52 \mathrm{~A})-\mathrm{H}(52 \mathrm{~B})$	109.5
$\mathrm{H}(52 \mathrm{~A})-\mathrm{C}(52 \mathrm{~A})-\mathrm{H}(52 \mathrm{C})$	109.5	$\mathrm{H}(52 \mathrm{~B})-\mathrm{C}(52 \mathrm{~A})-\mathrm{H}(52 \mathrm{C})$	109.5
$\mathrm{C}(50 \mathrm{~A})-\mathrm{C}(52 \mathrm{~A})-\mathrm{H}(52 \mathrm{~A})$	109.5	$\mathrm{C}(50 \mathrm{~A})-\mathrm{C}(52 \mathrm{~A})-\mathrm{H}(52 \mathrm{~B})$	109.5
$\mathrm{C}(50 \mathrm{~A})-\mathrm{C}(52 \mathrm{~A})-\mathrm{H}(52 \mathrm{C})$	109.5	$\mathrm{C}(28)-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~A})$	109.1
$\mathrm{C}(28)-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~B})$	109.1	$\mathrm{H}(33 \mathrm{~A})-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~B})$	107.9
C(34)-C(33)-C(28)	112.3(5)	$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~A})$	109.1
$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~B})$	109.1	$\mathrm{O}(10)-\mathrm{C}(54)-\mathrm{C}(32)$	112.4(5)
$\mathrm{O}(10)-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~A})$	109.1	$\mathrm{O}(10)-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~B})$	109.1
$\mathrm{C}(32)-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~A})$	109.1	$\mathrm{C}(32)-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~B})$	109.1
$\mathrm{H}(54 \mathrm{~A})-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~B})$	107.8	C(35)-C(34)-C(33)	178.5(7)
H(52D)-C(52B)-H(52E)	109.5	H(52D)-C(52B)-H(52F)	109.5
$\mathrm{H}(52 \mathrm{E})-\mathrm{C}(52 \mathrm{~B})-\mathrm{H}(52 \mathrm{~F})$	109.5	$\mathrm{C}(50 \mathrm{~B})-\mathrm{C}(52 \mathrm{~B})-\mathrm{H}(52 \mathrm{D})$	109.5
$\mathrm{C}(50 \mathrm{~B})-\mathrm{C}(52 \mathrm{~B})-\mathrm{H}(52 \mathrm{E})$	109.5	C(50B)-C(52B)-H(52F)	109.5
$\mathrm{H}(40 \mathrm{~A})-\mathrm{C}(40 \mathrm{~B})-\mathrm{H}(40 \mathrm{~B})$	109.5	$\mathrm{H}(40 \mathrm{~A})-\mathrm{C}(40 \mathrm{~B})-\mathrm{H}(40 \mathrm{C})$	109.5
$\mathrm{H}(40 \mathrm{~B})-\mathrm{C}(40 \mathrm{~B})-\mathrm{H}(40 \mathrm{C})$	109.5	$\mathrm{C}(38)-\mathrm{C}(40 \mathrm{~B})-\mathrm{H}(40 \mathrm{~A})$	109.5
$\mathrm{C}(38)-\mathrm{C}(40 \mathrm{~B})-\mathrm{H}(40 \mathrm{~B})$	109.5	$\mathrm{C}(38)-\mathrm{C}(40 \mathrm{~B})-\mathrm{H}(40 \mathrm{C})$	109.5
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{H}(35)$	180.0	$\mathrm{H}(41 \mathrm{~A})-\mathrm{C}(41 \mathrm{~B})-\mathrm{H}(41 \mathrm{~B})$	109.5
$\mathrm{H}(41 \mathrm{~A})-\mathrm{C}(41 \mathrm{~B})-\mathrm{H}(41 \mathrm{C})$	109.5	$\mathrm{H}(41 \mathrm{~B})-\mathrm{C}(41 \mathrm{~B})-\mathrm{H}(41 \mathrm{C})$	109.5
$\mathrm{C}(38)-\mathrm{C}(41 \mathrm{~B})-\mathrm{H}(41 \mathrm{~A})$	109.5	$\mathrm{C}(38)-\mathrm{C}(41 \mathrm{~B})-\mathrm{H}(41 \mathrm{~B})$	109.5
$\mathrm{C}(38)-\mathrm{C}(41 \mathrm{~B})-\mathrm{H}(41 \mathrm{C})$	109.5	$\mathrm{Si}(4)-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~A})$	109.5
$\mathrm{Si}(4)-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~B})$	109.5	$\mathrm{Si}(4)-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{C})$	109.5
$\mathrm{H}(36 \mathrm{~A})-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~B})$	109.5	$\mathrm{H}(36 \mathrm{~A})-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{C})$	109.5
$\mathrm{H}(36 \mathrm{~B})-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{C})$	109.5	$\mathrm{Si}(4)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~A})$	109.5
$\mathrm{Si}(4)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	109.5	$\mathrm{Si}(4)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{C})$	109.5
$\mathrm{H}(37 \mathrm{~A})-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	109.5	H(37A)-C(37)-H(37C)	109.5
$\mathrm{H}(37 \mathrm{~B})-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{C})$	109.5	C(53A)-C(50A)-Si(6A)	108.9(12)
C(53A)-C(50A)-C(51A)	101.4(13)	C(52A)-C(50A)-Si(6A)	113.1(10)
$C(52 A)-C(50 A)-C(53 A)$	119.7(15)	C(52A)-C(50A)-C(51A)	110.8(14)
C(51A)-C(50A)-Si(6A)	100.7(11)	$\mathrm{C}(50 \mathrm{~A})-\mathrm{C}(51 \mathrm{~A})-\mathrm{H}(51 \mathrm{~A})$	109.5
C(50A)-C(51A)-H(51B)	109.5	$\mathrm{C}(50 \mathrm{~A})-\mathrm{C}(51 \mathrm{~A})-\mathrm{H}(51 \mathrm{C})$	109.5
$\mathrm{H}(51 \mathrm{~A})-\mathrm{C}(51 \mathrm{~A})-\mathrm{H}(51 \mathrm{~B})$	109.5	$\mathrm{H}(51 \mathrm{~A})-\mathrm{C}(51 \mathrm{~A})-\mathrm{H}(51 \mathrm{C})$	109.5
H(51B)-C(51A)-H(51C)	109.5	$\mathrm{C}(40 \mathrm{~B})-\mathrm{C}(38)-\mathrm{Si}(4)$	107(2)
C(41B)-C(38)-Si(4)	106.4(15)	$C(41 B)-C(38)-C(40 B)$	96(2)

$\mathrm{C}(39)-\mathrm{C}(38)-\mathrm{Si}(4)$	110.1(5)	C(39)-C(38)-C(40B)	114.2(19)
C(39)-C(38)-C(41B)	121.5(13)	$\mathrm{C}(40 \mathrm{~A})-\mathrm{C}(38)-\mathrm{Si}(4)$	113.4(12)
C(40A)-C(38)-C(39)	105.8(13)	C(40A)-C(38)-C(41A)	112.5(15)
$\mathrm{C}(41 \mathrm{~A})-\mathrm{C}(38)-\mathrm{Si}(4)$	110.8(7)	C(41A)-C(38)-C(39)	103.5(10)
$\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~A})$	109.5	C(38)-C(39)-H(39B)	109.5
$\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{C})$	109.5	H(39A)-C(39)-H(39B)	109.5
H(39A)-C(39)-H(39C)	109.5	H(39B)-C(39)-H(39C)	109.5
C(52B)-C(50B)-Si(6B)	109.5(19)	C(52B)-C(50B)-C(53B)	102(2)
C(51B)-C(50B)-Si(6B)	120(2)	C(51B)-C(50B)-C(52B)	109(3)
C(51B)-C(50B)-C(53B)	110(2)	C(53B)-C(50B)-Si(6B)	105.9(17)
$\mathrm{C}(38)-\mathrm{C}(40 \mathrm{~A})-\mathrm{H}(40 \mathrm{D})$	109.5	C(38)-C(40A)-H(40E)	109.5
C(38)-C(40A)-H(40F)	109.5	H(40D)-C(40A)-H(40E)	109.5
H(40D)-C(40A)-H(40F)	109.5	H(40E)-C(40A)-H(40F)	109.5
$\mathrm{C}(38)-\mathrm{C}(41 \mathrm{~A})-\mathrm{H}(41 \mathrm{D})$	109.5	$\mathrm{C}(38)-\mathrm{C}(41 \mathrm{~A})-\mathrm{H}(41 \mathrm{E})$	109.5
$\mathrm{C}(38)-\mathrm{C}(41 \mathrm{~A})-\mathrm{H}(41 \mathrm{~F})$	109.5	H(41D)-C(41A)-H(41E)	109.5
$\mathrm{H}(41 \mathrm{D})-\mathrm{C}(41 \mathrm{~A})-\mathrm{H}(41 \mathrm{~F})$	109.5	H(41E)-C(41A)-H(41F)	109.5
$\mathrm{Si}(5)-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~A})$	109.5	$\mathrm{Si}(5)-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~B})$	109.5
$\mathrm{Si}(5)-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{C})$	109.5	$\mathrm{H}(42 \mathrm{~A})-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~B})$	109.5
$\mathrm{H}(42 \mathrm{~A})-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{C})$	109.5	$\mathrm{H}(42 \mathrm{~B})-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{C})$	109.5
$\mathrm{C}(50 \mathrm{~B})-\mathrm{C}(51 \mathrm{~B})-\mathrm{H}(51 \mathrm{D})$	109.5	$\mathrm{C}(50 \mathrm{~B})-\mathrm{C}(51 \mathrm{~B})-\mathrm{H}(51 \mathrm{E})$	109.5
C(50B)-C(51B)-H(51F)	109.5	H(51D)-C(51B)-H(51E)	109.5
H(51D)-C(51B)-H(51F)	109.5	H(51E)-C(51B)-H(51F)	109.5
$\mathrm{C}(50 \mathrm{~B})-\mathrm{C}(53 \mathrm{~B})-\mathrm{H}(53 \mathrm{D})$	109.5	C(50B)-C(53B)-H(53E)	109.5
C(50B)-C(53B)-H(53F)	109.5	$\mathrm{H}(53 \mathrm{D})-\mathrm{C}(53 \mathrm{~B})-\mathrm{H}(53 \mathrm{E})$	109.5
H(53D)-C(53B)-H(53F)	109.5	H(53E)-C(53B)-H(53F)	109.5
$\mathrm{Si}(5)-\mathrm{C}(43)-\mathrm{H}(43 \mathrm{~A})$	109.5	$\mathrm{Si}(5)-\mathrm{C}(43)-\mathrm{H}(43 \mathrm{~B})$	109.5
$\mathrm{Si}(5)-\mathrm{C}(43)-\mathrm{H}(43 \mathrm{C})$	109.5	H(43A)-C(43)-H(43B)	109.5
H(43A)-C(43)-H(43C)	109.5	$\mathrm{H}(43 \mathrm{~B})-\mathrm{C}(43)-\mathrm{H}(43 \mathrm{C})$	109.5
Si(6B)-C(48B)-H(48A)	109.5	$\mathrm{Si}(6 \mathrm{~B})-\mathrm{C}(48 \mathrm{~B})-\mathrm{H}(48 \mathrm{~B})$	109.5
$\mathrm{Si}(6 \mathrm{~B})-\mathrm{C}(48 \mathrm{~B})-\mathrm{H}(48 \mathrm{C})$	109.5	$\mathrm{H}(48 \mathrm{~A})-\mathrm{C}(48 \mathrm{~B})-\mathrm{H}(48 \mathrm{~B})$	109.5
$\mathrm{H}(48 \mathrm{~A})-\mathrm{C}(48 \mathrm{~B})-\mathrm{H}(48 \mathrm{C})$	109.5	$\mathrm{H}(48 \mathrm{~B})-\mathrm{C}(48 \mathrm{~B})-\mathrm{H}(48 \mathrm{C})$	109.5
$\mathrm{C}(45)-\mathrm{C}(44)-\mathrm{Si}(5)$	109.4(5)	$\mathrm{C}(45)-\mathrm{C}(44)-\mathrm{C}(47)$	109.3(7)
$\mathrm{C}(46)-\mathrm{C}(44)-\mathrm{Si}(5)$	109.9(5)	C(46)-C(44)-C(45)	110.3(6)
$\mathrm{C}(46)-\mathrm{C}(44)-\mathrm{C}(47)$	108.0(6)	$\mathrm{C}(47)-\mathrm{C}(44)-\mathrm{Si}(5)$	109.9(5)
$\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{H}(45 \mathrm{~A})$	109.5	$\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{H}(45 \mathrm{~B})$	109.5
$\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{H}(45 \mathrm{C})$	109.5	$\mathrm{H}(45 \mathrm{~A})-\mathrm{C}(45)-\mathrm{H}(45 \mathrm{~B})$	109.5
$\mathrm{H}(45 \mathrm{~A})-\mathrm{C}(45)-\mathrm{H}(45 \mathrm{C})$	109.5	$\mathrm{H}(45 \mathrm{~B})-\mathrm{C}(45)-\mathrm{H}(45 \mathrm{C})$	109.5
$\mathrm{C}(44)-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~A})$	109.5	$\mathrm{C}(44)-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~B})$	109.5
$\mathrm{C}(44)-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{C})$	109.5	$\mathrm{H}(46 \mathrm{~A})-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~B})$	109.5
$\mathrm{H}(46 \mathrm{~A})-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{C})$	109.5	$\mathrm{H}(46 \mathrm{~B})-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{C})$	109.5
$\mathrm{C}(44)-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~A})$	109.5	C(44)-C(47)-H(47B)	109.5
$\mathrm{C}(44)-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{C})$	109.5	$\mathrm{H}(47 \mathrm{~A})-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~B})$	109.5
H(47A)-C(47)-H(47C)	109.5	$\mathrm{H}(47 \mathrm{~B})-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{C})$	109.5
Si(6A)-C(48A)-H(48D)	109.5	$\mathrm{Si}(6 \mathrm{~A})-\mathrm{C}(48 \mathrm{~A})-\mathrm{H}(48 \mathrm{E})$	109.5
Si(6A)-C(48A)-H(48F)	109.5	$\mathrm{H}(48 \mathrm{D})-\mathrm{C}(48 \mathrm{~A})-\mathrm{H}(48 \mathrm{E})$	109.5
$\mathrm{H}(48 \mathrm{D})-\mathrm{C}(48 \mathrm{~A})-\mathrm{H}(48 \mathrm{~F})$	109.5	$\mathrm{H}(48 \mathrm{E})-\mathrm{C}(48 \mathrm{~A})-\mathrm{H}(48 \mathrm{~F})$	109.5
$\mathrm{Si}(6 \mathrm{~A})-\mathrm{C}(49 \mathrm{~A})-\mathrm{H}(49 \mathrm{D})$	109.5	$\mathrm{Si}(6 \mathrm{~A})-\mathrm{C}(49 \mathrm{~A})-\mathrm{H}(49 \mathrm{E})$	109.5
Si(6A)-C(49A)-H(49F)	109.5	H(49D)-C(49A)-H(49E)	109.5
H(49D)-C(49A)-H(49F)	109.5	H(49E)-C(49A)-H(49F)	109.5

$\mathrm{O}(14)-\mathrm{Si}(9)-\mathrm{C}(97)$	109.7(2)	O(14)-Si(9)-C(96)	110.7(2)
$\mathrm{O}(14)-\mathrm{Si}(9)-\mathrm{C}(98)$	105.7(2)	C(97)-Si(9)-C(96)	109.9(3)
C(97)-Si(9)-C(98)	110.3(3)	C(96)-Si(9)-C(98)	110.3(3)
$\mathrm{O}(12)-\mathrm{Si}(7)-\mathrm{C}(85)$	110.5(3)	$\mathrm{O}(12)-\mathrm{Si}(7)-\mathrm{C}(84)$	110.6(3)
$\mathrm{O}(12)-\mathrm{Si}(7)-\mathrm{C}(86)$	103.0(2)	$\mathrm{C}(85)-\mathrm{Si}(7)-\mathrm{C}(86)$	110.4(3)
C(84)-Si(7)-C(85)	109.5(3)	$\mathrm{C}(84)-\mathrm{Si}(7)-\mathrm{C}(86)$	112.8(3)
O(13)-Si(8)-C(91)	110.5(3)	O(13)-Si(8)-C(93)	103.6(2)
$\mathrm{O}(13)-\mathrm{Si}(8)-\mathrm{C}(90)$	111.0(2)	C(91)-Si(8)-C(93)	112.0(3)
C(91)-Si(8)-C(90)	107.4(3)	$\mathrm{C}(90)-\mathrm{Si}(8)-\mathrm{C}(93)$	112.4(3)
$\mathrm{C}(78)-\mathrm{O}(13)-\mathrm{Si}(8)$	129.5(3)	$\mathrm{C}(77)-\mathrm{O}(12)-\mathrm{Si}(7)$	130.7(3)
$\mathrm{C}(102)-\mathrm{O}(15)-\mathrm{H}(15)$	109.5	$\mathrm{C}(79)-\mathrm{O}(14)-\mathrm{Si}(9)$	125.1(3)
$\mathrm{C}(76)-\mathrm{O}(11)-\mathrm{C}(80)$	117.6(4)	$\mathrm{O}(13)-\mathrm{C}(78)-\mathrm{H}(78)$	109.2
$\mathrm{O}(13)-\mathrm{C}(78)-\mathrm{C}(79)$	108.1(4)	$\mathrm{O}(13)-\mathrm{C}(78)-\mathrm{C}(77)$	108.7(4)
$\mathrm{C}(79)-\mathrm{C}(78)-\mathrm{H}(78)$	109.2	$\mathrm{C}(77)-\mathrm{C}(78)-\mathrm{H}(78)$	109.2
C(77)-C(78)-C(79)	112.3(4)	$\mathrm{Si}(8)-\mathrm{C}(91)-\mathrm{H}(91 \mathrm{~A})$	109.5
$\mathrm{Si}(8)-\mathrm{C}(91)-\mathrm{H}(91 \mathrm{~B})$	109.5	$\mathrm{Si}(8)-\mathrm{C}(91)-\mathrm{H}(91 \mathrm{C})$	109.5
H(91A)-C(91)-H(91B)	109.5	H(91A)-C(91)-H(91C)	109.5
H(91B)-C(91)-H(91C)	109.5	C(82A)-C(83A)-H(83A)	180.0
H(99A)-C(99)-H(99B)	109.5	H(99A)-C(99)-H(99C)	109.5
H(99B)-C(99)-H(99C)	109.5	C(98)-C(99)-H(99A)	109.5
C(98)-C(99)-H(99B)	109.5	C(98)-C(99)-H(99C)	109.5
C(83B)-C(82B)-C(81B)	176(2)	H(87A)-C(87)-H(87B)	109.5
H(87A)-C(87)-H(87C)	109.5	H(87B)-C(87)-H(87C)	109.5
C(86)-C(87)-H(87A)	109.5	C(86)-C(87)-H(87B)	109.5
C(86)-C(87)-H(87C)	109.5	H(95A)-C(95)-H(95B)	109.5
H(95A)-C(95)-H(95C)	109.5	H(95B)-C(95)-H(95C)	109.5
C(93)-C(95)-H(95A)	109.5	C(93)-C(95)-H(95B)	109.5
$\mathrm{C}(93)-\mathrm{C}(95)-\mathrm{H}(95 \mathrm{C})$	109.5	$\mathrm{O}(11)-\mathrm{C}(76)-\mathrm{H}(76 \mathrm{~A})$	109.3
$\mathrm{O}(11)-\mathrm{C}(76)-\mathrm{H}(76)$	106.6	O(11)-C(76)-C(81A)	110.3(9)
$\mathrm{O}(11)-\mathrm{C}(76)-\mathrm{C}(77)$	112.0(4)	$\mathrm{O}(11)-\mathrm{C}(76)-\mathrm{C}(81 \mathrm{~B})$	104.3(9)
$\mathrm{C}(81 \mathrm{~A})-\mathrm{C}(76)-\mathrm{H}(76)$	106.6	C(81A)-C(76)-C(77)	114.2(9)
$\mathrm{C}(77)-\mathrm{C}(76)-\mathrm{H}(76 \mathrm{~A})$	109.3	$\mathrm{C}(77)-\mathrm{C}(76)-\mathrm{H}(76)$	106.6
$\mathrm{C}(77)-\mathrm{C}(76)-\mathrm{C}(81 \mathrm{~B})$	112.5(10)	$\mathrm{C}(81 \mathrm{~B})-\mathrm{C}(76)-\mathrm{H}(76 \mathrm{~A})$	109.3
$\mathrm{O}(14)-\mathrm{C}(79)-\mathrm{C}(78)$	111.0(4)	$\mathrm{O}(14)-\mathrm{C}(79)-\mathrm{H}(79)$	108.2
$\mathrm{O}(14)-\mathrm{C}(79)-\mathrm{C}(80)$	109.5(4)	$\mathrm{C}(78)-\mathrm{C}(79)-\mathrm{H}(79)$	108.2
C(80)-C(79)-C(78)	111.7(4)	$\mathrm{C}(80)-\mathrm{C}(79)-\mathrm{H}(79)$	108.2
C(76)-C(81A)-H(81A)	108.8	$\mathrm{C}(76)-\mathrm{C}(81 \mathrm{~A})-\mathrm{H}(81 \mathrm{~B})$	108.8
H(81A)-C(81A)-H(81B)	107.7	C(82A)-C(81A)-C(76)	113.9(14)
$\mathrm{C}(82 \mathrm{~A})-\mathrm{C}(81 \mathrm{~A})-\mathrm{H}(81 \mathrm{~A})$	108.8	$\mathrm{C}(82 \mathrm{~A})-\mathrm{C}(81 \mathrm{~A})-\mathrm{H}(81 \mathrm{~B})$	108.8
$\mathrm{Si}(7)-\mathrm{C}(85)-\mathrm{H}(85 \mathrm{~A})$	109.5	$\mathrm{Si}(7)-\mathrm{C}(85)-\mathrm{H}(85 \mathrm{~B})$	109.5
$\mathrm{Si}(7)-\mathrm{C}(85)-\mathrm{H}(85 \mathrm{C})$	109.5	H(85A)-C(85)-H(85B)	109.5
H(85A)-C(85)-H(85C)	109.5	$\mathrm{H}(85 \mathrm{~B})-\mathrm{C}(85)-\mathrm{H}(85 \mathrm{C})$	109.5
H(89A)-C(89)-H(89B)	109.5	H(89A)-C(89)-H(89C)	109.5
H(89B)-C(89)-H(89C)	109.5	C(86)-C(89)-H(89A)	109.5
C(86)-C(89)-H(89B)	109.5	C(86)-C(89)-H(89C)	109.5
C(95)-C(93)-Si(8)	109.7(4)	C(95)-C(93)-C(92)	109.4(6)
C(95)-C(93)-C(94)	108.5(5)	$\mathrm{C}(92)-\mathrm{C}(93)-\mathrm{Si}(8)$	110.3(4)
C(92)-C(93)-C(94)	108.7(5)	C(94)-C(93)-Si(8)	110.2(4)
$\mathrm{Si}(9)-\mathrm{C}(97)-\mathrm{H}(97 \mathrm{~A})$	109.5	$\mathrm{Si}(9)-\mathrm{C}(97)-\mathrm{H}(97 \mathrm{~B})$	109.5

$\mathrm{Si}(9)-\mathrm{C}(97)-\mathrm{H}(97 \mathrm{C})$	109.5	H(97A)-C(97)-H(97B)	109.5
H(97A)-C(97)-H(97C)	109.5	H(97B)-C(97)-H(97C)	109.5
H(10P)-C(101)-H(10Q)	109.5	$\mathrm{H}(10 \mathrm{P})-\mathrm{C}(101)-\mathrm{H}(10 \mathrm{R})$	109.5
H(10Q)-C(101)-H(10R)	109.5	$\mathrm{C}(98)-\mathrm{C}(101)-\mathrm{H}(10 \mathrm{P})$	109.5
$\mathrm{C}(98)-\mathrm{C}(101)-\mathrm{H}(10 \mathrm{Q})$	109.5	$\mathrm{C}(98)-\mathrm{C}(101)-\mathrm{H}(10 \mathrm{R})$	109.5
$\mathrm{O}(12)-\mathrm{C}(77)-\mathrm{C}(78)$	110.4(4)	$\mathrm{O}(12)-\mathrm{C}(77)-\mathrm{C}(76)$	109.9(4)
$\mathrm{O}(12)-\mathrm{C}(77)-\mathrm{H}(77)$	109.1	$\mathrm{C}(78)-\mathrm{C}(77)-\mathrm{H}(77)$	109.1
$\mathrm{C}(76)-\mathrm{C}(77)-\mathrm{C}(78)$	109.2(4)	$\mathrm{C}(76)-\mathrm{C}(77)-\mathrm{H}(77)$	109.1
C(82B)-C(81B)-C(76)	111.9(15)	C(82B)-C(81B)-H(81C)	109.2
C(82B)-C(81B)-H(81D)	109.2	$\mathrm{C}(76)-\mathrm{C}(81 \mathrm{~B})-\mathrm{H}(81 \mathrm{C})$	109.2
C(76)-C(81B)-H(81D)	109.2	H(81C)-C(81B)-H(81D)	107.9
O(11)-C(80)-C(79)	108.5(4)	$\mathrm{O}(11)-\mathrm{C}(80)-\mathrm{H}(80)$	109.3
O(11)-C(80)-C(102)	107.5(4)	$\mathrm{C}(79)-\mathrm{C}(80)-\mathrm{H}(80)$	109.3
C(102)-C(80)-C(79)	113.0(4)	$\mathrm{C}(102)-\mathrm{C}(80)-\mathrm{H}(80)$	109.3
C(82B)-C(83B)-H(83B)	180.0	C(83A)-C(82A)-C(81A)	176.7(18)
$\mathrm{Si}(7)-\mathrm{C}(84)-\mathrm{H}(84 \mathrm{~A})$	109.5	$\mathrm{Si}(7)-\mathrm{C}(84)-\mathrm{H}(84 \mathrm{~B})$	109.5
$\mathrm{Si}(7)-\mathrm{C}(84)-\mathrm{H}(84 \mathrm{C})$	109.5	H(84A)-C(84)-H(84B)	109.5
H(84A)-C(84)-H(84C)	109.5	$\mathrm{H}(84 \mathrm{~B})-\mathrm{C}(84)-\mathrm{H}(84 \mathrm{C})$	109.5
C(87)-C(86)-Si(7)	110.6(5)	C(87)-C(86)-C(89)	109.2(5)
C(87)-C(86)-C(88)	109.0(5)	C(89)-C(86)-Si(7)	109.8(4)
C(89)-C(86)-C(88)	108.3(5)	C(88)-C(86)-Si(7)	110.0(4)
C(86)-C(88)-H(88A)	109.5	C(86)-C(88)-H(88B)	109.5
C(86)-C(88)-H(88C)	109.5	H(88A)-C(88)-H(88B)	109.5
H(88A)-C(88)-H(88C)	109.5	$\mathrm{H}(88 \mathrm{~B})-\mathrm{C}(88)-\mathrm{H}(88 \mathrm{C})$	109.5
$\mathrm{Si}(8)-\mathrm{C}(90)-\mathrm{H}(90 \mathrm{~A})$	109.5	$\mathrm{Si}(8)-\mathrm{C}(90)-\mathrm{H}(90 \mathrm{~B})$	109.5
$\mathrm{Si}(8)-\mathrm{C}(90)-\mathrm{H}(90 \mathrm{C})$	109.5	H(90A)-C(90)-H(90B)	109.5
H(90A)-C(90)-H(90C)	109.5	$\mathrm{H}(90 \mathrm{~B})-\mathrm{C}(90)-\mathrm{H}(90 \mathrm{C})$	109.5
C(93)-C(92)-H(92A)	109.5	C(93)-C(92)-H(92B)	109.5
C(93)-C(92)-H(92C)	109.5	H(92A)-C(92)-H(92B)	109.5
H(92A)-C(92)-H(92C)	109.5	$\mathrm{H}(92 \mathrm{~B})-\mathrm{C}(92)-\mathrm{H}(92 \mathrm{C})$	109.5
C(93)-C(94)-H(94A)	109.5	C(93)-C(94)-H(94B)	109.5
C(93)-C(94)-H(94C)	109.5	H(94A)-C(94)-H(94B)	109.5
H(94A)-C(94)-H(94C)	109.5	H(94B)-C(94)-H(94C)	109.5
$\mathrm{Si}(9)-\mathrm{C}(96)-\mathrm{H}(96 \mathrm{~A})$	109.5	$\mathrm{Si}(9)-\mathrm{C}(96)-\mathrm{H}(96 \mathrm{~B})$	109.5
$\mathrm{Si}(9)-\mathrm{C}(96)-\mathrm{H}(96 \mathrm{C})$	109.5	H(96A)-C(96)-H(96B)	109.5
H(96A)-C(96)-H(96C)	109.5	H(96B)-C(96)-H(96C)	109.5
C(99)-C(98)-Si(9)	108.9(4)	C(99)-C(98)-C(101)	108.2(5)
C(101)-C(98)-Si(9)	110.2(4)	C(100)-C(98)-Si(9)	110.2(4)
C(100)-C(98)-C(99)	110.3(5)	C(100)-C(98)-C(101)	109.0(5)
C(98)-C(100)-H(10S)	109.5	$\mathrm{C}(98)-\mathrm{C}(100)-\mathrm{H}(10 \mathrm{~T})$	109.5
$\mathrm{C}(98)-\mathrm{C}(100)-\mathrm{H}(10 \mathrm{U})$	109.5	H(10S)-C(100)-H(10T)	109.5
H(10S)-C(100)-H(10U)	109.5	$\mathrm{H}(10 \mathrm{~T})-\mathrm{C}(100)-\mathrm{H}(10 \mathrm{U})$	109.5
O(15)-C(102)-C(80)	114.4(4)	$\mathrm{O}(15)-\mathrm{C}(102)-\mathrm{H}(10 \mathrm{~V})$	108.7
$\mathrm{O}(15)-\mathrm{C}(102)-\mathrm{H}(10 \mathrm{~W})$	108.7	$\mathrm{C}(80)-\mathrm{C}(102)-\mathrm{H}(10 \mathrm{~V})$	108.7
$\mathrm{C}(80)-\mathrm{C}(102)-\mathrm{H}(10 \mathrm{~W})$	108.7	$\mathrm{H}(10 \mathrm{~V})-\mathrm{C}(102)-\mathrm{H}(10 \mathrm{~W})$	107.6
$\mathrm{O}(2)-\mathrm{Si}(2)-\mathrm{C}(9)$	110.3(2)	$\mathrm{O}(2)-\mathrm{Si}(2)-\mathrm{C}(11)$	103.5(2)
$\mathrm{O}(2)-\mathrm{Si}(2)-\mathrm{C}(10)$	109.4(2)	$\mathrm{C}(9)-\mathrm{Si}(2)-\mathrm{C}(11)$	111.3(3)
C(9)-Si(2)-C(10)	109.7(3)	$\mathrm{C}(10)-\mathrm{Si}(2)-\mathrm{C}(11)$	112.4(3)
$\mathrm{O}(4)-\mathrm{Si}(3)-\mathrm{C}(21)$	109.8(3)	$\mathrm{O}(4)-\mathrm{Si}(3)-\mathrm{C}(23)$	105.9(2)

$\mathrm{O}(4)-\mathrm{Si}(3)-\mathrm{C}(22)$	110.2(3)	$\mathrm{C}(21)-\mathrm{Si}(3)-\mathrm{C}(23)$	111.1(3)
$C(22)-S i(3)-C(21)$	109.3(4)	$\mathrm{C}(22)-\mathrm{Si}(3)-\mathrm{C}(23)$	110.6(3)
$\mathrm{O}(3)-\mathrm{Si}(6)-\mathrm{C}(15)$	111.3(3)	$\mathrm{O}(3)-\mathrm{Si}(6)-\mathrm{C}(17)$	103.6(2)
$\mathrm{O}(3)-\mathrm{Si}(6)-\mathrm{C}(16)$	111.7(3)	$\mathrm{C}(15)-\mathrm{Si}(6)-\mathrm{C}(17)$	111.9(3)
$\mathrm{C}(15)-\mathrm{Si}(6)-\mathrm{C}(16)$	106.9(3)	C(16)-Si(6)-C(17)	111.5(3)
$\mathrm{C}(27)-\mathrm{O}(5)-\mathrm{H}(5)$	109.5	$\mathrm{C}(4)-\mathrm{O}(4)-\mathrm{Si}(3)$	126.4(3)
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(5)$	117.6(4)	$\mathrm{C}(3)-\mathrm{O}(3)-\mathrm{Si}(6)$	129.7(3)
$\mathrm{C}(2)-\mathrm{O}(2)-\mathrm{Si}(2)$	126.7(3)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{H}(1)$	107.5
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	113.1(4)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	107.4(4)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	107.5	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	113.7(4)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1)$	107.5	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{H}(3)$	109.0
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(2)$	108.6(4)	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	108.7(4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	109.0	$C(2)-C(3)-C(4)$	112.3(4)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	109.0	$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	109.2
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(27)$	106.0(4)	$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	110.7(4)
$\mathrm{C}(27)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	109.2	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	109.2
$C(4)-C(5)-C(27)$	112.4(4)	$C(8)-C(7)-C(6)$	178.0(7)
$\mathrm{Si}(2)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.5	$\mathrm{Si}(2)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.5
$\mathrm{Si}(2)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5	H(9A)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9C)	109.5	H(9B)-C(9)-H(9C)	109.5
$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{Si}(2)$	109.6(4)	$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(12)$	108.6(5)
$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(14)$	108.8(5)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{Si}(2)$	109.7(4)
$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{Si}(2)$	111.2(4)	$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(12)$	108.9(5)
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.5	$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5	$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5	$\mathrm{H}(13 \mathrm{~B})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{Si}(6)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.5	$\mathrm{Si}(6)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{Si}(6)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5	$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5	$\mathrm{H}(15 \mathrm{~B})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
C(19)-C(17)-Si(6)	110.8(5)	C(19)-C(17)-C(18)	109.6(6)
C(19)-C(17)-C(20)	108.4(6)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{Si}(6)$	111.0(5)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(20)$	107.2(6)	$\mathrm{C}(20)-\mathrm{C}(17)-\mathrm{Si}(6)$	109.8(4)
$\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.5	$\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5	H(19A)-C(19)-H(19B)	109.5
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5	$\mathrm{H}(19 \mathrm{~B})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{Si}(3)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	109.5	$\mathrm{Si}(3)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{Si}(3)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5	$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5	$\mathrm{H}(21 \mathrm{~B})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{C}(25)-\mathrm{C}(23)-\mathrm{Si}(3)$	110.7(4)	$\mathrm{C}(25)-\mathrm{C}(23)-\mathrm{C}(24)$	108.1(5)
C(25)-C(23)-C(26)	109.6(5)	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{Si}(3)$	110.1(4)
$\mathrm{C}(26)-\mathrm{C}(23)-\mathrm{Si}(3)$	110.3(4)	$C(26)-C(23)-C(24)$	107.9(5)
$\mathrm{C}(23)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	109.5	$\mathrm{C}(23)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	109.5
$\mathrm{C}(23)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5	$\mathrm{H}(25 \mathrm{~A})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	109.5
$\mathrm{H}(25 \mathrm{~A})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5	$\mathrm{H}(25 \mathrm{~B})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5
$\mathrm{O}(5)-\mathrm{C}(27)-\mathrm{C}(5)$	113.8(5)	$\mathrm{O}(5)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~A})$	108.8
$\mathrm{O}(5)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	108.8	$\mathrm{C}(5)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~A})$	108.8
$\mathrm{C}(5)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	108.8	$\mathrm{H}(27 \mathrm{~A})-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	107.7
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	110.5(4)	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	109.3(4)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{H}(2)$	109.5	$C(1)-C(2)-C(3)$	108.5(4)

$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	109.5	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	109.5
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(3)$	111.2(4)	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(5)$	107.5(4)
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{H}(4)$	108.5	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	108.5
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	112.5(4)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	108.5
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	109.4	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	109.4
$C(7)-C(6)-C(1)$	111.2(5)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	109.4
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	109.4	$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	108.0
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	180.0	$\mathrm{Si}(2)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{X})$	109.5
$\mathrm{Si}(2)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{Y})$	109.5	$\mathrm{Si}(2)-\mathrm{C}(10)-\mathrm{H}$	109.5
H(10X)-C(10)-H(10Y)	109.5	$\mathrm{H}(10 \mathrm{X})-\mathrm{C}(10)-\mathrm{H}$	109.5
$\mathrm{H}(10 \mathrm{Y})-\mathrm{C}(10)-\mathrm{H}$	109.5	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5	$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5	$\mathrm{C}(11)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.5
$\mathrm{C}(11)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5	$\mathrm{C}(11)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5	$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{H}(14 \mathrm{~B})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5	$\mathrm{Si}(6)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.5
$\mathrm{Si}(6)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5	$\mathrm{Si}(6)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
H(16A)-C(16)-H(16B)	109.5	$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{H}(16 \mathrm{~B})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.5
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5	$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{H}(18 \mathrm{~B})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5	$\mathrm{C}(17)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	109.5
$\mathrm{C}(17)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5	$\mathrm{C}(17)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5	$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{H}(20 \mathrm{~B})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5	$\mathrm{Si}(3)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	109.5
$\mathrm{Si}(3)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5	$\mathrm{Si}(3)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5	$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{H}(22 \mathrm{~B})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	109.5
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5	$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{H}(24 \mathrm{~B})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5	$\mathrm{C}(23)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	109.5
$\mathrm{C}(23)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	109.5	$\mathrm{C}(23)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.5
$\mathrm{H}(26 \mathrm{~A})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	109.5	$\mathrm{H}(26 \mathrm{~A})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.5
$\mathrm{H}(26 \mathrm{~B})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.5		

6.4.6. Crystallographic Data Of epi-35a

Crystal Data \& Structure Refinement

Figure 6.26: X-Ray single crystal structure and molecular structure of ester epi-35a (hydrogen atoms not shown for better visibility, numbering of atoms is arbitrary).

