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Summary

The ability to measure the quantum state of light is an important ingredient in the
development of photonic quantum technologies such as optical quantum computing or
secure quantum communication. A quantum state comprises all information one can
have about a quantum system. Since quantum physics is a statistical theory, a quantum
state cannot be captured with a single measurement. Therefore, usually, measurements
on an ensemble of identically prepared copies of the quantum system under study must
be performed for quantum state reconstruction. Optical homodyne tomography (OHT)
is a well established technique frequently used to reconstruct the quantum state of a
light field. It requires a reference beam, which is called the local oscillator (LO), that
is interfered with the signal light field on a beam splitter before being recorded with
homodyne detection. For light fields in pure quantum states, OHT reconstructs the full
quantum state. Light fields in mixed states, however, consist of a hidden instantaneous
state at every instant, but adopt several such states over time due to an unknown
coupling to the environment. In such cases, OHT reconstructs the weighted average of
all underlying instantaneous states. In an experiment, light fields in pure states provide
a fixed phase relationship between the LO and the signal light field, which is required
for OHT to reconstruct the complete quantum state. If a signal field is not phase-
locked to the LO, for instance in the case of thermal light, the aforementioned averaging
takes place. In order to overcome the limitations of stationary OHT with respect to
mixed states, this work introduces the technique of non-stationary OHT. It features
two additional homodyne detection channels that aim at recording the required phase
information. Since these two channels measure the light field’s complete Husimi-Q phase
space function, including information about its amplitude, time-resolved measurements
are possible. They can be achieved by introducing a delay between the original homodyne
detection channel and the additional two channels.

First, a stationary OHT setup was developed. Besides its tomographic capabilities, its
high acquisition speed allows one to apply it as a fast equal-time second-order correlation
function g(2)(0) monitor with a sampling rate of up to 100 kHz. It was used to discover
bistabilities and possible multimode emission in the output of a diode laser operated
across the threshold region. The results from applying the subsequently developed de-
tector for non-stationary OHT on a thermal light field are twofold: first, by splitting the
signal field in multiple parts, additional noise is introduced into the measurement. The
detector can be operated close to the theoretical noise limit and successfully revealed the
hidden states in the light field closely resembling coherent states. Second, the evolution
of these hidden states in time were tracked and can be attributed to dephasing due to
inhomogeneous broadening. The successful implementation of non-stationary OHT may
support the development of photonic quantum devices and may allow for the complete
characterization of arbitrary light fields in amplitude and phase.
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Zusammenfassung

Die Möglichkeit, den Quantenzustand von Licht zu messen, ist eine wichtige Komponen-
te in der Entwicklung photonischer Quantentechnologien wie der optischen Quantenin-
formationsverarbeitung oder der sicheren Quantenkommunikation. Ein Quantenzustand
beinhaltet alle Informationen, die jemand über ein Quantensystem besitzen kann. Da
Quantenphysik eine statistische Theorie ist, kann ein Quantenzustand nicht mit einer
einzelnen Messung ermittelt werden. Deshalb müssen zur Quantenzustandsrekonstruk-
tion üblicherweise Messungen an einem Ensemble identisch präparierter Kopien eines
Quantensystems erfolgen. Optische homodyne Tomographie (OHT) ist eine etablierte
und oft genutzte Technik, um den Quantenzustand eines Lichtfelds zu rekonstruieren.
Sie benötigt einen Referenzstrahl, den Lokaloszillator (LO), der mit dem Signalfeld auf
einem Strahlteiler überlagert wird, bevor er homodyn detektiert wird. Für Lichtfelder
in reinen Zuständen rekonstruiert OHT den kompletten Quantenzustand. Lichtfelder in
gemischten Zuständen bestehen jedoch zu jedem Zeitpunkt aus versteckten instanta-
nen Zuständen und nehmen verschiedene solcher Zustände aufgrund einer unbekannten
Wechselwirkung mit der Umgebung an. In solchen Fällen rekonstruiert OHT den gewich-
teten Mittelwert der zugrundeliegenden instantanen Zustände. Im Experiment stellen
Lichtfelder in reinen Zuständen eine feste Phasenbeziehung zwischen dem LO and dem
Signalfeld zur Verfügung, die benötigt wird, um mittels OHT den vollständigen Quan-
tenzustand zu rekonstruieren. Die Mittelung findet statt, falls das Signalfeld keine feste
Phasenbeziehung zum LO hat, beispielsweise im Fall von thermischem Licht. Um die
Grenzen stationärer OHT in Bezug auf gemischte Zustände zu überwinden, wird in die-
ser Arbeit die Technik der nicht-stationären OHT eingeführt. Sie weist zwei zusätzliche
homodyne Detektionskanäle auf, die darauf abzielen, die benötigte Phaseninformation
zu messen. Da diese beiden Kanäle die vollständige Husimi-Q Phasenraumfunktion des
Signallichts, inklusive der Amplitudeninformation, aufnehmen, sind zeitaufgelöste Mes-
sungen damit möglich. Sie können umgesetzt werden, indem eine zeitliche Verzögerung
zwischen dem ursprünglichen und den beiden neuen Kanälen eingeführt wird.

Zuerst wurde ein Aufbau zur stationären OHT entwickelt. Zusätzlich zur OHT konnte
er aufgrund seiner hohen Geschwindigkeit zur schnellen Beobachtung der gleichzeitigen
Korrelationsfunktion zweiter Ordnung g(2)(0) mit Abtastraten bis zu 100 kHz eingesetzt
werden. Dies wurde genutzt, um Bistabilitäten und mögliche multiple Moden in der
Emission eines Diodenlasers nachzuweisen, der über die Laserschwelle hinweg betrieben
wurde. Mit dem nachfolgend entwickelten Detektor zur nicht-stationären OHT konnten
zwei Ergebnisse erzielt werden: Erstens wird durch die Aufspaltung des Signallichtfelds
in mehrere Teile zusätzliches Rauschen in die Messung eingebracht. Der Detektor konnte
nahe an diesem theoretischen Rauschlimit betrieben werden und wir konnten erfolgreich
zeigen, dass die im Lichtfeld versteckten Zustände kohärenten Zuständen ähneln. Zwei-
tens wurde die Zeitentwicklung dieser Zustände ermittelt und konnte der Dephasierung
aufgrund von inhomogener Verbreiterung zugeordnet werden. Die erfolgreiche Implemen-
tierung nicht-stationärer OHT ist ein Schritt hin zur Entwicklung photonischer Quan-
tengeräte und könnte die vollständige Charakterisierung beliebiger Lichtfelder in Phase
und Amplitude erlauben.
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1. Introduction

The invention of the laser in 1960 [1] marked the starting point of photonics, the science
and technical application of light. Today, it is a broad field of research, backing up a
well established industry with a global market of EUR 447 billion in revenue in 2015 [2].
Photonics covers a large and diverse range of mature applications such as laser material
processing [3], refractive surgery [4], wind field measurements [5], and inter satellite
laser communication [6]. Besides these mature applications, mostly using the classical
properties of light as an electromagnetic wave, photonics also plays a major role in the
emerging field of quantum technologies. In 2016, European scientists argued in the
“Quantum Manifesto” that such technologies are expected to lead to transformative
applications in the areas of communication, simulation, sensors, and computers [7].
Responding to the “Manifesto”, the European quantum technologies flagship programme
started in 2018 to support research in quantum technologies with about EUR 1 billion
for 10 years, almost twice the amount of about EUR 550 million invested in the 20
years before [8]. Photonic quantum technologies [9] deliberately employ the quantum
nature of light and play important roles in all four areas with applications such as optical
quantum information processing [10] and quantum key distribution [11].

At their heart, photonic quantum technologies deal with the generation, manipulation,
and detection of quantum states of light [9]. By definition, a quantum state contains the
maximum amount of information one can have about a quantum system [12]. There-
fore, in order to develop and debug photonic quantum devices, researchers and engineers
need to reconstruct unknown quantum states from measurements. This process is called
quantum state tomography (QST) or, more briefly, quantum tomography [13, 14]. In
many advanced applications requiring a highly sensitive optical readout, homodyne or
heterodyne detection are the methods of choice. They allow one to measure the phase-
resolved field quadratures of even a weak signal light field by first interfering it with a
reference light field, the local oscillator (LO), on a beam splitter, and then detecting
both output beams with a balanced detector. This approach was used, for instance, in
the Laser Interferometer Gravitational-Wave Observatory (LIGO) that found the first
observational evidence of a black hole merger [15]. Hence, optical quantum state tomog-
raphy is often performed using balanced homodyne detection (BHD) by first measuring
quadrature statistics on the light field of interest and subsequently reconstructing the
underlying quantum state. This process is called optical homodyne tomography (OHT)
[16].

Although OHT allows one to perform a complete state reconstruction of light fields
in even complex pure states, such as Schrödinger cat states [17, 18], it is not possible to
capture the time dependencies present in mixed quantum states by means of this method.
Therefore, we refer to it as stationary OHT in this work. An ubiquitous example of a
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1. Introduction

light field in a pure quantum state is perfectly coherent light from a laser source. An
incandescent bulb, in contrast, emits thermal light, which is in a mixed quantum state.
Both types of light are closely related, since a thermal state can sometimes be interpreted
as a coherent state in phase space changing amplitude and phase over time [19]. For
such a thermal light field in a mixed state, stationary OHT results in the ensemble
average over all instantaneous states the light field may adopt at any given time and the
dynamics of the hidden coherent state remain inaccessible.

This work introduces the technique of non-stationary OHT that allows one to inves-
tigate these usually hidden dynamics of light fields. Since most real optical systems
are open systems, because they interact with an unknown environment, non-stationary
OHT adds a new dimension to quantum state tomography for a large class of quantum
systems. For instance, even coherent light from a real laser source has a finite coherence
time, and therefore its phase fluctuates on that timescale. Stationary OHT routinely
overcomes this problem by deriving signal and LO from the same laser source so that
they are stable in phase with respect to each other. Non-stationary OHT circumvents
this problem by measuring the relative phase between LO and signal instead of relying
on a priori assumptions about the phase. When using a pulsed LO, as in this work, the
most challenging scenario is a phase of the signal light field that fluctuates randomly
from one LO pulse to the next. Hence, in order to test the capabilities and limitations
of the newly introduced non-stationary OHT technique, thermal light is used, because
the dynamics of the hidden coherent state appear on the femtosecond timescale, while
two LO pulses are delayed by nanoseconds.

Chapters 2 and 3 present the theoretical foundations of OHT in the form of a brief in-
troduction into quantum states of light and the mathematical background of homodyne
detection and quantum state reconstruction. Non-stationary OHT can be understood
as an extension of stationary OHT. Accordingly, chapter 4 provides the technological
details of the stationary OHT setup together with a detailed description of its charac-
teristics. It is possible to use this setup for real time measurements of a light field’s
equal-time second-order correlation function g(2)(0), which is discussed in detail in chap-
ter 5. The setup was applied to monitor the dynamics of a diode laser operated across
the threshold region, which yielded insights into its coherence dynamics. Bistabilities as
well as possible multimode emission were identified successfully. The technique of non-
stationary OHT is presented in chapter 6. The method’s capabilities and limitations are
demonstrated with the help of measurements on a light field in a thermal state. There
are two main results: First, since the signal light field is split up into two parts for the
technique to work, additional quantum noise is introduced in the reconstructed state,
and the setup could be operated close to this fundamental limit. Second, the recon-
structed hidden quantum state behaves like a coherent state, despite the slightly larger
quantum noise, and its temporal dynamics, which are dominated by dephasing, could
be retrieved. I anticipate this work to open up the way for complete characterization of
arbitrary light fields in amplitude and phase. It may serve as a useful tool in the research
and development of future photonic quantum technologies tackling the challenges of an
increasingly interconnected world.
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2. Quantum States of Light

The primary subject in this thesis is to develop an experimental scheme for non-
stationary optical homodyne tomography, which measures the quantum states
of repetitive optical fields. Before the specific theoretical and experimental implications
of that scheme are presented in later chapters, light is introduced as the fundamental and
ubiquitous phenomenon under study. In this regard, several models to describe optical
fields in the classical and quantum picture are presented. Afterwards, these models are
used to explain what is understood as a quantum state of light.

2.1. Light as an Electromagnetic Wave

In everyday life, people restrict the term light to the visible spectrum of electromagnetic
radiation. In the present work, the word light is used more loosely by also including
the near-infrared spectrum. Classically, the behavior of electromagnetic radiation is
governed by Maxwell’s equations describing the electromagnetic response of some
medium [20, 21]. Surprisingly, there are still solutions to these equations if no free
charges or currents are present, which allows for the propagation of light in any medium
including vacuum. In that case, we obtain a relationship from Maxwell’s equations
describing the propagation of electromagnetic waves [21, p. 10]:

∇2 ~E = µ0ε0εr
∂2 ~E

∂t2
(2.1)

This is a wave equation for the electric field vector ~E that depends on time t. The
constants are the electric permittivity ε0 of vacuum, the relative permittivity εr of the
medium and the magnetic permeability µ0 of vacuum. They also define the speed v =
1/
√
ε0µ0εr of waves described by this wave equation. In free space (εr = 1) this results

in the speed of light c = 299 792 458 m s−1 [22].

Typical solutions to this wave equation are transverse oscillating waves where the
electric and magnetic fields are perpendicular to each other and to the propagation
direction. Figure 2.1, for example, illustrates a wave propagating in the x-direction while
the electric field vector ~E is oriented along the z-direction. As described by Maxwell’s
equations, the magnetic field vector ~B is in this case perpendicular to the electric field
vector ~E and therefore oriented along the y-direction. Expressions of the following form
are solutions of the wave equation (2.1) for the electric field in the z-direction, but only
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2. Quantum States of Light

z

x

y

E

v

B

Figure 2.1.: Scheme of a transverse oscillating electromagnetic wave. The electric field vector
~E and the magnetic field vector ~B are perpendicular to each other. Taken from [23].

their real parts are considered as physical solutions (e.g. [21, p. 11]):

Ez(x, t) = E0e
i(kx−ωt+φ), (2.2)

Re {Ez(x, t)} = E0 cos (kx− ωt+ φ) . (2.3)

The constants are the amplitude E0, the angular frequency ω, the wave vector
k = ω/v and the phase φ of the wave. The complex notation is primarily used in this
work, since calculations are easier with it. If there is only one frequency ω present with
only small deviations ∆ω, it is called monochromatic light.

2.1.1. Polarization and Coherence

In the previous section, some basics about the wave model of light were introduced.
With this model, it is possible to understand two important properties of electromagnetic
waves that play a prominent role in later chapters. The first of them is the polarization
of a light wave, which is simply defined as the direction of its electric field vector. In
Fig. 2.1, for instance, the light is polarized along the z-direction and therefore has a
well defined linear polarization. The other type of polarization referred to is found in
unpolarized light that is randomly polarized and may include elliptically polarized
parts where the electric field vector is rotating around the propagation direction [20, p.
267].

The second important property of light is its coherence. Real light sources can-
not produce waves that are perfectly defined by equation (2.2), because they exhibit
technical noise from imperfect parts and also noise due to the quantum nature of light.
For example, Schawlow and Townes calculated the fundamental quantum limit for the
linewidth of a laser even before the first laser was built [24]. As a result of the additional
noise, real light always has some phase distribution ∆φ, amplitude distribution ∆E0 and
frequency distribution ∆ω (also affecting the wave vector k). When the phase φ of a
light wave can be described by equation (2.2) at time t = t1 and position x = 0, it may
be predicted for any time t = t2 at the same place. In practice, however, this prediction
is not accurate because of the additional noise. The frequency distribution ∆ω, for ex-
ample, leads to overlapping waves with different frequencies, that result in a changing
phase φ over time. Such influences reduce the coherence time τc, which carries the

12



2.2. Light as a Harmonic Oscillator

E0
φ

Re(𝓔)

Im(𝓔)

(a)

E0
φ

Re(𝓔)

Im(𝓔)

(b)

Figure 2.2.: Phasor diagrams for (a) an ideal and (b) a noisy classical light field. E is the
complex electric field amplitude.

information that it is possible to predict the wave parameters for times |t2 − t1| � τc
with high certainty.

2.1.2. Field Quadratures

When measuring the properties of light, the number of its free parameters is often
reduced. In a typical experiment, some kind of photodetector may be placed at a specific
position x = x0 along the propagation direction of the light field that can be described,
for example, by equation (2.2). Additionally, its polarization may be fixed by the optical
setup and its frequency ω = ω0 could already been measured with a spectrometer. This
leaves only two free parameters, the amplitude E0 and the phase φ. Equation (2.2) can
now be simplified by substituting ϕ = φ+ kx0:

Ez(x0, t) = E0e
i(ϕ−ωt) = E0e

iϕe−iωt = Ee−iωt (2.4)

It is helpful to introduce the phasor diagram in Fig. 2.2a as a means to visualize any
light field with these two free parameters (see for example [21, p. 130]). Shown in this
diagram is the newly introduced complex amplitude E of the time-dependent electric
field as a vector in the complex plane. The real and imaginary parts of that amplitude
are called the field quadratures E1 = Re{E} and E2 = Im{E}. By measuring the
values of E1 and E2 for an ideal light source, it is possible to achieve perfect knowledge of
the classical state of the light field. In practice, however, different noise sources impair
the measurement, and therefore the quality of the information about the light field. In
figure 2.2b, for instance, the presence of such uncertainties is depicted by a circle around
the arrow tip that indicates the standard deviation of the measured values. The two
field quadratures as well as the variables amplitude and phase are two equivalent ways
to describe the same two free parameters of a light field.

2.2. Light as a Harmonic Oscillator

This work is situated in the broader field of quantum optics, which deals with the
effects resulting from the quantum nature of light. Therefore, it is necessary to under-
stand light within the quantum picture, as well. The transition can be made by first

13



2. Quantum States of Light

considering a classical light wave as a harmonic oscillator and then using this knowledge
to infer the properties of quantized light from the properties of the quantized harmonic
oscillator. The first step can be accomplished because the field quadratures introduced
in section 2.1.2 can be mapped onto generalized and dimensionless position q and mo-
mentum p coordinates that correspond to the position and momentum variables of a
harmonic oscillator (see [21, p. 129 ff.] for details).

In the second step, some important results of treating light as a quantum harmonic
oscillator are discussed. As a first result, a light wave can be represented in the number
state representation. This means, the number of excited energy quanta, the photons,
are counted instead of using a wave function expressed in position and momentum
variables. A monochromatic quantized light field with frequency ω, containing n photons
is then described by the photon number state |n〉. The well known bosonic creation
and annihilation operators â and â† of the quantum harmonic oscillator then add or
subtract a photon1. Next, the quadrature operators q̂ and p̂ can be rewritten2 in
terms of â† and â:

q̂ = A
(
â† + â

)
(2.5)

p̂ = iA
(
â† − â

)
(2.6)

In the quantum optics literature, different conventions regarding the commutator [q̂, p̂],
which depend on the specific normalization chosen to generalize the electric field quadra-
tures, can be found. The most common conventions are [q̂, p̂] = i, [q̂, p̂] = i/2, and
[q̂, p̂] = 2i (see for example [14, p. 303]). As a reference point for users of different
conventions, the real-valued factor A is introduced and used to calculate all quantities
of interest in this section. Moreover, the convention ~ = 1 is used throughout this work.

Most of the time, there is no such thing as an absolute phase. Hence, one can often
choose an arbitrary phase offset when describing the quantum state of a light field.
Therefore it is useful to define general quadrature operators3 q̂θ and p̂θ for some phase
offset θ by q̂θ = q̂ cos θ+ p̂ sin θ and p̂θ = q̂θ+π/2. The general quadrature operator q̂θ can
also be expressed in terms of the annihilation and creation operators:

q̂θ = q̂ cos θ + p̂ sin θ

= A
{
â†(cos θ + i sin θ) + â(cos θ − i sin θ)

}
= A

(
eiθâ† + e−iθâ

)
(2.7)

As it turns out, the commutators [q̂θ, p̂θ] and [q̂, p̂] are the same:

[q̂θ, p̂θ] = [−q̂, q̂] cos θ sin θ + [q̂, p̂] cos2 θ − [p̂, q̂] sin2 θ + [p̂, p̂] sin θ cos θ

= [q̂, p̂]
(
cos2 θ + sin2 θ

)
= [q̂, p̂] (2.8)

In order to compute [q̂, p̂], the usual commutator

[â, â†] = 1 (2.9)

1for a treatment of these ladder operators see for example [25, p. 136 ff.] or [21, p. 151 ff.]
2see for example [21, p. 175]
3see for example [14, p. 303], [26, p. 279 ff.]
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2.2. Light as a Harmonic Oscillator

of the bosonic annihilation and creation operators is used:

[q̂, p̂] = iA2
(
[â†, â†]− [â†, â] + [â, â†]− [â, â]

)
= i2A2[â, â†] = i2A2 (2.10)

A very important quantity describing a light field is the average number n̄ = 〈n| n̂ |n〉
of photons composing the field. An operator that is well known from the harmonic
oscillator is the number operator4 n̂ = â†â. It is now possible to express n̂ in terms
of q̂ and p̂, which is useful because q̂ and p̂ are observables that can be measured with
the experimental setup presented in chapter 4. To start with, â and â† are expressed in
terms of the quadrature operators:

â =
1

2A
(q̂ + ip̂) (2.11)

â† =
1

2A
(q̂ − ip̂) (2.12)

Equations (2.11) and (2.12) result from adding and subtracting equations (2.5) and (2.6).
Next, n̂ can be directly computed:

n̂ = â†â =
1

(2A)2
(q̂ − ip̂) (q̂ + ip̂) =

1

(2A)2

(
q̂2 + iq̂p̂− ip̂q̂ + p̂2

)
=

1

(2A)2

(
q̂2 + p̂2 + i[q̂, p̂]

) (2.10)
=

1

(2A)2

(
q̂2 + p̂2

)
− 2A2

(2A)2

=
1

4A2

(
q̂2 + p̂2

)
− 1

2
(2.13)

The same relationship holds true for the more general quadrature operators q̂θ and p̂θ,
which means that the parameters phase and amplitude of a light field are independent
of each other:

q̂2
θ + p̂2

θ =
(
cos2 θ + sin2 θ

) (
q̂2 + p̂2

)
+ cos θ sin θ (q̂p̂− q̂p̂+ p̂q̂ − p̂q̂)

= q̂2 + p̂2. (2.14)

With this relationship it is possible to calculate the number of photons in a given light
field by performing measurements of q̂θ and p̂θ.

