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Abstract

This thesis is concerned with the analysis of frequentist and Bayesian regression

models for data sets with a very large number of observations. Such large data

sets pose a challenge when conducting regression analysis, because of the memory

required (mainly for frequentist regression models) and the running time of the anal-

ysis (mainly for Bayesian regression models). I present two different approaches that

can be employed in this setting.

The first approach is based on random projections and reduces the number of obser-

vations to manageable level as a first step before the regression analysis. The reduced

number of observations depends on the number of variables in the data set and the

desired goodness of the approximation. It is, however, independent of the number

of observations in the original data set, making it especially useful for very large

data sets. Theoretical guarantees for Bayesian linear regression are presented, which

extend known guarantees for the frequentist case. The fundamental theorem cov-

ers Bayesian linear regression with arbitrary normal distributions or non-informative

uniform distributions as prior distributions. I evaluate how close the posterior dis-

tributions of the original model and the reduced data set are for this theoretically

covered case as well as for extensions towards hierarchical models and models using

q-generalised normal distributions as prior.

The second approach presents a transfer of the Merge & Reduce-principle from data

structures to regression models. In Computer Science, Merge & Reduce is employed

in order to enable the use of static data structures in a streaming setting. Here,

I present three possibilities of employing Merge & Reduce directly on regression

models. This enables sequential or parallel analysis of subsets of the data set. The

partial results are then combined in a way that recovers the regression model on the

full data set well. This approach is suitable for a wide range of regression models.

I evaluate the performance on simulated and real world data sets using linear and

Poisson regression models.



Both approaches are able to recover regression models on the original data set well.

They thus offer scalable versions of frequentist or Bayesian regression analysis for

linear regression as well as extensions to generalised linear models, hierarchical mod-

els, and q-generalised normal distributions as prior distribution. Application on data

streams or in distributed settings is also possible. Both approaches can be combined

with multiple algorithms for frequentist or Bayesian regression analysis.
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Chapter 1

Introduction

Et es wie et es, et kütt wie et kütt und et hätt noch immer jot jejange.

(Eetste Deil vum kölsche Jrundjesetz)

In the last years and decades, both available memory and computing power have increased

by large factors. Together, this has lead to the possibility of storing as well as analysing very

large data sets employing reasonably complex statistical models. However, the running time

required to obtain results often grows linearly with the size of the data. This rate means that

regression algorithms often do not scale well and make an analysis infeasible for very large data

sets. In addition, while storing data sets typically does not pose a problem in terms of memory

requirements, it may be necessary to load the data set into working memory, which exhibits

considerably less storage capability.

In this thesis, I present two different approaches that make analysing regression models on

very large data sets feasible. While my focus lies on Bayesian models, both of the approaches can

be applied in a frequentist setting as well as in a Bayesian setting. Depending on the model at

hand, the advantages that can be expected from the approaches are different—in the frequentist

case, reducing the memory requirements is the most prominent advantage, while in the Bayesian

case, the running time required often poses a more dire problem.

In the following, I will first introduce linear regression models in general, before introducing

challenges that arise for the analysis of regression models on very large data sets.

1



1. Introduction

1.1 Regression models

In this manuscript, I focus on regression techniques in both frequentist and Bayesian settings. I

will introduce the basic concepts of regression analysis in the current section before presenting

the challenges that arise when conducting regression analysis on very large data sets in Section

1.2.

Regression analysis is an established and well-studied statistical concept where the influence

of p variables x1, . . . , xp, p ∈ N, on usually one variable Y is modelled and estimated. Because

Y is modelled as depending on the values of x1, . . . , xp, Y is called the dependent variable or

response variable, while x1, . . . , xp are called the independent variables or explanatory variables.

All of these vectors are elements of Rn where n is the number of observations. The independent

variables can be seen as column vectors of a matrix X ∈ Rn×p. I refer to the row vectors of X

as Xi· ∈ Rp, i = 1, . . . , n. They represent the ith observation.

The most basic idea of connecting the two is via a linear model (see Model (1.1)). The matrix

X and the vector Y are linked via the unknown vector β and an unobservable additive error

term η, resulting in the full model of

Y = Xβ + η. (1.1)

Following Groß (2003), assumptions (L1) – (L4) are made:

(L1) X ∈ Rn×p is a non-stochastic matrix with full column rank p, where n > p.

(L2) Y ∈ Rn consists of n observable random variables.

(L3) η ∈ Rn consists of n non-observable random variables with E(η) = 0n and Cov(η) = σ2In.

(L4) η
iid∼ N(0n, σ

2In),

where In is the identity matrix in Rn×n. (L1) – (L3) are strictly required for linear regression.

(L4) is often added, but does not necessarily need to be fulfilled in order to employ linear

regression. (L4) is, however, a requirement should one want to conduct significance tests on the

elements of β. If the assumption is met, Y also follows a normal distribution with expected value

Xβ and variance-covariance matrix σ2In. For this reason, linear regression is usually conducted

when Y follows a normal distribution. The matrix X can contain variables that are present in

the data set, but it may also contain additional entries such as transformed variables, interactions

between variables or an intercept term. For that reason, X is also called the design matrix.

2



1. Introduction

In the thesis at hand, my focus lies on frequentist linear models as given in Model (1.1) or

their Bayesian counterparts which are introduced in Section 1.1.2. In Chapter 3, approaches for

handling large data sets in the context of two generalisations of the linear model are examined.

In Chapter 4, a method is proposed that is able to handle both linear regression models and

generalised linear regression models. The theoretical background of all extensions of the linear

model will be presented in the respective chapters.

1.1.1 Frequentist regression analysis

Both linear models and generalised linear models can be applied in a frequentist setting as well

as in a Bayesian setting. In a frequentist setting, each element of β is seen as an unknown fixed

value. The aim is estimating β in a way that minimises a given error function. In the case of

linear regression, this error function is given as

min
β∗

n∑
i=1

(
yi −Xi·β

∗)2 , (1.2)

where yi, i = 1, . . . , n are the observed values of the dependent variable and Xi·, i = 1, . . . , n

are the row vectors of X. The optimal solution β̂ of Equation (1.2) is called the ordinary least

squares (OLS) estimator. It can be obtained via Equation (1.3):

β̂ =
(
X ′X

)−1
X ′Y . (1.3)

Under the assumptions (L1) – (L3), the OLS estimate is the best linear unbiased estimate

with an expected value of E(β̂) = β and variance of Var(β̂) = σ2 (X ′X)−1 (Groß, 2003). The

estimator’s variance-covariance matrix forms the basis for the estimated standard deviations,

also called standard errors, which are given by

seβ̂j
=
√
σ2e′j(X

′X)−1ej , j = 1, . . . , p, (1.4)

where ej is the jth unit vector, j = 1, . . . , p. Additionally assuming (L4), the standard errors

seβ̂j
can be employed to conduct significance tests of the form H0 : βj = 0 vs. H1 : βj ̸= 0. For

linear regression, this is done using a t-test (Montgomery and Peck, 1992); for generalised linear

models, Wald tests can be employed (Krämer and Sonnberger, 1986). In both cases, the ratio of

estimate and standard error β̂j

seβ̂j
forms the basis of the test.
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1. Introduction

Having obtained an estimate for the unknown parameter vector β, checking the assumptions

for possible violations as well as assessing the fit of the model is an important part of a regression

analysis. In the following, I will present some basic approaches to that end. For further reading,

especially on strengths and weaknesses of linear models, Groß (2003) and a multitude of literature

from different areas of Statistics provide more details that are outside the scope of this thesis.

After conducting a regression analysis, it is necessary to check whether the assumptions are

met and to run diagnostics in order to find out whether the model fit exhibits problems in general

or for some values or areas of the domain of X. Residuals are one of the most important tools

for model diagnostics in the regression context. They aid in assessing the goodness of fit of the

regression model, may hint at systematic influences that are missing in the model and may alert

when assumptions are violated. Two of the assumptions, (L3) and (L4) deal with the error term

η. As η cannot be observed, the residuals r = Y −Xβ̂ can be seen as estimated error term and

serve as replacement. The raw residuals r are the difference of the observed values in Y and

the values estimated by the model, Ŷ = Xβ̂. (According to McCullagh and Nelder (1989), both

Legendre and Gauß originally defined residuals the other way around: as difference of estimated

and observed values.) The OLS estimator by definition has the property of minimising the sum

of squared residuals amongst all other choices of β̂ (see Equation (1.2)).

Examining the raw residuals has some merits, but there is one important difference between

the error term and the raw residuals: While the unknown error vector η is assumed to be

homoscedastic and uncorrelated, this does not hold for the raw residuals, as r ∼
(
0, σ2 (In −H)

)
,

where H = X(X ′X)−1X ′ is the hat matrix or projection matrix. This means that the variances

Var(ri) depend on i, which is not ideal for diagnostic purposes. For that reason, two further types

of residuals are introduced. Following the terminology in Groß (2003), standardised residuals

are defined as

r̃i =
ri

σ̂
√

(1− hii)
, i = 1, . . . , n, (1.5)

where hii is the ith diagonal element of H. When replacing the estimated σ̂ with the true,

but unknown σ, it can easily be seen that E(r̃i) = 0 and Var(r̃i) = 1 for i = 1, . . . , n.

Studentised residuals are closely related to standardised residuals. Here, instead of the general

estimate of the variance σ2, the variance is estimated separately for every observation by leaving

the ith observation out of the model. With this, studentised residuals are defined as
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1. Introduction

r∗i =
ri

σ̂−i

√
(1− hii)

, i = 1, . . . , n, (1.6)

where σ̂2
−i is the estimated variance without observation i. Both standardised and studentised

residuals are frequently in use.

One example are residual plots, which contain the fitted values according to the model, Ŷ ,

on the x-axis and the standardised residuals r̃ on the y-axis. If the model exhibits a good fit

to the data and the assumptions are fulfilled, no structure can be found in the plot, i.e. the

residuals are located around zero with constant variance. If, for example, all low residuals ri < 0

are concentrated in a small area of the domain or the variance increases as Ŷ increases, this is

an indication for problems with the model.

Studentised residuals can be and are also used instead of standardised residuals. Chatterjee

and Hadi (1988) have shown that the relation between standardised and studentised is given by

r∗i = r̃i

√
n− p− 1

n− p− r̃2i
. (1.7)

This means that standardised and studentised residuals are roughly equal when the residuals

are in the interval [−1, 1]. For residuals with larger absolute value, the difference grows with

studentised residuals exhibiting larger values in absolute terms. Thus, unusually high or low

residuals become more conspicuous when using the studentised version. Studentised residuals

can also be employed to construct tests as the r∗i follow a tn−p−1 distribution (Chatterjee and

Hadi, 1988).

In addition to residuals that analyse the distance between the observed value and the es-

timated value according to the model, it is also useful to examine how much influence the

observations have on the parameter estimate and the variation of the estimate. In a setting with

one explanatory variable and an intercept term, Y = β0 · 1n + β1X1· + η, changes in the values

of yi have larger effects on the model for observations that are close to the extreme values of y

and smaller effects for observations in the middle of the range of y. To formalise the concept

of differing importance, a number of measures have been introduced. Here, I concentrate on

leverage scores and Cook’s distance.

The concept of leverage is also based on the hat matrix H. The diagonal of H, hii, is not only

employed to obtain standardised or studentised residuals, it also contains the so-called leverage

scores l, li = hii, i = 1, . . . , n (Groß, 2003). Leverage scores offer additional insight as they
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1. Introduction

concentrate on the importance of an observation for the model regardless of any discrepancy

between expected and observed Y -values.

All leverage scores lie between 0 and 1, 0 ≤ li ≤ 1, i = 1, . . . , n, where 1 stands for a very

important observation that dominates the outcome of the model. To calculate leverage scores,

only the design matrix X is needed, the values of Y are not taken into consideration. Leverage

scores thus represent the potential influence the observations have. This means that removing an

observation with a large leverage score does not necessarily have a big influence on the estimated

regression coefficients. The observation in question may lie perfectly on the regression line or

hyperplane of the model, i.e. the estimated coefficients may be very similar or even identical

regardless of whether the observation in question is included in the model or not. However, it

is also possible that the exclusion of the important observation leads to considerable changes in

the model.

In contrast, Cook’s distance (Cook, 1977; Groß, 2003; McCullagh and Nelder, 1989) also

incorporates information about the Y -values of the observations. Cook’s distance is defined as

Di =
(β̂ − β̂−i)

′X ′X(β̂ − β̂−i)

pσ̂2
, i = 1, . . . , n, (1.8)

where β̂−i is the estimate for β without Xi· , the ith observation. Equation (1.8) is equivalent

to (cf. Groß, 2003; McCullagh and Nelder, 1989)

Di =
lir̃

2
i

p(1− li)
, i = 1, . . . , n. (1.9)

Equations (1.8) and especially (1.9) make it clear that Cook’s distance combines leverage

scores li with standardised residuals r̃i. High values of Cook’s distance mean that observations

with a high potential influence also exhibit large residuals. Removing such observations from the

model would lead to a large change in the estimated values of β.

1.1.2 Bayesian regression analysis

In a Bayesian setting, β itself is seen as a random variable with a density. In addition to the

likelihood, which fulfils the same role as Model (1.1), we need to specify a prior distribution

p(β), which represents the knowledge we have about β beforehand. The prior knowledge may

vary from hardly any or none to a lot of information from earlier research or studies. This

knowledge can be reflected in the choice of p(β). Analogously, prior knowledge about the error

term variance σ2 is taken into the model. Model (1.10) shows a Bayesian linear regression model
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with unspecified prior distributions. The likelihood L(Y |Xβ) is identical to the likelihood in

Model (1.1). Prior distributions for the parameters β and σ2 are then added, resulting in

p(β) ∼ prior distribution

p(σ2) ∼ prior distribution

L(Y |Xβ) ∼ N(Xβ, σ2)

p(β, σ2|X,Y ) ∝ L(Y |Xβ)p(β)p(σ2).

(1.10)

In a Bayesian regression analysis, the aim is to draw conclusions about the posterior distribution,

which is given by p(β, σ2|X,Y ) for a linear regression model. The posterior distribution is a

compromise between the information in the data (i.e. the likelihood) and the information that

was known beforehand (i.e. the prior distribution). In Model (1.10), the posterior distribution

is given as being proportional to the product of likelihood and prior distribution. This product

needs to be divided by a normalising constant in order to represent a distribution. Gelman

et al. (2014) offer a general introduction to Bayesian statistics as well as ways of choosing prior

distributions.

When the posterior distribution and the prior distribution stem from the same family, the

prior is called a conjugate prior and the model is called a conjugate model (Gelman et al., 2014,

chapter 2). When the prior is conjugate, the posterior is available as closed-form expression

and can be obtained analytically. Such cases allow for easy and fast Bayesian analysis. Well-

known conjugate models are the Normal-Normal model where both the prior distribution and the

likelihood are modelled as normal distributions (in case of the likelihood with known variance).

The posterior distribution consequently is a normal distribution as well. In a regression context,

modelling the prior distribution for β with a normal distribution and the prior distribution for

σ2 with an inverse Gamma distribution also results in a conjugate model. Other examples are

the Beta-Binomial model where the likelihood is modelled as binomial distribution while prior

and posterior distribution follow Beta distributions as well as the Poisson-Gamma model.

While conjugate models are very useful and allow for easy analysis, they are not available for

many models. In such cases, an analytical solution usually cannot be obtained. This is due to the

normalising constant, which is in fact a high-dimensional integral that often is not analytically

solvable. Instead, Laplace approximation or Markov Chain Monte Carlo (MCMC) techniques

can be used. Both are active areas of research. In Appendix A, an overview of approaches

formerly and currently used in the analysis of Bayesian models is presented. The notation is

7
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kept to that of regression models, but the algorithms introduced can be applied to a broad range

of models analogously.

In addition to the references given in Appendix A, Bolstad (2010) offers an overview of

computational methods employed to obtain an approximation of the posterior distribution.

In the thesis at hand, only Hamiltonian Monte Carlo (HMC) is employed. This is a variant

of MCMC that is widely used in practice. The R-package rstan (Stan Development Team, 2018)

offers an easy way of conducting Bayesian analyses with HMC in R.

After successfully obtaining an MCMC-sample, often descriptive or non-parametric methods

are chosen to analyse it. Values like mean, median, variance, inter-quartile range, and quantiles

can be employed to characterise the univariate marginal posterior distributions. Boxplots and

kernel density estimates offer a good visual representation. 95% credible intervals can be obtained

from the 2.5% and 97.5% quantiles. In a regression context, they allow an evaluation of the

importance of a variable, similarly to a significance test in a frequentist setting. It is also

possible to contemplate two or multiple marginal distributions simultaneously. However, this is

usually not the focus of a regression analysis.

1.2 Challenges for regression analysis for Big Data

According to Moore’s law (Mack, 2011), computing power – represented by the number of com-

ponents in a typical semiconductor integrated circuit – doubles every 12-18 months. The law

has empirically been true since the 1970’s, but seems to level off in recent years. The size of

data sets has also been growing at a fast rate over the last years, especially since digital ways

of saving data have become readily available (Hilbert and López, 2011). In the last five years,

the term Big Data has reached the public. While the advent of large data sets (in comparison

to the computing power available) may not be a recent development, this development poses

a challenge to statistical methods and their scalability. Many statistical concepts are based on

sample sizes of n in the double or triple digits. One prominent representative is the p-value,

which loses some usability for large data sets as even tiny differences between means, say, easily

return results that are deemed statistically significant.

Growing data sets pose a challenge when conducting regression analysis, both on a computing

and on a methodological level. The memory required grows at least linearly with the dimensions

n and p. This may be a problem in both frequentist and Bayesian cases as standard regression

analysis procedures depend on the whole data set being available.
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The running time for standard procedures typically depends linearly on n and p as well. In

the frequentist setting, this poses less of a problem as the result is forthcoming after one pass

through the data. In a Bayesian setting, most algorithms require multiple passes through the

data, which means that considerable running time is necessary before results become available.

For the effects of this on a practical example, please refer to Figure 2.1 in Chapter 2. In both

cases, linear regression analysis may become infeasible or even impossible for very large data

sets, but in a Bayesian setting the problem is more apparent.

In response to these challenges, Welling et al. (2014) suggest two desiderata methods should

fulfil in order to be suitable for Bayesian analyses on very large data sets or Big Data. The

first desideratum is that each update only accesses a subset of the data set where the size of the

subset does not depend on the size of the data set, i.e. is independent of n. This requirement

makes methods feasible for streaming data which can be interpreted as having infinitely large

data sets, thus making sure that the method works regardless of how big the data set grows to

be.

As a second requirement, Welling et al. (2014) postulate that the algorithm should be ad-

equate for an application in distributed systems. This is useful as very large data sets may be

distributed to different computers for analysis as a means of lessening the demands for every

single machine or to suit the architecture of current computer clusters. It also opens up the pos-

sibility of performing the analysis in cyber-physical systems or generally on a distributed system

with comparatively low computing power.

In addition to suggestions concerning the computational demands of the methods, there are

also methodological issues to consider. One prominent example is the concept of statistical

significance. As a general rule, test statistics depend on the number of observations n – in the

example of a one-sample t-test the dependence is
√
n. This leads to larger values of the test

statistic as n increases. While this is a generally desirable property, it can lead to rejection of

the null hypothesis even for very small deviations of the estimated value from the tested value.

This may lead to significant results for effects that are not relevant in practice.

1.3 Outline of the thesis

In the following, I will present different ideas regarding how to conduct regression techniques as

data sets grow. Throughout the thesis, the number of observations n is considered large while

the number of variables p is small to moderate.
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Chapter 2 introduces a possibility of reducing data sets with large n and small to medium-

sized p for frequentist linear regression as well as Bayesian linear regression with normal or vague

prior distributions. The results on the reduced data set are provably close to the ones obtained

on the original data set. Here, the focus lies on a reduction of the size of the data set by reducing

the number of observations from n to k. This leads to a decrease in the memory required to

conduct the analysis. When employing MCMC-methods or other algorithms where the running

time may be long and depends on n, this also leads to a considerable reduction in the total

running time of the analysis.

With Chapter 2 as foundation, Chapter 3 generalises the results to more regression models

by allowing a broader choice of prior distributions. This is done by including hierarchical mod-

els, which introduce hierarchical information on an additional level, and p-generalised normal

distributions. These can be used for penalised regression approaches like LASSO- regression and

ridge regression.

Chapter 4 introduces the method “Merge & Reduce” that was originally developed in the

context of clustering in very large data sets and transfers this method to the regression context.

Ideas are presented for linear and Poisson regression models. Merge & Reduce splits the data

set into blocks that are analysed iteratively. The information from each block is aggregated in

an efficient way, eventually resulting in a final model that represents the original model. This

approach does not reduce the data set, but by splitting the data set it offers a possibility to

handle very large data sets or data streams in an efficient and stable way.

Chapter 5 summarises and discusses the results. Limitations of the proposed methods and

possible future directions of work are also picked up on. In addition, some results of Bachelor’s

and Master’s theses that were developed within project C4 of SFB 876 are introduced and

reviewed.

MCMC-methods are employed in most chapters of this thesis. They are not in the focus, but

form the basis for most of the empirical evaluations. For that reason, Appendix A introduces

MCMC-methods and their idea. Appendix B investigates the effects of violations from the

assumptions of regression models as well as observations of varying importance. This presents

an interesting issue, because all methods that reduce the number of observations work well if all

observations are of the same importance for the model and all assumptions are met.
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Chapter 2

Random Projections for Linear

Regression

Wo die beherrschende Idee des Studentenlebens Amt und Beruf ist, kann sie nicht

Wissenschaft sein. Sie kann nicht mehr in der Widmung an eine Erkenntnis bestehen,

von der zu fürchten ist, daß sie vom Wege der bügerlichen Sicherheit abführt.

(Walter Benjamin – Das Leben der Studenten)

2.1 Introduction to random projections

The idea behind random projections is to find a random matrix Π that reduces the dimension

of a vector from n to k such that for any vector v ∈ Rn, there exists a random matrix Π ∈ Rk×n

for which Equation (2.1) holds:

(1− ε)∥v∥ ≤ ∥Πv∥ ≤ (1 + ε)∥v∥, (2.1)

where the so-called approximation parameter ε influences how close the projection is to the

original vector. The idea was first formalised in the Johnson-Lindenstrauss theorem (Johnson

and Lindenstrauss, 1984). Since then, there has been active research in this area, with one focus

on finding algorithms that create suitable random matrices Π.

Random projections are employed to reduce the larger dimension. In the following, I assume

n≫ p and that the aim is a reduction of n to k, where n > k > p. Random projections can also

be used to reduce the number of variables in the case of n < p, however, an interpretation of the

new variables is not easily possible. Section 5.1.1 provides more details and thoughts on this. A
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reduction below the rank of X is possible, but comes at the cost of a potential catastrophic loss,

i.e. an unacceptably high approximation error. Random projections are also called sketches. In

the following, I will especially refer to the process as sketching and to the reduced data set as

sketched data set.

One field of application of the Johnson-Lindenstrauss theorem is linear regression. In the

frequentist case, the quadratic loss function

min
β∗

n∑
i=1

(
yi −Xi·β

∗)2 = argmin
β∗

∥Y −Xi·β
∗∥22

on which the estimate for β is based, can be interpreted as a vector. This way, the values

of the loss function for different choices of β and also the optimal solution β̂ are approximately

recovered. How to construct suitable random matrices Π is an active area of research. Important

results from this research as well as related approaches are discussed in Section 2.2.

A desirable property for random projections and other techniques that reduce the size of the

data is that the goodness-of-approximation is controllable employing the parameter ε. To that

end, Definition 1 introduces a formal concept of ε-subspace embeddings.

Definition 1 (ε-subspace embedding). Given a matrix U ∈ Rn×p with orthonormal columns,

an integer k ≤ n and an approximation parameter 0 < ε ≤ 1/2, an ε-subspace embedding for U

is a function Π : Rn → Rk such that

(1− ε)∥Ux∥2 ≤ ∥ΠUx∥2 ≤ (1 + ε)∥Ux∥2 (2.2)

holds for all x ∈ Rp, or, equivalently

∥UTΠTΠU − Ip∥ ≤ ε. (2.3)

In Definition 1, the spectral norm of a matrix U is defined as follows:

Definition 2 (spectral norm). The spectral or operator norm of a matrix U ∈ Rn×p is defined

as

∥A∥ = sup
x∈Rp\{0}

∥Ax∥
∥x∥

,

where ∥x∥ = (
∑n

i=1 x
2
i )

1
2 denotes the Euclidean vector norm for any x ∈ Rn.
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In Section 2.3 I introduce three sketching methods that can be used to obtain ε-subspace

embeddings. Other sketching methods as well as other techniques can also be used to arrive at

ε-subspace embeddings. I will discuss some of them in Section 2.2.