Identification code	10221	
Empirical formula	$\mathrm{C}_{33} \mathrm{H}_{68} \mathrm{O}_{6} \mathrm{Si}_{4}$	
Color	colorless	
Formula weight	$673.23 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$	
Temperature	100 K	
Wavelength	$0.71073 \AA$	
Crystal system	orthorhombic	
Space group	$\mathrm{P} 2_{1} 2_{1} 2_{1}(\mathrm{No.19)}$	
Unit cell dimensions	$\mathrm{a}=11.8299(8) \AA$	$\alpha=90^{\circ}$.
	$\mathrm{b}=13.3897(9) \AA$	$\beta=90^{\circ}$.
	$\mathrm{c}=25.9735(16) \AA$	$\mathrm{Y}=90^{\circ}$.
Volume	$4114.2(5) \AA^{3}$	
Z	4	
Density (calculated)	$1.087{\mathrm{Mg} \cdot \mathrm{m}^{-3}}$	
Absorption coefficient	$0.181 \mathrm{~mm}^{-1}$	
F(000)	1480 e	

Crystal size	$0.31 \times 0.24 \times 0.23 \mathrm{~mm}^{3}$
θ range for data collection	2.782 to 36.017°.
Index ranges	$-19 \leq \mathrm{h} \leq 19,-22 \leq \mathrm{k} \leq 22,-42 \leq \mathrm{I} \leq 42$
Reflections collected	178854
Independent reflections	$19462\left[\mathrm{R}_{\text {int }}=0.0323\right]$
Reflections with $>2 \sigma(\mathrm{I})$	18370
Completeness to $\theta=25.242^{\circ}$	99.5%
Absorption correction	Gaussian
Max. and min. transmission	0.96 and 0.95
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$19462 / 0 / 406$
Goodness-of-fit on F^{2}	1.165
Final R indices [l>2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0357$
R indices (all data)	$\mathrm{R}_{1}=0.0404$
Absolute structure parameter	$-0.014(9)$
Largest diff. peak and hole	0.8 and $-0.7 \mathrm{e} \cdot \AA^{\circ-3}$

Bond Lengths [Å] \& Angles [${ }^{\circ}$]

$\mathrm{Si}(1)-\mathrm{C}(12)$	$1.9004(16)$
$\mathrm{Si}(1)-\mathrm{C}(14)$	$1.859(2)$
$\mathrm{Si}(2)-\mathrm{O}(4)$	$1.6630(10)$
$\mathrm{Si}(2)-\mathrm{C}(17)$	$1.8658(15)$
$\mathrm{Si}(3)-\mathrm{O}(5)$	$1.6541(10)$
$\mathrm{Si}(3)-\mathrm{C}(23)$	$1.8548(18)$
$\mathrm{Si}(4)-\mathrm{O}(6)$	$1.6643(10)$
$\mathrm{Si}(4)-\mathrm{C}(29)$	$1.8630(16)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.4262(15)$
$\mathrm{O}(2)-\mathrm{C}(10)$	$1.197(2)$
$\mathrm{O}(3)-\mathrm{C}(11)$	$1.459(2)$
$\mathrm{O}(5)-\mathrm{C}(4)$	$1.4206(15)$
$\mathrm{C}(1)-\mathrm{C}(5)$	$1.5306(17)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.5306(17)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.5437(17)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.463(2)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.5121(18)$
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.538(2)$
$\mathrm{C}(18)-\mathrm{C}(21)$	$1.540(2)$
$\mathrm{C}(24)-\mathrm{C}(26)$	$1.522(3)$
$\mathrm{C}(30)-\mathrm{C}(31)$	$1.535(2)$
$\mathrm{C}(30)-\mathrm{C}(33)$	$1.539(2)$

$\mathrm{Si}(1)-\mathrm{C}(13)$	$1.868(2)$
$\mathrm{Si}(1)-\mathrm{C}(15)$	$1.864(2)$
$\mathrm{Si}(2)-\mathrm{C}(16)$	$1.8679(15)$
$\mathrm{Si}(2)-\mathrm{C}(18)$	$1.8838(14)$
$\mathrm{Si}(3)-\mathrm{C}(22)$	$1.871(2)$
$\mathrm{Si}(3)-\mathrm{C}(24)$	$1.8752(15)$
$\mathrm{Si}(4)-\mathrm{C}(28)$	$1.8726(18)$
$\mathrm{Si}(4)-\mathrm{C}(30)$	$1.8825(15)$
$\mathrm{O}(1)-\mathrm{C}(2)$	$1.4305(15)$
$\mathrm{O}(3)-\mathrm{C}(10)$	$1.3543(19)$
$\mathrm{O}(4)-\mathrm{C}(3)$	$1.4206(15)$
$\mathrm{O}(6)-\mathrm{C}(5)$	$1.4215(15)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.5281(18)$
$\mathrm{C}(2)-\mathrm{C}(9)$	$1.5172(18)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.5418(17)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.204(2)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.505(2)$
$\mathrm{C}(18)-\mathrm{C}(20)$	$1.535(2)$
$\mathrm{C}(24)-\mathrm{C}(25)$	$1.556(3)$
$\mathrm{C}(24)-\mathrm{C}(27)$	$1.534(2)$
$\mathrm{C}(30)-\mathrm{C}(32)$	$1.543(3)$
$\mathrm{C}(13)-\mathrm{Si}(1)-\mathrm{C}(12)$	$107.21(9)$

$\mathrm{C}(14)-\mathrm{Si}(1)-\mathrm{C}(12)$	110.43(9)	$\mathrm{C}(14)-\mathrm{Si}(1)-\mathrm{C}(13)$	110.29(13)
$\mathrm{C}(14)-\mathrm{Si}(1)-\mathrm{C}(15)$	108.20(11)	$\mathrm{C}(15)-\mathrm{Si}(1)-\mathrm{C}(12)$	110.38(9)
$\mathrm{C}(15)-\mathrm{Si}(1)-\mathrm{C}(13)$	110.34(12)	$\mathrm{O}(4)-\mathrm{Si}(2)-\mathrm{C}(16)$	109.51(6)
$\mathrm{O}(4)-\mathrm{Si}(2)-\mathrm{C}(17)$	110.47(6)	$\mathrm{O}(4)-\mathrm{Si}(2)-\mathrm{C}(18)$	107.71(5)
$\mathrm{C}(16)-\mathrm{Si}(2)-\mathrm{C}(18)$	110.21(7)	$\mathrm{C}(17)-\mathrm{Si}(2)-\mathrm{C}(16)$	108.76(8)
$\mathrm{C}(17)-\mathrm{Si}(2)-\mathrm{C}(18)$	110.18(7)	$\mathrm{O}(5)-\mathrm{Si}(3)-\mathrm{C}(22)$	109.35(9)
$\mathrm{O}(5)-\mathrm{Si}(3)-\mathrm{C}(23)$	109.81(7)	$\mathrm{O}(5)-\mathrm{Si}(3)-\mathrm{C}(24)$	103.36(6)
$\mathrm{C}(22)-\mathrm{Si}(3)-\mathrm{C}(24)$	111.72(11)	$\mathrm{C}(23)-\mathrm{Si}(3)-\mathrm{C}(22)$	110.36(13)
$\mathrm{C}(23)-\mathrm{Si}(3)-\mathrm{C}(24)$	112.01(9)	$\mathrm{O}(6)-\mathrm{Si}(4)-\mathrm{C}(28)$	110.89(7)
$\mathrm{O}(6)-\mathrm{Si}(4)-\mathrm{C}(29)$	110.88(7)	$\mathrm{O}(6)-\mathrm{Si}(4)-\mathrm{C}(30)$	104.63(6)
$\mathrm{C}(28)-\mathrm{Si}(4)-\mathrm{C}(30)$	111.46(9)	$\mathrm{C}(29)-\mathrm{Si}(4)-\mathrm{C}(28)$	107.86(10)
$\mathrm{C}(29)-\mathrm{Si}(4)-\mathrm{C}(30)$	111.14(8)	$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(2)$	111.28(9)
$\mathrm{C}(10)-\mathrm{O}(3)-\mathrm{C}(11)$	117.29(14)	$\mathrm{C}(3)-\mathrm{O}(4)-\mathrm{Si}(2)$	122.85(8)
$\mathrm{C}(4)-\mathrm{O}(5)-\mathrm{Si}(3)$	127.79(8)	$\mathrm{C}(5)-\mathrm{O}(6)-\mathrm{Si}(4)$	122.26(8)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	110.54(10)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	106.46(10)
$C(6)-C(1)-C(5)$	113.85(10)	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	111.46(10)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(9)$	107.17(10)	$C(9)-C(2)-C(3)$	111.85(10)
$\mathrm{O}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	110.87(10)	$\mathrm{O}(4)-\mathrm{C}(3)-\mathrm{C}(4)$	112.00(10)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	110.57(10)	$\mathrm{O}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	106.01(10)
$\mathrm{O}(5)-\mathrm{C}(4)-\mathrm{C}(5)$	107.39(10)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	114.24(9)
$\mathrm{O}(6)-\mathrm{C}(5)-\mathrm{C}(1)$	110.74(9)	$\mathrm{O}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	110.71(10)
$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	109.26(9)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(1)$	111.96(11)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	178.30(16)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(2)$	114.09(11)
$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{O}(3)$	124.72(14)	$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{C}(9)$	125.73(14)
$\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(9)$	109.55(13)	$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	112.79(13)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{Si}(1)$	112.84(11)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{Si}(2)$	109.07(10)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(21)$	109.39(13)	$\mathrm{C}(20)-\mathrm{C}(18)-\mathrm{Si}(2)$	110.40(10)
C(20)-C(18)-C(19)	108.70(13)	$\mathrm{C}(20)-\mathrm{C}(18)-\mathrm{C}(21)$	108.92(13)
$\mathrm{C}(21)-\mathrm{C}(18)-\mathrm{Si}(2)$	110.32(10)	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{Si}(3)$	107.44(12)
$\mathrm{C}(26)-\mathrm{C}(24)-\mathrm{Si}(3)$	110.89(14)	$\mathrm{C}(26)-\mathrm{C}(24)-\mathrm{C}(25)$	108.7(2)
$\mathrm{C}(26)-\mathrm{C}(24)-\mathrm{C}(27)$	109.65(16)	$\mathrm{C}(27)-\mathrm{C}(24)-\mathrm{Si}(3)$	111.82(11)
$\mathrm{C}(27)-\mathrm{C}(24)-\mathrm{C}(25)$	108.27(15)	$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{Si}(4)$	110.51(11)
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(32)$	108.63(15)	C(31)-C(30)-C(33)	109.01(14)
$\mathrm{C}(32)-\mathrm{C}(30)-\mathrm{Si}(4)$	109.32(11)	$\mathrm{C}(33)-\mathrm{C}(30)-\mathrm{Si}(4)$	109.96(12)
C(33)-C(30)-C(32)	109.37(14)		

6.4.7. Crystallographic Data Of ent-42

Crystal Data \& Structure Refinement

Figure 6.27: X-Ray single crystal structure and molecular structure of pseudoephedrine amide ent-42 (numbering of atoms is arbitrary).

Identification code	9880	
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2}$	
Color	colorless	
Formula weight	$221.29 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$	
Temperature	100.15 K	
Wavelength	$0.71073 \AA$	
Crystal system	monoclinic	
Space group	$\mathrm{P} 2_{1}(\mathrm{No}. \mathrm{4)}$	
Unit cell dimensions	$\mathrm{a}=5.4570(8) \AA$	$\alpha=90^{\circ}$.
	$\mathrm{b}=13.106(2) \AA$	$\beta=98.357(7)^{\circ}$.
	$\mathrm{c}=8.5932(4) \AA$	$\mathrm{Y}=90^{\circ}$.
Volume	$608.04(14) \AA^{3}$	
Z	2	
Density (calculated)	$1.209 \mathrm{Mg}^{\circ} \cdot \mathrm{m}^{-3}$	
Absorption coefficient	$0.081 \mathrm{~mm}^{-1}$	
F(000)	240 e	
Crystal size	$0.19 \times 0.17 \times 0.13 \mathrm{~mm}^{3}$	
θ range for data collection	$2.856 \mathrm{to} 38.118^{\circ}$.	
Index ranges	$-9 \leq \mathrm{h} \leq 9,-22 \leq \mathrm{k} \leq 22,-14 \leq \mathrm{I} \leq 14$	

Reflections collected	56002	
Independent reflections	$6679\left[\mathrm{R}_{\text {int }}=0.0489\right]$	
Reflections with $\mathrm{I} 2 \sigma(\mathrm{I})$	5993	
Completeness to $\theta=25.242^{\circ}$	99.9%	
Absorption correction	Gaussian	
Max. and min. transmission	Full-matrix least-squares on F^{2}	
Refinement method	$6679 / 1 / 152$	
Data/restraints/parameters	1.117	$\mathrm{wR}^{2}=0.1032$
Goodness-of-fit on F^{2}	$\mathrm{R}_{1}=0.0378$	$\mathrm{wR}^{2}=0.1096$
Final R indices [l>2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0463$	
R indices (all data)	$0.0(3)$	
Absolute structure parameter	0.3 and $-0.2 \mathrm{e} \cdot \AA^{\circ-3}$	
Largest diff. peak and hole		

Bond Lengths [Å] \& Angles [${ }^{\circ}$]

$\mathrm{O}(2)-\mathrm{C}(7)$	$1.4226(14)$
$\mathrm{N}(1)-\mathrm{C}(3)$	$1.3527(14)$
$\mathrm{N}(1)-\mathrm{C}(4)$	$1.4690(14)$
$\mathrm{C}(5)-\mathrm{C}(7)$	$1.5458(14)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.3967(14)$
$\mathrm{C}(8)-\mathrm{C}(13)$	$1.3930(15)$
$\mathrm{C}(2)-\mathrm{C}(1)$	$1.5239(17)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.393(2)$
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(5)$	$124.26(9)$
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(5)$	$119.22(9)$
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$120.04(11)$
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(7)$	$112.29(8)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(7)$	$110.70(8)$
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(9)$	$119.05(9)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$120.57(10)$
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	$112.57(9)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$112.39(11)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$120.13(11)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$120.23(11)$

$\mathrm{O}(1)-\mathrm{C}(3)$	$1.2388(13)$
$\mathrm{N}(1)-\mathrm{C}(5)$	$1.4696(13)$
$\mathrm{C}(3)-\mathrm{C}(2)$	$1.5194(16)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.5307(14)$
$\mathrm{C}(8)-\mathrm{C}(7)$	$1.5132(14)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.3930(16)$
$\mathrm{C}(13)-\mathrm{C}(12)$	$1.3945(16)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.393(2)$
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(4)$	$116.47(9)$
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{N}(1)$	$119.80(11)$
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$120.13(9)$
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$111.90(8)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$119.69(9)$
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(7)$	$121.15(9)$
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(5)$	$108.17(8)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(5)$	$111.75(8)$
$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	$120.48(10)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$119.54(10)$

6.4.8. Crystallographic Data Of 39c/epi-39c

Crystal Data \& Structure Refinement

Figure 6.28: X-Ray single crystal structure and molecular structure of tetrol 39c/epi-39c (anomeric mixture, numbering of atoms is arbitrary).

Identification code
Empirical formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections

9814
$\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{5}$
colourless
$202.20 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100(2) K
0.71073 Å
orthorhombic
P $22_{1} 2_{1}$ (No. 19)
$a=6.0462(17) \AA \quad \alpha=90^{\circ}$.
$b=10.418(3) \AA \quad \beta=90^{\circ}$.
$c=14.579(4) \AA \quad \gamma=90^{\circ}$.
918.3(4) \AA^{3}

4
$1.463 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$0.120 \mathrm{~mm}^{-1}$
432 e
$0.274 \times 0.116 \times 0.046 \mathrm{~mm}^{3}$
3.411 to 33.427°.
$-9 \leq h \leq 8,-15 \leq k \leq 16,-22 \leq \mathrm{l} \leq 22$
29506
3535 [$\mathrm{R}_{\text {int }}=0.0966$]

Reflections with $I>2 \sigma(I)$	2790	99.8%
Completeness to $\theta=25.242^{\circ}$	Gaussian	
Absorption correction	0.99456 and 0.97333	
Max. and min. transmission	Full-matrix least-squares on F^{2}	
Refinement method	$3535 / 0 / 145$	
Data/restraints/parameters	1.060	$\mathrm{wR}^{2}=0.1006$
Goodness-of-fit on F^{2}	$\mathrm{R}_{1}=0.0476$	$\mathrm{wR}^{2}=0.1103$
Final R indices [l>2 $\sigma(I)]$	$\mathrm{R}_{1}=0.0716$	
R indices (all data)	$0.8(7)$	
Absolute structure parameter	0	
Extinction coefficient	0.288 and $-0.276 \mathrm{e} \cdot \AA^{-3}$	
Largest diff. peak and hole		

Anisotropic Atomic Coordinates \& Equivalent Isotropic Displacement Parameters (Å2)

U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	y	z	$U_{\text {eq }}$
C(3)	$0.4979(3)$	$0.4702(2)$	$0.2267(1)$	$0.013(1)$
C(4)	$0.3800(3)$	$0.5249(2)$	$0.1432(1)$	$0.012(1)$
C(5)	$0.1816(3)$	$0.6060(2)$	$0.1716(1)$	$0.013(1)$
C(6)	$0.0483(4)$	$0.6553(2)$	$0.0915(2)$	$0.014(1)$
O(1)	$0.0353(2)$	$0.5297(2)$	$0.2267(1)$	$0.016(1)$
O(2)	$0.4380(3)$	$0.3629(2)$	$0.3723(1)$	$0.017(1)$
O(3)	$0.6615(3)$	$0.3799(1)$	$0.1988(1)$	$0.017(1)$
O(4)	$0.5219(2)$	$0.6078(1)$	$0.0920(1)$	$0.016(1)$
O(5)	$-0.0541(3)$	$0.5519(1)$	$0.0433(1)$	$0.015(1)$
C(1A)	$0.1280(4)$	$0.4798(3)$	$0.3102(2)$	$0.013(1)$
C(2A)	$0.3343(3)$	$0.4003(2)$	$0.2884(1)$	$0.014(1)$
C(7A)	$0.1648(4)$	$0.5873(2)$	$0.3807(2)$	$0.014(1)$
C(8A)	$-0.0459(5)$	$0.6438(2)$	$0.4086(2)$	$0.016(1)$
C(9A)	$-0.2240(4)$	$0.6832(2)$	$0.4332(2)$	$0.024(1)$
C(1B)	$0.173(4)$	$0.525(2)$	$0.3144(15)$	0.020
C(2B)	$0.3343(3)$	$0.4003(2)$	$0.2884(1)$	$0.014(1)$
C(7B)	$0.004(3)$	$0.4856(19)$	$0.3825(13)$	0.020
C(8B)	$-0.137(4)$	$0.596(2)$	$0.4124(14)$	0.020
C(9B)	$-0.2240(4)$	$0.6832(2)$	$0.4332(2)$	$0.024(1)$

Bond Lengths [Å] \& Angles [${ }^{\circ}$]

$\mathrm{C}(3)-\mathrm{O}(3)$	1.425(2)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.521(3)
$\mathrm{C}(3)-\mathrm{C}(2 \mathrm{~B})$	1.523(3)	$\mathrm{C}(3)-\mathrm{C}(2 \mathrm{~A})$	1.523(3)
$\mathrm{C}(3)-\mathrm{H}(3)$	1.0000	$\mathrm{C}(4)-\mathrm{O}(4)$	1.428(2)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.525(3)	$\mathrm{C}(4)-\mathrm{H}(4)$	1.0000
$\mathrm{C}(5)-\mathrm{O}(1)$	1.434(2)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.509(3)
$\mathrm{C}(5)-\mathrm{H}(5)$	1.0000	$\mathrm{C}(6)-\mathrm{O}(5)$	1.428(2)
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9900	$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9900
$\mathrm{O}(1)-\mathrm{C}(1 \mathrm{~A})$	1.438(3)	$\mathrm{O}(1)-\mathrm{C}(1 \mathrm{~B})$	1.53(2)
$\mathrm{O}(2)-\mathrm{C}(2 \mathrm{~B})$	1.428(2)	$\mathrm{O}(2)-\mathrm{C}(2 \mathrm{~A})$	1.428(2)
$\mathrm{O}(2)-\mathrm{H}(2)$	0.77(3)	$\mathrm{O}(3)-\mathrm{H}(3 \mathrm{~A})$	0.82(3)
$\mathrm{O}(4)-\mathrm{H}(4 \mathrm{~A})$	0.89(3)	$\mathrm{O}(5)-\mathrm{H}(5 \mathrm{~A})$	0.91(3)
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	1.530(3)	$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	1.536(4)
$\mathrm{C}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{~A})$	1.0000	$\mathrm{C}(2 \mathrm{~A}) \mathrm{H}(2 \mathrm{~A})$	1.0000
$C(7 A)-C(8 A)$	1.461(3)	$\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{AA})$	0.9900
$\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{AB})$	0.9900	$C(8 A)-C(9 A)$	1.207(4)
$\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A})$	0.9500	$\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})$	1.49(3)
$\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$	1.67(2)	$\mathrm{C}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{~B})$	1.0000
$\mathrm{C}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{~B})$	1.0000	$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})$	1.50(3)
$\mathrm{C}(7 \mathrm{~B})-\mathrm{H}(7 \mathrm{~B} 1)$	0.9900	$\mathrm{C}(7 \mathrm{~B})-\mathrm{H}(7 \mathrm{~B} 2)$	0.9900
$C(8 B)-C(9 B)$	1.09(2)	$\mathrm{C}(9 \mathrm{~B})-\mathrm{H}(9 \mathrm{P})$	0.9500
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	110.13(16)	$\mathrm{O}(3)-C(3)-C(2 B)$	107.70(16)
$C(4)-C(3)-C(2 B)$	110.35(16)	$\mathrm{O}(3)-C(3)-C(2 A)$	107.70(16)
$C(4)-C(3)-C(2 A)$	110.35(16)	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{H}(3)$	109.5
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	109.5	$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3)$	109.5
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(3)$	111.30(16)	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(5)$	106.25(15)
$C(3)-C(4)-C(5)$	111.03(16)	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{H}(4)$	109.4
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	109.4	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	109.4
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	107.00(16)	$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	109.29(15)
$C(6)-C(5)-C(4)$	113.49(17)	$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{H}(5)$	109.0
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	109.0	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	109.0
$\mathrm{O}(5)-\mathrm{C}(6)-\mathrm{C}(5)$	110.82(16)	$\mathrm{O}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	109.5
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	109.5	$\mathrm{O}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	109.5
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	109.5	H(6A)-C(6)-H(6B)	108.1
$\mathrm{C}(5)-\mathrm{O}(1)-\mathrm{C}(1 \mathrm{~A})$	115.71(17)	$\mathrm{C}(5)-\mathrm{O}(1)-\mathrm{C}(1 \mathrm{~B})$	98.5(9)
$\mathrm{C}(2 \mathrm{~A})-\mathrm{O}(2)-\mathrm{H}(2)$	109.5	$\mathrm{C}(3)-\mathrm{O}(3)-\mathrm{H}(3 \mathrm{~A})$	109.5
$\mathrm{C}(4)-\mathrm{O}(4)-\mathrm{H}(4 \mathrm{~A})$	109.5	$\mathrm{C}(6)-\mathrm{O}(5)-\mathrm{H}(5 \mathrm{~A})$	109.5
$\mathrm{O}(1)-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	109.74(18)	$\mathrm{O}(1)-C(1 A)-C(7 A)$	111.0(2)
$C(2 A)-C(1 A)-C(7 A)$	114.6(2)	$\mathrm{O}(1)-\mathrm{C}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{~A})$	107.0
$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{~A})$	107.0	$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{~A})$	107.0
$\mathrm{O}(2)-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3)$	110.57(17)	$\mathrm{O}(2)-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	109.10(17)
$C(3)-C(2 A)-C(1 A)$	113.15(18)	$\mathrm{O}(2)-\mathrm{C}(2 \mathrm{~A})-\mathrm{H}(2 \mathrm{~A})$	108.0
$\mathrm{C}(3)-\mathrm{C}(2 \mathrm{~A})-\mathrm{H}(2 \mathrm{~A})$	108.0	$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{H}(2 \mathrm{~A})$	108.0
$C(8 A)-C(7 A)-C(1 A)$	110.75(19)	$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{AA})$	109.5
$C(1 A)-C(7 A)-H(7 A A)$	109.5	$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{AB})$	109.5
$C(1 A)-C(7 A)-H(7 A B)$	109.5	$\mathrm{H}(7 \mathrm{AA})-\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{AB})$	108.1
$C(9 A)-C(8 A)-C(7 A)$	176.0(3)	$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A})$	180.0
$C(7 B)-C(1 B)-O(1)$	101.0(16)	$C(7 B)-C(1 B)-C(2 B)$	109.7(16)

$\mathrm{O}(1)-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$	98.8(13)	$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{~B})$	115.1
$\mathrm{O}(1)-\mathrm{C}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{~B})$	115.1	$\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{~B})$	115.1
$\mathrm{O}(2)-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(3)$	110.57(17)	$\mathrm{O}(2)-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})$	105.9(8)
$\mathrm{C}(3)-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})$	98.0(8)	$\mathrm{O}(2)-\mathrm{C}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{~B})$	113.7
$\mathrm{C}(3)-\mathrm{C}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{~B})$	113.7	$\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{~B})$	113.7
$C(1 B)-C(7 B)-C(8 B)$	111.8(17)	$\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{H}(7 \mathrm{~B} 1)$	109.3
$\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{H}(7 \mathrm{~B} 1)$	109.3	$\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{H}(7 \mathrm{~B} 2)$	109.3
$\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{H}(7 \mathrm{~B} 2)$	109.3	$\mathrm{H}(7 \mathrm{~B} 1)-\mathrm{C}(7 \mathrm{~B})-\mathrm{H}(7 \mathrm{~B} 2)$	107.9
$\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})$	174(2)	$\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{H}(9 \mathrm{~B})$	180.0

Anisotropic Displacement Parameters (Å2)

Symmetry transformations used to generate equivalent atoms:
The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\ldots+2 h k a^{*} b^{*} U_{12}\right]$.

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
$\mathrm{C}(3)$	$0.010(1)$	$0.012(1)$	$0.017(1)$	$0.000(1)$	$0.000(1)$	$0.001(1)$
$\mathrm{C}(4)$	$0.010(1)$	$0.012(1)$	$0.014(1)$	$0.000(1)$	$0.000(1)$	$-0.001(1)$
$\mathrm{C}(5)$	$0.010(1)$	$0.014(1)$	$0.014(1)$	$-0.001(1)$	$0.000(1)$	$0.000(1)$
$\mathrm{C}(6)$	$0.010(1)$	$0.014(1)$	$0.018(1)$	$0.000(1)$	$-0.001(1)$	$0.001(1)$
$\mathrm{O}(1)$	$0.011(1)$	$0.024(1)$	$0.013(1)$	$0.003(1)$	$0.001(1)$	$0.002(1)$
$\mathrm{O}(2)$	$0.020(1)$	$0.015(1)$	$0.015(1)$	$0.001(1)$	$-0.004(1)$	$0.001(1)$
$\mathrm{O}(3)$	$0.010(1)$	$0.015(1)$	$0.025(1)$	$0.001(1)$	$0.003(1)$	$0.002(1)$
$\mathrm{O}(4)$	$0.011(1)$	$0.015(1)$	$0.021(1)$	$0.003(1)$	$0.003(1)$	$0.000(1)$
$\mathrm{O}(5)$	$0.014(1)$	$0.019(1)$	$0.013(1)$	$-0.001(1)$	$-0.001(1)$	$-0.002(1)$
$\mathrm{C}(1 \mathrm{~A})$	$0.012(1)$	$0.015(1)$	$0.012(1)$	$0.001(1)$	$0.001(1)$	$0.000(1)$
$\mathrm{C}(2 \mathrm{~A})$	$0.013(1)$	$0.016(1)$	$0.014(1)$	$0.000(1)$	$0.000(1)$	$0.001(1)$
$\mathrm{C}(7 \mathrm{~A})$	$0.013(1)$	$0.015(1)$	$0.014(1)$	$-0.002(1)$	$0.000(1)$	$0.000(1)$
$\mathrm{C}(8 \mathrm{~A})$	$0.018(1)$	$0.015(1)$	$0.016(1)$	$-0.001(1)$	$-0.001(1)$	$-0.001(1)$
$\mathrm{C}(9 \mathrm{~A})$	$0.022(1)$	$0.020(1)$	$0.029(1)$	$-0.004(1)$	$0.003(1)$	$0.000(1)$
C(2B)	$0.013(1)$	$0.016(1)$	$0.014(1)$	$0.000(1)$	$0.000(1)$	$0.001(1)$
C(9B)	$0.022(1)$	$0.020(1)$	$0.029(1)$	$-0.004(1)$	$0.003(1)$	$0.000(1)$

Hydrogen Coordinates \& Isotropic Displacement Parameters (Å2)

	x	y	z	$U_{\text {eq }}$
$H(3)$	0.5696	0.5414	0.2618	0.015
$H(4)$	0.3291	0.4530	0.1030	0.015
$H(5)$	0.2346	0.6806	0.2088	0.015
$H(6 A)$	-0.0668	0.7151	0.1140	0.017
H(6B)	0.1464	0.7032	0.0493	0.017
$H(2)$	$0.446(5)$	$0.289(3)$	$0.3743(10)$	0.025

H(3A)	$0.782(5)$	$0.4160(15)$	$0.195(2)$	0.025
$H(4 A)$	$0.640(5)$	$0.5643(17)$	$0.0736(18)$	0.024
H(5A)	$-0.031(4)$	$0.5616(14)$	$-0.018(2)$	0.023
H(1A)	0.0163	0.4197	0.3369	0.016
H(2A)	0.2858	0.3206	0.2559	0.017
H(7AA)	0.2413	0.5520	0.4352	0.017
H(7AB)	0.2602	0.6546	0.3536	0.017
H(9A)	-0.3643	0.7142	0.4525	0.028
H(1B)	0.2542	0.6064	0.3294	0.024
H(2B)	0.2540	0.3288	0.2570	0.017
H(7B1)	0.0782	0.4481	0.4368	0.024
H(7B2)	-0.0916	0.4185	0.3552	0.024
H(9B)	-0.3000	0.7589	0.4513	0.028

6.4.9. Crystallographic Data Of epi-39b

Crystal Data \& Structure Refinement

Figure 6.29: X-Ray single crystal structure and molecular structure of alkyne epi-39b (numbering of atoms is arbitrary).