Measurements of non-commuting operators like q̂θ and p̂θ, which means that their
commutator is not zero, suffer from a fundamental quantum mechanical uncertainty.
The two quadrature values of a quantum system cannot both be known at the same
time with arbitrary precision. This phenomenon was first discussed by Heisenberg for
the position and momentum of a particle [27]. For any pair of non-commuting operators,
a general uncertainty principle5 formalizes this relationship. The uncertainty relation

4see for example [21, p. 154]
5see for example [28, p. 104] or [29, p. 190]
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2. Quantum States of Light

of q̂θ and p̂θ is therefore a fundamental constraint on the experiments discussed in this
work:

∆qθ∆pθ ≥
|[q̂θ, p̂θ]|

2
(2.10)⇒ ∆qθ∆pθ ≥ A2 (2.15)

Note, if the uncertainty is equally distributed among both quadratures, the factor A
is simply the standard deviation of one of the quadratures, for example ∆qθ = A. In
section 2.1.2, it is emphasized that quadratures are just another way to express the
amplitude and phase variables of a light wave. Thus amplitude and phase of a light
wave are also subject to a similar uncertainty relationship.

2.3. Quantum Descriptions of Light

In this section, it is stated more formally what is generally understood under a quantum
state of light. A quantum state contains the maximum amount of information one can
have about a quantum system [12]. It is emphasized in the previous section that, in
quantum physics, the properties of any physical system, such as a light field, cannot all
be perfectly determined at the same time. This is at the core of the statistical nature
of quantum physics. The maximum amount of information one can possess about an
observable, such as n̂, is the statistical distribution of possible measurement outcomes.
It is possible that the measurement outcome n̄ = 〈Ψ| n̂ |Ψ〉 for some quantum state |Ψ〉
is exactly the same for each measurement. But then it follows from the uncertainty
principle in Eq. (2.15) that it is not possible to know the value of an observable that
is not commuting with n̂ with any certainty at the same time. In this section, two
different ways to represent a quantum state mathematically are introduced along with
several examples of quantum states of a light fields.

2.3.1. Wigner Function Formalism

The effects of uncertainties were already discussed on the phasor diagram in section
2.1.2. The uncertainty relation in Eq. (2.15) is one way to describe quantum noise for
the quadrature operators q̂ and p̂ mathematically. Another way is to draw an uncertainty
area in a phasor diagram for a quantized light field in analogy to Fig. 2.2b, which is
shown in Fig. 2.3a. The two-dimensional plane spanned by the measurement axes q and
p is called phase space, and it is still possible to talk about an amplitude |α| and a
phase φ of the light field that correspond to the classical amplitude E0 and phase ϕ.
If the uncertainty area in Fig. 2.3a is at the quantum limit defined by the uncertainty
relation in Eq. (2.15), such a state is called a coherent state |α〉 with the coherent
amplitude α = αr + iαi = |α|eiφ [21, p. 134].

However, there are some differences to a classical light state. First, the uncertainty
relation allows for light states which contain quantum noise that is asymmetrically dis-
tributed among conjugate observables. Since amplitude and phase are such a pair of

16





2. Quantum States of Light

5

0

q
-5-5p

0

×10
-3

-4

-2

0

2

4

5

W
(q

,p
)

(a)

5

0

q
-5-5p

0

×10
-3

-4

-2

0

2

4

5

W
(q

,p
)

(b)

Figure 2.4.: Wigner functions of (a) a coherent state with n = 1 photons and (b) a vacuum
state with n = 0 photons. The integral projections pr(q) and pr(p) on the walls are scaled to
fit into the plot.

we compare, for example, the Wigner function of a Fock state in Fig. 2.5 with its coun-
terpart in Fig. 2.3b, some differences become apparent. First, the Wigner function is
not Gaussian anymore and has negative values at the origin of the p–q–plane. Second,
there is no clear interpretation of the uncertainty area in a phasor diagram as a standard
deviation. Especially the ability of the Wigner function to have negative values prevents
its interpretation as a probability distribution.

Nevertheless, the Wigner function can be interpreted as a quasiprobability distri-
bution, because its integral projections

pr(qθ) =

∫
W (q, p)dqθ+π/2 (2.16)

are probability distributions for measurements of the quadrature operator q̂θ. The pro-
jections pr(q) = pr(qθ=0) and pr(p) = pr(qθ=π/2) are shown on the walls of Figs. 2.4
and 2.5. Even though the Wigner function itself can be negative, its integral projec-
tions never are. Also, as such integral projections represent probability distributions,
the Wigner function has to be normalized to one:∫

W (q, p)dqdp = 1 (2.17)

The connection between the integral projections of the Wigner function and measure-
ments of the operator q̂θ also motivates a scheme to reconstruct the Wigner function of a
quantum state from measurements: If it is possible to measure the projections pr(qθ) as
histograms from measurements of q̂θ on identically prepared copies of the same light field
for sufficiently many θ values, it should be possible to reconstruct the underlying Wigner
function and therefore the full quantum state of the investigated light field. Another
application of the Wigner function is the computation of the overlap of two quantum
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Figure 2.5.: Wigner function of a Fock state with n = 1 photons. The integral projections
pr(q) and pr(p) on the walls are scaled to fit into the plot.

states in phase space. The product between two quantum states |Ψ〉 and |Φ〉 is given by
the product of their Wigner functions integrated over phase space [26, p. 71]:

|〈Ψ|Φ〉|2 = 2π

∫ ∞
−∞

∫ ∞
−∞

WΨ(q, p)WΦ(q, p)dqdp (2.18)

2.3.2. Density Matrix in Fock Basis

The Wigner function is only one of many ways to describe a quantum state of light.
Its graphical representation in phase space is very useful to get a phenomenological
understanding of the studied quantum state, and the connection of its projections to
measurements of the quadrature operator q̂θ can be grasped quite intuitively. The sec-
ond quantitative representation of a quantum state used in this work is the density
operator ρ̂. This section reviews some of its properties and how it is connected to the
amplitude and phase of a classical light wave.

If a quantum system can be described by some Hilbert vector |Ψ〉, it is in a pure
state, and its density operator is

ρ̂ = |Ψ〉 〈Ψ| (2.19)

Pure states only describe completely prepared quantum states where a complete set of
commuting observables was already measured. In the general case this information is
not available, and another way to represent the available information about such mixed
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2. Quantum States of Light

states is needed [29, p. 185 ff.]. This case becomes relevant when not only a single
quantum system is considered, but an ensemble of states {|Ψk〉}. Such an ensemble can
also be in a pure state when all of the constituents are in the same state |Ψ〉. It is
in a mixed state, if they are not all in the same state |Ψ〉. It is possible to define the
probability pk for a specific quantum system of the ensemble being in the state |Ψk〉.
The new density operator is now a weighted sum of pure state density operators6:

ρ̂ =
∑
k

pk |Ψk〉 〈Ψk| (2.20)

The density operator can now be expressed in any complete orthonormal basis, such
as the discrete Fock basis {|n〉 , n ≥ 0} [26, p. 47]:

ρ̂ =
∞∑

m,n,k=0

pk |m〉 〈m|Ψk〉 〈Ψk|n〉 〈n| =
∞∑

m,n=0

ρm,n |m〉 〈n| (2.21)

The complex valued factors ρm,n constitute the density matrix of the quantum state
in the Fock representation and can completely describe any quantum state of light
under study. Since both, the density operator and the Wigner function, are complete
representations of light states, they are equivalent to each other. For example, the
Wigner function of a light state can be calculated from the density matrix via [26, p.
68]:

W (q, p) =
1

2π

∫ ∞
−∞

exp (−ipξ)
〈
q +

1

2
ξ

∣∣∣∣ ρ̂ ∣∣∣∣q − 1

2
ξ

〉
dξ (2.22)

It is also possible to calculate the expectation value of any operator Ô in a quantum
system described by the density operator ρ̂ by tracing over their product [26, p. 50]:〈

Ô
〉

= Tr(Ôρ̂) (2.23)

As an example, the operator Ô in Eq. (2.23) is replaced by the photon number operator
n̂ =

∑∞
l=0 l |l〉 〈l|:

n̄ = Tr [n̂ρ̂] = Tr

[
∞∑
l=0

l |l〉 〈l|
∞∑

m,n=0

ρm,n |m〉 〈n|

]

= Tr

[
∞∑

l,n=0

lρl,n |l〉 〈n|

]
=
∞∑
l=0

lρl,l (2.24)

The expected photon number n̄ is now the sum over terms consisting of the photon num-
ber l multiplied with the diagonal element ρl,l of the density matrix which corresponds to
the probability of measuring l photons. This demonstrates two things. First, a clear link

6it is assumed that 〈Ψm|Ψn〉 = δm,n, for details see [29, p. 186]
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between the diagonal elements of the density matrix of a light field and its amplitude.
And second, that the diagonal elements of the density matrix in the Fock basis inform
us about the photon statistics of this light field. Therefore, states that carry no phase
information, such as Fock states, require only the diagonal of the density matrix to be
described. Other states, however, also have non vanishing off–diagonal elements in the
density matrix carrying additional information about the phase.

2.3.3. Discrete and Continuous Variables

The quantum variables discussed so far can be divided into two groups: discrete and
continuous variables. Discrete variables, such as the photon number n, only take
discrete values, while continuous variables, such as the quadrature qθ, are real numbered
values. It is now possible to choose the description of a quantum state according to what
kind of variables are studied. The density matrix ρmn in the Fock basis, for example,
is well suited to study the photon statistics of a quantum state, which are accessible
via measurements of discrete variables. The Wigner function, however, is continuous
by nature because it lives in the phase space spanned by the continuous quadrature
variables p and q.

2.4. Coherent and Thermal States

In the previous sections, a basic foundation to understand quantum states of light was
laid and two different methods to describe them were introduced. In this section, two
special light states are discussed in more detail: Coherent states and thermal states.
Both of them can be created fairly simple and they are used as test states in later
chapters.

The term coherent state was already mentioned in section 2.3.1 for Hilbert vectors
of the form |α〉 with a complex number α = αr+iαi = |α|eiφ. They were first introduced
by Erwin Schrödinger in 1926 [32] and are eigenstates of the annihilation operator â,
which means [21, p. 158]:

â |α〉 = α |α〉 (2.25)

Coherent states resemble Gaussian wave packets with minimum uncertainties in both
quadratures and are a very good description of light fields from coherent light sources
such as lasers.

Next, relationships between the amplitude α of a coherent state |α〉, the photon num-
ber n̄ = 〈α| n̂ |α〉 and the quadrature operator q̂θ are derived. First, there is a simple
relationship between the number of photons in a coherent state and its amplitude α:

n̄ = 〈α| â†â |α〉 = 〈α| ᾱα |α〉 = |α|2 (2.26)

To find a relationship between n̄ and the quadrature operator q̂θ, some product terms
of â† and â are necessary. Therefore, the expectation value of q̂2

θ is analyzed first as it
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2. Quantum States of Light

includes such terms. ᾱ is the complex conjugate of α:

〈α| q̂2
θ |α〉 = 〈α|

[
A
(
eiθâ† + e−iθâ

)]2 |α〉
= A2 〈α| ei2θâ†â† + â†â+ ââ† + e−i2θââ |α〉
= A2 〈α| ei2θâ†â† + 2â†â+ 1 + e−i2θââ |α〉
= A2

(〈
ei2θ
〉
ᾱᾱ + 2ᾱα + 1 +

〈
e−i2θ

〉
αα
)

= A2
(
2 |α|2 + 1 + ᾱ2

〈
ei2θ
〉

+ α2
〈
e−i2θ

〉)
(2.27)

In the next step, the expression is simplified by splitting the coherent amplitude α into
its absolute value |α| and a constant phase component eiφ. This makes it possible to
combine the exponential phase factors:

〈α| q̂2
θ |α〉 = A2

(
2 |α|2 + 1 + |α|2 e−i2φ

〈
ei2θ
〉

+ |α|2 ei2φ
〈
e−i2θ

〉)
= A2 |α|2

(
2 +

〈
ei2(θ−φ)

〉
+
〈
e−i2(θ−φ)

〉)
+ A2

= 2A2 |α|2 (1 + 〈cos (2(θ − φ))〉) + A2 (2.28)

This expression can be further simplified by making assumptions about θ. There are
two cases of interest for this work:

1. θ is chosen with equal probability in the interval [0, 2π[. Then, the ensemble
average over the cosine term becomes zero and the result is〈

q̂2
random θ

〉
= 2A2 |α|2 + A2 (2.29)

2. θ has a constant value. The extremal cases then are:〈
q̂2
θ=φ

〉
= 4A2 |α|2 + A2 (2.30)〈

q̂2
θ=φ+π/2

〉
= A2

With this knowledge, it is now possible to calculate the photon number of a coherent
state from measurements of q̂θ. The formulas are obtained by applying equation (2.26)
to equations (2.29) and (2.30):

n̄ =
1

2A2

(〈
q̂2

random θ

〉
− A2

)
(2.31)

n̄ =
1

4A2

(〈
q̂2
θ=φ

〉
− A2

)
(2.32)

The term A2 that is subtracted from the averaged squared quadrature values 〈q̂2
θ〉 takes

into account the uncertainty and energy of the vacuum state.
Instead of computing 〈α| q̂2

θ |α〉, the photon number of a coherent state is also accessible
by computing the simpler expectation value 〈α| q̂θ |α〉:

〈α| q̂θ |α〉 = 〈α|A
(
eiθâ† + e−iθâ

)
|α〉

= A
(
ᾱeiθ + αe−iθ

)
= A |α|

(
e−iφeiθ + eiφe−iθ

)
= A |α|

(
ei(θ−φ) + e−i(θ−φ)

) (2.26)
= 2A

√
n̄ cos (θ − φ) (2.33)
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Figure 2.6.: Wigner functions of (a) a thermal state with n = 1 photons and (b) a coherent
state with n = 1 photons. The integral projections pr(q) and pr(p) on the walls are scaled to
fit into the plot.

This can be solved for n̄:

n̄ =
〈q̂θ〉2

4A2 cos2 (θ − φ)
(2.34)

For a random phase θ, equation (2.33) is not useful, because the right side cos(θ − φ)
becomes zero when averaging over randomly chosen phases. A similar problem appears,
when θ = φ+ π/2 is chosen. However, for θ = φ, a meaningful result is obtained:

n̄ =
〈q̂θ=φ〉2

4A2
(2.35)

In the Wigner function picture, θ = φ means that the plane of the integral projection
pr(qθ) is parallel to the vector describing the displacement of the Gaussian coherent state
Wigner function from the origin. For θ = φ + π/2, the plane of the integral projection
is orthogonal to this displacement. In case of the Wigner function shown in Fig. 2.6b,
θ = φ would mean that θ = φ = 3π/4. In the rest of this work, the convention A = 1/

√
2

is used.
The second type of quantum states extensively studied in this work is the thermal

state. It is a good description for thermal light from light sources such as light bulbs
or lasers operated below the lasing threshold. In contrast to coherent light, thermal light
has very low coherence times, typically in the femtosecond regime. The Wigner function
of a thermal state with n = 1 photons is shown in Fig. 2.6. It is always positive and
rotationally symmetric around the z-axis, which means its phase is maximally uncertain,
similar to a Fock state. In contrast to a coherent state it is not a minimum uncertainty
state but much broader. This is a clear sign that its amplitude and therefore the number
of photons is subject to more uncertainty than in a coherent state.

To discuss this uncertainty in amplitude, photon statistics of coherent and thermal
states can be investigated. If multiple measurements with the photon number operator
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2. Quantum States of Light

n̂ are performed, the results ni are distributed in a certain way. This distribution is
called the photon statistics of a light field. For a coherent state, the photon statistics
are described by the Poisson distribution. This means the probability to measure n
photons in a single measurement for a light state with an average photon number of n̄
is [21, p. 80]:

P (n) =
nn

n!
e−n (2.36)

For a Poisson distribution, the variance (∆n)2 of the photon number is exactly the
average photon number n̄ [21, p. 81]:

∆n =
√
n (2.37)

But for a thermal state, the photon statistics are described by the Bose–Einstein
distribution [21, p. 85]:

P (n) =
1

n+ 1

(
n

n+ 1

)n
(2.38)

This distribution has a larger standard deviation than the Poisson distribution with

(∆n)2 = n+ n2 (2.39)

which quantifies the difference in the uncertainties between coherent and thermal states
that were already discussed qualitatively.
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3. Optical Homodyne Tomography

The previous chapter focused on answering the question what a quantum state of light
is and how it can be described. This chapter focuses on the actual methods used to
measure the quantum state of a light field. In the framework of this thesis, the well
established technique of optical homodyne tomography (OHT) is used to measure
the quantum state of light. This technique was first suggested by Vogel and Risken [33],
first demonstrated by Smithey et al. [34], and makes use of balanced optical homo-
dyne detection developed by Yuen and Chan [35, 36]. Balanced homodyne detection
allows the direct application of the quadrature operator q̂θ, introduced in section 2.2,
to the light field of interest. With optical homodyne tomography, the measured data
points are then used to reconstruct the quantum state of the light field.

3.1. Balanced Homodyne Detection

The basic scheme of balanced homodyne detection is depicted in Fig. 3.1. Its goal is
to directly measure the quadrature amplitudes of the signal light field. In order to
achieve this, the signal light field is first interfered with a strong coherent light field, the
local oscillator (LO), by means of a 50 : 50 beam splitter (BS50:50) and then detected
by two separate photodiodes PD1 and PD2. The photocurrents of the two diodes are
finally subtracted to get the difference photocurrent I− which is subsequently recorded.
It is not obvious, but I− carries information about the signal light amplified by the
amplitude of the LO.

The relationship between I− and the quadrature operator q̂θ can be motivated by
considering the electric field amplitudes ESIG and ELO of the signal and local oscillator
light fields, respectively1. The light fields on the output ports of the beam splitter are:

E1 =
1√
2

(
ELOe

iθLO + ESIG

)
(3.1)

E2 =
1√
2

(
ELOe

iθLO − ESIG

)
(3.2)

The minus sign in Eq. (3.2) indicates a phase shift of π between the two output ports.
This phase shift is a fundamental property of each beam splitter that arises, for exam-
ple, as a consequence of energy conservation [37]. Since the power of a light beam is
proportional to the square of its electric field and a 50 : 50 beam splitter is used, a
factor 1/

√
2 arises in Eqs. (3.1) and (3.2). The connection to the quadratures can be

1the motivation used in this section was taken from [21, p. 141 ff.]
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Figure 3.1.: Balanced Homodyne Detection. The signal light field (SIG) is interfered with the
local oscillator light field (LO) on a 50 : 50 beam splitter and then detected by two photodiodes
PD1 and PD2. Finally, the difference photocurrent of the diodes is recorded. A similar scheme
is discussed in [21, p. 139 ff.].

drawn by additionally splitting ESIG = EqSIG + iEpSIG into its real and imaginary parts that
correspond to the two field quadratures q and p:

E1 =
1√
2
{(ELO cos(θLO) + EqSIG) + i (ELO sin(θLO) + EpSIG)} (3.3)

E2 =
1√
2
{(ELO cos(θLO)− EqSIG) + i (ELO sin(θLO)− EpSIG)} (3.4)

The most interesting part of homodyne detection takes place when the light is detected
with photodiodes. Since the photodiodes generate photocurrents I1 and I2 proportional
to the optical power p = EE∗ = |E|2 of the electric field2, the difference photocurrent I−
is proportional to terms linear in ELO and ESIG:

I− ∝ I1 − I2

∝
∣∣E2

1

∣∣− ∣∣E2
2

∣∣
∝ 2ELO (EqSIG cos(θLO) + EpSIG sin(θLO)) (3.5)

Therefore, the difference current I− is proportional to the quadrature of the signal field
that is in phase with the local oscillator. For example, if θLO = π/2, then the field
quadrature of the signal field corresponding to p is amplified by the LO amplitude ELO.
If homodyne detection is treated quantum mechanically, the qualitative behavior is the
same and the quantitative behavior is expressed by a measurement operator N̂− for
homodyne detection in the limit of a strong coherent LO field3:

N̂− = |αLO|
(
eiθLO â†S + e−iθLO âS

)
(3.6)

2the star denotes complex conjugation
3see, for example, Raymer [38], Lvovsky and Raymer [14], or Roumpos et al. [39]
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Here, âS is the annihilation operator of the quantized signal light field and â†S its creation
operator. The amplitude |αLO| =

√
NLO of the LO field is equal to the square root of

the number of photons NLO in the field. There is a simple connection between the
measurement operator N̂− and the general quadrature operator q̂θ for the signal light
field introduced in Eq. (2.7):

q̂θ =
1√
2

(
eiθâ†S + e−iθâS

)
=

N̂−√
2NLO

(3.7)

So far, an outline for the method of balanced homodyne detection used to perform
direct measurements with the quadrature operator q̂θ was given. In all experiments
presented in this work, a pulsed local oscillator is used. Since homodyne detection is
based on the interference of the LO and the signal, it is necessary to be careful about
the operators in Eq. (3.7). They can only act on the part of the signal field that is able
to interfere with the LO field and therefore overlaps with it spectrally, temporally,
spatially and in polarization. NLO is the average number of photons in a single LO
pulse. In the best case, the result of measuring q̂θ sufficiently often with a balanced
homodyne detection setup is a data set of tuples (Qi, θi) of measured quadratures Qi

and corresponding LO phases θ.

