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CONVERGENCE OF AN ADAPTIVE C0-INTERIOR PENALTY

GALERKIN METHOD FOR THE BIHARMONIC PROBLEM

ALEXANDER DOMINICUS, FERNANDO GASPOZ, AND CHRISTIAN KREUZER

Abstract. We develop a basic convergence analysis for an adaptive C0IPG
method for the Biharmonic problem which provides convergence without rates
for all practically relevant marking strategies and all penalty parameters as-

suring coercivity of the method. The analysis hinges on embedding properties

of (broken) Sobolev and BV spaces, and the construction of a suitable limit
space. In contrast to the convergence result of adaptive discontinuous Galerkin

methods for elliptic PDEs, by Kreuzer and Georgoulis ([KG18]), here we have

to deal with the fact that the Lagrange finite element spaces may possibly con-
tain no proper C1-conforming subspace. This prevents from a straight forward

generalisation and requires the development of some new key technical tools.

1. Introduction

We develop here a basic convergence analysis for an adaptive C0-interior penalty
method (AC0IPGM) for fourth order boundary value problems. Let Ω Ă R2 be a
bounded polygonal domain with Lipschitz boundary. For the ease of presentation
we restrict ourselves to the Biharmonic problem

∆2u “ f in Ω, and u “
Bu

BnΩ
“ 0 on BΩ,(1.1)

where f P L2pΩq and nΩ denotes the outer normal on BΩ. However, we emphasise
that the presented techniques also apply to more general fourth order problems.

Conforming discretisations of fourth order problems require C1-elements [AFS68,
Cia74, DDPS79], which are typically very cumbersome to implement since they re-
quire polynomial degree ě 5 in 2d or constructions via macrotriangulations. For
this reason, mixed (see e.g. [BBF13, dB74, Joh73]) and non-conforming meth-
ods (e.g. [BCI65, Mor68]) gained attraction. In this work, we consider the non-
conforming so-called C0-interior penalty Galerkin discretisation (C0IPG) of (1.1).
This method uses standard continuous Lagrange finite elements of order ě 2. Con-
sistency is ensured and jumps of the normal derivatives across element interfaces
are penalised. For a thorough introduction to C0-interior penalty methods see e.g.
[BS05, EGH`02, HL02]. A posteriori error estimators for the C0IPG method were
developed in [GHV11, BGS10] and can be used to design an AC0IPGM based on the
standard loop

SOLVEÑ ESTIMATEÑ MARKÑ REFINE.(1.2)

The convergence theory, however, turns out to be a particular challenging task for
two reasons. First, the presence of the negative power of the mesh-size h in the
discontinuity penalisation term. Second, the analysis of the C0IPG method suffers
additionally from the fact that, in general, no conforming subspace with proper
approximation properties is available unless the polynomial degree exceeds e.g. 4
in 2d; compare with [dBD83, GS02].
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The first issue also appears in adaptive discontinuous Galerkin methods for 2nd
order problems. Here, resorting to Dörflers marking strategy, error reduction [KP07,
HKW09] and even optimal convergence rates [BN10] of adaptive schemes are avail-
able. These results generalise the ideas for conforming methods in [D96, MNS00,
CKNS08] based on the observation that the penalty is dominated by the ‘con-
forming parts’ of the estimator provided the penalisation parameter is chosen suf-
ficiently large. This idea was taken up in [FHP15] in an attempt to prove con-
vergence of the AC0IPGM for the biharmonic problem (1.1), although the resulting
argument is unclear to hold. However, there are generalisations for the Hellan-
Hermann-Johnson element [HHX11] and a hybridisable C0-discontinuous Galerkin
method [SH18] where no negative power of the mesh-size is present; compare also
with the discussion in [CNZ16].

Very recently in [KG18] the basic convergence results for conforming adaptive
finite element methods [MSV08, Sie11] have been extended to adaptive discontinu-
ous Galerkin methods for 2nd order problems. The result utilises a newly developed
space limit of the discrete space sequence created by the adaptive loop (1.2). Replac-
ing Cea’s Lemma in [MSV08] by a version of the medius analysis of Gudi [Gud10]
adapted to the limit space yields convergence of discrete approximations to the weak
solution in the limit space. Coincidence with the exact solution follows thanks to
properties of the marking strategy. The result is neither restricted to symmetric
problems and discretisations nor to a particular marking strategy and holds for all
values of the penalty parameter, for which the method is coercive. This has im-
portant consequences in practical computations: Since the condition number of the
respective stiffness matrix grows as the penalty parameter grows, the magnitude
of the penalisation affects the performance of iterative linear solvers. This fact be-
comes even more relevant for the here considered fourth order problem. We stress,
however, that this technique does not provide linear or even optimal convergence
rates.

In this work, we extend [KG18] to an AC0IPGM for the Biharmonic problem (1.1).
The main result states convergence of the adaptive loop (1.2) for most common
marking strategies and all penalty parameters, for which the method is coercive.
Unfortunately, [KG18] makes exhaustive use of conforming subspaces of the respec-
tive discrete spaces, which is prohibitive for the AC0IPGM unless the polynomial
degree of the Ansatz space is large enough. Therefore, the verification of certain
properties of the limit space requires the development of essentially different tech-
niques and also the convergence of discrete solutions cannot be concluded using the
generalised medius analysis of Gudi [Gud10] from [KG18]. For the sake of presenta-
tion, in this paper, we restrict ourselves to quadratic C0-elements. We emphasise,
however, that the techniques apply to more general fourth order problems, arbitrary
polynomial and even discontinuous Galerkin discretisations, however, the construc-
tion of suitable technical tools like interpolation operators and a posteriori error
estimators is getting much more involved.

The rest of this paper is organised as follows. In Section 2, we introduce the C0IPG
discretisation and define the AC0IPGM by a precise formulation of the adaptive
loop (1.2). We conclude the section stating the main result, Theorem 7. For the
sake of clarity, in Section 3, we first present the main ideas of its proof. The
fact that the discrete C0-spaces do in general not contain proper C1-conforming
subspaces mainly affects the proofs of the two key technical results, Lemma 10
and Theorem 12. They are presented in Section 4. Finally, in appendices A–C we
elaborate on some auxiliary results in order to keep the presentation self consistent.
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2. The adaptive C0IPG finite element method and the main result

Let ω be a measurable set and m P N. We consider the usual Lebesgue spaces
Lppω;Rmq, 1 ď p ď 8 over ω with values in Rm. In the case p “ 2, L2pω;Rmq is
a Hilbert space with inner product x¨, ¨yω and associated norm }¨}ω. We also set
L2pωq :“ L2pω;Rq. The Sobolev space Hkpωq is the space of all functions in L2pωq
whose weak derivatives of up to order k are in L2pωq. Thanks to the Poincaré-
Friedrichs’ inequality, the closure H2

0 pωq of C80 pωq in H2pωq is a Hilbert space
with inner product

@

D2¨, D2¨
D

ω
and norm

›

›D2¨
›

›

ω
, where D2v denotes the Hessian

of v. The dual space H´2pωq of H2
0 pωq is equipped with the norm }v}H´2pωq :“

supwPH2
0 pωq

xv, wy
}D2w}ω

, v P H´2pωq, with dual brackets defined by xv , wy :“ vpwq, for

w P H2
0 pωq.

For f P L2pΩq, the weak formulation of (1.1) reads: find u P H2
0 pΩq, such that

apu, vq “

ż

Ω

fv dx @v P H2
0 pΩq,(2.1)

for the bilinear form

apw, vq :“

ż

Ω

D2w : D2v dx “

ż

Ω

2
ÿ

i,j“1

B2w

BxiBxj

B2v

BxiBxj
dx,

which is uniformly coercive and continuous on H2
0 pΩq. Consequently, Riesz’ repre-

sentation theorem provides a unique solution u P H2
0 pΩq of (2.1).

2.1. The C0IPG finite element Method. Let T be a conforming and shape
regular subdivision of Ω into disjoint triangular elements K P T such that Ω “
Ť

KPT K. Let FT :“ FpT q be the set of one-dimensional faces F , associated with

the subdivision T (including BΩ), and let F̊T be the subset of interior sides only.
The corresponding skeletons are then defined by ΓT “ ΓpT q :“

Ť

tF P FT u and

Γ̊T :“
Ť

tF P F̊T u respectively. We assume that T is derived by iterative or
recursive bisection of an initial conforming mesh T0; compare with [Bae91, Kos94,
Mau95]. We denote by G the family of shape-regular triangulations consisting of
such refinements of T0. For T , T‹ P G, we write T‹ ě T , whenever T‹ is a refinement
of T .

For r ě 2, we define the Lagrange finite-element space by

VpT q :“ H1
0 pΩq X PrpT q with PrpT q :“ tv P L1pΩq : v|K P PrpKq @K P T u.

Obviously, we have VpT q Ă H1
0 pΩq but VpT q Ć H2

0 pΩq in general. Since each
function V P VpT q is locally a polynomial on each element K P T , we have, however,
that

VpT q Ă H2
0 pT q :“ H2pT q XH1

0 pΩq,

where H2pT q :“ tv P L2pΩq : v|K P H
2pKq, @K P T u.

The piecewise constant mesh-size function hT : Ω Ñ Rě0 is defined by hT pxq :“

hK :“ |K|
1{d

for x P KzBK and hT pxq :“ hF :“ |F |
1{pd´1q

for x P F P F . Let
ZT be the set of Lagrange nodes of VpT q, which can be identified with its nodal
degrees of freedom NT . For z P Ω, we denote its neighbourhood by NT pzq :“
tK 1 P T | z P K 1u, and the corresponding domain is defined by ωT pzq :“ ΩpNT pzqq.
Hereafter we use ΩpXq :“

Ť

tK | K P Xu for a collection of elements X. With
a little abuse of notation, for an element K P T we define its jth neighbourhood

recursively by N j
T pKq :“

!

K 1 P T | K 1 XN j´1
T pKq “ H

)

, where we set N0
T pKq :“

K, and the corresponding domain by ωjT pKq :“ ΩpN j
T pKqq. We shall skip the

superindex if j “ 1, e.g. we write NT pKq “ N1
T pKq and ωT pKq “ ω1

T pKq for
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simplicity. For a side F Ă FT , we set ωT pF q :“
Ť

tK P T | F Ă Ku. We extend
the above definitions to subsets M Ă T setting

N j
T pMq :“ tK P T : DK 1 PM such that K P N j

T pK
1qu.

Note that the shape regularity and conformity of G implies local quasi-uniformity,
i.e.

sup
T PG

max
K1PNT pKq

|K|

|K 1|
À 1 and sup

T PG
max
KPT

#NT pKq À 1.

In the sequel we use the notation a À b, when a ď Cb for a constant C ą 0, which
is independent of all essential quantities (e.g. the mesh-size of T q.

