
Autonomous Driving Using Neural
Networks

Project group
„Intelligente Autonome Taxis“

March 31, 2019

Participants:
Viktor Brack
Maximilian Diergardt
Björn Engelmann
Sebastian Gerard
Matthias Jakobs
Leonard Kleinhans
Arthur Matei
Lorenzo Perez Veenstra
Tobias Rickhoff
Christopher Riesner
Finn Thieme
Oxana Warkentin

Technical University of Dortmund
Department of Computer Science





Contents

1 Introduction 1
1.1 Motivation and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Project Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Proof of Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Minimal Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Optional Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contents and Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Requirements of the Autonomous Driving System 5
2.1 General Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Safety Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Simulation and Execution 11
3.1 Model Car . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Arduinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.3 Printed Circuit Boards . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.4 Lights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.5 Handling Noisy Ultrasonic Signals . . . . . . . . . . . . . . . . . . . 15

3.2 ADTF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.4 Implementation of Filters . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Constructing a Simulation Scene . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 OpenCRG - The Road Surface . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 OpenDrive - Networks of Roads . . . . . . . . . . . . . . . . . . . . . 22
3.3.3 OpenScenario - Dynamic Behavior . . . . . . . . . . . . . . . . . . . 22
3.3.4 Assembling the Scene . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Virtual Test Drive (VTD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.1 Road Designer (ROD) . . . . . . . . . . . . . . . . . . . . . . . . . . 24

i



ii CONTENTS

3.4.2 Scenario Editor: v-Scenario & v-Traffic . . . . . . . . . . . . . . . . 25
3.4.3 Image Generator: v-IG . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.4 External Communication: RDB . . . . . . . . . . . . . . . . . . . . . 28

3.5 Providing a Unified Interface to the Simulation and Car Data . . . . . . . . 29
3.5.1 Recreating the Car in VTD . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.2 Vehicle Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.3 Cameras and Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Complications and Differences . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7 Test Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7.1 A First Test Route in VTD . . . . . . . . . . . . . . . . . . . . . . . 32
3.7.2 Advanced Test Routes . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7.3 Generating Test Images for Segmentation . . . . . . . . . . . . . . . 34
3.7.4 Physical Test Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Architectural Aspects 39
4.1 Architectural Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Functional View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Logical View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.1 Ensuring System Safety . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.2 Emergency Brake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Evaluating the Flow of Data and Communication . . . . . . . . . . . 53
4.3.2 Evaluation of Data- or Time-Triggered Decisions . . . . . . . . . . . 55

5 Semantic Understanding 57
5.1 Simple Lane Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.1 Algorithm Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Advanced Lane Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Algorithm Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Road detection using neural networks . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Training data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.3 Network architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.4 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.5 Performing inference directly on the car . . . . . . . . . . . . . . . . 83

5.4 Sign Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4.1 Evaluation Metrics and Training . . . . . . . . . . . . . . . . . . . . 86
5.4.2 Street Sign Augmentation . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4.3 Finding the Correct Receptive Field . . . . . . . . . . . . . . . . . . 88
5.4.4 SegNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



CONTENTS iii

5.5 Sign Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5.1 Filter Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5.2 Align Contours around Street Signs . . . . . . . . . . . . . . . . . . 93

5.6 Sign Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.6.1 Street Sign Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.7.1 Fulfilling requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.7.2 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Lane Keeping 101
6.1 Introduction and Basics of Motion Control . . . . . . . . . . . . . . . . . . . 101
6.2 The Orientation Error of the Vehicle . . . . . . . . . . . . . . . . . . . . . . 107

6.2.1 Computation of the Desired Path . . . . . . . . . . . . . . . . . . . . 107
6.2.2 Computation of the Error Angle . . . . . . . . . . . . . . . . . . . . 110
6.2.3 Naive Path Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2.4 Histogram-based Path Planning . . . . . . . . . . . . . . . . . . . . . 113

6.3 Control the Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.1 The Proportional Controller . . . . . . . . . . . . . . . . . . . . . . . 119
6.3.2 The PID Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4 Evaluation of Lanekeeping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.4.1 Fulfilling Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.4.2 Motivation and Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.4.3 Manual Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 Implementation and Documentation 133

8 Summary 137

9 Outlook 141

A Additional Information 143
A.1 Tutorial: How to Create a Track in VTD . . . . . . . . . . . . . . . . . . . 143

A.1.1 How to Create a Route in VTD . . . . . . . . . . . . . . . . . . . . . 143
A.1.2 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
A.1.3 Importing Constructed Roads into VTD . . . . . . . . . . . . . . . . 146

A.2 Hardware and Sensors of the Model Car . . . . . . . . . . . . . . . . . . . . 146
A.2.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
A.2.2 Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.3 VTD Test Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.4 Filter READMEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150



iv CONTENTS

B Lanekeeping Experiments 165

List of Figures 184

List of Algorithms 185

Bibliography 189



Chapter 1

Introduction

1.1 Motivation and Background

Recently, autonomous driving systems have attracted a significant amount of interest and
in the last decade, noteworthy progress has been made in autonomous driving. Develop-
ment is pushed by companies like Alphabet (Google), Tesla, and Uber while being chased
by conventional automotive companies. The ever-increasing computing power and the
progress that has been made in image recognition and understanding enables even further
growth in the area.
An autonomous driving system enables a vehicle to drive by itself without human input.
It perceives and analyzes the environment and its own position, follows rules like traffic
regulations, and is able to reach any specified location safely. Making human drivers obso-
lete will eliminate mistakes made by human drivers, yet might introduce mistakes made by
autonomous driving systems. Expectations are that driving will become safer as a result.
Such a system requires perception, localization, planning, and control, and must include
a vast variety of sensors, actuators, and computing units.
However, making the "correct" decision based on sensor input at all times is still considered
very difficult. Fully autonomous vehicles are therefore still in an experimental phase and
the topic of current research.
With image processing, understanding and sensor interpretation being an important part
of an autonomous driving system, companies like Alphabet that already deploy algorithms
for data analysis at scale can use their advantage and experience in areas such as advanced
machine learning and computer vision to develop autonomous driving systems.

In the project group "Intelligente Autonome Taxis" at TU Dortmund we aim to develop
such an autonomous driving system to work not only in a simulated environment but also
with a physical model car. This task connects multiple different fields such as system
architecture, machine learning, computer vision, control theory and validation and also
requires us to apply project management techniques. The connection of different fields

1



2 CHAPTER 1. INTRODUCTION

and to work on something that is part of current research motivates our group the most.
But we are also excited to be able to lay the groundwork and make architectural decisions
that will be used by future project groups working with the physical cars.
This report describes the development and the architecture of the autonomous driving
system and summarizes the results and experience of the project group’s work in the
course of a year.

1.2 Project Goals

The goals of the project group can be divided into three phases:

Phase 1: Proof of concept Proving the ability of all the previously mentioned tasks
on the given hardware, including the implementation of a first version of a control
loop.

Phase 2: Minimal goals Using the experience from the previous phase to achieve mea-
surable minimal goals.

Phase 3: Optional goals Fulfilling further optional goals.

During the whole project, the following definitions and limitations are considered:

Definitions and Limitations:

1. A route is a sequence of two-lane road sections with lane markers defined by navi-
gation signs (similar to diversion signs).

2. A route can contain right- and left-hand bends / curves as well as T and X-
intersections.

3. The start and end of the route are marked by road signs.

4. A route in the physical test environment is composed by 20 AADC A.2 floor tiles.

5. A route in the virtual test environment is a setup of VTD 3.3 street segments of
equal length.

6. The route does not contain moving obstacles or other traffic participants.

7. An obstacle is an object with at least 35cm width and 20cm height (in the physical
simulation) with a continuous and ultrasonic reflecting surface. Width is measured
from the vehicles perspective.

8. A route is not known by the vehicle; there can be different routes.

An obstacle fills one lane completely and is as tall as a vehicle.



1.2. PROJECT GOALS 3

1.2.1 Proof of Concept

The actual goal of the proof of concept phase is to implement a first version of a working
control loop running, however that goal is measured by the following proof of concept
goals:

Goals for the Proof of Concept:

1. The autonomous car must be able to drive straight.

2. The autonomous car must be able to keep a lane on a straight road.

3. If there is a static obstacle in front of the autonomous car the autonomous car must
be able to stop prior to collision.

1.2.2 Minimal Goals

1. The autonomous car must be able to follow a previously unknown route inside the
virtual simulation.

2. The autonomous car must be able to follow a previously unknown route in the
physical simulation.

3. The autonomous car must set light signals when turning and braking.

4. The autonomous car must prevent a collision with static obstacles by stopping.

1.2.3 Optional Goals

1. The vehicle can drive around static obstacles.

2. Moving obstacles can be recognized.

3. The vehicle can drive around moving obstacles.

4. The vehicle is driving smoothly.

5. The vehicle can recognize signs indicating heights of bridges and use this information
to detect a bridge as an obstacle if it is too low to pass below.

6. The vehicle can recognize the height of bridges to detect a bridge as an obstacle if
it is too low to pass below.

7. The vehicle creates a live stream giving an overview about its current status, mainly
in form of telemetry data.

8. The vehicle can park in vertical and parallel parking space.

9. The vehicle can use city signs to navigate through the test environment.



4 CHAPTER 1. INTRODUCTION

10. Multiple vehicles can drive within the environment without impeding each other.

11. The vehicle respects the priority in traffic according to German law.

12. Multiple routes can be distinguished by numbers on the signs.

13. Usage of neural networks in other environments than the one it was trained in.

1.3 Contents and Structure

This report is divided into six chapters: It starts with defining the requirements for an
autonomous system based on the project goals in chapter (2), followed by chapter 3 with
a description of the preconditions, the physical car, and the simulation environment.
The next chapter addresses architectural aspects and decisions of the developed system,
including its functional and logical views as well as safety aspects of the system. This
includes an abstraction layer for the physical car and the simulation and safety mechanisms
to avoid physical damage.
Chapter 5 presents the chosen approaches and their evaluation to a semantic understanding
of the environment, that is the interpretation of sensor data and camera images. This
includes lane detection, road detection and street sign detection.
The sixth chapter addresses the lane keeping algorithms and the control loop within the
autonomous driving system and the evaluation thereof.
In the seventh chapter the implementation and documentation approach is outlined.
The conclusion of this report is the summary and the outlook.



Chapter 2

Requirements of the Autonomous
Driving System

To model the requirements both for the minimal, and the optional goals, the requirements
were split in safety requirements and general functional requirements. First, the general
requirements were defined, later the safety requirements were used to explicitly prevent
unwanted behavior.
These requirements are specified in the following, and are used in future to clarify the
high-level goals which are pursued during the development of the single components of the
autonomous driving system.
As the project contains several different task areas, safety requirements and requirements
for the neural network are shown separately.

2.1 General Requirements

In this section the general requirements which the system should satisfy are stated. They
are grouped by

• Simulation and Execution (SNX) - execution of the vehicles commands in physical
and virtual simulations

• Semantic Understanding (SEM) - creation of an abstract world model

• Image Tagging (IMT) - preparation of training data for the SEM requirements

• Controlling (CON) - generate commands from the abstract world model

• Visualization (VIS) - reporting to the user

• Benchmarking Requirements (BEN) - requirements that can be used to evaluate the
quality of driving

5



6 CHAPTER 2. REQUIREMENTS OF THE AUTONOMOUS DRIVING SYSTEM

If not explicitly mentioned, the requirements relate to the physical and the virtual test
environment as explained in 1.2.
ID Description
GEN-SNX-1 The autonomous car WILL drive with the same behavior in physical

and virtual simulations.
GEN-SNX-2 The autonomous car MUST be able to be controlled by a remote con-

troller.
GEN-SNX-3 The remote control MUST be able to enable autonomous driving.
GEN-SNX-4 The remote control MUST be able to disable autonomous driving.
GEN-SNX-5 The remote control SHOULD be able to delegate a turning intention

without street signs.
GEN-SNX-6 The remote control MUST overwrite the autonomously generated steer-

ing commands and disable the autonomous driving mode.
GEN-SNX-7 The remote control MUST overwrite the autonomously generated accel-

eration and deceleration commands and disable the autonomous driving
mode.

GEN-SNX-8 The remote control MUST be able to trigger the emergency brake mode.
GEN-SNX-9 The remote control SHOULD be able to disable the emergency brake

mode.
GEN-SNX-10 When decelerating the autonomous car MUST enable its brake lights.
GEN-SNX-11 When turning left the autonomous car MUST enable its turn signal for

left turning intention.
GEN-SNX-12 When turning right the autonomous car MUST enable its turn signal

for right turning intention.
GEN-SNX-13 When driving, the car MUST drive with at least 0.4 m/s.

ID Description
GEN-SEM-1 The autonomous car MUST be able to recognize drivable and non-

drivable parts of the floor on straight streets.
GEN-SEM-2 The autonomous car MUST be able to recognize drivable and non-

drivable parts of the floor on bendings.
GEN-SEM-3 The autonomous car MUST be able to recognize drivable and non-

drivable parts of the floor on intersections.
GEN-SEM-4 The autonomous car SHOULD detect obstacles as non-drivable area.
GEN-SEM-5 The autonomous car MUST be able to recognize signs indicating left

turning intention.
GEN-SEM-6 The autonomous car MUST be able to recognize signs indicating right

turning intention.
GEN-SEM-7 The autonomous car MUST be able to recognize signs indicating stop-

ping intention.



2.1. GENERAL REQUIREMENTS 7

ID Description
GEN-IMT-1 The image tagging tool MUST be able to use images that were shot in

real life.
GEN-IMT-2 The image tagging tool MUST be able to use images that were shot in

VTD.
GEN-IMT-3 The image tagging tool MUST be able to export annotations as XML

file.
GEN-IMT-4 The image tagging tool MUST allow team work on more than one image.

ID Description
GEN-CON-1 The autonomous car MUST be able to steer autonomously.
GEN-CON-2 The autonomous car MUST be able to accelerate and decelerate au-

tonomously.
GEN-CON-3 When driving on an X-intersection the autonomous car MUST be able

to head straight.
GEN-CON-4 When driving on an X-intersection in the autonomous car MUST be

able to turn left.
GEN-CON-5 When driving on an X-intersection the autonomous car MUST be able

to turn right.
GEN-CON-6 When driving on an T-intersection the autonomous car MUST be able

to head straight.
GEN-CON-7 When driving on an T-intersection the autonomous car MUST be able

to turn left.
GEN-CON-8 When driving on an T-intersection the autonomous car MUST be able

to turn right.
GEN-CON-9 After recognizing street signs indicating left turning intention within 3

seconds prior an intersection the autonomous car MUST turn left.
GEN-CON-10 After recognizing street signs indicating right turning intention within

3 seconds prior an intersection the autonomous car MUST turn right.
GEN-CON-11 After recognizing street signs indicating stopping intention the au-

tonomous car MUST stop before passing the stop sign.
GEN-CON-12 When no street sign was detected within 3 seconds prior an intersection

the autonomous car WILL head straight.
GEN-CON-13 The autonomous car SHOULD be able to avoid obstacles by driving

around them.
GEN-CON-14 When driving on an intersection the autonomous car SHOULD reduce

its speed.



8 CHAPTER 2. REQUIREMENTS OF THE AUTONOMOUS DRIVING SYSTEM

ID Description
GEN-VIS-1 The autonomous car MUST be able to display relevant information to

the user by an attached monitor or using screen streaming over Wifi.
GEN-VIS-2 The autonomous car MUST display recognized drivable parts of the

floor as drivable area to a user by an attached monitor or using screen
streaming over Wifi.

GEN-VIS-3 The autonomous car MUST overlay drivable area over the real recog-
nized camera image.

GEN-VIS-4 The autonomous car MUST generate a birds eye view as abstract world
model containing the recognized drivable area.

GEN-VIS-5 The autonomous car MUST generate a birds eye view as abstract world
model containing its controllers calculation basis.

GEN-VIS-6 The autonomous car MUST be able to show the bird’s eye view.
ID Description
GEN-BEN-1 When driving on a straight street the autonomous car MUST not leave

drivable areas for more than 1 second at a time.
GEN-BEN-2 When driving on a straight street the autonomous car SHOULD not

leave the right lane for more than 2 seconds at a time.
GEN-BEN-3 When driving on a non-straight street the autonomous car MUST not

leave drivable areas for more than 3 seconds at a time.
GEN-BEN-4 When driving on a non-straight street the autonomous car SHOULD

not leave the right lane for more than 3 seconds at a time.
GEN-BEN-5 When driving on a straight street the autonomous car MUST drive at

least 0,4 m/s.



2.2. SAFETY REQUIREMENTS 9

2.2 Safety Requirements

Safety is one of the most important issues when developing an autonomous driving system.
Therefore, requirements concerning the safety of the system are stated in this section.
ID Description
SAF-1 The autonomous car MUST NOT hit static obstacles on the street.
SAF-2 The autonomous steering functions MUST be overwritable by user input.
SAF-3 The autonomous acceleration functions MUST be overwritable by user

input.
SAF-4 The autonomous car MUST offer an emergency stop function to stop

the vehicle by user input.
SAF-5 When in emergency brake mode the autonomous car MUST get to zero

speed within under one second.
SAF-6 When closer than 100mm to an obstacle the emergency brake MUST

have triggered the emergency brake mode.



10 CHAPTER 2. REQUIREMENTS OF THE AUTONOMOUS DRIVING SYSTEM



Chapter 3

Simulation and Execution

The project group’s experiments in autonomous driving were fundamentally split into
working with two different environments. The real world, in which a physical car is
supposed to drive autonomously in an environment that has to be physically adapted to
individual driving scenarios, and the simulated world, in which a simulated car drives
autonomously in an environment of which many more aspects (such as weather, traffic or
entire cities) can be controlled. The role of the simulation is to provide a test ground for
the implemented algorithms. So, it is possible to fail, and iterate quickly, without any
damage that might be caused when using a real car for the tests. However, in the end,
all of the algorithms must work with the physical hardware of the real car in a real-world
environment with all its irregularities, intricacies and challenges.

In this chapter, the software and hardware the project group’s software is built upon is
examined. Also the interaction between these components and how it helps to achieve
the main goals of the project group are explained. First, the development car that will
eventually be used to test the algorithms in a physical test environment is introduced.
Next, the framework that allows to execute code on the car is presented: ADTF. Then,
the simulation aspect of the project is presented. After explaining the general makeup of a
simulation scene, the core aspects of VTD, the software used to simulate all of the virtual
testing environment and the virtual car, are illustrated. Followed by the explanation how
the physical and the virtual cars are connected to the control code in ADTF. Afterwards,
it is explained how the physical car is modeled in the simulation environment, and details
about the encountered difficulties are elaborated. It concludes with the information on
test routes used and how training- and test data for the lane detection task were generated
from the simulation.

11



12 CHAPTER 3. SIMULATION AND EXECUTION

Figure 3.1: 1:8 Model car used in this group project car .

3.1 Model Car

To be able to face real world problems there is a model car. It enables to test the au-
tonomous driving capabilities in a complex and non-ideal environment. Additionally it
represents what an autonomous car is doing in this project.

The given model car is equipped with numerous sensors A.2.1, cameras and a general
purpose PC 3.1.1 on board to make it suitable for autonomous operation. In addition to
the usual RC car features (steering, acceleration, and braking), it has all the lights and
signals that are necessary for real life traffic. It is electrically powered and can operate up
to two hours without charging.

The car is equipped with different types of sensors to allow differentiated environment
perception: There are 10 ultrasonic sensors to continuously measure the distance of objects
they are pointed towards. Wheel encoders detect the rotation speed of the back wheels
and therefore wheel speed can be calculated using the diameter of the back wheels. The
car has two voltmeters for monitoring its batteries output voltage. The front and back
cameras give a wide angle view of the surrounding. A detailed description of the sensors
used and the ones installed but unused can be found in the appendix A. To get an overview
of the available hardware infrastructure various components are introduced in this chapter.
This clarifies, how the car is capable of real-time environment perception and maneuver
planning. The individual hardware components are connected can be reviewed in figure
3.2.



3.1. MODEL CAR 13

3.1.1 PC

The core of the car’s infrastructure is its general purpose (desktop-like) PC. There is a
128GB SSD, 8GB DDR4 RAM and an Intel i3 processor with 2 cores at 3.2GHz. Wifi
and Bluetooth are integer part of the mainboard.
The mainboard is a GIGABYTE GA-Z170N-WIFI in the miniITX configuration (space
related reasons). It provides the base for the system exactly like in any normal PC. The
cameras are directly connected with USB 3.0. Further, a USB hub with its Arduinos is
connected to the mainboard. Mouse, keyboard and display can be connected to work
directly on the installed XUbuntu (16.04.2 LTS).
The graphics processing is achieved through the NVIDIA GeForce GTX 1050Ti (connected
to the PCIe slot on the mainboard). It is equipped with 4GB GDDR5 memory and clocks
in at 1290MHz. This makes it capable to host the neuronal network for segmentation and
to process a picture 480 x 360 four times a second. For information about the network see
chapter 5.3.
The CPU’s workload is generally over-dimensioned for solely driving with ADTF, yet is
nearly fully occupied with both driving and visualization of all relevant sensor data. More
computing power would have increased certainty throughout the development process.
The direct handling is conducted by the five connected Arduinos (which can be seen in
figure 3.2) rather than the CPU itself.

3.1.2 Arduinos

Arduino is a family of microcontroller boards. They are versatile and small, therefore
often used for fast and easy prototyping. The Arduino Micro has 20 digital I/O pins,
seven of which can be used for PWM1, clock speed is at 16MHz and the flash memory is
32KB.
The car has five Arduino Micros fitted making communication with the sensors and actua-
tors easier, faster and overall more convenient. Communication between PC and Arduinos
works via USB, the Arduino boards themselves sit on Printed Circuit Boards (PCBs) (see
3.1.3), where their in- and output pins are connected through the circuit boards with the
sensors, lights and actuators. All of them are programmed for their specific task by the
manufacturer and ready for us to use with ADTF.
There is one Arduino handling the five ultrasonic (US) sensors in the front bumper of the
car and another one manages the rest in the rear bumper and the sides. They trigger the
sensor’s measurements and calculate the distance, so that the Arduino Communication
Filter (see 3.2.2) can return this value into ADTF.
One Arduino is used as a handler for the position and motion tracking sensor. Again the
desired values can be received directly from the Arduino Communication Filter.

1Pulse-width modulation - varying a boolean signal at a high frequency to get virtually a intermediate
value



14 CHAPTER 3. SIMULATION AND EXECUTION

Figure 3.2: Overview of hardware architecture of the model car. The main elements are the
mainboard with the connected Arduinos and sensors. As they need a bigger bandwidth, the
cameras are directly connected to the PC. The printed circuit boards (PCB) provide an organized
connection between the Arduinos and the respective hardware. bff

The actuators and lights are controlled with yet another Arduino, this makes accessing
speeds, steering angles and lights very easy to the programmer. Desired values are sent
directly to the Arduino Communication Filter. The final Arduino is used to control the
battery (power balancing, monitoring the voltage).
To provide a fixed connection between Arduinos and sensors, car control etc. there are
three printed circuit boards.

3.1.3 Printed Circuit Boards

The front and back PCBs are simple connection circuits between Arduinos and sensors.
They provide a socket for the Arduino Micros and enable the ultrasonic sensors to be



3.1. MODEL CAR 15

plugged in. The position and motion tracking sensor is placed directly on the rear PCB
and connected via conductive paths.
The center PCB is far more complex: It houses the units for checking the batteries and
the one for actuator-/ light control, fuses for ATX power supply and motor current, here
the user also switches between autonomous- and RC mode. At this board the lights,
RC receiver, speed controller, batteries, the respective balancers and the external power
supply are connected. The potentiometers on it are to fine tune the initial position of the
steering servo and the idle torque of the motor.
The chassis is connected at the center PCB, to operate the lights.

3.1.4 Lights

The car’s body contains indicators, headlights, rear lights, brake lights and reverse lights.
They are controlled by a small circuit board embedded in the bodywork. This board is to
be connected to the center PCB via RJ45.
Indicator- and brake lights are operated according to the car’s maneuvers, as specified in
GEN-SNX-11.

3.1.5 Handling Noisy Ultrasonic Signals

Test measurements revealed that the ultrasonic signals of the front sensors contained a lot
of noise. The setup consisted of a cardboard box being positioned at different distances
in front of the car. While the front center sensor reported a signal of expected shape, the
more angled sensors recorded signals that were very noisy.
Analyzing the signal graphs, three types of noise were identified. The first type of noise
consists of singular blips that strongly differ from the trend of the surrounding signal
points (see Figure 3.3). These were easily smoothed by implementing a moving average
approach, replacing the current signal value by the unweighted mean of the last k signal
values. Testing approved k = 5 to be able to correct such jumps. Higher values resulted
in smoothing out the signal too much, thereby risking to recognize trend changes too late.
Lower values sometimes where not able to average out the noise enough. For simplicity
the emergency brake application was connected and its stopping capability observed. This
is adequate, as the ultrasonic values are mainly used for this task.
The second type of noise consists of maximum/minimum values. The sensors report a value
of -1 in case of errors, and 400 to report that there is no object within reach. While this
is generally a desirable behavior, it causes problems when the correct signal is surrounded
by these values (see Figure 3.4). Especially when using the moving average approach
outlined above, this noise would strongly distort the true signal values. Therefore the
moving average approach is modified in the following way: When computing the moving
average over the last k frames, only those values that lie within the interval of [0, 399] are
used. If no valid signals are left in that window, -1 is returned as the correct error value.



16 CHAPTER 3. SIMULATION AND EXECUTION

Figure 3.3: Type 1 noise in the ultrasonic sensors: Singular values that differ from the longtime
trend. An object was placed at 1600mm and moved to 2200mm during the test.

Figure 3.4: Type 2 noise in the ultrasonic sensors: Extreme values indicating error states. -
1 indicates an error, 400 indicates that no obstacle was detected. An object was stationary at
3000mm away from the sensor during the test.



3.2. ADTF 17

Figure 3.5: Type 3 noise in the ultrasonic sensors: Several contiguous values that differ from the
longtime trend. An object was placed at 20mm in front of the sensor and pulled back to be placed
at 3000mm.

The third type of noise in the ultrasonic sensors is a prolonged version of the first type.
While it is easy to smooth out singular wrong values in the signal, this does not work
anymore when it randomly fluctuates over a prolonged period of time (see Figure 3.5).
Smoothing these random signals just results in other random values. Detecting this kind
of noise is not trivial, since it requires separating which trend in the data represents the
real world, and which one is fluctuation. This is especially hard, since the noise does not
seem to follow any specific patterns, unlike in the first two cases.
As the outliers where exclusively higher than the correct values, the approach was to
widen the window of the mentioned moving average. The resulting value is now equal
or higher than the real distance. So if for example the measured distance is 500mm, the
using routine (for example the emergency brake) can expect the real distance to be much
less and therefore react (much) earlier. (This is precisely, what the safety factor is doing
in the emergency brake, see 4.2.2.) To find the appropriate window size and what “early”
reaction means, again the practical stopping capabilities were consulted.

To be able to control aspects like triggering the sensors via the Arduinos, a framework
is used. ADTF is a platform for (particularly, but not exclusively) controlling the car’s
actuators and sensors. It provides diagnostic tools and serves as a testing suite.

3.2 ADTF

Lately, the number of autonomous cars and cars with an advanced driver-assistance system
(ADAS) have significantly increased. To be able to assist the driver or to control the car
as a whole, the system needs to have access to actuators and the drive train. To make



18 CHAPTER 3. SIMULATION AND EXECUTION

decisions about manipulating the car’s state by executing driving maneuvers, systems need
authoritative data about the current environment. Therefore these cars are equipped with
numerous sensors. It is vital to receive their information within a reasonable time.
To solve this task not only quickly, but also reliably and therefore safely, the industry uses
excessively tested frameworks. One of them is the Automotive Data and Time Triggered
Framework (ADTF). This is also the framework used in this project to deal with the car’s
(see section 3.1) sensors and actuators. Made by a large car manufacturer for internal
purposes it was later made accessible to other industry competitors.The main strategy
behind this decision was to make the general development of autonomous driving systems
faster and to facilitate interchanging and already implemented components. Having a
standardized structure for components means the safety of components can be verified
more efficiently and more independent because of easy exchangeability. Today ADTF is
licensed by the company Elektrobit and is available for Linux and Windows. It is used by
big automotive companies, both car manufacturers and component suppliers.

3.2.1 Basics

Functionality in ADTF is achieved by connecting so-called filters: A filter is a component
that can examine and/or manipulate data. It might receive input data or might send
output data (both optional). The transfer of data is achieved via the filters’ pins (dedicated
input- or output pins). They send simple or complex data types like numbers or pictures.
For a detailed explanation of the inner functionality of a filter see section 3.2.2.
The central element of ADTF is the ADTF configuration. It describes which filters will
be executed and how the data flow between them is configured. The configuration can
be represented in XML to make it easily interchangeable among developers. It can also
be saved in binary format to protect knowledge of implementation details and prevent
customers from making changes.
To manipulate the configuration ADTF comes with a what-you-see-is-what-you-get- in-
terface: the programmer can drag-and-drop filters into the configuration, change their
properties, create connections between pins and has a visual feedback of what the data
and control flow looks like. This component of ADTF is called the ADTF Development
Environment and is used for setting up the configuration. The other major component
of ADTF is ADTF Runtime, which enables the developer to execute the configuration in
question. Here, the developer can observe camera streams, sensor values, and filter activ-
ity. ADTF Runtime can also be started via console. This is helpful when the configuration
is finished and can operate autonomously without a GUI.

3.2.2 Filters

Filters are data processing elements, which need at least one input or output pin. Other-
wise, they could not be part of the filtergraph and therefore of the configuration. Their



3.2. ADTF 19

Figure 3.6: Filtergraph with two filters. The video output pin of the HarddiskPlayer is connected
to the input pin of the Video display.

Figure 3.7: Example of the ADTF gui. In green: The filtergraph editor; in
blue: Component tree (all available components); in yellow: Control panel. Source:
https://www.youtube.com/watch?v=6qALb70FQ10



20 CHAPTER 3. SIMULATION AND EXECUTION

tasks range from communication with devices like cameras and actuators, writing to/read-
ing from hard disk, and exchanging data over the network for handling and converting
application related data (steering information, sensor data, etc.).
Communication between filters is dealt with by so-called pins. Pins are constructs to
transmit data from a sending filter, creating a pin-event on the side of the receiving
filter. This has the advantage of being able to react only to specific events on a pin.
Events can differ between the pin the event came from and the transmitted data the
receiving filter can take the programmed action.
While the implementation of a filter cannot be changed in ADTF, the filter can be cus-
tomized by the user via properties. Should the application need multiple filters of the
same kind (i.e. TCP network filters), the user can set different properties for different
filters (i.e. different ports or network addresses). The user uses the ADTF GUI to set the
properties directly for the displayed filters. The current values of the properties are also
saved in the configuration file (XML or binary).

3.2.3 Services

ADTF has two categories of services: system services like the console output or the con-
trol of the Runtime, and GUI services like the configuration editor and the component
tree. GUI services enhance the capabilities of the Development Environment with new
functionality. Such a service could be an oscilloscope, a different view of the filtergraph
or any other kind of development aid.

3.2.4 Implementation of Filters

A filter itself is a C++ class with a corresponding header. By extending the cFilter-class,
each filter can be initialized, updated and equipped with pins in the (ADTF-) framework.
ADTF uses CMake to manage dependencies, so if necessary, there should be a CMakeList
file in addition to the header and class.
The header includes the specification of the filter’s name, category, and declarations of
methods and attributes, including any pins. The name of the filter does not have to be
the class name. It should be descriptive and recognizable to the developer working on the
filtergraph. The filter’s category is there to make the list of components more clear and
make it a component tree. Hereby the ADTF user not only finds the filter more easily but
also has a better idea of what the filter is supposed to do. Examples of filter categories
are DataFilters, LoggingFilters, CameraAdapters and so on.
Every filter goes through a life cycle, which is broken up into stages. By accessing the
eStage object in the filter its current state can be checked. The life cycle consists of
three stages: StageFirst, StageNormal, and StageGraphReady. With the methods init
and shutdown the filter transitions into and out of a stage. As the name suggests the
first stage is StageFirst. Here, static pins are initialized and assigned their data types. In



3.3. CONSTRUCTING A SIMULATION SCENE 21

StageNormal the properties are checked and embedded into the filter. Also, dynamic pins
are registered if any are being used. StageGraphReady indicates to the programmer that
the filter is ready to use, the pins are initialized and will transmit or receive data.
When data is received, the method onPinEvent() is automatically called. Here the de-
veloper is able to react to specific data and data sources (i.e. different pins), by calling
specific methods or running adequate code.
As for data types, ADTF uses a System, where common data types are wrapped in Me-
diatypes, which always contain some load data and a time stamp. This makes it easy
for each Mediasample to get its initial date of transmission in addition to the usual data.
ADTF allows the developer to use its standard types for video streams, numeric data,
etc., and also to create own Mediatypes as required. If a data type is needed that contains
just the front center ultrasonic sensor value and the current wheel speed, it can be created
and used in filters.

3.3 Constructing a Simulation Scene

To let a car drive autonomously in a virtually simulated environment, the simulated scene
can be divided into the following three different layers: First it is necessary to describe
the surface of the road that the car is going to drive on. Having defined a single road,
multiple roads need to be connected to a network of roads to drive on, possibly including
obstacles and other static objects. Lastly, dynamic behavior happening on the road can
be added, mostly to test how other road users behave and how they interact with and
react to each other.
Since this is a rather universal approach to constructing simulation scenes in the automo-
tive field, VIRES Simulationstechnologie GmbH has started three corresponding projects
to define open data types for the scene layers. They would facilitate interoperability and
make it possible to easily switch between different simulation environments, without trans-
forming the descriptions and data each time. However, at the point of writing this, the
format describing the dynamic behavior (OpenScenario) is still in development.
In the following subsections each of the three projects will be introduced.

