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1. Introduction

The need for efficient numerical modeling of Brownian diffusion effects on a
unit sphere arises, e.g., in fiber suspension flow models based on the Fokker-
Planck equation for the orientation probability density [1, 2]. This equation
is derived from the Jeffery equation [3] for a single ellipsoid using (possibly
anisotropic) rotary diffusion terms to model fiber interactions in concentrated
suspension models. Direct numerical solution of the Fokker-Plank equation
incurs exorbitant computational cost since the probability density function
of fiber orientation depends on two orientation angles in addition to the
space and time variables. Therefore, Eulerian models implemented in most
industrial and research codes produce just a few even-order moments of the
probability density function (so-called orientation tensors) [1].

Lagrangian methods for simulation of disperse two-phase flows are based on
solving individual equations of motion for each particle or fiber [4, 5, 6, 7].
Whereas the cost of evolving a single fiber is negligible compared to that of
solving a multidimensional PDE, the large number of fibers that are required
for accurate prediction of local orientation states can make Lagrangian simu-
lations far more expensive than Eulerian tensor evolution models. Addition-
ally, the numerical treatment of Brownian diffusion effects is more difficult
in the Lagrangian framework. Since diffusive fluxes describe changes of the
probability density function due to random microscopic motions, stochastic
perturbations must be applied to the spatial coordinates and/or orientation
angles of moving fibers to emulate the impact of these fine-scale effects on
the trajectory and orientation of Lagrangian particles/fibers [6, 7].

In this paper, we focus on the derivation and numerical study of random walk
methods for the heat equation on a unit sphere. The ability to obtain accu-
rate solutions to this model problem in an efficient manner is a prerequisite
for achieving high performance when it comes to Lagrangian simulations in-
volving convective transport of fibers in the 3D space, deterministic changes
of their orientation caused by velocity gradients, and a two-way coupling
with the generalized Navier-Stokes equations for the velocity field.

In Sections 2 and 3, we introduce deterministic and stochastic approaches
to numerical simulation of fiber orientation dynamics in the context of the
spherical heat equation. Section 4 presents stochastic PDE analysis which
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provides theoretical foundations for generating Brownian motions and ran-
dom walks. In Section 5, we focus on practical algorithms for generation of
random numbers corresponding to given values of the rotary diffusion coef-
ficient. Some of the methods to be presented are based on projections of
standard Cartesian random walks. Others rotate Brownian fibers by adding
perturbations to the polar coordinates in the tangential plane. In the method
proposed by Chen and Yu [8], angular perturbations are generated using cu-
mulative probability derived from an approximate solution of the spherical
heat equation. This approach produces accurate results as long as the time
step is sufficiently small. In computations with larger time steps, we use a
tabulated numerical approximation to the cumulative distribution function
given by the exact solution of the spherical heat equation. After presenting
the new algorithms and discussing their properties, we perform numerical
studies and compare the results obtained with different methods.

2. Deterministic modeling of Brownian diffusion

The orientation of a rigid rod-like fiber in d = 2, 3 space dimensions is charac-
terized by a point p ∈ Sd−1 on the unit sphere Sd−1 := {p ∈ Rd : ‖p‖ = 1},
where ‖ · ‖ is the Euclidean vector norm. Let f(x,p, t) denote the proba-
bility density that a fiber occupying the space location x ∈ Rd has orien-
tation p ∈ Sd−1 at time t ∈ R+. In the absence of spatial gradients, the
Fokker-Planck equation for the probability density function f = f(p, t) of a
concentrated fiber suspension reduces to the spherical heat equation

∂f

∂t
= D∆pf on S2, (1)

where D > 0 is a rotary diffusion coefficient and ∆p is the Laplace-Beltrami
operator, i.e., the tangential divergence of the tangential gradient.

Written in spherical coordinates, each three-dimensional orientation state
p ∈ S2 becomes a function of two orientation angles. We have

p =

 p1

p2

p3

 =

 sin θ cosϕ
sin θ sinϕ

cos θ

 , ϕ ∈ [0, 2π), θ ∈ [0, π]. (2)
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Figure 1: Coordinate system in which p0 = (0, 0, 1)T , cf. [8].

