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CENTRAL LIMIT THEOREMS FOR MULTIVARIATE BESSEL

PROCESSES IN THE FREEZING REGIME

MICHAEL VOIT

Abstract. Multivariate Bessel processes (Xt,k)t≥0 are classified via associ-

ated root systems and multiplicity constants k ≥ 0. They describe the dynam-
ics of interacting particle systems of Calogero-Moser-Sutherland type. Re-
cently, Andraus, Katori, and Miyashita derived some weak laws of large num-
bers for Xt,k for fixed times t > 0 and k → ∞.

In this paper we derive associated central limit theorems for the root sys-
tems of types A, B and D in an elementary way. In most cases, the limits will
be normal distributions, but in the B-case there are freezing limits where dis-

tributions associated with the root system A or one-sided normal distributions
on half-spaces appear. Our results are connected to central limit theorems of
Dumitriu and Edelman for β-Hermite and β-Laguerre ensembles.

1. Introduction

The dynamics of integrable interacting particle systems of Calogero-Moser-Suther-
land type on the real line R with N particles can be described by certain time-
homogeneous diffusion processes on suitable closed subsets of RN . These processes
are often called (multivariate or interacting) Bessel- or Dunkl-Bessel processes; for
the general background we refer to [CGY], [GY], [R1], [R2], [RV1], [RV2] as well
as to [An], [DF], [DV]. These processes are classified via root systems and a finite
number of multiplicity parameters which govern the interactions. We here consider
the root systems of types AN−1, BN , and DN .

Let us consider some details of the case AN−1 first. Here we have a multiplicity
k ∈ [0,∞[, the processes (Xt,k)t≥0 live on the closed Weyl chamber

CA
N := {x ∈ R

N : x1 ≥ x2 ≥ . . . ≥ xN},
the generator of the transition semigroup is

Lf :=
1

2
∆f + k

N
∑

i=1

(

∑

j 6=i

1

xi − xj

) ∂

∂xi
f, (1.1)

and we assume reflecting boundaries, i.e., the domain of the operator L is

D(L) := {f |CN
: f ∈ C(2)(RN ), f invariant under all permutations of coordinates}.

We are interested in limit theorems for (Xt,k)t≥0 for fixed t > 0 in freezing
regimes, i.e., for k → ∞. For this we recall that by [R1], [R2], [RV1], [RV2], the
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2 MICHAEL VOIT

transition probabilities are given for t > 0, x ∈ CN , A ⊂ CN a Borel set, by

Kt(x,A) = cAk

∫

A

1

tγA+N/2
e−(‖x‖2+‖y‖2)/(2t)JA

k (
x√
t
,
y√
t
) · wA

k (y) dy (1.2)

with ‖.‖ the usual euclidean norm on R
N ,

wA
k (x) :=

∏

i<j

(xi − xj)
2k, γA = kN(N − 1)/2, (1.3)

and the Macdonald-Mehta-Opdam constant

cAk :=
(

∫

CA
N

e−‖y‖2/2 ·
∏

i<j

(yi − yj)
2k dy

)−1

=
N !

(2π)N/2
·

N
∏

j=1

Γ(1 + k)

Γ(1 + jk)
; (1.4)

see [O] or [Me]. Notice that wA
k is homogeneous of degree 2γA. Moreover, JA

k is
a multivariate Bessel function of type A with multiplicity k; see e.g. [R1], [R2]
and references there. For the moment, we do not need much informations about
JA
k . We only recapitulate that JA

k is analytic on C
N × C

N with JA
k (x, y) > 0 for

x, y ∈ R
N , and with JA

k (x, y) = JA
k (y, x) and JA

k (0, y) = 1 for x, y ∈ C
N .

If we start in 0 ∈ R
N , then Xt,k has the density

ck
tγ+N/2

e−‖y‖2/(2t) · wk(y) dy (1.5)

on CA
N for t > 0, i.e., Xt,k/

√
tk has a density of the form

const.(k) · exp
(

k
(

2
∑

i,j:i<j

ln(yi − yj)− ‖y‖2/2
))

=: const.(k) · exp
(

k ·WA(y)
)

which is in particular well-known for k = 1/2, 1, 2 as the distribution of the ordered
eigenvalues of Gaussian orthogonal, unitary, and symplectic ensembles; see e.g. [D].
For general k > 0 it is known from the tridiagonal β-Hermite ensembles of [DE1].
It is well-known (see [AKM1] and also Section 6.7 of [S]) that WA is maximal on

CA
N precisely for y =

√
2 ·z where z ∈ CA

N is the vector with the zeros of the classical
Hermite polynomial HN as entries where the (HN )N≥0 are orthogonal w.r.t. the

density e−x2

. A saddle point argument thus immediately yields that

lim
k→∞

Xt,k√
2tk

= z (k → ∞) (1.6)

in distribution and thus in probability whenever the Xt,k are defined on a common
probability space. It was shown in [AKM1] that this even holds when we start in any
fixed point x ∈ CA

N or even with some more or less arbitrary starting distribution.
We prove a corresponding central limit theorem in an elementary way in Section

2. This CLT was derived in [DE2] by other methods via an interpretation through
tridiagonal matrix models. We prove that for starting in 0 ∈ CA

N and any t > 0,

Xt,k −
√
2kt · z converges in distribution to some centered N -dimensional normal

distribution with some covariance matrix which again contains the zeros of HN

as major ingredients; see Theorem 2.2 below. The proof is based on the explicit
density of Xt,k above and elementary calculations which involve the zeros of HN .
As a byproduct of the CLT we automatically get some determinantal formula for
the zeros of HN which is possibly new.
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We also derive corresponding CLTs for the Bessel processes associated with
the root systems BN and DN . In the B-case, the multiplicity k = (k1, k2) is 2-
dimensional. Motivated by the LLNs in [AKM2] and [AM] for the B-cases, we
study central limit theorems for several freezing cases. We in particular study the
case (k1, k2) = (c · β, β) with c > 0 fixed and β → ∞ in Section 3, but we also
shall study the case where k2 > 0 is fixed and k1 → ∞ in Section 4 as well as the
case k1 > 0 fixed and k2 → ∞ in Section 6. It will turn out that in the first case
we obtain again a classical normal distribution in the limit where the covariance
matrix is formed in terms of the zeros of classical Laguerre polynomials, where the
index of the polynomials depends on k2. In the second regime, the limit distribution
has a density of type A as in (1.5). In the third case we shall get some one-sided
normal distributions which live on a certain halfspace. Furthermore, Section 5 will
be devoted to the root system DN . We point out that some of the limit results are
available for arbitrary, fixed starting points and not just for the case with start in
0.

The Bessel processes are diffusions on Weyl chambers which satisfy some sto-
chastic differential equations; see [GY], [CGY]. These SDEs are used in [AV1] to
derive locally uniform strong laws of large numbers for Xt,k for k → ∞ with strong

rates of convergence, whenever the processes start in points of the form
√
k ·x where

x is some point in the interior of the Weyl chamber. It was possible to derive a
CLT in the B-case for a particular freezing regime for these starting points in [AV1].

Further CLTs for starting points of the form
√
k · x are given in [VW].

2. A central limit theorem for the root system AN−1

In this section we derive a CLT for Bessel processes of type A for k → ∞ with an
N -dimensional normal distribution as limit. The centerings as well as the entries
of the covariance matrices of the limit will be described in terms of the zeros of the
classical Hermite polynomials HN . This connection is based on the following fact
on these zeros, which is originally due to Stieltjes:

Lemma 2.1. For y ∈ CA
N , the following statements are equivalent:

(1) The function WA(x) := 2
∑

i,j:i<j ln(xi − xj) − ‖x‖2/2 is maximal at y ∈
CA

N ;
(2) For i = 1, . . . , N : 1

2yi =
∑

j:j 6=i
1

yi−yj
;

(3) The vector

z := (z1, . . . , zN ) := (y1/
√
2, . . . , yN/

√
2)

consists of the ordered zeros of the classical Hermite polynomial HN .