In order to formulate the discrete bilinear form, we first need to introduce the
so-called jumps and averages of vector- respectively tensorfields on the skeleton ΓT .
In fact, for v P VpT q, we define

rrBnvssF :“ rr∇v ¨ nss |F :“ ∇v|K1
¨ nK1

`∇v|K2
¨ nK2

for F P F̊T and F “ K1 X K2 with two disjoint elements K1,K2 P T . If F Ă

BK X BΩ, then rrBnvssF :“ ∇v|K ¨ nK . The average of the Hessian of v P VpT q is
defined by

  

B2
nv

((

F
:“

  

pD2vqn ¨ n
((

:“
1

2

`

D2v|K1
`D2v|K2

˘

nK1
¨ nK1

whenever F P F̊T with F “ K1 X K2 and
  

B2
nv

((

F
:“ D2v|KnK ¨ nK for sides

F Ă BK X BΩ. We stress that the above definitions do not depend on the choice of
the ordering of the elements K1 and K2. This is not true for

““

B2
nv

‰‰

F
:“ rrBnp∇v ¨ nK1qss |F and ttBnvuuF :“

1

2
p∇v|K1 `∇v|K2

q ¨ nK1(2.2)

for F P F̊T with F “ K1XK2 for disjoint K1,K2 P T . However, the two expressions

will only appear as products with each other, e.g. as
““

B2
nv

‰‰

F
ttBnwuuF or as

““

B2
nv

‰‰2

F
,

which are then again unique.
For v, w P VpT q we recall then the discrete bilinear form from [BS05, BGS10]

BT rv, ws : “

ż

T
D2v : D2w dx´

ż

FT

  

B2
nv

((

rrBnwss `
  

B2
nw

((

rrBnvss ds

`

ż

FT

σ

hT
rrBnvss rrBnwss ds.

Here, we used the following abbreviations
ż

T
¨dx :“

ÿ

KPT

ż

K

¨dx and

ż

FT

¨ds :“
ÿ

FPFT

ż

F

¨ds,

where on each element K P T , the piecewise Hessian pD2
pwvq|K “ D2pv|Kq P L

2pKq

exists since v P H2
0 pT q, i.e. we have

ş

T D
2v : D2w dx “

ş

Ω
D2
pwv : D2

pww dx.

For sufficiently large σ, we have from [BS05] that BT is continuous and coercive
on VpT q with respect to the energy norm

|||v|||
2
T :“

ż

T
D2v : D2v dx`

ż

FT

σ

hT
|rrBnvss|

2
ds @v P H2

0 pT q.

In the following, instead of
ş

Ω
D2
pwv : D2

pwv dx, we will also write
ş

Ω

ˇ

ˇD2
pwv

ˇ

ˇ

2
dx for

brevity.

Proposition 1 (Continuity and coercivity). Let T P G, then there exists σ‹ ą 0,
such that for all σ ą σ‹ there exist positive constants Ccont, Ccoer such that

BT rv, ws ď Ccont |||v|||T |||w|||T and Ccoer |||v|||
2
T ď BT rv, vs.
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for all v, w P VpT q. The constants σ‹, Ccont, and Ccoer solely depend on the shape
regularity of T and the polynomial degree r.

Since VpT q is a Banach space with the energy-norm |||¨|||T , there exists a unique
uT P VpT q with

BT ruT , vT s “

ż

Ω

fvT dx @vT P VpT q.(2.3)

This is the C0-interior penalty Galerkin approximation of (2.1), which depends
continuously on f , i.e.

|||uT |||T À }f}Ω(2.4)

thanks to the following broken Poincaré-Friedrichs inequalities; compare with [Bre03].

Proposition 2. Let v P VpT q, then we have

|v|
2
H1

0 pΩq
À

ÿ

KPT
|v|

2
H2pKq `

ÿ

FPFpT q

h´1
F

ż

F

rrBnvss
2
ds À |||v|||

2
T .

Unfortunately, BT cannot be applied to functions from H2
0 pT q since no trace of

second derivatives is available. For a side F P FT we therefore define a local lifting
operator LFT : L1pF q Ñ rPr´2pT qs2ˆ2

by

ż

Ω

LFT pϕq : τ dx “

ż

F

ttτn ¨ nuuϕds @τ P rPr´2pT qs2ˆ2
,(2.5)

where the support of LFT pϕq is given by ωT pF q. Using a trace estimate, we have
that

›

›LFT pϕq
›

›

Ω
À

›

›

›
h
´1{2
T ϕ

›

›

›

F
;(2.6)

where the right-hand side is allowed to be infinity; compare also with e.g. [DPE12,

Lemma 4.33]. We define the global lifting operator LT : L1pΓT q Ñ rPr´2pT qs2ˆ2
by

LT pϕq :“
ÿ

FPFT

LFT pϕq with }LT pφq}Ω À
›

›

›
h
´1{2
T φ

›

›

›

ΓT
.(2.7)

Noting that Bnv P L
2pΓT q for all v P H2

0 pT q, we can extend the bilinear form BT
from VpT q to H2

0 pT q by

BT rv, ws :“

ż

T
D2v : D2w dx´

ż

Ω

LT prrBnwssq : D
2
pwv ` LT prrBnvssq : D

2
pww dx

`

ż

FT

σ

hT
rrBnvss rrBnwss ds.

Discontinuous Galerkin spaces can be embedded into the space of functions with
bounded variation; compare e.g. with [BO09, Lemma 2]. In the context of C0IPG
methods, this transfers to the following embedding; compare also with [LNSO04].

Proposition 3. Let v P VpT q and |Dp∇vq|pΩq the total variation of ∇v. Then we
have

|Dp∇vq|pΩq À
ż

Ω

ˇ

ˇD2
pwv

ˇ

ˇ dx`

ż

FpT q
rrBnvss ds À |||v|||T .
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2.2. A posteriori error bounds. From here on, we restrict ourselves to qua-
dratic C0-elements, i.e., r “ 2 and introduce the a posteriori error estimators
from [BGS10]. For v P VpT q and K P T let

ηpv,Kq :“

ˆ
ż

K

h4
T |f |

2
dx`

ż

BKXΩ

hT
““

B2
nv

‰‰2
` σ2

ż

BK

h´1
T rrBnvss

2

˙1{2

.(2.8)

When v “ uT , we simply write ηT pKq :“ ηpuT ,Kq. Moreover, for M Ă T , we set

ηT pv,Mq :“

˜

ÿ

KPM
ηpv,Kq2

¸1{2

and ηT pMq :“ ηT puT ,Mq.

From [BGS10, Theorem 3.1], we have that (2.8) defines a reliable estimator.

Proposition 4. Let u P H2
0 pΩq be the solution of (2.1) and uT the discrete solution

of (2.3). Then,

|||u´ uT |||T À ηT pT q,
where the constants in À depend only on the shape regularity of T .

In [BGS10, Section 4] ηT is also proved to be efficient.

Proposition 5. Let u P H2
0 pΩq be the solution of (2.1) and T P G. Then, for all

v P VpT q and K P T , we have
ż

K

h4
T |f |

2
dx`

ż

BKXΩ

hT
““

B2
nv

‰‰2
À

ż

ωT pKq

ˇ

ˇD2
pwpu´ vq

ˇ

ˇ

2
dx` oscpNkpKq, fq

2,

with data-oscillation defined by

oscpM, fq :“

˜

ÿ

KPM
oscpK, fq2

¸1{2

, where oscpK, fq2 :“

ż

K

h4
k |f ´Π0f |

2
dx

for all M Ă T . Here, Π0f denotes the L2pΩq-orthogonal projection onto P0pT q,

Π0f |K :“
1

|K|

ż

K

f dx @K P T .

2.3. The adaptive C0IPG method (AC0IPGM). Now, we are in the position
to precisely formulate the adaptive algorithm (1.2) based on the modules SOLVE,
ESTIMATE, MARK and REFINE, which are described in more detail below.

Algorithm 6 (AC0IPGM). Let T0 be an initial triangulation. The adaptive algo-
rithm is an iteration of the following form:

(1) uk “ SOLVEpVpTkqq;
(2) tηkpKquKPTk

“ ESTIMATEpuk, Tkq;
(3) Mk “ MARK ptηkpKquKPTk

, Tkq ;
(4) Tk`1 “ REFINEpTk,Mkq; increment k and go to Step 1.

Here we have replaced the subscript triangulations tTkukPN0 with the itera-
tion counter k in ηkpTkq “ ηTk

pTkq for brevity. Similar short hand notations
will be frequently used below when no confusion can occur, e.g. we write also
N j
kpKq “ N j

Tk
pKq. Next we comment on the modules SOLVE, ESTIMATE, MARK

and REFINE.
SOLVE. For a given mesh T we assume that

uT “ SOLVEpVpT qq

is the exact C0IPG solution of problem (2.3).
ESTIMATE. We suppose that

tηT pKquKPT :“ ESTIMATEpuT ,Kq
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is the elementwise error defined in (2.8).
MARK. We assume that the output

M :“ MARKptηT pKquKPT , T q
of marked elements satisfies

ηT pKq ď gpηT pMqq, for all K P T zM.(2.9)

Here g : R` Ñ R` is a fixed function, which is continuous in 0, with gp0q “ 0.
REFINE. We assume for M Ă T that

T ď rT :“ REFINEpT ,Mq P G,

such that

K PM ñ K P T zrT ,(2.10)

i.e., each marked element is at least refined once.

2.4. The main result. The main result of this work states that the sequence
of C0IPG finite element approximations produced by the AC0IPGM (Algorithm 6)
converges to the exact solution u P H2

0 pΩq of (2.1). From here on we will refer to
|||¨|||Tk

as |||¨|||k.

Theorem 7. We have that

ηkpTkq Ñ 0 and |||u´ uk|||k Ñ 0 as k Ñ8.

3. Proof of the main result Theorem 7

The proof of convergence of the AC0IPGM is based on ideas of [MSV08, Sie11]
for conforming elements and its generalisation [KG18] to adaptive discontinuous
Galerkin methods for the Poisson problem. For the sake of clarity, in this section,
we present the main ideas of the proof of Theorem 7 following the ideas of [KG18]. In
contrast to the latter result here we are faced with the problem that VpT q contains
no proper conforming subspace. This requires new techniques of proof for the two
key auxiliary results, Theorem 12 and Lemma 10, which proofs are postponed to
Section 4 below.

3.1. Sequence of Partitions. Following [MSV08, Sie11, KG18], we split the do-
main Ω into essentially two parts according to whether the mesh-size function
hk :“ hTk

vanishes or not. In order to make this rigorous, we define the set of
eventually never refined elements by

T ` :“
ď

kě0

č

lěk

Tl with corresponding domain Ω` :“ ΩpT `q.(3.1)

Additionally, we denote the complementary domain Ω´ “ interiorpΩzΩ`q.

For k P N0, we define T ´k :“ tK P Tk : K Ă Ω´u and T `k :“ Tk X T ` as well as
for j ě 1

T j´
k :“ tK P Tk : N j

kpKq Ă T ´k u “ tK P Tk : NkpKq Ă T pj´1q´
k u,

T j`
k :“ tK P Tk : N j

kpKq Ă T `k u “ tK P Tk : NkpKq Ă T pj´1q`
k u,

T j‹
k :“ Tkz

`

T j`
k Y T j´

k

˘

,

where we used T 0`
k :“ T `k and T 0´

k :“ T ´k in the identities when j “ 0. For

the corresponding domains we denote Ωj´k :“ ΩpT j´
k q, Ωj`k :“ ΩpT j`

k q and Ωj‹k :“

ΩpT j‹
k q. Moreover, we adopt the above notations for the corresponding faces, e.g.

F j´ :“ FpT j´
k q, F j` :“ FpT j`

k q.

We remark that we need the above definitions of T j´
k and T j`

k for technical
reasons. In fact, our analysis involves Clément type quasi-interpolations for which
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local stability estimates involve neighbourhoods. However, for different but fixed js
the above sets behave asymptotically similar for k Ñ 8. To see this, the next key
result from [MSV08, Lemma 4.1] states that neighbours of never refined elements
are eventually also never refined again.

Lemma 8. For K P T ` there exists a constant L “ LpKq P N0 such that

NkpKq “ NLpKq

for all k ě L. In particular, we have NkpKq Ă T ` for all k ě L.

The next Lemma essentially goes back to [MSV08, (4.15) and Corollary 4.1] and
was proved for j “ 2 in [KG18, Lemma 11].