Using the fact that r := ‖p‖ = 1 for p ∈ S2, we restrict the Laplace operator

∆ =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2
(3)

to the unit sphere and obtain the formula for ∆p in spherical coordinates

∆p =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2
. (4)

In contrast to the heat equation in R3, its spherical counterpart (1) cannot
be readily solved by convolving an arbitrary initial condition with a Gaussian
kernel. However, if the initial condition is given by the δ distribution

f(p(θ, ϕ), 0) = δ(p0), p0 ∈ S2 (5)

corresponding to the case of full alignment (i.e., of all fibers having the same
orientation p0 at t = 0), the exact solution of the initial value problem for
the spherical heat equation can be derived using the change of variables

(x1, x2, x3) 7→ (x̂1, x̂2, x̂3), (θ, ϕ) 7→ (θ̂, ϕ̂)

such that the unit vector ê3 = (0, 0, 1)T of the rotated Cartesian coordinate
system coincides with the direction p0 of initial alignment (see Fig. 1). In this
reference frame, the initial condition (5) is independent of the polar angle ϕ̂
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and so is the probability density f = f(x̂3, t), x̂3 = cos θ̂ for t > 0. It follows
that

∆̂pf =
∂

∂x̂3

(
(1− x̂2

3)
∂f

∂x̂3

)
(6)

and, therefore, the initial value problem at hand simplifies to

∂f

∂t
= D

∂

∂x̂3

(
(1− x̂2

3)
∂f

∂x̂3

)
, (x̂3, t) ∈ [−1, 1]× R+, (7)

f(x̂3, 0) = δ(1), x̂3 ∈ [−1, 1]. (8)

The exact solution of problem (7),(8) is given by [8, 9]

f(x̂3, t) =
∞∑
n=0

2n+ 1

2
exp (−n(n+ 1)Dt)Pn(x̂3), (9)

where Pn is the n-th Legendre polynomial. In what follows, we will use this
formula to generate look-up tables for random walks on S2.

In practice, the evaluation of f(x̂3, t) defined by (9) requires approximation
of the infinite series by a partial sum. The number of terms that provide an
accurate description of f may be significant. Orientation tensors representing
the first even-order moments of the probability density distribution can be
calculated exactly using just a few terms (see Section 6 for details).

If the time interval is restricted to [0,∆t] such that D∆t � 1, then f(x̂3, t)
can be nonvanishing only for small values of the azimuthal angle θ̂ = arccos x̂3

since f(x̂3, 0) = 0 for θ̂ > 0. Following Chen and Wu [8], we use the small
angle approximation sin θ̂ ≈ θ̂ and consider the simplified problem

∂f(cos θ̂, t)

∂t
=
D

θ̂

∂

∂θ̂

(
θ̂
∂f(cos θ̂, t)

∂θ̂

)
, (θ̂, t) ∈ [0, π]× R+. (10)

The exact solution corresponding to the initial δ distribution reads [8]

f(cos θ̂, t) =
1

4πDt
exp

(
− θ̂2

4Dt

)
, t > 0. (11)

This approximation to (9) can be evaluated efficiently and produces accurate
results as long as Dt� 1, as assumed in the derivation of (10).
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For general initial conditions, no closed-form analytical solutions of (1) are
known but numerical solutions of arbitrary high precision can be obtained
using Galerkin methods based on approximations of the form

fM(p, t) =
M∑
j=1

cj(t)ψj(p), (12)

where cj(t) is the time-dependent degree of freedom associated with the basis
function ψj(p). For example, spherical harmonics or linear finite elements
a cubed sphere grid can be used to discretize the spherical heat equation in
this manner. However, extensions of such numerical methods to the gen-
eral Fokker-Planck equation for a space-dependent probability distribution
f(x,p, t) would require solution of a three-dimensional evolution equation
for each orientation mode cj(x, t). We refer to [10, 11] for examples of alter-
nating direction methods based on this computationally intensive Eulerian
approach to numerical treatment of the Fokker-Planck equation. In the re-
mainder of this article, we focus on approaches in which orientation states
are determined using Monte Carlo simulations of individual fibers.

3. Stochastic modeling of Brownian diffusion

Instead of evolving the probability density function f(x,p, t) of a fiber sus-
pension, the centers of mass xm(t) and orientation vectors pm(t) of Nf rep-
resentative fibers are evolved in Lagrangian methods [4, 5, 6, 8]. Brownian
diffusion effects are taken into account by adding random perturbations to
xi(t) and/or pi(t). Restricting our attention to Brownian diffusion on the
unit sphere S2, we consider algorithms that lead to updates of the form

pn+1
m = pnm + ∆pnm, m = 1, . . . , Nf , n = 0, 1, . . . , (13)

where ∆pm is a random perturbation such that pm+ ∆pm ∈ S2 for pm ∈ S2.

