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OSCILLATION IN A POSTERIORI ERROR ESTIMATION

CHRISTIAN KREUZER AND ANDREAS VEESER

ABSTRACT. In a posteriori error analysis, the relationship between error and
estimator is usually spoiled by so-called oscillation terms, which cannot be
bounded by the error. In order to remedy, we devise a new approach where the
oscillation has the following two properties. First, it is dominated by the error,
irrespective of mesh fineness and the regularity of data and the exact solution.
Second, it captures in terms of data the part of the residual that, in general,
cannot be quantified with finite information. The new twist in our approach
is a locally stable projection onto discretized residuals.

1. INTRODUCTION

Finite element methods are a successful and well-established technique for the
solution of partial differential equations. A key tool for the quality assessment of a
given finite element approximation and the application of adaptive techniques are
so-called a posteriori error estimators. These are functionals that are computable
in terms of data and the finite element approximation and aim at quantifying the
approximation error. For all known estimators, their actual relationship to the error
is spoiled by oscillation, i.e., by some additive terms measuring distances between
non-discrete and discrete data. Remarkably, oscillation may be even greater than
the error. This flaw directly interferes with the quality assessment and, on top of
that, it weakens results on adaptive methods and complicates their proofs.

In this article we introduce a new approach to a posteriori error estimation, where
oscillation is error-dominated, i.e. it is bounded by the error of the finite element
approximation, up to a multiplicative constant depending on the shape-regularity
of the underlying mesh.

We illustrate this new approach in the simplest case, where the weak solution
u € H}(Q) of the Dirichlet-Poisson problem

(1.1) —Au=f inQ, u=0 on 0Q

is approximated by the Galerkin approximation U that is continuous and piecewise
affine over some simplicial mesh M of Q. It is instructive to start by recalling the
a posteriori error bounds in terms of the standard residual estimator

1/2
(1.2) Er(U, fM) = ( > hl T ox) +h?<|f|2m<x)> ;
KeM

see, e.g., Ainsworth and Oden [2] or Verfiirth [25]. If f € L?*(Q), then the energy
norm error [u — Ul g1 (o) and the estimator are almost equivalent. More precisely,
we have

(13) HU_U‘|H§(Q) < gR(Ua faM)7 ER(Uv va) < HU_U”H‘%(Q) +OSC0(f7M)a
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where the interfering oscillation is given by

) 1
(1.4)  osco(f, M)? := Z h|f - POvaH%Q(K) with - Po v flre = M/ !
KeM K

Let us discuss the relationship of this classical L2-oscillation and the energy norm
error; for the proofs of the nontrival statements, see §3.8. Customarily, oscillation is
associated with higher order. This idea is supported by the following observation:
if fis actually in H*(Q), then osco(f, M) = O(h%,) as haq := maxgen hix \, 0.

On any fized mesh however, the oscillation oscy(f, M) may be arbitrarily greater
than the energy norm error |u— Ul g1 (q)- This is a consequence of the fact that the
L2-norm is strictly stronger than the H~!-norm. The use of the L?-norm in (1.4)
can be traced back to its use in the element residual hg | f||L2(x) in (1.2) and so it
can be motivated by the request for the computability of the estimator. In fact, in
contrast to an element residual based upon some local H~!-norm of f, this form
reduces to the (approximate) computation of an integral.

One may think that the use of the L2-norm is the only reason for the possible
relative largeness of oscillations like osco(f, M). Yet, Cohen, DeVore and Nochetto
present in [11] a striking example which entails that even the H~!-oscillation

. 2
w5 gegél(%\\f 9l
with Po(M) := {ge L*(Q) | VK € M g|k is constant}

from Braess [7] and Stevenson [22] may converge slower than the error; see Lemma 21
below. Notice that this contradicts the aforementioned idea that osco(f, M) is al-
ways of higher order and, moreover, in view of osco(f, M) < Er(U, f, M), it entails
that also the estimator Er (U, f, M) may decrease sightly slower than the error.

The key tool to overcome the shortcomings of the above oscillations is a new
projection operator P4 enjoying the following properties; see §§3.3-3.5:

e Py f is discrete for any functional f € H=1(Q). In comparison to Py aq, the
image of P4 is enriched by the span of the face-supported Dirac distributions
and so contains true functionals.

e Prf is computable in a local manner. Here computable means that it can
be determined from the information available in the linear systems for finite
element approximations.

e The local dual norms of the new oscillation f — Prqf are dominated by cor-
responding local errors. This property hinges on the face-supported Dirac
distributions and on local H~!-stability of P, f.

e In contrast to the local dual norms of the residual f+ AU, the local dual norms
of the discretized residual Ppqf + AU can be estimated from below and above
in a computable manner.

Thanks to these properties, we derive in §§3.6-3.7 abstract a posteriori bounds such
that the oscillation is bounded by the error. In §4 we provide several realizations
leading to hierarchical estimators and estimators based on local problems or based
on equilibrated fluxes. Furthermore, in §4.2 we show that an extension of the
standard residual estimator (1.2) onto the image of P satisfies

(1.6) lu = Ul o) = ER (U Padf, MY + 30 1 = Paaf -1 o
zeV
where V stands for the set of vertices of M and w, is the star around the vertex z.
A comparison with (1.3) immediately yields:
e Both Er (U, f, M) and the right-hand side of (1.6) bound the energy norm error
in terms of U, f, and M. However, while the latter one is free of overestimation,
the first one may overestimate, even asymptotically.
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e Since Paqf is discrete and computable in the aforementioned sense, we have
that Eg (U, P f, M) is also computable, while g (U, f, M) is not.

e Equivalence (1.6) thus splits the estimation of the error in two parts, reflecting
the spirit of Verfiirth [25, Remark 1.8] and Ainsworth [1, Section 3.1]: One part
is computable and related to the underlying differential operator. The other
one depends solely on data; its computation, or rather estimation, hinges on
a priori knowledge.

2. MODEL PROBLEM AND DISCRETIZATION

In order to exemplify our new approach to a posteriori error estimation, we con-
sider the homogeneous Dirichlet problem for Poisson’s equation and the energy norm
error of the associated linear finite element solution. The purpose of this section is
to recall the relevant properties of this boundary value problem and discretization.

We shall use the following notation associated with a (Lebesgue) measurable set
wof R?, d e N. Given m € N, we let L?(w; R™) denote the Lebesgue space of square
integrable functions over w with values in R™. We write (v, w) and | - |2 for its
scalar product and its induced norm. For m = 1, we abbreviate L?(w;R) to L?(w).

If w = R? is non-empty and open, H'(w) stands for the Sobolev space of all func-
tions in L?(w) whose distributional gradient is also in L?(w;R?). Moreover, we let
H}(w) be the closure in H!(w) of all infinitely differentiable function with compact
support in w. If the boundary dw of w is sufficiently regular (e.g., Lipschitz), this
are all functions in H!(w) with vanishing trace on the boundary dw. Thanks to
Friedrichs’ inequality, Hj(w) is a Hilbert space with scalar product (V-, V-) and
norm |V - ||,. As usual, H~!(w) indicates the dual space of HJ(w), i.e. the space of
linear and continuous functionals on H}(w). We identify L?(w) with its dual space
and thus have

(2.1) Hj(w) c L*(w) ¢ H ' (w).
The norm of H~!(w) is given by

&, w)y,,
I€] f-1(w) == sup

, (e H Y (w),
weH} (w) vaHw

where the dual brackets (¢, w), = {(w), w € Hj(w), extend-restrict the scalar
product in L?(w). If D = R? is a set such that D is suitable for one of the preceding

notations, we also use D instead of the more cumbersome D), e.g. we write also
HY(D) instead of H*(D).

Let © be an open, bounded and connected subset of R¢ whose closure can be
subdivided into simplices. We shall omit {2 in the notation of dual pairings and
norms. The weak formulation of (1.1) reads as follows:

Given fe H*(Q), find u = uy € H}(Q) such that

(2.2) )
Yoe Hy(Q) (Vu, Vuy ={f, v).

In other words: we are looking for the Riesz representation of f in H}(Q). Notice
that the Riesz representation theorem establishes an isomorphism between the space
H}(Q) of solutions and the space H~1(Q) of loads. In particular, a unique solution
exists not only for f € L?(Q) but for all f € H~1(2). This fact suggests that, at
least conceptually, an approximation method for (2.2), along with its a posteriori
analysis, should cover also loads in H~1(Q).