Furthermore, the vector z of (3) satisfies for t > 0,

−‖z‖2
2t

+ 2
∑

i<j

ln(zi − zj) = −N(N − 1)

2
(1− ln t) +

N
∑

j=1

j ln j. (2.1)

Proof. For the equivalence of (1)-(3) see [AKM1] or Section 6.7 of [S]. For (2.1) we
refer to appendix D and the comments between Eqs. (58) and (59) in [AKM1]. �

Using the zeros of HN we now turn to the main result of this section:
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Theorem 2.2. Consider the Bessel processes (Xt,k)t≥0 of type AN−1 on CA
N for

k ≥ 0 with start in 0 ∈ CA
N . Then

Xt,k√
t

−
√
2k · z

converges for k → ∞ to the centered N -dimensional distribution N(0, t · Σ) with
the regular covariance matrix Σ with Σ−1 = (si,j)i,j=1,...,N with

si,j :=

{

1 +
∑

l 6=i(zi − zl)
−2 for i = j

−(zi − zj)
−2 for i 6= j

. (2.2)

Proof. We first observe that by the formulas of the transition kernels Kt of our
Bessel processes in (1.2), the Kt admit the same space-time-scaling as Brownian
motions, i.e., for all t > 0, x ∈ CA

N , and all Borel sets A ⊂ CA
N , Kt(x,A) =

K1(
√
t · x,

√
t ·A). We thus may assume that t = 1 in the proof.

X1,k has the density

cAk e
−‖y‖2/2 · exp

(

2k
∑

i<j

ln(yi − yj)
)

on CA
N . Hence, X1,k −

√
2k · z has the Lebesgue density

fA
k (y) := cAk · exp

(

−‖y +
√
2k · z‖2/2 + 2k

∑

i<j

ln
(

yi − yj +
√
2k(zi − zj)

)

)

(2.3)

= cAk · exp
(

−‖y‖2/2−
√
2k〈y, z〉 − k‖z‖2 + 2k

∑

i<j

ln(
√
2k(zi − zj))

)

×

× exp
(

2k
∑

i<j

ln
(

1 +
yi − yj√
2k(zi − zj)

)

)

on the shifted cone CA
N −

√
2k · z with fA

k (y) = 0 otherwise on R
N . We now split

this formula into two parts

fA
k (y) = c̃k · hk(y),

where hk depends on y and the remainder c̃k is constant w.r.t. y. This constant
term is

c̃k :=cAk e
−k‖z‖2 · exp

(

2k
∑

i<j

ln(
√
2k(zi − zj))

)

=cAk exp
(

−k
(

‖z‖2 − 2
∑

i<j

ln(zi − zj)
)

)

· (2k)kN(N−1)/2

=cAk exp
(

−k
N(N − 1)

2
(1 + ln 2) + k

N
∑

j=1

j ln j
)

· (2k)kN(N−1)/2

=cAk (k/e)
kN(N−1)/2 ·

N
∏

j=1

jkj .

Notice that the third = above follows from (2.1) for t = 1/2. Hence, by (1.4),

c̃k(x) =
N !

(2π)N/2
·

N
∏

j=1

Γ(1 + k)

Γ(1 + jk)
· (k/e)kN(N−1)/2 ·

N
∏

j=1

jkj . (2.4)
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Stirling’s formula Γ(k + 1) ∼
√
2πk(k/e)k and elementary calculations now lead to

lim
k→∞

c̃k =

√
N !

(2π)N/2
. (2.5)

We next turn to the factor hk(y); it is given by

hk(y) := exp
(

−‖y‖2/2−
√
2k〈y, z〉+ 2k

∑

i<j

ln
(

1 +
yi − yj√
2k(zi − zj)

)

)

By the power series of ln(1 + x),

ln
(

1 +
yi − yj√
2k(zi − zj)

)

=
yi − yj√
2k(zi − zj)

− (yi − yj)
2

4k(zi − zj)2
+O(k−3/2). (2.6)

Furthermore, by part (2) of Lemma 2.1,

−
√
2k〈y, z〉+

√
2k
∑

i<j

yi − yj
zi − zj

=
√
2k

N
∑

i=1

yi
(

−zi +
∑

j: j 6=i

1

zi − zj

)

= 0. (2.7)

Therefore,

hk(y) = exp
(

−‖y‖2/2− 1

2

∑

i<j

(yi − yj)
2

(zi − zj)2
+O(k−1/2)

)

. (2.8)

Now let f ∈ Cb(R
N ) be a bounded continuous function. We conclude from (2.3),

(2.5),(2.8) that

lim
k→∞

∫

RN

f(y) · fA
k (y) dy = lim

k→∞
c̃k

∫

RN

f(y) · hk(y) dy (2.9)

=

√
N !

(2π)N/2
·
∫

RN

f(y)e−‖y‖2/2exp
(

−1

2

∑

i<j

(yi − yj)
2

(zi − zj)2

)

dy.

For this we have to check that we may apply dominated convergence. For this we
again consider the Taylor polynomial of ln(1 + x) and notice that by the Lagrange
remainder,

ln
(

1 +
yi − yj√
2k(zi − zj)

)

=
yi − yj√
2k(zi − zj)

− (yi − yj)
2

4k(zi − zj)2
· w (2.10)

with some w ∈ [0, 1]. This implies readily that we could apply dominated conver-
gence in (2.9).

On the other hand, Eq. (2.9) says that the probability measures with the densities
fA
k tend weakly to the measure with Lebesgue density

√
N !

(2π)N/2
· e−‖y‖2/2 · exp

(

−1

2

∑

i<j

(yi − yj)
2

(zi − zj)2

)

, (2.11)

which must a probability measure by weak convergence. On the other hand, this
measure is just the normal distribution claimed in the theorem possibly up to the
correct normalization constant. But, as both measures are probability measures,
the normalizations in (2.11) are necessarily the correct ones. This completes the
proof. �
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Notice that the final arguments in the proof about the correct normalizations
above automatically lead to the following remarkable result for the zeros of the
Hermite polynomial HN :

Corollary 2.3. For each N ∈ N consider the ordered zeros z1 ≥ . . . ≥ zN of the
N -th Hermite polynomial HN . Form the matrix S := (si,j)i,j=1,...,N with

si,j :=

{

1 +
∑

l 6=i(zi − zl)
−2 for i = j

−(zi − zj)
−2 for i 6= j

. (2.12)

Then det S = N !.

For details on the eigenvalues and eigenvectors of the matrix S we refer to [AV2].

Remark 2.4. As mentioned in the introduction, Theorem 2.2 was derived in [DE2]
via the tridiagonal matrix models for β-Hermite ensembles of Dumitriu and Edel-
man in [DE1]. In fact, in Theorem 3.1 of [DE2], Dumitriu and Edelman obtain the
CLT above with a direct, but quite complicated formula for the covariance matrix
Σ of the limit in terms of the zeros of HN combined with the Hermite polynomials
Hl (l = 1, . . . , N). It is quite unclear how the expression for Σ in [DE2] corresponds
to our formula for Σ−1 above, i.e., the equality of these matrices may be seen as a
further corollary from Theorem 2.2.

