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LIMIT THEOREMS FOR MULTIVARIATE BESSEL PROCESSES
IN THE FREEZING REGIME

SERGIO ANDRAUS AND MICHAEL VOIT

ABSTRACT. Multivariate Bessel processes describe the stochastic dynamics of
interacting particle systems of Calogero-Moser-Sutherland type and are related
with B-Hermite and Laguerre ensembles. It was shown by Andraus, Katori,
and Miyashita that for fixed starting points, these processes admit interesting
limit laws when the multiplicities k tend to oo, where in some cases the limits
are described by the zeros of classical Hermite and Laguerre polynomials. In
this paper we use SDEs to derive corresponding limit laws for starting points
of the form vk -z for k — oo with z in the interior of the corresponding Weyl
chambers. Our limit results are a.s. locally uniform in time. Moreover, in
some cases we present associated central limit theorems.

1. INTRODUCTION

The dynamics of integrable interacting particle systems of Calogero-Moser-Suther-
land type on the real line R with N particles can be described by certain time-
homogeneous diffusion processes on suitable closed subsets of RY. These processes
are often called (multivariate) Bessel, Dunkl-Bessel, or radial Dunkl processes; for
their detailed definition and properties, see [CGY, GY, R1, R2, RV1, RV2, DV, A].
These processes are classified via root systems and finitely many multiplicity pa-
rameters which act as coupling constants of interaction. In this paper, we restrict
our attention to the root systems, which are mainly important for particle systems
and in random matrix theory, namely those of the types Ayx_1, By, and Dy, as
here the number N of particles is arbitrary. Besides these root systems and a finite
number of exceptional cases, there are the dihedral sytems with N = 2 (see [De2])
as well direct products. We shall not study these cases in this paper.

To explain the results of this paper, we briefly recapitulate some well-known
basic facts. In the case Ax_1, we have a one-dimensional multiplicity & > 0, the
processes live on the closed Weyl chamber

C'f\‘;::{xERN: 1> T2 > ... >IN}

the generator of the transition semigroup is given by

Lf-—lAf+k§:(Zl)af (1.1)
T2 x—xj/) Ox;" ’

i=1 j#i
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2 SERGIO ANDRAUS AND MICHAEL VOIT
and we assume reflecting boundaries. The latter means that the domain of L may
be chosen as
D(L):={flca: f€ CP(RY), f invariant under all coordinate permutations}.
In the case By, we have 2 multiplicities ki, ks > 0, the processes live on
CE={zecRYN: z,>x,>...>zy5 >0},
the generator of the transition semigroup is
N N
1 1 1 0 1 0
Lf:=-Af+k ( + Yot Fh> o 1.2
/ 2 / 2;; T; — Xy T; + x4 8I,f l;xzaxz‘f’ ( )

and we again assume reflecting boundaries, i.e., the domain of L is

D(L):={flce: f € C(RY), f invariant under all permutations of

coordinates and under all sign changes in all coordinates}.

We study limit theorems for these diffusions (X )i>0 on Cy (with Oy = Cf\‘,
or C%) for the fixed times ¢t > 0 in freezing regimes, where k stands for k > 0 in
the An_1-case, and for (k1, k2) in the By-case. Freezing means that for fixed times
t > 0, we consider & — oo in the Ax_q-case, and in the By-case, the two cases
(k1,k2) = (v - B8,8) with v > 0 fixed,  — oo as well as ko > 0 fixed, ky — oo. For
these limit cases, [AM, AKM1, AKM?2] present weak limit laws for Xy ; for fixed
times £ > 0 when the processes start in the origin 0 € Cy or with a fixed starting
distribution independent from k. In this paper we shall derive similar limit results
when the starting points of the diffusions (X, 1);>0 depend on k, more precisely, if
the starting points have the form +/k - © where & is the parameter in the coupling
constants which tends to oo, and where x is a point in the interior of C. The
last condition will be essential in this paper, as we shall apply an SDE approach
to the limit results which works properly only in the interior of Cy as the SDEs
become singular on the boundaries. It will turn out on an informal level that the
limit results in [AM, AKM1, AKM2] may be seen as special cases of our results for
x = 0, even if the case x = 0 is not covered by our approach.

To explain the connection of our results with [AM, AKM1, AKM?2], we recapit-
ulate some further details. The transition probabilities of the Bessel processes are
given for all root systems as follows by [R1, R2, RV1, RV2]: For t > 0, z € Cly,
A C Cy a Borel set,

1 _ 2 2
Ki(z, A) :ck/A eI

%) - wi(y) dy (1.3)

<
~

with
N
wit(z) = [[(@i —2)*,  wfl(e)=]@F -2 []", (1.4)
i<j i<j i=1
and
va(k) =kN(N —1)/2, vB(ki, ko) = koN(N — 1) + k4N (1.5)

respectively. wy is homogeneous of degree 2. Furthermore, ¢ > 0 is a known
normalization constant, and Ji is a multivariate Bessel function of type An_1 or
By with multiplicities k or (k1, k2) respectively; see e.g. [R1, R2].
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We do not need much information about J. We only recapitulate that Jj is
analytic on CY x CV with Ji,(z,y) > 0 for z,y € RY. Moreover, Ji.(z,y) = Ji(y, )
and Ji(0,y) =1 for all z,y € CV.

Therefore, if we start the process from 0, then X ; has the Lebesgue density

Ck
tYtN/2

e~ llwli?/(2t) . w(y) dy (1.6)
on Cy for t > 0. In the case Ay_1, the density of Xt’k/\/?k has the form

const. (k) -exp(k<2 Z In(y; —y;) — ||y||2/2)) =: const.(k) -exp(k . W(y))
i,5:1<j

which is well-known for k = 1/2,1,2 as the distribution of the eigenvalues of Gauss-
ian orthogonal, unitary, and symplectic ensembles; see e.g. [D]. Moreover, for gen-
eral k > 0, (1.6) appears as the distribution of the tridiagonal matrix models of
Dumitriu and Edelman [DE1, DE2] for S-Hermite and S-Laguerre ensembles.