For sufficiently large values of Nf and n, the probability that some fiber will
have orientation p ∈ S2 after n steps can be approximated by

f̃n(p) =
1

Nf

Nf∑
m=1

δ(p− pnm). (14)
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Since we are interested in solving the spherical heat equation, this probability
distribution should correspond to an approximate solution of (1) at the time
instant tn = n∆t, where ∆t is a constant time step size. To that end,
the intensity of random perturbations should be defined so as to obtain the
correct mean squared displacement or correct cumulative probability.

The following approaches to Monte Carlo simulations based on the addition
of perturbations ∆pn to orientation vectors p ∈ S2 can be envisaged:

• Construct ∆p = (∆p1,∆p2,∆p3)T as in the standard random walk
method for Brownian diffusion in R3 and project p + ∆p onto S2;

• Perform standard random walk on the tangential plane orthogonal to
the orientation vector p ∈ S2 and project p + ∆p onto S2;

• Perform random walk on S2 using the fiber-aligned reference frame
{ê1, ê2, ê3} in which p̂ = (0, 0, 1)T is the North Pole;

The first approach is described in Section 5.2. It was used, e.g., by Moosaie
and Manhart [6] for direct Monte Carlo simulations of fiber suspension flows.
The third approach was adopted in the work of Chen and Wu [8] who used
(11) to construct an approximate inverse of the cumulative probability func-
tion and calculate angular perturbations (see Section 5.3). Note that the use
of a reference frame aligned with the orientation vector p is consistent with
the assumption of a δ distribution for the unperturbed initial state.

In contrast to the first two approaches, which exploit the knowledge of an-
alytical solutions, the third one requires direct construction of a Brownian
motion associated with the Laplace-Beltrami operator ∆p. We accomplish
this task in the next section using some basic tools of probability theory and
stochastic PDE analysis. Practical implementation of different random walk
methods based on the above three approaches is discussed in Section 5.

4. Brownian motion

We use uppercase letters for random variables and lowercase letters for their
deterministic counterparts. For example, θ is a deterministic angle, whereas
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Θ is a random angle. The value of Θ is a set of numbers, the distribution
of which depends on random events such as a coin toss. Similarly, b(t),
t ∈ [0,∞) is a continuous trajectory, whereas a one-dimensional standard
Brownian motion B(t), t ∈ [0,∞) is a stochastic process, that, is a set of
continuous trajectories such that for any fixed t and s, the distributions of
random variables B(t + s)− B(t) and B(t) are independent, Gaussian (i.e.,
normal) with expected value

E[(B(t+ s)−B(t))] = E[B(t)] = 0,

and variance

Var[B(t+ s)−B(s)] = E[(B(t+ s)−B(t))2] = s, Var[B(t)] = t.

4.1. Brownian motion and the Laplacian

We say that the Laplacian Lf = D∆f is the generator of a (rescaled) Brown-
ian motion for the following reason. The solution of the initial value problem

∂f

∂t
(x, t) = D∆f(x, t), (x, t) ∈ Rd × R+, (15)

f(x, 0) = δ(0) (16)

is the probability density of a (rescaled) Brownian particle X(t) that starts
at the origin at t = 0: X(0) = 0. This density corresponds to the Gaussian
distribution

f(x, t) =

(
1

2
√
Dtπ

)d
e
−‖x‖2
4Dt (17)

and has the variance [7]

σ2
d(t) =

∫
Rd
‖x‖2f(x, t) dx = 2dDt. (18)

For any t > 0, the position of a Brownian particle is a (d-dimensional) random
variable with mean 0 ∈ Rd and variance 2DtI, where I is the identity matrix.
The underlying stochastic process is given by

X(t) =
√

2DB(t), (19)
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where B(t) = (B1(t), B2(t), . . . , Bd(t)) contains d copies of independent one-
dimensional standard Brownian motions. The term standard deviation is
frequently used to describe the behavior of the particle. Informally, it char-
acterizes how far the particle may travel from its original position in time t.
Formally, the standard deviation is the square root of the trace of the vari-
ance. For X(t) defined by (19) the standard deviation is σd(t) =

√
2dDt.