Lemma 9. For fixed j P N, we have

lim
kÑ8

ˇ

ˇ

ˇ
Ωj‹k

ˇ

ˇ

ˇ
“ 0 and lim

kÑ8

›

›

›
hkχΩj´

k

›

›

›

L8pΩq
“ 0,

with χΩj´
k

denoting the characteristic function of Ωj´k . Moreover, we have T ` “
Ť8

k“0 T
j`
k .

Proof. We prove the first claim by induction over j. In fact, we have

ˇ

ˇΩ0‹
k

ˇ

ˇ ď
ˇ

ˇΩ1‹
k

ˇ

ˇÑ 0 as k Ñ8

from [KG18, Lemma 11]. In order to conclude j Ñ j ` 1, we observe that

|Ω
pj`1q‹
k | “ |Ω´zΩ

pj`1q´
k | ` |Ω`zΩ

pj`1q`
k |(3.2)

and consider the two terms on the right-hand side separately. Since #T pj`1q`
k ă 8,

we have thanks to Lemma 8, that for all k P N there exists K “ Kpkq ě k, such

that T pj`1q`
K Ą T j`

k , and consequently,

|Ω`zΩ
pj`1q`
Kpkq | ď |Ω`zΩj`k | ď |Ω

j‹
k | Ñ 0 as k Ñ8.

Since |Ω`zΩ
pj`1q`
k | decreases monotonically, we conclude that |Ω`zΩ

pj`1q`
k | Ñ 0 as

k Ñ8.
For the second term in (3.2), we have from the nestedness Ω

pj`1q´
k Ă Ωj´k that

|Ω´zΩ
pj`1q´
k | “ |Ω´zΩj´k | ` |Ω

j´
k zΩ

pj`1q´
k |.

The first term vanishes by the induction assumption. For the second term, we have

K P T j´
k zT pj`1q´

k ñ NkpKq Ć T j´
k but NkpKq Ă T pj´1q´

k .

Therefore, there exists K 1 P Tk with K 1 P NkpKq or equivalently K P NkpK
1q, such

that K 1 P T pj´1q´
k zT j´

k . We thus conclude that

|Ωj´k zΩ
pj`1q´
k | “ |ΩpT j´

k zT pj`1q´
k q| ď |ΩpNkpT pj´1q´

k zT j´
k qq| À |ΩpT pj´1q´

k zT j´
k q|,

where the last inequality is a consequence of shape regularity. Finally, we have

|ΩpT pj´1q´
k zT j´

k q| ď |ΩpT ´k zT
j´
k q| Ñ 0 as k Ñ8 by the induction assumption.

Since }hkχΩ
pj`1q´
k

}L8pΩq ď }hkχΩj´
k
}L8pΩq, j ě 0, the second claim follows from

[MSV08, Corollary 4.1] noting that Ω´k Ă Ω0
k with Ω0

k as in [MSV08].
The last claim is a direct consequence of Lemma 8. �
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3.2. The limit space. In this section we discuss the limit of the finite element
spaces Vk. Following the ideas in [KG18, Section 3.2], we define

V8 :“
 

v P H1
0 pΩq | ∇v P BV pΩq2, v|Ω´ P H2

BΩXBΩ´pΩ
´q, v|K P PrpKq, @K P T `,

such that DtvkukPN, vk P Vk with lim
kÑ8

|||v ´ vk|||k “ 0

and lim sup
kÑ8

|||vk|||k ă 8
(

.

By H2
BΩXBΩ´pΩ

´q we denote the space of functions from H2
0 pΩq restricted to the

domain Ω´. The fact that ∇V8 Ă BV pΩq2 is motivated by Proposition 3.
We will use the following bilinear form on V8: For v, w P V8, we define

xv, wy8 :“

ż

Ω

D2
pwv : D2

pww dx` σ

ż

F`
h´1
` rrBnvss rrBnwss ds,

where we set h` :“ hT ` and F` :“ FpT `q. For a function v P V8 the piecewise
Hessian D2

pwv is defined by

D2
pwvpxq :“ D2vpxq if x P Ω´ and D2

pwvpxq :“ D2vpxq if x P K P T `.

The induced norm is denoted by |||v|||8 “ xv, vy
1{2
8 . Note that from the definition of

V8, we have ∇v P BV pΩq2. Consequently, we have from [AFP00, Theorem 3.88]
that the L1-trace of ∇v exists for all F P F and for all k P N. Therefore, the jump
terms are measurable with respect to the 1-dimensional Hausdorff measure on F ,
and we are able to evaluate the k-norm |||v|||k for v P V8.

The next Lemma is crucial for the existence of a generalised Galerkin solution in
V8, its proof is postponed to Section 4.3.

Lemma 10. The space pV8, x¨, ¨y8q is a Hilbert space.

In order to extend the discrete problem (2.3) to the space V8, we have to extend
the bilinear form BT to the space V8. To this end, we define suitable liftings for
the limit space. Thanks to Lemma 8, for each F P F`, there exists L “ LpF q such
that F P F1`

` for all ` ě L. We define the local lifting operators

LF8 :“ LFL “ LFTL
.(3.3)

From the definition of the discrete local liftings (2.5), we see that LF8 vanishes
outside the two neighbouring element K 1,K, with F “ K XK 1. Consequently, we
have LF` “ LFL for all ` ě L, and therefore this definition is unique. The global
lifting operator is defined by

L8 “
ÿ

FPF`
LF8.(3.4)

From estimate (2.7) we have that
ř

FPF` LF8prrBnvssq is a Cauchy sequence in

L2pΩqdˆd. Therefore, L8prrBnvssq P L2pΩdˆdq and the estimate

}L8prrBnvssq}Ω À
›

›

›
h
´1{2
` rrBnvss

›

›

›

Γ`
(3.5)

holds. Here we used the notation Γ` :“
Ť

tF | F P F`u. Now we are in position
to generalise the DG-bilinear form to V8 setting

B8rv, ws : “

ż

Ω

D2
pwv : D2

pww dx´

ż

Ω

L8prrBnwssq : D2
pwv ` L8prrBnvssq : D2

pww dx

`

ż

F`

σ

hT
rrBnvss rrBnwss ds,

for all v, w P V8.
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Corollary 11. There exists a unique u8 P V8, such that

B8ru8, vs “

ż

Ω

fv dx @v P V8.(3.6)

Proof. From Lemma 10 we have that V8 is a Hilbert space. Moreover, stability of
the lifting operators (3.5) and local scaled trace inequalities prove coercivity and
continuity of B8r¨, ¨s with respect to |||¨|||8; compare also with Proposition 1. The
assertion follows from the Riesz representation theorem. �

The following Theorem states that the solution of (3.6) is indeed the limit of the
adaptive sequence produced by the AC0IPGM. Its proof is postponed to Section 4.

Theorem 12. Let u8 the solution of (3.6) and let tukukPN0
be the sequence of

C0IPG solutions produced by AC0IPGM. Then,

|||u8 ´ uk|||k Ñ 0 as k Ñ8.

3.3. Convergence of the estimator. In this section we shall conclude from The-
orem 12, that the sequence of estimators tηkpTkqukPN0

produced by AC0IPGM van-
ishes as k Ñ 8. On T 1´

k this follows from the following local lower bound, which
extends the result of Proposition 5 to our adaptively created limit space V8.

Proposition 13. Let u8 be the solution of (3.6). Then, for every K P T 1´
k and

v P Vk, k P N, we have
ż

K

h4
k |f |

2
dx`

ż

BKXΩ

hk
““

B2
nv

‰‰2
ds

À
›

›D2
pwpu8 ´ vq

›

›

2

ωkpKq
`
›

›h2
kpf ´Π0fq

›

›

2

ωkpKq
.

In particular, we also have that
ÿ

KPT 1´
k

ż

K

h4
k |f |

2
dx`

ż

BKXΩ

hk
““

B2
nv

‰‰2
ds

À |||u8 ´ v|||k `
ÿ

KPT 1´
k

ÿ

K1PωkpKq

›

›h2
kpf ´Π0fq

›

›

2

K1
.

Proof. Verifying for suitable element bubble functions bK P H
2
0 pKq Ă V8 for K P

T 1´
k and, correspondingly, for side bubble functions bF P H

2
0 pωkpF qq Ă V8 and

F “ K1 XK2 with K1,K2 P T ´k , allows to use standard techniques in a posteriori
analysis (see [Ver13, BGS10, GHV11]) resorting to (3.6) instead of (2.1). In order to
keep the presentation self-contained, we present a precise proof in Appendix A. �

Now we are in a position to prove that the error estimator is vanishing.

Lemma 14. We have for the sequence of error estimators produced by AC0IPGM

ηkpT 1´
k q Ñ 0 as k Ñ8.

Proof. From Proposition 13 we deduce that

ÿ

KPT 1´
k

ż

K

h4
k |f |

2
dx`

ż

BKXΩ

hk
““

B2
nuk

‰‰2
ds

À |||u8 ´ uk|||
2
k `

ÿ

KPT 1´
k

oscpNkpKq, fq
2.

The first term on the right-hand side vanishes, due to Theorem 12. For the
second term, we have by the finite overlap of neighbourhoods that

ÿ

KPT 1´
k

oscpNkpKq, fq
2 À

ÿ

KPT ´k

oscpK, fq2 ď
›

›

›
hkχΩ´k

›

›

›

4

L8pΩq
}f}

2
Ω ,
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which vanishes thanks to Lemma 9.
It remains to prove that

ż

F1´
k

h´1
k rrBnukss

2
dsÑ 0 as k Ñ8.

To this end we observe that u8 P H
2
BΩXBΩ´pΩ

´q and Ω1´
k Ă Ω´, and thus rrBnu8ss |F “

0 for all F P F1´
k . From this we conclude from Theorem 12 that

ż

F1´
k

h´1
F rrBnukss

2
ds “

ż

F1´
k

h´1
F rrBnpuk ´ u8qss

2
ds ď |||uk ´ u8|||

2
k Ñ 0

as k Ñ8. �

In view of Lemma 16 we have to analyse the limit behaviour of jumpterms stem-
ming from functions located in V8. This is part of the following Proposition.

Proposition 15. For v P V8, we have

|||v|||k Õ |||v|||8 ă 8 as k Ñ8.

In particular, for fixed ` P N, let K P T`; then, we have
ż

tFPFk : FĂKu

h´1
k rrBnvss

2
dsÕ

ż

tFPF` : FĂKu

h´1
` rrBnvss

2
ds as k Ñ8.

Proof. The assertion follows along the same arguments used in [KG18, Proposition
12]. A detailed proof is provided in the Appendix B. �

Lemma 16. We have that ηkpT 2‹
k q Ñ 0 as k Ñ8.

Proof. Thanks to Proposition 5, we have

ÿ

KPT 2‹
k

ż

K

h4
T |f |

2
dx`

ż

BKXΩ

hT
““

B2
nv

‰‰2
ds

À
ÿ

KPT 2‹
k

ż

ωkpKq

ˇ

ˇD2
pwpu´ ukq

ˇ

ˇ

2
dx` oscpNkpKq, fq

2,

À
ÿ

KPT 2‹
k

#

ż

ωkpKq

ˇ

ˇD2
pwu

ˇ

ˇ

2
`
ˇ

ˇD2
pwpuk ´ u8q

ˇ

ˇ

2
`
ˇ

ˇD2
pwu8

ˇ

ˇ

2
dx` oscpNkpKq, fq

2

+

.