Identification code	GRX-GA-014 (9810)	
Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{9}$	
colourless		
Color	$370.34 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$	
Formula weight	100 K	
Temperature	$0.71073 \AA$	
Wavelength	monoclinic	
Crystal system	$\mathrm{P} 2_{1}(\mathrm{No.4})$	
Space group	$\mathrm{a}=10.6718(11) \AA$	$\alpha=90^{\circ}$.
Unit cell dimensions	$\mathrm{b}=7.4951(8) \AA$	$\beta=108.3476(18)^{\circ}$.
	$\mathrm{c}=11.8592(12) \AA$	$\mathrm{Y}=90^{\circ}$.
	$900.35(16) \AA^{3}$	
Volume	2	
Z	$1.366{\mathrm{Mg} \cdot \mathrm{m}^{-3}}$	
Density (calculated)	$0.111 \mathrm{~mm}^{-1}$	
Absorption coefficient	392 e	
F(000)	$0.280 \times 0.083 \times 0.065 \mathrm{~mm}^{3}$	
Crystal size	$3.100 \mathrm{to} 36.226^{\circ}$.	
θ range for data collection	$-17 \leq \mathrm{h} \leq 17,-12 \leq \mathrm{k} \leq 12,-19 \leq \mathrm{I} \leq 19$	

Reflections collected	33320
Independent reflections	8643 [$\mathrm{R}_{\text {int }}=0.0297$]
Reflections with $1>2 \sigma(1)$	7737
Completeness to $\theta=25.242^{\circ}$	99.8\%
Absorption correction	Gaussian
Max. and min. transmission	0.99497 and 0.97830
Refinement method	Full-matrix least-squares on F^{2}
Data/restraints/parameters	8643/1/239
Goodness-of-fit on F^{2}	1.015
Final R indices [$1>2 \sigma(\mathrm{l})$]	$\mathrm{R}_{1}=0.0343 \quad \quad w \mathrm{R}^{2}=0.0843$
R indices (all data)	$R_{1}=0.0418 \quad w R^{2}=0.0884$
Absolute structure parameter	-0.16(18)
Extinction coefficient	0
Largest diff. peak and hole	0.360 and $-0.193 \mathrm{e} \cdot \AA^{-3}$

Atomic Coordinates \& Equivalent Isotropic Displacement Parameters (Å2)

U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	y	z	U eq
$\mathrm{C}(1)$	$0.0531(2)$	$0.2042(2)$	$0.8249(1)$	$0.023(1)$
$\mathrm{C}(2)$	$0.1373(1)$	$0.1563(2)$	$0.7849(1)$	$0.016(1)$
$\mathrm{C}(3)$	$0.2368(1)$	$0.0896(2)$	$0.7338(1)$	$0.013(1)$
$\mathrm{C}(4)$	$0.3331(1)$	$0.2300(2)$	$0.7183(1)$	$0.011(1)$
$\mathrm{C}(5)$	$0.2675(1)$	$0.3843(2)$	$0.6371(1)$	$0.011(1)$
$\mathrm{C}(6)$	$0.3730(1)$	$0.5142(2)$	$0.6275(1)$	$0.011(1)$
$\mathrm{C}(7)$	$0.4603(1)$	$0.5727(2)$	$0.7500(1)$	$0.012(1)$
$\mathrm{C}(8)$	$0.5115(1)$	$0.4080(2)$	$0.8271(1)$	$0.012(1)$
$\mathrm{C}(9)$	$0.5910(1)$	$0.4591(2)$	$0.9527(1)$	$0.013(1)$
$\mathrm{C}(10)$	$0.0721(1)$	$0.3505(2)$	$0.4705(1)$	$0.014(1)$
$\mathrm{C}(11)$	$0.0171(1)$	$0.2696(2)$	$0.3496(1)$	$0.015(1)$
$\mathrm{C}(12)$	$0.3504(1)$	$0.7285(2)$	$0.4725(1)$	$0.014(1)$
$\mathrm{C}(13)$	$0.2733(1)$	$0.8888(2)$	$0.4147(1)$	$0.020(1)$
$\mathrm{C}(14)$	$0.6034(1)$	$0.8284(2)$	$0.7788(1)$	$0.013(1)$
$\mathrm{C}(15)$	$0.7290(1)$	$0.8890(2)$	$0.7606(1)$	$0.020(1)$
$\mathrm{C}(16)$	$0.7690(1)$	$0.2551(2)$	$0.9907(1)$	$0.017(1)$
$\mathrm{C}(17)$	$0.8275(2)$	$0.0901(2)$	$1.0574(1)$	$0.024(1)$
$\mathrm{O}(1)$	$0.4018(1)$	$0.3037(1)$	$0.8321(1)$	$0.012(1)$
O(2)	$0.2025(1)$	$0.3137(1)$	$0.5199(1)$	$0.012(1)$
O(3)	$0.0102(1)$	$0.4409(2)$	$0.5175(1)$	$0.024(1)$
O(4)	$0.3082(1)$	$0.6689(1)$	$0.5624(1)$	$0.013(1)$

$\mathrm{O}(5)$	$0.4389(1)$	$0.6604(2)$	$0.4449(1)$	$0.022(1)$
$\mathrm{O}(6)$	$0.5722(1)$	$0.6630(1)$	$0.7328(1)$	$0.014(1)$
$\mathrm{O}(7)$	$0.5396(1)$	$0.9105(1)$	$0.8285(1)$	$0.022(1)$
$\mathrm{O}(8)$	$0.6602(1)$	$0.3053(1)$	$1.0164(1)$	$0.015(1)$
$\mathrm{O}(9)$	$0.8112(1)$	$0.3339(2)$	$0.9214(1)$	$0.023(1)$

Bond Lengths [Å] \& Angles [${ }^{\circ}$]

$C(1)-C(2)$
$C(3)-C(4)$
$C(4)-C(5)$
$C(5)-C(6)$
$C(6)-C(7)$
$C(7)-C(8)$
$C(8)-C(9)$
$C(10)-O(3)$
$C(10)-C(11)$
$C(12)-O(4)$
$C(14)-O(7)$
$C(14)-C(15)$
$C(16)-O(8)$
$C(1)-C(2)-C(3)$
$O(1)-C(4)-C(3)$
$C(3)-C(4)-C(5)$
$O(2)-C(5)-C(4)$
$O(4)-C(6)-C(5)$
$C(5)-C(6)-C(7)$
$O(6)-C(7)-C(8)$
$O(1)-C(8)-C(9)$
$C(9)-C(8)-C(7)$
$O(3)-C(10)-O(2)$
$O(2)-C(10)-C(11)$
$O(5)-C(12)-C(13)$
$O(7)-C(14)-O(6)$
$O(6)-C(14)-C(15)$
$O(9)-C(16)-C(17)$
$C(8)-O(1)-C(4)$
$C(12)-O(4)-C(6)$
$C(16)-O(8)-C(9)$
$1.1960(18)$
$1.5229(16)$
$1.5271(16)$
$1.5200(15)$
$1.5230(15)$
$1.5311(16)$
$1.5131(15)$
$1.1988(15)$
$1.4953(16)$
$1.3577(14)$
$1.2012(14)$
$1.4946(16)$
$1.3441(15)$
$177.16(14)$
$108.55(9)$
$113.98(9)$
$108.40(9)$
$108.23(8)$
$110.97(8)$
$107.89(9)$
$108.10(9)$
$111.57(9)$
$123.59(11)$
$111.78(10)$
$125.54(11)$
$124.18(11)$
$109.77(10)$
$125.53(12)$
$110.83(8)$
$117.54(9)$
$116.10(9)$

$C(2)-C(3)$	$1.4657(17)$
$C(4)-O(1)$	$1.4285(13)$
$C(5)-O(2)$	$1.4435(13)$
$C(6)-O(4)$	$1.4427(14)$
$C(7)-O(6)$	$1.4417(14)$
$C(8)-O(1)$	$1.4253(13)$
$C(9)-O(8)$	$1.4466(15)$
$C(10)-O(2)$	$1.3579(14)$
$C(12)-O(5)$	$1.2051(15)$
$C(12)-C(13)$	$1.4952(18)$
$C(14)-O(6)$	$1.3529(15)$
$C(16)-O(9)$	$1.2090(16)$
$C(16)-C(17)$	$1.495(2)$
$C(2)-C(3)-C(4)$	$114.73(10)$
$O(1)-C(4)-C(5)$	$107.49(9)$
$O(2)-C(5)-C(6)$	$107.78(8)$
$C(6)-C(5)-C(4)$	$109.18(8)$
$O(4)-C(6)-C(7)$	$108.96(9)$
$O(6)-C(7)-C(6)$	$106.58(8)$
$C(6)-C(7)-C(8)$	$109.50(9)$
$O(1)-C(8)-C(7)$	$108.88(9)$
$O(8)-C(9)-C(8)$	$110.37(9)$
$O(3)-C(10)-C(11)$	$124.61(11)$
$O(5)-C(12)-O(4)$	$123.78(11)$
$O(4)-C(12)-C(13)$	$110.68(10)$
$O(7)-C(14)-C(15)$	$126.04(11)$
$O(9)-C(16)-O(8)$	$123.45(12)$
$O(8)-C(16)-C(17)$	$111.01(11)$
$C(10)-O(2)-C(5)$	$117.25(9)$
$C(14)-O(6)-C(7)$	$118.87(9)$

Anisotropic Displacement Parameters (Å2)

Symmetry transformations used to generate equivalent atoms:
The anisotropic displacement factor exponent takes the form:
$-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\ldots+2 h k a^{*} b^{*} U_{12}\right]$.

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
$\mathrm{C}(1)$	$0.022(1)$	$0.021(1)$	$0.030(1)$	$-0.007(1)$	$0.014(1)$	$-0.006(1)$
$\mathrm{C}(2)$	$0.018(1)$	$0.014(1)$	$0.018(1)$	$-0.002(1)$	$0.007(1)$	$-0.004(1)$
$\mathrm{C}(3)$	$0.014(1)$	$0.012(1)$	$0.013(1)$	$0.000(1)$	$0.005(1)$	$-0.002(1)$
$\mathrm{C}(4)$	$0.012(1)$	$0.011(1)$	$0.010(1)$	$0.000(1)$	$0.004(1)$	$-0.001(1)$
$\mathrm{C}(5)$	$0.011(1)$	$0.012(1)$	$0.010(1)$	$0.000(1)$	$0.003(1)$	$0.000(1)$
$\mathrm{C}(6)$	$0.012(1)$	$0.010(1)$	$0.012(1)$	$0.001(1)$	$0.004(1)$	$0.001(1)$
$\mathrm{C}(7)$	$0.011(1)$	$0.012(1)$	$0.013(1)$	$-0.001(1)$	$0.005(1)$	$-0.001(1)$
$\mathrm{C}(8)$	$0.012(1)$	$0.013(1)$	$0.011(1)$	$-0.001(1)$	$0.004(1)$	$-0.001(1)$
$\mathrm{C}(9)$	$0.014(1)$	$0.014(1)$	$0.012(1)$	$-0.002(1)$	$0.003(1)$	$0.000(1)$
$\mathrm{C}(10)$	$0.013(1)$	$0.013(1)$	$0.014(1)$	$0.001(1)$	$0.002(1)$	$0.000(1)$
$\mathrm{C}(11)$	$0.015(1)$	$0.015(1)$	$0.013(1)$	$0.001(1)$	$0.001(1)$	$0.001(1)$
$\mathrm{C}(12)$	$0.016(1)$	$0.013(1)$	$0.015(1)$	$0.003(1)$	$0.006(1)$	$-0.001(1)$
$\mathrm{C}(13)$	$0.022(1)$	$0.017(1)$	$0.023(1)$	$0.009(1)$	$0.011(1)$	$0.004(1)$
$\mathrm{C}(14)$	$0.014(1)$	$0.012(1)$	$0.013(1)$	$0.000(1)$	$0.005(1)$	$-0.001(1)$
$\mathrm{C}(15)$	$0.019(1)$	$0.020(1)$	$0.022(1)$	$-0.003(1)$	$0.010(1)$	$-0.006(1)$
$\mathrm{C}(16)$	$0.015(1)$	$0.021(1)$	$0.014(1)$	$-0.003(1)$	$0.002(1)$	$0.002(1)$
$\mathrm{C}(17)$	$0.026(1)$	$0.025(1)$	$0.019(1)$	$0.003(1)$	$0.001(1)$	$0.009(1)$
$\mathrm{O}(1)$	$0.012(1)$	$0.013(1)$	$0.009(1)$	$-0.001(1)$	$0.003(1)$	$-0.003(1)$
$\mathrm{O}(2)$	$0.011(1)$	$0.014(1)$	$0.011(1)$	$-0.001(1)$	$0.002(1)$	$0.001(1)$
$\mathrm{O}(3)$	$0.015(1)$	$0.033(1)$	$0.022(1)$	$-0.009(1)$	$0.003(1)$	$0.006(1)$
$\mathrm{O}(4)$	$0.015(1)$	$0.012(1)$	$0.015(1)$	$0.004(1)$	$0.008(1)$	$0.003(1)$
$\mathrm{O}(5)$	$0.024(1)$	$0.022(1)$	$0.024(1)$	$0.007(1)$	$0.016(1)$	$0.006(1)$
$\mathrm{O}(6)$	$0.014(1)$	$0.012(1)$	$0.018(1)$	$-0.003(1)$	$0.009(1)$	$-0.003(1)$
$\mathrm{O}(7)$	$0.025(1)$	$0.016(1)$	$0.032(1)$	$-0.007(1)$	$0.017(1)$	$-0.003(1)$
$\mathrm{O}(8)$	$0.015(1)$	$0.017(1)$	$0.012(1)$	$0.001(1)$	$0.003(1)$	$0.001(1)$
O(9)	$0.019(1)$	$0.030(1)$	$0.022(1)$	$0.002(1)$	$0.010(1)$	$0.004(1)$

Hydrogen Coordinates \& Isotropic Displacement Parameters (Å2)

	x	y	z	$U_{\text {eq }}$
$H(1)$	-0.0138	0.2422	0.8567	0.028
$H(3 A)$	0.1908	0.0363	0.6553	0.016
$H(3 B)$	0.2876	-0.0066	0.7855	0.016
$H(4)$	0.3985	0.1716	0.6855	0.013
$H(5)$	0.2024	0.4461	0.6686	0.013
$H(6)$	0.4285	0.4563	0.5838	0.013
$H(7)$	0.4111	0.6535	0.7883	0.014

H(8)	0.5678	0.3355	0.7910	0.014
H(9A)	0.6555	0.5531	0.9507	0.016
H(9B)	0.5313	0.5077	0.9943	0.016
H(11A)	-0.0729	0.2273	0.3384	0.023
H(11B)	0.0726	0.1690	0.3421	0.023
H(11C)	0.0157	0.3594	0.2892	0.023
H(13A)	0.2666	0.8909	0.3304	0.030
H(13B)	0.3181	0.9970	0.4535	0.030
H(13C)	0.1846	0.8834	0.4224	0.030
H(15A)	0.7420	1.0164	0.7792	0.029
H(15B)	0.7242	0.8691	0.6776	0.029
H(15C)	0.8032	0.8212	0.8129	0.029
H(17A)	0.9038	0.0525	1.0340	0.037
H(17B)	0.7613	-0.0051	1.0392	0.037
H(17C)	0.8560	0.1148	1.1429	0.037

6.4.10. Crystallographic Data Of 104

Crystal Data \& Structure Refinement

Figure 6.30: X-Ray single crystal structure and molecular structure of tosylate $\mathbf{1 0 4}$ (hydrogen atoms not shown for better visibility, numbering of atoms is arbitrary).

Identification code	9643sadabs	
Empirical formula	$\mathrm{C}_{34} \mathrm{H}_{62} \mathrm{O}_{7} \mathrm{SSi}_{3}$	
Color	colourless	
Formula weight	$699.16 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$	
Temperature	100 K	
Wavelength	1.54178 Å	
Crystal system	orthorhombic	
Space group	P $2122_{1} 2_{1}$ (No.19)	
Unit cell dimensions	$a=11.5486(7) \AA$	$\alpha=90^{\circ}$.
	$\mathrm{b}=14.7788(8) \AA$	$\beta=90^{\circ}$.
	$\mathrm{c}=23.7438(13) \AA$	$\gamma=90^{\circ}$.
Volume	4052.5(4) ${ }^{3}$	
Z	4	
Density (calculated)	$1.146 \mathrm{Mg} \cdot \mathrm{m}^{-3}$	
Absorption coefficient	$1.886 \mathrm{~mm}^{-1}$	

F(000)	1520 e
Crystal size	$0.24 \times 0.13 \times 0.05 \mathrm{~mm}^{3}$
θ range for data collection	3.523 to 67.883°.
Index ranges	$-13 \leq \mathrm{h} \leq 11,-17 \leq \mathrm{k} \leq 17,-28 \leq \mathrm{I} \leq 28$
Reflections collected	183456
Independent reflections	$7291\left[\mathrm{R}_{\text {int }}=0.0789\right]$
Reflections with $\mathrm{I} 2 \sigma(\mathrm{I})$	6870
Completeness to $\theta=67.679^{\circ}$	99.5%
Absorption correction	Gaussian
Max. and min. transmission	0.91016 and 0.66204
Refinement method	Full-matrix least-squares on F^{2}
Data/restraints/parameters	$7291 / 0 / 431$
Goodness-of-fit on F^{2}	1.044
Final R indices [l>2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0530$
R indices (all data)	$\mathrm{R}_{1}=0.0561$
Absolute structure parameter	$0.013(7)$
Extinction coefficient	n / a
Largest diff. peak and hole	0.360 and $-0.676 \mathrm{e} \cdot \AA^{-3}$

Bond Lengths [Å] \& Angles [${ }^{\circ}$]

$\mathrm{Si}(3)-\mathrm{O}(4)$	$1.644(3)$	$\mathrm{Si}(3)-\mathrm{C}(23)$	$1.887(5)$
$\mathrm{Si}(3)-\mathrm{C}(22 \mathrm{~A})$	$1.770(11)$	$\mathrm{Si}(3)-\mathrm{C}(21 \mathrm{~B})$	$1.795(12)$
$\mathrm{Si}(3)-\mathrm{C}(21 \mathrm{~A})$	$1.923(10)$	$\mathrm{Si}(3)-\mathrm{C}(22 \mathrm{~B})$	$1.988(12)$
$\mathrm{S}(1)-\mathrm{O}(5)$	$1.570(3)$	$\mathrm{S}(1)-\mathrm{O}(6)$	$1.423(4)$
$\mathrm{S}(1)-\mathrm{O}(7)$	$1.434(4)$	$\mathrm{S}(1)-\mathrm{C}(28 \mathrm{~B})$	$1.852(16)$
$\mathrm{S}(1)-\mathrm{C}(28 \mathrm{~A})$	$1.657(12)$	$\mathrm{Si}(1)-\mathrm{O}(2)$	$1.651(3)$
$\mathrm{Si}(1)-\mathrm{C}(9)$	$1.863(6)$	$\mathrm{Si}(1)-\mathrm{C}(11)$	$1.887(5)$
$\mathrm{Si}(1)-\mathrm{C}(10)$	$1.852(5)$	$\mathrm{Si}(2)-\mathrm{O}(3)$	$1.652(3)$
$\mathrm{Si}(2)-\mathrm{C}(17)$	$1.859(5)$	$\mathrm{Si}(2)-\mathrm{C}(15 \mathrm{~A})$	$2.028(14)$
$\mathrm{Si}(2)-\mathrm{C}(16 \mathrm{~A})$	$1.806(13)$	$\mathrm{Si}(2)-\mathrm{C}(16 \mathrm{~B})$	$1.916(13)$
$\mathrm{Si}(2)-\mathrm{C}(15 \mathrm{~B})$	$1.772(10)$	$\mathrm{O}(1)-\mathrm{C}(1)$	$1.437(5)$
$\mathrm{O}(1)-\mathrm{C}(5)$	$1.436(5)$	$\mathrm{O}(2)-\mathrm{C}(2)$	$1.415(5)$
$\mathrm{O}(5)-\mathrm{C}(27)$	$1.462(5)$	$\mathrm{C}(4)-\mathrm{O}(4)$	$1.428(5)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.524(6)$	$\mathrm{C}(4)-\mathrm{C}(3)$	$1.529(6)$
$\mathrm{O}(3)-\mathrm{C}(3)$	$1.434(5)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.510(6)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.520(6)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.542(6)$
$\mathrm{C}(5)-\mathrm{C}(27)$	$1.523(6)$	$\mathrm{C}(23)-\mathrm{C}(24 \mathrm{~A})$	$1.537(8)$
$\mathrm{C}(23)-\mathrm{C}(26 \mathrm{~B})$	$1.676(19)$	$\mathrm{C}(23)-\mathrm{C}(25 \mathrm{~A})$	$1.584(9)$
$\mathrm{C}(23)-\mathrm{C}(26 \mathrm{~A})$	$1.511(8)$	$\mathrm{C}(23)-\mathrm{C}(25 \mathrm{~B})$	$1.479(19)$

$C(23)-C(24 B)$	1.49(2)	C(33B)-C(32B)	1.363(19)
C(33B)-C(28B)	1.37(2)	C(29B)-C(28B)	1.43(2)
C(29B)-C(30B)	1.42(2)	C(6)-C(7)	1.463(6)
C(7)-C(8)	1.193(7)	C(17)-C(19)	1.535(7)
$\mathrm{C}(17)-\mathrm{C}(20 \mathrm{~A})$	1.539(12)	C(17)-C(18)	1.510(9)
C(17)-C(20B)	1.578(11)	C(11)-C(14)	1.540(7)
$\mathrm{C}(11)-\mathrm{C}(13)$	1.517(7)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.538(7)
C(31B)-C(32B)	1.395(18)	C(31B)-C(34B)	1.489(17)
$C(31 B)-C(30 B)$	1.37(2)	C(28A)-C(33A)	1.388(19)
C(28A)-C(29A)	1.369(17)	C(33A)-C(32A)	1.413(16)
C(32A)-C(31A)	1.396(15)	C(31A)-C(30A)	1.361(16)
C(31A)-C(34A)	1.508(14)	C(30A)-C(29A)	1.418(17)
$\mathrm{O}(4)-\mathrm{Si}(3)-\mathrm{C}(23)$	111.49(19)	$\mathrm{O}(4)-\mathrm{Si}(3)-\mathrm{C}(22 \mathrm{~A})$	113.3(4)
$\mathrm{O}(4)-\mathrm{Si}(3)-\mathrm{C}(21 \mathrm{~B})$	106.7(4)	$\mathrm{O}(4)-\mathrm{Si}(3)-\mathrm{C}(21 \mathrm{~A})$	102.0(3)
$\mathrm{O}(4)-\mathrm{Si}(3)-\mathrm{C}(22 \mathrm{~B})$	107.0(4)	$\mathrm{C}(23)-\mathrm{Si}(3)-\mathrm{C}(21 \mathrm{~A})$	106.0(4)
$\mathrm{C}(23)-\mathrm{Si}(3)-\mathrm{C}(22 \mathrm{~B})$	105.1(4)	$\mathrm{C}(22 \mathrm{~A})-\mathrm{Si}(3)-\mathrm{C}(23)$	112.3(4)
$\mathrm{C}(22 \mathrm{~A})-\mathrm{Si}(3)-\mathrm{C}(21 \mathrm{~A})$	111.1(5)	$\mathrm{C}(21 \mathrm{~B})-\mathrm{Si}(3)-\mathrm{C}(23)$	119.6(4)
$\mathrm{C}(21 \mathrm{~B})-\mathrm{Si}(3)-\mathrm{C}(22 \mathrm{~B})$	106.2(6)	O(5)-S(1)-C(28B)	100.4(5)
$\mathrm{O}(5)-\mathrm{S}(1)-\mathrm{C}(28 \mathrm{~A})$	106.2(4)	$\mathrm{O}(6)-\mathrm{S}(1)-\mathrm{O}(5)$	104.37(19)
$\mathrm{O}(6)-\mathrm{S}(1)-\mathrm{O}(7)$	119.7(2)	O(6)-S(1)-C(28B)	107.4(5)
$\mathrm{O}(6)-\mathrm{S}(1)-\mathrm{C}(28 \mathrm{~A})$	111.2(4)	$\mathrm{O}(7)-\mathrm{S}(1)-\mathrm{O}(5)$	109.8(2)
O(7)-S(1)-C(28B)	113.1(5)	O(7)-S(1)-C(28A)	104.9(5)
$\mathrm{O}(2)-\mathrm{Si}(1)-\mathrm{C}(9)$	109.5(2)	$\mathrm{O}(2)-\mathrm{Si}(1)-\mathrm{C}(11)$	105.01(18)
$\mathrm{O}(2)-\mathrm{Si}(1)-\mathrm{C}(10)$	111.2(2)	$\mathrm{C}(9)-\mathrm{Si}(1)-\mathrm{C}(11)$	110.4(2)
C(10)-Si(1)-C(9)	109.7(3)	$\mathrm{C}(10)-\mathrm{Si}(1)-\mathrm{C}(11)$	110.9(2)
$\mathrm{O}(3)-\mathrm{Si}(2)-\mathrm{C}(17)$	105.4(2)	$\mathrm{O}(3)-\mathrm{Si}(2)-\mathrm{C}(15 \mathrm{~A})$	103.4(5)
$\mathrm{O}(3)-\mathrm{Si}(2)-\mathrm{C}(16 \mathrm{~A})$	112.6(4)	$\mathrm{O}(3)-\mathrm{Si}(2)-\mathrm{C}(16 \mathrm{~B})$	108.0(4)
$\mathrm{O}(3)-\mathrm{Si}(2)-\mathrm{C}(15 \mathrm{~B})$	113.6(4)	C(17)-Si(2)-C(15A)	106.5(5)
$\mathrm{C}(17)-\mathrm{Si}(2)-\mathrm{C}(16 \mathrm{~B})$	105.9(5)	C(16A)-Si(2)-C(17)	122.3(5)
C(16A)-Si(2)-C(15A)	105.1(6)	C(15B)-Si(2)-C(17)	115.7(4)
$C(15 B)-S i(2)-C(16 B)$	107.8(6)	$\mathrm{C}(5)-\mathrm{O}(1)-\mathrm{C}(1)$	114.2(3)
$\mathrm{C}(2)-\mathrm{O}(2)-\mathrm{Si}(1)$	129.1(3)	$\mathrm{C}(27)-\mathrm{O}(5)-\mathrm{S}(1)$	117.4(3)
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(5)$	110.1(3)	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(3)$	108.5(3)
C(5)-C(4)-C(3)	112.1(3)	$\mathrm{C}(4)-\mathrm{O}(4)-\mathrm{Si}(3)$	127.6(3)
$\mathrm{C}(3)-\mathrm{O}(3)-\mathrm{Si}(2)$	124.5(3)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	112.2(3)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	104.5(3)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	113.4(4)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	110.3(3)	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	111.7(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	109.7(3)	$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	112.0(3)
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(27)$	112.2(3)	$\mathrm{C}(27)-\mathrm{C}(5)-\mathrm{C}(4)$	112.6(3)
$\mathrm{C}(24 \mathrm{~A})-\mathrm{C}(23)-\mathrm{Si}(3)$	111.1(4)	C(24A)-C(23)-C(25A)	105.3(5)
C(26B)-C(23)-Si(3)	97.9(7)	$\mathrm{C}(25 \mathrm{~A})-\mathrm{C}(23)-\mathrm{Si}(3)$	107.8(4)
$\mathrm{C}(26 \mathrm{~A})-\mathrm{C}(23)-\mathrm{Si}(3)$	114.0(4)	C(26A)-C(23)-C(24A)	110.6(5)
C(26A)-C(23)-C(25A)	107.5(6)	$\mathrm{C}(25 \mathrm{~B})-\mathrm{C}(23)-\mathrm{Si}(3)$	112.9(8)
C(25B)-C(23)-C(26B)	108.1(10)	C(25B)-C(23)-C(24B)	115.6(12)
$\mathrm{C}(24 \mathrm{~B})-\mathrm{C}(23)-\mathrm{Si}(3)$	111.4(8)	$\mathrm{C}(24 \mathrm{~B})-\mathrm{C}(23)-\mathrm{C}(26 \mathrm{~B})$	109.4(11)
$\mathrm{O}(5)-\mathrm{C}(27)-\mathrm{C}(5)$	106.9(3)	C(32B)-C(33B)-C(28B)	120.9(14)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	113.8(3)	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	107.5(3)
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(2)$	106.7(3)	$C(30 B)-C(29 B)-C(28 B)$	115.2(15)
$C(7)-C(6)-C(1)$	111.9(4)	$C(8)-C(7)-C(6)$	179.7(6)

$C(19)-C(17)-S i(2)$	$111.0(4)$
$C(19)-C(17)-C(20 B)$	$104.5(6)$
$C(18)-C(17)-S i(2)$	$110.6(4)$
$C(18)-C(17)-C(20 A)$	$98.3(7)$
$C(20 B)-C(17)-S i(2)$	$102.2(5)$
$C(13)-C(11)-S i(1)$	$111.1(4)$
$C(13)-C(11)-C(12)$	$108.8(4)$
$C(12)-C(11)-C(14)$	$109.4(4)$
$C(30 B)-C(31 B)-C(32 B)$	$118.9(12)$
$C(33 B)-C(32 B)-C(31 B)$	$120.6(14)$
$C(33 B)-C(28 B)-C(29 B)$	$121.4(14)$
$C(31 B)-C(30 B)-C(29 B)$	$122.9(13)$
$C(29 A)-C(28 A)-S(1)$	$122.9(11)$
$C(28 A)-C(33 A)-C(32 A)$	$119.6(12)$
$C(32 A)-C(31 A)-C(34 A)$	$118.6(11)$
$C(30 A)-C(31 A)-C(34 A)$	$121.6(9)$
$C(28 A)-C(29 A)-C(30 A)$	$119.3(13)$

6.4.11. Crystallographic Data Of 115

Crystal Data \& Structure Refinement

Figure 6.31: X-Ray single crystal structure and molecular structure of nitrile $\mathbf{1 1 5}$ (hydrogen atoms not shown for better visibility, numbering of atoms is arbitrary).

Identification code	9887
Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{55} \mathrm{NO}_{4} \mathrm{Si}_{3}$
Color	colorless
Formula weight	$554.00 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
Temperature	100 K
Wavelength	$1.54178 \AA$
Crystal system	monoclinic

Space group	P2 1_{1} (No. 4)
Unit cell dimensions	$a=21.2571(6) \AA \quad \alpha=90^{\circ}$.
	$b=11.4919(3) \AA \quad \beta=104.2930(10)^{\circ}$.
	$c=29.2028(8) \AA \quad \gamma=90^{\circ}$.
Volume	6913.0(3) \AA^{3}
Z	8
Density (calculated)	$1.065 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
Absorption coefficient	$1.487 \mathrm{~mm}^{-1}$
F(000)	2432 e
Crystal size	$0.400 \times 0.249 \times 0.100 \mathrm{~mm}^{3}$
θ range for data collection	1.561 to 67.529°.
Index ranges	$-25 \leq h \leq 25,-13 \leq k \leq 11,-34 \leq \mathrm{l} \leq 34$
Reflections collected	220531
Independent reflections	22775 [$\mathrm{R}_{\text {int }}=0.0855$]
Reflections with $1>2 \sigma(1)$	19511
Completeness to $\theta=67.529^{\circ}$	98.4\%
Absorption correction	Gaussian
Max. and min. transmission	0.92 and 0.71
Refinement method	Full-matrix least-squares on F^{2}
Data/restraints/parameters	22775/1/1404
Goodness-of-fit on F^{2}	1.024
Final R indices [$1>2 \sigma(1)$]	$\mathrm{R}_{1}=0.0542 \quad \quad w R^{2}=0.1313$
R indices (all data)	$R_{1}=0.0675 \quad w R^{2}=0.1418$
Absolute structure parameter	0.02(2)
Extinction coefficient	0.00172(12)
Largest diff. peak and hole	1.4 and $-0.4 \mathrm{e} \cdot \AA^{-3}$

Bond Lengths [Å] \& Angles [${ }^{\circ}$]

$\mathrm{Si}(2)-\mathrm{O}(2)$	$1.662(3)$
$\mathrm{Si}(2)-\mathrm{C}(12)$	$1.854(5)$
$\mathrm{Si}(3)-\mathrm{O}(3)$	$1.652(3)$
$\mathrm{Si}(3)-\mathrm{C}(18)$	$1.860(6)$
$\mathrm{Si}(4)-\mathrm{O}(4)$	$1.650(3)$
$\mathrm{Si}(4)-\mathrm{C}(24)$	$1.851(6)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.446(5)$
$\mathrm{O}(2)-\mathrm{C}(2)$	$1.418(5)$

$\mathrm{Si}(2)-\mathrm{C}(11)$	$1.849(6)$
$\mathrm{Si}(2)-\mathrm{C}(13)$	$1.889(5)$
$\mathrm{Si}(3)-\mathrm{C}(17)$	$1.860(5)$
$\mathrm{Si}(3)-\mathrm{C}(19)$	$1.882(5)$
$\mathrm{Si}(4)-\mathrm{C}(23)$	$1.856(5)$
$\mathrm{Si}(4)-\mathrm{C}(25)$	$1.886(5)$
$\mathrm{O}(1)-\mathrm{C}(5)$	$1.434(5)$
$\mathrm{O}(3)-\mathrm{C}(3)$	$1.432(5)$

$\mathrm{O}(4)-\mathrm{C}(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$
$C(2)-C(3)$
$C(4)-C(5)$
$C(6)-C(7)$
$C(9)-C(10)$
C(13)-C(15)
C(19)-C(20)
C(19)-C(22)
C(25)-C(27)
$\mathrm{Si}(22)-\mathrm{O}(22)$
Si(22)-C(72)
$\mathrm{Si}(23)-\mathrm{O}(23)$
Si(23)-C(77B)
Si(23)-C(78B)
$\mathrm{Si}(24)-\mathrm{O}(24)$
Si(24)-C(84)
O(21)-C(61)
O(22)-C(64)
O(24)-C(63)
C(61)-C(62)
C(62)-C(63)
C(64)-C(65)
C(66)-C(67)
C(69)-C(70)
C(73)-C(75)
C(79)-C(80A)
C(79)-C(81A)
C(79)-C(82A)
C(85)-C(86)
C(85)-C(88)
Si(32)-C(101)
Si(32)-C(103)
Si(33)-C(107)
Si(33)-C(109)
Si(34)-C(113)
Si(34)-C(115)
O(31)-C(95)
O(33)-C(93)
$N(31)-C(100)$
C(91)-C(96)
C(93)-C(94)
C(95)-C(99)
C(97)-C(98)
C(103)-C(104)
C(103)-C(106)
C(109)-C(111)
C(115)-C(116)
C(115)-C(118)
1.425(5)
1.534(6)
1.534(6)
1.517(6)
1.472(6)
1.457(8)
1.534(7)
1.537(7)
1.525(7)
1.515(7)
1.647(3)
1.865(6)
1.650(4)
1.775(12)
1.947(16)
1.657(3)
1.853(7)
1.439(5)
1.434(5)
1.429(5)
1.522(6)
1.536(6)
1.525(6)
1.458(7)
1.469(7)
1.537(6)
1.445(15)
1.561(16)
1.641(15)
1.518(9)
1.538(8)
1.865(5)
1.875(5)
1.859(6)
1.869(5)
1.851(5)
1.892(5)
1.430(5)
1.433(5)
1.144(7)
1.530(6)
1.540(6)
1.548(6)
1.189(7)
1.532(6)
1.540(7)
1.531(7)
1.536(7)
1.539(6)