In order to approximate the solution of (2.2), we use a Galerkin approximation
based upon finite elements. For the sake of simplicity, we restrict ourselves to
simplicial meshes and lowest order.
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Let M be a simplicial, face-to-face (conforming) mesh of the domain . Given
an element K € M, we denote by hx := diam K := sup, ,cx [z — y| its diameter
and by pg := sup{diam B | B ball in K} the maximal diameter of inscribed balls.
In what follows, ‘<’ stands for ‘< C”, where the generic constant C may depend on
d and the shape coefficient

hk
M) := ma ith =
o(M) max ox - wi oK p
In the case of both inequalities ‘<’ and ‘Z’, we shall use ‘~’ as shorthand.

An interelement face of M is a simplex F' with d vertices arising as the intersec-
tion F' = K71 n K> of two uniquely determined elements K, Ko € M. Its associated
patch is

(2.3) wr = K U Ks.

We let F = F(M) denote the set of all (d — 1)-dimensional interelement faces of

M. Given F € F and K € M with F < K, we write

d|K]|

(2.4) hir =
|F|

for the height of K over F.
Furthermore, V = V(M) stands for the set of all vertices of M. To any vertex
z € V, we associate the sets

W, ::U{KEMZKSZ}, o, ::U{FEJ:ZFSZ},

for which we have

€ [pK’hK]

(2.5) HEKeM|Kasz} <#{FeF|Faz <1
If K e M with K c w, for some z € V, then the diameter h, of w, verifies
(2.6) hg <h, S hg.

Moreover, if e is a direction, i.e. e € R? with |e| = 1, we write h,.. for the maximal
length of a line segment in w, with direction e. Then

(2.7) p. = inf h,.
le|=1
verifies

whenever K € M with K ¢ w,.
Let P be the space of polynomials of degree at most k € N over R? and let

Pe(M) :={V € L*(Q) | V|k € Py(K) for all K € M}

be its piecewise counterpart over M. The space of continuous, piecewise affine
functions over M is then

V(M) := Py (M) n H'(Q) = Py (M) n C°().
Its nodal basis {¢.}.cy is defined by
¢, € V(M) such that ¢.(y) := 6y for all z,y € V.
This basis provides the nodal value representation
V=) V()¢
zeV
for any V € V(M) and the partition of unity
(2.9) D=1 inQ,

zeV
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where, for each vertex z € V, we have supp ¢, = w,, with skeleton o,. Finally, we
recall that, for any element K € M and any powers o, € Ny, z € V n K, we have

d'T] a,!
(2.10) / ¢g = VOl |K.
K zegk' (Xsevnk @z +d)!

The finite element functions satisfying the boundary condition in (2.2) form the
space

Vo(M) :={VeV(M)|V(z) =0 forall ze V n dQ} = Py (M) n Hj(Q).
The associated Galerkin approzimation U = Uy, p is characterized by
(2.11) U e Vy(M) such that VYV e Vo(M) (VU, VV) ={f, V).

Notice that the right-hand side and so U are well-defined, also for f € H~(Q),
thanks to the conformity of Vo(M). Céa’s lemma states that the Galerkin approx-
imation is the best approximation with respect to the energy norm error, i.e.,

(2.12) IVu—VU|q < [Vu—VV]q  forall Ve Vo(M).

In order to determine the Galerkin approximation U, one usually obtains its
values at the interior vertices Vy := V nQ by solving the symmetric positive definite
linear system

Ma =F,

where

(2'13) o= (U(Z))ZEVoa M = (<V¢)Z, v¢y>)y,zel)0’ F = (<fa ¢y>)y€Vo‘

We thus see that the Galerkin approximation U is computable whenever the load
evaluations

(2.14) {f, dy),y € Vo, are known exactly.

Strictly speaking, these evaluations are in general not computable. In fact, even
if f e L*(Q) is a function, the evaluation of {f, ¢,) = [, fd, requires the compu-
tation of an integral, which in general can be done only approximately by means
of numerical integration. Notwithstanding, error analyses of approximations like
(2.11) have proved very useful for the theoretical understanding and underpinning
of finite element methods and are therefore very common. Accordingly, we shall
suppose that the evaluations (2.14) are known to us. In §3.6 below, we will discuss
which kind of additional information is used in our a posteriori analysis.

3. A POSTERIORI ANALYSIS WITH ERROR-DOMINATED OSCILLATION

We present our new approach to a posteriori error analysis by deriving bounds
for the energy norm error of the Galerkin approximation (2.11). The key feature of
these bounds is that all involved terms are dominated by the error.

3.1. Residual norms. Given some load f € H~!(Q) and a Galerkin approximation
Ut m, we want to quantify the energy norm error |V(uy — Uf,aq)|, where the exact
solution uy of (2.2) is typically unknown to us.

Our starting point is the so-called residual Res(f; M) e H=() given by

(Res(f; M), vy := (f, v) —(VUjs.p, V)  for all v e H}(Q).

It is defined in terms of data and the computable Galerkin approximation and
vanishes if and only if the latter equals the exact solution. The following lemma
shows that appropriately measuring the size of the residual relates to the error.

Lemma 1 (Error, residual and load). We have

IV(uy = Upir)| = [Res(fs M) a-10) < [flr-1(0)-
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Proof. Thanks to the differential equation in (2.2), we have, for all v e H}(Q),
B.1)  (Res(fs M), v) =(V(uy = Upim), Vo) = (=A(uy = Upnm), v,

where —A indicates the distributional Laplacian. Consequently, the claimed equal-
ity follows from the fact that —A : H}(Q) — H~1(£) is an isometry (which follows

from the Cauchy-Schwarz inequality in L?(£2) and from testing with v = uz—Uf,aq).
The claimed inequality follows by invoking also (2.12):

IV(us =Upa)ll < [Vug = [ fla-1)- O

Thus, we aim now at quantifying the dual norm || Res(f; M)||z-1(q). The follow-
ing simple observation shows that this task requires much more information than
computing the Galerkin approximation.

Lemma 2 (Bounding residual norms). Without any a priori information on the
load f € H'(Q), the residual norm || Res(f; M)| g-1(q) cannot be bounded in terms
of a finite number of adaptive evaluations of the form: {f, v) with ve HZ ().

Proof. Suppose that the claim is false. Then, for each f € H~(Q), there is a
number B(f) = || Res(f; M)| z-1(q) which is given in terms of evaluations (f, v;),
i =1,...,nf, where the choice of v; may depend deterministically on the previous
evalutations (f, v1),...,{f, v;_1). Fix some functional 0 # ¢ € H~1(Q). Since
H}(Q) is infinite-dimensional, we can choose a normalized w € HJ(f2) that is per-
pendicular to V(M) and all test functions v;, i = 1,...,n, associated with £. Set
§ := 3B({)(—A)w and observe that Us.pq = 0 and (0, v,y = 0 for all i = 1,..., n,.
Therefore £ + 0, v;y = {{, v;) and we obtain the contradiction

= H(SHH—l(Q) — H ReS(E;M)HH—l(Q) = 33(@ — B(E) = 23(5) > 0. |

Remark 3 (Load evaluations vs exact integrals). A similar yet simpler argument
shows that, without any a priori information on f € L?(Q), also |f| cannot be
bounded in terms of adaptive evaluations [, fv with v € L*(€).

Before discussing in §3.3 repercussions of Lemma 2, it is useful to take into
account a further requirement for a posteriori bounds.

3.2. Localized residual norm. Adaptive mesh refinement is an important ap-
plication of a posteriori bounds. It is usually based upon the comparison of local
quantities. Therefore, it is of interest to split a posteriori bounds, or the residual
norm itself, into local contributions.