The right-hand side vanishes as k Ñ8 by Theorem 12, Lemma 9 and the uniform
integrability of the terms involving u and u8. In this context we emphasise that
ˇ

ˇ

Ť
 

ωkpKq : K P T 2‹
k

(
ˇ

ˇ À
ˇ

ˇΩ2‹
k

ˇ

ˇ, thanks to the finite overlap of neighbourhoods.
We are left to prove that

ż

F2‹
k

h´1
k rrBnukss

2
dsÑ 0 as k Ñ8.

To this end, we deduce for the solution u8 P V8 of (3.6) that
ż

F2‹
k

h´1
k rrBnukss

2
ds ď

ż

F2‹
k

h´1
k rrBnpuk ´ u8qss

2
ds`

ż

F2‹
k

h´1
k rrBnu8ss

2
ds

À |||uk ´ u8|||k `

ż

F2‹
k

h´1
k rrBnu8ss

2
ds.
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The first term vanishes thanks to Theorem 12. For the second term we have
ż

F2‹
k

h´1
k rrBnu8ss

2
ds “

ż

FkzF1`
k

h´1
k rrBnu8ss

2
ds

“

ż

Fk

h´1
k rrBnu8ss

2
ds´

ż

F1`
k

h´1
k rrBnu8ss

2
ds

ď

ż

F`
h´1
` rrBnu8ss

2
ds´

ż

F1`
k

h´1
` rrBnu8ss

2
ds,

where the last estimate follows from Proposition 15 and hk “ h` on F1`
k . Now

the assertion follows from Lemma 9 and the fact that
ř

FPF`
ş

F
h´1
` rrBnu8ss

2
ds ď

|||u8|||
2
8 ă 8. �

Lemma 17. We have ηkpT 1`
k q Ñ 0 as k Ñ8.

Proof. Let K P T 1`
k , then K RMk thanks to (2.10). Thus, by assumption (2.9) on

the marking MARK, we conclude from Lemmas 14 and 16 for all K P T 1`
k that

0 ď ηkpKq ď gpηkpMkqq ď gpηkpT 2‹
k Y T 2´

k qq Ñ 0 as k Ñ8.

This yields the element-wise convergence of ηkpKq for all K P T 1`
k . The convergence

ηkpT 1`
k q Ñ 0 as k Ñ 8 follows then from reformulating the element-wise conver-

gence as pointwise convergence in an integral framework and a generalised Lebesgue
dominated convergence theorem; for details see [MSV08, Proposition 4.3]. �

Proof of Theorem 7. Combining Lemmas 14, 16, and 17, we obtain

ηkpTkq2 “ ηkpT 2`
k q2 ` ηkpT 2´

k q2 ` ηkpT 2‹
k q

2 Ñ 0

as k Ñ8. Thanks to Proposition 4 this also implies convergence of the error. �

4. Proofs of Lemma 10 and Theorem 12

In order to close the proof of the main result, Theorem 7, we need to verify
Lemma 10 and Theorem 12. The primer states that V8 is a Hilbert space with
norm |||¨|||8, and thus a unique solution u8 P V8 of (3.6) exists; see Corollary 11.

The latter proves that u8 is indeed the limit of the C0IPG approximations tukukPN0

produced by the AC0IPGM. We emphasise that in contrast to [KG18], the lack of
proper H2-conforming subspaces of C0IPG spaces, does not allow for a straight
forward generalisation: For example, in order to prove |||u8 ´ uk|||k Ñ 0, in [KG18]
the best-approximation property for inf-sup stable conforming elements [MSV08,
Sie11] is replaced by a variant of Gudi’s medius analysis [Gud10]. However, this
required a discrete smoothing operator into V8, whose construction is heavily based
on the existence of a proper conforming subspace of Vk.

After recalling auxiliary Poincaré- and Friedrichs-type inequalities, we shall in-
troduce a smoothing operator, which maps Vk into H2

0 pΩq. This accounts for the
fact that each v P V8 on Ω´ is a restriction of an H2

0 pΩq function. Moreover, we
require an interpolation operator in order to deal with the piecewise discrete struc-
ture of V8 on Ω`. Both operators need to satisfy some compatibility conditions.
Finally, we conclude the section with the proofs of Lemma 10 and Theorem 12.

4.1. Preliminary results. The following Poincaré and Friedrichs estimates are
subsequently used to prove stability of the smoothing and quasi-interpolation oper-
ators, defined below.
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Lemma 18. Let T , T˚ be some triangulations of Ω with T ď T˚ and let v P VpT˚q.
Moreover, for K P T let DK Ă Ω be either ωT pKq or ω2

T pKq. Then, there exists a
linear polynomial Q, defined on DK such that we have

|v ´Q|
2
H1pDKq

À

ż

DK

h2
T
ˇ

ˇD2
pwv

ˇ

ˇ

2
dx`

ÿ

FPFpT˚q
FĂDK

ż

F

h2
T h

´1
T˚ rrBnvss

2
ds.(4.1a)

If additionally F Ă DK X BΩ for some F P FT , then

|v|
2
H1pDKq

À

ż

DK

h2
T
ˇ

ˇD2
pwv

ˇ

ˇ

2
dx`

ÿ

FPFpT˚q
FĂDK

ż

F

h2
T h

´1
T˚ rrBnvss

2
ds.(4.1b)

Proof. Let Q P P1pDKq be the H1-orthogonal projection of v into P1pDKq, i.e.,

x∇pv ´Qq, ∇P yDK
“ 0 @P P P1pDKq and

ż

DK

Qdx “

ż

DK

v dx.

Now the proof of (4.1a) is a direct consequence of [KG18, Proposition 1].
The second claim (4.1b) follows from [BO09, Corollary 4.3] together with [KG18,

Proposition 1] and the definition of the jump terms on boundary sides. �

The following Lemma extends the previous result to the limit space V8.

Lemma 19 (Poincaré-Friedrichs V8). Let v P V8 and let either DK “ ωkpKq or
DK “ ω2

kpKq for some K P Tk and k P N0. Then, there exists Q P P1pDKq, such
that

|v ´Q|
2
H1pDKq

À

ż

DK

h2
k

ˇ

ˇD2
pwv

ˇ

ˇ

2
dx`

ÿ

FPF`
FĂDK

ż

F

h2
kh
´1
` rrBnvss

2
ds.

If in addition F Ă DK X BΩ for some F P FT , then

|v|
2
H1pDKq

À

ż

DK

h2
k

ˇ

ˇD2
pwv

ˇ

ˇ

2
dx`

ÿ

FPF`
FĂDK

ż

F

h2
kh
´1
` rrBnvss

2
ds.

Proof. We follow the ideas of [KG18, Lemma 13] and let Q P P1pDKq be the H1-
orthogonal projection of v into P1pDKq, defined by

x∇pv ´Qq, ∇P yDK
“ 0 @P P P1pDKq and

ż

DK

Qdx “

ż

DK

v dx.

Since v P V8, there exists a sequence v` P V`, ` P N, with lim`Ñ8 |||v ´ v`|||` Ñ 0
and lim sup`Ñ8 |||v`|||` ă 8. From Proposition 15 we have

ż

DK

|D2
pwv`|

2 dx`
ÿ

FPF`
FĂDK

ż

F

h´1
` rrBnv`ss

2
ds

Õ

ż

DK

ˇ

ˇD2
pwv

ˇ

ˇ

2
dx`

ÿ

FPF`
FĂDK

ż

F

h´1
` rrBnvss

2
ds

as `Ñ8. Let ` ě k. Thanks to Lemma 18 there exists Q` P P1pDKq with

|v` ´Q`|
2
H1pDKq

À

ż

DK

h2
k|D

2
pwv`|

2 dx`
ÿ

FPF`
FĂDK

ż

F

h2
kh
´1
` rrBnv`ss

2
ds

Õ

ż

DK

h2
k|D

2
pwv|

2 dx`
ÿ

FPF`
FĂDK

ż

F

h2
kh
´1
` rrBnvss

2
ds,
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b

K3

K2 K1

Figure 1. A macro triangle K subdivided into three small sub
triangles which share a common point b.

as `Ñ 8; compare also with Proposition 15. From the definition of Q and Q`, we
have from Proposition 2 that

|Q` ´Q|
2
H1pDKq

À |v` ´ v|
2
H1pDKq

ď |v` ´ v|
2
H1

0 pΩq
À |||v` ´ v|||

2
` Ñ 0

as ` Ñ 8. Therefore, Proposition 2 implies |v` ´Q`|
2
H1pDKq

Ñ |v ´Q|
2
H1pDKq

as

`Ñ8, which finishes the proof. �

4.2. Smoothing and quasi-interpolation. Before introducing the interpolation
operator, we first discuss a smoothing operator ET : VpT q Ñ H2

0 pΩq, T P G. To
this end, following the ideas of [BGS10, GHV11], we introduce the so-called Hsieh-
Clough-Tocher (HCT) macro element constructed in [DDPS79].

Definition 20 (HCT element). Let T P G and K P T . Then the HCT nodal macro

finite element pK, P̂4pKq,N HTC
K q is defined as follows.

a) The local space is given by

P̂4pKq “
 

p P C1pKq : p|Ki
P P4pKiq, i “ 1, 2, 3

(

.

Here the three triangles K1,K2 and K3 denote subtriangulation of K obtained
by connecting the vertices of K with its barycenter; compare with Figure 1.

b) The degrees of freedom N HTC
K are given by (compare also with Figure 2)

‚ the function value and the gradient at the vertices of K,
‚ the function value at one interior point of each side F P FT , F Ă BK.
‚ the normal derivative at two disctinct points in the interior of each side
F P FT , F Ă BK.

‚ the function value and the gradient at the barrycenter of K.

The corresponding global H2-conforming finite element space is defined as

rVpT q :“ tV P C1pΩ̄q : V |K P P̂4pKq for all K P T u
and its global degrees of freedom are given by

N HTC
T :“

ď

KPT
N HTC
K ,

which is well-posed thanks to conformity of rVpT q Ă H2pΩq.

Since P2pKq Ă P̂4pKq, we can apply N HTC
K to P2pKq. We therefore define the

smoothing operator ET : VpT q Ñ rVpT q Ă H2
0 pΩq, by setting for all degrees of free-

dom Nz P N HTC
T :

NzpET pvqq “

$

&

%

|K|
|ωkpzq|

ř

KPωkpzq

NK
z pv|Kq if z P ZHTC

T X Ω

0 if z P ZHTC
T X BΩ.

(4.2)

Here ZHTC
T denotes the set of nodes z associated with some degree of freedom Nz P

N HTC
T and corresponding local degree of freedom NK

z P N HTC
K . Note that there may

be different degrees of freedom associated with one node; compare with Figure 2.
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Figure 2. The Lagrange element of degree two and the corre-
sponding macro element of degree four. Here point evaluations
are denoted by small dots, (first) partial derivatives by circles and
normal derivatives by lines.

Lemma 21 (H2
0 pΩq-smoothing). Let T P G. The operator ET : VpT q Ñ H2

0 pΩq
defined in (4.2) satisfies

ÿ

KPT
}Dαpv ´ ET pvqq}2K À

ż

FT

h
3
2´α

T |rrBnvss|
2

ds, α “ 0, 1, 2

where the hidden constant depends only on shape coefficient of T0.

Proof. See [GHV11, Lemma 3.1]. �

Denoting by ZHTC
K the set of points in K associated with the degrees of freedom

N HTC
T , we have ZK :“ ZT X K Ă ZHTC

K . This enables us to define a Clément-type
quasi-interpolation IT : L1pΩq Ñ L1pΩq, which is locally a right inverse of the
smoothing operator ET on VpT q, i.e.,

IT ˝ ET |VpT q “ id |VpT q.

To this end, we define the operator based on extensions of the local degrees of
freedoms N HTC

K instead of NK .