2.2 Related work

To give an overview of related research in the fields of Statistics and Computer Science, I will pick

up on two main fields: reduction of the dimension of the original data set in a linear regression

context (both frequentist and Bayesian) as well as making the MCMC-algorithms employed for

Bayesian analysis more efficient. The efficiency of algorithms employed for frequentist regression

analysis usually poses a negligible problem and is not considered in this section.

Size of the data set Reducing the dimensionality of the data set is a common aim and has

been widely used in both Statistics and Computer Science. Usually, the focus is on reducing the

number of variables p. One example is principal component analysis (PCA) (Jolliffe, 2002), which

originally had the main aim of avoiding problems with multicollinearity by replacing the original

variables with an orthogonal basis. PCA can also be and is used for the purpose of dimensionality

reduction. This is possible, because each principal component represents a decreasing amount

of the total variation present in the data set. Only employing the first p∗ principal components

can thus reduce the dimensionality while keeping the main structure in the data.

In the thesis at hand, the focus lies on reducing the number of observations from n to k, where

n≫ p and n > k > p. This is especially useful in the context of very large data sets, because the

running time of commonly used algorithms for statistical analysis depends on n. In this situation,

tried and tested techniques based on PCA include principal component regression and partial

least squares (Friedman et al., 2009). More recent results that are based on PCA can be found in

the field of coresets for k-means clustering. Such approaches aim at finding a small subset that

approximates the original data set with an approximation error of, say, (1±ε) with respect to the

objective function (Feldman et al., 2013). This means that the value of the objective function at

the optimum found on the subset lies within the interval [(1−ε)vopt, (1+ε)vopt], where vopt is the

value of the objective function at the optimum found on the original data set. Here, the idea is to

combine iterative simple random sampling without replacement and the additional exclusion of

observations that are close to already sampled observations. A related concept, data squashing,

attempts to compress the data based on the likelihood of the observations (DuMouchel et al.,

1999; Madigan et al., 2002). The main objective is to preserve statistical information in such a
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way that statistical analyses carried out on the squashed data set approximate the results on the

original data set well. To that end, the data set is partitioned using likelihood-based clustering.

Then, pseudo-observations are created from these clusters and employed in further statistical

analyses.

Random projections have been studied in Computer Science to achieve low-rank approxima-

tion (Cohen et al., 2015a), for least squares regression (Clarkson and Woodruff, 2009; Sarlós,

2006), in the context of Gaussian process regression (Banerjee et al., 2013), for clustering prob-

lems (Boutsidis et al., 2010; Cohen et al., 2015a; Kerber and Raghvendra, 2014) and classification

tasks (Paul et al., 2014) as well as for compressed sensing (Candès et al., 2006; Donoho, 2006).

Baraniuk et al. (2007) employ random projections to approximate a family of subspaces with

only sparse vectors. In compressed sensing, Bayesian inference has been proposed for efficient

computation by Ji and Carin (2007).

Recently, random projections and other algorithms using randomised linear algebra have been

studied with a focus on statistical aspects. Raskutti and Mahoney (2015) as well as Ma et al.

(2014) study subsampling approaches based on leverage scores and their statistical properties

extensively. Ma et al. (2014) show that leverage scores behave uniformly for data that is generated

in such a way that it follows linear regression models. Yang et al. (2015) employ several sketching

and subsampling methods as a fast means to precondition the data set before efficiently finding

the least squares estimator. They also discuss algorithms that work in parallel and distributed

and support their results with extensive empirical evaluations on very large data sets. Our

work continues investigating statistical properties of random projections by transferring these

algorithms to the Bayesian setting.

Bayesian regression analysis for very large data sets has been considered before in Statistics.

In the case of “large p, small n”, Guhaniyogi and Dunson (2015) proposed reducing the number of

variables using random projections. Under several assumptions they show that the approximation

converges to the desired posterior distribution. For the general case, this is not possible as

dimensionality reductions that are done oblivious to the target variable can lead to additive

error in the worst case (Boutsidis and Magdon-Ismail, 2014).

In the “large n, small p”-case, Tall Skinny QR (TSQR) (Demmel et al., 2012) is a QR-

decomposition that requires multiple passes over the data, but can be easily calculated in parallel

(Benson et al., 2013; Constantine and Gleich, 2011). TSQR can be used as a preprocessing step

prior to Bayesian inference using MCMC-methods. It leads to a stable decomposition with high

accuracy. However, it is restricted to regression models with a normally distributed likelihood

14



2. Random Projections for Linear Regression

and requires the data to be given row-by-row. Due to the QR-decomposition being expensive,

the running time exhibits a lower bound of Ω(np2) (cf. Demmel et al., 2012). Ω(·) stands for the

Bachmann-Landau-notation and indicates that a function is asymptotically bounded below by

the given function. In this chapter as well as in Chapter 4, I also employ O(·), which signifies

that a function is asymptotically bounded above by the function given.

In a recent publication, Giraldi et al. (2018) combine random projections with ideas from

information theory to arrive at “optimal projections”. These are based on the Kullback-Leibler

divergence and the mutual information between the projected observations and the parameters

of interest.

In this thesis, I only consider so-called data-oblivious subspace embeddings. Such subspace

embeddings are constructed independently of the data set that is to be embedded, i.e. Π in

Definition 1 is independent of U . This allows for efficiently obtaining Π. In contrast, their

counterparts – data-aware subspace embeddings – are adapted according to the data set, i.e. Π

depends on U . Data-aware subspace embeddings are also useful in large data settings, but are

outside the scope of this thesis.

Efficiency of the algorithm Markov Chain Monte Carlo methods provide the gold standard

for Bayesian analysis whenever no conjugate model that is analytically solvable is available.

MCMC-methods are reliable and offer insights into possible problems with the model or with

the approximation of the posterior distribution. However, the required running time depends on

n · p and can be quite high, constituting a bottleneck.

There is a rich field of attempts to improve this situation. One line of research is the improve-

ment of MCMC-algorithms, e.g. Hamiltonian Monte Carlo methods (confer Appendix A). The

advantage of easily being able to judge whether the result is an approximation of the desired pos-

terior distribution is preserved. Other approaches are to tweak or replace the MCMC-algorithm.

One cause for the bottleneck is the repeated evaluation of the likelihood, which usually involves

all n observations.

Balakrishnan and Madigan (2006) propose an algorithm that reads the data block-wise and

performs a number of MCMC-steps on the block. For every new block, some of the data points

are kept while others are replaced according to weights that try to capture the importance of

the observations for the current batch of data. The algorithm only requires one pass through the

data, but provides the user with a full MCMC-sample. The selection rule employed is justified
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empirically. Theoretical support is only present for the univariate case and is based on central

limit theorems for Sequential Monte Carlo methods.

An approach by Bardenet et al. (2014) suggests subsampling the data in order to approximate

the decision to accept or reject in every step of a Metropolis-Hastings algorithm. They show that

the approximated decision is similar to the original one with high probability in every iteration.

The number of iterations in the subsampling algorithm is not fixed beforehand, but calculated

according to an adaptive stopping rule. This means that the number of iterations depends on

the variance of the logarithm of the likelihood ratios considered.

Two recent articles by Quiroz et al. (2018a,b) suggest replacing the Metropolis-Hastings

and the MCMC-algorithm, respectively, by a version that accepts or rejects the proposed point

based on a subsample of the data set. This reduces the computational cost of the algorithm, thus

providing a more efficient way of obtaining the posterior distribution in a Bayesian setting. They

propose inclusion probabilities proportional to the observations’ contribution to the likelihood,

which is approximated by a Gaussian Process. For Metropolis-Hastings (Quiroz et al., 2018b), the

suggested algorithm includes a delayed acceptance mechanism, which aims at only evaluating

the likelihood when there is a good chance of acceptance. In both cases, there may be some

relation to data-squashing mentioned above, however, Quiroz et al. (2018a) aim at providing

an alternative to classical MCMC-type algorithms. There is a lack of theoretical approximation

guarantees, but the articles indicate useful applicability empirically.

There are also approaches that replace the MCMC-algorithm completely. One of them is the

Integrated Nested Laplace Approximation (INLA) (Rue et al., 2009). Here, instead of Monte

Carlo approximation of the posterior distribution, Laplace approximation is employed. This type

of approximation is only suitable for the class of latent Gaussian models. However, this class

offers a great number of available models (Martins et al., 2013) and INLA is generally faster than

MCMC for models from this class. One disadvantage is that it is harder to verify how good the

approximation of the posterior distribution is for a concrete case.

Approximate Bayesian Computation (ABC) offers an alternative to Bayesian analysis when

it is not possible to calculate the likelihood. Instead, simulations approximating the likelihood

function are employed (Csilléry et al., 2010). This approximation is not quite comparable to

others mentioned in this overview, as the main aim is not a more efficient analysis, but rather

making a Bayesian analysis possible where otherwise it would be impossible. ABC can provide

summary statistics for very low dimensions, as a general rule of thumb p < 10 (Beaumont et al.,

2002; Csilléry et al., 2010).
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After considering related work from different angles and perspectives, I will now introduce

our own proposition, starting with our theoretical results. While the theoretical guarantees are

of interest for the thesis at hand, they are not the focus of my work and are consequently only

presented to a certain extent. Please refer to Geppert et al. (2017) and Munteanu (2018) for the

full extent of theoretical analyses.

2.3 Theoretical results

In a Bayesian regression analysis, the aim is analysing the posterior distribution p(β|X,Y ). A

scheme of our approach is given in Sketch (2.4):

[X,Y ]
Π−−−−→ [ΠX,ΠY ]

↓ ↓

p(β|X,Y ) ≈ε p(β|ΠX,ΠY ).

(2.4)

The left-hand side of Sketch (2.4) depicts the normal procedure of a Bayesian regression

analysis. Starting with X and Y , we sample from the posterior distribution to obtain p(β|X,Y ).

However, for large data sets, this path may take long or even be unfeasible. When employing

random projections, the first step is to embed the data set into a lower dimension with the help

of the random matrix Π. All subsequent analyses will then be performed on the reduced data

set, on the right-hand side of Sketch (2.4). This greatly reduces the requirements with regard to

running time and memory.

Importantly, results on the reduced data set need to be close to results on the original data

set, indicated by ≈ε in Sketch (2.4). In the frequentist case, finding the distance between two

estimates for β is easy. In contrast, we are dealing with the distance between two posterior dis-

tributions in the Bayesian case. Here, the Wasserstein distance is one of the suitable possibilities.

Let γ and ν be two probability measures over Rp and Λ(γ, ν) denote the set of all joint prob-

ability measures over Rp × Rp that have γ and ν as marginal distribution. The ℓ2-Wasserstein

distance is defined as follows:

Definition 3 (Wasserstein distance, following Villani (2009)). Given two probability measures

γ, ν on Rp the ℓ2-Wasserstein distance between γ and ν is defined as

W2(γ, ν) =

(
inf

λ∈Λ(γ,ν)

∫
Rp×Rp

∥x− y∥22 dλ(x, y)

) 1
2

= inf
λ∈Λ(γ,ν)

Eλ∥x− y∥22
1
2 .
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In Definition 3, the Wasserstein distance is defined for the case of ℓ2. Other norms can

analogously be employed. The special case of q = 1, i.e. the ℓ1-Wasserstein distance is also

known as Earth Mover’s distance. In the thesis at hand, I employ the ℓ2-Wasserstein distance

to evaluate the distance between the two posterior distributions, based on the original data set

and based on the sketched data set.

I consider three ways of obtaining random projections that have been proven to be useful

for frequentist linear regression and transfer the results to Bayesian linear regression. The three

methods are the Rademacher matrix (RAD), the Subsampled Randomised Hadamard Transform

(SRHT) and the Clarkson-Woodruff-method (CW). The methods differ in certain aspects that

will be introduced in the following as well as in Table 2.1 on page 22. The sketches from all

three sketching methods are linear. This means that instead of sketching the data set in one

go, sketching subsets of the data set and aggregating the resulting sketches by simply adding

them leads to the same approximative result. This is especially useful when batches of data are

analysed sequentially, e.g. in a streaming setting, or when the sketching is done in parallel on

multiple computers.

Every random projection may fail to provide the theoretically guaranteed goodness-of-approx-

imation. This happens with a probability of δ which directly influences the target number of

observations k – the so-called failure probability. Two things are important to note here. Firstly,

the word fail is used in a rather weak sense. It does indicate that the guaranteed goodness-of-

approximation could not be held by the random projection, but usually, the approximation will

only be slightly worse. It is not indicative of a catastrophic failure by any means. Catastrophic

failures may happen, but the event of a meteor destroying the computer that calculates the

embedded data set can be seen as more likely.

Secondly, it is easily possible to find out whether the approximation works as intended or not.

To that end, the practitioner is encouraged to sketch the original data set twice and compare

the frequentist regression models based on both sketches. If the resulting estimates of β are

not similar, a failure is likely to have occurred. During the analyses of simulated and real data

sets for the thesis at hand and for Geppert et al. (2017), I have not come across one instance

of a failed random projection. In this section, the failure probability δ is included whenever

appropriate. However, δ will not be explicitly mentioned when dealing with experimental results

in further sections.
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Rademacher Matrix (RAD) The Rademacher matrix offers a very simple form of the sketch-

ing matrix Π ∈ Rk×n. Each cell is chosen independently from {−1, 1} with equal probability.

The matrix is then rescaled by multiplying every entry with 1√
k
, giving Π. This is also the

oldest of the three methods considered in this thesis and in Geppert et al. (2017). Sarlós (2006)

showed that this method forms an ε-subspace embedding when choosing k = O
(
p log(p/δ)

ε2

)
,

where δ is the failure probability. The required number of observations was later reduced to

k = O
(
p+log(1/δ)

ε2

)
in Clarkson and Woodruff (2009), which is the lower bound (as proven by

Nelson and Nguyễn, 2014). Employing the RAD method yields a very good reduction of the

data set. In our implementation, RAD and SRHT, which is introduced shortly, lead to equally

small sketches. However, the RAD embedding requires a running time of the order Θ(npk),

which is considerably more than the two other embedding methods presented here. The running

time can be reduced when the input is given row by row or block by block due to a fast matrix

multiplication algorithm employed in our implementation.

As a technical remark, it is not necessary to sample the entries of D from {−1, 1} in a

way that full row-wise independence of the RAD-matrix is given. Instead, as noted first by

Alon et al. (1999), four-wise independence is provably sufficient, i.e. any four or less entries of

an arbitrary row behave as if they were fully independent. This enables efficient sampling of

random numbers via a hashing scheme that generates BCH-codes, which are a well-known class

of codes in Computer Science, employing a seed of size O(log n). Our implementation is based

upon the four-wise independent BCH-scheme described in Rusu and Dobra (2007).

Subsampled Randomised Hadamard Transform (SRHT) The Subsampled Randomised

Hadamard Transform consists of three components, Π = 1√
k
RHmD. R ∈ Rk×m is a row sampling

matrix, which means that exactly one entry per row is a 1 while all others are 0. The position of

the cells containing the 1-entry is sampled independently from {1, . . . ,m} with equal probability

for all elements of the set. m is the smallest power of two that is larger than n, i.e. ∃i such that

2i = m where m ≥ n and 2(i−1) < n. Using m instead of n allows more efficient calculation of

the second component Hm, the Hadamard matrix of order m. Hadamard matrices are matrices

with special properties: they are square matrices whose entries are either 1 or −1 and whose

rows are mutually orthogonal. The third component, D ∈ Rm×m, is a diagonal matrix where

each element of the diagonal is sampled from {−1, 1} with equal probability. As a final step, the

matrix is rescaled by 1√
k

as before.
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Even though in practice m > n, this does not pose a problem. We can think of the design

matrix X being padded with additional 0-entries to obtain a size of m × p. These additional

entries remain 0 after multiplying ΠX, which means that this does not need to be done explicitly.

For the regression analysis we just employ the first n columns or rows, as appropriate.

This sketch was originally proposed by Ailon and Liberty (2009). Its target dimension is

k = O
(
(
√
p+

√
lnn)2 ln(p/δ)

ε2

)
(Boutsidis and Gittens, 2013). The small dependency on n is negligible

if n = O(exp(p)). In practice, this is fulfilled when p is reasonably large. In that case, a target

dimension of k = Ω(p ln p) is necessary. The running time required to obtain an SRHT-sketch

is O(np ln k), which is considerably less than for a RAD-sketch. According to Ailon and Liberty

(2009), the construction of SRHT-sketches is closely related to four-wise independent BCH-codes.

Although, to the best of our knowledge, there is no explicit proof, we again employ the four-wise

BCH-scheme to obtain D. From the empirical evaluations, this seems to work well in practice.

Clarkson-Woodruff (CW)-sketch The Clarkson-Woodruff-sketch (Clarkson and Woodruff,

2013) is the most recent method considered in the thesis at hand as well as in Geppert et al.

(2017). Here, Π = 1√
k
ΦD. The rescaling factor is the same as for RAD and SRHT. D ∈ Rn×n

again is a diagonal matrix whose entries are sampled from {−1, 1} with equal probability.

Φ ∈ Rk×n is a matrix with 0 and 1 as entries. The positions of the 1-entries are determined

according to a random map h : {1, . . . , n} → {1, . . . , k}. For every i ∈ {1, . . . , n}, the im-

age h(i) is sampled from {1, . . . , k} with equal probability 1
k for every element. The entries

Φh(i),i, i = 1, . . . , n, are set to 1, all other elements of Φ are set to 0.

Due to its construction, the CW-sketch can be applied to any (n× p)-matrix in O(np) time,

which in the case of sparsity in X reduces to the number of non-zero entries. Concerning the

running time required, this is optimal up to small constants. Reading a data set or data stream

and sketching it using the CW-sketch only adds a small multiplicative factor. For empirical results

on this, please refer to Section 2.4.7. The target dimension is k = Ω(p2) (Nelson and Nguyễn,

2013b), which is a higher dependency on p in comparison to the other two sketching methods.

Nelson and Nguyễn (2013a) improved the upper bounds given by Clarkson and Woodruff (2013)

and showed that with probability 1− δ a target dimension of k = O( p2

ε2δ
) is sufficient to provide

an ε-subspace embedding. Following Nelson and Nguyễn (2013a) further, it is sufficient to use

four-wise independent random entries to generate D. To that end, we employ the BCH-scheme

by Rusu and Dobra (2007) in our implementation.
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The three methods differ in the running time they require to sketch the data set as well as in

the target dimension k of the sketched data for a given value of ε. Table 2.1 provides an overview.

Even though theoretically, the target dimension k is different for RAD and SRHT, both sketching

methods result in the same target dimension for any value of ε in our implementation. However,

they do differ in the running time required. CW is the fastest of the three methods. Its running

time depends linearly on the number of non-zero entries in the data set. The size of the resulting

sketch has a higher dependence on the number of variables p than the other two methods, as k is

of the order p2. For small values of p, CW will return sketches with a smaller target dimension,

but for values of around p = 60, this changes. In general, CW provides a very fast and reliable

sketch, but k may become too large if p is large.

The choice of the sketching method represents a trade-off between speed and size. However,

this trade-off is more relevant for a frequentist linear regression. For Bayesian models, the size

of the data set greatly influences the running time of the MCMC-algorithm while the running

time required to obtain the sketch is negligible. If a low total running time of the analysis is

a priority, employing a sketching method that results in a small target dimension k may be of

more importance.

For all three sketching methods, the target dimension is independent of n. They are also

easily adequate for an application in distributed systems with the only caveat that for SRHT,

care must be taken to ensure that n is always larger than k. All three thus fulfil both desiderata

by Welling et al. (2014) mentioned in Section 1.2.

Whether or not the sketches are able to handle cases where k > n can be an important

difference. This situation can occur in a streaming situation when incoming data are analysed in

batches or in a parallelised setting when the data set is distributed onto different machines for

sketching purposes. Because k is independent of n, the sketch may be larger than the original

data set for relatively small n. Of the three methods introduced here, RAD and CW are able to

handle such situations whereas SRHT is not.

For all three methods, we theoretically show in Geppert et al. (2017) that the results on the

embedded data sets are close to the results on the respective original data sets. How close the

results are is controlled by the parameter ε. Larger values of ε lead to smaller size of the sketched

data set but also to larger approximation errors. Conversely, lower values of ε mean that the

approximation is close to the original results, but this comes at the cost of less reduction in the

size of the data set.
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sketching method target dimension running time can handle k > n

RAD O
(
p+ln(1/δ)

ε2

)
O (npk) yes

SRHT O
(
p·ln(p/δ)

ε2

)
O (np ln k) no

CW O
(

p2

ε2δ

)
O (nnz(X)) = O(np) yes

Table 2.1: Comparison of the three considered ε-subspace embeddings, giving the target di-
mension k depending on the approximation parameter as a function of ε and the running time
required to obtain the ε-subspace embedding. nnz(X) denotes the number of non-zero entries in
X, δ denotes the failure probability.

Especially interesting are Lemma 4 and Theorem 1 from Geppert et al. (2017). Both are

concerned with theoretical guarantees for the ℓ2-Wasserstein distance between the posterior dis-

tribution on the original data set p = p(β|X,Y ) and the posterior distribution on the sketched

data set p′ = p(β|ΠX,ΠY ). Lemma 4, given here as Equation (2.5), states that the distance

between p and p′ is at most

W2
2 (p, p

′) ≤ ε2

sv2min
∥Xβ̂ − Y ∥22 + ε2 tr

(
(X ′X)−1

)
, (2.5)

where β̂ is the estimator for β in a frequentist sense or the posterior mean for β in a Bayesian

sense. svmin is the smallest singular value resulting from a singular value decomposition of X.

Theorem 1 from Geppert et al. (2017) is very similar in its structure. While Equation (2.5) only

embeds the likelihood, Theorem 1 also includes the prior distribution, which has to be either an

arbitrary normal distribution or a non-informative vague prior over the whole of Rp.

Equation (2.5) and analogously Theorem 1 from Geppert et al. (2017) state that the difference

between both posterior distributions depends only on an ε-fraction of the model’s goodness-of-fit

plus an ε-fraction of the variation in the data, represented by the trace of (X ′X)−1. This makes

the role of the approximation parameter ε clear.

In our R-package RaProR1, it is also possible to set the desired target value k directly instead

of choosing ε. Here, a lower value of k corresponds with a larger approximation error and vice

versa. The choice of ε or k thus represents another trade-off in the Bayesian case. If the focus lies

on obtaining a result quickly, larger values of ε lead to a higher reduction and a faster subsequent

analysis at the cost of a higher approximation error. If more time is available, a lower value of ε

ensures a better approximation.
1http://ls2-www.cs.tu-dortmund.de/grav/de/projekte/RaProR
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2.4 Simulation study

2.4.1 Data generation and models

In addition to the theoretical considerations, I also conduct an extensive simulation study to

investigate the benefits of the method in practice. Table 2.2 contains a synopsis of the parameters

used to create different simulated data sets. The dimensions of the data set, n and p theoretically

play different roles. The number of variables p has a large influence on the reduced number of

observations k while k is independent of the number of observations n. To corroborate this

empirically, both n and p are included as parameters. In general, every combination of settings

is repeated several times with different underlying parameter vectors β.

According to Equation (2.5), the goodness of approximation depends on the goodness of fit

of the model. For that reason, I include the error term variance σ2 as a parameter. A linear

regression model is suitable for all data sets created in this simulation study, however, while the

unexplained variance is small for some data sets, there are others with a medium or high error

term variance.

parameter role values

n number of observations {50 000, 100 000, 500 000, 1 000 000}
p number of variables {50, 100}
σ error term standard deviation {1, 2, 5, 10}

Table 2.2: Overview of parameters in simulation study.

The “true” underlying values of β are generated employing a zero-inflated Poisson distribution.

More precisely, the components of β are set to 0 with probability 0.5 and follow a Poisson

distribution with rate λ = 3 with probability 0.5. All components are multiplied with (−1) with

probability of 0.5, allowing for negative influences in the regression model. To obtain the data set

X, we first draw the column means X̄ ·j from a N(0, 25) distribution. The values in every column

are drawn from a N(X̄ ·j , 4) distribution. A 1-column is added to model the intercept term. In

the last step, the values of η are drawn from N(0, σ2) and Y is calculated as Y = Xβ + η.

The Bayesian regression model consists of a standard likelihood, i.e. Y is assumed to follow

a normal distribution,

Y ∼ N(Xβ, σ2In). (2.6)
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As prior distribution, we employ improper uniform distributions over R for all components

of β and an improper uniform distribution over R+ for σ. The posterior distribution is thus

proportional to

p(Y |Xβ) ∝ L(β|X,Y ) · 1p. (2.7)

This results in a proper posterior distribution, provided, L(β|X,Y ) contains enough information,

which does not pose a problem in a large data setting. For this model, closed-form expressions

can be calculated. However, this simulation study forms the basis for subsequent simulation

studies with more complicated models that cannot be solved analytically. For that reason, I

compare and present results obtained from the package rstan for this chapter as well.