In the case Ay_1, it was observed in [AKM]1] (see also Section 6.7 of [S]) that
the maximum of W on C4 appears precisely for y = V2 - z where z € C4 is the
vector whose entries are the zeroes of the classical Hermite polynomial Hy where

the (Hy)n>0 are orthogonal w.r.t. the density e~%°. This shows that )\/(;Tk tends

to z in distribution for k — co. This means that
i Xtk
im

in probability whenever the X, ;, are defined on a common probability space. In fact,

this result was proved in [AKM]1] in a more general form, namely for arbitrary fixed

starting distributions. Moreover, (1.7) and an associated central limit theorem for

start in 0 was derived in [DE2] via the explicit tridiagonal matrix model of Dumitriu

and Edelman [DE1]; see also [V2] for another elementary approach.

We now compare (1.7) with the main results here for the case Ay_1. We show
in Theorem 2.4 below that the Bessel processes (X x)i>0 with start in Vk -z (for
some point x in the interior of Cy) satisfy

X1 /VE = ¢(t,x) for k — oo (1.8)

=z (1.7)

with an error of size O(1/vk) locally uniformly in ¢ almost surely where ¢(t,z)
is the solution of some (deterministic) dynamical system at time ¢ > 0, where the
system starts at time 0 in x. For the details we refer to Section 2.

For the root systems By and Dy we shall derive corresponding results.

We mention that the locally uniform convergence in ¢ in (1.8) and the correspond-
ing results for the further root systems ensures that we can interchange limits for
k — oo with stochastic integrals. This finally leads, in combination with the SDEs,
to central limit theorems (CLTs) at least in some cases; see Section 4 below for
some cases and also to [VW] for further cases.

The basis for the SDE-approach for all root systems is the following well-known
result (see Lemma 3.4, Corollary 6.6, and Proposition 6.8 of [CGY]):

Theorem 1.1. Let k > 0 in the An_1-case or ki,ks > 0 in the By-case. Then,
for each starting point x € Cy and t > 0, the Bessel process (X1 1)t>0 satisfies

E(/Otvanwk)(xs,k) ds) < .
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Moreover, the initial value problem
1

(with an N -dimensional Brownian motion (By)i>0) has a unique (strong) solution
(Xt)i>0- This solution is a Bessel process as above.

Moreover, if k > 1/2 in the Ax_1-case or ki, ko > 1/2 in the Bx-case, and if x
is in the interior of Ci, then (X;)i>o lives on the interior on Cy, i.e. the solution
does not meet the boundary almost surely.

This paper is organized as follows. In the next section we derive a strong Limit
law for Bessel processes of type Anx_; for & — oco. Section 3 is then devoted to
corresponding LLs in the case By for two freezing regimes which were already
studied in [AKM2, AM]. For the regime k; — oo and ke > 0 fixed, we use the
locally uniform LL in Section 4, in order to derive an associated CLT. Finally, in
Section 5 we consider the LL for the root systems of type Dy, which are related
with the By-case for ko = 0.

2. STRONG LIMITING LAW FOR THE ROOT SYSTEM Apn_1

In this section we derive a locally uniform strong LL in the case Ay _; for k — oo
for starting points of the form vk -  with z in the interior of C4%. The main result
corresponds to the weak LL (1.7) started at the origin.

For k > 1/2 and any starting point = x(k) in the interior of C3 we study the
associated Bessel process (X¢ x)¢>0 of type Ax_1 which may be seen as the unique
solution of the initial value problem (1.9). In the Ay_; case the SDE reads

1

dX;k:dBHkZﬂdt (i=1,...,N). (2.1)
jAi Mtk tk
with an N-dimensional Brownian motion (Btl, ey BiN)tzo- In order to derive LLs
for Xy, we study the renormalized processes (X, := Xt,k/\/E)tZO which satisfy
- 1 . 1
dXj, = —=dBj+Y ————dt  (i=1,....N). (2.2)
\/E i Xz,k - th,k-

We compare (2.2) with the deterministic limit case k = co. This limit case has the
following properties:

Lemma 2.1. For e > 0 consider the open subset U, := {x € O : d(x,00%) > €}
(where RN carries the usual BEuclidean norm and d(z,y) denotes the distance).
Then the function

1 1
H:U —RY ( 7>
oRY ae (D )
J#1 J J#EN J
is Lipschitz continuous on U. with Lipschitz constant L. > 0, and for each start-
ing point zg € Ue, the solution ¢(t, o) of the dynamical system % (t) = H(x(t))

satisfies ¢(t,xo) € U, for allt > 0.

Proof. For x € U, and i # j we have |z; — z;| > e. Hence there is a constant
C > 0 with |gTH($)| < C for x € U. and ¢ = 1,..., N which implies the Lipschitz
continuity.
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For the second statement we use the new variables y;(t) := z;(t) — z;41(t) > €
forx € Uc.andi=1,...,N — 1. Then

dy; 1 1
(t) = +
dt ity Yt tuna
1—1
1 1
+3( - )
SVt Y Yt i
N

1 1
+ Z( - )
J=i+2 Yot o+ Yji—2 Yiprto T Y

For any t > 0 choose some ¢ = i(¢) for which y;(t) is minimal, i.e., y;(t) > y;(¢) for
all j. Notice that ¢« = i(t) is not necessarily unique. However, for each i = i(¢) of
this kind we have

1 1 1 1
— < — and > J=1+3,....N
Yir1(t) — wi(t) yi(t) + - Fyj—2(t) ~ yipr(t) +- -+ yi—i(t) ( )
and