Remark 2.5. One might try to extend the preceding proof to the case where
the processes (Xt,k)t≥0 start in some x ∈ CA

N with x 6= 0. If x has the form

x = c(1, . . . , 1), then
Xt,k√

t
−

√
2k · z − x again tends to N(0, t · Σ) in distribution

with Σ as above in the theorem.
This follows easily from Theorem 2.2 and the fact that the kernelsKt are partially

translation invariant in the sense that

Kt(x+ c(1, . . . , 1), A+ c(1, . . . , 1)) = Kt(x,A) for c, t > 0, x ∈ CA
N , A ⊂ CA

N .
(2.13)

This invariance is a consequence from the well-known fact that the Bessel functions
JA
k satisfy

JA
k (x, y) = eNx̄·ȳ · JA

k (πN (x), πN (y)) (x, y ∈ R
N ) (2.14)

with x̄ := 1
N (x1 + . . .+ xN ) and with the orthogonal projection πN from R

N onto

the orthogonal complement 1⊥ := (1, . . . , 1)⊥ of R · (1, . . . , 1) w.r.t. the standard
scalar product on R

N . This factorization (2.14) follows from the fact that the
non-reduced root system AN−1 on R

N may be regarded as a root system on the
n−1-dimensional space 1⊥ where the diagonal R·1 remains unchanged. The theory
of Dunkl kernels and Bessel functions then easily leads to (2.14); see e.g. the survey
[R2].

The CLT for arbitrary starting points will be derived in [AV2] by using some
limit result JA

k for k → ∞ from [AM].

3. A central limit theorem for the root system BN

In this section we derive a first CLT for Bessel processes of type B. We recapit-
ulate that in the case BN , we have 2 multiplicities k1, k2 > 0, the processes live
on

CB
N := {x ∈ R

N : x1 ≥ x2 ≥ . . . ≥ xN ≥ 0},
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the generator of the transition semigroup is

Lf :=
1

2
∆f + k2

N
∑

i=1

∑

j 6=i

( 1

xi − xj
+

1

xi + xj

) ∂

∂xi
f + k1

N
∑

i=1

1

xi

∂

∂xi
f, (3.1)

and we again assume reflecting boundaries. Similar to the A-case in the introduc-
tion, we have the transition probabilities

Kt,k(x,A) = cBk

∫

A

1

tγB+N/2
e−(‖x‖2+‖y‖2)/(2t)JB

k (
x√
t
,
y√
t
) · wB

k (y) dy (3.2)

with

wB
k (x) :=

∏

i<j

(x2
i − x2

j )
2k2 ·

N
∏

i=1

x2k1

i , (3.3)

γB = k2N(N − 1) + k1N , and with the Macdonald-Mehta-Opdam-type normaliza-
tion

cBk :=
(

∫

CB
N

e−‖y‖2/2wB
k (y) dy

)−1

(3.4)

=
N !

2N(k1+(N−1)k2−1/2)
·

N
∏

j=1

Γ(1 + k2)

Γ(1 + jk2)Γ(
1
2 + k1 + (j − 1)k2)

;

see [O]. Again wB
k is homogeneous of degree 2γB , and JB

k is a multivariate Bessel
function of type B with multiplicities k := (k1, k2).

We now study CLTs fo several freezing regimes in this section as well as in
Sections 4 and 6. We here start with the case (k1, k2) = (ν · β, β) with ν > 0
fixed and β → ∞. Laws of large numbers in this case can be found in in [AKM2],

[AV1] where in the limit now the zeros of the classical Laguerre polynomials L
(ν−1)
N

appear. We recapitulate that the L
(ν−1)
N are orthogonal w.r.t. the density e−x ·xν−1

on ]0,∞[ for ν > 0. We need the following known facts about the zeros of L
(ν−1)
N .

Lemma 3.1. Let ν > 0. For r ∈ CB
N , the following statements are equivalent:

(1) The function

WB(y) := 2
∑

i<j

ln(y2i − y2j ) + 2ν
∑

i

ln yi − ‖y‖2/2

is maximal at r ∈ CB
N ;

(2) For i = 1, . . . , N , r = (r1, . . . , rN ) satisfies

1

2
ri =

∑

j:j 6=i

2ri
r2i − r2j

+
ν

ri
=
∑

j:j 6=i

( 1

ri − rj
+

1

ri + rj

)

+
ν

ri
;

(3) If z
(ν−1)
1 ≥ . . . ≥ z

(ν−1)
N are the ordered zeros of L

(ν−1)
N , then

2(z
(ν−1)
1 , . . . , z

(ν−1)
N ) = (r21, . . . , r

2
N ). (3.5)
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The vector r of (1)-(3) satisfies

−1

2
‖r‖2+ν

N
∑

j=1

ln r2j + 2
∑

i<j

ln(r2i − r2j ) = (3.6)

= N(N + ν − 1)(−1 + ln 2) +

N
∑

j=1

j ln j +

N
∑

j=1

(ν + j − 1) ln(ν + j − 1)

Proof. For the equivalence of (1)-(3) we refer to [AKM2]; see in particular Appendix
C there. Moreover, this equivalence is more or less also contained in Section 6.7 of
[S]. For the proof of (3.6) we also refer to [AKM2]. In fact, one has to compare
Eq. (12) with the comments on between (75) and (76) there. Please notice that the
definitions of (β, ν) here are slightly different from that in [AKM2]; in β there is a
multiplicative factor 2, and in ν there is a shift by 1/2. �

In order to handle arbitrary starting points x, we need the following asymptotic
result for the Bessel functions of type B; see Lemma 5 of [AKM2] and notice that
our notions of ν, β are different from [AKM2] as described above:

Lemma 3.2. For all x, y ∈ CB
N and ν > 0,

lim
β→∞

JB
(ν·β,β)(

√

β · x, y) = exp
( ‖x‖2‖y‖2
4N(ν +N − 1)

)

.

This limit holds locally uniformly in x, y.

We now turn to the main result of this section:

Theorem 3.3. Fix some starting point x in the Weyl chamber CB
N , and consider

the associated Bessel processes (Xt,k)t≥0 of type BN on CB
N for k = (k1, k2). Then,

for the vector r ∈ CB
N of Lemma 3.1,

Xt,(ν·β,β)√
t

−
√

β · r

converges for β → ∞ to the centered N -dimensional distribution N(0, t · Σ) with
the regular covariance matrix Σ with Σ−1 = (si,j)i,j=1,...,N with

si,j :=

{

1 + 2ν
r2i

+ 2
∑

l 6=i(ri − rl)
−2 + 2

∑

l 6=i(ri + rl)
−2 for i = j

2(ri + rj)
−2 − 2(ri − rj)

−2 for i 6= j
. (3.7)

Proof. As in the A-case we may assume that t = 1 without loss of generality. Let
k = (ν · β, β). Taking the starting point x into account, X1,k has the density

cBk e
−‖x‖2/2−‖y‖2/2 · JB

k (x, y) · exp
(

2β
∑

i<j

ln(y2i − y2j ) + 2νβ
N
∑

i=1

ln yi

)
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on CB
N . Hence, X1,k −

√
β · r has the density

fB
β (y) := cBk e

−‖x‖2/2JB
k (x, y +

√

β · r)e−‖y+
√
β·r‖2/2× (3.8)

×exp
(

2β
∑

i<j

ln
(

(yi +
√

β · ri)2 − (yj +
√

β · rj)2
)

+ 2νβ

N
∑

i=1

ln(yi +
√

β · ri)
)

= cBk e
−‖x‖2/2JB

k (x, y +
√

β · r)e−‖y‖2/2e−β‖r‖2/2e−
√
β〈y,r〉×

× exp
(

2β
∑

i<j

ln
(

1 +
yi − yj√
β(ri − rj)