Such a localization appears implicitly, e.g., in the a posteriori error analysis of
Babuska and Miller [3]. It is based upon the W®-partition of unity (2.9) and the
orthogonality property:

(Res(f; M), ¢.) =0 forall ze Vo =V n Q.
We thus introduce the subclass
R i={le H Q)| YV e Vo(M) &, V) =0}
of residuals associated with Galerkin approximations. Recall that supp ¢, = w, and
that H!(w,) is a shorthand for H=1(&,).
Lemma 4 (Localization). Let £ € H=(Q) be any functional.
(i) If £ € Rnm, then

[y S Z 1€1%-1 (0
zeV

where the hidden constant depends only on d and the shape coefficient o(M).
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(i) We have

> [l (o.y < (d 4+ DI F-1 0
zeV

Proof. See also Cohen, DeVore, and Nochetto [11, §3.2 and §3.4], Ern and Guer-
mond [12, Proposition 31.7] or Blechta, Mdlek, and Vohralik [5, Theorem 3.7]. For
the sake of completeness, we provide details. In order to show (i), we fix an arbitrary
ve HY(Q). In view of the partition of unity (2.9) and £ € R ¢, we can write

(3.2) Wvy =Y vy = Y L, (v—c2)é2),
zeV z€V
where the reals ¢, € R are given by
[, vo.dx
X
Thanks to 0 < ¢, < 1, the inverse estimate |V¢.|px(,,) < maxgceo, P < hit

and the Poincaré-Friedrichs inequality |[v — ¢;[w. < h.|Vv|w, (see, e.g., Nochetto
and Veeser [20, Lemma 4]), we have, for any z € V,

(33)  [V((v=c2):) . <IVV[w. + [0 = €2l VPl 12wy < Coprn VOl

Cy for 2€Vy, and ¢, =0 for z € V\V.

where the constant C, () depends only on o(M). Thus, (3.2) leads to

1/2
<6< Y -1 | Vol < Vd+1 (Z Iéllffuwz)) Vo]

zeV zeV

and the proof of (i) is finished.
To prove (ii), we let v, € H(w,) with |[Vv,|,. < 1 for any node z € V and set
v=">,cp{{ vyv. € Hj(Q). Then

2
D50 = ) < | Vo,
zeV
and, with the help of two Cauchy-Schwarz inequalities,

Vo2 = < 0l vy /K Vo. - Vo,

KeM z,yeVnK

< Y X @D u) PIVei = (d+1) D1 v

KeM zeVnK zey
Consequently, we conclude (ii) by taking the suprema over all v, for all ze V. O

Thus, in the context of adaptive mesh refinement, we are also interested in quan-
tifying the single terms of the localized residual norm

(3.4) | Res(f; M) 31000y = D [ Res(fs M) 31,y
zeV

Of course, we face the same problem for the local residual norms as for the global
one.

Corollary 5 (Bounding local residual norms). Without any a priori information
on f e H'(Q), each local residual norm |Res(f, M)|g-1(.), 2 € V, cannot be
bounded in terms of a finite number of adaptive evaluations of f.

Proof. Replace the domain €2 by w, in the proof of Lemma 2 and extend functionals
in H~'(w,) by 0 on the orthogonal complement of H{(w,) in H}(Q). O
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3.3. Towards error-dominated oscillation. In view of Lemma 2 and Corol-
lary 5, a posteriori bounds for the residual norm or its localized variant require
knowledge on the load f beyond a finite number of evaluations. The actual knowl-
edge of f can be of different nature and, accordingly, may require different tech-
niques. Here we want to address only aspects of a posteriori error estimation that
are independent of the nature of this knowledge. Correspondingly, we split the
residual into an discretized residual and data approximation:

(3.5) Res(f; M) = (PMf + AUf;M) + (f — PMf)

where P maps onto a subspace D(M) of H=1(£) such that

o |Paf + AUpa| -1 (1) can be bounded with the help of a finite number of
evaluations of f and

e the task of bounding | f —Pa f| g1 (m) hinges only on knowledge of the load f;
this task may be viewed as a matter of approximation theory since, apart from
the choice of the norm, it is independent of the boundary value problem (2.2).

Here we have used the localized dual norm | - || z-1(x4) in order to allow for appli-
cations in mesh adaptivity. It is then desirable that both parts are dominated by
the error, i.e., we have

(3.6a) [Pamf + AU pml -1 ) S [V (up = Upm) |
(3.6b) If = Prmfla-—ray S IV(ugp —Upa)ll-

In view of Lemma 1 and Lemma 4, the two conditions are equivalent.

The construction of a suitable mapping P, is the new twist in our approach.
In order to get first hints on this, let us test out several candidates with necessary
conditions arising from (3.6Db).

The proof of Corollary 5 suggests that the problem lies in the fact that f is taken
from an infinite-dimensional space. The projection Py r¢ into discrete data from
(1.4) is thus a candidate for Paq. This choice, however, does not verify (3.6). In
fact, Lemma 1, Lemma 4 (ii), and (3.6b) imply the stability estimate

(3.7) IPrf =2y < [ fll =20

while Py a4 f is not even defined for a general f € H~'(Q2) (and cannot be continu-
ously extended; cf. Lemma 20).

This flaw is easily remedied. For any element K € M, we replace in (1.4) the
characteristic function xx of K by the weighted mean

(2d + 1)!

(3.8) Vi = AR

[] ¢-€H;(K) with /KwK=1

zeVNK

thanks to (2.10) and consider

(3.9) Pomf = Y, {frbr)xx
KeM

Since ¢x € HA(K) c HA(Q) is an admissible test function, the operator Py a is
defined for all functionals in H~1({2) and satisfies the stability estimate (3.7); see
Remark 11 below.

But still, the new operator 750),\4 does not verify (3.6). To see this, consider
f=—AV with V € Vy(M) arbitrary. We then have

ug = Upm
and therefore Res(f; M) = 0 and property (3.6b) entails
(3.10) YV eVo(M) Pum(AV) = AV.
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In addition, integration by parts yields that, for all v e H}(Q),
(3.11) (AV, v) = —/ VV-Vu= > / J(V)vds,
Q Fer’F

where ds indicates the (d — 1)-dimensional Hausdorff measure in R? and J(V) is
the jump in the normal flux VV - n across interelement sides. More precisely, if
F = K, n K> is the intersection of the elements K7, Ko € M with respective outer
normals 11, ne, then J(V)|p := VV|k, -n1 + VV|g, -ng e R. If V # 0, then we
have also AV # 0, while (3.11) yields Py (AV) = 0, in contradiction with (3.10).
Hence (3.6) does not hold for Py .

The two conditions (3.7) and (3.10) are central to our goals. Although they can be
checked without involving the Galerkin approximation (2.11), they are also sufficient
for (3.6), Incidentally, they imply that P has to be a near best ‘interpolation’
operator in light of the Lebesgue lemma.

The failure of (3.10) for Py a4 is not related to the choice of the test functions
Vi, K € M, but to its range. In fact, (3.11) and the fundamental lemma of calculus
of variation show that AV ¢ L?(Q) whenever V # 0, while Py ((Vo(M)) < L(Q).
In other words: to remedy, we have to change the range.

Finally, it is desirable that Pa is a local operator for two reasons. First, this
comes in useful when evaluating Py. Second, since —A is a local operator, we have
the following lower bound for the local error:

(3.12) | Res(f; M) 11w,y < IV(uy = Upn) o

which follows from testing (3.1) with all v from Hg (w,). This bound can be exploited
if we strengthen (3.6) to the local conditions

(3.13a) 1Patf + AUppal-10r) S | Res(F5 M) -1 o)
(3.13b) I1F = Paaflison < I Res(fs M) 11 o)

for all z € V. We shall therefore demand the stability (3.7) and invariance (3.10) in
a suitable local manner.

In order to formulate local invariance, let us introduce the following notations
associated with an open subset w = Q. If 1,0, € H~1(Q), we say {1 = l5 on w
whenever {1(v) = l3(v) for all v € H}(w). Moreover, we write ¢; € D(M) on w
when additionally ¢5 can be chosen such that ¢ € D(M). Notice that, thanks to
the fundamental lemma of the calculus of variations, these notions reduce to the
usual ones if £ € L*(2), i.e. £(v) = [, gv for all v e Hg ().