To be more precise, for K P T , let
 

φKN : N P N HTC
K

(

be the nodal basis of P̂4pKq

and identify N HTC
K with the dual basis

!

φK,˚N : N P N HTC
K

)

Ă P̂4pKq , i.e.

A

φK,˚M , φKN

E

L2pKq
“MpφKN q “ δNM N,M P N HTC

K .

Recalling Definition 20, we have that N HTC
K contains the point evaluation in the

vertices and edge midpoints of T (the Lagrange nodes ZK of P2pKq). For z P ZK ,
we denote the corresponding dual basis functions by

φK,˚z P

!

φK,˚N : N P N HTC
K

)

such that
@

φK,˚z , v
D

L2pKq
“ vpzq for all v P P̂4pKq.

Extending each local dual function by zero to an function in L2pΩq we define

φ˚z :“
1

|ωT pzq|

ÿ

KPωT pzq

φK,˚z P VpT q˚, z P ZT .

Obviously, supppφ˚z q Ă ωT pzq and

xφ˚z , vyL2pΩq “ vpzq for all z P ZT , v P rVpT q.

We define a quasi-interpolation operator IT : L1pΩq Ñ VpT q by

pIT vqpzq :“

#

xφ˚z , vyL2pΩq , if z P ZT X Ω

0, if z P ZT X BΩ.
(4.3)

Since this definition differs from standard Clément interpolation in [Cle75] only
by the choice of a different but nevertheless piecewise polynomial dual basis repre-
sentation, we obtain the following results from standard arguments; see [Cle75].
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Lemma 22 (Quasi-interpolation onto VpT q). For T P G let IT : L1pΩq Ñ VpT q
be defined as in (4.3). Then we have that

a) IT : LppΩq Ñ LppΩq is a linear and bounded projection for all 1 ď p ď 8

and is stable in the following sense: If v P H1
0 pΩq and ` P N0, then

ż

ω`
T pKq

|∇IT v|2 dx À

ż

ω``1
T pKq

|∇v|2 dx for all K P T .

b) IT v P VpT q for all v P L1pΩq,
c) IT v|K “ v|K on K P T with K X BΩ “ H if v|ωT pKq P P2pNT pKqq X

CpωT pKqq,
d) IT pET vq|K “ v|K on K P T if v|ωT pKq P P2pNT pKqq X CpωT pKqq and

K X BΩ “ H or v|BΩXK “ 0. Here ET : VpT q Ñ H2
0 pΩq is the enriching

operator defined in (4.2).

We remark that, in principle, one can also resort to a Scott-Zhang-type quasi
interpolation [SZ90]. However, this complicates the construction of IT , since a dual

basis, bi-orthogonal to the nodal basis of traces of functions in P̂4pKq, needs to be
constructed on faces of boundary elements. The price we have to pay for the simpler
construction is that the set of integration needs to be slightly increased in the right
hand side of the following stability estimate. We are particularly interested in the
interplay of different refinement levels related to the sequence tTkukPN0

of meshes
produced by the AC0IPGM. To simplify notation, we again replace subscripts Tk by
k, e.g. we write Ik instead of ITk

.

Lemma 23 (Stability of Ik). Let v P V` for some ` P N0 Y t8u. Then, for all
K P Tk, k ď `, we have

ż

K

ˇ

ˇD2Ikv
ˇ

ˇ

2
dx`

ż

BK

h´1
k rrBnIkvss

2
ds

À

ż

ω3
kpKq

ˇ

ˇD2
pwv

ˇ

ˇ

2
dx`

ÿ

FPF`

FĂω3
kpKq

ż

F

h´1
` rrBnvss

2
ds,

where F` :“ F` and h` :“ h`, when ` “ 8. In particular, we have |||Ikv|||k À |||v|||`.

Proof. Let ` ă 8 and assume that K P Tk such that ω2
kpKq X BΩ “ H. Let Q be

the linear polynomial from Lemma 18 with T “ Tk, T ‹ “ T`, and DK “ ωkpKq.
Then Lemma 22a) and c) yields

ż

K

ˇ

ˇD2Ikv
ˇ

ˇ

2
dx “

ż

K

ˇ

ˇD2Ikpv ´Qq
ˇ

ˇ

2
dx À

ż

K

h´2
k |∇Ikpv ´Qq|2 dx

À

ż

ωkpKq

h´2
k |∇pv ´Qq|2 dx

À

ż

ωkpKq

ˇ

ˇD2
pwv

ˇ

ˇ

2
dx`

ÿ

FPF`

FĂωkpKq

ż

F

h´1
` rrBnvss

2
ds.

In order to bound the jump terms, let Q be the linear polynomial from Lemma 18
with T “ Tk, VpT ‹q “ V`, and DK “ ω2

kpKq. We observe that ∇Q ” const and
hence does not jump across interelement boundaries. Consequently, using Lemma
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22a) and c), together with a scaled trace theorem and inverse estimates, we obtain
ż

BK

h´1
k rrBnIkvss

2
ds “

ż

BK

h´1
k rrBnIkpv ´Qqss

2
ds

À

ż

ωkpKq

h´2
k |∇Ikpv ´Qq|2 dx À h´2

K

ż

ω2
kpKq

|∇pv ´Qq|2 dx

À

ż

ω2
kpKq

ˇ

ˇD2
pwv

ˇ

ˇ

2
dx`

ÿ

FPF`

FĂω2
kpKq

ż

F

h´1
` rrBnvss

2
ds,

where we also used
Ť

tωkpF q : F Ă BKu Ă ωkpKq and Lemma 18(4.1a).
If ω2

kpKqX BΩ “ H, then there exists a side F P Fk with F Ă ω3
kpKqX BΩ. Now

applying (4.1b) instead of (4.1a) the desired assertion follows similar as above.
For ` “ 8 we replace Lemma 18 by Lemma 19 and proceed as before. �

In view of the proof of Lemma 10 below, we need a stability estimate comparable
to Lemma 23 for w P H2

0 pΩq. This estimate follows by analogous arguments as in the
proof above but replacing Lemma 18 by the classical Poincaré-Friedrichs inequality
for functions in H2

0 pΩq together with scaling arguments. In particular for w P H2
0 pΩq

we have |||Ikw|||k À
›

›D2w
›

›

Ω
.

The following Corollary is an immediate consequence of Lemma 23.

Corollary 24 (Interpolation estimate). Let v P V`, ` P N Y t8u and K P Tk for
some k ď `. Then

ż

K

ˇ

ˇD2Ikv ´D2
pwv

ˇ

ˇ

2
dx`

ż

BK

h´1
k rrBnpIkv ´ vqss

2
ds

À

ż

ω3
kpKq

ˇ

ˇD2
pwv

ˇ

ˇ

2
dx`

ÿ

FPF`

FĂω3
kpKq

ż

F

h´1
` rrBnvss

2
ds,

where we write F` :“ F` and h` :“ h` if ` “ 8 as in Lemma 23.

The next Lemma states the convergence of the interpolation operator

Lemma 25. Let v P V8, then |||Ikv ´ v|||k Ñ 0 as k Ñ8.

Proof. Fix some arbitrary ε ą 0. For k P N, we split

|||Ikv ´ v|||2k “
ÿ

KPTk

„
ż

K

ˇ

ˇD2Ikv ´D2
pwv

ˇ

ˇ

2
dx`

ż

BK

h´1
k rrBnpIkv ´ vqss

2
ds



according to Tk “
`

Tkz
`

T 2`
k Y T 2´

k

˘˘

Y T 2`
k Y T 2´

k .

1 We first consider the terms of |||Ikv ´ v|||2k according to Tkz
`

T 2`
k Y T 2´

k

˘

.

Using Corollary 24, Proposition 15 and the finite overlap of the patches ω3
kpKq,

K P Tk, we have

ÿ

KPTkzpT 2`
k YT 2´

k q

„
ż

K

ˇ

ˇD2Ikv ´D2
pwv

ˇ

ˇ

2
dx`

ż

BK

h´1
k rrBnpIkv ´ vqss

2
ds



À
ÿ

KPTkzpT 2`
k YT 2´

k q

»

—

—

–

ż

ω3
kpKq

ˇ

ˇD2
pwv

ˇ

ˇ

2
dx`

ÿ

FPF`
FĂω3

kpKq

ż

F

h´1
` rrBnvss

2
ds

fi

ffi

ffi

fl

À
ÿ

KPTkzpT 2`
k YT 2´

k q

ż

ω3
kpKq

ˇ

ˇD2
pwv

ˇ

ˇ

2
dx`

ÿ

FPF`zF5`
k

ż

F

h´1
` rrBnvss

2
ds.

(4.4)
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Thanks to ΩpN3
k pTkzpT

2`
k Y T 2´

k qqq Ă ΩzpΩ5`
k Y Ω5´

k q, Lemma 9, and the finite
overlap of neighbourhoods, we can employ the uniform integrability of D2

pwv and

conclude for the first term on the right-hand side of (4.4), that
ÿ

KPTkzpT 2`
k YT 2´

k q

ż

ω3
kpKq

ˇ

ˇD2
pwv

ˇ

ˇ

2
dx À

›

›D2
pwv

›

›

2

ΩzpΩ5`
k YΩ5´

k q
ď ε2(4.5)

for all k ě K1 “ K1pεq.
In order to estimate the second term on the right-hand side of (4.4), we observe

from F` “
Ť

kPN0
F5`
k (see Lemma 9) and the fact that |||v|||8 ă 8, that

ÿ

FPF`k zF
5`
k

ż

F

h´1
` rrBnvss

2
ds ď

ÿ

FPF`zF5`
k

ż

F

h´1
` rrBnvss

2
ds ă ε2

for all k ě K2 “ K2pεq. Thus, for all k ě maxtK1,K2u, we have
ÿ

KPTkzpT 2`
k YT 2´

k q

ż

K

ˇ

ˇD2Ikv ´D2
pwv

ˇ

ˇ

2
dx`

ż

BK

h´1
k rrBnpIkv ´ vqss

2
ds À ε2.

2 We next bound the terms of |||Ikv ´ v|||2k according to T 2´
k . Recall, that

H2
BΩXBΩ´pΩ

´q is defined to be the space of restrictions of H2
0 pΩq-functions to Ω´.

From the density of H3
0 pΩq in H2

0 pΩq we have that there exists vε P H
3
0 pΩq with

}v ´ vε1}
2
H2pΩ´q ă ε2{2. Therefore, stability of Ik (Lemma 23) and the fact, that

Ω´k Ď Ω´ imply

ÿ

KPT 2´
k

„
ż

K

ˇ

ˇD2Ikv ´D2
pwv

ˇ

ˇ

2
dx`

ż

BK

h´1
k rrBnpIkv ´ vqss

2
ds



ď
ÿ

KPT 2´
k

„
ż

K

ˇ

ˇD2Ikpv ´ vεq
ˇ

ˇ

2
`
ˇ

ˇD2Ikvε ´D2
pwvε

ˇ

ˇ

2
`
ˇ

ˇD2
pwvε ´D

2v
ˇ

ˇ

2
dx



`
ÿ

KPT 2´
k

„
ż

BK

h´1
k rrBnIkpv ´ vεqss

2
` h´1

k rrBnIkvεss
2

ds



À

ż

Ω´k

ˇ

ˇD2
pwv ´D

2vε
ˇ

ˇ

2
dx

`
ÿ

KPT 2´
k

ż

K

ˇ

ˇD2Ikvε ´D2
pwvε

ˇ

ˇ

2
`

ż

BK

h´1
k rrBnIkvεss

2
ds

ď ε2 `
ÿ

KPT 2´
k

ż

K

ˇ

ˇD2Ikvε ´D2
pwvε

ˇ

ˇ

2
`

ż

BK

h´1
k rrBnIkvεss

2
ds.