The simulations in this thesis are conducted using R (R Core Team, 2018) while the Bayesian

analyses are carried out using the R-package rstan(Stan Development Team, 2018). The sketches

are calculated with our R-package RaProR. The simulations are conducted on an Intel Xeon E5430

quad-core CPU running at 2.66 GHz using 16 GB DDR2 memory on a Debian GNU Linux 7.8

distribution. The hard drive used is a Seagate Momentus 7200.4 G-Force 500 GB, SATA 3 GB/s

HDD with 7200 rpm and 16 MB cache. The Bayesian regression models are obtained via the

function stan from the package rstan. In my settings, the function employs the No-U-Turn-

Sampler (NUTS)(Hoffman and Gelman, 2014). I use the standard settings of four chains, which

run in parallel.

2.4.2 Overview of the results

In the simulation study, I create a total of 32 data sets, one for each of the combinations in Table

2.2. I conduct a Bayesian analysis on every data set to obtain the results on the original data

set. However, this was only successful for parts of the data sets due to resource limitations.

For every data set, I construct a sketch for each of the three methods RAD, SRHT, and CW

described in Section 2.3. I set the parameter ε to values of 0.1 and 0.2, resulting in a total of six

sketches per simulated data set. I compare the results of the Bayesian analyses on the sketches

with the true values of β and where possible with the results on the original data sets.

2.4.3 Comparison of running times

In a first step, I conduct a preliminary simulation study aimed at observing the running time of a

Bayesian linear regression model when the number of observations n grows. Figure 2.1 contains

the resulting running times for several values of n ∈ [50, 50 000] with p fixed at p = 52 parameters
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Figure 2.1: Running times for simulated data sets with varying number of observations and
p = 52 variables.

(50 independent variables plus the intercept plus the variance term). The running time for the

analyses seems to depend linearly on the number of observations with occasional jumps. The

value for n = 50 seems to be an outlier, this might be caused by the number of variables being

larger than the number of observations. The linear dependency on n does not pose a problem

for small to medium-sized data sets, but for Big Data settings, only methods whose dependency

on the growing dimension is sublinear scale well and remain feasible, confer e.g. desiderata in

Muthukrishnan (2005). This underlines the usefulness of sketched data sets.

Recall that the target dimension k is independent of n. From the theory, we expect that

doubling the number of observations only influences the running time required to obtain the

embedded data set, while subsequent analyses are not affected as the two embedded data sets

are of the same size. In the present case, where the total running time is dominated by the

subsequent analysis, doubling the number of observations is expected to have a very small effect.

Table 2.3 contains the target dimension k of the sketches depending on the number of variables

and the value of the approximation parameters ε.

Table 2.4 gives an overview of the running times grouped into the categories “Preprocessing”

and “Analysis”. The latter group measures the running time required to obtain a converged

Bayesian linear regression model on the respective data set. The “Preprocessing”-group differs

for original and embedded data sets. For original data sets, the value stands for the running

time required to read the data set and load it into memory. For embedded data sets, the value
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p ε RAD SRHT CW

52 0.1 20 547 20 547 16 384
52 0.2 5 137 5 137 4 096

102 0.1 47 175 47 175 65 536
102 0.2 11 794 11 794 16 384

Table 2.3: Target dimension k for the three sketching methods sketches for different values of p
and ε

represents the time needed to create the embedded data set. The total running time required to

obtain a Bayesian regression model on a sketched data set is thus given by adding the running

times for reading the data, sketching it and then analysing the sketch.

Figure 2.2 exemplarily shows the effect of doubling the number of observations on the running

time. For the original data set, the given running times consist of reading and analysing the data;

for the three sketching methods, the times also include the time required for sketching. When

doubling the number of observations in the data set from 50 000 to 100 000, the total running

time required for the original data set more than doubles from just over 600 to more than 2000

minutes. In contrast, the running times for the three sketches show no clear trend. There is an

increase for RAD and CW, but a decrease for SRHT. While the time required for the sketching

process doubles for the three methods (confer Table 2.4), the running times for the analysis only

show some slight variations that seem to be caused by chance. As the running times for the

analysis are orders of magnitude larger than the running times for reading and sketching, there

is no systematic effect visible.

This is not the most efficient way of handling large data sets. The running times required

for reading the data sets are based on the basic execution of the command read.table. The

package data.table (Dowle and Srinivasan, 2017) offers a more efficient option for reading in

large data sets in the function fread. Both functions can also be employed in such a way that

they iteratively read parts of the data set instead of the whole data set at once, thus reducing the

required memory considerably. This is especially advantageous when sketching data sets. Due to

the linearity of the sketches, it is possible to obtain the same sketch as on the whole data set by

iteratively sketching parts of the data and simply adding these sketches. Our R-package RaProR

offers such functionality, but for the sake of comparison, we decided to employ the standard

version of reading the data sets.

The impact of this is low when the number of observations is relatively low (here: n ≤ 100 000)

as the total running time is dominated by the time required for the Bayesian analysis. I will
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Preprocessing Analysis
n sketch ε σ = 1 σ = 2 σ = 5 σ = 10 σ = 1 σ = 2 σ = 5 σ = 10

5 · 104 none 0.32 0.41 0.43 0.44 1096 749.1 616.5 498.7
5 · 104 RAD 0.1 1.60 1.68 1.68 1.73 315.1 213.4 156.8 154.7
5 · 104 SRHT 0.1 0.03 0.02 0.03 0.03 317.3 278.4 181.9 166.4
5 · 104 CW 0.1 0.01 0.01 0.01 0.01 375.2 293.9 164.6 171.8
5 · 104 RAD 0.2 0.40 0.39 0.42 0.43 23.17 26.00 17.48 21.81
5 · 104 SRHT 0.2 0.02 0.02 0.02 0.02 29.04 30.65 23.26 26.00
5 · 104 CW 0.2 0.01 0.01 0.01 0.01 26.92 25.77 20.57 22.94
1 · 105 none 0.69 0.83 1.02 1.05 2036 1617
1 · 105 RAD 0.1 3.27 3.41 3.41 3.27 278.9 260.80 167.2 182.9
1 · 105 SRHT 0.1 0.05 0.06 0.05 0.05 285.0 282.20 128.6 196.5
1 · 105 CW 0.1 0.02 0.03 0.02 0.02 257.5 278.20 187.0 198.8
1 · 105 RAD 0.2 0.76 0.84 0.84 0.80 21.44 23.21 17.52 23.65
1 · 105 SRHT 0.2 0.04 0.04 0.05 0.04 23.72 26.82 21.52 22.70
1 · 105 CW 0.2 0.02 0.02 0.02 0.02 21.94 26.29 21.22 23.45
5 · 105 none 5.49 5.16 5.92 5.71
5 · 105 RAD 0.1 16.88 15.96 16.10 16.36 279.8 313.3 165.9 198.4
5 · 105 SRHT 0.1 0.20 0.21 0.20 0.21 310.2 308.0 190.8 190.2
5 · 105 CW 0.1 0.09 0.09 0.09 0.10 335.7 300.3 189.3 166.9
5 · 105 RAD 0.2 3.73 4.00 4.03 3.85 27.37 27.19 17.22 19.58
5 · 105 SRHT 0.2 0.19 0.18 0.19 0.19 31.37 25.62 22.26 24.76
5 · 105 CW 0.2 0.09 0.08 0.09 0.09 26.03 25.23 24.39 22.86
1 · 106 none 18.23 12.88 12.59 14.09
1 · 106 RAD 0.1 51.77 147.4 33.75 34.71 209.2 279.0 215.8 145.6
1 · 106 SRHT 0.1 0.41 0.49 0.61 0.62 341.1 265.0 294.0 154.8
1 · 106 CW 0.1 0.19 0.27 0.38 0.46 281.7 232.4 175.5 144.0
1 · 106 RAD 0.2 7.92 8.46 8.38 8.21 21.27 19.93 22.87 23.43
1 · 106 SRHT 0.2 0.39 1.44 0.68 0.68 26.61 31.32 19.69 23.69
1 · 106 CW 0.2 0.21 0.19 0.45 0.39 28.58 19.50 22.05 9.72

Table 2.4: Running times for data sets with p = 52. Columns 4 to 7 (“Preprocessing”) contain the
running times of the sketching methods in minutes, for the original data set, the values represent
the time required to read the data set into memory, which is a prerequisite for every sketching
method. The four columns to the right (“Analysis”) contain the running times of the Bayesian
linear regression analysis in minutes.

first concentrate on these smaller data sets and the comparison of the total running times on the

original data sets with those on the sketched data sets. After that, I will comment on trends

that can be observed as n grows.

2.4.4 Comparison of posterior means

The first comparison is akin to a frequentist analysis. To evaluate the results, I compare the

means of the posteriors p(β|X,Y ) on the sketched data sets with those on the respective original
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Figure 2.2: Total running times in minutes for data sets with n ∈ {50 000, 100 000}, p = 52,
σ = 5 and approximation parameter ε = 0.1. For the sketched data sets, the total running time
consists of the time for reading, sketching and analysing the data set. For the original data set,
the sketching time is 0 as this step is not applied.

n sketch ε σ = 1 σ = 2 σ = 5 σ = 10

5 · 104 RAD 0.1 0.052 0.025 0.021 0.834
5 · 104 RAD 0.2 0.014 0.781 0.892 1.512
5 · 104 SRHT 0.1 0.001 0.009 0.021 0.165
5 · 104 SRHT 0.2 0.004 0.077 0.093 0.757
5 · 104 CW 0.1 0.025 0.004 0.021 0.195
5 · 104 CW 0.2 0.016 0.040 0.156 0.915
1 · 105 RAD 0.1 0.836 0.958
1 · 105 RAD 0.2 0.061 0.777
1 · 105 SRHT 0.1 0.025 0.964
1 · 105 SRHT 0.2 0.171 0.617
1 · 105 CW 0.1 0.056 3.844
1 · 105 CW 0.2 2.624 2.937

Table 2.5: Squared Euclidean distances between posterior mean values of the original model and
models based on the respective sketches.

data sets where possible. For all cases, I compare the posteriors on the sketched data sets with

the true values of β.

Table 2.5 contains the sum of squared distances between the results on the embedded data

sets and the original data sets. Geometrically, this is the squared Euclidean distance between

the posterior mean vectors. It corresponds to the comparison of different β̂ in a frequentist

setting. As indicated by Equation (2.5), the squared Euclidean distance grows with the standard

deviation of the error term. There does not seem to be a systematic difference in performance

between the different sketching methods. With larger ε, we usually, but not necessarily, observe
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n sketch ε σ = 1 σ = 2 σ = 5 σ = 10

5 · 104 none 0.000 0.003 0.065 4.614
5 · 104 RAD 0.1 0.048 0.016 0.124 1.718
5 · 104 RAD 0.2 0.012 0.710 0.506 10.845
5 · 104 SRHT 0.1 0.001 0.018 0.032 3.372
5 · 104 SRHT 0.2 0.005 0.059 0.046 8.721
5 · 104 CW 0.1 0.022 0.011 0.046 6.474
5 · 104 CW 0.2 0.014 0.056 0.089 1.870
1 · 105 none 0.065 0.035
1 · 105 RAD 0.1 0.007 0.031 1.354 0.679
1 · 105 RAD 0.2 0.033 0.009 0.117 0.579
1 · 105 SRHT 0.1 0.030 0.136 0.040 0.696
1 · 105 SRHT 0.2 0.007 0.125 0.387 0.453
1 · 105 CW 0.1 0.004 0.232 0.022 4.496
1 · 105 CW 0.2 0.011 0.072 3.484 3.473
5 · 105 RAD 0.1 0.009 0.223 0.563 12.920
5 · 105 RAD 0.2 0.045 0.322 1.729 0.658
5 · 105 SRHT 0.1 0.009 0.147 0.418 0.059
5 · 105 SRHT 0.2 0.016 0.033 0.085 2.978
5 · 105 CW 0.1 0.027 0.097 1.305 0.153
5 · 105 CW 0.2 0.050 0.009 0.135 3.579
1 · 106 RAD 0.1 0.001 0.016 0.126 3.967
1 · 106 RAD 0.2 0.080 0.011 0.072 1.357
1 · 106 SRHT 0.1 0.002 0.010 0.599 0.288
1 · 106 SRHT 0.2 0.002 0.183 2.029 4.329
1 · 106 CW 0.1 0.002 0.289 1.202 4.445
1 · 106 CW 0.2 0.003 0.047 0.100 0.395

Table 2.6: Squared Euclidean distances between true mean values and posterior means of models
based on the respective sketches.

an increase in the distance. Please note that some values are missing, because the original models

did not converge within reasonable time bounds.

In addition to the comparison to the original models’ mean, I also compare the posterior

means to the true means. Table 2.6 contains the squared Euclidean distances between the true

mean for p = 52 and varying values of σ. The general picture looks very similar to the results

in Table 2.5. The original model often exhibits the smallest squared Euclidean distances, but

sometimes models based on embedded data sets are closer to the true mean. Again, there does

not seem to be a systematic difference between the sketching methods. The squared Euclidean

distances do not seem to be influenced by the value of n, with some squared Euclidean distances

even exhibiting smaller values for larger n.
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2.4.5 Comparison of fitted values

After this comparison on the level of parameters – whose number is not changed by sketching –

I will compare the models on the level of observations, of which the sketches contain merely a

fraction of the number of observations in the original data set. I multiply X with the posterior

mean vector of β, where this posterior mean can be based on the original data set or on the

respective sketches. In a frequentist sense, these are fitted values Ŷ , but all X-values are taken

from the original data set, not necessarily from the data set the model is based on. This is done to

see how close the approximation is on the level of Y -values for both ε = 0.1 and ε = 0.2. Figure

2.3 is a scatter plot which shows two-dimensional kernel density estimates of the observations.

The observations themselves are only included for sparsely populated areas of the plot to avoid

overplotting. The fitted values based on the original model are on the x-axis while the fitted

values based on the CW-sketch (with ε = 0.1) are on the y-axis. Darker shades of black stand

for more observations. Even though the fitted values are based on one of the data sets with the

highest standard deviation of the error (n = 50 000, σ = 10), all values are close or reasonably

close to the bisecting line. This means that the fitted values obtained by the two models do

not differ by much. To get a better overview, Figure 2.4 depicts the distances between the

fitted values as box plots. Here, all three sketching methods with both ε = 0.1 and ε = 0.2

are included. All six sets of distances are centred around zero. The effect of the approximation

parameter ε is evident from the boxplot (2.4), the variation is larger for ε = 0.2 regardless of the

sketching method. When fixing ε, all three sketching methods exhibit similar results, although

the RAD-sketch seems to introduce slightly more variation into the differences than the other

two sketching methods.
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Figure 2.3: Comparison of fitted values based on the original data set with n = 50 000, p = 52,
σ = 10 and a CW-sketch with ε = 0.1. Darker shades of black stand for more observations.
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Figure 2.4: Difference of fitted values according to models based on the respective sketching
methods and fitted values according to model based on original data set with n = 50 000, p = 52,
σ = 10.

These results mean that the posterior mean of β is recovered well enough by the three sketch-

ing methods to allow for prediction Ŷ on the original data set with only small deviations for most

of the observations. For new data, the posterior predictive distribution is appropriate. Compared

to the posterior distribution, it adds extra variation to reflect the additional uncertainty that

stems from forecasting unknown data. How the additional variation from the posterior predictive

distribution reacts with the additional variation introduced by sketching the data, would be an

interesting question.

2.4.6 Comparison of posterior distributions

As I have conducted Bayesian regression the model consists not only of a mean value, but of

a whole posterior distribution for each parameter. Figure 2.5 contains two exemplary boxplots

of MCMC-samples representing marginal posterior distributions. The original data set contains

n = 50 000 observations, p = 52 variables and has an error standard deviation of σ = 5. The

medians of the MCMC-samples based on the original data set are well-represented by the MCMC-

samples based on sketches. Even though the median based on an embedded data set might be

higher or lower for certain parameters, I did not find any systematic biases. The embedding

introduces additional variation, which depends on the value of the approximation parameter ε,

but does not seem to be influenced by the choice of sketching method.

In regression, a common task is the identification of important variables by means of variable

selection. In a Bayesian setting, this can be done via credible intervals, among other approaches.

The results indicate that the identification of important variables is quite accurately possible
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Figure 2.5: Boxplots of MCMC-sample for two parameters based on data set with n = 50 000,
p = 52, σ = 5 and respective sketches.

based on the resulting approximate models. However, one has to take the additional variation

into account. Exemplarily, when using 95% credible intervals as criterion, one should not compare

the endpoints of the credible interval to a fixed value µ. Instead, take the extra variation in the

posterior distribution and also possible small shifts of the mean and median into account. For

that reason I recommend using smaller values of ε when aiming at variable selection (see Figure

2.5).

2.4.7 Streaming experiment and remarks

Most data sets in the simulation study so far as well as the real data example (see Section 2.5)

are of a size that enables a Bayesian analysis on the original data set within reasonable time.

This enables comparisons of the results on the original and the sketched data sets, but it makes

analysis of very large data sets unfeasible. As conclusion of the simulation study, we now consider

an example that can be called Big Data. To that end, we generate and at the same time sketch a

data set following the same rules described in Section 2.4.1 with an error term standard deviation

of σ = 0.1. The original data set has a dimensionality of 109 × 100, where every entry is a double

precision value. In CSV-format, this equates to around 2 TB and in binary representation, at

least 750 GB of memory are required.

We employ the CW sketching method and obtain an embedded data set of dimensionality

65 536× 100. In CSV format, the sketched data set required around 140 MB and easily fits into

the working memory. On this sketched data set, we conduct a Bayesian regression analysis in

2781 minutes. In this example, we cannot compare the result on the sketch to the result on
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2. Random Projections for Linear Regression

the original data set, but the squared Euclidean distance between the true values of β and the

posterior mean of the Bayesian analysis calculates to 3.741 · 10−6.

As mentioned in Section 2.3, reading in the data and calculating the sketch only adds a small

multiplicative factor to the required running time compared to only reading the data in for CW-

sketches. In our simulation study, we found the factor to lie between 1.01 and 1.04. Typically,

higher factors are observed for small data sets and lower factors for large data sets (compare

Table 2.4).

In some cases the algebraic structure might strongly depend on a few observations or variables.

In such situations it is important to identify these or to retain their contribution in the reduced

data set. So far, our model assumptions did not suffer from such ill-behaved situations, but in

Geppert et al. (2017) we assess the performance of our method in this case. We construct data

sets where an important part of the target variable falls into a subspace that is spanned by a

small constant number of observations. Uniform random subsampling will pick these only with

probability O( 1n). Oblivious subsampling techniques in general will have trouble identifying the

important observations. In contrast, oblivious subspace embedding techniques preserve these

effects with high probability. This effect is observed in practice even when comparing one sketch

against the best of 1000 repetitions of uniform random subsampling.

2.5 Bike rental data set

In addition to the simulation study presented in Chapter 2.4, I apply the technique of random

projections to a data set containing the number of rented bikes per hour in Washington, D.C.,

USA. The data set is taken from Fanaee-T and Gama (2014) via the UCI Machine Learning

Repository1 (Dheeru and Karra Taniskidou, 2017). It consists of n = 17 379 hours of observation.

The data set contains the number of rental bike users per hour, divided into the categories

“registered users” and “casual users”. In my model, I only use the total number of users. This

number is given as count data, but there are around 850 distinct values. For that reason, I

treat it as continuous variable. After a square-root transformation, the variable shows some

signs of bi-modality, but fits reasonably well to a normal distribution to justify conducting linear

regression.

As explanatory variables I use the variables given in Table 2.7. Three of the variables –

apparent temperature, humidity, and windspeed – are standardised in the data set to fall into
1http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
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the interval [0, 1]. The other variables are factor variables. There are some variables in the data

set that I do not consider in the model, because they are highly correlated with variables already

included in the model. One example are the variables temperature and apparent temperature.

Including both would be disadvantageous or even critical from a modelling point of view.

Originally, the variable weathersit has four levels (“clear”, “cloudy”, “light rain”, and “heavy

rain”). The last category only appears three times in the whole of the data set. To avoid problems

with such a rare occurrence, I combine levels 3 and 4 to obtain the new level 3, which can be

interpreted as “rainy weather”. The other factor variables do not exhibit any problems with the

frequency of levels.

Variable Description Remark

cnt number of rental bikes used dependent variable
season season of the year factor (4 levels)
yr year (2011 or 2012) factor (2 levels)
hour hour (0 to 23) factor (24 levels)
holiday public holiday factor (2 levels)
weekday day of the week factor (7 levels)
weathersit weather situation (“clear” to “rain”) factor (3 levels)
atemp apparent temperature standardized
hum humidity standardized
windspeed windspeed standardized

Table 2.7: Variables from the bike sharing data set used in the model.

To handle the factor variables correctly, I first use the R function model.matrix which creates

the correct design matrix X, and pass this matrix to rstan and RaProR, respectively. With all

dummy variables and the intercept, the design matrix is of dimension 17 379 × 40. Because

of the relatively small number of observations in comparison to the number of variables, using

ε = 0.1 as in the simulation study would result in an embedded matrix that is larger than the

original design matrix. Instead, I here choose ε = 0.15 and ε = 0.2 for both the RAD- and the

SRHT-sketches. This results in 6 767 and 3 807 observations in the sketched data sets. For the

CW-sketches, I choose values of k that are closest to the target dimension of the other sketches,

i.e. k = 8192 and k = 4096, respectively. Table 2.8 gives an overview of the sketch sizes given

the sketching method and ε.

I will first present the results of the model on the original data set before comparing them

to the results on reduced data sets. All variables included in the model show explanatory value

for the number of bike rentals. Many of them show the direction one would expect beforehand.

The apparent temperature has a high positive effect on the number of bike rentals while wind
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p ε RAD SRHT CW

40 0.15 6 767 6 767 8 192
40 0.20 3 807 3 807 4 096

Table 2.8: Number of observations of the sketches for the bike sharing example. Different values
of ε are used for RAD- and SRHT-sketches; the target dimension of CW-sketches is chosen to
be the power of two closest to the size of the RAD- and SRHT-sketches.

speed and humidity exhibit a negative effect, but to a lesser extent than the effect of temperature.

Heavy clouds or overcast conditions reduce the number of rental bikes compared to sunny weather

or only light clouds, but the negative effect of rain in comparison to sunny weather is a lot higher.

Winter is the least popular season for rental bike users. Perhaps surprisingly, autumn has

the highest positive effect of all seasons followed by spring and then summer. This is mainly due

to the higher apparent temperatures in summer, which are already taken into account by the

variable atemp.

There is also a distinct hourly effect. Compared to the hour between midnight and 1 a.m.,

the nightly hours are characterised by a low demand in rental bikes with a low point in the hour

from 4 a.m. to 5 a.m. For the rest of the day, the number of rental bike users is higher compared

to the baseline. There are two peaks, in the morning from 8 a.m. to 9 a.m. and in the afternoon

from 5 p.m to 6 p.m. and 6 p.m. to 7 p.m.

The days of the week seem to have a smaller influence in general. The highest positive effects

can be found for Friday and Saturday, the lowest for the baseline Sunday, followed by Monday.

Compared to these effects, the variable holiday, which indicates whether a day was a public

holiday or not, has a relatively large negative effect. This possibly indicates that a substantial

amount of the rentals come from commuters, although there seems to be some additional demand

by leisure time users on Fridays and Saturdays.

Finally, the variable yr exhibits a positive effect for the year 2012 compared to 2011, which

indicates that the service generally attracted more rentals in the second year under consideration

here.

All of the conclusions are similar on the sketched data sets. To check how close the results

on the sketched data sets are compared to the results on the original data set, I employ a

similar approach to Section 2.4. Table 2.9 contains the squared Euclidean distances between

the posterior means of the original model and the models based on the sketched data sets.

For the RAD-sketch, the difference between ε = 0.15 and ε = 0.2 is surprisingly high, for the

other two sketching methods, the squared Euclidean differences do not increase as much when ε
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2. Random Projections for Linear Regression

ε RAD SRHT CW

0.15 1.790 2.349 0.907
0.2 6.511 2.732 1.657

Table 2.9: Sum of squared distances between posterior mean values of the original model and
models based on the respective sketches for the bike sharing data set.
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Figure 2.6: Difference of fitted values according to models based on the respective sketching
methods and fitted values according to model based on the original bike sharing data set.

increases. The CW-sketch offers the lowest squared distances for both values of ε. The number

of observations in the sketched bike sharing data set is higher when employing the CW method

instead of the two others, this may be one reason for the favourable result.

Figure 2.6 shows the differences in the fitted values as boxplots. As in Section 2.4.5, the

fitted values are based on the original data set X in both cases. We can see that the boxes are

smallest for the CW-sketches compared to the other sketching methods when keeping ε constant.