Let us summarize our discussion by a list of desired properties for the operator
P and its range D(M) = H~1(Q), which corresponds to the set of all possible
discretized residuals. This list provides the guidelines for our approach and choices.
Denoting by A(Vo(M)) = {AV | V € Vo(M)} the image of Vo(M) under the
distributional Laplacian, we aim for the following properties:

(3.142) A(Vo(M)) < D(M),

(3.14b) if £ € D(M) on &, then ||| g-1(,_ ) is quantifiable with a finite number
of evaluations of £,

(3.14c) Py is linear,

(3.14d) Paqf is locally computable in terms of a finite number of evaluations

of f,
(3.14e) if £ e D(M) on w,, then Pal = £ on w,,

(3.14f)  [Patllz-1(w.y < Il m-1(w.) for all L€ H™ ' (w.).

Regarding the above discussion, we have that conditions (3.14f), (3.14e) and (3.14a)
are equivalent to (3.13); cf. §3.7. Conditions (3.14d) and (3.14b) allow to quantify
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the local dual norms of the approximate residual Paf + AUspq € D(M) in a
computable manner; compare also with §3.6 below.
In the next three sections we construct two operators Pp4 fulfilling (3.14).

3.4. Discretized residuals and a locally stable biorthogonal system. We
present a possible choice of the set D(M) of discretized residuals and introduce
an associated biorthogonal system, which is instrumental in constructing a suitable
operator Py with range D(M).

We set

(3.15) D(M):={te H Q)| U, v)= Z /Kchder Z /Fcdes

KeM FeF
for all v e H(Q) with cx,cp e R for K € M, F e F}.

Every functional ¢ € D(M) is thus constant on each element and on each face.
Obviously, condition (3.14a) is verified. More precisely, D(M) is a strict superset
of A(Vy(M)), since in A(Vo(M)) only certain linear combinations of the constants
cp, F' € F are allowed. The fact that these constants are independent in D(M)
facilitates the definition of Pys. Moreover, we have added the contributions given
by the constants cx, K € M, for comparability with the classical oscillations and
a posteriori error estimators and because similar contributions will appear for higher
order elements; cf. Kreuzer and Veeser [15]. In spite of these enlargements, we still
have dimD(M) < oo. Consequently, an argument as in the proof of Lemma 2,
which hinges on infinite dimension, is ruled out.

Let us associate a biorthogonal system with D(M). To this end, we introduce
the surface Dirac distributions
{H&(Q) - R

(3.16a) XF : e [avds,

FelF,
and we identify the characteristic functions xx, K € M, with their associated
distributions

(3.16b) XK :

{H&(Q) - K, KeM.

— [ vde,
Notice that the definitions of xr and x involve different measures for integration:
the (d — 1)-dimensional Hausdorff measure for xr and the d-dimensional Lebesgue
measure for xg. Correspondingly, each y g is absolutely continuous and each y g is
singular with respect to the d-dimensional Lebesgue measure.

We collect all elements and interelement faces in the index set Z = Z(M) :=
M U F and derive in the next lemma the properties of the functionals y;, i € Z,
that are of interest to us.

Lemma 6 (Basis and scaling). The functionals x;, i € Z, are a basis of D(M). For
any element K € M and any face F € F containing a vertex z € V, we have

Xk ltr-1 oy < IE[V2 2 and |xpli-1 . < |FIV25Y2
with p, from (2.7).
Proof. We will use the Friedrichs inequality
(3.17) Voe Hi(w:) ol <51Vl

and the following trace theorem: if F' € F with F' 5 z and n denotes a normal of
F', then

1
(3.18) Vwe Wol(w.)  |wlpir < 5V nloi).
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Given K € M with K 3 z and any v € H}(w,), the Cauchy-Schwarz inequality and

(3.17) yield
/ vdx
K

which verifies the first claimed inequality. To show the second one, fix F' € F with
F 5 z and let again v € Hg(w,). Using (3.18) with w = v? and then again (3.17),

[xxs vy = <K v]w, < K" 5| Vol

we derive
1/2 -
[Kxrs vl = /des <[PV [olle < |F[2 |42V - nl? < |F[V25Y%| Vo).,
and also the second claimed inequality is proved. O

In order to complete the basis of Lemma 6 to a biorthogonal system, we use the
following test functions: Given any element K € M, take

(2d + 1)!
(3.192) i = 1 o-
|
d! |K‘ zeVnK
Given any interelement face F' € F, let z;, i = 1,2, be the vertices in the patch wg,
see (2.3), that are opposite to F' and set

(3.19b) b 1= ((Qfl,lm ( I ¢z> (1—(2d+ 1)2@,).

zeEVNF i=1
Let us verify that the basis x;, ¢ € Z and the test functions ;, i € Z, actually
form a biorthogonal system with a crucial stability condition.

Lemma 7 (Locally stable biorthogonal system). Together with the basis x;, i € Z,
the test functions v;, i € Z, form a locally stable biorthogonal system:
(i) We have
VZ,] el <X27 ’(/)J> = 51]
(i) Let T, := {i € T | i 3 z} denote the elements and faces containing a vertex
zeV. Then
VieT, |xila—1@w.)|V¥ilw. < Cy,
where the stability constant Cy only depends on d and the shape coefficient
o(M).

Proof. To show (i), we consider the cases of elements j € M and faces j € F
separately. First, let K € M be an element. As already seen in (3.8), we have
XK, ¥r) = [} ¥k = 1. Moreover, since ¢ = 0 in O\K, we infer (xx+, ¥x) =0
for any K’ € M\{K} and {xF, ¥x) =0 for any F € F.

Second, fix a face F' € F. Using (2.10), we obtain

XF, YF) = 2d '|F|/ H ¢.ds = 1.

zeVnF
From ¢p = 0 in Q\&p, where wp is the patch of the two elements containing the
face F, we infer {xp, ¥py = 0 for any F’ € F\{F} and {xk, ¥ry = 0 for any
K e M with K D F. Last, let K € M such that K o F. Using again (2.10), we
deduce

XK, VF) = '|F| (/ n ¢, da — 2d+1/ 1_[ ¢zd£v>—0

zeVnF zeVnK
For (ii), we again treat elements and faces separately. Let K € M be an element
containing z. The well-known inverse estimate |V |x < Capi [V, K < w,
and (2.10) imply
Cq

\Y w. = |V < —.
Vsl = IVl < o
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Combining this with the first inequality in Lemma 6 and (2.8), we obtain the claimed
inequality for elements:

Pz
K|H ' (w,) Klw, S Ud =< Ydio(M)-
Ixx| VYo, < Ca—= < C
PK

Let F € F be an interelement face containing z and write F' = K1 n Ky, where
K;, K5 € M are the two elements containing F'. Proceeding as before, we deduce

_ ||
(3.20) |Vor|2, = Z IVyrlk, <Ci Z pilWrlk, < Ci Z FPp2
n=1,2 n=1,2 n=1,2 Ky

and

L N\ 12

K ;FPz

IXFl -1 [VYr]w. < Ca ( > p2> < Cazo(m)- O
i=1,2 Kn

In what follows, we shall rely only on the properties of the test functions ;,
i € T expressed in Lemma 7. In other words: what counts is not their special form,
but the fact that they form a stable biorthogonal system with the basis x;, i € Z,
of D(M).

3.5. Construction and properties of P.. We now propose a possible choice for
the projection operator Ppq and verify the desired properties (3.14). Set
(3.21) Pl = Y L i) i,

i€
where the functionals y;, ¢ € Z, are given by (3.16) and the test functions v;, i € Z,
by (3.19). Clearly, P4 is linear and Py f is locally computable in terms of a finite
number of evaluations of f, i.e., we have (3.14c) and (3.14d).

The biorthogonality of these functionals and test functions implies the following
local counterparts of the algebraic condition (3.10).

Theorem 8 (Local invariance). For any functional £ € H=1(Q), element K € M,
and side F' € F, the operator Py does not change the following discrete restrictions:
(i) If L€ D(M) on K, then Pyl = € on K.

(ii) If L e DM) on wp, then Ppml =€ on wp.

Proof. Let £ = cxg on K with ¢ € R. For any ¢ € Z, we have (¢, 1;) = ch Vv, =

cdx,; by means of Lemma 7 (i). Consequently, Pl = cxx on K, which proves (i).
To show (ii), let K7, Ko € M be the two elements containing F' and let ¢ =

cXF + Zi:m ciXk, on wg with ¢, ¢1,c2 € R. Using again Lemma 7 (i), we observe

<€a wF>:C<XF7 wF>+ Z Ci<XK¢7¢F>:C and <€7 wK1>:Cz fori:1,2
i=1,2
and (¢, ;) = 0 for all i € Z\{F, K7, K5}. Consequently,
Pl =cxr + 2 cixig;, =¢ onuwp
i=1,2
and also (ii) is verified. O

Theorem 8 implies in particular (3.14e). Moreover, it has the following global
consequences.