)

+ 2β
∑

i<j

ln
(

1 +
yi + yj√
β(ri + rj)

)

)

×

× exp
(

2νβ

N
∑

i=1

ln(1 +
yi√
βri

)
)

exp
(

2νβ

N
∑

i=1

ln(
√

βri)
)

×

× exp
(

2β
∑

i<j

ln(
√

β(ri − rj)) + 2β
∑

i<j

ln(
√

β(ri + rj))
)

on the shifted cone CB
N −

√
β · r with fB

β (y) = 0 otherwise on R
N . We now split

this formula into two parts

fB
β (y) = c̃β · hβ(y),

where hβ(y) depends on y, and where the remainder c̃β is constant w.r.t. y. The
part depending on y is given by

hβ(y) := exp
(

−‖y‖2/2−
√

β〈y, r〉+ 2β
∑

i<j

ln
(

1 +
yi − yj√
β(ri − rj)

)

)

×

× exp
(

2β
∑

i<j

ln
(

1 +
yi + yj√
β(ri + rj)

)

+ 2νβ
N
∑

i=1

ln(1 +
yi√
βri

)
)

· JB
k (x, y +

√

β · r)

for y ∈ CB
N −

√
β · r, and by hβ(y) = 0 otherwise. By the power series of ln(1 + x),

ln
(

1 +
yi ± yj√
β(ri ± rj)

)

=
yi ± yj√
β(ri ± rj)

− (ri ± rj)
2

2β(ri ± rj)2
+O(β−3/2) (3.9)

and

ln(1 +
yi√
βri

) =
yi√
βri

− y2i
2βr2i

+O(β−3/2). (3.10)

Furthermore, by part (2) of Lemma 3.1,

−
√

β〈y, r〉+ 2
√

β
∑

i<j

yi − yj
ri − rj

+ 2
√

β
∑

i<j

yi + yj
ri + rj

+ 2ν
√

β

N
∑

i=1

yi
ri

(3.11)

=
√

β

N
∑

i=1

yi

(

−ri +
∑

j: j 6=i

1

ri − rj
+
∑

j: j 6=i

1

ri + rj
+

2ν

ri

)

= 0.

Therefore, by (3.9)-(3.11),

hβ(y) =exp
(

−‖y‖2/2−
∑

i<j

(yi − yj)
2

(ri − rj)2
−
∑

i<j

(yi + yj)
2

(ri + rj)2

)

× (3.12)

× exp
(

−ν

N
∑

i=1

y2i /r
2
i +O(β−1/2)

)

· JB
k (x, y +

√

β · r).
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We next observe that by Lemma 3.2,

lim
β→∞

JB
(ν·β,β)(x, y +

√

β · r) = lim
β→∞

JB
(ν·β,β)(x,

√

β(r + y/
√

β))

= exp
( ‖x‖2‖r‖2
4N(ν +N − 1)

)

=: dν(x). (3.13)

In summary,

lim
β→∞

hβ(y) = dν(x)exp
(

−‖y‖2
2

−
∑

i<j

(yi − yj)
2

(ri − rj)2
−
∑

i<j

(yi + yj)
2

(ri + rj)2
−ν

N
∑

i=1

y2i
r2i

)

. (3.14)

We next study the second factor in the density fB
β (y) in (3.8) which is indepen-

dent of y. This constant is given by

c̃β :=cBk e
−‖x‖2/2−β‖r‖2/2exp

(

2νβ

N
∑

i=1

ln(
√

β · ri)
)

×

× exp
(

2β
∑

i<j

ln(
√

β(ri − rj)) + 2β
∑

i<j

ln(
√

β(ri + rj))
)

=cBk exp
(

β
(

−‖r‖2
2

+ 2ν
N
∑

i=1

ln ri + 2
∑

i<j

(ln(ri − rj) + ln(ri + rj))
))

×

× βνβN+βN(N−1) · e−‖x‖2/2

=cBk exp
(

β
(

N(N + ν − 1)(−1 + ln 2) +

N
∑

j=1

j ln j +

N
∑

j=1

(ν + j − 1) ln(ν + j − 1)
))

×

× βνβN+βN(N−1) · e−‖x‖2/2. (3.15)

Notice that the last equation above follows from (3.6). We next study the constant

cBk . We conclude from (3.4), Stirling’s formula Γ(k + 1) ∼
√
2πk(k/e)k, from

Γ(k + 1/2)

Γ(k + 1)
∼ 1√

k

for k → ∞, and from a longer elementary calculation that

cBk ∼ exp(βN(N + ν − 1)) ·
√
N !

2Nνβ+N(N−1)β−N/2 · (2π)N/2
×

× 1
∏N

j=1 j
jβ ·∏N

j=1(ν − 1 + j)β(ν−1+j)βN(N−1)β−N/2+βνN
.

If we plug this into (3.15), we see that

lim
β→∞

c̃β =
e−‖x‖2/22N/2 ·

√
N !

(2π)N/2
. (3.16)
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Now let f ∈ Cb(R
N ) be a bounded continuous function. We shall conclude from

(3.8), (3.16), and (3.14) that

lim
β→∞

∫

RN

f(y) · fB
β (y) dy = lim

β→∞

(

c̃β

∫

RN

f(y) · hβ(y) dy
)

(3.17)

=
e−‖x‖2/2dν(x)2

N/2 ·
√
N !

(2π)N/2
·

·
∫

RN

f(y) exp
(

−
(‖y‖2

2
+
∑

i<j

(yi − yj)
2

(ri − rj)2
+
∑

i<j

(yi + yj)
2

(ri + rj)2
+ ν

N
∑

i=1

y2i
r2i

))

dy.

For this we have to check that we may apply dominated convergence. For this we
again consider the Taylor polynomial of ln(1 + x) and notice that by the Lagrange
remainder,

ln
(

1 +
yi ± yj√
β(zi ± zj)

)

=
yi ± yj√
β(zi ± zj)

− (yi ± yj)
2

2β(zi ± zj)2
· w± (3.18)

with some w± ∈ [0, 1]. Moreover, by the same reason,

ln(1 +
yi√
βri

) =
yi√
βri

− y2i
2βr2i

· w. (3.19)

with some w ∈ [0, 1]. This implies that for all k > 0 and y,

0 ≤ hk(y) ≤ JB
(νβ,β)(x, y +

√

β · r) · e−‖y‖2/2. (3.20)

We next consider JB
(νβ,β). For this we recapitulate from [RV2] that for all root

systems and all multiplicities k ≥ 0, the associated Bessel functions J satisfy

0 < J(a, b) ≤ exp(‖a‖ · ‖b‖) for all a, b ∈ R
N .

In particular, for all ν, β and all x, y ∈ CB
N ,

JB
(νβ,β)(x, y +

√

β · r) ≤ exp(‖x‖ · (‖y‖+
√

β · ‖r‖)).
This shows that

J(νβ,β)(x, y +
√

β · r) ≤ e2‖x‖·‖y‖ for β > 0, y with ‖y‖ ≥
√

β · ‖r‖. (3.21)

On the other hand, if ‖y‖ ≤
√
β · ‖r‖, then y/

√
β + r is contained in some fixed

compactum C ⊂ R
N . We thus obtain from Lemma 3.2 that

sup
y∈RN , β≥0: ‖y‖≤

√
β·‖r‖

JB
(νβ,β)(x, y +

√

β · r) =

= sup
y∈RN , β≥0: ‖y‖≤

√
β·‖r‖

JB
(νβ,β)(x,

√

β(y/
√

β + r))

is bounded. This estimation, (3.21), and (3.20) readily imply that the dominated
convergence theorem in (3.17) works as claimed.