1 1 1 1

< and > j=1,...,1=2).
i = 90 PR EREAO R e O )
Therefore,
dy; 1 1
Ji () > >0

> +
dt yi(t)+ -+ uit)  wilt) - +ynv-1(t)
Hence, for each ¢t > 0 there is a neighborhood on which y; is increasing for each
i, for wor which y;(¢) is minimal. This means that that s — min;—y  n—_1:(s) is
increasing in this neighborhood of ¢. This completes the proof of the lemma. [

It seems that the dynamical system from Lemma 2.1 can be solved explicitly
only for a few cases like N = 2 or particular starting points which are related to
the zeros of the Hermite polynomial Hy. The latter is not surprising in view of
the LLs of [AKM1]. To explain these solutions, we recall the following fact (see
[AKM1] and Section 6.7 of [S]):

Lemma 2.2. Fory € C]‘é,, the following statements are equivalent:
(1) The function W (z) :=237, .. In(z;—x;)— |z]|?/2 is maximal aty € C4;
(2) Fori=1,...,N: Jy; =% L
(3) The vector

JF yi—y;

= (Z17"'7ZN) = (yl/\/i7"'7yN/\/§)
consists of the ordered zeroes of the classical Hermite polynomial Hy .

Part (3) of this lemma immediately leads to the following solution of the differ-
ential equation of Lemma 2.1:

Corollary 2.3. For each ¢ > 0, a particular solution of the dynamical system in
Lemma 2.1 is given by ¢(t,c-z) = /2t + 2 - z.

Notice that on an informal level the same statement holds also for ¢ = 0.
We now turn to the main result of this section, a locally uniform strong LL with
a quite strong order of convergence:
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Theorem 2.4. Let x be a point in the interior of C4, and lety € RN . Let kg > 1/2
with 'k - x + 1y in the interior of CR for k> k.

For k > ko consider the Bessel processes (X )i>0 of type An_1 on Cj(‘,, started
at Vk - x 4y, and which satisfy the SDEs

¢nk_dy+w§: —7 dt  (i=1,...,N).
Jséz t.k
Then, for allt >0,

sup || Xsx — \/Eqﬁ(s,x)H < 00
0<s<t,k>ko

almost surely. In particular,
X/ VE = o(t,2) for k— o
locally uniformly in t almost surely and thus locally uniformly in t in probability.

Proof. Recall that the processes (Xt k=X k/\/E)t>0 satisfy

i + Bi) + s + / ds 1=1,...,N).
my sz o il )

J#i

We compare the solutions of these SDEs with the solution Y; = ¢(t,z) (t > 0) of
the deterministic equation

=+ /Zyz v ds (i=1,...,N)

J#i
of Lemma 2.1. For both equations we perform Picard iterations as follows. We set
the starting points at

Xiko=Yio:=x

and, for m > 0, we set the recursions

Xi o= i+ B) + 2 + / Y4 i=1....N
t,k,m+1 \/E(y 0 ;X;km ngm ( )

and

Vg =2+ / ZYZ _Y] ds (i=1,...,N).

JFL T sm
For given points x, y and given kg as in the statement, we find € > 0 small enough
that = + y/\/E € U, for k > ko where U, is given as in Lemma 2.1. Consider the
stopping times
Te,k = inf{t >0: Xt,k € UE}

We study the stopped maximal differences

Dt,k,m,e = sup ||Xs,k,m - Ys,mH (t >0,m > 0)

SE[0,tNAT. 1]

with Dy 1.0, = 0. Using the Lipschitz constants L. > 0 on U, as in Lemma 2.1, we
obtain

Diomire < —=(lyl + sup IBll) + Le - sup / Dy d
\[ s€0,t] s€0,t]
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Induction on m shows that for all m,

m—1
1 1
D;k;m’ﬁ S — Yy + sup Bs ) Let 1=
: Zilvl+ sup [1B.] (l:0< '5)
1
< —=(lgll + sup [By)- e (2.3)
\/E s€[0,t]

On the other hand, it is well known from the classical theory of SDEs (see, for
example, Theorems 7 and 8 of Section V.3 of [P]) that under a Lipschitz condition,
for m — oo,

sup ||)~(S)k,m — XskH —0 and sup  ||Ysm — Ys|| =0
SE[0,tATe k] S€[0,tATe ]

in probability. This means that some subsequence converges almost surely. We
conclude from (2.3) that

. 1
sup || Xep — Vil € —= - Cy - ket (2.4)
SE[0EAT. 1] Vk
almost surely where Cy := ||yl +sup,¢o 4 [| Bs|| is a random variable which is almost

surely finite.

We now consider the events Q; := {w : Ci(w) < M} for M € N which satisfy
P(Q) — 1 for M — oo. For given z,t, M and e we enlarge ko := ko(x,y,t, M, €)
such that in addition,

1 M. ekt < d(x,00%) — €
Vo 2
Then, for k > kg and w € Qyy,
- d(z,0C%) — €
sup [ Xon(w) = Vil < %
SE[0, AT 1 (w)]
As d(Ys,0C%) > d(x,0C%) for s > 0 by Lemma 2.1, we see that for s € [0,¢ A
Te,k(w)]v
. d(z, 0C%

d( X, 4 (w), 0C) > w > e (2.5)
Because the paths of the Bessel processes we consider are almost surely continuous,
we conclude that T¢ ;(w) = co and thus X ;(w) € U, for all s € [0,t], w € Qs and
k > ko. Hence, for w € Qp; and k > ko,

- 1
sup || Xox(w) = Ya|| € ——M - ebet (2.6)
s€[0,1] ko

As P(Qpr) — 1 for M — oo, the first statement of the theorem is clear, and the
second statement follows immediately from taking the limit £y — oo, which forces
k — oo. (]

Remark 2.5. Theorem 2.4 can be easily generalized to the case where the points
z,y € RV are independent random variables X,Y which are also independent of
the Brownian motion (B;);>o.