The majority of fitted values are close to 0, for both ε = 0.15 and ε = 0.2. Especially for ε = 0.2

and the RAD-sketch, some fitted values differ by an absolute value of around 1. The effect of ε

becomes clear again: as ε grows, the target dimension of the sketched data set is smaller, but

the approximation is not as well-fitting.

A more detailed analysis indicates that the highest deviations occur when the fitted number

of bikes used is high. The relative difference between the fitted values is thus relatively low for

the majority of observations.

As the next step, I compare the posterior distributions (as in Section 2.4.6). Figure 2.7 shows

the boxplots of the MCMC-sample obtained for the two dummy variables that characterise the

variable weathersit. Clear weather – which can be sunny or partly cloudy – serves as reference

category. In the original data set, 66% of the observed hours show a weather situation that falls
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Figure 2.7: Boxplots of MCMC-sample for the two weather situation parameters based on the
original data set and all sketches.

into category 1. 25% and 6% fall into the other two categories – cloudy weather and rain –

respectively. On the left-hand side in Figure 2.7, we see the difference between clear and cloudy

weather. There is a negative, but small effect on the number of rental bikes. For the model on

the original data set as well as for all sketches with ε = 0.15, the 95% credible interval does not

include 0. When changing ε to 0.2, this is only true for the SRHT-sketch. This illustrates that

sketching introduces an area of uncertainty: when the credible interval of a variable is close to 0

in the model based on the original data set, the credible interval on a sketched data set may or

may not include 0.

When the weather situation worsens and it is raining or there are thunderstorms present

(right-hand side of Figure 2.7), the negative effect is considerably more pronounced. In both

situations we can see that the results on the original data set and on the reduced data sets are

close to one another. The approximation parameter ε plays an important role as higher values

introduce more variation to the posterior distribution. The sketching method on the other hand

does not seem to have a noticeable effect.

2.6 Conclusion

In the present chapter, my main focus lies on Bayesian linear regression. It is possible to apply

random projections for frequentist linear regression without any problems. The three projection

methods introduced in Section 2.3 constitute a good start for frequentist linear regression. Please

note that there is extensive research on which random projections result in a good approximation

in a useful running time, especially in Computer Science.
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The sketch (2.4) on page 17 illustrates that our proposed method adds a step before the

regression analysis takes place. In a way, the random projections serve as an elaborate pre-

processing step that makes the analysis on data sets with a very large number of observations

possible. This also means that they can be combined with a number of methods. In the current

chapter, I only consider Bayesian linear regression models on the embedded data set, using

Hamiltonian Monte Carlo techniques to approximate the posterior distribution. Note that this

was done by choice, not by necessity. It is possible to employ different MCMC-techniques or

other approximation methods. It may also be possible to combine random projections with other

reduction techniques mentioned in Section 2.2. However, the benefits of two reductions are not

immediately apparent.

In conclusion, the simulation study indicates that our proposed method works well for sim-

ulated data sets, which are generally well-suited for conducting Bayesian linear regression. But

even with a high variance of the error term (and thus a relatively bad model fit), our proposal

leads to results similar to those one would obtain on the original data set. The running time of

the analysis with the proposed sketches is largely independent of n, giving advantages for very

large n. Since the embeddings can be read in sequentially, it is not necessary to load the whole

data set into the memory at once, which reduces the required memory.
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Chapter 3

Generalisations to Other Regression

Models

Verallgemeinert betrachtet sind Sneak Previews auch nur zufällige Projektionen.

(Unbekanntere Erkenntnisse des Projekts C4)

After considering linear regression in Chapter 2, I will now examine two generalisations. The

first generalisation introduces an additional level of hierarchy to the model while the second

replaces the normal distribution with a q-generalised normal distribution, also known as power

exponential distribution. This chapter has been conceived in cooperation with Jonathan Rathjens

and Steffen Müller, please also refer to their respective Master’s theses (Müller, 2016; Rathjens,

2015).

3.1 Hierarchical models

3.1.1 Introduction

Hierarchical models introduce an additional level of hierarchy. This may be advantageous because

information are present on different levels. Gelman et al. (2014, Chapter 15) mention scholastic

achievement as an example, where covariate information about pupils may be on a family-level

(e.g. parents’ educational levels), on a class-level (e.g. influence by teachers), and on a school

level (e.g. educational policies). For data arising from stratified or cluster sampling, hierarchical

models offer a very natural choice.

Hierarchical models are related to the concept of exchangeability. Following Lindley and

Smith (1972), exchangeability can and indeed should be assumed if the indices of the prior
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3. Generalisations to Other Regression Models

distribution can be permuted without changing the prior itself, i.e., if the differences between

variables are due to the observed data, not due to different roles prior to observing data.

In a way, exchangeability is similar to assuming independence between observations, but

applies to prior information about variables, i.e. before we know anything about the data set, we

assume identical prior information for every variable. This can be further illustrated using the

hospital example Gelman et al. (2014, Chapter 5) present in their introduction to hierarchical

models. In this example, the success (or survival) rates of different general hospitals in a certain

operation are considered. Gelman et al. (2014) argue that it may be reasonable to assume

hospitals are related to each other, leading to the introduction of a population distribution. We

can further develop this example by assuming different groups of hospitals, for example general

hospitals and hospitals with a specialisation related to the operation. The two different groups

can reasonably be considered different prior to observing data, so it might be appropriate to

include a hierarchical submodel for each of the groups.

In cases where exchangeability is present, Lindley and Smith (1972) argue that hierarchical

models are the superior choice compared to standard frequentist linear regression. Whether

we agree with this or not, hierarchical models offer important modelling options. Introducing

one additional level of information, the so-called population distribution, is particularly useful

for two reasons: the population distribution allows borrowing inferential strength from other

observations and a shrinkage effect will occur.

Figure 3.1 illustrates the idea of a population distribution. The distributions in grey stand for

individual distributions for every observation. They all differ, but stem from the same underlying

distribution, given in black here.

In the following, I will only present models with one additional level of hierarchy, i.e. models

with a prior distribution and a hyperprior. The extension to the more general case with to two

or more levels of hierarchy follows in an analogous manner.

In Chapter 1, I introduced Model (1.10), which has a prior distribution p(β) and a posterior

distribution p(β|X,Y ). In the hierarchical model a hyperparameter θ is added, see Equation

(3.1),

p(β|X,Y , θ) ∝ p(Y |X,β, θ)p(β|θ)p(θ). (3.1)

Equation (3.1) shows the posterior distribution in a hierarchical model with one additional

level. The posterior distribution is proportional to the likelihood multiplied with the prior

distribution multiplied with the population distribution p(θ). On all levels, θ is added as new

40



3. Generalisations to Other Regression Models

Figure 3.1: Schematic representation of a population distribution. The grey distributions are
distributions for single observations. The black distribution is the underlying population distri-
bution.

condition, while the population distribution p(θ) itself depends on hyperparameters which take

over the role of the prior distribution in non-hierarchical regression models.

3.1.2 Sketching for hierarchical models

Besides an interesting introduction and motivation, Lindley and Smith (1972) also contains

useful results concerning hierarchical linear models. The most interesting one in our context is

a theorem that proves that the posterior distribution of β is independent of θ, but depends on

the chosen hyperprior p(θ) of θ.

For this reason, I can employ the sketches introduced in Chapter 2 to hierarchical models

without any changes. For the random projections, this means the hyperparameter is taken as part

of a now more complex prior distribution. The theoretical guarantees introduced in Chapter 2

do not strictly cover the inclusion of a hyperprior in the model. However, as the posterior

distribution of β only depends on the hyperprior, we can expect β to be well-recovered using the

sketches from Chapter 2 as long as the hyperprior is chosen relatively non-informatively.
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3. Generalisations to Other Regression Models

3.2 q-generalised regression

3.2.1 q-generalised normal distribution

Throughout Chapter 2, I employ normal distributions for both the prior distribution p(β) and the

likelihood L(β|X,Y ). In this section, I replace the normal distributions with their q-generalised

counterparts for the prior distribution (Section 3.2.2).

The normal distribution is based on the power of 2. Deviations from the expected value µ

occur with relatively low probability, leading to light tails. The q-generalised normal distribution

replaces the power of 2 with a power of q, q ∈ (0,∞). For q > 2, this leads to lighter tails com-

pared to the normal distribution while q < 2 makes the tails heavier. The q-generalised normal

distribution was first introduced by Subbotin (1923) and is formally introduced in Definition 4

following Nadarajah (2005).

Definition 4 (q-generalised normal distribution, following Nadarajah (2005)). A random vari-

able X with probability density function

p(X) =
q

2αΓ
(
1
q

)e− |X−µ|q
αq , (3.2)

where Γ is the gamma function Γ(z) =
∫∞
0 tz−1e−tdt for any positive z ∈ R+, follows a

q-generalised normal distribution with location parameter µ ∈ R and scale parameter α ∈ R+,

for q ∈ (0,∞).

X has an expected value of E(X) = µ and a variance of Var(X) = α2Γ(3/q)
Γ(1/q) . For the special

cases of q = 1 and q = 2, X follows a Laplace distribution and a normal distribution, respectively.

Figure 3.2 shows the q-generalised distribution for selected values of q. These distributions are

scaled such that the expected value is 0 and the variance is 1 for all q.

Definition 4 and Figure 3.2 are concerned with the univariate case of the q-generalised normal

distribution. Defining the multivariate case is straightforward.

3.2.2 q-generalised normal prior distribution

In this section, I generalise the prior distribution to include q-generalised normal distributions.

The case of q = 1 is of special interest as it can be used to model a LASSO-regression model. The

theoretical guarantees put forward in Chapter 2 in general do not apply any more as they are

limited to arbitrary normal distributions and improper non-informative uniform distributions.
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Figure 3.2: Probability density function of the q-generalised normal distribution for different
values of q.

However, it is possible to employ the same sketching algorithms as before and we can expect

the approximation to work well unless highly informative q-generalised normal distributions are

used as prior distribution.

3.3 Simulation Study

3.3.1 Hierarchical models

The simulation study for the generalised cases is structured very similarly to Section 2.4. To

generate the data sets, I start with drawing expected values Vj for every column j = 1, . . . , p of

matrix X from a normal distribution with mean 0 and relatively high variance, Vj ∼ N(0, 25),

j = 1, . . . , p. In the next step, I draw realisations of the data matrix as Xij ∼ N(Vj , 5
2),

i = 1, . . . , n, and in the last step, the realisations of Y are obtained via Yi ∼ N(Xi.β, σ
2). The

parameters employed in the simulation study are the same as in Table 2.2. For the generalised re-

gression models, I choose the parameters as n ∈ {10 000, 100 000}, p ∈ {10, 20}, and σ2 ∈ {1, 25}.

There is thus a total of eight data sets on which the simulation study is based.

To arrive at hierarchical regression or q-generalised regression, I only adjust the regression

models to cover these changes, while the data sets remain structurally the same. To execute

a hierarchical analysis, I use Model (1.10) as starting point, but now let β follow a normal

distribution, i.e. βj ∼ N(ξ, ρ2), j = 1, . . . , p, where ξ and ρ2 represent the population mean

and the population variance, respectively. The prior distribution for ξ is a normal distribution,

ξ ∼ N(2, 1) and the prior distribution for ρ2 follows a Gamma distribution, ρ2 ∼ Γ(4, 2). My
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3. Generalisations to Other Regression Models

model thus contains one level of hierarchy where all components of β follow the same population

distribution.

For the hierarchical models, I analyse both a non-informative and an informative prior dis-

tribution for the population distribution. The non-informative prior distribution consists of

p(ξ) ∼ N(0, 100) and p(ρ2) ∼ Γ(1, 0.01). The informative distribution is chosen to match the

true population distribution used in the creation of the data sets, i.e. p(ξ) ∼ N(2, 1) and

p(ρ2) ∼ Γ(4, 2). In both cases, I employ a non-informative uniform distribution as prior distri-

bution for the variance parameter σ2.

The aim of employing different prior distributions is to analyse the difference between infor-

mative and non-informative priors on the original and the sketched data sets. However, adding

(highly) informative prior information to the model may present a great difficulty when sketch-

ing the data set, especially if the prior information contradicts the information in the likelihood.

For that reason, I opt for the case of the prior information representing the true underlying

distribution even though it is unlikely in practice.

For q-generalised regression I can employ Model (1.10) and change either the prior distribution

to a q-generalised normal distribution. I choose values of q ∈ {0.75, 1, 1.25, 1.5, 1.75}. This is

due to earlier analyses in Müller (2016), which indicate that values of q > 2 behave similarly to

the special case of linear regression with q = 2. For all these cases, I use a normal distribution

as likelihood.

To obtain sketches of the data sets, I employ all three sketching methods introduced in Section

2.3 with ε = 0.1 and ε = 0.2, respectively, for the hierarchical models as well as the models with a

q-generalised normal prior distribution. Table 3.1 contains the resulting numbers of observations

k for the sketched data sets.

setting RAD SRHT CW

p=10, ε = 0.1 660 660 256
p=10, ε = 0.2 2638 2638 1024
p=20, ε = 0.1 4761 4761 4096
p=20, ε = 0.2 1599 1599 1024

Table 3.1: Number of observations k of the sketches for different values of variables p and
approximation parameter ε.

I now compare the posterior distributions of the parameters of interest resulting from the

original data sets and the sketched data sets, respectively. Figure 3.3 contains exemplary boxplots

of the posterior distribution of parameter β2 for an original data set with n = 100 000, p = 10, and
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3. Generalisations to Other Regression Models

σ = 5. The left-hand side depicts the posterior distributions for the models with non-informative

prior distribution, while the right-hand side depicts the results for models with informative prior

distribution. Figure 3.3 indicates that the choice of prior distribution has little influence on

the posterior distribution. As in Chapter 2, there may be some differences in location between

posterior distributions for original data sets and sketched data sets, but there seem to be no

systematic biases. Again, the sketching methods introduce some extra variation which seems to

grow as ε grows.
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Figure 3.3: Boxplots of MCMC-sample for the parameter β2 of a hierarchical model with non-
informative prior (subfigure (a)) and informative prior (subfigure (b)) based on the simulated
data set with n = 100 000, p = 10, ξ = 5 and respective sketches.

Figure 3.4 shows the corresponding boxplots for the hyperparameter µ for models with both

non-informative and informative prior distribution. The dispersion of the hyperparameter is a lot

higher compared to the dispersion of the regular parameters. However, sketching does not seem

to influence the variation in the distribution of the hyperparameter, all posterior distributions

based on sketches seem to be virtually identical to the posterior distribution on the original data

set. There is a difference between the two models, however: The higher variation present in the

non-informative prior distribution for µ compared to the informative prior distribution can also

be found in the two respective posterior distributions.

Similarly, Figure 3.5 contains boxplots for the hyperparameter ξ, which represents the pop-

ulation mean, for two data sets with different values of σ. The values of n and p are identical

for the two data sets and both models employ a non-informative prior. The hyperparameter ξ

45



3. Generalisations to Other Regression Models

●

●●

●
●●

●●

●
●
●●

●

●
●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●
●●

●●
●

●

●

●

●●
●

●
●
●

●

●

●
●●

●

●

●

●

●●

●●

●
●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●●●

●●

●

●

●
●
●●

●
●
●

●

●

●

●

●

●

●

●
●
●●●●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●
●●
●

●

●

●

●●●

●
●

●

●

●

●

●

●
●●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●
●●

●
●

●●

●

●

●

●
●
●
●

●

●

●

●●
●●

●
●

●●

●●●

●
●●●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●●

●

●

●●

●

●●
●

●

●

●●●

●●

●
●●●

●●
●

●

●

●

●

●●

●

●
●

●
●

●●

●●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●
●

●

●

●●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●
●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●
●

●

●

●

●
●

●●

●●
●
●●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●
●

●

●●

●

●

●●
●●

●

●●

●

●●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●●

●●
●

●

●
●

●

●

●●

●●●

●

●

●

●●●

●

●

●

●

●

●
●●
●
●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●
●

●
●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●●
●

●●
●●
●
●

●●●

●●

●

●

●●
●●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

o
ri

g
in

a
l 
m

o
d
e
l

R
A

D
  
(
ε

=
0
.1

)

S
R

H
T

  
(
ε

=
0
.1

)

C
W

  
(
ε

=
0
.1

)

R
A

D
  
(
ε

=
0
.2

)

S
R

H
T

  
(
ε

=
0
.2

)

C
W

  
(
ε

=
0
.2

)

−4

−2

0

2

4

6

8

non−informative prior

●

●

●

●

●●

●

●●

●●

●

●

●●
●

●

●

●

●●●
●●●
●
●

●

●●●●

●●

●●

●

●

●

●
●

●

●
●
●

●●●

●●●●● ●

●●●●

●●●

●

●

●

●●

●●

●

●

●

●

●

●●
●

●

●●

●

●

●●

●●●

●

●
●

●
●

●●●

●●

●●●
● ●

●
●●●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●

●

●

●

●

●●●●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●●

●

●

●

●

●

●

●●

●●

●●●

●

●

●

●●●
●

●●

●

●

●●

●

●
●●

●

●

●●

●

●

●

●

●
●
●

●

●

●
●

●●●●

●●
●
●
●
●

●●

●

●

●

●●

●●●●●●

●

●
●

●
●
●
●●
●

●

●

●●
●

●

●

●

●●●●

●
●

●●

●●●

●●●

●

●

●

●
●●●
●
●

●●

●

●

●●●
●

●

●●
●
●

●

●

●

●

●
●●

●

●

●
●

●
●
●

●

●

●●
●
●

●●●

●

●

●
●

●

o
ri

g
in

a
l 
m

o
d
e
l

R
A

D
  
(
ε

=
0
.1

)

S
R

H
T

  
(
ε

=
0
.1

)

C
W

  
(
ε

=
0
.1

)

R
A

D
  
(
ε

=
0
.2

)

S
R

H
T

  
(
ε

=
0
.2

)

C
W

  
(
ε

=
0
.2

)

−4

−2

0

2

4

6

8

informative prior

Figure 3.4: Boxplots of MCMC-sample for the hyperparameter µ of a hierarchical model with
non-informative prior (subfigure (a)) and informative prior (subfigure (b)) based on the data
n = 100 000, p = 10, ξ = 5 and respective sketches.

is not well-recovered by the random projection. The location of the posterior distributions of

ξ on the sketched data sets are inflated by a factor of approximately
√

n
k while the dispersion

also increases, which indicates a multiplicative effect. Figure 3.5 indicates that the posterior

distributions are similar for the sketching methods RAD and SRHT, but differ for CW-sketches.

This is probably due to the difference in the target dimension k between RAD and SRHT on the

one hand and CW on the other hand. The effect of an increase in σ, which I set to a value of 1

in subfigure (a) of Figure 3.5 and 5 in subfigure (b), seems to affect ξ directly in a multiplicative

way. The values in subfigure (b) are approximately five times higher than in subfigure (a).

Figure 3.6 shows the difference between fitted values based on the original data set and fitted

values based on the respective sketches. Similarly to Chapter 2, most of the differences are close

to 0, which indicates that conclusions drawn about predicted values of Y are well-recovered by

the sketching methods. This is a reflection of the well-recovered posterior distribution of β. The

population mean ξ, which is not well-recovered, does not directly influence the predicted values

β̂.

To recapitulate, the simulation study on hierarchical models indicates that the models on the

sketched data sets recover the posterior distribution on the first level as well as in the simulation

study on non-hierarchical Bayesian models in Chapter 2. As seen before, the method introduces

some additional variation.
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Figure 3.5: Boxplots of MCMC-sample for the hyperparameter ξ of a hierarchical model with
non-informative prior for two different data sets with n = 100 000, p = 10, σ = 1 (subfigure (a))
and σ = 5 (subfigure (b)) and the respective sketches.
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Figure 3.6: Difference of fitted values according to hierarchical models based on the respective
sketching methods and fitted values according to hierarchical model based on the original data
set with n = 100 000, p = 10, ξ = 5.

3.3.2 q-generalised regression models

I now consider a non-hierarchical model that employs as prior distribution a q-generalised normal

distribution instead of the normal distribution used before. In total, I consider six different

values of q, q ∈ {0.75, 1, 1.25, 1.5, 1.75, 2}. The special cases q = 2 and q = 1 stand for the

normal distribution and the Laplace distribution or double exponential distribution, respectively.

Analogously to the hierarchical case, I consider both a model with non-informative prior and
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3. Generalisations to Other Regression Models

a model with highly informative prior distribution. Here, the difference lies in the variance of

the prior distribution. To model the non-informative prior, I employ a q-generalised normal

distribution with parameters µ = 2 and α = 100. For the highly informative prior distribution,

µ = 2 stays the same, but the scale parameter α is set to α = 0.1. This may seem an extreme

choice, but in a setting with very large data sets, mildly informative prior distributions tend to

not have a lot of influence on the posterior distribution due to the large number of observations

the likelihood is based upon.

In both cases, the prior distribution draws the posterior distribution towards 2, which is

not necessarily supported by the likelihood. This is a conscious choice. The aim is to examine

cases where the prior distribution is informative, but contains information that contradict the

likelihood. It is of interest how this set-up influences the results especially on sketched data sets.

Figure 3.7 depicts the results for parameter β2 for different values of q based on the original

data set and sketched data sets where sketches are based on the CW-sketch with a value of

ε = 0.1. The result for the original data set (left-hand side of Figure 3.7) shows virtually

identical posterior distributions for all values of q. For all six prior distributions, the posterior

distribution’s median lies around −0.07. The 2.5%- and 97.5%-quantiles are around −0.09 on

the lower end and −0.05 on the upper end. According to the original model, β2 can be considered

an influential variable in the regression model, albeit the posterior distribution lies close to 0.

On the right-hand side of Figure 3.7, the respective posterior distributions based on the sketched

data sets are shown (CW-sketch with ε = 0.1). Again, the posterior distributions look almost

identical regardless of the values of q. Based on the sketches, however, we would not consider β2

an influential variable. All posterior medians are around −0.014, the 2.5%- and 97.5%-quantiles

take values of −0.08 and 0.05, respectively. The 95% credible intervals thus contain 0. The

models with non-informative prior distributions present a case where a variable is close to, but

different from 0 according to the 95% credible interval on the original data set, but according to

analysis on the sketched data set may well be simply vary around 0. Different values of q have

no influence on the posterior distribution in this setting.

I now compare these results to a case with highly informative prior distributions. For these

models, Figure 3.8 shows the posterior distributions for β2 based on models on the original data

set (left-hand side) and based on models on the sketched data sets (right-hand side), both for

different values of q. On the original data set, the posterior distribution of β2 lies below 0 for

all values of q. There is a small, but distinct effect of q: as the values of q grow, the posterior

distribution is drawn further towards the prior distribution. In this concrete example, this means
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Figure 3.7: Boxplots of the MCMC-sample for parameter β2 with different non-informative
q-generalised normal distributed prior and normal distributed Likelihood on the original data
(left-hand side) and sketched data (right-hand side). Sketches are based on the CW-sketch with
ε = 0.1.

that the posterior distribution is closer to 0 as q grows. This effect is even more obvious for the

analyses on the sketched data set. For values of q ≤ 1.5, the posterior distribution includes 0,

indicating an unclear role of the variable for the importance of the model. For q = 1.75 and

q = 2, the 95% credible intervals of posterior distribution do not include 0, we would therefore

conclude that the dependent variable grows as β2 increases.
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Figure 3.8: Boxplots of the MCMC-sample for parameter β2 with different informative q-
generalised normal distributed prior and normal distributed Likelihood on the original data
(left-hand side) and sketched data (right-hand side). Sketches are based on the CW-sketch with
ε = 0.1.
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In conclusion, the empirical results suggest that random projections are suitable for regres-

sion models that employ the q-generalised normal distribution as prior distribution. For non-

informative prior distributions, the behaviour observed is very similar to the results found in

Chapter 2. Specifically, regression analyses on sketched data sets introduce some additional vari-

ation into the posterior distributions. This may lead to extreme cases where a variable would be

considered important in the original model in the sense that the 95% credible intervals do not

contain 0, but the credible interval for the same variable on the sketched data set does contain

0 (compare Figure 3.7). Apart from this caveat, random projections are able to recover the

posterior distribution well and the value of q in the interval q ∈ [0.75, 2] does not seem to have

any influence on the result.

For highly informative prior distributions, the choice of q has a distinct effect on the posterior

distribution. This effect is visible for models both on the original data sets and on sketched data

sets. As q increases, the posterior distribution is drawn further towards the prior distribution.

In other words, small values of q around 1 make the posterior distribution less reactive to prior

information that contradict the information given in the likelihood. As mentioned in Section

3.2.1, employing a q-generalised normal distribution as prior distribution changes the heaviness

of the tails. This is because the distance of values from the centre of the distribution is exponen-

tiated to the power of q, which makes values that are far from the centre increasingly unlikely

for increasing values of q. In the simulation study, this leads to a posterior distribution that is

more heavily influenced by the prior distribution as the differences between likelihood and prior

distribution are given increasingly more relative importance as q grows.