4.2. Brownian motion and the random walk

Donsker’s theorem (also known as the functional central limit theorem) demon-
strates rigorously that the one-dimensional Brownian motion B(t) with vari-
ance σ2t is a limit of a wide class of piecewise-linear random trajectories
Yk(t) → B(t) as k → ∞. Such trajectories Yk(t) can be constructed using
a random walk as follows. Draw countably many independent random vari-
ables Xi, i ∈ N using the same distribution with mean zero and variance σ2.
The associated random walk is given by

Sn =
∑
i=1

Xi, n ∈ N.

For a fixed time-step ∆t = 1/k, define the piecewise-linear random trajectory

Yk(t) =
√

∆t
(
Sbt/∆tc + (t− bt/∆tc∆t)Xbt/∆tc+1

)
,

where the floor function bt/∆tc returns the largest integer smaller than t/∆t.
Formally, each random number Xi corresponds to a one-dimensional displace-
ment of a moving particle at a discrete time step ∆t. The average distance
traveled by the particle per time step in a given space direction is σ

√
∆t. It

follows that the Brownian motion (19) can be generated from i.i.d. (indepen-
dent, identically distributed) random numbers with mean zero and standard
deviation σ =

√
2D.

If a distribution of a random number has a finite variance, it can be normal-
ized to be mean-zero. Therefore, Donsker’s theorem implies that any i.i.d.
random numbers with finite variance can be used to approximate a Brownian
motion. In view of this fact, the practical choice of such distributions is often
dictated by the simplicity of their numerical implementation.

9



4.3. Brownian motion on a circle

For any standard (mean-zero, variance-one) one-dimensional Brownian mo-
tion B(t), a variance-σ2 Brownian motion on a circle is defined by

X(t) = (X1(t), X2(t)) = (cos(σB(t)), sin(σB(t))).

The polar coordinate form of its generator is simply

Lf =
σ2

2

∂2f

∂ϕ2
. (20)

The Cartesian representation is

Lf =
σ2

2

(
−x1

∂f

∂x1

− x2
∂f

∂x2

+ x2
2

∂2f

∂x2
1

− 2x1x2
∂2f

∂x1∂x2

+ x2
1

∂2f

∂x2
2

)
.

Equivalently

Lf =
σ2

2

(
−x1

∂f

∂x1

− x2
∂f

∂x2

+ ∆f − x2
1

∂2f

∂x2
1

− 2x1x2
∂2f

∂x1∂x2

− x2
2

∂2f

∂x2
2

)
.

At the two-dimensional North Pole (x1, x2) = (0, 1) of the unit circle, the
Cartesian form representation of Lf reduces to

Lf =
σ2

2

(
− ∂f

∂x2

+
∂2f

∂x2
1

)
. (21)

This formula admits an intuitive and useful interpretation. The term σ2

2
∂2f
∂x21

is

the generator of a one-dimensional random walk in the horizontal direction.
The term −σ2

2
∂f
∂x2

is the generator of vertical displacements that project a
Brownian particle moved along the tangent line back to the unit circle.

4.4. Brownian motion on a sphere

The generator for Brownian motion on the sphere Sd−1, d ≥ 2 can be con-
structed using a simple analogy with the random walk on the circle S1. In
view of the above considerations, the expected form of the generator at the
d-dimensional North Pole (x1, x2, . . . ) = (0, 0, . . . , 1) is

Lf =
σ2

2

d−1∑
i=1

(
− ∂f

∂xd
+
∂2f

∂x2
i

)
=
σ2

2

(
−(d− 1)

∂f

∂xd
+ ∆d−1f

)
, (22)
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where ∆d−1 is the Laplacian operator defined on the manifold of the first
d− 1 space directions. Since any Brownian motion is rotationally invariant,
the complete Cartesian coordinate form of the generator reads

Lf =
σ2

2

(
−(d− 1)

d∑
i=1

xi
∂f

∂xi
+ ∆f −

d∑
i,j=1

xixj
∂2f

∂xi∂xj

)
.

In the three-dimensional case (d = 3), transformation of this differential
operator to the spherical coordinates 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π yields

Lf =
σ2

2

(
1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

sin2 θ

∂2f

∂ϕ2

)
. (23)

5. Implementation of random walks

The reduced form (22) of the generator reveals that an infinitesimal Brownian
motion on Sd−1 is just the standard random walk on the (d− 1)-dimensional
tangential manifold, followed by a projection onto Sd−1. In this section, we
discuss practical approaches to implementation of random walks on Sd−1.
Some of them involve approximations that become exact as the time step
∆t goes to zero. Exact random walks lead to more sophisticated numerical
algorithms but allow the use of larger time steps than simplified approaches.