3.2. Reconstruction of the Density Matrix

This section covers the tomographical part of OHT, which means the reconstruction of
the complete quantum state of a light field from measurements of q̂θ. Chapter 2 discussed
that, in an experiment, one can only access integral projections of the Wigner function or
expectation values calculated from the density matrix. The final goal, however, is to get
access to the complete density matrix or Wigner function. Hence, techniques are required
to reconstruct them from measurements. For this purpose, the density matrix is always
reconstructed first from the measured tuples (Qi, θi) with a maximum-likelihood al-
gorithm. The experimentally determined Wigner functions are then calculated from
this reconstructed density matrix afterwards.

For the reconstruction of the density matrix, an iterative algorithm is used that was
proposed by Alexander Lvovsky in 2004 [40], which is also the source for the informa-
tion presented in this section, when not indicated otherwise. This maximum-likelihood
algorithm aims at computing the density matrix of the quantum state that most likely
produced the measured data. Initially, for a given data set {(Qi, θi), i ∈ {1, .., N}} with
N data points, a likelihood function L(ρ̂) is needed that provides the probability of mea-
suring exactly this data set for a given quantum state ρ̂. Additionally, an algorithm is
needed that maximizes this likelihood function iteratively by generating density matrices
of quantum states with a higher likelihood.

The likelihood function L is simply a product of the probabilities prθi(Qi) to measure
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the quadratures Qi at corresponding phases θi:

L (ρ̂) =
N∏
i=1

prθi(Qi) (3.8)

When the system is in the quantum state ρ̂, these probabilities can be written as expec-
tation values of the pure state |Qi, θi〉 describing a measurement outcome:

prθi(Qi) = 〈Qi, θi| ρ̂ |Qi, θi〉 = tr
(

Π̂(Qi, θi)ρ̂
)

(3.9)

In the last step, the expectation value property of the density operator from Eq. (2.23)
was used and the projection operator Π̂(Qi, θi) = |Qi, θi〉 〈Qi, θi| was introduced.

Each iteration step of the algorithm starts with an initial density operator ρ̂(k) and
computes the next density operator ρ̂(k+1) by

ρ̂(k+1) = N
[
R̂(ρ̂(k))ρ̂(k)R̂(ρ̂(k))

]
(3.10)

with the help of the iteration operator R̂(ρ̂):

R̂(ρ̂) =
∑
i

Π̂(Qi, θi)

prθi(Qi)
(3.11)

The normalization operation N [. . .] ensures that the trace of the resulting density oper-
ator is always 1. ρ̃ denotes the density operator before the normalization:

N (ρ̃) =
ρ̃

tr ρ̃
(3.12)

So far, this algorithm is suitable for any density operator ρ̂. To perform the recon-
struction of the quantum state numerically, density matrices are represented in the Fock
representation. Since the corresponding Hilbert space is of infinite dimension, the algo-
rithm ignores Fock terms above a cutoff photon number nco. The projection operator
Π̂(Qi, θi) in the Fock basis is given by

Πmn(Qi, θi) = 〈m| Π̂(Qi, θi) |n〉 = 〈m|Qi, θi〉 〈Qi, θi|n〉 (3.13)

where the overlap of quadrature and number eigenstates is given by the stationary
solution of the Schrödinger equation for a particle in a harmonic potential:

〈n|Qi, θi〉 = einθi
(

1

π

) 1
4 Hn(Qi)√

2nn !
exp

(
−1

2
Q2
i

)
︸ ︷︷ ︸

:=Fn(Qi)

(3.14)

The symbol Hn denotes the Hermite polynomials. Equation (3.14) is slightly different
from the one introduced by Lvovsky [40]. In his paper, he uses the commutator con-
vention [q̂, p̂] = i/2, while the convention [q̂, p̂] = i is used in this work. Equation (3.14)
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is also numerically unstable for higher values of n, because the faculty n! becomes very
large very quickly. To keep the computation numerically stable until higher values of n,
the value of Fn(Qi) can be calculated via the following recurrence relation4:

F0(Qi) = π−
1
4 exp

(
−x

2

2

)
(3.15)

F1(Qi) =
√

2Qi F0(Qi) (3.16)

Fn>1(Qi) =

√
2

n
Qi Fn−1(Qi)−

√
n− 1

n
Fn−2(Qi) (3.17)

The source code used to perform the density matrix reconstruction and most of the data
analysis presented in this work can be found in an open source MatLab toolbox [42].

3.3. Computing the Wigner Function

Since the Wigner function and the density operator are equivalent descriptions of quan-
tum states of light, it is possible to calculate one from the other. The Wigner function
W (q, p) corresponding to a quantum state ρ̂ was already introduced in Eq. (2.22). To
treat this conversion numerically, however, the equation needs to be adapted. Since the
Fock basis is a complete orthonormal basis, the identity operator can be written as a
sum of Fock projectors:

1 =
∞∑
n=0

|n〉 〈n| (3.18)

Adding two identity operators in Eq. (2.22) results in a more useful formula:

W (q, p) =
1
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∫ ∞
−∞
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︸ ︷︷ ︸

(II)

(3.19)

Equation (3.19) is a numerical recipe to compute the Wigner function of a quantum state
from its density matrix in the Fock basis. It can be split into part (II) that does not
depend on the specific quantum state and part (I), the density matrix ρmn, containing

4this can be found, for example, in [41] by setting α = 1 due to the conventions used here
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all the specific information. In the previous section, the necessity to truncate the size
of the Fock space to some maximum number state |nco〉, that also limits the size of
the density matrix, was discussed. Therefore, the infinite sum in Eq. (3.19) has to be
evaluated only up to m,n = nco. Part (II) is essentially a Fourier transformation of the
product of two different overlaps between number and quadrature states. They can be
calculated similar to Eq. (3.14) with Qi = q ± ξ/2 and θi = 0.

The fact that part (II) is the same for each quantum state under study is very useful.
This part has to be calculated only once for each possible pair (m ≤ nco, n ≤ nco) for
appropriately discretized q and p variables, when the results are saved to disk. After-
wards, the calculated Fourier transforms can be used over and over again by reloading
them from disk.

To sum up, this chapter outlined the basic strategy of optical homodyne tomography.
The conceptual tools to perform quadrature measurements on a signal light field and
to reconstruct the quantum state of the light field in terms of a density matrix and a
Wigner function are now available for further use.
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In the OHT scheme explained in chapter 3, the relative phase θ between LO and signal
plays a significant role. However, a single homodyne detector acquires only quadrature
values and no phase values. Consequently, it is a usual property of typical OHT exper-
iments to have a fixed phase relationship between LO and signal, which allows one to
modulate the phase deterministically and therefore to infer the phase values either by the
modulation alone or by combining information about the modulation with the general
behavior of the acquired quadrature values. For light fields in pure states, assuming a
perfectly coherent LO, such a priori information about the phase of the signal light is
available. This is because light fields in pure quantum states are stationary, which means
that they can be completely described by a single density matrix or Wigner function at
any point in time with no temporal dynamics. Hence, this kind of optical homodyne
tomography is called stationary OHT in this work.

In general, though, mixed states are non-stationary and can provide fluctuating phases.
As outlined in chapter 1, the main goal of this thesis is to report an advance in the field
of optical homodyne tomography, which will be called non-stationary OHT, may pro-
viding a solution to this problem. To get rid of the need for a priori information, a
12-port homodyne detector was implemented instead of the usual 4-port homodyne
detector for stationary OHT. An n–port homodyne detector is a device that transforms
n/2 input modes into n/2 output modes and detects them with n/4 balanced detectors.
This definition is close to [26, p. 361] and such devices can also be called n–port in-
terferometers. A sketch of a 4–port homodyne detector is shown in Fig. 3.1, where the
whole device only consists of one beam splitter and one balanced detector.

The focus of this chapter lies on the detailed description of the 4-port detector tech-
nology used throughout this work, as the technology of a 12-port homodyne detector
is derived from it. It is based on the works of Kumar et al. [43] and Roumpos and
Cundiff [39], but also includes several differences. To provide a comprehensive overview,
the hardware and alignment of the system is presented first, followed by measurements
of typical performance parameters. Afterwards, measurements of coherent and thermal
states are discussed to benchmark the setup consisting of the hardware, the specific
measurement routine and the software for data analysis. The meaning of a priori
information about the phase is illustrated on these examples. Last, a major and
common problem with correlations between consecutively measured quadrature values
is evaluated. So far, a satisfying solution to remove them on the software side was found.
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Figure 4.1.: Two common designs of balanced detectors that are (a) based on a tran-
simpedance amplifier and (b) based on a RC circuit. In this work only type (a) detectors
are used because of their speed advantage.

4.1. Building a 100MHz 4-Port Homodyne Detector

It is often beneficial to use a pulsed laser to generate the LO, because it provides a
high time resolution. As explained in section 3.1, only the part of the signal light that
overlaps spatially, spectrally and temporally with the LO is amplified with balanced
homodyne detection. Therefore, a pulsed LO allows the user to probe the signal light field
only during each pulse. Since there are pulsed lasers with pulse durations of picoseconds,
femtoseconds and below [44], pulsed LOs provide a very good time resolution that would
not be accessible with a continuous wave LO.

The pulsed laser system used as the LO in this work, is a Mira 900 titanium sapphire
laser from the US based company Coherent. Its pulse repetition rate is 75.4 MHz and
the pulse duration can be set to either approximately 1.5 ps or 120 fs. The presented
data was exclusively taken with the shorter pulse duration. As discussed, for example,
by Kumar et al. [43], the bandwidth of the required balanced detector should exceed
the pulse repetition rate to be able to distinguish consecutive pulses. Kumar et al. also
provide a detailed analysis of their own 100 MHz homodyne detector that is well suited
to be used with the Mira 900. The balanced detectors used in this work were ordered
from the German based company FEMTO Messtechnik with a bandwidth of 100 MHz
and a transimpedance gain of 5000 V A−1, which are the same values as in the design by
Kumar et al. [43].

While the details of the circuitry can be quite intricate, the fundamental idea behind
these balanced detectors is quite simple. As shown in Fig. 4.1a, two biased photodiodes
are wired in series and illuminated. The produced photocurrents I1 and I2 result in
a difference photocurrent I− according to Kirchhoff’s current law in the summation
point S. With the help of a transimpedance amplifier, this difference photocurrent
is now converted to a voltage signal by U− = RtransI− and the conversion ratio Rtrans is
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called transimpedance gain. Another detection principle commonly used for balanced
homodyne detection1 is shown in Fig. 4.1b. Here, the difference photocurrent charges (or
discharges) a capacitor in front of the amplifier. The capacitor automatically translates
the current signal into a voltage signal that is proportional to the photocurrent integrated
over a certain time. For a pulsed laser system, this time should be lower than the time
span between two pulses. The measured peak voltage is proportional to the difference
photon number of the two pulses detected by the photodiodes. Unfortunately, this design
is limited in speed by the characteristics of the RC circuit and is usually not suitable to
work at 100 MHz.

The whole setup used for the experiments in this chapter is shown in Fig. 4.2 and all
of its parts are discussed in the following paragraphs. The discussion starts with the
parts corresponding to the balanced homodyne detection scheme from Fig. 3.1 that are
enclosed in the dashed line rectangle titled HD1. In the original scheme in Fig. 3.1,
there was only one non-polarizing 50:50 beam splitter with the LO and the signal beam
entering the two input ports and the output beams being detected by a balanced detector.
The two input ports of HD1 are the two input ports of the polarizing beam splitter PBS3.
The LO beam (red) as well as the signal beam (green) leave PBS3 in the same direction,
because they have linear polarizations that are orthogonal to each other. This is also the
reason why they don’t interfere with each other on the way from PBS3 to PBS4. Before
entering PBS4, their polarizations are rotated by about 45◦ with a half-wave plate so
that 50 % of the LO and 50 % of the signal exit each output port of PBS4. At the output
ports, LO and signal are now able to interfere. Afterwards, both beams are focused on a
balanced detector (BD) by means of the lens in front of PBS4. In the end, this slightly
more complex scheme allows the user to balance the BD output voltage with the help of
the half-wave plate which is necessary, for example, because the photodiodes are subject
to production tolerances and there are possibly other imperfections in the setup.

The two elements in HD1 not mentioned so far are a CCD camera (CCD) and a piezo
phase shifter (Piezo). The mvBlueCOUGAR-X124G CCD camera from the German
based company Matrix Vision is connected to the computer and can be used to check
the proper alignment of LO and signal. The Piezo can move the connected mirror back
and forth by up to 2 µm with sub-nanometer precision and therefore tune the relative
phase between LO and signal. The piezo actuator S-303.CDI from the German based
company Physik Instrumente (PI) is controlled by a E-725 piezo controller from the
same company.

The LO light is generated by a Mira 900 laser system. A small part of it is then
separated by a combination of a polarizing beam splitter (PBS1) and a half-wave plate
to be detected by a photoreceiver (PR)2. The photoreceiver has a bandwidth of 200 MHz
and is used to trigger the data acquisition electronics. The next combination of a half-
wave plate and a beam splitter (PBS2) splits off a part of the LO that can be fed into
the signal beam path (LO as signal). This is essential for the alignment process and
also useful as a coherent state for benchmarking purposes. Finally, before entering the

1see, for example, [21, p. 140]
2model HCA-S-200M-SI-FS manufactured by FEMTO Messtechnik
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HD1 zone, the LO passes a Delay Line. It consists of a retroreflector mounted on a
motorized translation stage and allows the user to change the length of the LO beam
path by tens of centimeters without changing the optical axis in the HD1 zone. This is
crucial for aligning the temporal overlap of the LO with the LO as signal.

Unless mentioned otherwise, the signal is either split off from the LO or generated
by a DL pro Littrow-type external-cavity diode laser from the German based company
Toptica. By employing a 90:10 non-polarizing beam splitter, the signals from the LO
and from the DL pro can be aligned on exactly the same signal beam path. Hence, one
can switch between them easily by either blocking one or the other. Since the signal
light from the DL pro is weaker than the LO, the 90:10 beam splitter is oriented in such
a way that the signal is transmitted with 90 % efficiency while the LO is reflected with
10 % efficiency.

The analog signal processing elements are discussed next. The voltage signal from
the balanced detector (BD) first passes a sequence of filters before being amplified and
digitized. The first filter, which is identical to the second one, is a combination of a
75.4 MHz and a 150.8 MHz band-stop filter, each suppressing its respective frequency by
about 40 dB. These filters were manufactured by the German based company Rittmann-
HF-Technik according to custom specifications. The goal of using these filters is to
eliminate the first and second harmonic of the laser repetition rate from the voltage
signal. There are two of them because a suppression by about 80 dB is required. All
higher harmonics are eliminated with the help of a 100 MHz low-pass filter from the US
based company Crystek. Before being digitized, the remaining signal is amplified by a
factor of 5 by a 300 MHz SR445 amplifier from the US based company Stanford Research
Systems.

In the end, the amplified signal is fed into the Channel0 input of the 8-bit digitizer
M4i.2234-x8 from the German based company Spectrum Instrumentation that provides
acquisition speeds of up to 5 GS/s. This digitizer features two trigger inputs, the main
external trigger Ext0 (analog window trigger) and the secondary external trigger Ext1
(analog comparator trigger), which are both in use for this setup. The Ext0 input is
connected to the photoreceiver (PR) monitoring the LO laser pulses while the Ext1 input
is connected to the programmed digital output OUT1 of the E-725 piezo controller.
Section 4.2 provides more information about the specific piezo modulation and the trigger
scheme used during measurements.

4.1.1. Optical Alignment

In this section, a basic alignment routine for the setup described above is discussed.
A good alignment procedure should be fast, reproducible, and accurate enough for the
measurements to be meaningful. The most critical part for a homodyne detection setup
is the alignment of the LO and signal to overlap spectrally, spatially, temporally
and in polarization. At least for the experiments in this chapter, the spectral overlap
is easily achievable by tuning the central wavelengths of the Mira 900 and the DL pro. In
more advanced experiments, it may be necessary to control the spectra of LO and signal
more strictly by employing, for example, an optical filter or a pulse shaper. Since
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the alignment procedure always starts with the LO as signal, an ideal spectral overlap is
guaranteed. The overlap in polarization is also easily achieved by first polarizing signal
and LO linearly and then employing a combination of two polarizing beam splitters
(PBS3 & PBS4) and a half-wave plate shown in the HD1 zone of Fig. 4.2.

The more time-consuming alignment steps are related to the spatial and temporal
overlap of signal and LO. First, the spatial alignment of the beams is discussed. It
aims at having the LO as well as the signal beam on the same optical axis, moving in
the same direction and with the same beam diameters (or alternatively spatial intensity
distributions). To begin with, the beam diameters can be manipulated with the help of
telescope assemblies (not shown in Fig. 4.2), such as a combination of two lenses with a
pinhole in between or commercially available beam expanders. If not done before, the
delay line can be aligned with the help of the two mirrors in front of it to prevent any
change of the optical axis of the reflected LO when changing its position. Next, the LO
beam path has to be aligned to the optical axis defined by PBS3 and PBS4. In practice,
the lens between them may be removed and the use of irises to define the optical axis
is recommended before iteratively aligning the LO beam path with the help of the two
mirrors in front of PBS3. Having two mirrors for such an alignment allows the user
to independently control the two angular and the two spatial degrees of freedom of the
beam. After that, the signal beam can be aligned with the help of the two signal mirrors
in front of PBS3 to the same irises. After reducing the combined power of the beams,
for example to 100 µW, 50 µW each, one can perform the next alignment step with the
help of the CCD (after removing the mirror in front of it).

While the irises are useful to perform a coarse alignment, the CCD helps to align
the signal beam path to the LO beam path more precisely. The alignment is performed
iteratively in two steps utilizing the two mirrors in the signal beam path in front of
PBS3. In the following paragraphs, the mirror that is closer to PBS3 is named M2 and
the other one M1. In the first step, M1 is used to center the signal spot on the LO
spot in the plane of the CCD sensor. In the second step, the lens in front of PBS4 is
inserted again, adjusted on the optical axis of the LO, and then M2 is used to center
the Fourier image of the signal spot on the Fourier image of the LO. When signal and
LO are centered on each other with and without the lens, the fine spatial alignment is
completed and the lens has to be removed for the temporal alignment.

Since the LO as well as the LO as signal are pulsed laser beams, it is highly unlikely
that their pulses arrive on the CCD camera at the same time. Hence, no interference
pattern is visible on the CCD chip. The optimal temporal overlap can be found by
driving the delay line to a position where the pulses of the LO arrive at the same time
as the pulses of the signal. When designing a homodyne detection setup, the signal and
LO path lengths must be approximately equal. With a repetition rate of 75.4 MHz, two
consecutive pulses from the Mira 900 have a distance in optical path length of about
4 m and the delay line has to be able to modify the LO path length enough to overlap
signal and LO pulses temporally. To find this overlapping position, the delay line has
to be driven slowly while monitoring the combined signal and LO spot on the CCD
for an interference pattern. The delay line was driven with a speed of 50 µm s−1 and
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additionally, the piezo mirror was driven with a slow 0.5 Hz sinusoidal modulation to
find the interference pattern more easily. Usually, there are many positions that show
weak interference patterns because of reflections in the beam paths but there is only one
position with fringes that show ideal visibility.

Most of the time, a third round of spatial alignment is necessary. Initially, the in-
terference pattern of LO and signal without the lens will probably consist of several
stripes, because the light is linearly polarized. If the beams are perfectly aligned, there
will only be one round spot with an intensity depending on the relative phase between
LO and signal. Since the piezo mirror modulates this phase, the interference pattern
will be a round spot that is “blinking”. Again, one has to iteratively operate mirrors M2
and M1. M2 is used in the usual way, to center the signal spot on the LO spot, while
M1 is used to minimize the number of stripes in the interference pattern. If there is
only one blinking spot, the two beams will be overlapping and interfere with each other.
Sometimes it is necessary to drive the delay line again, because the temporal overlap
has slightly changed by tuning the mirrors.

After aligning LO and LO as signal, the beam path of the signal under investigation
must be aligned. In case of the setup in Fig. 4.2, this is the beam path of the DL pro.
Strictly speaking, if the signal is a continuous wave light source and one is not interested
in measuring the LO as signal, the alignment process may be started with the signal of
interest and the temporal alignment step can be skipped. Nevertheless, the alignment
procedure with the LO as signal is mandatory when using an n-port homodyne detector
with n > 4 because the temporal overlap has to be synchronized in all output ports, as
described in chapter 6. Since most of the work was already done in the previous steps,
the alignment of the DL pro only requires the two mirrors in front of the 90:10 beam
splitter to be aligned. After blocking the LO, they are used iteratively to perform a fine
spatial alignment of the signal beam path to the LO as signal beam path. The CCD and
the lens serve the same purposes as in the fine alignment of the LO as signal to the LO.
Alternatively, the signal from the DL pro can be aligned directly to the LO by blocking
only the LO as signal.

4.1.2. Balanced Detector Alignment

As soon as the LO and signal are properly overlapped, the alignment of the balanced
detector (BD) can be performed. In principle, the alignment of the BD can be done
without first aligning the signal to the LO, because the signal is blocked during the whole
procedure. It should however be done before, because the removal of the mirror in front
of the CCD for the signal alignment and handling of the lens would certainly misalign
the balanced detector again. As the bandwidth of the detector is high with 100 MHz,
the round photosensitive area of the photodiodes3 in the detector is comparatively small
with a diameter of merely 0.8 mm. Therefore, the laser spots have to be focused onto
the photodiodes of the BD by aligning the mirrors behind the beam splitter PBS4.