On the other hand, Eq. (3.17) says that the probability measures with the den-
sities fA

β tend weakly to the measure with Lebesgue density

e−‖x‖2/2dν(x)2
N/2 ·

√
N !

(2π)N/2
·exp

(

−
(‖y‖2

2
+
∑

i<j

(yi − yj)
2

(ri − rj)2
+
∑

i<j

(yi + yj)
2

(ri + rj)2
+ν

N
∑

i=1

y2i
r2i

))

,

(3.22)
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which is a probability measure by our results. This measure is necessarily the
normal distribution claimed in the theorem with the correct normalization. This
completes the proof. �

Notice that the final arguments in the proof above for x = 0 about the correct
normalizations above automatically lead to the following remarkable result on the

zeros of the Laguerre polynomial L
(ν−1)
N :

Corollary 3.4. For N ∈ N and ν > 0 consider the ordered zeros z
(ν−1)
1 ≥ . . . ≥

z
(ν−1)
N > 0 of the Laguerre polynomial L

(ν−1)
N . Let ri :=

√

2z
(ν−1)
i for i = 1, . . . , N ,

and form the matrix S := (si,j)i,j=1,...,N with

si,j :=

{

1 + 2ν
r2i

+ 2
∑

l 6=i(ri − rl)
−2 + 2

∑

l 6=i(ri + rl)
−2 for i = j

2(ri + rj)
−2 − 2(ri − rj)

−2 for i 6= j
. (3.23)

Then det S = N ! · 2N .

For further details on the matrix S we refer to [AV2].

Remark 3.5. In the case that the processes start in the origin, Theorem 3.3 was
derived in [DE2] via the tridiagonal matrix models for β-Laguerre ensembles of
Dumitriu and Edelman where in Theorem 4.1 of [DE2] a direct, quite complicated

formula for the covariance matrix Σ of the limit in terms of the zeros of L
(ν−1)
N and

the Laguerre polynomials L
(ν−1)
l (l = 1, . . . , N) is given. As in the Hermite case in

Section 2 it is unclear how the expression for Σ in [DE2] corresponds to our formula
for Σ−1 above.

Remark 3.6. If we analyze the constants in the end of the proof of Theorem 3.3
for arbitrary x ∈ CB

N , we obtain that

e−‖x‖2/2 · exp
( ‖x‖2‖r‖2
4N(N + ν − 1)

)

= 1

with the vector r from Lemma 3.1. This means that ‖r‖2 = 2N(N+ν−1). In fact,
if we translate this equation via (3.5) into a corresponding formula for the zeros of

L
(ν−1)
N , then we just obtain Eq. (C.10) in [AKM2].

Theorem 3.3 can be easily extended from fixed starting points x ∈ CB
N to arbi-

trary starting distributions µ ∈ M1(CB
N ):

Corollary 3.7. Let µ ∈ M1(CB
N ) be an arbitrary starting distribution and ν > 0.

Consider the Bessel processes (Xt,(νβ,β))t≥0 of type B on CB
N with starting distribu-

tion µ. Then, for each t > 0 and with the vector r ∈ CB
N and the normal distribution

N(0, t · Σ) of Theorem 3.3,

Xt,(νβ,β)√
t

−
√

β · r → N(0, t · Σ) in distribution for β → ∞.

Proof. Let f ∈ Cb(R
N ) be a bounded continuous function, and let t > 0 fixed.

Using the kernels Kt,β of (3.2), we obtain for the distributions Pβ ∈ M1(RN ) of
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Xt,(νβ,β) −
√
βt · r that

∫

RN

f dPβ =

∫

CB
N

(

∫

CB
N

f(y −
√

βt · r)Kt,(νβ,β)(x, dy)
)

dµ(x)

=:

∫

CB
N

(Tβf)(x) dµ(x)

where (Tβf)(x) →
∫

RN f dN(0, t ·Σ) holds for β → ∞ and all x ∈ CB
N by Theorem

3.3. As ‖Tβf‖∞ ≤ ‖f‖∞, dominated convergence shows that
∫

RN

f dPβ →
∫

RN

f dN(0, t · Σ)

for all f ∈ Cb(R
N ). This proves the claim. �

4. A second central limit theorem for the root system BN

In this section we derive a second CLT for Bessel processes of type B with
parameters k = (k1, k2). We here fix k2 and consider the case k1 → ∞. We proceed
similar to the preceding section for the first CLT in the case B and include the case
that we have an arbitary fixed starting point x ∈ CB

N .
In order to handle arbitrary starting points x, we need the following asymptotic

estimation for the Bessel functions of type B. For the proof we refer to Lemma 7
in [AKM2] where a slightly different notation with (νβ, β) = (k1, k2) is used, and

where in the right hand side limit in Lemma 7 in [AKM2] the terms
√
2 have to be

replaced by 2:

Lemma 4.1. Let k2 > 0. Then,

lim
k1→∞

JB
(k1,k2)

(
√

k1x, y) = JA
k2
(x2/2, y2/2)

locally uniformly in x, y ∈ CB
N where we use the notation x2 =: (x2

1, ..., x
2
N ) ∈ CB

N .

We notice that Lemma 4.1 was derived for x, y ∈ i · RN with precise estimates
for the rate of convergence in [RV3].

We now turn to the main result of this section, a CLT where the limit distribution
is a distribution of type A as studied in Section 2:

Theorem 4.2. For any fixed starting point x ∈ CB
N consider the Bessel processes

(Xt,(k1,k2))t≥0 of type BN on CB
N . Consider the vector 1 := (1, ..., 1) ∈ R

N . Then,
for all k2 > 0 and t > 0,

Xt,(k1,k2) −
√

2tk1 · 1
converges for k1 → ∞ in distribution to XA

t/2,k2
, where (XA

s,k2
)s≥0 is a Bessel process

of type A starting in the origin.

Proof. As in the proofs of the preceding CLTs we may assume that t = 1 by
the same self-similarity property of all involved processes. We recapitulate that
X1,(k1,k2) has the density

cB(k1,k2)
e−‖x‖2/2−‖y‖2/2 · JB

(k1,k2)
(x, y) ·

∏

i<j

(y2i − y2j )
2k2 · exp

(

2k1

N
∑

i=1

ln yi

)
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for y in the interior of CB
N , where this density is equal to 0 elsewhere on R

N , and
where we use the notations from Section 3. Hence, X1,(k1,k2) −

√
2k1 · 1 has the

density

fB
(k1,k2)

(y) : = cB(k1,k2)
· e−‖x‖2/2 · e

−‖y+
√

2k1·1‖2

2 · JB
(k1,k2)

(x, y +
√

2k1 · 1)·

·
∏

i<j

((yi +
√

2k1)
2 − (yj +

√

2k1)
2)2k2 · exp

(

2k1

N
∑

i=1

ln
(

yi +
√

2k1

)

)

=: c(k1, k2, x,N) ·
∏

i<j

(yi − yj)
2k2 f̃k1,k2,x(y)

with

f̃k1,k2,x(y) :=
∏

i<j

(

yi + yj + 2
√
2k1

2
√
2k1

)2k2

· JB
(k1,k2)

(x, y +
√

2k1 · 1)×

× exp

(

−‖y‖2/2−
√

2k1 ·
N
∑

i=1

yi + 2k1

N
∑

i=1

ln(1 +
yi√
2k1

)

)

on the shifted cone CB
N −

√
2k1 · 1, where fB

(k1,k2)
(y) = 0 otherwise on R

N . Here

c(k1, k2, x,N) > 0 is some constant which may be computed explicitly.
As in the proofs of the preceding CLTs we conclude from the Taylor expansion

of ln(1 + z) that

ln

(

1 +
yi√
2k1

)

=
yi√
2k1

− y2i
4k1

+O(k
−3/2
1 ).