In fact, if X has values in an open subset U, of C’j(‘, as described in Lemma 2.1,
and if there exists kg > 0 such that VAX + Y has values in Cj(‘, for k > kg, then
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the proof of Theorem 2.4 still holds, that is, we obtain that the Bessel processes
(Xt.1)e>0 with X x = VEX +Y satisfy

supseqo,g | Xs,x(w) — Vi - (s, X)|| < o0 a.s.. (2.7)

Moreover, if P(X € C{) = 0, and if VkX + Y has values in O3 for k > ko
given kg > 0, then

K (X /VE = (1, X)) = 0

for all @ < 1/2 in probability. This also follows immediately from Theorem 2.4 and
the fact that P(X € dC4) = 0 implies that P(X € Uy ,,) — 1 for n — oc.

We also remark that the limiting laws 3.5, 3.7, and 5.5 below for the root systems
By and Dy and fixed starting points can be also extended to random starting
points in the same way.

3. STRONG LIMITING LAWS FOR THE ROOT SYSTEM By

In this section we derive LLs in the case By for the two freezing regimes from
the introduction for starting points in the interior of C§. In both cases we consider
k = (k1, k2) with k1, ke > 0, and study Bessel process (X; x):>0 which are solutions
of (1.9). In the B-case, the SDE (1.9) reads

, , 1 ks
dXZkdez+kQZ( . — + — : )dt+ Lat (3.1)
Xk~ Xl XD+ XYy Xik
fori=1,..., N with an N-dimensional Brownian motion (B}, ..., B]):>¢.

The two freezing regimes have to be handled differently from the previous, Ay_1,
case. We start with the case (k1,k2) = (v - 3,8) with v > 0 fixed and 8 — o
which was studied in [AKM2, AM] for the case of a fixed starting distribution
on Cﬁ. Similar to the Ay_1 case, we study the renormalized processes (Xt,k =
Xi.1/V/B)t>0 which satisfy

= 1 . 1 v
Xl = =dBi+ Y (e + o)A+ 2dt (32)
VB J#i th,k - Xt],k th,k + th,k Xt,k
for i = 1,...,N. We again compare Xt,k with the solution of a deterministic

dynamical system.
Lemma 3.1. Let v > 0. For € > 0 consider the open subset

UG::{xECﬁ:xN>

Neil’ and x; — i1 >€ for i=1,...,N—1}
Then UcsoU. is the interior of CL, and the function
1 1
Zj?él (11*1_7’ + 561+ﬂ?j> + Ill
H:U —-RY, z~ :

1 1
Zj?fN(rN—zj + IN+IJ') + #

is Lipschitz continuous on U, with Lipschitz constant Lo > 0. Moreover, for each
starting point o € U, the solution ¢(t,xq) of the dynamical system 'fl—f(t) =
H(z(t)) satisfies ¢(t,zo) € Ue for all t > 0.
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Proof. There exits a constant € > 0 such that for all x € U, and i # j we have
|z; £ x;] > € and x; > € Hence there is a constant C' > 0 with |8 ()] < C for
x €U, and ¢=1,...,N which implies the Lipschitz continuity.

We now proceed as in the proof of Lemma 3.1 and use the new variables y;(t) :=
zi(t) — w1 (t) > efori=1,...,N —1 as well as yn(t) := =L . 2x(t). For any
t > 0 we choose i = i(t) for which y;(¢) is minimal, i.e., y;(t) > y;(t) for all j. If
i € {1,...,N — 1}, then the estimations in the proof of Lemma 3.1 immediately
imply d”‘( t) > 0, as the right hand side of the dynamical system here is clearly
greater than the right hand side of the system in Lemma 2.1.

Moreover, for i = N (that is, if yn(¢) = mini<;<n y; (%)),

d — v
Zziv )= Nz/ 1 [Z (xN(t) 1— x;(t) + xN(t):—xj(t)> + xN(t)]

J#N
N-11 v N-1 (N=-1)?%/ 1 1
v [IN(t) S ano1— $N(t)} - v (Z/N(t) - yN—l(t)) !

In summary, we see that min;—y  n y;(t) is increasing in ¢. This completes the
proof. ([l

As in the Ay _1 case, it seems difficult to solve the dynamical systems of Lemma
3.1 except for a few cases like N = 1 or particular starting points which are related
to the zeros of certain Laguerre polynomials. The latter is not surprising in view
of the LLs of [AKM2]|. To explain this, we recapitulate the following fact; see
[AKM2] and Section 6.7 of [S] and notice that our parameters (3, ) correspond to
the parameters (5/2,v + 1/2) in [AKM2]:

Lemma 3.2. Let v > 0. Fory € CE, the following statements are equivalent:
(1) The function
= QZln x; — ac )+ 21/2111:52 llz]|2/2
1<j

is mazimal at y € CE;
(2) Fori=1,...,N,

1 1 v
iyi:ny—yj 772( —Yj yi-l—yj)JrE,

Yi i

(3) If o (v=1) , ..721(\’;_1) are the ordered zeros of the classical Laguerre polyno-

mial Lg\, b (where the Lg\lfl) are orthogonal w.r.t. the density e=%-z¥~1),
then

v—1 v—1
20070 = (R LR (3.3)

Remark 3.3. Using the known explicit representation

L\ (2) = EN: (%—tz) (_;!)k

k=0

of the Laguerre polynomials according to (5.1.6) of [S], we can form the polynomial
Lg{l) of order N > 1 where, by (5.2.1) of [S],

LG (@) = — L (@), (3.4)
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Continuity arguments thus show that the equivalence of (2) and (3) in Lemma 3.2
remains valid also for v = 0 and N > 1 by using the IV different zeros z; > ... >
an =0of LY.