5.1. Standard random walk in Rd and on S1

The simplest distribution to implement numerically is the uniform one. We,
therefore, start with approximating Brownian motion using Donsker’s the-
orem and i.i.d. random numbers Xi,n uniformly distributed on the interval
[−1

2
, 1

2
]. Multiplying each Xi,n by the same scaling factor ξ ∈ R+, the mean

squared displacement

Var
[
‖X(t)‖2

]
= ξ2E

 d∑
i=1

(
N∑
n=1

Xi,n

)2


can be fitted to its deterministic counterpart σ2
d(t) defined by (18). We have

E

( N∑
n=1

Xi,n

)2
 =

N∑
n=1

E[X2
i,n] +

N∑
n=1

N∑
m=1
m 6=n

E[Xi,nXi,m],

11



where E[Xi,nXi,m] = E[Xi,n]E[Xi,m] = 0 since the random numbers Xi,n are
independent with mean zero. The variance of the uniform distribution on
[−1

2
, 1

2
] is

E[X2
i,n] =

∫ 1/2

−1/2

x2dx =
1

12
.

It follows that

E

( N∑
n=1

Xi,n

)2
 = E

[
N∑
n=1

X2
i,n

]
=
N

12
=

t

12∆t
,

and, therefore, Var[‖X(t)‖2] = dξ2t
12∆t

. For this variance to coincide with
σ2
d(t) = 2dDt, the random numbers Xi,n should be multiplied by

ξ =
√

24D∆t.

To simulate the standard Brownian motion on the circle S1, we recall that it
is defined by X(t) = (X1(t), X2(t)) = (cos(σB(t)), sin(σB(t))) and the polar

coordinate form of its generator is simply Lf = σ2

2
∂2f
∂ϕ2 . Hence, a random

walk on S1 can be implemented by adding random perturbations of the form
∆ϕ = ξΦ to the polar angle ϕ of the unperturbed orientation vector

p =

(
p1

p2

)
=

(
cosϕ
sinϕ

)
∈ S1.

As before, the scaling factor ξ =
√

24D∆t should be used if Φ is generated
using the mean-zero variance-one uniform distribution on [−1

2
, 1

2
].

After generating ∆ϕ, the orientation vector p is to be updated by adding

∆p =

(
∆p1

∆p2

)
=

(
cos(ϕ+ ∆ϕ)− cosϕ
sin(ϕ+ ∆ϕ)− sinϕ

)
.

This perturbation produces p+ ∆p ∈ S1 corresponding to the angle ϕ+ ∆ϕ.

5.2. Projected Cartesian random walks on S1 and S2

An alternative approach to generating a random walk on S1 is based on the
Cartesian form representation (21) of the generator Lf . The calculation of
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the perturbation vector ∆p involves two steps: random walk on the tan-
gential vector and projection onto S1. The tangential vector is collinear to
p⊥ = (−p2, p1)T . Therefore, an increment of a Cartesian random walk in
the tangential direction is p⊥ξX, where the random variable X is uniformly
distributed on [−1

2
, 1

2
] and ξ =

√
24D∆t. Projecting onto S1, we obtain

p + ∆p =
p + p⊥ξX

‖p + p⊥ξX‖
.

The perturbation vector can now be read off

∆p =

(
∆p1

∆p2

)
=

1√
1 + ξ2X2

(
p1 − p2ξX
p2 + p1ξX

)
−
(
p1

p2

)
.

In a similar vein, a random walk on the sphere S2 can be implemented as a
two-dimensional Cartesian random walk on the tangential plane followed by
a projection onto S2. An orthonormal basis for the plane tangential to S2 at
p = (p1, p2, p3)T is given by

ê1 =
1√

p2
1 + p2

3

 p3

0
−p1

 , ê2 =
1√

p2
1 + p2

3

 −p1p2

−(p2
1 + p2

3)
p2p3

 . (24)

Changing to the polar coordinates, we define an increment of a random walk
on the tangential plane as follows:

(ê1 cos(πΦ) + ê2 sin(πΦ)) ξX,

where the random variables X and Φ are uniformly distributed on [−1
2
, 1

2
],

and ξ =
√

48D∆t. Projecting onto S2, we obtain

p + ∆p =
p + (ê1 cos(πΦ) + ê2 sin(πΦ)) ξX

‖p + (ê1 cos(πΦ) + ê2 sin(πΦ)) ξX‖
.