3.3.1 OpenCRG - The Road Surface

OpenCRGope [a] is a project that aims to define a set of open file types for the description
of road surfaces. Additionally, they provide tools to interact with the respective data and
files in MATLAB and ANSI-C. The format originated in the CRG file format used by
Daimler, which directly implies the practical relevance of it.
CRG is an acronym for ’curved regular grid’, which is the method with which data about
the road surface is recorded. A curved grid is superimposed on the represented road and
for each crossing point on the grid the values of interest can be recorded. The recorded
data typically pertains to the elevation and friction coefficients of the road. However, the



22 CHAPTER 3. SIMULATION AND EXECUTION

<OpenDRIVE>
<header revMajor="1" revMinor="1" name="" version="1.00" date="Thu Dec 10 10:35:57 2009"

north="0.0000000000000000e+00" south="0.0000000000000000e+00" east="0.0000000000000000e+00"
west="0.0000000000000000e+00" maxRoad="517" maxJunc="2" maxPrg="0">

</header>
<road name="" length="1.6517824248160636e+01" id="500" junction="2">

<link>
<predecessor elementType="road" elementId="502" contactPoint="start"/>
<successor elementType="road" elementId="514" contactPoint="start"/>

</link>
<type s="0.0000000000000000e+00" type="town"/>

<planView>
<geometry s="0.0000000000000000e+00" x="-7.0710678117841717e+00"
y="7.0710678119660715e+00" hdg="5.4977871437752235e+00" length="4.8660000002386400e-01">
<line/>

</geometry>
<geometry s="4.8660000002386400e-01" x="-6.7269896520425938e+00"
y="6.7269896522231525e+00" hdg="5.4977871437736381e+00" length="3.1746031746031744e+00">
<spiral curvStart="-0.0000000000000000e+00" curvEnd="-1.2698412698412698e-01"/>

</geometry>

Figure 3.8: Excerpt from OpenDrive file. Source: ope [b]

definition of the file type allows any scalar data to be recorded at each reference point
on the grid. Several different file types exist, both binary and in human-readable ASCII
format, although all of them contain a human-readable header portion, describing the data
contained.

3.3.2 OpenDrive - Networks of Roads

Having described the road surface of a single road, the combination of several roads to
a network is necessary. The OpenDrive project defines a file format to do just that.
According to the project page "it is considered a de-facto standard in the simulation
industry" (ope [b]), being used by Audi, Daimler and BMW, among others.
OpenDrive is a hierarchical XML-format with a wide variety of features. While the prop-
erties of the road surface can simply be described by including OpenCRG files, the XML-
format can be used to describe all the other static elements of the simulation scene. This
includes the logical features of the network, like which streets and lanes are connected, and
by which type of intersection. It also allows for semantical features, for example whether
the simulated road is representing a road within a town or on a highway. Furthermore
street signs can be added, as well as signals and interdependencies between them. Lastly,
it is also possible to add static objects, like houses next to the road, obstacles on the street
or trees on the green belt between two lanes.
Figure 3.8 shows an excerpt of an OpenDrive file to illustrate the file format.

3.3.3 OpenScenario - Dynamic Behavior

After defining the static components of a simulation scene with the OpenCRG and Open-
Drive file, any dynamic behaviors that should occur in the scene can be defined. This



3.3. CONSTRUCTING A SIMULATION SCENE 23

Figure 3.9: Structure of an OpenScenario file. Source: ope [c]

mainly includes describing the behavior of different drivers. For example one driver might
keep driving a steady pace, while another accelerates until they come too close to another
car, and then starts an overtake maneuver. While such definitions seem simple at first, the
complexity increases significantly if the behavior of several drivers is combined. With a
growing number of such drivers in a simulation it becomes harder more difficult to predict
the exact behavior emerging from the interactions of those rules.

OpenScenario aims to capture these different behaviors in XML-formatted data types.
However, the format is still in the early stages of its development. The current state of
the project is that a formal definition of the structure of the XML files exists in the form
of XML schema files. The stated goal for the end of 2017 includes a style guide and a tool
to validate OpenScenario documents. However, this goal seems to have not been met yet.

Figure 3.9 outlines the exemplary structure of an OpenScenario file. After two seconds,
the driver accelerates for ten seconds. Then they stop accelerating and rotate the steering
wheel by applying a specified torque to it.

3.3.4 Assembling the Scene

The interaction of the different file formats to create the simulation scene is shown in
figure 3.10. The OpenScenario file describes the whole scene from a logical perspective.
Additional files referenced in this file are then used to infer the physical features of the
simulated objects. From this, the data received from the sensors (e.g. simple cameras
or ultrasound sensors) can be simulated, as well as the visualization for the users of the
simulation software. Using this information, the systems that are supposed to be tested
via the simulation (e.g. autonomous driving systems) can make decisions which are then
evaluated.



24 CHAPTER 3. SIMULATION AND EXECUTION

Figure 3.10: Integration of the different file formats in the creation of the simulation scene.
Source: vir

3.4 Virtual Test Drive (VTD)

Virtual Test Drive (VTD) is a simulation software used in the automotive industry, devel-
oped by VIRES Simulationstechnologie GmbH (from hereon referred to only as VIRES).
It "is a complete tool-chain for driving simulation applications." (vir) The software offers a
wide range of modular components for different tasks involved in automotive simulations.
While it can also be used for aerospace and railroad simulations. This will not be discussed
any further, since the main focus of the project is on autonomous driving cars.

Since VIRES is also the driving force behind the previously mentioned open file formats
OpenCRG, OpenDrive and OpenScenario, the software modules included in VTD align
well with the separation that the file formats follow. It is assumed that roads in the form
of OpenCRG files are present, while the data represented in OpenDrive and OpenScenario
files can be actively manipulated in VTD. In the following sections the different modules
included in VTD will be introduced.

3.4.1 Road Designer (ROD)

The Road Designer (ROD) enables the definition of single streets, in the OpenCRG format,
as well as assembling whole networks of roads. The system works similar to an assembly
kit. It is possible to choose different building blocks of OpenCRG-roads from the library
and combine them into one road, saved in an OpenDrive file. Figure 3.12 illustrates this
principle, while figure 3.11 shows what the software interface for the road designer looks
like.



3.4. VIRTUAL TEST DRIVE (VTD) 25

Figure 3.11: Road Designer working principle. Several roads represented as OpenCRG files are
combined into a single network of roads and saved in an OpenDrive file. Source: vir

Figure 3.12: Road Designer interface. Source: vir

3.4.2 Scenario Editor: v-Scenario & v-Traffic

The scenario editor v-Scenario is the core component of the whole VTD toolkit. As the
name suggests, it is used to implement the data represented by the OpenScenario file
format. It is both an offline editor to manipulate the scenario, as well as a monitoring tool
during the running simulation. v-Traffic is the name of the engine module that actually
runs the simulation in the background. The user interface of the v-Scenario editor can be
seen in figure 3.13.



26 CHAPTER 3. SIMULATION AND EXECUTION

Figure 3.13: User interface of the v-Scenario editor, which allows the manipulation of the dynamic
contents of a scene. Source: vir

Dynamical Scene Elements

As indicated in the introduction of the file formats, v-Scenario works based on a OpenDrive
data file that defines all the static components of the simulation scene, and adds dynamical
elements on top of it. Typical elements that can be added are the following:

• vehicles

• pedestrians

• control programs for traffic signals

• triggers and resulting actions

It is also possible to add static objects like obstacles or way-side objects. While this does
break the strict separation indicated in the data type section, it makes sense to include
this in the scenario editor for a better user experience.

Controlling Vehicles

Vehicles can be controlled in the following ways:

• autonomously

• controlled by actions

• controlled externally during the simulation

• combinations of the above

The software offers several different types of autonomous drivers already. Additionally,
they can be set to simply follow a lane or a given path. Pedestrians are simulated by an
external 3rd party software. They can either follow given paths or perform different tasks
like switching between running and walking or perform gestures.



3.4. VIRTUAL TEST DRIVE (VTD) 27

Vehicle Actions

The most important actions that can be performed by vehicles are the following:

• speed change

• lane change

• switching to autonomous driving

Additionally, it is possible to perform general simulation actions, like stopping the simu-
lation or changing the weather.

Trigger Conditions

Actions are started when certain trigger conditions are met. The following conditions can
be used to define triggers:

• absolute position (on the whole map, or on the road)

• relative position (spacial distance or time until collision)

• time based (e.g. 10 seconds after the start of the simulation)

• external trigger (e.g. by user during the live simulation)

As mentioned when discussing OpenScenario, these trigger-action-driven behaviors seem
simple, but the complexity emerges when several vehicles with their own behaviors interact.

3.4.3 Image Generator: v-IG

v-IG is the image generator module. It is responsible for generating both the video stream
for the visualization of the scene to the user, as well as all the sensors that the simulated
car might have, for example simple optical cameras, or even infrared sensors.
Notable weather features that the image generator is able to handle include the following:

• precipitation by particles (rain, snow)

• impaired visibility by fog

• continuous time-of-day

• real-time shadows

• sun glare

• reflective road surfaces, based on humidity and clouds

• reflective traffic signs



28 CHAPTER 3. SIMULATION AND EXECUTION

Figure 3.14: Sample images from VTD simulations, illustrating different capabilities of the v-IG
module. Source: vir

• additional light sources (street lamps etc.)

A few sample images illustrating the different aspects of v-IG’s capabilities are shown in
Figure 3.14.

3.4.4 External Communication: RDB

VTD is able to send simulation data to (and receive instructions from) ADTF during
the simulation. For this a TCP connection between the two can be opened and can then
receive simulated camera images, positions, speed, acceleration of vehicles, or sensor data
in ADTF. Since the image generator and each ultrasonic sensor uses their own ports several
TCP connections are opened to receive all of the relevant data.
The format of the data being transmitted is VTD’s own RDB (Runtime Data Bus) for-
mat. Here the focus is on the important aspects of the format, the full detail can be
reviewed in the corresponding documentation and definition files. Each message contains
a header RDB_MSG_HDR_t, indicating the size of the message etc. Following this is a list of
variable size, consisting of entry headers RDB_MSG_ENTRY_HDR_t. Each of those introduces
a corresponding list of same-type entries that hold the actual data. The type of those
entries is indicated by their package id. For example, to retrieve images contained in RDB
entries, one can filter for pkgId == RDB_PKG_ID_IMAGE. The image is then included in
the message as binary data in an RDB format, the name of which is also indicated in the
RDB_MSG_ENTRY_HDR_t by an enum type. Unfortunately this format does not necessarily
correspond directly to ADTF data types. Additionally, it is necessary to manually com-



3.5. PROVIDING A UNIFIED INTERFACE TO THE SIMULATION AND CAR DATA29

pute the address and length of the payload data, like the image, based on the data given
in the header.

RDB_MSG_HDR_t
RDB_MSG_ENTRY_HDR_t (pkgId = TypeA)

entryOfTypeA
entryOfTypeA
entryOfTypeA

RDB_MSG_ENTRY_HDR_t (pkgId = TypeB)
entryOfTypeB

RDB_MSG_ENTRY_HDR_t (pkgId = TypeC)
entryOfTypeC
entryOfTypeC

Figure 3.15: Example structure of an RDB message. Source: VTD documentation

3.5 Providing a Unified Interface to the Simulation and Car
Data

During the project two distinct environments are used: The simulation in VTD with
a simulated car, and the real world with a physical car. It is likely that there will be
differences in terms of parameters, e.g. in the controllers and the interpretation of images.
However, it is preferable to provide a unified interface to the components processing the
data. This way only specific parameters have to be adjusted for the two environments,
instead of changing whole parts of the pipeline.
Since the goal is to achieve the best possible performance in the physical world, the
simulation data is preferred to be transformed to fit the format of the car data. The data
received from the car is not altered and the group’s models and computations operate
on the information-rich raw data instead. The group assumes that this will improve the
performance, since the training and testing data are as close as possible to the setting
experienced in the target environment.

3.5.1 Recreating the Car in VTD

In order to prepare the transition from working on the simulation in VTD to the model
car from AADC it is necessary to recreate the car described in chapter 3.1 in VTD as
accurately as possible. In order to do that a custom car in the scenario editor of VTD can
be created, which is assigned the appropriate vehicle dynamics, camera types and camera
positions of the model car, described in the following subsections.

3.5.2 Vehicle Dynamics

In VTD a car is defined by a number of parameters shown in figure 3.16 as well as boolean
values for lights and 3D points for mirrors and eyepoints. During the recreation of the
used model car there were no accurate descriptions of the actual AADC car. Since it



30 CHAPTER 3. SIMULATION AND EXECUTION

Figure 3.16: Example of the vehicle definitions of a car in the scenario editor of VTD including
the vehicle dynamics and eye points, which is used as main camera position. Other optional
properties include light sources, mirror positions and various boolean indicators (not used by the
VTD car replica)



3.6. COMPLICATIONS AND DIFFERENCES 31

is supposed to be a model car for the Audi Q2, the vehicle dynamics of that car were
researched and entered into VTD.
For the eyepoints the model car was measured to figure out where the main camera is
located in relation to the reference point, which in VTD lays centered in the back axle.
In the real world the eyepoint is 29.5 cm to the front and 21.5 cm higher compared to
the reference point. To transform it to real world specifications the distances were scaled,
assuming an accurate 1:8 scale of the AADC car. Those coordinates are used in VTD as
the driver spot, which will later be used as the main eyepoint.
The other properties namely light sources, mirrors and switches are irrelevant for the
driving properties and were largely ignored. The values for those properties seen in figure
3.16 are copied from the VTD preexisting Audi Q5 2008 representation, which was used to
create an initial design. The VTD user interface of the scenario editor does not support all
the options mentioned above, so some of the options like the 3D points had to be manually
set in the according xml files.

3.5.3 Cameras and Sensors

VTD is able to create depth images of the same point of view as the RGB image, which
is also (approximately) an ability of the model car’s cameras. The depth camera and
Basler camera are almost in the same position, so setting up an additional eyepoint for the
depth camera was not necessary, since using the main eyepoint already provides acceptable
results.
For now only the five front ultrasonic sensors were set up in VTD. Following the same
procedure as setting up the camera position, the distance of the ultrasonic sensors from
the vehicle’s reference point as well as their angles were measured, scaled to real world
dimensions and entered into the simulation environment. VTD has its own section for
sensors, where the perfect single ray sensors can be used to emulate the ultrasonic sensors.
Those sensors return a value describing the distance of an object to the car measured with
a single ray and can return it within an RDB package on a separate port for each sensor.
Of course the accuracy of the real ultrasonic sensors are nowhere near the accuracy of those
perfect sensors. Therefore working with the real data is harder than with the simulation
data. Only the center ultrasonic-sensor was used for tests of the emergency brake.

3.6 Complications and Differences

The replication of the AADC car in VTD did not work exactly as desired. Due to short-
comings of documentation of the simulation software it took a while to properly set up
the depth camera of the vehicle. A live stream of the RGB and depth image at the same
time would be necessary for real time calculations, which is also the default option of
VTD video streaming. However, streaming both image types slows down the simulation
time significantly so that real time tests are unusable slow. After contacting the VTD



32 CHAPTER 3. SIMULATION AND EXECUTION

development team they provided help setting up the streaming first to shared memory on
the VTD machine and then streaming that data to the image handling machine, which
required a few specific project settings and external tools. This method lead to an image
delay of about 10 seconds on the receiving machine, which makes this method unfeasible.
Thus settling with the still suboptimal former option to slow down the simulation speed
turned out to be the better choice. Later the streaming of the depth image was disabled
entirely, since it would only be used for obstacle avoidance as an optional goal in the
future.
In addition to the camera issues, the simulated car might have considerable differences to
the real car as the actual vehicle dynamics of the AADC car were unavailable. VTD does
not have any way of setting the engine type to an electric one, so in order to simulate the
driving properties of the real model car the maximum possible acceleration and decelera-
tion should be used, following a tip by the developers on the Vires support board. Thus
for accurate control of the VTD car a different set of parameters than the ones used for
the AADC car have to be found and used.

3.7 Test Routes

Before using the implemented system in the physical world, it needs to be ensured that the
complete architecture is able to execute all the subtasks accurately and coherently in the
simulation. For this, tracks in VTD to drive on are necessary. While it is possible to use
premade tracks, those generally seem rather complex for simple test purposes. Therefore
custom routes have been created.

3.7.1 A First Test Route in VTD

In the beginning simple routes were needed to concentrate on the task of lane keeping.
After several iterations it was decided to perform the initial tests for lane detection and
steering control on a road that starts with a long straight route and then bends into a long
right curve (see Figure 3.17), so the group can test both the lane keeping on a straight road
as well as slowly turning the wheels in a curve to stay on track (requirement GEN-BEN-X
chapter 2.1).
This track already allowed testing the following important situations:

• Straight road

• Straight road with curve ahead

• Curved road

While these are not all situations (specifically crossings are missing here) it provided a very
simple testing environment. Observing the first tries of following the road and adjusting
parameters was used, to make sure that the basic elements of the system work.



3.7. TEST ROUTES 33

Figure 3.17: First simple track to test lane detection and steering control for lane keeping on.

3.7.2 Advanced Test Routes

To test more complex driving situations fitting test routes were necessary. Since the first
test route covered only detection and driving on a simple and barely curved road, other
test tracks needed to be created which were supposed to cover:

• Sharp curves

• Junctions

• Distractions next/on the road

For this reason, several more test routes were created in VTD. The first ones were simple
circuit courses with various big and small curves, but without junctions. The advanced
lane keeping algorithm, which used the output of the neural network (see Chapter 5.3),
could be evaluated and tested on these tracks. The two lanes of the road were enclosed
by grass and a few trees, thus the lane detection was kept quite simple, since it only needs
to filter out the greenery to find the road.
Other tracks later created varied from a big rural track to a small city circuit. These
tracks contained T- and X-junctions, as well as street signs on the sides of the road, to
prepare for the sign detection. Two of those tracks can be seen in Figure 3.18.
The town road was enclosed by various buildings and other city structures like phone
booths and bus stops. The road also occasionally was covered with pot holes, manhole
covers and crosswalks. Another created test route was a scaled replica of the physical test
route built from the tiles provided by AADC (see also Chapter 3.7.4). Training on this
route with black roads on the same black background turned out to be difficult, so it was
used less for tests in VTD. The problem later turned out to be less challenging in the real
world scenario with properly trained networks. An overview of all created test routes in
the simulation can be seen in Chapter A.3.



34 CHAPTER 3. SIMULATION AND EXECUTION

Figure 3.18: Overview over two advanced test routes as seen from the road designer. On the left
the circuit and on the right the simple town track

3.7.3 Generating Test Images for Segmentation

To be able to assess the quality of the lane detection algorithm in an offline setting, the
project group generated images from the VTD simulation.
VTD claims to be able to generate videos from the simulation. However, during testing
it became clear that it required a myriad of different video and image conversion libraries
to be installed, based on the errors printed by the video conversion script. After installing
about seven of those, partially outdated, this attempt was aborted.
Instead, the single images were used, which the program generates when setting the ’save
to file’ property of the project’s video parameters to true. This produced one 24bit 3-
channel RGB bitmap image per simulated frame.
After generating some test data with the simple track mentioned above, the more complex
routes were used to generate training data for the neural-network-based lane detection
approach (see Chapter 5.3). Some sample images generated this way can be seen in
Figure 3.19.
Since the network should be able to generalize well, more noise (details and object irrele-
vant to the street detection) and different situations were included in this set of images.
The more complex track used for this consisted of a route starting outside of town, going
through a tunnel, and running along streets with varying exteriors in a small town.
The noise in this scenario was introduced via the following scene variations:

• varying street marks (outside/inside town, in the tunnel)

• varying outer borders of the roads

• varying traffic and street signs

• guide rails outside of town, but not inside

• varying environment beside the road:



3.7. TEST ROUTES 35

Figure 3.19: Sample images of the complex test route used as training data for the neural-
network-based lane detection

– different houses

– bikes

– bus stop

– zebra crossing

– lamp posts

– trees

Furthermore the drive along the track was recorded five times, simulating different weather
conditions:

• no sky (replaced with a completely gray texture)

• blue sky

• cloudy

• overcast

• rainy

These images were then manually annotated and used to train a neural network for lane
detection (see Chapter 5.3), but later also automatically annotated using advanced features
of VTD.



36 CHAPTER 3. SIMULATION AND EXECUTION

Figure 3.20: Overview of the real test route build with floor mats

3.7.4 Physical Test Routes

For testing the car’s performance in a real physical environment there are floor mats with
lines printed on them. These mats are modular to allow great variety of road situations
and to lay out a course to the tester’s preference. Such a course can include sharp and
shallow curves, T-junctions, an X-junction, two S-curves and parking spots (both parallel
and orthogonal to the street).
To test the lane keeping on the real car, it was first driven on straights only. Later test
tracks also included curves to build a simple circuit, to see if the car could stay on track
after a few rounds on the circuit. For complex testing a large test course was built with all
different parts of the floor mats, to cover all possible scenarios of a road as seen in Figure
3.20. This route included following straight and non-straight roads, X- and T-intersections
and some parking spots next to the road. To include the sign recognition hand-crafted
sign posts were added to the physical test course at various places covering signs indicating
a left- and right turn, as well as a stop sign.
For traffic and static obstacles to react to there are four remote controlled Jeeps. They
can either stand in the way of the autonomous car, limit the range of motion in a parking
situation or can be driven by (conventional) radio remote control to simulate other traffic.
This way the behavior of the autonomous car in unexpected situations can be tested and



3.7. TEST ROUTES 37

it can be investigated how it might react to insecure drivers up to lunatics, how accident
prevention can be trained by the car and so on.



38 CHAPTER 3. SIMULATION AND EXECUTION



Chapter 4

Architectural Aspects

The development of an autonomous driving system requires some architectural decisions
concerning the system’s functionalities and their implementation.

The architecture of the system is a mixture of bottom-up and top-down design. Because of
the use of agile project management, a bottom-up draft is a reasonable choice. However,
some components concerning safety of the autonomous driving system had to be planned
in advance.

This chapter shows different views of the software architecture for a better understanding
of the different aspects of the project group’s work.

A description about the relevant aspects of the components of the system and about
ADTF, the framework used for the implementation of the system’s components, is given.
Later it is explained, how the implemented components interact with each other.

Further on, the architectural styles used in the software architecture are presented and
their impact on the project’s work is explained.

Additionally, the support of non-functional properties of a system by the software archi-
tecture is discussed.

Subsequently, the implemented approach to increase safety in the system is illustrated.
This especially includes the emergency brake.

The conclusion of this chapter is the discussion about which aspects can be considered to
evaluate the software architecture and an evaluation of the software architecture developed
during the project.

4.1 Architectural Views

The following sections introduce the functional and logical views of the developed au-
tonomous driving system which describe the system’s functionalities. Additionally, it is
explained how these functionalities are implemented as a chain of filters.

39



40 CHAPTER 4. ARCHITECTURAL ASPECTS

Figure 4.1: Functional view on the autonomous driving system

4.1.1 Functional View

To gain a functional overview of a system, the required functionalities have to be deter-
mined first. The main functionality which the autonomous driving system has to fulfill is to
drive autonomously. For safety and testing purposes it is important, that the functionality
of driving manually is implemented into the system.
The requirements presented in section 2 specify these functionalities. In doing so, different
requirements are relevant for each of the functionalities.
Figure 4.1 shows a functional view of the system. The functionalities drive autonomously
and drive manually are delivered through an ADTF filter chain (see section 3.2), which is
described in detail in section 4.1.2.
In the following, both of the functionalities are described.

Drive Autonomously

The relevant requirements for the functionality drive autonomously are the requirements
from the groups SEM, CON, BEN, SAF, and requirements GEN-SNX-11 to GEN-SNX-13 from
the group SNX (see section 2.1 and section 2.2).
The functionality drive autonomously uses inputs from the ultrasonic sensors, the RGB
Camera and the speed sensors.



4.1. ARCHITECTURAL VIEWS 41

Given the information about the vehicle’s speed and the image of the environment in-
cluding the distance to possible obstacles in front of the vehicle, the functionality drive
autonomously enables the car to accelerate and drive forward. Furthermore, this func-
tionality includes steering to stay on the street and to turn on intersections following the
street if the RGB camera detects a turning sign. Another task which belongs to this func-
tionality is the ability to control the turning lights and the brake light. The functionality
drive autonomously includes the ability of the vehicle to perform an emergency brake if
an obstacle is detected by the ultrasonic sensors and to stop if the RGB camera detects a
stop sign.

To provide these functionalities, it outputs an angle as a steering value, a percentage of
engine power as a speed value, and a signal to turn on and off the lights. The requested
commands are then executed by the Arduinos in the car.

Drive Manually

The relevant requirements for the functionality drive manually are the requirements GEN-
SNX-1 to GEN-SNX-9 (see section 2.2).

In contrast to the functionality drive autonomously, the functionality drive manually uses
just the information given by Mr. XBox, representing the XBox controller, as input. See
section 6.4.3 for more information about the XBox controller.

So, this functionality includes the ability to control the vehicle via the XBox controller.
With the controller it is possible to turn on the functionality drive autonomously. Fur-
thermore, the XBox controller can be used to steer, accelerate, and brake manually. Also,
the turning and brake lights can be turned on and off with the XBox controller. However,
the most important task of the functionality drive manually is to override the commands
of the functionality drive autonomously with its own commands. This ensures, that Mr.
XBox is always able to regain control over the vehicle in case of danger for humans or the
driving system itself.

To fulfill the included functions, the functionality drive manually has the same outputs as
the functionality drive autonomously, namely an angle as a steering value, a percentage of
engine power as a speed value, and a signal to turn on and off the lights. The requested
commands are executed by the Arduinos in the car and are preferred over the commands
from the drive autonomously functionality as it is required by GEN-SNX-6 and GEN-
SNX-7.

The next section describes how the functionalities drive manually and drive autonomously
as well as the included function of the emergency brake are utilized within the implemented
filter chain representing the logical view of the system.



42 CHAPTER 4. ARCHITECTURAL ASPECTS

4.1.2 Logical View

The focus of the logical view is the structure of the software. In contrast to the functional
view, the logical view describes the actual decomposition of the functionality into detailed
components.
Furthermore, depending on the intended use, different architectural styles are therefore
reasonable for the design of the logical view of the system. Since the development of
an autonomous vehicle requires a variety of functions, such as image recognition, car
movement or path planning, a software architecture for autonomous driving requires a
mix of different architectural styles.
The single components of the autonomous driving system are described in the correspond-
ing read-mes, which is explained in section 7. So, this section focuses on the description
of the whole implemented filter chain as well as the architectural styles that are used
to segment this filter chain. Furthermore it is explained, which requirements should be
fulfilled by the different filters.

Overview of the System

The architectural style that is used in the implemented autonomous driving system for
a rough subdivision is a kind of layered architecture. The special feature of the layered
architecture is that the individual components of the system are arranged in different
layers, which handle different functionalities. In this way, the layer architecture allows a
division of responsibilities in a system.
The division into these layers represents a kind of separation of concerns, which helps to
gain a better understanding of the system, to counteract a fast growing system complexity
and to reasonably divide the tasks. This makes the system more manageable and allows
a better division of the project group in smaller teams.
Figure 4.2 shows an overview over the logical view of the implemented system. The
inputs ultrasonic data, image from the Basler camera and speed are passed to the input
normalization layer on the left. Then they are transmitted to the action planning layer,
which passes the data on to the control consolidation layer. The processed signal is then
sent to the output normalization layer which is shown on the right in Figure 4.2.
Another pattern used in the system is the adapter pattern. As the developed system has
to be able to process data from the simulation environment VTD as well as from the
real world, the filters which preprocess the input data (input normalization layer) and
postprocess the output data (output normalization layer) are designed as adapters.
To allow the system to run independently of the chosen platform (simulation, physical car)
an abstraction for both sensing and control instructions was defined and built. Sensing
represents the input to the system and control instructions are the system’s output. The
abstraction mostly transforms the input data into a mutual data format and maps and
interprets the output data for the respective output platform.



4.1. ARCHITECTURAL VIEWS 43

U
S

D
a
ta

Im
a
g

e

S
p

e
e
d

In
p

u
t

N
o

rm
a

li
z
a

ti
o

n

O
u

tp
u

t

N
o

rm
a

li
z
a

ti
o

n

D
ri

v
e

 A
u

to
n

o
m

o
u

s
ly

E
m

e
rg

e
n

c
y

 P
a

th

D
ri

v
e

 M
a

n
u

a
ll

y

C
o

n
tr

o
l

C
o

n
s

o
li

d
a

ti
o

n

S
e

m
a

n
ti

c

U
n

d
e

rs
ta

n
d

in
g

P
a

th
 P

la
n

n
in

g
C

o
n

tr
o

l

A
c

ti
o

n
 P

la
n

n
in

g

T
u

rn
in

g
In

te
n

ti
o

n

Figure 4.2: Layers of the implemented system



44 CHAPTER 4. ARCHITECTURAL ASPECTS

So, the normalization of the input data given from the sensors, the camera, and the XBox
controller happens in the adapter-like input normalization segment shown in Figure 4.2.
Input normalization includes functionalities concerning the sensors and cameras of the
autonomous vehicle.
The input normalization layer passes the data on to the action planning layer.
As explained in section 4.1.1, the functionalities drive manually and drive autonomously
as well as the emergency brake, which is necessary for safety, are separated into three
different sublayers of the action planning layer as it is visible in Figure 4.2.
The sublayer drive autonomously is additionally subdivided into three different partitions
as it contains functions from different domains which are needed for the vehicle to drive
autonomously.
In this layer, the normalized input is processed in the partition semantic understanding
first, which contains functionalities concerning the semantic processing of the information
perceived by the sensors and the cameras, like the recognition of a drivable lane.
The partition path planning uses the information given by the semantic understanding for
deciding which destination the autonomous vehicle should head to.
The partition control in the drive autonomously layer includes functionalities for the com-
putation of the maneuvers, which have to be executed for reaching the destination com-
puted by path planning.
The second sublayer shown in Figure 4.2 is the emergency path. This layer includes just
the function that the vehicle stops if there is an obstacle in front of it.
The third layer includes the implementation of the functionality drive manually. So, in
this layer the commands from the XBox controller are received. The slimness of this layer
enables it to react fast in case there is a need to control the driving system manually.
The commands for speed and steering from all three sublayers of the action planning layer
are then transmitted to the control consolidation segment as it is shown in Figure 4.2. The
main function of this partition is to decide, which of the commands should be executed.
The commands from the emergency path are considered first to ensure the safety of the
system. Moreover, the commands from the layer drive manually overwrite the commands
from the layer drive autonomously as is already described in section 4.1.1.
The chosen commands for speed and steering are passed to output normalization, which
is an adapter-like segment just as input normalization. The output normalization segment
is responsible for the hardware abstraction of the speed and steering commands.
However, the layered architecture is used only for a rough division of the system, while
the fine subdivision is dominated by the pipes and filters architecture.
As explained in section 3.2, the chosen framework for the project is ADTF, where all
functionalities are realized by filters. So, the pipes and filters architecture style is the
natural choice for designing the system. In this architectural style several filters are
connected by pipes. The input of a filter is processed by this and the result is passed



4.1. ARCHITECTURAL VIEWS 45

on to the next filter. This way, sequential processing of data streams is possible, as it is
especially suitable in the processing of video data.
In the following, the implemented filter chain as well as the communication and the data
flow between the components are described in more detail.

The Filter Chain

The filter chain shown in Figure 4.3 can be divided into the layers and partitions presented
in section 4.1.2. The implemented filters are either data-triggered or time-triggered. For a
better overview of the system the filters in the figures in this section are marked with a T
if they are time-triggered and with a D if they are data-triggered. For more information
about this aspect of the filter chain, see section 4.3.2.
The filters in the input normalization layer are needed to prepare the input signals for
their further processing to enable the autonomous driving system to fulfill the requirements
stated in sections 2.1 and 2.2.
The input normalization layer contains the PG618_VTDSensing filter which is used to
normalize the input data for VTD. Figure 4.4 shows the PG618_VTDSensing filter which
outputs the speed, the image and the ultrasonic sensor data. These outputs are passed on
through the filter chain shown in Figure 4.3.
Furthermore, the PG618_USSSmoothing filter for smoothing the ultrasonic signal to reduce
the noise can be classified into the segment input normalization, too. It is also possible
to use two different PG618_USSSmoothing filters if different parameter values should be
used to smooth the input for the PG618_HistogramBasedPathPlanning filter and the
PG618_EmergencyBrake filter.

The normalized and smoothed signals are then passed on to the action planning layer.
The action planning layer contains three sublayers. One of these is the drive autonomously
layer, which contains the most filters because of the complexity of its functionality. The
drive autonomously layer itself is subdivided in three different partitions again. These
partitions are semantic understanding, path planning and control.
To the partition semantic understanding belongs the PG618_Segmentation filter used for
the segmentation of the received image. The filter PG618_ChannelExtractor uses the
segmented image and decides which channel is used for the transformation into a bird’s-
eye view by the PG618_BirdsEyeView filter. So, the filters PG618_Segmentation and
PG618_ChannelExtractor are used to fulfill the requirements GEN-SEM-1 to GEN-SEM-4.
The PG618_BirdsEyeView filter is implemented to fulfill the requirements GEN-VIS-4 to
GEN-VIS-6.
The PG618_StreetSignExtractor filter uses the segmented image for the identification
of the perceived street signs. These street signs are cut out from the original Basler
camera image. The PG618_StreetSignExtractor filter sends the resulting cutouts to
the PG618_CutoutSignClassifier filter for the classification of the identified signs. The



46 CHAPTER 4. ARCHITECTURAL ASPECTS

Figure 4.3: Implemented filter chain for the autonomous driving system



4.1. ARCHITECTURAL VIEWS 47

T

Figure 4.4: Sensing filter for VTD

functions of these filters are explained in chapter 5.4. These two filters should realize the
requirements GEN-SEM-5 to GEN-SEM-7.
In the path planning partition of the drive autonomously layer, the bird’s-eye view and the
information about the direction, which the autonomous vehicle has to choose according
to the classification of the identified street sign, as well as the smoothed signal from the
input normalization segment are used by the PG618_HistogramBasedPathPlanning filter
for the computation of a destination point. Alternatively, it is also possible to delegate a
turning intention to the PG618_HistogramBasedPathPlanning filter by using the XBox
controller, which fulfills requirement GEN-SNX-5.
As explained in section 6.2.2, this destination point is used in the control partition of
the drive autonomously layer for the computation of the orientation error of the vehicle
by the PG618_ErrorAngleComputation filter. The PG618_SigntoSpeed filter adapts the
desired target speed for the universal controller with regard to the detected street sign.
So, the desired target speed is set to 0 if a stop sign is recognized and to a low speed if a
turning sign is recognized. The PG618_SigntoSpeed filter should realize the requirement
GEN-CON-14.
The both PG618_UniversalController filters in this partition are responsible for the com-
putation of the control values for steering and speed. The PG618_UniversalController

filter is implemented to fulfill especially the requirements GEN-CON-1, GEN-CON-2 and
GEN-SNX-13.
The filters PG618_HistogramBasedPathPlanning, PG618_ErrorAngleComputation and
PG618_UniversalController are as a whole responsible for the fulfillment of the require-
ments GEN-CON-1 to GEN-CON-8 as well as the requirement GEN-CON-13.
The filters from the partitions path planning and control in the layer drive autonomously
shown in Figure 4.3 should also be able to fulfill the requirements GEN-CON-9 to GEN-
CON-12 and the requirements GEN-BEN-1 to GEN-BEN-4.