Employing the trace Theorem and Lemma 22a) and c), we can further bound the
last two terms on the right-hand side by

ÿ

KPT 2´
k

ż

K

ˇ

ˇD2Ikvε ´D2vε
ˇ

ˇ

2
`

ż

BK

h´1
k rrBnIkvεss

2
ds

ď
ÿ

KPT 2´
k

ż

K

ˇ

ˇD2Ikpvε ´QKq
ˇ

ˇ

2
`
ˇ

ˇD2pvε ´QKq
ˇ

ˇ

2
dx

`
ÿ

KPT 2´
k

ż

BK

h´1
k rrBnIkpvε ´QKqss

2
ds

À
ÿ

KPT 2´
k

ż

ω3
kpKq

h´2
k |∇pvε ´QKq|2 `

ˇ

ˇD2
pwpvε ´QKq

ˇ

ˇ

2
dx,
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for some arbitraryQK P P2pω
3
kpKqq, K P Tk. Using the Bramble-Hilbert Lemma [DS80]

and the finite overlap of neighbourhoods, we obtain

ÿ

KPT 2´
k

ż

K

ˇ

ˇD2Ikvε ´D2vε
ˇ

ˇ

2
`

ż

BK

h´1
k rrBnIkvεss

2
ds

À ε2 `

ż

Ω´k

h2
k

ÿ

|α|“3

|Dαvε|
2

dx ď ε2 `
›

›

›
hkχΩ´k

›

›

›

2

L8pΩq

ż

Ω

ÿ

|α|“3

|Dαvε|
2

dx.

Thanks to Lemma 9, there exists K3 “ K3pεq, sucht that for all k ě K3, we have

ÿ

KPT 2´
k

ż

K

ˇ

ˇD2Ikv ´D2
pwv

ˇ

ˇ

2
dx`

ż

BK

h´1
k rrBnpIkv ´ vqss

2
ds À ε2.

3 By the definition of V8, we have that v|ωkpKq P P2pNkpKqq X CpωkpKqq for

all K P T 2`
k . Therefore, Lemma 22c) implies Ikv “ v on Ω2`

k and thus

ÿ

KPT 2`
k

ż

K

ˇ

ˇD2Ikv ´D2
pwv

ˇ

ˇ

2
dx`

ż

BK

h´1
k rrBnpIkv ´ vqss

2
ds “ 0.

Concluding, we have |||Ikv ´ v|||2k À ε whenever k ě maxtK1,K2,K3u. This is
the desired result. �

4.3. Proof of Lemma 10. Note that for all v P V|||¨|||88 the bounds

|v|H1
0 pΩq

À |||v|||8 and |Dp∇vq| pΩq À |||v|||8 ,

are inherited from Propositions 2 and 3. In particular, the trace of ∇v P BV pΩq2
is measurable on sides F P Fk, k P N, (c.f. [AFP00, Theorem 3.88]) and thus we

conclude also for v P V|||¨|||88 that |||v|||k Õ |||v|||8 as k Ñ 8 from Proposition 15 and

the density of V8 in V|||¨|||88 .

1 Let 0 ‰ v P V|||¨|||88 arbitrary, then there exist
 

v`
(

`PN Ă V8 such that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇv ´ v`
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
Ñ 0 as `Ñ8. Using norm equivalence on finite dimensional spaces, we

readily conclude that v|K P P2pKq for all K P T `.

2 In order to prove v|Ω´ P H
2
BΩXBΩ´pΩ

´q we need to show that v is a restriction

of a H2
0 pΩq-function. To this end, let tm`u`PN0

Ă N such that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇv` ´ v`m`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m`
ď 1

` for

vm`
:“ Im`

v` P Vm`
; see Lemma 25. Then

ˇ

ˇ

ˇ

ˇ

ˇ

ˇv`m`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m`
is uniformly bounded, since

ˇ

ˇ

ˇ

ˇ

ˇ

ˇv`m`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m`
ď
ˇ

ˇ

ˇ

ˇ

ˇ

ˇv`m`
´ v`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m`
`
ˇ

ˇ

ˇ

ˇ

ˇ

ˇv` ´ v
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m`
` |||v|||m`

Ñ |||v|||8 as `Ñ8.

We can now apply the smoothing operator defined in (4.2) to v`m`
P Vm`

together
with Lemma 21 (α “ 2) and obtain

›

›D2Em`
pv`m`

q
›

›

Ω
À
›

›D2
pwpEm`

pv`m`
q ´ v`m`

q
›

›

Ω
`
›

›D2
pwv

`
m`

›

›

Ω
À
ˇ

ˇ

ˇ

ˇ

ˇ

ˇv`m`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m`
.

Hence, there exists w P H2
0 pΩq such that, for a not relabelled subsequence

Em`
pv`m`

q á w weakly in H2
0 pΩq, as `Ñ8.(4.6)

Again from Lemma 21 (for α “ 0) and the trace theorem with scaling we have that

›

›Em`
pv`m`

q ´ v`m`

›

›

2

Ω´m`

À

ż

F´m`

h3
m`

““

Bnv
`
m`

‰‰2
ds À

›

›

›
hm`

χΩ´m`

›

›

›

4

L8pΩq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇv`m`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

m`
,
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where we used }hm`
}L8pF´m`

q
À
›

›hm`
χΩ´m`

›

›

L8pΩq
. Applying Lemma 9 yields

›

›Em`
pv`m`

q ´ v`m`

›

›

Ω´
“
›

›Em`
pv`m`

q ´ v`m`

›

›

Ω´m`

`
›

›Em`
pv`m`

q ´ v`m`

›

›

Ω´zΩ´m`

À

›

›

›
hm`

χΩ´m`

›

›

›

2

L8pΩq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇv`m`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m`
`
›

›Em`
pv`m`

q ´ w
›

›

Ω
`
›

›v`m`
´ v

›

›

Ω

` }v}Ω´zΩ´m`
` }w}Ω´zΩ´m`

Ñ 0 as `Ñ8.

Here we also used uniform integrability of v, w and (4.6) together with the fact
that H2

0 pΩq is compactly embedded into L2pΩq. As a consequence, we have that
v|Ω´ “ w|Ω´ and thus v|Ω´ P H

2
BΩXBΩ´pΩ

´q.

3 We conclude by showing that for vk :“ Ikw P Vk, k P N, we have |||v ´ vk|||k Ñ

0 as k Ñ 8, and lim supkÑ8 |||vk|||k ă 8; here w P H2
0 pΩq is the function defined

in (4.6). The uniform boundedness follows since from Lemma 23, we have

|||vk|||k À
ÿ

KPTk

ż

ω3
kpKq

ˇ

ˇD2w
ˇ

ˇ

2
dx À }w}H2

0 pΩq
ă 8.

Fix now ε ą 0. Similarly as in the proof of Lemma 25, we split |||v ´ vk|||
2
k according

to Tk “
`

Tkz
`

T 2`
k Y T 2´

k

˘˘

Y T 2`
k Y T 2´

k and consider the corresponding terms
separately. Thanks to Lemma 23, we have

ÿ

KPTkzpT 2`
k YT 2´

k q

„
ż

K

ˇ

ˇD2Ikw ´D2
pwv

ˇ

ˇ

2
dx`

ż

BK

h´1
k rrBnpIkw ´ vqss

2
ds



À
ÿ

KPTkzpT 2`
k YT 2´

k q

»

—

–

ż

ω3
kpKq

ˇ

ˇD2w
ˇ

ˇ

2
`
ˇ

ˇD2
pwv

ˇ

ˇ

2
dx`

ÿ

FPF`
FĂK

ż

F

h´1
` rrBnvss

2
ds

fi

ffi

fl

À
ÿ

KPTkzpT 2`
k YT 2´

k q

ż

ω3
kpKq

ˇ

ˇD2w
ˇ

ˇ

2
`
ˇ

ˇD2
pwv

ˇ

ˇ

2
dx`

ÿ

FPF`zF2`
k

ż

F

h´1
` rrBnvss

2
ds.

Arguing as in (4.5), we can employ the uniform integrability of D2
pwv and D2w to

obtain
ÿ

KPTkzpT 2`
k YT 2´

k q

ż

ω3
kpKq

ˇ

ˇD2
pwv

ˇ

ˇ

2
`
ˇ

ˇD2w
ˇ

ˇ

2
dx ă ε,

for all k ě K1 “ K1pεq. According to F` “
Ť

kPN0
F2`
k and |||v|||8 ă 8, we have

ÿ

FPF`zF2`
k

ż

F

h´1
` rrBnvss

2
ds ă ε,

for all k ě K2 “ K2pεq and consequently we conclude for all k ě maxtK1,K2u that

ÿ

KPTkzpT 2`
k YT 2´

k q

„
ż

K

ˇ

ˇD2Ikw ´D2
pwv

ˇ

ˇ

2
dx`

ż

BK

h´1
k rrBnpIkw ´ vqss

2
ds



À ε.

(4.7)

Considering the terms of |||v ´ vk|||
2
k according to T 2´

k , we recall v|Ω´ “ w|Ω´ and
it suffices to prove

ÿ

KPT 2´
k

ż

K

ˇ

ˇD2Ikv ´D2
pwv

ˇ

ˇ

2
dx`

ż

BK

h´1
k rrBnpIkv ´ vqss

2
ds À ε(4.8)

for all k ě K3 “ K3pεq. This follows exactly as in step 2 of Lemma 25.
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Let now K P T 2`
k . Then we have for all m` ě k that T `k Ă T `m`

and thus

v`m`
|ωkpKq P P2pNkpKqq XCpωkpKqq (see step 2 for the definition of v`m`

and m`).
Therefore, Lemma 22d) implies

vk “ Ikw Ð IkEm`
v`m`

“ IkEkv`m`
“ v`m`

Ñ v in P2pKq

as `Ñ8. Consequently, for all k P N, we have
ÿ

KPT 2`
k

ż

K

ˇ

ˇD2vk ´D
2v
ˇ

ˇ

2
dx`

ż

BK

h´1
k rrBnpvk ´ vqss

2
ds “ 0.

Combining this with (4.7) and (4.8), we have |||Ikw ´ v|||2k À ε whenever k ě

maxtK1,K2,K3u.
Overall, we have thus showed that v P V8, which concludes the proof. �

4.4. Proof of Theorem 12. To identify a candidate for the limit of the sequence
tukukPN0

of discrete approximations computed by the AC0IPGM, we employ Propo-
sition 2 and (2.4), and conclude that

ukj á u8 weakly in H1
0 pΩq as j Ñ8(4.9)

for some subsequence tkjujPN0 Ă tkukPN0 and u8 P H1
0 pΩq. In the following, we

shall see that in fact u8 “ u8 P V8. Thus tukukPN0 has only one weak accumulation
point and the whole sequence converges. Finally we will conclude the section with
proving the strong convergence limkÑ8 |||uk ´ u8|||k “ 0 claimed in Theorem 12.

Lemma 26. We have u8 P V8.

Proof. 1 For each K P T `, the weak convergence (4.9) implies strong convergence
of the restrictions ukj |K in the finite dimensional P2pKq and thus u8|K P P2pKq.

Thanks to the uniform boundedness (2.4) of
ˇ

ˇ

ˇ

ˇ

ˇ

ˇukj
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

kj
, we conclude with Proposi-

tions 2 and 3 that

∇ukj á˚ ∇u8 weakly* in BV pΩq2 as j Ñ8;(4.10)

compare also with [AFP00, Theorem 3.23]. Moreover, Lemma 21 (α “ 2) yields for
the smoothing operator from (4.2) that

›

›D2Ekj pukj q
›

›

Ω
ď
›

›D2
pwpEkj pukj q ´ ukj q

›

›

Ω
`
›

›D2
pwukj

›

›

Ω
À
ˇ

ˇ

ˇ

ˇ

ˇ

ˇukj
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

kj
.