$\mathrm{N}(1)-\mathrm{C}(10)$	1.151(7)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.525(6)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.540(6)
$\mathrm{C}(5)-\mathrm{C}(9)$	1.542(6)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.189(7)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.531(7)
$\mathrm{C}(13)-\mathrm{C}(16)$	1.533(7)
$\mathrm{C}(19)-\mathrm{C}(21)$	1.529(7)
$\mathrm{C}(25)-\mathrm{C}(26)$	1.540(9)
C(25)-C(28)	1.510(7)
Si(22)-C(71)	1.848(6)
Si(22)-C(73)	1.880(5)
Si(23)-C(77A)	1.953(13)
Si(23)-C(78A)	1.776(14)
Si(23)-C(79)	1.875(6)
Si(24)-C(83)	1.853(7)
Si(24)-C(85)	1.881(6)
O(21)-C(65)	1.428(5)
O(23)-C(62)	1.431(6)
$\mathrm{N}(21)-\mathrm{C}(70)$	1.147(7)
C(61)-C(66)	1.524(7)
C(63)-C(64)	1.551(6)
C(65)-C(69)	1.531(6)
C(67)-C(68)	1.190(8)
$\mathrm{C}(73)-\mathrm{C}(74)$	1.540(7)
C(73)-C(76)	1.532(7)
C(79)-C(80B)	1.618(15)
C(79)-C(81B)	1.521(17)
C(79)-C(82B)	1.465(15)
C(85)-C(87)	1.534(7)
$\mathrm{Si}(32)-\mathrm{O}(32)$	1.662(3)
$\mathrm{Si}(32)-\mathrm{C}(102)$	1.856(5)
Si(33)-O(33)	1.655(3)
$\mathrm{Si}(33)-\mathrm{C}(108)$	1.849(5)
Si(34)-O(34)	1.662(3)
$\mathrm{Si}(34)-\mathrm{C}(114)$	$1.855(6)$
O(31)-C(91)	1.436(5)
O(32)-C(92)	1.420(5)
$\mathrm{O}(34)-\mathrm{C}(94)$	$1.425(5)$
C(91)-C(92)	$1.522(6)$
C(92)-C(93)	1.534(6)
C(94)-C(95)	1.533(6)
C(96)-C(97)	$1.465(6)$
C(99)-C(100)	$1.465(6)$
C(103)-C(105)	1.547 (7)
C(109)-C(110)	1.526(8)
C(109)-C(112)	1.540(7)
$\mathrm{C}(115)-\mathrm{C}(117)$	1.524(7)
Si(12)-O(12)	1.664(3)

$\mathrm{Si}(12)-\mathrm{C}(41)$	1.854(5)	$\mathrm{Si}(12)-\mathrm{C}(42)$	1.854(5)
$\mathrm{Si}(12)-\mathrm{C}(43)$	1.884(5)	$\mathrm{Si}(13)-\mathrm{O}(13)$	1.670(4)
Si(13)-C(47A)	1.837(9)	Si(13)-C(47B)	1.92(3)
Si(13)-C(48A)	1.858(9)	Si(13)-C(48B)	1.66(4)
Si(13)-C(49A)	1.860(8)	Si(13)-C(49B)	1.74(3)
$\mathrm{Si}(14)-\mathrm{O}(14)$	1.656(3)	$\mathrm{Si}(14)-\mathrm{C}(53)$	1.855(5)
$\mathrm{Si}(14)-\mathrm{C}(54)$	1.846(5)	$\mathrm{Si}(14)-\mathrm{C}(55)$	1.884(5)
O(11)-C(31)	1.432(5)	O(11)-C(35)	1.438(5)
$\mathrm{O}(12)-\mathrm{C}(32)$	1.428(5)	O(13)-C(33)	1.431(5)
$\mathrm{O}(14)-\mathrm{C}(34)$	1.425(5)	$\mathrm{N}(11)-\mathrm{C}(40)$	1.148(7)
C(31)-C(32)	1.521(6)	$\mathrm{C}(31)-\mathrm{C}(36)$	1.520(6)
C(32)-C(33)	1.535(6)	C(33)-C(34)	1.534(6)
C(34)-C(35)	1.530(6)	C(35)-C(39)	1.546(6)
C(36)-C(37)	1.452(7)	C(37)-C(38)	1.201(8)
C(39)-C(40)	1.463(7)	$\mathrm{C}(43)-\mathrm{C}(44)$	1.538(7)
C(43)-C(45)	1.528(8)	$\mathrm{C}(43)-\mathrm{C}(46)$	1.518(7)
C(49A)-C(50A)	1.544(13)	C(49A)-C(51A)	1.540(10)
C(49A)-C(52A)	1.519(12)	C(49B)-C(50B)	1.85(5)
C(49B)-C(51B)	1.67(4)	C(49B)-C(52B)	1.58(4)
C(55)-C(56)	1.536(8)	C(55)-C(57)	1.517(7)
C(55)-C(58)	1.534(6)	$\mathrm{O}(2)-\mathrm{Si}(2)-\mathrm{C}(11)$	108.4(2)
$\mathrm{O}(2)-\mathrm{Si}(2)-\mathrm{C}(12)$	109.5(2)	$\mathrm{O}(2)-\mathrm{Si}(2)-\mathrm{C}(13)$	107.02(19)
$\mathrm{C}(11)-\mathrm{Si}(2)-\mathrm{C}(12)$	110.0(3)	$\mathrm{C}(11)-\mathrm{Si}(2)-\mathrm{C}(13)$	110.2(2)
$\mathrm{C}(12)-\mathrm{Si}(2)-\mathrm{C}(13)$	111.6(2)	$\mathrm{O}(3)-\mathrm{Si}(3)-\mathrm{C}(17)$	109.1(2)
$\mathrm{O}(3)-\mathrm{Si}(3)-\mathrm{C}(18)$	110.2(2)	$\mathrm{O}(3)-\mathrm{Si}(3)-\mathrm{C}(19)$	105.66(19)
$\mathrm{C}(17)-\mathrm{Si}(3)-\mathrm{C}(18)$	110.3(3)	C(17)-Si(3)-C(19)	110.3(2)
$\mathrm{C}(18)-\mathrm{Si}(3)-\mathrm{C}(19)$	111.3(2)	$\mathrm{O}(4)-\mathrm{Si}(4)-\mathrm{C}(23)$	110.3(2)
$\mathrm{O}(4)-\mathrm{Si}(4)-\mathrm{C}(24)$	110.5(2)	$\mathrm{O}(4)-\mathrm{Si}(4)-\mathrm{C}(25)$	103.24(19)
$\mathrm{C}(23)-\mathrm{Si}(4)-\mathrm{C}(25)$	111.6(2)	$\mathrm{C}(24)-\mathrm{Si}(4)-\mathrm{C}(23)$	109.3(3)
$\mathrm{C}(24)-\mathrm{Si}(4)-\mathrm{C}(25)$	111.8(2)	$\mathrm{C}(5)-\mathrm{O}(1)-\mathrm{C}(1)$	113.9(3)
$\mathrm{C}(2)-\mathrm{O}(2)-\mathrm{Si}(2)$	130.1(3)	$\mathrm{C}(3)-\mathrm{O}(3)-\mathrm{Si}(3)$	128.7(3)
$\mathrm{C}(4)-\mathrm{O}(4)-\mathrm{Si}(4)$	127.3(3)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	113.1(3)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	107.6(3)	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	113.8(4)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	111.6(4)	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	108.7(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	109.6(3)	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(2)$	110.1(3)
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	108.2(3)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	111.7(4)
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(3)$	112.4(3)	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(5)$	107.1(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	111.1(3)	$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	108.8(3)
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(9)$	107.1(3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(9)$	113.9(4)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(1)$	113.6(4)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	178.8(5)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(5)$	114.3(4)	$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	178.5(6)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{Si}(2)$	109.8(4)	C(14)-C(13)-C(15)	108.5(5)
C(14)-C(13)-C(16)	109.0(4)	$\mathrm{C}(15)-\mathrm{C}(13)-\mathrm{Si}(2)$	110.2(4)
$\mathrm{C}(16)-\mathrm{C}(13)-\mathrm{Si}(2)$	110.5(3)	C(16)-C(13)-C(15)	108.8(5)
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{Si}(3)$	110.8(4)	$\mathrm{C}(21)-\mathrm{C}(19)-\mathrm{Si}(3)$	110.7(4)
C(21)-C(19)-C(20)	109.1(4)	$\mathrm{C}(22)-\mathrm{C}(19)-\mathrm{Si}(3)$	109.2(3)
$\mathrm{C}(22)-\mathrm{C}(19)-\mathrm{C}(20)$	108.4(4)	C(22)-C(19)-C(21)	108.6(4)
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{Si}(4)$	109.9(4)	$\mathrm{C}(27)-\mathrm{C}(25)-\mathrm{Si}(4)$	109.2(4)
$\mathrm{C}(27)-\mathrm{C}(25)-\mathrm{C}(26)$	106.4(6)	$\mathrm{C}(28)-\mathrm{C}(25)-\mathrm{Si}(4)$	110.8(4)

$\mathrm{C}(28)-\mathrm{C}(25)-\mathrm{C}(26)$	110.9(5)	$\mathrm{C}(28)-\mathrm{C}(25)-\mathrm{C}(27)$	109.7(5)
$\mathrm{O}(22)-\mathrm{Si}(22)-\mathrm{C}(71)$	111.0(2)	$\mathrm{O}(22)-\mathrm{Si}(22)-\mathrm{C}(72)$	110.5(2)
$\mathrm{O}(22)-\mathrm{Si}(22)-\mathrm{C}(73)$	103.79(19)	$\mathrm{C}(71)-\mathrm{Si}(22)-\mathrm{C}(72)$	108.8(3)
$\mathrm{C}(71)-\mathrm{Si}(22)-\mathrm{C}(73)$	111.7(2)	$\mathrm{C}(72)-\mathrm{Si}(22)-\mathrm{C}(73)$	111.0(2)
O(23)-Si(23)-C(77A)	110.2(4)	O(23)-Si(23)-C(77B)	110.6(4)
O(23)-Si(23)-C(78A)	113.7(5)	$\mathrm{O}(23)-\mathrm{Si}(23)-\mathrm{C}(78 \mathrm{~B})$	104.8(5)
$\mathrm{O}(23)-\mathrm{Si}(23)-\mathrm{C}(79)$	105.3(2)	C(77B)-Si(23)-C(78B)	109.6(6)
C(77B)-Si(23)-C(79)	117.9(5)	C(78A)-Si(23)-C(77A)	107.7(7)
$\mathrm{C}(78 \mathrm{~A})-\mathrm{Si}(23)-\mathrm{C}(79)$	115.0(5)	$\mathrm{C}(79)-\mathrm{Si}(23)-\mathrm{C}(77 \mathrm{~A})$	104.6(5)
$\mathrm{C}(79)-\mathrm{Si}(23)-\mathrm{C}(78 \mathrm{~B})$	107.8(5)	$\mathrm{O}(24)-\mathrm{Si}(24)-\mathrm{C}(83)$	110.1(2)
$\mathrm{O}(24)-\mathrm{Si}(24)-\mathrm{C}(84)$	111.2(3)	$\mathrm{O}(24)-\mathrm{Si}(24)-\mathrm{C}(85)$	104.9(2)
C(83)-Si(24)-C(84)	109.5(4)	C(83)-Si(24)-C(85)	110.9(3)
C(84)-Si(24)-C(85)	110.3(3)	C(65)-O(21)-C(61)	117.1(3)
$\mathrm{C}(64)-\mathrm{O}(22)-\mathrm{Si}(22)$	127.4(3)	$\mathrm{C}(62)-\mathrm{O}(23)-\mathrm{Si}(23)$	129.0(3)
$\mathrm{C}(63)-\mathrm{O}(24)-\mathrm{Si}(24)$	127.2(3)	O(21)-C(61)-C(62)	112.4(3)
O(21)-C(61)-C(66)	106.6(4)	C(62)-C(61)-C(66)	113.4(4)
O(23)-C(62)-C(61)	111.2(4)	O(23)-C(62)-C(63)	108.6(3)
C(61)-C(62)-C(63)	110.2(4)	$\mathrm{O}(24)-\mathrm{C}(63)-\mathrm{C}(62)$	110.0(3)
O(24)-C(63)-C(64)	109.0(4)	C(62)-C(63)-C(64)	111.8(4)
O(22)-C(64)-C(63)	110.5(3)	O(22)-C(64)-C(65)	107.6(3)
C(65)-C(64)-C(63)	111.1(4)	O(21)-C(65)-C(64)	110.6(4)
O(21)-C(65)-C(69)	105.4(4)	C(64)-C(65)-C(69)	114.2(4)
C(67)-C(66)-C(61)	113.5(5)	C(68)-C(67)-C(66)	177.9(7)
C(70)-C(69)-C(65)	113.0(4)	N(21)-C(70)-C(69)	179.1(5)
$\mathrm{C}(74)-\mathrm{C}(73)-\mathrm{Si}(22)$	110.3(3)	$\mathrm{C}(75)-\mathrm{C}(73)-\mathrm{Si}(22)$	109.6(3)
$\mathrm{C}(75)-\mathrm{C}(73)-\mathrm{C}(74)$	109.0(4)	$\mathrm{C}(76)-\mathrm{C}(73)-\mathrm{Si}(22)$	110.1(3)
C(76)-C(73)-C(74)	109.5(4)	C(76)-C(73)-C(75)	108.3(4)
C(80A)-C(79)-Si(23)	115.8(7)	C(80A)-C(79)-C(81A)	119.0(9)
C(80A)-C(79)-C(82A)	107.3(9)	C(80B)-C(79)-Si(23)	105.4(6)
C(81A)-C(79)-Si(23)	111.8(6)	C(81A)-C(79)-C(82A)	94.7(8)
C(81B)-C(79)-Si(23)	110.3(6)	$C(81 B)-C(79)-C(80 B)$	94.3(9)
C(82A) -C(79)-Si(23)	104.7(6)	C(82B) -C(79)-Si(23)	113.9(7)
$C(82 B)-C(79)-C(80 B)$	108.4(9)	C(82B)-C(79)-C(81B)	121.5(9)
$\mathrm{C}(86)-\mathrm{C}(85)-\mathrm{Si}(24)$	111.0(5)	C(86)-C(85)-C(87)	109.6(5)
C(86)-C(85)-C(88)	109.3(7)	$\mathrm{C}(87)-\mathrm{C}(85)-\mathrm{Si}(24)$	110.6(4)
C(87)-C(85)-C(88)	107.1(5)	$\mathrm{C}(88)-\mathrm{C}(85)-\mathrm{Si}(24)$	109.2(4)
$\mathrm{O}(32)-\mathrm{Si}(32)-\mathrm{C}(101)$	110.3(2)	$\mathrm{O}(32)-\mathrm{Si}(32)-\mathrm{C}(102)$	108.3(2)
$\mathrm{O}(32)-\mathrm{Si}(32)-\mathrm{C}(103)$	106.43(18)	C(101)-Si(32)-C(103)	110.4(2)
C(102)-Si(32)-C(101)	110.5(2)	$\mathrm{C}(102)-\mathrm{Si}(32)-\mathrm{C}(103)$	110.7(2)
$\mathrm{O}(33)-\mathrm{Si}(33)-\mathrm{C}(107)$	110.2(2)	$\mathrm{O}(33)-\mathrm{Si}(33)-\mathrm{C}(108)$	109.6(2)
$\mathrm{O}(33)-\mathrm{Si}(33)-\mathrm{C}(109)$	103.59(19)	C(107)-Si(33)-C(109)	110.4(3)
C(108)-Si(33)-C(107)	110.6(2)	C(108)-Si(33)-C(109)	112.2(2)
$\mathrm{O}(34)-\mathrm{Si}(34)-\mathrm{C}(113)$	110.20(19)	$\mathrm{O}(34)-\mathrm{Si}(34)-\mathrm{C}(114)$	106.4(2)
$\mathrm{O}(34)-\mathrm{Si}(34)-\mathrm{C}(115)$	109.8(2)	$\mathrm{C}(113)-\mathrm{Si}(34)-\mathrm{C}(114)$	109.7(3)
$\mathrm{C}(113)-\mathrm{Si}(34)-\mathrm{C}(115)$	110.8(2)	$\mathrm{C}(114)-\mathrm{Si}(34)-\mathrm{C}(115)$	109.8(2)
C(95)-O(31)-C(91)	113.8(3)	$\mathrm{C}(92)-\mathrm{O}(32)-\mathrm{Si}(32)$	127.1(3)
$\mathrm{C}(93)-\mathrm{O}(33)-\mathrm{Si}(33)$	126.2(3)	$\mathrm{C}(94)-\mathrm{O}(34)-\mathrm{Si}(34)$	123.1(3)
O(31)-C(91)-C(92)	111.1(3)	O(31)-C(91)-C(96)	104.8(3)
C(92)-C(91)-C(96)	114.4(4)	O(32)-C(92)-C(91)	111.2(3)

$\mathrm{O}(32)-\mathrm{C}(92)-\mathrm{C}(93)$	110.4(3)	C(91)-C(92)-C(93)	109.5(4)
$\mathrm{O}(33)-\mathrm{C}(93)-\mathrm{C}(92)$	106.2(3)	O(33)-C(93)-C(94)	107.7(3)
C(92)-C(93)-C(94)	114.5(4)	O(34)-C(94)-C(93)	109.8(4)
O(34)-C(94)-C(95)	109.3(3)	C(95)-C(94)-C(93)	112.0(3)
O(31)-C(95)-C(94)	111.5(4)	O(31)-C(95)-C(99)	109.4(3)
C(94)-C(95)-C(99)	114.5(4)	C(97)-C(96)-C(91)	112.0(4)
C(98)-C(97)-C(96)	178.9(6)	C(100)-C(99)-C(95)	112.7(4)
N(31)-C(100)-C(99)	179.3(6)	C(104)-C(103)-Si(32)	109.8(3)
C(104)-C(103)-C(105)	108.6(4)	C(104)-C(103)-C(106)	109.2(4)
$\mathrm{C}(105)-\mathrm{C}(103)-\mathrm{Si}(32)$	111.0(3)	C(106)-C(103)-Si(32)	110.2(3)
C(106)-C(103)-C(105)	108.1(4)	C(110)-C(109)-Si(33)	109.8(4)
C(110)-C(109)-C(111)	108.8(5)	C(110)-C(109)-C(112)	109.1(5)
C(111)-C(109)-Si(33)	110.1(4)	C(111)-C(109)-C(112)	109.5(5)
C(112)-C(109)-Si(33)	109.6(4)	$\mathrm{C}(116)-\mathrm{C}(115)-\mathrm{Si}(34)$	108.4(3)
C(116)-C(115)-C(118)	109.4(4)	$\mathrm{C}(117)-\mathrm{C}(115)-\mathrm{Si}(34)$	111.1(3)
$\mathrm{C}(117)-\mathrm{C}(115)-\mathrm{C}(116)$	108.9(5)	C(117)-C(115)-C(118)	109.3(4)
$\mathrm{C}(118)-\mathrm{C}(115)-\mathrm{Si}(34)$	109.7(4)	$\mathrm{O}(12)-\mathrm{Si}(12)-\mathrm{C}(41)$	111.2(2)
$\mathrm{O}(12)-\mathrm{Si}(12)-\mathrm{C}(42)$	107.4(2)	$\mathrm{O}(12)-\mathrm{Si}(12)-\mathrm{C}(43)$	107.0(2)
$\mathrm{C}(41)-\mathrm{Si}(12)-\mathrm{C}(42)$	109.1(2)	$\mathrm{C}(41)-\mathrm{Si}(12)-\mathrm{C}(43)$	110.6(2)
$\mathrm{C}(42)-\mathrm{Si}(12)-\mathrm{C}(43)$	111.5(2)	$\mathrm{O}(13)-\mathrm{Si}(13)-\mathrm{C}(47 \mathrm{~A})$	111.7(3)
$\mathrm{O}(13)-\mathrm{Si}(13)-\mathrm{C}(47 \mathrm{~B})$	104.1(11)	$\mathrm{O}(13)-\mathrm{Si}(13)-\mathrm{C}(48 \mathrm{~A})$	108.7(4)
$\mathrm{O}(13)-\mathrm{Si}(13)-\mathrm{C}(49 \mathrm{~A})$	106.2(3)	$\mathrm{O}(13)-\mathrm{Si}(13)-\mathrm{C}(49 \mathrm{~B})$	108.6(10)
C(47A)-Si(13)-C(48A)	109.3(6)	C(47A)-Si(13)-C(49A)	110.1(4)
C(48A)-Si(13)-C(49A)	110.9(5)	$\mathrm{C}(48 \mathrm{~B})-\mathrm{Si}(13)-\mathrm{O}(13)$	115.4(12)
C(48B)-Si(13)-C(47B)	100.3(17)	$\mathrm{C}(48 \mathrm{~B})-\mathrm{Si}(13)-\mathrm{C}(49 \mathrm{~B})$	119.0(16)
C(49B)-Si(13)-C(47B)	107.8(15)	$\mathrm{O}(14)-\mathrm{Si}(14)-\mathrm{C}(53)$	104.60(19)
O(14)-Si(14)-C(54)	109.78(19)	$\mathrm{O}(14)-\mathrm{Si}(14)-\mathrm{C}(55)$	111.16(19)
$\mathrm{C}(53)-\mathrm{Si}(14)-\mathrm{C}(55)$	109.9(2)	$\mathrm{C}(54)-\mathrm{Si}(14)-\mathrm{C}(53)$	111.6(3)
$\mathrm{C}(54)-\mathrm{Si}(14)-\mathrm{C}(55)$	109.7(2)	C(31)-O(11)-C(35)	113.7(3)
$\mathrm{C}(32)-\mathrm{O}(12)-\mathrm{Si}(12)$	127.1(3)	$\mathrm{C}(33)-\mathrm{O}(13)-\mathrm{Si}(13)$	123.1(3)
$\mathrm{C}(34)-\mathrm{O}(14)-\mathrm{Si}(14)$	123.5(3)	$\mathrm{O}(11)-\mathrm{C}(31)-\mathrm{C}(32)$	111.2(3)
$\mathrm{O}(11)-\mathrm{C}(31)-\mathrm{C}(36)$	105.1(4)	C(36)-C(31)-C(32)	114.1(4)
$\mathrm{O}(12)-\mathrm{C}(32)-\mathrm{C}(31)$	110.5(3)	$\mathrm{O}(12)-\mathrm{C}(32)-\mathrm{C}(33)$	109.8(3)
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	110.1(4)	$\mathrm{O}(13)-\mathrm{C}(33)-\mathrm{C}(32)$	108.2(3)
$\mathrm{O}(13)-\mathrm{C}(33)-\mathrm{C}(34)$	107.3(4)	C(34)-C(33)-C(32)	114.0(4)
$\mathrm{O}(14)-\mathrm{C}(34)-\mathrm{C}(33)$	109.2(4)	$\mathrm{O}(14)-\mathrm{C}(34)-\mathrm{C}(35)$	109.5(3)
C(35)-C(34)-C(33)	112.7(3)	$\mathrm{O}(11)-\mathrm{C}(35)-\mathrm{C}(34)$	112.0(4)
O(11)-C(35)-C(39)	109.7(3)	C(34)-C(35)-C(39)	113.5(4)
C(37)-C(36)-C(31)	111.8(4)	C(38)-C(37)-C(36)	177.9(6)
C(40)-C(39)-C(35)	111.1(4)	$\mathrm{N}(11)-\mathrm{C}(40)-\mathrm{C}(39)$	179.0(6)
$\mathrm{C}(44)-\mathrm{C}(43)-\mathrm{Si}(12)$	109.1(4)	$\mathrm{C}(45)-\mathrm{C}(43)-\mathrm{Si}(12)$	110.0(4)
C(45)-C(43)-C(44)	107.8(5)	$\mathrm{C}(46)-\mathrm{C}(43)-\mathrm{Si}(12)$	110.8(3)
C(46)-C(43)-C(44)	109.3(5)	C(46)-C(43)-C(45)	109.7(5)
C(50A)-C(49A)-Si(13)	109.3(6)	$\mathrm{C}(51 \mathrm{~A})-\mathrm{C}(49 \mathrm{~A})-\mathrm{Si}(13)$	110.8(6)
C(51A)-C(49A)-C(50A)	111.1(7)	$\mathrm{C}(52 \mathrm{~A})-\mathrm{C}(49 \mathrm{~A})-\mathrm{Si}(13)$	110.9(6)
C(52A)-C(49A)-C(50A)	106.8(9)	C(52A)-C(49A)-C(51A)	107.7(7)
$\mathrm{Si}(13)-\mathrm{C}(49 \mathrm{~B})-\mathrm{C}(50 \mathrm{~B})$	98.5(18)	$C(51 B)-C(49 B)-\mathrm{Si}(13)$	104.1(19)
C(51B)-C(49B)-C(50B)	121(2)	$C(52 B)-C(49 B)-S i(13)$	111(2)
C(52B)-C(49B)-C(50B)	121(2)	C(52B)-C(49B)-C(51B)	100(2)

$\mathrm{C}(57)-\mathrm{C}(55)-\mathrm{Si}(14)$
C(57)-C(55)-C(58)
C(58)-C(55)-C(56)
112.6(3)
108.1(5)
108.3(4)

6.4.12. Crystallographic Data Of (S)-132b

Crystal Data \& Structure Refinement

(S)-132b

Figure 6.32: X-Ray single crystal structure and molecular structure of lactone (S) - $\mathbf{1 3 2 b}$ (numbering of atoms is arbitrary).

Identification code	10220	
Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{3}$	
Color	colorless	
Formula weight	$358.41 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$	
Temperature	100 K	
Wavelength	1.54178 Å	
Crystal system	monoclinic	
Space group	P21 (No. 4)	
Unit cell dimensions	$\begin{aligned} & a=8.9299(11) \AA \\ & b=11.6265(14) \AA \\ & c=18.063(2) \AA \end{aligned}$	$\begin{aligned} & \alpha=90^{\circ} . \\ & \beta=94.042(5)^{\circ} . \\ & \gamma=90^{\circ} . \end{aligned}$
Volume	1870.7(4) \AA^{3}	
Z	4	
Density (calculated)	1.273 Mg. mm^{-3}	
Absorption coefficient	$0.659 \mathrm{~mm}^{-1}$	
F(000)	760 e	
Crystal size	$0.200 \times 0.090 \times 0.080 \mathrm{~mm}^{3}$	
θ range for data collection	2.452 to 68.357°.	

Index ranges
Reflections collected
Independent reflections
Reflections with $1>2 \sigma(\mathrm{I})$
Completeness to $\theta=67.679^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indices $[1>2 \sigma(1)]$
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
$-10 \leq h \leq 10,-13 \leq k \leq 13,-21 \leq \mathrm{l} \leq 21$
78376
$6655\left[\mathrm{R}_{\text {int }}=0.1421\right]$
5814
99.4\%

Gaussian
0.95 and 0.89

Full-matrix least-squares on F^{2}
6655/1/488
1.137
$\mathrm{R}_{1}=0.0727$
$w R^{2}=0.1996$
$\mathrm{R}_{1}=0.0889$
$w R^{2}=0.2260$
$-0.2(2)$
0.016(3)
0.7 and $-0.4 \mathrm{e} \cdot \AA^{-3}$

Bond Lengths [Å] \& Angles [${ }^{\circ}$]

$\mathrm{O}(1)-\mathrm{C}(1)$	1.427(6)	$\mathrm{O}(1)-\mathrm{C}(6)$	1.447(6)
$\mathrm{O}(2)-\mathrm{C}(2)$	1.455(6)	$\mathrm{O}(2)-\mathrm{C}(5)$	1.365(7)
$\mathrm{O}(3)-\mathrm{C}(5)$	1.210(7)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.512(7)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.529(8)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.524(8)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.486(8)	$\mathrm{C}(6)-\mathrm{C}(7)$	1.538(7)
$\mathrm{C}(6)-\mathrm{C}(13)$	1.535(7)	$\mathrm{C}(6)-\mathrm{C}(19)$	1.536(7)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.390(7)	$\mathrm{C}(7)-\mathrm{C}(12)$	1.400(7)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.395(8)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.380(8)
C(10)-C(11)	1.380(9)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.393(8)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.398(7)	$\mathrm{C}(13)-\mathrm{C}(18)$	1.402(8)
C(14)-C(15)	1.388(7)	C(15)-C(16)	1.390(8)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.398(8)	$\mathrm{C}(17)-\mathrm{C}(18)$	1.378(8)
C(19)-C(20)	$1.394(7)$	C(19)-C(24)	1.385(7)
C(20)-C(21)	1.391(7)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.384(8)
$\mathrm{C}(22)-\mathrm{C}(23)$	1.373(8)	$\mathrm{C}(23)-\mathrm{C}(24)$	1.410(7)
$\mathrm{O}(31)-\mathrm{C}(31)$	1.431(6)	O(31)-C(36)	1.446(5)
O(32)-C(32)	1.453(7)	$\mathrm{O}(32)-\mathrm{C}(35)$	1.340(7)
O(33)-C(35)	1.217(7)	C(31)-C(32)	1.515(7)
C(32)-C(33)	1.534(9)	C(33)-C(34)	1.521(9)
C(34)-C(35)	1.481(8)	$\mathrm{C}(36)-\mathrm{C}(37)$	1.538(7)
C(36)-C(43)	1.527(7)	C(36)-C(49)	1.547(7)
C(37)-C(38)	1.385(7)	C(37)-C(42)	1.390(7)
C(38)-C(39)	1.388(8)	C(39)-C(40)	1.387(8)
C(40)-C(41)	1.378(8)	C(41)-C(42)	1.384(8)

$\mathrm{C}(43)-\mathrm{C}(44)$	1.395(8)	$\mathrm{C}(43)-\mathrm{C}(48)$	1.395(7)
$\mathrm{C}(44)-\mathrm{C}(45)$	1.384(8)	$\mathrm{C}(45)-\mathrm{C}(46)$	1.392(9)
C(46)-C(47)	1.380(9)	$\mathrm{C}(47)-\mathrm{C}(48)$	1.399(8)
C(49)-C(50)	1.397(7)	$\mathrm{C}(49)-\mathrm{C}(54)$	1.389(7)
C(50)-C(51)	1.388(8)	C(51)-C(52)	1.390(8)
C(52)-C(53)	1.386(8)	$\mathrm{C}(53)-\mathrm{C}(54)$	1.393(8)
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(6)$	116.0(4)	$C(5)-O(2)-C(2)$	109.6(4)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	106.2(4)	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	108.0(4)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	105.4(4)	$C(1)-C(2)-C(3)$	115.3(4)
$C(4)-C(3)-C(2)$	103.8(4)	$C(5)-C(4)-C(3)$	104.9(5)
$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(4)$	110.9(4)	$O(3)-C(5)-O(2)$	120.8(5)
$O(3)-C(5)-C(4)$	128.3(5)	$\mathrm{O}(1)-C(6)-C(7)$	110.8(4)
$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{C}(13)$	108.4(4)	$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{C}(19)$	104.3(4)
$\mathrm{C}(13)-\mathrm{C}(6)-\mathrm{C}(7)$	115.2(4)	$\mathrm{C}(13)-\mathrm{C}(6)-\mathrm{C}(19)$	112.3(4)
$\mathrm{C}(19)-\mathrm{C}(6)-\mathrm{C}(7)$	105.3(4)	$C(8)-C(7)-C(6)$	119.6(5)
$C(8)-C(7)-C(12)$	118.1(5)	$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(6)$	121.9(4)
$C(7)-C(8)-C(9)$	120.9(5)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	120.4(5)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	119.5(5)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	120.4(5)
C(11)-C(12)-C(7)	120.6(5)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(6)$	123.8(5)
C(14)-C(13)-C(18)	117.6(5)	$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(6)$	118.5(4)
C(15)-C(14)-C(13)	121.1(5)	C(14)-C(15)-C(16)	120.5(5)
C(15)-C(16)-C(17)	118.9(5)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	120.3(5)
C(17)-C(18)-C(13)	121.5(5)	C(20)-C(19)-C(6)	119.9(4)
C(24)-C(19)-C(6)	121.1(4)	C(24)-C(19)-C(20)	118.8(5)
C(21)-C(20)-C(19)	120.9(5)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	119.8(5)
C(23)-C(22)-C(21)	120.2(5)	C(22)-C(23)-C(24)	120.1(5)
C(19)-C(24)-C(23)	120.1(5)	C(31)-O(31)-C(36)	115.6(4)
$\mathrm{C}(35)-\mathrm{O}(32)-\mathrm{C}(32)$	110.2(4)	$\mathrm{O}(31)-\mathrm{C}(31)-\mathrm{C}(32)$	107.1(4)
$\mathrm{O}(32)-\mathrm{C}(32)-\mathrm{C}(31)$	108.7(5)	$\mathrm{O}(32)-\mathrm{C}(32)-\mathrm{C}(33)$	106.6(5)
C(31)-C(32)-C(33)	114.4(4)	$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(32)$	103.9(5)
C(35)-C(34)-C(33)	104.6(5)	$\mathrm{O}(32)-\mathrm{C}(35)-\mathrm{C}(34)$	112.3(5)
$\mathrm{O}(33)-\mathrm{C}(35)-\mathrm{O}(32)$	120.1(5)	$\mathrm{O}(33)-\mathrm{C}(35)-\mathrm{C}(34)$	127.5(5)
$\mathrm{O}(31)-\mathrm{C}(36)-\mathrm{C}(37)$	104.7(4)	$\mathrm{O}(31)-\mathrm{C}(36)-\mathrm{C}(43)$	108.3(4)
$\mathrm{O}(31)-\mathrm{C}(36)-\mathrm{C}(49)$	109.6(4)	C(37)-C(36)-C(49)	107.1(4)
C(43)-C(36)-C(37)	111.7(4)	C(43)-C(36)-C(49)	115.0(4)
C(38)-C(37)-C(36)	122.0(4)	$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{C}(42)$	118.0(5)
C(42)-C(37)-C(36)	120.0(5)	C(37)-C(38)-C(39)	121.0(5)
C(40)-C(39)-C(38)	120.1(5)	$\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{C}(39)$	119.3(5)
$\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{C}(42)$	120.3(5)	$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(37)$	121.2(5)
$\mathrm{C}(44)-\mathrm{C}(43)-\mathrm{C}(36)$	118.5(5)	$\mathrm{C}(44)-\mathrm{C}(43)-\mathrm{C}(48)$	118.6(5)
$\mathrm{C}(48)-\mathrm{C}(43)-\mathrm{C}(36)$	122.3(5)	$\mathrm{C}(45)-\mathrm{C}(44)-\mathrm{C}(43)$	121.0(5)
C(44)-C(45)-C(46)	120.3(5)	$\mathrm{C}(47)-\mathrm{C}(46)-\mathrm{C}(45)$	119.3(5)
$\mathrm{C}(46)-\mathrm{C}(47)-\mathrm{C}(48)$	120.8(5)	C(43)-C(48)-C(47)	120.1(5)
C(50)-C(49)-C(36)	121.0(5)	C(54)-C(49)-C(36)	121.3(4)
C(54)-C(49)-C(50)	117.7(5)	C(51)-C(50)-C(49)	121.2(5)
C(50)-C(51)-C(52)	120.7(5)	C(53)-C(52)-C(51)	118.5(5)
C(52)-C(53)-C(54)	120.9(5)	$C(49)-C(54)-C(53)$	121.1(5)

6.4.13. Crystallographic Data Of 136

Crystal Data \& Structure Refinement

Figure 6.33: X-Ray single crystal structure and molecular structure of lactone 136 (numbering of atoms is arbitrary).