3.4 Bicycle rental data set

For the hierarchical analysis of the bicycle rental data set introduced in Section 2.5, I now

introduce a model that reflects the hierarchical structure. To that end, variables that logically

form a unit are given a common hyperprior. In detail, this means that all dummy variables that

are employed to model the factor variables are considered as exchangeable and thus given the

same hyperprior distribution. The three quantitative variables atemp, hum, and windspeed are

also taken to be exchangeable and assigned one common hyperprior.

As before, I employ the square root of the number of rented bikes
√
Yi, i = 1, . . . , n, as target

variable. In the model, I assume a normal distribution with expected value β and standard devia-

tion of ξ for Y . As prior distributions for βj , j = 1, . . . , p, the components of β, I employ normal
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distributions with expected values µh, h = 1, . . . , 7, and standard deviation σ ∼ Γ(1, 0.01),

where h (or h(j)) is the appropriate hierarchical effect for variable j. Each of the µh’s has a

normal distribution with expected value 0 and standard deviation 100 as prior distribution.

Figure 3.9 on page 52 shows the results of the hierarchical model on the bike rental data

set. The posterior distributions for the effects on the lowest level are similar to the results of

the non-hierarchical model. All of the effects on the lowest level show small variances and high

mass concentration around the median. The effects on the upper level, on the other hand, seem

to represent the locations of the population densities well and exhibit high variances around

their location. The variance seems to depend on the number of (dummy) variables that the

hyperdistribution represents: the variance is highest for hyperdistributions of holiday and the

intercept, both of which are only based on one effect on the lower level. On the other hand, the

variance of the hyperdistribution is relatively low the the variable hour, which consists of a total

of 23 dummy variables.

Figure 3.10 exemplarily shows the boxplots of the posterior distributions of all variables

related to weekday for both the original data set and the sketched data set. The variables

include six dummy variables on the lower level and one hypervariable on the upper level. The

posterior distribution of the hyperparameter only slightly differs between the sketched data set

and original data set. For the dummy variables on the lower level, we can again see that the

location is similar with some slight changes, but sketching introduces some additional variation.

3.5 Conclusion

The current chapter describes how the sketching techniques introduced in Chapter 2 can be

applied to more complicated models, in particular models where the prior distribution contains

hierarchical information and models where the prior distribution employs a q-generalised normal

distribution. The model class of q-generalised normal distributions

In contrast to Chapter 2, this chapter is mainly based on empirical results. However, some

theoretical guarantees can be carried over to the models with more complicated prior distribu-

tion considered here. For some hierarchical models, the posterior distribution on the lower level

is independent of the posterior distribution on the higher level, but depends on the prior dis-

tribution of the hyperparameter. While this does not give theoretical guarantees, it does allow

the application of random projections on a broad class of hierarchical models. Similarly, when

changing the prior distribution of the model, some of the guarantees for linear regression can
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Figure 3.9: Boxplots of the MCMC-samples for all β parameters and the hyperparameters of the
bike sharing data set based on the original hierarchical model.
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Figure 3.10: Boxplots for the posterior distributions of the variables related to weekday for the
hierarchical model based on the original data set (left-hand side) and the sketched data set
(right-hand side).

be carried forward. In both cases, the guarantees may potentially not hold, but it is hard to

formally describe when this is the case. Informally speaking, the random projections can gener-

ally be expected to work well unless prior distributions are highly informative and contradict the

information in the data. In such cases, randomly projecting the data set into a subspace may

lead to a large approximation error. However, from a modelling perspective, such a situation

should only arise in very rare circumstances.

Changing the likelihood from normal distributions to q-generalised normal distributions is

also possible. However, the sketching methods introduced in Chapter 2 are too coarse in this

case. In Müller (2016), the CW sketching method is employed as the first step of a two-step

procedure. This first step serves to form a well-conditioned basis, which is then sampled from in

the second step. Models with q-generalised normal distribution as likelihood are not considered

in this thesis, but remain a topic in the research project C4 of SFB876 and will be covered in a

forthcoming manuscript.
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Chapter 4

The Merge & Reduce-Technique for

Regression Models

When did my friends slip right through my fingers and you, you were all I ever knew?

You were all I ever knew – laughing in the afterglow.

(The Crookes – Afterglow)

The Merge & Reduce-technique presents a different option for handling very large data sets.

While in Chapters 2 and 3, the focus lies on a reduction of the number of observations and a fast

subsequent analysis, in this chapter, it lies on obtaining a stable result for very large data sets

and also in streaming settings. I will first introduce the background of Merge & Reduce and its

use in Computer Science as well as related work (Section 4.1) before presenting our proposal on

how to transfer Merge & Reduce to application on statistical models (Section 4.2). After that,

I will put forward three different approaches to Merge & Reduce in a regression setting (Section

4.3). This is followed by a short introduction of generalised linear models (GLMs) in Section

4.4. The three approaches are empirically evaluated on simulated data sets in Section 4.5 and

on the bicycle usage data set in Section 4.6. Section 4.7 finishes the chapter with remarks on the

results and what they imply regarding the practical usability of Merge & Reduce.

4.1 Background and related work

In Computer Science, Merge & Reduce is mainly employed as a way helping to obtain summaries

of large data sets. It was first introduced by Bentley and Saxe (1980) as a general method for

extending static data structures to handle dynamic insertions. Later on, the focus has been on
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4. The Merge & Reduce-Technique for Regression Models

the data streaming setting where Merge & Reduce can be employed to work on coresets, small

subsamples that represent the full data set well with regard to certain criteria. Examples of these

adaptations can be found in Agarwal et al. (2004); Har-Peled and Mazumdar (2004).

Coresets have been studied extensively in the Computer Science literature as they present a

scalable tool for data aggregation and reduction for many problems, including many statistical

problems. Recently, Merge & Reduce has become a standard technique in the coreset literature

and has been used to design efficient algorithms for the analysis of very large data sets, both in

streaming settings and for distributed environments. Some examples are coresets for ℓ1-regression

(Clarkson, 2005; Clarkson et al., 2016; Sohler and Woodruff, 2011), ℓ2-regression (Cohen et al.,

2015b; Drineas et al., 2006, 2008; Li et al., 2013), ℓp-regression (Dasgupta et al., 2009; Woodruff

and Zhang, 2013), M -estimators (Clarkson and Woodruff, 2015a,b), and generalised linear models

(Huggins et al., 2016; Molina et al., 2018; Munteanu et al., 2018; Reddi et al., 2015; Tolochinsky

and Feldman, 2018). Phillips (2017) offers a recent and extensive survey, while Munteanu and

Schwiegelshohn (2018) introduce coresets and related methods on a technical level. Merging and

reducing techniques similar to Merge & Reduce were also employed in the area of physical design

for relational databases (Bruno and Chaudhuri, 2007).

Our aim is to develop a Merge & Reduce-technique that can be employed directly on statistical

models, with the concept of Merge & Reduce on data sets or coresets serving as a basis. To that

end, we aim at building statistical models on subsets of the data and need to find ways of merging

and reducing these models. We will focus on regression models here, but the idea is transferable

to other statistical models. Our idea is to iteratively load as many observations into the memory

as is feasible or desirable. On each of these subsets, a regression model is calculated. Models are

merged and their complexity reducing according to certain rules that are introduced in Section

4.3, eventually resulting in a final model that combines the information from all subsets. Merge &

Reduce leads to stable results where every observation enters the final model with equal weight,

thus ensuring that the outcome is invariant to permutations of the blocks. When employing

the technique for statistical models that are not regression models, the merging and reducing

strategies need to be changed accordingly. Finding suitable strategies is not trivial.

A recent idea from the Statistics literature is similar in spirit. Law and Wilkinson (2018)

studied composable models for Bayesian analysis of streaming data. Their focus lies on highly

heterogeneous streams from sensor networks, which they model using partially observed Markov

processes. The authors propose composition procedures of those models similar to the merging

procedures that we develop here in the Merge & Reduce framework. However, due to their focus
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4. The Merge & Reduce-Technique for Regression Models

on heterogeneous streams, they address the asynchrony of sampling frequencies in practical

streaming and distributed settings and thus have a different scope.

4.2 The Merge & Reduce-Principle

Merge & Reduce consists of four steps that are carried out repeatedly. Here, I present the four

steps of our novel approach of employing Merge & Reduce on statistical models. The four steps

are:

1. reading a block of data,

2. performing a statistical analysis on the current data,

3. storing a model that summarises the analysis,

4. merging models following a tree structure (see Figure 4.1 on page 57) while ensuring their

complexity does not increase.

Before carrying out Merge & Reduce, it is necessary to set the number of observations per

block to a number nb. In a streaming or Big Data setting, the total number of observations n

may typically be unknown beforehand. For that reason, nb does not depend on n, but mainly

on memory requirements or similar considerations. The total number of blocks B is then also

unknown beforehand, however it is known that n ≤ nbB.

How to summarise the statistical analysis and how to merge models are not trivial questions.

The answers heavily depend on the statistical method employed. To the best of our knowledge,

Merge & Reduce has not been utilised in a regression context yet. We will propose merge-steps

and reduce-steps for linear regression as well as for generalised linear models with an application

to Poisson regression.

In our implementation, every model summarises the respective regression analysis. Addition-

ally, all models contain meta-information, specifically the level of the model l and the number

of observations the model is based upon, nb,i, where i depends on l. For the sake of brevity, the

index is indicated as i and not as il. Every model that directly summarises a statistical analysis

has a level l of 1. For all blocks b = 1, . . . , B − 1, the number of observations is nb. For the

last block B, the number may be smaller. Merging two models that are not based on the same

number of observations does not pose a problem provided appropriate weighting is employed.

Figure 4.1 illustrates the principle of Merge & Reduce. Data is read blockwise until the

desired number of observations or the end of the file is reached and a model is built on that block
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Data

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6

B1 M1 M2 M4 M5 M8 M9

B2
M3 M6 M10

B3 M7

B0

Final Model

M11

Figure 4.1: Illustration of the principle of Merge & Reduce for statistical models.

of data. In a setting with a very large number of observations n or in a streaming setting, the data

is deleted as soon as the model has been built. Models are deleted as soon as their information are

passed on to the next level, i.e. afer merging them with another model. This keeps the memory

required for the storage of observations constant, while the memory required for the storage of

models only logarithmically depends the number of blocks that have to be analysed, O
(
ln
(

n
nb

))
.

As the parameter nb is chosen independently of n and represents a constant once chosen, this

leads to a number of models that logarithmically depends on n, O(ln(n)). To underline this

logarithmic dependency, storage models B1, B2, B3 and worker model B0 are included in Figure

4.1. They will be formally introduced in Algorithm 2.

To achieve such a weak dependency on n, models are merged as soon as two models with

the same level become available. For the first time, this happens when M2 is stored, M1 and

M2 can then immediately be merged to form M3. M4 is not merged with M3 as both models

are on different levels. However, when M5 is calculated, it is merged with M4 into M6, which

then in turn is merged with M3 to form M7. After merging two models, the new merged model

has to be reduced in such a way that the complexity of the models does not increase with the

number of merge-operations. Constant complexity of the models on every level is an important

part of the technique of Merge & Reduce as indicated by the name. There are different reasons

that justify this importance. One is the ability to bound the memory requirements. If the model

complexity increased with every merge-step, the memory required would increase much quicker

as n grows. The number of merge-steps and thus the complexity of the final model would be
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Algorithm 1: Concept of Merge & Reduce for statistical models
i← 0
level l← 1
choose desired number of observations per block, nb

repeat
i← i+ 1
read next nb,i observations // nb,i = min (nb, #observations remaining in file)
perform regression analysis on current observations
Si ← summary statistics
create new Model M(l, i, nb,i, Si)

// level l, index i, number of observations nb,i, summary statistics Si

delete current observations
j ← i
k ← l
while M(k, j − 1, nb,j−1, Sj−1) exists do

M(k + 1, j2 , (nb,j−1 + nb,j), Sm&r)← merge
(M(k, j − 1, nb,j−1, Sj−1),M(k, j, nb,j , Sj))

// merge-step includes reduce-step
delete M(k, j − 1, nb,j−1, Sj−1)
delete M(k, j, nb,j , Sj)

j ← j
2

k ← k + 1

until nb,i < nb

while j > 1 do
if j even then

M(k + 1, j2 , (nb,j−1 + nb,j), Sm&r)← merge
(M(k, j − 1, nb,j−1, Sj−1),M(k, j, nb,j , Sj))

// merge-step includes reduce-step
delete M(k, j − 1, nb,j−1, Sj−1)
delete M(k, j, nb,j , Sj)

j ← j
2

k ← k + 1

else
M(k + 1, j+1

2 , nb,j , Sj)←M(k, j, nb,j , Sj)
delete M(k, j, nb,j , Sj)

j ← j+1
2

k ← k + 1

return Final Model

of order O
(

n
nb

)
, which is infeasible for large data sets. It would also introduce a dependency

between the complexity of the final model and the number of observations per block nb, which

is not a desirable property.

Algorithm 1 shows the Merge & Reduce algorithm in pseudo-code. Figure 4.1 might lead

to the assumption that the number of observations is a multiple of the observations per block,
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n = 8nb. When n ̸= 2mnb,m ∈ N, which is usually the case, it is necessary to subsequently merge

all remaining models in order to obtain the final model (the final while-loop). In such cases, the

last model on each level is based on fewer observations than the other models. Appropriate

weighting thus becomes important.

There is an alternative way of describing the algorithm that focuses more on the efficient

memory usage. Initially, there are c = ⌈log2(n/nb)⌉ empty models M1, . . . ,Mc and an empty

worker model Mw. The worker model stores information about the current batch of data while

the c models stand for one level of information each. After reading and analysing a new batch

of data, the summary statistics are stored in the worker model. If model M1 is currently empty,

the information in Mw are stored there. Otherwise, M1 and Mw are merged to become the new

worker model while M1 is deleted. This continues up the levels until the algorithm encounters

an empty model. After analysing the last batch of data, one additional iteration of all levels is

necessary to obtain the final model Mc. If a model has to be merged with an empty model, the

level i will be increased without a change of the summary statistics. Such a case is depicted in

Figure 4.1, where Model 10 is first merged with an empty model before it is merged with Model

7 to obtain the final model. As in the first description, weighting according to the number of

observations ensures that all observations hold the same importance for Mc. Algorithm 2 gives

the second description in pseudo-code.

Algorithms 1 and 2 describe the same algorithm, the first version places more focus on

merging only models that represent the same level of information while the second version places

emphasis on the small number of models that need to be stored in memory.

Care is required when applying Merge & Reduce to a data set with factor variables as inde-

pendent variables or as dependent variable. By dividing the data set into blocks, some values

of the factor variables may occur very rarely or not at all in some blocks. This can lead to

imbalanced models that are hard to estimate or even to undefined estimates for some values of

the factor. This makes it difficult to employ Merge & Reduce for models with factors unless

additional assumptions are made. I will go into more details about related modelling problems

in Section 4.6.

4.3 Merging approaches

In this section, I will introduce three different approaches that can be utilised for Merge &

Reduce. Each of the approaches consists of a merge-step and a reduce-step and is appropriate
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Algorithm 2: Concept of Merge & Reduce for statistical models as a binary counter
choose desired number of observations per block, nb

c← ⌈log2(n/nb)⌉+ 1
create empty models M1(0, NA), . . . ,Mc(0, NA) // storage models
create empty model Mw(0, NA) // worker model
repeat

read next nb,w observations
// nb,w = min (nb, #observations remaining in file)

perform regression analysis on current observations
Sw ← summary statistics // choice of user
Mw ←M(nb,w, Sw) // number of observations nb,w, summary statistics Sw

delete current observations
i← 1
while Mi(nb,i, Si) exists do

Mw(n
∗
b,w, S

∗
w)←merge(Mw(nb,w, Sw),Mi(nb,i, Si)) // merged worker model

delete Mi(nb,i, Si)
i← i+ 1

Mi(nb,i, Si)←Mw(nb,w, Sw)
delete Mw(nb,w, Sw)

until nb,w < nb

for i ∈ {2, . . . , c} do
Mi(nb,i, Si)←merge(Mi(nb,i, Si),Mi−1(nb,i−1, Si−1))
delete Mi−1(nb,i−1, Si−1)

return Final Model Mc

or advantageous in different situations. From here on, I will call them M&R approach 1, 2,

and 3, respectively. All approaches will be empirically evaluated in Sections 4.5 and 4.6. M&R

approaches 1 and 2 are general approaches that can handle broad classes of regression models.

They are meant for frequentist and Bayesian analyses, respectively. M&R approach 3 is suitable

when frequentist linear regression is conducted and recovers the full model very well and efficiently

in such cases.

4.3.1 Estimate and standard error as summary values (M&R approach 1)

In a frequentist regression setting, linear models as well as generalised linear models are typically

characterised employing two components: an estimate β̂ and its standard error seβ̂ . It is also

essential for prediction as the estimate β̂j conveys information on the effect a change in the jth

variable has. The standard error is employed to judge whether the effect of the jth variable is

distinguishable from 0 via a t-test (Montgomery and Peck, 1992) or a Wald test of the form

W =
β̂j

seβ̂j
(Krämer and Sonnberger, 1986). Using these two summary values per parameter

thus recovers essential information about the original model. For more details on tests in linear
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models and generalised linear models, please refer to Groß (2003) and McCullagh and Nelder

(1989).

As M&R approach 1, I propose conducting the merge-step by taking the weighted mean for

every summary value considered. The weights are chosen according to the number of observations

nb,i. Let Si−1 and Si be the vectors of summary values for models i − 1 and i that are to be

merged. The new, merged vector of summary values Sm&r is then obtained by

Sm&r = wi−1Si−1 + wiSi, (4.1)

where the weights wi−1 and wi are given by wi−1 = nb,i−1/(nb,i−1 + nb,i) and

wi = nb,i/(nb,i−1 + nb,i), respectively. nb,i−1 and nb,i are the number of observations the two

models are based upon.

Such a merge-step ensures by construction that the complexity of merged models does not

increase, the reduce-step is thus inherently included in the merge-step. The final model returns

the specified summary values.

According to assumption (L1) on page 2, X is a non-stochastic matrix with rank p. I will now

further assume that the values of X are realisations from the same arbitrary random distribution

with expected value −∞ < µ
X

< ∞ and variance σ2
X < ∞ and investigate some properties of

the merging approach. Let us call this additional assumption (L5). For linear models, the

standard least squares estimator β̂ has expected value E(β̂) = β and variance-covariance-matrix

Cov(β̂) = σ2(X ′X)−1 (Groß, 2003). As the estimator is unbiased regardless of X, for every

block b = 1, . . . , B, the expected value of the least squares estimator on that block is E(β̂b) = β.

Merging the models does not change the expected value, this approach thus results in an unbiased

estimator for the true parameters β.

The estimator’s variance-covariance-matrix on the other hand does depend on X. I will

now concentrate on the principal diagonal of this matrix, which contains the variances for every

βj , j = 1, . . . , p. The square root of these values gives the standard errors. The variance for the

jth component is given by Var(βj) = σ2(X ′
·jX·j)

−1. Blockwise estimation of the linear models

leads to a variance of Var(βb
j) = σ2(Xb

·j
′
Xb

·j)
−1 in block b.

The estimation of σ2 does also vary, but σ̂2 is an unbiased estimator (Groß, 2003). For that

reason, any systematic differences between Var(βj) and its blockwise counterpart Var(βb
j) are

caused by the inverse of the respective version of (X ′
·jX·j). How does this change influence the

variance of the estimator? According to assumptions (L1) and (L5), X is non-stochastic, but
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its entries stem from an arbitrary distribution (µ
X
, σ2

X). As n grows, the diagonal elements of

X ′X grow linearly in their expected value. The elements on the secondary diagonal on the other

hand will grow slower than the elements on the primary diagonal in the case of n≫ p. Because

of this, the main diagonal of the inverse (X ′X)−1 decreases approximately proportional to 1
n as

n grows. This means in turn that the fraction
Var(βb

j )

Var(βj)
is approximately equal to nb

n . Because we

merge the blocks by obtaining the weighted mean of the respective previous summary statistics,

the estimation of the variance is not unbiased, rather, it is approximately nb
n . Let us consider

the following: For every block except the last one, the estimated variance is approximately n
nb

.

For the last block, the estimated variance may be higher, as there probably are less observations

in the last block. However, this block then will also have a lower weight. Taking this effect into

account, the variance will be overestimated by a factor of ⌈ n
nb
⌉. To counter this overestimation,

I propose correcting for it by dividing all summary values that represent estimated standard

deviations by

S*corr
m&r =

S∗
m&r√
⌈n/nb⌉

, (4.2)

where S∗
m&r stands for the portion of Sm&r that represents standard errors.

This approach is useful for all cases where frequentist regression models are considered. The

results are unbiased, but if left uncorrected, the approach would overestimate the estimator’s

variance and consequently the coefficient’s estimated standard errors. This would lead to con-

servative decisions concerning the importance of variables. In the case of n ≫ p, the factor by

which the variance is overestimated is known to be close to ⌈ n
nb
⌉ and can thus be corrected for

using Equation (4.2). A strength of this approach is its great flexibility. It can be employed for

many frequentist regression models as it is based on the estimates of the regression coefficients

and their standard errors.

4.3.2 Characteristics of the posterior distribution as summary values (M&R

approach 2)

M&R approach 2 is aimed at conducting Bayesian regression analysis employing the Merge &

Reduce-technique. In such a setting the aim is to characterise the posterior distribution p(β|X,Y )

or its approximation by an MCMC-sample. The summary values should be chosen such that

they characterise the distribution in a concise manner. More than one reasonable and useful

solution is possible. Here, I utilise the mean and median, the upper and lower quartile, the 2.5%
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and 97.5% quantile and the standard deviation of the MCMC-sample for every component βj as

summary values,

S = (x̄1, . . . , x̄d, x̃u,1, . . . , x̃u,d, s1, . . . , sd),

where u ∈ {.025, .25, .5, .75, .975} stands for the posterior quantiles considered, including the

posterior median. This choice gives a good indication of the location and variation of the posterior

distribution. However, for some purposes, other summary values may offer a better representation

of the results. I recommend careful consideration of the requirements of one’s analysis.

As in the frequentist case, when merging models, the number of observations the models

are based upon are used as weights to ensure that every observation is of equal importance for

the final model, confer Equation (4.1). For the Bayesian case, different correction factors are

required. For measures of location, no correction is needed for symmetric posterior distributions.

For the posterior standard deviation, I employ the same procedure as for the standard error in

Section 4.3.1, i.e. divide the posterior standard error by
√⌈

n
nb

⌉
. Other quantiles of the posterior

distribution that can be interpreted as measure of dispersion such as the upper and lower quartile

and the 2.5% and 97.5% quantile follow a slightly different pattern. In these cases, the distance

between the quantiles and the measures of location grows with the ratio of the total number of

observations and the number of observations per block n
nb

. Thus, a form of standardisation is

necessary, resulting in

Scorr
u,j =

Su,j − x̄j√
⌈n/nb⌉

+ x̄j . (4.3)

For the quantiles that can be interpreted as a measure of dispersion, we thus subtract the

posterior mean as a means of standardisation. We then divide the result by the correction factor√
⌈ n
nb
⌉ before adding the posterior mean again to arrive at the corrected posterior quantile.

4.3.3 Pointwise product (M&R approach 3)

M&R approach 3 presents a third way of merging two models by calculating their pointwise

product. If the models can be represented by normal distributions f1 and f2, where f1 ∼

N(µ1, σ
2
1) and f2 ∼ N(µ2, σ

2
2), the pointwise product of the two distributions – indicated by a

subscript P – is a normal distribution again, where the new parameters are

σ2
P =

1
1
σ2
1
+ 1

σ2
2

=
σ2
1σ

2
2

σ2
1 + σ2

2

. (4.4)
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and

µP =

(
µ1

σ2
1

+
µ2

σ2
2

)
σ2
P . (4.5)

In the multivariate case with f1 ∼ N(µ
1
,Σ1) and f2 ∼ N(µ

2
,Σ2), these equations change to

Σ−1
P = Σ−1

1 +Σ−1
2 (4.6)

and

Σ−1
P µ

P
= Σ−1

1 µ
1
+Σ−1

2 µ
2
. (4.7)

In the case of linear regression models, µ stands for the expected value of the estimate β̂

and ΣP stands for the variance of the estimator. Instead of saving µ and Σ after every step, it

is possible to recover the liner regression model by keeping X ′
iXi, Y ′

iXi, Yi′Yi, and ni. In the

merge-step, these summary statistics are merged according to the following formulae:

X ′
mXm = X ′

1X1 +X ′
2X2, (4.8)

Ym
′Xm = Y1

′X1 + Y2
′X2, (4.9)

Ym
′Ym = Y1

′Y1 + Y2
′Y2, (4.10)

nm = n1 + n2. (4.11)

After merging and reducing the final model, X ′
mXm and Ym

′Xm are used to obtain the

maximum-likelihood estimator β̂. This can easily be done by rewriting Equation (1.3) to

β̂ =
(
X ′X

)−1
X ′Y =

(
X ′X

)−1 (
Y ′X

)′
, (4.12)

using Equations (4.8) and (4.9). Equations (4.10) and (4.11) are employed to obtain the variance

of the estimator. To that end, we first need an estimate of the model variance η2. The maximum-

likelihood estimator is given by

σ̂η,ML =
∥Y −Xβ̂∥2

n
.