In the setup of Fig. 4.2, a 30 cm lens is used to achieve an optimal balance between

3the S5972 photodiodes were provided by the Japan based company Hamamatsu Photonics [45].
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a small spot size in the focus point and a high Rayleigh length with a thin beam waist,
which makes the detector alignment easier. Before the actual alignment, some prepa-
rations are needed. All beams apart from the LO itself have to be blocked and the
LO power has to be reduced, for example to about 100 µW. The output voltage of the
BD must be monitored without the filter chain. The M4i digitizer together with the
oscilloscope software SBench4 is sufficient for monitoring purposes, but any oscilloscope
with a 50 Ω input can be used. The BD itself should be positioned on the optical table
in such a way that both photodiodes are at a distance of one focus length from the lens.
Hence, it is useful to mount the detector on a xy-stage, which allows one to move the
BD in parallel directions to both incoming light beams for later corrections. Also the
half-wave plate must be adjusted to split the LO by roughly 50 % on PBS4.

For a coarse alignment, the focused spots are centered on the photodiodes of the BD
by eye. From there, only the oscilloscope has to be monitored, which should be triggered
by the pulse-monitoring photoreceiver (PR). Initially, it is likely that one sees a weak
signal or no signal at all on the oscilloscope. By tuning the mirrors in front of the
photodiodes, the signal should be maximized with one mirror and minimized with the
other, because the difference photocurrent is amplified. Since the laser spot is smaller
than the photosensitive area, a “plateau” can be found, where tuning the mirrors inside
a narrow range only results in minor changes of the signal. Adjusting the mirrors to the
middle of this plateau centers the spot on the photodiode, which makes the setup more
robust to distortions like mechanical vibrations. Afterwards, the half-wave plate can
be used to minimize the amplitude of the signal. One can now increase the LO power
step by step and iterate the adjustments of the mirrors and the half-wave plate until the
target power is reached with a minimal residual signal. In most experiments presented
in this work a LO power of 5 mW was used.

An ideal detector would now only show a slightly noisy zero-line while a real detector
still exhibits a strong residual signal appearing with each laser pulse. When the ampli-
tude of this signal is too high, for example larger than ±500 mV, one can try to find a
better distance between the photodiodes and the lens by driving the xy-stage and read-
justing the mirrors. This may allow the user to minimize the difference signal further
by about a factor of 2. It is important to note that the photodiodes have a certain
damage threshold that should not be exceeded. In the case of the S5972 photodiodes
the threshold amounts to 10 mW. After adjusting the balanced detector, the setup is
completely aligned.

4.1.3. Phase-Averaged Quadrature Measurements

When the setup is properly aligned, measurements of the quadrature operator q̂θ are
possible. As the LO is a pulsed laser, it obtains one quadrature value Qi for each LO
pulse. Basically, there are two types of measurements possible with this 4–port ho-
modyne detector: Phase-sensitive and phase-averaged measurements for stationary
OHT. The former case requires a well defined phase relationship between the LO and

4from the company Spectrum Instrumentation that manufactured the M4i digitizer
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the signal that allows for the reconstruction of a relative phase value θi belonging to the
measured quadrature value Qi. In the latter case, there is no such relationship and the
phase θi takes a random value for each LO pulse. The data acquisition and data analysis
procedures are slightly different for each case as described below.

First, the phase-averaged measurements are discussed. The phase-sensitive mea-
surements are an expansion of the phase-averaged ones and are discussed in a later
section. Regardless of the phase relationship, the data acquisition is performed with the
M4i digitizer triggered by the PR photoreceiver connected to the Ext0 trigger input,
which is terminated with 50 Ω to prevent reflections. The trigger level is set to 400 mV
while the amplitude of the PR signal should be around 800 mV. The electronic hardware
in the setup is controlled by a LabView5 program that also saves the acquired data files
to disk. In the simple trigger scheme for phase-averaged measurements, the digitizer
starts to acquire the BD output voltage as soon as it receives a trigger signal. After
a period of time corresponding to 1000 laser pulses, the acquisition stops, the trigger
is rearmed and the procedure starts again with the next trigger signal. This behavior
repeats until a predefined amount of data is acquired. After the measurement, the Lab-
View program writes three files to disk: One *.raw file containing the acquired 8-bit
values, one *.raw.stamp file containing the timestamps corresponding to the received
trigger signals, and one *.raw.cfg file containing the parameters of the LabView program
used to perform the measurement.

The idea of the data analysis that follows is to first compute values ni corresponding
to measurements of the operator N̂− introduced in section 3.1 and then to calculate
quadrature values Qi corresponding to measurements of the operator q̂θ with the help of
Eq. (3.6). The second step requires the knowledge of NLO, the average number of photons
in one LO pulse. Accordingly, for each measurement with LO and signal (LOwithSIG),
it is necessary to have a corresponding measurement with the same parameters but
a blocked signal (LOonly). The data analysis is performed with the help of custom
software written in MatLab [42]. The software identifies the centers of the LO pulses
in the raw data and then performs an integration over a given window around each
pulse. The resulting values ni are proportional to the difference of the photon numbers
detected by the two photodiodes for the corresponding LO pulses. To compute NLO from
a LOonly measurement, the average of the variance of each series of ni values belonging
to the same trigger signal is calculated. Afterwards, the quadrature values Qi from a
LOwithSIG measurement with integrated values ni are calculated by

Qi =
ni√

2NLO

(4.1)

and the final result is a set of phase-averaged quadrature measurements {Qi}.

4.1.4. Detector Performance

Before discussing measurements on real quantum states, several characteristics of the
balanced detector are demonstrated to establish its suitability for optical homodyne

5LabVIEW version 2014 provided by National Instruments
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signal. As the shot noise clearance can also be easily estimated from the amplitudes
of the flat shot noise background and the electronic noise background in the frequency
domain, power spectra of the BD output voltage were taken for different LO powers
and are shown in Fig. 4.3. The BD output voltage was recorded by the M4i digitizer
either with or without the filter chain, but always without the SR445 amplifier. The
frequency spectra were calculated subsequently via a fast Fourier transform (FFT) by
the SBench software. In all measurements, only the LO without a signal light field was
applied. The CMRR measurements were performed with a LO power of 100 µW at a
central wavelength of 835 nm. In the inset of Fig. 4.3, the power spectrum around the
first harmonic of the LO repetition rate is shown. The CMRR of 47.2 dB corresponds to
the difference between the peak powers of both curves. One curve shows the spectrum
when only one photodiode is illuminated, while the other shows the spectrum for both
diodes being illuminated and therefore suppressing their common mode. The measured
CMRR is comparable to the 52.4 dB reported by Kumar et al. [43].

The yellow curve in Fig. 4.3 shows the electronic noise background with no light ap-
plied to the detector. In the frequency range of interest between 0 and 100 MHz it moves
up from about −85 dBm to about −80 dBm. The blue curve represents the unfiltered
detector response at an LO power of 12.59 mW. The residual common mode signal
is visible at the laser repetition rate of 75.4 MHz and its first harmonic. Additionally,
there is a roughly flat white background between 0 and 100 MHz with a strength of
about −70 dBm, that represents the optical shot noise of the local oscillator. The shot
noise clearance of 14.4 dB is calculated as the difference of the averaged electronic noise
background and unfiltered detector response between 20 and 40 MHz. This number is
comparable to the 13 dB reported by Kumar et al. [43]. The filtered detector response
was recorded the same way as the unfiltered one but with the filter chain between the
detector and the digitizer in place. It successfully removed the residual common mode
signal which allows the flat shot noise background to be the dominant signal.

For each data point in the linearity tests shown in Fig. 4.4, the filtered and amplified
BD output voltage was acquired 21 times during 1000 LO laser pulses. Afterwards, the
average of the variances of the 21 time traces was calculated. The error bars indicate the
standard deviation from this averaging procedure. The variance of the BD output voltage
is a measure for the BD output power, because it represents the quadratic deviations from
the mean output voltage, and a squared voltage corresponds to an electrical power. Both,
the BD output power and the standard deviations are expected to grow linearly with
the LO power because the power of the shot noise depends linearly on the photocurrent
and, thus, linearly on the optical input power [21, p. 96]. Indeed, the linear regressions
for the LO power series as well as the signal power series show good agreement with
the measurements. This indicates two properties of the employed setup: First, the BD
output power is dominated by optical shot noise. And second, the balanced detector
has a linear amplification profile for the investigated powers. However, for signal powers
above 1 mW, the shown standard deviations become stronger and fluctuate more. This
is a sign for instabilities or non-linearities in the detection channel. Therefore, such high
signal powers should be avoided for OHT.
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Figure 4.4.: Testing the dependence of the 100 MHz balanced detector’s output power on
(a) the LO power without applying a signal and (b) the signal power from a cw laser at a
constant LO power of 5 mW. The second measurement series in (a) was taken directly after
the first to verify the reproducibility of the results. Error bars indicate standard deviations.
Both, the filter chain and the amplifier, were used in the setup.

An indicator for the proper LO power to use in experiments is, however, missing
in previous tests. A shot noise clearance of 14.4 dBm at a LO power of 12.59 mW is
known from Fig. 4.3 and operation in the shot noise limited regime is indicated by the
linearity tests in Fig. 4.4. In order to find a range of LO powers where shot noise is
dominant, we now analyze quadrature values Qi obtained in measurements for different
LO powers with no signal applied. Here, the quadrature values Qi are the integrated
values ni introduced in section 4.1.3. The double logarithmic plot in Fig. 4.5 shows
the standard deviation ∆Q of these quadrature values depending on the applied LO
power. The LO powers were chosen equidistant on a logarithmic scale to achieve a
linear spacing between data points in the plot. Above 1 mW, the data points clearly
follow the square root behavior expected for shot noise that is indicated by the red line.
Below 1 mW, other noise sources seem to result in deviations from this behavior. From
the experiments it becomes apparent that the LO power should be above 1 mW in order
to achieve shot-noise limited performance of the 4-port homodyne detector. Unless
indicated otherwise, an LO power of 5 mW is used in this work.
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Figure 4.5.: Standard deviation ∆Q of quadrature values obtained at different LO powers.
Starting from about 1 mW, ∆Q follows a square root behavior as expected for shot noise.

4.2. Benchmarking with Coherent and Thermal States

In the beginning of this chapter, all parts of the 4-port homodyne detector, its align-
ment procedure and its performance are discussed in detail. In the following section,
measurements of two well known real quantum states are presented to benchmark the
performance of this setup. In this context, benchmarking means that the measured co-
herent and thermal states are compared to the theoretical models describing them. The
discussion starts with phase-averaged measurements of a thermal and a coherent state
from a diode laser. Then, the procedures for phase-sensitive quadrature measurements
are introduced and applied to a coherent state originating from the Mira 900.

4.2.1. Phase-Averaged Coherent and Thermal States

The setup shown in Fig. 4.2 allows one to perform phase-averaged measurements of
thermal and coherent states. The DL pro diode laser can generate signal light fields
in both states. If its drive current is below the lasing threshold, light with thermal
characteristics is emitted, while coherent light is expected to be emitted at drive currents
above the lasing threshold. Histograms of the acquired quadrature values Qi are shown
in Fig. 4.6a for the diode laser driven below the lasing threshold and in Fig. 4.6b for the
diode laser driven above the lasing threshold. The central wavelength of the LO and
the coherent signal light was chosen to be 835 nm. Each histogram contains data from
1 579 419 individual quadrature measurements.

The first value of interest is the average number of photons n̄ = 〈n̂〉 of a quantum
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Figure 4.6.: Phase-averaged quadrature histograms for a thermal state (a) and a coherent
state (b) together with the theoretically predicted distributions.

state. For a phase-averaged measurement of a coherent quantum state, n̄ is given by
Eq. (2.31) (A = 1/

√
2 has to be substituted):

n̄ =
〈
q̂2

random θ

〉
− 1

2
(4.2)

The same formula gives the average number of photons for a thermal state, which can
be seen from Eq. (2.13):

〈n̂〉 =
1

2

(
q̂2 + p̂2

)
− 1

2
=
〈
q̂2

random θ

〉
− 1

2
(4.3)

In the last transformation, we used the observation that, regardless of the angle θ, all
projections of a thermal state look the same due to its symmetry. Applying the fact that
the Qi are measurements of q̂random θ, it is possible to compute a mean photon number
of n̄ = 3.65 per LO laser pulse for the thermal state and n̄ = 67.9539 for the coherent
state by averaging over all Qi values.

In order to compare the measured histograms to the theoretically expected probabil-
ity distributions, predictions for a thermal state (red) and a coherent state (yellow) are
shown in Fig. 4.6. They were calculated for the average photon numbers computed in
the previous paragraph. Due to its symmetry in phase space, the probability distribu-
tion of a phase-averaged thermal state is simply any of the integral projections of its
Wigner function (see for example Fig. 2.6a). The prediction for a coherent state may
look surprising at first, due to its two distinct peaks at both ends of the distribution.
These can be explained when considering the histogram in Fig. 4.6b as a normalized sum
of integral projections of coherent state Wigner functions with random phases, as illus-
trated in Fig. 4.7. In both cases, the measured histograms closely match the theoretical
predictions.
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4.2. Benchmarking with Coherent and Thermal States

(a) (b)

Figure 4.7.: Illustration of the phase-averaged measurement of a coherent state as a sum of
16 (a) and 32 (b) integral projections of coherent state Wigner functions with different phases.

4.2.2. Phase-Sensitive Quadrature Measurements

For many quantum states, such as a coherent state, phase-sensitive quadrature measure-
ments are possible with stationary OHT. These states are not rotationally symmetric
around the origin in phase space and therefore the measured quadrature distributions
are different for different projection angles θ. The 4-port homodyne detection setup
shown in Fig. 4.2 is capable of performing such measurements, when one a priori condi-
tion is met: The investigated signal light field must have a fixed phase relationship
with respect to the local oscillator. In this case, it is possible to tune this relative phase
deterministically and to reconstruct the phase values θi corresponding to the measured
quadrature values Qi. In the setup shown in Fig. 4.2, the deterministic phase shift is
applied by a piezo mirror.

Piezo Position

Ext1 Input Voltage

Figure 4.8.: The Ext1 trigger signal (red) provided by the piezo controller is a TTL signal
being in the high state if the piezo position (blue) lies between an upper and lower threshold.
The thresholds are chosen asymmetrically, so rising and falling edges may be distinguished in
the data processing step.

The phase-sensitive measurements are very similar to the phase-averaged measure-
ments from section 4.1.3. The only difference lies in the additional piezo modulation
and a different trigger scheme. In the following, this is called complex trigger scheme.
The piezo mirror is driven either with a triangular or sinusoidal voltage at 50 Hz. In
the data processing step, the position of the piezo mirror has to be estimated for the
phase reconstruction. Thus, it is advantageous to only acquire quadrature values while
the piezo movement is roughly linear in time. This condition is met in the middle of
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Figure 4.9.: Acquired quadrature values (blue) from a coherent state during one segment of
the piezo modulation with an approximately constant speed. The coherent offset can be fitted
quite well with a smoothing spline (red).

the movement from one extremal position to the other for both modulation patterns.
Around the extremal points, the sinusoidal modulation results in nonlinear driving of the
piezo, while the triangular modulation produces unwanted oscillations due to the abrupt
change in direction. For the complex trigger scheme, the piezo controller is programmed
to output a TTL signal that is only high when the piezo position is between an upper
and lower threshold, as shown in Fig. 4.8. This signal is then fed to the Ext1 input of
the data acquisition card and used to “gate” the simple trigger. Accordingly, trigger
signals from the Ext0 input are only accepted when the Ext1 input is high at the same
time. In this way, the BD voltage is only acquired while the piezo modulation is in the
desired range and the timestamps of the applied trigger signals allow us to estimate the
piezo position and therefore the relative phase of LO and signal.

The reconstruction algorithm used to record a series of tuples (Qi, θi) from a coherent
state measurement is discussed next. Figure 4.9 shows in blue the quadrature values Qi,
acquired during one approximately linear piezo movement of about 1 µm. For a coherent
state, the measured quadrature values consist of two parts. First, an offset that is called
the coherent offset, depending on the phase θ, and fluctuations around this coherent
offset. The coherent offset is expected to be proportional to sin(θ + θ0) with an unknown
phase offset θ0. Moreover, θ should be linear in time in order to match the movement of
the piezo actuator. The coherent offset in Fig. 4.9 is indeed sinusoidal, but still deviates
significantly. These deviations probably result from drifts of the optical path lengths
either induced by unwanted oscillations of the mechanics mounting the piezo actuator
or other influences like wind from the air conditioning system. In the end, a simple
sinusoidal fit does not match the data well enough to use it to reconstruct the phase
values θi.

It is still possible to extract the phase with the following algorithm:
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4.2. Benchmarking with Coherent and Thermal States

1. Calculate a smoothing spline fit S(t) of the measured quadrature values that follows
the coherent offset. This fit is shown in Fig. 4.9 as a red line.

2. Identify the maxima and minima mi of S(t) and divide S(t) in intervals Si(t)
covering all values from mi to mi+1.

3. Normalize the function Si(t) to the interval ]− 1, 1[.

4. Use either θ(t) = arcsin(Si(t)) or θ(t) = π− arcsin(Si(t)) to reconstruct the phase
depending on the orientation of the edge (rising or falling).

This algorithm circumvents the problems described in the previous paragraph by assum-
ing an underlying sinusoidal dependence of the coherent offset on the phase but doesn’t
need a linear behavior of this phase. The actual algorithm is slightly more complicated
because it catches many possible exceptions like changing amplitudes and accounts for
different boundary conditions. It was used for the phase reconstruction throughout the
rest of this work.

4.2.3. Phase-Sensitive Coherent State

The simplest phase-sensitive measurement that can be performed with the setup in
Fig. 4.2 is the measurement of the LO as signal. The a priori condition of a fixed phase
relationship between the signal and the LO is met because the LO as signal is split off
the LO itself. After performing quadrature measurements and a phase reconstruction
according to the previous section, one has tuples (Qi, θi) of measured quadratures Qi at
phases θi. These can be used to analyze and reconstruct the underlying quantum state.

Figure 4.10.: Quadrature signals Qi of a coherent state derived from the LO itself consist
of two parts. First, a coherent offset with a sinusoidal dependence on the relative phase θi of
the LO and the signal. And second, fluctuations around this offset with a standard deviation
of ∆Q.
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Figure 4.11.: Diagonal elements of the density matrix reconstructed from measurements of
the LO as signal. As expected for a coherent state, they follow a Poisson distribution (red
line).

First, we look at the question how Q depends on θ (shown in Fig. 4.10). The measured
quadratures fluctuate around a sinusoidal offset, and the standard deviation ∆Q of
these fluctuations seems to be the same for each phase value, which indicates an equal
distribution of the uncertainty in the quadratures q̂θ and p̂θ. The average variance (∆Q)2

of 0.5072 is very close to the theoretical minimum of 0.5 for a coherent state given by
the uncertainty relation in Eq. (2.15). This first analysis indicates the presence of a
coherent state.

With the algorithm outlined in section 3.2 it is possible to reconstruct the density
matrix ρmn in the Fock basis from this data set. As explained in section 2.3.2, its diagonal
elements ρnn represent the photon statistics of the underlying quantum state. They are
shown in Fig. 4.11. For a coherent state, ρnn follows the Poisson distribution from
Eq. (2.36) with a mean photon number of n = a2/2 ≈ 36.66 that can be calculated with
the help of the amplitude a = 〈Q(θ = π/2)〉 of the coherent offset following Eq. (2.35).
The diagonal elements ρnn and the Poisson distribution agree very well.

The Wigner function is better suited for a visual representation of a quantum state
than the density matrix and can be calculated from the density matrix according to
the methods outlined in section 3.3. This is shown in Fig. 4.12 for the phase-sensitive
measurements of the LO as signal. Similar to the coherent state with n = 1 photons
presented in Fig. 2.4a, it is a symmetric Gaussian distribution in phase space that is
displaced from the origin by a. The scaled-down integral projections of the Wigner
function (black dots) and the integral projections of the theoretical Wigner function of
a coherent state with n ≈ 36.66 (red lines) are provided on the walls of the plot. The
reconstructed Wigner function and the theoretical model agree very well. However, the
small ripples distributed around the Gaussian peak are a sign of imperfections, either of
the measured quantum state or of the measurement setup. Still, the measured quantum
state closely resembles all characteristics of a coherent state.
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Figure 4.12.: Wigner function reconstructed from measurements of the LO as signal. Its
scaled-down integral projections (black dots) are shown on the walls together with the theo-
retical integral projections (red lines) of a perfectly coherent Wigner function with n = 36.66.

4.3. Correlated Quadratures

When performing phase-sensitive measurements on a coherent state, consecutive quadra-
ture values Qi are correlated due to the coherent offset discussed in the previous section.
This means, for example, that Qi+1 probably has a high positive value when Qi has one.
There are other quantum states, such as the vacuum state or thermal states, where such
correlations should not be present as all Qi are drawn independently from the same sym-
metrical distribution centered at the origin of phase space. However, imperfections in the
experimental setup can lead to unintended correlations among consecutive quadrature
values. The 4-port homodyne detector discussed in this chapter introduces correlations
of this sort as illustrated in the upper half of Fig. 4.13 for measurements on a thermal
state. In this section, the correlations are quantified and an algorithm is presented that
allows us to remove these correlations from the acquired quadrature values. After the
application of this algorithm, no correlations are visible anymore, as shown in the lower
half of Fig. 4.13.

For the calculation of the correlation coefficients, it is helpful to consider a series of
quadrature measurements {Qi} as a series of vectors {aj} with

aj = (Qj, Qj+M , Qj+2M , . . . , Qj+(N−1)·M) (4.4)

and j ∈ {1, . . . ,M}. Modeling the data in this way is natural to the measurement
process outlined in section 4.1.3, where M corresponds to the number of laser pulses
acquired for a single trigger signal, and N corresponds to the total number of trigger
signals used for the measurement. Mathematically, all expressions given for such vectors
in this section are either drawn from or can be generalized for random variables, where
normalized sums have to be replaced by expectation values.
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Figure 4.13.: Correlations between quadrature values from a thermal state measurement
with a distance of d laser pulses. The original correlations are shown in the upper panel as
red circles while the correlations after the compensation are shown in the lower panel as blue
circles.