Identification code	10230	
Empirical formula	$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{3}$	
Color	colorless	
Formula weight	$372.44 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$	
Temperature	100 K	
Wavelength	0.71073 A	
Crystal system	monclinic	
Space group	P 21 (No. 4)	
Unit cell dimensions	$a=8.8667(18) \AA$	$\alpha=90^{\circ}$.
	$\mathrm{b}=11.936(2) \AA$	$\beta=94.816(4)^{\circ}$.
	$\mathrm{c}=18.687(4) \AA$	$\gamma=90^{\circ}$.
Volume	1970.7(7) \AA^{3}	
Z	4	
Density (calculated)	$1.255 \mathrm{Mg} \cdot \mathrm{m}^{-3}$	
Absorption coefficient	$0.081 \mathrm{~mm}^{-1}$	
F(000)	792 e	
Crystal size	$0.185 \times 0.072 \times 0.012 \mathrm{~mm}^{3}$	
θ range for data collection	1.094 to 32.388°.	

Index ranges	$-13 \leq \mathrm{h} \leq 13,-17 \leq \mathrm{k} \leq 17,-28 \leq \mathrm{I} \leq 28$
Reflections collected	60158
Independent reflections	$14075\left[\mathrm{R}_{\text {int }}=0.1002\right]$
Reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$	11068
Completeness to $\theta=25.242^{\circ}$	100.0%
Absorption correction	Gaussian
Max. and min. transmission	1.00 and 0.99
Refinement method	Full-matrix least-squares on F^{2}
Data/restraints/parameters	$14075 / 1 / 507$
Goodness-of-fit on F^{2}	0.990
Final R indices [l>2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0576$
R indices (all data)	$\mathrm{R}_{1}=0.0777$
Absolute structure parameter	$0.3(6)$
Largest diff. peak and hole	0.6 and $-0.4 \mathrm{e} \cdot \mathrm{A}^{-3}$

Bond Lengths [Å] \& Angles [${ }^{\circ}$]

$\mathrm{O}(1)-\mathrm{C}(1)$	$1.426(3)$
$\mathrm{O}(2)-\mathrm{C}(2)$	$1.452(3)$
$\mathrm{O}(3)-\mathrm{C}(5)$	$1.201(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.533(4)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.510(4)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.542(4)$
$\mathrm{C}(7)-\mathrm{C}(20)$	$1.536(3)$
$\mathrm{C}(8)-\mathrm{C}(13)$	$1.398(4)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.380(4)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.390(4)$
$\mathrm{C}(14)-\mathrm{C}(19)$	$1.400(4)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.383(5)$
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.390(4)$
$\mathrm{C}(20)-\mathrm{C}(25)$	$1.393(3)$
$\mathrm{C}(22)-\mathrm{C}(23)$	$1.391(4)$
$\mathrm{C}(24)-\mathrm{C}(25)$	$1.396(4)$
$\mathrm{O}(11)-\mathrm{C}(37)$	$1.440(3)$
$\mathrm{O}(12)-\mathrm{C}(35)$	$1.346(3)$
$\mathrm{C}(31)-\mathrm{C}(32)$	$1.509(4)$
$\mathrm{C}(33)-\mathrm{C}(34)$	$1.516(4)$
$\mathrm{C}(34)-\mathrm{C}(36)$	$1.495(4)$
$\mathrm{C}(37)-\mathrm{C}(44)$	$1.536(3)$
$\mathrm{C}(38)-\mathrm{C}(39)$	$1.393(3)$
$\mathrm{C}(39)-\mathrm{C}(40)$	$1.382(4)$
$\mathrm{C}(41)-\mathrm{C}(42)$	$1.383(4)$

$\mathrm{O}(1)-\mathrm{C}(7)$	$1.437(3)$
$\mathrm{O}(2)-\mathrm{C}(5)$	$1.344(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.508(4)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.516(4)$
$\mathrm{C}(4)-\mathrm{C}(6)$	$1.525(4)$
$\mathrm{C}(7)-\mathrm{C}(14)$	$1.529(3)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.391(4)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.397(4)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.387(4)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.387(4)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.396(4)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.388(5)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.398(3)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.397(4)$
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.384(4)$
$\mathrm{O}(11)-\mathrm{C}(31)$	$1.431(3)$
$\mathrm{O}(12)-\mathrm{C}(32)$	$1.453(3)$
$\mathrm{O}(13)-\mathrm{C}(35)$	$1.199(4)$
$\mathrm{C}(32)-\mathrm{C}(33)$	$1.525(3)$
$\mathrm{C}(34)-\mathrm{C}(35)$	$1.518(4)$
$\mathrm{C}(37)-\mathrm{C}(38)$	$1.530(3)$
$\mathrm{C}(37)-\mathrm{C}(50)$	$1.531(3)$
$\mathrm{C}(38)-\mathrm{C}(43)$	$1.395(3)$
$\mathrm{C}(40)-\mathrm{C}(41)$	$1.387(4)$
$\mathrm{C}(42)-\mathrm{C}(43)$	$1.388(4)$

$\mathrm{C}(44)-\mathrm{C}(45)$	1.397(3)	$\mathrm{C}(44)-\mathrm{C}(49)$	1.391(3)
$\mathrm{C}(45)-\mathrm{C}(46)$	1.393(4)	$\mathrm{C}(46)-\mathrm{C}(47)$	1.385(4)
$\mathrm{C}(47)-\mathrm{C}(48)$	1.390(4)	C(48)-C(49)	1.393(4)
$\mathrm{C}(50)-\mathrm{C}(51)$	1.400(3)	C(50)-C(55)	1.396(3)
C(51)-C(52)	1.390 (3)	C(52)-C(53)	1.384(4)
$\mathrm{C}(53)-\mathrm{C}(54)$	1.385(4)	C(54)-C(55)	1.393(3)
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(7)$	115.22(19)	$\mathrm{C}(5)-\mathrm{O}(2)-\mathrm{C}(2)$	110.9(2)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	107.4(2)	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	108.7(2)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	106.2(2)	$C(1)-C(2)-C(3)$	114.5(2)
$C(4)-C(3)-C(2)$	104.6(2)	$C(3)-C(4)-C(6)$	115.4(2)
$C(5)-C(4)-C(3)$	103.9(2)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(6)$	111.1(2)
$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(4)$	111.4(2)	$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{O}(2)$	121.8(3)
$O(3)-C(5)-C(4)$	126.8(3)	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	110.1(2)
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(14)$	107.61(18)	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(20)$	105.26(19)
$\mathrm{C}(14)-\mathrm{C}(7)-\mathrm{C}(8)$	114.9(2)	$C(14)-C(7)-C(20)$	111.0(2)
$\mathrm{C}(20)-C(7)-C(8)$	107.49(17)	$C(9)-C(8)-C(7)$	119.9(2)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	118.2(2)	$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(7)$	121.8(2)
$C(8)-C(9)-C(10)$	120.6(2)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	120.7(3)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	119.1(2)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	120.5(3)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$	120.8(3)	C(15)-C(14)-C(7)	122.9(2)
C(15)-C(14)-C(19)	118.5(2)	$C(19)-C(14)-C(7)$	117.9(2)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	120.6(3)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	120.5(3)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	119.4(3)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	120.2(3)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	120.8(3)	$C(21)-C(20)-C(7)$	119.7(2)
$\mathrm{C}(25)-\mathrm{C}(20)-\mathrm{C}(7)$	121.6(2)	$\mathrm{C}(25)-\mathrm{C}(20)-\mathrm{C}(21)$	118.6(2)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	120.6(2)	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	120.2(2)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	119.4(2)	C(23)-C(24)-C(25)	120.6(2)
$\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{C}(24)$	120.6(2)	$\mathrm{C}(31)-\mathrm{O}(11)-\mathrm{C}(37)$	116.05(17)
$\mathrm{C}(35)-\mathrm{O}(12)-\mathrm{C}(32)$	110.4(2)	$\mathrm{O}(11)-\mathrm{C}(31)-\mathrm{C}(32)$	106.85(19)
$\mathrm{O}(12)-\mathrm{C}(32)-\mathrm{C}(31)$	108.9(2)	$\mathrm{O}(12)-\mathrm{C}(32)-\mathrm{C}(33)$	104.8(2)
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	115.4(2)	C(34)-C(33)-C(32)	104.1(2)
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	102.5(2)	C(36)-C(34)-C(33)	117.4(3)
$\mathrm{C}(36)-\mathrm{C}(34)-\mathrm{C}(35)$	112.8(3)	$\mathrm{O}(12)-\mathrm{C}(35)-\mathrm{C}(34)$	111.0(2)
$\mathrm{O}(13)-\mathrm{C}(35)-\mathrm{O}(12)$	121.4(3)	$\mathrm{O}(13)-\mathrm{C}(35)-\mathrm{C}(34)$	127.5(3)
$\mathrm{O}(11)-\mathrm{C}(37)-\mathrm{C}(38)$	108.31(18)	$\mathrm{O}(11)-\mathrm{C}(37)-\mathrm{C}(44)$	104.79(18)
$\mathrm{O}(11)-\mathrm{C}(37)-\mathrm{C}(50)$	110.59(19)	$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{C}(44)$	112.24(19)
C(38)-C(37)-C(50)	115.28(19)	C(50)-C(37)-C(44)	105.13(18)
C(39)-C(38)-C(37)	119.0(2)	C(39)-C(38)-C(43)	117.9(2)
$\mathrm{C}(43)-\mathrm{C}(38)-\mathrm{C}(37)$	123.0(2)	$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{C}(38)$	121.3(2)
$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{C}(41)$	120.1(2)	$\mathrm{C}(42)-\mathrm{C}(41)-\mathrm{C}(40)$	119.4(2)
$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)$	120.4(2)	$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(38)$	120.8(2)
$\mathrm{C}(45)-\mathrm{C}(44)-\mathrm{C}(37)$	119.8(2)	C(49)-C(44)-C(37)	121.3(2)
$\mathrm{C}(49)-\mathrm{C}(44)-\mathrm{C}(45)$	118.8(2)	$\mathrm{C}(46)-\mathrm{C}(45)-\mathrm{C}(44)$	120.7(2)
$\mathrm{C}(47)-\mathrm{C}(46)-\mathrm{C}(45)$	120.1(3)	$\mathrm{C}(46)-\mathrm{C}(47)-\mathrm{C}(48)$	119.7(2)
$\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{C}(49)$	120.1(2)	$\mathrm{C}(44)-\mathrm{C}(49)-\mathrm{C}(48)$	120.6(2)
$\mathrm{C}(51)-\mathrm{C}(50)-\mathrm{C}(37)$	121.8(2)	$\mathrm{C}(55)-\mathrm{C}(50)-\mathrm{C}(37)$	119.6(2)
C(55)-C(50)-C(51)	118.3(2)	C(52)-C(51)-C(50)	120.9(2)
C(53)-C(52)-C(51)	120.0(2)	C(52)-C(53)-C(54)	119.8(2)
C(53)-C(54)-C(55)	120.4(2)	C(54)-C(55)-C(50)	120.5(2)

6.4.14. Crystallographic Data Of 137

Crystal Data \& Structure Refinement

Figure 6.34: X-Ray single crystal structure and molecular structure of lactone 137 (numbering of atoms is arbitrary).

Identification code	10251	
Empirical formula	$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{3}$	
Color	colorless	
Formula weight	$372.44 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$	
Temperature	100 K	
Wavelength	$0.71073 \AA$	
Crystal system	monoclinic	
Space group	$\mathrm{P} 2_{1}(\mathrm{No}. \mathrm{4)}$	
Unit cell dimensions	$\mathrm{a}=8.850(3) \AA$	$\alpha=90^{\circ}$.
	$\mathrm{b}=12.205(5) \AA$	$\beta=92.758(7)^{\circ}$.
	$\mathrm{c}=18.397(7) \AA$	$\mathrm{Y}=90^{\circ}$.
Volume	$1984.7(13) \AA^{3}$	
Z	4	
Density (calculated)	$1.246{\mathrm{Mg} \cdot \mathrm{m}^{-3}}$	
Absorption coefficient	$0.081 \mathrm{~mm}^{-1}$	
F(000)	792 e	

Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $1>2 \sigma(\mathrm{I})$
Completeness to $\theta=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indices $[1>2 \sigma(1)]$
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
$0.261 \times 0.215 \times 0.020 \mathrm{~mm}^{3}$
1.108 to 26.506°.
$-11 \leq h \leq 11,-15 \leq k \leq 15,-22 \leq \mathrm{l} \leq 22$
41274
8154 [$\mathrm{R}_{\text {int }}=0.0869$]
5934
100.0\%

Gaussian
1.00 and 0.98

Full-matrix least-squares on F^{2}
8154/1/507
1.068
$\begin{array}{ll}R_{1}=0.0564 & w R^{2}=0.1464 \\ R_{1}=0.0912 & w R^{2}=0.1760\end{array}$
0.6(9)
0.428 and $-0.319 \mathrm{e} \cdot \AA^{-3}$

Bond Lengths [Å] \& Angles [${ }^{\circ}$]

$\mathrm{O}(1)-\mathrm{C}(7)$	$1.438(6)$
$\mathrm{O}(11)-\mathrm{C}(37)$	$1.435(6)$
$\mathrm{O}(2)-\mathrm{C}(2)$	$1.451(6)$
$\mathrm{O}(12)-\mathrm{C}(35)$	$1.340(7)$
$\mathrm{O}(3)-\mathrm{C}(5)$	$1.198(7)$
$\mathrm{C}(20)-\mathrm{C}(7)$	$1.545(6)$
$\mathrm{C}(20)-\mathrm{C}(25)$	$1.397(6)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.386(8)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.525(6)$
$\mathrm{C}(22)-\mathrm{C}(23)$	$1.379(7)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.391(7)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.376(7)$
$\mathrm{C}(38)-\mathrm{C}(43)$	$1.394(7)$
$\mathrm{C}(38)-\mathrm{C}(39)$	$1.386(7)$
$\mathrm{C}(25)-\mathrm{C}(24)$	$1.380(7)$
$\mathrm{C}(13)-\mathrm{C}(8)$	$1.393(6)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.390(6)$
$\mathrm{C}(53)-\mathrm{C}(54)$	$1.380(8)$
$\mathrm{C}(50)-\mathrm{C}(51)$	$1.391(7)$
$\mathrm{C}(43)-\mathrm{C}(42)$	$1.384(8)$
$\mathrm{C}(52)-\mathrm{C}(51)$	$1.387(8)$
$\mathrm{C}(2)-\mathrm{C}(1)$	$1.489(7)$

$O(1)-C(1)$	$1.439(5)$
$O(11)-C(31)$	$1.425(6)$
$O(2)-C(5)$	$1.350(7)$
$O(12)-C(32)$	$1.464(6)$
$O(13)-C(35)$	$1.210(7)$
$C(20)-C(21)$	$1.396(7)$
$C(17)-C(16)$	$1.373(8)$
$C(7)-C(14)$	$1.534(6)$
$C(22)-C(21)$	$1.398(7)$
$C(15)-C(14)$	$1.390(7)$
$C(14)-C(19)$	$1.390(7)$
$C(10)-C(9)$	$1.386(6)$
$C(38)-C(37)$	$1.526(7)$
$C(11)-C(12)$	$1.367(7)$
$C(12)-C(13)$	$1.387(7)$
$C(24)-C(23)$	$1.369(8)$
$C(53)-C(52)$	$1.377(8)$
$C(50)-C(37)$	$1.536(7)$
$C(50)-C(55)$	$1.385(7)$
$C(18)-C(19)$	$1.394(7)$
$C(42)-C(41)$	$1.383(8)$
$C(2)-C(3)$	$1.534(7)$

C(37)-C(44)	1.533(6)	$\mathrm{C}(54)-\mathrm{C}(55)$	1.378(8)
C(39)-C(40)	1.390(7)	$\mathrm{C}(5)-\mathrm{C}(4)$	1.502(7)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.503(8)	$\mathrm{C}(41)-\mathrm{C}(40)$	$1.375(8)$
C(44)-C(49)	1.386(8)	$\mathrm{C}(44)-\mathrm{C}(45)$	1.398(9)
C(33)-C(32)	1.518(8)	$\mathrm{C}(33)-\mathrm{C}(34)$	1.510(9)
C(35)-C(34)	1.513(8)	$\mathrm{C}(32)-\mathrm{C}(31)$	1.507(8)
$\mathrm{C}(4)-\mathrm{C}(6)$	1.511(9)	$\mathrm{C}(49)$-C(48)	1.429(8)
$\mathrm{C}(45)-\mathrm{C}(46)$	1.387(8)	$\mathrm{C}(48)-\mathrm{C}(47)$	1.348(10)
$\mathrm{C}(46)-\mathrm{C}(47)$	1.377(10)	$\mathrm{C}(34)-\mathrm{C}(36)$	1.443(10)
$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{C}(1)$	115.6(3)	$\mathrm{C}(31)-\mathrm{O}(11)-\mathrm{C}(37)$	116.3(4)
$\mathrm{C}(5)-\mathrm{O}(2)-\mathrm{C}(2)$	110.2(4)	$\mathrm{C}(35)-\mathrm{O}(12)-\mathrm{C}(32)$	110.7(4)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(7)$	121.8(4)	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(25)$	118.0(4)
$\mathrm{C}(25)-\mathrm{C}(20)-\mathrm{C}(7)$	119.7(4)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	119.4(5)
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(20)$	110.2(3)	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(14)$	105.4(3)
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	108.7(3)	$C(14)-C(7)-C(20)$	104.6(3)
$C(8)-C(7)-C(20)$	115.0(4)	$C(8)-C(7)-C(14)$	112.5(3)
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	120.1(5)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	120.9(5)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(7)$	121.0(4)	C(19)-C(14)-C(7)	120.5(4)
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(15)$	118.4(4)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	119.8(5)
C(17)-C(16)-C(15)	120.5(5)	C(43)-C(38)-C(37)	120.1(4)
C(39)-C(38)-C(43)	117.6(5)	C(39)-C(38)-C(37)	122.3(4)
$C(20)-C(21)-C(22)$	120.3(5)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	119.8(4)
C(24)-C(25)-C(20)	121.1(5)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	120.8(4)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$	120.4(4)	$C(23)-C(24)-C(25)$	120.3(5)
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(7)$	118.6(4)	C(9)-C(8)-C(7)	123.3(4)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	117.8(4)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	121.3(4)
C(52)-C(53)-C(54)	118.7(5)	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	120.2(4)
C(51)-C(50)-C(37)	122.7(4)	C(55)-C(50)-C(37)	119.6(4)
C(55)-C(50)-C(51)	117.6(5)	$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(38)$	121.8(5)
C(17)-C(18)-C(19)	120.3(5)	C(53)-C(52)-C(51)	120.5(5)
$\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	120.5(5)	$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)$	119.6(5)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	107.7(4)	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	105.8(4)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	115.1(4)	$\mathrm{O}(11)-\mathrm{C}(37)-\mathrm{C}(38)$	104.8(4)
$\mathrm{O}(11)-\mathrm{C}(37)-\mathrm{C}(50)$	110.2(4)	$\mathrm{O}(11)-\mathrm{C}(37)-\mathrm{C}(44)$	107.1(4)
$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{C}(50)$	108.1(4)	$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{C}(44)$	110.4(4)
C(44)-C(37)-C(50)	115.7(4)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	107.2(4)
C(55)-C(54)-C(53)	121.0(5)	$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{C}(50)$	121.1(5)
C(38)-C(39)-C(40)	120.7(5)	$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(4)$	111.5(5)
$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{O}(2)$	120.9(5)	$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(4)$	127.6(5)
C(54)-C(55)-C(50)	121.2(5)	$C(4)-C(3)-C(2)$	106.1(4)
C(40)-C(41)-C(42)	119.4(5)	$\mathrm{C}(49)-\mathrm{C}(44)-\mathrm{C}(37)$	121.6(5)
C(49)-C(44)-C(45)	118.8(5)	$\mathrm{C}(45)-\mathrm{C}(44)-\mathrm{C}(37)$	119.2(5)
$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(32)$	105.3(5)	$\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{C}(39)$	120.8(5)
$\mathrm{O}(12)-\mathrm{C}(35)-\mathrm{C}(34)$	111.3(5)	$\mathrm{O}(13)-\mathrm{C}(35)-\mathrm{O}(12)$	121.7(5)
O(13)-C(35)-C(34)	127.0(6)	$\mathrm{O}(12)-\mathrm{C}(32)-\mathrm{C}(33)$	106.0(4)
$\mathrm{O}(12)-\mathrm{C}(32)-\mathrm{C}(31)$	107.6(4)	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	114.6(5)
$C(5)-C(4)-C(3)$	104.2(4)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(6)$	114.0(5)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(6)$	117.0(5)	$\mathrm{O}(11)-\mathrm{C}(31)-\mathrm{C}(32)$	107.0(4)
$C(44)-C(49)-C(48)$	118.9(6)	$\mathrm{C}(46)-\mathrm{C}(45)-\mathrm{C}(44)$	120.9(6)

$\begin{array}{ll}C(47)-C(48)-C(49) & 121.1(6) \\ C(48)-C(47)-C(46) & 120.2(6)\end{array}$
$C(47)-C(46)-C(45)$
120.1(6)

C(36)-C(34)-C(33)
121.7(6)

C(33)-C(34)-C(35)
103.4(5)

C(36)-C(34)-C(35)
112.3(6)

6.4.15. Crystallographic Data Of 131a

Crystal Data \& Structure Refinement

Figure 6.35: X-Ray single crystal structure and molecular structure of 2,5-trans-disubstituted ether 131a (numbering of atoms is arbitrary).

Identification code
Empirical formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection

10245
$\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{4}$
colorless
$444.54 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
200 K
0.71073 Å
monoclinic
P2 ${ }_{1}$ (No. 4)
$a=8.5623(4) \AA$
$\alpha=90^{\circ}$.
$b=16.4804(8) \AA$
$\beta=98.122(4)^{\circ}$.
$c=8.6025(4) \AA$
$\gamma=90^{\circ}$.
1201.72(10) \AA^{3}

2
$1.229 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$0.080 \mathrm{~mm}^{-1}$
476 e
$0.29 \times 0.15 \times 0.15 \mathrm{~mm}^{3}$
3.440 to 33.129°.

Index ranges
Reflections collected
Independent reflections
Reflections with $1>2 \sigma(1)$
Completeness to $\theta=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indices $[1>2 \sigma(1)]$
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
$-13 \leq h \leq 13,-25 \leq k \leq 25,-13 \leq \mathrm{l} \leq 13$
26607
$9025\left[\mathrm{R}_{\text {int }}=0.0424\right]$
8105
99.2\%

Gaussian
0.99 and 0.98

Full-matrix least-squares on F^{2}
9025/1/301
1.112
$\mathrm{R}_{1}=0.0555$

$$
w R^{2}=0.1446
$$

$\mathrm{R}_{1}=0.0823$
$w R^{2}=0.1612$
0.3(5)
0.37(3)
0.9 and $-1.1 \mathrm{e} \cdot \AA^{-3}$

Bond Lengths [Å] \& Angles [${ }^{\circ}$]

$O(1)-C(1)$	$1.428(3)$
$O(2)-C(8)$	$1.201(3)$
$O(3)-C(9)$	$1.449(3)$
$O(4)-C(11)$	$1.448(2)$
$C(1)-C(7)$	$1.516(3)$
$C(2)-C(6)$	$1.517(4)$
$C(4)-C(5)$	$1.515(3)$
$C(9)-C(10)$	$1.490(4)$
$C(11)-C(18)$	$1.532(2)$
$C(12)-C(13)$	$1.396(3)$
$C(13)-C(14)$	$1.401(3)$
$C(15)-C(16)$	$1.385(4)$
$C(18)-C(19)$	$1.398(3)$
$C(19)-C(20)$	$1.389(3)$
$C(21)-C(22)$	$1.384(4)$
$C(24)-C(25)$	$1.404(2)$
$C(25)-C(26)$	$1.391(3)$
$C(27)-C(28)$	$1.385(3)$
$C(4)-O(1)-C(1)$	$109.16(16)$
$C(5)-O(4)-C(11)$	$114.64(14)$
$O(1)-C(1)-C(7)$	$108.75(19)$
$C(1)-C(2)-C(3)$	$101.47(16)$
$C(6)-C(2)-C(3)$	$114.7(2)$
$O(1)-C(4)-C(3)$	$106.95(17)$

$\mathrm{O}(1)-\mathrm{C}(4)$	$1.428(2)$
$\mathrm{O}(3)-\mathrm{C}(8)$	$1.347(3)$
$\mathrm{O}(4)-\mathrm{C}(5)$	$1.427(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.534(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.534(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.538(3)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.502(3)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.540(2)$
$\mathrm{C}(11)-\mathrm{C}(24)$	$1.532(2)$
$\mathrm{C}(12)-\mathrm{C}(17)$	$1.400(3)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.382(4)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.395(3)$
$\mathrm{C}(18)-\mathrm{C}(23)$	$1.397(3)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.385(4)$
$\mathrm{C}(22)-\mathrm{C}(23)$	$1.392(3)$
$\mathrm{C}(24)-\mathrm{C}(29)$	$1.393(3)$
$\mathrm{C}(26)-\mathrm{C}(27)$	$1.384(3)$
$\mathrm{C}(28)-\mathrm{C}(29)$	$1.397(3)$
$\mathrm{C}(8)-\mathrm{O}(3)-\mathrm{C}(9)$	$116.6(2)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$105.55(17)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)$	$113.08(18)$
$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(1)$	$113.5(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$104.83(18)$
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$111.91(17)$

$C(5)-C(4)-C(3)$	$110.27(19)$
$C(8)-C(7)-C(1)$	$115.38(19)$
$O(2)-C(8)-C(7)$	$127.1(2)$
$O(3)-C(9)-C(10)$	$107.7(3)$
$O(4)-C(11)-C(18)$	$104.51(13)$
$C(18)-C(11)-C(12)$	$106.16(13)$
$C(24)-C(11)-C(18)$	$113.82(14)$
$C(13)-C(12)-C(17)$	$118.86(16)$
$C(12)-C(13)-C(14)$	$120.08(19)$
$C(14)-C(15)-C(16)$	$119.49(18)$
$C(16)-C(17)-C(12)$	$120.3(2)$
$C(23)-C(18)-C(11)$	$122.96(16)$
$C(20)-C(19)-C(18)$	$120.8(2)$
$C(22)-C(21)-C(20)$	$119.3(2)$
$C(22)-C(23)-C(18)$	$120.6(2)$
$C(29)-C(24)-C(11)$	$123.00(15)$
$C(26)-C(25)-C(24)$	$120.94(19)$
$C(26)-C(27)-C(28)$	$119.77(19)$
$C(24)-C(29)-C(28)$	$121.19(18)$

$O(4)-C(5)-C(4)$	$109.60(16)$
$O(2)-C(8)-O(3)$	$123.4(2)$
$O(3)-C(8)-C(7)$	$109.5(2)$
$O(4)-C(11)-C(12)$	$110.11(13)$
$O(4)-C(11)-C(24)$	$107.84(13)$
$C(24)-C(11)-C(12)$	$113.99(13)$
$C(13)-C(12)-C(11)$	$120.45(15)$
$C(17)-C(12)-C(11)$	$120.50(16)$
$C(15)-C(14)-C(13)$	$120.6(2)$
$C(15)-C(16)-C(17)$	$120.6(2)$
$C(19)-C(18)-C(11)$	$118.74(16)$
$C(23)-C(18)-C(19)$	$118.22(18)$
$C(21)-C(20)-C(19)$	$120.5(2)$
$C(21)-C(22)-C(23)$	$120.6(2)$
$C(25)-C(24)-C(11)$	$118.58(15)$
$C(29)-C(24)-C(25)$	$117.85(17)$
$C(27)-C(26)-C(25)$	$120.28(19)$
$C(27)-C(28)-C(29)$	$120.0(2)$

6.4.16. Crystallographic Data Of 165

Crystal Data \& Structure Refinement

Figure 6.36: X-Ray single crystal structure and molecular structure of tetrazolylvinylsulfone $\mathbf{1 6 5}$ (numbering of atoms is arbitrary).

Identification code
Empirical formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume

Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $1>2 \sigma(\mathrm{I})$

10229
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$
colorless
$236.25 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100 K
0.71073 Å
monoclinic
C2 (No. 5)
$a=15.7115(19) \AA \quad \alpha=90^{\circ}$.
$b=5.4826(7) \AA \quad \beta=90.526(2)^{\circ}$.
$c=11.8473(15) \AA \quad Y=90^{\circ}$.
$1020.5(2) \AA^{3}$
4
$1.538 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$0.307 \mathrm{~m}^{-1}$
488 e
$0.364 \times 0.285 \times 0.142 \mathrm{~mm}^{3}$
1.719 to 36.317°.
$-26 \leq h \leq 26,-9 \leq \mathrm{k} \leq 9,-19 \leq \mathrm{l} \leq 19$
19793
$4870\left[\mathrm{R}_{\text {int }}=0.0216\right]$
4723

Completeness to $\theta=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indices [$1>2 \sigma(I)$]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
99.9 \%

Gaussian
0.97 and 0.93

Full-matrix least-squares on F^{2}
4870/1/145
1.130
$\mathrm{R}_{1}=0.0241$
$\mathrm{R}_{1}=0.0256$
$w R^{2}=0.0691$
-0.008(19)
0.5 and $-0.3 \mathrm{e} \cdot \AA^{-3}$

Bond Lengths [Å] \& Angles [${ }^{\circ}$]

$\mathrm{S}(1)-\mathrm{O}(1)$	$1.4360(10)$
$\mathrm{S}(1)-\mathrm{C}(1)$	$1.7780(10)$
$\mathrm{N}(1)-\mathrm{N}(2)$	$1.3534(12)$
$\mathrm{N}(1)-\mathrm{C}(4)$	$1.4408(13)$
$\mathrm{N}(3)-\mathrm{N}(4)$	$1.3655(15)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.3221(19)$
$\mathrm{C}(4)-\mathrm{C}(9)$	$1.3882(16)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.389(2)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.3965(15)$
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(2)$	$109.77(6)$
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(1)$	$107.62(5)$
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(1)$	$101.78(5)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{N}(2)$	$107.38(8)$
$\mathrm{N}(3)-\mathrm{N}(2)-\mathrm{N}(1)$	$106.70(9)$
$\mathrm{C}(1)-\mathrm{N}(4)-\mathrm{N}(3)$	$104.83(9)$
$\mathrm{N}(4)-\mathrm{C}(1)-\mathrm{S}(1)$	$125.72(8)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{S}(1)$	$119.31(10)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(9)$	$122.76(9)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$118.52(11)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$120.62(10)$
$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(8)$	$118.03(10)$

$\mathrm{S}(1)-\mathrm{O}(2)$	$1.4347(10)$
$\mathrm{S}(1)-\mathrm{C}(2)$	$1.7430(10)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.3427(13)$
$\mathrm{N}(2)-\mathrm{N}(3)$	$1.2955(14)$
$\mathrm{N}(4)-\mathrm{C}(1)$	$1.3187(13)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.3833(15)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.3951(16)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.3923(18)$
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(1)$	$105.76(5)$
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{O}(1)$	$119.49(6)$
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(2)$	$110.78(6)$
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(4)$	$121.27(8)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)$	$131.33(9)$
$\mathrm{N}(2)-\mathrm{N}(3)-\mathrm{N}(4)$	$111.21(9)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{S}(1)$	$124.19(7)$
$\mathrm{N}(4)-\mathrm{C}(1)-\mathrm{N}(1)$	$109.88(9)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{N}(1)$	$117.89(9)$
$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{N}(1)$	$119.32(9)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$119.91(11)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$120.16(11)$

6.5. Abbreviations	
3D	three-dimensional
9-bBN	9-Borabicyclo[3.3.1]nonan
Å	Ångström, 1 A $=10^{-10} \mathrm{~m}$
Ac	acetyl
Alpine ${ }^{\circledR}$ borane	9-(2,6,6-trimethylbicyclo[3.1.1]hept-3-yl)-9-borabicyclo[3.3.1]nonane
aq.	aqueous
AQN	anthraquinone-1,4-diyl diether
Ar	aromatic group/ arene/ aryl
AS	amino acid
BCL	Burkholderia cepacia lipase
Bn	benzyl
bmim	1-butyl-3-methylimidazolium
br	broad
BSTFA	N, O-bis(trimethylsilyl)trifluoroacetamide
DM-BINAP	1,1'-binaphthalene-2,2'-diyl)bis[bis(3,5dimethylphenyl)phosphine]
Bu	butyl
ca.	circa
calcd.	calculated
Cat	catechol
cat.	catalytic
CBS	Corey-Bakshi-Shibata
CCL	Candida cylindracea lipase
conc.	concentrated
Cp	cyclopentadienyl
Cp*	1,2,3,4,5-pentamethylcyclopentadienyl
CSA	camphorsulfonic acid
CM	alkene cross metathesis
COD	bis(1,5-cyclooctadiene)
Cy	cyclohexane

δ
d
d
D

DBU
DCC
DCE
DCM
DHQ
DHQD
DIAD
DIBAL
DIPA
DIPEA
DEAD
DMA
DMAP
DMF
DMPU
DMSO
DNA
dppp
d.r.

Dr.
DSP
DTX
E
E2
EC_{50}
ee
e.g.