48 CHAPTER 4. ARCHITECTURAL ASPECTS

As safety is a paramount aspect of the project group’s work, the filter chain in Fig-
ure 4.3 includes an emergency path sublayer, too. The emergency path layer contains
the PG618_EmergencyBrake filter. The emergency brake filter receives the smoothed ul-
trasonic sensor data and the speed data from the input normalization segment and de-
cides whether the autonomous car has to stop driving. The requirements fulfilled by the
PG618_EmergencyBrake filter are SAF-1, SAF-5 and SAF-6.

The drive manually sub layer of the action planning layer contains the PG618_XboxReceiver

filter. This filter enables an intervention in the filter chain through an XBox controller. So,
the PG618_XboxReceiver filter implements the requirements GEN-SNX-2 to GEN-SNX-9
and the requirements SAF-2 to SAF-4.
Figure 4.3 shows that the emergency path and the drive manually layers have a much
shorter pipeline than the drive autonomously layer. This is reasonable as it enables the
system to react quickly if there is an obstacle or if there is a need to intervene with the
XBox controller.

The segment control consolidation contains the PG618_ControlConsolidation filter, which
is responsible for the last filtering of the received data from the three layers of the system
drive manually, drive autonomously and emergency path. Its outputs are steering and
speed values. The PG618_ControlConsolidation filter works according to the principle
of prioritization. If the emergency brake is triggered, the filter outputs a negative speed
value which lets the vehicle brake. As long as the emergency brake is not triggered, the
output values for speed and steering come either from the PG618_XboxReceiver filter if
the vehicle should be controlled manually or from the PG618_UniversalController filters
if the autonomous driving function is activated and there is no further command from the
XBox controller after the activation of the autonomous driving function. In case there
is another command from the XBox controller, the steering and speed values from the
PG618_UniversalController filters are overwritten by the XBox controller commands.
So, the function of the PG618_ControlConsolidation filter is the fulfillment of the re-
quirements GEN-SNX-1 to GEN-SNX-5.

The speed and steering values are passed to the output normalization segment, where
they are abstracted and used to address the corresponding Arduinos in the vehicle or to
control the vehicle in VTD. The filters in the output normalization layer are responsible
for fulfilling the requirement GEN-SNX-1. See section 3.5 for more information about the
creation of an unified interface for the simulation and real car data.
Additionally, Figure 4.5 shows a detailed overview over the implemented filters for the
output normalization of the real car and their interaction with the AADC filters. The speed
and steering values transmitted from the ControlConsolidation filter are normalized by
the PG618_NormalizeSpeed and the PG618_NormalizeSteering filters and sent to the



4.1. ARCHITECTURAL VIEWS 49

Figure 4.5: Implemented filters chain for output normalization for the real car



50 CHAPTER 4. ARCHITECTURAL ASPECTS

AADC filters for further handling. Meanwhile, the PG618_Lights filter gets the speed
value from the PG618_ControlConsolidation filter to control the braking lights and
handles the turning intention given either by the detected street sign or by the XBox
controller to control the turning lights of the vehicle. So, the PG618_Lights filter fulfills
the requirements GEN-SNX-10 to GEN-SNX-12.

D

Figure 4.6: Implemented filters chain for the output normalization for VTD

Analogical, Figure 4.6 shows the transmission from the speed and steering values to the
PG618_VTDCommunication filter which connects the filter chain of the implemented system
to VTD.

As the project group has to be able to test, debug, and present the results of the im-
plemented filter chain, the computations of the filters are visualized inside a simple web
application: Each filter sends data for visualization to a message queue on a message bro-
ker (RabbitMQ) using AMQP. The web application then consumes those messages using
the STOMP protocol via websockets and displays the data. This web based approach en-
ables much better visualization possibilities then implementing visualization inside ADTF:
It allows faster iteration and eases the building of the interface enormously. By this vi-
sualization, the requirements GEN-VIS-1 and GEN-VIS-2 as well as the requirements
GEN-VIS-4to GEN-VIS-6 are fulfilled. An example for the visualization of the system’s
functionalities is shown in Figure 6.10.



4.2. SAFETY 51

4.2 Safety

The software architecture has an important influence on the non-functional quality features
of a system. In systems of automobiles, especially in autonomous driving, safety and also
reliability are particularly important quality features. Reliability includes the availability,
the recoverability and the fault tolerance of the system.
This means that the autonomous driving software architecture must focus on the safety
and reliability of the autonomous driving system. These quality characteristics can be
ensured by different mechanisms.
Probably the most important safety mechanism used in the autonomous driving system
is the emergency brake presented in section 4.2.2.
Another frequently used mechanism is the self-adaptation. Self-adaptive systems may
induce their own gain or slowdown or adapt their steering angle using feedback loops.
This mechanism is used in the implemented autonomous driving system for the regulation
of the steering angle as is explained in section 6.3. The self-adaptation supports safety
by including the current state of the system in the computation of e.g. the current target
speed or the steering angle, which is needed to approach the next destination point. So,
the system can work more stable and the safety is less endangered.
Furthermore, a kind of a timeout mechanism is included in the path planning filter to
ensure, that the autonomous system reacts reasonably according to safety when there is
no new image input for a period of time, as it is described in section 6.2.4. In this way the
timeouts can help to reduce the probability of damaging the system in a critical situation.

4.2.1 Ensuring System Safety

The focus of this project group is achieving autonomous driving capabilities. Therefore, a
pre-built vehicle (see section 3.1) is used that already offers a high-level API. Any safety
considerations below this level, for example anything concerning the Arduinos directly,
is not considered here. Instead, the safety risks all pertain to the process of registering
sensor inputs, processing them, and generating new commands that are sent to the Arduino
control filter. The commands relevant to safety are those governing the steering and driving
speed of the car. For these respective values, a control functionality has been implemented
which enforces the changes in steering angle and speed do not exceed a certain threshold.
This ensures smoother transitions, reducing the physical stress on the system, thereby
also reducing the risk of any structural failures in the vehicle or the environment, which
could lead to accidents. Furthermore, the movement of the car becomes more predictable.
This should make it easier to plan future steps by increasing planning accuracy, thereby
indirectly ensuring safety. Additionally, any other road users will also be able to predict
the system’s behavior more accurately, enabling them to plan better, and decrease the
likelihood of accidents.



52 CHAPTER 4. ARCHITECTURAL ASPECTS

Lastly, the system’s safety is ensured by implementing an emergency brake functionality
based on ultrasonic sensor values (see section 4.2.2). For control personnel interventions,
a remote control via XBox controller is implemented, including braking, to override the
autonomous decisions of the car (see section 6.4.3).
A functionality that could be implemented in future projects is checking the plausibility
of one sensor’s measurements by juxtaposing it with the measurements recorded by other
sensors. For example, the ultrasonic sensors report rather noisy signals (see section 3.1.5).
Therefore, if an object is registered at a distance in front the car, one might cross-examine
this fact with regard to the images of the depth- and color images.

4.2.2 Emergency Brake

To establish a basic level of safety, a simple emergency brake is implemented. It is based
solely on the measured distance of the distance between the front-center ultra sonic sensor,
and an obstacle. This is to keep it simple and have less false emergency braking due to
objects near the road. If this distance is calculated to be within the critical stopping
distance (see below), the car applies braking action (setting the target speed to 0 acts like
an electrical brake, the hardware lacks mechanical brakes). The space the car requires
to come to a complete stop is highly dependent on its velocity v. Other factors like
road surface, tire wear and specific characteristics of the (virtual) brake mechanism are
neglected for simplicity. If the measured distance in meters would fall below v2, a safe stop
could not be guaranteed. This formula is not found in scientific literature, but used in
driving schools to calculate the braking distance without reaction time. Cho et al. [2006]
can be used to confirm this as an upper threshold. Due to the noisy sensor data (see
type 3 in section 3.1.5) the car needs to brake earlier. Therefore a fixed safety factor f is
introduced. The critical distance in centimeters (the ultrasonic sensors output centimeters)
is now below (v2/100) ∗ f .
The simplicity of this emergency brake implies strong limitations: obstacles are detected
only in direct vicinity straight ahead of the vehicle, regardless of whether its course would
clear the obstacle. So in fast cornering with close-proximity objects, the brake might be
activated. Vice versa the car might drive into an obstacle without braking at all, because
it was not directly in sight of the front-center sensor. While these faults can be improved
with the consideration of more sensors and the orientation of the front wheels, there are
more systematic limitations.
Using the ultra sonic sensors to detect obstacles is not very reliable. The data is noisy (see
section 3.1.5) and therefore must be smoothed. The braking algorithm uses an average of
the last k measured distances; a larger k means that it takes longer for measurements to
have an impact on the average, and therefore on the brake algorithm. A smaller window
means outliers could set off the emergency brake erroneously. Experiments showed that
the bigger reaction time due to smoothing was successfully compensated for by a larger
safety factor (earlier braking).



4.3. EVALUATION 53

4.3 Evaluation

The selection of a software architecture that supports the requirements of an autonomous
vehicle system stated in section 2 always requires a balancing of different quality criteria
as it is not possible to achieve an overall optimal solution. Accordingly, the evaluation
of a software architecture is difficult, because there is a lack of standardized metrics to
evaluate the overall quality of a software architecture.
However, the chosen filter structure shown in section 4.1.2 can be evaluated on the basis
of the following aspects.
In this section, the created filter structure is evaluated according to the data and infor-
mation flow in the system. Furthermore, the system is evaluated under the aspect of
reusability and it is explained, why this structure was preferred over possible alternatives.
The last section discusses the advantages and disadvantages of the usage of time-triggered
or data-triggered filters.

4.3.1 Evaluating the Flow of Data and Communication

As always when considering software architectures, the data flow and the communication
flow are important analytic criteria.
When examining different architecture alternatives with regard to interesting quality char-
acteristics, the data flows and communication flows in the system are observed. These
allow to examine if there is a single-point-of-failure in the architecture of the system.
Furthermore, insight to data flows and communication flows help to decide how to build
the system safely. These analysis criteria are essential for the decision, where to implement
components like the emergency brake to achieve higher safety. Because the data flows and
communication flows in this case can be used to estimate the system’s response time to
an obstacle.
To evaluate the software architecture, the broad high-level separation into three func-
tional areas is explained and evaluated first. Afterwards, the decisions made during the
construction of the low-level architecture within those areas are discussed.

Evaluating the High-Level Structure

The shown filter chain in Figure 4.3 is the result of a continuous deployment. At the
beginning of the project, the developed filters included a lot of different functionalities as
they grew with the increase of assessed knowledge of the project group’s members. It soon
became visible, that the powerful filters had many disadvantages. The filters were difficult
to understand and to maintain, which is the reason why they were refactored into smaller
components during the project.
Especially the filters that belong in the domains path planning and control were in focus of
the refactoring as the functionalities of path planning and the vehicle control were part of



54 CHAPTER 4. ARCHITECTURAL ASPECTS

a single filter first. So the refactoring was done in order to make the filters more readable,
understandable, maintainable and universal.
The less powerful filters with the decreased functionalities allow an easier integration of
more complex algorithms. This is important for functionalities in different domains like
path planning and vehicle control, with progression of the project more complex algorithms
were developed for handling the complexity of the autonomous driving functionality. The
newly developed algorithms could be easily integrated in the complete filter chain.
On a broad level, the chosen architecture is separated into six parts: execution (or simu-
lation thereof), sensing, semantic understanding, path planning, control, and safety. The
execution deals directly with the car, implementing the driving directives, and the sen-
sors. The semantic understanding interprets the sensor data from the sensing layer to gain
knowledge about the environment. The path planning layer computes a destination and
the control uses the knowledge from the semantic understanding layer and the destination
to generate driving directives for the executing components, while the safety layer ensures
that there is no collision with an obstacle.
This separation directly supports the data flow requirements given by the task. Further-
more, failures in one of the modules can be treated separately from failures in the others.
Therefore this architecture is to be rated very positively in terms of data flow and also in
terms of separation of responsibility. The alternative would have been a more integrated
approach in which this separation is less clear. Such an approach would have suffered in
both of those criteria. However, it might be faster since the transmission of the data from
one submodule to the other might not be necessary.
The separation is also desirable from the perspectives of project management and soft-
ware development. Since the separation of tasks is clearly integrated in this architecture,
the development team can be separated into different teams as well. After defining the
interfaces between the submodules, each team can then use their full productivity to work
at least partly independently of each other towards the common goal.
Furthermore, the physical car which is used, is meant to be operated via the ADTF en-
vironment (see section 3.2). This framework naturally promotes a separation into smaller
submodules (or filters, in ADTF terms) and handles the asynchronous transmission of
data between those different modules. Therefore, any approach that would not utilize
these structures would either not be able to take advantage of ADTF’s full capabilities, or
require taking a completely different approach. Such an approach would probably require
starting at the Arduino level of computation, requiring a lot of extra work.

Evaluating the Low-Level Architecture

One problem that the project group had to solve is that the physical car in a physical
environment as well as the simulated car in a simulated environment should be handled in
a similar fashion. Following the separation of tasks approach mentioned in the previous
section, the goal was to transmit the exact same type and format of data to the semantic



4.3. EVALUATION 55

understanding module, no matter which environment and which car were currently used.
The two tasks were separated again, creating completely distinct sets of ADTF filters to
deal with either the physical or virtual environment. The alternative would have been to
create an adapter in the form of one filter to deal with both cases and have an internal
switch mechanism to choose which kind of routines to execute, based on the environment
the vehicle should drive in.
The chosen approach has several benefits. Again, any errors in one of the submodules do
not affect the functionality of the other. Regarding data flow, there is a clear separation
of tasks, which is conceptually desirable. Another benefit is that when driving in one
environment, there is no need to load the code dealing with the other environment into
the memory. This reduces the needed memory and thereby improves and potentially
speeds up the performance, depending on the size of the code and the available memory.
The components of the control layer need to use knowledge gained by the semantic under-
standing and generate valid driving instructions based on this knowledge. In addition to
the autonomously computed driving instructions, a direct control via an XBox controller
should be enabled. This direct control is prioritized over the autonomously computed
instructions to allow for intervention (see section 6.4.3).
While this was not desirable in the execution layer, the control layer implements a switch-
ing mechanism that forwards the XBox control signal, if there is one, and the internally
computed one otherwise. In terms of separation, this is less elegant than the approach
taken in the simulation module. However, it has to be this way, considering the fact that
the requirements are very different in this case. The integration of the XBox controller
enables spontaneous interventions by the user during operation. This has very strong
positive effects on the system safety since the user can anticipate unsafe situations and
initiate early countermeasures.
The second big decision in terms of control architecture concerns the integration of the
emergency brake (see section 4.2.2). Most driving control signals are computed within one
system of filters that include the described XBox controls, switching depending on whether
it is available, and checking whether the generated signals lie within a permitted range.
The automatic emergency brake has deliberately been moved out of this system. It uses a
simple heuristic based on the ultrasonic sensors to determine whether an emergency brake
should be initiated or not. Since this functionality is highly critical for system safety, it
has been moved out of the usual loop to ensure that the signal to brake gets transmitted
as quickly as possible. This architectural decision seems less desirable since two different
parts of the system generate control signals, instead of one. However, this trade-off can
be accepted for the big gains in safety.

4.3.2 Evaluation of Data- or Time-Triggered Decisions

When implementing filters in ADTF, there are two different kinds that can be considered
for this project. The data- or event-triggered filters perform actions only when they receive



56 CHAPTER 4. ARCHITECTURAL ASPECTS

input data. Time-triggered filters, on the other hand, have a set time interval, after which
their action is performed.
An advantage of the event-triggered approach is that the architecture can perform com-
putations immediately when new information is available. This means that it can react
quickly to new events, thereby potentially increasing safety. In addition, there is no need
to take care of any queues that buffer incoming data and signals. This simplifies the
programming process and removes opportunities to accidentally introduce errors.
The big disadvantage of the event-triggered approach is that there is no direct way to
detect a sensor failure. If no data is sent by the defective sensor, the filter does not
perform any actions, so it also cannot check whether the sensor has failed. In the worst
case, this means that the car does not receive any more steering or speed control values,
follows the past orders, and crashes. Additionally, the computations might be performed
much more frequently than required, thereby wasting resources. On the other hand, it is
possible to save resources if the speed and steering values are computed less frequently
than a time-triggered filter might.
Time-triggered filters guarantee for example a steering command to be given every 10th
of a second. However, they require queue-handling, and predetermining a timing interval,
which might be hard in certain cases. Underestimating the interval can lead to problems by
not processing incoming data quickly enough, while overestimation wastes computational
resources.
Considering these arguments, data-triggered filters were chosen to be the default for the
project, mostly for their ease of usage. However, in the safety-critical area of sending
steering and speed commands to the Arduino interface, the guarantees provided by time-
triggered filters are used to ensure that the car is always being controlled. Additionally,
the used controller architecture requires a time-triggered structure to limit the number of
computations and thereby enable proper planning of the system’s behavior.
This results in the filters HistogramBasedPathPlanning, NormalizeSpeed, Normalize-

Steering, UniversalController, SignToSpeed and Lights being time-triggered. To
mirror the functionality for the simulation, the filter VTDSensing is also implemented as
time- triggered. The guarantees given by time-triggered filters could also increase the
safety of the EmergencyBrake filter, this filter on the other hand could be data-triggered
as it relies on other time-triggered filters and therefore is robust to sensor failure.



Chapter 5

Semantic Understanding

In order for the car to know what to do in the world it resides in, it needs to have an
understanding of its environment. This can be achieved by capturing and interpreting
sensor data. One of these sensors is the RGB camera found on top of the car or, in case
of VTD, a simulation thereof. The main goal of the Perception group in the first semester
was to detect the part of the road the car is currently driving on (from now on called the
drivable lane or simply the lane). First, the decision was made to use classical computer
vision methods in order to build a custom algorithm for detecting the lane. As there are
a lot of well-documented solutions to this problem already, this quickly allowed getting
decent results. After that, a custom convolutional neural network was built in hopes of
achieving more robust and accurate results.

5.1 Simple Lane Detection

The first approach for detecting the drivable lane was a simple OpenCV-based algorithm
that uses Hough transformation to detect the lane markings in an image. As this algorithm
can only be used to extract straight lines, it is impractical for use on curved roads but
was enough to get some first results to start working on a simple controller and to use as
a basis for a more sophisticated approach later on (see section 5.2).

5.1.1 Algorithm Pipeline

The algorithm pipeline is based on Sqalli [2016]. It works by first extracting only the lane
markings from the image, detecting all straight line segments and some cleanup afterwards.
Figure 5.1 shows most of the stages an image passes through during the algorithm.

Gaussian Blur

In the first step a simple Gaussian blur was applied onto the image. This reduces noise
and prevents single white pixels from being detected as part of the lane markings.

57



58 CHAPTER 5. SEMANTIC UNDERSTANDING

(a) VTD sample image. (b) After edge detection. (c) Region of interest.

(d) Extracted lines. (e) Computed lane lines. (f) Resulting binary image.

Figure 5.1: Stages of the simple lane detection algorithm from input to output image.

Color Filter

Next, a color filter is applied. The approach described here only uses the lane markings
to detect the current line. Since these are usually white or yellow, every pixel that does
not fit this criterion was removed. For white pixels the image was converted to grayscale
and a threshold for light gray pixels was defined. For yellow pixels it was converted into
the HSV format, which made it easier to define a range for yellow colors, since the hue is
controlled by a separate parameter, while RGB images share the same values for a pixel’s
color and brightness.

Edge Detection

Then, a Canny edge detection filter was applied, which uses rapid changes in pixel values
to find edges in an image. This is done because lane markings have sharp edges and, since
all that is looked for are straight lines, this removes a lot of unnecessary information (see
Figure 5.1b).

Region of Interest

The lane markings of the current lane are usually not the only white or yellow pixels in an
image. For example, the sky tends to be bright as well and there could be parts of other
lanes visible. These pixels were removed by applying a region of interest, which assumes
that the lane is inside a trapezoid shape in the bottom half of the image (see Figure 5.1c).



5.1. SIMPLE LANE DETECTION 59

Line Extraction

A probabilistic Hough transformation was used to extract straight lines from the remaining
pixels. This algorithm tries to find line segments that follow edges in an image. The result
of its OpenCV implementation are a set of endpoints of these segments (see Figure 5.1d).

Rotation Filter

The Hough transformation returns all candidates of possible straight lines it finds. Since
some lane markings also have an upper and lower edge, these might be returned as well.
There is also always the possibility of it detecting lines between the right and left edge of
a line or just on some random pixels that did not get filtered correctly. It can be assumed
though, that the lines which are looked for will be mostly vertical, so every line segment
that is approximately horizontal is removed.

Right and Left Line Extraction

To find the left and right marking of the street, the set of edges need to get separated,
which are left from filtering. So all edges in the left part of the image are ordered to the
left lane edge set and symmetrical all the edges in the right part are ordered to the right
lane edge set.

Median Line Computation

After filtering of the horizontal edges, only vertical edges are left. These are not necessarily
edges, which are affiliated to one of the two lane markings. The edges need to get extended
until the border of the image and the limit of a mask, in which the lane is to be sought in.
Then the mean edge will be taken out of two sets, one for the left and one for the right
lane, while mean is defined as:

xmean = xn/2 ∈ {x1, x2, ..., xn}. (5.1)

So the mean is the middle object out of an ordered set (see Figure 5.1e).

Binary Image

The result are the left and right lane markings, and limits given by a mask, in which a
lane is sought, the polygon can be filled with the vertices of the endpoints by the lane
markings to get a binary image with the drivable space on the current image. It can be
interpreted as the region of interest for the steering control (see Figure 5.1f).



60 CHAPTER 5. SEMANTIC UNDERSTANDING

(a) VTD sample image. (b) Birds-eye transformed. (c) Extracted lane pixels.

(d) Fitted curves. (e) Detected lane. (f) Retransformed to original
perspective.

Figure 5.2: Stages of the advanced lane detection algorithm.

5.2 Advanced Lane Detection

The simple lane detection algorithm worked well enough to get started but it had some
obvious flaws. First of all it only worked on straight roads. Whenever it tried to detect a
curve in the road, it either resulted in a very inaccurate approximation of an average angle
for the whole curve or it just did not detect anything at all. It also had problems with
the gaps between lane markings in VTD, which were sometimes big enough to only have
very small parts of two markings inside the region of interest and thus were not detected
as straight lines. There also was a more general problem with the images perspective
distortion, because for the controller it would be better to have equidistant waypoints.

All of these problems were addressed with the advanced lane detection algorithm, which
is based on Palazzi [2017] and uses a polynomial curve fitting algorithm to estimate two
functions for both lane boundaries.

5.2.1 Algorithm Pipeline

While the name may suggest otherwise, the advanced lane detection algorithm actually
uses less steps than the simple lane detection. Figure 5.2 shows these steps. Note that the
retransformation step shown in 5.2f is just for demonstration purposes and is not actually
part of the algorithm.



5.2. ADVANCED LANE DETECTION 61

Perspective Transformation

In the first step the image gets transformed to what is called the birds-eye view. This
uses a similar trapezoid region as the region of interest from before (see section 5.1.1)
but instead of just removing the pixels outside it, it stretches the region to fill the whole
image. To get the correct perspective a trapezoid was used that starts at the bottom two
corners and follows the direction of the images principal point.
Note that, while the distances on each of the axes are equal, the distances between both
axes are not. A correct representation of the road would be a lot longer, which makes the
curves look steeper than they actually are.

Lane Pixel Extraction

The relevant pixels were extracted with the same color filter, which was used for the simple
lane detection (see section 5.1.1). As this algorithm does not need straight edges or lines
and just uses the raw pixel coordinates, no other operations were necessary.

Definition of Left and Right Lane Pixels

Since it is required to find two curves, one for each boundary line, it is necessary to
distinguish between the pixels that correspond to each of those lines. To achieve this,
two different approaches were used depending on whether or not the lane was already
detected in the previous frame, which differ a little bit from the used reference algorithm
(see Palazzi [2017]).
While the reference algorithm uses a sliding window that slides upwards starting from the
points where the histogram reaches its maximum values when detecting without knowledge
of the previous frame, it was decided to just define every pixel in the left half of the image
as part of the left line and vice versa. This means that the algorithm is not as stable as
the reference and has to start on a fairly straight road but it also made the computation
a bit faster and reduced development time.
In cases where the lane was already found in the previous frame, it can be assumed that it
will not drastically change from one frame to the next. This way it can use the previously
calculated lines to assign pixels near one of them to that line in the next frame. This
generally works pretty well but does have one unwanted side effect: lines which where
detected incorrectly can get very close to each other or even overlap and thus see the same
pixels as part of its own. This in turn can lead to both lines getting so close to each other
that they essentially become the same line. In this case the algorithm assumes it detected
two lines correctly and never even tries to find another one. This problem was solved by
checking whether points of both lines get too close to, or too far apart from, each other,
to represent a plausible lane.



62 CHAPTER 5. SEMANTIC UNDERSTANDING

Curve Fitting

With the pixels classified as being either part of the left or right line, a curve fitting
algorithm was used to estimate a quadratic function through each of the set of pixel
coordinates. The algorithm is based on the polyfit function found in MATLAB, which
uses a Vandermonde matrix to calculate the polynomial coefficients (see MathWorks).

Binary Image

As with the simple lane detection algorithm before, the advanced algorithm also returns
a binary image as the output, with the lane in white and the rest black. The image is not
reprojected to the original perspective, as the birds-eye view is actually better to use for
path planning.

5.3 Road detection using neural networks

To further improve the robustness of the lane detection, a switch was made from the
advanced lane detection algorithm (see section 5.2) towards using neural networks to
segment the drivable area. To make the task easier for the neural network, the decision
was made to not only segment the right lane as drivable, but the whole road.
The software tool used to implement the neural networks is the Keras deep learning library
with Tensorflow as the backend.
In this section, the following subjects will be discussed. First, the generation of the basic
training data is described, both for simulated and real world environments. Then, the
augmentation operations are described that increase the variation in the data and thereby
should increase the robustness of the segmentation, as well as preprocessing steps like
resizing or greyscale-conversion that are applied after the augmentation has taken place.
Several architecture variants that were tested are introduced next. Finally, the range of
experiments that assessed the usefulness of all these different parameters is described.

5.3.1 Training data

To be able to drive both in the simulated VTD environment, and in the physical environ-
ment consisting of the assembled road panels, it is necessary to generate training data for
both. Ideally, the training data should contain straight roads, curved roads, T-crossings,
and regular crossings. In this section, the generation of all training data that is used in
the experiments is described more closely.

VTD training data

Since VTD is a simulation environment, it is possible to create a lot of training data at
very little cost. While at the beginning of the project those training images were labeled



5.3. ROAD DETECTION USING NEURAL NETWORKS 63

by hand, later on, a transition was made to create automatic annotations from within
VTD.
For the first set of training images, a data set of 1058 (reasonably distinct) labeled images
were generated. The route from which the data was generated contains straight roads,
curves, T-crossings, regular crossings, and S-curves. An example can be seen in Figure
5.3. his data set is going to get referred as vtd_crossings. Figure 5.3 shows an example
image from this data set.

Figure 5.3: Example image in the vtd_crossings data set.

Since creating simulated data is comparatively cheap, three further routes were created
from which training data was generated. vtd_rural consists of roads in a rural area,
with a small town in the background and mostly green side stripes. vtd_town is a route
through a town, with roads mostly following a Manhattan-style grid. vtd_evaluation is
constructed like the real-life road panel track that is used to evaluate the whole system at
the end of the project (see figure 6.23). From each of these tracks three different data sets
were generated by varying the simulated weather conditions between blue sky, rainy,
and cloudy. This way, it was possible to not only create a lot of variation in the data
set by varying the tracks, but also by varying the sky in the background and especially
the lighting condition. Training on this data set should therefore make the segmentation
model more robust to these influences. Figure 5.4 shows example images of each of the
data tracks and weather conditions. While the exact number of images generated from
each track and weather condition varies, a minimum of 438 labeled images were created
per configuration.

Automatic Generation of Test Images

In order to automatically create labels for road and signs, the same route was driven inside
the simulation with three different visual databases: one containing the original route, one
with the road colored red, and a final one with the signs colored red. Afterwards the images
were converted to labels by converting the red colored parts of the image to white color
and everything else to black color with custom written imagemagick scripts as seen in
Figure 5.5.



64 CHAPTER 5. SEMANTIC UNDERSTANDING

(a) vtd_town - blue sky (b) vtd_rural - cloudy (c) vtd_evaluation - rainy

Figure 5.4: Example images from three data sets. The first word indicates the name of the data
set, the second word indicates the weather condition.

The neural network was only trained on images created by perfectly driving on the road.
In an attempt to learn to find the way back to the road while off track, a series of images
was created with the car driving completely off the road. This was done by creating an
invisible road the simulated car drives along, while keeping the same visual database as the
original track. Later, instead of driving completely offroad, data was created by shifting
the camera slightly to the left and right so the images are just slightly off the road.
Those images were by no means perfect, since coloring the road itself in a different color
wasn’t actually possible in the road designer. Colored versions of lane marks were available
though, so instead of coloring the road directly, a red colored lane mark replaced the middle
marks on the road and was stretched to the width of both lanes. Even after smoothing the
resulting labels were imperfect especially on the left and right edges of the road, because
the texture of the road mark was not a perfect rectangle, which was then amplified by
stretching the texture to abnormal widths. Nevertheless, automatically creating thousands
of training images simplified the training of neural networks for VTD and was much quicker
than using the labeling tool (see Chapter 5.3.1), which still had to be used to create labels
of the real world data.

Training data for road panels

As a first test case for the neural networks, a road network was assembled consisting only
of a curved road. Assuming that crossings of any kind pose a more difficult problem, this
data can be used to determine whether the network is able to segment the lane at all.
Since the camera used by the car has a fish eye effect, an ADTF filter was used to reverse
this distortion. The resulting images had a resolution of 472× 312 pixels. There are 684
images all together, 615 used for training and validation, 69 used for testing. This data
set is going to get referred as rl_straight.
Since manually annotating images takes a lot of time, a subset of 64 annotated images
was used, augmented by the first augmentation techniques described in section 5.3.1 to
artificially increase the number of training images.
Increasing the complexity of the test environment, a new route containing curves, a T-
crossing, and a regular crossing was constructed. It was decided to not remove the fish-



5.3. ROAD DETECTION USING NEURAL NETWORKS 65

Figure 5.5: Image of the vtd_town test route with red colored road and signs and the generated
labels



66 CHAPTER 5. SEMANTIC UNDERSTANDING

eye distortion for this data set, since removing the distortion also greatly reduces the field
of view, making any control-type decisions more difficult. The images were resized to a
resolution of 480×360. Using 403 manually annotated images, the data was split into 382
training images and 41 testing images. Then, the same augmentation methods were used
to receive a set of 1444 images for training and validation. Test images are not augmented,
as this would weaken the meaningfulness of the metrics on the test set. This data set is
referred to as rl_crossings.
Furthermore, both data sets were combined, naming the result rl_combined. The images
were resized to fit the smaller format, therefore some of the images have a fish-eye per-
spective, while others don’t. For the rl_crossings part, the non-augmented images were
used.
All images were manually labeled using the software ImageTagger (see section 5.3.1).

Labeling tool

Figure 5.6: The drivable lane annotated onto an VTD image.

In order to create a custom training data set, first, frames were extracted from a video
that was taken in VTD. The video was long enough to create 1200 frames. The goal was
to annotate the drivable area for each frame. In order to segment the drivable lane, first,
it was evaluated whether or not writing an own tool would be necessary, or if appropriate
tools were already available. One feature that was needed was to draw polygons onto the
frames, which then get annotated with a pre-defined label. This seemed to be the fastest
way to annotate the drivable lane. Also, the process of drawing the polygon as well as
changing the image to the next once it was drawn in the lane needs to be as fast as possible
so that the labeling time gets minimized. Most importantly, though, it was required to
spread the work across the whole group so that everyone gets their own stack of images
to label them. Also, the group members had to be able to label the images from home,
which meant that a client-server architecture was needed.



5.3. ROAD DETECTION USING NEURAL NETWORKS 67

The initial findings suggested that no tool fit the requirements. However, the closest tool
available was the Image labeling tool from the computer vision department at the Uni-
versity of East Anglia1. The decision was mode to modify this tool, which was published
under the MIT open source license, instead of devising a self-made solution.
The annotation results were then exported as a single JSON object which contains the
coordinates of each of the the polygon vertices. Then a simple program was written which
takes the original image and the corresponding JSON object and creates a black and white
image where the lane is painted in white.
When it came time to start labeling drivable area and street signs, a decision was made to
update the labeling tool to BitBots Imagetagger by Fiedler et al. [2018], because it allows
to switch the selection of label using keyboard shortcuts, thus speeding up the labeling
process immensely. Also, it was not necessary to adapt the code of the tool to the project
group needs because of its extensive configuration options inside the tool itself. It is still
able to export the annotation information as a JSON object, albeit in a slightly different
format.