The correlation coefficient ρ between two vectors a and b is defined as6:

ρ(a,b) = corr(a,b) =
σ(a,b)√

σ(a, a)σ(b,b)
(4.5)

Here, σ(a,b) is the covariance6 of a and b:

σ(a,b) = cov(a,b) =
1

N − 1

N∑
i=1

(ai − µa)(bi − µb) (4.6)

And µa is the arithmetic mean of the elements in a:

µa =
1

N

N∑
i=1

ai (4.7)

The covariance of a vector with itself is simply the variance of this vector6:

σ(a, a) = var(a) (4.8)

The correlations 〈ρ(ai, ai+d)〉 shown in Fig. 4.13 were calculated for different pulse dis-
tances d and averaged over all available vector pairs with the same distance in the data
set. For small pulse distances, the correlation is negative with a minimum of about −0.14
for consecutive quadratures with a distance of only 1. It is monotonically increasing up
to a pulse distance of about 10 where it becomes positive and from there approaches the
zero line asymptotically. Around a distance of 20 pulses, correlations disappear, which
justifies the use of M = 1000� 20. This behavior is reproducible even for the vacuum

6e.g. [46, p. 93]
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state and decreases the quality of the acquired quadrature values. The origin of those
correlations probably lies within the electronics of the measurement setup but a detailed
troubleshooting of the analog signal processing elements is out of the scope of this work.

Nevertheless, it is possible to model and remove such correlations in the digital data
processing step. The following technique was adapted from Kumar et al. [43] and is
analogous to the Gram-Schmidt orthonormalization method in linear algebra7. It
starts with a set of correlated quadrature vectors aj that consist of a weighted sum of
the real quadrature vectors bi:

aj =

j∑
i=1

Ri−jbi =

j−1∑
i=1

Ri−jbi +R0bj (4.9)

The weights Ri−j describe by how much the value of the jth quadrature vector is affected
by the value of the ith one. The sum in Eq. (4.9) starts at i = 1 because the set of
measured values is finite and stops at j because it is assumed that a quadrature value is
only affected by previously acquired quadrature values and not by future ones. Solving
Eq. (4.9) for bj results in a rule to calculate bj as long as the vectors bi<j are already
known:

bj =
1

R0

(
aj −

j−1∑
i=1

Ri−jbi

)
(4.10)

It is still necessary to find expressions for R0 and Ri−j. An expression for Ri−j may be
found by considering the dot product between a correlated quadrature vector aj and
a real quadrature vector bi:

aj · bi
(4.9)
=

j∑
k=1

Rk−j bk · bi ≈ Ri−j bi · bi (4.11)

This approximation holds true as long as bk · bi � bi · bi for k 6= i. Even if the
real quadratures are truly uncorrelated, bk · bi won’t be exactly 0, because the random
fluctuations of the quadratures always result in small random fluctuations of the dot
product. The approximation gets better for higher vector lengths N because bi · bi
grows faster than bk ·bi. Inserting Eq. (4.11) into Eq. (4.10) results in the final iterative
compensation algorithm:

bj =
1

R0

(
aj −

j−1∑
i=1

aj · bi
bi · bi

bi

)
(4.12)

The final unknown quantity is the normalization factor R0, which is a global scaling
factor. The quadrature values shown in this work are normalized to the reference vac-
uum state measurements in order to conform to a variance of the vacuum state of 1/2

7see, for example, Landi and Zampini [47, p. 42 ff.]
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(see section 4.1.3). This also defines R0 as long as the correlation compensation is per-
formed separately for the reference measurement (LOonly) and the signal measurement
(LOwithSIG) before the scaling in Eq. (4.1) takes place. Therefore, R0 = 1 can be
assumed in the scope of this work. Applying this algorithm to the correlated quadrature
measurements of a thermal state significantly reduces the observed correlations as shown
in Fig. 4.13.

To summarize, this section shows that the 4-port homodyne detector described in
this chapter adds small artificial correlations to the measured quadrature values. Fur-
thermore, an algorithm is described which compensates these correlations in the data
processing step. However, the algorithm can only be applied under special circum-
stances, when the acquired quadrature values are uncorrelated due to the nature of the
underlying quantum state. This requirement is met, for example, for the vacuum state
or a thermal state but not for a coherent state. As a rule of thumb, the compensation
algorithm should not be applied when the investigated light field exhibits coherence
times longer than the time between two LO pulses. In that case, consecutive quadrature
measurements Qi and Qi−1 are probably correlated because their phases θi and θi+1 are
correlated. In the scope of this work, the use of the compensation algorithm is always
explicitly stated.

52



5. Real Time g(2) Monitoring

Apart from optical homodyne tomography, a 4-port homodyne detector is used in many
other applications dealing with the amplitude or phase of a light field. In this chapter,
for instance, quadrature measurements are used to gain insights into the coherence
properties and photon statistics of light from a diode laser operated across the threshold
region. If not indicated otherwise, the results presented in this chapter are based on the
work published by Lüders, Thewes and Aßmann [48].

Photon statistics and coherence properties of light are studied in a broad range of
areas in order to understand the characteristics and dynamics of light fields and their
sources. By measuring temporal fluorescence correlations, for example, Magde et al.
were able to obtain the chemical rate constants and diffusion coefficients for the reversible
binding of ethidium bromide to DNA [49]. Another example is the observation of photon
antibunching in light emitted from continuously excited sodium atoms by Kimble et al.
[50], which is only understandable in terms of a quantized electromagnetic field. To
distinguish photon bunching from antibunching, photon correlations have to be studied.
Since photon correlations may correspond to classical intensity correlations, Hanbury
Brown and Twiss called their device demonstrating photon bunching the first time an
“intensity interferometer” [51]. Photon correlations can be quantified by the second-
order correlation function g(2)(τ) that can be interpreted as the conditional probability of
detecting a second photon at time τ with respect to the detection of a first photon at time
0. This function is in detail discussed in section 5.1. With a 4-port homodyne detector,
the equal-time second-order correlation g(2)(0) can be measured, which is already enough
to distinguish different kinds of light with respect to their bunching behavior.

For meaningful g(2)(τ) measurements, it is necessary to have a temporal resolution of
∆τ that is smaller than the coherence time τc of the investigated light field. Otherwise,
measurements of g(2)(0) do not correspond to the “real” values but to convolutions of
the real values with g(2)(τ > τc) ≈ 1 [52]. Therefore, any investigated light field with
∆τ � τc would look the same with g(2)(τ) = 1. Many different experimental techniques
have been developed to increase the temporal resolution into the femtosecond range.
Among them are techniques based on two-photon absorption [53] or upconversion [54]
as well as techniques using different detector technologies such as streak cameras [55] or
balanced homodyne detectors [39].

These techniques are typically used to investigate light fields with stationary g(2)(τ)
values. Therefore comparatively long averaging times for a single g(2)(τ) measurement
are acceptable. There are, however, light fields where g(2)(τ) may have an explicit time
dependence. Such light may be emitted, for instance, by lasers that are subject to
bistability or mode-hopping [56]. If the photon correlations change within the averaging
time ∆t of the detector, it is difficult to distinguish whether the measured g(2)(τ) value
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is fundamentally constant in time or a weighted average of a g(2)(τ) function with an
explicit time dependence. To make this distinction, techniques with short averaging
times are needed.

The 4-port homodyne detector presented in chapter 4 provides both, a high temporal
resolution of ∆τ = 120 fs and g(2)(0) averaging times down to 10 µs. This makes it
possible to study multimode light fields that may show an explicit time dependence of
g(2)(0). The capabilities of this technique are demonstrated in section 5.2 by monitoring
the photon correlations and bistable emission of a diode laser across the threshold region.
The high sampling rate of 100 kHz opens up the way to perform real time monitoring of
g(2)(0).

5.1. The Second-Order Correlation Function g(2)(τ, t)

The second-order correlation function1 is given by:

g(2)(τ, t) =

〈
â†(t)â†(t+ τ)â(t+ τ)â(t)

〉
〈â†(t)â(t)〉 〈â†(t+ τ)â(t+ τ)〉

(5.1)

Here, â† and â are the bosonic creation and annihilation operators for the light mode
under investigation. The expectation values in Eq. (5.1) may be interpreted differently
for pulsed and continuous wave light fields. For pulsed fields, they may be considered
as ensemble averages over statistical ensembles of identically prepared pulses. Aßmann
et al., for instance, tracked the evolution of g(2)(0, t) during the course of the emission
pulse of quantum-dot microresonator lasers in this way [57]. For continuous wave light
fields, those expectation values may be considered as time averages over a time interval
∆t. This interval can be chosen differently for different applications depending on the
required precision of the averages.

Moreover, it should be emphasized that Eq. (5.1) features two relevant timescales.
The first timescale corresponds to the delay τ and the temporal resolution ∆τ in τ of
the experimental setup. As discussed earlier, g(2)(τ > τc, t) = 1 applies for any light
field and therefore ∆τ ≤ τc should be guaranteed for meaningful measurements. The
second relevant timescale corresponds to the time t and the sampling time ∆t. For
pulsed light fields, the sampling time is often equal to the time resolution, because the
averaging occurs over identically prepared pulses without losing precision during a single
pulse. For continuous wave light fields, however, the sampling time ∆t� ∆τ is usually
much longer than the temporal resolution. In such cases it is mainly determined by
the sampling rate of the quantities inside the brackets < . . . > of Eq. (5.1) used for
averaging and the necessary number of samples to achieve the required precision. The
4-port homodyne detector from Fig. 4.2, for example, allows for one phase-dependent
photon number measurement every 13.3 ns. As 754 of them are used to obtain one g(2)(0)
value presented in section 5.2, the sampling time of the setup in this configuration is
about 10 µs.

1see, for example, the textbook by Fox [21, p. 161]
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With the 4-port homodyne detector used for the results in this chapter, only the
equal-time second-order correlation function g(2)(0, t) of the signal light is accessible. It
is given by:

g(2)(τ = 0) =

〈
â†â†ââ

〉
〈â†â〉 〈â†â〉

(5.2)

The dependencies of g(2) and different quantum mechanical operators on t are often
omitted to improve readability. Light from an ideal diode laser is usually in one of two
quantum states. Above the lasing threshold, it is in a coherent state, and below the
lasing threshold in a thermal state. As g(2)(0) measurements were performed across the
lasing threshold, it is important to know the predicted g(2)(0) values for both cases.

As discussed in section 2.4, a coherent state can be described by a Dirac ket vector |α〉,
which is an eigenstate of the annihilation operator â. This property is already sufficient
to compute the two expectation values

〈
â†â†ââ

〉
and

〈
â†â
〉

needed to work out Eq. (5.2):

〈α| â†â†ââ |α〉 (2.25)
= ᾱᾱαα = |α|4 (5.3)

〈α| â†â |α〉 (2.25)
= ᾱα = |α|2 (5.4)

The resulting equal-time second-order correlation function is then equal to one:

g
(2)
coh(0) =

〈α| â†â†ââ |α〉
〈α| â†â |α〉 〈α| â†â |α〉

=
|α|4

|α|2 · |α|2
= 1 (5.5)

For a thermal state, it is possible to compute g(2)(0) with the help of the thermal
density operator ρ̂th. The corresponding density matrix ρth

mn in the Fock basis is a
diagonal matrix and the diagonal elements ρth

nn = P (n) are probabilities given by the
Bose-Einstein distribution from Eq. (2.38). To simplify the calculation, it is useful to
express Eq. (5.2) in terms of the well known photon number operator n̂ = â†â:

â†â†ââ
(2.9)
= â†ââ†â− â†â = n̂2 − n̂ (5.6)

⇒ g
(2)
th (0) =

〈n̂2〉 − 〈n̂〉
〈n̂〉2

(5.7)

According to Eq. (2.23) expectation values can be computed as traces over the product
of the density operator with the operator of interest. In the following, n̄ is the average
number of photons in the considered quantum state:

〈n̂〉 (2.23)
= tr

[
n̂ρ̂th

] (2.24)
=

∞∑
l=0

lρth
l,l

(2.38)
=

∞∑
l=0

l
n̄l

(n̄+ 1)l+1

(A.2)
= n̄ (5.8)
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5. Real Time g(2) Monitoring

〈
n̂2
〉

=
∞∑
l=0

l2ρth
l,l

(A.3)
= 2n̄2 + n̄ (5.9)

The infinite sums are calculated with the help of the formulas given in appendix A. The
equal-time second-order correlation function of a thermal state then amounts to two:

g
(2)
th (0) =

〈n̂2〉 − 〈n̂〉
〈n̂〉2

=
2n̄2 + n̄− n̄

n̄2
= 2 (5.10)

This shows that it is possible to distinguish coherent light from thermal light by measur-
ing g(2)(0) with a precision that allows one to distinguish g(2)(0) = 1 from g(2)(0) = 2.

However, a 4-port homodyne detector does not provide direct measurements of the
photon number operator n̂ but of the quadrature operator q̂θ. Therefore, it is necessary
to establish a link between g(2)(0) and measurements Qi of the operator q̂θ. The fact
that q̂θ consists of a sum of two terms that are linear in â† and â, respectively, provides
a strategy that results in the desired link. The basic idea is to compute the moments
〈q̂2
θ〉 and 〈q̂4

θ〉, which include products of two or four ladder operators, to find suitable
expressions for

〈
â†â†ââ

〉
and

〈
â†â
〉

that can be calculated from q̂θ:〈
q̂2
θ

〉 (2.7)
=

1

2

〈(
ei2θâ†â† + e−i2θââ+ â†â+ ââ†

)〉
(2.9)
=

1

2

(〈
ei2θâ†â†

〉
+
〈
e−i2θââ

〉)︸ ︷︷ ︸
=0 for random θ

+
〈
â†â
〉

+
1

2
(5.11)

〈
q̂4
θ

〉 (2.7)
=

1

4

〈
â†â†ââ+ â†ââ†â+ â†âââ† + ââ†â†â+ ââ†ââ† + âââ†â†

〉
+
〈
O
(
e±i2θ

)
+O

(
e±i4θ

)〉︸ ︷︷ ︸
=0 for random θ

(2.9)
=

1

4

(
6
〈
â†â†ââ

〉
+ 12

〈
â†â
〉

+ 3
)

(5.12)

The expectation values of the phase dependent terms in Eqs. (5.11) and (5.12) become
zero when the measurement is performed with a randomized phase θ. It is now possible
to express the equal-time second-order correlation function in terms of the quadrature
operator q̂θ:

g(2)(0) =

〈
â†â†ââ

〉
〈â†â〉2

=
4 〈q̂4

θ〉 − 12 〈q̂2
θ〉+ 3(

〈q̂2
θ〉 − 1

2

)2 (5.13)

It is important to emphasize that the use of Eq. (5.13) only produces meaningful results
when two requirements are met. First, the quadrature measurement has to be performed
in a phase-averaged manner. And second, the time resolution ∆τ of the experimental
setup has to fulfill ∆τ < τc, as discussed in the beginning of this section.
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5.2.ResultsandDiscussion

Figure5.1.:Time-averagesofequal-timesecond-ordercorrelationfunction g(2)(0) (red
squares)andmeanphotonnumber̄n(blackdots)fordifferentdiodelaserdrivecurrentsacross
thelasingthreshold.ThetwoemptysquarespointtothedrivecurrentsinvestigatedinFig.5.2.
Theexpectedvaluesforcoherentlight(blueline)andthermallight(redline)are1and2.
Adaptedfrom[48].

5.2.ResultsandDiscussion

Thecapabilitiesofthe4-porthomodynedetectorpresentedinchapter4asafastg(2)(0)
monitoraredemonstratedbyinvestigatingthephotoncorrelationsoftheexternalcavity
diodelaserfromsection4.1acrossitslasingthreshold.ThecentralwavelengthoftheLO
andthelaseremissionofthediodelaserweresetto835nm. Moreover,thediodelaser
feedbackwasslightlymisalignedinordertopreventthelaserfromshowingidealsingle
modeoperation.TheLOfeaturesaFouriertransformlimitedspectralwidthof9.3nm,
whilethediodelaserbelowthresholdshowsabroadGaussianshapedthermalemission
withacentralwavelengthof830nmandwidthof22.9nm.Ingeneral,therequirement
ofhomodynedetectiontooverlaptheLOspectrallywiththesignalmodesunderstudy
isseenasalimitation.Intheexperimentspresentedinthischapter,however,the
broadLOspectrumallowsforinterrogatingalllasingmodesofthediodelaseranda
significantportionofitsthermalmodes.Furthermore,theautomaticspectralfiltering
ofthethermalsignalmodesisanadvantagebecausethemodesthatoverlapwiththe
LOhaveacoherencetimeatleastcomparableto∆τ,whichisnecessaryformeaningful
g(2)(0)measurements.

Thedatasetstakenforeachdiodelaserdrivecurrentconsistof16millionphase-
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5. Real Time g(2) Monitoring

averaged consecutive quadrature measurements that are organized into 21455 batches
of 754 data points each. Hence, each data set covers a time period of about 210 ms.
One value of g(2)(0) is calculated for each batch, which results in a sampling time of
∆t = 10 µs. The coherence time τc of the emitted light is several orders of magnitude
lower than ∆t for each drive current and at the same time larger than the time resolution
∆τ . The former property ensures the phase-averaging requirement, while the latter one
prevents the convolution of the real g(2)(0) values with g(2)(τ > 1) ≈ 1. In the following,
the results of analyzing the averages, the time series and the histograms of the acquired
g(2)(0, t) data are discussed.

At the lasing threshold, g(2)(0) is expected to drop from 2 to 1, while the mean
photon number n̄ should rise sharply. Figure 5.1 compares the results obtained from
time-averaging g(2)(0) and n̄ for different drive currents. Here, the error bars corre-
spond to the standard deviations of the averaged data. The results match the expected
behavior, and the transitions take place at a threshold drive current of about 70.5 mA.
Interestingly, several

〈
g(2)(0)

〉
data points show relatively large standard deviations. For

a drive current of 75 mA, for instance, the standard deviation is much larger than for
the surrounding drive currents. However, it is comparable to the standard deviation for
62 mA, which is below the lasing threshold. The number of photons at a drive current of
62 mA is several orders of magnitude lower than for 75 mA and the standard deviation
is therefore expected to be higher. This is also indicated by the drive currents surround-
ing 62 mA. Figure 5.1 does not provide enough information to find the origin of this
discrepancy.

The time series shown in Fig. 5.2 illustrate that the standard deviations of g(2)(0)
for 62 mA and 75 mA have different origins. Below the lasing threshold, at 62 mA, the
fluctuations of g(2)(0) around the value of 2 expected for thermal light seem to be of
purely statistical nature. This is supported by the fact that the magnitude of these
fluctuations becomes smaller, when larger values for ∆t are chosen (not shown). In
contrast, the g(2)(0) fluctuations for 75 mA appear to have a mainly physical origin
rather than a statistical one. The g(2)(0) values move back and forth between two
distinct values around 1.1 and 1.2. The time between the switching events seems to be
around several milliseconds, while there is no obvious periodicity. At the same time,
also the mean photon number n̄ moves back and forth, mostly between 550 and 450
photons. High values of g(2)(0) are correlated with low values of n̄ and vice versa. This
leads to the conclusion that the standard deviations of the averaged values in Fig. 5.1
are a result of averaging over both distinct states instead of averaging over only a single
stable state.

A possible explanation for this behavior might be that the diode laser operates in two
modes with a bistable profile, which is a sign of mode competition. Bistable operation
means that only one mode is in an “on” state at a time. Multimode operation differs from
bistable operation such that both modes would oscillate simultaneously. Bistabilities
as well as multimode operation are well known phenomena observed in the emitted
intensity, and therefore in the mean photon number n̄, of semiconductor lasers [56].
What is interesting is that the second-order correlation function shares this bistable
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Figure 5.2.: Time series of g(2)(0) and n̄ for drive currents of 62 mA and 75 mA. The
threshold current amounts to 70.5 mA. At 75 mA, higher photon numbers are correlated with
lower g(2) values and vice versa. Adapted from [48].

behavior. However, there are certain differences worth mentioning. Between 55 ms and
60 ms, for instance, the mean photon number drops from about 450 to 375 within one of
the modes while g(2)(0) stays approximately the same at 1.2. Hence, a detailed study of
the temporal dynamics of n̄ and g(2)(0) may provide deeper understanding of the mode
hopping behavior and the modes themselves. However, this is out of the scope of the
present work.

While the time traces in Fig. 5.2 provide a detailed picture of the laser mode dynamics
during a short window of time, the histograms shown in Fig. 5.3 allow for a quantita-
tive analysis of longer time frames. They represent the relative frequencies of different
g(2)(0) values during the 210 ms time window acquired for each drive current. The two
histograms for the drive currents of 75 mA and 62 mA are drawn in red and provide ad-
ditional information about the discussed mode dynamics. At 62 mA, the histogram has
a broad Gaussian shape that is centered on g(2)(0) = 2, which is expected for thermal
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from Fig. 5.2 are marked in red. In order to improve the visibility of the histograms, the drive
current axis is not linearly scaled. Adapted from [48].
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5.3. Conclusion

emission below threshold. For 75 mA, there are two overlapping Gaussian shaped peaks
instead of one. The narrower one is centered on g(2)(0) ≈ 1.1 while the broader one is
centered on g(2)(0) ≈ 1.2 and both peaks have a similar strength. This splitting is a sign
of the bistability discussed above and the histogram representation allows us to access
the relative strength and width of both modes. Hence, the histogram is a useful tool to
distinguish physical and statistical influences on the standard deviations in Fig. 5.1.

A further investigation of the histograms in Fig. 5.3 reveals that the bistable behavior
occurs at 70.8 mA for the first time with a weak narrower mode appearing close to
g(2)(0) = 1.5 while the dominant broader mode is still close to 2. The bistability vanishes
with the next drive current at 71 mA, where only one broad mode around g(2)(0) = 1.75
is visible. For higher drive currents up to 72 mA, the emission stays in a single mode but
the average g(2)(0) value is increasing to the value of 2 again. This is surprising because
higher drive currents are expected to result in more coherent light with g(2)(0) closer
to 1. One possible explanation could be that the bistable mode dynamics at 70.8 mA
change to multimode dynamics. In this case, both modes coexist independently of each
other, while their relative intensities determine whether the encountered g(2)(0) values
are closer to 1.5 or 2. In this model, the relative intensities of the two modes change
for higher drive currents and therefore the second-order correlation values move closer
to the one determined by the stronger mode.