This shows that

exp

(

−
√

2k1 ·
N
∑

i=1

yi + 2k1

N
∑

i=1

ln(1 +
yi√
2k1

)

)

= exp

(

−
N
∑

i=1

y2i
2

+O(k
−1/2
1 )

)

.

(4.1)
Moreover, we observe from Lemma 4.1 and Eq. (2.14) that

lim
k1→∞

JB
(k1,k2)

(x, y +
√

2k1 · 1) = lim
k1→∞

JB
(k1,k2)

(x,
√

2k1(1+ y/
√

2k1))

=JA
k2
(x2,

1

2
· 1) = e‖x‖

2/2. (4.2)

In summary, we obtain for all x ∈ CB
N and all y in the limit set CA

N of the shifted
cones CB

N −
√
2k1 · 1 for k1 → ∞ that

lim
k1→∞

f̃k1,k2,x(y) = e‖x‖
2/2−‖y‖2

.

We next check with dominated convergence that for any h ∈ Cb(R
n),

lim
k1→∞

∫

CB
N
−
√
2k1·1

h(y) ·
∏

i<j

(yi − yj)
2k2 · f̃k1,k2,x(y) dy (4.3)

=

∫

CA
N

h(y) ·
∏

i<j

(yi − yj)
2k2 · e‖x‖2/2−‖y‖2

dy.
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In order to check the assumptions of dominated convergence, we first again notice
that for all y ∈ CB

N by Lagrange remainder there exists w ∈ [0, 1] such that

ln

(

1 +
yi√
2k1

)

=
yi√
2k1

− y2i
4k1

· w (4.4)

which ensures that

exp

(

−‖y‖2/2−
√

2k1 ·
N
∑

i=1

yi + 2k1

N
∑

i=1

ln(1 +
yi√
2k1

)

)

can be bounded above by e−‖y‖2/2. Moreover, as in Section 3, we know from [RV2]
that the Bessel functions JB

(k1,k2)
admit the estimate

JB
(k1,k2)

(x, y +
√

2k1 · 1) ≤ exp(‖x‖ · (‖y‖+
√

2k1 · ‖1‖)). (4.5)

This shows that

JB
(k1,k2)

(x, y+
√

2k1 ·1) ≤ e2‖x‖·‖y‖ for k1 > 0, y with ‖y‖ ≥
√

2k1 · ‖1‖. (4.6)

On the other hand, if ‖y‖ ≤
√
2k1 · ‖1‖, then y/

√
2k1+1 is contained in some fixed

compactum C ⊂ R
N . We thus obtain from Lemma 4.1 that

sup
y∈RN ,k1>0: ‖y‖≤

√
2k1·‖1‖

JB
(k1,k2)

(x,
√

2k1(y/
√

2k1 + 1))

is finite. Furthermore,
∏

i<j

(

yi + yj + 2
√
2k1

2
√
2k1

)2k2

can be estimated from above by some polynomial in y independent of k1 ≥ 1, and
the additional factor

∏

i<j(yi − yj)
2k2 is also polynomially growing in y. Taking

all upper estimates into account, we find an upper bound of the form e−‖y‖2/2P (y)
with some polynomial P . This ensures by dominated convergence that (4.3) is in
fact correct for all h ∈ Cb(R

n).
As the right hand side density

∏

i<j

(yi − yj)
2k2 · e‖x‖2/2−‖y‖2

(y ∈ CA
N )

in (4.3) is the density of the distribution of XA
1/2,k2

(with start in the origin) up

to normalization constants depending on k2, x,N , we conclude for h = 1, that also
the constants converge as needed for the theorem, and that the theorem holds. �

Remark 4.3. We expect that the CLT 4.2 can be derived for Bessel processes
(Xt,(k1,k2))t≥0 of type B with start in the origin x = 0 also from the tridiagonal
matrix models of Dumitriu and Edelman [DE1] similar to the proofs of the CLTs
in [DE2] which correspond to the CLTs in Sections 1 and 2 above for x = 0.

Remark 4.4. The CLT 4.2 for the starting point 0 should be compared with
the CLT 4.1 in [AV1] where also Bessel processes (Xt,(k1,k2))t≥0 of type B are

studied with k2 fixed, k1 → ∞, where the starting points have the form
√
k1 · x

with some fixed point x in the interior on CB
N . In Theorem 4.1 of [AV1], the

limit distribution is an N -dimensional normal distribution with a covariance matrix
depending on x. This limit is quite different from the limit in Theorem 4.2 above
for x = 0. This means that the assertion of Theorem 4.1 of [AV1] cannot be
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extended “continuously” from the interior of CB
N to the origin. This is also clear by

simple geometric considerations about the support of the limit measure. It might
be interesting to study CLTs similar to Theorem 4.1 of [AV1] with starting points
of the form

√
k1 · x with x on the boundary of CB

N , but x 6= 0.

For particular values of k2, namely k = 1/2, 1, 2, Theorem 4.2 above has some
matrix-theoretic, or “geometric”, background:

Remark 4.5. Fix one of the (skew-)fields F = R,C,H with the real dimension
d = 1, 2, 4 respectively. For integers p ∈ N consider the vector spaces Mp,N (F) of
all p×N -matrices over F with the real dimension dpN . Choose the standard bases
on these vector spaces such that we have d basis vectors in each entry. Consider the
dpN -dimensional associated Brownian motion (Bp

t )t≥0 on Mp,N (F) starting in the

origin. If we write A∗ := A
T ∈ MN,p(F) for matrices A ∈ Mp,N (F) with the usual

conjugation on F, then the process (Zp
t := (Bp

t )
∗Bp

t )t≥0 becomes a Wishart process
on the closed cone ΠN (F) of all N ×N positive semidefinite matrices over F with
shape parameter p; see [Bru, DDMY] and references there for details on Wishart
processes.

Consider the spectral mapping σN : ΠN (F) → CB
N which assigns to each matrix

in ΠN (F) its ordered spectrum. It is well-known that then (
√

σN (Zp
t ))t≥0 is a

Bessel process on CB
N of type BN with multiplicities

(k1, k2) := ((p−N + 1) · d/2, d/2)

where the symbol
√
.means taking square roots in each component; see e.g. [BF, R3]

for details.
We thus conclude that Theorem 4.2 for k2 = 1/2, 1, 2 corresponds to a CLT for

Wishart distributions on ΠN (F) with fixed time parameters where the shape pa-
rameters p tend to ∞. To explain this CLT on the level of matrices, we recapitulate
that the distributions µp

t := PZp
t
∈ M1(ΠN (F)) of Zp

t satisfy µp1

t ∗µp2

t = µp1+p2

t for

p1, p2 ∈ N with the usual convolution of measures on the vector space HN (F) of all
N ×N Hermitian matrices over F by the very construction of the random variables
Zp
t . Moreover, this convolution relation even remains valid for all p ∈]0,∞[ which

are sufficiently large. We thus may apply the classical LLNs and CLT for sums
of iid random variables on finitely dimensional vector spaces to obtain LLNs and
a CLT for Wishart distributions for p → ∞. A computation in this setting for
the CLT shows that here the centering (on the vector space HN (F)) is performed
with a multiple of the identity matrix. Also the covariance matrices the associ-
ated centered limit normal distributions on HN (F) can be determined explicitely.
For this we notice that the Gaussian limit on HN (F) (before or after centering)
is invariant under all conjugations in UN (F) (acting on HN (F)) as this is the case
for the Wishart distributions above by their construction. Moreover, it is clear by
Theorem 4.2 that the image measures of the centered limit normal distributions on
HN (F) under the spectral map σN : HN (F) → CA

N are just the distributions with
densities

c(k, t,N) · e−‖y‖/t · wA
k (y) dy (4.7)

of type A on CA
N as in Theorem 4.2 above with some normalization constants

c(k, t,N) > 0. As these measures are just the spectral distributions of Gaussian
orthogonal/unitary/symplectic ensembles respectively up to time scaling, it follows
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that up to this scaling, the centered Gaussian limits on HN (F) are just equal to the
distributions of Gaussian orthogonal/unitary/symplectic ensembles.