Augmentation

The Python library imgaug2 by Alexander Jung was used to augment the group’s training
data. First, the images were flipped horizontally, as this does not change the semantics of
what is and is not a street. Afterwards, a random rotation between -10 and +10 degrees
was applied, both on the flipped and unflipped images. These steps were mostly done to
increase the size of the data set, while still being very similar to the original images. With
the original 64 images this resulted in 256 images, 229 of which were used for training the
model, the rest for testing.
Later on, the augmentation method was extended to further increase the robustness and
generalization of the network. After applying the aforementioned transformations one of
three noise filters was applied to 50% of the images. These filters were:

• Dropout: Completely erases some pixels, either from all channels or separately per
channel.

• Gaussian Noise: Adds values sampled from a normal distribution to each pixel.

• Gaussian Blur: Blurs the image.

Additionally between one and three of the following color modifications were applied to
each image:

• Normalize the contrast by a factor between 0.5 and 1.5.
1https://bitbucket.org/ueacomputervision/image-labelling-tool
2https://github.com/aleju/imgaug

https://bitbucket.org/ueacomputervision/image-labelling-tool
https://github.com/aleju/imgaug


68 CHAPTER 5. SEMANTIC UNDERSTANDING

Figure 5.7: Example augmentation of a single image with applied rotation, noise and color
modifications.

• Add a random value between -100 and 100 to all pixels of the image.

• Multiply each layer with a value between 0.5 and 1.5.

These modifications did not change the performance on the test set much but proved very
important in actually driving on streets, as it increased performance on images, which are
less similar to the training data. With all of these augmentations applied, this increased
the size of the training data by a factor of 8. Figure 5.7 shows an example of the results
of augmenting a single image.

5.3.2 Preprocessing

Several different preprocessing steps were tested to determine their influence on the seg-
mentation performance of the neural network. Independently of which preprocessing steps
(described below) were performed, the pixel values were scaled to [-1,1] before the images
were fed into the neural network, excluding the very first experiments that were performed
on the reduced rl_straight data set.
Since a big part of the segmentation task seemed to be to distinguish between bright road
marks and dark road, a first approach was to convert the images to greyscale. Furthermore,
the width and height were also reduced by 50%. Both of these transformations reduce
the size of the image data, thereby resulting in faster inference. In addition to using
each transformation on its own, both were also combined to receive greyscale images that
were 50% less wide and high. The idea is that the greyscale transformation might strip
away information not essential to the task and thereby improve predictive performance.
However, it did not prove to be useful (see Figure 5.14).
A problem that might occur, is that the dark road has pixel values near zero, but should
be classified as 1. Therefore multiplication by a large number is necessary. To improve
this problem, the image colors can be inverted, as another preprocessing step.



5.3. ROAD DETECTION USING NEURAL NETWORKS 69

5.3.3 Network architectures

Several different architectures were tested to determine which one would be best fit for
the task. This section first describes the base architecture and then the variations that
were created from it.

Initial design

The initial design for the neural network uses an architecture inspired by Unet3. Unet
was used to perform image segmentation on a data set of images of biological cells via an
encoder-decoder architecture. The computational performance available on the AADC car
(see section 3.1) is limited. This was the reason to use a smaller architecture than SegNet
Badrinarayanan et al. [2017], which would be the go-to choice for semantic segmentation
in the automobile environment. As it only needs to distinguish the classes of ’road’ and
’no road’, the same way that Unet performs a binary segmentation, Unet seems to be a
good first approach for the group’s problem.
Figure 5.8 shows the architecture of the initially used network. It takes an RGB-image
with 3 channels of 8-bit color information as input, and outputs a greyscale 8-bit image
of the same size. For each pixel the output represents the probability of being drivable.
Therefore, the network technically computes a saliency map, not a segmentation. For
distinguishing between road and not road, the additional step of applying an argmax to
convert it to a binary segmentation map seemed unnecessary, since the results were close
to binary already. When adding the task of segmenting signs as an additional class (see
section 5.4), an argmax operation was added before passing on the result to the control
architecture.

3https://github.com/zhixuhao/unet

https://github.com/zhixuhao/unet


70 CHAPTER 5. SEMANTIC UNDERSTANDING

The network can be split into two parts,
where the first part is the downsampling
part, while the second is the upsampling
part. The downsampling part consists of
convolution and pooling operations. The
convolutions increase the number of features
at each pixel, starting at 32, then doubling
with each convolution, until there are 512
features per pixel. The max-pooling opera-
tion meanwhile reduces the number of pix-
els by only propagating the maximum val-
ues per feature in a 2 × 2 window, thereby
halving width and height with every max-
pooling step. The upsampling part of the
network consists of two operations. The
first kind are convolutions over the image
features at the current step, merged with
the features at the symmetric downsam-
pling step. This again decreases the number
of features per pixel, and incorporates the
therein contained information into the now
lower-dimensional representation. The sec-
ond kind are upconvolutions (not transpose
convolutions!). These are simply convolu-
tions applied after a simple 2×2 upsampling
operation, which only duplicates one pixel
value into four. With these upsampling op-
erations the resolution gets increased. Com-
bining the merged-convolutions and upcon-
volutions yields a one-dimensional image of
the original image size, containing the seg-
mentation information.

Figure 5.8: Network architecture regular



5.3. ROAD DETECTION USING NEURAL NETWORKS 71

Figure 5.9: Dilated convolution with d = 2. The 3× 3 kernel is spread out over a 5× 5 receptive
field. The shown dimensionality reduction is not a product of the dilation but of the missing
padding Dumoulin and Visin [2016].

Architecture variations

To test the effect of different configurations, the following variations from the original
architecture were designed. In experiments, the original architecture will be referred to as
regular.
A lot of the image of a road will be a rather monotonous grey or black shade. Therefore
all the local image features generated by the convolutional layers should be the same.
Distinguishing black areas that belong to the road from those that do not seems difficult
based on such local features. A wider receptive field for the convolutions would be needed.
Therefore dilated convolutions were introduced at the end of the downsampling process.
They take the same number of parameters as regular convolutions, but instead of working
on a dense 3× 3 window, they move d pixels from the center pixel to determine the other
pixels to compute the convolution over. A dilated convolution with d = 1 corresponds to a
regular convolution, while one with d = 2 regards the center and eight outer pixels of a 5×5
window, leaving one pixel horizontally and vertically between each included pixel. Figure
5.9 visualizes this idea. As figure 5.14 shows, the dilated convolutions did not necessarily
improve the performance much but allowed for a reduction in the architecture’s depth,
while still keeping performance at the same level.



72 CHAPTER 5. SEMANTIC UNDERSTANDING

Three different architectures were created,
testing varying dilation rates. Architecture
dil2 changes the last downsampling convo-
lution to a dilated convolution with d = 2.
For dil4 this gets changed to d = 4, while
the previous layer has d = 2. With dil8

d = 8 is used in the last downsampling con-
volution, 2 and 4 in the respective previ-
ous layers. To further reduce the size of the
network, and thereby increase the computa-
tion speed, also an architecture with fewer
layers was designed. At this point of the
experiments it could not have been tested
the inference speed on the car architecture,
therefore this was a preventative step. The
hardware resources have been limited on the
car, therefore speeding up the inference is
desirable. By leaving out the three middle
layers, the convolutions produce a maximum
depth of 128 features. The resulting archi-
tecture is referred to as flat. Adding the
idea of dilated convolutions in a similar way
results in the architectures flat_dil2 and
flat_dil8, which use a maximum of 256
features. Since the Unet architecture uses
upconvolutions, instead of transpose convo-
lutions (sometimes referred to as ’deconvo-
lutions’), also an architecture named deconv

was tested. It arises from the regular archi-
tecture by replacing the upconvolution with
transpose evolution operations.

Figure 5.10: Network architecture flat



5.3. ROAD DETECTION USING NEURAL NETWORKS 73

Finally, using the gained knowledge from the different experiments, an architecture was
designed that deviates more strongly from the original Unet, called droschkinator.

The overall architecture of this network
mostly follows that of flat_dil8, using two
down- and upsampling steps respectively
and dilation factors of 2, 4 and 8 in the
fourth to sixth convolutional layer. It differs
from the previous architechtues in that it
uses strided convolutions, to combine down-
sampling and feature extraction into a sin-
gle layer. Strided convolutions work simi-
larly to regular convolutions, though instead
of moving the kernel over every single in-
put pixel, it uses only every s pixel, s be-
ing the stride parameter. A stride of s = 2
moves the kernel by two pixels, thus reduc-
ing the output size by 50%, achieving the
same downsampling result as the pooling
layers before. It also uses transposed con-
volutions for upsampling, which in previ-
ous experiments did not have any measur-
able impact on the quality of the results but
helped in reducing the size of the architec-
tures.

Additionally batch normalization layers
were added after each convolution. These
normalize the activations of the previous
layer in the training batch to have a mean
of µ = 0 and a standard deviation of σ = 1,
which improves the convergence and overall
stability of the training process. This was
done due to the extreme variance between
the results of different training runs visi-
ble in figure 5.14 and, as figure 5.16 shows,
helped in alleviating this issue. Figure 5.11: Network architecture

droschkinator



74 CHAPTER 5. SEMANTIC UNDERSTANDING

5.3.4 Experiments and results

This section outlines the experiments and analysis of the results to determine how to best
segment the drivable area using neural networks.
All experiments in this section are run using a 90/10 split between training and validation
data. A test set of roughly 10% of the original size of the data set has been split off
by random selection before any training began, so the training/validation split is only
performed on the non-test data.
The performance of the models is measured by IOU = 1− IOUloss, where IOUloss is the
intersection over union loss, as described by Rahman and Wang Rahman and Wang [2016].
Note that this definition of IOU is different from the classical definition. This variant does
not require a hard classification decision, but can also evaluate probabilities per class. Since
it is defined via the negative IOUloss, higher values indicate better performance.
Therefore, the metric is computed as follows:

IOU =
∑

v∈V Xv × Yv∑
v∈V (Xv + Yv −Xv × Yv) ,

where X,Y are the prediction and ground truth respectively, Xv, Yv indicate prediction
or ground truth for a single pixel and v ∈ V iterates over all pixels of an image.
The models are trained using the Adam solver with a learning rate of 1e − 4, binary
crossentropy as loss function and a batch size of 8. Before splitting the data into training
and validation data, it is shuffled. After each epoch of training, the training, validation
and test loss and IOU are logged.

Comparing architectures

As an initial experiment, it needs to be determined whether the network architectures
are able to recognize the road on the road panels at all. Therefore, a small subset of
rl_straight consisting of 64 images was manually annotated. To increase the number of
training images, these images and corresponding labels were then augmented (see the first
paragraph of section 5.3.1).
Figure 5.12 illustrates the development of the IOU on the validation set, as measured over
100 epochs of training, for the different architectures. It can be seen that after about
15 epochs, most of the models already achieve very good performance, indicating that
the architectures are well-suited to solve the problem. Also visible is, that a reduction
in architecture depth does decrease its performance but, using dilated convolutions, this
effect can be negated, with the dil8 architecture even slightly surpassing the performance
of the regular architecture.
However, two graphs show unexpected behavior. Architecture dil2 stays far below the
rest of the other architectures. The performance of flat_dil2 stays on the same level as
that of dil2 for the first few epochs, but between epoch 10 and 15 it drastically improves.



5.3. ROAD DETECTION USING NEURAL NETWORKS 75

Figure 5.12: Development of the IOU measure on the validation set for different architectures.
Higher values represent better performance. The training was performed for 100 epochs on a data
set of 229 images, an early subset of rl_straight.

Looking at the other graphs, a similarly strong movement can be seen during the first few
epochs.

Since dil2 is not very different from either regular, or dil4, its singular behavior is
highly conspicuous. Looking at the images generated by the final model, a big difference
between it and the other models becomes apparent. While it is able to correctly determine
where the road is, it does not label the background as black (not drivable), but in a grey
tone (see Figure 5.13). Considering the IOU measure, this leads to a small error at every
background pixel, summing to a large error for every image. Looking back at the big jump
in performance for flat_dil2, it might be assumed that this jump was caused by switching
from grey background to black background, since this seems to be what separates dil2

from the other architectures.

Because the architecture of dil2 is not very different from the other ones, it was assumed
that the difference in performance is not an architectural problem, but one of initialization.
Therefore, in the following experiments, each training run was repeated five times with
different random seeds, to be able to also judge the variance introduced by initialization.
Additionally, the IOU measure was evaluated on the test set, instead of the validation set.
However, both values turned out to develop qualitatively in the same way.



76 CHAPTER 5. SEMANTIC UNDERSTANDING

(a) Inference using dil2 architecture (b) Inference using dil8 architecture

Figure 5.13: Images annotated by the neural network after training on the reduced rl_straight
data set. The left image shows the problem of uncertain classification of the background area,
thereby accruing a large error over the whole image, even though the shape of the segmentation is
actually very good.

Comparing preprocessing steps

To find the best way to segment road images without intersections, each of the previously
outlined preprocessing steps was combined with each of the architectures, repeating each
of those training runs five times to account for the assumed initialization variance. The
results are shown in Figure 5.14. The main results are that there is a strong variance in
the results of most of the configurations. The flat architecture seems stable for most
input configurations. However, for color input, it varies just as strongly as the others.
Additionally, other architectures have higher maximum performances, even if they vary
more. Furthermore, it became evident that greyscale images lead to significantly worse
performance than the ones containing color information. The different versions of images
containing color (no preprocessing, inverted, half size, inverted + half size) do not seem to
show any significant differences. Therefore, further experiments focused on regular color
images.
Building on the experience from these experiments, and ideas gained from further research,
the droschkinator architecture was added. In the results of another test run on the same
data in Figure 5.15, the new architecture is much more stable than the other architectures,
while still delivering a high performance.
Since the performance of the neural networks is already very good, although only 64
annotated images were used, the problem of segmenting images of a curved road without
intersections was considered solved at this point.

Understanding intersections

After being able to recognize roads without intersections, different kinds of intersections
should now be added to determine whether a new architecture is needed to solve this
segmentation problem. The rl_crossings data set was used and the existing architectures
were tested. The results in Figure 5.16 show that the existing architectures already perform



5.3. ROAD DETECTION USING NEURAL NETWORKS 77

Figure 5.14: Performance of different combinations of preprocessing and architectures, as mea-
sured on the test set, after 100 epochs of training. Each training run was repeated five times with
differing random seeds to account for variance introduced by initialization. Higher values represent
better performance. The training was performed for 100 epochs on a data set of 229 images, an
early subset of rl_straight. BW represents the transformation to greyscale images (Black and
White).



78 CHAPTER 5. SEMANTIC UNDERSTANDING

Figure 5.15: Performance of different architectures, as measured on the test set, after 100 epochs
of training. Each training run was repeated five times with differing random seeds to account for
variance introduced by initialization. Higher values represent better performance. The training
was performed for 100 epochs on a data set of 229 images, an early subset of rl_straight. This
experiment added the new droschkinator architecture.

Figure 5.16: Performance of different architectures, as measured on the test set, after 100 epochs
of training. Each training run was repeated five times with differing random seeds to account for
variance introduced by initialization. Higher values represent better performance. The training
was performed for 100 epochs on the rl_crossings data set.



5.3. ROAD DETECTION USING NEURAL NETWORKS 79

(a) Noisy segmentation (b) Consistent segmentation

Figure 5.17: Exemplary test images, infered by the neural network after training on
rl_crossings. The overall segmentation works extremely well, though some jitter-errors exist.

very well on the new data set. The reduced variance in results can probably be assigned
to the significantly increased amount of training data. Figure 5.17 shows the surprisingly
good predictions. While there are some errors, those should not pose a problem when
feeding the segmentation into the control logic.
Since this experiment did not contain any long curvy routes, as in rl_straight, now the
two data sets were combined to rl_combined. If the resulting network performs well, it
can be assumed that it will perform well on the road panels in real life (given the same
lighting conditions etc. as in the training data). The results are shown in 5.18.

Recognizing roads in VTD

To test different configurations of the control logic, controlling the movement of the car,
it was desirable to be able to drive within the VTD simulation. Therefore, the network
needs to be able to segment roads in VTD, too. The used data set was vtd_crossings.
The results shown in figure 5.19 indicate that all of the tested architectures perform
sufficiently on this data set. The flat architecture performs worse than the rest, while
the droschkinator architecture shows almost no variation in the IOU test set.
Based hereon, it was assumed that the tested architectures are able to solve the road
segmentation task.

Learning transferable knowledge

An interesting question at the point of merging the simulated and real world applications
is whether it is possible to ascertain knowledge that is applicable to both worlds. I.e.: Can
one neural network be used to drive well enough in both the simulated, as well as the real
world?
To test this, vtd_crossings and rl_combined were combined. Since a lot of the archi-
tectures seemed to perform similarly well in previous experiments, some of them were
removed from the comparison.
Furthermore, the EarlyStopping-Callback was activated in Keras. Since past experi-
ments seemed to converge to a good solution quickly, and not deteriorate in performance
after a lot of further training iterations, this should speed up experiments. From here
on out the EarlyStopping mechanism stops the training if the validation loss has not im-



80 CHAPTER 5. SEMANTIC UNDERSTANDING

Figure 5.18: Performance of different architectures, as measured on the test set, after 100 epochs
of training. Each training run was repeated five times with differing random seeds to account for
variance introduced by initialization. Higher values represent better performance. The training
was performed for 100 epochs on the rl_combined data set. High values indicate that both curvy
roads and crossings can be recognized well.

Figure 5.19: Performance of different architectures, as measured on the test set, after 100 epochs
of training. Each training run was repeated five times with differing random seeds to account for
variance introduced by initialization. Higher values represent better performance. The training
was performed for 100 epochs on the vtd_crossings data set. High values indicate that both
curvy roads and crossings can be recognized well.



5.3. ROAD DETECTION USING NEURAL NETWORKS 81

Figure 5.20: Performance of different architectures, as measured on the test set, after a maximum
of 100 epochs of training. Each training run was repeated five times with differing random seeds
to account for variance introduced by initialization. Higher values represent better performance.
The training was performed on the combined vtd_crossings and rl_combined data set. High
performance indicates that the neural network is able to recognize streets both in the real world,
and in the simulation.

proved over the last three epochs of training. The results in Figure 5.20 indicate that
the network is able to generalize well enough to recognize roads in both simulated and
real world. While the test case is of course limited, these conclusions can be used as the
starting point for further research.

Enriching real life training with simulated scenarios

Another important question in context to the challenges posed by the real-world applica-
tion of autonomous driving methods is whether simulated data can be used to improve
real-world driving capabilities. Creating annotated real-world data is very costly and time
consuming. Therefore, it would be desirable to create a wide range of cheap simulated
data and add it to a lower amount of costly real-world data to then create a strong model
for driving in the real world.

To test this, several data sets were created, varying the proportions of VTD and real
life data. After initial experiments that tested 0, 25, 50, 75, and 100% of VTD data
respectively, the two consistently outperformed architectures regular and dil4, were
dropped to explore the space between 75 and 100% in 5% steps.



82 CHAPTER 5. SEMANTIC UNDERSTANDING

Figure 5.21: Performance of different architectures, as measured on the test set, after a maximum
of 100 epochs of training. Each training run was repeated five times with differing random seeds to
account for variance introduced by initialization. Higher values represent better performance. The
training was performed on different proportions of VTD and real life data. Higher values indicate
higher performance on segmenting real life street pictures.

The real life data used was the rl_combined data set. Since this data set was the limiting
factor, it was decided to always use a total of 977 images, no matter the percentage chosen.
This is the total number of images in the training set of rl_combined, and therefore the
maximum number of real life images that can be used. Fixing the number of images allows
to exclude any influence that the size of the training set might have. Since the influence
on predictions in the real world should be judged, the test set consists solely of the test
data from rl_combined.

The VTD data was supposed to reflect a variety of different circumstances to enrich the
training set with a lot of variation in the data and allow for robust features to be learned.
Therefore three different test routes were used in VTD, and images from each of them
for the weather settings blue_sky, cloudy, and rainy were extracted. The routes used
are vtd_rural, vtd_town, and vtd_evaluation (see section 5.3.1). An equal numbers of
images from each of the data sets and weather conditions was chosen, based on the given
percentage of VTD data. Any remaining image slots to reach the total number of 977
images are filled up with images from rl_combined.

To increase the computation speed, and because previous experiments had not shown any
drop in performance for this, all images were downscaled to a resolution of 240x160.



5.3. ROAD DETECTION USING NEURAL NETWORKS 83

The results of the experiments are shown in Figure 5.21. As expected, the worst results
are achieved when the model gets tested on real life data without ever seeing any during
training (100% VTD). The performance, as measured via the IOU, slowly declines when
increasing the proportion of VTD data. Interestingly, the IOU on the test set is still above
0.9, even for 95% VTD data indicating a solid recognition performance. It has to be kept in
mind that this happens for a total number of less than 50 real life images, since it was kept
the total number of images fixed. Therefore a decline of performance is to be expected.
Furthermore, experiments were run in which images were augmented, increasing the size
of the training data set eightfold. However, the results were qualitatively the same, so this
won’t be reported here.
Based on these results, it can be assumed that simulation data can be effectively used
to increase the size of and variation within the training data set. A clear limitation of
the experiment is the limited variation within the test set. Further experiments should be
repeated with a wider variety within the test set to better judge the quality of the resulting
models. Additionally, a larger total number of images should be used, so that using
95% of VTD images still leaves a reasonable number of real life images for the training.
Augmentation might help with this, but in this case did not improve performance.

5.3.5 Performing inference directly on the car

This section outlines the technical details of how inference was performed on the car.
The car should be able to recognize the ongoing street and detect the drivable area to make
proper control decisions. To achieve this, the model needs to be fed with live recordings
and to obtain a 2D-Matrix, which indicates the drivable area as fast as possible.
Like Tensorflow was used to define and train the neural network it also has been used
for making the live predictions, but without using Keras. Tensorflow is a well suited
framework, because it is well documented, completely free, broad utilizable and there are
many state of the art examples available on github which have overlapping objects. One
special reason to use Tensorflow for this project was the requirement to work with C++
and the possibility to define and train the neural network in python. Another advantage
is the well integrated GPU-utilization.
The team discussed many implementation methods for the inference with Tensorflow,
because it was not clear how it is possible to utilize the already trained segmentation
model. As a first approach, there was an idea to use a python environment within the C++
environment. It is possible to execute python code within C++ but it is not recommended
to do so, if the python code needs many libraries. This approach was discarded, because
a stable and fast solution for the problem was needed, which is scalable to include post
processing in further development states.
Another consideration was to call a Python server within the C++-environment and trans-
fer the input/output data over TCP. This solution was judged as not optimal, because it
would always get long response time due connection and conversion overhead.



84 CHAPTER 5. SEMANTIC UNDERSTANDING

Tensorflow itself brings an approach to deploy models for productive environments, which
is called Tensorflow Serving. The Introduction from the official page is: Ten [c]

TensorFlow Serving is a flexible, high-performance serving system for machine learning
models, designed for production environments. TensorFlow Serving makes it easy to deploy
new algorithms and experiments, while keeping the same server architecture and APIs.
TensorFlow Serving provides out-of-the-box integration with TensorFlow models, but can
be easily extended to serve other types of models and data.
This approach was also discarded because the effort appeared too high for integration and
understanding the relevant features, and Tensorflow Serving provides a great amount of
functionality.
Finally it was decided to do the prediction routine completely in C++ with the provided C-
API Ten [a]. By using the C-API, the possibility was given to use C++ code, which would
be the native solution in the ADTF environment. Another advantage is the flexibility,
which is necessary for the post processing implementation and the expected speed for
executing the inference routine.
Because Docker is used for the complete car setup it’s obvious to use and integrate an
already available dockerfile provided by Tensorflow.
Dockerfile Setup: (sources: Tensorflow Docker: Ten [b], NVIDIA Docker: NVI):

• Tensorflow image: development version with GPU support

– Ubuntu 16.04

– Bazel 0.15.0

– Tensorflow 1.10

• NVIDIA image

– CUDA 9.0

– cuDNN 7.2.1.38

It is necessary to use the NVIDIA-Dockerfile as well, because it contains the relevant
packages required for Tensorflow. All dependencies will be integrated into one dockerfile.
Since the main dockerfile runs with Ubuntu 18.04, it is required to modify the dockerfile
for working with the actual Version. Many commands could not be used with Ubuntu
18.04 because it was not available at this moment at the classical repositories, therefore it
was necessary to find suitable replacements.
Because the official dockerfiles were prepared for using a Python environment, but C++
was required for Tensorflow yet another modification was required. It was also necessary
to integrate the C-API into the dockerfile. Further it turned out to be desirable to be able
to use Tensorflow with or without GPU support, which made it necessary to create one
image with GPU functionality and another with only CPU usage as different dependencies



5.4. SIGN SEGMENTATION 85

were required. In the beginning, the non-development version was chosen, which installs
the Tensorflow package via the Ubuntu package management. But it turns out that only
the development version could use the complete functionality which is necessary for the
C++ environment.
To use a neural network trained within the C++ environment, it first has to be converted.
Since the definition and training is done within the Keras library, the trained model was
a HDF5-file, which does not work with the C-API. It was necessary to convert this model
into a format which could be used in an environment without Keras. Therefore the script
provided by Amir Abdi4 was used to convert the saved Keras model, including graph
definition and weights, into a single Protobuf file. This file could then be loaded in the
C++ environment.

5.4 Sign Segmentation

In order for the car to find its destination, it needs some kind of navigation system. In
the beginning of the project the decision was made not to create a world map that saves
the position of the car, as synchronizing the real world with the map and the cars position
on the map would in itself have been a difficult problem. Instead, it was decided to only
use local navigation based on street signs indicating where to turn and when to stop.
With a stop sign, turn right sign and turn left sign, that results in the car needing to
be able to distinguish three different street signs. This problem was divided into two
parts: segmentation and classification. For the segmentation task the team’s previous
segmentation network had to be adapted to not only segment roads but also street signs.
The segmented street sign would then be given to a simple classification network, described
in section 5.6.1, which distinguishes between the three types of signs plus an additional
No Sign class, in case something other than an actual sign was segmented. Between
the segmentation and classification it is also necessary to remove possible noise from the
segmentation map and crop the closest street sign to use as input for the classifier. This
step is described in section 5.5.
As it proved to be the best architecture for the previous street segmentation task, we
chose to use the droschkinator architecture to adapt to the new sign segmentation task.
This architecture used a Sigmoid activation in the last layer, where a 1 corresponds to the
street class and a 0 to the background class. Adding a third class meant we had to change
this activation function to now be a Softmax activation. Given a prediction vector y of
size J the Softmax function is defined as

Softmax(yi) = exp(yi)∑J
j=1 exp(yj)

4https://github.com/amir-abdi/keras_to_tensorflow



86 CHAPTER 5. SEMANTIC UNDERSTANDING

and produces a probability vector containing a probability for each class. As this is done
per pixel, this results in a h× w × c matrix, h and w being the image’s width and height
and c being the number of classes, in this case 3. As a result of this, the labels also had
to be adapted to this matrix format, containing a one-hot vector for each pixel.
As all previous datasets do not contain signs and manual labeling takes a lot of time,
in addition to capturing new images with signs, the augmentation is also modified as
described in 5.4.2, to artificially increase the amount of street signs in the data and produce
a better balance between classes.
But even with the added augmentation, achieving acceptable results for the street sign
segmentation turned out to be more difficult then initially anticipated. Testing the trained
network in the real world scenario revealed two main problems: Firstly, the network relies
very heavily on color, thus segmenting almost every red or blue area as a street sign and
not correctly segmenting actual street signs if their color is slightly off. Secondly, street
signs are only correctly segmented when they are less than a meter away from the camera,
which in most cases is too late to react to them while driving. To remedy these issues
modifications to both augmentation and network architecture have to be made, described
in sections 5.4.2 and 5.4.3 respectively.

5.4.1 Evaluation Metrics and Training

The metrics to evaluate the three class segmentation are now meanIOU and per-class IOU,
referring to the canonical IOU definition this time. This allows for more detailed evaluation
of the model performance, which becomes desirable when distinguishing between more
than two classes. The metrics are computed in the following way.

meanIOU = meanc∈C
TPc

FPc + FNc − TPc
,

where c ∈ C iterates over all classes, and the other terms indicate the true positive, false
positive and false negative counts for the respective class c.Garcia-Garcia et al. [2017]
The per-class IOU for a given class is simply the central term, parametrized to the
according class. To report the performance on a set of images, instead of a single image,
the values computed for each of the single images are averaged. However, this is where
a problem occurs that is specific to the use case of this project. If a test image does not
contain any pixels that are labeled as street sign, then this class does not have any true

positives, therefore the per-class IOU is zero, and the whole meanIOU value is skewed
towards zero. For this reason, in the aggregation of the meanIOU, any contributions by
images without street signs to the per-class IOU of the street sign class are ignored. The
respective meanIOU and the per-class IOU for the street sign class over all images are
only computed over the remaining values.
Training is done using a 50/50 combination of augmented VTD and real life data. For
VTD, images from both vtd_rural and vtd_town with automatically labeled roads and



5.4. SIGN SEGMENTATION 87

signs, as described in section 5.3.1, are used. For real life images, the newly created
rl_complete dataset is used, which consists of manually labeled images from a small
testing route, as well as the full route described in 3.7.4. In total the resulting dataset
includes 4720 training images and 248 test images.
The models are trained using the Adam solver with a learning rate of 1e − 4, binary

crossentropy as loss function and a batch size of 8. Before splitting the data into training
and validation data, it is shuffled. After each epoch of training, training, validation, and
test loss, meanIOU and per-class IOUs are logged. Since Keras applies metrics per batch
and averages over the batch-wise metrics, the problem described above appears again.
In batches without any street signs on the images, Keras still computes a (meaningless)
per-class IOU for the street sign class. It then automatically averages those wrong
per-class IOUs over all batches and reports it as values for the training and validation
set. Because of the faulty values included, these measures will generally by skewed towards
zero. A custom Callback was written to manually correct this error for the measures on
the test set. Adding even more manual computations for the training and validation set,
or changing code deep within the Keras libraries for this single use case was deemed too
costly.

5.4.2 Street Sign Augmentation

As learning of the street sign class turned out to be more difficult than just streets, espe-
cially with the much lower representation of that class in the training data, an additional
step was added between the transformation and noise filter steps described in section 5.3.1.
In this step up to five images of street signs are randomly placed in each image, each of
which is individually randomly rotated between -45 and +45 degrees and sheared between
-60 and 60 degrees to simulate three-dimensional rotation. To simulate distance to the
signs, they are additionally randomly scaled to be between 10×10 and 85×85 pixels. The
labels are also automatically modified to include the added signs. This helps to balance
the classes and prevents the network from outright ignoring that class but it does not
prevent it from just relying on the color of the signs.
This issue is addressed in two steps. Firstly the network has to be encouraged to learn the
signs’ structural features rather than their color, so instead of placing the signs in their
original color into the images, they are first converted to the HSV color space and their
hue value shifted by up to 90 degrees in either positive or negative direction. Additionally
the pixel values of the signs are multiplied by a factor between 0.5 and 1.5 and blended
with the original sign image using a frequency noise map to simulate light and shadow
effects.
Secondly the network has to be discouraged from just segmenting single colored areas or
other structures similar to signs. To achieve this, in addition to the signs other image parts
are inserted into the images, just without labeling them as signs and in this case only one
per image. Some of these were created by us, while others were taken from parts of the



88 CHAPTER 5. SEMANTIC UNDERSTANDING

Figure 5.22: Example augmentation of a single image with added signs and the modifications
described in section 5.3.1.

scenery, which the network actually segmented as signs. Figure 5.22 shows an example of
this modified augmentation.

5.4.3 Finding the Correct Receptive Field

As described in section 5.3.3, one measure to optimize street segmentation, was to increase
the receptive field of the neural network, because the local features of parts inside the street
are very similar to those outside it. Additionally, as a means to increase computational
speed, the resolution of the input images was reduced to 240× 160, as described in 5.3.4.
In most cases the street covers a large portion of the entire image, so more global features
suffice to detect it. Street signs on the other hand tend to only cover very small parts of
the image, especially when they are a few meters away from the camera. As this makes
them very hard to even see on such a low resolution, we decided to increase the resolution
back to the original 480× 360 pixels. This change alone did not lead to satisfying results
though, as can be seen in figure 5.24b, so we assumed that, even on the larger image
resolution, the receptive field used to predict a pixel’s class might still be too large.
The receptive field size R of each layer i in a convolutional neural network can be calculated
as

Ri = Ri−1 + (ki − 1)di

i−1∏
j=1

sj ,

where ki and di are the kernel size and dilation factor of layer i respectively, sj is the stride
of layer j and R0 = 1, meaning a receptive field of 1 × 1 Le and Borji [2017]. Transpose
convolutions, also sometimes called fractionally strided convolutions, are considered to
have a fractional stride, in this case of sj = 1/2.
Using this equation for the droschkinator architecture reveals its receptive field to have
a size of 129× 129 pixels. To see whether changing the receptive field does actually have



5.4. SIGN SEGMENTATION 89

Architecture d4 d5 d6 RLast IOUstreet IOUsign IOUother meanIOU
droschkinator 2 4 8 129 0.94 0.45 0.97 0.79
dil244 2 4 4 97
dil224 2 2 4 81 0.92 0.53 0.96 0.80
dil124 1 2 4 73 0.93 0.56 0.96 0.82
nodil 1 1 1 41 0.89 0.54 0.94 0.79

Table 5.1: Comparison between the different architectures with their dilation factors in layers 4,
5 and 6, receptive fields at the last layer, per-class IOUs and meanIOUs.

an impact on sign segmentation performance, a modified version of the droschkinator

architecture was created, with all of the dilation factors set to 1. This model has a reduced
receptive field of 41× 41 pixels and will be called nodil.