Inside the transition region from thermal emission to coherent emission, histograms
with one Gaussian peak, such as at 72.5 mW, alternate with histograms with two Gaus-
sian peaks, such as at 75 mA. This might be interpreted as an alternation between stable
operation and bistable operation of the diode laser. Stable lasing operation is achieved at
about 80 mW with a very narrow distribution of g(2)(0) values around 1. The narrowest
distribution seems to appear at the highest drive current shown at 138 mW. Nonetheless,
there are still some regions of bistability for drive currents higher than 80 mA, such as
at 90 mA, that are probably due to the slight misalignment of the diode laser feedback.

5.3. Conclusion

The purpose of the current chapter was to present an experimental technique which
provides a way to monitor the equal-time second-order correlation function g(2)(0) in
real time. The temporal resolution of the underlying quadrature measurements is about
120 fs and therefore allows for studying light fields with very low coherence times down
to this value. Real time monitoring is enabled by the low sampling time of only 10 µs
for each g(2)(0) value. However, this sampling time is not fixed but can be tailored
to the specific requirements of the application by averaging over either more or fewer
quadrature values, which likely results in lower or larger statistical fluctuations. The
capabilities of this g(2) monitor were demonstrated by investigating the emission of an
external cavity diode laser across the lasing threshold. Mode dynamics could be studied
by monitoring the mean photon number n̄ and g(2)(0) with a sampling time of 10 µs.
Bistabilities as well as possible multimode emission could be successfully identified.

Possible applications range from investigating the coherence properties of nanolasers
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[58] over time-resolved photon correlation measurements with respect to feedback [59]
to research on spontaneously occurring phenomena that need to be studied in real time
because they do not yield a trigger signal, such as superradiance [60]. The experimental
setup can also be advanced by using additional homodyne detection channels. In this
way, shorter sampling times become feasible by adjusting the delay between the channels
accordingly. Alternatively, different modes of the same emitter can be selected with
different channels to study, for example, mode competition in bimodal lasers in real
time [61]. Such a setup with multiple homodyne detection channels is presented in the
next chapter.
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6. Non-Stationary Optical Homodyne
Tomography

As mentioned in chapter 2, mixed quantum states arise during the investigation of sta-
tistical ensembles. In fact, OHT experiments perform such measurements on statistical
ensembles, where the signal light field sampled within a single LO pulse is its own quan-
tum system in its own instantaneous state. If all of these states are the same, one can
say that the light field is in a pure state and all available information can be captured
with stationary OHT. Otherwise, if the states change from one LO pulse to the next,
the light field is in a mixed state and these changes can be interpreted as a temporal
evolution of the light field. For mixed states, stationary OHT may be improved in two
ways: first, when capturing additional information that allows one to assign acquired
quadrature values to specific instantaneous states composing the ensemble, it can be-
come possible to select on these states a posteriori. Second, being able to select on
one of these instantaneous states at zero time allows one to look at the quantum state
found after some delay, which allows for time-dependent studies. A technique designed
to accomplish both of these tasks is introduced in this chapter.

As discussed in chapter 4, the availability of a priori information about the phase of
the signal light field is central to the entire process of stationary OHT with a 4-port HD.
When the light field under investigation is a statistical ensemble of distinct instantaneous
states, however, its phase may fluctuate strongly. By employing a 12-port homodyne
detector (HD) instead of a 4-port one, it becomes possible to reconstruct the quantum
state of such light fields. The basic idea of a 12-port HD is to measure the phase of
the signal light field with 8 of the 12 ports for each LO pulse separately and to use this
as a priori information to reconstruct the quantum state detected with the remaining
4 ports. This may open up the possibility for detailed studies on light fields in mixed
states, which do not have a fixed phase relationship with the local oscillator, such as
thermal light fields. In fact, most light fields not emitted by processes stimulated by the
local oscillator fall into this category. Hence, such a 12-port homodyne detector grants
access to the Wigner function of any light field that overlaps spectrally, temporally,
spatially and in polarization with the LO. By delaying the 4-port homodyne detector
in time, conditional studies are possible. This means that we reconstruct a quantum
state after some delay τ when specific conditions are met before. These conditions
can be determined a posteriori from measurements of the remaining 8-port homodyne
detector. Since this allows one to capture the time-dependencies of light fields in mixed
states, optical homodyne tomography with a 12-port homodyne detector is called non-
stationary OHT.

The contents of this chapter is divided into three parts. The theoretical implications
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of using 12 instead of 4 ports are discussed using the example of a thermal state. First,
it is shown that the additional information about the phase of the light fields results in
a slightly lower precision of the measurements. Second, the 12-port homodyne detection
setup is presented together with the results from phase-sensitive, but time independent
measurements on thermal light generated by a diode laser below threshold. In the third
part, the results of time-dependent studies on the same light source are presented and
discussed. Some contents of this chapter are also part of a manuscript titled “Non-
stationary optical homodyne quantum state tomography reveals hidden dynamics of
light fields”, which is submitted for publication (see list of publications for details).

6.1. Theory of 12-Port Homodyne Detection of a
Thermal State

A 12-port HD can be considered as a combination of three 4-port HDs. Figure 6.1
illustrates the working principle of the 12-port HD used for the results presented in
this chapter. In this scheme, the signal quantum state ρ̂s has to be distributed onto
three 4-port HDs by means of two beam splitters. For this purpose, three copies of
the signal state are created. Since perfect cloning of a quantum state is impossible
[62], measurements of ρ̂s with this setup suffer from additional noise injected by the
copying procedure itself. This section aims at quantifying the limitations of stationary
OHT imposed by this experimental scheme. As a test state, the reconstructed Wigner
function of a thermal state measured with a 12-port HD was computed. This allows us to
derive the fundamental limitations regarding fluctuations of the reconstructed quantum
state.

The first beam splitter (BS1) in Fig. 6.1 divides the signal state ρ̂s into the target
state ρ̂t and the postselection state ρ̂ps. The second beam splitter (BS2) further
divides ρ̂ps into the two states ρ̂p1 and ρ̂p2. The three states ρ̂p1, ρ̂p2, and ρ̂t are then
detected separately by the three 4-port homodyne detectors HD1, HD2, and HD3. The
splitting ratio of BS2 is chosen as 50 %, while the reflection coefficient r and the trans-
mission coefficient t describe the splitting ratio of BS1. On each beam splitter input
port where no signal light is present, a vacuum state is incident. A π/2 phase shifter in
front of HD1 ensures that ρ̂p1 and ρ̂p2 have a phase difference of π/2 and therefore HD1
and HD2 perform measurements of the complementary observables q̂θ and p̂θ.

In order to compute the Wigner function of the target quantum state ρ̂t, it is important
to understand the setup from Fig. 6.1 in a phase space context. In that context, any
quantum state of light can be described by one of infinitely many and equivalent phase
space distribution functions (e.g. [26, p. 321]). However, only three of those functions
are relevant for the calculations in this chapter, one being the Wigner function, which was
introduced in section 2.3.1, and the other two being the Husimi–Kano Q–function1 and
the Glauber–Sudarshan P–function2. They are associated with symmetric, antinormal,

1e.g. in the textbook from Schleich [26, p. 324 ff.] or the papers from Husimi [63] and Kano [64]
2e.g. in the textbook of Schleich [26, p. 337 ff.] or the papers from Glauber [65] and Sudarshan [66]
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Figure 6.1.: 12-port homodyne detector for optical homodyne tomography. ρ indicates
the density operator ρ̂ of the corresponding quantum state. The signal quantum state ρ̂s
is distributed among the 4-port homodyne detectors HD1, HD2 and HD3 by the two beam
splitters BS1 and BS2. Further details are discussed in the text.

or normal operator ordering, respectively. Hence, one can evaluate expectation values
of quantum mechanical operators using one of these distribution functions provided
that the operators are first ordered accordingly [26, p. 322]. In the present work, the
Wigner function is the most important of them because homodyne detection allows one
to directly access its integral projections.

Figure 6.2 compares the P-function, the Wigner function and the Q-function of a
thermal state featuring a mean photon number of n̄ = 1. All of them are Gaussian
shaped but differ in width. The narrowest distribution is the P-function followed by the
Wigner function and the Q-function. Mathematically, those three phase space functions
are connected to each other by a convolution with the vacuum Wigner function. Con-
sequently, the Wigner function can be derived from the P-function and the Q-function
can be derived from the Wigner function by this convolution (see Eqs. (A.5) and (A.4)).
These convolutions may be interpreted as a kind of smoothing. The P-function of a
coherent state, for instance, is a Dirac delta function [26, p. 338]

P (α) = δ(α− α0) (6.1)

since the corresponding Wigner function is a displaced vacuum Wigner function, which
is the convolution of a displaced Dirac delta function with a vacuum Wigner function.

In equation (6.1), the P-function is formulated in terms of the phase space variables
αr = Re(α) and αi = Im(α). The complex number α is the eigenvalue of the annihilation
operator â, and the corresponding phase space is usually called α-space. Especially
when considering coherent states, which are eigenstates of â, it is advantageous to use
the α-space instead of the representation in terms of the quadrature variables q and
p introduced in section 2.3.1. The two representations are connected by the following
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(a) (b)

(c)

Figure 6.2.: (a) Glauber-Sudarshan P-function, (b) Wigner function, and (c) Husimi-Kano
Q-function of a thermal state with n̄ = 1 photons.
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substitutions3:

q →
√

2αr (6.2)

p→
√

2αi (6.3)

dqdp→ 2αrαi (6.4)

The importance of the Q-function for subsequent calculations arises from the fact
that it is directly accessible in experiments [67, 68]. To measure the Q-function, two
homodyne detection channels in the configuration of an 8-port interferometer with a π/2
phase shifter in front of one channel are required. Then, the 8–port HD measures the
Q–function of the input state through its count statistics [26, p. 361 ff.]. In the scheme
provided in Fig. 6.1, the homodyne detection channels HD1 and HD2, together with the
beam splitter BS2 and the phase shifter, represent exactly such an 8-port interferometer.
This type of setup may be used to measure the Q-function of the postselection state ρ̂ps.

The P -function is required for the following calculations, because it allows us to repre-
sent any density operator ρ̂ in a diagonal representation of coherent states, as discussed
in [26, p. 337],

ρ̂ =

∫
P (α) |α〉 〈α| d2α (6.5)

and each quantum state of a light field can be described by a density operator. Therefore,
in a diagonal representation of coherent states using the P-function, the transformation
of any input quantum states on a beam splitter into output quantum states can be un-
derstood by considering only coherent states. For a lossless beam splitter, the reciprocity
relations connecting the complex reflection coefficient r1, the transmission coefficient t1,
and the corresponding coefficients r2 and t2 for light incident from the opposite direction
are [37]:

|r1| = |r2| (6.6)

|t1| = |t2| (6.7)

|r1|2 + |t1|2 = 1 (6.8)

r?1t2 + t?1r2 = 0 (6.9)

In the case of beam splitter BS1 shown in Fig. 6.3a, the classical amplitudes i1 and i2
of the light modes incident on the beam splitter transform into the output amplitudes
o1 and o2 as:

o1 = t1i1 + r2i2 (6.10)

o2 = r1i1 + t2i2 (6.11)

To make the transition to quantum mechanics, the mode amplitudes are replaced with
annihilation operators of the corresponding light modes. Since coherent states are eigen-
states of these operators, coherent states transform in the same way as the mode am-
plitudes [26, p. 354]. However, in quantum mechanics it is necessary to specify the

3see, for example, the discussion in [26, p. 322 ff.]
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Figure 6.3.: Illustration of the lossless beam splitter BS1 from Fig. 6.1 for (a) the classical
amplitudes of ingoing (i1, i2) and outgoing (o1, o2) modes of light and (b) ingoing (|α〉, |β〉)
and outgoing (|γ〉, |δ〉) coherent states.

complete quantum state of the two input modes. In the simple case shown in Fig. 6.3b,
the two input modes are in independent coherent states and the combined input state
|Ψin〉 is just a product state of them [26, p. 354]:

|Ψin〉 = |α〉 |β〉 (6.12)

The combined output state |Ψout〉 is then computed analogous to Eqs. (6.10) and (6.11):

|Ψout〉 = |δ〉 |γ〉 = |t1β + r2α〉 |r1β + t2α〉 (6.13)

In the case of the beam splitter BS1 shown in Fig. 6.1, the two input states ρ̂vac and
ρ̂s are independent as well. Since both states can be expanded into coherent states with
the help of their P-functions Ps(α) and Pvac(β), the combined input state ρ̂in can then
be derived by multiplying their P-function representations [26, p. 355]:

ρ̂in =

∫ ∫
Ps(α)Pvac(β) |α〉 〈α| ⊗ |β〉 〈β| d2β d2α (6.14)

The output state ρ̂out can be found by applying the beam splitter transformation to the
coherent states in ρ̂in by |Ψin〉 → |Ψout〉:

ρ̂out =

∫ ∫
Ps(α)Pvac(β) |t1β + r2α〉 〈t1β + r2α| ⊗ |r1β + t2α〉 〈r1β + t2α| d2β d2α

(6.15)

If ρ̂s and ρ̂vac describe coherent states, then Ps and Pvac are delta functions according
to Eq. (6.1) and ρ̂out is exactly the product state from Eq. (6.13). If at least one of the
two input states is not a coherent state, the two output modes of the beam splitter are
correlated via an integration over α or β. For the following computations, it is easier
to represent the output state ρ̂out in terms of the output variables γ = r1β + t2α and
δ = t1β + r2α:

ρ̂out =

∫ ∫
Ps(t

?
2γ + r?2δ)Pvac(r

?
1γ + t?1δ) |δ〉 〈δ| ⊗ |γ〉 〈γ| d2γ d2δ (6.16)
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The star symbol ? denotes complex conjugation and the substitutions for α and β can
be verified by applying Eqs. (6.6) to (6.9):

r?1γ + t?1δ = β
(
|r1|2 + |t1|2

)︸ ︷︷ ︸
=1

+α (r?1t2 + t?1r2)︸ ︷︷ ︸
=0

= β (6.17)

t?2γ + r?2δ = β (r1t
?
2 + t1r

?
2)︸ ︷︷ ︸

=0

+α
(
|t2|2 + |r2|2

)︸ ︷︷ ︸
=1

= α (6.18)

The relation r1t
?
2 + t1r

?
2 = 0 is the complex conjugate of relation (6.9).

The calculation of the Wigner function for the target state ρ̂t can be performed in
multiple ways. Here, we make use of the Q–function measurement of ρ̂ps by following
three steps:

1. Calculating the joint Q-function Q(qt, qps, pt, pps) for the two output states ρ̂t and
ρ̂ps of the first beam splitter BS1. While qt and pt are the quadrature variables
detectable by HD3, qps and pps are the quadrature variables detectable by the
8-port homodyne detector with HD1 and HD2 measuring a Q-function.

2. Obtaining the conditional Q–function Q(qt, pt) in the target arm by selecting on
the two quadrature amplitudes qps and pps in the postselection arm. This selection
procedure can be realized in an experiment by choosing only data points that are
inside specific bins for qps and pps.

3. Computing the conditional Wigner function W (qt, pt) of the target quantum state
ρ̂t by performing a deconvolution of Q(qt, pt) with a vacuum state ρ̂vac.

6.1.1. Joint Q-function for a Thermal Signal State

So far, this chapter has focused on a model scheme for non-stationary OHT on light
fields in mixed states and a general understanding of the lossless beam splitters used
in this scheme. The following section uses these considerations to derive the joint Q-
function of the combined output state of BS1 in Fig. 6.1 for the case of a thermal signal
state ρ̂s = ρ̂th. The starting point of the discussion is the corresponding joint P-function
P (α, β) = Pth(α)Pvac(β) expressed in terms of the input variables α and β, which is,
according to Eq. (6.16), a product of the P-functions of a thermal state and a vacuum
state. Following Eq. (6.1), the P-function of a vacuum state is Pvac(β) = δ(β). The
P-function of a thermal state with mean photon number n̄ is given, for example, in [26,
p. 341] and the joint P-function then reads:

P (α, β) =
1

πn̄
exp

(
−|α|

2

n̄

)
δ(β) (6.19)
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The joint Q-function can be derived from the joint P-function by evaluating the fol-
lowing convolution4:

Q(α, β) =
1

π3n̄

∫ ∫
exp

(
−|α

′|2

n̄

)
δ(β′) exp

(
−|α− α′|2 − |β − β′|2

)
d2β′ d2α′ (6.20)

Integration over β′ results in:

Q(α, β) =
1

π3n̄

∫
exp

(
−|α

′|2

n̄

)
exp

(
−|α− α′|2 − |β|2

)
d2α′ (6.21)

One can split the integration over α′ into two integrations over its real and imaginary
parts by setting α′ = x′ + iy′ and α = x+ iy:

Q(x+ iy, β) =
exp

(
−|β|2

)
π3n̄

∫
exp

(
−(x′)2 + (y′)2

n̄

)
exp

(
−(x− x′)2 − (y − y′)2

)
dx′ dy′

(6.22)

Expanding the quadratic terms results in:

Q(x+ iy, β) =
exp

(
−|β|2 − x2 − y2

)
π3n̄

∫
exp

(
−
(

1

n̄
+ 1

)
((x′)2 + (y′)2)

)
× exp (2(xx′ + yy′)) dx′ dy′ (6.23)

By making use of the algebraic relation 1/n̄ + 1 = (1 + n̄)/n̄, the final integration can
be performed with the help of formula (A.7):

Q(x+ iy, β) =
exp

(
−|β|2 − x2 − y2

)
π3n̄

πn̄

1 + n̄
exp

(
n̄

1 + n̄

(
x2 + y2

))
(6.24)

After replacing α = x+iy and rearranging the exponential functions, the joint Q-function
for the input variables α and β is found:

Q(α, β) =
exp

(
−|β|2

)
π2(1 + n̄)

exp

(
− |α|

2

1 + n̄

)
(6.25)

Q(α, β) is a product of the Q-functions of a vacuum state (e.g. [26, p. 326]) and a
thermal state (e.g. [26, p. 328]).

Since the conditional target Wigner function will be expressed in terms of the quadra-
tures measurable in the target arm, it is useful to express this joint Q-function in terms
of the output variables γ and δ. For the sake of simplicity, a reduced set of real valued

4see Eq. (A.6) in Appendix A
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transmission and reflection coefficients t and r is used in the remainder of this chapter.
Here, the necessary phase shift occurs together with the reflection corresponding to r2:

t1 = t2 = t (6.26)

r1 = r (6.27)

r2 = eiπr = −r (6.28)

The joint Q-function then reads:

Q(γ, δ) =
exp

(
−|rγ + tδ|2

)
π2(1 + n̄)

exp

(
−|tγ − rδ|

2

1 + n̄

)
(6.29)

6.1.2. Wigner Function from Q-function

This section discusses a method to obtain the Wigner function in the target arm from an
already known Q-function in this arm. It is analogous to a discussion in [26, p. 339 ff.]
about how to obtain the P-function from the Q-function. The starting point is formula
(A.4), which is used to obtain the Q-function from the Wigner function:

Q(α = αr + iαi) =
2

π

∫ ∫
W (ᾱr, ᾱi) exp

(
−2 (αr − ᾱr)2 − 2 (αi − ᾱi)2) dᾱr dᾱi (6.30)

Equation (6.30) is now inserted into the Fourier transform of the α-space Q-function
from Eq. (A.8):

Q̃(α̃r, α̃i) =
2

π

∫ ∫ ∫ ∫
W (ᾱr, ᾱi) · exp

(
−2 (αr − ᾱr)2 − 2 (αi − ᾱi)2)

· exp (−i (α̃rαr + α̃iαi)) dᾱr dᾱi dαr dαi (6.31)

Before the integrations take place, two steps are necessary. First, the exponential func-
tions are rearranged:

Q̃(α̃r, α̃i) =
2

π

∫ ∫
W (ᾱr, ᾱi)

∫
exp

(
−2 (αr − ᾱr)2 − iα̃rαr

)
dαr

·
∫

exp
(
−2 (αi − ᾱi)2 − iα̃iαi

)
dαi dᾱr dᾱi (6.32)

And second, the substitution α̊r = αr − ᾱr is performed:

Q̃(α̃r, α̃i) =
2

π

∫ ∫
W (ᾱr, ᾱi)

∫
exp

(
−2 (α̊r)

2 − iα̃r (α̊r + ᾱr)
)
dα̊r

·
∫

exp
(
−2 (α̊i)

2 − iα̃i (α̊i + ᾱi)
)
dα̊i dᾱr dᾱi (6.33)
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After these two steps, integrating over α̊r and α̊i with the help of the Gaussian integral
from Eq. (A.7) results in:

Q̃(α̃r, α̃i) =
2

π

π

2
exp

(
− α̃

2
r + α̃2

i

4 · 2

)∫ ∫
W (ᾱr, ᾱi) exp (−i (α̃rᾱr + α̃iᾱi)) dᾱr dᾱi︸ ︷︷ ︸

W̃ (α̃r,α̃i)

(6.34)

As the integrals in equation (6.34) resemble the Fourier transform of the Wigner function,
one can conclude:

W̃ (α̃r, α̃i) = Q̃(α̃r, α̃i) exp

(
α̃2
r + α̃2

i

8

)
(6.35)

Finally, the complete transformation formula results from applying the reverse Fourier
transform (A.9) to equation (6.35):

W (αr, αi) =
1

(2π)2

∫ ∫
Q̃(α̃r, α̃i) exp

(
α̃2
r + α̃2

i

8

)
exp (i (α̃rαr + α̃iαi)) dα̃r dα̃i (6.36)