However, σ̂η,ML is a biased estimator. For that reason, the unbiased version

σ̂η =
∥Y −Xβ̂∥2

n− p
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can be preferable. In the following, I will employ σ̂η, but σ̂η,ML can be used analogously. In

both equations, it is necessary to calculate ∥Y −Xβ̂∥2, which is given by

∥Y −Xβ̂∥2 = β̂
′
X ′Xβ̂ + Y ′Y − 2Y ′Xβ̂.

From these components, the estimator’s variance is given by

Var(β̂) = σ̂2
η

(
X ′

mXm

)−1
. (4.13)

In the merge-step of M&R approach 3, no explicit weighting is done during the merge-step.

Instead, this role is assumed implicitly by Equations (4.8), (4.9), and (4.10).

M&R approach 3 is only suitable for cases where the result on each block can be expressed

using normal distributions. This is the case for frequentist linear regression models and may be

the case for some Bayesian linear regression models. In such cases, however, M&R approach 3

recovers the result on the full data set exactly. For that reason, no correction term is needed.

4.4 Generalised linear models

Generalised linear models (GLMs) offer a framework with more flexibility regarding the distri-

bution of Y . The roles of the design matrix X and the parameter vector β remain unchanged,

likewise the assumptions concerning them. The link between Y and Xβ is now established em-

ploying a monotone link function g, which transforms the expected value of Y given Xβ. This

leads to Equation (4.14), the general formulation of a GLM:

g(E(Y )) = Xβ, (4.14)

or, equivalently, expressed via the inverse h(u) = g−1(u) (for u ∈ Rn):

E(Y ) = h(Xβ). (4.15)

Special cases of a GLM are logistic regression, where the elements of Y are binary; Poisson

regression, which is a standard model when Y contains count data; and linear regression, in which

case the link is the identity function. Table 4.1 contains an overview of the three special cases of

generalised linear models. A more detailed version of this table can be found in McCullagh and

Nelder (1989, Chapter 2, Table 2.1).
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Model Type of data (Y ) Canonical link Link name Alternatives

Linear regression normally distributed g(u) = u identity
Logistic regression binary data g(u) = ln

(
u

1−u

)
logit probit, cloglog

Poisson regression count data g(u) = ln(u) log

Table 4.1: Some special cases of generalised linear models, the type of data and the link function.
Abridged version of Table 2.1 from McCullagh and Nelder (1989).

It is possible to employ Merge & Reduce to conduct the analysis of GLMs on large data sets.

To that end, I employ Poisson regression models both in the simulation study and in the analysis

of the bicycle sharing data set in this chapter. Other types of GLMs require different structure in

the data, but the structure of the result is similar and can be recovered well by M&R approaches

1 and 2 presented in Section 4.3.

When employing GLMs, some steps of the analysis change, among them the distribution

of the dependent variable, the link function, significance testing, and regression analysis. This

chapter does not provide an exhaustive list of differences between simple and generalised linear

models. In the context of Merge & Reduce, it is important that a certain amount of structure

of the result is retained for all types of models considered here and that the interpretation of

the results can be done as it would have been done on the full model. Certain limitations apply,

prominently, diagnostics are very difficult to perform. This issue is raised in Section 4.7 as well

as Chapter 5.

4.5 Simulation study

The simulation study in this chapter is conducted for different statistical models: linear re-

gression, linear regression with unmodelled mixtures, and Poisson regression. Both the data

generation (Section 4.5.1) and the presentation of the results (Section 4.5.2) follow this structure

of three different types of statistical models. The subsections of Section 4.5.2 are subdivided

according to the corresponding M&R approaches.

4.5.1 Data generation

Linear regression The majority of data sets for the simulation study is generated along the

same principle employed for the empirical evaluation of random projections (Subsection 2.4.1).

For the linear case, the variables n, p and σ2 are used. The number of observations n range from

20 000 to 1 000 000, the number of variables p from 5 to 200. The variance of the error term σ2
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takes values of 0.1, 1, 4, 25, 49, and 100, see also Table 4.2. A minority of data sets were created

using function mvrnorm from R-package MASS (Venables and Ripley, 2002). For the models on

these data sets, an additional setting was introduced: some models contain an intercept term

while other do not.

I vary the number of observations per block nb between relatively high number like 20 000

and 25 000, a range of high to medium-high numbers and very low number like 400. On modern

computers, choosing values like nb = 20 000 or more usually does not pose any computational

problems. I include values of nb on the low side of the spectrum for two reasons. On the one

hand, exploring possible limitations of the procedure is of interest. On the other hand, while the

focus for the Merge & Reduce algorithm is on handling very large data sets on modern computers

it may also be employed on computers or even sensors with low computational power. Reducing

nb gives an indication of what might happen in such an environment.

With the simulation study I try to systematically examine the influence of the parameters

on the outcome. However, this does not mean that all possible combinations of n, p, σ2, and

nb have been considered exactly once. Instead, some of the settings have been chosen up to five

times to allow for an assessment of the variation that may happen even when the settings are

kept constant. Other combinations have not been considered at all, an obvious example is the

combination of n = 20 000 and nb ≥ 20 000.

parameter role values

n number of observations {20 000, 50 000, 100 000, 500 000, 1 000 000}
p number of variables {5, 50, 100, 200}
σ2 error term variance {0.1, 1, 4, 25, 49, 100}
nb number of observations per block {400, 1 000, 5 000, 10 000, 15 000, 20 000, 25 000}

Table 4.2: Overview of parameters in simulation study.

Linear regression in the presence of unmodelled mixtures In general, there are two

different types of unmodelled mixtures: mixtures of X and mixtures of both X and β. In the

first case, all assumptions of the linear model are fulfilled, the parameter vector β is valid for

all values of X. This means that there will be systematic differences with respect to X and Y

between the two groups. However, all observations follow the same linear model. If one group

is small, their members are thus characterised by high leverage scores but inconspicuous Cook’s

distances. In the second case, the outliers will also follow a different regression model. Thus,

the observations will not only show high leverage scores, but also high Cook’s distances, as these
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observations greatly influence the estimated model. This second situation is far from ideal from

a modelling perspective and will not be considered here.

In the scenario where mixtures are present in the data set, the variables proportion and pos

additionally come into play. Table 4.3 shows an overview of the two additional parameters and

the values they take. The first variable, proportion, controls how much of the data set is made

up of the undetected mixture. Values range from 0.01 to 0.5, but a majority of simulated data

sets employ 0.05. The variable pos controls the position of the outlying values, I consider these

four settings of pos in the simulation study:

first outliers first, followed by main body of observations;

last main body first, followed by outliers;

middle first half of main body, followed by outliers, followed by second half of main body;

random random arrangement.

The Merge & Reduce-technique is by construction invariant towards permutations of order of

the blocks. The variable pos permutes the order of the observations. For that reason, the position

of the mixture component may well have an influence on the results as it directly influences the

proportion of the smaller mixture component in the blocks.

parameter role values

proportion proportion of smaller mixture component {0.01, 0.05, 0.1, 0.25, 0.5}
pos position of smaller mixture component {first, last, centre, random}

Table 4.3: Overview of parameters in simulation study for the scenario of mixtures on the level
of X.

Poisson regression In the Poisson case, only the variables n and p from Table 4.2 are used

when generating the data sets. Changes in X or β are not included in the analysis, pos and

proportion are thus not used. The variable σ2 also cannot be employed as the variance is equal

to the mean value in the Poisson case by definition. Here, I choose the two parameters from

n ∈ {50 000, 100 000} and p ∈ {5, 10, 20}.

4.5.2 Results

In this section, I present the results of the simulation study. Section 4.5.2.1 describes the results

of linear regression models, followed by results of unmodelled mixtures in Section 4.5.2.2 and of
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Poisson regression models in Section 4.5.2.3. In each section, the results for each suitable M&R

approach are presented in order.

In all of the sections, two different measures are considered to evaluate how well the M&R-

models recover the original models. The first measure e2m ∈ R+
0 is the squared Euclidean distance

between an estimate for β based on M&R and another estimate based on the full data set:

e2m = ∥β̂m

MR
− β̂

m

orig
∥22, m = 1, . . . ,M, (4.16)

where m is the index of the simulated data set, β̂
m

MR
is the estimate for β for data set m

based on one of the Merge & Reduce approaches, β̂
m

orig
is the respective estimate according to

the original optimal model and M is the total number of simulated data sets considered in the

current setting. Instead of estimates for β as in Equation (4.16), I analogously employ posterior

means, posterior medians or (corrected) posterior quantiles as well. A distance of 0 means

that the results returned by the model on the full data set and the M&R approach are exactly

identical. Large values on the other hand indicate great differences between the two results. In

the following, I arbitrarily choose a cut-off of 0.1 to stand for a good approximation.

The second measure fm
se ∈ R+

0 is suitable to evaluate variances or standard deviations. It

assesses how well the standard deviation is recovered by the M&R approaches and can be inter-

preted as a factor. The corrected standard error factor is defined as

fm
se =

1

p

p∑
j=1

semj,MR

semj,orig
, (4.17)

where semj,orig and semj,MR are the (corrected) estimated standard errors for variable

j, j = 1, . . . , p according to the maximum likelihood estimate and the Merge & Reduce ap-

proaches. When fm
se = 1, the standard errors are the same for both models. Values greater than

1 indicate that the M&R approach inflates the standard errors while values less than 1 stand

for a reduction of the standard errors. In all following sections, I consider values in the interval

[0.975, 1.025] to stand for an acceptable approximation. Calculating the mean of all individual

j standard error factors in Equation (4.17) may be surprising, but in my simulation studies I

found that all these factors were identical up to at least 5 digits.

4.5.2.1 Results for linear regression

M&R approach 1 For data sets which were generated following a linear model, all three

merging strategies introduced in 4.3 are applicable and suitable. M&R approach 1 – keeping the
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Figure 4.2: Boxplots of squared Euclidean distances between M&R approach 1 and original
model observed in the simulation study, across all values of n, p, σε, and nb. Subfigure (a)
contains all values, subfigure (b) excludes 180 out of 952 values that lie further than 1.5 times
the interquartile range away from the upper quantile.

estimate and the standard error as summary values – is useful for frequentist linear regression or

for Bayesian cases where the posterior distribution can be obtained analytically. In the following

I will quantify how well it recovers the original estimator β̂
orig

– which is often the Gauß-Markov

estimator – by employing e2m (Equation (4.16)). Figure 4.2 depicts these values e2m. Here,

M = 952.

Subfigure (a) of Figure 4.2 shows all values of e2m observed in the simulation study across all

parameter settings, including different values for the number of variables p, which adds summands

to the Euclidean distance. The box on the extreme left of the plot covers only a small range of

values, but there are 172 outliers whose majority are close to 0.1 while three simulation settings

result in values of e2m of just under 2, around 2.5 and above 4. Subfigure (b) leaves out the

outliers and shows only the box and whiskers of the squared distances. Here we can see that 75%

of all values obtained in the simulation studies lie between 0 and 0.0006. The median of e2m takes

the very low value of 0.000022. All values above 0.0016 are considered outliers in the boxplot as

they are further away from the box than the interquartile range multiplied with 1.5. All of this

indicates a highly right-skewed empirical distribution of the squared Euclidean distances e2m.

A further look at quantiles reinforces this impression. Table 4.4 shows selected quantiles of

e2m rounded to four decimal places. Again, we can see that for the vast majority of settings in

the simulation study Merge & Reduce recovers the results of the original linear model with high

accuracy, for almost all of the settings, the squared Euclidean distance is less than 0.1, for many,

it is even lower.
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Quantile min. 50% 75% 90% 95% 97.5% 99 % max.

Squared distance 0.0000 0.0000 0.0006 0.0109 0.0355 0.0870 0.2956 4.4287

Table 4.4: Selected quantiles of the observed squared Euclidean distances between parameter
estimates following M&R approach 1 and the original linear model.

In the next step, I examine which of the settings produce the high outlying values. In Figure

4.2, Subfigure (a), we can see three distinct outliers which are settings that lead to squared

Euclidean distances e2m greater than 1. For these three cases the settings are σ2 = 100, p = 400,

and nb = 200. There are two more simulated data sets with these settings. For these, the squared

Euclidean distances are also relatively high with values of 0.3 and 0.35, respectively. In general,

cases whose associated distance is relatively high comprise at least one of the following settings:

high error variance, a high number of variables or a low number of observations per block.

To reiterate this, we may encounter deviations from the original linear model if we split a data

set with a large number of variables into comparatively small blocks, especially if the variance

of the error term is high. This combination poses a difficult situation for a linear model. Harrell

(2001) recommends a ratio of n
p ≥ 10 or even n

p ≥ 20 if the response variable is continuous.

Models with a lower ratio of n
p cannot be expected to be reliable according to Harrell, i.e. their

predictive power for new observations may be low. The results of our simulation study suggest

that similar or slightly higher ratios of observations per variable are required to employ M&R

approach 1.

Further investigation indicates that the ratio nb/p is indeed the deciding factor, confer Figure

4.3. We observe the highest values of e2m if nb/p = 2, the smallest value this ratio takes in our

simulation study. The distances decrease by a large amount for the next lowest ratio, nb/p = 4.

The simulation study suggests that for values of 4 ≤ nb/p ≤ 10, the squared Euclidean distances

may occasionally be high, while for 10 < nb/p ≤ 25, some squared distances higher than 0.1

may be observed. For nb/p > 25, no deviation in our simulation study was above 0.1. The

error term variance σ2 seems to play a secondary role as high values of σ2 make higher squared

distances between M&R model and original model more likely. However, even for the highest

error term variance considered (σ2 = 100), we observe very low squared distances regularly. The

total number of observations in the data set, n, does not seem to influence the distance between

original model and M&R model.

It is interesting to note that e2m is dominated by the distance between the estimated intercept

in many cases. For the majority of simulation settings, this fraction is higher than 0.8 or even
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Figure 4.3: Scatterplot of the effect of observations per block per variable nb
p on squared Euclidean

distances e2m, m = 1, . . . ,M for M&R approach 1. x- and y-axes are on a logarithmic scale,
observations are drawn as partially transparent points: gray points mean single observations,
black points multiple observations at roughly the same location. Vertical dashed line is at 0.1.

0.9. This is in particular true for the cases where e2m is exceptionally high. Surprisingly, the

intercept’s influence on e2m seems to be largely independent of p. Even for simulated data sets

with 200 variables, the fraction of e2m caused by the intercept lies above 0.8 for most of the

data sets. Ignoring the intercept and calculating e2m employing only the estimates for all other

variables results in very low numbers with a maximum of 0.107.

After the difference in the estimators I now assess the estimated standard errors. In contrast

to the estimated values β̂, the corresponding estimated standard errors behave similarly for

intercept and all other variables. For that reason, I will report the corrected standard error

factor fm
se (Equation (4.17)).

Subfigure (a) of Figure 4.4 shows the corrected values fm
se for all settings in the simulation

study. The kernel density estimate of the corrected standard error factors shows a clear peak

around 1. However, there are still relatively high values of fm
se > 1.4 for some settings, which

means that the estimated standard error is inflated by more than 40%. To gain a better insight

into when this happens, I will look at fm
se split according to nb

p .

Subfigure (b) of Figure 4.4 shows the effect of the blocksize nb in comparison to the number of

variables p. There is an obvious connection between nb
p and fm

se : for relatively high values of nb
p ,

the correction works well and results in values of fm
se close to 1. As nb

p decreases, fm
se increases.

There are some values of fm
se below 1. This is the case when the ratio n

nb
is not integer valued,
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Figure 4.4: Display of the corrected standard error factors fm
se across all simulated settings for

M&R approach 1. Subfigure (a) shows a kernel density estimate, subfigure (b) shows a scatterplot
of the effect of observations per block per variable nb

p on corrected standard error factors fm
se

across all settings for M&R approach 1. In subfigure (b), the y-axis is on a logarithmic scale and
observations are drawn as partially transparent points: grey points mean single observations,
black points multiple observations at roughly the same location. The solid vertical line indicates
values of fm

se = 1, the two dotted lines stand for relative deviations of 2.5%, i.e. fm
se = 0.975 and

fm
se = 1.025.

e.g. n = 50 000 and nb = 20 000. In such cases, dividing by
⌈√

n
nb

⌉
is a slight overcorrection.

Variables will thus tend to look slightly more important and p-values of the associated t-tests

for significance will be slightly lower than in the original model. However, the values of fm
se in

question are very close to 1, a minimum of minm fm
se = 0.9876 means that estimated standard

errors are 1.24% off in comparison to the original model.

Similarly to the result of the analysis of the squared distance between estimators, e2m, we

again see that the approximation quality of the corrected estimated standard errors, measured

by the factor fm
se , depends on nb

p . For values of nb
p ≤ 10, the estimated standard errors are

inflated by a factor of between 5% and 40%. If nb
p ≥ 20, the inflation is generally less then 2.5%,

which we consider an acceptable value. In case of the estimated standard error, both intercept

and other variables behave virtually identically with a uniform inflation factor applying to every

entry. The error term variance σ2 on the other hand does not seem to have any influence on
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fm
se . The settings of σ2 = 0.1 and σ2 = 49 have only been included twice each in the simulation

study, but the four other settings have featured in more than 200 data sets per setting and show

virtually identical behaviour.

To conclude the frequentist case, both estimated effects β̂ and estimated standard errors seorig

of the original model are recovered well when using the corrected standard errors seMR, provided

the number of observations per block is high enough for the number of variables. I recommend

values of at least nb
p ≥ 20. If this fraction is lower, the estimated standard errors may become

inflated while the estimated intercept may be comparably far away from the intercept estimated

by the original model.

M&R approach 2 In the Bayesian case, I utilise the same simulated data sets as for the

frequentist case, but change the model accordingly. As explicated in Section 4.3.2, there are

many possibilities of how to characterise the MCMC-sample of the posterior distribution. In the

following, I will present results for measures of location as they are returned by the Merge &

Reduce-algorithm. Posterior quantiles other than the median are corrected for the effect of the

ratio n
nb

employing Equation (4.3). The corrected posterior standard deviation is obtained using

Equation (4.2).

Figure 4.5 shows two boxplots, similarly to Figure 4.2 in the frequentist case. Here, the

squared Euclidean distance e2m between the posterior medians according to Merge & Reduce

approach 2 and the original Bayesian model are considered across all settings in the simula-

tion study, resulting in a total of 786 observations. As in the frequentist case, three values of

e2m > 1 can be found, with the highest value slightly below 4. Subfigure (b) indicates that some

more variation between original model and Merge & Reduce model is present compared to the

frequentist case, however, with 75% of all values of e2m lower than 0.0013, the differences are very

small for the majority of all results from the simulation study. The 95% quantile of e2m is 0.0473.

Results for the posterior mean are very similar.

Figure 4.6 shows a plot containing the squared Euclidean distances between the posterior

median based on M&R approach 2 and the original Bayesian model for all simulated data sets

grouped according to the ratio nb
p . The distances exhibit the same pattern we observed for M&R

approach 1, i.e. the median is well recovered by M&R approach 2 provided nb
p > 25, but can be

unreliable for smaller ratios of nb
p . Results for the posterior mean are almost identical.

In the next step, I will consider the posterior standard deviations and their characteristics

in both the Bayesian linear models and their Merge & Reduce counterparts. Analogously to
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Figure 4.5: Squared Euclidean distances e2m, m = 1, . . . ,M between posterior medians according
to M&R approach 2 and original Bayesian model observed in a simulation study, across all values
of n, p, σ, and nb. Subfigure (a) contains all values, subfigure (b) excludes 155 out of 786 values
that are considered outliers.
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Figure 4.6: Scatterplot of the effect of observations per block per variable nb
p on squared Euclidean

distances e2m, m = 1, . . . ,M between posterior medians for M&R approach 2. x- and y-axes
are drawn on a logarithmic scale, observations are drawn as partially transparent points: grey
points mean single observations, black points multiple observations at roughly the same location.
Vertical dashed line is at 0.1.

the frequentist case, I employ the mean of the quotients of the corrected posterior standard

deviations according to M&R approach 2 and the posterior standard deviations according to the

original model as in Equation (4.17). These values fm
se are shown in Figure 4.7, grouped by both

nb and p. If we again consider values of fm
se in the interval [0.975, 1.025] as acceptable, almost

all parameter settings of nb and p with the exception of nb = 5000 exhibit unacceptably high or

low values, with nb = 10 000 coming close to leading to acceptable values only. In contrast to the

results for frequentist linear regression, there are highly inflated posterior standard deviations
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even for a high number of observations per block and a low number of variables. In total, the

posterior standard deviation does not seem to be a useful and reliable summary value in the

context of Merge & Reduce.
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Figure 4.7: Boxplots of corrected standard error factor fm
se . Subfigure (a) shows the effect of

block size nb on fm
se , subfigure (b) the effect of the number of variables p on fm

se . The two dotted
lines stand for relative deviations of 2.5%, i.e. fm

se = 0.975 and fm
se = 1.025.

Instead, I will consider the corrected versions of the posterior quartiles as well as the posterior

2.5% and 97.5% quantiles. For the correction, I employ Equation (4.3), which takes into account

that while measures of location are well-recovered, the distance of other quantiles to mean or

median seems to be grow proportionally to
√
⌈ n
nb
⌉.
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Figure 4.8: Scatterplot of the effect of observations per block per variable nb
p on squared Euclidean

distances between posterior lower quartiles for M&R approach 2. Both x- and y-axis are on a
logarithmic scale, observations are drawn as partially transparent points: grey points mean single
observations, black points multiple observations at roughly the same location. Vertical dashed
line is at 0.1.
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Figures 4.8 and 4.9 show the squared Euclidean distances between posterior lower quantiles

and posterior 97.5% quantiles, respectively. The results show the same patterns found in the

comparison of posterior means and medians: the ratio of observations per block and variables

plays an important role. For low values of nb
p , the distances between the original model and

the M&R result may become too high. As nb
p grows, these distances tend to take lower values.

For nb
p ≥ 50, all M&R models in the simulation study at hand are able to recover the posterior

distribution of the original Bayesian linear model very well, even for the 2.5% and 97.5% quantiles.
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Figure 4.9: Scatterplot of the effect of observations per block per variable nb
p on squared Euclidean

distances between posterior 97.5% quantiles for M&R approach 2. Both x- and y-axis are on
a logarithmic scale, observations are drawn as partially transparent points: grey points mean
single observations, black points multiple observations at roughly the same location. Vertical
dashed line is at 0.1.

M&R approach 3 M&R approach 3 works very well for the case when all assumptions are

met. All squared Euclidean distances e2m are 0 for m = 1, . . . ,M , which indicates that βm
MR

and βm
orig

are identical up to numerical precision of the machine for all simulated data sets. The

standard error factors fm
se is 1 up to at least 8 digits. M&R approach 3 is thus able to recover

the exact results of the original frequentist linear regression model up to numerical precision.

For the blockwise analysis of frequentist linear regression models, M&R approach 3 thus is the

best choice.

4.5.2.2 Results for linear regression with unmodelled mixtures

In this section, I will examine the second scenario of the simulation study: the presence of

unmodelled mixtures. The simulated data sets contain outlying observations that differ in the

X-values and possibly also in the values of Y . However, they follow the same underlying linear
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model. Here, all simulated data sets have been chosen such that the ratio nb
p is greater than 50

to avoid problems encountered in Section 4.5.2.1. In this approach, I only consider frequentist

regression models. For that reason, I will limit the analysis to M&R approaches 1 and 3, as

M&R approach 2 is suitable for Bayesian regression models.

In this section, I will analyse the influence of the position of the outliers. To that end,

the simulated data sets contain four different ways of merging the two subsets. The respective

setting is recorded in the variable pos, which can take the values first, last, middle, and

random. Section 4.5.1 contains a more detailed explanation of the different settings.