The results of this new architecture show an extreme increase in sign segmentation perfor-
mance but in turn the performance for both the street and the background class declined,
as table 5.1 shows. As this showed a clear connection between receptive field size and
segmentation performance, multiple variations, with different dilation factors in layers 4
to 6, were trained, to find the best compromise between the different classes. Table 5.1
shows the dilation factors and the receptive field at the last layer of each of these new
architectures and figure 5.23 shows a visual representation of their receptive fields on an
example image.

Table 5.1 also shows the per-class IOUs and meanIOUs achieved on the test set. As
expected, the droschkinator architecture provides the best results for both the street
and the background class but performs the worst on the street sign class. Considering
the meanIOU, the dil124 architecture seems to yield the best compromise between the
classes. Due to low resource availability and technical failures towards the end of the
project, metrics for the dil244 architecture will not be provided but figure 5.24 suggests,
that they should be very similar to those of the dil224 architecture.

Figure 5.24 shows an example segmentation using each of the architectures, with dil124

clearly providing the best overall results.

Using one of these models to perform the inference on the car makes the whole image
processing loop take up to 200ms. Since a street sign has to be correctly segmented and
classified in multiple frames before triggering the turning intention, as described in section
5.6.1, this means the car has to drive very slowly. Tests show that decreasing the input
resolution to 240 × 160 pixels, would decrease this time to about 100ms, thus effectively
doubling the frames per second and the possible speed of the car. Unfortunately, none of
the architectures are able to reliably segment street signs on such a low resolution, so it
is kept at 480× 360 pixels.



90 CHAPTER 5. SEMANTIC UNDERSTANDING

Figure 5.23: Visual comparison between receptive fields of the different architectures.

5.4.4 SegNet

While the network architecture was modified to distinguish between three classes per pixel
instead of two, the classification error increases to an unacceptable value. In this state it
seems useful to establish a second network with a different architecture to compare the
group’s results.
Another advantage for this approach is the possibility to use this alternative network
when the primary network will not work well enough for the multiclass segmentation. The
SegNet is a deep convolutional encoder-decoder architecture for image segmentation which
was presented in 2016 (seg). It outperforms several state of the art segmentation networks
and solves the pixel-wise classification task for 11 different classes.

One difference between SegNet and the architectures used in this project is the amount
of downsample/upsample layers, where the SegNet has one more for each. This results
in a more complex architecture which requires more GPU-memory due to the increasing
amount of parameters.
To use the SegNet for the three class segmentation, it was necessary to adapt the model
and distinguish only between street, background and signs.
Another difference in the SegNet implementation is the possibility to weight each class
with a real value for the loss function to balance the training process. This weighting ap-
proach is not integrated in Keras per default but could get implemented if the experiments
on the SegNet show reasonable advantages.



5.4. SIGN SEGMENTATION 91

(a) Original image (b) droschkinator

(c) dil244 (d) dil224

(e) dil124 (f) nodil

Figure 5.24: Comparison between segmentation results using different dilation factors.

Figure 5.25: Network architecture of SegNet



92 CHAPTER 5. SEMANTIC UNDERSTANDING

Architecture IOUstreet IOUsign IOUother meanIOU
dil124 0.93 0.56 0.96 0.82
SegNet 0.88 0.40 0.94 0.74

Table 5.2: Comparison between the SegNet architecture and dil124

Figure 5.26: Used street signs for navigation. Signs for turning left, or right at crossings and a
stop sign for stopping at the destination.

One further adaption was the expected shape of the labels where the primary model ex-
pects three channels per sample with a 1 in the predicted channel and 0 for the rest
(one hot encoding). The net expects only one channel with the predicted class per pixel.
Therefore it was necessary to convert the complete training data.
Having the SegNet as an alternative network architecture makes the process of experi-
menting with different architectures for the primary network easier, because the outputs
of both networks can be compared to eliminate possible sources of failure and errors.
The table 5.2 shows the different results for segmentation quality. The dil124 architecture
achieved better scores for every segmentation class. It is to be noted that the SegNet
architecture was developed for a different problem and is not tweaked to the maximum
performance for the presented challenge with three classes. Since the SegNet is supposed
to be a reference for providing state of the art results in segmentation, it turns out dil124

achieved respectable performance.

5.5 Sign Extraction

Three kinds of street signs are going to be distinguished, which are shown in figure 5.26.
The segmentation network outputs a segmented image, which contains information about
occurrence and position of street signs. In this section, it will be discussed how to use
this information to crop the street sign out of the frame, which was captured by the on-
board camera. The algorithm is given the inference by the segmentation network and the
corresponding camera image.

5.5.1 Filter Artifacts

Because of imperfections in the segmentation process, the sign detection needs to be
denoised before the actual sign image can be extracted. In order to do that, the resolution



5.5. SIGN EXTRACTION 93

of the inference produced by the segmentation network gets reduced by a factor of 4 and
after that morphological transformations are applied.
First opening is applied, which consists of erosion and dilation in that order. Erosion
removes a one pixel layer from each group of pixels and Dilation adds a one pixel layer to
each group of pixels. This removes single pixels and noise from the image, while keeping
large structures intact. Afterwards closing is applied, which is the exact opposite of closing,
dilation first and erosion second. This closes gaps inside structures to prevent interpreting
one structure as multiple different ones. The image is then rescaled to the original size in
order to use the positional information given by the segmentation process.

5.5.2 Align Contours around Street Signs

After filtering the artifacts there should mainly be actual objects of class street sign left in
the inference. In order to cut these objects out of the camera image, contours need to be
aligned around these objects. These contours get computed similarly to a convex hull and
are needed to infer a bounding box. For this, the OpenCV implementation of Suzuki and
Abe [1985] was used. The bounding box is then cut out from the camera image, extracting
the street sign.

Without reduction of the resolution, eroding and dilating the objects, even little noise
is detected as an actual street sign, as in figure 5.27. Even after preprocessing, not all
bounding boxes contain actual street signs, because the filtering of the artifacts does not
guarantee to remove all artifacts. As figure 5.28 shows, there might be very large artifacts,
which can probably survive the reduction of resolution and the erosion. To maximize the
probability of detecting the nearest street sign, which, for the purpose of turning inten-
tions, is the most important street sign, a heuristic approach is used where only the largest
bounding box is chosen. This also means that, even if there are multiple street signs on
a camera image, at most one street sign will be classified. Figure 5.28 shows the found
bounding boxes of the street signs after preprocessing of the inference. After the bounding
box gets cut out of the camera images, it is resized to a fixed resolution of 32 by 32 pixels
as this is the size of the GTSRB street sign data set which will be incorporated in the
street sign classification training process (see 5.6.1). As shown in figure 5.29 these images
are sometimes not as easy to distinguish as the street signs of figure 5.26, although most
can be identified by humans.

The preprocessing steps described above are implemented as an ADTF filter which takes
the segmented image from the segmentation filter as well as the corresponding, original
camera image. As an output, it sends the 32 by 32 pixel street sign, if found. In order to
filter out additional noise a minimum width and height was chosen for a detected sign to
actually get sent out. Because the largest bounding box is always chosen, this adds another



94 CHAPTER 5. SEMANTIC UNDERSTANDING

Figure 5.27: Found objects without preprocessing steps (reduction of resolution, opening and
closing). Notice that, due to the imperfection of the segmentation, many artifacts were identified
to be part of the street sign.

Figure 5.28: Found objects with preprocessing steps (reduction of resolution, opening and clos-
ing). Notice that the largest bounding box in this example represents the actual street sign.

layer of filtering as small size noise will not mistakenly be sent out as a recognized sign.
The exact values for these parameters where set to (50,50) after manual experiments.

5.6 Sign Classification

5.6.1 Street Sign Classifier

After cutting out the nearest street sign, a small classifier is needed to classify the type
of street sign detected. Similar to the image segmentation network, the sign classification
task is handled by a CNN but, as shown in figure 5.30, there are much fewer layers, since
the classification task is much simpler. Also, the classifier outputs a prediction vector with
confidence values for each type of street sign. Categorical crossentropy was used as the
training loss and the Adam was used as the optimizer, both of which were provided by
Keras.

As shown in 5.26 the classifier needs to be able to distinguish three different signs. How-
ever, since the approach for cutting out street signs is heuristic and thus not perfect,
the classifier also needs to be able to output No sign. Thus, a fourth class was added,



5.6. SIGN CLASSIFICATION 95

Figure 5.29: Multiple Sequences of consecutive frames with detected cropped street signs. These
are the input features for the street sign classifier

Figure 5.30: Architecture of the proposed street sign classifier by Shustanov and Yakimov [2017].



96 CHAPTER 5. SEMANTIC UNDERSTANDING

which is trained by providing random excerpts from existing, real life images captured in
rl_complete which could be mistaken for a street sign.

Street sign data

Two sources of training data were used to train the street sign classifier. First, 150
training images (per class) were sampled from the GTSRB street sign dataset provided
by Stallkamp et al. [2011]. Since the dataset does not contain the preferred left and right
signs a decision was made to take images from the straight ahead arrow class and rotate
them to be either left or right arrow signs. For the No sign class, images were created
in an automated fashion using already segmented images from the rl_complete dataset.
Parts of segmented images which do not belong to the class street sign were automatically
cut out and resized to 32 by 32 pixels.
Additional training data was manually created from rl_complete, using the street sign
class. For this, the cutout algorithm described above was used on images with exactly one
street sign, automatically extracting them. However, this resulted in relatively few images
since not every image in rl_complete contains street signs. In order to increase the number
of these images to the desired 150, subimages were cut out. A subimage was defined as
a 22 by 22 square positioned randomly inside the original image. Three subimages per
original were created, thus not only quadrupling the data but also making the classifier
more robust to partial images. Overall, this resulted in 300 training images per class.
The same approach was used to create 100 test images per class, although no images from
GTSRB were used in order to test the classifier on data as close to the actual use case as
possible. Also, automatic augmentation of the training images was applied during training
in order to make training more robust. The augmentation consists of a 10 degree rotation
to either side, a random change in contrast and the possibility for added Gaussian blur.
Overall, after augmentation, the training set contained roughly 7800 images.

Experiments and results

Based on a proposed street sign classification model by Shustanov and Yakimov [2017],
which can be seen in 5.30, three architectures were trained and evaluated:

1. The original architecture (Arch1)

2. Same as 1, but with added dropout after fully-connected layer (Arch2)

3. Same as 2, but with batch normalization after each convolutional layer (Arch3)

Dropout is a method for regularization in neural network, originally proposed by Srivastava
et al. [2014]. While training, it disables each neuron of a specified layer with a probability
of p. Thus, the network is forced to chose different routes and thus is less likely to overfit.



5.6. SIGN CLASSIFICATION 97

(a) Right boundary not visible (b) Left boundary not visible (c) Only arrow body visible

Figure 5.31: Three example cases in which the classifier would get confused. Notice that, for all
three cases, the left arrow is only partially shown.

Architecture Sign Precision Recall F1-Score

Arch1

NoSign 0.98 0.93 0.95
Stop 0.99 0.99 0.99
Right 0.85 0.79 0.82
Left 0.81 0.91 0.85

Arch2

NoSign 0.96 0.96 0.96
Stop 0.98 0.98 0.98
Right 0.90 0.89 0.89
Left 0.90 0.91 0.90

Arch3

NoSign 0.99 0.98 0.98
Stop 1.00 1.00 1.00
Right 0.92 0.88 0.90
Left 0.88 0.92 0.90

Table 5.3: Results on test data after training each classifier architecture for 150 epochs. Best
values are shown in bold for convenience.

Naturally, dropout has no effect when using the network for inference. p was set to 0.9,
which drops each neuron with a probability of 90%.

For evaluation, the F1-Score was used since it gives a better insight into how and why the
model performs as opposed to raw accuracy while evaluating. Precision measures the ratio
of true positive decisions to the sum of true positives and false positives. In other words,
it measures (per class) how many of the signs classified were actually of that class. On the
other hand, recall is given by the ratio of true positives to the sum of true positives and
false negatives. That way, one measures (again, per class) how many of the test images
were actually classified with that class. The F1-Score is then simply computed by taking
the harmonic mean of precision and recall.

Precision = true positives
true positives + false positives

Recall = true positives
true positives + false negatives



98 CHAPTER 5. SEMANTIC UNDERSTANDING

F1 = 2 · precision · recallprecision + recall

As can be seen in 5.3, the third architecture with batch normalization and dropout resulted
in the best overall model, achieving F1-Scores of at least 0.9 on all classes. This came as
no surprise since the original architecture has no form of regularization and thus should
not generalize as good as the alternative architectures. Because of this, a decision was
made to use Arch3 as the street sign classifier.

After evaluating the model on the actual course it became clear that one particular scenario
was fooling the classifier. This case takes many forms, some of which are presented in 5.31.
As one can see, the arrow is not fully present in the images, causing the classifier to decide
on the opposite sign (in this case Right sign instead of Left sign). Additional training
data for this specific scenario was captured and added to the training data, resulting in
far fewer errors of this kind. Most likely, this error was caused by the GTSRB training
images, because they only feature street signs centered in the middle of the image with
background around them and no partial signs.

Implementation of classification filter

When implementing the network described above into an ADTF filter, extra steps were
taken to ensure that a turning intention is correct, since a wrong turning intention can
cause the car to leave the track completely and may thus prevent the car from reaching
its desired destination.

First, the results of the classifier are aggregated into a buffer of size 4. The buffer is reset
every two seconds. Once the buffer is filled, the filter checks if the buffer contains one
class with more than 70%. If so, this class of sign is send out as detected. By choosing
the prevailing class of frames detected the confidence that the turning direction is correct
was increased. Additionally, a classifier result is only added to the aggregation buffer if
the confidence of the highest class is bigger than 0.8. These parameters were determined
by manual experimentation.

5.7 Evaluation

In this chapter, the success of the semantic understanding aspect of the project group will
be made, based on the requirements that were set in section 2. Additionally, proposals for
improvements on further project work will be given, based on the experiences during the
project.



5.7. EVALUATION 99

5.7.1 Fulfilling requirements

The first three requirements GEN-SEM-1, GEN-SEM-2, and GEN-SEM-3 demand that
the car distinguishes between drivable and non-drivable areas of the floor mats on straight
streets, bendings, and intersections. In the setting where only those two classes exist, the
neural network was able to distinguish well between them, in all three settings. When
adding the task of recognizing street signs, the quality of the segmentation became clearly
worse for all road settings, although still remaining good enough for the control logic
to properly steer the car. In some cases, the middle of the intersection became hard to
recognize. This is, however, an inherently difficult problem, since the local features at
this spot all simply indicate dark spots without any guiding white lines around them to
indicate that they belong to the street.
Requirement GEN-SEM-4 asks for the car to detect obstacles as non-drivable areas. This
is the case for obstacles that are similar to those included in the training data, for example
other cars. As is generally the case for neural networks, it can not be guaranteed that this
holds for all possible obstacles. Since the requirement only asks that it ’should’ classify
obstacles as non-drivable, it can be regarded as fulfilled.
The last three requirements GEN-SEM-5, GEN-SEM-6, and GEN-SEM-7 ask that the
three different street signs be recognized. This task consists of two parts. First, the seg-
mentation network must segment the sign within the camera image. Then, this segmented
area is cut out and classified into one of the sign classes, or the ’NoSign’ class. Under the
right conditions, i.e. similar to those in the training data, this process works very well.
The classification achieves f- scores above 0.8 on all classes. Combined with an aggregation
over several frames, this leads to very few misclassifications in practical test runs. The
segmentation network, however, depends on the test conditions being very similar to those
in the training data. Different lighting and different environments surrounding the road
panels, e.g. the difference between the test hall and the development area, were detrimen-
tal to the performance of the segmentation, as compared with the strong results shown
on pre-recorded test data. Segmenting the signs from a large distances was therefore not
possible in the physical test environment. While this task has been solved in principle
(indicated by high mean IOU on the test set), the performance varies with changing en-
vironment conditions. This is of course true for all segmentation efforts in the group’s
experiments, but mostly proved a problem with regard to segmenting signs.

5.7.2 Lessons learned

In this section, experiences will be shared on how the project work could be improved if
it were repeated.
First off, the initial network to work with should have been the Segnet, as the standard
approach to solving automotive segmentation tasks. While it is bigger than the UNet,
it can be used as a benchmark to compare other approaches to, and see how different



100 CHAPTER 5. SEMANTIC UNDERSTANDING

data augmentation or preparation techniques impact the performance. Furthermore, a
pruning approach could have been used on the trained Segnet to decrease the size, thereby
accounting for the limited computational resources available.
Regarding the self-developed network architectures, an approach that was not explored
would have been to use Residual BlocksHe et al. [2016], which could enable precise recon-
structions of the borders of the road and detected signs.
With regard to choosing a course of action, it might have been better to work on street
sign detection and street detection at the same time, either with two teams in parallel,
or starting out with three classes right away. The sign detection proved more difficult
than anticipated, leading to bottle-neck problems towards the end of the project, since
other components relied on a working street sign detection. Additionally, especially the
beginning of the project was marked by trial&error experimentation and visual inspection
instead of systematic experiments, based on factual metrics. However, while working on
the sign detection, it also became clear that those metrics would often show promising
results during training on testing, but the network would perform a lot more poorly when
in the physical testing environment. Evaluation by visual inspection therefore can not be
eliminated completely from the process.



Chapter 6

Lane Keeping

Programming a car to be autonomous is a modern topic which is studied profoundly
today. Research topics like pattern recognition (see chapter chapter 5) and car-specific
embedded systems (see chapter 3) have to be considered to make a car drive reactively to
its surroundings. For an autonomous driving style method of motion planning and control
theory are required. The former makes use of the segmented image as described in chapter
chapter 5 to compute a drivable path for the car. In other words, the question where the
car drives to is answered, namely the path planning. The latter focuses on how to drive,
namely the motion control. This chapter describes the approach of lane keeping from the
perspective of the path planning and the motion control. At first, a motivation for this
issue is given. Thereafter, the chosen handling of the orientation error of the vehicle is
discussed. Two different path planning algorithms are presented and explained, whereby
both the computation of the desired destination and the computation of the error angle
are explained. Furthermore, this chapter deals with controlling the car to follow a lane,
using the previously computed error angle.

6.1 Introduction and Basics of Motion Control

In this section, an overview over the basics of path planning and motion control are given.

Path Planning

In chapter 5 methods were introduced to segment the car’s camera images. For both the
trapezoid front-view as well as the bird’s eye view the result is a segmented black-white
image, which is represented as a matrix containing the values 0 (black pixel) and 255
(white pixel) in each cell, where white pixels represent the drivable lane. The aim of path
planning is to find a destination point for the car to head for, based on the given segmen-
tation. Different heuristics to find the best destination point were tested in section 6.2,
based on different assumptions. In subsection 6.2.1, it is assumed that the car is only

101



102 CHAPTER 6. LANE KEEPING

driving straightforward and there are no obstacles on its route. In subsection 6.2.3, the
premise of driving on a straight road only is loosened. Therefore, a path planning heuristic
is described that enables the car to keep the lane in bendings.

In the second half of the project, the input from the lane detection module was changed,
so that the white pixels indicate the whole street and not only the right lane. This change
supports a clearer separation between the semantic understanding and the decision and
control layers in the implemented architecture and creates a basis for an advanced path
planning algorithm. So, a new algorithm for path planning based on a histogram of
drivable pixels was developed, which is described in subsection 6.2.4. The main aim of
this development was the ability to turn on crossings as it is stated in the requirements
GEN-CON-3 to GEN-CON-8, which was the primary target of the second half of the
project.
Motion Control

DF

e

Car

~vF ~vD

Figure 6.1: Birdseye-view of a car facing towards point F. A new destination point D is computed
with a path planning algorithm. The angle between the vectors ~vF and ~vD is called the error angle
e.

∆ Controller Plant
y(t)

Observer

r(t) e(t) u(t)

Figure 6.2: A closed-loop system. y(t) is the current state of the controlled parameter, r(t) is the
desired state of the controlled parameter, e(t) = r(t)− y(t) is the error, u(t) is the control output.

Once a new destination point D is decided using a path planning algorithm, the angle
between the vector ~vF of the car’s current facing direction and the vector ~vD from the
car’s front to D can be computed (see Figure 6.1). This angle is called the error angle e.
It is necessary to quickly reduce e while the car is driving to reach the destination point



6.1. INTRODUCTION AND BASICS OF MOTION CONTROL 103

D, as e = 0 implies that the car is facing towards the destination point D. However, it
is also necessary to reduce e in such a way that abrupt and non-static behavior of the
car is prevented. Therefore, methods of Control Theory are required, namely dynamic
control-loop systems. Dynamic control-loop systems describe real-time scenarios where
the change of certain system parameters is controlled over time. They consist of a plant,
a desired parameter state as a control input (also called setpoint) and a controller. The
former is a mathematical representation of a system whereas the latter is a heuristic that
uses the control input to compute a control output which will be passed to the plant.

There are two kinds of control-loop systems, namely open-loop and closed-loop systems.
While an open-loop system has no more components than those previously described, a
closed-loop system also contains an observer (also called sensor) that monitors the con-
trolled parameter and creates a feedback loop (see Figure 6.2). By using an observer,
the dynamic closed-loop system can compute the difference between the desired and
the current parameter state (denoted as r(t) and y(t)), which is called the error error
e(t) = r(t)− y(t). This error is passed to the controller (as the controller input) to com-
pute a control output u(t), which is further passed to the plant. By describing the car’s
driving style as a dynamic closed-loop system, it is possible to reduce e(t) both quickly
and periodically over time and to prevent a high overshoot of the steering angle.

Altogether, a dynamic closed-loop system for the car has the following specifications:

• Parameter to control is the steering angle (also called the yaw angle).

• The observer is the segmented image. Strictly speaking, it is the Basler Camera
(see subsection 3.1.2), as the it supplies the natural images for the segmentation (see
chapter 5). However, it is assumed that the car is located at the bottom center of
the segmentation and facing straight ahead at all times. In the segmentation, the
vector ~vF of the car’s current facing direction always points to the center of the
segmentation (also see Figure 6.5).

• The control input is the error angle (see Figure 6.1).

• Because of the car’s actuators, the frequency for the computation is bounded to
approximately 1

30s, thus there will be about 30 iterations of the closed-loop system
per second. Ideally, every iteration reduces e(t) slightly to guarantee a smooth
driving style.

The controller heuristics will be described in section 6.3 and the plant is a state space
model of the car, which will be explained in the remainder of this chapter.

To describe the car mathematically as a state space model, kinematic equations are re-
quired, which describe the motion of objects in space and time (see Theorem 6.1.1). As



104 CHAPTER 6. LANE KEEPING

the car is a rigid body that is assumed to perform only planar motion, the kinematic
equations can be described using three coordinates.

6.1.1 Definition. (kinematic equations, Zhao et al. [2012])
Let x and y be the car’s coordinates, r the car’s angular velocity around the center of
gravity, u, v the longitudinal and the angular velocity. Then basic kinematic equations
are defined as follows:

m(u̇− vr) =
∑

Fx (6.1)

m(v̇ − ur) =
∑

Fy (6.2)

Iṙ =
∑

Mz (6.3)

where m is the vehicle inertia mass, I the vehicle yaw moment inertia,
∑
Fx and

∑
Fy

are the net force components in the x and y direction and
∑
Mz is the external torque

around the z axis.

Following the approach in Zhao et al. [2012], a constant longitudinal velocity u = uc is
assumed. Therefore, Equation 6.1 can be omitted, resulting in a dynamic two degree-of-
freedom model. A vector (v, r)T with arbitrary lateral and angular velocities v and r is
therefore called a state. Equation 6.2 and Equation 6.3 describe the motion of an object
using net force components in the y and the z direction. These equations - or rather the
net force components - need to be further specified using the vehicle parameters described
in Table 6.1 to compute a car-specific state space model.

The lateral forces of the left and right tires are assumed to be equal, however, the lateral
forces of the front and rear tires (denoted as Fyf and Fyr) need to be distinguished as the
front wheel is the steering wheel. Equation 6.2 and Equation 6.3 can be expressed as in
Equation 6.4 and Equation 6.5.

m(v̇ − ucr) = Fyf + Fyr (6.4)

Iṙ = aFyf − bFyr (6.5)

The lateral forces Fyf and Fyf can be approximated as

Fyf = −Cf ·
(v − ar

uc
− δf

)
, (6.6)

for an arbitrary front wheel steer angle δf , and

Fyr = −Cr ·
(v − br

uc

)
. (6.7)



6.1. INTRODUCTION AND BASICS OF MOTION CONTROL 105

Equation 6.6 and Equation 6.7 can be substituted into Equation 6.4 and Equation 6.5
to form vehicle-specific kinematic equations using the vehicle parameters described in
Table 6.1.

m(v̇ − ucr) = Cfδf −
(Cf + Cr)

uc
v − (aCf − bCr)

uc
r (6.8)

Iṙ = aCfδf −
(aCf + bCr)

uc
v − (a2Cf − b2Cr)

uc
r (6.9)

Parameter Unit Description
m kg vehicle mass
I kg ·m2 vehicle yaw moment inertia
w m wheelbase
a m longitudinal position of front wheel from vehicle center of gravity
b m longitudinal position of rear wheel from vehicle center of gravity
hg m height of vehicle center of gravity
Cf N · rad−1 cornering stiffness of front tire
Cr N · rad−1 cornering stiffness of rear tire
uc m · s−1 longitudinal velocity

Table 6.1: pertinent vehicle parameters for space state model, see Zhao et al. [2012]

The resulting state space systemM is shown in Equation 6.10.

[
v̇

ṙ

]
=
[
a11 a12

a21 a22

] [
v

r

]
+
[
b1

b2

]
δf (t) (6.10)

With:

a11 = −Cf + Cr

ucm
a12 = −uc −

aCf − bCr

ucm

a21 = −aCf − bCr

ucI
a22 = −a

2Cf − b2Cr

ucI

b1 = Cf

m
b2 = aCf

I

The vehicle used in Zhao et al. [2012] is a 1.6L Tiggo3 SUV with the parameters listed in
Table 6.2. The resulting state space systemMT iggo is shown in Equation 6.11.

[
v̇

ṙ

]
=
[
−3.785 −19.167
0.469 0.976

]
+
[
v

r

]
+
[
34.409
27.686

]
δf (t) (6.11)

The car used in the virtual environment as well as in the physical world both are an
Audi Q2 (see Figure 3.1), however, their parameters differ vastly as the physical car is a
miniature model of the original car. To some degree the model-car’s parameters may be



106 CHAPTER 6. LANE KEEPING

Parameter Value
m 2325
I 4132
w 3.025
a 1.430
b 1.595
hg 0.5
Cf 80000
Cr 96000

Table 6.2: Car parameters of Tiggo3 SUV

scaled down in proportion to the original car, but especially weight is a factor that cannot
be scaled authentically with all other parameters. In Table 6.3 the parameters for the car
in the simulation are shown. As a number of approximations were made, they might be
not precise.

Parameter Value
m 1810
I 3815a

w 2.813
a 1.407b

b 1.407
hg 0.5c

Cf 62280d

Cr 74735e

aAs in McHenry and McHenry [2008], a brief approximation for the Yaw Inertia is I = M · x2+y2

12 ,
where M is the vehicle’s mass and x and y are the vehicle’s length and width. For this car, the values are
x = 4.646m and y = 1.926m.

bThe center of gravity is assumed to be in the exact center of the wheelbase.
cAs both the Tiggo and the Audi Q2 are SUV’s, the height of the center of gravity is assumed to be hg

as in Table 6.2.
dAs mass affects this value the most, this value was taken proportionally from the mass of the Tiggo

to its front tire stiffness. The mass-to-front-tire-stiffness ratio is 34.41, so this value is the product of the
mass of the car and this ratio.

eThe mass-to-rear-tire-stiffness ratio is 41.29.

Table 6.3: Car parameters of VTD car

The resulting state space systemMV T D is shown in Equation 6.12.[
v̇

ṙ

]
=
[
−3.785 −19.516
0.2297 0.3231

] [
v

r

]
+
[
34.409
22.968

]
δf (t) (6.12)

The parameters for the model car are shown in Table 6.4. Again, a number of approxi-
mations were made. Also, for the model car, a constant velocity is assumed.



6.2. THE ORIENTATION ERROR OF THE VEHICLE 107

Parameter Value
m 7.5
I 0.235a

w 0.37
a 0.185b

b 0.185
hg 0.1
Cf 258c

Cr 310
aThe same formula as in Table 6.3 was used. The model car’s length is 0.54m, the width is 0.29m.
bThe center of gravity is assumed to be in the exact middle of the wheelbase.
cThe same assumption as in Table 6.3 was made.

Table 6.4: Car parameters of model car

The resulting state space system isMQ2 is as follows:

[
v̇

ṙ

]
=
[
−18.17 −3.861
9.759 1.805

] [
v

r

]
+
[
34.409
203.32

]
δf (t). (6.13)

As a specific model is used during the project, a precise model for motion control is
needed. That is the reason for the use of different controllers, namely a P-controller and
a PID-controller. For more information about controllers, see section 6.3.

6.2 The Orientation Error of the Vehicle

In the upcoming sections, first a desired path that follows the road and has enough clear-
ance for the car to drive along is defined and following the computation for such a desired
path is presented. Afterwards the calculation for the resulting yaw error (see Figure 6.1),
that the car tries to minimize to follow a desired path, is described. Lastly, a naive path
planning approach and a more sophisticated histogram-based path planning method are
introduced to improve the quality of driving autonomously.
An overview of all implemented components and how they interact with each other is
shown in Figure 6.3.

6.2.1 Computation of the Desired Path

In the first half of the project the basis for the computation of the desired path was based
on the Lane Detection algorithm described in section 5.2, which was implemented for a
proof of concept. A segmentation with a CNN was not yet implemented at this stage. The
lane detection method was able to detect simple lanes without any obstacles or crossroads,
thus the first priority was to gain experience on driving on such simple lanes. To do so,
the middle of it is assumed to be the desired path, as it follows the road and has always
enough clearance for the car to navigate.



108 CHAPTER 6. LANE KEEPING

2D Matrix
black and white pixels
(drivable lane as a
bird’s-eye view)

Naive Path Planning

Compute
middle line

Vector of
middle

line points

Calculate
Destionation

Histogram-based Path Planning

Compute
Histogram of
Drivable Area

Histogram

Calculate
Destination

Destination point

Compute error angle

Error Angle

Steering Angle Controller

Steering angle

Figure 6.3: Overview of the implemented components for lane keeping.



6.2. THE ORIENTATION ERROR OF THE VEHICLE 109

Input: matrix of pixels
Output: middle line of the drivable lane
initialize middle line as empty list
for each row do
if white pixels exist then
add the middle pixel between the first and last white pixel to middle line

end if
end for
return middle line

Algorithm 6.1: Computation of the middle line

The computation of this middle line is achieved through algorithm 6.1. It was developed
with simplicity in mind to accomplish the proof of concept stated in subsection 1.2.1
quickly. This algorithm is described in the following.
The input for the algorithm is a matrix containing a binary image of black and white
pixels. White pixels represent the drivable lane from a bird’s-eye view as detected by the
semantic understanding module, described in section 5.2.
To compute the middle of the lane, the positions of the borders of the lane have to be found.
The algorithm searches for white pixels in each row of the delivered matrix and labels the
x-coordinates as xfirst and xlast for the first and last found white pixel respectively. These
pixels form the borders of the lane, so their x-coordinates can be used for the computation
of the middle of the lane for each row.
The x-coordinate of each row’s middle pixel is computed as the arithmetic mean of both
borders pixels x-coordinates, i.e.:

xfirst + xlast

2
At the end of the algorithm, the points are returned as a list of points, which is used as
the desired path for path planing.

(a) Middle line of the lane shown as a trape-
zoid produced by an early version of the lane
detection algorithm.

(b) Middle line of the lane shown from a bird’s-
eye view produced by the advanced lane detec-
tion algorithm.

Figure 6.4: Examples for calculated desired paths.



110 CHAPTER 6. LANE KEEPING

(a) Visualization of the computed error angle
using the whole middle line. (b) Visualization of the computed error angle

using half of the middle line.

Figure 6.5: Two examples of calculated error angles. The blue line shows the calculated middle
line, the green line describes the current heading direction and the red area describes the error
that has to be minimized in order to keep the car in the lane.

In an earlier state of the project, the output from the semantic understanding module was
an image showing a detected lane from a frontal view from the car’s hood. The image was
therefore always a simple trapezoid, as shown in figure 6.4a.
When an advanced lane detection algorithm was implemented (see section 5.2), the input
changed to a bird’s-eye view of the road ahead of the car. The algorithm to obtain the
middle line can be used with both image types without the need of any adaptations.
Figure 6.4b shows the result of a calculated middle line given a bird’s-eye view image.

6.2.2 Computation of the Error Angle

The current heading direction of the vehicle is abstractly seen as the y-axis of the car’s
view. The error angle φerror between the y-axis and the computed middle line of the lane,
see Figure 6.1. It is calculated as shown in equation (6.14).
At first, the points used for the calculation were the first point (xfirst, yfirst) and the last
point (xlast, ylast) of the recognized middle line in the whole trapezoid sighting, as seen in
figure 6.5a.

φerror = arccos

 |xlast − xfirst|√
(xlast − xfirst)2 + (ylast − yfirst)2

 (6.14)

When the input for the middle line computation was switched to the Advanced Lane
Detection algorithm, which was able to also detect bends, the computed error angle was
observably too high in bends of the road, as the first and the last point on the middle line
were used.
As a consequence was that the vehicle oversteered even in the slightest bends. The chosen
solution for this problem was using only a fraction of the recognized middle line for the
computation of the error angle, because this way it could be ensured that the vehicle adapts



6.2. THE ORIENTATION ERROR OF THE VEHICLE 111

y

Figure 6.6: Example of an error angle when using naive path planning.

its motion to its direct vicinity and not to the part of the lane which is not urgently relevant
yet. Figure 6.5b shows a new error angle, now based on the bird’s-eye view and only using
half of the middle line.
For following the line, the computed error angle has to be minimized, so that the heading
direction of the vehicle, corresponds to the desired path. This minimization is achieved
by using a controller, which is explained in detail in section 6.3.