Corollary 9 (Global invariance). The operator Paq is a linear projection onto the
discretized residuals D(M) from (3.15). In particular, we have

PM (AV) = AV and PM(f) = f
for any V e Vo(M) and any M-piecewise constant function f € Po(M).
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Next, we verify the local stability (3.}4f) of Prq. As a side product, we also
obtain the local stabilty of the operator Py ¢, which was left open in §3.3.

Theorem 10 (Local stability). The linear projection Pay is locally H~-stable: for
any functional £ € H=1(2) and any vertex z € V, we have

[Pl -1 (w.) S 1l H-102)5
where the hidden constant depends only on d and o(M).

Proof. Given v € Hi(w,), we derive

[Pl o) | < 35 1K iy iy 021 < Y a1 (o) | Vil Il -1 ) [V 0

i€, 1€,
< a1 () [ Ve, ,

where we used Lemma 7 (i) and #Z, < 1. O

Remark 11 (Stability of Py a¢). The argument in the proof of Theorem 10 also

shows that 7507 M is locally H~!-stable. In fact, one simply replaces P by 750, M
and the index set Z, by Z, n M.

Let us conclude this section with the following further remarks on the linear
projection Py.

Remark 12 (Orthogonality). For any ¢ € H~1(Q), the functional £ — Pl is
orthogonal to span {t; | ¢ € Z}. This a immediate consequence of Lemma 7 (i).

Remark 13 (Adjoint of Ppq). Formally, the adjoint of Py, is given by
Prgv =06 i, ve Hy(Q).

i€l

Here Lemma 7 (i) implies

(3.22) /Pi,lvz/ v and /ij,lvz/v
K K F F

for all elements K € M and interelement faces F' € F. The operator P}, and these
conditions, which characterize it, were used in Veeser [23] to derive an a posteriori
error upper bound in terms of a hierarchical estimator. That argument, as well as
Morin, Nochetto, and Siebert [18, Theorem 3.6] and Verfiirth [24, (3.14)], is closely
related to Theorem 15 below.

3.6. Required a priori information, an alternative to P, and quantifica-
tion of the discretized residual. The purpose of this section is twofold. First,
we illustrate which type of a priori information on f in (2.2) is needed to carry out
our approach, presenting also a possible alternative to Pnq. Second, we show that a
stable biorthogonal system is not only useful to construct P4, but also to quantify
the local dual norms of discretized residuals.

Clearly, the operator P of §3.5 can be applied to the right-hand side f of (2.2)
whenever

(3.23) {f, ¥iy, i € I, are known exactly.

In order to ensure a meaningful discretized residual, this information goes beyond
(2.14), the information necessary for the Galerkin approximation (2.11) on the mesh
M; it is available, e.g., when one is able to compute the counterpart of (2.11) of
order d + 1 over M.

There are other possibilities to obtain a meaningful discretized residual. The
following one fits particularly well to (2.14) in the context of mesh adaptivity. Sup-
pose that we are given an initial mesh and a refinement procedure such that the set
M of all refined meshes form a shape-regular family. Furthermore, suppose that, for
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any mesh M e M, there is a refinement M € M with vertices V(./W) that satisfies
the following properties:

(3.24a) VK e MIK e M with K ¢ K and hx < hg,
(3.24b) Vie I(M) 3z e V(M) such that % is interior to i.

Let us now fix a mesh M € M and a refinement M e M satisfying (3.24). For any
i € T(M), using (3.24b), we fix a vertex 3 € V(M) interior to i and denote by ¢z
its associated hat function in V(M) We then obtain counterparts v;, i € Z, of the
test functions v;, ¢ € Z, by using these hat functions with a suitable scaling in place
of the element and faces bubble functions in (3.19) such that the following lemma
holds. We skip the technical details, referring to Morin, Nochetto and Siebert [17]
and Veeser [23].

Lemma 14 (Another locally stable biorthogonal system). Together with the basis
Xi, © € L, the test functions ;, i € Z, form a locally stable biorthogonal system:

(i) We have
vijeT (xirds) = by
(i) Let T, = {i € T | i 2 z} denote the elements and faces containing a vertex
zeV. Then
VieZ il Vdile. <Cy
where the stability constant C’u; only depends on d and the shape coefficient
o(M).

Thus, the operator
(3.25) Pl = Z <€7 JZ>X1
€L
defines an alternative to Paq and the properties (3.14) without (3.14b) can be

established as for Ppaq. The operator P can be evaluated on any mesh M € M
whenever

(3.26) VM e M Vz € Vo (M) <f, q~52> are known exactly,

where {qzz}zevo(ﬂ) denotes the nodal basis of Vo(M). This is exactly (2.14) for all
meshes in M. Consequently, it is also needed to ensure that an adaptive algorithm
with the above refinement procedure can always compute the Galerkin approxima-
tion (2.11).

Let us now turn to the quantification of the discretized residual and verify (3.14b),
considering a general locally stable biorthogonal system.

Theorem 15 (Quantifying local dual norms). Let ¢;, i € Z, be the test functions
from Lemma 7 or Lemma 14. If £ € D(M) on a star w,, then the corresponding
local dual norm can be quantified by a finite number of evaluations:

1
d+12< |wz < |wz

€L,
where the hidden constant depends on d, o(M), and Cy.

Proof. Let us first prove the lower bound, which holds for any arbitrary functional
¢e H71(Q). In fact, the definition of the dual norm readily yields

Vi >‘
3.27 02N < -1 supp
20 o o) < o ommes

< H£H11 (wz) <
i€l
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for any ¢ € Z,. Notice that the essential supremum of x — #{i € Z, | supp¢; 3 x}
is bounded by d + 1. Arguing as in the proof of Lemma 4 (ii), we therefore obtain

(328) Z ”eH%I*l(suppwi) < (d + 1)‘%“?{*1(0) )
€L,
and the proof of the lower bound is finished.

To show the upper bound, we (need to) assume that £ € D(M) on w,. Given
v e H}(w,), we can then write

&, vy = Z ci{xi, vy with ¢; eR.
€L,

In light of the biorthogonality, we have ¢; = (¢, ;). Using also the local stability
of the biorthogonal system, we infer

<6 oy < 0 1< by xis v

i€Z,

< Z IVYillw. IXil -1 w2

< |wl>1lwuz
= <I< |w,>> V0],

Since the solid angle of every simplex containing z is bounded away from 0 in terms
of d and the shape coefficient o(M), we have #Z. < Cyrq). Consequently, the
Cauchy-Schwarz inequality on the sum implies the desired upper bound. O

Theorem 15 implies the missing (3.14b) for both operators P and ’ﬁM and, in
accordance with §3.3, we have splittings of the local residual norms with the desired
properties. Notice that, in view of the discussion of this section and Corollary 5,
bounding the terms

HPMf - f”H*l(wz) or ||75Mf - fHH*l(wz)

cannot be done in general with a finite number of evaluations of the load f. Notably,
these terms involve only the load and the discretized residuals

IPaf + AUp -1 (0. O [Padf + AUs | -1 o0

can be quantified with finite information, which, in light of Remark 3, is less than
the information required for evaluating local L2-norms of the load f.

3.7. A posteriori error bounds. We now summarize our preceding results by
deriving a posteriori error bounds. The resulting bounds are defined for any load
f e H1(Q) and the oscillation is dominated by the error.

The following statements remain correct if Pp is replaced by 73/\,1 from (3.25).

Theorem 16 (Abstract upper bound). For any functional f € H=*(Q) and any
conforming mesh M, we have

IV (s = Upad)I2 € X 1Paf + AU it By oy + 1Pacd = FIos .
zeV
Each local dual norm |Pmf — AUjp | g-1(w.) of the discretized residual can be
quantified with a finite number of evaluations of f, while the quantification of the
local dual norms |[Pamf — fllu-1(w.) of the oscillation requires additional a priori
information on f.