EI
chemical shift

day

doublet
right (Lat. dextro)
1,8-diazabicycloundec-7-ene
N, N^{\prime}-dicyclohexylcarbodiimide
dichloroethane
dichloromethane
hydroquinine
dihydroquinidin
di-i-propyl azodicarboxylate
di-i-butylaluminium hydride
di-i-propylamine
di-i-propylethylamine
diethyl azodicarboxylate
N, N^{\prime}-dimethylacetamide
(dimethylamino)-pyridine
N, N^{\prime}-dimethylformamide
1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone
dimethyl sulfoxide
deoxyribonucleic acid
(bis(1,3-diphenylphosphino)-propane)
diastereomeric ratio
doctor
diarrhetic shellfish poisoning
dinophysistoxin
entgegen
bimolecular elimination
half maximal effective concentration 24 h
enantiomeric excess
for example (Lat. exempli gratia)
electron ionization

epi	epimer
ESI	electronspray ionization
Et	ethyl
et al.	and others (Lat. et alli, et aliae, et alia)
eq.	equivalent
eV	electronvolt
FGI	functional group interconversion
g	gram
GC	gas chromatography
Grubbs II	```(1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene) dichloro(phenylmethylene)```
h	hour
HMDS	hexamethyldisilamide
HMPT	tris(dimethylamino)phosphine
HPLC	high performance liquid chromatography
HRMS	high resolution mass spectroscopy
Hz	Hertz, $1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$
HV	high vacuum
i	iso
ibid.	in the same place (Lat. ibidem)
im	imidazol
$i-\mathrm{Ph}$	ipso (position in Ph ring)
IPP	i-pentenyl pyrophosphate
IR	infrared spectroscopy
J	coupling constant
L	ligand
L	left (Lat. levo)
L	liter
Lat.	Latinum
Lev	levulinyl
LLS	longest linear sequence
m	meta

m
m
μ

M
m / z
Me
Mes
MIB
min
MS
MS
MTBE
n
NBS
NHK
NIS
NME
nmp

NMR
nOe
0
OA
OTf
OXONE ${ }^{\circledR}$
p
PCC
PCL
Ph
pH
Ph.D.
PHAL
multiplet
10^{-3}
10^{-6}
molar: mol $\cdot \mathrm{l}^{-1}$
mass per charge
methyl
mesityl/ (1,3,5-trimethylphenyl)
3-exo-morpholinoisoborneol
minute
mass spectrometry
molecular sieves
methyl-t-butylether
10^{-9}
N -bromosuccinimide
Nozaki-Hiyama-Kishi
N-iodosuccinimide
N-methylephedrine
(Z)-2-hydroxy-5,5-dimethyl-1-(4-methyl-1-piperazinyl)-

2-hexene-1,4-dione
nuclear magnetic resonance
nuclear Overhauser effect
ortho
ocadaic acid
trifluoromethanesulfonate
$\mathrm{KHSO}_{5} \cdot 0.5 \mathrm{KHSO}_{4} \cdot 0.5 \mathrm{~K}_{2} \mathrm{SO}_{4}$
para
pyridinium chlorochromate
Penicillinum camemberti lipase
phenyl
potential of hydrogen
doctor of philosophy
1,4-phthalazinediyl diether

ppm	parts per million
PPTS	pyridinium p-toluenesulfonate
PTC	phase transfer catalysis
PTX	paclitaxel
PVP	poly(4-vinylpyridine)
Py	pyridine
PYR	2,5-diphenyl-4,6-pyrimidinediyl diether
q	quartet
quant.	quantitative
R	unspecified protecting group/ organic substituent
R	right (Lat. rectus)
®	registered trade mark
rac	racemic
RCAM	ring closing alkyne metathesis
RCM	ring closing olefin metathesis
Red-Al ${ }^{\text {® }}$	sodium bis(2-methoxyethoxy)aluminum hydride
RNA	ribonucleic acid
rt	room temperature/ ambient temperature
S	singlet
S	left (Lat. sinister)
sat.	saturated
SD	standard deviation
sm	starting material
$\mathrm{S}_{\mathrm{N}} 2$	bimolecular nucleophilic substitution
t	tertiary
t	triplet
TASF	tris(dimethylamino)sulfonium difluorotrimethylsilicate
TBAF	tetra- n-butylammonium fluoride
TBAI	tetra- n-butyammonium iodide
TBS	t-butyldimethylsilyl
TC	thiophene-2-carboxylate
TEA	triethylammonium

TEMPO	2,2,6,6-tetramethyl-1-piperidinyloxy
TES	triethylsilyl
TFA	trifluoro acetic acid
THF	tetrahydrofuran
TIPS	triisopropylsilyl
TLC	thin layer chromatography
TMEDA	tetramethylethylenediamine
TMS	trimethylsilyl
Tos	tosyl
Ts-DPEN	1 -amino-2-tosylamino-1,2-diphenylethane
U	enzymatic units
UV	ultra violet
Vs.	versus
Z	zusammen

7. Bibliography

[1] F. Sertürner, J. Pharm. 1806, 14, 33-37.
[2] F. Wöhler, Ann. Phys. 1828, 88, 253-256.
[3] O. Wallach, W. Brass, Liebigs Ann. Chem. 1884, 225, 291-314.
[4] O. Wallach, Liebigs Ann. Chem. 1885, 227, 277-302.
[5] E. Fischer, Chem. Ber. 1891, 24, 1836-1845.
[6] E. Fischer, Chem. Ber. 1891, 24, 2683-2687.
[7] E. Fischer, E. Fourneau, Chem. Ber. 1901, 34, 2868-2877.
[8] J. Meienhofer, E. Schnabel, H. Bremer, O. Brinkhoff, R. Zabel, W. Sroka, H. Klostermeyer, D. Brandenburg, T. Okuda, H. Zahn, Z. Naturforsch., B: Chem. Sci. 1963, 18b, 1120-1121.
[9] R. B. Woodward, F. Sondheimer, D. Taub, K. Heusler, W. M. McLamore, J. Am. Chem. Soc. 1952, 74, 4223-4251.
[10] H. M. E. Cardwell, J. W. Cornforth, S. R. Duff, H. Holtermann, R. Robinson, Chem. Ind. 1951, 389-390.
[11] A. Eschenmoser, Q. Rev. Chem. Soc. 1970, 24, 366-415.
[12] R. B. Woodward, Pure Appl. Chem. 1973, 33, 145-178.
[13] E. J. Corey, R. D. Cramer, W. J. Howe, J. Am. Chem. Soc. 1972, 94, 440-459.
[14] E. J. Corey, N. M. Weinshenker, T. K. Schaaf, W. Huber, J. Am. Chem. Soc. 1969, 91, 5675-5677.
[15] R. W. Armstrong, J. M. Beau, S. H. Cheon, W. J. Christ, H. Fujioka, W. H. Ham, L. D. Hawkins, H. Jin, S. H. Kang, Y. Kishi, M. J. Martinelli, J. McWhorter, William W. , M. Mizuno, M. Nakata, A. E. Stutz, F. X. Talamas, M. Taniguchi, J. A. Tino, K. Ueda, J.-i. Uenishi, J. B. White, M. Yonaga, J. Am. Chem. Soc. 1989, 111, 7525-7530.
[16] K. C. Nicolaou, R. J. Aversa, J. Jin, F. Rivas, J. Am. Chem. Soc. 2010, 132, 6855-6861.
[17] K. C. Nicolaou, M. O. Frederick, A. C. B. Burtoloso, R. M. Denton, F. Rivas, K. P. Cole, R. J. Aversa, R. Gibe, T. Umezawa, T. Suzuki, J. Am. Chem. Soc. 2008, 130, 7466-7476.
[18] K. C. Nicolaou, P. Heretsch, T. Nakamura, A. Rudo, M. Murata, K. Konoki, J. Am. Chem. Soc. 2014, 136, 16444-16451.
[19] K. C. Nicolaou, J. H. Seo, T. Nakamura, R. J. Aversa, J. Am. Chem. Soc. 2011, 133, 214-219.
[20] R. A. Holton, C. Somoza, H. B. Kim, F. Liang, R. J. Biediger, P. D. Boatman, M. Shindo, C. C. Smith, S. Kim, J. Am. Chem. Soc. 1994, 116, 1597-1598.
[21] R. A. Holton, H. B. Kim, C. Somoza, F. Liang, R. J. Biediger, P. D. Boatman, M. Shindo, C. C. Smith, S. Kim, J. Am. Chem. Soc. 1994, 116, 1599-1600.
[22] K. C. Nicolaou, Z. Yang, J. J. Liu, H. Ueno, P. G. Nantermet, R. K. Guy, C. F. Claiborne, J. Renaud, E. A. Couladouros, K. Paulvannan, E. J. Sorensen, Nature 1994, 367, 630.
[23] A. Fürstner, P. W. Davies, Chem. Commun. 2005, 0, 2307-2320.
[24] K. Radkowski, B. Sundararaju, A. Fürstner, Angew. Chem. Int. Ed. 2013, 52, 355-360.
[25] B. Sundararaju, A. Fürstner, Angew. Chem. 2013, 125, 14300-14304.
[26] S. M. Rummelt, A. Fürstner, Angew. Chem. Int. Ed. 2014, 53, 3626-3630.
[27] A. Fürstner, Chem. Soc. Rev. 2009, 38, 3208-3221.
[28] K. B. Sharpless, The Nobel Prize in Chemistry 2001, Nobelprize.org Nobel Media AB 2014. Web. 14 May 2018. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2001/sharpless-facts.html
[29] G. Wittig, The Nobel Prize in Chemistry 1979, Nobelprize.org Nobel Media AB 2014. Web. 14 May 2018. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1979/wittiglecture.html
[30] H. J. Domínguez, J. G. Napolitano, M. T. Fernández-Sánchez, D. Cabrera-García, A. Novelli, M. Norte, J. J. Fernández, A. H. Daranas, Org. Lett. 2014, 16, 4546-4549.
[31] M. A. Faust, J. Phycol. 1993, 29, 100-107.
[32] A. Herrera-Sepúlveda, L. K. Medlin, G. Murugan, A. P. Sierra-Beltrán, A. A. Cruz-Villacorta, N. Y. Hernández-Saavedra, K. Müller, J. Phycol. 2015, 51, 173-188.
[33] P. Gopalakrishnakone, V. H. Jr., A. Tubaro, E. Kim, W. R. Kem, Marine and Freshwater Toxins, SpringerReference (Singapore), 2016.
[34] C.-K. Lu, Y.-M. Chen, S.-H. Wang, Y.-Y. Wu, Y.-M. Cheng, Tetrahedron Lett. 2009, 50, 1825-1827.
[35] J. i. Kobayashi, M. Takahashi, M. Ishibashi, J. Chem. Soc., Chem. Commun. 1995, 16, 1639-1640.
[36] J. G. Napolitano, M. Norte, J. M. Padrón, J. J. Fernández, A. H. Daranas, Angew. Chem. Int. Ed. 2009, 48, 796-799.
[37] R. A. Hill, A. Sutherland, Nat. Prod. Rep. 2014, 33, 1126-1130.
[38] S. Omura, Macrolide Antibiotics, Academic Press (New York), 1984.
[39] A. G. Myers, B. H. Yang, H. Chen, L. McKinstry, D. J. Kopecky, J. L. Gleason, J. Am. Chem. Soc. 1997, 119, 6496-6511.
[40] E. J. Corey, H. A. Kirst, Tetrahedron Lett. 1968, 9, 5041-5043.
[41] E. J. Corey, C. Rücker, Tetrahedron Lett. 1982, 23, 719-722.
[42] S. Nahm, S. M. Weinreb, Tetrahedron Lett. 1981, 22, 3815-3818.
[43] B. M. Trost, H. Yang, G. Dong, Chem. Eur. J. 2011, 17, 9789-9805.
[44] E. A. Crane, T. P. Zabawa, R. L. Farmer, K. A. Scheidt, Angew. Chem. Int. Ed. 2011, 50, 9112-9115.
[45] H. C. Brown, G. G. Pai, J. Org. Chem. 1985, 50, 1384-1394.
[46] J. Mulzer, M. Berger, J. Org. Chem. 2004, 69, 891-898.
[47] C. A. Sandoval, Y. Li, K. Ding, R. Noyori, Chem. Asian J. 2008, 3, 1801-1810.
[48] S. Inoki, T. Mukaiyama, Chem. Lett. 1990, 19, 67-70.
[49] G. A. Phillips, Ph.D. Thesis 2014, The University of Western Ontario, Canada.
[50] N. A. Morra, B. L. Pagenkopf, Org. Lett. 2011, 13, 572-575.
[51] G. Valot, C. S. Regens, D. P. O'Malley, E. Godineau, H. Takikawa, A. Fürstner, Angew. Chem. Int. Ed. 2013, 52, 9534-9538.
[52] B. Menendez Perez, D. Schuch, J. Hartung, Org. Biomol. Chem. 2008, 6, 3532-3541.
[53] C. Palmer, N. A. Morra, A. C. Stevens, B. Bajtos, B. P. Machin, B. L. Pagenkopf, Org. Lett. 2009, 11, 5614-5617.
[54] K. Parkan, L. Werner, Z. Lövyová, E. Prchalová, L. Kniežo, Carbohydr. Res. 2010, 345, 352-362.
[55] J. R. Kramer, T. J. Deming, J. Am. Chem. Soc. 2012, 134, 4112-4115.
[56] P. Arya, A. Barkley, K. D. Randell, J. Comb. Chem. 2002, 4, 193-198.
[57] D. Horton, T. Miyake, Carbohydr. Res. 1988, 184, 221-229.
[58] G. J. McGarvey, C. A. LeClair, B. A. Schmidtmann, Org. Lett. 2008, 10, 4727-4730.
[59] J. R. Kramer, T. J. Deming, J. Am. Chem. Soc. 2010, 132, 15068-15071.
[60] A. Fürst, P. A. Plattner, Helv. Chim. Acta 1949, 32, 275-283.
[61] S. R. R., Angew. Chem. 1986, 98, 213-236.
[62] H. Satoh, H. S. Hansen, S. Manabe, W. F. van Gunsteren, P. H. Hünenberger, J. Chem. Theory Comput. 2010, 6, 1783-1797.
[63] S. S. Nigudkar, A. V. Demchenko, Chem. Sci. 2015, 6, 2687-2704.
[64] R. Y. Tam, S. S. Ferreira, P. Czechura, J. L. Chaytor, R. N. Ben, J. Am. Chem. Soc. 2008, 130, 17494-17501.
[65] Y. Kaburagi, Y. Kishi, Org. Lett. 2007, 9, 723-726.
[66] A. Wei, Y. Kishi, J. Org. Chem. 1994, 59, 88-96.
[67] K. C. Nicolaou, G.-q. Shi, J. L. Gunzner, P. Gärtner, P. A. Wallace, M. A. Ouellette, S. Shi, M. E. Bunnage, K. A. Agrios, C. A. Veale, C.-K. Hwang, J. Hutchinson, C. V. C. Prasad, W. W. Ogilvie, Z. Yang, Chem. Eur. J. 1999, 5, 628-645.
[68] J. Pietruszka, A. Witt, Synthesis 2006, 24, 4266-4268.
[69] L. Ji, G.-Q. Zhou, C. Qian, X.-Z. Chen, Eur. J. Org. Chem. 2014, 17, 3622-3636.
[70] A. Proteau-Gagné, K. Rochon, M. Roy, P.-J. Albert, B. Guérin, L. Gendron, Y. L. Dory, Biorg. Med. Chem. Lett. 2013, 23, 5267-5269.
[71] S. Ohira, Synth. Commun. 1989, 19, 561-564.
[72] G. J. Roth, B. Liepold, S. G. Müller, H. J. Bestmann, Synthesis 2004, 1, 59-62.
[73] S. Müller, B. Liepold, G. J. Roth, H. J. Bestmann, Synlett 1996, 6, 521-522.
[74] D. Giguère, R. Patnam, M.-A. Bellefleur, C. St-Pierre, S. Sato, R. Roy, Chem. Commun. 2006, 22, 2379-2381.
[75] G. Anquetin, S. L. Rawe, K. McMahon, E. P. Murphy, P. V. Murphy, Chem. Eur. J. 2008, 14, 1592-1600.
[76] K. Fujiwaraa, S.-i. Souma, H. Mishima, A. Murai, Synlett 2002, 9, 1493-1495.
[77] S. Hatakeyama, K. Saijo, S. Takano, Tetrahedron Lett. 1985, 26, 865-868.
[78] A. Kawai, O. Hara, Y. Hamada, T. Shioiri, Tetrahedron Lett. 1988, 29, 6331-6334.
[79] L. Lazarides, A. S. Smith, R. Stocker, J. C. Theobald, Patent WO2008101867 2008.
[80] K. Schönauer, E. Zbiral, Liebigs Ann. Chem. 1983, 6, 1031-1042.
[81] A. Bianco, A. de Luca, R. Antonio Mazzei, M. Nicoletti, P. Passacantilli, R. Alves De Lima, Phytochemistry 1994, 35, 1485-1487.
[82] G. Piancatelli, A. Scettri, M. D'Auria, Tetrahedron Lett. 1977, 18, 3483-3484.
[83] T. D. Michels, M. S. Dowling, C. D. Vanderwal, Angew. Chem. Int. Ed. 2012, 51, 7572-7576.
[84] E. M. Carreira, Patent US2003/0088100 2003.
[85] A. Fettes, E. M. Carreira, J. Org. Chem. 2003, 68, 9274-9283.
[86] X.-W. Chang, D.-W. Zhang, F. Chen, Z.-M. Dong, D. Yang, Synlett 2009, 19, 3159-3162.
[87] K. J. Hale, Z. Xiong, L. Wang, S. Manaviazar, R. Mackle, Org. Lett. 2015, 17, 198-201.
[88] N. Kojima, Y. Suga, T. Matsumoto, T. Tanaka, A. Akatsuka, T. Yamori, S. Dan, H. Iwasaki, M. Yamashita, Biorg. Med. Chem. 2015, 23, 1276-1283.
[89] N. Kojima, N. Maezaki, H. Tominaga, M. Yanai, D. Urabe, T. Tanaka, Chem. Eur. J. 2004, 10, 672-680.
[90] N. Kojima, N. Maezaki, H. Tominaga, M. Asai, M. Yanai, T. Tanaka, Chem. Eur. J. 2003, 9, 4980-4990.
[91] B. M. Trost, H. C. Shen, T. Schulz, C. Koradin, H. Schirok, Org. Lett. 2003, 5, 4149-4151.
[92] C. T. Meta, K. Koide, Org. Lett. 2004, 6, 1785-1787.
[93] S. M. Rummelt, K. Radkowski, D.-A. Roşca, A. Fürstner, J. Am. Chem. Soc. 2015, 137, 5506-5519.
[94] S. M. Rummelt, J. Preindl, H. Sommer, A. Fürstner, Angew. Chem. Int. Ed. 2015, 54, 6241-6245.
[95] M. Mori, N. Kaneta, M. Shibasaki, J. Organomet. Chem. 1994, 464, 35-40.
[96] H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem. Rev. 1994, 94, 2483-2547.
[97] J. K. Cha, W. J. Christ, Y. Kishi, Tetrahedron 1984, 40, 2247-2255.
[98] E. M. Suh, Y. Kishi, J. Am. Chem. Soc. 1994, 116, 11205-11206.
[99] Y. Kishi, Pure \& Appl. Chem. 1989, 61, 313-324.
[100] T. J. Donohoe, K. Blades, P. R. Moore, M. J. Waring, J. J. G. Winter, M. Helliwell, N. J. Newcombe, G. Stemp, J. Org. Chem. 2002, 67, 7946-7956.
[101] K. Blades, T. J. Donohoe, J. J. G. Winter, G. Stemp, Tetrahedron Lett. 2000, 41, 4701-4704.
[102] T. J. Donohoe, R. Garg, P. R. Moore, Tetrahedron Lett. 1996, 37, 3407-3410.
[103] T. J. Donohoe, N. J. Newcombe, M. J. Waring, Tetrahedron Lett. 1999, 40, 6881-6885.
[104] T. J. Donohoe, P. R. Moore, M. J. Waring, N. J. Newcombe, Tetrahedron Lett. 1997, 38, 5027-5030.
[105] T. J. Donohoe, L. Mitchell, M. J. Waring, M. Helliwell, A. Bell, N. J. Newcombe, Org. Biomol. Chem. 2003, 1, 2173-2186.
[106] S. Kim, B. Kim, J. In, Synthesis 2009, 12, 1963-1968.
[107] E. M. Carreira, J. Du Bois, J. Am. Chem. Soc. 1995, 117, 8106-8125.
[108] H. M. Schmidt, J. F. Arens, Recl. Trav. Chim. Pays-Bas 1967, 86, 1138-1142.
[109] C. Cai, J. Liu, Y. Du, R. J. Linhardt, J. Org. Chem. 2010, 75, 5754-5756.
[110] K. Tatsuta, M. Kitagawa, T. Horiuchi, K. Tsuchiya, N. Shimada, J. Antibiot. 1995, 48, 741-744.
[111] H. Takamura, H. Wada, M. Ogino, T. Kikuchi, I. Kadota, D. Uemura, J. Org. Chem. 2015, 80, 3111-3123.
[112] V. Navickas, M. E. Maier, Tetrahedron 2010, 66, 94-101.
[113] M. P. Koroteev, S. A. Lysenko, N. M. Pugashova, A. M. Il'inets, É. E. Nifant'ev, Russ. J. Gen. Chem. 1989, 59, 2116-2123.
[114] E. E. Nifantyev, A. M. Koroteev, M. P. Koroteev, S. V. Meshkov, V. K. Belsky, A. R. Bekker, Phosphorus, Sulfur Silicon Relat. Elem. 1996, 113, 1-13.
[115] A. M. Koroteev, M. P. Koroteev, A. R. Bekker, V. K. Belskii, E. E. Nifantyev, Phosphorus, Sulfur Silicon Relat. Elem. 1996, 111, 168-168.
[116] N.-H. Lin, L. E. Overman, M. H. Rabinowitz, L. A. Robinson, M. J. Sharp, J. Zablocki, J. Am. Chem. Soc. 1996, 118, 9062-9072.
[117] S. Lebreton, J. Jaunbergs, M. G. Roth, D. A. Ferguson, J. K. De Brabander, Biorg. Med. Chem. Lett. 2008, 18, 5879-5883.
[118] D. R. Fandrick, K. R. Fandrick, J. T. Reeves, Z. Tan, C. S. Johnson, H. Lee, J. J. Song, N. K. Yee, C. H. Senanayake, Org. Lett. 2010, 12, 88-91.
[119] R. W. Hoffmann, H. Brinkmann, G. Frenking, Chem. Ber. 1990, 123, 2387-2394.
[120] B. M. Trost, S. T. Wrobleski, J. D. Chisholm, P. E. Harrington, M. Jung, J. Am. Chem. Soc. 2005, 127, 13589-13597.
[121] F. E. McDonald, K. S. Reddy, Y. Díaz, J. Am. Chem. Soc. 2000, 122, 4304-4309.
[122] S. N. Greszler, J. T. Malinowski, J. S. Johnson, Org. Lett. 2011, 13, 3206-3209.
[123] S. A. Burova, F. E. McDonald, J. Am. Chem. Soc. 2002, 124, 8188-8189.
[124] S. Newton, C. F. Carter, C. M. Pearson, L. de C. Alves, H. Lange, P. Thansandote, S. V. Ley, Angew. Chem. Int. Ed. 2014, 53, 4915-4920.
[125] T. D. Machajewski, C.-H. Wong, Synthesis 1999, S1, 1469-1472.
[126] M.-J. Lin, T.-P. Loh, J. Am. Chem. Soc. 2003, 125, 13042-13043.
[127] L. C. Hirayama, K. K. Dunham, B. Singaram, Tetrahedron Lett. 2006, 47, 5173-5176.
[128] T.-P. Loh, M.-J. Lin, K.-L. Tan, Tetrahedron Lett. 2003, 44, 507-509.
[129] T. Mukaiyama, T. Harada, Chem. Lett. 1981, 10, 621-624.
[130] Z. Pakulski, A. Zamojski, Tetrahedron 1997, 53, 2653-2666.
[131] C. V. Ramana, S. B. Narute, R. G. Gonnade, R. S. Patil, Synthesis 2008, 11, 1783-1787.
[132] D. R. Fandrick, K. R. Fandrick, J. T. Reeves, Z. Tan, W. Tang, A. G. Capacci, S. Rodriguez, J. J. Song, H. Lee, N. K. Yee, C. H. Senanayake, J. Am. Chem. Soc. 2010, 132, 7600-7601.
[133] C.-H. Ding, X.-L. Hou, Chem. Rev. 2011, 111, 1914-1937.
[134] R. N. Ben, A. A. Eniade, L. Hauer, Org. Lett. 1999, 1, 1759-1762.
[135] T. Uchiyama, V. P. Vassilev, T. Kajimoto, W. Wong, C.-C. Lin, H. Huang, C.-H. Wong, J. Am. Chem. Soc. 1995, 117, 5395-5396.
[136] D. V. Jarikote, C. O’Reilly, P. V. Murphy, Tetrahedron Lett. 2010, 51, 6776-6778.
[137] A. P. Kozikowski, K. L. Sorgi, B. C. Wang, Z.-b. Xu, Tetrahedron Lett. 1983, 24, 1563-1566.
[138] K. L. Chan, G. S. Coumbarides, S. Islam, P. B. Wyatt, Tetrahedron Lett. 2005, 46, 61-65.
[139] E. A. Colby, K. C. O'Brie, T. F. Jamison, J. Am. Chem. Soc. 2005, 127, 4297-4307.
[140] J. T. Zacharia, M. Hayashi, Carbohydr. Res. 2012, 348, 91-94.
[141] H. T. Dao, U. Schneider, S. Kobayashi, Chem. Asian J. 2011, 6, 2522-2529.
[142] C. L. B. Macdonald, A. M. Corrente, C. G. Andrews, A. Taylor, B. D. Ellis, Chem. Commun. 2004, 2, 250-251.
[143] W. Sittiwong, M. W. Richardson, C. E. Schiaffo, T. J. Fisher, P. H. Dussault, Beilstein J. Org. Chem. 2013, 9, 1526-1532.
[144] S. Mari, F. J. Cañada, J. Jiménez-Barbero, A. Bernardi, G. Marcou, I. Motto, I. Velter, F. Nicotra, B. La Ferla, Eur. J. Org. Chem. 2006, 13, 2925-2933.
[145] K.-F. Hsiao, F.-L. Yang, S.-H. Wu, K.-T. Wang, Biotechnol. Lett 1995, 17, 963-968.
[146] G. Fernandez-Lorente, J. M. Palomo, J. Cocca, C. Mateo, P. Moro, M. Terreni, R. Fernandez-Lafuente, J. M. Guisan, Tetrahedron 2003, 59, 5705-5711.
[147] M. Kloosterman, E. W. J. Mosmuller, H. E. Schoemaker, E. M. Meijer, Tetrahedron Lett. 1987, 28, 2989-2992.
[148] R. Sundell, L. T. Kanerva, Eur. J. Org. Chem. 2013, 22, 4971-4978.
[149] E. Levoirier, Y. Canac, S. Norsikian, A. Lubineau, Carbohydr. Res. 2004, 339, 2737-2747.
[150] S. Marchesan, D. Macmillan, Chem. Commun. 2008, 36, 4321-4323.
[151] A. J. Pihko, K. C. Nicolaou, A. M. P. Koskinen, Tetrahedron: Asymmetry 2001, 12, 937-942.
[152] R. Martinez-Pascual, O. Viñas-Bravo, S. Meza-Reyes, M. A. Iglesias-Arteaga, J. Sandoval-Ramírez, Synth. Commun. 2004, 34, 4591-4596.
[153] T. Heidelberg, J. Thiem, Carbohydr. Res. 1997, 301, 145-153.
[154] L. V. Dunkerton, K. T. Brady, F. Mohamed, B. P. McKillican, J. Carbohydr. Chem. 1988, 7, 49-65.
[155] K. Zhu, J. S. Panek, Org. Lett. 2011, 13, 4652-4655.
[156] Y. Nakahara, A. Fujita, K. Beppu, T. Ogawa, Tetrahedron 1986, 42, 6465-6476.
[157] K. C. Nicolaou, H. J. Mitchell, K. C. Fylaktakidou, R. M. Rodríguez, H. Suzuki, Chem. Eur. J. 2000, 6, 3116-3148.
[158] A. Dondoni, A. Marra, Chem. Rev. 2004, 104, 2557-2600.
[159] A. Kirschning, C. Kujat, S. Luiken, E. Schaumann, Eur. J. Org. Chem. 2007, 15, 2387-2400.
[160] N. A. Jones, S. A. Nepogodiev, C. J. MacDonald, D. L. Hughes, R. A. Field, J. Org. Chem. 2005, 70, 8556-8559.
[161] Y. Liu, J. Cornella, R. Martin, J. Am. Chem. Soc. 2014, 136, 11212-11215.
[162] X. Wang, Y. Liu, R. Martin, J. Am. Chem. Soc. 2015, 137, 6476-6479.
[163] P. Wipf, Y. Uto, S. Yoshimura, Chem. Eur. J. 2002, 8, 1670-1681.
[164] S. Furuta, M. Kuroboshi, T. Hiyama, Bull. Chem. Soc. Jpn. 1998, 71, 1939-1951.
[165] D. Seebach, K. H. Geiß, A. K. Beck, B. Graf, H. Daum, Chem. Ber. 1972, 105, 3280-3300.
[166] M. Barbero, S. Cadamuro, I. Degani, S. Dughera, R. Fochi, J. Chem. Soc., Perkin Trans. 1 1993, 17, 2075-2080.
[167] Y. Takashima, Y. Kobayashi, J. Org. Chem. 2009, 74, 5920-5926.
[168] K. Sidoryk, A. Korda, L. Rárová, J. Oklešt́ková, M. Strnad, P. Cmoch, Z. Pakulski, K. Gwardiak, R. Karczewski, R. Luboradzki, Tetrahedron 2015, 71, 2004-2012.
[169] E. J. Corey, N. W. Gilman, B. E. Ganem, J. Am. Chem. Soc. 1968, 90, 5616-5617.
[170] B. E. Maki, K. A. Scheidt, Org. Lett. 2008, 10, 4331-4334.
[171] B. E. Maki, A. Chan, E. M. Phillips, K. A. Scheidt, Tetrahedron 2009, 65, 3102-3109.
[172] S. D. Sarkar, S. Grimme, A. Studer, J. Am. Chem. Soc. 2010, 132, 1190-1191.
[173] B. R. Travis, M. Sivakumar, G. O. Hollist, B. Borhan, Org. Lett. 2003, 5, 1031-1034.
[174] R. Davis, K. G. Untch, J. Org. Chem. 1981, 46, 2985-2987.
[175] T. Tsunoda, K. Uemoto, C. Nagino, M. Kawamura, H. Kaku, S. Itô, Tetrahedron Lett. 1999, 40, 7355-7358.
[176] C. Gioia, A. Hauville, L. Bernardi, F. Fini, A. Ricci, Angew. Chem. Int. Ed. 2008, 47, 9236-9239.
[177] Y. Anami, T. Itoh, D. Egawa, N. Yoshimoto, K. Yamamoto, J. Med. Chem. 2014, 57, 4351-4367.
[178] A. P. Kozikowski, J. Lee, J. Org. Chem. 1990, 55, 863-870.
[179] L. Thijs, E. H. M. Stokkingreef, J. M. Lemmens, B. Zwanenburg, Tetrahedron 1985, 41, 2949-2956.
[180] M. Ball, M. J. Gaunt, D. F. Hook, A. S. Jessiman, S. Kawahara, P. Orsini, A. Scolaro, A. C. Talbot, H. R. Tanner, S. Yamanoi, S. V. Ley, Angew. Chem. Int. Ed. 2005, 44, 5433-5438.
[181] H. Kusama, R. Hara, S. Kawahara, T. Nishimori, H. Kashima, N. Nakamura, K. Morihira, I. Kuwajima, J. Am. Chem. Soc. 2000, 122, 3811-3820.
[182] E. J. Corey, A. Venkateswarlu, J. Am. Chem. Soc. 1972, 94, 6190-6191.
[183] Y. R. Kim, D. K. An, Bull. Korean Chem. Soc. 2012, 33, 4194-4196.
[184] S. Laval, W. Dayoub, L. Pehlivan, E. Métay, D. Delbrayelle, G. Mignani, M. Lemaire, Tetrahedron Lett. 2014, 55, 23-26.
[185] T. Naota, Y. Shichijo, S.-I. Murahashi, J. Chem. Soc., Chem. Commun. 1994, 11, 1359-1360.
[186] S.-I. Murahashi, T. Naota, Bull. Chem. Soc. Jpn. 1996, 69, 1805-1824.
[187] S. Kumar, S. K. Dixit, S. K. Awasthi, Tetrahedron Lett. 2014, 55, 3802-3804.
[188] V. Barragan-Montero, A. Awwad, S. Combemale, P. de Santa Barbara, B. Jover, J.-P. Molès, J.-L. Montero, ChemMedChem 2011, 6, 1771-1774.
[189] P. Kocieński, K. Jarowicki, S. Marczak, Synthesis 1991, 12, 1191-1200.
[190] Y. Feng, X. Jiang, J. K. De Brabander, J. Am. Chem. Soc. 2012, 134, 17083-17093.
[191] S. U. Hansen, M. Baráth, B. A. B. Salameh, R. G. Pritchard, W. T. Stimpson, J. M. Gardiner, G. C. Jayson, Org. Lett. 2009, 11, 4528-4531.
[192] S. Hosokawa, M. Isobe, J. Org. Chem. 1999, 64, 37-48.
[193] A. H. Viuff, L. M. Besenbacher, A. Kamori, M. T. Jensen, M. Kilian, A. Kato, H. H. Jensen, Org. Biomol. Chem. 2015, 13, 9637-9658.
[194] M. Zheng, W. Xue, T. Xue, H. Gong, Org. Lett. 2016, 18, 6152-6155.
[195] S. Xu, N. Onishi, A. Tsurusaki, Y. Manaka, W.-H. Wang, J. T. Muckerman, E. Fujita, Y. Himeda, Eur. J. Inorg. Chem. 2015, 34, 5591-5594.
[196] A. B. Shenvi, H. Gerlach, Helv. Chim. Acta 1980, 63, 2426-2433.
[197] M. C. Slade, J. S. Johnson, Beilstein J. Org. Chem. 2013, 9, 166-172.
[198] A. Fürstner, D. De Souza, L. Turet, M. D. B. Fenster, L. Parra-Rapado, C. Wirtz, R. Mynott, C. W. Lehmann, Chem. Eur. J. 2007, 13, 115-134.
[199] A. Fürstner, M. Wuchrer, Chem. Eur. J. 2006, 12, 76-89.
[200] G. Valot, D. Mailhol, C. S. Regens, D. P. O'Malley, E. Godineau, H. Takikawa, P. Philipps, A. Fürstner, Chem. Eur. J. 2015, 21, 2398-2408.
[201] X. Cai, M. S. Chorghade, A. Fura, G. S. Grewal, K. A. Jauregui, H. A. Lounsbury, R. T. Scannell, C. G. Yeh, M. A. Young, S. Yu, L. Guo, R. M. Moriarty, R. Penmasta, M. S. Rao, R. K. Singhal, Z. Song, J. P. Staszewski, S. M. Tuladhar, S. Yang, Org. Process Res. Dev. 1999, 3, 73-76.
[202] O. H. Gringore, F. P. Rouessac, M. F. Schlecht, H. Drossman, C. H. Heathcock, Organic Syntheses, John Wiley \& Sons, Inc. (New York), 2003.
[203] T. Sato, R. Noyori, Bull. Chem. Soc. Jpn. 1983, 56, 2700-2705.
[204] P. R. Blakemore, P. J. Kocienski, S. Marzcak, J. Wicha, Synthesis 1999, 7, 1209-1215.
[205] T. Hübscher, G. Helmchen, Synlett 2006, 9, 1323-1326.
[206] B. Chatterjee, D. Mondal, S. Bera, Tetrahedron: Asymmetry 2012, 23, 1170-1185.
[207] S. Peyrat, K. Cheng, J. Xie, Synthesis 2013, 45, 2737-2744.
[208] D. K. Mohapatra, P. Dasari, H. Rahaman, R. Pal, Tetrahedron Lett. 2009, 50, 6276-6279.
[209] J. A. Dale, D. L. Dull, H. S. Mosher, J. Org. Chem. 1969, 34, 2543-2549.
[210] I. Ohtani, T. Kusumi, Y. Kashman, H. Kakisawa, J. Am. Chem. Soc. 1991, 113, 4092-4096.
[211] T. R. Hoye, C. S. Jeffrey, F. Shao, Nat. Protocols 2007, 2, 2451-2458.
[212] M. Higashino, N. Ikeda, T. Shinada, K. Sakaguchi, Y. Ohfune, Tetrahedron Lett. 2011, 52, 422-425.
[213] J. A. Gómez-Vidal, M. T. Forrester, R. B. Silverman, Org. Lett. 2001, 3, 2477-2479.
[214] T. Sandmeier, S. Krautwald, H. F. Zipfel, E. M. Carreira, Angew. Chem. Int. Ed. 2015, 54, 14363-14367.
[215] H.-C. Xu, J. D. Brandt, K. D. Moeller, Tetrahedron Lett. 2008, 49, 3868-3871.
[216] P. A. Jacobi, J. I. Kravitz, W. Zheng, J. Org. Chem. 1995, 60, 376-385.
[217] E. Rodrigo, S. Morales, S. Duce, J. L. G. Ruano, M. B. Cid, Chem. Commun. 2011, 47, 11267-11269.
[218] A. Michrowska, M. Bieniek, M. Kim, R. Klajn, K. Grela, Tetrahedron 2003, 59, 4525-4531.
[219] J. H. van Boom, P. M. J. Burgers, Tetrahedron Lett. 1976, 17, 4875-4878.
[220] B. Neises, W. Steglich, Angew. Chem. Int. Ed. Engl. 1978, 17, 522-524.
[221] O. A. Kallatsa, A. M. P. Koskinen, Tetrahedron Lett. 1997, 38, 8895-8898.
[222] H. Wagner, K. Harms, U. Koert, S. Meder, G. Boheim, Angew. Chem. 1996, 108, 2836-2839.
[223] S.-I. Murahashi, T. Naota, H. Hanaoka, Chem. Lett. 1993, 22, 1767-1770.
[224] C. Schmölzer, M. Fischer, W. Schmid, Eur. J. Org. Chem. 2010, 25, 4886-4892.
[225] C. Bonini, L. Chiummiento, M. Funicello, P. Lupattelli, M. Pullez, Eur. J. Org. Chem. 2006, 1, 80-83.
[226] S. Kobayashi, M. Ueno, R. Suzuki, H. Ishitani, H.-S. Kim, Y. Wataya, J. Org. Chem. 1999, 64, 6833-6841.
[227] N. V. Borrero, A. Aponick, J. Org. Chem. 2012, 77, 8410-8416.
[228] S. Ho, C. Bucher, J. L. Leighton, Angew. Chem. Int. Ed. 2013, 52, 6757-6761.
[229] H. J. Bestmann, K. H. Koschatzky, W. Schätzke, J. Süß, O. Vostrowsky, Liebigs Ann. Chem. 1981, 9, 1705-1720.
[230] C. M. Moorhoff, J. Chem. Soc., Perkin Trans. 1 1997, 13, 1987-1996.
[231] R. Mazurkiewicz, T. Gorewoda, A. Kuźnik, M. Grymel, Tetrahedron Lett. 2006, 47, 4219-4220.
[232] C. S. Daeffler, R. H. Grubbs, Org. Lett. 2011, 13, 6429-6431.
[233] R. E. Pincock, T. E. Kiovsky, J. Am. Chem. Soc. 1966, 88, 51-55.
[234] M. Sawa, K. Mizuno, H. Harada, H. Tateishi, Y. Arai, S. Suzuki, M. Oue, H. Tsujiuchi, Y. Furutani, S. Kato, Biorg. Med. Chem. Lett. 2005, 15, 1061-1064.
[235] G. Sabitha, C. Gurumurthy, J. S. Yadav, Synthesis 2014, 46, 110-118.
[236] A. Venkanna, E. Sreedhar, B. Siva, K. S. Babu, K. R. Prasad, J. M. Rao, Tetrahedron: Asymmetry 2013, 24, 1010-1022.
[237] Y. Xing, M. Zhang, S. Ciccarelli, J. Lee, B. Catano, Eur. J. Org. Chem. 2017, 4, 781-785.
[238] X. Chen, X. Li, X.-L. Chen, L.-B. Qu, J.-Y. Chen, K. Sun, Z.-D. Liu, W.-Z. Bi, Y.-Y. Xia, H.-T. Wu, Y.-F. Zhao, Chem. Commun. 2015, 51, 3846-3849.
[239] L. Xie, Y. Wu, W. Yi, L. Zhu, J. Xiang, W. He, J. Org. Chem. 2013, 78, 9190-9195.
[240] K. Peewasan, C. Kuhakarn, D. Soorukram, P. Tuchinda, V. Reutrakul, M. Pohmakotr, J. Fluorine Chem. 2012, 135, 367-372.
[241] J. Preindl, S. Schulthoff, C. Wirtz, J. Lingnau, A. Fürstner, Angew. Chem. Int. Ed. 2017, 56, 7525-7530.
[242] K. Ishigai, H. Fuwa, K. Hashizume, R. Fukazawa, Y. Cho, M. Yotsu-Yamashita, M. Sasaki, Chem. Eur. J. 2013, 19, 5276-5288.
[243] K. Tsubone, K. Hashizume, H. Fuwa, M. Sasaki, Tetrahedron 2011, 67, 6600-6615.
[244] P. Liu, E. N. Jacobsen, J. Am. Chem. Soc. 2001, 123, 10772-10773.
[245] Y. Ogawa, M. Nunomoto, M. Shibasaki, J. Org. Chem. 1986, 51, 1625-1627.
[246] A. Fürstner, M. Bindl, L. Jean, Angew. Chem. Int. Ed. 2007, 46, 9275-9278.
[247] Y. Kwon, S. Schulthoff, Q. M. Dao, C. Wirtz, A. Fürstner, Chem. Eur. J. 2018, 24, 109-114.
[248] C. Lentsch, U. Rinner, Org. Lett. 2009, 11, 5326-5328.
[249] R. Bihovsky, C. Selick, I. Giusti, J. Org. Chem. 1988, 53, 4026-4031.
[250] A. Steinmann, J. Thimm, J. Thiem, Eur. J. Org. Chem. 2007, 33, 5506-5513.
[251] M. H. E. Griffith, O. Hindsgaul, Carbohydr. Res. 1991, 211, 163-166.
[252] L. F. Tietze, R. Fischer, H.-J. Guder, Synthesis 1982, 11, 946-948.
[253] M.-Y. Chen, L. N. Patkar, K.-C. Lu, A. S.-Y. Lee, C.-C. Lin, Tetrahedron 2004, 60, 11465-11475.
[254] J. P. Henschke, P.-Y. Wu, C.-W. Lin, S.-F. Chen, P.-C. Chiang, C.-N. Hsiao, J. Org. Chem. 2015, 80, 2295-2309.
[255] T. Rodríguez-Pérez, I. Lavandera, S. Fernández, Y. S. Sanghvi, M. Ferrero, V. Gotor, Eur. J. Org. Chem. 2007, 17, 2769-2778.
[256] F. Gille, A. Kirschning, Beilstein J. Org. Chem. 2016, 12, 564-570.
[257] S. Höck, H. J. Borschberg, Helv. Chim. Acta 2003, 86, 1397-1409.
[258] M. Kögl, L. Brecker, R. Warrass, J. Mulzer, Eur. J. Org. Chem. 2008, 16, 2714-2730.
[259] P. J. C. Hausoul, A. N. Parvulescu, M. Lutz, A. L. Spek, P. C. A. Bruijnincx, B. M. Weckhuysen, R. J. M. K. Gebbink, Angew. Chem. Int. Ed. 2010, 49, 7972-7975.