Notice that Lemma 3.1 and thus the following results cannot be applied directly
to the case v = 0. On the other hand, the root system By for v = 0 is closely
related to the root sytem Dy, and thus results for v = 0 can be derived via the
corresponding results for Dy ; see Section 5 below.

Parts (2) and (3) of Lemma 3.2 lead to the following explicit solution of the
differential equation of Lemma 3.1:

Corollary 3.4. Letv > 0 andy € CL the vector in Eq. (3.3). Then for each ¢ > 0,
a solution of the dynamical system in Lemma 3.1 is given by ¢(t,c-y) =Vt + 2 -y.

Notice that on an informal level, Corollary 3.4 holds also for ¢ = 0.
We now turn to the first main result of this section, a locally uniform strong LL
which is analog to Theorem 2.4:

Theorem 3.5. Let v > 0. Let x be a point in the interior of C¥, and let y € RY.
Let By > 1/2 with /B -z +y in the interior of CY for B> fo.
For 8 > py, consider the Bessel processes (X r)i>0 of type B with k = (k1,k2) =
(B -v,B), which start in \/B-x +y. Then, for all t >0,
sup || Xex — V/Bo(s, z)|| < o0 a.s..

0<s<t,>Bo

In particular,
Xiwpe)/VB = dt,z)  for B0

locally uniformly in t a.s. and thus locally uniformly in t in probability.

Proof. The proof is analog to that of Theorem 2.4; we only sketch the most impor-
tant steps. Recall that (X := X; /v/B)i>0 satisfies

o 1 ; ¢ 1 1 v
{ Zf(yi+3l)+xi+/( <~. — + = — )+~_ )ds
YV ' 0 ; Xl =Xl Xip+XI1, Xk

fori=1,...,N. We compare X;; with the solution Y; = ¢(t,z) of

i ¢ 1 1 v
Yy :xH—/O <§(YiYsj +YZ_+YSJ.)+?;.>ds
j#i s s

fori=1,...,N of Lemma 3.1.

For both equations we perform Picard iterations as in the proof of Theorem 2.4.
If we use Lemma 3.1 instead of 2.1, we obtain that for each ¢t > 0, a suitable ¢ > 0
with = +y/+/B € U, for 8> By , and the stopping times

Ter = inf{t >0: Xt,k ¢ UE}7

we have

- 1
sup || Xop —Yi|| < —= - C-elet (3.5)
s€[0,tATe 1] \/B

with suitable Lipschitz constants on U, and the almost-surely finite random variable
C = |lyll + supseo,q [ Bs|l-
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We now use the modified distance

d(z,0CE) = max{ m

of z € U, from CE (which fits to the definition of U, in Lemma 3.1) instead of
the usual distance in the proof of Theorem 2.4. Using (3.5) we then complete the
proof precisely as in the Ay_1 case. (Il

,$1—$27~--,9€N—1—$N}

We now turn to the second freezing regime with k1 — oo and kg > 0 fixed. We
study the normalized processes (X := Xi 1/vVk1)t>0 with

S 1 o ko 1 1
dXZkzide+7Z<~‘ e ——— )dt+~. dt (3.6)
Vi N X = X X+ XY, Xi
for i = 1,..., N. We again compare X’t,k with the solutions of a deterministic

dynamical system which is much easier than in the previous cases.

Lemma 3.6. Let ko > 0. For e > 0 consider the open sets U, := {x € Cﬁ :
d(z,008) > €}. Then the function

H:U —RY, zw (1/z1,...,1/zN)

is Lipschitz continuous on U, with constant €~2. Moreover, for each starting point

xg € U, the solution ¢(t,xo) of the dynamical system Z—f(t) = H(z(t)) is given by

o(t, o) = (,/2t+x8)1,...,,/2t+x(2)’N)

with ¢(t, o) in the interior of CX fort > 0.

The proof of this lemma is straightforward. Notice that on an informal level,
the dynamical system of Lemma 3.6 has the solution ¢(t, z¢) for all starting points
zo € CE. We now turn to the strong limiting law.

Theorem 3.7. Let ky > 0. Let & be a point in the interior of CE, and let y € RV.
Let ko > 1/2 large enough such that \/k1 -x+y is in the interior of C¥ for ki > ko.
For ky > ko, consider the Bessel processes (X )i>0 of type By with k = (k1, ka),
which start in k1 -« +y. Then, for all t > 0,
sup || Xpr — VEio(t x)]| < o0 a.s..
0<s<t,k1>ko
In particular,
Xt,(kl,kQ)/V kl — d)(t, .’E) fO’f‘ kl — 00
locally uniformly in t a.s. and thus locally uniformly in t in probability.

Proof. The proof is analog to that of Theorems 2.4 and 3.5; we only sketch the main
steps and describe the differences. Notice that (Xy 1= X k/vVk1)i>0 satisfies

- 1 ok /t 1 1 b
Po= ——(y; + B+ — (~, — 4+ = — )ds—|—a:'—|-/ ——ds
VR (it B) k1 Jo ; X;,k_Xg,k X;,k"'Xg,k "o Xok

for:=1,..., N. We compare )N(t,k with the solution Y; = ¢(¢, x) of

t

; 1

Ytlza:,#—/ —ds (i=1,...,N)
0 Ysl

of Lemma 3.6.
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For both equations we perform Picard iterations as in the proof of Theorem 2.4.
We notice that for any given time ¢ > 0 and given kg as above, we can find a
small € > 0 such that the deterministic solution ¢(s,z + y/v/k1) of Lemma 3.6 is
contained in U, for all k1 > ko and all s € [0,¢]. If we consider the stopping times

T.p:=inf{t >0: X; 1 £ U}

we obtain as in the proof of Theorem 2.4 that

sup [ Xex = Ys| < C el (3.7

S€[0,tAT. 1] vk

with the a.s. finite random variable C':= [|ly|| + sup,¢o 4 [| Bs |-
We complete this proof by following the steps in the proof of Theorem 2.4. O

4. A CENTRAL LIMIT THEOREM FOR THE ROOT SYSTEM B

In this section we show that the locally uniform limit law in Theorem 3.7 above
can be used to derive a central limit theorem. This result generalizes the case B; for
classical one-dimensional Bessel processes where this is a classical and well-known
result; see Remark 4.2 below.