Proof. Lemma 1, Lemma 4 and a triangle inequality imply the claimed bound.
Recalling that

PMf + AUf;M € D(M),
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Lemma 15 and Corollary 5 ensure the statements about the quantification of the
two parts of the bound. |

In contrast to previous results available in literature, the complete upper bound
in Theorem 16 is also a lower bound, even locally.

Theorem 17 (Abstract local lower bounds). For any functional f € H=1(Q) and
any conforming mesh M, the discretized residual and the oscillation are locally
dominated by the error: for every vertex z € V, we have

IPrmf +AUpml -1,y S IV(ug = Upp) e
and
IPaf = flla—1(w) S V(us = Usm) ., -

Proof. In light of (3.12), the first claimed inequality follows from the triangle in-
equality and the second one. The latter is a consequence of Theorems 8 and 10 and
(3.12):
IPaf = Fla-r.) <IPm(f + AUpaM) a1 + If = AUsml 100y
<

\f = AUpMmla-1(w.) < [V(up = Up )] w. - O

Squaring and summing, we readily get the global lower bounds.

Corollary 18 (Abstract global lower bounds). For any functional f € H=*(2) and
any conforming mesh M, the discretized residual and the oscillation are globally
dominated by the error in that

2Pt + AUsmlr-1(0y < IV (g = Upnd) P
zeV

and
2 2
2Pt = 1y S 1V (s = Upnd)|P-
zeV
To summarize: if we are able to quantify the oscillation terms [Pt f — f| -1 (. )
z € V, then the right-hand side in Theorem 16 is a truly equivalent a posteriori error
estimator.

Remark 19 (Surrogate oscillation). The quantification of the local dual norms
IPamf — flla-1(w.), 2 € V, of the oscillation appears to be a difficult matter. In
[11, Section 7], Cohen, DeVore, and Nochetto consider similar terms for special
f and resort to surrogates that can be approximated with the help of numerical
integration. Those surrogates hinge on additional regularity of f, which entails the
risk of overestimation; cf. Lemma 20 below.

3.8. Classical versus error-dominated oscillation. In this section we compare
the error-dominated oscillation (3., [Pmf — fH%,,l(w ))1/2 with the classical L2-

and H~'-oscillation,

osco(f, M) and ml(% If = glla- Q)

from (1.4) and (1.5) in the introduction. Doing so, we verify statements of the intro-
duction and substantiate the advantages of the stability and invariance properties
of the operator Puy.

Let us first show that the error-dominated oscillation is always smaller, up to a
multiplicative constant, than both classical oscillations. To this end, let f € H~1(Q)
and let g € Po(M) be an arbitrary piecewise constant approximation over M. The
local invariance and stability properties of P in Theorems 8 and 10 imply that,

for all z €V,
1f =Pmfla-1w.) < If = 9la-10.) + [Prmlg = Hlla—
<

|
(3.29)
If = 9lm-1(w.)-
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Combining this with Lemma 4 (ii) and minimizing over g, we obtain the bound in
terms of the classical H '-oscillation:

3.30a —-P 2 < min —gl?_ .
(3.:300) B =Pl < i 15 ol

To show the other bound, suppose f € L?(Q2). Making use of the orthogonality of
Py, pm and Poincaré inequalities in the elements of w,, we deduce

If = Postf i1y S D, Bilf = Poafl%

Kcw,

which together with (3.29) gives the bound in terms of the L2-oscillation:

(3.30b) D = Praf -1y S D5 il = Pomflk = osco(f, M)*.
zeV KeM
The converse bounds of (3.30) do not hold. For the classical L2-oscillation,
this applies even on a fixed mesh and is in particular due to stability issues. The
following lemma provides an illustration, relating directly to the error instead of
the error-dominated oscillation.

Lemma 20 (Overestimation of classical L2-oscillation). For any conforming mesh
M, there exzists a sequence (fi)r = L?(Q) such that

osco(fr, M)
Hv(ufk - Ufk;M)H
Proof. Choose f € H-Y(Q)\L?*(Q). Since L?(f2) is dense in H~1(£), there exists a
sequence (fx)r = L%() such that fr, — f in H~1(2). On the one hand, the energy
norm errors |V(us, — Uf,;am)| are uniformly bounded with respect to k. On the

other hand, in view of limg e | fx[z2(0) = o0, the oscillation osco(fx, M) becomes
arbitrarily large for k — 0. |

— 0 as k — oo.

In the case of the classical H~!-oscillation, (3.30a) cannot be inverted because
of invariance issues. Let us illustrate this again by the relationship to the Galerkin
error. Consider

(3.31) f = —AV for some V e Vo(MM\{0},

where M is some conforming simplicial mesh of €. For any conforming refinement
M of MT, we then have uy = V = U, pq and f ¢ Po(M). Hence

V(ur — Uy, =0< min — ~1(Q),

IV(ug = Upr)| join If = glz-10)
where the classical H!-oscillation can be made arbitrarily large for a given M but
decreases to 0 under suitable refinement. One could argue that the (neighborhoods
of the) loads (3.31) are very special, in particular because the optimal convergence
rate of (3.31) is formally co. Here is another example based upon Cohen, DeVore,
and Nochetto [11, Section 6.4], where the optimal nonlinear convergence rate for
the error is finite and often encountered in practice.

Lemma 21 (Another overestimation of classical H~!-oscillation). Let Q = (0,1)?.
There is a functional f € H=1(Q2) and a sequence (L,), with logn = L, — o as
n — oo such that

.32 . . 1
(3:322) i [ V(g = Upag)| < 0712,
and

1/2
3.32b min min — ol > L, n_1/27
( ) #M<n gePo(M) (ze\;/\/[) If =gl 1(w2)>
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where M varies in all meshes created by recursive or iterative newest vertex bisection
of some conforming initial mesh Mg of Q.

Proof. In [11, Section 6.4] Cohen, DeVore and Nochetto construct some function
uy € Hi(Q) and a sequence L,, as claimed for which (3.32a) and

1/2
(3.33) #HAl/lign< > |f§{1(wz)) > L, n~ Y2

zeV(M)

hold. It thus remains to establish (3.32b). To this end, we fix temporarily an
arbitrary vertex z € V of a conforming mesh M and let g € Pg(M). The inverse
triangle and (3.12) yield

[AUsm + gl a1y = If + AUs Ml 51 ()
IAUf i + gl -1 (0.) = [V (ug = Ugipd) . -
By Lemma 7, we have, for all K € M,

(AUppmts Yx) = ), J(Uf;M)IF/ xrthx ds =0
FeF F

If =gla-—1.) =
>

and, for all F'€ F and Ky, Ko € M with K1 n Ky = F,
(AUpm + 9, ¥r) = / Upr)vords + ). 9|K/ Xk ¥F dz
i=1,2 K
= (AUsm; YF) -

Theorem 15 therefore implies

IR PRTREEDY KAUf;mg, )
ieT.nF IV

> AU, >’
ieWK S

= AUy, AU 1w )
3 |80z )| 2 1807l

i€l
Exploiting also Lemma 4, we arrive at

1/2
<2 IAU g0 + g|§q—1(wz)>
zeV

1/2
< < |AUf;M|§{—1(wz)>
1/2 1/2
< <Z |13~ L(w,) ) - (Z If+ AUf;Mﬁ{—l(wz))
zeV zeV
1/2
<Z 11 ) ) = C|V(uy =Upm)l-
zeV

Consequently, (3.32a) and ( ) lead to

1/2
min  min —gl|?- > (L,—-C n71/2,
#M<n gePo(M) ZEZV I/ gHH Hws) (L )

which, upon redefining (L,,),, implies (3.32b) and the proof is finished. |
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Remark 22 (Overestimation of H ~!-variant of standard residual estimator). As
pointed out by Cohen, DeVore, and Nochetto [11], the example of Lemma 21 entails
that the right-hand side of

IV (s =Upm) P £ Y AUl -1y + 1171y
zeV(M)

a variant of the standard residual estimator defined for all loads f € H~1(Q),
is overestimating. In §4.2 below, we propose through our new approach another
variant that is free of overestimation.