In summary, for k2 = 1/2, 1, 2, Theorem 4.2 corresponds to a CLT for Wishart
distributions on HN (F) where the shape parameters tend to ∞.

We finally remark that in the setting of Remark 4.5, Theorem 4.2 for k2 =
1/2, 1, 2 is also related to limit theorems for radial random walks (Xp

n)n≥0 on the
vector spaces Mp,N (F) and their projections to ΠN (F) and CB

N , when the dimension
parameter p as well as the time parameter n tend to ∞ in a coupled way; see
[G, RV4, V].

As in the end of Section 3, Theorem 4.2 can be easily extended from arbitrary,
but fixed starting points to arbitrary starting distributions on CB

N . As the proof is
the same as for Corollary 3.7, we omit the proof.

Corollary 4.6. Let µ ∈ M1(CB
N ) be an arbitrary starting distribution. Consider

the Bessel processes (Xt,(k1,k2))t≥0 of type B on CB
N with starting distribution µ.

Then, for all k2 > 0 and t > 0,

Xt,(k1,k2) −
√

2tk1 · 1

converges for k1 → ∞ in distribution to XA
t/2,k2

, where (XA
s,k2

)s≥0 is a Bessel process

of type A starting in the origin.

5. A central limit theorem for the root system DN

We next briefly study limit theorems for Bessel processes of type DN . We reca-
pitulate that the root system is given here by

DN = {±ei ± ej : 1 ≤ i < j ≤ N}

with associated closed Weyl chamber

CN := CD
N = {x ∈ R

N : x1 ≥ . . . ≥ xN−1 ≥ |xN |}.

CD
N may be seen as a doubling of CB

N w.r.t. the last coordinate. We have a one-
dimensional multiplicity k ≥ 0. The generator of the transition semigroup of the
Bessel process (Xt,k)t≥0 of type D is

Lf :=
1

2
∆f + k

N
∑

i=1

∑

j 6=i

( 1

xi − xj
+

1

xi + xj

) ∂

∂xi
f, (5.1)

where we again assume reflecting boundaries. Similar to the preceding cases, we
have the transition probabilities

Kt,k(x,A) = cDk

∫

A

1

tγD+N/2
e−(‖x‖2+‖y‖2)/(2t)JD

k (
x√
t
,
y√
t
) · wD

k (y) dy (5.2)

with

wD
k (x) :=

∏

i<j

(x2
i − x2

j )
2k, γD := kN(N − 1);

see [Dem] for further details on this root system. Furthermore, using the normal-
ization (3.4) for k2 = k, k1 = 0, we see that the normalization constant cDk is given
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by

cDk :=
(

∫

CD
N

e−‖y‖2/2wD
k (y) dy

)−1

(5.3)

=
N !

2N(N−1)k−N/2+1
·

N
∏

j=1

Γ(1 + k)

Γ(1 + jk)Γ( 12 + (j − 1)k)
.

We now proceed similarly to Section 4 of [AV1]. Using the known explicit rep-
resentation

L
(α)
N (x) :=

N
∑

k=0

(

N + α

N − k

)

(−x)k

k!

of the Laguerre polynomials according to (5.1.6) of [S], we can form the polynomial

L
(−1)
N of order N ≥ 1 where, by (5.2.1) of [S],

L
(−1)
N (x) = − x

N
L
(1)
N−1(x). (5.4)

Continuity arguments thus show that the equivalence of (2) and (3) of Lemma 3.1
remains valid also for ν = 0 by using the N different zeros z1 > . . . > zN = 0

of L
(−1)
N . With these notations we have the following fact which is similar to the

results above in the cases A and B; see Section 4 of [AV1]:

Lemma 5.1. For r ∈ CD
N , the following statements are equivalent:

(1) The function WD(y) := 2
∑

i<j ln(y
2
i − y2j )−‖y‖2/2 is maximal in r ∈ CB

N ;

(2) rN = 0, and for i = 1, . . . , N − 1,

4
∑

j:j 6=i

1

r2i − r2j
= 1;

(3) If z
(1)
1 > . . . > z

(1)
N−1 > 0 are the N−1 ordered zeros of the classical Laguerre

polynomial L
(1)
N−1, then

2 · (z(1)1 , . . . , z
(1)
N−1, 0) = (r21, . . . , r

2
N ). (5.5)

We now turn to the main result of this section:

Theorem 5.2. Consider the Bessel processes (Xt,k)t≥0 of type DN on CD
N with

multiplicity k > 0 which start in 0. Then, for the vector r ∈ CD
N of Lemma 5.1,

Xt,k√
t

−
√
k · r

converges for k → ∞ to the centered N -dimensional distribution N(0, t · Σ) with
the regular covariance matrix Σ with Σ−1 = (si,j)i,j=1,...,N with

si,j :=

{

1 + 2
∑

l 6=i(ri − rl)
−2 + 2

∑

l 6=i(ri + rl)
−2 for i = j

2(ri + rj)
−2 − 2(ri − rj)

−2 for i 6= j
. (5.6)

Proof. As in the preceding cases we assume that t = 1 without loss of generality.
X1,k has the density

cDk e−‖y‖2/2 · exp
(

2k
∑

i<j

ln(y2i − y2j )
)
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on CD
N . Hence, X1,k −

√
k · r has the density

fD
k (y) :=cDk e−‖y+

√
k·r‖2/2exp

(

2k
∑

i<j

ln
(

(yi +
√
k · ri)2 − (yj +

√
k · rj)2

)

)

= cDk exp
(

2k
∑

i<j

ln
(

1 +
yi − yj√
k(ri − rj)

)

+ 2k
∑

i<j

ln
(

1 +
yi + yj√
k(ri + rj)

)

)

×

e−‖y‖2/2e−k‖r‖2/2e−
√
k〈y,r〉exp

(

2k
∑

i<j

(

ln(
√
k(ri − rj)) + ln(

√
k(ri + rj))

))

on the shifted cone CD
N −

√
k · r, with fD

k (y) = 0 elsewhere on R
N . We again split

fD
k (y) into

fD
k (y) = c̃k · hk(y),

where hk(y) depends on y, and c̃k is constant w.r.t. y. The part depending on y is
given by

hk(y) := exp
(

−‖y‖2/2−
√
k〈y, r〉+2k

∑

i<j

(

ln
(

1+
yi − yj√
k(ri − rj)

)

+ln
(

1+
yi + yj√
k(ri + rj)

)

))

.