6.2.3 Naive Path Planning

Using the trapezoid images the vehicle was able to correct its yaw error with the introduced
methods. The introduction of the bird’s-eye view removed the vanishing point from the
image. Thus, only the yaw error, but not the distance to the center of the road are
corrected, which lead to the car drifting away slowly from the detected road. A naive path
planning was implemented to cope with this new behavior.
To incorporate the cars distance to the center of the road a more suitable error angle is
necessary. A naive approach is to use the angle to a destination point on the calculated
middle line. Choosing a destination point from the middle line is achieved by intersecting
the middle line with a vertical scanline, as shown in Figure 6.6. The y-value of the
scanline is set by a hyper parameter. The error is small when the car is heading directly
to a destination point and large when the car is not facing the destination directly, thus
not driving directly to the center of the lane.
The simple method to estimate a desired path described in section 6.2.1 and section 6.2.2
has proven to be sufficient in simple scenarios where the whole street is inside the field of
view. In situations where the car is off-center on the road and an edge of the road is not
visible, the middle line algorithm cannot compute a continuous middle line. Figure 6.7a
shows an example in VTD where the vehicle is off-centered to the left and the lane is not
completely in the field of view. The resulting bird’s-eye view with the calculated middle
line is pictured in figure 6.7b. Because the lane exits the picture to the sides in the top and



112 CHAPTER 6. LANE KEEPING

bottom parts, algorithm 6.1 is not able to estimate center points for these rows. If this
happens on the scanline mentioned in Figure 6.6 a destination point cannot be calculated.
To solve this problem, the missing parts of the desired path are approximated using a
Lagrange polynomial. Defining a polynomial of degree k in Lagrange form requires k + 1
support points. Therefore, k + 1 equidistant points from the calculated middle line are
used as supports. From the calculated polynomial n new points are evaluated and used
as target points.

Let (x0, y0), . . . (xk, yk) be points from the calculated middle line. These points will be
used as pairs of arguments and values for the interpolation polynomial. A Lagrange base
polynomial is generated for every point

lj(x) :=
k∏

m=0
m 6=j

x− xm

xj − xm

with 0 ≤ j ≤ k. The interpolation polynomial is then given as a linear combination of
base polynomials and the corresponding values

L(x) :=
k∑

j=0
yjlj(x)

As an example, Figure 6.8a shows five points on the calculated middle, which are used to
calculate five base polynomials. Using the Lagrange polynomial defined by the five base
polynomials eight new points in figure 6.8b are interpolated.

Similar to the error angle described at the beginning of the chapter, an interpolated
destination point will be chosen even if parts of the drivable lane are cut away in the
bird’s-eye view. Figure 6.9 shows an example where the third point from eight newly
interpolated points is chosen as the destination point.

(a) VTD image with vehicle off center to the
left.

(b) Resulting bird’s-eye view.

Figure 6.7: Example for a problematic scenario for the simple method of finding a desired path.



6.2. THE ORIENTATION ERROR OF THE VEHICLE 113

(a) Five points taken from the simple middle
line from the same bird’s-eye view as in fig-
ure 6.7b.

(b) Resulting interpolated line segments.

Figure 6.8: Example for an interpolated polynomial using Lagrange form. Left shows the points
used for the base polynomials, right shows the new interpolated points.

Additional points from the interpolation can be used in future works if different controllers,
for example the Model Predictive Controller, should be tried out to correct the vehicles
orientation.
The described method to obtain new points for missing segments is a heuristic that does
not guarantee an optimal controlling process of the vehicle. For an optimized controlling
process of the vehicle a histogram-based algorithm was developed. This is described in
the next section.

6.2.4 Histogram-based Path Planning

While the proof of concept could already be achieved by using the simple middle line
algorithm (see 6.1), the group’s advanced goal to use a neural network to segment the
drivable street on a pixel basis required a different approach.
The neural network does not define borders of the drivable area as a polynomial but
classifies every pixel instead. Therefore, the resulting segmentation sometimes has fuzzy

Figure 6.9: New error angle to use for the controller



114 CHAPTER 6. LANE KEEPING

Bottom Index

Cell Height

Cell Width

Figure 6.10: Visualization of the effect of hyper parameters bottom index, cell height and cell
width.

borders or contained holes (see Figure 5.2e and 5.17a for comparison). These small errors
make calculating a suitable middle line for the naive path planning hard if not impossible.
Thus, a new path planning approach based on the obstacle detection technique described
in [Siciliano and Khatib, 2016, Chap. 35.9.2] was implemented. The technique divides
the field of view in evenly sized sections and assigns a value to each section based on the
amount of sensed obstacles inside that part of the field of view. This yields to a histogram
where each bin represents an angular region of the field of view and every bins value
corresponds to the clearance in that direction. Choosing the bin with the lowest value
leads to the direction the car is least likely to collide with an obstacle.
To use this idea for the task of lane keeping the meaning of the histogram values is inverted.
A bin is assigned a value based on the drivable area it contains. Choosing a cell with the
highest value therefore yields to the direction with the most drivable space. This technique
does not depend on clear borders for calculating a destination point and thus can be used
with the new segmentation. The whole approach is described in detail as follows.
Similarly to the middle line algorithm described in subsection 6.2.1 his algorithm receives a
binary image of the street from an aerial perspective as input, where white and black pixels
represent drivable and non-drivable areas respectively. Given three hyper parameters a
region of interest and the size for each cell are defined in the input image. The available
parameters are:

• bottom index - the bottom index for each cell

• cell height - the height for each cell

• cell width - the width for each cell

Figure 6.10 shows the effect of each parameter. Given this setup each cell represents an
angular range in front of the car.



6.2. THE ORIENTATION ERROR OF THE VEHICLE 115

× =

Figure 6.11: Visualization for weighting the histogram of drivable area with a gaussian.

In the next step, each cell is rated by the amount of drivable area it contains. For this all
pixel values inside a cell are added and subsequently divided by the sum of all cells to get
a relative rating. This leads to a histogram where each bin represents an angular section
and the value of a bin the corresponding rating. Since pixels that are classified as drivable
area are white (255) or non drivable area are black (0), cells with a higher rating contain
more pixels that are classified as drivable area. Therefore, destination points chosen from
the highest rated cell are the least likely to lead away from the road.
To give the car the tendency to drive forward the histogram is multiplied with the prob-
ability density function of a normal distribution. The mean for the distribution is given
as the center of the histogram, while the variance can be set as another hyper parameter.
Figure 6.11 gives a visual explanation of this calculation. Additionally, when the car has
to make a turn, the mean of the normal distribution will be moved to the corresponding
edge of the histogram, favoring cells in the turning direction. This is reset to default after
a predefined time, which can be set via a hyper parameter.
Choosing a cell gives a rough direction in which the car can drive. To calculate an error
angle a concrete destination point has to be calculated. The bottom index is used as y-
coordinate. To calculate the x-coordinate two different methods were implemented, which
are explained in the following.

Interpolation of destination point The first method assumes the center of the cell
with maximum value to be the target direction. This results in as many discrete des-
tinations as there are cells in the histogram. Changes to the histogram maximum that
naturally occur while driving therefore lead to jumps in the target calculation, which re-
sults in a jumpy steering behavior. To conquer this and provide smooth changes to the
destination the values of the cells adjacent to the maximum are used to interpolate the
destinations x-coordinate. First the minimum of both adjacent cells is identified and la-
beled as min. The respective other cell is therefore the in between cell and is labeled as
inb. Based on the ratio between the values a interpolation coefficient

α := inb−min
max−min

is calculated. This α is then used to enforce the same ratio between one half of a cell
width and the interpolated x-coordinate. An explaining diagram for this method is shown
in Figure 6.12.



116 CHAPTER 6. LANE KEEPING

max

inb

min

d

α · d

1
2cell width

α · 1
2cell width

Figure 6.12: Visualization of the interpolation method to calculate the destination x-coordinate.

threshold

max

(avg · cw + 1
2cw, bi)

Figure 6.13: Visualization of the averaging method to calculate the destination x-coordinate.
Significant cells, i.e., cells with values above the threshold, are colored orange. avg is the average
of the indices of all significant cells; cw and bi are abbreviations for the earlier mentioned hyper
parameters cell width and bottom index.

Averaging of destination point The second method differentiates between significant
and insignificant cells. A significant cell is a cell whose value is higher than a given
threshold, which is derived from a proportion of the maximum value. The proportion
is set through a hyper parameter by the user. After that, the average index over all
significant cells is taken and the x-coordinate is then calculated as

x := avg · cell width+ 1
2cell width.

One half of a cell width is added to the coordinate to guarantee a centered destination in
a balanced histogram. Figure 6.13 shows a diagram of this method.



6.3. CONTROL THE VEHICLE 117

As the segmentation is sometimes jittery, the histogram values and the directly derived
destination point are jittery as well. To smooth out the steering the current destination
point is interpolated with the previously calculated destination. This dampens changes to
the destination and prevents sending jumpy changes to the steering controller.

6.3 Control the Vehicle

section 6.1 explains that the car (or rather its driving style) needs to be described as a
dynamic closed-loop system where the controlled variable is the steering angle (also see
Figure 6.2). Also, the observer and the plant were specified. In section 6.2, different
approaches to determine the error angle were introduced. In this chapter, the focus is set
on the controller of the dynamic closed-loop system.

Recall the following values:

• the current state, y(t)

• the desired state, r(t)

• the resulting error, e(t) = r(t)− y(t)

• the control output, u(t)

As mentioned in section 6.1, a controller is a mathematical heuristic that takes the error
e(t) as a parameter to compute a control output u(t). As there are many different kinds of
controllers, the focus was set on two prominent kinds of controllers, namely a P-Controller
and a PID-Controller. The PID controller is an advanced controller, which consists of 3
components: the proportional-, the integrative- and the derivative gain. Each component
computes a value based on e(t), which will then be summed up to form the control output
u(t). Briefly speaking, the proportional gain influences the steering by a ratio of e(t). The
integrative component integrates the sum of all u(τ) with 0 ≤ τ < t that were computed
before the current computation of u(t). The derivative component ’predicts’ future error
terms, so that they can be treated beforehand. For each component there is a constant:
KP for the proportional gain, KI for the integrative gain and KD for the derivative gain.
Let t be the time unit. Then the control output u(t) is calculated as follows (also see
Figure 6.14):

u(t) = KP ∗ e(t) +KI ∗
t∫

0

e(τ)dτ +KD ∗
de(t)
dt

(6.15)

Proper values for KP , KI and KD have to be found to control the vehicle, as there exist
many combinations of values leading to uncontrolled behavior of the vehicle. It is possible



118 CHAPTER 6. LANE KEEPING

Figure 6.14: Closed loop system using a PID Controller

to choose Kx = 0 for some x ∈ {P, I,D}, to get a different type of controller.

Different approaches for the path planning were tested (see section 6.2), just like differ-
ently trained neural networks for the lane detection (see chapter 5). As the choice of the
controller’s constants depend strongly on the chosen path planning as well as the lane
detection heuristic, using the same chosen PID-values led to different results within each
scenario. In the following chapters, the results of different PID-constants are presented.
These PID-constants were found either empirically or heuristically by making use of the
mathematical state space systems Equation 6.12 and Equation 6.13 in the program Oc-
tave1, especially using the package control2, which contains the necessary functions for
control theory.
However, since the heuristics evolved during the project, not every combination of PID-
constants, lane detection algorithm and path planning heuristic was tested. The following
chapters describe the progress chronologically with respect to the project.

1https://www.gnu.org/software/octave/
2https://octave.sourceforge.io/control/index.html



6.3. CONTROL THE VEHICLE 119

6.3.1 The Proportional Controller

Choosing KI = KD = 0 leads to a proportional controller, which multiplies the resulting
error angle only with a proportional gain. The calculation will look like:

u(t) = KP ∗ e(t) (6.16)

In the first attempt to let the VTD car drive autonomously, a proportional controller was
used. The simple lane detection heuristic described in section 5.1 as well as the naive
route planning heuristic described in subsection 6.2.1 were used. Several values for KP

were tested empirically. The first attempt was KP = 100, which led to progressive oscilla-
tion. Trying different values emerged that the vehicle’s proportional gain for the steering
controller should depend on its velocity.
Using KP = 1.75 enabled the car to drive most of the curves steadily in our VTD simu-
lation with an approximate velocity of 22m

s (see Figure 6.15). The figure shows the step
response of the state space modelMV T D with the given KP as time passes. The setpoint
is 1, thus the step response ideally has to approach 1 over time.
On the first glance, it might look like it is rather steady and approaching to 1, which
indicates controlled behavior. However, having KP = 1.75, the step response is actually
diverging as the overshoot increases in each step. Since no severe oscillation was noticeable
in the simulation, no further investigations were made.

Figure 6.15: ModelMV T D (Equation 6.12), P-controlled with KP = (1.75, 0, 0) with constant
velocitiy of 22 m

s and setpoint 1. The explanation follows the following name pattern: ’VTD’
(inducesMVT D) + [longitudal velocity] + ’P’ + [P-constant with decimal point after the first digit
from right to left]



120 CHAPTER 6. LANE KEEPING

The vehicle would only leave the lane on peaky curves appearing near the horizon of the
segmentation (see Figure 6.7a). This problem could be solved by changing the length of
the desired path as described in section 6.2. For a controlled driving style it was premised
that the vehicle started driving in the middle of the street. Also, there is no correction
of lateral offset. To solve this problem prototypically, a middle line position error epos(t)
was added, so that the steering algorithm worked as follows:

u(t) = KP ∗ e(t)− epos(t) ∗ 0.0005. (6.17)

Using Equation 6.17, the car was able to drive steadily through peaky curves and get back
to the center of the lane. However, the smaller the constant longitudinal velocity was, the
more abrupt the movement induced by this controller became.

In the second attempt, the Advanced Lane Detection (see section 5.2) as well as the route
planning heuristic in subsection 6.2.1 were used. Several values were empirically tested
within the VTD simulation and values that seemed to cause a controlled driving style were
additionally tested in Octave using the mathematical state space model Equation 6.12.
For KP = 0.4, the step response is shown in Figure 6.16.

Figure 6.16: Model MVT D (Equation 6.12), P-controlled with KP = 0.4 at constant velocities
of 4, 12 and 22 m

s .

It is clear to see that for KP = 0.4 the amplitude of the step response increases over
time the slower the car drives. This is in contrast to what was observed empirically in
VTD. The differences may have occurred because of inaccuracies of the state space models
Equation 6.12 and Equation 6.13. Another possible cause for this mismatch is that the
velocity in the empirical tests was not completely constant, so that the replication of this



6.3. CONTROL THE VEHICLE 121

situation was not fully matching the state space model.

The histogram-based route planning heuristic (see subsection 6.2.4) as well as a neuronal
network (see section 5.3) were implemented and used for the following test cases:

• KP = 0.4, performed well

• KP = 0.5, performed best

• KP = 0.25, performed badly

• KP ≥ 1, performed okay

KP = 0.5 led to the most promising results. Therefore, this value was tested with the
state space model MQ2 (see Equation 6.13). Different constant speeds were tested and
can be seen in Figure 6.17. Having lower velocities of 2 or 4 m

s , the overshoot initially is
high (at a step response of 1.24, so 24%), whereas the setpoint is reached at about 0.15
seconds. At higher velocities, the overshoot is lesser, but the setpoint is reached after 0.4
to 0.6 seconds. However, having a very high velocity of 20 m

s , the the step response results
in progressive oscillation, inducing an uncontrolled driving style. This may be happening
because at very high velocities, even small control inputs can lead to changes that cause
an even greater error e(t).

Figure 6.17: ModelMQ2 (Equation 6.13), P-controlled with KP = 0.5 with constant velocities
of 2, 4, 7, 10, 15, 17 and 20 m

s . The explanation follows the following name pattern: ’Droschke’
(inducesMQ2) + [longitudinal velocity] + ’P’ + [P-constant with decimal point after the first digit
from right to left]



122 CHAPTER 6. LANE KEEPING

6.3.2 The PID Controller

Choosing a non-zero value for KP , KI and KD leads to a PID-Controller described at the
end of section 6.3. Equation 6.15 describes the calculation of the control output.

By following the the scheme in Table 6.5, the most promising result found using the state
space model MVT D (see Equation 6.12) was KP ID = (0.0005, 0.00001, 0.0007) at a con-
stant velocity of 12m

s . The histogram-based route planning heuristic (see subsection 6.2.4)
as well as a neuronal network (see section 5.3) were used. The step response can be seen
in Figure 6.18.

Figure 6.18: ModelMV T D, PID-controlled with KP ID = (0.0005, 0.00001, 0.0007) with constant
velocities of 7 and 12 m

s . The explanation follows the following name pattern: ’VTD’ (induces
MV T D) + [longitudinal velocity] + ’P’ + [P-constant with decimal point after the first digit from
right to left] + ’I’ + [I-constant with decimal point after the first digit from right to left] + ’D’ +
[D-constant with decimal point after the first digit from right to left]

However, these values do not cause a controlled steering behavior if the velocity is below
7m

s . The resulting step response of using these values with a constant velocity of 5 m
s can

be seen in Figure 6.19.

Testing these values in VTD showed that the car did not steer, which led to uncontrolled
behavior. This might have happened because of the low PID-values that cause the control
output to be so low that it becomes unnoticeable.
By empirically testing PID-values on the actual car, the most promising values found were
KP ID = (0.4, 0.005, 0.05), although the values KP ID = (0.5, 0, 0), shown in Figure 6.17,



6.3. CONTROL THE VEHICLE 123

Figure 6.19: ModelMV T D, PID-controlled with KP ID = (0.0005, 0.00001, 0.0007) with constant
velocity of 5 m

s

showed a better performance when steering in practical experiments. The corresponding
step response of the state space modelMQ2 using these values can be seen in Figure 6.20.

Figure 6.20: ModelMQ2, PID-controlled with KP ID = (0.4, 0.005, 0.05) with constant velocities
of 5, 7 and 12 m

s . Note that the time span is between 0 and 1.



124 CHAPTER 6. LANE KEEPING

Analogous to Figure 6.17, the PID-constants cause uncontrolled behavior at high velocity
(here: 20m

s ) in the state space model, as shown in Figure 6.21.

Figure 6.21: ModelMV T D, PID-controlled with KP ID = (0.4, 0.005, 0.05) with constant velocity
of 20 m

s

6.4 Evaluation of Lanekeeping

6.4.1 Fulfilling Requirements

GEN-CON-1 requires autonomous steering by the car. This is achieved by the Universal
Controller which receives an error angle based on the destination point that is computed
by the path planning filters.
GEN-CON-3 to GEN-CON-5 and GEN-CON-6 to GEN-CON-8 require proper handling
of crossings and T-crossings respectively. This is implemented by moving the mean of
the multiplied normal probability density function. When multiplied to the edge of the
histogram, this edge is therefore favored for the computation of the destination point.
Thus the car plans a path to steer in the desired direction.
GEN-CON-9, GEN-CON-10 and GEN-CON-12 define the car’s behavior when detecting
a turn sign and the upcoming actions to take at an intersection. When the path planning
filter receives a turn signal the mean is moved to the histograms edge as mentioned pre-
viously, thus taking a turn. After three seconds, the path planning filter resets the mean
position back to the center, which lets the car drive straightforward again.
Driving around an obstacle is required by GEN-CON-13. This is achieved by multiplying
the array of ultrasonic sensors to the histogram. A sensed obstacle will create small weights



6.4. EVALUATION OF LANEKEEPING 125

in the array and thus extenuate cells in the histogram that contain the obstacle. Therefore,
a destination point not targeting the obstacle is chosen.

6.4.2 Motivation and Setup

To test assumptions about the car’s behavior, mainly two different setups were used.
Firstly, a small configuration (max. 6m · 5m) of printed street mats was laid out in the
corridor to quickly test minor aspects (getting used to the interaction with controls and
drive train, basic lane keeping and integration tests of manual control, see subsection 6.4.3).
This setup is fast to build and remove and therefore convenient for spontaneous testing.

For more in-depth experiments, a bigger configuration was built in a research hall (see
Figure 6.23 and Figure 3.20). This allowed for tests with higher velocities, greater distances
and in general a more spacious world environment for the sensors.

To evaluate the quality of each configuration, the car drove a simple course autonomously
and logged every calculated error angle about every fifth of a second. The logs were
evaluated in Table 6.8 afterwards using the metrics described in Table 6.7. Starting with
a default configuration that seemed to cause a good driving style of the car (for instance,
staying on straight streets as well as sharp bends while driving at low velocities or reaching
the steering setpoint quickly without much disturbance), certain parameter values were
configured while the other parameter values were fixed. To enable comparability between
the experiments, every experiment had to be performed with minimum changes to the
surrounding environment. Therefore, a simple course and a protocol for all experiments is
defined. The course is shown in Figure 6.22a. It starts with three straight mats, followed
by a right-hand S-bend, one straight mat, a left-hand S-bend and finally three straight
mats. The starting straight section is used to give the car enough space to accelerate
until the target speed is reached. Both S-bends are used to test the behavior of the path
planning and the controller. The remaining three straight mats are used to check if and
how fast the car is able to stabilize itself after following a bend. Each execution starts at
the same position. Figure 6.22b shows the starting position for an execution where the
car drives in the center of the road. For experiments where the car had to follow a specific
side of the road, the car was positioned respectively. To minimize variances in the starting
position the axle position was marked with small pieces of tape, as shown in Figure 6.22c.

Every experiment follows the same protocol. The car is first aligned given the markers.
Triggering the autonomous mode starts the experiment and the logging of error angles.
When the car reaches the end of the course, the autonomous mode is paused and the
car is aligned again at the end of the course to pass it once again this time from end to
beginning.



126 CHAPTER 6. LANE KEEPING

(a) Experiment route consisting
of three straight mats, a right-
hand S-bend, one straight mat,
a left-hand S-bend and finally
again three straight mats.

(b) Starting position for every
execution. After passing the
course once the car is positioned
the same way at the end again
to pass it the other way around.

(c) Markers for the tire po-
sitions. To minimize the dif-
ferences between executions the
axle positions are also marked
with a small stroke on the tape.

Figure 6.22: Setup for the experiments. During every experiment the car has to pass the same
course twice, always starting from the same position.

6.4.3 Manual Controls

The car has two operation modes. There is a RC mode that enables the user to control the
vehicle by using a common remote control from model motor sport. In this mode, one can
accelerate and steer the car manually and none of the sensors data or software decisions
have an impact on the car’s behavior. Vice versa, the autonomous mode disables all of the
RC functions and the car is operated only via ADTF. This means all orders from setting
lights to operating the actuators originate in ADTF.
To be able to steer and accelerate but most importantly brake remotely, a XBox remote
controller was used. It proved to be highly useful to set the car back on track in cases where
it failed to follow the track. The operator is able to control basic operations of the car
by hand while ADTF can still override the commands and trigger important actions like
emergency braking in the autonomous mode. Also, for testing steering related features,
the possibility to control the car’s speed helped immensely in finding the right velocity
when the track led to corners or junctions. In this case the software to test would take
over the steering and the operator using the XBox remote controller would be in control
of the longitudinal acceleration.

6.4.4 Experiments

Experiment: Finding Controller Parameter Values with State Space Model

As explained in subsection 6.3.2 the PID-constants in Figure 6.18 were found heuristically
using the scheme in Table 6.5. Initially, the values were found using a constant velocity of



6.4. EVALUATION OF LANEKEEPING 127

Figure 6.23: To have a variety of use cases, this track was designed with tighter and shallower
curves, different junctions, parking spaces and straights

20m
s , however re-checking the values using the velocity 12m

s appeared to behave similar.
In Table 6.6 a table of tested parameter values is shown using the state space system
Equation 6.12. The table shows 5 columns, one for each the P-, I- and D-constant as
well as one column that shows either the required time for the step response to converge
to 1 or ∞ if it diverges. In the fifth column, individual comments were made for further
explanation of the step response’s behavior. The terms disturbance and overshoot are used
here often. The first refers to the frequency or rather the oscillation of the step response,
the latter refers to its amplitude.
Result: Testing these values led to two main observations: first a lurching vehicle, chang-
ing the steering rapidly and secondly a far to conservative steering, not being able to stay
on the street. The conclusion is that both the path planning systems and the controller
are regulating against the measured error and adding their actions. The car was then
tested with values that seemed to be the least wrong to the naked eye. Then, also based
on intuition, the values were increased or decreased with constant check of the affected
steering performance. As described in section 6.3, it turned out that KP = 0.4 resulted



128 CHAPTER 6. LANE KEEPING

RT OS ST SSE S
Increasing KP Decrease Increase Small Increase Decrease Degrade
Increasing KI Small Decrease Increase Increase Large Decrease Degrade
Increasing KD Small Decrease Decrease Decrease Minor Change Improve

Table 6.5: Effects of independent P, I and D tuning on closed-loop response. See [Li et al., 2006,
p. 33, Table 1]. RT = Rise Time, OS = Overshoot, ST = Settling Time, SSE = Steady-State
Error, S = Stability. For example, while KI and KD are fixed, increasing KP alone can decrease
rise time, increase overshoot, slightly increase settling time, decrease the steady-state error and
decrease stability margins.

KP KI KD Converging? Comment
1 0 0 ∞ divergence visible at 20sec
5 0 0 ∞ divergence visible at 400sec
5 0 1 ∞ divergence visible at 100sec
5 0 2.5 >1000sec very high disturbance, low overshoot
5 0 3 >1000sec very high disturbance, low overshoot
5 0 1.4 ∞
5 0 10 >1000sec extreme disturbance, very low overshoot
0.5 0 0 ∞ divergence visible at 10sec
0.3 0 0.9 >1000s
0.3 0 0.15 400sec

0.002 0 0.15 <200sec
0.002 0 0.075 100sec
0.0002 0 0.01 20sec overshoot 20 percent
0.0006 0 0.002 6sec overshoot about 25 percent, clear convergance
0.0006 0.0063 0.002 ∞
0.001 0.00001 0.0007 4-6sec clear convergance
0.0005 0.00001 0.0007 4sec clear convergance, overshoot 20 percent

Table 6.6: Tested PID-constants using scheme in Table 6.5

in the VTD car being able to drive on a straight lane and on streets with slight curves.
This observation is in contrast to the results in Table 6.6.

Experiment: Finding Controller Parameter Values in Practice

The goal of testing the PID-constants using the state space models described in Equa-
tion 6.12 and Equation 6.13 was to reduce the general risk of using wrong PID-constants
that could lead to the car getting damaged in an accident. However, because certain
required parameters for the state space model of the car were missing, they had to be
approximated. This inaccuracy may have been the reason that the allegedly fitting PID-
constants within the state space models actually did not work in practice (see subsec-
tion 6.3.1 and subsection 6.3.2). To solve this problem, the PID-constants were tested
empirically within VTD. The PID-constants on the model-car were also tested empiri-
cally, but under strict supervision, at low velocities only and with the use of an emergency
brake system. It seemed like the VTD car and the real car behaved approximately similar



6.4. EVALUATION OF LANEKEEPING 129

using the same PID-constants.

Result: Using the trial-and-error-method showed that a P-Controller with KP = 0.7 was
the overall best solution to the naked eye for the model car with a constant longitudinal
velocity of 0.4m

s
. In the experiments 1 and 21 - 24 in Table 6.8, KP ∈ {0.4, 0.5, 0.7, 1, 1.5}

were tested. Seemingly, KP = 1.5 leads to the best driving style according to the data.
This is true if the car’s longitudinal velocity is very low. If the velocity is greater, the
quality of the driving style in general decreases as the steering becomes too strong which
leads to uncontrolled driving behavior. Using KP = 0.7 enables the use of greater longitu-
dinal velocities and therefore offers more flexibility. Also, it causes no significantly worse
result than KP = 1.5 at a longitudinal velocity of 0.4m

s
.

Experiment: Ultrasonic Distances for Histogram

For a proof of concept of a prototype obstacle avoidance the results of the histogram
were enhanced with distance data from the ultrasonic sensors. This experiment used the
ultrasonic values of all five front sensors to weight the corresponding cells of the histogram
(see subsection 6.2.4) such that the cells with small measured distances are less likely to
be chosen. The car is keeping the road based on the histogram. On the right lane a car
stands motionless, serving as an obstacle. A car is used as an obstacle, because cars are
usually labeled drivable.
Result: In some cases (curves, corners) the Ego vehicle just crashes into the parked car.
When the Ego vehicle dodges the parked one, velocity plays a critical role for when the
Ego car turns back on the right lane: If the longitudal velocity is too low, the car turns
back too early and crashes into the parking vehicle. On a straight road with the right
speed the autonomous car switches to the left lane just before the parked car and turns
back after it.

Experiment: Changing the Bottom Index

Experiments 3 to 6 show the impact of the cell’s bottom index on the autonomous driving.
The value controls the distance of a calculated destination point from the car. Lower values
result in closer destination points. Every value from 0.2 to 0.5 in steps of 0.1 was tested.
Result: The evaluation shows the best results in the mean and integral with a value of
0.2. These seemingly good results are tainted, as the bird’s-eye view has blind triangles
in the bottom corners that result from stretching the segmented image. Thus, the path
planning cannot compute destination points on the edges and therefore results in bigger
error angles. In the real world, values around 0.2 result in following the middle line
accurately on tracks with wide bends. However, because of the mentioned blind triangles
in the bottom corners, indices of this magnitude make it hard to navigate on tracks with
sharp corners. The absolute maximum and absolute integral are best when setting the



130 CHAPTER 6. LANE KEEPING

parameter to 0.5, because calculating a more foresighted destination point gives the car
more time to react on bends in the track. Values above 0.5 result in the car steering to
early in bends as it chooses a destination point too far away to navigate, thus sometimes
cutting the road edges.

Experiment: Changing the Cell Height

Experiments 7 to 10 evaluate the effect of different cell heights on the path planning. The
value controls the size of the area that is used for the analysis of the drivable road to
calculate the histogram. Every value from 0.1 to 0.5 in steps of 0.1 were tested.
Result: Using a value of 0.1 leads to the best results in every metric except for the
absolute integral. Higher values cause the car to steer early, similar to the experiment
of changing the bottom index. The value of choice is still 0.2 as this is slightly more
foresighted, which helps steering in sharp bends.

Experiment: Changing the Standard Deviation

Experiments 11 to 15 show the effect of different values for the standard deviation of the
multiplied normal probability density function. The tested values were 5 and 10 to 30
in steps of 10. Additionally, experiment 15 shows the effect of not multiplying a normal
probability density function to the histogram.
Result: Optimal results for all metrics except the absolute integral were achieved with
a value of 10 or 20, which reflects the observations in the real world and the decision to
use a value of 15. Experiment 5 failed due to the car driving off the road. Low values
lead to a narrow histogram. Therefore, more cells on the edge are not considered in the
averaging as they generally are below the necessary threshold. As a result, the car drives
really close to the roads edges before it countersteers.

Experiment: Changing the Averaging Threshold

Experiments 16 to 20 evaluate the impact of the averaging threshold. Values from 0.2 to
1 in steps of 0.2 were tested for this parameter.
Result: Based on the chosen metrics, high values around 0.9 lead to the best results with
the exception of the mean difference. A reason for this is that a lower threshold leads
to more considered cells in the averaging which makes the calculated destination point
more reliable. Higher values on the other hand lead to fewer considered cells, making the
calculated destination point prone to frequent changes. Observations in the real world
show that for high values (above 0.7) the car steers not enough in sharp bends due to the
ignoring of cells at the edge that are weighted by the normal probablity density function.



P
at
h
P
la
nn

in
g

NC Number of Cells
BI Bottom Index
H Height
CO Cell Offset
GM Gauss Mult
SD Standard Deviation
AT Average Threshold
IT IgnThresh

M
et
ri
cs

M The mean of all logged error angles. A value close to zero
indicates a balanced driving behavior, not tending to certain
lateral direction.

AMax The greatest absolute error angle that occurred. A high
value indicates a meaningful steering maneuver during the
experiment.

TI The trapezoidal integral. As the logged error angles are
discrete, this integral approximates a continuous integral.
The same route is driven forwards and backwards, so ideally,
this should be close to zero as the driving style should be
equivalent.

ATI The absolute trapezoidal integral, so all integrals are treated
as positives. A small value indicates that the logged error
angles during the experiment also were small.

MD The mean difference between all consecutive steps. A value
close to zero indicates a smooth driving style.