Theorem 4.1. Let ky > 0. Let x be a point in the interior of CX, and let y € RY.
Let ko > 1/2 large enough that \/k1 -x +y is in the interior of CE for ki > ko. For
k1 > ko, consider the Bessel processes (X x)i>0 of type B with k = (k1, k2), which
start in ki1 -z +y. Then, for allt >0,

Xt,(khkz) — k)l . (\/2154‘%%, ey \/Qt-i-:c?v)
tends in distribution for ki — oo to the normal distribution
t2 + ta? t2 + ta?
N | 0,diag erzl,..., erQN .
2t + x] 2t + o3y
Proof. Consider the process (Z;, = ((thyk)Q, ce (Xt%)2))t>0. The It6 formula
and the SDE for (X7, );>0 show for i =1,..., N that

dZy ) =2X/, dX{, + dt

= 9Xi, dB} + 21@2( Lk . )dt + (2K + 1)dt.
J#i tk Xt,k Xt,k + Xt,k:
Hence,
1 7 7
7\/5( e — Zog — (2k1 + 1)t) = (4.1)

txi 2% X X
= 2/ 8,k dB’ 2 ( L 4+ sk )ds.
o Vki Vi Jo X; p— X0 XL+ XTI,

tX: 4k
s,k k FR2
=2 clB7 / E ds.
vk Xﬁk)

]#1 37

As Xé’k /Vk1 — ¢(s,z) locally uniformly in probability by Theorem 3.7 with the
function ¢ from Lemma 3.6, we obtain from standard results on stochastic integrals
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(see e.g. Section II1.4 of [P]) that
t

i ¢
s,k i i
= dB; —>/ o(s,x) dB:
0o Vki 0

locally uniformly in ¢ in probability. Moreover, by the same argument, the integrand
of the second integral of the r.h.s. of (4.1) converges also to a finite, continuous
deterministic function, that is, the second summand of the r.h.s. of (4.1) converges
to 0 locally uniformly in ¢ in probability. Hence, using the initial condition, we see

that
1 ) t .
L Z,k—(mi\/kl—kyi)Z—(2k1+1)t)—>2~/ /25 + 22 dB
Vi 0

in probability for K — oo and i = 1,...,N. As the limits are N(0,4¢> + 4tx?)-
distributed and independent for i = 1,..., N we conclude that

1
= (Zt{k — 22k — 2y Fnwnys — 2kt ., 2D — 2%k — 2y ki nyn — 2k1t) (4.2)

tends in distribution to the N-dimensional normal distribution
N(0,diag(4t? + 4tz?, ... 42 + 4tz%))). (4.3)

In order to obtain a CLT for the original variables Xf’ x> we use the definition of
Zy 1, and observe that

S (X102 = k(e 2+ 20 V)
= ( e Vi - \/:1022 +2t+2xiyi/\/a)
X \/%(X;k +Vky - \/xf + 2t + QxLyl/\/E>
where the second factor in the r.h.s. tends in probability to QW for kK — oo

and ¢ = 1,...,N by Theorem 3.7. This, the CLT for Z; in the first part of the
proof, and Slutsky’s lemma applied to the quotient

ZL — a3k — 2Vk1xyn — 2kat) [k ,
(‘ k17 S e VAT Z,k_\/a'\/$%+2t+2$iyi/\/g
(Xg)k+\/E~\/x§+2t+2x¢yi/\/ﬁ)/\/ﬁ

yield that
(th,k - \/E\/m,...,ng’k - \/E\/M)
converges in distribution to the normal distribution given in the statement. O

We illustrate this theorem for the case N = 3 in Figure 1, where the limiting
distribution is compared with numerical simulations of the process for several values
of k1 and t. As expected from the theorem, the (centered) distribution of each
particle approaches the limiting normal distribution as ki grows, but there is a
clear bias in the numerical results. By observing the plots corresponding to ¢ = 10
(plots b), d), and f) in the figure), it is apparent that a larger value of k; is necessary
to approach the limiting distribution at larger times. This means that the bias is
not an effect of the starting position of the process, but rather an accumulating
effect of the second term in the last line of (4.1), which represents the repulsion
between particles. Indeed, the rightmost particle (thk) is pushed to the right and



14 SERGIO ANDRAUS AND MICHAEL VOIT

pdf(X"-py), t=10
0.30¢

0.25¢

FIGURE 1.

Hlustration of Theorem 4.1 for N = 3 and ke = 1 with (z1,x2,23) = (3,2,1). The
i-th row corresponds to X; 1> While the first column corresponds to ¢t = 1 and the
second column corresponds to t = 10. In each plot, the solid lines correspond to
the limiting normal distribution, while the blue circles, yellow squares and green
rhombi correspond to the distribution of X/, — \/k1(2t — 27) obtained in
numerical simulations for k; = 5, 50, and 500, respectively.

the leftmost particle (X};) is pushed to the left. In the case of X7, the bias is
much smaller because the repulsion from th’ . and Xt3, . cancel each other partially,
leading to a much faster convergence to the limiting distribution.