6.1.3. Conditional Wigner Function from Conditional Q-function

After establishing a method to derive the corresponding Wigner function from a known
Q-function, it is now applied to compute the conditional Wigner function in the target
arm of the setup depicted in Fig. 6.1. “Conditional” means in this context that the
joint phase space function for both output ports of the beam splitter is reduced by
postselecting and therefore fixing the value of γ in the postselection arm. The analysis
starts by replacing γ = γps in the joint Q-function given in Eq. (6.29). The index
ps indicates that γps is no longer a variable but a fixed parameter and the resulting
conditional Q-function Q(δ) is now only dependent on the variable δ:

Q′(γ = γps, δ) =
exp

(
−|rγps + tδ|2

)
π2(1 + n̄)

exp

(
−|tγps − rδ|

2

1 + n̄

)
(6.37)

At the same time, it is necessary to normalize Q′ again. It now describes only the
target part of the joint quantum state, but it still has to be normalized to 1 to be a
valid Q-function. Some computations in this chapter are performed with the help of
Mathematica [69] and the required Mathematica commands can be found in appendix
A.4. For example, the required normalization factor can be found with the commands
in Fig. A.1:

Q(δ) =
1 + n̄t2

π(1 + n̄)
exp

(
|γps|2

1 + n̄t2

)
exp

(
− |rγps + tδ|2

)
exp

(
−|tγps − rδ|

2

1 + n̄

)
(6.38)
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In order to compute the Wigner function with the help of equation (6.36), the Fourier

transform Q̃(δ̃) of Q(δ) is derived first5 with the help of formula (A.8):

Q̃
(
δ̃
)

= exp

(
− 1 + n̄

4(1 + n̄t2)

∣∣∣δ̃∣∣∣2) exp

(
i
n̄rt

1 + n̄t2

(
δ̃rγps,r + δ̃iγps,i

))
(6.39)

Then Q̃
(
δ̃
)

is inserted into equation (6.36) to compute the Wigner function6 W (δ):

W (δ) =
2 (1 + n̄t2)

π (1 + n̄+ n̄r2)
exp

(
−2 |(1 + n̄t2) δ + n̄rtγps|2

(1 + n̄t2) (1 + n̄+ n̄r2)

)
(6.40)

Before the expectation values for the experiments in this chapter can be calculated,
the complex variables have to be replaced by the corresponding quadrature variables.
Since we chose the commutator convention [q̂, p̂] = i, it is necessary to substitute δ →
(q + ip)/

√
2. The same is true for substituting γps, but we have to take into account a

second factor. The quadrature values qps and pps in the postselection arm are measured
with respect to the field amplitudes observed by HD1 and HD2 behind BS2, while γps
corresponds to the field amplitude in front of BS2. Therefore, these quadratures have
to be scaled by 1/rps =

√
2 so that they correspond to γps,r and γps,i. The combined

substitution then reads γps → qps + ipps and we arrive at:

W (q, p) =
1 + n̄t2

π (1 + n̄+ n̄r2)
exp

(
−
(
(1 + n̄t2) q + n̄rt

√
2qps

)2

(1 + n̄t2) (1 + n̄+ n̄r2)

)

· exp

(
−
(
(1 + n̄t2) p+ n̄rt

√
2pps

)2

(1 + n̄t2) (1 + n̄+ n̄r2)

)
(6.41)

This is the Wigner function measured by the target 4-port HD when selecting the quadra-
tures qps and pps in the 8-port HD used for postselection in the case of a thermal signal
state with a mean photon number of n̄. An example for a conditional Q-function and
its corresponding conditional Wigner function is shown in Fig. 6.4. Since the condi-
tional Q-function is a convolution of a vacuum Wigner function with the conditional
Wigner function, it is broader than the conditional Wigner function. The offset of the
distribution is given by the linear expectation values 〈q〉 and 〈p〉 and remains the same.

6.1.4. Expectation Values

Even though the target Wigner function in Eq. (6.41) describes the complete target
quantum state, it is useful to calculate the expectation values 〈q〉, 〈p〉, 〈q2〉 and 〈p2〉.
These values make it easier to compare the presented theory to measurements, as such
expectation values are easily accessible from measurement data. To understand the

5for details see Fig. A.2
6for details see Fig. A.3
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resulting formulas better, the relations n̄ps = n̄t2 and n̄t = n̄r2 are introduced. Here,
n̄ps is the mean photon number in the postselection arm while n̄t is the mean photon
number in the target arm. It is important to note that n̄ = n̄t + n̄ps. The results for 〈q〉
and 〈p〉 are7:

〈q〉 =

∫ ∞
−∞

∫ ∞
−∞

W (q, p)q dp dq = −
√

2qps
n̄rt

1 + n̄t2
= −qps

√
2n̄psn̄t

1 + n̄ps
(6.42)

〈p〉 =

∫ ∞
−∞

∫ ∞
−∞

W (q, p)p dp dq = −
√

2pps
n̄rt

1 + n̄t2
= −pps

√
2n̄psn̄t

1 + n̄ps
(6.43)

The minus sign arises from our specific choice of reflection and transmission coefficients
in Eqs. (6.26)-(6.28), which determines the allocation of the phase shift occurring in the
beam splitter. For example, when choosing r1 = −r and r2 = r instead, the minus
sign vanishes. Next, the expectation values of the quadratic quadrature amplitudes are
calculated8:〈

q2
〉

=

∫ ∞
−∞

∫ ∞
−∞

W (q, p)q2 dp dq =
1 + n̄+ n̄r2 + n̄t2

(
1 + n̄+ n̄r2

(
1 + 4q2

ps

))
2 (1 + n̄t2)2 (6.44)

〈
p2
〉

=

∫ ∞
−∞

∫ ∞
−∞

W (q, p)p2 dp dq =
1 + n̄+ n̄r2 + n̄t2

(
1 + n̄+ n̄r2

(
1 + 4p2

ps

))
2 (1 + n̄t2)2 (6.45)

Finally, the variances corresponding to q and p can be calculated9:

V ar(q) = V ar(p) =
〈
q2
〉
− 〈q〉2 =

1 + n̄+ n̄t
2(1 + n̄ps)

(6.46)

Interestingly, the variance of the target Wigner function strongly depends on the photon
numbers in the target and postselection arms. The lowest achievable variance is 1/2,
which can be found for n̄ = 0 or in the limiting case for n̄t → 0. It is the variance expected
for the vacuum state and a coherent state. The highest possible variance is achieved in
the limit for n̄ps → 0 and is 1/2 + n̄. This is the expected variance for a thermal state
measured by a single 4-port HD. Between these two extremal values, the variance can
be tuned by controlling the ratio between n̄t and n̄ps. For n̄t = 1/2n̄ps and sufficiently
high n̄, for instance, the variance is close to 1. This case becomes relevant when all
three 4-port HDs depicted in Fig. 6.1 receive the same mean photon number, which
is a reasonable setting in an experiment to illuminate all 3 HDs equally well. Figure
6.4 compares the conditional Wigner function in such a case with its corresponding
conditional Q-function and a true coherent state. There are significant differences in
the widths of these distributions, while their expectation values follow Eqs. (6.42) and
(6.43).

7for details see Fig. A.4
8for details see Fig. A.5
9for details see Fig. A.6
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(a) (b)

(c)

Figure 6.4.: (a) Conditional Q-function according to Eq. (6.37) and (b) conditional Wigner
function according to Eq. (6.41) postselected from a thermal state with n̄ = 1 photons at
amplitudes qps = 2.5 and pps = 0. The reflection coefficient of beam splitter BS1 amounted to
|r| = 1/

√
3. For comparison, a coherent state Wigner function (c) is shown. All three phase

space functions are displaced from the origin by 〈q〉 = −1, which may be calculated using
Eq. (6.42).

75



6. Non-Stationary Optical Homodyne Tomography

6.1.5. Conclusion

Section 6.1 introduced a 12-port homodyne detection scheme for non-stationary OHT
that aims at reconstructing the Wigner function of light fields in mixed quantum states.
The phase information is retrieved by employing two 4-port HDs in such a way that
they are able to measure the Q-function of a part of the input quantum state. When
the Q-function measurements are used to postselect on specific quadrature values qps
and pps, this essentially fixes not only the phase but also the amplitude of the Wigner
function measurement in the remaining 4-port HD a posteriori. The resulting target
Wigner function for a thermal signal quantum state is a Gaussian distribution displaced
from the origin. Its variance is always larger than the minimum variance given by the
uncertainty relation in Eq. (2.15), because precision is lost due to the copying of the
signal quantum state on beam splitters.

6.2. Stationary 12-Port Tomography on a Thermal State

This section first presents an experimental setup that allows one to test the theoretical
limits derived in section 6.1 experimentally and then provide empirical evidence for this
setup to operate close to these limits. Such a setup needs to overcome several challenges
in order to approximate the scheme outlined in Fig. 6.1. Major challenges include
maintaining the fixed phase relationship between HD2 and HD3 in Fig. 6.1, which is
necessary for the Q-function measurement, and the reconstruction of a phase reference
required for the reconstruction of the conditional Wigner function in the target arm. A
12-port HD based on the technology of the 4-port HD presented in chapter 4 addresses
these issues.

6.2.1. Building a 100MHz 12-Port Homodyne Detector

Building a 12-port homodyne detector is very similar to building a 4-port homodyne
detector. The optical setup of the 12-port HD used in this work is illustrated in Fig. 6.6.
It comprises three 4-port HDs of the type shown in Fig. 4.2. Here, the LO from the
Mira 900 is divided onto the three HDs by a combination of two beam splitters and two
half-wave plates. The signal light from either the DL pro diode laser or the LO itself is
divided into the three signal beams by a similar combination of two beam splitters and
two half-wave plates.

For the experiments in this section, it is very important that the LO pulses in all
three HDs sample the same part of the signal light field. Otherwise, the postselection
step discussed in section 6.1 would not be possible because different HDs would measure
independent parts of the signal light field. This requirement can be fulfilled by aligning
all three HDs with the LO as signal at the same time. The spectral width of the signal
light from the diode laser is also reduced by an optical bandpass filter for the LO to
overlap with it completely. The geometry in the setup presented in Fig. 6.6 can be used
to make the necessary adjustments by tuning the delay line positions and moving the
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Figure 6.5.: The wiring of the electrical components of the 12-port homodyne detection
setup used for the results in this chapter. See text for details.

90:10 beam splitter closer to the DL pro while maintaining the positions of the other
beam splitters.

The wiring of the electrical components in the 12-port HD is illustrated in Fig. 6.5.
While the piezo controller E-725, the voltage amplifier SR445 and the data acquisition
card M4i.2234-x8 can handle two additional HDs without requiring new hardware, two
additional sets of electrical filters are needed for the balanced detectors BD2 and BD3.
They are identical to the filters introduced in section 4.1, which are two 75.4 MHz and
two 150.8 MHz band pass filters and one 100 MHz low pass filter for each HD.

Since the 12-port HD consists of three 4-port HDs, its alignment procedure is almost
identical to aligning three single 4-port HDs. They can be aligned, for instance, with the
help of the methods outlined in section 4.1.1. After aligning each detector with the LO
as signal, the diode laser beam path can be aligned to the LO beam path of one detector
and is automatically aligned to the LO beam paths of the other detectors, too. Figure
6.6 contains three different positions for CCD cameras, but only one camera is needed
because it can be placed at the required positions during the alignment procedure. The
alignment of the balanced detectors is identical to the alignment procedure presented in
section 4.1.2.

A slightly modified version of the complex trigger scheme is used for the measurements
presented in this chapter. The piezo actuators in front of BD1, BD2 and BD3 were
modulated with 0 Hz, 50 Hz, and 0.5 Hz sinusoidal voltages, respectively. The TTL
output of the piezo controller was set to gate the simple trigger when the position of
the piezo actuator in front of BD2 is between an upper and lower threshold. In order
to achieve a linear phase modulation within the acquired data sets, the thresholds were
chosen to contain only the approximately linear parts of the sine function. The raw data
was acquired with a sampling rate of 1.25 GHz per balanced detector simultaneously.
For each detection channel, the acquired quadrature values {Q1,i, Q2,i, Q3,i} can then be
calculated according to section 4.1.3.
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6.2.2. Phase-Sensitive Measurements on a Thermal State

In the following, BD1 is chosen to be part of the HD in the target arm, while BD2 and
BD3 are placed in the postselection arm. So far, the quadratures {Q2,i} and {Q3,i} ac-
quired in the postselection arm do not correspond to Q-function measurements, because
they were not acquired with orthogonal LO phases. However, due to the modulation of
the piezo actuator in front of BD2, they contain a subset of quadrature measurements
where the LOs are orthogonal. In order to select only this subset, the phases {φ2,3,i}
between the LOs in channels 2 and 3 must be calculated. This can be achieved by ap-
plying the phase reconstruction algorithm from section 4.2.2 to the product quadratures
Qprod,i = Q2,i ·Q3,i. An argument for the validity of this approach is given next.

We know from section 3.1 that the values acquired with a HD are proportional to the
signal field that is in phase with the LO:

Qi ∝ EqSIG cos(θLO) + EpSIG sin(θLO) (6.47)

Such a linear combination of sine functions can be replaced by a general sine function
with different amplitude and an additional phase offset θoff [70, p. 84]. Accordingly, the
quadrature amplitudes Q2,i and Q3,i can be rewritten in terms of the modified LO phase
φLO2 = θLO2 + θoff in channel 2 and the relative phase φ2,3 between channels 2 and 3:

Q2,i ∝ sin(φLO2,i) (6.48)

Q3,i ∝ sin(φLO2,i + φ2,3,i) (6.49)

Equation (6.49) can be expanded with the help of an addition theorem for trigonometric
functions [70, p. 81] in order to obtain an expression for the product quadratures Qprod,i:

Qprod,i ∝ sin2(φLO2,i) cos(φ2,3,i) + sin(φLO2,i) cos(φLO2,i) sin(φ2,3,i) (6.50)

For a thermal signal state, the LO phase φLO2,i is random for each acquired quadrature
value while the relative phase φ2,3,i is mainly determined by the slow modulation of
the piezo in front of BD2. Hence, the smoothing performed by the phase reconstruction
algorithm before estimating the phase values averages over the sine functions that depend
on φLO2,i but leaves the slow modulation of φ2,3,i intact:

〈Qprod,i〉 ∝ cos(φ2,3,i) (6.51)

Thus, due to the linear phase modulation over time, it is valid to assume that Qprod,i

follows a sinusoidal function, and the phase reconstruction algorithm yields the relative
phase values φ2,3,i. Relative phase values φ1,2,i between the LOs in channels 1 and 2 can
be calculated in the same way.

In order to obtain a Q-function measurement, the phase values φ2,3,i can be used
to select quadrature amplitudes Qort

2,i and Qort
3,i in channels 2 and 3 that were acquired

with orthogonal LO phases. Additionally selecting the phases φ1,2,i and the channel
1 quadratures Q1,i corresponding to these orthogonal LO phases results in a data set
{Qort

1,i , Q
ort
2,i , Q

ort
3,i , φ

ort
1,2,i} that allows us to perform the postselection step outlined in section
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6. Non-Stationary Optical Homodyne Tomography

(a) (b)

Figure 6.7.: The orthogonal selection of the quadrature values acquired with channels 2
and 3 of the 12-port homodyne detector for a thermal signal state results in a Q-function
measurement (a). A thermal Wigner function (b) can be reconstructed from the quadratures
recorded in channel 1 at the same times. On average, there were 5.63, 5.94, and 5.92 signal
photons per LO pulse in channels 1, 2, and 3, respectively.

6.1.3. Figure 6.7 compares the Wigner function reconstructed from the quadratures
{Qort

1,i } with the Q-function retrieved as a histogram of pairs (Qort
2,i , Q

ort
3,i ). This data

set consisted of 63 685 374 quadrature measurements per channel before the orthogonal
selection and 2 288 302 thereafter. Both functions show no phase dependence, which
is expected for a thermal state measurement. While the Q-function looks smooth, the
reconstructed Wigner function has little spikes on top of its broad Gaussian shape.
These spikes are caused by the maximum likelihood algorithm, which was operated with
random phase values for the reconstruction. In general, it works much better when
supplying properly reconstructed phase values.

Postselecting the quadratures qt,i := Qort
1,i in the target arm on specific sets of quadra-

tures qps,i := Qort
2,i and pps,i := Qort

3,i in the postselection arm provides us with control over
amplitude and phase of the reconstructed quantum state. Figure 6.8 presents two exam-
ples of conditional Wigner functions reconstructed for a range of postselected quadrature
amplitudes

Aps =
√
q2
ps + p2

ps (6.52)

and a range of postselected phases

φps = arctan

(
qps
pps

)
. (6.53)

The amplitude selected conditional Wigner function has the shape of a ring, similar to
the phase-averaged coherent state illustrated in Fig. 4.7. It is approximately rotationally
symmetric and therefore phase independent. The radius of this ring, which corresponds
to the quadrature amplitude At of the underlying conditional quantum state, is related
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6.2. Stationary 12-Port Tomography on a Thermal State

(a) (b)

Figure 6.8.: Conditional Wigner functions in the target channel when selecting on (a) an
amplitude range Aps = 2.5± 0.25 or (b) a range of phases φps = 0± π/8 of the Q-function in
the postselection arm. The insets show the selected Q-function data points in green color on
top of the Q-function histogram. It is the same data set as in Fig. 6.7a.

to the postselected quadrature amplitude Aps. Their relationship can be calculated from
Eqs. (6.42) and (6.43):

At =

√
〈q〉2 + 〈p〉2 = ±

√
2Aps

√
n̄psn̄t

1 + n̄ps
(6.54)

We find good agreement between the value of At = 2.2465 expected for Aps = 2.5 and
the value of At = 2.2472 retrieved from the reconstructed Wigner function. In contrast
to the amplitude selected Wigner function, we find a strong phase dependence with the
phase-selected conditional Wigner function in Fig. 6.8b. At the same time, its amplitude
is not as well defined.

Combined control of amplitude and phase was applied to reconstruct the conditional
Wigner function in Fig. 6.9a. The postselected quadratures qt are equivalent to Fig. 6.8a.
This time, however, the reconstruction algorithm received additional information in
form of phases θt that are a combination of φps and φ1,2. Similar to a coherent Wigner
function, for example shown in Fig. 4.12, this conditional Wigner function is a Gaussian
distribution displaced from the origin. The displacement amounts to 〈p〉 = 2.218 and
is close to the expected value of 2.2465. Taking the phases θt into account recovers
the phase information lost with the amplitude selection and is therefore equivalent to
selecting a small area around (qps, pps) of the Q-function. Consequently, equation (6.46)
is expected to describe the variance of such a conditional Wigner function. The variances
along the q- and p-directions of the Wigner function in Fig. 6.9a are V ar(p) = 1.123 and
V ar(q) = 1.105. Both values are slightly higher than the expected minimum variance
of V ar(q) = V ar(p) = 0.938 but are significantly lower than the variance of V ar(Q1) =
6.133 calculated from the quadratures recorded in the target channel. Imperfections
in the experimental setup, such as differences in signal and LO overlap among the
detection channels, as well as phase errors induced by the phase reconstruction algorithm,
are possible explanations for the mismatch between V ar(q) and V ar(p) and for the
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Figure 6.9.: Selecting on a range of quadrature amplitudes of Aps = 2.5±0.25 and taking into
account the phase values φ1,2 and φps results in a narrow and phase-dependent reconstructed
Wigner function (a). Figure (b) compares its average variance 〈V ar(qt,θ)〉θ for different pho-
ton numbers n̄t and n̄ps in the target and postselection arms with the values expected from
Eq. (6.46) (blue) and the variance V ar(Q1) of the quadratures recorded in the target channel
without postselection (red).

remaining gap between theory and experiment. Figure 6.9b compares the measured
and expected variances for several configurations of photon numbers in the target and
postselection arm. In order to achieve a more accurate picture of the Wigner function’s
width, the postselected data points (qt, θt) were divided into 100 phase bins, which
correspond to integral projections of the Wigner function for different phases θt, to
compute the variance V ar(qt,θ) of each bin separately. The average variance 〈V ar(qt,θ)〉θ
over all bins is shown in Fig. 6.9b. The measured variances follow the behavior of the
expected minimum variance nicely while always being slightly larger.

The results presented in this section and the technical details of the postselection
procedure may be interpreted more intuitively. On a microscopic basis, a thermal light
field may be considered coherent at any given instant with a well defined amplitude and
phase. Due to the random emission processes in thermal light sources, however, ampli-
tude and phase change their values on a timescale corresponding to the coherence time of
the light, which is typically in the femtosecond regime. Since these changes must happen
continuously, the coherent state at some instant t0 moves in phase space over time t [19,
p. 52]. When using a 4-port HD, it is not possible to differentiate between fluctuations
resulting from these movements and quantum noise from the microscopic coherent state.
Tomographic reconstruction of a thermal quantum state therefore results in an averaged
state, which is much broader than a coherent state and maximally uncertain in phase,
because the amplitudes of the microscopic states follow an exponential distribution and
their phases are equally probable. Figure 6.10 illustrates this averaging in the Wigner
function representation. While the average over only 10 microscopic coherent Wigner
functions in Fig. 6.10a features few similarities with the comparable thermal Wigner
function in Fig. 6.10d, the average over 10 000 coherent Wigner functions in Fig. 6.10c is
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6.2. Stationary 12-Port Tomography on a Thermal State

(a) (b)

(c) (d)

Figure 6.10.: Comparing the Wigner function of a thermal state with n = 5 photons (d) to
the averaged Wigner function of 10 (a), 100 (b), and 10000 (c) coherent states with uniformly
distributed phases and exponentially distributed photon numbers. The expectation value of
the exponential distribution also amounted to n = 5.
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6. Non-Stationary Optical Homodyne Tomography

almost identical to it. Our postselection protocol can be interpreted to reverse the aver-
aging. While the Q-function’s amplitude selection excludes microscopic coherent states
outside the selected range, the reconstruction of phases rotates all microscopic states in
phase space in order to overlap at the same angle. Since each acquired data point may
belong to every microscopic state with a finite probability at the reconstructed point in
phase space, the resulting Wigner function must be broader than a coherent one.