Explicit.

[^0]: ${ }^{1}$ F. Sertürner, J. Pharm. 1806, 14, 33-37.
 ${ }^{2}$ F. Wöhler, Ann. Phys. 1828, 88, 253-256.
 ${ }^{3}$ a) O. Wallach, W. Brass, Liebigs Ann. Chem. 1884, 225, 291-314. b) O. Wallach, Liebigs Ann. Chem. 1885, 227, 277-302.

[^1]: ${ }^{4}$ a) E. Fischer, Chem. Ber. 1891, 24, 1836-1845. b) E. Fischer, Chem. Ber. 1891, 24, 2683-2687.
 ${ }^{5}$ E. Fischer, E. Fourneau, Chem. Ber. 1901, 34, 2868-2877.
 ${ }^{6}$ J. Meienhofer, E. Schnabel, H. Bremer, O. Brinkhoff, R. Zabel, W. Sroka, H. Klostermeyer, D. Brandenburg, T. Okuda, H. Zahn, Z. Naturforsch., B: Chem. Sci. 1963, 18b, 1120-1121.
 ${ }^{7}$ Picture taken from http://pdb101.rcsb.org/motm/14 on 04/25/2018.

[^2]: ${ }^{8}$ R. B. Woodward, F. Sondheimer, D. Taub, K. Heusler, W. M. McLamore, J. Am. Chem. Soc. 1952, 74, 4223-4251.
 ${ }^{9}$ H. M. E. Cardwell, J. W. Cornforth, S. R. Duff, H. Holtermann, R. Robinson, Chem. Ind. 1951, 389-390.
 ${ }^{10}$ a) A. Eschenmoser, Q. Rev. Chem. Soc. 1970, 24, 366-415. b) R. B. Woodward, Pure Appl. Chem. 1973, 33, 145-178.
 ${ }^{11}$ E. J. Corey, R. D. Cramer, W. J. Howe, J. Am. Chem. Soc. 1972, 94, 440-459.
 ${ }^{12}$ E. J. Corey, N. M. Weinshenker, T. K. Schaaf, W. Huber, J. Am. Chem. Soc. 1969, 91, 5675-5677.

[^3]: ${ }^{13}$ R. W. Armstrong, J. M. Beau, S. H. Cheon, W. J. Christ, H. Fujioka, W. H. Ham, L. D. Hawkins, H. Jin, S. H. Kang, Y. Kishi, M. J. Martinelli, J. McWhorter, William W. , M. Mizuno, M. Nakata, A. E. Stutz, F. X. Talamas, M. Taniguchi, J. A. Tino, K. Ueda, J.-i. Uenishi, J. B. White, M. Yonaga, J. Am. Chem. Soc. 1989, 111, 7525-7530.

 14 a) K. C. Nicolaou, R. J. Aversa, J. Jin, F. Rivas, J. Am. Chem. Soc. 2010, 132, 6855-6861. b) K. C. Nicolaou, M. O. Frederick, A. C. B. Burtoloso, R. M. Denton, F. Rivas, K. P. Cole, R. J. Aversa, R. Gibe, T. Umezawa, T. Suzuki, J. Am. Chem. Soc. 2008, 130, 7466-7476. c) K. C. Nicolaou, P. Heretsch, T. Nakamura, A. Rudo, M. Murata, K. Konoki, J. Am. Chem. Soc. 2014, 136, 16444-16451. d) K. C. Nicolaou, J. H. Seo, T. Nakamura, R. J. Aversa, J. Am. Chem. Soc. 2011, 133, 214-219.

[^4]: ${ }^{15}$ First total syntheses of Paclitaxel: a) R. A. Holton, C. Somoza, H. B. Kim, F. Liang, R. J. Biediger, P. D. Boatman, M. Shindo, C. C. Smith, S. Kim, J. Am. Chem. Soc. 1994, 116, 1597-1598. b) R. A. Holton, H. B. Kim, C. Somoza, F. Liang, R. J. Biediger, P. D. Boatman, M. Shindo, C. C. Smith, S. Kim, J. Am. Chem. Soc. 1994, 116, 1599-1600. c) K. C. Nicolaou, Z. Yang, J. J. Liu, H. Ueno, P. G. Nantermet, R. K. Guy, C. F. Claiborne, J. Renaud, E. A. Couladouros, K. Paulvannan, E. J. Sorensen, Nature 1994, 367, 630.

[^5]: ${ }^{16}$ A. Fürstner, P. W. Davies, Chem. Commun. 2005, 0, 2307-2320.
 ${ }^{17}$ a) K. Radkowski, B. Sundararaju, A. Fürstner, Angew. Chem. Int. Ed. 2013, 52, 355-360. b) B. Sundararaju, A. Fürstner, Angew. Chem. 2013, 125, 14300-14304. c) S. M. Rummelt, A. Fürstner, Angew. Chem. Int. Ed. 2014, 53, 3626-3630.
 ${ }^{18}$ A. Fürstner, Chem. Soc. Rev. 2009, 38, 3208-3221.
 19 K. B. Sharpless, The Nobel Prize in Chemistry 2001, Nobelprize.org Nobel Media AB 2014. Web. 14 May 2018. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2001/sharpless-facts.html
 20 G. Wittig, The Nobel Prize in Chemistry 1979, Nobelprize.org Nobel Media AB 2014. Web. 14 May 2018. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1979/wittig-lecture.html
 ${ }^{21}$ H. J. Domínguez, J. G. Napolitano, M. T. Fernández-Sánchez, D. Cabrera-García, A. Novelli, M. Norte, J. J. Fernández, A. H. Daranas, Org. Lett. 2014, 16, 4546-4549.

[^6]: ${ }^{22}$ M. A. Faust, J. Phycol. 1993, 29, 100-107.
 ${ }^{23}$ a) See footnote 22. b) A. Herrera-Sepúlveda, L. K. Medlin, G. Murugan, A. P. Sierra-Beltrán, A. A. Cruz-Villacorta, N. Y. Hernández-Saavedra, K. Müller, J. Phycol. 2015, 51, 173-188.
 ${ }^{24}$ P. Gopalakrishnakone, V. H. Jr., A. Tubaro, E. Kim, W. R. Kem, Marine and Freshwater Toxins, SpringerReference (Singapore), 2016.

[^7]: ${ }^{25}$ C.-K. Lu, Y.-M. Chen, S.-H. Wang, Y.-Y. Wu, Y.-M. Cheng, Tetrahedron Lett. 2009, 50, 1825-1827.
 ${ }^{26}$ J. i. Kobayashi, M. Takahashi, M. Ishibashi, J. Chem. Soc., Chem. Commun. 1995, 16, 1639-1640.
 ${ }^{27}$ J. G. Napolitano, M. Norte, J. M. Padrón, J. J. Fernández, A. H. Daranas, Angew. Chem. Int. Ed. 2009, 48, 796-799.

[^8]: ${ }^{28}$ H. J. Domínguez, J. G. Napolitano, M. T. Fernández-Sánchez, D. Cabrera-García, A. Novelli, M. Norte, J. J. Fernández, A. H. Daranas, Org. Lett. 2014, 16, 4546-4549.
 ${ }^{29}$ R. A. Hill, A. Sutherland, Nat. Prod. Rep. 2014, 33, 1126-1130.
 ${ }^{30}$ S. Omura, Macrolide Antibiotics, Academic Press (New York), 1984.
 ${ }^{31}$ Pictures were taken from http://botany.si.edu/references/dinoflagellates/prorocentrum_be.htm and http://www.revistas.unal.edu.co/index.php/actabiol/article/viewFile/9781/28174/98823 on 03/26/2015

[^9]: ${ }^{32}$ Pictures were taken from H. J. Domínguez, J. G. Napolitano, M. T. Fernández-Sánchez, D. Cabrera-García, A. Novelli, M. Norte, J. J. Fernández, A. H. Daranas, Org. Lett. 2014, 16, 4546-4549.
 ${ }^{33}$ See footnote 32.

[^10]: ${ }^{34}$ A. G. Myers, B. H. Yang, H. Chen, L. McKinstry, D. J. Kopecky, J. L. Gleason, J. Am. Chem. Soc. 1997, 119, 6496-6511.

[^11]: ${ }^{35}$ E. J. Corey, H. A. Kirst, Tetrahedron Lett. 1968, 9, 5041-5043.
 ${ }^{36}$ E. J. Corey, C. Rücker, Tetrahedron Lett. 1982, 23, 719-722.
 ${ }^{37}$ S. Nahm, S. M. Weinreb, Tetrahedron Lett. 1981, 22, 3815-3818.
 ${ }^{38}$ B. M. Trost, H. Yang, G. Dong, Chem. Eur. J. 2011, 17, 9789-9805.
 ${ }^{39}$ E. A. Crane, T. P. Zabawa, R. L. Farmer, K. A. Scheidt, Angew. Chem. Int. Ed. 2011, 50, 9112-9115.

[^12]: ${ }^{40}$ H. C. Brown, G. G. Pai, J. Org. Chem. 1985, 50, 1384-1394.
 ${ }^{41}$ J. Mulzer, M. Berger, J. Org. Chem. 2004, 69, 891-898.
 ${ }^{42}$ C. A. Sandoval, Y. Li, K. Ding, R. Noyori, Chem. Asian J. 2008, 3, 1801-1810.

[^13]: ${ }^{43}$ S. Inoki, T. Mukaiyama, Chem. Lett. 1990, 19, 67-70.
 ${ }^{44}$ G. A. Phillips, Ph.D. Thesis 2014, The University of Western Ontario, Canada.
 ${ }^{45}$ N. A. Morra, B. L. Pagenkopf, Org. Lett. 2011, 13, 572-575.
 ${ }^{46}$ G. Valot, C. S. Regens, D. P. O'Malley, E. Godineau, H. Takikawa, A. Fürstner, Angew. Chem. Int. Ed. 2013, 52, 9534-9538.
 ${ }^{47}$ B. Menendez Perez, D. Schuch, J. Hartung, Org. Biomol. Chem. 2008, 6, 3532-3541.
 ${ }^{48}$ C. Palmer, N. A. Morra, A. C. Stevens, B. Bajtos, B. P. Machin, B. L. Pagenkopf, Org. Lett. 2009, 11, 5614-5617.
 ${ }^{49}$ A supply of catalyst 49b for the Mukaiyama cyclization was kindly provided by Dr. M. Ilg.
 ${ }^{50}$ See footnote 46.

[^14]: ${ }^{51}$ K. Parkan, L. Werner, Z. Lövyová, E. Prchalová, L. Kniežo, Carbohydr. Res. 2010, 345, 352-362.
 ${ }^{52}$ J. R. Kramer, T. J. Deming, J. Am. Chem. Soc. 2012, 134, 4112-4115.
 ${ }^{53}$ a) P. Arya, A. Barkley, K. D. Randell, J. Comb. Chem. 2002, 4, 193-198. b) D. Horton, T. Miyake, Carbohydr. Res. 1988, 184, 221 -229. c) G. J. McGarvey, C. A. LeClair, B. A. Schmidtmann, Org. Lett. 2008, 10, 4727-4730. d) J. R. Kramer, T. J. Deming, J. Am. Chem. Soc. 2010, 132, 15068-15071.

[^15]: ${ }^{54}$ A. Fürst, P. A. Plattner, Helv. Chim. Acta 1949, 32, 275-283.
 ${ }^{55}$ S. R. R., Angew. Chem. 1986, 98, 213-236.
 ${ }^{56}$ a) H. Satoh, H. S. Hansen, S. Manabe, W. F. van Gunsteren, P. H. Hünenberger, J. Chem. Theory Comput. 2010, 6, $1783-1797$. b) S. S. Nigudkar, A. V. Demchenko, Chem. Sci. 2015, 6, 2687-2704.
 ${ }^{57}$ R. Y. Tam, S. S. Ferreira, P. Czechura, J. L. Chaytor, R. N. Ben, J. Am. Chem. Soc. 2008, 130, 17494-17501.

[^16]: ${ }^{58}$ G. J. McGarvey, C. A. LeClair, B. A. Schmidtmann, Org. Lett. 2008, 10, 4727-4730.
 ${ }^{59}$ Y. Kaburagi, Y. Kishi, Org. Lett. 2007, 9, 723-726.
 ${ }^{60}$ See footnote 58.

[^17]: ${ }^{61}$ A. Wei, Y. Kishi, J. Org. Chem. 1994, 59, 88-96.
 ${ }^{62}$ K. C. Nicolaou, G.-q. Shi, J. L. Gunzner, P. Gärtner, P. A. Wallace, M. A. Ouellette, S. Shi, M. E. Bunnage, K. A. Agrios, C. A. Veale, C.-K. Hwang, J. Hutchinson, C. V. C. Prasad, W. W. Ogilvie, Z. Yang, Chem. Eur. J. 1999, 5, 628-645.
 ${ }^{63}$ J. Pietruszka, A. Witt, Synthesis 2006, 24, 4266-4268.
 ${ }^{64}$ a) L. Ji, G.-Q. Zhou, C. Qian, X.-Z. Chen, Eur. J. Org. Chem. 2014, 17, 3622-3636. b) A. Proteau-Gagné, K. Rochon, M. Roy, P.-J. Albert, B. Guérin, L. Gendron, Y. L. Dory, Biorg. Med. Chem. Lett. 2013, 23, 5267-5269.
 ${ }^{65}$ S. Ohira, Synth. Commun. 1989, 19, 561-564.
 ${ }^{66}$ a) G. J. Roth, B. Liepold, S. G. Müller, H. J. Bestmann, Synthesis 2004, 1, 59-62. b) S. Müller, B. Liepold, G. J. Roth, H. J. Bestmann, Synlett 1996, 6, 521-522.
 ${ }^{67}$ D. Giguère, R. Patnam, M.-A. Bellefleur, C. St-Pierre, S. Sato, R. Roy, Chem. Commun. 2006, 22, 2379-2381.
 ${ }^{68}$ G. Anquetin, S. L. Rawe, K. McMahon, E. P. Murphy, P. V. Murphy, Chem. Eur. J. 2008, 14, 1592-1600.
 ${ }^{69}$ K. Fujiwaraa, S.-i. Souma, H. Mishima, A. Murai, Synlett 2002, 9, 1493-1495.

[^18]: ${ }^{70}$ S. Hatakeyama, K. Saijo, S. Takano, Tetrahedron Lett. 1985, 26, 865-868.
 ${ }^{71}$ A. Kawai, O. Hara, Y. Hamada, T. Shioiri, Tetrahedron Lett. 1988, 29, 6331-6334.
 ${ }^{72}$ L. Lazarides, A. S. Smith, R. Stocker, J. C. Theobald, Patent WO2008101867 2008.
 ${ }^{73}$ K. Schönauer, E. Zbiral, Liebigs Ann. Chem. 1983, 6, 1031-1042.
 ${ }^{74}$ a) A. Bianco, A. de Luca, R. Antonio Mazzei, M. Nicoletti, P. Passacantilli, R. Alves De Lima, Phytochemistry 1994, 35, $1485-1487$.
 b) S. Hatakeyama, K. Saijo, S. Takano, Tetrahedron Lett. 1985, 26, 865-868.

[^19]: ${ }^{75}$ a) G. Piancatelli, A. Scettri, M. D'Auria, Tetrahedron Lett. 1977, 18, 3483-3484. b) T. D. Michels, M. S. Dowling, C. D. Vanderwal, Angew. Chem. Int. Ed. 2012, 51, 7572-7576.

[^20]: ${ }^{76}$ E. M. Carreira, Patent US2003/0088100 2003.
 ${ }^{77}$ A. Fettes, E. M. Carreira, J. Org. Chem. 2003, 68, 9274-9283.
 ${ }^{78}$ X.-W. Chang, D.-W. Zhang, F. Chen, Z.-M. Dong, D. Yang, Synlett 2009, 19, 3159-3162.
 ${ }^{79}$ K. J. Hale, Z. Xiong, L. Wang, S. Manaviazar, R. Mackle, Org. Lett. 2015, 17, 198-201.
 ${ }^{80}$ a) N. Kojima, Y. Suga, T. Matsumoto, T. Tanaka, A. Akatsuka, T. Yamori, S. Dan, H. Iwasaki, M. Yamashita, Biorg. Med. Chem. 2015, 23, 1276-1283. b) N. Kojima, N. Maezaki, H. Tominaga, M. Yanai, D. Urabe, T. Tanaka, Chem. Eur. J. 2004, 10, 672-680. c) N. Kojima, N. Maezaki, H. Tominaga, M. Asai, M. Yanai, T. Tanaka, Chem. Eur. J. 2003, 9, 4980-4990.
 ${ }^{81}$ a) See footnote 76. b) See footnote 77.

[^21]: ${ }^{82}$ B. Sundararaju, A. Fürstner, Angew. Chem. 2013, 125, 14300-14304.

[^22]: ${ }^{83}$ B. M. Trost, H. C. Shen, T. Schulz, C. Koradin, H. Schirok, Org. Lett. 2003, 5, 4149-4151.
 ${ }^{84}$ C. T. Meta, K. Koide, Org. Lett. 2004, 6, 1785-1787.
 ${ }^{85}$ a) S. M. Rummelt, A. Fürstner, Angew. Chem. Int. Ed. 2014, 53, 3626-3630. b) S. M. Rummelt, K. Radkowski, D.-A. Roşca, A. Fürstner, J. Am. Chem. Soc. 2015, 137, 5506-5519. c) S. M. Rummelt, J. Preindl, H. Sommer, A. Fürstner, Angew. Chem. Int. Ed. 2015, 54, 6241-6245.
 ${ }^{86}$ Both polymeric catalyst $\left[\mathrm{Cp}^{*} \mathrm{RuCl}_{2}\right]_{n}$ and tetrameric catalyst $\left[\mathrm{Cp} \mathrm{RRuCl}_{4}\right.$ were kindly provided by either laboratory assistant K. Radkowski, by Dr. D. Roşca or Dr. S. Rummelt.

[^23]: ${ }^{87}$ S. M. Rummelt, J. Preindl, H. Sommer, A. Fürstner, Angew. Chem. Int. Ed. 2015, 54, 6241-6245.

[^24]: ${ }^{88}$ M. Mori, N. Kaneta, M. Shibasaki, J. Organomet. Chem. 1994, 464, 35-40.
 ${ }^{89}$ H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem. Rev. 1994, 94, 2483-2547.

[^25]: ${ }^{93}$ G. J. McGarvey, C. A. LeClair, B. A. Schmidtmann, Org. Lett. 2008, 10, 4727-4730.
 ${ }^{94}$ J. R. Kramer, T. J. Deming, J. Am. Chem. Soc. 2010, 132, 15068-15071.
 ${ }^{95}$ S. Kim, B. Kim, J. In, Synthesis 2009, 12, 1963-1968.
 ${ }^{96}$ E. M. Carreira, J. Du Bois, J. Am. Chem. Soc. 1995, 117, 8106-8125.
 ${ }^{97}$ H. M. Schmidt, J. F. Arens, Recl. Trav. Chim. Pays-Bas 1967, 86, 1138-1142.

[^26]: ${ }^{98}$ a) E. M. Carreira, Patent US2003/0088100 2003. b) A. Fettes, E. M. Carreira, J. Org. Chem. 2003, 68, 9274-9283.

[^27]: ${ }^{99}$ a) C. Cai, J. Liu, Y. Du, R. J. Linhardt, J. Org. Chem. 2010, 75, 5754-5756. b) K. Tatsuta, M. Kitagawa, T. Horiuchi, K. Tsuchiya, N. Shimada, J. Antibiot. 1995, 48, 741-744. c) H. Takamura, H. Wada, M. Ogino, T. Kikuchi, I. Kadota, D. Uemura, J. Org. Chem. 2015, 80, 3111-3123. d) V. Navickas, M. E. Maier, Tetrahedron 2010, 66, 94-101.
 100 a) M. P. Koroteev, S. A. Lysenko, N. M. Pugashova, A. M. I'inets, É. E. Nifant'ev, Russ. J. Gen. Chem. 1989, 59, 2116 -2123. b) E. E. Nifantyev, A. M. Koroteev, M. P. Koroteev, S. V. Meshkov, V. K. Belsky, A. R. Bekker, Phosphorus, Sulfur Silicon Relat. Elem. 1996, 113, 1-13. c) A. M. Koroteev, M. P. Koroteev, A. R. Bekker, V. K. Belskii, E. E. Nifantyev, Phosphorus, Sulfur Silicon Relat. Elem. 1996, 111, 168-168.

[^28]: ${ }^{101}$ A. G. Myers, B. H. Yang, H. Chen, L. McKinstry, D. J. Kopecky, J. L. Gleason, J. Am. Chem. Soc. 1997, 119, 6496-6511.
 ${ }^{102}$ N.-H. Lin, L. E. Overman, M. H. Rabinowitz, L. A. Robinson, M. J. Sharp, J. Zablocki, J. Am. Chem. Soc. 1996, 118, 9062-9072.
 ${ }^{103}$ S. Lebreton, J. Jaunbergs, M. G. Roth, D. A. Ferguson, J. K. De Brabander, Biorg. Med. Chem. Lett. 2008, 18, 5879-5883.
 104 a) See footnote 101. b) A. G. Myers, B. H. Yang, H. Chen, L. McKinstry, D. J. Kopecky, J. L. Gleason, J. Am. Chem. Soc. 1997, 119, 6496-6511. c) See footnote 103.
 ${ }^{105}$ The calibration was performed with the racemate rac-84.

[^29]: ${ }^{106}$ D. R. Fandrick, K. R. Fandrick, J. T. Reeves, Z. Tan, C. S. Johnson, H. Lee, J. J. Song, N. K. Yee, C. H. Senanayake, Org. Lett. 2010, 12, 88-91.
 107 a) R. W. Hoffmann, H. Brinkmann, G. Frenking, Chem. Ber. 1990, 123, 2387-2394. b) A first supply of pinacolborane 86 was kindly provided by Dr. M.-A. Müller.

[^30]: 108 a) S. Inoki, T. Mukaiyama, Chem. Lett. 1990, 19, 67-70. b) G. A. Phillips, Ph.D. Thesis 2014, The University of Western Ontario, Canada. c) B. Menendez Perez, D. Schuch, J. Hartung, Org. Biomol. Chem. 2008, 6, 3532-3541. d) C. Palmer, N. A. Morra, A. C. Stevens, B. Bajtos, B. P. Machin, B. L. Pagenkopf, Org. Lett. 2009, 11, 5614-5617.
 ${ }^{109}$ G. Valot, C. S. Regens, D. P. O'Malley, E. Godineau, H. Takikawa, A. Fürstner, Angew. Chem. Int. Ed. 2013, 52, 9534-9538.

[^31]: ${ }^{110}$ B. M. Trost, S. T. Wrobleski, J. D. Chisholm, P. E. Harrington, M. Jung, J. Am. Chem. Soc. 2005, 127, 13589-13597.
 ${ }^{111}$ F. E. McDonald, K. S. Reddy, Y. Díaz, J. Am. Chem. Soc. 2000, 122, 4304-4309.
 ${ }^{112}$ S. N. Greszler, J. T. Malinowski, J. S. Johnson, Org. Lett. 2011, 13, 3206-3209.
 ${ }^{113}$ S. A. Burova, F. E. McDonald, J. Am. Chem. Soc. 2002, 124, 8188-8189.
 ${ }^{114}$ S. Newton, C. F. Carter, C. M. Pearson, L. de C. Alves, H. Lange, P. Thansandote, S. V. Ley, Angew. Chem. Int. Ed. 2014, 53, 4915-4920. ${ }^{115}$ T. D. Machajewski, C.-H. Wong, Synthesis 1999, S1, 1469-1472.

[^32]: ${ }^{116}$ A. G. Myers, B. H. Yang, H. Chen, L. McKinstry, D. J. Kopecky, J. L. Gleason, J. Am. Chem. Soc. 1997, 119, 6496-6511.
 ${ }^{117}$ D. R. Fandrick, K. R. Fandrick, J. T. Reeves, Z. Tan, C. S. Johnson, H. Lee, J. J. Song, N. K. Yee, C. H. Senanayake, Org. Lett. 2010, 12, 88-91.
 ${ }^{118}$ M.-J. Lin, T.-P. Loh, J. Am. Chem. Soc. 2003, 125, 13042-13043.
 119 a) L. C. Hirayama, K. K. Dunham, B. Singaram, Tetrahedron Lett. 2006, 47, 5173-5176. c) T.-P. Loh, M.-J. Lin, K.-L. Tan, Tetrahedron Lett. 2003, 44, 507-509.
 ${ }^{120}$ a) T. Mukaiyama, T. Harada, Chem. Lett. 1981, 10, 621-624. b) Z. Pakulski, A. Zamojski, Tetrahedron 1997, 53, $2653-2666$.
 c) C. V. Ramana, S. B. Narute, R. G. Gonnade, R. S. Patil, Synthesis 2008, 11, 1783-1787.

[^33]: ${ }^{121}$ D. R. Fandrick, K. R. Fandrick, J. T. Reeves, Z. Tan, W. Tang, A. G. Capacci, S. Rodriguez, J. J. Song, H. Lee, N. K. Yee, C. H. Senanayake, J. Am. Chem. Soc. 2010, 132, 7600-7601
 ${ }^{122}$ C.-H. Ding, X.-L. Hou, Chem. Rev. 2011, 111, 1914-1937.

[^34]: ${ }^{123}$ a) P. Arya, A. Barkley, K. D. Randell, J. Comb. Chem. 2002, 4, 193-198. b) D. Horton, T. Miyake, Carbohydr. Res. 1988, 184, 221-229.
 c) G. J. McGarvey, C. A. LeClair, B. A. Schmidtmann, Org. Lett. 2008, 10, 4727-4730. d) J. R. Kramer, T. J. Deming, J. Am. Chem. Soc. 2010, 132, 15068-15071.
 ${ }^{124}$ a) R. N. Ben, A. A. Eniade, L. Hauer, Org. Lett. 1999, 1, 1759-1762. b) R. Y. Tam, S. S. Ferreira, P. Czechura, J. L. Chaytor, R. N. Ben, J. Am. Chem. Soc. 2008, 130, 17494-17501.
 ${ }^{125}$ T. Uchiyama, V. P. Vassilev, T. Kajimoto, W. Wong, C.-C. Lin, H. Huang, C.-H. Wong, J. Am. Chem. Soc. 1995, 117, 5395-5396.
 ${ }^{126}$ D. V. Jarikote, C. O’Reilly, P. V. Murphy, Tetrahedron Lett. 2010, 51, 6776-6778.
 ${ }^{127}$ A. P. Kozikowski, K. L. Sorgi, B. C. Wang, Z.-b. Xu, Tetrahedron Lett. 1983, 24, 1563-1566.
 ${ }^{128}$ See footnote 127.

[^35]: ${ }^{129}$ K. L. Chan, G. S. Coumbarides, S. Islam, P. B. Wyatt, Tetrahedron Lett. 2005, 46, 61-65.
 ${ }^{130}$ E. A. Colby, K. C. O'Brie, T. F. Jamison, J. Am. Chem. Soc. 2005, 127, 4297-4307.
 ${ }^{131}$ J. T. Zacharia, M. Hayashi, Carbohydr. Res. 2012, 348, 91-94.