Table 6.7: Description of the used parameters and metrics in Table 6.8



Path Planning Control Metrics
Nr NC BI H CO GM SD AT IT KP M AMax TI ATI MD Plot
1 41 0.35 0.2 0 1 15 0.6 0.4 0.7 2.23e−2 6.57e−1 1.57 20.287 -1.51e−3 Figure B.2
2 41 0.25 0.2 0 1 10 0.6 0.4 0.7 -6.57e−5 6.44e−1 6.75e−3 19.718 -3.14e−4 Figure B.1
3 41 0.2 0.2 0 1 15 0.6 0.4 0.7 −4.58e−3 8.15e−1 −2.99e−1 21.017 -2.40e−3 Figure B.3
4 41 0.3 0.2 0 1 15 0.6 0.4 0.7 -7.16e−3 6.83e−1 -4.46e−1 21.454 −8.25e−4 Figure B.4
5 41 0.4 0.2 0 1 15 0.6 0.4 0.7 3.43e−2 6.53e−1 1.97 20.039 -1.18e−3 Figure B.5
6 41 0.5 0.2 0 1 15 0.6 0.4 0.7 4.08e−2 6.27e−1 2.54 17.461 -1.94e−3 Figure B.6
7 41 0.35 0.1 0 1 15 0.6 0.4 0.7 1.50e−2 6.36e−1 1.07 21.733 −1.11e−3 Figure B.7
8 41 0.35 0.3 0 1 15 0.6 0.4 0.7 3.21e−2 6.91e−1 2.01 20.611 -1.93e−3 Figure B.8
9 41 0.35 0.4 0 1 15 0.6 0.4 0.7 2.58e−2 7.38e−1 1.94 19.705 -1.95e−3 Figure B.9
10 41 0.35 0.5 0 1 15 0.6 0.4 0.7 4.63e−2 7.49e−1 2.87 18.792 -2.08e−3 Figure B.10
11 41 0.35 0.2 0 1 5 0.6 0.4 0.7 2.97e−2 9.46e−1 1.96 19.424 -2.22e−3 Figure B.11
12 41 0.35 0.2 0 1 10 0.6 0.4 0.7 5.15e−2 6.65e−1 3.39 21.469 -1.94e−3 Figure B.12
13 41 0.35 0.2 0 1 20 0.6 0.4 0.7 4.70e−2 7.46e−1 2.94 22.657 −4.08e−4 Figure B.13
14 41 0.35 0.2 0 1 30 0.6 0.4 0.7 5.23e−2 7.28e−1 3.04 20.912 -1.43e−3 Figure B.14
15 41 0.35 0.2 0 - - 0.6 0.4 0.7 5.76e−2 7.49e−1 3.71 20.493 -1.51e−3 Figure B.15
16 41 0.35 0.2 0 1 15 0.2 0.4 0.7 4.86e−2 6.72e−1 2.84 20.101 −1.35e−4 Figure B.16
17 41 0.35 0.2 0 1 15 0.4 0.4 0.7 6.04e−2 1.05 3.59 21.266 2.39e−4 Figure B.22
18 41 0.35 0.2 0 1 15 0.8 0.4 0.7 5.10e−2 7.20e−1 2.81 20.138 9.38e−4 Figure B.17
19 41 0.35 0.2 0 1 15 0.9 0.4 0.7 3.84e−2 6.13e−1 2.79 17.854 6.74e−4 Figure B.18
20 41 0.35 0.2 0 1 15 1 0.4 0.7 5.26e−2 7.02e−1 3.35 16.699 -1.82e−3 Figure B.19
21 41 0.35 0.2 0 1 15 0.6 0.4 0.5 6.01e−1 8.48e−1 4.05 29.655 -1.84e−4 Figure B.20
22 41 0.35 0.2 0 1 15 0.6 0.4 0.4 1.13e−1 1.05 7.60 35.354 -2.80e−3 Figure B.21
23 41 0.35 0.2 0 1 15 0.6 0.4 1 2.70e−2 5.76e−1 1.70 14.251 3.71e−4 Figure B.23
24 41 0.35 0.2 0 1 15 0.6 0.4 1.5 1.84e−2 5.21e−1 1.15 9.388 −1.66e−5 Figure B.24

Table 6.8: NC = Number of Cells, BI = BotIdx, H = Height, CO = CellOffset, GM = GaussMult, SD = StdDev, AT = AvgThresh, IT = IgnThresh, BS =
BuffSize, T = target, M = Mean, AMax = Absolute Maximum, TI = Trapezoidal Integral, ATI = Absolute TI, MD = MeanDiff. The bold faced values represent
the best results of the local set of experiments. In the red highlighted experiments the car drove off the street, so these values should not be considered.



Chapter 7

Implementation and
Documentation

Gitlab was chosen to be the documentation and implementation platform. It provided a
git repository, wiki and an issue board at once. Seven projects were created by the group:

• main The main code, wiki and the issues are placed here

• doc Documentation and related artifacts

• docker-droschke The place where the docker images are hosted

• accplus-adtf Code from another project group with a related topic as reference

• image-labelling-tool Code for a labeling tool the group used for labeling images to
train the neural network

• ref Reference project containing example source code from VTD and ADTF

• keras-to-tensorflow Code for transforming Keras models to Tensorflow models. Forked
from github.

Project Main The main project has a protected master branch. From the master
branch we created feature branches that usually refer to a certain issue on the board that
was handled by a single team member. If helpful, the developer added the issue number to
a commit so that the reviewer immediately knew what was developed. Only code that was
reviewed and approved by the other team member was merged into the master branch.
On a high level, the repository contains the directories description, projects and src.
The directory projects contains a version of an ADTF project and the directory de-

scription holds the media type description. There is also the directory src containing
the code for the neural network in the sub-directory Droschken-Net, the code for the
label extraction in the sub-directory labelutils and the code for the visualization of the
path planning algorithm in the directory web-visualization including the visualization’s

133



code. Most recently, a small reporting application error-logging was added, containing
a python script that logs debugging values from the path planning.
Development usually led to individual filters of which each had their own folder, which
can be found in the directory filters. For each filter, there is a single directory with the
name PG618_FilterName.
Since there was no further documentation about the filters than comments in the code,
a short README file explaining each filter, its input, output parameters, its properties
and a description of what it is doing were introduced. This might look like:

Local Path Planning Filter
Inputs
Birdseyeview Video : cVideoPin
The video that is received from Lane Detection containing BEV (may in-

clude abstract world model later)
Current Speed : tSpeedData
Current Speed of the vehicle received from VTDAbstractionFilter
Outputs
Local Path : tPath
10 Points of the calculated path
Properties
Minimum Distance : tFloat32
The minimum distance that is used for path planning
What is the purpose of the filter?
This filter takes the bev to calculate a path to drive through the abstract

world model.

All README files are attached in section A.4 of the appendix and can be reviewed on
the repository in the most up-to-date version.
For the attribute types there is a structs file that is the basis for all communication between
the filters using ADTF media types.
For important standards and agreements, wiki pages were created and spread between
team members. Also, for the weekly review with the stakeholders, there was an individual
wiki page containing all information about tasks we worked on, problems that occurred and
what would be done next. This was used as the basis for presentations, for documenting
results from the meeting, and for other stakeholders to keep up-to-date when not being
able to join the appointments.

Project Doc This project keeps the slides from the seminar phase that happened prior
the project. Also, it contains information about the architecture, as well as the code for
this report.



A continuous integration pipeline was created for this, so that the group both knows that
the LaTeX files are compilable and there is an up-to-date PDF file whenever it is needed.

Project Docker-Droschke In the beginning of the project, there were problems for
team members to be able to use the development environment the group agreed on due
to issues with their operating systems and incompatibilities. Therefore, the project group
created a Docker image that enabled any machine to run the proposed IDE and compile
the code successfully using the libraries provided by ADTF.
Due to the success and good experience with Docker, the team decided to run ADTF on
the vehicle using Docker, too. This way, ADTF could be run on other machines in the
office which made parallel development easier and faster.
Besides the images, there is a documentation about how to use them in the repository as
a README file, too.

Project Accplus-Adtf Another project group already implemented an adaptive cruise
control software that is able to keep a configurable distance to the next vehicle given
a maximum speed. During their development, they implemented an XBox controller,
too, that we wanted to adjust and make usable for us as a safety mechanism in physical
simulations. The project contains the project groups code they provided to us.
Additional information was spread using Slack as instant messenger and a Google Calendar
for appointments.





Chapter 8

Summary

Enrolling in one of the many offered project groups is part of the (Applied) Computer
Science Masters degree at TU Dortmund University. Project groups are therefore con-
strained to a one year period and while that may at first seem very long, it is in fact
not. Getting a quite heterogeneous team (heterogeneous because previous knowledge and
expertise differed vastly) up to speed took more time than anticipated. Time was spent
on gaining domain specific knowledge (e.g. control theory, path planning), on learning to
work and integrate code with already existing frameworks (e.g. ADTF, Tensorflow), on
learning programming tools (e.g. git, docker) and programming languages (e.g. C++)
and last but not least on organizing a rather big group of twelve students. So, the group
had to acquire a lot of knowledge and learn to coordinate the teamwork first.

In the following the project group’s results are stated to summarize twelve months of
development of an autonomous driving system.

During the initial phase, the first goals to achieve were the goals for the proof of concept
stated in section 1.2.1. The proof of concept contains the goal 1 The autonomous car
must be able to drive straight, goal 2 The autonomous car must be able to keep a lane on
a straight road and goal 3 If there is a static obstacle in front of the autonomous car the
autonomous car must be able to stop prior to collision. These proof of concept goals were
fulfilled approximately by the end of the first half of the project. The process to fulfill
these goals is mostly described in section 5.1, section 6.2.1, and section 4.2.2.

The second half was used to extend and improve the system’s functionalities to realize at
least the minimal goals stated in subsection 1.2.2.

With the fulfillment of the proof of concept goal 3 the minimal goal 4 The autonomous car
must prevent a collision with static obstacles by stopping was already achieved sufficiently
to enable further work on the other minimal goals. So, requirements SAF-1 and SAF-6
belonging to goal 4 are met in that the autonomous vehicle stops in front of an obstacle,
as long as the obstacle is standing in front of the vehicle.

137



The minimal goal 1 The autonomous car must be able to follow a previously unknown
route inside the virtual simulation and goal 2 The autonomous car must be able to follow
a previously unknown route in the physical simulation required a lot of work as not only
the feature-rich drive autonomously functionality but also the drive manually functionality
and the emergency brake path had to be developed to ensure the system’s safety, as it is
explained in chapter 4. The successful accomplishment of these both goals included the
fulfillment of most of the general requirements from section 2.1 and safety requirements
from section 2.2. As the project group aimed to meet the goals by using neural networks
as it is stated in section 5.3, it was necessary not only to design a suitable convolutional
neural network architecture but also to develop an advanced path planning algorithm
which enables the autonomous vehicle to turn on various intersections. Especially the
detection of signs meeting requirements GEN-SEM-5 to GEN-SEM-7 demanded more
work from the group than initially expected. An additional difficulty was the different
behavior of the vehicle in the virtual and the physical simulation, which is stated in
section 3.6.
In summary, it can be stated that the minimal goals 1 and 2 were achieved sufficiently as
the developed autonomous driving system is able to follow different previously unknown
routes inside the virtual simulation as well as inside the physical simulation. Indeed, the
vehicle does not always stay reliably on the street during the whole route and does not
always recognize the correct street sign at the first try, but in most cases it is able to get
back on the street and to react correctly to street signs.
The last minimal goal 3 The autonomous car must set light signals when turning and brak-
ing and the associated requirements GEN-SNX-10 to GEN-SNX-12 were achieved success-
fully with the implementation of the PG618_Lights filter as it is described in section 4.1.2.

While working on the achievement of the minimal goals, several of the optional goals
defined in subsection 1.2.3 were additionally accomplished.
The vehicle can drive around static obstacles under certain limitations. This is possible
because of the usage of an histogram-based path planning algorithm which is described in
section 6.2.4. However, the emergency brake must be deactivated for this purpose as this
function of the autonomous vehicle prevents its ability to drive around static obstacles.
So, a trade-off between the different goals of the project group has to be made.
Furthermore, the optional goal The vehicle is driving smoothly was achieved for the most
part as suitable controller values for this goal were found during the evaluation described
in section 6.4.
Also, the optional goal The vehicle creates a live stream giving an overview about its
current status was fulfilled during the development. As it is briefly explained in section
4.1.2 most of the requirements concerning visualization stated in section 2.1 were met with
the development of a visualization showing the current status of the vehicle for testing
and presentation purposes.



Another optional goal achieved by the project group is the goal Usage of neural nets in
other environments than the one it was trained with. As explained in section 5.3.4, the
group tried out the usage of a neural network trained with data from the virtual simulation
in the physical simulation, yet this usage turned out to be unfit for autonomous driving
on the used street tiles.

During development the project group had to experience that several trade-offs concerning
the goals and the requirements had to be made. The improvement of one function often
led to reduction of quality of another function, e.g. the creation of a live stream giving
a full overview about its current status made an adaptation of requirement GEN-SNX-13
necessary, as it was not possible for the system to handle new camera information arriving
too quickly.

Overall, the project group considers its goals as being sufficiently achieved in the given
context and at the same time sees many opportunities to expand and improve the system.





Chapter 9

Outlook

While many visions and ideas were formulated in the first weeks of the course, in the
second half year it became apparent that the group would not be able to fulfill much more
than the minimal goals. But at the same time the team gained enough knowledge in all
areas and is able to outline next steps and future possibilities.
One big area the group was not able to pay attention to is (automated) testing: Unit tests
combined with continuous integration would not only enable finding programming errors
earlier, it would also increase the general stability of the system. Furthermore, the project
would profit from integration tests: An example would be the (automated) testing of the
segmentation filter, with a pretrained network model and fixed test data to test not only
correctness but also inference speed. While testing the system as a whole might seem
hard, there are parts that still can be tested and thus integrating system tests is possible.
One could think about a predefined course inside VTD and the usage of VTD capabilities
to detect if the vehicle passes a specific point on the road for testing and benchmarking
lane keeping abilities of the system.
The previous point addresses another area that needs to be improved: It would be of
great usage if more and better metrics could be defined that measure the quality of driv-
ing. Those metrics would consider e.g. lane keeping abilities and obstacle avoidance. The
absence of those metrics makes testing especially in real world scenarios harder and less
scientific because it is not possible to quantify the performance of the system.

After working with ADTF filters, the project group now recommends an even further
refinement of the filter chain to improve the non-functional requirements like reusability
and maintainability. Looking back at the experience with ADTF 2 the group can conclude
that programming filters for ADTF 2 requires to write a big amount of boilerplate code.
While an effort to reduce the required boilerplate was started by introducing own filter
and pin classes, working with the ADTF 2 SDK was still frustrating for other reasons:
An inconvenient API and not very modern C++ are some. Many of those shortcomings
are addressed in the newest version of ADTF 3 and upgrading seems a very logical step.

141



ADTF 3 also contains much better debugging and data flow visualization capabilities.

After outlining these general improvement ideas the project group also wants to address
some possible functional improvements of the implemented system: To improve safety,
more sophisticated logic for emergency braking with better obstacle detection using more
input sensors (e.g. depth camera) or a combination thereof can be thought of. Running
different emergency brakes independently might also be beneficial.
The motion control area also leaves a big room for improvements: It would be helpful to
obtain the unknown state space parameters to improve the current controllers. Further-
more, trying different controller models provides even more potential.
The current path planning algorithm is mostly based on heuristics and operates on a very
local understanding of the situation. That could be vastly improved by making it aware of
the global situation, e.g. adding localization to the system. That can be done in various
ways, e.g. by including a map of the scenario that enables the estimation of the position
or even by a GPS-like system. Such changes would directly improve the turning behavior
of the car, since the system could estimate its relative position to an interception.
But all those components would already be improved by increasing the semantic under-
standing of the world: The localization problem could also be solved by using SLAM
(Simultaneous Localization and Mapping) where a map is built of an unknown scenario
while at the same time keeping track of the agents location in this map. But also in the
current architecture there is room for improvements regarding semantic understanding:
One could think of a more automated and replicable system to run and evaluate network
models on different training data sets, e.g. by using CI tools like GitLab pipelines. Many
other network architectures remain unexplored and integrating obstacle and sign type
detection into the segmentation network are logical next steps. Thinking about hybrid
solutions between neural networks and other reasoning systems might improve some of
those objectives even more.

A completely different approach that would change most of the system’s architecture is
to train the neural network to take over path planning or even controlling. Given the
complexity of this task, it might be the starting point for a new project group.



Appendix A

Additional Information

A.1 Tutorial: How to Create a Track in VTD

This guide is meant as a starting point to quickly create your first track in the road
designer. It has a tutorial / documentation that you can reach by clicking Info>ROD

Tutorial, which is much better than any of the other VTD documentation. Using this
guide should still give you a much quicker head start.

A.1.1 How to Create a Route in VTD

1. Open VTD via /opt/VTD.2.1/bin/vtdStart.sh

2. Open the road designer from VTD via Tools>RoadDesigner

Preparation

Create a new project with its own project folder. The single routes created will be stored
as overlays, but you still seem to need a project within which those are created.

Turn on the grid by clicking the grid icon in the top bar. This will give you a sense
of distance and size, since each square on the grid is one square meter.

Creating a Simple Track

To start drawing your track, switch to line mode by clicking . After drawing a line,

switch to pick pointer and choose the line you just drew. Click on the left
toolbar to turn the selected line into a track.
Select the line again to open the track properties window:

143



In that window, switch to the Drive Lane tab and click Edit>New to create a new
lane. Now you can use a macro to create a track in a pre-defined style, e.g. a country
road with two lanes, via Action>Macro.

To view the lane you just created, you have to save your overlay first. Then you click

the generate database icon . This will open a simulation of the road that you can
navigate.

Decoration

To make the surrounding landscape look nice, we can use style macros. In the track

properties window, choose the style tab . Then open the style macro window via
Action>Execute macro. Choose a style, click Execute macro and you should have nice
surroundings for your roads.



A.1.2 Miscellaneous

Road Architecture

Roads are constructed out of different lanes. Each lane has a width, a style (e.g. standard
(for a normal road), or grass), road marks (with their own style). The middle road marks
are created as their own lane. To have a wide grass environment, you should choose the
outermost lanes (probably labeled 03 and -03 in the lane properties window), set the width
high, set style on grass and uncheck hide pavement to make it visible.

Viewing More Info in the Editor

Toggle the buttons in the top bar to have the editor show more visual details, like the
grid, different existing lanes, style elements, junctions, or very useful sticky points.

Adding 3D Objects

To add 3D obejct anywhere on the map, do: Rightclick>3D Model>Add single

You could, for example, place a chicken on the road.
If you want to repeat 3D objects along the lane, you have to click the respective object
first. Then you enlarge the properties window appearing on the bottom right of the editor
window. If you click repeat and choose aligned on path, you can choose a distance
within which the object is repeated along the track.

Creating Curves

Choose draw spline on the second icon in the left bar, instead of line mode.
Alternatively: Draw two lines (they may intersect), choose both with the pick pointer
while holding shift, then click the link with curve symbol (third/fourth in left bar).
This one makes really smooth curves.

Adding Roadmarks

In the track properties window, choose the lane you want to add roadmarks to (likely the

middle 00 lane or one of the border lanes), then choose the road marks tab , right
click under the offset[m], choose new. Offset indicates the offset in along the direction
of the road, z offset indicates the offset from the middle of the road.

Creating a Junction

Open the documentation by Info>ROD Tutorial and open chapter 10 on PDF-page 60.
It is very well-written and copying it here does not make sense.



Getting proper road marks on the junction seems problematic. If you create a standard
T-crossing, there will be six ways that a car could take into and out of the crossing.
Therefore, you will have six, partially overlapping, tracks. Therefore, if you add road
marks to each track, they will overlap. You can try to fix this by manually adjusting the
offset[m] property of one of those until it looks the least awful.
Attention: All roads to be used in the junctions need to have been drawn as coming from
the outside into the junction area. Else there are problems with right- and left-hand-side

traffic. Alternative, you might be able to use the revert track feature to change
the direction of an existing track.

Unexpected Behavior

Sometimes ROD does weird things. E.g. not being able to select tracks anymore. Turn it
off and on again.

A.1.3 Importing Constructed Roads into VTD

In ROD you only create the static environment that your car is supposed to drive in.
You still have to create a scenario in the Scenario Editor, which adds the car and its
control logic. The important file containing the information about your created road
is a .xodr file (OpenDRIVE format). In the scenario editor, you add it under proper-
ties>layout file. In case you can not find the .xodr file, try Generate>OpenDRIVE in ROD,
or File>Export>OpenDRIVE to see where the file might already be stored.

A.2 Hardware and Sensors of the Model Car

This model car is designed and built to participate in the “Audi Autonomous Driving
Cup”(AADC). This is by now, a yearly challenge by a large German car manufacturer,
where interested groups of students and researchers can compete against each other by
mastering a course with one of these autonomous model cars.
The 2018 driving tasks included dealing with traffic, reverse parking (both parallel and
orthogonally to the road), turning, reacting to pedestrians on a zebra crossing, dealing
with a tight road due to a construction side, overtaking a broke-down car and so on. The
competition demonstrates how capable such a model car can be with regard to practical
approaches on (scaled down) real world problems.
To offer the competing teams many possible approaches the car has very different sensor
types available. This is also to make teams able to compensate weaknesses in the per-
ception of one sensor with other sensor data from a different kind of sensor. This project
group used some but not all of these features.



A.2.1 Sensors

As said, the model car has numerous different sensor types. They can be basic: Voltmeters
check the voltage of both the driving battery and the sensors/PC battery, this is to monitor
the car’s ability to operate with enough current.

Or they might be more complex. And especially when they are used to scan the environ-
ment they deserve a closer look on their own:

Ultrasonic Sensors

Our car is fitted with HC-SR04 ultrasonic sensors; one behind each front wheel, looking
sideways (pointing 9 and 3 o’clock); three in the back bumper, pointing 7, 6 and 5 o’clock
and also a front bumper with five ultrasonic sensors. To get a better coverage of the
scene in front of the car, they are oriented as such that they can detect objects in a wide
field of view and have as few blind spots as possible. In the bumpers the more sideways
pointing sensors are tilted up a bit to allow for better detection of close objects and collision
avoidance in manoeuvres like lane changing.

The sensor’s manual says the object to detect should have a surface area of at least 0.5m2

to have best performance. Objects can be detected in a range of 20mm up to 4000mm
with a resolution of 3mm (It might be that these are values for the best case scenarios).
The sensor operates at 40kHz and in a 30 degrees field of view (fov), however the effectual
usable fov is stated to be 15 degrees uss. Unfortunately however we found the front
ultrasonic sensors to be very noisy in their signal quality. See section 3.1.5 for further
details on how we tried to handle these problems.

The ultrasonic sensors were useful for an indipendent Emergency brake algorithm, as they
give fast results and are oriented in a way that they see areas, the cameras cannot cover.

At the front ultrasonic sensors are good for measuring distances, but for having visual
data cameras are needed.

Basler Camera

For the main view upfront there is the Basler daA1280-54uc camera. This industrial
camera with its small form factor is typically used for in process monitoring and quality
checks but also appropriate for many other fixed focus use cases. Its wide angle (130
degrees) and small distortion make it suitable for object-, road sign- and lane detection.
The global shutter makes it suited for (fast-) moving applications.

The resolution is 1280 x 960 pixels (1.2 MP) at 45 frames per second, but was scaled down
to 480 x 360; this is to make the Segmentation real-time compatible 5. Over the lens the
focus can be set manually.



Rear Camera

The rear camera, a Delock 96368, has with 2592 x 1944 pixels a much higher resolution.
It can output up to 30fps. The (horizontal) field of view (fov) is with 80 degrees a lot
smaller than the Basler’s fov. With this in mind it is clear that its overall capabilities are
very different from those of the front cameras. Furthermore, it is mounted short on top of
the rear bumper under the bootlid, so that the point of view (pov) is far down.
Nevertheless its use can help with parking situations, traffic detection and reversing ma-
noeuvres in general. As this was not part of the scope of this work, the rear camera was
not used here.

3D Camera

Also for future works, the Intel R200 depth camera might prove useful. It delivers four
video streams looking in the direction of travel. One (up to) full HD RGB stream with 15,
30 or 60fps. Also two infrared streams and most important a depth stream with various
settings of resolution and framerate. This depth stream can, with its distance values per
pixel, aid object detection. Combining the results of that with this cameras RGB stream
it could make for example road sign detection faster and easier. One possibly neat feature
of this camera is to have the RGB- and depth streams have (roughly) the same resolution,
point of view (pov). Data of one stream could help analysing the other one, visualisation
of important parts in the depth picture could be shown in the RGB picture and so on.
The depth camera works by having an infrared projector laying out a grid over the fov of
the two infrared cameras, this grid shows up differently in the infrared cameras, depending
on the scene. As the IR cameras are a known distance apart, the module can calculate an
object-to-camera-distance for each pixel.
By implementing all algorithms only based on the Basler camera, the project was more
manageable and less focused on data migration. To get to better and more reliable solu-
tions, future developers should look into migrating the camera data. Another example of
sensors measuring in the same thematic field are the speedometer and accelerometer.

Speedometer

For speed calculation the car has encoder sensors fitted. A slotted disc in each rear wheel
mount rides in the encoders, which then can determine the absolute speed and rotational
direction of the wheel. In this work the speed was simply used for updating the speed
control. However by comparing the measured speed with the other sensor data and the
set target speed, future works might be able to learn about delays in the control chain
or maybe draw conclusions about the road surface (i.e. how slippery it might be). Other
sensor data, in this case, comes from the accelerometer.



Position and Motion Tracking Sensor

The MPU-9250 Motion Tracking Device is a 3-axis angular rate sensor (gyroscope), which
can detect changes in its orientation, a 3-axis accelerometer, which can measure the actual
accelerations in all three directions and a 3-axis magnetic compass, which can orientate
itself with respect to the magnetic field of the earth.
For future work this can be relevant in a situation, where the wheels lose traction, so
the real speed and accelerations of the car can determined (for example in an emergency
braking situation or in the case the car has to dodge a fast moving danger). The compass
and gyroscope can help with uncertainties about the car’s localisation and/or orientation
(for example in a turning action to aid unsatisfying camera data).
Should future project groups decide to incorporate a sophisticated world model, for ex-
ample with mapping the environment, this sensor will provide important aid.

A.2.2 Actuators

For steering the carhas the Absima ACS1615SG Combat Series servo motor, it operates
at 6V and can pull with a force up to 150N.
The drive system is based on a Hacker SKALAR 10 21.5 brushless motor from model
racing. The power electronics is dealt with by a Robitronic Speedstar brushless speed
controller.
The two components enable future projects to add exceptional behavior like fast acceler-
ating or rapid cornering if necessary.
The power train relies on a 5200Ah, 7.4V battery, which should power the drive train for
at least two hours. The fuses for the drive components blows at 20A to save the batteries
and the motor with its electrical controller from overload.

A.3 VTD Test Routes

Route name Description Challenges

Race Track (in Figure 3.18) Big "race"-like roundcourse with big curves - No distractions on/next to road
- Simple track to test lane following algorithm

Reagenzglas Roundcourse with differently sided curves
- Minor distractions next to road (trees)
- Track to test ability to steer in curves
- Used to long-time test lane keeping ability

Rural Rural track with big junctions and signs - Some distractions next to road (trees, small town)
- Track to test turning on junctions and following signs

Town (in Figure 3.18) Small city track with junctions and a lot of signs
- Lots of distractions on and next to road (houses, lights, potholes)
- Track to test how the segmentation deals with distractions
- Lots of signs next to the road to test the sign recognition

Evaluation Replica of the physical evaluation track - Black streets with black surroundings like the physical course
- Track to estimate behaviour of the car in the real world scenario



A.4 Filter READMEs

Bird’s Eye View

Inputs:

• Video : cVideoPin

Outputs

• BirdsEyeVideo : cVideoPin
Output format is the same as the input format.

Properties:

• scale_horizontal : float
Proportion of the input image’s width used to perspective transform; 1 = full image
width; Minimum value: 0

• scale_vertical : float
Proportion of the input image’s height used to perspective transform; 0.25 = bottom
quarter of the image; Minimum value: 0; Maximum value: 0.49

Purpose:
Perspective transforms a trapezoid region of the input image to produce a top-down per-
spective on that region.

Car Sensing

Inputs:

• RGBCam : ImageFormat::getCarRealsenseColor()
(Outputs a camera image)

• DepthCam : ImageFormat::getCarDepth()
Outputs a depth image.

• UltraSonic : tUltrasonicStruct
Outputs a struct of ultra sonic sensor data (value and timestamp per sensor).

• Speed : tSpeedData
Outputs the current speed of the car. Calculted by prefixed ADTF filter ’AADC
Converter Wheels’, since car doesn’t provide it directly.



Outputs:

• Camera : ImageFormat::getCarRealsenseColor()

• DepthCamera : ImageFormat::getCarDepth()

• UltrasonicSensors : tUltrasonicData

• Speed : tSpeedData

Purpose:
This filter is the interface between the car on one side, and the perception and control
group on the other side. It ensures that the other groups receive consistent data and can
concentrate on their specific tasks. The VTDAbstraction filter offers the same interface,
but sources its data from VTD. The images being output by the car sensors and the sim-
ulation have different sizes and formats. Therefore we convert the VTD image data to
the car image format (both color and depth). Since we want to drive the car as well as
possible, this direction seems to make the most sense. It means we don’t up- or downscale
the car sensor data, so our performance when using the car should be better than if we had
done so. Since this filter receives car data already, it does not perform any transformation.

Channel Extractor

Inputs:

• Color Video : cVideoPin

Outputs:

• One-channel-Video : cVideoPin

Properties:

• Channel : int

Purpose:
The filter gets, as an input, an RGB (three channel) video and, according to what channel
was specified using the property, sends out an greyscale video of the specified channel. As
an example: If channel == 0, then the Red channel will be send out. This is useful because
the segmented image, which is also an RGB image, contains the segments of street, signs
and background in the respective R, G and B channels.



Control Consolidation

Inputs:

• SpeedController : tSpeedController
Speed command from the autonomous controller

• SteeringController : tSteeringController
Steering command from the autonomous controller

• XboxSpeed : tSpeedController
Speed command from the Xbox controller

• XboxSteering : tSteeringController
Steering command from the Xbox controller

Outputs:

• Speed : tSpeedController (Consolidated speed command)

• Steering : tSteeringController (Consolidated steering command)

Purpose:
The filter consolidates the control signals of the Xbox controller and the autonomous driv-
ing controller. The Xbox controller is always given precedence, enabling manual emergency
interventions. As soon as we have used the Xbox controller once, all signals by the au-
tonomous system will be ignored.

Correction Angle

Inputs:

• Vanilla Video : cVideoPin

• Trapezoid Video : cVideoPin

• Speed Data : tSpeedData

Outputs:

• Output Video : cVideoPin

• Control Data : tControlData

Purpose:
This filter was intended to be the filter that is delivered for the control part in the vehicle.
By using the new architecture it is now deprecated and will only stay until all the code was
moved to the new architecture. Originally the filter would take the trapVideo to calculate
a middleLine, overlay it on the vanillaVideo to forward outputVideo for operators view



and uses the calculated middleLine to compute the correction angle that is used to get the
vehicle back on track.

Emergency Brake

Inputs:

• Speed Input : tSpeedData

• Ultrasonic Input : tUltrasonicData

Outputs:

• Needs Emergency Stop : tJuryEmergencyStop

Purpose:
This filter uses speed and ultrasonic information to compute, if emergency stop must be
applied. The algorithm is very simple and may raise emergency to early.

Emergency Tester

Inputs:

• Display There is a window in the ADTF screen where the operator can select whether
an emergency stop should be raised in the running system or not.

Outputs:

• Needs Emergency Stop : tJuryEmergencyStop

Purpose:
This filter is used to test the behavior of the vehicle on sudden shut-down by emergency
brake functionality. The shut-down can be executed by the operator in the UI.

Error Angle Computation

Inputs:

• Path : tPath
This is the path that is used for error angle computation.

Outputs:

• Angle : tAngle
The angle that is computed.

Purpose:
Calculate the error angle that results from the calculated path. The error angle can be
used by a controller filter to set the steering of the vehicle.



Histogram Based Path Planning

Inputs:

• Birdseyeview Video : cVideoPin
The video that is received from Lane Detection containing BEV (may include ab-
stract world model later).

• Direction : tDirection
Struct that contains a turning intention. Possible values are ’Left’, ’Right’ or
’NoSign’. Based on the input the path is planned favoring the corresponding side of
the histogram.

• USS : tUSSStruct
Array of ultrasonic sensor values. These values are multiplied to the histogram to
achieve planning a path around obstacles sensed via ultrasonic sensors.

Outputs:

• Destination Point : tPoint
The Destination determined by the cell containing the most non-zero pixels. The x-
coordinate is given by the center of the cell, the y-coordinate is given by the Bottom
Index set via the property.

Properties:

• Number of Cells per Side:
The number off cells the histogram has to have on each side. If set to n, the total
number of cells will be 2n+ 1. Twice for each side and one for the center.

• Proportional Cell Width:
The width each cell has to have. The value is interpreted as a proportional width
to the image width. Ignored if "Calculate Cell Width" is set to true.

• Calculate Cell Width:
Toggles weather the cell width is calculated automatically based on the number of
cells and the image width or "Proportional Cell Width" should be used.

• Cell Bottom Index:
Factor to calculate the bottom row of the cells. The bottom is calculated propor-
tionally to the input image height.

• Cell Height:
Factor to calculate the height of the cells. The height is calculated proportionally
to the input image height.



• Standard Deviation:
Standard Deviation for the Gaussian PDF that will be multiplied to the histogram,
the mean defaults to the center cell, and can be shifted with the "Cell Offset" pa-
rameter.

• Cell Offset:
Shifts the mean of the Gaussian PDF over the histogram by n cells. Negative Values
shift the mean to the left, positive values to the right. This achieves driving offset
to the center. Only use this with "Shift Method" set to "Averaging".

• Gauss Factor:
Factor to multiply on the Gauss before multiplying it to the histogram. Can be used
to compensate to small values.

• Relative Offset:
Similar to "Cell Offset" but with a value relative to the input image size. Use this
with "Shift Method" set to "Interpolation".

• Print Histogram Log:
Toggles if the histogram values should be printed to the log.

• Interpolation Factor to Previous Destination:
Every calculated destination point is interpolated to the previous destination to
smooth out the steering. This parameter defines the weight of interpolation.

• Maximum Cells per Side to use for Interpolation:
Defines how many cell "Shift Method = Interpolation" uses to interpolate the x-
coordinate.

• Enable Ultrasonic Cell Elimination:
Enables multiplying the array of ultrasonic sensors to the histogram to plan a path
around obstacles.

• Shift Method:
Chooses between two implemented methods to calculate a destination point from
the histogram. "Interpolation" interpolates the x-coordinate from the center of the
maximum cell in the direction of it’s neighbors based on the value of neighboring
cells. "Averaging" considers the index of every cell that has a value higher than
"Averaging Threshold" and calculates the average index over these indices.

• Averaging Threshold:
Threshold for "Shift Method = Averaging".

• Ignoring Threshold:
Cell values below this threshold are set to zero. This helps with fuzzy segmented
road edges.