The perturbation vector can now be read off

∆p =

 ∆p1

∆p2

∆p3

 =
1√

1 + ξ2X2


p1 + p3 cos(πΦ)+p1p2 sin(πΦ))√

p21+p23
ξX

p2 − sin(πΦ)
√
p2

1 + p2
3ξX

p3 − p1 cos(πΦ)−p2p3 sin(πΦ))√
p21+p23

ξX

−
 p1

p2

p3

 .

13



To avoid computation of the tangent plane, Brownian motion on Sd−1 can
also be approximated by the Cartesian random walk in Rd followed by an
orthogonal projection onto Sd−1. In the case d = 3, this projection-based
random walk approach yields the perturbation vector

∆p =

 ∆p1

∆p2

∆p3

 =
1√∑3

i=1(pi + ξXi)2

 p1 + ξX1

p2 + ξX2

p3 + ξX3

−
 p1

p2

p3

 ,

where the i.i.d random variables Xi, i = 1, 2, 3 are uniformly distributed on
[−1

2
, 1

2
], and ξ =

√
24D∆t. Moosaie and Manhart [6] used this random walk

approach for Monte Carlo simulations of turbulent drag reduction in fiber
suspension flows.

5.3. CDF-fitted spherical random walk on S2

In simulations of a Brownian motion on Rd, it is worthwhile to replace the
uniform distribution of the increments of the random walk with a normal
distribution. The main benefit of this approach lies in the fact that the
random walk has the exactly the same distribution as a Brownian motion
for times n∆t. Therefore, accurate computations can be performed with
relatively large ∆t. Similarly, we can define a random walk on S2. More
specifically, suppose that the random variable X̂3 represents the vertical co-
ordinate of the Brownian motion on a sphere in the rotated frame at t = ∆t.
The corresponding probability density distribution is given by (9). Using the
tangential basis vectors ê1 and ê2 defined by (24), we update the orientation
vector p = (p1, p2, p3)T by adding perturbations of the form

∆p = (X̂3 − 1)p +

√
1 + X̂2

3 (ê1 cos(2πΦ) + ê2 sin(2πΦ)) , (25)

where the random variable Φ is uniformly distributed on [−1
2
, 1

2
].

Let Fτ (x) = P(X̂3 ≤ x), x ∈ [−1, 1], τ = D∆t denote the cumulative
distribution function (CDF). By (9) we have

Fτ (x) =
∞∑
n=0

2n+ 1

2

∫ x

−1

Pn(y)dy. (26)
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Since ∫ x

−1

Pn(y)dy =
1

2n+ 1
(Pn+1(x)− Pn−1(x)) , P−1 ≡ 0,

formula (26) also could be rewritten as

Fτ (x) =
x

2
+

1

2

∞∑
n=1

exp (−n(n+ 1)τ) (Pn+1(x)− Pn−1(x)) . (27)

Then X̂3 can be simulated numerically as

X̂3 = F−1
τ (U), (28)

where U is uniformly distributed on [0, 1]. Unfortunately, the CDF defined
by (26) cannot be easily inverted to transform U ∈ [0, 1] into X̂3 defined by
(28). Using approximation (10), Chen and Yu [8] replaced Fτ (x) by

F̃τ (x) = exp

(
−arccos2 x

4τ

)
. (29)

The resulting closed-form expression for X̂3 reads

X̂3 = cos(
√
−4τ ln(U)). (30)

Since the derivation of (10) is based on the assumption that τ � 1, the
cumulative probability F̃τ (x) may become a poor approximation to Fτ (x)
defined by (26) as τ increases. Accurate results can only be expected for
τ ≤ 0.1 (see Fig. 3 in [8]). To avoid large modeling errors, the approximate
CDF formula (30) should not be used for τ > 1.