[^36]: ${ }^{132}$ a) H. T. Dao, U. Schneider, S. Kobayashi, Chem. Asian J. 2011, 6, 2522-2529. b) Preparation of InOTf according to: C. L. B. Macdonald, A. M. Corrente, C. G. Andrews, A. Taylor, B. D. Ellis, Chem. Commun. 2004, 2, 250-251.
 ${ }^{133}$ W. Sittiwong, M. W. Richardson, C. E. Schiaffo, T. J. Fisher, P. H. Dussault, Beilstein J. Org. Chem. 2013, 9, 1526-1532.
 ${ }^{134}$ S. Mari, F. J. Cañada, J. Jiménez-Barbero, A. Bernardi, G. Marcou, I. Motto, I. Velter, F. Nicotra, B. La Ferla, Eur. J. Org. Chem. 2006, 13, 2925-2933.
 ${ }^{135}$ G. J. McGarvey, C. A. LeClair, B. A. Schmidtmann, Org. Lett. 2008, 10, 4727-4730.
 ${ }^{136}$ J. R. Kramer, T. J. Deming, J. Am. Chem. Soc. 2010, 132, 15068-15071.

[^37]: ${ }^{137}$ a) K.-F. Hsiao, F.-L. Yang, S.-H. Wu, K.-T. Wang, Biotechnol. Lett 1995, 17, 963-968. b) G. Fernandez-Lorente, J. M. Palomo, J. Cocca, C. Mateo, P. Moro, M. Terreni, R. Fernandez-Lafuente, J. M. Guisan, Tetrahedron 2003, 59, 5705-5711. c) M. Kloosterman, E. W. J. Mosmuller, H. E. Schoemaker, E. M. Meijer, Tetrahedron Lett. 1987, 28, 2989-2992. d) R. Sundell, L. T. Kanerva, Eur. J. Org. Chem. 2013, 22, 4971-4978. e) E. Levoirier, Y. Canac, S. Norsikian, A. Lubineau, Carbohydr. Res. 2004, 339, 2737-2747. ${ }^{138}$ P. Arya, A. Barkley, K. D. Randell, J. Comb. Chem. 2002, 4, 193-198.
 ${ }^{139}$ a) G. J. Roth, B. Liepold, S. G. Müller, H. J. Bestmann, Synthesis 2004, 1, 59-62. b) S. Müller, B. Liepold, G. J. Roth, H. J. Bestmann, Synlett 1996, 6, 521-522.

[^38]: ${ }^{140}$ S. Marchesan, D. Macmillan, Chem. Commun. 2008, 36, 4321-4323.
 ${ }^{141}$ A. J. Pihko, K. C. Nicolaou, A. M. P. Koskinen, Tetrahedron: Asymmetry 2001, 12, 937-942.
 ${ }^{142}$ R. Martinez-Pascual, O. Viñas-Bravo, S. Meza-Reyes, M. A. Iglesias-Arteaga, J. Sandoval-Ramírez, Synth. Commun. 2004, 34, 4591-4596.
 ${ }^{143}$ a) T. Heidelberg, J. Thiem, Carbohydr. Res. 1997, 301, 145-153. b) L. V. Dunkerton, K. T. Brady, F. Mohamed, B. P. McKillican, J. Carbohydr. Chem. 1988, 7, 49-65.
 ${ }^{144}$ K. Zhu, J. S. Panek, Org. Lett. 2011, 13, 4652-4655.

[^39]: ${ }^{145}$ Y. Nakahara, A. Fujita, K. Beppu, T. Ogawa, Tetrahedron 1986, 42, 6465-6476.
 ${ }^{146}$ R. Martinez-Pascual, O. Viñas-Bravo, S. Meza-Reyes, M. A. Iglesias-Arteaga, J. Sandoval-Ramírez, Synth. Commun. 2004, 34, 4591-4596.
 ${ }^{147}$ Y. Kaburagi, Y. Kishi, Org. Lett. 2007, 9, 723-726.
 ${ }^{148}$ G. Anquetin, S. L. Rawe, K. McMahon, E. P. Murphy, P. V. Murphy, Chem. Eur. J. 2008, 14, 1592-1600.

[^40]: 149 a) S. Marchesan, D. Macmillan, Chem. Commun. 2008, 36, 4321-4323. b) A. J. Pihko, K. C. Nicolaou, A. M. P. Koskinen, Tetrahedron: Asymmetry 2001, 12, 937-942.
 ${ }^{150}$ See footnote 149.

[^41]: ${ }^{151}$ K. C. Nicolaou, H. J. Mitchell, K. C. Fylaktakidou, R. M. Rodríguez, H. Suzuki, Chem. Eur. J. 2000, 6, 3116-3148.
 ${ }^{152}$ A. Dondoni, A. Marra, Chem. Rev. 2004, 104, 2557-2600.
 ${ }^{153}$ A. Kirschning, C. Kujat, S. Luiken, E. Schaumann, Eur. J. Org. Chem. 2007, 15, 2387-2400.
 ${ }^{154}$ N. A. Jones, S. A. Nepogodiev, C. J. MacDonald, D. L. Hughes, R. A. Field, J. Org. Chem. 2005, 70, 8556-8559.
 ${ }^{155}$ a) Y. Liu, J. Cornella, R. Martin, J. Am. Chem. Soc. 2014, 136, 11212-11215. b) X. Wang, Y. Liu, R. Martin, J. Am. Chem. Soc. 2015, 137, 6476-6479.
 ${ }^{156}$ P. Wipf, Y. Uto, S. Yoshimura, Chem. Eur. J. 2002, 8, 1670-1681.
 ${ }^{157}$ S. Furuta, M. Kuroboshi, T. Hiyama, Bull. Chem. Soc. Jpn. 1998, 71, 1939-1951.

[^42]: ${ }^{158}$ D. Seebach, K. H. Geiß, A. K. Beck, B. Graf, H. Daum, Chem. Ber. 1972, 105, 3280-3300.
 ${ }^{159}$ M. Barbero, S. Cadamuro, I. Degani, S. Dughera, R. Fochi, J. Chem. Soc., Perkin Trans. 1 1993, 17, 2075-2080.
 ${ }^{160}$ Y. Takashima, Y. Kobayashi, J. Org. Chem. 2009, 74, 5920-5926.
 ${ }^{161}$ K. Sidoryk, A. Korda, L. Rárová, J. Oklešt́ková, M. Strnad, P. Cmoch, Z. Pakulski, K. Gwardiak, R. Karczewski, R. Luboradzki, Tetrahedron 2015, 71, 2004-2012.
 ${ }^{162}$ E. J. Corey, N. W. Gilman, B. E. Ganem, J. Am. Chem. Soc. 1968, 90, 5616-5617.
 ${ }^{163}$ a) B. E. Maki, K. A. Scheidt, Org. Lett. 2008, 10, 4331-4334. b) B. E. Maki, A. Chan, E. M. Phillips, K. A. Scheidt, Tetrahedron 2009, 65, 3102-3109.
 ${ }^{164}$ S. D. Sarkar, S. Grimme, A. Studer, J. Am. Chem. Soc. 2010, 132, 1190-1191.

[^43]: ${ }^{165}$ B. R. Travis, M. Sivakumar, G. O. Hollist, B. Borhan, Org. Lett. 2003, 5, 1031-1034.
 ${ }^{166}$ R. Davis, K. G. Untch, J. Org. Chem. 1981, 46, 2985-2987.
 ${ }^{167}$ T. Tsunoda, K. Uemoto, C. Nagino, M. Kawamura, H. Kaku, S. Itô, Tetrahedron Lett. 1999, 40, 7355-7358.
 ${ }^{168}$ C. Gioia, A. Hauville, L. Bernardi, F. Fini, A. Ricci, Angew. Chem. Int. Ed. 2008, 47, 9236-9239.

[^44]: 169 a) Y. Anami, T. Itoh, D. Egawa, N. Yoshimoto, K. Yamamoto, J. Med. Chem. 2014, 57, 4351-4367. b) A. P. Kozikowski, J. Lee, J. Org. Chem. 1990, 55, 863-870. c) L. Thijs, E. H. M. Stokkingreef, J. M. Lemmens, B. Zwanenburg, Tetrahedron 1985, 41, $2949-2956$. d) M. Ball, M. J. Gaunt, D. F. Hook, A. S. Jessiman, S. Kawahara, P. Orsini, A. Scolaro, A. C. Talbot, H. R. Tanner, S. Yamanoi, S. V. Ley, Angew. Chem. Int. Ed. 2005, 44, 5433-5438. e) H. Kusama, R. Hara, S. Kawahara, T. Nishimori, H. Kashima, N. Nakamura, K. Morihira, I. Kuwajima, J. Am. Chem. Soc. 2000, 122, 3811-3820.
 ${ }^{170}$ E. J. Corey, A. Venkateswarlu, J. Am. Chem. Soc. 1972, 94, 6190-6191.
 ${ }^{171}$ Y. R. Kim, D. K. An, Bull. Korean Chem. Soc. 2012, 33, 4194-4196.
 ${ }^{172}$ S. Laval, W. Dayoub, L. Pehlivan, E. Métay, D. Delbrayelle, G. Mignani, M. Lemaire, Tetrahedron Lett. 2014, 55, 23-26.
 ${ }^{173}$ a) T. Naota, Y. Shichijo, S.-I. Murahashi, J. Chem. Soc., Chem. Commun. 1994, 11, 1359-1360. b) S.-I. Murahashi, T. Naota, Bull. Chem. Soc. Jpn. 1996, 69, 1805-1824.

[^45]: ${ }^{174}$ S. Kumar, S. K. Dixit, S. K. Awasthi, Tetrahedron Lett. 2014, 55, 3802-3804.
 175 a) S. Marchesan, D. Macmillan, Chem. Commun. 2008, 36, 4321-4323. b) A. J. Pihko, K. C. Nicolaou, A. M. P. Koskinen, Tetrahedron: Asymmetry 2001, 12, 937-942.
 176 a) T. Heidelberg, J. Thiem, Carbohydr. Res. 1997, 301, 145-153. b) L. V. Dunkerton, K. T. Brady, F. Mohamed, B. P. McKillican, J. Carbohydr. Chem. 1988, 7, 49-65. c) K. Zhu, J. S. Panek, Org. Lett. 2011, 13, 4652-4655.
 ${ }^{177}$ V. Barragan-Montero, A. Awwad, S. Combemale, P. de Santa Barbara, B. Jover, J.-P. Molès, J.-L. Montero, ChemMedChem 2011, 6, 1771-1774.

[^46]: ${ }^{178}$ Y. Nakahara, A. Fujita, K. Beppu, T. Ogawa, Tetrahedron 1986, 42, 6465-6476.
 ${ }^{179}$ P. Kocieński, K. Jarowicki, S. Marczak, Synthesis 1991, 12, 1191-1200.
 ${ }^{180}$ Y. Feng, X. Jiang, J. K. De Brabander, J. Am. Chem. Soc. 2012, 134, 17083-17093.
 ${ }^{181}$ S. U. Hansen, M. Baráth, B. A. B. Salameh, R. G. Pritchard, W. T. Stimpson, J. M. Gardiner, G. C. Jayson, Org. Lett. 2009, 11, 4528-4531.
 ${ }^{182}$ S. Hosokawa, M. Isobe, J. Org. Chem. 1999, 64, 37-48.
 ${ }^{183}$ A. H. Viuff, L. M. Besenbacher, A. Kamori, M. T. Jensen, M. Kilian, A. Kato, H. H. Jensen, Org. Biomol. Chem. 2015, 13, 9637-9658.
 ${ }^{184}$ Laboratory apprentice C. Rustemeier once synthesized alkyl iodide 119 (ca. 110 mg).
 ${ }^{185}$ M. Zheng, W. Xue, T. Xue, H. Gong, Org. Lett. 2016, 18, 6152-6155.

[^47]: ${ }^{186}$ S. Xu, N. Onishi, A. Tsurusaki, Y. Manaka, W.-H. Wang, J. T. Muckerman, E. Fujita, Y. Himeda, Eur. J. Inorg. Chem. 2015, 34, 5591-5594.
 ${ }^{187}$ A. B. Shenvi, H. Gerlach, Helv. Chim. Acta 1980, 63, 2426-2433.

[^48]: ${ }^{188}$ M. C. Slade, J. S. Johnson, Beilstein J. Org. Chem. 2013, 9, 166-172.
 ${ }^{189}$ A. Fürstner, D. De Souza, L. Turet, M. D. B. Fenster, L. Parra-Rapado, C. Wirtz, R. Mynott, C. W. Lehmann, Chem. Eur. J. 2007, 13, 115-134.

[^49]: ${ }^{190}$ A. Fürstner, M. Wuchrer, Chem. Eur. J. 2006, 12, 76-89.

[^50]: ${ }^{191}$ G. Valot, D. Mailhol, C. S. Regens, D. P. O'Malley, E. Godineau, H. Takikawa, P. Philipps, A. Fürstner, Chem. Eur. J. 2015, 21, 2398-2408.
 ${ }^{192}$ X. Cai, M. S. Chorghade, A. Fura, G. S. Grewal, K. A. Jauregui, H. A. Lounsbury, R. T. Scannell, C. G. Yeh, M. A. Young, S. Yu, L. Guo, R. M. Moriarty, R. Penmasta, M. S. Rao, R. K. Singhal, Z. Song, J. P. Staszewski, S. M. Tuladhar, S. Yang, Org. Process Res. Dev. 1999, 3, 73-76.
 ${ }^{193}$ O. H. Gringore, F. P. Rouessac, M. F. Schlecht, H. Drossman, C. H. Heathcock, Organic Syntheses, John Wiley \& Sons, Inc. (New York), 2003.

[^51]: ${ }^{194}$ G. Valot, D. Mailhol, C. S. Regens, D. P. O'Malley, E. Godineau, H. Takikawa, P. Philipps, A. Fürstner, Chem. Eur. J. 2015, 21, 2398 -2408.

[^52]: ${ }^{195}$ T. Sato, R. Noyori, Bull. Chem. Soc. Jpn. 1983, 56, 2700-2705.

[^53]: ${ }^{196}$ P. R. Blakemore, P. J. Kocienski, S. Marzcak, J. Wicha, Synthesis 1999, 7, 1209-1215.
 ${ }^{197}$ T. Hübscher, G. Helmchen, Synlett 2006, 9, 1323-1326.
 ${ }^{198}$ Laboratory apprentice C. Rustemeier helped with the synthesis and purification of thioether 141 (on a scale of ca. 1 g).
 ${ }^{199}$ B. Chatterjee, D. Mondal, S. Bera, Tetrahedron: Asymmetry 2012, 23, 1170-1185.
 ${ }^{200}$ S. Peyrat, K. Cheng, J. Xie, Synthesis 2013, 45, 2737-2744.
 ${ }^{201}$ D. K. Mohapatra, P. Dasari, H. Rahaman, R. Pal, Tetrahedron Lett. 2009, 50, 6276-6279.

[^54]: ${ }^{202}$ a) E. M. Carreira, Patent US2003/0088100 2003. b) A. Fettes, E. M. Carreira, J. Org. Chem. 2003, 68, 9274-9283.

[^55]: ${ }^{203}$ a) S. M. Rummelt, A. Fürstner, Angew. Chem. Int. Ed. 2014, 53, 3626-3630. b) S. M. Rummelt, K. Radkowski, D.-A. Roşca, A. Fürstner, J. Am. Chem. Soc. 2015, 137, 5506-5519. c) S. M. Rummelt, J. Preindl, H. Sommer, A. Fürstner, Angew. Chem. Int. Ed. 2015, 54, 6241-6245.

[^56]: ${ }^{204}$ M. Mori, N. Kaneta, M. Shibasaki, J. Organomet. Chem. 1994, 464, 35-40.
 ${ }^{205}$ H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem. Rev. 1994, 94, 2483-2547.

[^57]: ${ }^{206}$ See footnote 205.
 ${ }^{207}$ a) T. J. Donohoe, K. Blades, P. R. Moore, M. J. Waring, J. J. G. Winter, M. Helliwell, N. J. Newcombe, G. Stemp, J. Org. Chem. 2002, 67, 7946-7956. b) K. Blades, T. J. Donohoe, J. J. G. Winter, G. Stemp, Tetrahedron Lett. 2000, 41, 4701-4704. c) T. J. Donohoe, R. Garg, P. R. Moore, Tetrahedron Lett. 1996, 37, 3407-3410. d) T. J. Donohoe, N. J. Newcombe, M. J. Waring, Tetrahedron Lett. 1999, 40, 6881-6885. e) T. J. Donohoe, P. R. Moore, M. J. Waring, N. J. Newcombe, Tetrahedron Lett. 1997, 38, 5027-5030. f) T. J. Donohoe, L. Mitchell, M. J. Waring, M. Helliwell, A. Bell, N. J. Newcombe, Org. Biomol. Chem. 2003, 1, 2173-2186.

[^58]: 208 J. A. Dale, D. L. Dull, H. S. Mosher, J. Org. Chem. 1969, 34, 2543-2549.
 ${ }^{209}$ I. Ohtani, T. Kusumi, Y. Kashman, H. Kakisawa, J. Am. Chem. Soc. 1991, 113, 4092-4096.
 ${ }^{210}$ T. R. Hoye, C. S. Jeffrey, F. Shao, Nat. Protocols 2007, 2, 2451-2458.

[^59]: ${ }^{211}$ M. Higashino, N. Ikeda, T. Shinada, K. Sakaguchi, Y. Ohfune, Tetrahedron Lett. 2011, 52, 422-425.
 ${ }^{212}$ J. A. Gómez-Vidal, M. T. Forrester, R. B. Silverman, Org. Lett. 2001, 3, 2477-2479.

[^60]: ${ }^{213}$ T. Sandmeier, S. Krautwald, H. F. Zipfel, E. M. Carreira, Angew. Chem. Int. Ed. 2015, 54, 14363-14367.

[^61]: ${ }^{214}$ A. G. Myers, B. H. Yang, H. Chen, L. McKinstry, D. J. Kopecky, J. L. Gleason, J. Am. Chem. Soc. 1997, 119, 6496-6511.
 ${ }^{215}$ H.-C. Xu, J. D. Brandt, K. D. Moeller, Tetrahedron Lett. 2008, 49, 3868-3871.
 ${ }^{216}$ P. A. Jacobi, J. I. Kravitz, W. Zheng, J. Org. Chem. 1995, 60, 376-385.

[^62]: ${ }^{217}$ E. Rodrigo, S. Morales, S. Duce, J. L. G. Ruano, M. B. Cid, Chem. Commun. 2011, 47, 11267-11269.
 ${ }^{218}$ A. Michrowska, M. Bieniek, M. Kim, R. Klajn, K. Grela, Tetrahedron 2003, 59, 4525-4531.

[^63]: ${ }^{219}$ J. H. van Boom, P. M. J. Burgers, Tetrahedron Lett. 1976, 17, 4875-4878.
 ${ }^{220}$ B. Neises, W. Steglich, Angew. Chem. Int. Ed. Engl. 1978, 17, 522-524.
 ${ }^{221}$ S. Peyrat, K. Cheng, J. Xie, Synthesis 2013, 45, 2737-2744.
 ${ }^{222}$ D. K. Mohapatra, P. Dasari, H. Rahaman, R. Pal, Tetrahedron Lett. 2009, 50, 6276-6279.
 ${ }^{223}$ a) E. M. Carreira, Patent US2003/0088100 2003. b) A. Fettes, E. M. Carreira, J. Org. Chem. 2003, 68, 9274-9283.

[^64]: ${ }^{224}$ O. A. Kallatsa, A. M. P. Koskinen, Tetrahedron Lett. 1997, 38, 8895-8898.
 225 a) G. J. McGarvey, C. A. LeClair, B. A. Schmidtmann, Org. Lett. 2008, 10, 4727-4730. b) J. R. Kramer, T. J. Deming, J. Am. Chem. Soc. 2010, 132, 15068-15071.
 ${ }^{226}$ H. Wagner, K. Harms, U. Koert, S. Meder, G. Boheim, Angew. Chem. 1996, 108, 2836-2839.

[^65]: ${ }^{227}$ a) K. Parkan, L. Werner, Z. Lövyová, E. Prchalová, L. Kniežo, Carbohydr. Res. 2010, 345, 352-362. b) J. R. Kramer, T. J. Deming, J. Am. Chem. Soc. 2012, 134, 4112-4115.
 ${ }^{228}$ G. J. McGarvey, C. A. LeClair, B. A. Schmidtmann, Org. Lett. 2008, 10, 4727-4730.
 ${ }^{229}$ J. R. Kramer, T. J. Deming, J. Am. Chem. Soc. 2010, 132, 15068-15071.
 ${ }^{230}$ The first three steps of the reaction sequence towards aldehyde 185 were also carried out by laboratory apprentice C. Rustemeier on a scale above 5 g (Scheme 3.78). Therefore, material supply was always assured, when in parallel the focus lay on the introduction of the subsequent steps of the new synthetic route towards phosphorus ylide 182.
 ${ }^{231}$ G. Anquetin, S. L. Rawe, K. McMahon, E. P. Murphy, P. V. Murphy, Chem. Eur. J. 2008, 14, 1592-1600.
 ${ }^{232}$ K. Fujiwaraa, S.-i. Souma, H. Mishima, A. Murai, Synlett 2002, 9, 1493-1495.

[^66]: ${ }_{233}$ a) S. Hatakeyama, K. Saijo, S. Takano, Tetrahedron Lett. 1985, 26, 865-868. b) A. Kawai, O. Hara, Y. Hamada, T. Shioiri, Tetrahedron Lett. 1988, 29, 6331-6334. c) L. Lazarides, A. S. Smith, R. Stocker, J. C. Theobald, Patent WO2008101867 2008. d) K. Schönauer, E. Zbiral, Liebigs Ann. Chem. 1983, 6, 1031-1042.
 ${ }^{234}$ S.-I. Murahashi, T. Naota, H. Hanaoka, Chem. Lett. 1993, 22, 1767-1770.
 ${ }^{235}$ a) C. Schmölzer, M. Fischer, W. Schmid, Eur. J. Org. Chem. 2010, 25, 4886-4892. b) C. Bonini, L. Chiummiento, M. Funicello, P. Lupattelli, M. Pullez, Eur. J. Org. Chem. 2006, 1, 80-83.
 ${ }^{236}$ See footnote 235 a).

[^67]: ${ }^{237}$ C. Bonini, L. Chiummiento, M. Funicello, P. Lupattelli, M. Pullez, Eur. J. Org. Chem. 2006, 1, 80-83.
 ${ }^{238}$ S. Kobayashi, M. Ueno, R. Suzuki, H. Ishitani, H.-S. Kim, Y. Wataya, J. Org. Chem. 1999, 64, 6833-6841.
 ${ }^{239}$ N. V. Borrero, A. Aponick, J. Org. Chem. 2012, 77, 8410-8416.

[^68]: ${ }^{240}$ S. Ho, C. Bucher, J. L. Leighton, Angew. Chem. Int. Ed. 2013, 52, 6757-6761.
 ${ }^{241}$ H. J. Bestmann, K. H. Koschatzky, W. Schätzke, J. Süß, O. Vostrowsky, Liebigs Ann. Chem. 1981, 9, 1705-1720.
 ${ }^{242}$ C. M. Moorhoff, J. Chem. Soc., Perkin Trans. 1 1997, 13, 1987-1996.

[^69]: ${ }^{243}$ R. Mazurkiewicz, T. Gorewoda, A. Kuźnik, M. Grymel, Tetrahedron Lett. 2006, 47, 4219-4220.
 ${ }^{244}$ C. S. Daeffler, R. H. Grubbs, Org. Lett. 2011, 13, 6429-6431.
 ${ }^{245}$ R. E. Pincock, T. E. Kiovsky, J. Am. Chem. Soc. 1966, 88, 51-55.

[^70]: ${ }^{246}$ Based on the results shown in Chapter 3.3.1.2 and with the aimed phosphorus ylide $\mathbf{1 8 2}$ in mind, Dr. J. Novacek proposed an order of events which in fact helped to pave a way to this important intermediate.

[^71]: ${ }^{247}$ A preliminary experiment revealed the following: Using a mixture (ca. 1:1) of partially degraded phosphonium salts (loss of the O2' TBS group), led to enone 181 and a partially deprotected enone $\mathbf{2 0 9}$ (without C2' TBS group) in yields of 33% for $\mathbf{1 8 1}$ and 42% for 209, respectively (see Supporting Information, Chapter 5.2.3.2).
 ${ }^{248}$ M. Sawa, K. Mizuno, H. Harada, H. Tateishi, Y. Arai, S. Suzuki, M. Oue, H. Tsujiuchi, Y. Furutani, S. Kato, Biorg. Med. Chem. Lett. 2005, 15, 1061-1064.
 ${ }^{249}$ G. Sabitha, C. Gurumurthy, J. S. Yadav, Synthesis 2014, 46, 110-118.
 ${ }^{250}$ A. Venkanna, E. Sreedhar, B. Siva, K. S. Babu, K. R. Prasad, J. M. Rao, Tetrahedron: Asymmetry 2013, 24, 1010-1022.

[^72]: ${ }^{251}$ H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem. Rev. 1994, 94, 2483-2547.

[^73]: 252 a) G. J. McGarvey, C. A. LeClair, B. A. Schmidtmann, Org. Lett. 2008, 10, 4727-4730. b) J. R. Kramer, T. J. Deming, J. Am. Chem. Soc. 2010, 132, 15068-15071.

[^74]: ${ }^{253}$ a) I. Ohtani, T. Kusumi, Y. Kashman, H. Kakisawa, J. Am. Chem. Soc. 1991, 113, 4092-4096. b) T. R. Hoye, C. S. Jeffrey, F. Shao, Nat. Protocols 2007, 2, 2451-2458.
 ${ }^{254}$ The stereochemistry of allylic alcohol E-146 was proven by Mosher esters 153 and epi-153 (Scheme 3.62), the one of constitutionally isomeric allylic alcohol 180b by Mosher esters 198b and epi-198b (Scheme 3.87).

[^75]: ${ }^{255}$ Preliminary studies were undertaken with the less valuable C5' epimer epi-35a (Chapter 3.3.1.2).
 ${ }^{256}$ Y. Xing, M. Zhang, S. Ciccarelli, J. Lee, B. Catano, Eur. J. Org. Chem. 2017, 4, 781-785.
 ${ }^{257}$ X. Chen, X. Li, X.-L. Chen, L.-B. Qu, J.-Y. Chen, K. Sun, Z.-D. Liu, W.-Z. Bi, Y.-Y. Xia, H.-T. Wu, Y.-F. Zhao, Chem. Commun. 2015, 51, 3846-3849.
 ${ }^{258}$ L. Xie, Y. Wu, W. Yi, L. Zhu, J. Xiang, W. He, J. Org. Chem. 2013, 78, 9190-9195.
 259 Also reported by He et al. as part of the before mentioned two-step procedure.

[^76]: ${ }^{260}$ A supply of catalyst $\mathrm{PdCl}_{2}\left(\mathrm{P}(2 \text {-furyl) })_{3}\right)_{2}$ was kindly provided by F. Anderl.
 ${ }^{261}$ K. Peewasan, C. Kuhakarn, D. Soorukram, P. Tuchinda, V. Reutrakul, M. Pohmakotr, J. Fluorine Chem. 2012, 135, 367-372.
 262 J. Preindl, S. Schulthoff, C. Wirtz, J. Lingnau, A. Fürstner, Angew. Chem. Int. Ed. 2017, 56, 7525-7530.

[^77]: ${ }^{263}$ All experiments discussed in this chapter were conducted and optimized by Ph.D. student F. Anderl. Laboratory assistant P. Ortsack and laboratory assistant apprentice C. Rustemeier contributed to his success. Further details on the total synthesis of belizentrin methyl ester (18) and the synthesis of the macrocyclic scaffold 128a can be found in the projected Ph.D. thesis of F. Anderl.
 ${ }^{264}$ a) K. Ishigai, H. Fuwa, K. Hashizume, R. Fukazawa, Y. Cho, M. Yotsu-Yamashita, M. Sasaki, Chem. Eur. J. 2013, 19, 5276-5288. b) K. Tsubone, K. Hashizume, H. Fuwa, M. Sasaki, Tetrahedron 2011, 67, 6600-6615.
 ${ }^{265}$ P. Liu, E. N. Jacobsen, J. Am. Chem. Soc. 2001, 123, 10772-10773.

[^78]: 266 a) Y. Ogawa, M. Nunomoto, M. Shibasaki, J. Org. Chem. 1986, 51, 1625-1627. b) A. Fürstner, M. Bindl, L. Jean, Angew. Chem. Int. Ed. 2007, 46, 9275-9278. c) Y. Kwon, S. Schulthoff, Q. M. Dao, C. Wirtz, A. Fürstner, Chem. Eur. J. 2018, 24, 109-114.

[^79]: ${ }^{267}$ A. G. Myers, B. H. Yang, H. Chen, L. McKinstry, D. J. Kopecky, J. L. Gleason, J. Am. Chem. Soc. 1997, 119, 6496-6511.

[^80]: ${ }^{268}$ A. G. Myers, B. H. Yang, H. Chen, L. McKinstry, D. J. Kopecky, J. L. Gleason, J. Am. Chem. Soc. 1997, 119, 6496-6511.

[^81]: ${ }^{269}$ G. J. McGarvey, C. A. LeClair, B. A. Schmidtmann, Org. Lett. 2008, 10, 4727-4730.
 270 R. Y. Tam, S. S. Ferreira, P. Czechura, J. L. Chaytor, R. N. Ben, J. Am. Chem. Soc. 2008, 130, 17494-17501.

[^82]: ${ }^{271}$ G. J. McGarvey, C. A. LeClair, B. A. Schmidtmann, Org. Lett. 2008, 10, 4727-4730.

[^83]: ${ }^{272}$ L. Ji, G.-Q. Zhou, C. Qian, X.-Z. Chen, Eur. J. Org. Chem. 2014, 17, 3622-3636.

[^84]: ${ }^{273}$ J. Pietruszka, A. Witt, Synthesis 2006, 24, 4266-4268.

[^85]: ${ }^{274}$ K. Schönauer, E. Zbiral, Liebigs Ann. Chem. 1983, 6, 1031-1042.

[^86]: ${ }^{275}$ A. Fettes, E. M. Carreira, J. Org. Chem. 2003, 68, 9274-9283.

[^87]: ${ }^{277}$ A. G. Myers, B. H. Yang, H. Chen, L. McKinstry, D. J. Kopecky, J. L. Gleason, J. Am. Chem. Soc. 1997, 119, 6496-6511.

[^88]: ${ }^{278}$ A. G. Myers, B. H. Yang, H. Chen, L. McKinstry, D. J. Kopecky, J. L. Gleason, J. Am. Chem. Soc. 1997, 119, 6496-6511.
 ${ }^{279}$ N.-H. Lin, L. E. Overman, M. H. Rabinowitz, L. A. Robinson, M. J. Sharp, J. Zablocki, J. Am. Chem. Soc. 1996, 118, 9062-9072.

[^89]: ${ }^{280}$ R. W. Hoffmann, H. Brinkmann, G. Frenking, Chem. Ber. 1990, 123, 2387-2394.

[^90]: ${ }^{281}$ R. Bihovsky, C. Selick, I. Giusti, J. Org. Chem. 1988, 53, 4026-4031.

[^91]: ${ }^{282}$ A. Steinmann, J. Thimm, J. Thiem, Eur. J. Org. Chem. 2007, 33, 5506-5513.
 ${ }^{283}$ C. L. B. Macdonald, A. M. Corrente, C. G. Andrews, A. Taylor, B. D. Ellis, Chem. Commun. 2004, 2, 250-251.

[^92]: ${ }^{287}$ J. P. Henschke, P.-Y. Wu, C.-W. Lin, S.-F. Chen, P.-C. Chiang, C.-N. Hsiao, J. Org. Chem. 2015, 80, 2295-2309.
 288 P. Arya, A. Barkley, K. D. Randell, J. Comb. Chem. 2002, 4, 193-198.

[^93]: ${ }^{291}$ F. Gille, A. Kirschning, Beilstein J. Org. Chem. 2016, 12, 564-570.

[^94]: ${ }^{292}$ S. Höck, H. J. Borschberg, Helv. Chim. Acta 2003, 86, 1397-1409.

[^95]: ${ }^{293}$ S. Höck, H. J. Borschberg, Helv. Chim. Acta 2003, 86, 1397-1409.

[^96]: ${ }^{296}$ A detailed graphical evaluation (complete Mosher ester analysis) can be found in chapter 6.1.1.

[^97]: ${ }^{297}$ A detailed graphical evaluation (complete Mosher ester analysis) can be found in chapter 6.1.1.

[^98]: ${ }^{298}$ A detailed graphical evaluation (complete Mosher ester analysis) can be found in chapter 6.1.2.

[^99]: ${ }^{301}$ A detailed graphical evaluation (complete Mosher ester analysis) can be found in chapter 6.1.3.

[^100]: ${ }^{302}$ A detailed graphical evaluation (complete Mosher ester analysis) can be found in chapter 6.1.4.

[^101]: ${ }^{303}$ A detailed graphical evaluation (complete Mosher ester analysis) can be found in chapter 6.1.4.

[^102]: ${ }^{304}$ The assignment is based on 2D-NMR data; ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{COSY},{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HSQC}$ and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$ respectively.

[^103]: ${ }^{305}$ The assignment is based on 2D-NMR data; ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{COSY},{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HSQC}$ and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$ respectively.

[^104]: ${ }^{306}$ The assignment is based on 2D-NMR data; ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{COSY},{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HSQC}$ and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$ respectively.

[^105]: ${ }^{307}$ E. Rodrigo, S. Morales, S. Duce, J. L. G. Ruano, M. B. Cid, Chem. Commun. 2011, 47, 11267-11269.

[^106]: ${ }^{308}$ E. Rodrigo, S. Morales, S. Duce, J. L. G. Ruano, M. B. Cid, Chem. Commun. 2011, 47, 11267-11269.

[^107]: ${ }^{309}$ A detailed graphical evaluation (complete Mosher ester analysis) can be found in chapter 6.1.5.

[^108]: ${ }^{310}$ A detailed graphical evaluation (complete Mosher ester analysis) can be found in chapter 6.1.5.

[^109]: ${ }^{311}$ A detailed graphical evaluation (complete Mosher ester analysis) can be found in chapter 6.1.6.

[^110]: ${ }^{312}$ A detailed graphical evaluation (complete Mosher ester analysis) can be found in chapter 6.1.6.

[^111]: ${ }^{313}$ P. J. C. Hausoul, A. N. Parvulescu, M. Lutz, A. L. Spek, P. C. A. Bruijnincx, B. M. Weckhuysen, R. J. M. K. Gebbink, Angew. Chem. Int. Ed. 2010, 49, 7972-7975.