• Turning Timer in ms:
Timer for turning. When a Turning Intention is recieved over the Direction Pin the
mean of the Gaussian PDF is moved to the corresponding edge of the histogram.
After the set ms the mean is moved back to the center.

Purpose:
This filter receives a birds-eye view image of the segmented road and calculates a destina-
tion to drive toward.
Image Cropper

Inputs:

• Input Image : cVideoPin
The image that we want to crop.

Outputs:

• Output Image : cVideoPin
The cropped image (different dimensions as the input image).

Purpose:
This filter takes an input image, crops it (according to fixed values at the moment) and
then sends the cropped image out at the other end. Can be used for many use cases like
stripping away borders around an image.

Lane Detection

Inputs:

• Camera Video : cVideoPin
The input is either the camera image from the car or the virtual camera from VTD.
Note that both images are RGB images.

Outputs:

• Birdseyeview Video : cVideoPin
The output is a birdseyeview video in grayscale.

Purpose:
The filter creates the birdseyeview by applying OpenCV filters and functions onto the
camera image. The birdseyeview simulates (by transforming the input image) a top-down
view of the street.



Lights

Inputs:

• TurningIntention : tSign

• ThrottleBrakeControl : tSpeedController

Outputs:

• Left Indicator : tBoolSignalValue

• Right Indicator : tBoolSignalValue

• Head Lights : tBoolSignalValue

• Hazard Lights : tBoolSignalValue

• Brake Lights : tBoolSignalValue

Purpose:
This filter uses the turning intention and the target speed information to send out the
information to the arduino communication filter.

Local Path Planning

Inputs:

• Birdseyeview Video : cVideoPin
The video that is received from Lane Detection containing BEV (may include ab-
stract world model later).

• Current Speed : tSpeedData
Current Speed of the vehicle received from VTDSensing

Outputs:

• Local Path : tPath
10 Points of the calculated path

Properties:

• Minimum Distance : tFloat32
The minimum distance that is used for path planning.

Purpose:
This filter takes the bev to calculate a path to drive through the abstract world model.



Normalize Speed

Inputs:

• SteeringIn : tSpeedController
Speed command from ControlConsolidation, to be normalized

Outputs:

• SteeringOut : tSpeedController
Normalized speed command

Purpose:
Converts the speed command from [−1, 1] to the range of values that the ArduinoCom-
munication filter accepts. Since the Arduino filter accepts values in [−100, 100], but the
actual speed of the car only changes within [−tbd1, tbd2], we linearly map onto the latter
range.
Furthermore, we check for large jumps between the last two commands. If the difference
is too big, we limit the change to a pre-set constant into the desired direction.

Normalize Steering

Inputs:

• SteeringIn : tSteeringController
Steering command from ControlConsolidation, to be normalized

Outputs:

• SteeringOut : tSteeringController
Normalized steering command

Purpose:
Converts the steering command from [−1, 1] to the range of values that the ArduinoCom-
munication filter accepts. Since the Arduino filter accepts values in [−100, 100], but the
actual steering angle of the car only changes within [−85, 85], we linearly map onto the
latter range.
Furthermore, we check for large jumps between the last two commands. If the difference
is too big, we limit the change to a pre-set constant into the desired direction.



Record USS

Inputs:

• USSStruct : tUltrasonicStruct
Ultrasonic signals coming from the car

Purpose:
The filter records the ultrasonic signal values coming from the car in a semicolon-separated
CSV file ‘/tmp/ultrasonic.csv‘. The columns represent the values defined in tUltrasonic-
Struct: frontLeft, frontCenterLeft, frontCenter, frontCenterRight, frontRight, sideLeft,
sideRight, rearLeft, rearCenter, rearRight.
Since C++ formats the float values with a comma, you’ll want to replace those commas
with simple dots, e.g. using the sed command:

sed s/,/./g ultrasonic.csv > ultrasonic_cleaned.csv

Opening and visualizing the file can then for example be done with the following R code:

colnames = c("left", "center-left", "center", "center-right", "right",

"side-left", "side-right", "rear-left", "rear-center", "rear-right")

data = read.csv("ultrasonic_rear_clean.csv", sep = ’;’, col.names = colnames)

for(i in 1:10){

plot(data[,i], main = colnames[i], ylim = c(0,500))

}

Save Images

Inputs:

• Input Video : cVideoPin

Purpose:
This filter takes an input video stream and saves each single frame as a .bmp image. The
standard path to save the images is /tmp, but it can be configured via the filter property.
Please note that in the directory choice dialogue the ’force absolute path’ checkbox needs
to be checked for this to work.



Segmentation

Inputs:

• Basler camera video : cVideoPin

Outputs:

• Segmented image : cVideoPin

• Copy of original Basler camera image : cVideoPin

Properties:

• Path to neural network model : string

• Neural network input width : int

• Neural network input height : int

Purpose:
The filter takes each image of the Basler camera stream and sends it through the segmen-
tation neural network provided. The segmentation contains, as an RGB image, binary
segments on each channel. The R channel represents street, G is street signs and B is
background (i.e. everything else). In combination to sending out the segmented image, a
copy of the image used for segmentation is also send out so that other filters (especially
CutoutSignClassifier) can compute on both images without a lag between the frames.

Sign to Speed

Inputs:

• tSign
The recognized street sign

Outputs:

• tSignalvalue
The desired target speed for the universal controller with regard to the detected
street sign.

Purpose:
This filter adapts the speed for turning and stopping.



Street Sign Extractor

Inputs:

• Basler camera image : cVideoPin

• Segmented image : cVideoPin

Outputs:

• Cut out street sign : cVideoPin

Properties:

• Minimum side length of sign to cut out : int

Purpose:
The filter takes a camera image and its corresponding segmentation and, if there is a street
sign present with side lengths bigger than specified, cuts it out, resizes it to 32 x 32 pixels
and sends it out through the output pin.

Test Controller

Outputs:

• SpeedController : tSpeedController

• SteeringController : tSteeringController

Purpose:
This filter serves as a plattform to send hardcoded values to the controll consolidation
filter. Its purpose is to have an input for the car, so developers can see it responding or
not.



Universal Controller

Inputs:

• Target Value : tControlInputOutput

• Actual Value : tControlInputOutput

Outputs:

• Control Value : tControlInputOutput

Purpose:
This filter takes a target and an actual value of any kind and can use the control value to
get the actual value near to the target value. This filter will be used to contain different
kinds of controllers, e.g. PID for steering or other for throttle.

US Smoothing

Inputs:

• USSDataIn : tUltrasonicData
struct with float value and timestamp for each of the five front sensors

Outputs:

• USSDataOut : tUltrasonicData
The respective float values become -1.0 if we have no valid values to report

Purpose:
The filter implements filtering and moving-average smoothing of the input ultrasonic sen-
sors.
Since the front sensors exhibited a very worrying amount and type of noise, we inves-
tigated the problem further. There are three distinct types of noise we found. One is
constantly showing very high or very low values (possibly caused by echo), the second is
strongly trend-breaking variation of the values, varying strongly over several consecutive
time steps, the last is a short error noise, also breaking the trend, but only showing a
small blip instead of a prolonged phenomenon. An example for the second type of noise
would be that we have an object at a 30cm distance for several seconds before and after
the break, but within that trend break window, the sensors report values between 25 and
300, without any apparant reason in the physical world.
To combat the first type of error, we simply filter out any values outside of [1,295]. The
second error is handled by smoothing the signal via a 5-frame moving window. To that
effect the filter utilizes five ring buffers of size 5, each recording the last five values received
by the respective sensor. The filtering of too big or too small values happens during the



computation of the moving average. Only values inside this range are used to compute
the smoothed value.

VTD Communication

Inputs:

• ThrottleBrakeControl : tSpeedController

• Steering : tSteeringController

Outputs:

• RDBOut : RDB Package

Purpose:
This filter is the interface between the control filters and VTD (via RDB) to steer and
control the simulated vehicle.

VTD Sensing

Inputs:

• RDBImage : RDBImage

• RDBDepthImage : RDBDepthImage

• DRBData : RDBData

• RDBUltrasonicLeft : RDBUltrasonicLeft

• RDBUltrasonicCenterLeft : RDBUltrasonicCenterLeft

• RDBUltrasonicCenter : RDBUltrasonicCenter

• RDBUltrasonicCenterRight : RDBUltrasonicCenterRight

• RDBUltrasonicRight : RDBUltrasonicRight

Outputs:

• Camera : ImageFormat::getCarRealsenseColor()

• DepthCamera : ImageFormat::getCarDepth()

• UltrasonicSensors : tUltrasonicData

• Speed : tSpeedData



Purpose:
This filter is the interface between VTD (via RDB) on one side, and the perception and
control group on the other side. It ensures that the other groups receive consistent data
and can concentrate on their specific tasks.

XBox Filter

Outputs:

• SpeedController : tSpeedController

• SteeringController : tSteeringController

• EmergencyBrake : tBoolData

• EmergencyBrakeReset : tBoolData

• ToggleAutonomousXBox : tBoolData

• TurningIntention : tSign

Properties:

• XBoxController in use : int
Specify which of the two game controller is used.

• Type of connection : int
Specify which connection is used, bluetooth or usb. The buttons are mapped differ-
ently.

Purpose:
To have influence on the cars’ behavior while driving, there is the XBox game controller.
This filter is its ADTF interface.
The operator can steer via the left thumb stick (button 9), accelerate with the RT axis
and brake through the LT axis. The speed is set by the RT and LT buttons and is held
by the car until another input is recieved. Sending one of those inputs the car escapes the
autonomous mode.
It is possible to send other information to the car: B triggers the emergency brake routine.
Y resets any connected emergency brakes. A enables the autonomous mode. X enables
the manual driving mode.
For test and demo purposes the direction cross can send sign information: UP is no sign
detected, DOWN is the stop sign, LEFT and RIGHT are the respective turn signs.



Appendix B

Lanekeeping Experiments

This appendix solely contains plots concerning real test scenarios with the model car. The
plots show the passing time in the x-axis and the error angle as radians in the y-axis.
The green dashed horizontal line marks the error angle value 0, the red dashed vertical
line denotes the end of the car’s driving route and the start of the same route backwards.
Therefore, the graph approximatively looks point-symmetric at the point of intersection
of the green and red dashed line.

Figure B.1: 20190320-164800 - 20190320-164856, objectively the best configuration

165



Figure B.2: 20190320-170428 - 20190320-170531

Figure B.3: 20190320-174351 - 20190320-174558, low bot idx → car stays closer to the middle
line but does not steer as much in long turns



Figure B.4: 20190320-174758 - 20190320-174910



Figure B.5: 20190320-175411 - 20190320-175455



Figure B.6: 20190320- 175627 - 20190320-175742

Figure B.7: 20190320- 175903 - 20190320-175950



Figure B.8: 20190320-180154 - 20190320-180241

Figure B.9: 20190320-180350 - 20190320-180457



Figure B.10: 20190320-180607 - 20190320-180701

Figure B.11: 20190320-180835 - 20190320-180949, car drove off the road, low gauss allows only
minor steering as only the top is chosen because of the threshold



Figure B.12: 20190320-181143 - 20190320-181250, car drove close to the border of the street
before steering

Figure B.13: 20190320-181546 - 20190320-181642



Figure B.14: 20190320-181800 - 20190320-181911

Figure B.15: 20190320-182101 - 20190320-182203



Figure B.16: 20190320-182433 - 20190320-182531

Figure B.17: 20190320-182753 - 20190320-182854, low threshold makes the car drive close to the
border of the road



Figure B.18: 20190320-183040 - 20190320-183137

Figure B.19: 20190320-183321 - 20190320-183422



Figure B.20: 20190320-183533 - 20190320-183645, car drove off the road because all cells are
considered - even noise close to the border of the street influences the choice of the destination

Figure B.21: 20190320-184027 - 20190320-184127, the steering is not enough



Figure B.22: 20190320-184257 - 20190320-184359, drove off the street at the end of the first half
of the experiment, drove off the street on the second half as well, however, the car coincidentally
drove on the street again at some point

Figure B.23: 20190320-184623 - 20190320-184708



Figure B.24: 20190320-184931 - 20190320-185019



List of Figures

3.1 Car . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Type 1 noise in the ultrasonic sensors: Singular values that differ from the

longtime trend. An object was placed at 1600mm and moved to 2200mm
during the test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Type 2 noise in the ultrasonic sensors: Extreme values indicating error
states. -1 indicates an error, 400 indicates that no obstacle was detected.
An object was stationary at 3000mm away from the sensor during the test. 16

3.5 Type 3 noise in the ultrasonic sensors: Several contiguous values that differ
from the longtime trend. An object was placed at 20mm in front of the
sensor and pulled back to be placed at 3000mm. . . . . . . . . . . . . . . . 17

3.6 Simple filtergraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 ADTFgui . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.8 Excerpt from OpenDrive file. Source: ope [b] . . . . . . . . . . . . . . . . . 22
3.9 Structure of an OpenScenario file. Source: ope [c] . . . . . . . . . . . . . . . 23
3.10 Integration of the different file formats in the creation of the simulation

scene. Source: vir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.11 Road Designer working principle. Several roads represented as OpenCRG

files are combined into a single network of roads and saved in an OpenDrive
file. Source: vir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.12 Road Designer interface. Source: vir . . . . . . . . . . . . . . . . . . . . . . 25
3.13 User interface of the v-Scenario editor, which allows the manipulation of

the dynamic contents of a scene. Source: vir . . . . . . . . . . . . . . . . . . 26
3.14 Sample images from VTD simulations, illustrating different capabilities of

the v-IG module. Source: vir . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.15 Example structure of an RDB message. Source: VTD documentation . . . 29
3.16 Example of the vehicle definitions of a car in the scenario editor of VTD

including the vehicle dynamics and eye points, which is used as main camera
position. Other optional properties include light sources, mirror positions
and various boolean indicators (not used by the VTD car replica) . . . . . 30

179



3.17 First simple track to test lane detection and steering control for lane keeping
on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.18 Overview over two advanced test routes as seen from the road designer. On
the left the circuit and on the right the simple town track . . . . . . . . . . 34

3.19 Sample images of the complex test route used as training data for the neural-
network-based lane detection . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.20 Overview of the real test route build with floor mats . . . . . . . . . . . . . 36

4.1 Functional view on the autonomous driving system . . . . . . . . . . . . . . 40
4.2 Layers of the implemented system . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Implemented filter chain for the autonomous driving system . . . . . . . . . 46
4.4 Sensing filter for VTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Implemented filters chain for output normalization for the real car . . . . . 49
4.6 Implemented filters chain for the output normalization for VTD . . . . . . . 50

5.1 Stages of the simple lane detection algorithm from input to output image. . 58
5.2 Stages of the advanced lane detection algorithm. . . . . . . . . . . . . . . . 60
5.3 Example image in the vtd_crossings data set. . . . . . . . . . . . . . . . . 63
5.4 Example images from three data sets. The first word indicates the name of

the data set, the second word indicates the weather condition. . . . . . . . . 64
5.5 Image of the vtd_town test route with red colored road and signs and the

generated labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.6 The drivable lane annotated onto an VTD image. . . . . . . . . . . . . . . . 66
5.7 Example augmentation of a single image with applied rotation, noise and

color modifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.8 Network architecture regular . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.9 Dilated convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.10 Network architecture flat . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.11 Network architecture droschkinator . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.12 Development of the IOU measure on the validation set for different archi-

tectures. Higher values represent better performance. The training was
performed for 100 epochs on a data set of 229 images, an early subset of
rl_straight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.13 Images annotated by the neural network after training on the reduced
rl_straight data set. The left image shows the problem of uncertain
classification of the background area, thereby accruing a large error over
the whole image, even though the shape of the segmentation is actually
very good. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



5.14 Performance of different combinations of preprocessing and architectures,
as measured on the test set, after 100 epochs of training. Each training run
was repeated five times with differing random seeds to account for variance
introduced by initialization. Higher values represent better performance.
The training was performed for 100 epochs on a data set of 229 images,
an early subset of rl_straight. BW represents the transformation to
greyscale images (Black and White). . . . . . . . . . . . . . . . . . . . . . . 77

5.15 Performance of different architectures, as measured on the test set, after 100
epochs of training. Each training run was repeated five times with differing
random seeds to account for variance introduced by initialization. Higher
values represent better performance. The training was performed for 100
epochs on a data set of 229 images, an early subset of rl_straight. This
experiment added the new droschkinator architecture. . . . . . . . . . . . 78

5.16 Performance of different architectures, as measured on the test set, after 100
epochs of training. Each training run was repeated five times with differing
random seeds to account for variance introduced by initialization. Higher
values represent better performance. The training was performed for 100
epochs on the rl_crossings data set. . . . . . . . . . . . . . . . . . . . . . 78

5.17 Exemplary test images, infered by the neural network after training on
rl_crossings. The overall segmentation works extremely well, though
some jitter-errors exist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.18 Performance of different architectures, as measured on the test set, after 100
epochs of training. Each training run was repeated five times with differing
random seeds to account for variance introduced by initialization. Higher
values represent better performance. The training was performed for 100
epochs on the rl_combined data set. High values indicate that both curvy
roads and crossings can be recognized well. . . . . . . . . . . . . . . . . . . 80

5.19 Performance of different architectures, as measured on the test set, after
100 epochs of training. Each training run was repeated five times with
differing random seeds to account for variance introduced by initialization.
Higher values represent better performance. The training was performed
for 100 epochs on the vtd_crossings data set. High values indicate that
both curvy roads and crossings can be recognized well. . . . . . . . . . . . . 80

5.20 Performance of different architectures, as measured on the test set, after
a maximum of 100 epochs of training. Each training run was repeated
five times with differing random seeds to account for variance introduced
by initialization. Higher values represent better performance. The training
was performed on the combined vtd_crossings and rl_combined data set.
High performance indicates that the neural network is able to recognize
streets both in the real world, and in the simulation. . . . . . . . . . . . . . 81



5.21 Performance of different architectures, as measured on the test set, after a
maximum of 100 epochs of training. Each training run was repeated five
times with differing random seeds to account for variance introduced by
initialization. Higher values represent better performance. The training
was performed on different proportions of VTD and real life data. Higher
values indicate higher performance on segmenting real life street pictures. . 82

5.22 Example augmentation of a single image with added signs and the modifi-
cations described in section 5.3.1. . . . . . . . . . . . . . . . . . . . . . . . . 88

5.23 Visual comparison between receptive fields of the different architectures. . . 90
5.24 Comparison between segmentation results using different dilation factors. . 91
5.25 Network architecture of SegNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.26 Used street signs for navigation. Signs for turning left, or right at crossings

and a stop sign for stopping at the destination. . . . . . . . . . . . . . . . 92
5.27 Found objects without preprocessing steps (reduction of resolution, opening

and closing). Notice that, due to the imperfection of the segmentation,
many artifacts were identified to be part of the street sign. . . . . . . . . . 94

5.28 Found objects with preprocessing steps (reduction of resolution, opening
and closing). Notice that the largest bounding box in this example repre-
sents the actual street sign. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.29 Multiple Sequences of consecutive frames with detected cropped street signs.
These are the input features for the street sign classifier . . . . . . . . . . . 95

5.30 Architecture of the proposed street sign classifier by Shustanov and Yakimov
[2017]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.31 Three example cases in which the classifier would get confused. Notice that,
for all three cases, the left arrow is only partially shown. . . . . . . . . . . . 97

6.1 Birdseye-view of a car facing towards point F. A new destination point D is
computed with a path planning algorithm. The angle between the vectors
~vF and ~vD is called the error angle e. . . . . . . . . . . . . . . . . . . . . . 102

6.2 A closed-loop system. y(t) is the current state of the controlled parameter,
r(t) is the desired state of the controlled parameter, e(t) = r(t)−y(t) is the
error, u(t) is the control output. . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Overview of the implemented components for lane keeping. . . . . . . . . . 108
6.4 Examples for calculated desired paths. . . . . . . . . . . . . . . . . . . . . . 109
6.5 Two examples of calculated error angles. The blue line shows the calculated

middle line, the green line describes the current heading direction and the
red area describes the error that has to be minimized in order to keep the
car in the lane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.6 Example of an error angle when using naive path planning. . . . . . . . . . 111



6.7 Example for a problematic scenario for the simple method of finding a
desired path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.8 Example for an interpolated polynomial using Lagrange form. Left shows
the points used for the base polynomials, right shows the new interpolated
points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.9 New error angle to use for the controller . . . . . . . . . . . . . . . . . . . . 113
6.10 Visualization of the effect of hyper parameters bottom index, cell height and

cell width. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.11 Visualization for weighting the histogram of drivable area with a gaussian. . 115
6.12 Visualization of the interpolation method to calculate the destination x-

coordinate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.13 Visualization of the averaging method to calculate the destination x-coordinate.

Significant cells, i.e., cells with values above the threshold, are colored or-
ange. avg is the average of the indices of all significant cells; cw and bi

are abbreviations for the earlier mentioned hyper parameters cell width and
bottom index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.14 Closed loop system using a PID Controller . . . . . . . . . . . . . . . . . . . 118
6.15 Model MV T D (Equation 6.12), P-controlled with KP = (1.75, 0, 0) with

constant velocitiy of 22 m
s and setpoint 1. The explanation follows the

following name pattern: ’VTD’ (induces MVT D) + [longitudal velocity] +
’P’ + [P-constant with decimal point after the first digit from right to left] . 119

6.16 Model MVT D (Equation 6.12), P-controlled with KP = 0.4 at constant
velocities of 4, 12 and 22 m

s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.17 Model MQ2 (Equation 6.13), P-controlled with KP = 0.5 with constant

velocities of 2, 4, 7, 10, 15, 17 and 20 m
s . The explanation follows the

following name pattern: ’Droschke’ (inducesMQ2) + [longitudinal velocity]
+ ’P’ + [P-constant with decimal point after the first digit from right to left] 121

6.18 ModelMV T D, PID-controlled with KP ID = (0.0005, 0.00001, 0.0007) with
constant velocities of 7 and 12 m

s . The explanation follows the following
name pattern: ’VTD’ (induces MV T D) + [longitudinal velocity] + ’P’ +
[P-constant with decimal point after the first digit from right to left] + ’I’ +
[I-constant with decimal point after the first digit from right to left] + ’D’
+ [D-constant with decimal point after the first digit from right to left] . . . 122

6.19 ModelMV T D, PID-controlled with KP ID = (0.0005, 0.00001, 0.0007) with
constant velocity of 5 m

s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.20 Model MQ2, PID-controlled with KP ID = (0.4, 0.005, 0.05) with constant

velocities of 5, 7 and 12 m
s . Note that the time span is between 0 and 1. . . 123

6.21 ModelMV T D, PID-controlled with KP ID = (0.4, 0.005, 0.05) with constant
velocity of 20 m

s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



6.22 Setup for the experiments. During every experiment the car has to pass the
same course twice, always starting from the same position. . . . . . . . . . . 126

6.23 Big Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B.1 20190320-164800 - 20190320-164856, objectively the best configuration . . . 165
B.2 20190320-170428 - 20190320-170531 . . . . . . . . . . . . . . . . . . . . . . 166
B.3 20190320-174351 - 20190320-174558, low bot idx → car stays closer to the

middle line but does not steer as much in long turns . . . . . . . . . . . . . 166
B.4 20190320-174758 - 20190320-174910 . . . . . . . . . . . . . . . . . . . . . . 167
B.5 20190320-175411 - 20190320-175455 . . . . . . . . . . . . . . . . . . . . . . 168
B.6 20190320- 175627 - 20190320-175742 . . . . . . . . . . . . . . . . . . . . . . 169
B.7 20190320- 175903 - 20190320-175950 . . . . . . . . . . . . . . . . . . . . . . 169
B.8 20190320-180154 - 20190320-180241 . . . . . . . . . . . . . . . . . . . . . . 170
B.9 20190320-180350 - 20190320-180457 . . . . . . . . . . . . . . . . . . . . . . 170
B.10 20190320-180607 - 20190320-180701 . . . . . . . . . . . . . . . . . . . . . . 171
B.11 20190320-180835 - 20190320-180949, car drove off the road, low gauss allows

only minor steering as only the top is chosen because of the threshold . . . 171
B.12 20190320-181143 - 20190320-181250, car drove close to the border of the

street before steering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
B.13 20190320-181546 - 20190320-181642 . . . . . . . . . . . . . . . . . . . . . . 172
B.14 20190320-181800 - 20190320-181911 . . . . . . . . . . . . . . . . . . . . . . 173
B.15 20190320-182101 - 20190320-182203 . . . . . . . . . . . . . . . . . . . . . . 173
B.16 20190320-182433 - 20190320-182531 . . . . . . . . . . . . . . . . . . . . . . 174
B.17 20190320-182753 - 20190320-182854, low threshold makes the car drive close

to the border of the road . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
B.18 20190320-183040 - 20190320-183137 . . . . . . . . . . . . . . . . . . . . . . 175
B.19 20190320-183321 - 20190320-183422 . . . . . . . . . . . . . . . . . . . . . . 175
B.20 20190320-183533 - 20190320-183645, car drove off the road because all cells

are considered - even noise close to the border of the street influences the
choice of the destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

B.21 20190320-184027 - 20190320-184127, the steering is not enough . . . . . . . 176
B.22 20190320-184257 - 20190320-184359, drove off the street at the end of the

first half of the experiment, drove off the street on the second half as well,
however, the car coincidentally drove on the street again at some point . . . 177

B.23 20190320-184623 - 20190320-184708 . . . . . . . . . . . . . . . . . . . . . . 177
B.24 20190320-184931 - 20190320-185019 . . . . . . . . . . . . . . . . . . . . . . 178



List of Algorithms

6.1 Computation of the middle line . . . . . . . . . . . . . . . . . . . . . . . . . 109

185





Bibliography

Nvidia docker. https://gitlab.com/nvidia/cuda/blob/ubuntu16.04/9.0/devel/

cudnn7/Dockerfile, zuletzt abgerufen am 14.08.2018.

Tensorflow c api details, a. https://www.tensorflow.org/install/install_c, zuletzt
abgerufen am 14.08.2018.

Tensorflow docker, b. https://github.com/tensorflow/tensorflow/blob/

master/tensorflow/tools/docker/Dockerfile.devel-gpu-cuda9-cudnn7, zuletzt
abgerufen am 14.08.2018.

Tensorflow serving, c. https://www.tensorflow.org/serving, zuletzt abgerufen am
14.08.2018.

BFFT Produktreferenz ADAS-Modellfahrzeug.

WANT. https://www.want.nl/audi-autonomous-driving-cup-wedstrijd Last vis-
ited: 04.03.2019.

OpenCRG, a. http://opencrg.org Last visited: 30.04.2018.

OpenDRIVE, b. http://opendrive.org Last visited: 30.04.2018.

OpenSCENARIO, c. http://openscenario.org Last visited: 30.04.2018.

Segnet. https://arxiv.org/abs/1511.00561, zuletzt abgerufen am 15.02.2019.

WANT. http://cdn-reichelt.de/documents/datenblatt/A300/

DATENBLATTULTRASCHALLSENSOR.pdf Last visited: 04.03.2019.

VIRES Simulationstechnologie GmbH. http://vires.com Last visited: 30.04.2018.

V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep convolutional encoder-
decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2017.

J. Cho, J. Choi, W. Yoo, G. Kim, and J. Woo. Estimation of dry road braking distance
considering frictional energy of patterned tires. Finite Elements in Analysis and Design,
42(14-15):1248–1257, 2006.

187

https://gitlab.com/nvidia/cuda/blob/ubuntu16.04/9.0/devel/cudnn7/Dockerfile
https://gitlab.com/nvidia/cuda/blob/ubuntu16.04/9.0/devel/cudnn7/Dockerfile
https://www.tensorflow.org/install/install_c
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/docker/Dockerfile.devel-gpu-cuda9-cudnn7
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/docker/Dockerfile.devel-gpu-cuda9-cudnn7
https://www.tensorflow.org/serving
https://www.want.nl/audi-autonomous-driving-cup-wedstrijd
http://opencrg.org
http://opendrive.org
http://openscenario.org
https://arxiv.org/abs/1511.00561
http://cdn-reichelt.de/documents/datenblatt/A300/DATENBLATTULTRASCHALLSENSOR.pdf
http://cdn-reichelt.de/documents/datenblatt/A300/DATENBLATTULTRASCHALLSENSOR.pdf
http://vires.com


V. Dumoulin and F. Visin. A guide to convolution arithmetic for deep learning. ArXiv
e-prints, Mar. 2016.

N. Fiedler, M. Bestmann, and N. Hendrich. Imagetagger: An open source online platform
for collaborative image labeling. In RoboCup 2018: Robot World Cup XXII. Springer,
2018.

A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and J. G. Rodríguez.
A review on deep learning techniques applied to semantic segmentation. CoRR,
abs/1704.06857, 2017. URL http://arxiv.org/abs/1704.06857.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

H. Le and A. Borji. What are the receptive, effective receptive, and projective fields of
neurons in convolutional neural networks? arXiv preprint arXiv:1705.07049, 2017.

Y. Li, K. H. Ang, and G. C. Chong. Pid control system analysis and design. In IEEE
Control System Magazine, volume 26. 2006.

MathWorks. polyfit. https://www.mathworks.com/help/matlab/ref/polyfit.html.
Last visited: 03.09.2018.

R. R. McHenry and B. G. McHenry. Accident Reconstruction. McHenry Software, 2008.
URL http://www.mchenrysoftware.com/forum/SNAGoption.pdf.

A. Palazzi. Project 4 - advanced lane finding. https://github.com/ndrplz/

self-driving-car/tree/master/project_4_advanced_lane_finding, 2017. Last
visited: 01.09.2018.

M. A. Rahman and Y. Wang. Optimizing intersection-over-union in deep neural networks
for image segmentation. In ISVC, 2016.

A. Shustanov and P. Yakimov. Cnn design for real-time traffic sign recognition. Procedia
Engineering, 201:718–725, 2017.

B. Siciliano and O. Khatib. Springer handbook of robotics. Springer, 2016.

M. Sqalli. Lane detection. https://medium.com/@MSqalli/

lane-detection-446986c44021, Nov. 2016. Last visited: 20.08.2018.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15:1929–1958, 2014. URL http://jmlr.org/papers/v15/srivastava14a.

html.

http://arxiv.org/abs/1704.06857
https://www.mathworks.com/help/matlab/ref/polyfit.html
http://www.mchenrysoftware.com/forum/SNAGoption.pdf
https://github.com/ndrplz/self-driving-car/tree/master/project_4_advanced_lane_finding
https://github.com/ndrplz/self-driving-car/tree/master/project_4_advanced_lane_finding
https://medium.com/@MSqalli/lane-detection-446986c44021
https://medium.com/@MSqalli/lane-detection-446986c44021
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html


J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. The German Traffic Sign Recogni-
tion Benchmark: A multi-class classification competition. In IEEE International Joint
Conference on Neural Networks, pages 1453–1460, 2011.

S. Suzuki and K. Abe. Topological structural analysis of digitized binary images by border
following. Computer Vision, Graphics, and Image Processing, 30(1):32–46, apr 1985.

P. Zhao, J. Chen, Y. Song, X. Tao, T. Xu, and T. Mei. Design of a control system for
an autonomous vehicle based on adaptive-pid. In International Journal of Advanced
Robotic Systems, volume 9. InTech, 2012.


	Introduction
	Motivation and Background
	Project Goals
	Proof of Concept
	Minimal Goals
	Optional Goals

	Contents and Structure

	Requirements of the Autonomous Driving System
	General Requirements
	Safety Requirements

	Simulation and Execution
	Model Car
	PC
	Arduinos
	Printed Circuit Boards
	Lights
	Handling Noisy Ultrasonic Signals

	ADTF
	Basics
	Filters
	Services
	Implementation of Filters

	Constructing a Simulation Scene
	OpenCRG - The Road Surface
	OpenDrive - Networks of Roads
	OpenScenario - Dynamic Behavior
	Assembling the Scene

	Virtual Test Drive (VTD)
	Road Designer (ROD)
	Scenario Editor: v-Scenario & v-Traffic
	Image Generator: v-IG
	External Communication: RDB

	Providing a Unified Interface to the Simulation and Car Data
	Recreating the Car in VTD
	Vehicle Dynamics
	Cameras and Sensors

	Complications and Differences
	Test Routes
	A First Test Route in VTD
	Advanced Test Routes
	Generating Test Images for Segmentation
	Physical Test Routes


	Architectural Aspects
	Architectural Views
	Functional View
	Logical View

	Safety
	Ensuring System Safety
	Emergency Brake

	Evaluation
	Evaluating the Flow of Data and Communication
	Evaluation of Data- or Time-Triggered Decisions


	Semantic Understanding
	Simple Lane Detection
	Algorithm Pipeline

	Advanced Lane Detection
	Algorithm Pipeline

	Road detection using neural networks
	Training data
	Preprocessing
	Network architectures
	Experiments and results
	Performing inference directly on the car

	Sign Segmentation
	Evaluation Metrics and Training
	Street Sign Augmentation
	Finding the Correct Receptive Field
	SegNet

	Sign Extraction
	Filter Artifacts
	Align Contours around Street Signs

	Sign Classification
	Street Sign Classifier

	Evaluation
	Fulfilling requirements
	Lessons learned


	Lane Keeping
	Introduction and Basics of Motion Control
	The Orientation Error of the Vehicle
	Computation of the Desired Path
	Computation of the Error Angle
	Naive Path Planning
	Histogram-based Path Planning

	Control the Vehicle
	The Proportional Controller
	The PID Controller

	Evaluation of Lanekeeping
	Fulfilling Requirements
	Motivation and Setup
	Manual Controls
	Experiments


	Implementation and Documentation
	Summary
	Outlook
	Additional Information
	Tutorial: How to Create a Track in VTD
	How to Create a Route in VTD
	Miscellaneous
	Importing Constructed Roads into VTD

	Hardware and Sensors of the Model Car
	Sensors
	Actuators

	VTD Test Routes
	Filter READMEs

	Lanekeeping Experiments
	List of Figures
	List of Algorithms
	Bibliography