We thus have

Ekj pukj q á w weakly in H2
0 pΩq(4.11)

for a not relabelled subsequence. Arguing as in step 2 of Lemma 10, we obtain

thanks to compact embeddings, that
›

›Ekj pukj q ´ ukj
›

›

Ω´kj

Ñ 0 as j Ñ8 and thus

u8|Ω´ “ w|Ω´ P H
2
BΩXBΩ´pΩ

´q.

2 For w from (4.11), defining

vk :“ Ikw P Vk,

we have by Lemma 23 that |||vk|||k À
›

›D2w
›

›

Ω
ă 8. Therefore, in order to conclude

the proof, it remains to show that |||vk ´ u8|||k Ñ 0 as k Ñ 8. To see this, we first

observe that, thanks to Lemma 22d), we have Ikw “ u8 on all K P T 1`
k and thus

ÿ

FPF`

ż

F

h´1
` rrBnu8ss

2
ds “ lim

kÑ8

ÿ

FPF1`
k

ż

F

h´1
k rrBnu8ss

2
ds

“ lim
kÑ8

ÿ

FPF1`
k

ż

F

h´1
k rrBnvkss

2
ds ď sup

k
|||vk|||

2
k ă 8.
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In the same vein, we have that D2
pwvk “ D2

pwu8 for all K P T 1`
k , which implies

D2
pwvk Ñ D2

pwu8 a.e. in Ω` as k Ñ 8 and thus D2
pwu8 P L

2pΩ`q. Together with

D2u8 “ D2w in Ω´, this yields D2
pwu8 P L

2pΩq and we conclude |||u8|||8 ă 8.

The assertion follows now as in step 3 of the proof of Lemma 10 by splitting

|||vk ´ u8|||
2
k according to Tk “

`

Tkz
`

T 2`
k Y T 2´

k

˘˘

Y T 2`
k Y T 2´

k and investigating
the resulting terms separately. �

Lemma 27. We have that u8 P V8 solves (3.6) and thus u8 “ u8. In particular,
the limit in (4.9) is unique and the full sequence tukukPN0

converges to u8 weakly
in H1

0 pΩq.

Proof. Let v P V8 and tvkukPN, vk P Vk such that |||vk ´ v|||k Ñ 0 as k Ñ 8.

Consequently, for the subsequence (4.9) of discrete solutions
 

ukj
(

jPN, we have

Bkj rukj , vkj s “
@

f, vkj
D

Ω
Ñ xf, vyL2pΩq as j Ñ8.(4.12)

Using |||vk ´ v|||k Ñ 0 as k Ñ8 again, it suffices to prove Bkj rukj , vs Ñ B8ru8, vs
as j Ñ8. To see this, we split the bilinear form according to

Bkj rukj , vs “

ż

Ω

pD2
pwukj ´ Lkj p

““

Bnukj
‰‰

q : D2
pwv dx

´

ż

Ω

Lkj prrBnvssq : D2
pwukj dx`

ż

Fkj

σ

hkj

““

Bnukj
‰‰

rrBnvss ds

“: Ij ´ IIj ` IIIj .

and consider the limit of each term separately.

1 In order to analyse the limit of Ij , we split the domain Ω according to

Ω “ ΩzpΩ1`
` Y Ω1´

` q Y Ω1´
` Y Ω1`

`

for some ` ď kj . We recall from (2.7) and (2.4) that
›

›D2
pwukj

›

›

Ω
À
ˇ

ˇ

ˇ

ˇ

ˇ

ˇukj
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

kj
À }f}Ω and

›

›Lkj p
““

Bnukj
‰‰

q
›

›

Ω
À
ˇ

ˇ

ˇ

ˇ

ˇ

ˇukj
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

kj
À }f}Ω .

Hence, thanks to Lemma 9 and the stability of liftings, for ε ą 0 there exists Kpεq
such that

ˇ

ˇ

ˇ

ż

ΩzpΩ1`
` YΩ1´

` q

pD2
pwukj ´ Lkj p

““

Bnukj
‰‰

q ´D2
pwu8 ` L8prrBnu8ssqq : D2

pwv dx
ˇ

ˇ

ˇ

À

´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇukj
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

kj
` |||u8|||8

¯

›

›D2
pwv

›

›

ΩzpΩ1`
` YΩ1´

` q
ď ε

for each fixed ` ě Kpεq. Moreover, on Ω1´
` we have, similar to [BO09, Theorem 5.2]

(for details, compare Lemma 28, Appendix C), that
ż

Ω1´
`

pD2
pwukj ´ Lkj p

““

Bnukj
‰‰

qq : D2v dxÑ

ż

Ω1´
`

D2u8 : D2v dx as j Ñ8.

For the terms according to Ω1`
` , we observe from (4.9) that D2

pwukj |Ω1`
`

Ñ

D2
pwu8|Ω1`

`
strongly in L2pΩ1`

` q as j Ñ8 since P0pT 1`
` q2ˆ2 is finite dimensional for

fixed `. Therefore, we have
ż

Ω1`
`

D2
pwukj : D2

pwv dxÑ

ż

Ω1`
`

D2
pwu8 : D2

pwv dx as j Ñ8.

Similar arguments prove
““

Bnukj
‰‰

|F1`
`
Ñ rrBnu8ss |F1`

`
strongly in L2pF1`

` q as j Ñ

8 and, thanks to the fact that the local definition (2.5) of the liftings eventually



CONVERGENCE OF AN ADAPTIVE C0IPG METHOD 23

does not change on T 1`
` , we have

ż

Ω1`
`

Lkj p
““

Bnukj
‰‰

q : D2
pwv dx “

ż

Ω1`
`

L8p
““

Bnukj
‰‰

q : D2
pwv dx

Ñ

ż

Ω1`
`

L8prrBnu8ssq : D2
pwv as j Ñ8.

Since ε ą 0 was arbitrary, combining the above results with the fact that
|ΩzpΩ1`

` Y Ω1´
` q| Ñ 0 as `Ñ8, we have proved that

lim
jÑ8

ˇ

ˇ

ˇ

ż

Ω

pD2
pwukj ´Lkj p

““

Bnukj
‰‰

qq : D2
pwv dx´

ż

Ω

pD2
pwu8´L8prrBnu8ssqq : D2

pwv dx
ˇ

ˇ

ˇ

ď ε`
ˇ

ˇ

ˇ

ż

ΩzpΩ1`
` YΩ1´

` q

pD2
pwu8 ´ L8prrBnu8ssqq : D2

pwv dx
ˇ

ˇ

ˇ
Ñ ε

as `Ñ8. Since ε ą 0 was chosen arbitrary, for j Ñ8 we conclude

ż

Ω

pD2
pwukj ´ Lkj p

““

Bnukj
‰‰

qq : D2
pwv dxÑ

ż

Ω

pD2
pwu8 ´ L8prrBnu8ssqq : D2

pwv dx.

(4.13)

2 In order to identify the limit of IIj , we split the domain Ω according to

Ω “ ΩzΩ1`
` Y Ω1`

`

for some ` ď kj . Thanks to uniform boundedness |||uk|||k À }f}Ω, for ε ą 0, we have

ˇ

ˇ

ˇ

ż

ΩzΩ1`
`

Lkj prrBnvssq : D2
pwukj dx

ˇ

ˇ

ˇ
À

›

›Lkj prrBnvssq
›

›

ΩzΩ1`
`

}f}Ω ă ε(4.14)

for all kj ě ` ě Kpεq. Indeed, the stability of the lifting operator (2.6) together
with Proposition 15 yields

›

›Lkj prrBnvssq
›

›

ΩzΩ1`
`

À

˜

ż

Fkj
zF2`

`

h´1
kj
rrBnvss

2
ds

¸1{2

Ñ 0 as kj ě `Ñ8.

As in 1 , on Ω1`
` we employ the strong convergence D2

pwukj |Ω1`
`
Ñ D2

pwu8|Ω1`
`
P

P0pT 1`
` q2ˆ2 in L2pΩ1`

` q as j Ñ 8, in order to obtain from the local definitions of
the liftings (2.5) and (3.3) that

ż

Ω1`
`

Lkj prrBnvssq : D2
pwukj dx “

ż

Ω1`
`

L8prrBnvssq : D2
pwukj dx

Ñ

ż

Ω1`
`

L8prrBnvssq : D2
pwu8 dx as j Ñ8.

Combining this with (4.14) and |ΩzpΩ1`
` Y Ω1´

` q| Ñ 0 as `Ñ8, we thus obtain

ˇ

ˇ

ˇ

ż

Ω

Lkj prrBnvssq : D2
pwukj ´ L8prrBnvssq : D2

pwu8 dx
ˇ

ˇ

ˇ

ď ε`
ˇ

ˇ

ˇ

ż

Ω`zΩ1`
`

L8prrBnvssq : D2
pwu8 dx

ˇ

ˇ

ˇ
Ñ ε as `Ñ8.

Since ε ą 0 was arbitrary, this yields
ż

Ω

Lkj prrBnvssq : D2
pwukj dxÑ

ż

Ω

L8prrBnvssq : D2
pwu8 dx as k Ñ8.(4.15)
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3 For the last term IIIj , we observe from F`` Ă F`kj , ` ď kj , that
ż

Fkj

σ

hkj

““

Bnukj
‰‰

rrBnvss ds “

ż

F``

σ

hkj

““

Bnukj
‰‰

rrBnvss ds

`

ż

Fkj
zF``

σ

hkj

““

Bnukj
‰‰

rrBnvss ds.

For the second term on the right-hand side, we conclude from Proposition 15 that
for arbitrary fixed ε there exists Kpεq ą 0 such that

ż

Fkj
zF``

σ

hkj

““

Bnukj
‰‰

rrBnvss ds

ď

˜

ż

Fkj
zF``

σ

hkj

““

Bnukj
‰‰2

ds

¸1{2 ˜
ż

Fkj
zF``

σ

hkj
rrBnvss

2
ds

¸1{2

À
ˇ

ˇ

ˇ

ˇ

ˇ

ˇukj
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

kj

˜

ż

Fkj
zF``

σ

hkj
rrBnvss

2
ds

¸1{2

À }f}L2pΩq

˜

ż

F`zF``

σ

h`
rrBnvss

2
ds

¸1{2

ď ε

whenever kj ě ` ě Kpεq. As in 1 , we use for fixed ` that
““

Bnukj
‰‰

|F1`
`

Ñ

rrBnu8ss |F1`
`

as j Ñ8 strongly in L2pF1`
` q and consequently

ż

F``

σ

hkj

““

Bnukj
‰‰

rrBnvss dsÑ

ż

F``

σ

h`
rrBnu8ss rrBnvss ds as j Ñ8.

The desired convergence
ż

Fkj

σ

hkj

““

Bnukj
‰‰

rrBnvss dsÑ

ż

F`

σ

h`
rrBnu8ss rrBnvss ds as j Ñ8(4.16)

follows from
ş

F`zF`

σ
h`
rrBnu8ss rrBnvss dsÑ 0 as `Ñ8.

Now combining (4.13), (4.15) and (4.16), we have proved

Bkj rukj , vs Ñ

ż

Ω´
D2u8 : D2v dx`

ż

Ω`
pD2

pwu8 ´ L8prrBnu8ssq : D2
pwv dx

`

ż

Ω`
L8prrBnvssq : D2

pwu8 dx`

ż

F`

σ

h`
rrBnu8ss rrBnvss ds

“ B8ru8, vs as j Ñ8.