As mentioned in Section 4.5.1, the principle of Merge & Reduce is constructed in a way

that ensures the order of the blocks does not influence the result. Changing the position of the

mixture component is not the same as changing the order of the blocks, mainly because the

simulated data sets are created according to the same principles but do not necessarily contain

the same observations, but also, because changing the order of observations is generally not equal

to changing the order of blocks. The values of pos lead to different degrees of homogeneity in the

blocks. Random arrangement leads to blocks that consist of a small portion of outliers where the

expected relative frequency of outliers is constant for all blocks. The other values of pos on the

other hand lead to a majority of blocks with only observations from the main body and a small

number of blocks with a high relative frequency of outliers or possibly even blocks consisting

of outliers only. For that reason, we can expect very similar behaviour for data sets that were

created with the settings first and last, similar behaviour for the setting middle but possibly

different behaviour for the setting random.

M&R approach 1 Figure 4.10 shows the squared Euclidean distances e2m (confer Equation

(4.16)) for all simulated data sets, split by the position of the outliers. We can clearly see that

parameter estimates are well-recovered regardless of the position of the outliers. The largest

squared distance has a value of 0.112 and is thus only slightly above our arbitrarily set boundary

of 0.1. The position of the outliers clearly holds an influence on the values of e2m, settings where

the outliers are randomly inserted into the data seem to be systematically better at recovering the

original model’s results. Data sets where the outliers are either the first or the last observations

exhibit the highest values of e2m in comparison.

Figure 4.11 shows the corrected standard error factor fm
se (confer Equation (4.17)) for all sim-

ulated data sets, split by the position of the outliers. Here, the influence of the outliers’ position

becomes even more obvious. This is plausible as blocks that only contain observations from one
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Figure 4.10: Boxplots of the effect of position of the outlying observations on squared Euclidean
distance e2m in mixture scenario for M&R approach 1. y-axis is on a logarithmic scale, vertical
dashed line is at 0.1.
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Figure 4.11: Boxplots of the effect of position of the outlying observations on standard error
factor fm

se in mixture scenario for M&R approach 1. Subfigure (a) contains models and data
sets without intercept term, subfigure (b) contains models and data sets with an intercept term.
y-axis is on a logarithmic scale, vertical dashed lines are at 0.975 and 1.025.

of the mixture components necessarily underestimate the variation in the data, influencing the

estimated standard error.

When considering the corrected standard error factor, whether the model contains an inter-

cept term or not has considerable consequences. Subfigure (a) of Figure 4.11 shows all models

without an intercept term. Random assignment and outlying observations in the centre of the

data set lead to the smallest values of fm
se , but for all settings in the simulation study without

an intercept, fm
se is below 1.025, representing a minor inflation of the standard error.

In subfigure (b) on the right-hand side, we see all models with an intercept term. For data

sets with random arrangement of the outliers, the estimated standard errors are as well-recovered
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by the Merge & Reduce-technique as the ones without an intercept term. For data sets where

all outliers appear together as a group, the standard errors are systematically overestimated by

the Merge & Reduce-solution.

In conclusion, M&R approach 1 is able to recover the parameter estimates of the original

models well in all cases considered in our simulation study. The estimated standard error is

only well-recovered if the model contains no intercept term or all outliers are randomly allocated

across the data set. The position of the outliers generally plays a role for the ability to recover

the original model’s results. This reflects the increased difficulty of merging heterogeneous blocks

that are based on homogeneous data. The results also indicate that the order of the blocks does

not influence the results, indicated by the high similarity between results for simulated data

sets that contain outlying observations in the beginning of the data set and those that contain

outlying observations at the end of the data set.

M&R approach 3 M&R approach 3 again is able to recover the original linear model virtually

perfectly. As in Subsection 4.5.2.1, all squared Euclidean distances e2m are 0 up to the numerical

precision of the machine and all standard error factors fm
se are 1 up to 8 digits. M&R approach

3 is thus neither influenced by permutations in the order of the observations nor in the presence

of a group of outliers.

In cases of frequentist linear regression, M&R approach 3 thus provides a very useful and

appropriate approach as it leads to exactly the same result a linear regression on the full data

set gives, even if the data comes from two different sources, that do not change the regression

model, but influence the location of the observations.

4.5.2.3 Results for Poisson regression

As last element of the simulation study, I now consider data sets where the dependent vari-

able Y follows a Poisson distribution. Fittingly, I analyse these data sets using a Poisson re-

gression model. The following simulation study is on a smaller scale than the previous ones,

containing a total of six data sets with values of n = {50 000, 100 000}, p = {5, 10, 20}, and

nb = {400, 1000, 5000, 10 000, 20 000, 25 000}. The error term standard deviation σ cannot be

chosen here as the variance is equal to the mean for Poisson-distributed data by definition.

M&R approach 3 is not included in this section. To evaluate how well M&R approaches 1 and 2

are able to recover the results of the original Poisson model, I again employ the squared Euclidean

distances e2m (Equation (4.16)) for the parameter estimates for M&R approach 1 as well as for
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all summary values for M&R approach 2. The corrected standard error factor (confer Equation

(4.17)) is used for the standard error for M&R approach 1 and additionally for the posterior

standard deviation for M&R approach 2.

M&R approach 1 Figure 4.12 shows the squared Euclidean distances for all Poisson models

in the simulation study. We can clearly see that all distances take very low values, even for the

lower values of observations per block per variable, which are nb
p = 20 for the Poisson regression

models. The estimates of all Poisson models are thus well-recovered by M&R approach 1.
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Figure 4.12: Stripchart (one-dimensional scatterplot) of squared Euclidean distances e2m for all
Poisson regression models for M&R approach 1. x-axis is on a logarithmic scale. Vertical dashed
line at 0.1 is not visible due to small values of e2m.

Figure 4.13 shows the corrected standard error factor. Here, all but two values are within

the acceptable range of [0.975, 1.025]. The two values outside of that range come from simulated

data sets with nb = 400 and p = 20, indicating that the standard error factor exhibits a greater

dependence on nb
p than the parameter estimate. The settings that lead to the next highest values

of fm
se come from simulated data sets with nb

p = 40. They lead to comparatively high values of

fm
se around 1.015, well within our interval of acceptable values.
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Figure 4.13: Stripchart of corrected standard error factors fm
se for all Poisson regression models

for M&R approach 1. Vertical dashed line is at 1.025.
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M&R approach 2 To evaluate the performance of M&R approach 2 for Bayesian Poisson

regression models, we first look at the squared Euclidean distances e2m between the original

posterior means and the posterior means based on Merge & Reduce. Figure 4.14 shows a one-

dimensional scatterplot of the distances. All values are very small, the largest squared distance

lies below 0.0001. The posterior location is thus well-recovered by M&R approach 2.
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Figure 4.14: Stripchart of squared Euclidean distances between posterior means of original model
and Merge & Reduce model for all Bayesian Poisson regression models for M&R approach 2.
x-axis is on a logarithmic scale. Vertical dashed line at 0.1 is not visible due to small values of
e2m.
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Figure 4.15: Stripchart of squared Euclidean distances between posterior 25% and 97.5% quan-
tiles of original model and Merge & Reduce model for all Bayesian Poisson regression models for
M&R approach 2. x-axes are on a logarithmic scale. Vertical dashed line at 0.1 is not visible
due to small values of e2m.

To characterise the posterior distribution, in addition to measures of location, we again look

at posterior quantiles. I do not include the posterior standard deviation as it performed poorly for

Bayesian linear regression models. Figure 4.15 contains the squared Euclidean distances for the

lower quartile and the 97.5% quantile as representatives. The quantiles based on M&R approach

2 are corrected according to Equation (4.3). With the correction, all squared distances obtain

very low values, again, all lie below 0.0001. The Poisson regression models are thus well-recovered

for both frequentist and Bayesian models.
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Quantitative variables only Including factor variables
logarithmic Poisson logarithmic Poisson

nb e2 fse e2 fse e2 fse e2 fse

10 000 0.0676 1.0078 0.0443 1.0184 0.1595 0.9412 0.0988 1.0139
5000 0.0796 1.0279 0.0316 1.0574 0.0898 0.9193 0.0288 1.0182
1000 2.6690 1.4216 0.3666 1.5174 1.9845 0.9399 0.7687 1.1529
400 5.9530 1.5078 0.9500 1.6528 10.2661 1.0118 7.7288 1.2610

Table 4.5: Results of the frequentist analyses of the bicycle sharing data set. Each row headed
with e2 gives the squared Euclidean distance between the original model and the model obtained
using M&R approach 1 with the given block size nb, while each row headed with a fse shows
the corrected standard error factor. A total of four models are analysed: two models using only
quantitative variables as independent variables and two models including factor variables as well.
For each of these models, a linear regression and a Poisson regression analysis are conducted.

4.6 Bicycle rental data set

For evaluation on a real data set, I employ the bicycle rental data set introduced in Section 2.5.

In contrast to Chapters 2 and 3, I use a different set of variables from the data set. This is done

because the bicycle rental data set contains factor variables that appear in a very systematic

way, e.g., the variable yr, which indicates whether the observation belongs to the first or second

year under study. For this variable, there is one change from 2011 to 2012 in the middle of the

data set, but otherwise the variable stays constant. This introduces problems with identifiability

when employing Merge & Reduce as for the majority of blocks not all of the values are present.

This variable’s effect on the number of bicycle rentals can thus not be estimated for most blocks.

For that reason, I consider two models, one where only the quantitative independent variables

atemp, hum, and windspeed remain in the model and a second model similar to the model used

in Section 2.5, but without the variables yr and season. For both models, I analyse both a linear

and a Poisson regression model. In the linear case, the dependent variable is transformed using

the natural logarithm.

The original data set contains n = 17 379 observations, I thus employ block sizes of

nb ∈ {400, 1000, 5000, 10 000}. Table 4.5 gives an overview of how close the results accord-

ing to Merge & Reduce are to the original model for the frequentist analysis while Table 4.6

shows the results for the Bayesian analysis.

The results are very similar for both approaches (again representing frequentist and Bayesian

models, respectively), for both linear and Poisson regression, and for both sets of variables: the

approximation of the original model by the models based on Merge & Reduce is good for block

sizes nb ∈ {5000, 10 000} but bad for the two smaller block sizes.
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variab. model nb x̃0.025 x̃0.25 x̄ x̃0.5 x̃0.75 x̃0.975 s

quant. log. 10 000 0.0683 0.0683 0.0678 0.0676 0.0672 0.0665 1.0016
quant. log. 5000 0.0783 0.0792 0.0810 0.0809 0.0834 0.0872 1.0148
quant. log. 1000 2.4053 2.5722 2.6725 2.6761 2.7800 2.9838 1.3290
quant. log. 400 5.4856 5.7779 5.9472 5.9437 6.1249 6.4711 1.3973
quant. Pois. 10 000 0.0445 0.0443 0.0443 0.0443 0.0442 0.0442 1.0262
quant. Pois. 5000 0.0315 0.0315 0.0316 0.0316 0.0317 0.0317 1.0634
quant. Pois. 1000 0.3592 0.3641 0.3667 0.3667 0.3694 0.3742 1.5349
quant. Pois. 400 0.9368 0.9455 0.9502 0.9503 0.9549 0.9635 1.6705
factors log. 10 000 0.1674 0.1636 0.1619 0.1622 0.1608 0.1579 0.9298
factors log. 5000 0.0999 0.0953 0.0932 0.0933 0.0915 0.0873 0.9128
factors Pois. 10 000 0.0988 0.0988 0.0989 0.0988 0.0989 0.0991 1.0208
factors Pois. 5000 0.0291 0.0289 0.0288 0.0288 0.0287 0.0286 1.0141

Table 4.6: Results of the Bayesian analyses of the bicycle sharing data set. A total of four
models are analysed: two models using only quantitative variables as independent variables and
two models including factor variables as well. For each of these models, a linear regression (using
a logarithmic transformation of the number of shared bikes as dependent variable) and a Poisson
regression analysis are conducted. Every row shows the squared Euclidean distances e2m between
the original model and the model obtained using M&R approach 2 the respective block size
nb for one of the four models. The approximations of different posterior quantiles x̃ as well as
posterior mean and standard deviation are given. The models with factor variables and block
sizes nb ≤ 1000 did not converge, resulting in meaningless large deviations from the original
model. For that reason, they are not included in the table.

While the results are similar across all settings, a difference can be seen between the model

including only the three quantitative variables and the model which includes factor variables

as well. Especially in the Bayesian case, the model with factors shows large deviations from

the original model when the block size is small. On closer inspection, this is mainly due to the

variable holiday, which is not present in all of the blocks and thus leads to divergent models

where at least some elements of the posterior distribution of β are meaningless. I walked into

this trap even though I excluded two variables because of their unbalancedness. This illustrates

the importance of careful model selection with possibly little information especially when factor

variables are present. It also underlines that nb should not be chosen too small.

As mentioned in Section 4.5.2.1, Harrell (2001) recommends a ratio of at least 20 observations

per variable for a reliable linear model, i.e. n
p ≥ 20. Harrell uses the effective number of

observations m instead of n. For models that include only quantitative variables, m = n, but if

factor variables are included in the model, the effective number of observations changes. Let k

be the number of factor levels and let ni be the number of observations for level i, i = 1, . . . , k.

The effective number of observations m is then given by m = min(n1, n2) for binary variables

and by m = n− 1
n2

∑k
i=1 n

3
i for factor variables with k > 2 levels (see Harrell, 2001, Table 4.1).
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Block size nb quantitative variables only including factor variables
minneff

minneff
p minneff

minneff
p

400 179 44.75 0 0
1000 379 94.75 0 0
5000 2379 594.75 95 2.64

10 000 7379 1844.75 191 5.31

Table 4.7: Smallest value of effective number of observations m for different block sizes nb as well
as minimal effective number of observations divided by number of parameters p, where p = 36
including all dummy variables.

I now calculate m for all blocks and for all four values of nb. For the model that only includes

quantitative variables, m is constant except for the last block. For the model with factors, m

will typically vary as the frequency of the different levels varies across blocks. Table 4.7 reports

the smallest number of m observed across all blocks with the respective value of nb as well as

the resulting minimal number of observations per variable.

From Table 4.7 it becomes obvious that 400 and 1000 are not adequate block sizes for the

bicycle rental data set and the model that includes the factor variables. For nb = 400, around

half of all blocks do not contain a holiday. For nb = 1000, this is only the case for one block.

However, even the blocks that do contain a holiday typically include only one holiday, giving

an effective number of observations of 24, which is less than the number of variables. This

emphasises that care should be taken especially when possibly unbalanced binary variables are

present in the model.

While not as extreme, the results for the smaller model that only contains the three quan-

titative variables atemp, hum, and windspeed show the same pattern: acceptable approximation

for block sizes 5000 and 10 000, but high deviations for block sizes 400 and 1000. Including the

intercept term, the minimal number of observations per variable is 44.75 and 94.75 for the two

problematic block sizes, respectively. The number of observations per variable is thus higher than

required for a good approximation as observed in the ideal situation of the simulation study.

In combination, these results indicate that the effective number of observations per variable

is one important factor to recover the results well. On the other hand the Merge & Reduce-

technique is able to recover the more complex model including factor variables well even for

ratios minm
p that are lower than ratios for models with three quantitative variables that could

not be approximated well. In addition to the number of observations per variable, the model’s

goodness-of-fit – which is considerably higher for the more complex model – seems to also play

a role.
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As mentioned before, I propose employing Merge & Reduce as a method to conduct regression

analysis on very large data sets that possibly are too large to feasibly be analysed on the whole.

In such a setting, choosing a value of nb that is large enough should not be a problem – on the

contrary, very small block sizes would be impractical.

4.7 Conclusion

Out novel Merge & Reduce-technique on statistical models works well for a variety of regression

models. For frequentist linear regression, M&R approach 3 offers a way of recovering the original

model with virtually no difference using point-wise products of normal distributions, even if

outliers with regard to X and Y are present that follow the same regression model.

For frequentist linear regression and other frequentist regression models, both the parameter

estimates and their estimated standard errors are well-recovered by M&R approach 1 provided

the ratio of observations per block and variables is high enough. The parameter estimates can be

employed directly following the approach described in Section 4.3.1, while the estimated standard

errors can be merged in the same way, but have to be corrected using
√
⌈ n
nb
⌉ (confer Equation

(4.2)). The approach was evaluated on linear and Poisson regression models and works well for

both. It seems plausible that M&R approach 1 can also be employed for regression models with

a similar structure like other GLMs.

For data sets that contain outliers that still follow the same linear model, the parameter

estimates are also well-recovered. In such a situation, however, the estimated standard errors are

overestimated unless the model does not contain an intercept term or the outliers are distributed

relatively evenly across the data set.

For Bayesian regression models and M&R approach 2, the results regarding measures of

location like mean and median are comparable – provided there are enough observations per

variable in each block, the results are very close to those of the original model. For Poisson

models, the corrected posterior standard deviation of the models according to M&R approach 2

is close to the posterior standard deviation of the original models, but this does not seem to be

the case for the linear models. Quantiles that can be used as a measure of dispersion pose an

alternative. After a correction based on the factor
√
⌈ n
nb
⌉ (confer Equation (4.3)), these values

are close the quantiles stemming from the original models.

Application of the technique to the bicycle rental data set highlights two important points.

Firstly, factor variables can be problematic for Merge & Reduce, especially if they are unbalanced,
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thus greatly reducing the effective number of observations in each block. Secondly, for the real

data set, even Merge & Reduce models with a ratio of nb
p close to 100 – which seems to be

more than enough under the ideal conditions of the simulation study – do not guarantee good

approximation of the original model. The goodness-of-fit of the original model seems to play a

role, models that do not explain the data well seem to require a higher ratio of nb
p . It seems

prudent to choose the block size nb rather on the large side in order to avoid bad approximations

of the original model. In a Big Data setting, this does not constitute a serious constriction.

In the frequentist case, the summary values are straightforward and contain all important

information about the model. In the Bayesian case, there are a variety of suitable summary

values derived from the MCMC-sample of the posterior distribution. In the thesis at hand, I have

covered and examined some quantiles that may be useful to characterise posterior distributions.

However, other interesting cases are not necessarily covered by this. I will mention two examples.

For extreme value statistics, extreme quantiles such as a 99% or 99.9% quantile may be of

interest. In the simulation study, there difference between results for the 75% and the 97.5%

quantiles is very low. This may indicate that generalisations to more extreme quantiles are

possible, but it is by no means a guarantee.

In the simulation study at hand, all posterior distributions are symmetric or reasonably close.

Models or data sets that lead to asymmetric posterior distribution pose an interesting challenge.

On the one hand, it would be interesting to find summary values that can be utilised to describe

the skewness. On the other hand, it is unclear whether the correction factor for the quantiles

still works or at least needs to be adjusted as it treats the quantiles symmetrically in its current

form.

A challenge I have not discussed in the current chapter is the inclusion of prior information.

All models in both the simulation study and the analysis of the bicycle rental data set employed

non-informative prior distributions. Including informative prior distributions in the Merge &

Reduce-scheme is not trivial. As the number of observations per block may be considerably

smaller than the total number of observations, it would presumably be necessary to make the

prior distribution less informative for each block. What amount of information should remain in

the prior distribution and how this aim could be reached are open research questions.

The Merge & Reduce-technique offers great flexibility and stability and seems to be useful for

a broad range of regression models. However, checking assumptions and performing diagnostics

on the model are difficult or impossible. This is necessarily the case as every block of data is

deleted as soon as the respective model is built, there is thus no easy way of obtaining residuals
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without a hefty increase of memory requirements. Some basic ideas to solve this are discussed

in Section 5.1.3.
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Chapter 5

Discussion, Open Problems, and

Outlook

Statistically speaking you miss one hundred percent of the shots you don’t take.

(inspired by Wayne Gretzky)

In this thesis, I have introduced and proposed two different approaches with the aim of

making regression analysis on very large data sets possible.

5.1 Limitations of the proposed approaches

5.1.1 Focus on large amount of observations, not large amount of variables

The focus of this thesis lies on cases where the data sets contain a lot of observations n, but not a

lot of variables p and where the aim is to reduce the number of observations while approximating

the original model well. The approaches in Chapters 2, 3, and 4 are thus introduced for data

sets where n≫ p.

Arguably, variable selection is the more prevalent task in current research. Can these ap-

proaches also be employed in cases where n≪ p?

For Merge & Reduce, this is not easily possible. As the number of variables becomes the

problematic dimension, each block would hold information about the same n people, but would

contain only a subset of the variables. Even worse, all the subsets would be disjoint. This would

lead to great difficulties as we would have to merge models with disjoint set of parameters. Even

before that, models might fit the data very poorly depending on the subset of variables.
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For random projections, the situation looks a bit more friendly. In principle, it is possible to

employ our techniques to a data set with n≪ p by just transposing the data set and treating it as

before. This would, however, lead to challenges with the interpretation of the results. Instead of

the original variables, the projected data set contains random linear combinations of the original

variables. It may be possible to find interpretations for these linear combinations, as e.g. in the

case of principal component analysis. However, whereas principle component analysis is designed

to find structure in the data and connections between the variables, the linear combinations in

a projection are indeed random and built without any knowledge of the data. For that reason,

applying random projections to reduce the number of variables is only sensible if the result is

useful even though the variables cannot be interpreted.

Still, random projections or techniques based on the Johnson-Lindenstrauss-theorem in gen-

eral can be useful for variable selection as well. Another option is to employ sampling techniques

instead of random projections. Sampling approaches present a broad area of research in Statis-

tics as well as Computer Science. While details lie beyond the scope of this thesis, the general

idea is to sample according to weights that capture the structure in the data. One example is

importance sampling where the weights are based on the norm of the observation (n≫ p) or the

variable (n ≪ p). In some cases, selected entities need to be adjusted in order to avoid a bias

introduced by the sampling strategy.

Classically, sampling approaches had to be conducted in at least two steps – one step that

determines the weights for each entity and a second step to sample the observations according to

the weights. Each step is connected to one pass through the data. This is usually not practical

in a streaming setting. However, there are now approaches that allow combining both steps,

thus enabling a one-pass sampling algorithm.

Coresets are similar to sampling approaches. Again, the aim is to obtain a subset that

approximates the data set.

5.1.2 Approximation for similar number of observations and variables

Related to the challenges discussed in Section 5.1.1 is the problem of a number of variables p

that is less than the number of observations n, but not necessarily substantially less. This affects

the approaches introduced in the thesis at hand in different ways.

For random projections, this does not pose a fundamental problem. They can be employed

to reduce a data set to any number of observations k with k > p. Reducing the number of

observations below the rank p of the data set is not advisable as the approximation may become
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arbitrarily bad. For Merge & Reduce, it would in principle be enough to ensure that the block

size nb is greater than p. However, as we have seen in Section 4.5.2.1 and other sections of

Chapter 4, in order for the linear model to be estimated reliably, it is vital that the data set

contains at least 20 observations per variable for data sets consisting of quantitative variables.

This constraint should be taken into account when reducing data sets.

For random projections, a second aspect plays a role. When employing random projections for

linear regression models, a theoretical guarantee concerning the goodness of the approximation

can be given. This guarantee requires the practitioner to choose an approximation parameter

ε which is then used to calculate the number of observations k that is required to guarantee

the goodness of approximation or to choose the desired number of observations k, which can

then be used to calculate the implied approximation guarantee ε. As mentioned in Chapter 2,

the relationship between ε and k does not depend on n, but it does depend on p. For different

sketching methods, it may rely linearly or quadratically on p. The latter case implies that the

required number of observations k very quickly increases as p grows – or, seen from another

perspective, the approximation guarantee becomes less strong as p increases, unless n and also

k increase at a suitable speed as well.

5.1.3 Diagnostics

Both random projections and Merge & Reduce enable analysing regression models on very large

data sets. While both approaches employ the observations to obtain an approximation of the

desired regression model, the observations are not readily available afterwards. In the case of

Merge & Reduce, the observations are read in blockwise and are deleted as soon as the model on

the respective block is built. This means, the observations would have to be read again, which

may be infeasible or even impossible.

When using random projections, on the other hand, the sketched observations are available.

These, however, represent random linear projections of the original observations. Each sketched

observation incorporates multiple original observations with different weights by construction.

In general, the sketched observations are not useful to identify possible problems in the model.

Different approaches with a similar aim like importance sampling or coresets may pose an alter-

native here as they reduce n by sampling and possibly weighting observations from the original

data set according to some criterion.

To be able to conduct diagnostics in spite of the unavailability of observations, one useful

idea might be to uniformly sample a reasonable number of observations from the original data
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set. In general, this may lead to biased or unreliable results if, e.g. a small group of influential

observations is present that will be missed in uniform sampling with high probability. However,

as we already have a reliable approximation of the original model, we can check whether the

model based on the uniform sample is close enough to our approximated model and only conduct

diagnostics on the sample if this is the case.

This very basic idea seems plausible, but it may be problematic to determine when the two

models are ‘close enough’. It also may not be helpful if simple random sampling is only able to

capture the structure of the problem with low probability.

In general, the techniques introduced in the present thesis aim at approximating regression

models, not at approximating the observations the models are based upon. In order to enable

diagnostics as well as to a lesser extent predictions, it is an interesting open question how to find

a good subset of the observations, especially in a setting where the data set cannot be kept in

memory as a whole or in a streaming setting where every observations might only be read once.