As an alternative to approximating Fτ (x) by F̃τ (x), we calculate the cumu-
lative probabilities Fj = Fτ (xj), xj = j/M for j = −M, . . . ,M off-line and
store the results in a look-up table. Since Fτ is continuous and increasing on
[−1, 1], it attains each intermediate value. It follows that for any U ∈ [0, 1]
there exists an index j such U ∈ [Fj−1, Fj]. Let F j

τ (x) be the linear inter-
polant of Fj−1 and Fj, i.e.,

F j
τ (x) = Fj−1

xj − x
∆x

+ Fj
x− xj−1

∆x
, x ∈ [xj−1, xj], ∆x =

1

M
.
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Then (F j
τ )−1 : [Fj−1, Fj]→ [xj−1, xj] is linear too and can be used to calculate

X̂3 = (F j
τ )−1(U) = xj−1

Fj − U
Fj − Fj−1

+ xj
U − Fj−1

Fj − Fj−1

for our spherical random walk approach based on the use of look-up tables.

Note that if τ is large enough so that the sum in (27) is negligible so that

Fτ (x) ≈ x

2
,

then the new position of the particle is uniformly distributed on a sphere
and we do not need any formulas to simulate it - just pick a new position at
random with uniform distribution on the sphere.

6. Case study: orientation tensors

In this section, we compare and evaluate different random walk approaches
to Monte Carlo simulation of fiber orientation dynamics. The probability
density distribution f : Sd−1 → R+ can be reconstructed from instantaneous
orientations pm of Nf evolving Brownian fibers using (14) or the representa-
tion of f(p, t) in terms of orientation tensors [12]. In practical applications,
the effective stress of a semi-dilute fiber suspension depends on the orienta-
tion tensors corresponding to the second and fourth-order moments

A(t) =

∫
Sd−1

p⊗ p f(p, t) dp = {Aij}di,j=1 , (31)

A(t) =

∫
Sd−1

p⊗ p⊗ p⊗ p f(p, t) dp = {Aijkl}di,j,k,l=1 (32)

which provide sufficient information for rheological modeling purposes.

Substituting reconstruction (14) into (31) and (32), we obtain

A =
1

Nf

Nf∑
m=1

pm ⊗ pm, (33)

A =
1

Nf

Nf∑
m=1

pm ⊗ pm ⊗ pm ⊗ pm, (34)
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where Nf is the number of evolved fibers. Remarkably, the so-defined tensors
A and A can be calculated without reconstructing f .

The following abbreviations are used for the methods under investigation:

• RW-CP: Cartesian random walk in R3 + projection onto S2 (Section
5.2);

• RW-TP: Random walk on the tangential plane + projection onto S2

(Section 5.2);

• RW-VH: Random walk in the vertical direction + random walk on the
horizontal plane (Section 5.3).

An additional letter X∈ {A,E} is used in abbreviations of the form RW-VH-X
to distinguish between two different implementations:

• RW-VH-A: Approximate random walk method of Chen and Yu [8];

• RW-VH-E: Exact random walk using look-up tables for the CDF.

Numerical studies of the above methods are performed for the three-dimen-
sional spherical heat equation (1). In the first set of numerical experiments,
the initial condition is the δ distribution (5) corresponding to

p0 = (0, 0, 1)T .

The components of exact orientation tensors are given by

Aij(t) =

∫ 2π

0

∫ π

0

pi(θ, ϕ)pj(θ, ϕ)f(cos θ, t) sin θdθdϕ, (35)

Aijkl(t) =

∫ 2π

0

∫ π

0

pi(θ, ϕ)pj(θ, ϕ)pk(θ, ϕ)pl(θ, ϕ)f(cos θ, t) sin θ dθdϕ, (36)

where f(x̂3, t) is the azimuthal probability distribution defined by (9). The
above integrals can be further simplified by making an appropriate change
of variables. For example, A33 written in terms of u = cos θ becomes

A33(t) = 2π

∫ 1

−1

u2g(u, t)du, (37)
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where

g(u, t) =
1

4π

m∑
n=0

(2n+ 1) exp[−n(n+ 1)Dt]Pn(u). (38)

The number of terms in the truncated series approximations to f(θ, t) must
be chosen sufficiently large to obtain the exact value of the given tensor
component. In fact, orientation tensors of any order are uniquely defined by
the first coefficients cj of the truncated sum approximation (12) by a linear
combination of spherical harmonics ψj. Hence, the exact values of Aij and
Aijkl can be calculated using a small number m of terms in (38). More terms
are generally required to calculate higher-order orientation tensors exactly.

To obtain a good approximation of orientation tensors in Monte Carlo sim-
ulations leading to (33) and (34), the number Nf of particles to be evolved
must be chosen sufficiently large. Figure 2 illustrates the influence of the
number of particles on the accuracy of numerical results. It can be seen
that as many as 3,000 particles may be required to capture the evolution of
A33 with high precision. The results obtained with other approaches exhibit
similar dependence on the number of particles. In the remaining numerical
experiments of this section, we perform random walks with 4,000 particles.