Hence, by (4.12) we conclude u8 “ u8, thanks to u8 P V8 and the uniqueness of
the generalised Galerkin solution of (3.6). �

We conclude the section by finally proving Theorem 12.

Proof of Theorem 12. Using the coercivity of the bilinear form, Lemmas 25 and 27,
and the interpolation operator Iku8 P Vk, we observe

Ccoer |||Iku8 ´ uk|||2k ď BkrIku8 ´ uk, Iku8 ´ uks
“ BkrIku8, Iku8s ´ 2BkrIku8, uks `Bkruk, uks

“ BkrIku8, Iku8s ´ 2 xf, Iku8yL2pΩq ` xf, ukyL2pΩq

Ñ B8ru8, u8s ´ xf, u8yL2pΩq “ 0 as k Ñ8.

Hence, again with Lemma 25, we conclude

|||u8 ´ uk|||
2
k ď |||Iku8 ´ u8|||

2
k ` |||Iku8 ´ uk|||

2
k Ñ 0
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as k Ñ8. �
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Appendix A. Proof of Proposition 13

For K P T 1´
k , we define the element bubble function

bK :“ βK
ź

zPZTk
XK

λ2
K,z,

where λK,z denotes the barycentric coordinate of K with respect to the node z P
ZTk

XK. The scaling factor βK ą 0 is such that maxxPK bKpxq “ 1; compare with
[Ver13]. Note that bK P H

2
0 pKq and since K Ă Ω´, extending bK by zero to Ω, we
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have that bK P V8. Setting φ “ bKΠ0f P H
2
0 pKq we have

}φ}L2pKq “ }bKΠ0f}L2pKq ď }Π0f}L2pKq .(A.1)

Recalling ∆2v|K “ 0 for v P VpT q, we conclude from (2.1) and integration by parts
ż

K

fφdx “ B8ru8, φs “

ż

K

D2u8 : D2φdx

“

ż

K

D2u8 : D2φ´ p∆2vqφ dx “

ż

K

D2pu8 ´ vq : D
2φdx.

Consequently, thanks to equivalence of norms on finite dimensional spaces, standard
inverse estimates, and (A.1), we obtain

}Π0f}
2
L2pKq h

ż

K

Π0fφdx “

ż

K

pΠ0f ´ fqφ dx`

ż

K

fφdx

“

ż

K

pΠ0f ´ fqφdx`

ż

K

D2pu8 ´ vq : D
2φ dx

À

´

}Π0f ´ f}L2pKq ` h
´2
k |u8 ´ v|H2pKq

¯

}Π0f}L2pKq .

(A.2)

This proves the assertion of Proposition 13 for the element residual.
In order to bound the jump residual let K1,K2 P T 1´

k with F “ K1 XK2 P F1´
k

and set γF :“
““

B2
nv

‰‰

|F . We define pF P P1 by

p|F “ 0 and
Bp

BnF
“ γF ,(A.3)

where nF “ nK1 |F assuming the convention in (2.2). Since γF P R, we have

|p|H1pωkpF qq
“ |ωkpF q|

1{2 |γF | h hF |γF | “

ˆ
ż

F

hF
““

B2
nv

‰‰2
ds

˙1{2

,

recalling that ωkpF q “ K1 YK2. Moreover, we have

}p}L8pωkpF qq
h hF |γF | “

ˆ
ż

F

hF
““

B2
nv

‰‰2
ds

˙1{2

.

Next, we define the side bubble function

bF |Ki
:“ βF

ź

zPZkXF

λ2
Ki,z|Ki

, i “ 1, 2.

Here βF ą 0 is such that maxxPF bF pxq “ maxxPKi
bF pxq “ 1, i “ 1, 2. Conse-

quently, we have bF P H
2
0 pωkpF qq and extending bF to Ω by zero yields bF P H

2
0 pΩq.

Standard scaling arguments prove
ż

F

bF ds h |F | “ hF h }bF }L2pωkpF qq
.

Therefore, combining this with (A.3), (3.6), and integration by parts, from p|F “ 0,
that

ż

F

““

B2
nv

‰‰2
ds À

ż

F

““

B2
nv

‰‰2
bF ds “

ż

F

““

B2
nv

‰‰ Bp

BnF
bF `

BbF
BnF

p ds

“

ż

F

““

B2
nv

‰‰ BppbF q

BnF
ds “

ÿ

KPNkpF q

ż

K

D2v : D2ppbF qdx

“

ż

ωkpF q

D2pv ´ u8q : D
2ppbF qdx`B8ru8, pbF s

“

ż

ωkpF q

D2pv ´ u8q : D
2ppbF qdx`

ż

ωkpF q

fppbF qdx

ď

´

|v ´ u8|H2pωkpF qq
`
ˇ

ˇh2
kf

ˇ

ˇ

L2pωkpF qq

¯

h´2
F }pbF }L2pωkpF qq

.
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Here, we have used equivalence of norms on finite dimensional spaces in the first as
well as Cauchy-Schwartz and an inverse inequalities in the last estimate. Combining
this with

}pbF }L2pωkpF qq
ď }p}L8pωkpF qq

|bF |L2pωkpF qq
À h2

F |γF | “ hF

ˆ
ż

F

hF
““

B2
nv

‰‰2
ds

˙1{2

proves
ˆ
ż

F

hF
““

B2
nv

‰‰2
ds

˙1{2

À |v ´ u8|H2pωkpF qq
`
›

›h2
kf

›

›

L2pωkpF qq
.

The assertion of Proposition 13 for the jump residual follows then from apply-
ing (A.2) for the last term on the right-hand side. �

Appendix B. Proof of Proposition 15

For v P V8 there exists a sequence vk P Vk, k P N, such that |||v ´ vk|||k Ñ 0
as k Ñ 8 and lim supkÑ8 |||vk|||k ă 8. Therefore, t|||v|||kukPN is bounded, since
|||v|||k ď |||v ´ vk|||k ` |||vk|||k ă 8 uniformly in k. For m ě k we have, by inclusion
Ť

FPFk
F Ă

Ť

FPFm
F and mesh-size reduction h´1

k ď h´1
m , that

ż

Fk

h´1
k rrBnvss

2
ds ď

ż

Fk

h´1
m rrBnvss

2
ds ď

ż

Fm

h´1
m rrBnvss

2
ds.

Consequently, we have |||v|||k ď |||v|||m and t|||v|||kukPN converges. In particular, for
ε ą 0, the exists L “ Lpεq P N such that for all k ě L and some sufficiently large
m ą k, we have

ε ą
ˇ

ˇ

ˇ
|||v|||

2
m ´ |||v|||

2
k

ˇ

ˇ

ˇ
“ σ

ż

FmzpFkXFmq

h´1
m rrBnvss

2
ds´ σ

ż

FkzpFkXFmq

h´1
k rrBnvss

2
ds

ě σ

ż

FkzF`k
h´1
k rrBnvss

2
ds.

This follows from the fact that hm|F ď 2´1hk|F for all F P FmzpFk X Fmq, and

F`k “ Fm X Fk for sufficiently large m ą k. Therefore,
ş

FmzF`m h´1
m rrBnvss

2
dsÑ 0

as mÑ8 and thus

|||v|||
2
k “

ż

Ω

ˇ

ˇD2
pwv

ˇ

ˇ

2
dx` σ

ż

F`k
h´1
k rrBnvss

2
ds` σ

ż

FkzF`k
h´1
k rrBnvss

2
ds

Ñ |||v|||8 ` 0 as k Ñ8.

The second claim is a localised version and follows by analogous arguments. �

Appendix C. Auxiliary results

Lemma 28. Let tukukPN be the sequence of discrete solutions generated by the

AC0IPGM and u8 P V8 as in (4.9). Then, for arbitrary fixed ` P N, we have
“

D2
pwuk ´ LkprrBnukssq

‰

|Ω1´
`
á D2u8|Ω1´

`
weakly in L2pΩ1´

` q
2ˆ2 as k Ñ8.

Proof. For ` ď k we have Ω1´
` Ă Ω1´

k and thus }hkχΩ1´
`
}L8pΩq ď }hkχΩ1´

k
}L8pΩq Ñ

0 as k Ñ8, thanks to Lemma 9. We proceed similar as in [BO09, Theorem 5.2].
By the stability of the lifting operator (2.7) and the definition of the energy-norm

we have
›

›D2
pwuk

›

›

Ω
À |||uk|||k and }LkprrBnukssq}Ω À |||uk|||k .

Consequently, thanks to (2.4), both terms are bounded uniformly and thus, for a
not relabelled subsequence, we obtain

D2
pwuk á Ta and LkprrBnukssq á Tj(C.1)
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weakly in P L2pΩq2ˆ2 as k Ñ8. It therefore remains to prove that

Ta ´ Tj “ D2u8 in L2pΩ1´
` q

2ˆ2.

Proposition 3 and (2.4) imply that t∇ukukPN0 is uniformly bounded inBV pΩ1´
` q

2.

Therefore, as in (4.10), we have that ∇uk á˚ ∇u8 in BV pΩ1´
` q

2, i.e., for ϕ P

C1
c pΩ

1´
` q

2ˆ2
sym, we have
ż

Ω1´
`

ϕ : dDp∇ukq Ñ
ż

Ω1´
`

ϕ : dDp∇u8q “
ż

Ω1´
`

ϕ : D2u8 dx,

as k Ñ 8. Here dDp∇ukq is a finite Radon-measure on Ω (compare [AFP00,
Chapter 3.1]) and the last identity follows since u8|Ω´ P H

2
BΩXBΩ´pΩ

´q and Ω1´
` Ă

Ω´. By element-wise integration by parts formula ([Com89]) we have
ż

Ω

ϕ : dDp∇ukq “
ż

Ω1´
`

D2
pwuk : ϕ dx´

ÿ

FPFk

FĂΩ1´
`

ż

F

ϕn ¨ n rrBnukss ds,

for all ϕ P C1
c pΩ

´1
` q

2ˆ2
sym. The assertion thus follows if

ÿ

FPFk

FĂΩ1´
`

ż

F

ϕn ¨ n rrBnukss dsÑ

ż

Ω1´
`

Tj : ϕ dx as k Ñ8.(C.2)

In order to verify this, let πk “ πkpϕq be the L2pΩ1´
` q

dˆd-orthogonal projection of

φ onto P0ptK P Tk : K Ă Ω1´
` uq

dˆd. Then, we have

ÿ

FPF´k
FĂΩ1´

`

ż

F

ϕn ¨ n rrBnukss ds

“
ÿ

FPF´k
FĂΩ1´

`

ż

F

pϕ´ πkqn ¨ n rrBnukss ds`
ÿ

FPF´k
FĂΩ1´

`

ż

F

πkn ¨ n rrBnukss ds

“
ÿ

FPF´k
FĂΩ1´

`

ż

F

pϕ´ πkqn ¨ n rrBnukss ds`

ż

Ω1´
`

LkprrBnukssq : πk dx

“
ÿ

FPF´k
FĂΩ1´

`

ż

F

pϕ´ πkqn ¨ n rrBnukss ds`

ż

Ω1´
`

LkprrBnukssq : pπk ´ϕqdx

ż

Ω1´
`

LkprrBnukssq : ϕ dx.

Thanks to }hkχΩ1´
`
}L8pΩq Ñ 0 as k Ñ 8, we have that the first two terms on the

right hand side vanish as k Ñ 8 since ϕ P C1
c pΩ

´1
` q

2ˆ2
sym. This concludes the proof

since (C.2) follows then from (C.1). �
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