5.2 Bachelor’s and Master’s theses

Over the course of this project, a number of Bachelor’s and Master’s theses have originated from

the project. Two of the Master’s theses – Rathjens (2015) and Müller (2016) – form the basis

for Chapter 3. In this section, I give an overview of further final theses I have co-supervised that

add to insights described in the thesis at hand.

Niels Lategahn’s Master’s thesis (Lategahn, 2016) is based on the assumption that all

values of Y are unknown but observable, where uncovering each observation is linked to a high

cost. Examples for this are experiments where the object of interest is destroyed or immaterial

costs like invasive procedures for patients. It is further assumed that our budget allows for a

subset of k observations. The aim is to choose the subset without prior knowledge of any values

of Y and obtain a regression model that approximates the original model as good as possible.

Different algorithms to obtain the subsets are compared. The main idea is to ensure the subset

represents the entirety of the full data set well. To that end, three main ideas are employed:

clustering, sampling according to leverage scores, and ensuring the Euclidean distance between

selected observations is maximal or does not become too low. Some approaches also consist

of combinations of two principles. If appropriate, the observations in the subset are weighted

according to the number of original observations they represent. All approaches are compared

to a random sample of size k. Random sampling generally works well if all assumptions are met,
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but can fail catastrophically if a good approximation of the model relies on selecting members

of a relatively small group. To put the methods to test and to work out differences between

the more sophisticated approaches, different problems or even violations of assumptions are

included. These include outliers in the values of X or Y , heteroscedasticity, and transformations

and interactions that are not taken into account in the model. Please refer to Appendix B for a

more detailed list of the violations considered.

The results indicate that a method inspired by Feldman et al. (2011) and a combination of

k-means clustering and leverage scores perform best. In the first case, a two-step procedure is

iteratively applied repeatedly. The observation with the highest leverage score is chosen, then

a fixed number of observations closest to the chosen observation is removed from the pool. In

the second case, k clusters are identified using k-means clustering. In each cluster, the observa-

tion with the highest leverage score is chosen as representative. In some scenarios, relying on

maximising the distance between the selected observations shows advantages, but in general, it

seems to be advantageous to take both the distance between observations and the importance

for the regression model into account. Leverage scores are an important tool in this setting as

they can be calculated without knowledge of Y .

Alexander Wollenberg’s Master’s thesis (Wollenberg, 2016) deals with a reduction of

large or high-dimensional data sets in the context of logic regression. Logic regression employs

logic trees as independent variables (Schwender and Ickstadt, 2008). Such trees can be of the

form A or (B ∧ ¬C), where A, B, and C are logical expressions that can either be true or

false. Employing logic trees and logic regression allows for the modelling of interactions of higher

order, which is especially useful in a SNP-setting or in other contexts where redundancy or other

causes for interactions play a role. The results can also be used to estimate variable importance

(Schwender et al., 2011).

Finding the logic trees is not an efficient process and requires large amounts of computing

power. For that reason, the size of the data sets that can feasibly be analysed using logic

regression is limited. The aim of Wollenberg (2016) is to first sample from the problematically

large dimension to filter out entities that contribute little or nothing to the regression model.

This can be done for data sets with a large number of observations or a large number of variables,

but variable reduction usually is the more interesting case for practitioners.

Especially for the case of high-dimensional data sets with many variables, sampling according

to the leverage scores adds little value compared to simple uniform sampling, as there is consid-

erable overlap between the distributions of the leverage scores for important variables and for
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negligible variables. However, this is different for the cross-leverage scores between the indepen-

dent variables Xi and the dependent variable Y . Here, the distribution of important variables

differs markedly from the distribution observed for negligible variables. This difference can be

used by sampling variables according to their cross-leverage score with the dependent variable.

No theoretical analysis has taken place, but empirical studies indicate that such a sampling

procedure is indeed able to recover the important variables while discarding the negligible ones

with high probability. This is true for both main effects and variables that are important via an

interaction. Employed as a pre-processing step before the logic regression, this approach enables

applying logic regression to data sets of considerably higher dimension.

Peter Gnändinger’s Master’s thesis (Gnändinger, 2018) applies a Bayesian logistic regres-

sion model on data on penalties taken in the German Bundesliga in association football. This

model is an extension of Bornkamp et al. (2009). While the earlier work of Bornkamp et al.

(2009) modelled the goalkeeper effect and took the logarithm of the total number of penalties by

each penalty taker, Gnändinger (2018) additionally includes the effect of both goalkeepers and

penalty takers. Interactions between goalkeepers and penalty takers can also be included in the

model.

Jonas Münch’s Bachelor’s thesis (Münch, 2016) deals with large data sets, but not with

regression models. The thesis is based on positional data of every player and the ball for two

matches in the German Bundesliga in association football. For all players, the position is mea-

sured in two dimensions, for the ball, a third dimension is added. Every position is measured 25

times per second, which results in 135 000 observations per player not including stoppage time.

The task is to find suitable visualisations that show the spatial distribution of a player’s position

over the course of a match. This can easily be adapted to separate positions on attack from

positions on defence or positions up until the first goal and positions after the first goal. The

distribution can be visualised as a heat map with some modifications – e.g. overlaying the pitch

with a honeycomb structure – or its mean or median can be given. The latter is advantageous if

the focus is not on one player but on the team as a whole.

In a research project, we expanded the visualisations to also include positions where the ball

is won from the opposing team. It is then possible to interactively follow the next sequence to

see what the team and its opposition made of this opportunity. Back to static displays, we tried

to characterise where teams play the ball after having won possession. In ongoing research in

cooperation with TU Dortmund University’s School of Journalism and Mass Communication,
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we investigate to what extend such visualisations aid in understanding reports about a football

match.

5.3 Conclusion

In this thesis, I introduce two approaches that can be employed when conducting regression

analysis on very large data sets. Both approaches focus on data sets with a very large number

of observations n and a considerably smaller number of variables p, n≫ p.

Random projections have been developed from the Johnson-Lindenstrauss-theorem. In the

case presented here, they reduce the number of observations from n to k with p < k < n

while capturing the structure of the regression problem. Inserting a projection step before the

regression analysis allows for efficient modelling of regression problems even for very large data

sets. Such solutions already existed for frequentist linear regression. They have been extended to

Bayesian linear regression by Geppert et al. (2017) and to more generalised regression model in

further work. With this approach, the focus lies on a good approximation of the regression model

using an embedded data set instead of the original one. Random projections offer theoretical

guarantees for the approximation. The required number of observations in the embedded data set

k only depends on the number of variables p and the approximation parameter ε, in particular,

the required number is independent of n. This makes the approach very useful for very large

data sets with a small to moderate number of variables. The theoretical guarantees hold for

frequentist linear regression and – newly developed by us – Bayesian linear regression with

normal distribution as likelihood and normal or vague prior distributions.

The approach is relatively robust towards changes in the prior distribution. Generally speak-

ing, only very informative prior distributions that contradict the likelihood could pose serious

problems due to the projection of the original data set onto the subspace. From a modelling per-

spective, such a situation would be undesirable and problematic, it is thus not a major limitation.

While the generalisations to hierarchical models and to p-generalised normal distributions are

not included in the theoretical guarantees, following this logic, they are included to some extent.

The generalisation towards p-generalised normal distributions as likelihood is more problematic,

here, the theoretical justification is still open.

The Merge & Reduce approach is also useful for very large data sets with n ≫ p, but the

focus does not lie on a reduction of the number of observations. Instead, the aim is to split

the data set, conduct the analysis on smaller blocks and combine the resulting models efficiently.
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This avoids memory problems with large data sets. When done serially, the overhead required for

the technique only logarithmically depends on n. However, due to its nature, Merge & Reduce

can also easily be parallelised, making it possible to utilise the advantages of current computing

clusters.
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Appendix A: Overview of

MCMC-methods

«Get out!»– «I’m imparting my knowledge on the bro.»

(Hunt for the Wilderpeople)

In cases where Bayesian regression models cannot be solved analytically, approximations

form a viable and useful alternative. MCMC-techniques currently form the gold standard for

such approximations. They are reliable and can be employed for an extremely broad class of

models. Additionally, it is possible to check for convergence, thus enabling to check whether

the approximation is good or further iterations are needed. A disadvantage, however, is that

MCMC-methods are not efficient. The running time required before convergence is reached may

be substantial. In the following, I will briefly introduce common MCMC-methods, leading up

to Hamiltonian Monte Carlo and the No-U-turn sampler. The latter is the only MCMC-method

employed in this thesis.

Monte Carlo integration is a numerical integration technique with the basic idea of randomly

drawing observations and evaluating them according to the function of interest. Rejection sam-

pling presents one possibility of a Monte Carlo integration technique. Here, the idea is to sample

a candidate value from an easily available proposal distribution and then to decide to either keep

or reject this candidate based on how well it fits to the posterior distribution of interest. In more

detail, let θC be the candidate sampled from the proposal distribution q(θ), where θ may be of

one or more dimensions. Let p(β|X,Y ) be the posterior distribution of interest and p∗(β|X,Y )

the unnormalised posterior

p∗(β|X,Y ) = L(β|X,Y )× p(β). (1)
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This means that p(β|X,Y ) = p∗(β|X,Y )/
∫
p∗(β|X,Y )dβ. In the following equations we

utilise the unnormalised posterior, but it is straightforward to replace it with the normalised

posterior.

Rejection sampling decides whether to keep θC or reject it based on

α <
p∗(θC)

Mq(θC)
, (2)

where M > 0 is a constant such that

p∗(θ)

q(θ)
≤M for all θ ∈ Θ (3)

and α is a single draw from Unif(0, 1). If a candidate value is accepted, it is added to

the sample that represents the posterior distribution while the sample remains unchanged if it is

rejected. In both cases, the next step is to sample a new candidate from the proposal distribution

and continue until the desired number of observations are in the sample or a maximum number

of iterations is reached.

The efficiency of rejection sampling depends on the relation between the posterior distribution

p(θ) and the proposal distribution q(θ). If q ∝ p, all candidates are well-fitting as draws from

the posterior, leading to an acceptance rate of 1. If p and q become very different, the constant

M needs to be set to a high number to fulfil the condition given in Equation (3). This leads

to low acceptance rates, which means that longer sampling times are necessary to obtain the

desired sample size. An upside to this is that it is straightforward to recognise whether rejection

sampling works efficiently or not by monitoring the acceptance rates.

There are some other Monte Carlo approaches beside rejection sampling that are based on

sampling directly from the posterior distribution or its unnormalised version. However, all of

these methods tend to become inefficient when the prior distribution is non-informative compared

to the likelihood, i.e. it covers a distinctly wider range of values, or as the number of variables

and, with that, parameters grows (Bolstad, 2010).

For that reason, rejection sampling has in many situations been replaced by more efficient

methods, some of which are introduced below. According to Gelman et al. (2014), rejection

sampling is used “in some fast methods for sampling from standard univariate distributions” as

well as “for generic truncated multivariate distributions, if the proportion of the density mass in

the truncated part is not close to 1” (both in Gelman et al., 2014, p. 265).
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Algorithm 3: Metropolis-Hastings algorithm
output MCMC-sample of size T
Set initial value θ1
for t ∈ {2, . . . , T} do

draw θC from q(θ|θt−1)
calculate acceptance probability

α = min

(
1,

p(θC |X,Y )q(θt−1|θC)
p(θt−1|X,Y )q(θC |θt−1)

)
(4)

draw u ∼ Unif(0, 1)
if u < α then θt ← θC
else θt ← θt−1

Markov Chain Monte Carlo (MCMC) methods offer a more efficient alternative to direct

sampling from the posterior distrubtion. MCMC-methods are currently the standard in Bayesian

analysis. They are reliable and can handle a very broad range of models. However, depending

on the model and the size of the data set, MCMC-methods can be very slow.

The idea behind MCMC-methods is the following: the desired posterior distribution is pro-

portional to the product of the prior distribution and the likelihood. This product is divided

by the result of a high-dimensional integration, which is hard to compute. MCMC-algorithms

start with initial values for all parameters and in every iteration sample a new candidate from

a proposal distribution. This new candidate may only depend on the current value, but not on

values before that. This is known as Markov property. The algorithm then checks whether the

new candidate fits well with the posterior distribution by considering the posterior distribution

of the candidate divided by the posterior distribution of the current value. By construction, the

high-dimensional integral cancels out in the fraction, making it possible to decide whether to

keep the candidate value or not based on this fraction.

The Metropolis-Hastings (MH) algorithm offers one possibility of obtaining a suitable Markov

chain. Let θ1 be the starting value for the Markov chain and let θt, t = 2, . . . , T, be further

elements of the Markov chain, where T is the desired length of the chain. The elements θt of the

Markov chain are iteratively chosen following the steps given in Algorithm 3. We will discuss

some things to consider when choosing T later on.

Although the posterior distribution features prominently in Equation (4), the MH algorithm

only requires knowledge of the unnormalised posterior distribution. The constant term that

normalises the distribution is identical in enumerator and denominator and thus cancels out. In
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Equation (4), only the current state of the Markov Chain and the new candidate value are taken

into account, the MH algorithm has the Markov property.

The stationary distribution of the Markov chain constructed by the MH algorithm 3 is the

desired posterior distribution p(β|X,Y ). The choice of the proposal distribution q does not

influence the stationary distribution, however, it may influence the acceptance rate and the

speed of convergence. In general, acceptance rates between 0.3 and 0.7 are desirable. Higher

rates may indicate that the variance of the proposal distribution is low relative to the variance

in the posterior distribution. This may lead to slow exploration of regions with relatively high

probability mass, in such cases, the posterior distribution may not be characterised fully by the

resulting MCMC-sample. If on the other hand acceptance rates are very low, this indicates a

high variance of the proposal distribution compared with the posterior’s variance. In this case,

the MCMC-sample contains the same observations multiple times, reducing the effective sample

size.

Blockwise Metropolis-Hastings and Gibbs sampling Algorithm 3 may be used for a sin-

gle parameter or for multiple parameters. For the multi-parameter case, blockwise Metropolis-

Hastings is an important special case of the MH algorithm. In the MH algorithm, one p-

dimensional candidate vector is drawn and either accepted or rejected. In the blockwise version,

the parameters are partitioned into J blocks. If variables are known to be correlated they may

be put into the same block, but this is not a necessity.

When the parameters have been partitioned, we replace drawing a single parameter value θC

by iteratively drawing a candidate value for each of the J blocks, i.e. θC,j , j = 1, . . . , J . The

proposal distribution now depends on the current value of the Markov chain for the parameters in

block j and on the current values for the other blocks. Because the sampling is done iteratively,

when the candidate value for entry t of block j is drawn, the candidate depends on the tth value

for blocks j∗ < j and on the (t− 1)st value for blocks j′ > j.

Gibbs sampling is a special case of the blockwise MH algorithm. It was developed by Geman

and Geman (1984). To construct a Gibbs sampler, the proposal distribution for block j is chosen

as full conditional distribution given the values in all other blocks. By this choice, all terms

in the acceptance probability cancel out, leaving 1, i.e. every candidate value is accepted with

probability 1. This high acceptance rate is possible because every proposal distribution goes

well together with the respective posterior distribution. Gibbs sampling is very efficient, but it

requires knowledge of the full conditional distributions, which is often not the case.
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Random walk Metropolis-Hastings For both the basic MH algorithm as well as the block-

wise MH algorithm, the proposal distribution may also be chosen symmetrically, such that

q(θt−1|θC) = q(θC |θt−1). In such cases, the proposal cancels out of Equation (4), leaving

α = min

(
1,

p(θC |X,Y )

p(θt−1|X,Y )

)
(5)

in the basic version. When there are multiple parameters (basic or blockwise version), the

proposal distribution is symmetrical in every component. This approach is also called random

walk MH algorithm, because the next candidate does not depend on the current position of the

Markov chain. From Equation (5) we can see that if the candidate value is an improvement over

the current value in terms of the posterior distribution, it is always accepted. If the candidate

value is further away from the centre of the posterior distribution, it may still be accepted

depending on how much lower the probability mass is. This ensures that the algorithm generally

moves in the direction of high probability mass, but also explores the posterior distribution. This

is important as the aim is not optimisation, but characterisation of the posterior distribution.

Generally speaking, the variance of q controls the average step size. Similarly to our earlier

remarks about the proposal distribution’s variance, in the case of a random walk MH, the variance

of q influences the efficiency of the algorithm and the number of iterations required to obtain a

well-fitting sample of the posterior distribution.

Hamiltonian Monte Carlo The first step in every MCMC-algorithm presented here is to

draw an initial value θ1. This initial value may by chance be close to the regions with high

probability mass, but – especially in higher-dimensional cases – it more likely will be some

distance away.

The MCMC-algorithms introduced so far employ the same proposal distribution for every

iteration t, t = 1, . . . , T , resulting in constant step sizes. This clearly is not optimal in cases

where the algorithm first has to cover some distance to reach the region with high probability

mass and then needs to explore this region. Adaptive step sizes provide a remedy against this,

but require additional calculations to obtain useful values.

Hamiltonian Monte Carlo (HMC) provides a solution for the changing step sizes. HMC is

also called hybrid Monte Carlo as it combines MCMC-techniques with a deterministic part which

is influenced by the physical concept of Hamiltonian dynamics. For every component θj of θ, a

momentum variable φj is introduced. Neal (2011) compares the two components to a puck that

slides over ice – or, more generally, a frictionless surface – with varying heights. The puck has
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a position θ and a momentum φ. On a plane section, the momentum will remain unchanged

by and large, whereas when going up a slope, the puck will be carried in the same direction by

the momentum, which in turn will be slowed down. This way, position and momentum have an

influence on each other.

As an MCMC-technique, HMC replaces the updating algorithm by the following steps (Hoff-

man and Gelman, 2014; Neal, 2011). First, a new value for the momentum is drawn from a

multivariate normal distribution N(0, Ip), where Ip is the p-dimensional unity matrix. In the

second step, both the position θ and the momentum φ are updated simultaneously. To that

end, Hamiltonian dynamics are simulated using L steps of the leapfrog algorithm. The leapfrog

algorithm is employed to discretise the continuous Hamiltonian dynamics. Every leapfrog step

consists of two updates in three steps, a full update of the position θ as second step, preceded

and followed by half an update of the momentum, where the newest value of θ is employed. The

updated value of θ is obtained by adding an ι-fraction of the momentum to the current value

of θ. For the half-updates of the momentum, an ι/2-fraction of the product of the gradient ∆θ

with respect to θ and the logarithm ln p(θ|Y ,X) of the current parameter value is added to the

current momentum. The parameter ι is also called the stepsize. After L of such steps, we draw

u ∼ Unif(0, 1) and accept the new values if

u < α = min

(
1,

exp(ln p(θ∗|Y ,X)− 1
2φ

∗φ∗)

exp(ln p(θt−1|Y ,X)− 1
2φt−1

φ
t−1

)

)
. (6)

When the candidate values are rejected, θt = θt−1 and φ
t
= φ

t−1
. When the candidate

values are accepted, θt = θ∗ and φ
t
= −φ∗. φ∗ is negated to make the proposal symmetric and

obtain a time-reversible Markov chain. Since the proposal is time-reversible and the leapfrog

algorithm preserves volumes, the HMC algorithm is a valid Metropolis proposal. For more

details on Hamiltonian dynamics, the HMC algorithm and its properties as well as extensions

and variations, please refer to Neal (2011).

The HMC approach works more efficiently in many situations, but requires tuning of two vital

parameters, the number of leapfrog steps L and the stepsize ι. As Hoffman and Gelman (2014)

note, choosing ι too low will result in very small steps while a value that is chosen too large will

result in an inaccurate simulation of Hamiltonian dynamics and low acceptance rates. Similarly,

if too few leapfrog steps L are conducted, successive samples are too close to one another, but

if L is too large, the algorithm may loop back and retrace its own steps. All of this results in

undesirable inefficient behaviour.
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To avoid tuning these parameters, (Hoffman and Gelman, 2014) propose their No-U-turn

sampler (NUTS), which requires no parameter tuning while achieving results similar or better

compared to a well-tuned HMC-algorithm, according to the authors. The Stan development

team’s homepage1 offers documentation of the Stan modelling language as well as help for im-

plementations of Stan for different statistical software like R (Stan Development Team, 2018),

Python, Julia, MATLAB or command-line terminals2.

They follow different approaches for the two parameters. For the stepsize ι, Hoffman and

Gelman (2014) propose stochastic optimisation with vanishing adaptation, which can be used for

both HMC and NUTS. To automatically tune L, Hoffman and Gelman (2014) employ a doubling

algorithm. Whenever a new candidate is sampled, the NUTS algorithm builds a set of possible

candidate values in multiple steps. Initially, only the current position and momentum are added

to the set. In the first step, one new candidate value (with both position and momentum) is

added, followed by two candidates in the second step and 2j−1 candidates in the jth step. This

means that the total number of candidates after j steps is 2j . In each step, the 2j−1 candidates

can go either forwards or backwards from the respective outermost candidate in the direction

of the current momentum. The process is stopped when new candidate values start retracing

their own steps, thus suggesting candidates that have already been explored during the current

search for a candidate or when a suggested candidate is associated with a very low probability

of occurring.

In a basic version, the new position is determined by uniformly sampling one candidate

from the set. As the set always includes the current position, the current state may remain

unchanged. In a more efficient version, NUTS proposes one of the 2j−1 newly added candidates

as new position in step j. According to Hoffman and Gelman (2014), this results in longer jumps

on average as candidate state with low probability in the later stages of finding a new position

can be compensated by already having chosen a new position in an earlier stage. Thus, small

jumps are conducted with high probability while still allowing for longer jumps.

1https://mc-stan.org
2Full list available at https://mc-stan.org/users/interfaces/
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violations of the assumptions

No eres tu, no eres tu, no eres tu, soy yo.

Luis Fonsi y Demi Lovato – Échame la culpa

Generally speaking, reduction of the number of observations in a regression context is easy

as long as all observations are similar and follow the same, correctly specified model. In such a

case, the influence of the selection method (including simple random sampling) on the results is

low. This changes as soon as some observations are more important for the outcome model than

others.

Lategahn (2016) introduces and analyses a number of scenarios designed to alter the impor-

tance of different observations. Some of the changes introduced represent violations from the

assumptions of a linear regression model. The first two scenarios represent data sets where the

observations are close together. To that end, Lategahn chooses an interval [ai, bi] ⊂ [−3, 3] such

that every column vector Xj ∈ [aj , bj ] for j ∈ {1, . . . , p}. Then, values of βj , j ∈ {0, . . . , p} are

generated. The values of Y are then obtained by multiplying the design matrix and β and adding

a normally distributed error term η. In the first case, the variance of the error term is chosen to

be 1, in the second case it is set to 100.

In addition to these non-problematic cases, Lategahn also considers violations of the assump-

tions. In detail, these are the following.

1. Outliers in the values of X: A fraction of 5% of the data is generated from a uniform

distribution U(bi + 9.75, bi + 10.25). The values of Y follow the model as before with an

error term variance of 100.

2. Heteroscedasticity: η ∼ N(0, σ2
i ) where σ2

i = 1 + 99 yi−min(y)
max(y)−min(y) . This leads to a smaller

values of y being systematically closer to the hyperplane than larger values of y.
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3. Outliers in the values of Y : With σ2 = 1, the realisation of a N(20, 1) distributed random

variable is added to yi for a fraction of 5% of all observations. Here, he differentiates

between two cases: in the first case, the outliers are chosen randomly from all observations.

Thus, they tend to be equally spread along the range of y. In the second case, he randomly

draws a value in the range of X and concentrate all outliers in this region. This region

may additionally contain non-outlying observations.

4. Data that come from different populations: different fractions of the data follow different

regression models. This is not taken into account when modelling, one common regression

model for both populations is built.

5. Unobserved transformation: The values of y are generated using a sine-transformation for

all columns Xi, i ∈ {1, . . . , p}. The transformation is not taken into account in the model.

Since the generated data are enclosed by [−3, 3] ≈ [−π, π], the data cover almost one period

of the sine function.

6. Interactions: between five and ten interactions are chosen at random. A variable may

“interact” with itself, resulting in a quadratic term. None of this is taken into account in

the model.

In some of the situations a linear model is not the optimal choice, it may even be inadequate.

However, the aim here is to study the effects the above-mentioned violations have on the linear

model and especially on the reduced data set. With the exception of outliers in the values of X,

the other violations cannot easily be spotted before the analysis as the assumptions in Lategahn

(2016) is that values of Y are not known.

Broadly speaking, Lategahn (2016) finds that methods, which combine exploration and sam-

pling according to importance measures, work best over all scenarios considered. Sampling

according to, e.g., leverage scores alone is not sufficient, but in combination with a method that

ensures that all areas are represented in the sample it leads to good results.
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