Remark 4.2. We briefly discuss the CLT 4.1 for N = 1 which is the case where 4.1
is reduced to a known classical CLT for classical one-dimensional Bessel processes.
To explain this fix & €]0,00[. Consider independent one-dimensional Brownian
motions (B!)¢>o starting in 0 for [ € N. It is well-known (see e.g. Sections V1.3
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and XI.1 of [RY]) that for d € N the sums of shifted squares

(St’d = Zd:(Bg + 56)2)20

1=1
are squares of classical one-dimensional Bessel processes, i.e., of Bessel processes of
type B; with multiplicity k1 = (d — 1)/2 (ko is irrelevant here).

Now fix t > 0. Then S; 4 is a sum of d iid random variables with mean ¢ + 2
and variance 2t% + 4t32. Therefore, by the classical CLT for sums of iid random
variables,

Sp.a—d(t+ 72)

— N(0,2t? 4 4ti> 4.4
7 ( ) (4.4)

for d — oo in distribution.

This CLT corresponds perfectly with the convergence of (4.2) to the distribution
(4.3) if one takes into account that we have k1 = (d — 1)/2 which implies that
the point x in Theorem 4.1 is related to & by dz? = kz?, ie., 3% = %x? We
notice that this approach to the one-dimensional CLT (4.4) also works for any real
parameter d € [1, 00 and also for the starting point & = 0.

We also notice that for the cases ko = 1/2,1,2, the central limit theorem is
related to a central limit theorem for Wishart distributions on the cones IIy ()
of all N x N-dimensional, positive semidefinite matrices over the fields F = R,C
and the skew-field of quaternions H respectively. We discuss this extension of the
preceding remark briefly.

Remark 4.3. Fix one of the (skew-)fields F = R,C,H as before with the real
dimension d = 1,2,4 respectively. For integers p € N consider the vector space
M, n(F) of all p x N-matrices over F with the real dimension dpN. Choose the
standard basis there with d basis vectors in each entry, and consider the dpN-
dimensional associated Brownian motion (B} );>o on M, v (F). If we write A* :=

Al e My ,(F) for matrices A € M, y(F) with the usual conjugation on F, the
process (Z} := (BY)*BY)i>0 becomes a Wishart process on the cone Iy (F) of all
N x N positive semidefinite matrices over F with shape parameter p; see [Bru,
DDMY] for details on Wishart processes.

Let oy : Iy (F) — C& be the mapping which relates to each matrix in Iy (F) its
ordered spectrum. Then, it is well-known that (\/on(Z!))i>0 is a Bessel process
on CE of type By with multiplicity (k1,k2) := ((p — N + 1) - d/2,d/2) where the
symbol /7 means taking square roots in each component; see e.g. [BF, R3] for
details.

We thus conclude that the CLT 4.1 for ks = 1/2,1,2 corresponds to a CLT
for Wishart distributions on Iy (F) with fixed time parameters where the shape
parameters p tend to oo. Notice that the distributions uf := Pzr € M (TIx(F)) of

7P satisfy pP* s pb* = P2 for py, py € N with the usual convolution of measures
on the vector space of all N x N Hermitian matrices over F by the very construction
of the random variables Z?. Moreover, this convolution relation holds for all real
parameters p which are sufficiently large. We thus may apply the classical law of
large numbers and CLT for sums of iid random variables on finitely dimensional
vector spaces to obtain LLs and a CLT for Wishart distributions for p — oco. If
one computes the mean vectors and covariance matrices for Z! one obtains readily
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that this classical CLT for p — oo on the level of Hermitian matrices corresponds
to Theorem 4.1 on the Weyl chamber C%.

We also remark that in this setting there are related LLNs and CLTs for radial
random walks (X7%),,>0 on the vector space M, n(F) when the dimension parameter
p as well as the time parameter n tend to oo in a coupled way; see [G, RV3, V1]. We
also mention that the CLT 4.1 has some relations with limit theorems of Bougerol
[B] for noncompact Grassmann manifolds over F when the dimensions tend to
infinity.

The strong LLs 2.4, 3.5, and 5.5 also admit central limit theorems similar to
Theorem 4.1. These results, whose proofs are also based on these strong LLNs, are
more complicated and will be presented in [VW]. To get some impression, we fix a
root system, a multiplicity & (which might be 2-dimensional in the case By), and
the corresponding Bessel processes (X, x);>0. For each function F € CP(RN) we
obtain from the It6 formula and the general SDE (1.9) that

1
dF(Xt’k) = VF(Xt,k) dXt7k + §AF<X1/’;€) dt
1
= VF(Xex) By + 5 ((VF - V(Inwe)) (Xe) + AF(Xe) ) de

where V(Inwy)) has the form k- H(x) for the root systems of type Ay_1, Dy, and
the form ki - Hy(z) 4+ ko - Ho(x) for the root system By with suitable functions
H,H,, Hy. We now search for F' € C®)(RY), for which

(VF - V(Inwg))(x)

is independent of x € RY. Similar to the proof of Theorem 4.1 we then obtain a
CLT for F(X.y,) for starting points in the interior when the multiplicity or a part
of it tends to infinity.

It was noticed by J. Woerner that in all cases, a non-trivial example of a function
F with the desired properties is given by F(z) := ||z||2. This can be checked easily
for all root systems. This observation leads readily to the following CLT:

Proposition 4.4. Consider Bessel processes (X )i>0 of types An—_1, By, or Dy
as above in the strong LLs 2.4, 3.5, and 5.5 with the starting points given therein.
Let v > 0 be such that the weight function wy is homogeneous of degree 27y (see
(1.5) for the cases Ax—_1, By and the beginning of the next section for the case Dy
for precise formulas).

Then, for each t > 0 and for all multiplicities k with v — oo,

1 Xekllz = vy + (N =1)/2- /2t + |23

converges in distribution to

2 + t||x)|3
N(o, + Hscll;)
2t + [l

Proof. The proof can be carried out by using the function F(x) := ||z||3 as explained
above.