6.3. Time-Dependent 12-Port Tomography on a
Thermal State

We now investigate the temporal evolution of conditional thermal quantum states. In
terms of the moving coherent state interpretation, such an analysis yields insights about
the motion of the microscopic coherent state in phase space. For the results in the
previous section, all three LOs sampled the same part of the signal light field. In order
to access the temporal evolution, we performed measurements where the LO in the
target arm was delayed by a time τ . Thus, it sampled a different temporal part of
the signal light field than the LOs in the postselection arm. Experimentally, the delay
was realized by driving the delay line in the beam path of LO1 in the setup shown in
Fig. 6.6, which allows one to achieve positive and negative delays. Figure 6.11 shows
the time dependence of four key parameters of the conditional target quantum state for
several postselected quadrature amplitudes Aps. All measurements in this section were
performed using a splitting ratio given by 2n̄t ≈ n̄ps ≈ 12.

The target quadrature amplitude At(τ) has a remarkable shape with a main peak
around τ = 0 and two side maxima at about ±1000 fs. In order to explain this shape,
we need to take into account the spectral density of the signal light field shown in
Fig. 6.12a. According to the Wiener-Khintchine theorem [71, p. 59], the autocorrelation
function Γ(τ) of a stationary random process, such as the emission of thermal light, is
connected to its spectral density S(ω) via a Fourier transform:

Γ(τ) =

∫ ∞
−∞

S(ω)e−iωτdω. (6.55)

Since the target amplitude decays like the autocorrelation function, the time dependence
of At(τ) is proportional to |Γ(τ)|. The solid lines in Fig. 6.11 provide the numerical
Fourier transform of the spectral density shown in Fig. 6.12a, which is scaled for At(0)
to match the value expected from Eq. (6.54). The experimentally determined quadrature
amplitudes are in good agreement with the expected behavior; they rise proportionally
with Aps and even reproduce the asymmetric shape of the side maxima with a steeper
slope close to the main peak. In order to better understand the origin of the side maxima,
we perform the Fourier transform for a general rectangular spectral density function

S(ω) =

{
1, if ω1 ≤ ω ≤ ω2.

0, if ω < ω1 or ω > ω2.
(6.56)
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Figure 6.11.: Dependence of the target quadrature amplitude At, the photon number n,
the average variance Var, and the equal-time second-order correlation function g(2)(0) on the
delay between the LO in the target arm and the LOs in the postselection arm of a 12-port
homodyne detector measuring a thermal quantum state. The expected dependencies are given
as solid lines. The target Wigner functions corresponding to times t1, t2, and t3 are shown in
Fig. 6.12.
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Figure 6.12.: Spectral density function of the filtered thermal signal light field (a) together
with the conditional target Wigner functions for times t1, t2 and t3 in Fig. 6.11.

When setting the frequencies ω1 and ω2 appropriately, S(ω) approximates the spectrum
in Fig. 6.12a. Next, we evaluate Eq. (6.55) by introducing the difference frequency
∆ω = ω2 − ω1 and calculate the absolute value of |Γ(τ)|:

Γ(τ) =

∫ ω2

ω1

e−iωτdω =
1

−iτ
(
e−i(ω1+∆ω)τ − e−iω1τ

)
=
e−iω1τ

−iτ
(
e−i∆ωτ − 1

)
= 2e−i(ω1+∆ω/2)τ sin(τ∆ω/2)

τ
(6.57)

⇒ |Γ(τ)| =
∣∣∣∣sin(τ∆ω/2)

τ/2

∣∣∣∣ (6.58)

For ∆ω = 1, the result is the absolute value of the cardinal sine function; in general,
∆ω determines the periodicity of the side maxima. The denominator τ reduces the
amplitude of the sine modulation, which results in the asymmetry of the side maxima.

Equation (6.46) predicts the variance’s independence of Aps, which we also find in the
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Figure 6.13.: Classical numerical simulation of the amplitude decay in an ensemble of 10 000
emitters subject to (a) homogeneous broadening and (b) inhomogeneous broadening with a
rectangular spectral density.

data shown in Fig. 6.11. Since the decay of the quadrature variance is expected to scale
as the square of the quadratures, it can be modeled by −s |Γ(τ)|2 + n̄t + 1/2 in form of
the presented solid line. The factor s matches V ar(τ = 0) with the value predicted by
Eq. (6.46). Theory and experiment are in good agreement.

The variance of a Wigner function as well as its amplitude contribute to its photon
number n. In the case of a coherent state, the variance contribution is zero, because it is
a minimum uncertainty state. For a thermal state, however, the amplitude contribution
is zero and n is determined by the variance only. In figure 6.11, n(τ) is dominated by the
variance for larger values of τ and by the amplitude for small τ . This results in a steady
state of about n = 6 for delays larger than τ = ±500 fs for all postselected quadrature
amplitudes Aps due to the quadrature variance. Within the τ = ±500 fs range, n(τ) dips
below the steady state for Aps . 2.5 and above it for Aps & 2.5. This indicates that the
target state at zero delay has more similarities to a coherent state than a thermal state.
In general, the hallmark indicator to distinguish coherent light from thermal light is the
equal-time second-order correlation function g(2)(0), also shown in Fig. 6.12. For large
delays or low values of Aps, we find the steady state of a thermal state with g(2)(0) = 2;
for small delays or large values of Aps, however, the conditional quantum state exhibits
reduced photon number noise much closer to the value of 1 expected for a coherent state.

Figures 6.12(b)-(c) provide the reconstructed conditional target Wigner functions for
times t1 = 0 fs, t2 = 233.5 fs, and t3 = 567.1 fs. While they illustrate the discussed
decay in amplitude and variance, they can be viewed in terms of the moving coherent
state interpretation: figure 6.12(b) represents an almost coherent state ρ̂i found at some
instant t, whereas figures 6.12(c) and (d) represent averages of states ρ̂i propagating for
times t2 and t3. The center of the distribution shifts towards the origin, because lower
amplitudes are more likely than higher amplitudes. At the same time, the variance
grows, because the average propagation distance increases for larger times.

Analyzing the observed time dependencies from a microscopic point of view with re-
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spect to the light source, the class of possible drivers for the coherent state’s movement
can be narrowed down, which is discussed qualitatively in the final part of this section.
In general, there are two classes of broadening mechanisms for spectral lines: ho-
mogeneous and inhomogeneous [21, p. 56]. They affect the shape of spectral lines
because they describe two kinds of influences on the emitters generating the light field.
In the case of homogeneous broadening, all emitters show the same behavior and gener-
ate light with the same spectral shape, while in the case of inhomogeneous broadening,
the emitters show different behaviors and generate light with different spectral shapes
[21, p. 56]. In both cases, all emitters contribute to the final light field. An example of
homogeneous broadening is collisional broadening, in which an emitter is interrupted by
some collision, which may induce a random phase shift in its emission. In a very simple
numerical model, the electric field from each emitter might be represented classically
by Eq. (2.2) and is subject to a random phase shift with a small probability in each
time step. The amplitude of the combined electric field then follows an exponential
decay as shown in Fig. 6.13a. Inhomogeneous broadening, however, results from differ-
ent energies and therefore different frequencies of the emitters. Even without further
external influences, this results in a decreasing combined electric field amplitude due to
dephasing, as shown in Fig. 6.13b. Its decay for times close to zero is approximately
Gaussian and therefore less steep than in the case of an exponential decay for homoge-
neous broadening. The observed decay in amplitude in Fig. 6.11 closely resembles the
temporal dependence expected for dephasing due to inhomogeneous broadening with its
Gaussian-like decay. Emitters in the diode laser used for our experiments are probably
subject to both, homogeneous and inhomogeneous broadening, while inhomogeneous
broadening dominates for the chosen spectral width of the signal light field.
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7. Conclusion

The primary result of this work is the introduction of a new kind of technique for
optical quantum state tomography, which is called non-stationary optical homodyne
tomography. It is an expansion of the established technique of stationary OHT, which is
performed with a 4-port homodyne detector. An important milestone in the experiments
leading up to the new technique was the development of a reliable state-of-the-art 4-
port OHT setup. It follows the design of Kumar et al. [43], providing a bandwidth of
100 MHz, but is built upon a commercially available detector instead of a self-made one.
While the quadrature sample rate of 75.4 MHz, which is determined by the repetition
rate of the LO, made real-time studies of g(2)(0) with a femtosecond temporal resolution
possible, there are already further technological advancements in sight with reported
homodyne detector bandwidths of 300 MHz [72] and pulsed lasers with multi-gigahertz
repetition rates [73, 74, 75].

Stationary OHT allows one to tomographically reconstruct the Wigner quasiprobabil-
ity function describing the quantum state of a light field. While the complete reconstruc-
tion requires the LO to be phase-locked to the signal light field, some useful information,
such as the state’s photon number distribution, can be obtained without this a priori
constraint [76]. Non-stationary OHT, on the other hand, is based on the idea of measur-
ing the phase between LO and signal instead. This work shows that such a measurement
comes at the cost of additional noise mixed into the reconstructed quantum state, which
is founded in the no-cloning theorem [62]. Furthermore, it was possible to operate the
non-stationary OHT setup close to this fundamental limit and it is shown that the added
noise is almost independent of the average number of photons in the signal field. Due to
this, its negative impact on the reconstructed quantum state is limited. The enhanced
possibilities of non-stationary OHT compared to stationary OHT became most apparent
on the example of thermal light from a diode laser operated below threshold. For such a
mixed quantum state, stationary OHT provides only the average over all Wigner func-
tions of all states the light field may adopt at any given instant. With non-stationary
OHT, it is possible to select on these instantaneous states individually and to monitor
their evolution in time. The performed measurements supported the interpretation of
thermal light as a single coherent state moving in phase space over time [19, p. 52], and
dephasing dominated the time evolution due to inhomogeneous broadening.

Most real quantum systems are in mixed states due to an unknown coupling to their
environment. Thus, non-stationary OHT is a tool for complete quantum tomography
on a large range of previously inaccessible quantum systems. Even light from a laser
source is not perfectly coherent, which renders stationary OHT problematic as soon as
LO and signal are not derived from the same light source. One example of a photonic
quantum technology may benefit from non-stationary OHT is quantum optical memory.
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In general, it stores a quantum state in order to perform a particular task on it [77].
Important performance criteria are, for example, its fidelity and storage time. It has
many applications such as storing qubits to time operations in quantum computation
[78], buffer entanglement in quantum repeaters for quantum communication networks
[79], or single-photon generation [77]. Stationary OHT was successfully applied to re-
construct the state of a single photon retrieved on demand from a cavity-enhanced cold
atom memory [80]. Since a single photon state is intrinsically pure and uncertain in
phase, there was no need for non-stationary OHT. The case is different for other types
of quantum memory or different kinds of states stored, such as photon echos retrieved
from semiconductor spins [81]. Here, the retrieved states are probably mixed and not
necessarily phase-locked to the LO. Therefore, non-stationary OHT may provide more
information.

The technology developed in this work for non-stationary OHT could also be improved
and tailored to specific needs. For instance, some applications may require real-time pro-
cessing with FPGAs, a more compact design for on chip quantum tomography [82], or
more advanced reconstruction algorithms [83]. Moreover, the detection technology pre-
sented in this work can be applied in other applications. For example, it was already
shown that it is possible to measure the two-time second-order correlation function
g(2)(τ) by employing two homodyne detection channels [39]. With the presented homo-
dyne detectors, higher acquisition speeds are possible, and the setup is easily scalable
to more detectors which may provide access to multitime correlation functions [84].

On the path towards optical quantum technologies deployable in industrial or personal
applications, quantum tomography is an essential element in the quantum engineering
toolbox. However, the ability to reconstruct quantum states alone is only the start-
ing point for debugging photonic quantum devices. Since such devices actively process
incoming quantum states, the complete characterization of quantum-optical processes
occurring within these devices is another important requirement already under research
[85]. For this so-called quantum-process tomography (QPT), different strategies were
already developed [86]. While there are strategies that are not based on quantum tomog-
raphy [87], QPT can be achieved, for example, by iteratively probing a quantum-optical
“black box” with coherent states and performing stationary OHT on the output [88].
Non-stationary OHT may improve QPT on multiple fronts, replacing stationary OHT.
Instead of probing the quantum process with multiple coherent states, for instance, it
could be probed with a single relatively high intensity thermal light field while monitor-
ing the output and the input with non-stationary OHT. In a single measurement run,
the thermal light field provides a multitude of coherent states with different amplitudes
and phases, which are probed all at once. In the following data processing step, the
reconstruction of the process could be possible.

I imagine this work to contribute twofold; first, it can be a building block on the road
to quantum devices enriching our lives and tackling challenges of our time. Second, it
may be the basis for further fundamental research with respect to light and light-matter
interaction advancing our understanding of the world.
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A. Mathematical Relations

A.1. Power Series

Limit of the infinite geometric series for |x| < 1 [70, p. 19]:

∞∑
k=0

xk =
1

1− x
(A.1)

The limits of two other important power series can be calculated with the help of the
differentiation rule for uniformly convergent series [70, p. 469] that allows one to
differentiate a series term-by-term. It is here applied to the geometric series to get the
limit of a power series linear in k for |x| < 1:(

∞∑
k=0

xk

)′
=

(
1

1− x

)′
⇔

∞∑
k=0

(
xk
)′

=
1

(1− x)2

⇔
∞∑
k=1

kxk−1 =
1

(1− x)2

⇔
∞∑
k=0

kxk =
x

(1− x)2
(A.2)

Applying the differentiation rule to Eq. (A.2) results in the limit of a power series with
a quadratic dependence on k for |x| < 1:

∞∑
k=0

k2xk =
x(1 + x)

(1− x)3
(A.3)

A.2. Phase Space Distribution Functions

In the following, some relations regarding the phase space distribution functions that
are used in this work are given. A concise theoretical treatment of these functions was
published, for instance, by Lee [89]. Complex variables are written in greek letters, while
other variables are considered real. The Q-function can be computed from the Wigner
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function via [89, p. 169]:

Q(α) =
2

π

∫
W (β) exp

(
−2|α− β|2

)
d2β (A.4)

The Wigner function can be computed from the P-function via a similar relation [89, p.
169]:

W (α) =
2

π

∫
P (β) exp

(
−2|α− β|2

)
d2β (A.5)

And the Q-function from the P-function as well [89, p. 169]:

Q(α) =
1

π

∫
P (β) exp

(
−|α− β|2

)
d2β (A.6)

A.3. Integration Formulas

Integrating a Gaussian function (e.g. [26, p. 340]):∫ ∞
−∞

exp
(
−ax2 + bx

)
dx =

√
π

a
exp

(
b2

4a

)
(A.7)

Fourier transform of an α-space function F (α):

F̃ (α̃ = α̃r + iα̃i) =

∫ ∫
F (α) exp (−i (α̃rαr + α̃iαi)) dαrdαi (A.8)

Reverse Fourier transform of an α-space function F (α):

F (α) =
1

(2π)2

∫ ∫
F (α̃) exp (i (αrα̃r + αiα̃i)) dα̃rdα̃i (A.9)
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A.4. Mathematica Computations

The following figures show computations from chapter 6 that were performed with Math-
ematica [69].

In[12]:= Q[xt_, yt_] =

1  Pi^2 * 1 + n * Exp-t * xps - r * xt^2 + t * yps - r * yt^2  1 + n *

Exp-r * xps + t * xt^2 - r * yps + t * yt^2

Out[12]=
ⅇ
-(r xps+t xt)2-(r yps+t yt)2+

-t xps-r xt2-t yps-r yt2

1+n

1 + n π2

In[13]:= Simplify[Integrate[Q[xt, yt], {xt, -Infinity, Infinity}, {yt, -Infinity, Infinity}],

n > 0 && r > 0 && t > 0]

Out[13]=
ⅇ
-

r2+t22 xps2+yps2

r2+1+n t2

π r2 + 1 + n t2

Figure A.1.: Normalization of conditional Q-function from Eq. (6.38).

In[30]:= Q[xt_, yt_] = 1 + n * t^2  Pi * 1 + n * Expxps^2 + yps^2  1 + n * t^2 *

Exp- t * xps - r * xt^2 + t * yps - r * yt^2  1 + n *

Exp-r * xps + t * xt^2 - r * yps + t * yt^2

Out[30]=

ⅇ
-(r xps+t xt)2+

xps2+yps2

1+n t2
-(r yps+t yt)2+

-t xps-r xt2-t yps-r yt2

1+n 1 + n t2

1 + n π

In[31]:= SimplifyIntegrateQ[xt, yt] * Exp-I xt * xst + yt * yst,

{xt, -Infinity, Infinity}, {yt, -Infinity, Infinity},

Assumptions → n > 0 && r > 0 && t > 0 && r^2 < 1 && t^2 < 1, r^2 + t^2 ⩵ 1

Out[31]= ⅇ
-
xst2+yst2+n xst2+yst2-4 ⅈ r t xps xst+yps yst

4+4 n t2

Figure A.2.: Fourier transform of conditional Q-function resulting in Eq. (6.39).
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A. Mathematical Relations

In[32]:= Qs[xst_, yst_] = ⅇ
-
xst2+yst2+n xst2+yst2-4 ⅈ r t xps xst+yps yst

4+4 n t2

Out[32]= ⅇ
-
xst2+yst2+n xst2+yst2-4 ⅈ r t xps xst+yps yst

4+4 n t2

In[34]:= W[xt_, yt_] = 1  2 * Pi^2 *

IntegrateQs[xst, yst] * Expxst^2 + yst^2  8 * ExpI * xst * xt + yst * yt,

{xst, -Infinity, Infinity}, {yst, -Infinity, Infinity},

Assumptions → n > 0 && r > 0 && t > 0 && r^2 < 1 && t^2 < 1

Out[34]= -
1

π -1 + n -2 + t2
2 ⅇ

2 xt2+yt2+2 n t r xps xt+yps yt+t xt2+yt2+n2 t2 r2 xps2+yps2+2 r t xps xt+yps yt+t2 xt2+yt2

1+n t2 -1+n -2+t2 1 + n t2

Figure A.3.: Computation of conditional Wigner with the help of Eq. (6.36) resulting in
Eq. (6.39).

In[1]:= W[q_, p_] = 1 + n * t^2  Pi * 1 + n + n * r^2 *

Exp-1 + n * t^2 * q + n * r * t * Sqrt[2] * qps^2  1 + n * t^2 * 1 + n + n * r^2 *

Exp-1 + n * t^2 * p + n * r * t * Sqrt[2] * pps^2  1 + n * t^2 * 1 + n + n * r^2

Out[1]=

ⅇ
-

2 n pps r t+p 1+n t2
2

1+n+n r2 1+n t2
-

2 n qps r t+q 1+n t2
2

1+n+n r2 1+n t2 1 + n t2

π 1 + n + n r2

In[2]:= Integrate[W[q, p] * q, {q, -Infinity, Infinity}, {p, -Infinity, Infinity},

Assumptions → n > 0 && r > 0 && t > 0 && r^2 < 1 && t^2 < 1]

Out[2]= -
2 n qps r t

1 + n t2

In[3]:= Simplify[Integrate[W[q, p] * p, {q, -Infinity, Infinity}, {p, -Infinity, Infinity}],

Assumptions → n > 0 && r > 0 && t > 0 && r^2 < 1 && t^2 < 1]

Out[3]= -
2 n pps r t

1 + n t2

Figure A.4.: Expectation values 〈q〉 and 〈p〉 of conditional Wigner function resulting in
Eqs. (6.42) and (6.43).
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A.4. Mathematica Computations

In[1]:= W[q_, p_] = 1 + n * t^2  Pi * 1 + n + n * r^2 *

Exp-1 + n * t^2 * q + n * r * t * Sqrt[2] * qps^2  1 + n * t^2 * 1 + n + n * r^2 *

Exp-1 + n * t^2 * p + n * r * t * Sqrt[2] * pps^2  1 + n * t^2 * 1 + n + n * r^2

Out[1]=

ⅇ
-

2 n pps r t+p 1+n t2
2

1+n+n r2 1+n t2
-

2 n qps r t+q 1+n t2
2

1+n+n r2 1+n t2 1 + n t2

π 1 + n + n r2

In[2]:= Integrate[W[q, p] * q^2, {q, -Infinity, Infinity},

{p, -Infinity, Infinity}, Assumptions → n > 0 && r > 0 && t > 0 && r^2 < 1 && t^2 < 1]

Out[2]=

1 + n + n r2 + n 1 + n + n 1 + 4 qps2 r2 t2

2 1 + n t22

In[3]:= Integrate[W[q, p] * p^2, {q, -Infinity, Infinity},

{p, -Infinity, Infinity}, Assumptions → n > 0 && r > 0 && t > 0 && r^2 < 1 && t^2 < 1]

Out[3]=

1 + n + n r2 + n 1 + n + n 1 + 4 pps2 r2 t2

2 1 + n t22

Figure A.5.: Expectation values
〈
q2
〉

and
〈
p2
〉

of conditional Wigner function resulting in
Eqs. (6.44) and (6.45).

In[1]:= expQ2 =
1 + n + n r^2 + n t^2 1 + n + n r^2 1 + 4 qps^2

2 1 + n t22

Out[1]=

1 + n + n r2 + n 1 + n + n 1 + 4 qps2 r2 t2

2 1 + n t22

In[2]:= expQ = -
n Sqrt[2] qps r t

1 + n t2

Out[2]= -
2 n qps r t

1 + n t2

In[3]:= Simplify[expQ2 - expQ^2]

Out[3]=
1 + n + n r2

2 + 2 n t2

Figure A.6.: Variance V ar(q) of conditional Wigner function resulting in Eq. (6.46).
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(6) F. Schöne, S.-O. Krüger, P. Grünwald, M. Aßmann, J. Heckötter, J. Thewes, H.
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