4. REALIZATIONS WITH CLASSICAL TECHNIQUES

The a posteriori error bounds in §3.7 are abstract in that they are given in
terms of the local dual norms || - |g-1(,,), 2 € V, of the discretized residual and
the oscillation. For the norms |[Paf + AUpmllg-1(w,), 2 € V, of the discretized
residual, we required a quantification in terms of finite information on the load and
provided a possible realization in Theorem 15. In this section we discuss a selection
of alternative realizations. All realizations are motivated by classical approaches to
a posteriori analysis and cover two explicit and two implicit techniques. It is worth
making the following observations:

e Hierarchical estimators and estimators based upon local problems implicitly
introduce a splitting of the residual like the one proposed in §3.3.

e The overestimation of the standard residual estimator in Remark 22 can be
cured with the help of the splitting of the residual in §3.3.

e Employing different local dual norms, the approach of §3 can be extended to
estimators based on flux equilibration.

e Each realization quantifies a local dual norm of the discretized residual by a
computable, equivalent norm. Both equivalence and computability hinge on
the finite-dimensional nature of the discretized residual.

4.1. An hierarchical estimator. Hierarchical estimators investigate the residual
on an extension of the given finite element space. While higher order extensions
were used originally, Bornemann, Erdmann, and Kornhuber show in [6] that an
extension containing the functions

(4.1) i 1= 1_[ b., KeM, and  A\p = 1_[ ¢., FeF,
zEVNK z2EVNF

already ensures reliability for piecewise constant loads f € Py(M). The indicators
of a corresponding, ‘minimal’ hierarchical estimator are given by

Eu(f,M,i) = ‘<Res(f§/\/l), ||V)\;\||>

, 1€eL=MUJF,

and computable in terms of Uy, ¢ and the evaluations (f, A;), i € Z. This definition
implies the constant-free local lower bounds

gH(f7M72) < H Res(f;M)HHfl(supp)\i)
and therefore, cf. (3.28), we have that, for every z€ Vand I, = {i€ Z | i 3 z},

1/2
(42) (Z gH(vavZ)2> SVd+1 H Res(f7M)HH*1(wz)a

€L,

which is a local counterpart of the global lower bound in Veeser [23, Lemma 3.3].
This estimator is very closely related to the discretized residuals of §3.4 and
Theorem 15. Indeed, if K € M and F € F, K1, Ky € M such that F' = K; n Ko,
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we have

(2d + 1)! (2d —1)! 2
(4.3) i = K] g and qu—()'m(AF (2d+1);)\;{i>.

in view of (3.19). Hence span{v; | i € Z} = span{)\; | i € Z} and Remark 12 yields
{fy Ay = {Pmf, A\i), i € Z, and the indicators may be viewed also as evaluations of
the discretized residual: for i € Z,

Ai
a5 .0 = (Pt + 801, )|

As a consequence, we also have the following counterpart of (4.2):

12
(4.4) (2 5H(f,./\/l,l)2> < Vd+1||PMf+AUf,MHH—1(wZ)-

i€,

In order to prove the converse bound, we may proceed with the help of P}, as in
[23]. However, having Theorem 15 at our disposal, it is simpler to exploit (4.3). We
immediately see

B YK
(4.52) Eu(f,M,K) = ‘<7’Mf+AUf’M’ |V¢K|>"

Moreover, given F € F, K1, Ko € M with F' = K1 n K5, we deduce
CalF|™ < max¢pp < hp max [Vyp| 5 he | K|7V2 | Vir |k,
1

with hp := diam F and, for i € {F, K1, Ko}

[V il < Camax pi lwr| 2.

We therefore obtain HVzpFH_lHV/\iH < |F| and
4.5b Pmf + AUs pm, >’ , M
O N E

ZE{F K1 KQ}

Summing up, the hierarchical estimator quantifies the local discretized residual,

2 gH(vaﬂz)z =~ H,P./Vlf + AUf,MHH*I(wZ)a S V?
€L,

and we have the following a posteriori bounds.

Theorem 23 (Hierarchical estimator with error-dominated oscillation). For any
functional f € H=Y(Q2) and any conforming mesh M, we have the global equivalence

IV(up = Upad) > = Y Ea(f, M) + Y 1Paf = Flar1 oy
€L zeV
as well as the following local lower bounds: for every z €V,
2, &l M) < (d+ DIV (ugp = Upian) 2.
€L,

DUPME = a1y S IV (up = Upd) 2.
i€l,

The hidden constants depend only on d and o(M).
Proof. Combine Theorem 16, Theorem 17, Corollary 18, (3.12), (4.2), and (4.5). O
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4.2. An improved standard residual estimator. The standard residual esti-
mator applies suitably scaled norms to the jump and element residual; see, e.g.,
Verfiirth [25, Section 1.4]. In the case of the discretized residual

Pt +AUs i = Y, (s e+ JUpad)lr)xe + Y {fs i) Xxes

FeF KeM

this leads to the following indicators:

ER(Usints Paafs F) i= Wil [ {f, ¥r) + J(Us )| FeF,
ERUp s P f, K) = hi| {f, ¥K) | k> KeM,

where hr and hg denote, respectively, the diameters of F' and K and computability
is given in terms of Uy, a¢ and (3.23).

These indicators actually quantify the discretized residual and in a way that is
very tight to Theorem 15: for any interelement face F € F,

(4.6a) Ex(Uyonts Paafs F) = Kmf N ‘”F>‘
Vo

and, for any element K € M,

(4.6b) SR(Uf;M,PMﬁK) ~ ‘<me+AUf;M,

|V1//

where the hidden constants depend only on d and o(M). To see (4.6a), let F' e F
be any interelement face. Lemma 7 (i), the trace inequality (3.18) for w = % and
the Friedrichs inequality (3.17) for v = ¢F, both with wp in place of w,, give

(oot + 8010 i )| = K0 w09+ 1@ e 5 )

< 1E 5+ IOl < WIS, ) + HUpaalr,

while (3.20) yields |[Vip|a < (hF|F|) /2 and so

I<fs )+ JUspr) | F
AU,
KPM‘H T \W |>‘ F[2 | Vyr|

2 W2 |, e+ T(Uspd) | £

Similarly, we obtain (4.6b).
Inserting the combination of Theorem 15 and (4.6) in the abstract a posteriori
analysis of §3.7, we obtain the following result.

Theorem 24 (Standard residual estimator with error-dominated oscillation). For
any functional f € H=1(Q) and any conforming mesh M, we have the global equiv-
alence

IV(up = Upp) I = Y ERUpints Padfs i) + D Paf = Fllir1(uys
i€l zeV
as well as the following local lower bounds: for z €V,
D ERWpnts Panks 1) + [Pt f = Flir .y S IV (up = Uppd) 2.
€L,

The hidden constants depend only on d and o(M).

Theorem 24 relies on key features of the approach in §3, which the following
remark elaborates on.
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Remark 25 (Classical vs new standard residual estimator). In contrast to the
classical standard residual estimator (1.2) and its H ~!-variant in Remark 22, the
variant of Theorem 24 is completely equivalent to the error. The reason for this
improvement lies in a suitable correction of the original jump residual. To elucidate
this, remember that both the classical standard residual estimator and its H -
variant in Remark 22 do not discretize the residual and therefore compare them
to

3 W Usan) + v e+ 3 = 5 v,
zeY FeF :

FeF

which also does not split off an infinite-dimensional part of the load f. The correc-
tions (f, ¥y, F € F, of the jump residual make sure that the new jump residual
has the invariance properties necessary for avoiding overestimation, i. e., it vanishes
whenever the exact solution happens to be discrete. Corrections with this property
have been used previously. For example, Nochetto [19] considers the special case
f = f1+div f2, where f1, fa are suitable functions, and assigns (div fa2)|x, K € M,
to the element residual and the jumps in the normal trace of fo across interelement
sides correct the jump residual. Similarly, in standard residual estimators for the
Stokes problem, pressure jumps correct the jump residual associated with the veloc-
ity. The novelty is that the corrections {f, ¥r), F' € F, are defined for an arbitrary
f e H1(Q) and also locally H ~!-stable and so fulfill the second necessary condition
to avoid local overestimation. Notably, the latter entails that, even if f is a smooth
function, the jump residual will be corrected significantly in certain cases.

4.3. An estimator based on local problems. A local problem lifts the resid-
ual to a local extension of the given finite element space and so provides a local
correction, the norm of which is used an error indicator; cf. Babuska and Rhein-
boldt [4]. While computability requires finite-dimensional extensions, the higher
cost with respect to the previous explicit estimators is tied up with the hope of
improved accuracy.