We give a second proof. It is well-known by [RV1] that (]| X k||2)¢>0 is a classical
one-dimensional Bessel process of type By with multiplicity v + (N —1)/2. If we
apply Theorem 4.1 to this case, the statement follows. ([
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Besides of the CLT 4.4 there exist further CLTs. For instance, for the case Ay_1,
Eq. (2.1) implies that the center of gravity is

1L 1
N;dxf,k:ﬁ;d%

i.e., it is a Brownian motion up to scaling. Also for the case A; with 2 particles, a
CLT can be derived in a simple way.

5. STRONG LIMITING LAW FOR THE ROOT SYSTEM Dy

We next briefly a study limit theorem for Bessel processes of type Dy. We
recapitulate that the root system is given here by

DN:{:i:elzlzej: 1§Z<j§N}
with associated closed Weyl chamber
CN::CII\?:{xGRN: 1> ... >xN_1 > |zN|}

CE may be seen as a doubling of CF w.r.t. the last coordinate. We have a one-
dimensional multiplicity & > 0. The weight function from (1.3) is given by

wi(w) = wi (z) = [ [« = 2)*",
i<j
the associated constant v by vp := kN(N — 1), and the generator of the transition
semigroup by

R LA WU CE e VD

=1 j#i

c.f. (1.1) and (1.2) for the cases Ay_1 and By. For further details on the Dy case
we refer to [Del].

Consider the Bessel process (X x)i>0 of type Dy which starts at time 0 from
the origin, 0 € C¥. In this case, the SDE (1.9) reads as (3.1) with k; := 0, ko := k.
Moreover, by (1.3), the random variable X; ;,/v/kt (t > 0) has the Lebesgue density

const (k) - exp( (—||y||2 + QZln - y] )) =: const(k) - exp(k - Wp(y)) (5.2)
1<j
on Cﬁ,’. Similar to the results above in the cases Ay_1 and By, we have:
Lemma 5.1. Fory € CL, the following statements are equivalent:

(1) The function Wp(z) :==23,_; In(xF —23) — ||2[?/2 is mazimal at y € CF;
(2) yn =0, and fori=1,... N—l,

12

JijF#i

_yj

(3) Ifzgl) L > ZJ(V) 1 > 0 are the N—1 ordered zeros of the classical Laguerre

polynomzal LN)—U then

2720, 0) = (3L vd). (5.3)
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Proof. Clearly Wp(y) tends to —oco for y € C¥ with ||y|| — oo and for the case
where y tends to some point in JCL. This shows that Wp admits a global maximum
on CE which is in the interior of C¥. Each candidate for a maximum satisfies
i aY G =0 (i=1,...,N). (5.4)
jari 9 T Y
Using y € CL we see easily that yx = 0 (as otherwise the Lh.s. of (5.4) is negative
for i = N). Moreover, as y ¢ 0CK, we have y; > 0 for i = 1,..., N — 1, that is,
we obtain the condition in (2). If we have the equivalence of (2) and (3), we see
that we only have one candidate for a maximum. This shows that (1) and (2) are
equivalent. Finally, the equivalence of (2) and (3) is shown in Remark 3.3. O

Lemma 5.1 and the explicit densities (5.2) of X;/vkt immediately imply the
following weak limiting law for X j for k¥ — oo for start in 0 which is analog to the
LLs in [AKM1, AKM2, AM]:

Corollary 5.2. Consider the Bessel processes (X x)i>0 of type Dy which start at
time 0 in the origin 0 € CY. Then, for eacht > 0, th/\/ﬁ — y in probability for
k — oo, where y € CE is the vector in Lemma 5.1.

The LLs for a starting point in the interior of the Weyl chamber as in Theo-
rems 2.4, 3.5, and 3.7 can be also derived for the root system Dy. For this, we
again compare Xy 1= X; 1/ V'k with solutions of a deterministic dynamical system.

Lemma 5.3. For e > 0 consider the open subsets U, := {x € CX : d(z,0C%) > €}.
Then the function

1 1
Zj?ﬂ (Il—fﬂj + T142; )

H:U . —-RY, 2z~

1 1
ZjiN(afN—xj + xN+xj)

is Lipschitz continuous on U, with Lipschitz constant Lo > 0. Moreover, for each

starting point xo € Ue, the solution ¢(t,xo) of the dynamical system (1) =

H(x(t)) satisfies ¢p(t,xzg) € Ue for all t > 0.

Proof. The proof is completely analog, but slightly simpler than that of Lemma

3.1. We skip the details. O
Parts (2) and (3) of Lemma 5.1 lead to the following explicit solution of the

differential equation of Lemma 5.3:

Corollary 5.4. Let y € CX be the vector in Eq. (5.3). Then for each ¢ > 0, a

solution of the dynamical system in Lemma 5.3 is given by ¢(t,c-y) = vVt +c? - y.

Theorem 5.5. Let = be a point in the interior of CL, and y € RN. Let k > 1/2

with Vk - x + y in the interior of CE for k > ky. For k > ko, consider the Bessel

processes (X i )i>0 of type Dy started from Vk-xz+7vy. Then, for all t > 0,

sup || Xsk — \/th(s,x)ﬂ < 00

0<s<t,k>ko
almost surely. In particular,
Xt,k/\/E — o(t,x) for k — oo

locally uniformly in t almost surely and thus locally uniformly in t in probability.
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Proof. The proof is analog to that of Theorem 2.4. We skip the details. O

Remark 5.6. Let (th’k)tzo be a Bessel process of type D with multiplicity & > 0
on the chamber C¥. Then the process (ka)tzo with

B,i Di . B,N D,N
X =X (i=1...,N-1), X377 =[|X7"|

is a Bessel process of type B with the multiplicity (k1,k2) := (0,k). This follows
easily from a comparison of the corresponding generators.

We thus conclude from Theorem 5.5 that the strong LL 3.5 remains valid also
for v = 0.
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