The approximations to A33 presented in Figures 3-4 indicate that all random
walk methods under consideration produce similar results for small values of
the scaled time step τ = D∆t. Figure 5 demonstrates that our exact random
walk (RW-VH-E) outperforms RW-CP and RW-TP as the time step increases
and the accuracy of projection-based methods deteriorates. Note that the
exact solution displayed in this figure is plotted with much higher resolution
than the numerical solutions which are available only at the discrete time
instants corresponding to nτ for n = 0, 1, . . . and τ = 1.0 in this test.

For further comparison of different methods, we perform Monte Carlo simu-
lations for a randomly chosen initial state. In this set of experiments, the ori-
entation angles of sample fibers at t = 0 are defined by Θ = π

6
U and Φ = 2πU,

where U is a random variable uniformly distributed on [0, 1]. This variable
is generated using an identical seed for all methods. For each method, we
present the results obtained with three different time steps. Since no exact
solution is available for the case of random initial data, the results corre-
sponding to τ = 0.01 serve as reference solutions for each method. Indeed,
this value of τ was found to produce sufficiently accurate approximations to

18



the known exact solution of the first test problem (see Figure 3).

The numerical approximations to the component A33 of the second-order
orientation tensor are shown in Figures 6-9. Note that the RW-VH-E solution
obtained with τ = 1 is as accurate as the reference solution throughout the
simulation run, whereas other methods produce significant errors after the
first large time step. As in the first test, all methods provide yield predictions
for the constant value of A33 to which the reference solution converges as time
goes. Clearly, individual components of low-order orientation tensors provide
limited information about the probability distribution. As another quantity
of interest, we consider the mean-squared angular displacement

MSD(t) =
1

Nf

Nf∑
m=1

(θm(t)− θm(0))2,

where Nf is the number of samples. The evolution of MSD for the two ver-
sions of RW-VH is shown in Figures 10-11. The RW-VH-A method produces
a significant overshoot after the first time step corresponding to τ = 1. The
random walk approach using the look-up table (RW-VH-E) is seen to produce
excellent results for all three values of τ already at early stages. We conclude
that it is better suited for simulating dynamic changes of orientation states
with large time steps than any other method considered in this study.

7. Conclusions

It is hoped that the presented analysis of spherical Brownian motions gives
additional insights into their mathematical properties and numerical behavior
of random walk methods for Monte Carlo simulations. Clearly, the random
walk methodology is not restricted to simulations of pure Brownian diffusion.
It can readily be extended to Lagrangian models of orientation dynamics in
which moving fibers may also be advected or rotated by deterministic ve-
locity fields. The presented methodology is currently being used to simulate
Brownian diffusion effects in non-Newtonian models of fiber suspension flows.
Simulation results for the 3D axisymmetric contraction benchmark and nu-
merical studies of closure approximations will be presented elsewhere.
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Figure 2: Dependence of the RW-CP results for A33 on the number of particles. Test
problem: spherical heat equation with the initial condition given by the δ distribution.
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Figure 3: Evolution of A33 in random walks using τ = 0.01 vs. the exact solution. Test
problem: spherical heat equation with the initial condition given by the δ distribution.
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Figure 4: Evolution of A33 in random walks using τ = 0.1 vs. the exact solution. Test
problem: spherical heat equation with the initial condition given by the δ distribution.
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Figure 5: Evolution of A33 in random walks using τ = 1.0 vs. the exact solution. Test
problem: spherical heat equation with the initial condition given by the δ distribution.
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Figure 6: Evolution of A33 in random walks using RW-CP. Test problem: spherical heat
equation with the random initial condition.
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Figure 7: Evolution of A33 in random walks using RW-TP. Test problem: spherical heat
equation with the random initial condition.
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Figure 8: Evolution of A33 in random walks using RW-VH-A. Test problem: spherical
heat equation with the random initial condition.
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Figure 9: Evolution of A33 in random walks using RW-VH-E. Test problem: spherical
heat equation with the random initial condition.
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Figure 10: Evolution of MSD in random walks using RW-VH-A. Test problem: spherical
heat equation with the random initial condition.
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Figure 11: Evolution of MSD in random walks using RW-VH-E. Test problem: spherical
heat equation with the random initial condition.
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