The following instance from Verfiirth [25, Section 1.7.1 and Remark 1.21] is
vertex-based and uses the local extensions

U, :=span{)\; |i€ Z,} =span{y; | i€ L.}, z€V,

where the functions t; and \; are defined, respectively, in (3.19) and (4.1). Given
a vertex z € V, the indicator is then

EL(f, M, 2) := | Ve,

where

v, €U, suchthat VYAeU, / Vv, - Vida = (Res(f; M), A).
Q

Thus, v, is computable in terms of Uy, o and, e.g., (3.23). The indicator &,(f, M, z)
may be viewed as an implicit counterpart of (3,.; En(f, M,)?)"/? from §4.1. Tak-
ing A = v, we immediately obtain the constant-free lower bound

(4.7) EL(fi M, 2) < | Res(f; M) 1wy,

which slightly improves upon (4.2).
Notice that, in light of Remark 12, the solution v, can be interpreted also as a
lift of the discretized residual Paqf + AUf,aq. Consequently, the first inequality in

(4.8) EL([,M,2) < |Pmf + AUs il a1,y S EL(f, M, 2)
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is correct. The second one follows from Remark 13 and Theorem 10 in the spirit of
Morin, Nochetto and Siebert [18]. In fact, for v € H}(w,), we have

(Pmf + AUpp, v) = (Res(f; M), Prv) = Vv, - VPpude

Wz

< IVelIVPU . S EL(f; M, 2)[ V..

Theorem 26 (Estimator based on local problems with error-dominated oscillation).
For any functional f € H=Y(Q) and any conforming mesh M, we have the global
equivalence

IV(up = Upnd) > = . EL(f M, 2% + [Paaf = Fl 1oy
zeV

as well as the following local lower bounds: for every z €V,

ELlfiM,2) < |V(up =Upm)lw. and [Pmf = fla-1w.) S V(s = Upm)le.-
The hidden constants depend only on d and o(M).
Proof. Combine Theorem 16, Theorem 17, Corollary 18, (3.12), (4.7) and (4.8). O

4.4. An estimator based on flux equilibration. While indicators based on
local problems provide constant-free local lower bounds, estimators based on flux
equilibration aim for a constant-free, or at least explicit, global upper bound. This
is achieved with the help of other, more sophisticated liftings within the framework
of the fundamental theorem of Prager and Synge [21], which, for the homogeneous
Dirichlet problem (1.1), can be formulated as follows: For any v € H}(2), we have

(4.9) V(v —u)| =min{[€] | € € L*(%RY) with divé = Av + f in H1(Q)}.

Realizations of this idea in Ainsworth [1], Braess and Schoberl [9], Ern, Smears and
Vohralik [13, 14], and Luce and Wohlmuth [16] make use of some classical oscillation.
Its replacement by an error-dominated oscillation requires some adjustment to the
approach of §3.

The upper bound in the localization of Lemma 4 involves a non-explicit multi-
plicative constant. In order to improve on this, we replace the local spaces H} (w.),
z eV, with

.o {veHl(wz)|fwzv=O}, ifzeVy=VnQ,
: {1} € Hl(wz) | U|ngmag = O}, if z € V\Vo,

equip them with the norm |V - ||,., and denote the respective dual spaces by H*.

Lemma 27 (Alternative localization). Let £ € H=1(Q) be any functional.
(i) If £ € Ra, then
[l3-1(0) < (d+1) Z 622075
zeV
(ii) We have
Z H¢z€||§{;k < %10y
zeV
where the hidden constant depends only on d and the shape coefficient o(M).

Proof. The proof is essentially a regrouping of the arguments proving Lemma 4,
where (3.3) slips into the proof of (ii); cf. Canuto et al. [10, Proposition 3.1]. O

Splitting the residual up in discretized residual and oscillation, we then obtain
the following abstract error bounds; we do not state the global lower bound as it is
immediate consequence of the local one.
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Lemma 28 (Alternative abstract error bounds). For any functional f € H=1(Q)
and any conforming mesh M, we have the global upper bound

IV(up = Upa) > < . ([6=(Paaf + AUpnt) | gy + |6=(Panf — ),
zeV

as well as the following local lower bounds: for every vertex z €V,

|6z (Pamf + AUl gz + [02(Paaf = Nz < IV (up = Ugird)].
The hidden constants depend only on d and o(M).

Proof. The global upper bound follows from Lemma 27 (ii) and the triangle in-

equality. To prove the local lower bounds, we recall Theorem 17 and take { =

Pmf+AUspand £ =Ppf — f in

(410) Lol v2) =, ¢202) < -1 [V (0202) |, S -1 () [ V2w,

which exploits (3.3) for v, € H, and z € V. O
In order to quantify the local discretized residual, we construct local equilibrated

fluxes following the ideas of Braess, Pillwein, and Schoberl [8] and Ern, Smears,

and Vohralik [13]. To this end, fix any vertex z € V and define the operator
7, {p.v |ve H (w,)} — H¥ by

ol — LD i ze

(4.11) 72 (¢:) = {@g if z e V\Wo.

We emphasize that 7, (qﬁz (Pmf+ AUf;M)) can be computed in terms of Uy, and
(3.23). Thanks to the definition of the spaces H,, z € V, and the general form of the
theorem of Prager and Synge (see, e.g., Verfiirth [25, Proposition 1.40]), we have

(4.12) @ (Pamf + AU p) | gz = 7202 (Paaf + AUpp) | gz = oin I€] .

with the affine space
W, = {¢ e L*(ws;RY) |divEg = 7. (¢=(Pmf + AUpm)) € HE
and £ -n =0 on dw, if z€ V,
and € -n =0 on dw.\o if z € V\Vy},

and the equalities in the definition of W, have to be understood in the sense of
distributions; the space W, is not empty since (. (¢.(Pmf + AUspm)), 1) = 0
for every z € V.

In order to introduce a discrete counterpart of W, in (4.12), we employ the
Raviart-Thomas-Nédélec spaces

RTN(K) := {E: K - R? | E(z) = a + bz for some a e P{ be P}, K e M,
and define
W.(M) := {E e L*(w.) | E|x € RIN(K) for all K € M with K < w,
and divE = 7, (¢.(Pmf + AUpnm)) € HE
and E-n =0 on ow, if z€ V)
and E-n = 0 on 0w, \0Q if z € V\Vy},
which satisfies

413 in |2, < mi < min |E
(4.13) = I1E]w. Loin “5””2\&%:&4) (=1

and the hidden constant depends only on d and o(M). Indeed, the right inequality
is obvious because of W, (M) < W,. The left inequality can be proved by an
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explicit construction; see, e.g., [8, 13]. For the ease of presentation, however, we
shall assume

(11
I

» := arg min||=|,,,
ZeW, (M)
and note
I1Z: . < 102(Pmf + AUpM) gz < [Ez .-
in view of (4.12) and (4.13). Inserting this in the abstract bounds of Lemma 28, we
readily obtain the following a posteriori bounds; as before, we suppress the global
lower bound.

Theorem 29 (Equilibrated flux estimator with error-dominated oscillation). For
any functional f € H=1(Q) and any conforming mesh M, we have the global upper
bound

IV (= Upp) 2 < (d+1) Y] (I8 + 16:(Paaf = £)lx)”
zeV

as well as the following local lower bounds: for every vertex z €V,
12202, + 16:(Paaf = Nl S 1V (up = Uprd)l2,-
The hidden constant depends only on d and o(M).

In contrast to the cited previous bounds, the upper bound in Theorem 29 contains
the multiplicative constant d + 1. This constant arises from the localization in
Lemma 27. As an alternative to this localization, one may use the constant-free
upper bound in the following remark and split the estimator part |Z| therein into
local L2-contributions.

Remark 30 (Alternative upper bound). Observing that
Z divE, = f + A(]f;/\/l + Z 7Tz(qsz(fp/\/lf - f))7

zeV zeV

we set 2 := >} _, 2, and apply the theorem of Prager and Synge (4.9) globally and
Lemma 27 to obtain
1/2

IV (up = Upadll < IEI +VA+ 1| X 1o2(Paaf = P

zeV
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