The expansion of ln(1 + x) together with Lemma 5.1 yields as in the proof of
Theorem 3.3 that

lim
k→∞

hk(y) = exp
(

−‖y‖2
2

−
∑

i<j

(yi − yj)
2

(ri − rj)2
−
∑

i<j

(yi + yj)
2

(ri + rj)2

)

. (5.7)

Moreover, as in the proofs of Theorems 3.3 and 2.2, we see that for all f ∈ Cb(R
N ),

lim
k→∞

∫

RN

f(y) · hk(y) dy = (5.8)

=

∫

RN

f(y) exp
(

−
(‖y‖2

2
+
∑

i<j

(yi − yj)
2

(ri − rj)2
+
∑

i<j

(yi + yj)
2

(ri + rj)2

))

dy.

This implies the theorem as in the proof of Theorem 3.3. �

Let (XD
t,k)t≥0 be a Bessel process of type D with multiplicity k ≥ 0 on the

chamber CD
N . Then the process (XB

t,k)t≥0 with

XB,i
t,k := XD,i

t,k (i = 1, . . . , N − 1), XB,N
t,k := |XD,N

t,k |
is a Bessel process of type B with the multiplicity (k1, k2) := (0, k). This follows
easily from a comparison of the corresponding generators and was also observed
in [AV1]. The central limit theorem 5.2 for (XD

t,k)t≥0 thus leads to the following

“one-sided CLT” for Bessel processes of type B with the multiplicities (0, k) for
k → ∞:

Corollary 5.3. Consider the Bessel processes (Xt,k)t≥0 of type BN on CB
N with

multiplicities (0, k) which start in 0. Then, for the vector r of Lemma 5.1 on the
boundary of CB

N ,
Xt,k√

t
−
√
k · r

converges for k → ∞ in distribution to the “one-sided normal distribution” on the
half space

HN := {x ∈ R
N : xN ≥ 0}
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which appears as image of the centered N -dimensional distribution N(0, t ·Σ) with
the regular covariance matrix Σ as in Theorem 5.2 under the mapping

R
N −→ HN , (x1, . . . , xN ) 7→ (x1, . . . , xN−1, |xN |).

6. A third central limit theorem for the root system BN

In this section we again study Bessel processes of type B with multiplicities
k = (k1, k2). We here fix k1 > 0 and consider k2 → ∞. As far as we know, this
limit was not considered in the literature up to now. It will turn out that this case
is closely related to the limits in the case D above and in particular to the B-case
for the multiplicities (0, k2) for k2 → ∞ in Corollary 5.3.

We start with a law of large numbers which corresponds to limit results of
[AKM1], [AKM2] for the root systems of type A and B. For this we fix k1 > 0
and consider the densities ft,k of Xt,k/

√
tk2 of the Bessel processes (Xt,k)t≥0 of

type BN on CB
N where we suppose that the processes start in the origin. Then, by

the scaling properties of the Xt,k and by (3.2), these densities are independent of
t > 0 and have the form

f1,k(x) = const(k) ·
N
∏

i=1

x2k1

i · exp
(

k2W (x)
)

with some normalization constant const(k) > 0 (see Section 2 for the details), and
with

W (x) = −‖x‖2/2 + 2
∑

i<j

ln(x2
i − x2

j ) for x ∈ CB
N .

We know from Lemma 5.1 that on CB
N , the function W admits a unique maximum

which is located at r = (r1, . . . , rN ) ∈ CB
N with

(r21, . . . , r
2
N ) = 2 · (z(1)1 , . . . , z

(1)
N−1, 0)

for the N − 1 ordered zeros z
(1)
1 > . . . > z

(1)
N−1 > 0 of L

(1)
N−1. This optimal point r is

in the support of the measure 1CB
N
·
∏N

i=1 x
2k1

i dx. Some standard arguments from

analysis now readily lead to the following limit law.

Proposition 6.1. For each k1 > 0 and t > 0, Xt,(k1,k2)/
√
tk2 converges for k2 →

∞ in distribution to the point measure δr for r ∈ CB
N as above.

We here skip details of the proof, as this proposition follows immediately from
the following associated CLT which is analog to the CLTs in the previous sections
and in particular to Corollary 5.3. Notice that the proof of Theorem 6.2 does not
rely on Proposition 6.1.

Theorem 6.2. Consider the Bessel processes (Xt,k)t≥0 of type BN on CB
N with

multiplicities (k1, k2) which start in 0. Fix k1 ≥ 0 and t > 0. Then, for k2 → ∞,

Xt,(k1,k2)√
t

−
√

k2 · r

converges in distribution to the “one-sided normal distribution” on the half space
HN := {x ∈ R

N : xN ≥ 0} which appears in Corollary 5.3.
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Proof. As in the preceding cases we assume t = 1. The case k1 = 0 is shown in
Corollary 5.3.

The case k1 > 0 can be proved similarly as in Theorem 5.2. In fact, the shifted
random variables X1,(k1,k2) −

√
k2 · r have densities of the form

f(k1,k2)(y) :=c̃(k1, k2) ·
N
∏

i=1

(yi +
√

k2 · ri)2k1 · e−‖y+
√
k2·r‖2/2

× exp
(

2k2
∑

i<j

ln
(

(yi +
√

k2 · ri)2 − (yj +
√

k2 · rj)2
)

)

=c(k1, k2) ·
N
∏

i=1

(

yi +
√
k2 · ri√

k2 · ri

)2k1

· hk2
(y) (6.1)

on the shifted cone CB
N −

√
k2 · r with

hk2
(y) := exp

(

− ‖y‖2/2−
√

k2〈y, r〉+

+2k2
∑

i<j

(

ln
(

1 +
yi − yj√
k2(ri − rj)

)

+ ln
(

1 +
yi + yj√
k2(ri + rj)

)

))

where f(k1,k2)(y) = 0 otherwise on R
N and where c̃(k1, k2), c(k1, k2) > 0 are suitable

constants. As in Theorem 5.2 we obtain that

lim
k2→∞

hk2
(y) = exp

(

−‖y‖2
2

−
∑

i<j

(yi − yj)
2

(ri − rj)2
−
∑

i<j

(yi + yj)
2

(ri + rj)2

)

. (6.2)

On the other hand,
(

N
∏

i=1

yi +
√
k2 · ri√

k2 · ri

)2k1

tends to 1 for k2 → ∞ and is bounded by an expression of the form

c(k1) + d(k1)(y1y2 . . . yN )2k1

for all y independent of k2 ≥ 1 with suitable constants c(k1), d(k1) > 0. These
(in y) polynomial bounds do not affect the fact that we still may apply dominated
convergence theorem like in the proofs of Theorems 3.3, 2.2, and 5.2 due to the
Gaussian bounds for hk2

(y) in the proofs there. Moreover, as the shifted cones
CB

N −
√
k2 · r converge to R

N−1 × [0,∞[ for k2 → ∞ due to rN = 0, we thus
conclude that for all f ∈ Cb(R

N ),

lim
k2→∞

∫

CB
N
−
√
k2·r

f(y) ·
(

N
∏

i=1

yi +
√
k2 · ri√

k2 · ri

)2k1

· hk2
(y) dy = (6.3)

=

∫

RN−1×[0,∞[

f(y) exp
(

−
(‖y‖2

2
+
∑

i<j

(yi − yj)
2

(ri − rj)2
+
∑

i<j

(yi + yj)
2

(ri + rj)2

))

dy.

If we look into this formula for f ≡ 1, we obtain that the corresponding normaliza-
tion constants converge as needed for our CLT, and the theorem follows. �

Remark 6.3. It can be easily seen that the limit relation for Bessel functions of
type B in Lemma 3.2 is also available for ν = 0 and N ≥ 2. This shows that
Theorem 6.2 can be extended from the starting point 0 to an arbitrary starting
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point x ∈ CB
N . The details of the proof are the same as in the proofs of Theorems

3.3 and 4.2.
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